
Systems

GC28-0628-3
File No. 5370·36

OS/VS2 System Programming
Library: Supervisor

Release 3.8

--.. -- ------- -- - - ~ - -'--- --.. -~-- - - _ ... -----_ .. -
-~-.-

Page of GC28-0628-3
As Updated September 30, 1981
By TNL GN28-4978

Fourth Edition (August, 1979)

This is a major revision of, and obsoletes, GC28-0628-2 and Technical Newsletters
GN28-2902 and GN28-2915 incorporating changes released in the following System
Library Supplement:

MVS Processor Support 2 5752-864 GD23-0113 (dated December 29, 1978)

This edition, with Technical Newsletters GN28-4738, GN28-4740, and GN28-4978
applies to release 3.8 of OS/VS2 and to all subsequent releases of OS/VS2 until
otherwise indicated in new editions or Technical Newsletters. Changes are continually
made to the information herein; before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/370 Bibliography, GC2~1,
for the editions that are applicable and current.

This material may contain reference to, or information about, IBM products (machines
and programs), programming or services which are not announced in your country. Such
references or informa~ion must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Publications are not stocked at the address given below; requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch office
serving your locality. •

A form for readers' comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Programming
Systems Publications, Department 058, Building 706-2, PO Box 390, Poughkeepsie, N.Y.
12602. IBM may use or distnbute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of course,
continue to use the information you supply. '

© Copyright International Business Machines Corporation 1975, 197,6, 1977, 1979

u

CI

-------_._--------------------- --_._. __ ._-------------

---------_._----_. __ .

Guide For Using This Publication

The following is a list of the requirements for using this publication.

• To use this publication you must have installed the following
Selectable Unit:

MVS Processor Support 2 SU64

• The implied date of this publication, for the purpose of adding new
Supplements/TNLs, is August 31, 1979. Always use the page with the
latest date (shown in the slug at the top of the page) when adding
pages from different Newsletters/Supplements.

Guide For Using This Publication iii

-- _ .. __ ._---------_._. __ ._----_. _ ... --_._----_ _----_ .. _----_.

"---...,

iv OS/VS2 System Programming Library: Supervisor

----------------- --.---

(

c,

--_._---_._--_ .. __ ._.-

Page of GC28-0628-3
As Updated September 30, 1981
By TNL GN28-4978

Preface

This publication describes supervisor facilities that can be influenced by the
system programmer.

Part I: Supervisor Services discusses supervisor functions restricted to
system programmers. In this publication, a system programmer is defined as
a programmer whose programs run supervisor state, system key 0-7 or
access APF authorized libraries. The publication includes the macro
instructions and parameters used to obtain the functions.

Part I is divided into seven topics. For convenience and compatibility, these
services are grouped in the same manner as in OS/VS2 Supervisor Services
and Macro Instructions, GC28-0683. Accordingly, some of the subjects
discussed are merely continuations of previous coverage, but are extended
to include discussions of the new functions. However, some subjects
discussed under the topics are completely new, but are restricted in use to
the system programmer.

Part II: Macro Instructions contains the formats and descriptions of the
supervisor macro instructions. It provides system programmers with the
information necessary to code the macro instructions.

Note: The system activity measurement facility (MF /1) and the dynamic
support system (DSS) are not supported with MVS/System Extensions
(program number S740-XYN, -XYS).

Publications referenced:

OS/VS2 System Programming Library: Data Management, GC26-3830.
IBM System/370 Principles of Operation, GA22-7000.
OS/VS2 Supervisor Services and Macro Instructions, GC28-0683.
OS/VS2 System Logic Library, SY28-0713, SY28-0714, SY28-071S,
SY28-0716, SY28-0717, SY28-0718, SY28-0719. (7 volumes)
OS/VS - DOS/VS - VM/370 Assembler Language, GC33-4010.
OS/VS2 System Programming Library: System Generation Reference,
GC26-3792.
OS/VS2 System Programming Library: MVS Diagnostic Techniques,
GC28-072S.
OS/VS2 System Programming Library: Debugging Handbook, Volumes 1~' 2,
and 3, GC28-0708-1, GC28-0709-1, and GC28-0710-0.
OS/VS2 System Programming Library: Initialization and Tuning Guide,
GC28-0681.
OS/VS2 Message Library: VS2 System Codes, GC38-1008
OS/VS2 MVS System Programming Library: Service Aids, GC28-0674
OS/VS2 System Progr~lmming Library: Job Management, GC28-0627
Operator's Library: OS/VS2 MVS System Commands, GC38-0229
OS/VS2 MVS Resource Access Control Facility (RACF): Installation Reference
Manual, SY28-0734

Preface v

September 30, 1981

vi OS/VS2 System Programmiag Ubrary: Supervisor

.' \

~/

r-·
{ j
~

---------- ------,,--_._---------_._---------------------------------

Summary of Amendments

Part I: Supervisor Services

Subtask Creation and Control
Creating a New Task

User Modifications . . .
Operator Communication with a Problem Program
Providing an EXTRACT Answer Area

Program Management
Synchronous Exits.
MUltiprocessing Programming Considerations .

Checkpoint/Restart
Re-entrant Modules
Priority

Resource Control
Resource Serialization . . .

Serialization Requirements
Locking

Categories of Locks
Types of Locks
Classes of Locks
Locking Hierarchy
Locking Considerations
SETLOCK Macro Instruction
SETLOCK Macro Instruction (S740-XEI)
INTSECT Macro Instruction (S740-XEl)

The Must Complete Function
Characteristics of the Must Complete Function
Programming Notes

Shared Direct Access Storage Devices (Shared DASD)
Devices that Can be Shared
Volume/Device Status
System Configuration . . .
Volume Handling
Macro Instructions Used with Shared DASD

Releasing Devices .
Preventing Interlocks
Volume Assignment
Program Libraries .
Finding the UCB Address

Authorized Program Facility (APF)
APF Authorization . . .

Authorized Programs
Authorized Libraries .

Using APF
Restricting SVC Routines
Restricting Load Module Access
Assigning Authorization

Authorization Requests Under Various Conditions
Guidelines for Using APF

Changing System Status
Generating an SVC ...
Generating Inline Code .

Interprocessor Communications OPC)
Service Classes .
Status Conditions

Event Completion .
Cross Memory POST
Bypassing the POST Routine
Waiting for Event Completion

Writing POST Exit Routines ..

Contents

xiii

3
3
4
5
6

9
9
9
9

10
10

11
11
11
12
12
12
13
13
14
14

14.1
15
15
16
16
17
17
17
18
18
18
18
18
19
19
19
23
23
23
24
25
25
25
26
26
27
28
28
28
28
29
30
31
31
31
32
32

Contents vii

Identifying and Deleting Exit Routines
Initializing Extended ECBs and ECB Extensions
POST Interface with Exit Routines . . .
Re-entry to POST from a POST Exit . . .
Example of Using a POST Exit Function .

Branch Entry to the POST Macro Instruction
Branch Entry to the WAIT Macro Instruction
Suspension and Resumption of Request Block Tasks
Suspension and Resumption of Tasks (S740-XEl)

Using the SUSPEND Macro Instruction
Using the RESUME Macro Instruction
Using the TCTL Macro Instruction
Using the TCTL Macro Instruction (S740-XEl)
Using the BRANCH= YES Option of the CALLDISP Macro Instruction

System Integrity
System Integrity (S740-XEl)

Documentation on System Integrity
Documentation on System Integrity (5740-XE1)
Installation Responsibility
Elimination of Potential Integrity Exposures

User-Supplied Addresses for User Storage Areas
User-Supplied Addresses for Protected Control Blocks
Resource Identification
SVC Routines Calling SVC Routines
Control Program and User Data Accessibility
Control Program Extensions

Resource Access Control Facility (RACF)
RACDEF Macro Instruction .
RACINIT Macro Instruction
RACHECK Macro Instruction
RACLIST Macro Instruction .

Interruption, Recovery /Tennination, and Dumping Services
SPIE Processing
Recovery /Termination

Invoking the Recovery/Termination Manager
CALLRTM
ABEND

Types of Recovery Routines
Functional Recovery Routines (FRRs)
Task Recovery Routines (ST AE/ST AI EST AE/EST AI)

Establishing Recovery Routines
Functional Recovery Routines
Task Recovery Routines

RTM/Recovery Routine Interface
Interface to Functional Recovery Routines
Interface to Task Recovery Routines

RTM/Retry Routine Interface ..
FRR-Requested Retry Routine .
Task Recovery Retry Routines

Recovery Routine Guidelines . ,
FRRs
Task Recovery

Clean-Up Routines.
Support for Installation-Written Clean-Up Routines
Programming Considerations .

Intercepting System Errors
Using the SLIP Command
SLIP Command Examples

Example 1: Obtaining a Dump with SQA Control Blocks
Example 2: Obtaining a Dump with Queue Elements and Control Blocks
Example 3: Replacing an SVC Dump with a Standalone Dump
Example 4: Setting SLIP Definitions for an Application Program
Example 5: Setting a SLIP Trap Using the Instruction Fetch PER Event
Example 6: Setting a SLIP Trap Using the Storage Alteration PER Event
Example 7: Setting a SLIP Trap Using the Storage Alteration PER Event and the

ACTION=IGNORE Option
Example 8: Setting a SLIP Trap Using the Successful Branch PER Event

Dumping Virtual Storage
Using the SDUMP Macro Instruction

SQA Buffer

viii OS/VS2 System Programming Library: Supervisor

33
33
34
34
35
36
38
38
45
38
40
40

. 40.1
41
41

.. 48.1
41

. 48.1
42
42
42
43
43
44
44
45
45
46
46
46
46

47
47
48
48
48
50
50
50
50
50
50
51
54
54
55
57
57
57
59
60
60
64
64
65
65
66
66
66
67
67
68
68
68

69
69
70
70
70

C)

Using the CHNGDUMP Command ...
SNAP/ABEND User Exit
Correlating Diagnostic Material

Establishing a Timer Disabled Interrupt Exit
Using SETDIE
Recovery Considerations
DIE Characteristics ...
Task Queue Element Control

Virtual Storage Management .
The BRANCH Parameter
The KEY Parameter

Real Storage Management
Fixing/Freeing Virtual Storage Contents
Completion Considerations
PGFIX/PGFREE Completion Considerations (5740-XE1)
PGFIXA/PGFREEA Completion Considerations (5740-XE1)
Virtual Subarea List (VSL)
Virtual Subarea List (VSL) (5740-XE 1)
Reconfiguration Using Vary Storage .
Multiprocessing Configuration Considerations

Miscellaneous Services
Writing Operator Messages

Routing the Message
Writing a Multiple-Line Message

Message Routing Exit Routines . .
Characteristics of MCS
Programming Conventions for WTO/WTOR Routines

Messages Not Using Routing Codes
Writing a WTO/WTOR Exit Routine

Adding a WTO/WTOR Exit Routine to the Control Program
Service Management

Scheduling Service Requests
Service Request Blocks (SRBs)
Priorities
Characteristics of Service Requests

Purging Service Requests
PURGEDQ Parameters

Asynchronous Exit Routines
Stage 1 Initialization
Stage 2 Scheduling . . .
Stage 3 Execution

Execution and Termination Characteristics
Writing SVC Routines

Characteristics of SVC Routines
Programming Conventions for SVC Routines
Inserting SVC Routines Into the Control Program

Specifying SVC Routines
Inserting SVC Routines During the System Generation Process
Type 5 SVC Facility . . .
Type 6 SVC Facility . . .
Non-Preemptable SVCs .

Subsystem SVC Screening
Missing Interruption Handler ..

Choosing a Time Interval . .
Modifying the CSECT IGFINTVL

Mass Storage System Missing Interrupts
Intercepting Hot I/O Interrupts
Adding Code to the Power Warning Feature Support

Writing Code for the Machine Check Handler Appendage
Coding Considerations

Writing Code for the Master Scheduler Initialization Routine
Coding Considerations
Control Track Record

Limiting User Region Size - IEALIMIT .
Low Address Protection (5740-XE1) . . .
Using the SRM Reporting Interface (5740-XE1)

71
72
73
75
75
76
76
78

80
81
81

83
83
84
84
84
84

.. 84.1
85
87

89
89
89
90
90
90
91
92
92
92
93
94
94
95
95
96
96
97
97
98
99
99

100
100
100
103
103
104
104
105
106
107
108
109
109
109
110
111
112
113
114
115
116
117
119
120

Contents ix

Part II: Reference - Macro Instructions.
Macro Instruction Forms . . .
Coding the Macro Instructions
Continuation Lines
ATTACH - Create a New Task
CALLDISP - Force Dispatcher Entry
CALLRTM - Call Recovery/Termination Manager
CHANG KEY - Change Virtual Storage Protection Key
CIRB - Create Interruption Request Block
DEQ - Release a Serially Reusable Resource
DEQ (List Form)
DEQ (Execute Form)
DSGNL - Issue Direct Signal
ENQ - Request Control of a Serially Reusable Resource
ENQ (List Form)
ENQ (Execute Form)
EST AE - Extended ST AE
EST AE (List Form) . . .
EST AE (Execute. Form)
EVENTS - Wait for Events
EXTRACT - Extract TCB Information
EXTRACT (List Form)
EXTRACT (Execute Form)
FEST AE - Fast Extended ST AE .
FREE MAIN - Free Virtual Storage
FREEMAIN (List Form)
FREEMAIN (Execute Form) . . .
GETMAIN - Allocate Virtual Storage
GETMAIN (List Form)
GETMAIN (Execute Form)
INTSECT - Intersect With the Dispatcher (S740-XEl)
MODESET - Change System Status
MODESET (List Form)
MODESET (Execute Form)
NIL - Provide a Lock Via an AND IMMEDIATE (NI) Instruction
OIL - Provide a Lock Via an OR IMMEDIATE (01) Instruction
PGFIX - Fix Virtual Storage Contents
PGFIXA - Fast Path to Fix Virtual Storage Contents (S740-XEl)
PGFREE - Free Virtual Storage Contents
PGFREEA - Fast Path to Free Virtual Storage Contents (S740-XEl)
POST - Signal Event Completion
POST (List Form) .
POST (Execute Form) .
PROTPSA - Disable, Enable Low Address Protection (S740-XEl)
RGEDQ - Purge SRB Activity
PURGEDQ (List Form)
PURGEDQ (Execute Form)
QEDIT - Command Input Buffer Manipulation
RACDEF - Define a Data Set to RACF
RACDEF (List Form)
RACDEF (Execute Form)
RACHECK - Check RACF Authorization
RACHECK (List Form)
RACHECK (Execute Form)
RACINIT - Identify a RACF Defined User
RACINIT (List Form)
RACINIT (Execute Form)
RACLIST - Build In-Storage Profiles
RACLIST (List Form)
RACLIST (Execute Form)
RESERVE - Reserve a Device (Shared DASD)
RESERVE (List Form)
RESERVE (Execute Form)
RESUME - Resume Execution of a Suspended Request Block Task
RISGNL - Issue Remote Immediate Signal
RPSGNL - Issue Remote Pendable Signal
SCHEDULE - Schedule System Services for Asynchronous Execution
SDUMP - Dump Virtual Storage
SDUMP (List Form)
SDUMP (Execute Form)
SETFRR - Set Up Functional Recovery Routines

x OS/VS2 System Programming Library: Supervisor

121
123
123
125
126
130
131
133
135
138
141
142
143
145
149
150
152
154
155
157
158
160
161
162
164
167
168
169
171
172

172.1
173
176
177
178
180
182

184.1
. 185
186.1

187
.. 189

. 190
190.1

191
192
193
194
195
198
199
200
202
203
204
208
210
211
214
215
216
220
221
222
224
226
228
229
236
237
240

C~)

------------_._ __ ._._-._---_._--_ .. _ _-----

SETLOCK - Control Access to Serially Reusable Resources
SETRP - Set Return Parameters
SPIE - Specify Program Interruption Exit
SPIE (List Form)
SPIE (Execute Form)
SPOST - Synchronize POST
ST AE - Specify Task Asynchronous Exit
ST AE (List Form)
ST AE (Execute Form)
STATUS - Change Subtask Status
SUSPEND - Suspend Execution of a Request Block Task .
SYNCH - Take a Synchronous Exit to a Processing Program
SYSEVENT - Notify Transaction Complete (5740-XEt)
TCTL - Transfer Control from an SRB Process
TEST AUTH - Test Authorization of Caller
T6EXIT - Type 6 Exit
WTO - Write to Operator
WTO (List Form)
WTOR - Write to Operator with Reply
WTOR (List Form)

Index

243
250
254
256
257
258
259
262
263
264
267
268

269.0
270
271
273
274
277
278
280

281

Contents xi

--_ ... _---_ ... " .. ",_ -....

Figures
"

Figure 1. EXTRACT ECB and CIB Pointers. 5
Figure 2. Command Input Buffer Contents 5
Figure 3. EXTRACT Answer Area Fields 6
Figure 4. Summary of Locking Characteristics 13
Figure 5. Valid Volume Characteristic and Device Status Combinations 17
Figure 6. Example of an Interlock Environment 19
Figure 7. Example of Subroutine Issuing RESERVE and DEQ 22
Figure 8. Assigning Authorization via SETCODE 26
Figure 9. Authorization Rules 27
Figure 10. Bypassing the POST Routine 32
Figure 11. ECB Extension (ECBE) 33
Figure 12. Extended ECB 34
Figure 13. Data Areas POST Exit for Example 35
Figure 14. POST Function and Branch Entry Points 36
Figure 15. POST Branch Entry Input 37
Figure 16. POST Branch Entry Output 37
Figure 17. EST AE Environment . 54
Figure 18. Virtual Subarea List Entries 85
Figure 19. IPL Designation of Processor Storage Units 86
Figure 20. Asynchronous Exit Data Area Configuration 98
Figure 21. Programming Conventions for SVC Routines 101
Figure 22. SRB Input Format 106
Figure 23. Changing the Missing Interruption Handler Time Interval 109
Figure 24. Logical Placement of Your Code in the Machine Check Handler Appendage 113
Figure 25. Logical Placement of Your Code in the Master Scheduler Initialization Module :114
Figure 26. Control Track Record 116
Figure 27. Storage Assignments on MP Systems . 117
Figure 28. The Effects of IEALIMIT and REGION Values on Various GETMAINs 119
Figure 29. Macro Instruction Coverage . 122
Figure 30. Sample Macro Instruction . 124
Figure 31. Continuation Coding . 125
Figure 32. Return Code Area Used by DEQ 139
Figure 33. Return Code Area Used by ENQ 147
Figure 34. Return Code Area Used by RESERVE 218

----..

Figure 35. MCSFLAG Fields 276

xii OS/VS2 System Programming Library: Supervisor

c

Summary of 'Amendments
for GC1S-061S-3
by TNL GN1S-497S
OS/VSl Release 3.S

The following changes have been made to support Resource
Access Facility (RACF) Version 1 Release 4.

The keywords UNIT, SPECIAL, OWNER, LEVEL,
UACC, DATA, and AUDIT have been added to the
RACDEF macro instruction .

• The DSTYPE and TYPE keywords of the RACDEF
macro instruction have been extended to include
DSTYPE=M and TYPE=CHGVOL.

Summary of Amendments
for GC1S-061S-3
by TNL GN1S-473S
OS/VSl Release 3.S

This technical newsletter updates the Resource Access
Control Facility (RACF) macro instructions.

Summary of Amendments
for GC1S-061S-3
by TNL GN1S-4740
OS/VSl Release 3.S

This technical newsletter adds the topic "Getting More
Than One SYSMDUMP" to the Interruption,
Recovery/Termination, and Dumping Services section in
Part I.

Page of GC28-0628-3
As Updated September 30, 1981
By TNL GN284978

• The keyword OWNER has been added to the
RACHECK macro instruction.

• The DSTYPE keyword of the RACHECK macro
instruction has been extended to include DSTYPE ... M.

September JO, 1981

xiv OS/VSl System Programming IJbrary: Supervisor

Part l: Supervisor Services

The supervisor provides the resources that your programs need while assuring that as many of
these resources as possible are being used at a given time. Well designed programs use system
resources efficiently. Knowing the conventions and characteristics of the VS supervisor helps
you design more efficient programs.

This section describes those supervisor services that should be restricted in use to systems
programmers and installation-approved personnel. In most cases, the services correspond to
macro instructions and parameters that are described in part II.

For convenience and compatibility, the services you can request from the supervisor are
grouped in the same manner as in OS/VS2 Supervisor Services and Macro Instructions. The
service groupings are as follows:

Subtask Creation and Control: Occasionally, you can have your program executed faster and
more efficiently by dividing parts of it into subtasks that compete with each other and with
other tasks for execution time.

Program Management: You can use the supervisor to aid communication between segments of
a program. Save areas, addressability, and passage of control from one segment of a program
to another are included in this topic.

Resource Control: Portions of some tasks depend on the completion of events in other tasks,
thus requiring planned task synchronization. Planning is also required when more than one
program uses a serially reusable resource.

Interruption, Termination, and Dumping Senices: The supervisor provides facilities for writing
exit routines to handle specific types of interruptions. It is not likely, however, that you will be
able to write routines to handle all types of abnormal conditions. The supervisor therefore
provides for termination of your program when you request it by issuing an ABEND macro
instruction, or when the control program detects a condition that will degrade the system or
destroy data.

Virtual Storage Management: While virtual storage allows you to write large programs without
the need for complex overlay structures, virtual storage must be obtained for your job step.
Virtual storage is allocated by both explicit and implicit requests.

Real Storage Management: The supervisor administers the use of real storage and directs the
movement of virtual pages between auxiliary storage and real storage in page size blocks. The
services provided allow you to release virtual storage contents, load virtual storage areas into
real storage, and page out virtual storage areas from real storage.

In addition to the services outlined above, the supervisor provides the facilities for timing
events, extended precision floating-point simulation, and operator communication with both the
system and application programs.

Part I: Supervisor Services 1

2 OS/VS2 System Programming Library: Supervisor

Subtask Creation and Control

One task is created by the control program as a result of initiating execution of the job step
(the job step task). You can create additional tasks in your program. If you do not, however,
the job step task is the only task in a job being executed. The benefits of a multiprogramming
environment are still available even with only one task in the job step; work is still being
pedormed for other jobs when your task is waiting for an event, such as an input operation, to
occur.

The advantage in creating additional tasks within the job step is that more tasks are
competing for control than the task in the job you are concerned with. When a wait condition
occurs in one of your tasks, it is not necessarily a task from some other job that gets control;
it may be one of your tasks, a portion of your job.

The general rule is that parallel execution of a job step (that is, more than one task in a job
step) should be chosen only when a significant amount of overlap between two or more tasks
can be achieved. The amount of time taken by the control program in establishing and
controlling additional tasks, and your increased effort to coordinate the tasks and provide for
communications between them must be taken into account.

Most of the information concerning subtask creation and control appears in OS/VS2
Supervisor Services and Macro Instructions. This chapter continues discussion in the following
areas:

• Task creation (ATTACH macro instruction)
• Communication with a problem program (EXTRACT and QEDIT macro instructions)

Creating a New Task

The ATTACH macro instruction causes the control program to create a new task. The
complete use of the macro instruction is described in OS/VS2 Supervisor Services and Macro
Instmctions.

The macro instruction has nine parameters that permit the authorized user (protection key
0-7 or supervisor state) greater flexibility in using the services of the macro instruction. If the
parameters are not used by authorized tasks, the default values are assigned. These defaults
include:

• JSTCB=NO -- the attached task is a task in the present job step.

• SM=PROB -- the new task is to run in problem program mode.

• SV AREA = YES -- a save area is needed for the new task.

• KEY = PROP -- the protection key of the newly created task is the same as the task using
ATTACH.

• DISP= YES -- the subtask is to be dispatchable.

• TID=O -- the task identifier of the new task is O.

• JSCB -- omission of this parameter specifies that the address of the job step control
block of the attaching task is also used for the new task.

• NSHSPV and NSHSPL -- omission of these parameters specifies that subpools 236 and
237, if they exist, are to be shared with the subtask.

• RSAPF = YES -- reset the APF authorization of the step according to the attributes of
the subtask.

Subtask Creation and Control 3

User Modifications

Rather than accepting the default values, (assuming the task is authorized), you can extend the
facilities of the ATTACH macro instruction by coding the following values:

• JSTCB= YES -- the attached task is a new job step task. In this case, the address of the
TCB of the newly created task is placed in the TCBJSTCB field of the attached TCB.

The first load of a job is attached as a job step task by the initiator. For such an attach,
the program manager will not search the job library of the attaching task. When the job
step task issues ATTACH, LOAD, LINK, or XCTL, the job library of the job step task
may be searched for the load module being fetched.

Also, only under a job step task can a system program (system key or supervisor state)
attach a load module from a nonsystem library.

In order to attach a job step task, the attaching task (and any of its subtasks) must be
job step tasks. If one of these conditions is not met, the new task will not be created.

• SM=SUPV -- the system is to run in supervisor mode when executing the attached task.

Supervisor state is a requirement before privileged instructions (for example, LPSW) can
be executed. You can specify supervisor mode via this parameter or via the MODESET
macro instruction.

• SVAREA=NO -- a save area is not needed for the new task.

The save area is obtained from the user's region. Since it may not always be desirable to
have a save area (for example, the user's region may not be defined at the time of a
system ATTACH), this parameter may be used to specify that no save area should be
created.

• KEY = ZERO -- the protection key of the newly created task is zero.

Protection key zero allows the new task to reference any defined storage and pass all
validity checks.

• DISP=NO -- the subtask is to be nondispatchable.
This parameter causes the primary nondispatchability bit TCBANDSP to be turned on in
the new TCB. As a result, the new TCB will not be dispatched. Thus, this allows the
originating task to alter the new TCB. The new task will remain nondispatchable until
TCBANDSP has been reset via the STATUS macro instruction with the RESET option.
(Note: STATUS START TCB will not make the new TCB dispatchable.)

• TID=task id -- the task identifier specified is to be placed in the TCBTID field of the
attached task.
The task identifier can be set to identify critical system tasks. Other uses of this
parameter are not recommended.

• JSCB=Job Step Control Block address -- the address specified for the JSCB is to be
used for the new task.
This parameter sets the TCBJSCB to the address of a job step control block. This action,
normally associated with the creation of a job step task, is not required by ATTACH.

• NSHSPV=subpool number and NSHSPL=subpoollist address -- subpools 236 and 237
are not to be shared with the new task.

Subpools 236 and 237 are known as the scheduler work area (SWA). This parameter
allows the scheduler to control these subpools.

• RSAPF = YES -- reset the step APF authorization. This parameter allows a system
program that is not running APF authorized to ATTACH a subtask and have the APF
authorization for the step reset according to the attributes of the subtask. The subtask
must be attached while in the problem program state and must be in a non-system key.
For more information on this parameter see "Authorization Results Under Various
Conditions" in the "Resource Control" section.

4 OS/VS2 System Programming Library: Supervisor

("'--'\
I

~,

c)

Operator Communication with a Problem Program

The operator can pass information to a problem program by issuing a STOP or a MODIFY
command. In order to accept these commands, the program must be set up in the following
manner.

An EXTRACT macro instruction is issued to obtain a pointer to the communications ECB
and a pointer to the first command input buffer (Cm) on the cm chain for the task. The
ECB is posted whenever a STOP or a MODIFY command is issued. The EXTRACT macro
instruction is written as follows, and returns what is indicated in Figure 1.

EXTRACT answer area,FIELDS=COMM

Answer area ..
Address of the 0 ECB address

communication area 4 CIS address

FlgUl'e 1. EXTRACT ECB and CIB Pointers

The cm contains the information specified on the STOP or the MODIFY command, as
shown in Figure 2. If the job was started from the console, the EXTRACT macro instruction
will point to the START cm. If the job was not started from the console, the address of the
first em will be zero.

0

4

8

12

16

Address of next CI S

Verb CIS Reserved
code . length

Reserved Address
Space 10

Console Reserved Length of
10 data field

Variable length data
specified on the command

Verb code X'04' START
X'40'STOP
X'44' MODIFY

FlgUl'e 2. Command Input Buffer Contents

If the address of the START cm is present, the QEDIT macro instruction should be used
to free this cm after any parameters passed in the START command have been examined.
The QEDIT macro instruction is written as follows:

QEDIT ORIGIN=address of pointer to CIB,BLOCK=address of CIS

Notes:

1. The address of the pointer to the cm is the contents of the answer area plus 4 bytes, as
shown in Figure 1.

2. The address of the cm must be the exact address returned by EXTRACT, not an
address generated from copying the cm to another location.

Subtask Creation and Control 5

The cm counter should then be set to allow cms to be chained and MODIFY commands
to be accepted for the job. This is also accomplished by using the QEDIT macro instruction:

QEDIT ORIGIN=address of pointer to CIB,CIBCTR=n

The value of n is any integer value from 0 to 255. If n is set to zero, no MODIFY
commands are accepted for the job. STOP commands, however, are accepted for the job
regardless of the value set for CmCTR.

Note: When using the address or addresses returned from the EXTRACT macro as input to
the QEDIT macro, the user must establish addressability via IEZCOM based on the address
returned by the EXTRACT.

For the duration of the job, the communications ECB may be waited on or checked at any
time to see if a command has been entered for the program. The verb code in the cm should
be examined to determine whether a STOP or a MODIFY command has been entered. After
the data in the cm has been processed, a QEDIT macro instruction should be issued to free
the cm.

The communications ECB is cleared when no more cms remain. Care should be taken if
multiple subtasks are examining these fields. Any cms not freed by the task are unchained by
the system when the task is terminated. The area addressed by the pointer obtained by the
EXTRACT macro instruction, the communications ECB, and all cms are in protected storage
and may not be altered.

Providing an EXTRACT Answer Area
The EXTRACT macro instruction is used to provide TCB information for either the active
task or one of its subtasks. The information from the requested field is returned in the relative
order shown in Figure 3. If the information from a field is not requested, the associated
fullword is omitted.

GRS

FRS

Reserved

AETX

PRI

CMC

TIOT

COMM

TSO

PSB

TJID

ASID

Answer Area Address

00

00

00 00

00

00 00

00

00

00

00

00

00 00

00 00

r-- 1 Byte -....,~ I~If--- 1 Byte

Figure 3. EXTRACT Answer Area Fields

6 OS/VS2 System Programming Library: Supervisor

Address

Address

00 I 00

Address

Value I Value

Completion Code

Address

Address

Address

Address

Value

Value

1 Byte 1 Byte ~

--- ------------------------ ------

-~

o

o

You must provide an answer area consisting of contiguous fullwords, one for each of the
codes specified in the FIELDS parameter, with the exception of ALL. If ALL is specified, you
must provide a 7 -word area to accommodate the GRS, FRS, reserved, AETX, PRJ, CMC, and
TIOT fields. The ALL code does not include the COMM, TSO, PSB, TJID, and ASID fields.

Addresses are always returned in the low-order three bytes of the fullword, and the
high-order byte is set to zero. Fields for which no addresses or values are specified in the task
control block are set to zero.

For example, if FIELDS=(TIOT,GRS,PRJ,TSO,PSB,TJID) is coded, a 6-fullword answer
area is required, and the extracted information appears in the same relative order as shown in
Figure 3. (That is, GRS is returned in the first word, PRJ in the second word, TIOT in the
third word, etc.)

If FIELDS=(ALL,TSO,PSB,COMM,ASID) is coded, an Il-fullword answer area is
required, and the extracted information appears in the answer area in the relative order shown
above.

Subtask Creation and Control 7

-"

8 OS/VS2 System Programming Library: Supenisor

C)

Program Management

The supervisor can be used to aid communication between segments of a program. The
descriptions of load module structures, facilities for passing control between programs, and the
use of associated macro instructions are available to all users and are described in OS/VS2
Supervisor Services and Macro Instructions.

Following is a description of synchronous exits and the SYNCH macro instruction
associated with it. The facility should be used only by system programmers or other
installation-approved personnel.

Synchronous Exits
In general, the SYNCH macro mstruction is used when a control program in supervisor state
gives temporary control to a processing program routine (not necessarily running supervisor
state) where the processing program is expected to return control to the supervisor state
control program. The program to which control is given must be in virtual storage when the
macro instruction is issued. When the processing program returns control, the supervisor state .
bit, the PSW key bits, the system mask bits, and the program mask bits of the program status
word are restored to the settings they had before execution of the SYNCH macro instruction.

The use of the SYNCH macro instruction is similar to that of the BALR instruction in that
register 15 may be used for the entry name address.

Registers are not saved or restored by SYNCH processing when control is returned to the
caller unless RESTORE=YES is specified. IF RESTORE=NO is coded or defaulted to, the
register contents are unpredictable. When an authorized program uses SYNCH to invoke an
exit in an unauthorized program, the general registers returned from the exit might not contain
expected data or correct addresses. Therefore, to preserve system integrity, the authorized
program must either save the registers in a protected save area and then restore them, or
validate the contents of the returned registers.

As an example of the use of the SYNCH macro instruction, label processing as the result of
an OPEN macro instruction may be carried out to a point at which a user's processing
program indicates that private processing is desired (or necessary). The control program's
Open routine would then issue a SYNCH macro instruction giving the address of the
subroutine required for the user's private label processing.

Multiprocessing Programming Considerations

Many of the following programming considerations are true in a multi-tasking environment
(such as OS/MVT) as well as in a multiprocessing system. However, because of their
increased importance in a multiprocessing environment, they should be closely reviewed.

(7heckpoint/lfestart

When issuing checkpoints and then restarting a task, the restarted task must request control of
all resources required to continue processing. Resources are not automatically returned to the
task upon restart.

Program Management 9

Re-entrant Modules

When link editing modules as re-entrant, be sure that all the modules and the macro
instructions they call are re-entrant. This is important since in a multiprocessing system:

• Two tasks in the same address space making use of the module might cause the module
to be executed simultaneously on two different processors.

• Asynchronous appendages can operate on one processor simultaneously with an
associated task on the other processor.

• Recovery routines can execute on either processor, not necessarily on the one on which
the error was detected.

The CSECTs must be unchanged during execution or their critical sections must be explicitly
serialized. The general method for ensuring re-entrancy of macros is to use the LIST and
EXECUTE forms of the macro instructions with a dynamically acquired parameter list.

Priority

Programs that use priority or precedence as a serialization mechanism are sensitive to changes
in the dispatching algorithms used by the system. For example, the CHAP macro instruction
does not ensure that tasks are dispatched in the expected order, due to dispatching on two
processors. Also, the PRIORITY and DPRTY JCL parameters can no longer be used to
accomplish serialization. First, the system resources manager might allow a task or job with a
lower dispatching priority to execute before to a task with a higher priority. Second, since
tasks are executed on both processors, tasks of different priority might be executed on both
processors simultaneously.

Note: Tasks might not be redispatched on the processor on which they were previously
executing. Therefore, storage from 0-4K should not be used because redispatch on a different
processor results in different data being referenced.

For further multiprocessing considerations see the section "Locking".

10 OS/VS2 System Programming Library: Supervisor

Resource Control

Planning is required when more than one program uses a serially reusable resource. A serially
reusable resource is a resource than can be used by another program after the current use has
been concluded. That is, a resource that should not be used or modified by more than one
program within a given time span. Planning is also required when portions of some tasks
depend on the completion of events in other tasks.

This chapter discusses some of the services available to control resources, and thus to help
you plan ahead for a more efficient installation. The services discussed include:

• Locking (SETLOCK macro instruction)
• Must complete function (ENQ and DEQ macro instructions)
• Shared DASD (RESERVE and EXTRACT macro instructions)
• Authorized program facility (TESTAUTH macro instruction)
• System status (MODESET macro instruction)
• Interprocessor communications (DSGNL, RISGNL, and RPSGNL macro instructions)
• Event completion (POST, SPOST, and EVENTS macro instructions)

Resource Serialization
Resource serialization is used to prevent a program from altering the content or status of a
resource while another program is using that resource or is dependent on the content or status
of that resource remaining unchanged for a given period of time. For example, resource
serialization prevents a program from issuing an SVC and changing the content of a control
block while another SVC is using that control block.

Adequate control of resources is even more significant in a multiprocessing environment.
Some uniprocessor serialization techniques (such as disablement) are not effective in a
multiprocessing environment because of the possibility of mUltiple tasks using the same
resource while running concurrently on different processors.

Serialization Requirements

It is necessary to determine and keep track of resources that must be serialized and the
routines that access such resources. The only safe serialization is explicit; i.e. using one of the
following methods: ENQ/DEQ; WAIT/POST/EVENTS; RB precedence at the TCB level;
locking at the TCB level; CS (compare and swap instruction); and TS (test and set
instruction). Such forms of serialization are required in the following cases:

• Scanning of the cm chain. Manipulation of the cm chain should be done by means of
the QEDIT macro instruction.

• The use of data in subpools shared between tasks.
• Data referenced by more than one task. (For example, attached tasks can execute at the

same time as the attaching task on different processors.)
• References to system control block fields that dynamically change after IPL. The

serialization technique in this case must match that used by the system. Also, bits within
a byte all require the same serialization technique, if the byte might be updated
simultaneously by both processors.

• The access of data sets shared between tasks in the same address space, if the tasks
update the data and if the access method is not VSAM or BDAM.

• Any common data references between an EST AE exit and asynchronous exits, if EST AE
with ASYNCH=YES is issued.

Resource Control 11

Locking
A locking mechanism serializes access to resources. This locking technique is only effective,
however, if all programs that depend on a resource, make use of the same locking mechanism.
Each type of serially reusable resource is assigned a lock. The lock manager controls a
hierarchical locking structure with multiple types of locks to synchronize the use of serially
reusable resources. The lock manager also handles all functions related to the locks. These
functions include obtaining or releasing locks and checking the status of a particular lock on a
processor. Use of the lock manager is restricted to key 0 programs running in supervisor state.
This prevents unauthorized problem programs from interfering with the system serialization
process.

Categories 0/ Locks

Two categories of locks exist:

• Global locks -- protect serially reusable resources related to more than one address space.
(For example, a unit control block is protected by a global lock since it relates to the
entire system. Also, a system-related GETMAIN for a global subpool, or a global ENQ,
requires a global lock.)

• Local locks -- protect the resources assigned to a particular address space. When the local
lock is held for an address space, the queues and control blocks associated with that
address space can be manipulated only by the owner of the lock. (For example, an
address space-related GETMAIN for a user subpool requires a local lock.)

All of the locks described below, with the exception of the local lock, are global locks.
These global locks provide system-wide services or use control information in the common area
and must serialize across address spaces. The local lock, on the other hand, does not serialize
across address spaces, but serializes functions executing within the address space.

Types 0/ Locks

Two types of locks exist. The type determines what happens when a function on one processor
makes an unconditional request for a lock that is held on the other processor. The types are:

• Spin locks -- prevent the requesting function on one processor from doing any work until
the lock is freed on the other processor. The lock manager enters a loop that keeps
testing the lock until it is released on the other processor. As soon as the lock is free, the
lock manager spinning on the other processor can obtain the lock for the requesting
function. As long as a spin lock is held by a function executing on a processor, the ID of
that processor is in the lockword. Once the lock is released by the owning function, the
lockword is cleared.

• Suspend locks -- prevent the requesting program from doing work until the lock is
available, but allow the processor to continue doing other work. The request is queued
and other work may be dispatched on that processor. Upon release of the lock, the
highest priority queued requestor is given control of the lock.

All of the locks described below, with the exception of the local and cross memory services
(CMS) lock, are spin locks. The LOCAL and CMS locks run enabled, and are suspend locks;
that is: they can be interrupted to run higher priority work. If there is another request for the
lock while it is held, the requestor is suspended and other work is dispatched. The local lock
contains the ID of the processor on which its owner is dispatched. The CMS lock contains the
ASCB address under which the owner of the lock was executing. Special IDs are placed in the
local lockword whenever the owner of either .. the CMS lock or local lock is not currently
executing on a processor due to either an interruption or suspension.

12 OS/VS2 System Programming Library: Supervisor

-----.----~.-----.-

o

0

C")
/'

The CMS lock was provided as an enabled global lock for the following reasons:

• Since disabled page faults are not allowed in the system, some global functions could use
a lock which did not require the functions to fix all their code and control blocks.

• Some functions require significant amounts of time under the lock and could impact the
responsiveness of the system. By running these functions enabled under the lock,
responsiveness is retained at the expense of some increased contention for the lock.

The other locks were left as disabled spin locks because the functions which run under the
locks are of short duration. The cost in system overhead to perform the status saving necessary
to accept interruptions and allow switching would offset the gain in responsiveness. Also, the
more frequently used functions (for example, lOS interruption handler, dispatcher, and storage
manager) are needed to perform interruption handling and task switching, and have to remain
disabled.

If a lock is unconditionally requested, the lock is unconditionally obtained. If the lock is
conditionally requested, the requestor is given the lock if it is available; if the lock is
unavailable, control is returned to the caller without the lock. (See the COND and UNCOND
parameters on the SETLOCK macro instruction.)

Classes 0/ Locks

Two classes of locks exist:

• Single locks -- Only one lock exists at a given level of the locking hierarchy.

• Multiple locks (commonly referred to as class locks) -- More than one lock exists at a
given level of the locking hierarchy.

Figure 4 summarizes the characteristics of the locks.

lock global local spin suspend single multiple
DISP X X X
ASM X X X
SALLOC X X X
IOSYNCH X X X
IOSCAT X X X
IOSUCB X X X
IOSLCH X X X
SRM X X X
CMS X X X
LOCAL X X X

Figure 4. Summary of Locking Characteristics

Locking Hierarchy

The locks are arranged in a hierarchy to prevent a deadlock between functions on the
processor(s). An example of a deadlock between functions would be:

• Function A holding the DISP lock and requesting the SRM lock.
• Function B holding the SRM lock and requesting the DISP lock.

Deadlocks are prevented by requiring that a function on a processor can request only those
locks that are higher in the hierarchy than the locks it currently holds. The hierarchy is shown
in Figure 4, with DISP being the highest lock.

As noted above, some locks are single system locks (for example, DISP), and some locks
are mUltiple locks in which there is more than one lock within the lock type (for example,
IOSUCB).

Part I: Supervisor Services 13

For those global lock types that have more than one lock, only one lock of each type may
be held. For example, if an IOSUCB lock is held on a CPU, a different IOSUCB lock may not
be requested on the CPU.

The local lock must be held by the caller when requesting the CMS lock. Also the local lock
cannot be released while holding a CMS lock. It is not necessary to hold all locks in the
hierarchy up to the highest lock needed. The only locks that should be held are those you
need.

Locking Considerations

In MVS, the local lock is provided to reduce disablement in the control program with a form
of logical disabling that works across both processors. Locking, however, is not completely
equivalent to disablement in VS2 Release 1. The significant differences are:

• A locked routine is not allowed to issue an SVC or to invoke a routine that would issue
an SVC on the routine's behalf.

• In VS2 Release 1, all user-written functions that disable using the MODESET macro
instruction, the SSM (set system mask) instruction, or some other method, should be
changed to use the locking function. The SYSMASK and ENABLE parameters of
MODESET are no longer supported. The SSM instruction causes a program check.

• In VS2 Release 1, disablement prevented storage from being freed or paged out while the
storage was being referenced. In MVS, it is necessary to hold the local lock to prevent a
FREEMAIN from being executed on the other processor even though a global spin lock
is held on one processor. To prevent page stealing, it is necessary to either fix the pages
or hold the SALLOC lock.

The locks provided in MVS are:

• DISP (Global dispatcher lock) -- serializes all functions associated with the dispatching
process.

• ASM (auxiliary storage manager lock) -- serializes the use of global ASM control blocks.

• SALLOC (real storage manager and virtual storage manager space allocation lock) -
serializes the global functions of real storage management and virtual storage
management.

• IOSYNCH (lOS synchronization lock) -- serializes global lOS functions.

• IOSCAT (lOS channel availability table lock) -- serializes access and updates to the
channel availability table.

• IOSUCB (lOS unit control block lock) -- serializes access and updates to the unit control
blocks. There is one lock for each UCB.

• IOSLCH (lOS logical channel queue lock) -- serializes access and updates to the lOS
logical channel queues. There is one lock for each channel queue.

• SRM (system resources manager lock) -- serializes use of the SRM control algorithms
and associated data.

• Cross memory services lock (CMS) -- serializes on more than one address space where
this serialization is not provided by one or more of the other global locks.

• Local storage lock (LOCAL) -- serializes functions and storage, used by the local
supervisor within an address space. There is one lock for each address space.

SETLOCK Macro Instruction

The SETLOCK macro instruction is used to obtain, release, or test a specified lock or set of
locks (using the OBTAIN, RELEASE, and TEST parameters). To use SETLOCK, you must
be executing in supervisor state with protection key O. Users of SETLOCK may also be

14 OS/VS2 System Programming Library: Supervisor

o

------_._-_._. __ ._------------------_ ..

-- --

executing in SRB mode, as an extension of the interrupt handlers, or as a system service such
as the MVS dispatcher.

Disabled/Enabled State for OBTAIN: When a global spin lock is successfully obtained, control is
returned to the SETLOCK caller with the processor in a physically disabled state (except for
machine check interruptions).

When a LOCAL lock or CMS lock is successfully obtained, control is returned to the
SETLOCK caller with the processor in the state that existed before to the SETLOCK request.
This is also true for unsuccessful attempts to obtain any of the locks where control is returned
to the caller.

If a disabled caller unconditionally requests the LOCAL or CMS lock and the lock is not
immediately available, the caller is abnormally terminated.

Disabled/Enabled State for RELEASE: When a global spin lock is successfully released, control
is returned to the caller with the processor in a physically enabled state when no other global
spin locks are held by that processor; control is returned in a physically disabled state when
other global spin locks are held. Control is also returned in the disabled state when any
disabled supervisor indicators are on when the RELEASE request is made or when the
DISABLED parameter was specified.

When the LOCAL lock or CMS lock is released, control is returned with the processor in
the state that existed before to the RELEASE request.

For all locks, if the RELEASE operation is unsuccessful and no ABEND condition exists,
control is returned with the processor in the physically enabled or disabled state that existed
before to the RELEASE request.

For mUltiple RELEASE requests (via SPIN, ALL, or (reg) subparameters), the final state is
the same as that which would have existed had the locks been released one at a time.

The Must Complete Function

System routines (routines operating under a storage protection key of zero) often update
and/ or manipulate system resources such as system data sets, control blocks, and queues.
These resources contain information critical to continued operation of the system. The system
routines must complete their operations on the resource. Otherwise, the resource may be left
incomplete or may contain erroneous information.

The ENQ service routine ensures that a routine queued on a critical resource(s) can
complete processing of the resource(s) without interruptions leading to termination. ENQ can
place other tasks in a wait state until the requesting task -- the task issuing an ENQ macro
instruction with the set-must-complete (SMC) parameter -- has completed its operations on the
resource. The requesting task releases the resource and terminates the must complete condition
by issuing a DEQ macro instruction with the reset-must-complete (RMC) parameter.

Because the must complete function serializes operations to some extent, its use should be
minimized -- use the function only in a routine that processes system data whose validity must
be ensured. Just as the ENQ function serializes use of a resource requested by many different
tasks, the must complete function serializes execution of tasks.

As an example, in multitask environments the integrity of the volume table of contents
(VTOC) must be preserved during updating so that all future users may have access to the
latest, correct version of the VTOC. ENQ on the VTOC and use the must complete function
(to suspend processing of other tasks) when updating a VTOC.

Resource Control 15

Characteristics of the Must Complete Function

The must complete function can be used only at the step level, where only the current problem
program task in an address space is allowed to execute. All other problem program tasks, and
the initiator task, are placed in a wait state.

When the must complete function is requested, the requesting task is marked in "must
complete mode" when the resource(s) queued upon are available. All asynchronous exits from
the requesting task are deferred. The initiator and all other tasks in the job step are set
nondispatchable. Tasks external to the requesting task are prevented from initiating procedures
that will cause termination of the requesting task. Other external events, such as a CANCEL
command issued by an operator, or a job step time expiration, are also prevented from
terminating the requesting task.

The failure of a task which owns a must-complete resource results in the abnormal
termination of the entire job step. The programmer receives a message stating that the failure
occurred in the step must complete status.

Programming Notes

1. All data used by a routine that is to operate in the must complete mode should be
checked for validity to ensure against a program-check interruption.

2. If a routine that is already in the must complete mode calls another routine, the called
routine also operates in the must complete mode. An internal count is maintained of the
number of SMC requests; an equivalent number of RMC requests is required to reset
the must complete function.

3. Interlock conditions can arise with the use of the ENQ function. Additionally, an
interlock may occur if a routine issues an ENQ macro instruction while in the must
complete ~ode. The requested resource may already be queued on by a task made
nondispatchable due to the must complete request already made. Since the resource
cannot be released, job step tasks are abnormally terminated, and system tasks are
retried.

4. The macro instructions ATTACH, LINK, LOAD, and XCTL should not be used, unless
extreme care is taken, by a routine operating in the must complete mode. An interlock
condition results if a serially reusable routine requested by one of these macro
instructions has been requested by one of the tasks made nondispatchable by the use of
the SMC parameter or was requested by another task and has been only partially
fetched.

5. The time a routine is in the must complete mode should be kept as short as possible -
enter at the last moment and leave as soon as possible. One suggested way is to:

a. ENQ (on desired resource(s»

b.ENQ (on same resource(s»,RET=HA VE,SMC=STEP

Item a gets the resource(s) without putting the routine into the must complete mode.
Later, when appropriate, issue the ENQ with the must complete request (Item b). Issue
a DEQ macro instruction to terminate the must complete mode as soon as processing is
finished.

6. The STATUS macro instruction changes· the dispatchability status of tasks for users in
supervisor state, with a protection key of 0-7, or APF-authorized. STATUS can also
change the must complete status of a task. In all cases, the task remains enqueued.

Tasks set nondispatchable by the corresponding ENQ macro instruction are made
dispatchable and asynchronous exits from the requesting task are enabled.

16 OS/VS2 System Programming Library: Supervisor

r' "--)

Shared Direct Access Storage Devices (Shared DASD)
The Shared DASD facility allows computing systems to share direct access storage devices.
Systems can share common data and consolidate data when necessary. No change to existing
records, data sets, or volumes is necessary to use the facility. However, reorganization of
volumes may be desirable to achieve better performance.

Devices that Can be Shared

The following control units and devices are supported by the Shared DASD option:

• mM 2314 Direct Access Storage Facility equipped with the two-channel switch -- IBM
2314 Disk Storage Module.

• mM 2314 Direct Access Storage Facility combined with the ffiM 2844 Auxiliary Storage
Control -- mM Disk Storage Module. Device reservation and release are supported by
this combination with or without the presence of the two-channel switch. Two channels
-- one from System A and one from System B -- may be connected to the combination.
In addition, the two-channel switch may be installed in either or both of the control
units, thus permitting as many as four systems to share the devices.

• ffiM 2835 Storage Control Unit with two-channel switch -ffiM 2305 Fixed Head Storage
Facility.

• mM 3830 Storage Control Unit with two-channel switch -- mM 3330 Series Disk
Storage Drive. The ffiM 3330, 3340/3344, 3350 Series devices may also be configured
for shared use via the string switch feature.

Alternate channels to a device from anyone system may only be specified for the mM
2314 Direct Access Storage Facility, or the mM 3330, 3340/3344, 3350 Series Storage Unit.

Volume/Device Status

The Shared DASD facility requires that certain combinations of volume characteristics and
device status be in effect for shared volumes of devices. Figure 5 shows the combinations that
must be in effect for a volume or device:

System A

Permanently resident
Reserved
Removable
Offline

Systems B, C, D

Permanently resident
Reserved
Offline
Removable, reserved, or permanently resident

Figure s. Valid Volume Characteristic and Device Status Combinations

If a volume/device is marked removable on anyone system, the device must be in offline
status on all other systems. The mount characteristic of a volume and/or device status may be
changed on one system as long as the resulting combination is valid for other systems sharing
the device. No other combination of volume characteristics and device status is supported.

Resource Control 17

System Configuration

Operating system configurations do not have to be identical to share a data set. The only
additional equipment needed for the Shared DASD option is either a two-channel switch or a
2844 Auxiliary Control unit. The user must also observe certain restrictions about the data sets

. that are shared. The following data sets cannot be shared:

PASSWORD SYS1.NUCLEUS
SYS1.LOGREC SYS1.SVCLIB
SYS1.LPALIB VSAM page spaces
SYS1.MANX Master catalog
SYS1.MANY

Volume Handling

Volume handling on the Shared DASD option must be clearly defined since operator actions
on the sharing system must be performed in parallel. The following rules should be in effect
when using the Shared DASD option:

• Operators should initiate all shared volume mounting and demounting operations. The
system will dynamically allocate devices unless they are in reserved or permanently
resident status, and only the former can be changed by the operator.

• Mounting and demounting operations must be done in parallel on all sharing systems. A
VARY OFFLINE must be effected on all systems before a device may be dismounted.

• Valid combinations of volume mount characteristics and device status for all sharing
systems must be maintained. To IPL a system, a valid combination must be established
before device allocation can proceed. This valid combination is established either by
specifying mount characteristics of shared devices in VATLST, or varying all sharable
devices offline prior to issuing START commands and then following parallel mount
procedures.

Macro Instructions Used with Shared DASD

The RESERVE macro instruction is used to reserve a device for use by a particular system; it
must be issued by each task needing device reservation. The EXTRACT macro instruction is
used to obtain the address of the task input! output table (TIOT) from which the UCB address
can be obtained. The topic "Finding the UCB Address" explains this procedure.

Notes on RESERVE: The Set-Must-Complete (SMC) parameter available with the ENQ
macro instruction may also be used with RESERVE.

If a restart occurs when a RESERVE is in effect for devices, the system does not restore
the RESERVE; the user's program must reissue the RESERVE.

Releasing Devices

The DEQ macro instruction is used in conjunction with RESERVE just as· it is used with
ENQ. It must describe the same resource and its scope must be stated as SYSTEMS; however,
the UCB=pointer address parameter is not required. If the DEQ macro instruction is not
issued by a task which has previously reserved a device, the system frees the device when the
task is terminated.

Preventing Interlocks

The greater the number of device reservations occurring in each sharing system, the greater the
chance of interlocks occurring. Allowing each task to reserve only one device mjnimizes the
exposure to interlock. The system cannot detect interlocks caused by a program's use of the
RESERVE macro instruction and therefore, enabled wait· states occur on the system.

18 OS/VS2 System Programming Library: Supenisor

G

CI

._-_ _------- _---------------

Volume Assignment

Since exclusive control is by device, not by data set, consider which data sets reside on the
same volume. In this environment it is quite possible for two tasks in two different systems -
processing four different data sets on two shared volumes -- to become interlocked. For
example, as shown in Figure 6, data sets A and B reside on device C, and data sets D and E
reside on device F. Task X in system X reserves device C in order to use data set A; task Y in
system Y tries to reserve device F in order to use data set D. Now task X in system X tries to
reserve device F in order to use data set E and task Y in system Y tries to reserve device C in
order to use data set B. Neither can ever regain control, and neither will complete normally.
When the system has job step time limits, the task, or tasks, in the interlock would be
abnormally terminated when the time limit expires. Moreover, an interlock could mushroom,
encompassing new tasks as these tasks try to reserve the devices involved in the existing
interlock.

Task X Task Y

" ,/ '- ,/

'" "" " "" '- /'
Reserves '-,/ Reserves

",/ /"
/' "

,/"" '- ,
~ -....~ Interlock '- r -....
I'.... ~ '-.,.....,

A

I"--.. ./

B

......... ----~/

Device C

D

'- ,.....,
E

Device F

Figure 6. Example of an Interlock Environment

Program Libraries

When assigning program libraries to shared volumes, precaution must be taken to avoid
interlock. For example, LINKLIB for system A resides on volume X, while LINKLIB for
system B resides on volume Y. Task A in system A invokes a direct access device space
management function for volume Y, resulting in that device being reserved. Task B in system
B invokes a similar function for volume X, reserving that device. However, each load module
transfers to another load module via XCTL. Since the LINKLIB for each system resides on a
volume reserved by the other system, the XCTL macro instruction cannot complete the
operation. An interlock occurs; since no access to LINKLm is possible, both systems will
eventually enter an enabled wait state.

Finding the UeB Address

This topic explains procedures for finding the DCB address for use by the RESERVE macro
instruction; it also shows a sample assembler language subroutine which issues the RESERVE
and DEQ macro instructions and can be called by higher level languages.

Resource Control 19

Providing the Unit Control Block Address to RESERVE: The EXTRACT macro instruction is
used to obtain information from the task control block (TCB). The address of the nOT can
be obtained from the TCB in response to an EXTRACT. Prior to issuing an EXTRACT
macro instruction, the user sets up an answer area in main storage which is to receive the
requested information. One full word is required for each item to be provided by the control
program. If the user wishes to obtain the nOT address, he must specify FIELDS=TIOT in the
EXTRACT macro instruction.

The address of the nOT is then returned by the control program, right adjusted, in the full
word answer area.

The TIOT is constructed by job management routines and resides in virtual storage during
step execution. The nOT consists of one or more DD entries, each of which represents a data
set defined by a DD statement for the jobstep. Each entry includes the DD name. Associated
with each DD entry is the UCB address of the associated device. In order to find the UCB
address, the user must locate the DD entry in the nOT corresponding to the DD name of the
data set for which he intends to issue the RESERVE macro instruction.

The UCB address can also be obtained via the data extent block (DEB) and the data
control block (DCB). The DCB is the block within which data pertinent to the current use of
the data set is stored. The address of the DEB is contained at offset 44 decimal after the DCB
has been opened. The DEB contains an extension of the information in the DCB. Each DEB
is associated with a DCB and the two point to each other.

The DEB contains information concerning the physical characteristics of the data set and
other information that is used by the control program. A device dependent section for each
extent is included as part of the DEB. Each such extent entry contains the UCB address of the
device to which that portion of the data set has been allocated. In order to find the UCB
address, the user must locate the extent entry in the DEB for which he intends to issue the
RESERVE macro instruction. (In disk addresses of the form MBBCCHHR, the M indicates
the extent number starting with 0).

Procedures for Fmding the UCB Address of a Rese"ed Device: For data sets using the queued
access methods in the update mode or for unopened data sets:

1. Extract the TIOT from the TCB.

2. Search the TIOT for the DD name associated with the shared data set.

3. Add 16 to the address of the DD entry found in step 2. This results in a pointer to the
UCB address in the TIOT.

4. Issue the RESERVE macro specifying the address obtained in step 3 as the parameter of
the UCB keyword.

For opened data sets:

1. Load the DEB address from the DCB field labeled DCBDEBAD.

2. Load the address of the field labeled DEBDVMOD in the DEB obtained in step 1. The
result is a pointer to the UCB address in the DEB.

3. Issue the RESERVE macro specifying the address obtained in step 2 as the parameter of
the UCB keyword.

20 OS/VS2 System Programming Library: Supervisor

\ 0'·

" 0

For BDAM data sets the user may reserve the device at any point in the processing in the
following manner:

1. Open the data set.

2. Convert the block address used in the READ/WRITE macro to an actual device address
of the form MBBCCHHR.

3. Load the DEB address from the DCB field labeled DCBDEBAD.

4. Load the address of the field labeled DEBDVMOD in the DEB.

5. Multiply the "M" of the actual device address (step 2) by 16.

6. The sum of steps 4 and 5 is the address of the correct extent entry in the DEB for the
next READ/WRITE operation. The sum is also a pointer to the UCB address for this
extent.

7. Issue the RESERVE macro specifying the address obtained in step 6 as the parameter of
the UCB keyword.

If the data set is an ISAM data set, QISAM in the load mode should be used only at system
update time. Further, if it is a multivolume ISAM data set, it must be assumed that all jobs will
access the data set through the highest level index. The indexes should never reside in virtual
storage when the data set is being shared. In this case, by issuing a RESERVE macro for the
volume on which the highest level index resides, the user effectively reserves the volumes on
which the prime data and independent overflow areas reside. The following procedures can be
used to achieve this:

1. Open the data set.

2.

3.

4.

5.

6.

Locate the actual device address (MBBCCHHR) of the highest level index. This address
can be obtained from the DCB.

Load the DEB address from the DCB field labeled DCBDEBAD.

Load the address of the field labeled DEBDVMOD in the DEB.

Multiply the "M" of the actual device address located in step 2 by 16.

The sum of steps 4 and 5 is the address of the correct extent entry in the DEB for the
next READ/WRITE operation. The sum is also a pointer to the UCB address for this
extent.

7. Issue the RESERVE macro specifying the address obtained in step 6 as the parameter of
the UCB keyword.

RES and DEQ Subroutines: The assembler language subroutine in Figure 7 can be used by
assembler language programs to issue the RESERVE and DEQ macro instructions. Parameters
that must be passed to the RESDEQ routine, if the RESERVE macro instruction is to be
issued, are:

DDNAME - the eight character name of the DDCARD for the device to be reserved.

QNAME - an eight character name.

RNAME LENGTH - one byte (a binary integer) that contains the RNAME length value.

RNAME - a name from 1 to 255 characters in length.

Resource Control 21

The DEQ macro instruction does not require the UCB=pointer address as a parameter. If
the DEQ macro is to be issued, a fullword of binary zeros must be placed in the DDNAME
field before control is passed.

RESDEQ CSECT
SAVE
BALR
USING
ST
LA

ST
LR
LR
L

CLC

(14,12),T
2,0
*,2
13,SAVE+4
11,SAVE

11,8(13)
13, 11
9,1
3, O(9)

0(4,3),=F'0'

BE WANTDEQ

SAVE REGISTERS
SET UP ADDRESSABILITY

ADDRESS OF MY SAVE AREA IS
STORED IN THIRD WORD OF CALLER'S
SAVE AREA
ADDRESS OF MY SAVE AREA
ADDRESS OF PARAMETER LIST
DDNAME PARAMETER OR WORD OF
ZEROS
WORD OF ZEROS IF DEQ IS
REQUESTED

*PROCESS FOR DETERMINING THE UCB ADDRESS USING THE TIOT

NEXTDD

XR 11,11 REGISTER USED FOR DD ENTRY
EXTRACT ADDRTIOT,FIELDS=TIOT
L 7,ADDRTIOT ADDRESS OF TASK I/O TABLE
LA 7,24(7) ADDRESS OF FIRST DD ENTRY
CLC o(8,3), 4(7) COMPARE DDNAMES
BE FINDUCB
IC 11,0(7)
LA 7,0(7,11)
CLC 0,(4,7),=F'0'
BNE NEXTDD

LENGTH OF DD ENTRY
ADDRESS OF NEXT DD ENTRY
CHECK FOR END OF TIOT

ABEND 200,DUMP DDNAME IS NOT IN TIOT, ERROR
FINDUCB LA 8,16(7) ADDRESS OF WORD IN TIOT THAT
* CONTAINS ADDRESS OF UCB
*PROCESS FOR DETERMINING THE QNAME REQUESTED
WANTDEQ L 7,4(9) ADDRESS OF QNAME LENGTH

MVC QNAME (8) , ° (7) MOVE IN QNAME
*PROCESS FOR DETERMINING THE RNAME AND THE LENGTH OF RNAME

*
*

ISSUEDEQ
RETURN

MOVERNAM
ADDRTIOT
SAVE
QNAME
RNAME
RNLEN

L 7,8(9) ADDRESS OF RNAME LENGTH
MVC RNLEN+3(1),0(7) MOVE BYTE CONTAINING LENGTH
L 7,RNLEN
STC 7,RNAME

L 6,12(9)
BCTR 7, °
EX 7,MOVERNAM
CLC 0(4,3),=F'0'
BE ISSUEDEQ

STORE LENGTH OF RNAME IN THE
FIRST BYTE OF RNAME PARAMETER
FOR RES/DEQ MACROS
ADDRESS OF RNAME REQUESTED
SUBTRACT ONE FROM RNAME LENGTH
MOVE IN RNAME

RESERVE (QNAME,RNAME,E,0,SYSTEMS),UCB=(8)
B RETURN
DEQ (QNAME,RNAME,O,SYSTEMS)
L 13,SAVE+4 RESTORE REGISTERS AND RETURN
RETURN (1 4, 1 2) , T
BCR 15,14
MVC RNAME+ 1 (°) , ° (6)
DC F'O'
DS l8F
DS 2F
DS CL256
DC F'O'
END

Figure 7. Example of Subroutine Issuing RESERVE and DEQ

22 OS/VS2 System Programming Library: Supervisor

o

r--""
U

o

------ ----------_._-

Authorized Program Facility (APF)

The authorized program facility (APF) is a facility that an installation manager uses to protect
the system. In MVS, certain system functions, such as all or part of some SVCs, are sensitive;
their use must be restricted to users who are authorized. An authorized program is one that
executes in supervisor state, with a PSW key of 0-7, or with APF authorization. In addition,
an authorized program should be thoroughly tested so that its use does not compromise the
system.

The MVS supervisor uses APF to protect the system as follows:

1. The supervisor limits the use of sensitive system SVC routines and optionally, sensitive
user SVC routines, to authorized programs by issuing a TEST AUTH macro instruction
before giving control to the SVC routine. TESTAUTH determines, among other things,
the authorization status of the calling program. The installation can then use APF to
prohibit unauthorized programs from using sensitive SVC routines.

2. The supervisor ensures that all modules in an authorized job step task are fetched only
from authorized libraries. The supervisor thus prevents the unauthorized counterfeiting
of any module in an authorized job step task's module flow.

APF Authorization

APF is a mechanism that allows a program to become authorized. APF authorization is
established at the job step task level and depends on the authorization status of the first
module of the job step task at the time the job step task is initiated. Only when the first
module loaded meets both of the following conditions is the job step task marked
APF-authorized:

• The module comes from an authorized library.
• The module was link-edited with the authorization code AC= 1. This code is contained in

a bit setting in the partitioned data set (PDS) directory entry for the module.

The authorization code is meaningful only when the load module resides in an authorized
library and is executed as the first module of a job step task. Thus, even though a program is
link-edited with AC=I, it can run as an authorized program only if it is loaded from an
authorized library. When this occurs, the program manager then verifies that all subsequent
modules for that program also come from authorized libraries; if they do not, a 306 abend
results. Authorized libraries are marked after OPEN time by having a bit turned on in their
DEBs.

The names of programs that are APF -authorized in the systems mM provides can vary from
one release or selectable unit (SU) to another. To determine which programs are
APF-authorized in the current system, list the PDS directories of the authorized libraries (see
"Authorized Libraries" later in this discussion) and check for modules that are marked
authorized (AC= 1). Only modules marked authorized and any modules they invoke from
authorized libraries can ever run as authorized programs.

Authorized Programs

MVS considers a program authorized when that program executes in anyone of the following
states:

• Supervisor state (bit 15 of the PSW is zero).
• A system key (bits 8-11 of the PSW are in the range 0-7).
• As part of an APF-authorized job step task (bit JSCBAUTH in the JSCB is 1).

Resource Control 23

However, MVS sometimes distinguishes authorization due to a program being in either
supervisor state or system key from authorization through APF. For example, the use of
certain keywords in some macro instructions is restricted to programs running in supervisor
state or system key; programs that are APF-authorized but not in supervisor state or system
key can not use these keywords.

When MVS attaches the first load of a job step task (identified via the JSTCB keyword in
the ATTACH macro instruction), progr,am management decides whether to mark the task
authorized or to leave it unauthorized. If the first load module has AC= I and comes from an
authorized library, the program is considered APF-authorized, and the task is marked
APF-authorized. If these conditions are not met, the task is not marked APF-authorized and
cannot normally become so during the life of the job step. (See the discussion under
"Restricting Load Module Access" for exceptions to this rule.)

You should recognize the distinction between an authorized program and an authorized
user. To use restricted functions in MVS, a program must be authorized; that is, in supervisor
state, running with a system key, or part of an APF-authorized task or some combination of
these that satisfies the restriction. Any user, however, can submit a job that executes an
authorized program. To restrict a program to an individual user or a class of users, you must
use existing data set security facilities to place the program in a library protected by RACF or
by a password. If the program is an authorized program, the library must be an authorized
library.

Authorized Libraries

APF-authorized programs must reside in authorized libraries. The authorized libraries in MVS
are:

• SYS I.LINKLffi
• SYSl.SVCLffi

SYSl.LPALffi (only during an IPL; see note 2 under "Notes")
• Installation authorized libraries

To allow an installation to authorize libraries, MVS provides member IEAAPFOO and
supports optional members IEAAPFxx in SYS I.P ARMLffi. During IPL, the system uses the
contents of one member, specified at IPL, to build the APFT ABLE, which contains the names
of authorized libraries and the serial numbers of the volumes on which they reside.
SYS l.LINKLffi and SYS l.SVCLffi are automatically placed in the first two entries of the
APFTABLE; the remaining entries contain the names from member IEAAPFxx (where xx is
the identifier of the member). The volume serial numbers in the entries prevent the system
from obtaining data from a non-authorized library having the same name as an authorized
library but residing on a different volume.

MVS also considers as authorized any library contained in the LNKLSTxx members of
SYSl.PARMLffi (which denotes libraries to be concatenated to SYS1.LINKLffi) when a
program in the library is located by a search through the link list. However, if these libraries
are accessed through either JOBLffi or STEPLffi DD statements, MVS does not consider them
authorized unless the installation has also placed the nambs of the libraries in IEAAPFxx. As
long as a load module in an authorized library, an authorized program can load it. The
installation is responsible for ensuring that duplicate module names are not permitted across
authorized libraries to preclude access to an incorrect module resulting in possible integrity
exposures.

(For details on SYS I.P ARMLm members IEAAPFxx and LNKLSTxx, see the Initialization
and Tuning Guide.)

24 OS/VS2 System Programming Library: Supervisor

--- _._-_.'-. · .. _----

o

o

..•. _----_ .. __ •.. _----------------.

Notes:

1. If a JCL DD statement concatenates an authorized library in any order with an
unauthorized library, the entire set of concatenated libraries is treated as unauthorized.

2. After IPL, SYS 1.LP ALffi is not an authorized library. SYS 1.LP ALill is authorized only
during NIP processing when the system builds the page able link pack area (PLP A). All
modules in PLPA are marked as coming from an authorized library. SYS1.LPALffi
becomes an authorized library after IPL only when an installation places its name in the
IEAAPFxx member of SYS I.P ARMLffi, and there is no reason to do so.

UsingAPF

APF allows an MVS installation to restrict use of SVC routines to authorized programs and to
restrict access to load modules; that is, APF prevents authorized programs from accessing any
load module that is not in an authorized library.

Restricting SVC Routines

MVS provides two methods to restrict the use of sensitive SVC routines:

1. You can specify the FCOI parameter on the SVCTABLE macro instruction during
system generation to restrict sensitive SVCs to authorized callers. The SVC first-level
interrupt handler (FLIH) ensures that only authorized programs can access routines so
restricted. If an unauthorized program tries to access a restricted SVC, an 047 abend
results. The TESTAUTH macro instruction in the SVC FLIH specifies testing for
supervisor state, system key, or APF; anyone of these authorizations satisfies the test
and allows the caller to proceed.

2. You can use the TESTAUTH macro instruction to restrict an entire SVC or particular
paths through an SVC when only a portion of the SVC's function is sensitive. Though
you can specify any combination of system key, supervisor state, and APF authorization
for TESTAUTH to test, you should specify only those conditions that you consider
essential. If any of the conditions specified to TESTAUTH are present, TESTAUTH
returns an indication that the caller is authorized. For example, to validate the
authorization status of programs requesting restricted functions, various system routines
use TESTAUTH to make the following distinctions:

a. The caller is executing in supervisor state, system key, or both.

b. The caller is an APF-authorized task (the JSCBAUTH bit in the JSCB is on).

c. Either a or b.

The TESTAUTH macro instruction, inserted at appropriate locations in an SVC routine,
returns an authorized or unauthorized indication; the SVC routine can then take appropriate
action based upon this return.

The TESTAUTH macro is not used to control the use of I/O appendages. I/O appendages
are controlled by means of the IEAAPPOO member of SYS l.P ARMLffi. (See the description
of this member in the Initialization and Tuning Guide.)

Restricting Load Module Access

To authorize a program, the installation must first assign the authorization code to the first
load module of the program. APF prevents authorized programs from accessing any load
module that is not in an authorized library. If an authorized program tries to access a module
that is not in an authorized library, a 306 abend results. The authorized program is responsible

Part I: Supervisor Services 25

for recovering from the 306 abend in a way that does not allow the .accessed module to
execute.

Assigning Authorization

An installation can assign load modules the APF-authorization code either through the P ARM
field on the link edit step or through a linkage editor control statement. The authorization code
of a load module has meaning only when it resides on an APF-authorized library and when it
is executed as the first program of a job step attach.

To assign an authorization code via JCL, code AC=l in the operand field of the PARM
parameter of the EXEC statement as follows:

IILKED EXEC PGM=HEWL,PARM='AC=l', ...

If no authorization code is assigned in the linkage editor step, the default is
non-authorization. The authorization code for a given output load module can be overridden
with the SETCODE control statement.

The SETCODE statement establishes authorization for a specific output load module. If it is
used, you must place it before the NAME statement for the load module. The format of the
SETCODE statement is:

SETCODE AC(1)

If more than one SETCODE statement is assigned to a given output load module, the last
statement found is used.

In the example in Figure 8, the SETCODE statement assigns an authorization code to the
output load module MODI.

IILKED EXEC
IISYSPRINT DD
IISYSUT1 DD
IISYSLMOD DD
IISYSLIN DD
II
II

1*

SETCODE
NAME

DD

Figure 8. Assigning Authorization via SETCODE

PGM=HEWL
SYSOUT=A
UNIT=SYSDA,SPACE=(TRK,(10,5))
DSNAME=SYS1.LINKLIB,DISP=OLD
DSNAME=&&LOADSET,DISP=(OLD,PASS),
UNIT=SYSDA
* AC(1)
MOD1 (R)

No security or integrity exposure exists if a program is link-edited into an unauthorized
library with authorization code AC= 1. The job step task is not authorized when the first
module of the job step task is loaded and no abend occurs. However, if the loaded module
tries to execute functions or SVCs that require authorization, the program is abended.

Authorization Results Under Various Conditions

When a program issues an SVC or accesses a load module through a LINK, LOAD, or XCTL
macro instruction, authorization is straight-forward; the only factors considered are whether
the calling program is authorized and whether the called program is a restricted SVC or a load
module in an authorized library. Figure 9 summaries the authorization rules.

26 OS/VS2 System Programming Library: Supervisor

C~I

Abend Resulting
Rule From Violation

1. An unauthorized routine cannot call a restricted 047
SVC.

2. A routine running in supervisor state, system key, 306
or APF-authorized cannot call programs residing
outside APF-authorized libraries.

Figure 9. Authorization Rules

The rules shown in Figure 9 are also true when the ATTACH macro instruction is used
unless the RSAPF keyword is specified. A routine that specifies RSAPF = YES and is running
in supervisor state or system key can attach programs residing outside APF-authorized libraries
if:

• the caller is not running APF-authorized
• the caller is attaching a subtask in problem state
• the attached task's reB key is 8 or more

The newly attached subtask does not run APF -authorized.

However, if the subtask comes from an APF-authorized library and is link edited with the
APF-authorized attribute, then the step executes with APF authorization.

Another factor to be considered when using ATTACH is the JSTCB keyword. A routine
running in supervisor state or system key can attach a task that is allowed to become
APF -authorized if the routine specifies JSTCB= YES.

Guidelines for Using APF

Installation using APF authorization must control which programs are stored in authorized
libraries. If the first module in a program sequence is authorized, the system assumes that the
flow of control to all subsequent modules is known and secure as long as these subsequent
modules come from authorized libraries. To ensure that this assumption is valid, the installation
should:

• Ensure that all programs that will run as authorized programs adhere to the installation's
integrity guidelines.

• Protect authorized libraries through RACF or passwords to ensure that only selected
users can store programs in these libraries.

• Ensures that no two load modules with the same name exist across the set of authorized
libraries. Two modules with the same name could lead to accidental or deliberate mixup
in module flow, possibly introducing an integrity exposure.

• Link edit with the authorization code (AC= 1) only the first load module in a program
sequence. Do not use the authorization code for subsequent load modules, thus ensuring
that a user cannot call modules out of sequence, become APF-authorized, and thus
possibly bypass validity checking or critical logic flow.

• Ensure that IEAAPFxx does not contain the names and volume serial numbers of data
sets that no longer exists. If it does, a user could assign his own data sets with the same
names on the same volumes and cause his own libraries to become authorized.

Part I: Supervisor Services 27

Changing System Status

The MODESET macro instruction alters selective fields of the program status word (PSW).
The standard form of MODESET may be coded in two separate ways: one form generates an
SVC and the other form generates inline code.

Generating an SVC

This form of MODE SET, executable as APF-authorized, in supervisor state, or under
protection key 0-7, changes the status of programs between supervisor state and problem
program state, and key zero and non-key zero. The parameters that must be specified to
perform the changes are MODE and KEY respectively.

The MODE parameter specifies whether bit 15 of the PSW is to be turned on or off. When
bit 15 is one, the processor is in the problem state. When bit 15 is zero, the processor is in the
supervisor state.

The KEY parameter specifies whether bits 8-11 are to be set to zero or set to the value in
the caller's TCB. Bits 8-11 form the processor protection key. The key is matched against a
key in storage whenever information is stored, or whenever information is fetched from a
location that is protected against fetching.

Generating Inline Code

This form of MODESET, executable only in supervisor state, is used to ensure that storage
areas and the control program functions they are associated with have the same protection key.
The EXTKEY parameter of MODESET may be coded to indicate the key to be set in the
current PSW.

The following keys may be set:

• Scheduler
• Job entry subsystem
• Real storage management
• Virtual storage management
• System resource management
• Supervisor
• Data management
• Telecommunications access method
• Key of zero
• Key of TCB
• Key of caller of type 1 SVC issuing MODESET
• Key of caller of type 2, 3, or 4 SVC issuing MODESET

Other parameters of MODE SET allow the original key to be saved and restored upon
completion of the'" desired changes.

Interprocessor Communications (IPC)

Interprocessor communications is a function in a multiprocessing system that provides
communication between processors sharing the same control program. Those executing
functions which require a processor or program action on one or more processors will use the
IPC interface to invoke the desired action. The !PC function uses the signal processor (SlOP)
instruction to provide the necessary hardware interface between the processors.

28 OS/VS2 System Programming Library: Supervisor

o

C'I

-_ -_._-----

Service Classes

The SIGP instruction provides twelve distinct hardware functions to support two classes of IPC
services - direct and remote:

Direct class - These services are defined for those control program functions that require the
modification or sensing of the physical state of one of the configured processors. Ten of the
twelve SIGP hardware functions are defined as IPC direct services, and are accessible via the
DSGNL macro instruction.

Sense: The specified processor presents its status to the issuing processor. No other action is
caused at the specified processor.

Start: The specified processor is placed in the operating state. The processor does not
necessarily enter the operating state during the execution of the SIGP instruction. No action is
caused at the specified processor if that processor is in the operating state when the order code
is accepted.

Stop: The specified processor stops. The processor does not necessarily enter the stopped state
during the execution of the SIGP instruction. No action is caused at the specified processor if
that processor is in the stopped state when the order code is accepted.

Restart: The specified processor restarts. The processor does not necessarily perform the
function during the execution of the SIGP instruction.

Initial Program Reset: The specified processor performs initial program reset. The execution of
the reset does not affect other processors and does not affect channels not configured to the
processor being reset. The reset operation is not necessarily completed during the execution of
the SIGP instruction.

Program Reset: The specified processor performs program reset. The execution of the reset
does not affect other processors and does not affect channels not configured to the processor
being reset. The reset operation is not necessarily completed during the execution of the SIGP
instruction.

Stop and Store Status: The specified processor stops and stores status. The processor does not
necessarily complete the operation, or even enter the stopped state, during the execution of the
SIGP instruction.

Initial Microprogram Load: The specified processor performs initial program reset and then
initiates the initial-microprogram-Ioad function. The latter function is the same as that which is
performed as part of manual initial micro program loading. The operation is not necessarily
completed during the execution of the SIGP instruction.

Initial Processor Reset: The specified processor performs initial processor reset. The execution
of the reset does not affect other processors and does not cause any channels, including those
configured to the specified processor, to be reset. The reset operation is not necessarily
completed during the execution of the SIGP instruction.

Processor Reset: The specified processor performs processor reset. The execution of the reset
does not affect other processors and does not cause any channels, including those configured
to the specified processor, to be reset. The reset operation is not necessarily completed during
the execution of the SIGP instruction.

Part I: Supervisor Services 29

Remote class - These services are defined for those control program functions which require
the execution of a software function on one of the configured processors. The two remaining
SrGP functions are defined as remote services:

External Call: An "external call" external-interruption condition is generated at the specified
processor. The interruption condition becomes pending during the execution of the SrGP
instruction. The associated interruption occurs when the processor is interruptible for that
condition. Only one external-call condition can be kept pending in a processor at a time. The
external-call function is accessible via the RPSGNL macro instruction.

Emergency Signal: An "emergency-signal" external-interruption condition is generated at the
specified processor. The interruption condition becomes pending during the execution of the
SrGP instruction. The associated interruption occurs when the processor is interruptible for
that condition. At anyone time the receiving processor can keep pending one emergency-signal
condition for each processor of the multiprocessing system, including the receiving processor
itself. The emergency-signal function is accessible via the RISGNL macro instruction.

Status Conditions

Eight status conditions are defined whereby the issuing and specified processors can indicate
their response to the designated hardware function. The status conditions are contained in
register 0 and are:

Equipment Check: This condition exists when the processor executing an instruction detects
equipment malfunctioning that has affected only the execution of the instruction and the
associated hardware function. The order code mayor may not have been transmitted, and may
or may not have been accepted, and the status bits provided by the specified processor may be
in error.

External Call Pending: This condition exists when an external-call interruption condition is
pending in the specified processor because of a previously issued SrGP instruction. The
condition exists from the time an external-call function is accepted until the resulting external
interruption is completed. The condition may be due to the issuing processor or another
processor. The condition, when present, is indicated only in response to sense and to external
call.

Stopped: This condition exists when the specified processor is in the stopped state. The
condition, when present, is indicated only in response to sense.

Operator Intervening: This condition exists when the specified processor is executing certain
operations initiated from the console or the remote operator control panel. The particular
manually initiated operations that cause this condition to be present depend on the model and
on the specified functions. This condition, when present, can be indicated in response to all
functions. Operator intervening is indicated in response to sense if the condition is present and
precludes the acceptance of any of the installed orders. The condition may also be indicated in
response to unassigned or uninstalled orders.

Check Stop: This condition exists when the specified processor is in the check-stop state. The
condition, when present, is indicated only in response to sense, external call, emergency signal,
start, stop, restart, and stop and store status. The condition may also be indicated in response
to unassigned or uninstalled functions.

Not Ready: This condition exists when the specified processor uses reloadable control storage
to perform a function and the required microprogram is not loaded. The not-ready condition
may be indicated in response to all functions except IMPL.

30 OS/VS2 System Programming Library: Supervisor

o

o

Invalid Function: This condition exists during the communications associated with the execution
of SIGP when the specified processor decodes an unassigned or uninstalled function code.

Receiver Check: This condition exists when the specified processor detects malfunctioning of
equipment during the communications associated with the execution of SIGP. When this
condition is indicated, the function has not been initiated anu, since the malfunction may have
affected the generation of the remaining receiver status bits, these bits are not necessarily
valid. A machine-check condition mayor may not have been generated at the specified
processor.

For more details on the SIGP instruction, see System Programming Library: MVS Diagnostic
Techniques.

Event Completion

Cross Memory POST

The POST macro instruction is used to signify the completion of an event by one routine to
another routine. Usually, the completion of the event is posted in the user's address space.

The authorized user (executing in supervisor state, under protection key 0-7, or
APF-authorized) of the POST macro instruction can use the ASCB and ERRET parameters to
schedule an SRB to be dispatched in an address space other than his own. If the caller is
authorized to specify the ASCB and ERRET parameters, no check is made to determine if the
requested address space is the issuing address space. This use of the POST macro instruction is
sometimes known as "cross-memory post."

The ERRET routine is given control in the issuer's address space when an error condition is
detected. It receives control enabled, unlocked, in SRB mode, and with the following register
contents:

Register

o
1
2
3
4-13
14
15

Contents

ECB address
ASCB address
original completion code
completion code from failing address space
unpredictable
return address
ERRET address

The ERRET routine must return control to the address in register 14, unlocked and
enabled.

If cross-memory post is being used, a synchronization problem arises when it becomes
necessary to eliminate an ECB which is a potential target for a cross-memory post request. To
ensure that all outstanding cross-memory post requests for the ECB have completed, the user
must invoke the SPOST macro instruction. (The ECB mayor may not be posted, depending
on existing conditions. See OS/VS2 System Logic Library for details.) Since SPOST invokes the
PURGEDQ SVC, see the description of PURGEDQ for the restrictions on its use.

Bypassing the POST Routine

The problem programmer may bypass the POST routine whenever the corresponding WAIT
has not yet been issued. To do this, he must issue a TEST UNDER MASK (TM) instruction
to determine if the wait bit in the ECB is on. If the wait bit is on, the normal POST routine
must be executed. If the wait bit is not on, a CaMP ARE AND SWAP (CS) instruction is
issued. The compare operand should reflect the ECB content with the wait bit off, the swap
operand should have the post bit on and contain the desired post completion code. If the wait
bit has been set on after the ECB has been tested with the TM instruction, the CS will fail

Part I: Supervisor Services 31

(non-zero condition code), and the normal POST routine must be executed. If the wait bit is
not on, the CS will, in effect, post the completion of the event.

*

Figure 10 demonstrates an example of this use of POST.

L RX,ECB
L RY,=X'40000000'

Get contents of ECB.
Completion bit and code to be
compared and swapped

CSLOOP TM ECB,X'80' Wait bit on?
BO
N
CS

* BE

DOPOST
RX,=X'7FFFFFFF'
RX,RY,ECB

POSTDONE

If yes, then execute post.
Compare operand has wait bit off.
Compare and swap completion bit
and code.
Branch if CS is successful.

DOPOST POST ECB
POSTDONE EQU *

Figure to. Bypassing the POST Routine

Waiting lor Event Completion

The EVENTS macro instruction allows a user to wait for the completion of one of a series of
events and be directly informed by the system which of the events have completed. Branch
entry to this function, significantly more efficient than SVC entry, is available to users
executing in key 0, supervisor state, and holding only the local lock.

Branch entry is accomplished by specifying BRANCH= YES on the EVENTS macro
instruction. If this parameter is used, the branch entry routine performs all normal WAIT
processing and ECB initialization. BRANCH= YES may be specified in conjunction with either
WAIT=YES, WAIT=NO, or ECB=.

• If WAIT = YES is specified, control will later be returned to the dispatcher, even though
there may be ECBs posted to the EVENTS table. EVENTS frees the local lock. Before
the EVENTS macro instruction with the WAIT = YES option is specified, the caller is
responsible for establishing the return environment (the PSW and registers in the RB and
TCB). EVENTS stores a pointer to the first completed EVENTS entry into the TCB
register 1 save location.· (This service is not available to Type 1 SVCs or SRBs.)

• If W AIT= YES is not specified, control is later returned to the caller. EVENTS does not
free the local lock.

Writing POST Exit Routines
The POST exit function provides authorized system routines with a service that allows them to
receive control immediately upon each completion of an outstanding event. Thus, the user can
write a routine that receives control between the time the ECB is marked completed and the
return by POST to the caller.

This function defines a special type of ECB known as an extended ECB. When initialized,
these extended ECBs identify potential work requests rather than waiting tasks. The purpose
of an extended ECB is to notify a process (for example, a subsystem) of an additional work
request. Thus when an extended ECB is posted, a subroutine of the process receives control
and updates a queue to identify the current work request.

When using the POST exit function, your routine must follow this sequence:

• Identify POST exit routines.
• Initialize extended ECBs and ECB extensions.
• Wait for work requests.
• Delete POST exit routines before terminating.

32 PS/VS2 System Programming Library: Supervisor

I, 0'·,

o

C)

----- ------------.--------

Identifying and Deleting Exit Routines

IEAOPTOE is the entry point to POST. It performs exit identification and deletion through a
function code that indicates whether the input exit address should be added to or deleted from
the POST exit address queue for the current address space. A function code of 4 indicates an
exit creation request, while 8 indicates an exit deletion request. Details of this interface are in
"Branch Entry to the POST Macro Instruction".

The process that establishes a POST exit is responsible for deleting that exit prior to its
normal or abnormal termination.

Initializing Extended ECBs and ECB Extensions

The user must obtain and initialize the extended ECBs and ECB extensions. A system service
is not available to perform these functions.

The ECB extension must be obtained and initialized prior to the initialization of the
extended ECB. This sequence avoids the possibility of an initialized extended ECB being
posted prior to the initialization of the ECB extension.

The ECB extension is two words long, begins on a word boundary, and can be from any
subpool. More than one extended ECB can point to it. The mapping for the ECB extension is
available via the EXT = YES parameter on the IHAECB mapping macro. It is of the format
shown in Figure 11.

1 byte 3 bytes

VALUE RESERVED

4 bytes

POST DATA

Figure 11. ECB Extension (ECBE)

where:

VALUE - is one byte containing a value from 1-255. A value of 1 indicates that the
POST exit function is being requested. All other function codes are
reserved.

POST DATA - When VALUE is 1 (that is, contains X~OI') this field contains the address
of the exit routine to be given control when the POST occurs.

The extended ECB must conform to current requirements for ECBs and should be
initialized to the format shown in Figure 12 via compare and swap while holding the local
lock.

If the compare and swap fails and if the ECB is pre-posted, the user should perform the
appropriate POST exit functions in order to replace those ordinarily performed by the already
concluded POST processing.

Part I: Supervisor Services 33

11 + ECBE 111
Bits Meaning

0 If one, indicates initialized ECB.
1-29 Address of associated ECB extension.
30-31 If ones, indicates an extended ECB.

Figure 12. Extended ECB

ECB initialization must use both compare and swap and the local lock to ensure proper
serialization so that posts are not lost. The reason for this is that some system routines
initialize ECBs with compare and swap while other system routines use the local lock for
serialization. Therefore, both serialization techniques must be used in interfaces with general
system services.

The ECB must be initialized only after it is eligible for posting.

POST Interface with Exit Routines

Prior to giving the exit control, POST checks to ensure that the user's exit routine address
identified in the ECB extension denotes a valid POST exit routine. Even though POST thereby
makes sure that a valid system exit receives control, the exit routine must ensure that an
unauthorized routine has not counterfeited the extended ECB/ECB extension pair.

The user's exit routine receives control from POST locally locked in supervisor state, key
zero. The routine must not release the local lock and should be able to process in both SRB
and TCB mode. The register contents at entry to the user exit routine are:

Register

o
1
14
15
2-13

Contents

Address of the currently posted ECB
Address of related ECB extension
Return address
Exit routine entry point address
Unpredictable

The register contents upon return to POST from the user's routine must be:

Register 11, 14-Unchanged

Register 0-10, 12, 13, 15-Irrelevant

The user's exit routine must return control in supervisor state, key zero.

For performance reasons, the user's routine should not cause page faults (that is, the
routine's code and the data that it references should be available when the routine receives
control).

Re-entry to POST from a POST Exit

A POST exit routine may issue POST only via the POST entry point, IEAOPT03. Details of
the interface are in "Branch Entry to the POST Macro Instruction".

Because of the save area recursion within POST, a POST exit routine may not post another
extended ECB unless it does so by specifying a cross address space post. Any attempt to
activate another POST exit prior to the completion of the current exit results in a 702 abend.
If you must post another extended ECB from a POST exit routine, you should either have
your routine issue a cross address space post or schedule your own SRB so that your routine
enters POST by branching to it.

34 OS/VS2 System Programming Library: Supervisor

C
-··

j

------ _._ .. _-------_._-----

Example of Using a POST Exit Function

A subsystem allocates and initializes Extended ECBs, ECBEs, and EQTs. These data areas
appear in Figure 13. Once initialized, the subsystem dispatcher waits on a list of ECBs. Each
list entry identifies an ECB in an EQT.

Extended ECB

80888883

Notes:

ECB Extension (ECBE)

00888880

01 000000

+ Exit Routine 1------- --.+ EQT I
t---- - - --,
• User Data I L. ________ J

Event Queue Table (EQT)

r--------,
1 User Info 1
j---------1
1+ ECB I
~---------;
I ~ Scheduled Queue I
1----------;
I ~ Dispatching Queue I L _________ .1

1. The dotted lines identify data defined by the dispatching
application rather than data required by the POST exit function.

2. The address of the ECB extension is 00888880.

Figure 13. Data Areas Post Exit Example

As soon as any system routine posts an extended ECB, the subsystem exit routine identified
in the ECBE receives control. After checking the validity of the work request, the exit routine
places a work element on the EQT schedule queue identified by the ECBE. The exit routine
then posts the ECB associated with that EQT, which completes the queuing of the work and
the activation of the dispatching task.

The subsystem dispatcher then scans the ECB list to locate posted ECBs (that is, an EQT
with work queued). The subsystem dispatcher then uses compare and swap to switch the
schedule queue to the dispatching queue values. Then the dispatcher dequeues work from the
dispatching queue until the queue is depleted. Then the subsystem dispatcher clears the post
bit in that EQT ECB and again uses compare and swap to move the schedule queue to the
dispatching queue. If the dispatching queue is still empty, the dispatcher checks the next ECB
in the ECB list. After having processed the entire ECB list, the subsystem dispatcher again
awaits requests for work.

The subsystem dispatcher can use the USERINFO field in the EQT for serialization where
multiple system dispatcher tasks can wait on the same EQT.

Part I: Supervisor Services 35

Branch Entry to the POST Macro Instruction
Branch entry to the POST macro instruction provides all the normal ECB and RB POST
processing. In general, the caller must hold the local lock and be in supervisor state, key zero.
Upon completion of the POST process, control returns to the caller in supervisor state, key
zero with the local lock.

Figures 14, 15, and 16 respectively illustrate the POST function and the branch entry points
through which those functions can be performed, the input parameters to POST, and the
output parameters from POST.

Functions Entry Points

IEAOPTOl IEAOPT02 IEAOPT03· IEAOPTOE

Local ECB POST X X X

Local POST without ECB X X

Cross address space POST X·· X

Post exit creation/deletion X

• This entry point performs processing identical to entry point IEAOPTOl. It is designed for use only by
POST exit routines (that is, routines that receive control from POST as the result of having established
that exit via entry point IEAOPTOE.
··The local lock does not need to be held for a cross address space POST at this entry point.

Figure 14. POST Function and Branch Entry Points

36 OS!VS2 System Programming Library: Supervisor

"'---~-"'-~""--------

Registers IEAOPTOI I EAO PTO 2 I EAOPT03 IEAOPTOE c) (CVTOPTOl) (CVTOPT02) (CVTOPT03) (CVTOPTOE)

0 ECB storage protect Func. Code
key1

1 Exit Routine Address

10 Completion Code2 Completion Code Completion Code2

11 ECB Address3 ECB Address ECB Address4 ECB Address

12 Error Routine Error Routine
Address4 Address 4

13 ASCB Address4 ASCB Address4

14 Return Address Return Address Return Address Return Address

15 Entry Point Address Entry Point Address Entry Point Entry Point Address
Address

1 If cross address space post, optionally contains the storage protection key of the ECB.
2 If POST -without-ECB, contains RB address; if cross address space post and the storage
protection key of the ECB is supplied in register 0, then the high order bit must be set to one.
3 If POST -without-ECB, set to zero; if local address space POST, ensure high-order byte of
register is zero; if cross address space POST, set high-order byte of register to X'BO'.
4 Only necessary when performing cross address space POST. If performing a cross address
space POST and the high order bit in register 12 is on, only registers 9 and 14 are retained, and
the error routine executes in the master scheduler's address space.

Figure 15. POST Branch Entry Input

Entry Points Registers Saved and Restored

IEAOPTOl1 0-9, 12,2 13,2 14

I EAO PTO 2 0-9, 12-14

IEAOPT03 0-14

IEAOPTOE 2-14

1 The contents of only registers 9 and 14 are retained during a cross address space POST when
either the local lock is not held or the high order bit in register 12 is on; all other register contents
are unpredictable.
2 The contents of these registers will not be saved and restored during a cross address space
POST; their contents are therefore unpredictable in these circumstances.

Figure 16. POST Branch Entry Output

Part I: Supervisor Services 37

Branch Entry to the WAIT Macro Instruction
Branch entry to the WAIT macro instruction provides all the normal ECB and RB WAIT
processing. This function is not available, however, to Type 1 SVCs or SRBs. The caller must
hold the local lock and be in key zero, supervisor state. While holding the local lock and
before branching to WAIT, the caller must re-establish the PSW and register return
environment in its RB and TCB. When WAIT is invoked, only the local lock should be held
by the caller. WAIT performs the following functions:

• Store the ECB/ECBLIST address into the register 1 location of the TCB register save
area, (user data cannot be passed through this field or register).

• Release the local lock.
• Return control to the dispatcher (control does not return to the caller even though all

previously pending events have already occurred). The dispatcher ensures that all FRRs
have been deleted.

Branch entry to WAIT can occur without identification of any ECBs. This process results in
the setting of the wait count in the current RB to the specified value. The corresponding
POSTs-without-ECB then activate the RB. If you use this process, make sure that the
WAIT-without-ECB precedes the POST-without-ECB in order to avoid causing the RB to wait
indefinitely.

The following registers contain parameters for branch entry to WAIT:

Register

o

15

Contents

The wait count in the low order byte. When the high order bit is one, it indicates
long-wait (the LONG= YES specification).
The ECB pointer value. If only one ECB is being waited on, place that ECB address in
register 1. If a list of ECBs is being waited on, place the complemented ECBLIST
address in register 1. If the WAIT-without-ECB function is being requested, set register
1 to a value of zero.
The branch entry address to WAIT (lEA VW AIT), which in tum is obtained from the
CVT (CVTVW AIT).

Suspension and Resumption of Request Block Tasks
An alternate method of waiting for an event and indicating its completion is available on a
restricted basis for systems programming. This method gives faster performance than the
normal method of using the WAIT and POST macro instructions. The summary below outlines
the functions that provide this alternative:

Macro

SUSPEND
RESUME
TCTL
CALLDISP

Description

Wait for an event to complete.
Indicate the completion of the event.
Give control directly to a ready task.
Give up control so that an event can complete.

Using the SUSPEND Macro Instruction

The SUSPEND macro instruction provides an efficient means of waiting for an event to
complete. It is analogous to the WAIT macro instruction, and is used in a
SUSPEND-RESUME sequence, which is analogous to the WAIT -POST sequence. The
SUSPEND macro causes the wait for event completion through the wait count field (RBWCF)
in the request block (RB). This field is the same one the WAIT macro uses. When used with
the SUSPEND macro, however, the wait count field is known as the suspend count field, even
though the function it performs for both macros is the same.

The SUSPEND macro does not have an immediate effect on the issuer as the WAIT macro
does. Instead, the effect is delayed, depending on the type of suspension requested by the
macro user. If the previous RB is suspended, the effect takes place when the current RB exits.

38 OS/VS2 System Programming Library: Supervisor

o

c)

---------------------------------- ----- - - - -------------

If the current RB is suspended, the suspended state occurs when the RB passes control to the
dispatcher.

RBs that issue the SUSPEND macro instruction with the RB=CURRENT option should
hold the suspended state time to a minimum. As soon as possible after event completion, the
RB that issues a SUSPEND RB=CURRENT should exit to the dispatcher (for example, issue
a CALLDISP macro with the BRANCH=YES option). Using the SUSPEND macro this way
minimizes potential performance problems because the RB in this case must either be disabled
or must hold the local lock. Keeping suspension time minimal also minimizes other potential
problems the program may experience by limiting the time in which the RB is unable to cause
any synchronous interrupts (for example, SVCs and page faults), or provide interfaces to the
WAIT, POST, or EVENTS mact.o instructions.

RBs that issue SUSPEND RB=PREVIOUS, on the other hand, do not require the same
synchronization because they are operating on behalf of another RB. The suspension of the
previous RB does not require disabled execution or the holding of the local lock.

The following examples show typical SUSPEND macro instruction sequences:

Example 1:

SUSPEND RB=PREVIOUS

1. Type 2 SVC routine receives control.

2. The SVC suspends the macro issuer's task.

3. Event completion (for example, an I/O event) occurs.

4. The macro issuer's task resumes (exit from the SVC routine).

Example 2:

SUSPEND RB=CURRENT

1. Macro issuer acquires the local lock.

2. The macro suspends processing of the current RB.

3. Event completion occurs: stimulus for resumption initiated.

4. Macro issuer releases local lock.

5. Macro issuer issues CALLDISP BRANCH=YES.

6. Normal processing resumes.

Here are some other considerations for using the SUSPEND macro instruction:

• SUSPEND may be issued only by a routine executing under protection key O.
• SUSPEND requires that the CVT mapping macro be included.
• When the issuer requests (or assumes by default) the SUSPEND RB=PREVIOUS

option, there must be a previous RB on the chain to prevent a task abend.
• Only task-related users may issue SUSPEND, and then only for the current task.

SUSPEND may not be issued for another TCB or by an SRB.
• SUSPEND RB=PREVIOUS is intended for use by Type 2, 3, and 4 SVCs to place the

issuer of the SVC in a suspended state.
• The SUSPEND function user must ensure that the SUSPEND-RESUME sequence takes

place in proper order. The user must issue SUSPEND, then event completion must occur,
and then the RESUME function must take place. One way to ensure proper sequencing
is to issue SUSPEND prior to scheduling the asynchronous process on which the RB
must wait.

Part I: Supervisor Services 39

• When using the SUSPEND RB=CURRENT option, the issuer must either execute
disabled or hold the local lock. The issuer must remain in this state until the program
initiates the stimulus for event completion in order not to lose control, which coUld result
in never being redispatched. Since the issuer must also co-ordinate the SUSPEND -
RESUME sequence, the event completion must not occur until after the SUSPEND
RB=CURRENT macro takes effect. The issuing function should be either a Type 1 or a
Type 6 SVC because the SUSPEND function sets the RBSCF (suspend count field) to
one and decreases the ASCBTCBS count. Holding the local lock or disabling will prevent
the normal dispatcher processing. The CALLDISP function may be used by Type 2, 3, or
4 SVCs to exit.

• The SUSPEND-RESUME sequence must not be intermixed with the WAIT-POST
sequence on a single RB because both sequences use the same count field for control of
the functions. Since the SUSPEND-RESUME sequence is a restricted-use function, it
does only minimal validity checking. Forexample, if an RB were already waiting on 255
events and someone issued a SUSPEND against it, the count would be reset to one.

• An RB may have only one SUSPEND outstanding at a time. There may be no
subsequent SUSPEND macros issued until a RESUME occurs for the outstanding
SUSPEND macro.

Using the RESUME Macro Instruction

The RESUME macro instruction provides an efficient means for indicating the completion of
an event. The RESUME macro specifies the TCB and RB that were suspended. Control
returns to the issuer who specifies RETURN = Y. Issuers in SRB mode can use the option
RETURN=N to have control passed to the resumed task.

Note that the RESUME macro instruction:

• Can be issued only by a routine executing in supervisor state under protection key O.
• Can be issued only in the address space in which the task being resumed resides.
• Can not be issued from a disabled interrupt exit (DIE) because the address space in

which the DIE routine will execute is unpredictable.
• Can not be issued by a disabled routine.
• Must be able to acquire the local lock unconditionally under the following circumstances:

- The TCB (task) being resumed is active on another processor.

- The stage 3 exit effector is in the process of enqueuing an interrupt request block onto
the task control block.

- RCT QUIESCE is preparing to swap out the address space specified by PSAAOLD.

Therefore, any user of RESUME who executes disabled or who holds a lock higher than
the local lock must ensure that the macro does not require the local lock.

• The RETURN =N option can be issued only by SRBs. Because this option constitutes an
exit from the SRB, the caller can not hold any locks when issuing RESUME.

• RESUME requires that the CVT mapping macro be included.

Using the TCTL Macro Instruction

The TCTL (transfer control) macro instruction allows an SRB routine to exit from its
processing and to pass control to a task with minimal dispatcher overhead. When an SRB
specifies RESUME RETURN = N, control transfers to the resumed TCB. Control then passes
to the top RB on the TCB chain, but only if it passes all the dispatchability tests normally
made by the dispatcher.

40 OS/VS2 System Programming Library: Supervisor

C)

------ _ ... _ -......•......

Some other considerations for using the TCTL macro instruction are:

• The TCTL macro may be used only by SRB programs, but they may be in any key. If a
non-SRB routine issues either the macro or a RESUME RETURN = N, the routine will
abnormally terminate.

• The TCTL constitutes an exit from the issuing routine, which therefore causes cleanup of
the SRB.

• The TCTL service requires inclusion of the CVT mapping macro.

The TCTL service requires that the SRB requesting the TCTL, can not hold any locks.

Using the BRANCH=YES Option of the CALLDISP Macro Instruction

The CALLDISP macro instruction includes the BRANCH = YES option to allow an issuer of
the SUSPEND macro with its RB=CURRENT option to exit while leaving the current RB in
the wait state. This option causes the supervisor to save status and control to pass to the
dispatcher.

Here are some considerations for using the BRANCH = YES option on the CALLDISP
macro instruction:

• The issuer of CALLDISP must be executing in supervisor state with protection key zero
and must be page fixed.

• The issuer must be in task mode rather than in SRB mode.
• The BRANCH = YES option requires inclusion of these mapping macros:

CVT
IHAPSA
IKJTCB
IHARB

System Integrity
System integrity is defined as the ability of the system to protect itself against unauthorized
user access to the extent that security controls cannot be compromised. That is, there is no
way for an unauthorized problem program using any system interface to bypass store or fetch
protection, bypass password checking, bypass RACF checking, or obtain control in an
authorized state.

Note: An authorized program in MVS is one that executes in a system key (keys 0-7), in
supervisor state, or is authorized via the Authorized Program Facility (APF).

Documentation on System Integrity

This section contains information about MVS system integrity. The related topic of security in
regard to the physical environment of a computing system is discussed in Data Security and Data
Processing, G320-1370 through G320-1375.

Restricted functions (those that can be requested only by authorized programs) are
documented separately from non-restricted functions in OS/VS2 System Programming Library:
Data Management, GC26-3830.

These publications describe the restricted functions and the means of authorizing
appropriate programs to use those functions. Macro instructions that require the issuing
program to be authorized are listed in the contents and described in the text of these books.
Review the contents .of these books to determine what functions require authorization.

I '

Part I: Supervisor Services 41

Installation Responsibility

To ensure that system integrity is effective and to avoid compromising any of the integrity
controls provided in the system, the installation must assume responsibility for the following:

• Physical environment of the computing system.
• Adoption of certain procedures (for example, the password protection of appropriate

system data sets) that are a necessary complement to the integrity support within the
operating system itself.

• That its own modifications and additions to the control program do not introduce any
integrity exposures. That is, all installation-written authorized code (for example, an
installation SVC must perform the same or an equivalent type of validity checking and
control that the MVS control program employs to maintain system integrity.

Elimination of Potential Integrity Exposures

MVS system integrity support restricts only unauthorized problem programs. It is the
responsibility of the installation, to verify that any authorized programs added to the system
control program will not introduce any integrity exposures. To do this effectively, an
installation should consider these areas for potential integrity exposure:

• User-supplied addresses for user storage areas.
• User-supplied addresses for protected control blocks.
• Resource identification.
• SVC routines calling SVC routines.
• Control program and user data accessibility.
• Resource serialization. (See the section "Locking".)

Each of the following descriptions is a guideline to aid the installation in:

• Eliminating that area as a potential integrity exposure.
• Determining whether an impact on existing installation-written code might occur,

especially where that code is dependent on the use of non-standard interfaces to the
system control program.

There should be no impact on installation-written routines that use standard interfaces
(problem program/system interface described in an SRL) because no standard interfaces for
system integrity support have been removed from the MVS system control program. However,
some routines now require authorization for use.

User-Supplied Addresses for User Storage Areas

A potential integrity exposure exists whenever a routine having a system protection key (key
0-7) accepts a user-supplied address of an area to which a store or fetch is to be done. If the
system routine does not adequately validate the user-supplied address to ensure that it is the
address of an area accessible to the user for storing and fetch data, an integrity violation can
occur when the system-key routine:

• Stores into (overlays) system code or data (for example, in the nucleus or the system
queue area), or into another user's code or data .

• Moves data from a fetch-protected area that is not accessible to the user (for example,
fetch-protected portion of the common service areas) to an area that is accessible to the
user.

The elimination of this problem requires that system-key routines always verify that the
entire area to be stored into, or fetched from, is accessible (for storing or fetching) to the user
in question. The primary validation technique is the generally established MVS convention that
system-key routines obtain the protection key of the user before accessing the user-specified

42 OS/VS2 System Programming Library: Supervisor

o

r"
U

------------------------_ .. __ ._---_.

area of storage. For example, MVS data management SVC routines (which generally execute
in key 5) assume the user's key before modifying a data control block (DCB) or an I/O block
(lOB).

User-Supplied Addresses for Protected Control Blocks

A potential integrity exposure exists whenever the control program (system key/privileged
mode) accepts the address of a protected system control block from the user. For most system
control blocks this situation should not be permitted to exist. However, in certain cases it is
necessary to allow the user to provide the address of a system control block that describes his
allocation/access to a particular resource (for example, a data set), in order to identify that
resource from a group of similar resources (for example, a user may have many data sets
allocated). Inadequate validity checking in this situation can create an integrity exposure, since
an unauthorized problem program could provide its own (counterfeit) control block in place of
the system block and thereby gain the ability to:

• Access a resource in an uncontrolled manner (since the control block in this case would
normally define the restrictions, such as read-only for a data set, on the user's allocation
to the resource).

• Gain control in a privileged state (because such control blocks might contain the
addresses of routines that run in privileged mode or with a system (0-7) key).

• Cause various other problems depending on exactly what data is in the control block
involved.

To avoid this type of exposure, the control program must verify, for every such address
accepted from a problem program, that the address is that of:

1. A protected control block created by the control program.

2. The correct type of control program block (for example, a TCB versus a DEB, or a
QSAM DEB versus an ISAM DEB).

3. A control block created for use in connection with the user (job step) that supplied the
address.

In MVS, verification is generally accomplished by establishing a chain or table of the
particular type of control block to be validated. This chain or table is located via a protected
and jobstep-related control block that is known to be valid. Addresses that are not allowed to
be supplied by the user, are located via a chain of protected control blocks that begins with a
control block known to be valid or fixed at a known location at IPL time, such as the CVT.
Therefore, a control block can only be entered in the chain/table by:

• An authorized program satisfying point 1.
• Definition, where the chain/table establishes the type of control block satisfying point 2.
• Definition, where each chain/table is located only through a jobstep-related control block

satisfying point 3.

Note: This does not imply that a system routine must go back to the CVT or similar control
block every time it wants to establish a valid chain. Typically, a control block address not too
far down on such a chain is available already validated in a register. For example, the first load
of an SVC can receive control with a valid TCB address in a register.

Resource Identification

Resource identification is another area that can be subject to integrity exposures. Exposures
can result if the control program does not maintain and use sufficient data to uniquely
distinguish one resource from other similar resources. For example, a program must be
identified by both name and library to distinguish it from other programs. The consequences of

Part I: Supervisor Services 43

---•. _--_._--

inadequate resource identification are problems such as the ability of an unauthorized problem
program to create counterfeit control program code or data, or to cause varying types of
integrity problems by intermixing incompatible pieces of control program code and/or data.

The general solution can only be stated as the reverse of the problem; that is, the control
program must maintain and use sufficient (protected) data on any control program resource, to
distinguish between that resource and other control program or user resources. The following
are examples of the controls that MVS employs to comply with the requirement:

• In general, authorized program requests to load other authorized programs are satisfied
only from authorized system libraries (see the topic "Control Program Extensions"
described in this section.)

• MVS takes explicit steps to ensure that routines loaded from authorized system libraries
are used only for their intended purpose. This includes expanded validity checking to
remove any potential for the unauthorized program to specify explicitly which of the
authorized library routines are to gain control in any given situation.

• Sensitive system control blocks are validated as being the "correct" blocks to be used in
any given control program operation. (See the topic "User-Supplied Addresses of
Protected Control Blocks" described in this section.)

SVC Routines Calling SVC Routines

A potential problem area exists whenever a problem program is allowed to use one SVC
routine (routine A) to invoke a second SVC routine (routine B) that the problem program
could have invoked directly. An integrity exposure occurs if:

• SVC routine B bypasses some or all validity checking based on the fact that it was called
by SVC routine A (an authorized program) or

• User-supplied data passed to routine B by routine A either is not validity checked by
routine A, or is exposed to user modification after it was validated by routine A.

These problems will not exist if the user calls SVC routine B directly, because the validity
checking will be performed on the basis of the caller being an unauthorized program.

SVC routine A, which is aware that it has been called by an unauthorized program, must
ensure that the proper validity checking, etc., is accomplished. However, it is usually not
practical for SVC routine A to do the validity checking itself, because of the potential for user
modification of the data prior to or during its use by SVC routine B. The general solution
should be for SVC routine A to provide an interface to SVC routine B, informing routine B
that the operation is being requested with user-supplied data in behalf of an unauthorized
problem program (implying that normal validity checking should be performed).

In practice, in MVS, most SVC B-type routines that could be subject to this problem use
the key of their caller as a basis for determining whether or not to perform validity checking.
Therefore, most SVC A-type MVS routines have simply adopted the convention of assuming
the key of their caller before calling the SVC B routine. (For additional information see the
section "Writing SVC Routines" later in this book.)

Control Program and User Data Accessibility

Important in maintaining system integrity is the consideration of what system data is sensitive
and must be protected from the user, and what data can be exposed to user manipulation. The
implications of the exposure of the wrong type of data are obvious.

In general, it is necessary to store protect the following types of data:

• Code, and the location of code, that is to receive control in an authorized st'ate.
• Work areas for such code, including areas where it saves the contents of registers.
• Control blocks that represent the allocation or use of system resources.

44 OS/VS2 System Programming Library: Supervisor

-------.... --------- - ._ .. _._--- ._--_. ----_ ... _-- -_._---------

o

c)

MVS maintains such items in system storage, or in a separate address space in the case of
some APF-authorized programs.

It may also be necessary to protect, for a limited period, certain data that is normally under
the control of the user (for example, to prevent its modification during a critical operation). In
this case MVS provides fetch protection for such data if:

• The data consists of proprietary information (such as passwords).
• The control program cannot determine the nature of the contents of the data area.

Control Program Extensions

This potential problem area involves the somewhat hazy distinction that exists between the
control program and certain types of problem programs. In most installations, there are
problem state/user key (keys 8-15) programs that are actually extensions to the control
program in that they are allowed (by means of various special SVCs, etc.) to bypass normal
system controls over access to system resources. For example, a special utility program that
scans all the data on a pack might be able to avoid the normal system extent checking on a
direct access volume.

If an installation has its own control program extensions and SVCs that allow the bypass of
normal system security or integrity checks (for example, an SVC that returns control in key 0),
and if such SVCs are not currently restricted' from use by an unauthorized program, the APF
facility should be used to restrict them and to authorize the control program extensions that
use them.

Installation personnel should understand the distinction between an authorized program and
an authorized user. A program that utilizes a restricted function must be authorized. Any user,
however, can submit a job to execute an authorized program. Any program that must be
restricted to an individual or a class of users must be restricted by means of existing data set
security facilities. The program must be placed on a separate password-protected library other
than LINKLffi, SVCLffi, or LP ALffi. IEH utilities might be placed on a separate
password-protected library to limit their use to system programmers.

Resource Access Control Facility (RACF)

The resource access control facility (RACF) provides software access control measures that
can be used to enhance data security in a computing system. RACF can be used in addition to
any present data security measure currently being used.

This facility provides the ability to specify access authorities under which the permanent
DASD data sets, tape volumes, DASD volumes, terminals, and other resources are made
available to the users of the system. VSAM, non-VSAM, cataloged, and uncataloged data sets
can be protected by RACF.

When users, groups, DASD data sets, tape volumes, DASD volumes, terminals, and other
resources are defined to RACF, RACF builds and stores their descriptions in profiles on the
RACF data set. RACF uses these profiles for RACHECK authorization checking and
RACINIT user identification and verification.

For more information on RACF, see Resource Access Control Facility (RACF) - General
Information Manual, GC28-0722.

Part I: Supenisor Services 45

RACDEF Macro Instruction

This macro instruction can be used to define, modify, and delete resource (for example, tape
volumes and DASD data set) profiles for RACF.

The resource manager (a data management program) responsible for establishing and
maintaining the resources issues the RACDEF macro instruction to define or delete their
profiles to RACF.

RACINIT Macro Instruction

This macro instruction can be used to determine if a userid is defined to RACF and if the user
has supplied a valid password, group name, and operator identification card. RACF builds an
access environment element for the user if the userid, password, group name, and terminal id
(for the terminal user) are accepted. The identification and verification in the case of terminal
or batch job user, is based on the information contained in the TSO LOGON or IMS /SIGN
command or data specified in the JOB statement for the batch job. The access environment
element identifies the scope of the user's authorization to be used during the current terminal
session or batch job.

RA CHECK Macro Instruction

RACHECK processing determines if a user is authorized to obtain use of a resource (for
example, DASD data set, tape volume, or DASD volume) protected by RACF. When a user
requests access to a RACF-protected resource, acceptance of the request is based upon the
identity of the user and whether the user has been permitted sufficient access authority to the
resource.

System authorization checking is performed by RACF when a resource manager (for
example, data management OPEN) which controls a RACF-protected resource issues the
RACHECK macro instruction before allowing a user access to the resource.

The system programmer using this macro instruction to check a users's authorization to a
resource has available three parameters (CSA, LOG, and PROFILE) that are not available to
the application programmer. These parameters permit the system programmer to specify that a
profile is to be copied and maintained in main storage for the resource and that different types
of access attempts are or are not to be recorded on the SMF data set.

RACLIST Macro Instruction

This macro instruction can be used to build in-storage profiles from RACF defined class
resources. RACLIST processes only the resources described by class descriptors. Once profiles
are brought into main storage by RACLIST, FRACHECK and RACHECK macros can be
issued for the resources without requiring access to the RACF data set.

46 OS/VS2 System Programming Library: Supervisor

Interruption, Recovery/Termination, and Dumping Services

The supervisor offers many services to assist in the detection and processing of abnormal
conditions during system execution. Certain types of abnormal conditions are detected by the
hardware and cause program interruptions to occur (for example, an attempt to execute an
instruction with an invalid operation code). Other abnormal conditions are detected by the
software (for example, an attempt to open a data set that is not defined to the system causes
an ABEND to be issued by the Open routine).

The supervisor provides facilities for writing exit routines to handle specific types of
interruptions and abnormal conditions. The supervisor initiates the recovery/termination
process of your program when you request it by issuing an ABEND macro instruction, or
when the control program detects a condition that will degrade the system or destroy data.

The services discussed in this chapter include:

• Program interruption processing (SPIE macro instruction)
• Recovery / termination (CALLRTM macro instruction)
• Functional recovery routines (SETFRR macro instruction)
• Task recovery (STAB and ESTAB macro instructions)
• Installation-written clean-up routines
• Virtual storage dumping (SDUMP macro instruction and CHNGDUMP command)

SPIE Processing
The SPIE macro instruction provides a problem program with a means of specifying an error
exit routine in response to one or more program error interruptions. SPIE and its related
services are discussed in detail in OS/VS2 Supervisor Services and Macro Instructions.

For the problem programmer, interruptions 1-15 may be specified in the SPIE macro
instruction. For the installation-authorized system programmer, interruption 17 may also be
specified. Interruption 17 designates page faults and may be specified so that a user-written
SPIE routine gets control on a page fault before any supervisor routine. The user-provided
SPIE routine only gets control in problem program state and in the key of the TCB(TCBPKF)
on a page fault for the program issuing the SPIE 17. The SPIE 17 routine covers page faults at
the task level and any RBs executing under the task for which the SPIE was issued. Since the
SPIE 17 user may not be in supervisor state, the routine generally can not resolve the page
fault in a manner compatible with the operation of the system. Hence, the SPIE 17 routine
usually resolves the page fault by invoking PGLOAD/PGFIX functions of the paging
supervisor.

The SPIE 17 routine gets control in problem program state and in the key of the
TCB(TCBPKF). If the program is in supervisor state at the time the SPIE 17 is issued, it is be
abnormally terminated with a 30E abend completion code. If the program is in supervisor state
and takes a page fault while the SPIE 17 routine is active, the SPIE 17 exit routine does not
get control. Supervisor routines resolve the page fault and continue program processing without
abending the program.

During SPIE processing, the Program Check First Level Interrupt Handler (FLIH) passes
control directly to the SPIE routine after some set-up processing via a LPSW. The program
check FLIH sets a recursion indicator to cover any PIE/PICA references during the setup
processing done to handle a page fault incurred in the problem program. If a page fault occurs
on a reference to the PIE/PICA, the paging supervisor is given control to handle the original
page fault. Processing continues in the problem program once the page fault is resolved. The

Interruption, Recovery/Termination, and Dumping Services 47

SPIE exit routine does not receive control at all since the FLIH is not able to obtain the
information needed by the SPIE routine as input parameters.

If interruption 17 is used, the programmer must page fix the PIE, PICA, and SPIE exit
programs and data areas. The SPIE exit routine must be aware that page faults can occur after
issuing the SPIE macro instruction for interruption 17 and prior to fixing the required control
blocks. If the page fault occurs at this time, the program FLIH tries to pass control to the
SPIE 17 routine after the setup processing mentioned. If the PIE/PICA can be validly
referenced, control is passed to the SPIE 17 routine. If the SPIE 17 routine page faults, the
page fault is resolved by the paging supervisor if the routine is not running disabled. A
disabled page fault causes an OC4 abend. Once the page fault is resolved, normal processing
continues in the SPIE 17 routine.

It is important to note that the SPIE 17 routine may not get control on every page fault due
to the recursion logic mentioned above.

Recovery ITennination
The recovery/termination manager (RTM) monitors the flow of control of software recovery
processing and supplies the services of normal and abnormal task and address space
termination. Its purpose is to select the appropriate recovery or termination process according
to the status of the system and the request of its invokers.

The RTM may be called to perfotm its recovery and termination services on behalf of the
caller or to direct its services to another routine. It is invoked by two macros: the ABEND
macro and the CALLRTM macro.

The recovery/termination process is invoked for the following events:

• Unanticipated program checks - Except those protected by SPIE routines.
• Machine checks.
• Invalid issuance of an SVC while locked, disabled, or in SRB mode.
• I/O error on page - in request.
• Restart Key - An operator-initiated recovery action, requested by pressing the console

RESTART key.
• Request by an authorized caller to terminate a task or a memory.
• ABEND macro - This may be system-issued or user-issued.

When one of these events occurs, the R TM is given control. If a recovery exit has been
specified (via SETFRR, STAE, or ESTAE) it is invoked to recover or clean up for the process
in control. Should this recovery routine be unable to recover from the incident (request
termination or fail itself) the previously established recovery exit is invoIsed. This process is
called percolation. In the event that all recovery routines are unable to recover, the process is
terminated.

The recovery routines are given control in LIFO (last in, first out) order. If all recovery
routines established via SETFRR percolate, the related task, if one exists, is abended. Then the
ST AE/EST AE routines which were created by the task are invoked.

Invoking the Recovery/Termination Manager

CALLRTM

A routine should use CALLRTM to direct the recovery/termination services to a task or
routine other than itself or its ancestors (callers). CALLRTM may be issued only by key 0
privileged routines. Control is returned to the issuer of the macro if the TYPE=ABTERM or
TYPE=MEMTERM options are coded.

48 OS!VS2 System Programming Library: Supenisor

o

The following locking, workarea, and special considerations should be noted when using
CALLRTM.

TYPE = ABTERM

If TYPE=ABTERM is specified in the CALLRTM macro instruction, the RTM processing is
directed towards another task. In this situation, the following locking and save area
requirements should be considered:

• If the TCB parameter is specified as 0 (or defaulted to 0), and the ASID parameter is
omitted, the current task in the current address space is abnormally terminated. In this
situation, the caller must be disabled (for example, hold any of the spin locks) and need
not pass a save area via register 13. If dump options are supplied, they must be contained
in fixed pages.

• If the TCB parameter is specified as an address, and the ASID parameter is omitted, the
task associated with the specified TCB in the current address space is abnormally
terminated. In this situation, the caller must own the local lock, and a save area is not
required.

• If the ASID parameter is specified, the ABTERM function is scheduled as a service
request block (SRB). Although there is no specific lock requirement, the caller must pass
the address of an 18-word work area in register 13. In this way, the ASID parameter
allows processing across address spaces and allows processing in the current address
space for routines that cannot acquire the proper locks (possibly because of hierarchy
conflicts) .

TYPE = MEMTERM

If TYPE=MEMTERM is specified in the CALLRTM macro instruction, the RTM processing
is directed towards an address space. In this situation, the following information should be
considered:

• If the ASID parameter is specified as nonzero, the specified address space is abnormally
terminated. The caller need not be disabled or own any locks. The caller must pass the
address of an 18-word work area in register 13.

• If the ASID parameter is specified as 0 or is omitted, the current address space is
abnormally terminated. The caller need not be disabled or own any locks. The caller must
pass the address of an 18-word work area in register 13.

Note: This work area is not the standard 18-word save area; therefore, standard mM linkage
conventions do not apply to it. One aspect of this difference is that CALLRTM does not save
registers in this work area in the same order as it would in a standard save area.

Since the MEMTERM process circumvents all task recovery and task resource manager
processing, its use is restricted to a select group of routines that can determine that task
recovery and task resource manager clean-up is either not warranted or will not successfully
operate in the address space being terminated. These routines include:

• Paging supervisor, when it determines that it cannot swap in the LSQA for an address
space.

• Memory create, when it determines that an address space cannot be initialized.
• RTM or supervisor control FRR, when it determines that uncorrectable translation errors

are occurring in the address space.
• RTM, when it determines that task recovery and termination cannot take place in the

current address space.
• Region control task, when it.has determined that the address space may become

permanently deadlocked--that is, unusable--or that the status of the address space is
unpredictable due to an error during swap-out processing.

IntelTUption, Recovery/Termination, and Dumping Senices 49

._--- _ .. - __ _._

• RTM, when all tasks in the address space have terminated.
• Auxiliary storage management (ASM) recovery, when it has an indeterminate error from

which it cannot recover while handling a request for either swap-in or swap-out.
• ASM recovery routine, when it determines that uncorrectable translation errors are

occurring while ASM is using the control register of another address space to update the
LSQA of the address space.

• SVC 34, in response to a FORCE command.

In addition, the terminal control address space (TCAS) specifies TYPE=MEMTERM when
the system operator replies "FSTOP" (forced stop) to certain messages that can occur when
TSO/VTAM time sharing starts or stops. The messages are IKTOOID (replying "FSTOP"
cancels terminal users already active when TSO/VTAM is starting) and IKTOIOD (replying
"FSTOP" cancels terminal users still active when TSO/VTAM is being stopped). In both
cases, the system operator should reply "FSTOP" to cancel users only if "SIC"
(system-initiated cancellation) is ineffective. Replying "SIC" does not cause bypassing of the
task resource manager processing.

ABEND

The ABEND macro instruction should be used by any routine, including supervisor state,
locked, disabled or SRB routines, to request the services of the RTM to be directed to itself
(cause entry into its recovery routine) or to its callers. The issuer of ABEND should remove
its own recovery exit if it wishes its caller to receive the services of the R TM. Control is never
returned to the issuer of the macro (except by using the STA/ESTA/FRR retry mechanism).
See OS/VS2 Supervisor Services and Macro Instructions for a description of the ABEND macro.

Types of Recovery Routines

Functional Recovery Routines (FRRs)

FRRs are recovery routines established to protect locked, disabled, or SRB mode routines. An
FRR is identified to the R TM by coding the SETFRR macro instruction. When a functional
recovery routine is invoked it runs in the state of the system (enabled or disabled) and with
the locks that were held at the time of the error, or as modified by previous FRRs.

Task Recovery Routines (ST AE/ST AI EST AE/EST AI)

Task recovery is accomplished through ST AE/ST AI or EST AE/EST AI routines. Issuance of
the STAE or ESTAE macro instruction, or the ATTACH macro instruction with the STAI or
ESTAI parameter, allows the user to intercept a scheduled ABEND. Control is given to a
user-specified exit routine in which the user may diagnose the cause of the ABEND, and
perform pre-termination processing, or specify a retry address if he wishes to prevent the
termination.

Establishing Recovery Routines

Functional Recovery Routines

The SETFRR macro instruction provides control program functions with the ability to define
their recovery in the FRR LIFO stack which is used during system recovery management. The
LIFO stack is maintained by the recovery termination manager and contains the addresses of
the FRRs established to protect a single path through supervisor control and SRB code.

50 OS/VS2 System Programming Library: Supervisor

o

o

----._._----_. _._ .. _---_ ... _ .. _---- .. _._._----

The issuer of SETFRR must be key 0 because the stack is maintained in protected storage.
Furthermore, the SETFRR issuer must be disabled, locked, or in SRB mode (and therefore
supervisor state) to maintain FRR stack integrity. The FRR stacks are serialized by
disablement or ownership of a global spin lock. For owners of suspend locks (CMS or
LOCAL) and SRB functions, the stack is saved and restored as part of the paths operating
environment by the supervisor control functions on interruptions and redispatch.

If R TM is invoked, the last FRR established is given control and executes in the system
mode (locks held, disablement, SRB mode) at the time of the error.

The FRR must indicate to the RTM the action to be performed. This is done via settings in
the system diagnostic work area (SDWA), which is used for communication between FRRs
and the RTM. If the FRR requests percolation (no retry), the previously established FRR is
given control. Each FRR is given control in LIFO order until retry is requested or the stack is
exhausted.

When FRR processing is exhausted, the RTM determines if a task should be terminated
(current or related task if in SRB mode). The RTM then sets the task up for ABEND and task
recovery takes place if task recovery exits exist, otherwise, the task is abnormally terminated.

An FRR environment is canceled when a routine issues SETFRR with the delete option,
when that FRR requests percolation, or when the system becomes enabled in task mode and
an interruption and redispatch occurs. The FRR entry should be deleted before the function
returns to its caller, otherwise, the FRR may get control for its caller's error.

All SETFRR users must include the DSECTs for the FRR stack (via the IHAFRRS
mapping macro instruction) and the PSA (via the llIAPSA mapping macro instruction) prior to
using the SETFRR macro instruction. In addition, all disabled, locked, and SRB routines which
define recovery must be key 0 supervisor state when using the SETFRR macro instruction. It
is necessary to copy IHAPSA from AMODGEN into MACLm.

Note: The size of all FRR stacks satisfies the recovery needs of the control program. If
additional FRRs are placed on the stack, thereby causing the size to be exceeded, the routine
issuing the SETFRR macro instruction is abnormally terminated. Any user-written routines
outside the control program may add one, and only one, FRR to the stack; if more than one is
added, abnormal termination may occur. This applies to all of the recovery stacks, including
the normal stack. The normal FRR stack is used by control program routines which are
invoked on behalf of the user.

Task Recovery Routines

STAE/STAI Exit Routines: The STAE macro instruction causes a recovery routine address to
be made known to the control program. This recovery routine is associated with the task and
the RB which issued STAB. Use of the STAI option on the ATTACH macro instruction also
causes a recovery routine to be made known to the control program, but the routine is
associated with the subtask created via ATTACH. Furthermore, ST AI recovery routines are
propagated to all lower-level subtasks of the subtask created with A IT ACH that specified the
ST AI parameter.

If a task is scheduled for abnormal termination, the exit routine specified by the most
recently issued ST AE macro instruction gets control and executes under a program request
block created by the SYNCH service routine. Only one ST AE exit routine receives control.
The ST AE exit routine must specify, by a return code in register 15, whether a retry routine is
to be scheduled. If no retry routine is to be scheduled (return code = 0) and this is a subtask
with ST AI recovery routines, the ST AI recovery routine is given control. If there is no ST AI
recovery routine, abnormal termination continues.

Interruption, Recovery/Termination, and Dumping Services 51

If there is more than one ST AI recovery routine existing for a task, the newest one receives
control first. If it requests that termination continue (return code = 0), the next STAI routine
receives control. This continues until either all ST AI routines have received control and
requested that the termination continue, a STAI routine requests retry (return code = 4 or
12), or a STAI routine requests that the termination continue but no further STAI exits receive
control (return code = 16).

Programs running under a single TCB may issue more than one ST AE macro instruction
with the create (CT) parameter. Each issuance makes the previous STAE environment
temporarily inactive. The environment becomes active when the current ST AE environment is
canceled.

A STAE environment is canceled when the RB which created it goes away (unless it issues
XCTL and specified the XCTL=YES parameter on the STAE macro instruction), when the
ST AE macro instruction is issued with the CANCEL option, or when the ST AE routine
receives control. If a ST AE exit routine receives control and requests retry, the retry routine
reissues the ST AE macro instruction if it wants continued ST AE protection.

A ST AI environment is canceled if the task completes or if it requests that termination
continue and no further ST AI processing be done. In the later case, all ST AI exits for the task
are canceled.

EST AE, FEST AE, and EST AI Exit Routines: The EST AE and FEST AE macro instructions,
like the ST AE macro instruction, cause a task and RB-related recovery environment to be
created. Use of the EST AI option on the ATTACH macro instruction also identifies a
recovery routine to the control program, but the routine is associated with the subtask created
via ATTACH. Furthermore, EST AI recovery routines are propagated to all lower-level
sub tasks of the subtask created with the ATTACH that specified the EST AI parameter. (See
Figure 17.)

If a task is scheduled for abnormal termination, the recovery routine specified by the most
recently issued EST AE macro instruction is given control and executes under a program
request block created by the SYNCH service routine. On return, the exit routine may indicate
whether a retry routine should be scheduled or whether termination should continue. If it
requests that termination continue, the next EST AE routine for the task receives control. If all
EST AE routines request that termination continue, or if none exist, the EST AI routines, if any,
receive control.

Before the initial recovery routine receives control, the purge and asynchronous processing
requests specified when the exit was created are performed by the control program. The I/O
processing requested is performed only for the first exit routine selected. Subsequent routines
receive an indication of the I/O processing previously performed, but no additional I/O
processing is performed. The asynchronous processing request, however, is performed for each
routine.

Each EST AE exit established by a task is eligible to receive control. If an error occurs, the
most recently created EST AE is entered. If it requests that termination continue, or it fails
itself, the next EST AE exit, if any, is entered. This continues until an EST AE exit requests
retry or all exits for the task are exhausted.

Both STAB and ESTAB exits can exist for the same task. However, only one STAE exit
receives control. ST AI and EST AI exits receive control after all EST AE exits and one ST AE
exit, if any, have been processed.

An ESTAE environment is canceled when the RB which creates it goes away (unless it
issues an XCTL and specified the XCTL=YES parameter on the ESTAE macro instruction),
when the ESTAB macro instruction is issued with the CANCEL option, the exit routine fails,
or the exit routine requests that termination continue.

52 OS/VS2 System Programming Library: Supervisor

o

o

._--------------_. __ ._---------.. _------------- ._---------------------_. ,,-------- -----

Figure 17 demonstrates the queuing structure of the EST AE routines and the propagation of
ESTAI to subtasks.

The fast EST AE (FEST AE) macro instruction allows an SVC to establish an EST AE
environment with minimal overhead and no locking requirements. The EST AE exit activated
by FEST AE receives control in the same sequence and under the same conditions as though
created by the EST AE macro instruction.

To use the fast ESTAE capability, SVCs must code the FESTAE macro instruction as
described in Part IT of this publication. Restrictions governing the use of FEST AE are as
follows:

• Only an SVC executing under an SVRB in protection key 0 may use FEST AE.
• FEST AE may be used only once to create an EST AE exit, which means that:

- Any SVC needing to change its exit address must use branch entry EST AE services.

- Any SVC needing more than a single EST AE exit must use SVC 60 or branch entry
to get additional exits.

FESTAE provides a 24 byte parameter area that the user may optionally employ. The name
of the parameter area is RBFEP ARM, and it is in the SVRB. The EST AE exit receives this
parameter area when an error occurs. Hence, the user of FESTAE can clear (zero) and
initialize the parameter area with appropriate information (for example, tracking data) that
may be useful to the EST AE exit. Clearing the parameter area before use is necessary to
ensure no spurious data remains in it from previous processing.

FEST AE users must also include the following DSECTS for the FEST AE macro expansion:

IHARB
IKJTCB
IHAPSA
IHASCB

Interruption, Recovery/Tennination, and Dumping Senices 53

TCB1

RB1 't SCB It

I ESTAE2
I
I

ESTAE1
ESTAE2 SCB It

ATTACH RB2 + ESTAI3 I ESTAE1 I
TCB2 it

RB2 it SCB ,

I ESTAE4 I
I

ESTAE4
SCB ATTACH RB3

I ESTAI3 I
TCB3 ,

RB3 ,It SCB ~
l ESTAI3 J
(propagated)

Figure 17. ESTAE Environment

RTM/Recovery Routine Inter/ace

Inten ace to Functional Recovery Routines

Prior to giving control to FRRs the RTM locates and initializes a work area that contains
information about the error. This work area is called the system diagnostic work area (SDW A)
and is 512 bytes long. The first word of the SDWA contains the address of the six-word
parameter area returned by the SETFRR macro instruction when the P ARMAD keyword is
specified on the SETFRR macro instruction.

FRRs represented on the system recovery stack receive control via the LPSW instruction.
The most recent FRR address on the stack is merged with the saved error PSW so that the
FRR gets control in the system state representing the processor status at the time of error.
Note: The PSW is always enabled for machine checks and DAT.

54 OS/VS2 System Programming Library: Supervisor

.... _._-_. __ •.•.. _ ..•. _-----------------

o

'. 0
·,

o

Upon entry to the FRR, parameter registers are as follows:

Register
Register

o Address of a 200-byte FRR work area.
Address of the SDWA.

Register 14 Return address.
Register 15 Address of the FRR.

Note that register 13 is not part of the FRR interface. Any register may be used without
saving it, but caution should be used to maintain the return address supplied in register 14.

The locks held and disablement are the same as at the time of error, except for
percolated-to FRRs in which case, lock status may change if previous exits requested that
locks be freed.

The System Diagnostic Work Area (SDWA) contains information pertaining to the error
(that is, registers and PSW). The SDW AFMID field contains an indication of the memory in
which an error occurred if recovery is being initiated in another memory. If this field is not
zero, no reference may be made to private (local) area.

An FRR should use the lock freeIng capabilities of the RTM (via SETRP) to free locks
obtained by the mainline, if that is the action desired. In any event, an FRR must not free the
last global lock causing enablement, or the local lock. The RTM must be used in these cases. If
the RTM is used to free all locks required, the above checks can be avoided.

RTM freeing of locks is only honored on percolation. Freeing or obtaining locks for or in
retry situations must be done by the retry routine.

During FRR processing, the FRR should use the SETRP macro instruction to inform RTM
of the action it desires to be performed when the FRR completes. This macro instruction
initializes the system diagnostic work area (SDWA) with the desired options.

The SETRP macro instruction is described in Supervisor Services and Macro Instructions, with
the exception of several restricted parameters which are described in this publication.

Interface to Task Recovery Routines

Interface to a STAE/STAI Exit: Prior to going to a STAE/STAI recovery routine, the control
program attempts to obtain and initialize a work area that contains information about the
error. The SDWA work area is 512 bytes long. The first word of the SDWA contains the
address of the parameter list specified on the ST AE macro instruction or the ST AI parameter
or the ATIACH macro instruction.

Upon entry to the ST AE routine, parameter registers are as follows:

If an SDW A was obtained:

Register

Register
Register
Register
Register

o a code indicating the type of I/O processing performed:
o active I/O has been quiesced and is restorable.
4 active I/O has been halted and is not restorable.
8 no active I/O at ABEND time.

16 active I/O, if any, was allowed to continue.
1 address of the SDWA.

13 save area address.
14 return address.
15 address of ST AE exit routine.

Interruption, Recovery/Tennination, and Dumping Services 55

If no SOWA was available:

Register
Register
Register
Register
Register·
Register

o code 12 to indicate that no SDW A was obtained.
ABEND completion code.

2 address of user-supplied parameter list.
13 unpredictable.
14 return address.
15 address of ST AE exit routine.

When the STAB or STAI routine has completed, it should return to RTM via the contents
of register 14. Register 15 should contain one of the following return codes:

Return Code Action
o Continue the termination. The next ST AI, EST AI, or EST AE exit will be given control. No

other ST AE exits will receive control.
4,8,12 A retry routine is to be scheduled.
16 No further ST AI/EST AI processing is to occur. This code may only be issued by a

STAI/EST AI exit.

For the following situations, STAB/STAI exits are not entered:

• If the abnormal termination is caused by an operator's CANCEL, job step timer
expiration, or the detaching of an incomplete task.

• If the failing task has been in a wait state for more than 30 minutes.
• If the STAB macro instruction was issued by a subtask and the attaching task abnormally

terminates.
• If the recovery routine was specified for a subtask, via the STAI parameter of the

ATTACH macro instruction, and the attaching task abnormally terminates.
• If a problem other than those above arises while RTM is preparing to give control to the

STAB routine.

Interface to an EST AE/EST AI Exit: Before going to an EST AB/EST AI recovery routine,
RTM attempts to obtain and initialize a work area that contains information about the error.
This work area is the system diagnostic work area (SOWA) and is 512 bytes long. The first
word of the SOW A contains the address of the parameter list specified on the EST AB macro
instruction or the ESTAI parameter of the ATTACH macro instruction.

Upon entry to the EST AB exit routine, parameter registers are as follows:

If an SOW A was obtained:

Register

Register
Register
Register
Register

o a code indicating the type of I/O processing performed:
o active I/O has been quiesced and is restorable.
4 active I/O has been halted and is not restorable.
8 no active I/O at ABEND time.

16 no I/O processing was performed.
1 address of the SDW A.

13 save area address.
14 return address.
15 entry point address.

If no SOW A was available:

Register
Register
Register
Register
Register
Register

o code 12 to indicate that no SDW A was obtained.
1 ABEND completion code.
2 address of user-supplied parameter list.

13 unpredictable.
14 return address.
15 entry point address.

~uring EST ABlEST AI processing, EST AB/EST AI should use the SETRP macro
instruction to inform RTM of the action it wants done when ESTAB/ESTAI completes. This
macro instruction initializes the system diagnostic work area (SOW A) with the desired options.

S6 OS/VS2 System Programming Library: Supervisor

-- ------_. __ .. _-------- -------------------.. ~-----.-

o

If R TM could not provide a work area, a register save area is not provided either. If no
SDWA is available, register 14 must be saved and used as the return register to RTM.

When the ESTAE or ESTAI routine has completed its processing, it should return to RTM
via the contents of register 14. Register 15 should contain one of the following return codes if
an SDW A was not obtained:

Action Return Code
o Continue the termination. Any EST AE exits established prior to this one receive

control.
4
16

A retry routine is to be scheduled, and its address is placed in register o.
Valid only for ESTAI. Termination should be continued; no further ESTAI processing
should be performed.

When an ESTAE routine requests retry, the RB queue is terminated up to, but not
including, the RB of the program that issued the EST AE macro instruction. This is done by
pointing the RB old PSW to an sve 3 instruction. In addition, open DeBs that can be
associated with the purged RBs are closed and queued I/O requests associated with these
DeBs being closed are deleted from the I/O restore chain.

The RB queue purge is an attempt to cancel the effects of partially executed programs that
are at a lower level in the program hierarchy than the program under which the retry occurs.
However, certain effects on the system are not be canceled by this RB purge. Examples of
these effects are as follows:

• Subtasks created by a program to be purged
• Resources allocated by the ENQ macro instruction
• DeBs that exist in dynamically acquired virtual storage

If there are quiesced restorable input/output operations, they can be restored in the EST AE
retry routine by using word 2 in the SDWA. Word 2 contains the pointer to the purged I/O
request list (PIRL) passed as a parameter to sve Restore. SVC Restore is used to have the
system restore all I/O requests on the PIRL.

RTM/Retry Routine Interface

FRR-Requested Retry Routine

If an FRR requests that a retry routine be given control by specifying a return code of 4 on
SETRP, the following interface is established:

• Registers 0 - 14 are the registers at the time of error with the exception of registers that
the FRR requested be changed.

• Locks held and disablement are the same as on exit from the FRR.
• Protect key is O.
• Register 15 contains the retry routine address.
• The SWDA and associated 200-byte work area are not available to the retry routine.

Task Recovery Retry Routines

STAE/STAI Retry Routines: If the STAE retry routine is scheduled, the system automatically
cancels the active ST AE environment; the preceding ST AE environment, if one exists, then
becomes the active one. Users wanting to maintain ST AE protection during retry must
reestablish an active ST AE environment within the retry routine, or must issue multiple ST AE
requests prior to the time that the retry routine gains control.

Like the ST AE/ST AI exit routine, the ST AE/ST AI retry routine must be in storage when
the exit routine determines that retry is to be attempted. If not already resident in your
program, the retry routine may be brought into storage via the LOAD macro instruction by
either the user's program or exit routine.

Interruption, Recovery/Termination, and Dumping Services 57

If the ST AB/ST AI routine indicates that a retry routine has been provided (return code =
4, 8, or 12), register 0 must contain the address of the retry routine. The STAB environment
that requested retry is canceled and the request block queue is purged up to, but not including,
the RB of the program that issued the ST AE macro instruction. This is done by pointing each
RB old PSW to an SVC 3 (EXIT) instruction. In addition, open DCBs which can be
associated with the purged RBs are closed and queued I/O requests associated with the DCBs
being closed are deleted from the I/O restore chain.

The RB purge is an attempt to cancel the effects of partially executed programs that are at
a lower level in the program hierarchy than the program under which the retry occurs.
However, certain effects on the system are not canceled by this RB purge. Generally, these
effects are TCB-related and are not identifiable at the RB level. Examples of these effects are
as follows:

• Subtask created by a program to be purged.
Reason: Subtasks cannot be associated with an RB; the structure is defined via TCBs.

• Resources allocated by the ENQ macro instruction.
Reason: ENQ resources are associated with the TCB and are not identifiable at the RB
level.

• DCBs that exist in dynamically acquired virtual storage.
Reason: Only DCBs in the program, as defined by the RB via the CDB itself, are closed.

If there are quiesced restorable input/output operations, they can be restored, in the ST AE
retry routine, by using word 2 in the SDWA. Word 2 contains the pointer to the purged I/O
request list (PIRL) passed as a parameter to SVC Restore. SVC Restore is used to have the
system restore all I/O requests on the PIRL. (For additional information on SVC Restore, see
OS/VS2 System Programming Library: Data Management.

If an SDW A was obtained, upon entry to the ST AE/ST AI retry routine, register contents
are as follows:

Register 0
Register
Register 2-13
Register 14
Register 15

o
Address of the SDW A.
Unpredictable.
Address of an SVC 3 instruction.
Address of the ST AE/ST AI retry routine.

When the storage is no longer needed, the retry routine should use the FREEMAIN macro
instruction to free the first 104 bytes of the 512-byte work area. If the retry routine is in the
user key, this storage should be freed from subpool 0 which is the default subpool for the
FREEMAIN macro instruction. If the retry routine is in the control program key, storage must
be freed from subpool 250. The remainder of the work area's storage was freed by RTM
during ST AB/ST AI processing.

If the ABEND/STAB interface routine was not able to obtain storage for the work area,
register contents are as follows:

Register
Register
Register

o 12
1 ABEND completion code.
2 Address of the PIRL; or 0 if I/O is not restorable.

ESTAE/ESTAI Retry Routines: If the ESTAE/ESTAI routine is specified, the following
actions will be performed by the control program prior to scheduling it:

• A dump is provided if requested.
• FREEMAIN of SDW A is performed, if requested.
• Registers are updated with user-supplied values, if requested .
• The RB queue is purged up to the level of the retrying RB.

58 OS/VS2 System Programming Library: Supervisor

C\

c)

Outstanding WTORs are not purged prior to scheduling an EST AE routine.

Retry routines run at the RB associated with the requestor of the EST AE exit routine
causing the retry. RBs on the RB queue are always purged to the level of RB associated with
the EST AE exit prior to the scheduling of the retry routine.

EST AE retry routines get control in the key in which the EST AE macro instruction was
issued. Retry routines should not reissue ESTAE to maintain the same exit. They may,
however, issue EST AE to add or change exits.

Like the exit routine, the retry routine must be in storage when the exit routine determines
that retry is to be attempted. If not already resident within the program, the retry routine may
be brought into storage via the LOAD macro instruction by either the user's program or exit
routine.

If an SDW A was obtained, the user has a choice of interfaces to his retry address. The user
can set (in the SDW A) the registers he wishes to have and request that they be passed to the
retry address by coding RETREGS= YES on the SETRP macro instruction. This alternative is
most often used when retrying into mainline processing.

If no SDW A was obtained or if RETREGS=NO was specified on SETRP, only parameter
registers are passed to the retry address. This alternative is more often used if a special retry
routine is to get control.

The parameter registers are as follows:

If no SDW A was obtained:

Register 0
Register 1
Register 2
Register 14
Register 15

12
address of the user parameter list established via EST AE or A IT ACH with EST AI.
pointer to the PIRL if I/O was quiesced and is restorable; otherwise, o.
address of supervisor-assisted exit linkage.
entry point address of retry routine.

If an SDW A was obtained and the exit did not request register update, or freeing of
SDWA:

Register 0 0
Register 1 address of SDWA.
Register 2 unpredictable.
Register 14 address of supervisor-assisted exit linkage.
Register 15 entry point address of retry routine.

If an SDW A was obtained and the exit did not request register update, but did request
freeing of SDW A:

Register
Register
Register
Register
Register

o 20
pointer to the user parameter list established via EST AE or ATTACH with EST AI.

2 pointer to the PIRL if I/O was quiesced and is restorable; otherwise, o.
14 address of supervisor-assisted exit linkage.
15 entry point address of retry routine.

Recovery Routine Guidelines

This section is intended to assist in the writing of recovery routines. The actions a recovery
routine should take are highly dependent on the function being recovered, therefore, these
guidelines are general and intended to serve as suggestions.

The first consideration is that the recovery routine be beneficial. In general, if a function
acquires resources which may be requested by another function, or is not known to be related
to the task, a recovery routine should be established to free the resources. An example of this
type of resource is storage within a subpool which is not task-related (for example, subpool

Interruption, Recovery/Termination, and Dumping Services 59

231). Another case when a recovery routine should be established is when data areas, queues,
data sets, etc. which are used by more than one function are manipulated. The recovery
routine in this case should maintain integrity in case of failure.

Recovery routines may also be used to:

• Intercept errors and perform clean-up processing.
• Intercept expected program checks and perform desired action.
• Isolate an error to a particular section of processing and continue further processing if

possible.
• Intercept its own abends and provide tailored dumps.

The second consideration is what type of recovery routine be established. If the function
holds a lock, is physically disabled, or is an SRB, an FRR can be used to intercept errors. If
the function is running under a task and holds a lock during some portion of its processing, an
ESTAE could be used to catch errors in its processing, but the lock is freed before the ESTAE
is given control. Losing the locked status can be tolerated when the lock is used only to read a
queue to prevent another from changing it. Also, if the function is running as an enabled,
unlocked, SRB, an EST AE associated with its related task could be used to catch errors in the
SRB. If an FRR is not required, but a recovery routine is necessary, an ESTAE routine should
be used.

If the function attaches any subtasks, then it can also provide recovery for the subtask.
Specify the ESTAI/STAI parameter on the ATTACH macro instruction to provide recovery.

If the function obtains any SQA or CSA for an address space, and the address space is
terminated by the operator (for example, through use of the FORCE operator command), then
the resource clean-up routine must free the areas obtained. This is necessary because the
recovery routine is not invoked when the address space is terminated. If the address space is
not terminated, and an abend occurs, then the recovery routine is invoked. If the recovery
routine does not retry, then it must free the SQA and CSA.

FRRs

If it is decided that recovery should be via an FRR, the following information should be
reviewed:

• Syntax of the SETFRR macro which is documented in Part II of this manual.
• Guidelines for using SETFRR which are documented in this publication under

"Establishing Functional Recovery Routines."
• The interface to functional recovery routines which is described earlier in this section.
• Syntax of the SETRP (SET return parameters) macro instruction which is described in

OS/VS2 Supervisor Services and Macro Instructions with a description of the restricted
parameters in Part IT of this publication.

• Interface to FRR requested retry routines which is described earlier in this section.
• The contents of the SDW A (mapped by the IHASDW A mapping macro instruction). All

error/recovery information available to an FRR is contained in this work area, and the
commentary in this data area serves as the documentation. This data area is described in
the OS/VS2 System Programming Library: Debugging Handbook.

Task Recovery

If it is decided that recovery via FRR is not necessary, EST AE recovery should be used.
Discussions earlier in this section concerning ST AE routines are primarily documented as they
are supported for OS/VS2 Release 1 compatibility.

60 OS/VS2 System Programming Library: Supervisor

------- ------------"-------"---"-

o

o

- ------ -------------._-----------

Before designing an EST AE routine, the following information should be reviewed:

• The use of the EST AE macro instruction which is described in OS/VS2 Supervisor Services
and Macro Instructions with a description of restricted parameters in Part II of this
publication.

• The uses of the FEST AE macro instruction, described earlier in this section.
• Rules concerning establishing recovery routines (ESTAE/ESTAI exit routines) earlier in

this section.
• The interface to EST AB/EST AI exits which is documented in this section under

"Interface to Functional Recovery Routines."
• Syntax of the SETRP macro instruction which is described in OS/VS2 Supervisor Services

and Macro Instructions with a description of restricted parameters in Part II of this
publication.

• Interface to EST AE/EST AI retry routines described earlier in this section.
• The contents of the SDWA (mapped by the IHASDWA mapping macro instruction). All

error/recovery information available to an ESTAE/ESTAI exit is contained in this work
area and the commentary in this data area serves as the documentation. This data area is
described in OS/VS2 System Programming Library: Debugging Handbook.

For any recovery routine that is being written, the following information should be
reviewed:

• When a task recovery routine receives control it should first examine the code in register
o to see if a SDWA was provided. If an SDWA was not provided (register 0= 12) a save
area is not pointed to by register 13 and the registers should not be saved. (Affects task
recovery routines--EST AE/EST AI.)

• An SDWA is always provided to FRRs. (Affects functional recovery routines.)
• A recovery routine should not assume the registers in the SDW A are its own. Many

reasons preclude this such as errors in called routines which have no recovery, errors in
an asynchronous routine (for example SRB and IRB). The safest method to assure a
successful retry is to s"ave volatile information in the parameter list passed to the recovery
routine and use those registers, addresses, and so forth, for retry. For example, the issuer
of the macro instruction can save the base register and data register for the function in
the parameter list. This enables the recovery routine to reference the areas that belong to
the function. (Affects both task recovery routines--ESTAE/ESTAI, and functional
recovery routines.)

• The default dump data set for SETRP is the data set that the user of the function
specifies on the SYSABEND, SYSMDUMP, or SYSUDUMP DD statement. If the
function executes in key 0, or if it has access to restricted data that should be kept secure
in a dump, then either the data sets specified on the DD statement should be secure or
the SDUMP macro instruction should be used to take the dump. SDUMP can include a
DCB for a secure data set, or the SYS I.DUMP data set can be the default.

• If an FRR requests a dump via SETRP, the following should be considered:
1. No dump is taken by the supervisor if retry is performed before the error is percolated

to task recovery.
2. A dump is taken by the supervisor if all FRRs percolate and no subsequent recovery

routine suppresses the dump.
3. A dump is taken by the supervisor at the task recovery level (after the system is

enabled). If volatile information is required, an SDUMP macro instruction should be
issued instead with the volatile information moved into the 4K SQA buffer described
later in this section. Volatile information can also be obtained by specifying
SUMLIST=ADDRLIST, BRANCH=YES, and SDATA=SUMDUMP in the SDUMP
macro instruction. Then a summary dump will be taken while the system is disabled.
The areas indicated by the SUMLIST parameter are included in the summary dump.

(These considerations affect functional recovery routines.)

Interruption, Recovery/Termination, and Dumping Services 61

• Dump options specified on SETRP are accumulated in the SDW A. During percolation
these options are merged with any dump options specified on an ABEND macro
instruction, a CALLRTM macro instruction, or specified by other recovery routines.
Also, the CHNGDUMP operator command can add to or override dump options. The
supervisor takes one dump as described by the dump options. If the recovery routine
requests a retry, then the sequence of events is SETRP, take the dump, and then retry. If
the recovery routine does not request a retry, then the sequence of events is SETRP,
percolate, and then take the dump. (Affects both task recovery routines--ESTAE/ESTAI,
and functional recovery routines.)

• If the abend was caused by a system routine, the recovery routine should issue an
SDUMP macro instruction instead of taking the default dump for SETRP. If SDUMP is
used, then the following should be considered:
1. SDUMP should specify a title that summarizes the problem and function. The title

should include at least the name of the module that failed and the name of the
recovery module, as in the following example:

OC4 ABEND IN OPEN, ERRMOD=IFGOPROA,
RECVRMOD=IGG020FC, JOBN=C49JAC1A, STEPN=GO,
SDWAVRA=8417FO

Note: The Print Dump Service will insert the first 62 characters of the title on its
output pages.

2. SDUMP should usually specify all SDAT A parameters. If a system area is not required
to analyze the dump, then use the appropriate SDAT A parameters to omit it from the
dump.

(Affects task recovery routines -- ESTAE/ESTAI, and functional recovery routines.)

• Valuable function-related information can be lost by the time a dump or LOGREC entry
is created. For example, information in control blocks used for communication with other
address spaces can be changed before a dump is taken. "Footprint" areas should be used
to save this information. The available "footprint" areas include the function's work
areas, the LOGREC and dump variable recording area in SDW A VRA, the SDUMP 4K
SQA buffer, and any areas the SUMLIST parameter specifies in a SDUMP macro
instruction. Document any use of "footprint" areas. This documentation is very useful
when analyzing the dump or LOGREC entries.

(Affects task recovery routines -- ESTAE/ESTAI, and functional recovery routines.)

• If LOGREC recording is active (the default for FRRs or specified on SETRP), then the
name of the module that failed and the name of the recovery module should be saved in
the SDWA (SDWAMODN, SDWACSCT, and SDWAREXN).

(Affects task recovery routines -- ESTAE/ESTAI, and functional recovery routines.)

• Dumps are usually not required to solve type x37 abends (caused when not enough space
is allocated for a data set) and type 913 abends (caused when an operator or user does
not supply the correct password). Also, when a prior task is abending and has already
taken a dump (indicated by the SDW ACTS and SDW AMABD bits being on) then
another dump is not necessary. When several recovery routines are written for the same
component, then the recovery routines that are higher in the hierarchy can test the
SDWAEAS bit to check if a lower routine has already taken an SVC Dump. (Lower
routines should set the SDWAEAS bit to indicate that an SVC Dump has been taken.) If
other routines have not issued an error message for an abend, then the higher recovery
routine should issue one.

(Affects task recovery routines -- ESTAE/ESTAI, and functional recovery routines.)

62 OS/VS2 System Programming Library: Supervisor

o

c)

• Recovery routines that cleanup critical areas, such as queues of control blocks, should
issue an EST AE or SETFRR macro instruction. Then if an error occurs in the original
recovery routine, control is passed to the recovery routine that was specified on the
EST AE or SETFRR. This routine can do the necessary cleanup before control is passed
to the next routine (above the failing routine) in the recovery hierarchy. For example, if
a system service invoked through a macro instruction in a recovery routine abends, then
control is passed to the recovery routine specified on the EST AE or SETFRR. This
routine cannot retry. After it completes any necessary cleanup, it returns control to the
supervisor. The supervisor passes control to the next routine (above the failing routine) in
the recovery hierarchy. The next recovery routine can retry, because the error occurred in
a recovery routine that was lower in the hierarchy.

• The following is additional information about some SDW A fields:

SDW APERC - indicates this recovery is being percolated to; however, this does not
indicate if a task recovery routine is being percolated to from an FRR.

SDW AFMID - is zero if recovery is taking place in the address space which suffered the
error.

SDWACLUP - indicates retry is not permitted; resources should be freed in exit.

(These affect both task recovery routines--ESTAE/ESTAI, and functional recovery
routines.)

• An ESTAE exit may request, via a SETRP parameter, that the control program free the
SDW A instead of freeing it itself in a retry routine. (Affects task recovery
routines--EST AE/EST AI.)

• An ESTAE exit may specify, via a SETRP parameter, what the contents of its registers
should be on entry to the retry routine.

(Affects task recovery routines--ESTAE/ESTAI.)

• An EST AE exit remains in effect when its retry routine receives control. It need not
reissue the ESTAE to reestablish itself. (Affects task recovery routines--ESTAE/ESTAI.)

When using EST AE/EST AI routines the following should be considered:

• EST AE or ATTACH may be issued by the routine.
• If an EST AE/EST AI exit requests termination or fails EST AE/EST AI percolation and

the accumulation of dump options occurs.
- The asynchronous exit indicator is reset according to the new exit's request.
- I/O options for the new exit are ignored.
- A new SDW A is initialized.
- The new exit is scheduled.

• If all recovery exits (ST AE/ST AI and EST AE/EST AI) fail or indicate termination, the
task is terminated.

• If a non-job step task issues ABEND with the STEP option, exits are entered for the
non-jobstep task. If retry is not requested, the jobstep is terminated with the ABEND
code, and only TERM exits are entered.

• ESTAE exits receive control with the same status (supervisor or problem program state)
that existed at the time the program issued the EST AE macro instruction to queue the
exit. EST AE exits created by a program running under any control program protection
key (keys 0-7) receives control in key 0; otherwise EST AE exits receive control with the
same protection key as the program that established the exit.

• EST AI exits receive control in the key of the TCB of the task that created them.

Interruption, Recovery/Termination, and Dumping Services 63

• In the following cases:
- forced logoff
- job step timer expiration
- wait time limit for job step exceeded
- ABEND condition because of DETACH of an incomplete subtask
- EST AI was issued by a subtask and the attaching task abnormally terminates

The following actions occur:

- EST AE exit routines are scheduled if TERM = YES was specified as a parameter when
EST AE was issued.

- All such routines which may exist get control in LIFO order.
- Any EST AI exit previously suppressed via return code 16, or any exit previously

entered which specified return code 0, is not entered again during TERM processing.
- Retry indications on return are ignored.
- If the TERM option is used on the EST AE macro instruction issued by an EST AE

exit, it is ignored.

Although the EST AE routines should issue SETRP to allow the system to free the SDW A,
the freeing could also be accomplished by the retry routine. In this case, it is important to note
that the EST AE recovery routine created under any control program protection key receives
an SDW A in key 0 storage. Therefore, if the retry routine is executing under a key other than
key 0, it must issue MODESET to become key 0 before issuing the FREEMAIN.

Clean-Up Routines

Task and address space termination is the process of removing a task or address space from
the system, releasing the resources from the task or address space, and making the resources
available for reuse. It is the responsibility of the resource managers invoked to establish
clean-up routines to "clean up" the queues and control blocks associated with the resources.

The responsibilities of the clean-up routines include:

• For task termination, removing all traces of the fact that the TCB for the terminating
task at one time was connected to, allocated to, or associated with the resource in
question. The resource should be left in such a state that it can be reused by another task
in the address space or in the system.

• For address space termination, releasing all system queue area and common storage area
control blocks obtained for the use of the terminating address space. Also, any buffers,
bit settings, pointers, and so on relating to the terminating address space should be reset
to make the system appear as if the ASID or ASCB of the terminating address space
never existed.

The clean-up routine is also responsible for establishing a recovery environment when first
entered to protect itself against errors during its own processing. For SRBs, the clean-up
routine issues the PURGEDQ macro instruction to ensure that all undispatched SRBs are
removed from the SRB dispatching queue.

Support for lnstallation- Written Clean-Up Routines

In order to support installation-written clean-up routines, a CSECT is provided into which an
installation can assemble the names of subsystem clean-up modules. These modules are given
control at the beginning of both the task and address space termination processes to do any
special clean-up processing required by the subsystems. (The processing described above is
performed by the ffiM system routines.) After the CSECT is assembled, it is used to replace
the existing CSECT IEAVTRML in load module IGCOOOIC in SYSl.LPALffi. The
installation-written modules must be placed in SYS1.LlNKLffi (or a library concatenated to

64 OS/VS2 System Programming Library: Supervisor

o
SYSl.LINKLffi via a LNKLSTxx member of PARMLffi) or SYSl.LPALffi. If the routine is
not present in one of these libraries, the system will not IPL.

Initially, the CSECT consists of four 12-byte entries of all zeros. Each of the first three
12-byte entries can contain a module name in the first 8 bytes; the last 4 bytes of each entry
are reserved and should contain zeroes. The last entry must consist of all zeroes.

A typical entry for the CSECT may appear as follows:

DC CL8'MODULENM'
DC XL4'QQ'

Programming Considerations

All clean-up routines of the resource manager use a standard interface, available through the
ll-IARMPL mapping macro. On entry to the clean-up routines, the register contents are as
follows:

Register
1

13
14
15

0,2-12

Contents
pointer to a 4-byte field that contains the address of the interface block
pointer to a standard save area
return address
entry point of clean-up routine
unpredictable

Registers 0-14 must be saved and restored by the clean-up routine; register 15 is used to
pass a return code back to termination. A return code of 0 indicates a successful clean-up, and
a return code of 4 indicates an unsuccessful clean-up.

The clean-up routines receive control on all task and address space terminations prior to any
of the control program resource manager, and receive control in key 0, supervisor state, with
no locks held. Each clean-up routine must acquire and release any locks it may need to do its
processing.

For task termination, the clean-up routine executes under the TCB of the terminating task,
and executes in the address space of the terminating task.

For address space termination, the clean-up routine executes under a task in the address
space of the master scheduler. The clean-up routine will be able to examine the ASCB for the
address space, queues, and other control blocks which reside in the common area; nothing in
the private area for the terminating address space is accessible.

Intercepting System Errors

Intercepting system events provides a way to get information about software conditions, in
addition to the information normally supplied by dumping services during abnormal
termination. The intercepting process, known as serviceability level indication processing
(SLIP) is a major debugging tool.

SLIP definitions, called traps, specify the system conditions at the time of interception and
the action that is to be taken after the interception. There are two types of SLIP traps:
non-PER traps and PER traps. A non-PER trap obtains information about an error condition
normally handled by the recovery/termination manager (R TM), such as a program check,
abend, or restart interrupt. A PER trap uses program event recording (PER) hardware to
obtain information about any of the following PER events:

• Successful branch: Successful execution of a branch taken within a user defined range of
virtual addresses.

• Storage alteration: Alteration of the contents of a virtual storage location within a
user-defined range of virtual addresses.

• Instruction fetch: Fetching and execution of an instruction within a user-defined range of
virtual addresses.

Interruption, Recovery/Termination, and Dumping Services 65

------- ,_.,,,._ .. ,----------

Once the trap is defined and enabled, SLIP processing checks current system conditions for
each SLIP event. PER traps are checked each time a PER event occurs; non-PER traps are
checked whenever RTM processes an error. When current system conditions match the
conditions specified in the trap, the action specified in the trap occurs. Normally, the action
specified, such as scheduling an SVC dump or writing a GTF trace record, is designed to
collect diagnostic data.

SLIP users can minjmjze the effect of PER traps on system performance by limiting the
scope of a SLIP trap to, for example, a particular address space or job. A SLIP trap can also
include controls that automatically disable the trap when it is causing excessive overhead or
has collected the required amount of data. The action to be taken when the trap matches can
also be tailored. For example, SLIP users can tailor the SVC dump to include only diagnostic
material ess"ential for debugging. In addition, SLIP users can specify the type and contents of
the GTF trace records. For more information on the SLIP command operands, see Operators
Library: System Commands and System Programming Library: TSO.

Using the SLIP Command

Use of the SLIP command should be restricted to system programmers.

The command uses three operands to control SLIP traps:

• SET -- establish SLIP traps
• MOD -- modify SLIP traps
• DEL -- delete SLIP traps

It is also possible to display information about SLIP traps by using the DISPLA Y command
at the operator's console or from a TSO terminal. For specific information about how to enter
both the SLIP and DISPLAY commands, refer to Operator's Library: System Commands, or
System Programming Library: TSO. The descriptions in those publications also explain the
various operands used in the following examples. For more information on designing effective
SLIP traps, see System Programming Library: Diagnostic Techniques.

SLIP Command Examples

These examples suggest ways to use the SLIP command to set and modify SLIP traps.

Example 1: Obtaining a Dump with SQA Control Blocks

A control section within load module CHECKLOG experiences a program check and OC4
abend at a location displaced 3E44 into the load module whenever user QCHECK6 logs on.
As a result of this error, the system supplies only an abend dump. CHECKLOG, however, is a
global routine with many of its control blocks in the system queue area (SQA). To get a dump
that includes SQA control blocks, the system programmer therefore issues the following SLIP
command:

SLIP SET,ID=CLOG,ACTION=SVCD,ERRTYP=PROG,MODE=(TCB,PP,PKEY,EVERY),
COMP=OC4,JOBNAME=QCHECK6,LPAMOD=(CHECKLOG,3E48),
SDATA=(SQA,RGN,TRT,SUM),END

ID

ACTION

ERRTYP

MODE

identifies this SLIP trap as "CLOG".

specifies that an SVC dump is to be taken when the trap matches.

specifies a program check (PROG) as the error condition that must exist for
the action specified by ACTION to occur.

specifies TCB, problem program, and problem program key as the mode in
which the system must be.

66 OS/VS2 System Programming Library: Supervisor

o

0

COMP specifies the applicable completion code (the OC4 abend).

JOBNAME identifies "QCHECK6" as the user whose logon produces the abend.

LPAMOD

SDATA

END

names the program (CHECKLOG) and identifies the offset (3E48) indicated
by the PSW at the time of the error.

specifies the system information to be included in the SVC dump.

indicates the end of this SLIP command.

Note: Although the OC4 abend results from the four-byte instruction at displacement 3E44 in
the load module, the PSW at the time of the error indicates 3E48, the next sequential
instruction. It is this latter displacement that the SLIP command must reference.

Example 2: Obtaining a Dump with Queue Elements and Control Blocks

The system programmer suspects an IBM error in the DEQ SVC routine because whenever
program DVTRTN executes, it abnormally terminates even though its parameter list is correct.
The resulting abend dump does not include queue control blocks and queue elements. To get a
dump that includes them, the system programmer issues the following SLIP command:

SLIP SET,ID=QELS,ACTION=SVCD,COMP=X30,ERRTYP=ABEND,JSPGM=DVTRTN,
SDATA=(SQA,RGN,TRT,SUM),END

ID

ACTION

COMP

ERRTYP

JSPGM

SDATA

END

identifies this SLIP trap as "QELS".

specifies that an SVC dump is to be taken when the trap matches.

specifies the applicable system completion codes.

specifies an abend as the error condition that must exist for the action
specified by ACTION to occur.

identifies "DVTRTN" as the job step program that must be executing for
this error interception.

specifies the system information to be included in the SVC dump.

indicates the end of this SLIP command.

Example 3: Replacing an SVC Dump with a Standalone Dump

The system programmer suspects that a system routine's FRR makes unauthorized use of
system real storage space ("low core") whenever a machine check occurs during its processing.
Even though the intent of the FRR is to perform recovery cleanup and to free the CMS lock,
the use of low core necessitates a re-IPL of the system. To get a meaningful dump (the
eventual SVC dump is of little relevance to this problem), the system programmer issues the
following SLIP command:

SLIP SET,ACTION=WAIT,ERRTYP=MACH,MODE=(GLOCSD,RECV,EVERY),
ADDRESS=(2E048,2E25C),END

ACTION

ERRTYP

MODE

indicates that the desired error action is for the system to be placed in a wait
state. The system can be restarted by pressing the RESTART key.

specifies a machine (MACH) check as the error condition that must exist for
the action specified in ACTION to occur.

specifies that the system mode at error interception is to be the holding of a
global suspend lock (GLOCSD), and a recovery routine (RECV) is in
control.

Interruption, Recovery/Termination, and Dumping Services 67

ADDRESS specifies the range of addresses in which the error is to occur as 2E048 -
2E25C.

END indicates the end of this SLIP command.

Example 4: Setting SLIP Traps for an Application Program

An installation has just installed an application program named BANKER. Because the
application is new, the installation expects a reasonable period of debugging. To intercept the
expected errors, the installation system programmer adds the following SLIP command to
parmlib member COMMNDxx:

SLIP SET,PVTMOD=BANKER,END

PVTMOD identifies "BANKER" as the private area load module that must be in control
when the error occurs; END denotes the end of this SLIP command. This command produces
an SVC dump for any errors in BANKER.

Assume, however, that BANKER uses EST AE to check invalid parameter input. This causes
frequent program checks and then subsequent retries to indicate invalid parameters to the user.
To eliminate the dumps resulting from invalid parameter input, the system programmer enters
the following additional command:

SLIP SET,ACTION=IGNORE,PVTMOD=(BANKER,O,4C),ERRTYP=PROG,END

This command causes program checks that occur within offsets in the range 0 - 4C in
BANKER (the part that checks parameter input) to be ignored, while still permitting abends in
the rest of BANKER to cause SVC dumps. ERRTYP identifies program check interruptions as
the kind of errors to be intercepted, and END indicates the end of this SLIP command.

Example 5: Setting a SLIP Trap Using the Instruction Fetch PER Event

A system programmer suspects that a particular routine is abending either because invalid
parameters are being passed or because there is an error in the program. In order to obtain
information about the problem, the system programmer issues the following SLIP command:

SLIP SET,IF,ENABLE,ACTION=SVCD,RANGE=CD3100,END

The routine still abends but the SVC dump taken upon entry to the abending routine proves
whether or not the parameters are valid. The parameters used in the SLIP trap are as follows:

IF

ENABLE

ACTION

RANGE

END

specifies that an instruction fetch PER trap is set.

specifies that the SLIP trap is enabled or eligible for checking.

specifies that a SVC dump is to be taken when the trap matches.

specifies the virtual storage location (CD3100) to be monitored.

indicates the end of this SLIP command.

Because the default MA TCHLIM and PRCNTLIM operands are taken, the trap is
automatically disabled after the SVC dump is scheduled or if PER checking requires more than
100/0 of the system.

Example 6: Setting a SLIP Trap Using the Storage Alternation PER Event

Location CD30 1 0 contains an address and is normally modified by many programs.
Occasionally it is being set to zero thus, causing system problems. In order to obtain
information about the error, the system programmer sets the following SLIP trap:

SLIP SET,SA,ENABLE,ACTION=SVCD,RANGE=(CD3100,CD3013)
DATA=(CD3010,EQ,OOOOOOOO),END

68 OS/VS2 System Programming Library: Supenisor

o

CI

---~--.~- .. --.-~------.- ----

When locations CD3010 through CD3013 are modified to zero, an SVC dump is scheduled.
The parameters used in the SLIP trap are:

SA

ENABLE

ACTION

RANGE

DATA

END

specifies that a storage alternation PER trap is set.

specifies that the trap is eligible for checking.

specifies that a SVC dump is to be taken when the trap matches.

specifies a four byte storage range to be monitored for storage alteration.

specifies that the four bytes of storage beginning at location CD30 1 0 must
be zero.

indicates the end of this SLIP command.

Because the default MA TCHLIM and PRCNTLIM operands are taken, the trap is
automatically disabled after the SVC dump is scheduled or if PER checking requires more than
10% of the system.

Example 7: Setting a SLIP Trap Using the Storage Alteration PER Event and the
ACTION = IGNORE Option

A system programmer suspects that location CD3010 (in LPA), which is normally modified by
JES (ASID=2), is being modified by some other program. The system programmer issues the
following three commands:

SLIP SET,SA,DISABLE,ACTION=SVCD,RANGE=CD3010,END
SLIP SET,SA,DISABLE,ACTION=IGNORE,ASID=(2),END
SLIP MOD,ENABLE,ALL

Because SLIP traps default to enabled when entered, the first and second commands use the
DISABLE keyword to allow a second trap to be created before the first trap is enabled.
Because SLIP traps are processed in a last-in-first-out (LIFO) order, the second trap is
checked first for a match on any storage alteration PER event. Any modifications to location
CD3010 by JES (ASID=2) are ignored; any other modifications cause a SVC dump to be
taken. The parameters used in the SLIP traps are:

SA

DISABLE

ACTION

RANGE

ASID

END

specifies that a storage alternation PER trap is set.

specifies that the SLIP trap is not enabled when entered in the system. A
SLIP MOD command enables the trap.

specifies what action is to take place when the trap matches.

specifies the virtual storage location (CD3010) to be monitored.

specifies the address space that must be in control.

indicates the end of this SLIP command.

Because the default MATCHLIM and PRCNTLIM operands are taken, the first trap is
automatically disabled after the SVC dump is scheduled or if PER checking requires more than
100/0 of the system. Because the action specified is IGNORE, the second trap is not
automatically disabled after the SVC dump is taken.

Example 8: Setting a SLIP Trap Using the Successful Branch PER Event

A system programmer wants to collect trace records of the path taken in module MOD01
starting at X'108' through X'4FC' during execution of JOBX. In order to collect trace records,
GTF must be active with the trace option for SLIP (TRACE=SLIP) in effect. The system
programmer then issues the following SLIP command:

SLIP SET,SB,ENABLE,LPAMOD=(MOD01,108,4FC),JOBNAME=JOBX,
ACTION=TRDUMP,MATCHLIM=20,END

Interruption, Recovery/Tennination, and Dumping Services 69

Each time the trap is matched, a G TF trace record is written. After 20 matches
(MATCHLIM=20), the trap is disabled and a SVC dump is scheduled. The parameters used
in the SLIP command are as follows:

SB

ENABLE

LPAMOD

JOBNAME

ACTION

MATCHLIM

END

specifies that a successful branch PER trap is set.

specifies that the trap is eligible for checking.

specifies the virtual storage range to be monitored for successful branches
(starting at offset X'I08' from the beginning of the module and ending at
offset X'4FC').

specifies that the monitoring takes place in the address space in which JOBX
executes.

specifies that trace records for each event are collected when a match occurs.
A SVC dump is scheduled when the trap is disabled.

specifies that the trap is to be disabled after matching 20 times.

indicates the end of this SLIP command.

Because the default is taken for the PRCNTLIM operand, the trap is automatically disabled
if PER checking requires more than 100/0 of the system.

Dumping Virtual Storage
Any user can issue the SNAP and ABEND macro instructions to request dumps. (These macro
instructions are described in OS/VS2 Supervisor Services and Macro Instructions.) In addition, the
system programmer can also use the SDUMP macro instruction to provide dumps of virtual
storage, and the CHNGDUMP command to influence the contents of the dump.

Using the SDUMP Macro Instruction

The SDUMP macro instruction can be used by system routines to provide fast unformatted
dumps of virtual storage. SDUMP invokes SVC DUMP to provide the services. Only one SVC
DUMP may be taken in the system at anyone time.

Issuers of SVC Dump with entry by SVC must be authorized via APF or have a control
program key. SVC Dump can be initiated by a branch entry (BRANCH= YES specified on
SDUMP) for callers who cannot issue an SVC. The branch entry caller must be key 0,
supervisor state, and must be in SRB mode, or own a lock, or be disabled (with a supervisor
bit on in the PSASUPER field of the Prefixed Save Area). The branch entry interface uses
standard linkage conventions. Branch entry callers must include the CVT mapping macro
instruction with the PREFIX = YES parameter.

The SVC Dump routine can schedule a dump in the address space specified by the ASID
parameter or in the address spaces specified by the ASIDLST parameter of SDUMP. SDUMP
issuers using the ASID or ASIDLST parameters must ensure that the areas referenced by the
SDUMP parameter list are addressable from the address spaces in which the SVC Dump
routine will execute~ The LIST parameter should be used on the SDUMP macro instruction
instead of the STORAGE parameter by programs specifying ASID or ASIDLST and not
executing in a common area of storage. Also, the storage list addressed by the LIST parameter
must be in a common area of storage for these programs.

SQA Buffer

A 4K buffer is reserved in the system queue area for the callers of SVC DUMP. A user can
reserve the buffer and fill it with information before invoking SVC DUMP. The buffer should
be used by routines that are involved with volatile data that would be changed or must be
changed before SVC DUMP can dump it.

70 OS/VS2 System Programming Library: Supervisor

-- "

C--)
/'

Page of GC28-0628-3
As Updated April 18, 1980
By TNL GN284740

The buffer is pointed to from the CVTSDBF field of the CVT. Before using the buffer,
callers of SVC DUMP must check that the high order bit of CVTSDBF is off, using compare
and swap logic. If the bit is set, it must be assumed that a dump is in progress and the caller
must continue processing as if a dump could not be taken. If the bit is not set, the caller must
set the bit before filling the buffer and calling SVC DUMP.

The first word in the buffer is the actual virtual storage address of the data. The next
haHword is the length of the data. A copy of the data follows this 6-byte descriptor field.
More 6-byte fields and data may then be specified in this buffer. If the entire buffer is not
filled, the last data area must be followed by a 6-byte zero descriptor field to indicate the end
of meaningful data.

An address field of X'FFFFFFFF' indicates that the information that follows is in
key-length-data format, mapped by the rnA VRA mapping macro. The length field gives the
total length of the formatted information.

Using the CHNGDUMP Command

The CHNGDUMP operator command can be used to alter the system dump options for
SYSABEND, SYSMDUMP, SYSUDUMP, and SDUMP. The options are changed by updating
the option lists in the RTCT (Recovery/Termination Control Table). The system dump
options can either add to or override the options supplied with the ABEND, CALLRTM,
SDUMP, SETRP, and SNAP macro instructions. For a complete description of the
CHNGDUMP command refer to Operator's Library: OS/VS2 MVS System Commands.

In order to tailor the dump, the dump option merging may take place in seveml successive
stages. Suppose an error occurred at a low program level, and the recovery exit at that level
specified certain dump options on a DUMP OPT parameter. Suppose also that there are two
other recovery exits between the lowest level exit and the recovery exit that actually
precipitates the dump. One of these two exits also specifies certain dump options on a
DUMPOPT parameter.

As the recovery effort percolates up toward the top level recovery exit involved, all the
dump options from all the exits specifying them are merged with the parmlib options to
produce the combination of options for the dump the system actually takes.

Gening More Than One SYSMDUMP

MVS can handle a SYSMDUMP in two ways. One makes only the most recent SYSMDUMP
available; each dump after the first overlays the preceding one. The other makes only the first
SYSMDUMP available; any subsequent dumps are lost. If you choose this second method,
however, you can take additional steps to avoid losing subsequent SYSMDUMPs.

To make only the first SYSMDUMP available, you must specify
DSNAME=SYSl.SYSMDPxx,DISP=SHR on the SYSMDUMP DD statement. (See OS/VS2
MVS JCL for more information about the SYSMDUMP DD statement.) Any other value for
DSNAME or DISP causes the system to make only the most recent SYSMDUMP available.

When the data set is cataloged, the system writes an EOF as the first record on the
SYSMDPxx data set. EOF means that the data set is empty; anything other than EOF means
that the data set is full and subsequent dumps are lost. To obtain these subsequent
SYSMDUMPs, you must intercept message

IEA9931 SYSMDUMP TAKEN TO data set name

Interruption, Recovery/fermination, and Dumpiag Services 71

Page of GC18-0618-3
As Updated April 18, 1980
By TNL GN28-4740

and pass control to an installation-written routine that will copy the dump onto another data
set and write another EOF as the first record on the SYSMDPxx data set. One way to
intercept message IEA9931 is to use the WTO exit routine IEECVXIT. (See "Writing a
WTO/WTOR Exit Routine" and "Programming Conventions for WTO/WTOR Routines'"in
the "Miscellaneous Services" section later in Part I.)

SNAP / ABEND User Exits
A user exit from SNAP/ABEND DUMP allows an installation to gather and format
information to be included in a SNAP/ABEND dump to a data set described by a
SYSABEND or a SYSUDUMP DD statement. The exits receive control automatically during
the control block formatting phase of every SNAP and ABEND dump for which the CB
option was requested.' The exit provides an area in which the installation's routine can build a
print line and the address of an ffiM-supplied print routine to which the installation routine
can pass the line to be printed.

The user's formatting routines must conform to or establish the following conditions:

1. The installation must link-edit the exit routine into either SYS I.LP ALffi or a LINKLST
library. Only one exit routine can be link-edited into SYS1.LPALffi with the load module
name of IGC0905A. The ffiM supplied exit routine, lEA V ADUS, can be replaced with
an installation written routine. IGC0905A can be link-edited to include the new
lEA V ADUS. The SNAP/ABEND dump routine CSECT lEA V ADOS of load module
IGC0005A loads IGC0905A, and then 'branches and links to it.

If a list of exits is used instead, then one or more exit routines can be link-edited into
SYS I.LP ALffi or into a LINKLST library with any load module name. The installation
must also add the load module's name to the lEA V ADFM list of user exits. lEA V ADFM
is a CSECT in load module IGC0005A, and each entry is eight characters, padded to the
right with blanks. If an entry is to be ignored, then the installation must change it to
eight blanks. The end of the list is indicated by four bytes of hexadecimal zeros. The
ffiM-supplied version of lEA V ADFM has nine words of hexadecimal zeros.

71.0 OS/VS2 System Programminr~ Ubrary: Supervisor

~~~- ---- ------



April 18, 1980 

Interruption, Recovery/Termination, and Dumping Services 71.1 

.. _ .. _._-_. __ ... _-------------"-,,,, ,-,- -"""-,-,---,-,-,--"----,------,,-----,-----------------



April 18, 1980 

2. Entry Specifications: 

a. The exit receives control in protection key zero, supervisor state, with no locks held. 

b. The following register contents are available to the user's routine on entry: 

1. Register 1 - points to a parameter list (see below) 

2. Register 13 - points to a standard 18 word save area 

3. Register 14 - address to which the formatting routine should return control 

4. Register 15 - formatting routine entry point address 

5. Registers 2-12 are irrelevant 

3. The parameter list pointed to by general register 1 contains the following information 
that is useful for user formatting routines: 

OFFSET IN HEX FIELD DESCRIPTION 

+0 
+4 
+6 
+7 
+8 
+C 
+10 
+14 
+18 
+IC 
+2C 

Fullword address of the TCB for task being displayed. 
Halfword address space identifier. 
One byte number denoting the sub pool containing the save area. 
One byte flag field. 
Fullword address of the 120 character output buffer for print lines. 
Fullword address of the print routine (IEAVAD81). 
Fullword address of the CVT. 
Address of memory access service routine. 
Address of format service routine. 
Four fullwords that can be used by the user's formatting routine. 
Two full words for output from the format service routine. 

No~: This parameter list is mapped by the lHAABDPL· system mapping macro. The 
parameter list includes all the fields of the Print Dump Service aid's parameter list so user 
formatting routines can be invoked by either SNAP/ABEND or Print Dump. The memory 
access service routine is a no-operation routine for SNAP/ABEND. (It always returns a 
successful return code and the same address that is was supplied.) 

4. Operation: 

The user's formatting routine should build one print line at a time in the buffer provided, 
and should use BALR to branch to the mM-supplied print routine, which in turn prints 
the line on the dump data set. Offsets are recommended for all formatted control blocks 
that are longer than one output line. (One line generally formats 20 hexadecimal 
characters.) The print routine saves registers, prints the line, blanks the buffer, restores 
the registers, and returns control to the user's routine via register 14. No registers are 
necessary as input to this routine. 

Because it works through the mM-supplied print routine, the formatting routine has no 
direct access to the carriage controls. In order to cause a skipped line in the dump 
output, it is therefore necessary to pass a blank buffer to the print routine. Similarly, the 
print routine also handles page ejects. The user exit routine can use format patterns to 
format data in the output buffer, by interfacing with the mM-supplied format service 
routine. The service routine can also convert data to printable hexadecimal. This service 
routine is the same routine as is provided by the PRDMP Service Aid, and the details of 
its interface are given in the Appendix C of the OS/VS2 MVS System Programming 
Library: Service Aids. 

When processing is complete, the exit routine should restore SNAP's registers and return 
via a branch to the address provided in register 14 on entry. Register 15 should contain a 

72 OS/VS2 System Programming library: Supervisor 

i 

, 



'0 
zero return code. A return code of 12 suppresses the remainder of the abend dump. If 
the same exit routine is executed under the AMDPRDMP Service Aid, you should be 
aware that the print dump does not suppress the remainder of the dump for a return code 
of 12. The return should be made in protection key 0, supervisor state, with no locks 
held (the same state as when entered). For an example of a formatting routine see 
module lEA VTFMT. 

5. The routines must be reentrant. 

Notes: 

a. The user's routines must not free either the entry parameter list or the print buffer in 
order to avoid an abnormal termination later in the SNAP/ABEND routine. 

b. Recovery - SNAP is covered by an ESTAE exit. Each user formatting routine should set 
up its own recovery to handle any abends encountered during the formatting process. 
This routine should either recover and continue formatting, or recover and return to 
SNAP with a zero return code. A non-zero return code is interpreted as a GETMAIN 
failure, resulting in the following message in the dump data set: 

USER/PP CONTROL BLOCKS UNAVAILABLE 

The dump is truncated due to lack of storage. The recovery routine should not continue 
formatting if an x37 abend occurs, since no space remains in the dump data set. Before 
the recovery routine returns to SNAP it should free all the storage that it has obtained. 

If the formatting routine does not establish recovery, or if the recovery exit specifies 
continue-with-termination after an abend, SNAP terminates this control block formatter 
entirely and continues with the next portion of the dump, if any. 

c. Interface to the print routine (lEA V AD81): 

Entry: via BALR 14,15 for each line to be written. 

State: protection key 0, supervisor state, no locks held. 

Registers on entry: register 1 - points to the parameter list 
register 13 - points to the save area 
register 14 - points to the return address 
register 15 - points to the lEA V AD81 routine. 

Registers saved and restored: 14 through 12. 

Return: via register 14. 

d. To remove a formatting routine from the system, link-edit a copy of module IEFBR14 
into SYSl.LPALffi with the name IGC0905A, or remove the entry from the 
lEA V ADFM list of user exits by replacing the entry with eight blanks. 

Correlating Diagnostic Material 

The RTM correlates diagnostic material by providing error identifiers on related pieces of 
material. The error identifier (ID) appears in system message IEA911A and is part of the SVC 
dump header information. The RTM also adds it to a SYSl.LOGREC record. 

The IEA911A message text is: 

COMPLETE SYS1.DUMPnn 
DUMP ON 

PARTIAL UNIT=ddd 
FOR ASID (xx,xx, .... ) 
[ERRORID=SEQyyyyy CPUzz ASIDaaaa TIMEhh.mm.ss.t] 

Interruption, Recovery/Termination, and Dumping Services 73 



The meanings for the lowercase alphabetic symbols in the message text are as follows: 

nn 
ddd 
(xx,xx, .... ) 
yyyyy 
zz 
aaaa 
hh.mm.ss.t 

qualifies the direct access data set name 
indicates the device address containing a tape volume 
indicates the ASID(s) of the address space(s) included in the SVC Dump 
represents the sequence number portion of the error ID 
represents the CPU identifier portion of the error ID 
represents the address space identifier portion of the error ID 
represents the time (hours, minutes, seconds, and tenths of seconds) portion of 
the error ID. 

The AMDPRDMP service aid puts the error ID from the RTM on the title page of SVC 
dumps in the following format: 

ERRORID FOR THIS DUMP = SEQyyyyy CPUzz ASIDaaaa TIMEhh.mm.ss.t 

The explanations of the SEQ, CPU, ASID, and TIME elements of this character sequence 
are the same as for the IEA911A message text. 

If there is no error ID available for a given dump, AMDPRDMP prints the following 
message where it would ordinarily print the error ID, as explained above: 

NO ERRORID ASSOCIATED WITH THIS DUMP 

An illustration of how these messages look on the dump's title page appears in OS/VS2 
System Programming Library: Service Aids, GC28-0674. 

When an error ID is available, the RTM also adds it to the SYSl.LOGREC record, either 
for hard machine checks or for software errors. The format of the record's error ID is: 

ERRORID = SEQyyyyy CPUzz ASIDaaaa TIMEhh.mm.ss.t 

The fields are as previously explained for message IEA911A. When there is no error ID to 
associate with the LOGREC record, the record contains the following message in place of the 
error ID: 

NO ERRORID ASSOCIATED WITH THIS RECORD 

illustrations of the error ID in the SYS 1.LOGREC record appear in OS/VS2 System 
Programming Library: SYS1.LOGREC Error Recording, GC28-0677. 

The RTM supplies these error IDs and their respective time stamps under the following 
circumstances: 

• It generates an entire new error ID when: 

- The R TM receives control as a result of a machine check. 

- RTMII receives control in SLIH mode2 and: 

1) the entry is non-recursive 

2) no processing is in progress on behalf of RTM2. 

- There is a direct entry to R TM2. 

• It supplies only a new time stamp when: 

- RTMI receives control in SLIH mode and the error ID is recursive3• 

- RTMI receives control in SLIH mode and RTM2 processing is in progress. 

- RTM2 receives control recursively for abnormal termination. 

- RTM2 receives control from RTMI as a result of a machine check or software error in 
which RTMI has performed some processing due to the mode of the system at the 
time of the error (non-task mode). 

74 OS/VS2 System Programming Library: Supervisor 



o 

C', 
) 

._------_. __ .. ----------_.-..... _-----_ ... _--_._ ........ _- ---

Notes: 

1. RTMI and RTM2 are the two major parts of the RTM. In general, RTMI processes 
SLIH requests and CALLRTM macro calls, while RTM2 is an SVC 13 processor 
(hence, is task-oriented). 

2. SLlli mode is an entry to the RTM from a FLlli for such errors as program checks, 
machine checks, SVC errors, etc. 

3. Recursive indicates a re-entry into the RTM while processing a previous error. 

For those cases in which the RTM supplies a new time stamp, the sequence number 
correlates the original error with subsequent errors, and the new time stamp distinguishes 
unique errors within the recovery path. For example, if an error occurs during the recovery of 
a previous error, the RTMI records an ID for the new error on SYS1.LOGREC with the same 
sequence number as the original error, but with a different time stamp. 

Not all errors detected in the RTM cause recording to SYSl.LOGREC and/or SVC dumps. 
Because of this, the sequence numbers in the error ID may not follow exact sequential order. 
The RTM skips a number if, for example, it receives control for an apparent error that is 
retried by an FRR or ESTAE exit routine with no SYSl.LOGREC record or SVC dump. This 
recovery technique is used by some system service routines to check the validity of parameters. 
A number is skipped if the recovery routine does not request recording. 

Establishing a Timer Disabled Interrupt Exit 

Timer supervision provides a function called SETDIE that allows a user-written program to 
establish a disabled interrupt exit (DIE) routine. The DIE routine gains control asynchronously 
after a specified real time interval has elapsed. 

The SETDIE function is available only to programs executing in supervisor state with 
protection key zero. SEIDIE allows users to initiate a real time interval by branch entry to the 
user-written DIE routine. When the time interval expires, the user's DIE routine gains control 
as an extension of the timer second level interrupt handler. It is also possible for a user to set 
a new time interval from the DIE routine. 

Although a program can have an unlimited number of outstanding time intervals at one 
time, storage and system performance considerations may impose practical and reasonable 
limits. 

Note: The time during which a DIE routine is executing is not charged to the job step time of 
the interrupted address space. 

Using SETDIE 

The caller of SETDIE can be executing in either task control block (TCB) or service request 
block (SRB) mode, but must be in protection key zero and supervisor state. The entry point to 
SETDIE is in field TPCSDIE in the timer supervision work area mapped by macro 
lEA VVTPC. The address of this work area is in CVT field CVTTPC. 

The caller of SETDIE must provide the following input environment: 

1) Register 1 must contain the address of a user-supplied task queue element (TQE) whose 
fields are available from the IHA TQE mapping macro. This user TQE must: 

• be a contiguous block of 128 bytes 
• reside in SQA 
• include the following field initialization: 

Interruption, Recovery/Termination, and Dumping Services 7S 

------.~~", .. , .. ~.,--.. ---.-~---"-.... -".-'''-.-.--.----



TQEAID -- Zero or a valid ASID. This is important in case of an address space failure 
(see "Obtaining and Freeing the TQE"). 

TQEV AL -- the desired real time interval (a 64 bit unsigned binary number with bit 
51 = 1 microsecond). 

TQEEXIT -- address of the user's DIE. 

• have all the other fields cleared to zero. 

2) Registers 2 - 12 must be parameter registers whose input values will be restored in the 
same registers on entry to the DIE routine. 

3) Register 14 must contain the caller's return address. 

Loss of the contents of registers 0 and 11-13 occurs upon return from SETDIE. Register 15 
contains a return code as follows: 

Code ~eammg 

o The TQE was successfully enqueued onto the system's real time queue. 
4 Failure - needed clocks are unavailable. 

Note: SETDIE obtains the dispatcher lock if the caller does not already hold it. After 
completing its processing, SETDIE releases the lock if the caller did not previously hold it. 

Recovery Considerations 

SETDIE does not establish its own recovery routine. Any system program calling SETDIE 
should have its own FRR or EST AE routine. A program check occurs in SETDIE if the caller 
is not both in protection key zero and in supervisor state. 

The DIE routine executing out of the timer SLIH gains control under timer supervision's 
FRR. When it gets control, this FRR tries to repair any damage to the system's real time 
queue and then relinquishes control -- "percolates" -to the next higher level in the recovery 
hierarchy. The DIE itself can optionally establish its own FRR, which should also terminate by 
percolation to let the timer supervision FRR gain control. If the DIE routine causes a program 
check and has no FRR, the external FLIH abends the current task. The current task might or 
might not be the one related to the DIE. The task abends with a 3FC system code. IMS, 
CICS, and most other system tasks cannot handle this situation in their ESTAE exits. The 
same thing can occur if there is an FRR, and the FRR percolates instead of retrying after the 
program check. 

DIE Characteristics 

Entry to the DIE routine is in supervisor state, with protection key zero, disabled, with no 
disabled global spin locks held. Register contents upon entry are as follows: 

• Register 1 contains the address of the TQE. At this time the TQE is not enqueued upon 
the real time queue. Fields TQETCB and TQEASCB respectively contain a TCB address 
and an ASCB address, if previously set by the user on entry to SETDIE. 

• Register 2-12 are as they were upon entry to the SETDIE routine (or as changed by a 
previous DIE entry -- see "DIE Execution"). 

• Register 14 contains the return address. 
• Register 15 contains the entry point of the DIE routine. 

While a system program has a TQE enqueued upon the real time queue, it must ensure that 
the associated DIE routine is available for the timer SLIH (second level interrupt handler) to 
access from any address space. Additionally, because the DIE is entered disabled, its code 
must be resident or fixed to avoid a page fault at entry. 

\ I 

i 
76 OS/VS2 System Programming Library: Supervisor 

- --.~~---------~----------



o 

o 

------ ~~-~--.~~~ .... ~----

Exit from the DIE Routine: must be to the address specified in register 14. This exit must also 
occur in supervisor state with protection key zero, and disabled. All locks obtained by the 
routine must be released, but no registers need be saved. 

DIE Execution: must be like the execution of an interrupt handler because it executes as an 
extension of the timer SLIH. Specifically, DIE executes under the following restrictions: 

• DIE must be capable of executing in any address space because the timer interruption 
may occur while any address space enabled for external interruptions is executing. 

• DIE cannot reference any private storage areas. 
• DIE must execute disabled. Hence it cannot cause a page fault. 
• DIE cannot request the local lock or the CMS lock because these are suspend locks and 

may therefore already be in use. Furthermore, the DIE routine cannot assume whether or 
not these locks are held upon entry. 

• DIE cannot execute any SVCs. 

The DIE routine may re-enqueue the TQE to set another real time interval by using the 
timer's TQE ENQUEUE routine (whose entry point is in CVT field CVTQTEOO). The DIE 
routine must hold the dispatcher lock upon entry to the TQE ENQUEUE routine. 

The input environment for the TQE ENQUEUE routine must be as follows: 

• Supervisor state, key zero, and holding the dispatcher lock. 
• Register 1 must contain the address of the TQE supplied to the DIE routine. The TQE 

fields must have remained unchanged except for the following fields: 

TQEV AL -- This field should contain the clock comparator value for the next 
interruption. This value is equivalent to the desired interval added to the value in 
TQEV AL when the DIE routine was entered. Alternatively, TQEV AL can be calculated 
by adding the desired interval to the current TOD clock reading (as obtained by a STCK 
instruction). The choice of which method to use is further discussed under "Clock 
Failure". 

TQEEXIT -- This field should contain the new address if a DIE routine address different 
from the current one is desired. Otherwise the field should remain unchanged. 

TQEDREGS -- If the parameter values in registers 2-12 are to be changed for the 
subsequent DIE routine entry, the new values should be set in this eleven word field. 

• Register 2 must contain the caller's return address. 

Upon return from the TQE ENQUEUE routine, all registers are as they were on entry 
except for registers 13 and 15. 

Although the SETDIE function is similar to the TQE ENQUEUE function, the routines 
differ in the following respects: 

• Although TQE ENQUEUE expects an already established and completed TQE as input, 
SETDIE completes the user-supplied TQE (including important flag bits) to make it 
acceptable to timer supervision. 

• For TQE ENQUEUE, TQEV AL in the TQE must be set to the clock comparator value 
for the next interruption. With SETDIE, "it must be set to the desired interval. SETDIE 
then converts it to the proper clock comparator value. 

• TQE ENQUEUE assumes that the clocks are functioning correctly. SETDIE must use the 
clocks directly and therefore verifies (rather than assumes) that the clocks are functioning 
correctly. SETDIE is therefore capable of advantageously using alternate clocks in a 
multiprocessing environment in which one or more clocks have failed. 

Interruption, Recovery /Tennination, and Dumping Senices 77 



Task Queue Element Control 

The major aspects of controlling the task queue element (TQE) associated with the user's DIE 
routine are: 

• Obtaining and freeing the TQE 
• Serializing the usage of each TQE 
• . Time-of-day clock failure 
• Interval cancellation 

Descriptions of each of these aspects follow. 

Obtaining and Freeing the TQE: is the responsibility of the user of the SETDIE function 
because the TQE resides in SQA. Thus, the user must explicitly free the TQE when it is no 
longer necessary and (with one exception) in error situations as well. Timer supervision frees a 
TQE for the user for a failing address space only if the TQE is enqueued on the real time 
queue and has field TQEAID set to the ASID of the failing address space. 

Before freeing the TQE, however, the user must ensure that it is not currently on the real 
time queue. The user can accomplish this in several ways: 

• Always free the TQE in the DIE routine because it is never on the real time queue when 
the routine receives control. 

• Before freeing the TQE, use timer supervision's TQE DEQUEUE routine. This routine 
either removes the TQE from the real time queue or, if the TQE is not on the queue, 
takes no action. 

Notes: 

1) The TQE must not have been altered (other than in the fields previously described) by 
the user. 

2) The interface for the TQE DEQUEUE routine is described in the section "Interval 
Cancellation" . 

Serializing the Usage of Each TQE: is also the user's responsibility. This included the 
execution of the SETDIE, TQE ENQUEUE, and TQE DEQUEUE routines for a given TQE 
because these routines update the supplied TQE. The user must never update a TQE, however, 
while it is on the real time queue. Timer supervision serializes the use of the real time queue 
by means of the dispatcher lock. 

Clock Failure: can keep a DIE routine from receiving control. If a clock required by a DIE 
routine's TQE fails while the TQE is on the real time queue, timer supervision leaves the TQE 
on the queue, thereby denying control to the DIE routine. To permit the DIE routine to 
receive control, a properly functioning TaD clock and clock comparator must be varied online. 
For this remedy to work, the DIE routine must be in resident or fixed storage as long as its 
TQE is on the real time queue. These storage locations make the DIE routine available to the 
timer SLIH from any address space. 

When the DIE routine gains control under these circumstances, the clock comparator value 
in TQEV AL could be behind the TaD clock. If the DIE routine re-enqueues the TQE on each 
successive entry and adds a new interval to TQEV AL, then the DIE routine gains control each 
time, immediately upon enablement of the external interruptions. This sequence continues until 
the value in TQEV AL is equal to the TaD clock value. To avoid this synchronization loop, 
the DIE routine can calculate the new TQEV AL as the sum of the new interval plus the 
current TaD clock value. This method, however, requires that the DIE routine contain error 
recovery code in case the STCK instruction fails due to a bad TaD clock in the executing 
processor. 

78 OS/VS2 System Programming Library: Supervisor 



-----_. _ .. _. __ .... _ ........ _._-------_ .. _._-_._.- .. _-----

o 

o 

Interval Cancellation: can occur by using timer supervision's TQE DEQUEUE routine. This 
routine removes a specific TQE from the real time queue and resets clocks if necessary. the 
entry point to the TQE DEQUEUE routine is in CVT field CVTQTDOO. Entry to this routine 
must be by branch entry, in supervisor state, with protection key zero, and with the dispatcher 
lock. The input environment is as follows: 

• Register 1 must contain the address of the TQE to be dequeued. 
• Register 2 must contain the caller's return address. 

Upon return, all registers except 13 and 15 are the same as they were on entry. 

Interruption, Recovery/Termination, and Dumping Services 79 



80 OS/VS2 System Programming Library: Supervisor 



-------_ ..... - _._ .... _ ... __ . __ ... _----_ .. _--

o 

o 

C
' ., 

\ 

./ 

Virtual Storage Management 

GETMAIN and FREEMAIN respectively allocate and free one or more areas of virtual 
storage. The KEY parameter allows a user executing in protection key zero to specify the 
protection key for storage he requests, and subsequently, the CHANGKEY macro instruction 
allows the user to alter that protection key. Most of the functions of GETMAIN and 
FREEMAIN are available to all users, but the entire function of CHANGKEY and some of 
the GETMAIN and FREEMAIN functions are available only to programs executing in 
supervisor state under protection key zero. 

In addition to the normal SVC entries to the GETMAIN and FREEMAIN macros, there 
are also branch entries, which are available through the BRANCH parameter, as explained 
below. Although the branch entries require the user to do more work, they are significantly 
more efficient than the SVC entries and do save some system overhead. There is no SVC 
entry to CHANGKEY, however. Therefore the user must invoke its function via a branch 
entry. 

The BRANCH Parameter 

Branch entry to the GETMAIN or FREEMAIN macro instructions is accomplished by 
specifying BRANCH = YES on the macro instructions. If the BRANCH parameter is used, the 
caller must preload register 4 with the TCB address, preload register 7 with the ASCB address, 
and hold the local lock prior to entry. (Note: If the BRANCH parameter is not used, it is still 
necessary for the current branch entry user of the macro instruction to alter his code to 
include the preloading of the ASCB address in register 7, and to hold the local lock.) 

An additional branch entry point (GLBRANCH) is provided to obtain global storage 
without the need for holding the local lock. This entry point is available to programs that 
contain no references to particular address spaces (for example, timer routines). It is necessary, 
however, to hold the SALLOC lock before entering the routine. Although the TCB address 
and ASCB address are not required for this entry, register 4 must be loaded with the address 
of the global save area pointed to by the CVT; this is done by the macro expansion. 

GLBRANCH may be obtained by coding BRANCH = (YES ,GLOBAL) on the GETMAIN 
or FREEMAIN macro instruction that includes the positional parameter RC or RU. The 
subpools that are supported by this entry are limited to the global subpools - common service 
area subpools 227, 228, 231 and 241, and system queue area subpools 239 and 245. Any 
other subpool is considered an error. 1 

Branch entry to the CHANGKEY macro instruction is also accomplished by specifying 
BRANCH=YES on the macro instruction. However, the only entry requirement is that the 
caller must hold the local lock prior to entry. 

The KEY Parameter 

Since branch entry users are required to be executing in key zero at entry time, the KEY 
parameter satisfies the need to specify the actual key in which the requested storage is to be 
obtained. 

Virtual Storage Management 81 

----... _ ... _ .... _-._.-



82 

The KEY parameter applies only to six new subpools - 227, 228, 229, 230, 231, and 24l. 
These subpools allow both global and local storage to be obtained in the requestor's storage 
protection key. Subpools 227 (fetch protected) and 228 (not fetch protected) are fixed global 
storage in the common service area, and must be freed explicitly. Subpools 229 (fetch 
protected) and 230 (not fetch protected) are local storage allocated from the top of the private 
area downward and intermixed with LSQA and SW A, and are freed automatically when the 
task terminates. Subpools 231 (fetch protected) and 241 (not fetch protected) are global 
storage in the common service area, and must be freed explicitly. 

OS/VS2 System Programming Library: Supervisor 



o 

CJ 

Real Storage Management 

The real storage manager (RSM) administers the use of real storage and directs the movement 
of virtual pages between auxiliary storage and real storage in page size (4096 bytes) blocks. It 
makes all addressable virtual storage in each address space appear as real storage. Only virtual 
pages necessary for program execution are kept in real storage. The remainder reside on 
auxiliary storage. RSM employs the auxiliary storage manager (ASM) of the data manager to 
perform the actual paging I/O necessary to transfer pages in and out of real storage. ASM also 
provides DASD allocation and management for paging I/O space on auxiliary storage. RSM 
relies on the system resource manager (SRM) for guidance in the performance of some of its 
operations. 

RSM assigns real storage page frames upon request from a pool of available frames, thereby 
associating virtual addresses with real storage addresses. Frames are repossessed upon 
termination of use, when freed by a user, when a user is swapped-out, or when needed to 
replenish the available pool. While a virtual page occupies a real storage frame, the page is 
considered page able unless specified as a system page that must be resident in real storage. 
RSM also allocates virtual equals real (V =R) regions upon request by those programs that 
cannot tolerate dynamic relocation. Such a region is allocated contiguously from a predefined 
area of real storage and is non-pageable. 

The paging services provided include the following: 

• PGFIX -- Fix virtual storage contents. 
• PGFREE -- Free virtual storage contents. 
• PGLOAD -- Load virtual storage areas into real storage. 
• PGOUT -- Page out virtual storage areas from real storage. 
• PGRLSE -- Release virtual storage contents. 

The PGFIX and PGFREE functions are available only to authorized system functions and 
users. The PGLOAD, PGOUT, and PGRLSE are not restricte~ and are available to all users; 
these functions are described in OS/VS2 Supervisor Services and Macro Instructions. 

Fixing/Freeing Virtual Storage Contents 
The PGFIX and PGFREE macro instructions provide complementary functions. The PGFIX 
macro instruction makes specified storage areas resident in real storage and ineligible for 
page-out as long as the virtual address space of the requesting TCB remains in real storage. 
The PGFREE macro instruction makes specified storage areas, which were previously fixed via 
the PGFIX macro instruction, eligible for page-out. Real frames fixed by PGFIX are not 
considered page able until the same number of PGFREE and PGFIX requests have been issued 
for any virtual area. 

Page fixing ties up valuable real storage and is usually detrimental to system performance 
unless utilization of the resources is extremely high. 

In the PGFIX function, you have the option of specifying the relative real time duration 
anticipated for the fix. If you specify LONG= Y, the duration of the fix will be relatively long. 
(As a rule of thumb, the duration of a fix is considered long if the interval can be measured on 
an ordinary timepiece-that is, in seconds.) Additional processing may be required to avoid an 
assignment ora frame to the V=R area or an area that might be varied offline. If you specify 
LONG=N, the time duration of the fix is assumed to be relatively short. A long-term PGFIX 
is assumed if this option is not specified. 

Real Storage Management 83 

._._ .... _._._ .. _-----_. 



In both the PGFIX and PGFREE functions, you have the option of specifying that the 
contents of the virtual area are to remain intact or be released. If the contents are to be 
released, you specify RELEASE=Y; otherwise, you specify RELEASE=N. If you specify 
PGFIX with RELEASE=Y, the PGRLSE function is performed before the PGFIX function. 

If you specify PGFREE with RELEASE=Y, the PGFREE function is performed and those 
pages of the virtual subarea with zero fix counts are released; that is, the contents of virtual 
areas spanning entire virtual pages that were fixed are expendable and no page-outs for these 
pages are necessary. 

Note: PGFIX does not prevent pages from being paged out when an entire virtual address 
space is swapped out of real storage. Consequently, the user of PGFIX cannot assume a 
constant real address mapping for fixed virtual areas in most cases. 

Completion Considerations 

Under normal circumstances, you can reverse the effect of a PGFIX via a PGFREE when the 
need for a PGFIX ceases. However, a PGFIX request sometimes completes asynchronously if 
it requires a page-in operation. In such cases, it may be necessary to explicitly purge PGFIX 
operations. 

For this reason, the PGFIX function provides a mechanism for signalling event completion. 
The mechanism is the standard ECB together with WAIT/POST logic. The requestor supplies 
an ECB address and waits on the ECB after a request. The ECB is posted when all requested 
pages are fixed in real storage. 

Explicit purging of a PGFIX is carried out in one of two ways: 

• If the PGFIX is known to be complete, the PGFIX is reversed through the usual 
PGFREE function. 

• If there is any possibility that the PGFIX has not been posted as complete, the PGFREE 
should be issued with an ECB address supplied. This ECB parameter identifies the event 
control block that was supplied as an input parameter with the PGFIX being purged. 
Note that for the purpose of canceling a PGFIX request that has not yet completed, the 
ECB must uniquely identify the PGFIX request. Consequently, to provide for explicit 
purging, you must ensure that the ECB address for any incomplete PGFIX can be 
located in a purge situation, and that the ECB has not been reused at the time the 
PGFIX is to be canceled. 

The PGFREE function always completes immediately and requires no ECB address except 
for purging considerations. 

Virtual Subarea List (VSL) 

The virtual subarea list provides the basic input to the page services functions: PGFIX, 
PGFREE, PGLOAD, PGRLSE, and PGOUT. The list consists of one or more doubleword 
entries; each entry is on a fullword boundary and describes an area of virtual storage. The list 
must be non-pageable (for example, in SQA or LSQA) and contained in the address space to 
be processed. 

Note: If the list specifies a PGFREE of the page in which the list resides, the fix count for 
the page must be greater than one. 

84 OS/VS2 System Programming Library: Supervisor 

------_._------_ ...... _._- .. _. -



o 

c; 

Each parameter list entry has the format shown in Figure 18. 

Byte o 
FLAGS 

123 
START ADDRESS 

4 
FLAGS 

5 6 7 
END ADDRESS + 1 

FJgUre 18. Virtual Subarea List Entries 

Byte 0 Flags: 
Bit 0 

Bit 1 
Bit 2 
Bit 3 
Bit 4 
Bit 5 
Bit 6 
Bit 7 

Start Address: 

(1... . ... ) 

(.1.. 
( .. 1. 
(. .. 1 
(. .. . 
(. .. . 
( ... . 
(. .. . 

.... ) 

.... ) 

.... ) 
1 ... ) 
.1..) 
..1.) 
. .. 1) 

This bit indicates that bytes 1-3 are a chain pointer to the next VSL entry to be 
processed; bytes 4-7 are ignored, but the checking of this bit is subject to the 
setting of byte 4, bit 1. This feature allows several parameter lists to be chained 
as a single logical parameter list. 
PGFIX is to be performed; reserved, set by macro instruction . 
PGFREE is to be performed; reserved, set by macro instruction . 
PGLOAD is to be performed; reserved, set by macro instruction. 
PGRLSE is to be performed; reserved, set by macro instruction. 
Reserved. 
Long-term PGFIX is to be performed; reserved, set by macro instruction. 
Reserved. 

The virtual address of the origin of the virtual area to be processed. 

Byte 4 Flags: 
Bit 0 (1... 

Bit 1 (.1.. 

Bit 2 (..1. 
Bit 3 (. .. 1 

Bit 4 ( .... 
Bit 5 ( .... 
Bit 6 ( .... 

Bit 7 ( .... 
End Address + 1: 

.... ) 

.... ) 

.... ) 

.... ) 

1...) 
.1..) 
..1.) 

. .. 1) 

This flag indicates the last entry of the list. It is set in the last doubleword entry 
in the list . 
When this flag is set, the entry in which it is set is ignored. This bit takes 
precedence over byte 0, bit O • 
Reserved . 
This flag indicates that a return code of 4 was issued from a page service 
function other than PGRLSE. 
Reserved. 
PGOUT is to be performed; reserved, set by macro instruction. 
KEEPREAL option of PGOUT is to be performed; reserved, set by macro 
instruction. 
Reserved. 

The virtual address of the byte immediately following the end of the virtual area. 

Reconfiguration Using Vary Storage 

Vary storage permits users of multiprocessing mM System/370 Models 158 and 168 to more 
easily specify reconfigurable storage units for use with the other CPU as a uniprocessor. To 
identify the storage units that the operating system attempts to preserve for reconfiguration, 
define the reconfigurable storage unit parameter (RSU =nn) in the IEASYSxx member, where 
nn is the number of storage units you want to take offline for the reconfiguration. 

Note: If power may be turned off for one processor, all of the high address storage units, 
except the highest unit, must be assigned to that processor. For example, in a system with 
eight storage units (0-7), units 3-6 should be attached to the processor that may have power 
turned off. 

The RSU =nn parameter defines storage units which contain pages that can be moved in the 
event of an off-line vary. The system attempts to preserve the frames in these storage units. 
These frames are known as the non-preferred area. Frames used for long term resident pages 
are clustered in a preferred area. These long-term pages include SQA, non-swappable LSQA, 
common area fixed pages, and non-swappable private fixed pages. 

Real Storage Management 85 



LSQA and private area fixed pages are called non-swappable if they belong to a 
non-swappable address space. An address space is non-swappable if: 

• The program name is in the Program Properties Table with the appropriate flags set. For 
further details see "Assigning Special Program Properties" in OS/VS2 System Programming 

Library: Job Management, GC28-0627. 
• ADDRSPC=REAL is specified on the JOB or EXEC JCL statements. 
• The address space issues the SYSEVENT TRANSW AP. The use of SYSEVENT 

DONTSW AP also makes an address space non-swappable; however, the address . space is 
considered to be non-swapp able for only a short duration, and associated LSQA and 
private area pages are not necessarily put into preferred storage. 

Figure 19 indicates that when the system is IPLed, the nucleus and V =R areas are assigned 
to the low-end of processor storage and the SQA is assigned to the high-end of processor 
storage. The operating system then defines the low and high end processor storage units as 
preferred areas (in this case 0, 1, and 7). Next, the non-preferred area is defined as requested 
by the RSU =nn specification and coinciding with the next available high-end processor storage 
unit (6). Offline processor storage units (5 and 2) are spanned at this time, but omitted. If the 
RSU =nn parameter value exceeds the available processor storage units, then all units are 
defined as non-preferred except those previously assigned as preferred at IPL for the nucleus, 
V=R and SQA. 

During IPL, and after the non-preferred area has been defined, the operating system defines 
the remainder of the processor storage units as the preferred area, for long-term resident 
pages. In Figure 19, RSU = 2 was specified, making processor storage units 6 and 4 
non-preferred. Any processor storage units varied online after IPL are designated as 
non-preferred. The remaining processor storage unit (3) is defined preferred. 

Processor Storage Units Data Mapping 

Preferred ® 7 (SQA at IPL) 
-------

6 Non-preferred ® --------
Offline 

5 Unassigned ~ 

------- -
4 Non-preferred ® 

------- -
3 Preferred CD 

-------
Offline 

2 Unassigned ~ 

--------
1 Preferred 0 ---------

V=R ® 
0 ---------

Nucleus (!) f4-

Figure 19. IPL Designation of Processor Storage Units 

86 OS/VS2 System Programming Library: Supervisor 

Will be 
non-preferred 
if units are 
brought online 

Sequence 
of IPL 
assignments 

( 



o 

o 

..•. _._ ... _ .• _ .......• _-_ ••.. _--

While jobs are processing, short-term pages are assigned to any available processor storage 
frame in either non-preferred or preferred areas. Long-term pages are assigned only to 
processor storage frames in the preferred area. A condition may arise where a long-term page 
requires processor storage space and there are no preferred area frames available. If this 
situation occurs, one of the following happens: 

• If a short-term page is using a frame in preferred storage, that short-term page is 
removed and the new long-term page is assigned to the vacated space. This is called 
immediate steal. 

• If all of the frames in the preferred area are being used for long-term pages, the 
operating system looks for a frame in the non-preferred area. It will select a non V =R 
frame if possible. When the system finds such a frame, if it is non V =R, the entire 
processor storage unit is converted from a non-preferred area to a preferred area. This is 
called dynamic expansion. 

Whenever a non-preferred area is converted into a preferred area, the system operator 
cannot expect to place as many processor storage units offline as were originally designated by 
the RSU=nn parameter. Therefore, the first time this conversion takes place, message IEA9881 
is issued to the system console notifying the operator that the preferred area has expanded and 
that reconfigurability may be impaired. The operator can then determine the processor storage 
units that are still being preserved for reconfiguration by using the DISPLAY MATRIX (D M) 
command. 

Multiprocessing Configuration Considerations 

On a 168 MP, and 158 MP Model 3 the processors and the storage (in two but not 
necessarily equal portions) are each separately powered. On the 158 MP Modell, however, 
each processor and its half of the storage are powered by the same source. If a processor is 
powered down, its half of storage is also powered down. Therefore, in a 158 MP Modell 
system, if an installation intends to vary one processor (CPU 0) offline for maintenance, the 
user should assign both high and low address ranges to the other processor (CPU 1). This 
allows CPU 0 to be powered down without requiring an IPL. 

Notes: 

• The highest (preferred storage area) and lowest address ranges cannot be varied offline. 
• When assigning high and low address ranges to the powered up processor, ensure (1) that 

the highest address range is large enough to include all the SQA and preferred storage 
area, and (2) that the lowest range is large enough to contain all of the nucleus. 

• Since the 158 MP Model 3 uses the Alternate Power Down feature to supply power 
independently to both processors, and storage, its associated console and channels can be 
varied offline and powered on and off without an IPL. Its storage can remain online to 
the powered up processor. 

If a 158 MP or 168 MP is configured as two MVS uniprocessors, both systems should be 
configured at the highest and lowest addresses for an MP system, to allow reconfiguration to 
an MP system without IPL. This is done automatically by specifying SrORAGE=highest 
address in the CTRLPROG macro instruction during system generation. For example, in a 
4-megabyte system, each uniprocessor should be configured at the following addresses: 

0-512 
512-1024 
3072-3584 
3584-4096 

Real Storage Management 87 

---....... . .•... __ . 



To do this, specify STORAGE=4,096,000. This leaves a 2-megabyte "hole" for 
reconfigured storage; to reconfigure to an MP system, you can fill this hole with the following 
address ranges by first adjusting the hardware configuration panel and then entering the proper 
VARY commands: 

1024-1536 
1536-2048 
2048-2560 
2560-3072 

Note: The 158 MP Modell and 158 MP Model 3 are compatible and can be interconnected 
in an MP configuration. However, when these models are interconnected the Alternate Power 
Down and Asymmetric storage features on the 158 MP Model 3 are not functional. 

If there is more than one console, one must be specified as the primary console. One reason 
is that the communications task must know which to use during IPL. Do not use the same 
address for both consoles. In general, no two devices should have the same address. If identical 
addresses are used, failure of one console is considered failure of both; with 3066 consoles, 
errors on one can result in alteration of the display on the other. 

In a multiprocessing environment, the concurrent execution of tasks makes it difficult to 
predict the contents of dynamic fields in all system control blocks, (that is, fields whose 
contents change during processing from IPL time). Thus, all read-only and write-only 
references in user programs to these dynamic fields must be evaluated for their impact on the 
user's program and/or the system control program, and should be changed or eliminated 
accordingly. Otherwise, the effect (such as program abend or system failure) is dependent 
upon the user program's recovery scheme and/or system control program's use of that changed 
field. 

88 OS/VS2 System Programming Library: Supervisor 

I 

( 



------_ ... _._---_._ .... _----------_ ...... ---------_ .... _ ........ __ ....... -

'I 
I C" 

o 

r'\ L) 

Miscellaneous Services 

Additional services are provided by the supervisor which do not appropriately fit into the 
previous chapters. These services, discussed in this chapter, include: 

• Operator messages (WTO and WTOR macro instructions) 
• User-written message routing exit routines 
• Service management facilities (SCHEDULE and PURGEDQ macro instructions) 
• Stage 1 exit effector (CIRB macro instruction) 
• User-written SVC routines 
• Missing interruption handler 
• Power warning feature support 

Writing Operator Messages 
The WTO and WTOR macro instructions allow you to write messages to the operator. The 
WTOR macro instruction also allows you to request a reply from the operator. A complete 
description of the use of these two macro instructions is found in OS/VS2 Supervisor Services 
and Macro Instructions. 

Routing the Message 

The WTO and WTOR macro instructions have two special parameters, MSGTYP and 
MCSFLAG. The MSGTYP parameter specifies how the message is to be routed; the 
MCSFLAG parameter specifies that the macro expansion is to set bits in the MCSFLAG field 
as indicated by each name coded. Only programmers familiar with MCS should use these 
parameters, since using them improperly could impede the entire message routing scheme. 

If MSGTYP= Y is specified, the message type specifies that two bytes are to be reserved in 
the WTO or WTOR macro expansion so that flags can be set to describe what MSGTYP 
functions are desired. If Y is specified, two bytes of zeros are to be included in the macro 
expansion at displacement WTO (or WTOR + 8) + 12 + the total length of the message text, 
descriptor code, and routing code fields. If MSGTYP=N is specified, or if the MSGTYP 
parameter is omitted, the two bytes are not needed and the message is routed as specified in 
the ROUTCDE parameter. 

The bit definitions for MSGTYP=Y are: 

Bit 0 
Bit 1 
Bit 2-4 
Bit 5 
Bit 6-15 

MONITOR JOBNAMES 
MONITOR STATUS 
Reserved 
MONITOR SESS 
Reserved 

When MSGTYP= Y is specified, the issuer of the WTO or WTOR macro instruction that 
contains the MSGTYP information must set the appropriate message identifier bit in the 
MSGTYP field of the macro expansion. The MCSFLAG field in the macro expansion has been 
set to zero, indicating that the MSGTYP field is to be used for the message routing criteria. 
When the message type is identified by the system, the message is routed to all consoles and 
TSO terminals in operator modes that had requested that particular type of information. If 
there are no consoles or terminals requesting that particular type of information, the WTO 
message is not sent anywhere; however, a WTOR message is sent to the master console. The 
routing codes and REGO MCSFLAG field, if present, are ignored. 

Miscellaneous Services 89 

... _-_ ...... _ ....... ".'---'-".""_." ... _._ ... _._ .... 



Writing a Multiple-Line Message 

The WTO macro instruction is used to write a multiple-line message to one or more operator 
consoles. System programs (supervisor state, protection key 0-7, or APF-authorized) may 
create a message that consists of up to 2S S lines with one WTO request. If more than 255 
lines are needed, the authorized user can use more than one WTO. 

When using more than one request, the first WTO supplies the first 255 lines of the 
message. Other WTO requests can then add lines to the message. The additional lines appear 
at the end of the message and continue until an 'END' line is specified. For the first request, 
you must ensure that the left most three bytes of register zero are zero. If the bytes are not 
zero, WTO assumes that the multiple-line request is adding lines to an existing message, and 
no new message is created. 

After processing the first request, the system places a message identifier in register 1. For 
each additional request, you must put this identifier in the leftmost three bytes of register zero. 

Message Routing Exit Routines 
This topic provides detailed information on how to write user exit routines that modify the 
routing and descriptor codes of WTO or WTOR messages for the VS2 operating system. 
Information is provided on inserting this exit routine into the resident portion of the control 
program. In addition, a description of the characteristics and configuration of MCS is supplied. 

Characteristics 0/ MCS 

The multiple console support (MCS) facility routes messages to different functional areas 
according to the type of information that the message contains. In MCS, a functional area is 
defined as one or more operator's consoles that are doing the same type of work. Some 
examples of functional areas are: (1) the tape pool area, (2) the disk pool area, and (3) the 
unit record pool area. Each WTO and WTOR macro instruction is assigned one or more 
routing codes that are used to determine the destination of the message. There are fifteen 
possible routing codes. When the message is ready, the routing codes assigned to the message 
are compared to the routing codes assigned to each console. If any of the routing codes match, 
the message is sent to that console. 

If the standard routing codes provided on application and system messages do not cover 
special situations at an installation, the routing codes can be modified by coding a user exit 
routine. The exit routine receives control before the routing of messages so users can examine 
the message text and modify the message's routing and descriptor codes. The system uses the 
modified routing codes to route the message. Descriptor codes explained later in this chapter 
provide a mechanism for message presentation and deletion. 

Automatic console switching occurs when permanent hardware errors are detected. 
Command-initiated console switching is provided to permit restructuring of the system console 
configuration and the hard copy log by system operators. Consoles can be moved into or out 
of functional areas at any time during system operation. 

A hard copy log records messages, operator and system commands, and operator and system 
responses to commands. The hard copy log can be a console device or it can be the system log 
(SYSLOG). The number and type of messages recorded on the log is optional. The installation 
can record a selected group of messages, or it can record all messages. If commands are 
recorded, the system automatically records command responses. 

Whenever possible, the hardcopy function should be delegated to an output-only device 
(such as a printer) or to the system log. 

90 OS/VS2 System Programming Library: Supervisor 



C" 
" 

! 

C) 

._._-_ .. __ ........ _--

Programming Conventions for WTO/WTOR Routines 

The programming conventions for the WTO/WTOR exit routines are summarized below: 

• Exit routine is part of the resident control program. The program should be loaded on a 
page boundary. 

• Exit routine is any size. 

• Exit routine may allow interruptions. The routine receives control with no locks held; it 
should return control with no locks held. 

• Exit routine is reenterable and serially reusable. Macro instructions whose expansions 
store information into an online parameter list should not be used. 

• IEECVXIT is name of routine. 

• Registers must be saved at entry and restored prior to returning. 

• Exit routine may issue WAIT, XCTL, WTO, or WTOR macro instructions. 

Note: The WAIT macro instruction should not be used when the exit routine is entered 
under the console communications task. Doing so permanently terminates console 
communications. 

• Exit routine is part of WTO SVC. If the exit routine terminates abnormally, the WTO 
request is terminated. 

• Exit from the routine is via the RETURN macro instruction. An exit may occur when 
there is no currently owned region. GETMAIN should not be issued for subpools that 
represent space within a region (0 through 127, 240 or 250 through 252). Because the 
exit routine executes as a part of the control program, subpools such as 229 or 230 can 
be used. 

• Format of text and codes is: 

Message text (128 characters padded with blanks). 

Routing codes (4 bytes). Descriptor codes (4 bytes). 

In the routing code field, a bit setting of "1" indicates that the WTO or WTOR was 
assigned that particular routing code. Bit assignments and their meanings are: 

Bit Assignment Meaning 
Byte 0 
Bit 0 Routing code 1 Master Console Action 
Bit 1 Routing code 2 Master Console Information 
Bit 2 Routing code 3 Tape Pool 
Bit 3 Routing code 4 Direct Access Pool 
Bit 4 Routing code 5 Tape Library 
Bit 5 Routing code 6 Disk Library 
Bit 6 Routing code 7 Unit Record Pool 
Bit 7 Routing code 8 Teleprocessing Control 

Byte 1 
Bit 0 Routing code 9 System Security 
Bit 1 Routing code 10 System Error/Maintenance 
Bit 2 Routing code 11 Programmer Information 
Bit 3 Routing code 12 Emulators 
Bit 4 Routing code 13 Available for Customer Use 
Bit 5 Routing code 14 Available for Customer Use 
Bit 6 Routing code 15 Available for Customer Use 
Bit 7 Routing code 16 Reserved 

Byte 2 Reserved 

Byte 3 Reserved 

Miscellaneous Services 91 

--- ----------_ .... ,._._,---,." .... ,. .. ,---_ ....... " .... _ .. ,,-----.... ' ._,----,,-,,- --------



In the descriptor code field, a bit setting of "I" indicates that the WTO or WTOR was 
assigned that particular descriptor code. Bit assignments and their meanjngs are: 

Bit 

Byte 0 
Bit 0 
Bit 1 
Bit 2 
Bit 3 
Bit 4 
Bit 5 
Bit 6 
Bit 7 

Byte! 
Bit 0 
Bit 1 
Bit 2 

Byte 2 

Byte 3 

Assignment 

Descriptor code 1 
Descriptor code 2 
Descriptor code 3 
Descriptor code 4 
Descriptor code 5 
Descriptor code 6 
Descriptor code 7 
Descriptor code 8 

Descriptor code 9 
Descriptor code 10 
Descriptor code 11 

12 through 16 

Meaning 

System failure 
Immediate action required 
Eventual action required 
System status 
Immediate command response 
Job status 
Application program/processor 
Out-of-line message 

DISPLAY or TRACK command response 
Dynamic status displays 
Critical eventual action required 
Reserved 

Reserved 

Reserved 

Messages Not Using Routing Codes 

There are certain messages that the exit routine does not see. These are messages that have the 
MSGTYP parameter in the WTO or WTOR macro instruction coded with the JOBNAMES, 
STATUS, or Y parameter, multiple-line WTOs (including status displays), and messages that 
are being returned to the requesting console, such as a response to a DISPLAY A command. 
Routing of these messages depends on criteria other than the routing codes; therefore, the 
system bypasses the exit routine. 

Writing a WTO/WTOR Exit Routine 

To modify the standard routing codes and descriptor codes, a WTO/WTOR exit routine must 
be written. This routine becomes part of the control program. When a message's routing code 
field is used by the operating system to route the message, the routine receives control prior to 
the routing of the message. When the routine receives control, register 1 contains a pointer to 
a word that points to the first word of the message text. The message text field is 128 bytes 
long, followed by a four-byte routing code field and a four-byte descriptor code field. The exit 
routine can examine but not modify the message text. 

A message is sent only to those locations specified in the modified routing codes. All 
messages with modified routing codes are sent to the hard copy log when the log is included in 
the operating system. When the log is not included, the exit routine must not suppress 
messages that contain a routing code of 1, 2, 3, 4, 7, 8, or 10 because messages with these 
codes are necessary for system maintenance. Message suppression is turning off all routing 
codes of a message by setting the routing code field to zero, thus causing the message to be 
discarded. WTO messages can be suppressed. If a WTOR message is suppressed, it is sent to 
the master console by the operating system. 

Adding a WTO/WTOR Exit Routine to the Control Program 

The WTO/WTOR exit routine is standard. If the user does not specify one, the ffiM-supplied 
module IEECVXIT is included. 

To enter the exit routine into the control program before system generation, the linkage 
editor should be used to replace the dummy WTO/WTOR exit routine IEECVXIT in 
SYS I.AOSCS with the WTO /WTOR exit routine. The linkage editor should be instructed to 
load IEECVXIT on a page boundary. 

92 OS/VS2 System Programming Library: Supervisor 

----------------~-- ----- ----------

( 
\ 



C"· 
) 

c'~ 

To enter the exit routine into the control program after system generation, the linkage editor 
should be used to replace the dummy WTO /WTOR exit routine (CSECT IEECVXIT in load 
module IGC0003E) in the SYSl.LPALm with the user-written WTO/WTOR exit routine. 

Service Management 

Service Management facilities provide a basic set of system services that allow internal system 
components to structure themselves to run enabled, nonserialized, and in parallel on a 
multiprocessing system with considerably less overhead than would be required by using 
existing task management services. The facilities provided by service management are those 
services required to: 

• Introduce a service request to execute a service routine into the queue of work within the 
system. 

• Perform priority dispatching of the requested service routine. 
• Support the needs of recovery/termination for cleaning up the asynchronous processes. 

The first two facilities are accomplished via the SCHEDULE macro instruction; the third 
facility is accomplished via the PURGEDQ macro instruction. 

The main features of this support are: 

• A control block, called a service request block (SRB), represents a service request. This 
block is similar to a TCB but requires less information to be specified. It identifies a unit 
of work to the dispatcher. 

• The SCHEDULE macro service enters SRBs into the dispatchable work queue with a 
minimum of overhead. 

• The dispatcher operates under the service request control structure in addition to the old 
task structure. In addition, SRBs may be scheduled to different address spaces either at a 
priority equal to the specified address space or at an independent priority higher than any 
address space. 

• The service management facilities provide an increase in parallel processing on multiple 
processors. The programs benefiting the most from these facilities are those that have 
independently dispatchable units of work, but are forced to run as a single task. In 
addition, service management facilities make the system aware of the smaller units of 
work and allow the service requests to be dispatched in parallel on multiple processors at 
a higher priority than the task work. 

The service management facilities also provide a mechanism that is used for almost all 
communications between address spaces. It is used to run some parts of interruption handlers 
as service requests, allowing more enablement and parallelism for these services. For example, 
when an interruption occurs, the interruption handler collects the necessary information about 
the I/O interruption and schedules a service request block. The interruption handler can then 
start I/O requests that were waiting for the I/O path and accept any additional pending 
interruptions. Delaying complete processing of the interruption allows faster reuse of channels 
and lower disabled interruption time. 

The scheduling of the SRB provides the ability to: 

• Complete the interruption process on any processor, not just the one that took the 
interruption. 

• Process the interruption enabled except where specific serialization through locks is used. 

• To switch from the random address space where the interruption was taken to the 
address space of the user which originally requested the I/O. This latter capability 
provides the interruption handler routine with addressability to the user's control blocks 
necessary to complete the interruption processing. 

~sceUaneous Serrices 93 



Scheduling Service Requests 

The introduction of a service request into the queue of work is accomplished via the 
SCHEDULE macro instruction. To use this macro, you must provide the following 
informatlon: 

• The address of a previously obtained and formatted service request block (SRB) that is 
to represent the request until it is actually dispatched. The contents of the SRB supplied 
define the attributes of the routine to be given control. Once the service routine is given 
control, the SRB is no longer needed by the system and may be released. 

• The priority of the request relative to other requests in the system. The service may be 
scheduled at either local or global priorities. 

The SCHEDULE macro instruction does not obtain storage for the SRB. It simply causes 
the indicated SRB to be queued at the appropriate priority. When the request subsequently 
becomes the highest priority work in the system, the dispatcher dispatches it in the address 
space specified by the SRB. 

Service Request Blocks (SRBs) 

Service requests are represented by service request blocks (SRBs). SRBs must reside in fixed, 
commonly-addressable storage. These control blocks are supplied by the function requesting a 
service. The basic information contained in an SRB is documented in the OS/VS2 System 
Programming Library: Debugging Handbook, section 6, "Data Areas". The information required 
within the SRB at the time of SCHEDULE is as follows: 

SRBASCB - contains the address of the ASCB indicating the address space in which the 
asynchronous routine will be dispatched. 

SRBPKF - indicates, in the high-order 4 bits, the protect key that the routine assumes. The 
low-order 4 bits must be zero. 

SRBEP - specifies the address of the entry point of the asynchronous routine. 

SRBSA VB - contains the address of a status save area. This field must contain all zeroes. 

SRBP ARM - contains a fullword to be loaded into register 1 when the asynchronous 
routine is dispatched. 

SRBCPAFF - defines the processor affinity. If all zeroes, or all ones, no affinity is implied. 
Otherwise, this field contains a bit mask in which the bits that are set "on" to indicate on 
which processors the SRB may be dispatched. (The nth bit set "on" indicates that the SRB 
may be dispatched on the processor with physical address n.) 

SRBPRIOR - specifies a code representing the priority level to which the SRB is being 
scheduled. The codes are assigned as follows: 

o SYSTEM 
4 NONQ 

SRBRMTR - contains the address of a resource manager termination routine. This routine is 
responsible for cleaning up SRBs that have been scheduled but not yet dispatched. The 
address also serves as a function identifier to PURGEDQ when purging SRBs from the 
queues. If it is possible for the SRB to be purged, either directly by a system or user 
resource manager, or indirectly by task or memory termination, then this field must contain 
a valid non-zero address of a routine to clean up that SRB. The routine must be 
commonly-addressable by all address spaces. 

SRBPTCB - contains the address of a TCB associated with the asynchronous routine, which 
serves two purposes: 

94 OS/VS2 System Programming Library: Supervisor 

( 



c) 

• If the asynchronous routine encounters a double failure (error in routine and in recovery 
routine), the task is scheduled for abnormal termination. 

• Identifier to PURGEDQ during the purge process. If this SRB is to be purged during the 
termination of that task, the address of the associated TCB must be specified in this 
field. If this SRB is not related to any task, or purging is not necessary, a zero value 
should be specified. 

SRBASID - contains the ASID of an address space associated with the asynchronous' 
routine. If a non-zero value was specified in the SRBPTCB field, this value must be 
specified and must contain the ASID of the address space containing that TCB. Otherwise, 
a zero value may be specified. 

Priorities 

Services may be scheduled for execution at either global or local priorities. Service requests 
queued at the global level are given a priority that is above that of any address space, 
regardless of the actual address space in which they will be dispatched. Service requests at the 
local level are given a priority equal to that of the address space in which they are dispatched, 
but higher than that of any task within that address space. 

Within the global and local priorities, there are two additional priority levels. One of the 
levels is for general system usage (system level); the other (nonquiesceable level) is for 
specialized functions necessary to perform a quiesce of SRBs. 

Nonquiesceable level service requests continue to be dispatched while the address space is in 
the process of being quiesced. System level service requests are not to be dispatched while the 
quiesced status is in effect. Use of the nonquiesceable level is restricted in the following 
manner: At times, it is necessary to stop the dispatching of SRBs in an address space -- that is, 
prevent new SRBs from being dispatched and allow all SRBs that have already been 
dispatched to complete their processing. However, some of the dispatched SRBs may have 
been suspended due to lock requests or page faults. Since page fault processing and 
rescheduling of the suspended SRBs makes use of SRBs themselves, it is necessary to have a 
nonquiesceable level at which these SRBs can be scheduled while the other SRBs have been 
stopped. 

Characteristics of Service Requests 

Service routines have the following characteristics: 

• All routines are entered in supervisor state, enabled, and unlocked. The routines cannot 
enter problem program mode and must establish a recovery environment. Upon entry to 
the routines, the registers contain the following: 

Register 

o 
1 
14 
15 

Contents 

address of the SRB 
user field 
return address 
entry point address 

• The routines may not issue SVCs. (However, ABEND may be issued.) 

• The routines are non-preemptable -- that is, although the routines are run enabled and 
may be interrupted by an asynchronous interruption, they will not lose control to higher 
priority tasks or SRBs until they give up control voluntarily. However, service routines 
may lose control due to synchronous events which cause suspension of the program in 
control -- for example, page faults and unconditional requests for suspend-type locks. In 
this case, full status of the process is saved and other work is dispatched; the service 
request is redispatched when the problem is resolved. 

MisceUaneous Services 95 



• The routines may take page faults. Page faults encountered in the unlocked state are 
handled per service request. Page faults encountered in the locked state prevent other 
processing that requires the lock from proceeding, until the page fault is resolved. 

• The routines may request any lock through the locking interface (such as SETLOCK). 

• The routines must return control to the address supplied in register 14, and must return 
control in supervisor state with no locks held. All cleanup must be performed prior to 
exiting. 

Purging Service Requests 

. When a task or address space terminates, all outstanding requests for the task or address space 
must also be terminated. The PURGEDQ macro instruction establishes a standard mechanism 
for purging these requests. To use this macro, you must provide the following information: 

• The address space identifier of the address space in which the -8RB is scheduled to be 
dispatched. If none is specified, the current address space is assumed. 

• The address space of the task control block of the task associated with the SRB for 
which the purge is to be performed. If none is specified, the current TCB is assumed in 
the current address space. 

• The address of the resource manager termination routine. If no address is supplied, the 
purge is performed for all resource managers. 

The PURGEDQ routine dequeues all nondispatched SRBs and waits for completion of any 
active SRBs if the PURGEDQ was for the current address space. After all of the SRBs have 
been dequeued or completed, the resource manager termination routine specified in the SRB is 
given control and the required cleanup is performed for each de queued SRB. No locks should 
be held when PURGEDQ is invoked. 

PURGEDQ Parameters 

The inputs to the PURGEDQ macro instruction are specified by the ASID, ASIDTCB, and 
RMTR parameters. 

The ASID parameter specifies the address of a half word containing an address space 
identifier. PURGEDQ searches for SRBs scheduled to be dispatched into the address space 
specified by this parameter. If an address space other than the current address space is 
indicated, only SRBs that have not yet been dispatched are affected because PURGEDQ does 
not wait for SRBs already dispatched but not completed. If this parameter is omitted, the 
current address space is assumed. 

The caller of PURGEDQ can purge the SRBs associated with a specific task by coding the 
ASIDTCB parameter. The ASIDTCB parameter specifies the address of a doubleword 
associated with the TCB for which SRBs are to be purged. If the parameter is omitted, the 
purge occurs for SRBs associated with the current task in the current address space. The 
following table describes the acceptable values for the ASIDTCB parameter, and the meaning 
of the values: 

Bytes 0 - 7 zero 

Bytes 0 - 1 reserved 
Bytes 2 - 3 nonzero ASID 
Bytes 4 - 7 zero 

Bytes 0 - 1 reserved 
Bytes 2 - 3 nonzero ASID 
Bytes 4 - 7 nonzero TCB 

address' 

All SRBs are to be purged. 

All SRBs associated with the specified 
address space (SRBPASID field) 
are to be purged. 

All SRBs associated with the specified 
address space (SRBPASID field) and the 
specified task (SRBPTCB field) are to 
be purged. 

All other values are unacceptable and produce unpredictable results. 

96 OS/VS2 System Programming Library: Supervisor 

I 



------------------ --------------------------- ---------~-----------

o 

o 

The RMTR parameter specifies the address of the resource manager termination routine. 

The interface to the RMTR is as follows: 

Contents Register 
o Contents of register 0 of the caller of PURGEDQ at the time the PURGEDQ SVC was 

issued. This provides the ability to pass information from the caller of PURGEDQ to the 
RMTR routine. 

2 
14 
15 

SRB address of the de queued SRB. 
Contents of SRBPARM of the dequeued SRB. 
Return address of PURGEDQ. 
Entry point of RMTR. 

The PSW is enabled, in supervisor state with key 0 and no locks held. 

The RMTR must not leave supervisor state or issue EST AE with branch entry. The RMTR 
must return control enabled, in supervisor state with key zero and no locks held and via a 
BR14. It may, however, acquire locks, issue SVCs and destroy input registers. 

This routine must be commonly-addressable from all address spaces. It must be unique to 
the resource manager (that is, it should not be the address of some common system service) if 
the PURGEDQ issuer desires the routine to receive control only on a unique PURGEDQ. 
These restrictions are required to ensure the uniqueness of the identifier and to allow the 
RMTR to be invoked from any address space. 

Asynchronous Exit Routines 

The following facility is available whereby an authorized user can request an asynchronous exit 
routine to execute on behalf of a specific task. Prior to execution, the exit routine must 
complete three system control stages, each stage carried out by an individual "Exit effector" 
routine. 

The Stage 1 Exit Effector routine is invoked by the authorized user to create and initialize 
an Interrupt Request Block (IRB) that identifies to the system the user's asynchronous exit 
routine. Interface to the Stage 1 Exit Effector is through the Create Interrupt Request Block 
(CIRB) macro instruction. A detailed description of the CIRB macro instruction is found in 
Part IT of this manual. 

The Stage 2 Exit Effector routine is invoked by the authorized user to schedule his exit 
routine for execution. Input to the Stage 2 Exit Effector is an Interrupt Queue Element (lQE) 
that has been initialized by the caller. The IOE identifies the task the exit routine is to execute 
under, and the associated IRB, and it also contains information relating the exit routine's 
characteristics. At the conclusion of Stage 2 Exit Effector processing, the user's exit routine is 
logically ready for system dispatch and execution. Execution of the exit routine occurs only 
once for each invocation of the Stage 2 Exit Effector by the caller for that exit routine. Reuse 
of previously defined control blocks is possible however. Thus, one interface to the Stage 1 
Exit Effector can suffice for two or more invocations of the exit routine. 

The Stage 3 Exit Effector is invoked by the MVS dispatcher to queue the IRB for the exit 
routine to the specified task. The exit routine will then execute on the next dispatch of that 
task (provided no other IRBs have been scheduled for that task). 

Stage 1 Initialization 

Interface to the Stage 1 Exit Effector is provided via the CIRB macro and is normally by a 
Type 1 SVC interface. Also, a branch entry interface is available by specifying 
BRANCH= YES as one of the macro options. Specific instructions for using the CIRB macro 
instruction are in Part IT. When invoked, the Stage 1 Exit Effector routine obtains the storage 
for the IRB and optionally the IQE and a problem program work area. Also, the Stage 1 Exit 

~sceUaneous Serrices 97 

---------, .... ,,_._ .. "------.---------_ .... -.'-



Effector initializes those fields in the IRB necessary to control the execution of the exit 
routine. At completion of the Stage 1 Exit Effector, the IRB address is returned to the caller 
in register 1. The IOE, if requested, is contiguous in storage to the interruption request block 
and is pointed to by the RBNEXA V word in the IRB. The problem program work area (if 
requested) is pointed to by the RBPPSA VI word in the IRB. The data area configuration is as 
shown in Figure 20. 

Register 1 

--....... 
~ , 

LSOA 
(Subpool 253) 

IRB Prefix 

-'" 

Problem Program Storage 
(Subpool 250) 

V -"T 
I 
-------, 

I 

V 
I 72-byte I 

RBPPSAV1 I Save Area I 
I I 

IRB l 
L ______ .J 

-
I IOE I L_. _____ ...J 

Broken lines denote optionally acquired storage. 

Figure 20. Asynchronous Exit Data Area Configuration 

The fields in the IRB initialized by the Stage 1 Exit Effector are: 

• RBEP -- entry point address of the exit routine. 
• RBST AB -- flags indicating how the IRB and IOE are to be treated upon termination of 

the exit routine (defined according to the STAB and RETRN parameters of CIRB). 
• RBIOETP -- flag indicating the type of queue element (ROE or IOE) associated with the 

exit request. 
Note: ROEs are only for use by lOS. 

• RBOPSW -- PSW to be loaded to initiate execution of the exit routine: 
- PSW is enabled for interrupts. 
- Protection key: 0 if KEY=SUPR specified on CIRB macro; TCB key (TCBPKF) of 

the caller if KEY =PP. 
- Mode: Supervisor state if MODE=SUPR on the CIRB macro instruction; problem 

program state if MODE=PP on CIRB. 
• RBSIZE -- size of the IRB (including the size of the IOE if the CIRB specification 

included the WKAREA parameter). 
• RBNEXA V -- address of the IOE if WKAREA was specified. 
• RBPPSA VI -- address of the problem program save area if SV AREA was specified. 

Stage 2 Scheduling 

Initialization of the IOE is the responsibility of the user and is necessary to define to the 
system the task the exit routine is to execute under. The fields to be initialized are: 

• IOEP ARAM -- address of the parameter list (if wanted) to be passed to the exit routine. 
• IOEIRB -- address of the IRB as returned in register 1 by the Stage 1 Exit Effector 

routine. 

98 OS/VS2 System Programming Library: Supervisor 

--~-~------ _ .... _._-----_._-_ .. _--------

( 



c 

----_. __ .- .-.---------. 

• IQETCB -- address of the TCB for the task under which the user's exit routine is to 
execute. 

When IRB/IQE initialization is complete, the user should invoke the Stage 2 Exit Effector 
routine to queue the request (IQE) to the appropriate system asynchronous exit queue. The 
entry to Stage 2 is by branch only, where the branch entry point address is found in the 
communications vector table (CVT) field CVTOEFOO. The interface to the Stage 2 Exit 
Effector is defined as follows: 

Register 
o 

2-13 
14 
15 

Contents 
Irrelevant for scheduling an exit via IQE. 
Twos-complement form of the IQE address. 
Irrelevant. 
Return address. 
Irrelevant. 

Note: Upon return, registers 0, and 2-14 are unchanged and register 1 contains a true 
(non-complemented) form of the IQE address. 

The caller of Stage 2 must: 

• Hold the local lock. 
• Be addressable in the address space in which the exit routine is to be dispatched. 
• Be in supervisor state under protection key zero. 

Stage 3 Execution 

Once scheduled by Stage 2, the user's exit routine is logically ready for dispatch. Stage 3, 
effectively a subroutine to the MVS dispatcher, is called to queue the IRB associated with the 
user's exit to the task the IQE indicates. The user's exit executes as a result of the next 
dispatch of the task unless a subsequent IRB has been scheduled for the same task. In this 
case, the second exit routine may be executed first. Stage 3 execution depends on valid 
information being in the IQE fields. Because Stage 3 performs no validity checks on IQE 
initialization, the user must ensure that the initialization of the IQE fields is correct. 

Execution and Termination Characteristics 

The following asynchronous exit routine characteristics can influence the user's choice of CIRB 
options and should be considered: 

• The exit routine executes as an IRB under the TCB defined by the IQE passed to the 
Stage 3 Exit Effector routine. 

• The exit routine executes enabled in the key and state requested by the CIRB macro 
instruction interface to the Stage 1 Exit Effector routine. 

• Register contents upon entry to the exit routine are: 

Register Contents 
o IQE address. 
1 Parameter list address (IQEP ARAM). 

13 Problem program register save area address (if any). 
14 Return address (CVTEXIT). 

• Upon termination of the asynchronous exit routine: 
- The IQE is returned to a "next available" queue anchored by the RBNEXA V field in 

the IRB if the user specified the WKAREA and RETRN = YES options on the CIRB 
macro instruction. This allows subsequent invocations of the exit routine without the 
user repeating requests for Stage 1 processing (data area setup). 

- If the user specified the SV AREA and STAB=(DYN) options on the CIRBmacro 
instruction, the problem program register save area is freed. 

MisceUaneous Services 99 



- If the user specified the STAB=(DYN) option of the CIRB macro instruction, the IRB 
and IQE are freed. I 

Writing SVC Routines 
User-written SVC routines become part of the control program, so you must follow the same 
programming conventions used by SVC routines supplied with VS2. Five types of SVC 
routines are supplied with VS2, and the programming conventions for each type differ. The 
general characteristics of the five types are described in the following text, and the 
programming conventions for all types are shown in tabular form. 

Characteristics 0/ SVC Routines 

All SVC routines receive control in key zero and supervisor state. You should keep the 
following characteristics in mind when deciding what type of SVC routine to write: 

• Location of the routine -- Your SVC routine can be either in storage at all times· as part 
of the resident control program, or in the fixed or pageable link pack area. Types 1, 2, 
and 6 SVC routines are part of the resident control program, and types 3 and 4 are in 
the link pack areas. No transient areas are provided in MVS. 

• Size of the routine -- SVC routines are not limited in size, but should be kept under one 
page if disabled global locks are obtained. 

• Design of the routine -- All SVC routines must be reenterable. If you wish to aid system 
facilities in recovering from machine malfunctions, your SVC routines must be 
refreshable. 

• Authorization -- At nucleus initialization, all SVC routines that are to be loaded into the 
fixed or pageable LPA must be contained in SYS1.SVCLffi, SYS1.LPALffi, or 
SYS 1.LINKLIB. After the initial load of type 4 SVCs, subsequent loads may be 
contained in any authorized library. 

• Serialization -- In MVS, locking has generally replaced processor disablement as the 
technique for serializing multiple processor functions. If you write SVC routines which 
must serialize with other parts of the control program, you must use the same locking 
conventions as the control program. If you write two or more SVC routines which must 
serialize with each other, you can use either the locking facilities or the ENQ/DEQ 
services. 

SVC routines can receive control with one or more locks held. During system generation, 
you must define which locks are to be acquired for your SVC routines. (For more information 
on locking, see the discussion under Resource Control.) 

SVC routines are normally entered enabled. However, an SVC routine will be entered 
disabled if it was specified that a disabled spin lock is to be acquired for the routine. (See 
reference code 2 on the following page.) 

Programming Conventions lor SVC Routines 

The programming conventions for the five types of SVC routines are summarized in Figure 21. 
Details about many of the conventions are in the reference notes that follow. The notes are 
referred to by the numbers in the last column of the figure. If a reference note for a 
convention does not pertain to a specific type of SVC routine, that type is indicated by an 
asterisk. 

100 OS/VS2 System Programming Library: Supe"isor 

-_._---------_ .. _----



--------------- ---_._---_ ... -

o Conventions Type 1 Type 2 Type 3 Type 4 Type 6 Reference Code 

Part of resident control 
program Yes Yes No No Yes 

Size of routine Any Any Any Any Any 

Reenterable routine Yes Yes Yes Yes Yes 1 

Refreshable routine No No Yes Yes No 2 

Locking requirements Yes No No No No 3 

Entry point Must be the first byte of the routine or load module, and must Same 
be on a doubleword boundary 

Number of routine Numbers assigned to your SVC routines should be in Same 
descending order from 255 through 200 

Name of routine IGCnnn IGCnnn IGCOOnnn IGCssnnn IGCnnn 4 

Register contents at entry Registers 3, 4, 5,6, 7, and 14 contain communication pointers; Same 5 time registers 0, 1, 13, and 15 are parameter registers 

Supervisor request block No SVRB 224 224 224 l\IoSVHB 6 
(SVRB) size exists exists 

May issue WAIT macro No Yes Yes Yes No 7 
instruction 

May issue XCT L macro No Yes Yes Yes No 8 
instruction 

o May pass control to what None Any Any Any None 9 
other types of SVC routines 

Type of linkage with other Not Issue supervisor ca" (SVC) instruction Not 10 
SVC routines Applicable Applicable 

Branch using return register 14 T6 EXIT 11 Exit from SVC routine 
or BR 14 

Method of abnormal ABEND ABEND ABEND 
termination 

Recovery FRR ESTAE or FRR FRR 12 

Figure 21. Programming Conventions for SVC Routines 

Miscellaneous Services 101 

--_. __ .. _--_ ... __ ..... ---_._-------



Reference 
Code 

1 

2 

3 

o 
4 

5 

SVC Routine 
Types 

all 

3,4 

all 

all 

all 

Reference Notes 

If your SVC routine is to be reenterable, you cannot use macro instructions 
whose expansions store information into an inline parameter list. 

Types 3 and 4 in the pageable LP A must be refreshable. Types 3 and 4 in the 
fixed LP A must be reenterable, but not necessarily refreshable. 

The following conventions on locking requirements apply: 
Type 1 SVC routines always receive control with the local lock held and 
must not release the local lock. Additional locks may be requested prior 
to entry via the SVCT ABLE macro instruction or may be requested 
dynamically within the SVC routine. 
Types 2, 3, and 4 may also request locks via the SVCT ABLE macro 
instruction or may obtain them dynamically. 
Types 1 and 2 may request that any locks be held on entry. Types 3 and 
4 may only request that the LOCAL or LOCAL and CMS lock be held. 
If no locks are held or obtained, or only suspend locks (LOCAL and 
CMS) are held or obtained, the SVC routine executes in supervisor state, 
key zero, enabled mode. 
If disabled spin locks are held or obtained, the SVC routine executes in 
supervisor state, key zero, disabled mode. No SVCs may be issued. 
SVCs may not take disabled page faults. Therefore, if a disabled spin 
lock is held, the SVC routines must ensure that any referenced pages are 
fixed. For types 3 and 4, all pages containing code must be fixed. 
An FRR may be defined for any SVC routine that holds or obtains locks 
to provide for abnormal termination (see reference note 9). 

Type 6 may not request any locks. 

You must use the following conventions when naming SVC routines: 
Types 1, 2, and 6 must be named IGCnnn; nnn is the decimal number of 
the SVC routine. You must specify this name in an ENTRY, CSECT, or 
START instruction. 
Type 3 must be named IGCOOnnn; nnn is the signed decimal number of 
the SVC routine. 
Type 4 must be named IGCssnnn; nnn is the signed decimal number of 
the SVC routine, and ss is the number of the load module minus one. 
For example, ss is 01 for the second load module of the routine. 

Before your SVC routine receives control, the contents of all registers are 
saved. 

In general, the location of the register save area is unknown to the routine 
that is called. When your SVC routine receives control, the status of the 
registers is as follows: 

Register 0 and 1 contain the same information as when the SVC routine 
was called. 
Register 2 contains unpredictable information. 
Register 3 contains the starting address of the communication vector 
table (CVT). 
Register 4 contains the address of the task control block (TCB) of the 
task that called the SVC routine. 
Register 5 contains the address of the supervisor request block (SVRB), 
if a type 2, 3, or 4 SVC routine is in control. If a type 1 or 6 SVC 
routine is in control, register 5 contains the address of the last active 
request block. 
Register 6 contains the entry point address. 
Register 7 contains the address of the address space control block 
(ASCB). 
Registers 8 through 12 contain unpredictable information. 
Register 13 contains the same information as when the SVC routine was 
called. 
Register 14 contains the return address. 
Register 15 contains the same information as when the SVC routine was 
called. 

You must use register 0, 1, and 15 if you want to pass information to the 
calling program. The contents of registers 2 through 14 are restored when 
control is returned to the calling program. 

102 OS/VS2 System Programming Library: Supervisor 



o 

o 

Reference 
Code 

6 

7 

8 

9 

10 

11 

12 

SVC Routine 
Types 

2,3,4 

2,3,4,6 

2,3,4 

all 

all 

all 

all 

Reference Notes 
The SVRB is no longer extendable, but is a fixed size of 224 bytes. When a 
type 2, 3, or 4 SVC routine receives control, register 5 contains the address 
of the SVRB within this 224-byte area. This SVRB contains a 48-byte 
"extended save area." In addition, an area is provided for a STAE control 
block (SCB); this SCB is used by the recovery termination manager when a 
EST AE is issued within an SVC routine. 

You can issue the WAIT macro instruction if you hold no locks. You can 
issue WAIT macro instructions that await either single or multiple-events. 
The event control block (ECB) for single-event waits or the ECB list and 
ECBS for multiple-event waits must be in virtual storage. Type 6 SVCs may 
not issue WAIT but may issue SUSPEND. 

When you issue an XCTL macro instruction in a routine under control of a 
type 2, 3, or 4 SVRB, the new load module must be located in the fixed or 
pageable link pack area. 

The contents of registers 2 through 13 are unchanged when control is passed 
to the load module; register 15 contains the entry point of the called load 
module. 

No SVC routines except ABEND may be called if locks are held. ABEND 
may be called at any time. 

No locks may be held. If locks are held, branch entry to SVCs is acceptable, 
or the locks may be freed, the SVC issued, and the locks reobtained. 

Branch using return register 14 should be used. SVC routines that exit via BR 
14 or T6EXIT must return control in the same state in which they received 
control, such as, key zero, supervisor state}. Otherwise, if locks are held, 
SVC 3 results in abnormal termination. 
If an SVC routine is entered with a lock held or if an SVC routine obtains a 
lock, it should specify a functional recovery routine (FRR) for as long as the 
lock is held (see SETFRR macro instruction). The FRR receives control if an 
error occurs, and ensures the validity of the data being serialized by the lock; 
the FRR either recovers or releases the lock and continues with termination. 

If no FRR is specified, the recovery termination manager releases the lock 
and terminate the task. No cleanup of the data is pedormed. (Note that the 
lock is released before any STAI/ESTAI/EST AE (or ST AE) recovery routine 
is entered. 

If no locks are acquired for or by an SVC routine, then an ESTAE may be 
used to define your recovery processing (see EST AE and SETRP macro 
instructions). 

Inserting SVC Routines Into the Control Program 

You insert SVC routines into the control program during the system generation. Before your 
SVC routine can be inserted, the routine must be a member of a cataloged partitioned data set 
named SYS I.name, where the name is a name of your choice. The data set must be an 
authorized library (see discussion on APF). 

The following text describes the information you must supply during system generation. You 
will find a description of the macro instructions required during system generation in the 
OS/VS2 System Programming Library: System Generation Reference publication. 

Specifying SVC Routines 

You use the SVCTABLE macro instruction to specify the SVC number, the type of SVC 
routine, and the locks that are required for your SVC. 

MisceUaneous Services 103 

.•..... _--_ ....... _--- .- .... ,,---



Inserting SVC Routines During the System Generation Process 

To insert an SVC routine during system generation, the name of the partitioned data set and 
the names of the members to be included must be specified in the DATASET macro 
instruction: 

• For each type 1 or 2 SVC, a member (containing one or more SVC routines) should be 
specified in the DATASET macro instruction that is being used to define 
SYS1.NUCLEUS . 

• For each type 3 or 4 SVC, a member (containing only one SVC routine) should be 
specified in the DATASET macro instruction that is being used to define SYS1.LPALffi. 

Type 5 SVC Facility 

The Type 5 SVC facility permits a user to indicate (at system generation time) that one or 
more user-written SVCs are added to the system after the completion of system generation. 
This facility is only used in cases where the SVC routines for the user-written SVC are not 
available at the time of the system generation. This facility further permits the user to specify 
the authorization characteristic and lock requirements as input parameters to the system 
generation macro instruction SVCT ABLE. 

SVC Table Entries 

Each entry in the SVC table has the following format: 

Offset 
o 
4 

6 

. Length 
4 
2 

1. ..... . 
11. ... .. 
.. 1 .... . 
.... 1 .. . 
..... 1 .. 
...... 1. 
2 
1 ..... .. 
.1 ..... . 
.. 1 ... .. 
... 1 .. .. 
.... 1 .. . 

Name 
SVCEP 
SVCATIPI 
SVCTPI 
SVCTP2 
SVCTP34 
SVCTP6 
SVCAPF 
SVCESR 
SVCNP 
SVCLOCKS 
SVCLL 
SVCCMS 
SVCSRM 
SVCALLOC 
SVCDISP 

Description 
SVC Entry Point Address 
Attributes 
Type I SVC 
Type 2 SVC 
Type 3 or 4 SVC 
Type 6 SVC 
APF Authorized I-Authorized 
SVC is a part of the ESR 
Non-premptive SVC 
Lock Attributes 
Local Lock Needed 
CMS Lock Needed 
SRM Lock Needed 
SALLOC Lock Needed 
Dispatcher Lock Needed 

If a Type 5 SVC is specified at system generation time, the following entry is generated: 

IGCRETRN 
Type 1 
Authorization 
Locks 

Entry Point Address (of IGCRETRN) 

Default is unauthorized, unless the user specifies authorized. 
Default is no locks; user may specify any lock or combination of locks needed by 
his routine. 

Note: IGCRETRN is an existing routine which zeroes register 15 and returns via register 14. 

Subsequent to system generation, the user is expected to supply the SVC routine and to 
update the entry in the SVC table. Assuming that the SVC attributes generated at system 
generation are correct, the user need only supply the address of the entry point to the SVC 
routine. If the attributes are not correct for the SVC as generated by system generation, then 
AMASPZAP can be used to update or replace all attributes stored in the SVC· table entry. 

Note: AMASPZAP is not practical for use in updating the entry point address of the SVC 
routine. For nucleus resident Type 1, Type 2, or Type 6 SVC routines, the user should 
dynamically update the entry point address in the SVC table after each IPL by using a routine 
which executes prior to any need for that SVC. For Type 3 or Type 4 SVC routines named 
according to SVC naming conventions and link-edited into SYS l.LP ALffi, a NIP RIM 
initializes the entry point address in the SVC table for those SVCs. 

104 OS/VS2 System Programming Library: Supervisor 



o 

0 

C'· ) 

Type 6 SVC Facility 

The Type 6 SVC performs functions similar to the Type 1 SVC, but, by cutting the instruction 
path lengths for receiving and releasing control nearly in half, it offers performance advantages 
over the Type 1 SVC. It does not always require the local lock, as noted later. 

The Type 6 SVC also provides a more efficient way for a program to change from TCB 
mode to SRB mode processing. When using a Type 1 SVC for this purpose, a program must 
itself schedule an SRB, the SRB must then go through queuing and de queuing operations and 
eventually be dispatched. Using the Type 6 SVC, normally results in immediate scheduling and 
dispatching of the SRB. 

The Type 6 SVC executes under the control of the first level interrupt handler (FLIH) and 
therefore has similar function and limitations. The Type 6 SVC has three exit options: 

• Return to the caller directly 
• Return to the dispatcher 
• Dispatch an SRB (service request block) 

All these returns must be to the SVC FLIH through the T6EXIT macro instruction. For 
specific information about how to code this macro, refer to Part IT of this publication in the 
section "T6EXIT -- Type 6 Exit". The following overall considerations for using. this macro 
also apply: 

• The Type 6 SVC exit via the T6EXIT macro must be different from the exit used by the 
other types of SVCs. To ensure this difference, the caller should issue the macro or use 
the exit address in register 14 upon entry to the SVC when exiting. Using the T6EXIT 
macro results in the following register conditions: 

T6EXIT Option Register 14 Register 0 Register 1 Register 15 

CALLER As on entry Returned to caller Returned to caller Returned to caller 
DISPATCH CVTT6SVC N/A 0 N/A 
SRB CVTT6SVC N/A SRB addr. N/A 
BR 14 As on entry Returned to caller Returned to caller Returned to caller 

• Plans for modifying existing (Type 1,2,3,4) SVCs to Type 6 SVCs, should include these 
factors: 

The system neither acquires nor releases any locks for Type 6 SVCs. Currently written 
SVCs have locks acquired in the SVC FLIH according to the SVCTABLE options. 

Because a Type 6 SVC executes disabled, it has exclusive use of the processor. Type 6 
SVCs should be short enough to minimize their adverse effect on performance. 

Because Type 6 SVCs have control of the processor (causing the SVRB save areas to 
be unavailable), PSA and LCCA areas are available to take the place of SVRB save 
areas. 

When a Type 6 SVC is executing, no other task-related activity can occur 
concurrently. To indicate this situation, the TCBACTIV flag is on. 

A Type 6 SVC should establish recovery via the SETFRR macro instruction. 

• If a Type 6 SVC uses the RETURN=SRB exit option on the T6EXIT macro instruction, 
register 1 points to an SRB input format (see Figure 22). 

Virtual Storage Management 105 



SRB 

Common Name: Service Request Block 

Macro ID: IHASRB 

Cmated by: Control Program Routines 

Size: 44 

Pointed by: SPL or SERVICE MANAGER QUEUES 

Function: The I/O Supervisor uses the SRB to dispatch I/O processing for a request. It 
identifies the address space in which processing is to be done. It is also used as input to the 
SCHEDULE macro when scheduling a routine for asynchronous EXECUTION. 

Offsets Length Name Description 

0 (0) 4 SRB 
0 (0) 4 SRBID EBCDIC ACRONYM FOR SRB 
4 (4) 4 SRBFLNK FORWARD CHAIN FIELD 
8 (8) 4 SRBASCB PTR TO ASCB OF ADDRESS SPACE SRB IS TO 

BE DISPATCHED TO 
12 (C) 8 SRBFLC SRB AREA MOVED TO LOW CORE 
12 (C) 2 SRBCPAFF CPU AFFINITY MASK 
14 (E) 2 SRBPASID PURGEDQ ASID IDENTIFIER 
16 (10) 4 SRBPTCB PURGEDQ TCB IDENTIFIER 
20 (14) 4 SRBEP ENTRY POINT OF ROUTINE 
24 (18) 4 SRBRMTR ADDRESS OF RESOURCE MGR RTN 
28 (1 C) 4 SRBPARM USER PARAMETER 
32 (20) 4 SRBSAVE SAVE AREA POINTER 
36 (24) 1 SRBPKF PROTECT KEY INDICATION 
37 (25) 1 SRBPRIOR PRIORITY LEVEL INDICATION 

SRBPSYS SYSTEM PRIORITY LEVEL 
.1 .. SRBPNONQ NON QUIESCEABLE PRIORITY 

38 (26) 2 RESERVED 
40 (28) 4 RESERVED 

Note: The SVC FLIH dispatches an SRB only for the current address space. If the ASCB is 
unequal to the current address space ASCB an abend results. 

Figure 22. SRB Input Format 

Non-Preemptable SVCS 

It is possible at system generation to denote SVCs so that the system subsequently considers 
them non-preemptable for I/O operations. After system generation, the SVC first level 
interrupt handler (FLIH) recognizes any SVC thus denoted through an indicator in the SVC 
table and then initializes the non-preemptable state for it. To handle this state, the I/O FLIH 
returns control directly to the non-preemptable SVC task at any time when there would 
normally be an I/O interrupt that would preempt it. 

The following three restrictions apply to non-preemptable SVCs: 

• The non-preemptable state should be of short duration -the life of the SVC should be the 
maximum. 

• The non-preemptable SVC cannot issue other SVCs and remain non-preemptable 
because the exit function always resets the non-preemptable indicator in the TCB 
associated with the SVC. This causes the issuing SVC to lose its non-preemptable quality. 

• If a non-preemptable SVC issues a ST AX DEFER=NO macro instruction, the SVC 
remains non-preemptable until entry to the exit, RTM, or ABEND. 

106 OS/VS2 System Programming Library: Supervisor 



c:) 

--_._--_ .. ----- - '- .. - - -_._._-_. __ ._-_._ .. _._ ... _- -_. __ .. _-_ .. _- -----_._ ..... - .. _-- ---- ------- ._._------_.-

Subsystem SVC Screening 
Subsystem SVC screening allows a system routine to define those SVCs that a specific task 
may validly issue. When SVC screening is active for a task, the SVC first level interrupt 
handler (FLIH) determines for each SVC issued by that task whether the task may validly 
request that SVC function. If so, the SVC FLIH processes the request as a normal SVC 
request. If not, the SVC FLIH gives control to a subroutine supplied by the subsystem routine 
that activated SVC screening for that task, instead of to the requested SVC. 

The subsystem, executing under PSW protection key zero, activates SVC screening by 
setting two fields in each TCB for which screening is desired. The two fields consist of a 
screen flag bit in the main body of the TCB and a one-word field in the TCB extension. This 
field contains the address of the subsystem screen table, which provides the interface between 
the SVC FLIH and the subsystem subroutine. These fields are: 

• TCBSVCS -screen flag bit, which indicates SVC screening in effect for this task when on 
(one). 

• TCBSVCA2 -- address of the subsystem screen table. 

The subsystem subroutine that receives control as a result of an invalid SVC request 
executes as an SVC and is subject to the same restrictions as SVC routines. Before giving 
control to the subroutine, the SVC FLIH provides the setup for the subroutine as defined by 
the subsystem SVC entry (SSTSVCN) in the subsystem screen table. This setup includes: 

• Initializing the SVRB if the subroutine is to execute as a Type 2, 3, or 4 SVC. 
• Obtaining the local lock if the subroutine is to execute as a Type 1 SVC. 
• Acquiring all locks necessary for the subroutine's execution. 

The subsystem that needs SVC screening obtains storage via GETMAIN for a 264 byte 
area called the subsystem screen table. This area must come from either LSQA (subpool 
253-255) or SQA (subpool 245) or must be fixed to prevent a page fault. The subsystem 
screen table contains two areas as follows: 

1) SSTSVCN -- Subsystem SVC entry (8 bytes) 

Bytes 
0-3 

4 

5 
6-7 

Content 
Entry point address of the subsystem subroutine that will get control whenever a task has 
issued an sve against which there is a screening restriction. 
X'OO' - means that the subroutine is to execute as a Type 1 sve 
X'80' - means that the subroutine is to execute as a Type 2 sve 
X'CO' - means that the subroutine is to execute as a Type 3 or Type 4 SVC 
Zero. 
Locks to be held on entry to the subroutine. If the appropriate lock bit is one, the lock will 
be acquired by the sve FLIH. The lock bits are: 

Bit Lock 
o Local 
1 CMS 
2 SRM 
3 SALLoe 
4 Dispatcher 

Bits 5-15 are always zero (ofO. 

2) SSTMASK -- SVC screening mask (256 bytes) 

Bytes 
8-263 

Content 
Each byte corresponds to an sve number in ascending order in the range 0-255. When the 
high order bit in a byte is one, the task may validly issue the respective SVC; when the bit 
is zero, there is a screening restriction that prohibits the task from issuing the sve. 

Virtual Storage Management 107 



The subsystem must get and initialize the subsystem screen table properly. The subsystem must 
also free the table before terminating. 

Missing Interruption Handler 
The missing interruption handler (MIH) checks whether expected MIH conditions occur within 
a specified period of time. The MIH conditions are pending device ends, channel ends, DDR 
swaps, or MOUNT commands. If an expected MIH condition does not occur, the operator is 
informed so that steps can be taken to correct the situation before system performance is 
affected. 

MIH detects a pending MIH condition in the UCB for the device. After a time interval 
elapses, MIH checks the UCB and, if the MllI condition is still pending, takes the following 
actions: 

• For all MllI conditions, MIH issues a message informing the operator of the pending 
condition and the necessary action to correct it . 

• For all missing channel ends or device ends from critical devices, such as paging and 
SYSRES devices, MIH informs the I/O supervisor (lOS) so that lOS can restart the 
device . 

• MIH records all missing I/O interruptions on SYSl.LOGREC for further analysis. 

MllI provides a primary and a secondary level of processing. The primary level applies to all 
devices; all devices are checked for MIH conditions at an installation-specified primary time 
interval. The secondary level applies to all critical devices: paging and SYSRES devices defined 
at IPL and additional installation-defined devices. These devices are listed in the secondary 
look-up table. Because a MIH condition on one of these critical devices can impact system 
performance, the secondary time level must be smaller than the primary time interval. 

The module IGFINTVL, which resides in the nucleus, contains the primary and secondary 
time intervals, the installation-defined UCB entries, the address of the MIH usage area 
containing the secondary look-up table, and the exit index table. The offsets and default values 
are as follows: 

Offsets Lengtb Default Value Description 

0(0) 8 bytes 00030000 Primary time interval 

8 (8) 8 bytes 00001500 Secondary time interval 

16 (10) 48 bytes N/A Installation-defined device address table 

64 (40) 16 bytes N/A MIH usage area 

80 (50) 16 bytes N/A Exit index table 

The MIH usage area contains a pointer to the secondary look-up table. The secondary 
look-up table contains the DCBs for all paging and SYSRES devices defined at IPL. MIH adds 
the entries from the installation-defined device address table into the secondary look-up table. 
The entries are moved in the order entered by the installation until the installation-defined 
table is exhausted or the secondary look-up table is full. MIH converts all device addresses to 
its equivalent UCB address. A zero on invalid device address is ignored. After an IOGEN the 
installation should verify the device addresses in the device address table. 

Each exit index table contains the addresses for the first and second level exits and the two 
exit constants. The last 4-bytes are reserved for MllI. The first entry is used by the Mass 
Storage System (MSS) and is discussed later in this publication. MSS devices must not be 
listed in the installation-defined device table. 

108 OS/VS2 System Programming Library: Supervisor 



o 

c) 

Choosing a Time Interval 

An installation can use the mM-supplied time intervals or specify its own intervals. The 
AMASPZAP program can be used to modify the values; an example appears in Figure 23. 
When modifying the values, consider the following points: 

• The time intervals are expressed as EBCDIC in the form HHmmsshh (hours, minutes, 
seconds, hundredths). MIH ignores the hundredths. If the time interval is changed to 0 or 
a value other than an EBCDIC 0-9 (FO-F9) is specified, the default value is used. 

• To ensure that critical devices are checked for pending conditions on a timely basis, MIH 
requires that the secondary time interval be shorter than the primary time interval. 
Otherwise, MIH sets the primary interval equal to the secondary time interval. The 
primary time must also be a multiple of the secondary value. If not, MIH makes the 
primary value a multiple of the secondary value. When the remainder from the division is 
greater than half the secondary time interval, MIH adjusts the primary time value 
upwards. 

An example of Modifying the CSECT IGFINTVL 

To modify ICFINTVL, use the AMASPZAP program. The modifications do not take affect 
until the next IPL of the system. The following modifications are made in Figure 23: 

• The primary interval is changed from 3 minutes to 3 minutes and 30 seconds. 
• The secondary interval is changed from 15 seconds to 10 seconds 
• Four device addresses (0120, 0275, 03FB, and 0410) are entered into the 

installation-defined device address area so that they are included in the secondary 
look-up table. 

• The MSS constants are changed from 4 to 5. 

PGM=AMASPZAP 
//MODIFY 
//STEP 
//SYSPRINT 
//SYSLIB 
//SYSIN 

JOB 
EXEC 
DD 
DD 

SYSOUT=A 
DSNAME=SYS1.NUCLEUS,DISP=OLD 

/* 

DD 
NAME 
VERIFY 
VERIFY 
VERIFY 
VERIFY 
REP 
REP 
REP 
REP 

* IEANUC01 IGFINTVL 
0000 FOFOFOF3FOFOFOFO 
0008 FOFOFOFOF1F5FOFO 
0010 0000000000000000 
0058 FOF4FOF4 
0000 FOFOFOF3F3FOFOFO 
0008 FOFOFOFOF1FOFOFO 
0010 0120027503F80410 
0058 FOF5FOF5 

Figure 23. Changing the Missing Interrupt Handler Time Interval 

Mass Storage System Missing Interrupts 

PRIMARY INTERVAL 
SECONDARY INTERVAL 
ENTER DEVICE ADDRESSES 
MSS NVALUE YVALUE 
PRIMARY INTERVAL 
SECONDARY INTERVAL 
DEVICE ADDRESSES 
MSS NVALUE YVALUE 

Mass Storage System devices tend to require more time to respond with interrupts than do 
other devices. Therefore, Mass Storage System devices use time intervals that are multiples of 
the basic time interval. The time required by the 3851 to respond with Channel End or Device 
End varies depending on the I/O request and on the amount of queued stage/destage work. 
This is similarly true for 3330V (3330 virtual unit) Attention Interrupts that are associated 
with cylinder faults and for 3330V pack change interrupts that are associated with MOUNT 
requests. Therefore, to minimize premature determination of these missing interrupts, a value 
N is added to the exit index table of the IGFINTVL csect of MIH. 

Virtual Storage Management t09 

.. _._--_ ..... _---_._ .... -.-------------------------



The normal default MIH time interval is 3 minutes,. but the Mass Storage System exit 
routine (ICBTMSSO) uses the value N to allow checking only every Nth MIH time period. 
This value N is a ratio of the number of normal time periods per effective Mass Storage 
System time period. For example, with a basic time interval of 3 minutes and a ratio value of 
N=4, the effective Mass Storage System time interval would be 4x3=12 minutes. 

Channel End and Device End from 3330Vs can be delayed when a cylinder fault occurs. 
This happens when a heavy workload causes queueing of messages in the Staging Adapter and 
Mass Storage Control communication buffer. The length of such delays, however, does not 
tend to be as long as delays that are caused by queued stage/destage work. Therefore, to 
minimize premature determination of missing 3330V Channel End and Device End interrupts, 
a ratio value Y is used in the way the ratio value N is used for all other Mass Storage System 
interrupt checking. This value Y is also added to the exit index table of the IGFINTVL csect 
of MIH. 

The actual frequency of checking for missing Mass Storage System device interrupts is 
proportional to whatever basic time interval the user has chosen. The best checking frequency 
for a given user is dependent on his individual system workload characteristics and 
under-commitment or over-commitment of Mass Storage Facility space and staging space. A 
default ratio value of 4 has been chosen for both Nand Y and, like the basic time interval, the 
ratio values can be modified by the user through the use of the SPZAP Service Aid as 
indicated in Figure 23. Modification of either the basic time interval or a ratio value affects the 
frequency of discovery of apparent overdue Mass Storage System interrupts and corresponding 
frequency of operator notification through message IGF991E. 

The N value and Y value ratio fields must each contain an EBCDIC value from X'FOFl' to 
X'F9F9'. The N value and Y value defaults to X'FOF4'. 

Intercepting Hot 110 Interrupts 

Hot I/O occurs when a hardware malfunction causes repeated I/O interrupts. If left 
undetected, hot I/O interrupts can cause the system to loop or system queue area (SQA) to be 
exhausted. The I/O supervisor (lOS) attempts to detect the hot I/O so that the problem can 
be resolved before the system requires a re-IPL. 

Repeated I/O interrupts indicate a hot I/O problem. When the number of repeated 
interrupts exceeds anyone of four installation-defined threshold values (hot device, hot 
channel, hot control unit, or time out), the system assumes that there is a hot I/O condition. 
The system issues an operator message or enters a restartable wait state and prompts the 
operator to take corrective action. 

The timeout threshold detects hot I/O in situations where interrupts might be quite far 
apart. The threshold value must be set low enough to detect the interrupts. The timeout 
threshold value is incremented each time a repeated interrupt occurs after a specified time 
interval. 

The module IECVHIDT, which resides in the nucleus, contains the four threshold values 
and the time interval value that is used with the timeout threshold. The offsets and 
mM-supplied default values are as follows: 

DEFAULT ELEMENT 

OFFSET LENGTH VALUE DESCRIPTION 
0(0) 2 X'64' Hot channel threshold 

2(2) 2 X'64' Hot device threshold 
4(4) 2 X'08' Timeout threshold 
6(6) 2 X'04' Timeout interval in seconds 

8(8) 2 X'800' Hot control unit threshold 

110 OS/VS2 System Programming Library: Supervisor 

( 



o 

o 

The possible range of each threshold value is from 0 to X'7FFF'. A threshold value of 0 
specifies that hot I/O is not to be detected for that element, while too Iowa value might result 
in false detection. 

The values can be replaced using AMASPZAP. The following example modifies the control 
unit threshold to eliminate hot I/O detection and increases the threshold for hot channel 
interrupts. 

//MODIFY 
//STEP 
//SYSPRINT 
//SYSLIB 
//SYSIN 

/* 

JOB 
EXEC 
DD 
DD 
DD 
NAME 
VERIFY 
VERIFY 
REP 
REP 

MSGLEVEL=(1,1 ) 
PGM=AMASPZAP 
SYSOUT=A 
DSNAME=SYS1.NUCLEUS,DISP=OLD 
* IEANUC01 IECVHIDT 
0000 0064 
0008 0800 
0000 0090 
0008 0000 

If lOS detects hot I/O and later investigation determines that no hardware malfunction 
occurred, increase the appropriate threshold value. If hot I/O causes the exhaustion of SQA 
before detection and recovery, decrease the appropriate threshold value. 

Adding Code to the Power Warning Feature Support 

The power warning feature support, along with its supporting hardware, prevents the loss of 
information in real storage at the occurrence of a utility power disturbance. The supporting 
hardware must include an uninterruptable power supply to provide alternate power and 
equipment to signal the power warning feature support routines when a disturbance occurs. 

The power warning feature support, after receiving the signal of a power disturbance, and 
determining the significance of the disturbance, can transfer the contents of real storage to 
disk. After utility power is restored, the customer can use the power warning feature support 
"restore" routine to refresh the contents of real storage from disk. 

Adding code to the machine check handler appendage -- You can add code that executes after 
receipt of the signal that indicates that a sustained power disturbance has occurred. Your code 
can then permit transfer of real storage to a warn data set or have control returned to the 
supervisor. 

Adding code to the master scheduler initialization module -- You can add code that executes when 
a warn data set contains an image of real storage and the system operator chooses FORM 
during system IPL. Your code. executes just before the warn data sets are erased and 
reformatted. 

Note: For details on the warn data set, see OS/VSl System Programming Library: System 
Generation Reference, GC26-3792. 

Note: Since adding code to the power warning feature support requires considerable 
programming skill, before attempting any addition you should carefully examine the 
complexities involved. 

Virtual Storage Management t t t 



Writing Code lor the Machine Check Handler Appendage 

You can insert code that executes when the power warning feature support is entered due to a 
power warning interrupt that would normally cause the transfer of real storage to the warn 
data set. After your code executes you can either cause control to be transferred to the dump 
routine or have control returned to the machine check handler for the system to continue 
processing. 

As shown in Figure 24, the machine check handler appendage consists of three parts: 1) the 
warning appendage, 2) your code, and 3) the dump routine. 

The warning appendage routine, after a power interruption, receives control from the 
system's machine check handler. This warning appendage monitors the power interruption 
during the time delay you specified in the CTRLPROG macro instruction at system generation. 
If a machine check occurs during the time delay, the remainder of the time delay is canceled. 

Normally your code receives control at the end of the time delay, assuming the power 
interruption is still present. If the utility power returns before the expiration of the time delay, 
control returns to the supervisor, via the machine check handler. 

The dump routine transfers the contents of real storage to a warn data set. After execution 
of the dump routine, the system enters a wait state. 

To include code: 

1. Use ICFBDESO as csect the name of your code. 

2. Assemble csect ICFBDESO. 

3. Link ICFBFOO with the REPLACE option, replacing csect ICFBDESO with your csect 
ICFBDESO into DISTLm AOSCE. 

4. Link IEANUC01 from SYS1.NUCLEUS, include ICFBDFOO from DISTLm AOSCE 
and replace in SYS l.NUCLEUS. 

S. Update the SMPCDS to reflect this change for regression messages. 

112 OS/VS2 System Programming Library: Supervisor 



o 

c:' 

Machine Check New PSW 

Machine Check 
" Interrupt Handler 

r---Warning-- - --

Appendage "II,. 

Check environment 
and time delay 

I 

Your Code 

Return Code 4 • 

Return Code 0 _ 

-- -
Machine Check Handler Appendage 
(lCFBDFOO) -- --------, 

JI' 

Dump Routine 

Write real storage 
to a warn data set 

J 
System Walt State 

• Code X'026' if successful 

• Code X'027' if not successful 

L _________________ J 
Figure 24. Logical Placement of Your Code in the Machine Check Handler Appendage 

Coding Considerations 

At entry to your code, Register 9 addresses the PWF Communication area, Register 14 
contains the return address, and Register 15 contains the address of your first instruction. 
Your code must save and restore all the general registers except register 15, prior to the exit 
from your code. You must also restore all control registers and all real storage outside of your 
inserted code. Register 15 must be set to 0 if you wish real storage to be transferred to a warn 
data set, or be set to 4 if you wish to resume system operations with all power warning 
interrupts disabled. 

Your code is entered: 

• Key zero. 
• Disabled for all interrupts. 
• In supervisor state. 

Your code must not: 

• Use supervisor services. 
• Contain Address Constants A-type or V -type since your code may be relocated. 

Note: With a multiprocessing system, your program is executed by only one processor. 

Virtual Storage Management 113 

-""."."." . __ .... , .. ", .. ,."" .. ,-----------



Writing Code for the Master Scheduler Initialization Routine 

You can write a routine that executes when there is a real storage image on a warn data set, 
just before warn data sets are erased and reformatted. 

As shown in Figure 25, during IPL, if the warn data set contains information from real 
storage, the system operator can choose to respond either REST or FORM. REST causes real 
storage to be refreshed with the contents of the warn data set. FORM causes a transfer of 
control to your code; after your code returns control, the warn data sets are erased and 
reformatted by the power warning feature support. If you have not replaced csect ICFBIE50 
FORM immediately causes the warn data set to be erased and reformatted. 

To include code: 

1. Use ICFBIE50 as the csect name of your code. 

2. Assemble csect ICFBIESO. 

3. Replace csect ICFBIE50 with your csect by performing the following link edit steps: 

a. Include your replacement csect for ICFBIE50. 

b.Include ICFBIFOO from DISTLm AOSCE and re-link to AOSCE. 

c. Include ICFBIFOO (containing your csect) from DISTLm AOSCE. 

d. Include IEEMB860 (the master scheduler initialization module) from SYS I.LiNKLm 
and replace in SYS I.LINKLm. 

4. Update the SMPCDS to reflect this change for regression messages. 

Master Scheduler Initialization Routine 

IPL 

1------- ------, 
I 
I 
I 
I 
I 
I 

REST 

r------'---------, I Determine that a warn 
data set contai ns an 
image of real storage. I 

FORM 

L ________ ----, 

I 
I 
I 
I 
I 
I 
I 

Restore I 
.ICFBDE99 Routine I 

Refresh real storage 
from warn data set I 

I 
L __ __ --.J 

System Wait State 
• Restore was successful 

Code X'026' 
• Restore was not successful 

Code X'027' 

Return to IPL 

Figure 25. Logical Placement of Your Code in Master Scheduler Initialization Module 

114 OS/VSl System Programming Library: Supervisor 



o 

C' 
" ; 

Coding Considerations: 

At entry to your code: Register 13 addresses the register save area, Register 14 contains the 
return address, and Register 15 contains the address of your first instruction. Register 1 points 
to a word that contains the address of the TIOT for the warn data set. 

If your code attempts to read information on the warn data set, it should first reference the 
control record to get vital information about the data set. The control record is the first record 
on logical cylinder 0 on each warn data set. This record indicates if the warn data set contains 
information from real storage and indicates its format. The format of the control record is 
shown in Figure 26. 

When your code gets control, the environment is as follows: 

• Your code is pageable. 
• Your code is transient. 
• Your code cannot obtain permanent storage within the region. 
• Consoles are available for your code to write to operator. 
• Job Scheduler and SYSIN/SYSOUT services are not available. 

If your system is an M158 or M168 multiprocessor, you must consider that the first address 
after the last unused address starts a new cylinder on the warn data set. As shown in Figure 
27, addresses 0, 2000K, and 5000K start new cylinders. An unused address refers to a location 
in real storage that is not available because of settings of the console switches. 

Virtual Storage Management 115 



Control Track Record 

This record is located on cylinder 0 on each warn data set. 

Size/Bits 
Offset Length Name Description 

0 (0) 4 ICFCTID This is the identifier of the first word of the control track 
record. 
It always contains CNTL. 

4 (4) 128 ICFCTCF This area contains 128 byte-indicators. One indicator can be 
allocated to each of 128 cylinders. (128 cylinders will 
accommodate 16 megabytes of real storage.) Each byte 
indicator is structured as follows: 

00 ...... Indicates no data on this cylinder. 
01 ...... Real storage has been transferred to this cylinder and this 

cylinder contains no defective tracks. 
10 ...... Real storage has been transferred to this cylinder, and this 

cylinder contains a defective track. 
.. xx xxxx Contains the track number of either the defective or spare 

track. (The spare track is the last track on the cylinder.) 
132(84) 1 ICFCTFLA Status flags. 

00 .. 00 .. The data set is formatted, but contains no data. 
10 .. 00 .. This data set contains a successful transfer from real storage. 
00 .. 10 .. This data set contains a partial transfer from real storage. 
10 .. 01.. This data set contains a successful transfer from real storage, 

but at least one track was found defective. 
.. xx .. xx Reserved. Set to zero . 

133(85) 3 Reserved. 
136(88) 4 ICFCTTS Track size. Number of bytes in each track. 
140(8C) 4 ICFCTAWA The real storage address of the PWF Communication area in 

real storage. 
144(90) 128 ICFCTBll This area contains eight 16-byte fields. Each 16-byte field 

represents a contiguous area of real storage on this data set. 
144(90) 16 ICFCTB11 Information concerning 1 st contiguous area of real storage. 

4 ICFCTBll Contains the real storage address of the 1 st byte represented by 
this field. (In this case, this byte contains O's.) 

4 ICFCTB12 Contains the cylinder and track on this data set where this 
contiguous real storage begins. 

4 ICFCTB13 Contains the real storage address of the last byte represented 
by this field. 

4 ICFCTB14 Contains the cylinder and track on this data set where this 
contiguous real storage ends. 

160(AO) 16 ICFCTB21-24 Information concerning 2nd contiguous area of real storage. 
176(BO) 16 ICFCTB31-34 Information concerning 3rd contiguous area of real storage. 
192(CO) 16 ICFCTB41-44 Information concerning 4th contiguous area of real storage. 
208(DO) 16 ICFCTB51-54 Information concerning 5th contiguous area of real storage. 
224(EO) 16 ICFCTB61-64 Information concerning 6th contiguous area of real storage. 
240(FO) 16 ICFCTB71-74 Information concerning 7th contiguous area of real storage. 
256(100) 16 ICFCTB81-84 Information concerning 8th contiguous area of real storage. 
272(110) 8 ICFCTST Contains a true reading (binary) of the time-of-day clock when 

system was last IPLed: or if after a dump, the time at which 
processing of last PLD began. 

280(118) 8 ICFCTED Contains a true reading (binary) of time-of-day clock at the 
end of the last real storage transfer to the warn data set. 

288(120) 4 ICFTTPC Total number of tracks of each cylinder. 
292(124) 4 ICFCTRDA The address of this device. This field is set just before entering 

the restore routine. 

Figure 26. Control Track Record 

" I 

116 OS/VS2 System Programming Library: Supervisor 



----------_ .. _._----_._--_ ... .....•..... _._-_ .. _._._ ..•. _--------

C···' 
I 

c} 

Physical Real Storage 

Storage 
configuration 
assignments 

Address. 
\ , \ \ \ \ assignment of 

\ \ \ \ \ LQ.:JOOOK __ _ 

\ \ \ \ 
\ \ \ \ '\2.000K ~ 3000K 

\ . \ \ 
\ \ \ \JiQ9Q!< ....!~OO~ 
\ \ \ 

\ \ \~!!!vai~~ __ 
\ \ 
\ '-Un~~~~ __ 

1 Megabyte 

1 Megabyte 

1 Megabyte 

1 Megabyte 

1 Megabyte 

\_u~a~ila~,=- _ i---------t 
1 Megabyte 

Dump of 
real storage 

A ) 

Note: Addresses 1000K to 2000K, and 3000K to 5000K are unused. 
The first address after a unused address starts a new cylinder. 

Figure 27. Storage Assignments on MP Systems 

Limiting User Region Size - IEALIMIT 

Warn Data Set 

An installation can enforce a region-size limit by writing an exit routine that is invoked once 
per step when the initiator is establishing region size. If an installation-written exit routine does 
not exist, an mM-supplied routine receives control. 

The installation-written exit routine, which replaces the mM-supplied routine, must be 
named IEALIMIT and must be link-edited into the nucleus. The routine must observe standard 
linkage conventions. 

Upon entry to the IEALIMIT routine, the register contents are as follows: 

Register 

Register 
Register 
Register 
Register 

o number Of bytes requested by the application program for its region (specified implicitly 
through the REGION parameter or implicitly through the default JCL value) 
same as register 0 

13 address of standard save area 
14 return address 
15 entry point address for the IEALIMIT routine 

Upon exit from the IEALIMIT routine, the register contents must be as follows: 

Register 
Register 

o number of bytes to be used as the region parameter value 
number of bytes to be used as the limit on all types of requests from subpools 0-127, 251 
and 252 

Registers 2-13 restored 
Registers 14-15 irrelevant 

If the input register 1 is non-zero when the mM-supplied IEALIMIT receives control, then 
IEALIMIT adds 64K to the contents of register 1 and returns. Register 0 remains unchanged. 
The register 1 value is used to limit the total allocation of storage from subpools 0-127, 251, 
and 252. 

Virtual Storage Management 117 



If the IBM-supplied IEALIMIT routine receives control and the input register 1 contains a 
zero, then IEALIMIT returns a zero in register 1 and no limit is assigned (to a job, a started 
program, or a TSO user). No limit is set only when the REGION parameter is not specified 
and the default value is zero. 

When no limit is set, sufficient space within a region may be obtained via repeated small 
GETMAINs or via a single large GETMAIN, such that no space remains in the private area 
for use by the system. This situation is likely to occur when a variable GETMAIN is issued 
which specifies such a large maximum value that most or all of the space remaining in the 
private area is allocated to the requestor. Therefore, it is strongly recommended that a region 
size be specified on the JOB or EXEC statement, or that the default region size for the job 
class not be zero. 

After the IEALIMIT routine determines the appropriate limit, it must pass back to 
lEA VPRTO, via register 1, a numeric value that represents the imposed limit in bytes. As 
noted above, a zero returned in register 1 indicates that a limit is not imposed. The IEALIMIT 
routine should pass back, in register 0, a value that is less than that in register 1. Both register ° and 1 should be rounded to a multiple of 4K. lEA VPRTO stores register ° as the REGION 
parameter value and register 1 as the IEALIMIT value for future reference (that is, for use in 
processing subsequent GETMAINs as described below). 

The REGION parameter value (register 0) should be less than the IEALIMIT value 
(register 1) to protect against programs that issue variable-length GETMAINS with very large 
maximums, and then do not immediately FREEMAIN part of that space or FREEMAIN such 
a small amount that a subsequent GETMAIN (possibly issued by a system service) causes the 
job to fail. As an example, suppose that a program issues a variable-length GETMAIN with a 
maximum of 224-1 bytes. If the REGION parameter value is not less than the IEALIMIT value, 
all the space in the region up to the IEALIMIT value is allocated, and any subsequent 
GETMAIN that cannot be satisfied from free space in an already existing subpool causes the 
job to fail. If however, the REGION parameter value is made less than the IEALIMIT value, 
only space up to the REGION parameter value is allocated for the GETMAIN. Thus, an 
amount of space equal to the IEALIMIT value minus the REGION parameter value remains 
for subsequent GETMAINs. 

The REGION parameter value specifies the maximum amount of storage that can be 
allocated to a job by any single variable-length GETMAIN request. The IEALIMIT value 
specifies the maximum total storage that can be allocated to a job by any combination of 
GETMAINs. The relationship between the REGION parameter value and the IEALIMIT value 
and their effect upon both fixed-length and variable-length GETMAINs is shown in Figure 28. 

118 OS/VS2 System Programming Library: Supervisor 

f 
I 



c 

c' 

... _---- .... --- .. '-'- ._ ...... _--_._._---- ... _--------_ .... ----_ .. __ ... _--_.-

Type of GETMAIN 
Fixed-length: 
IEALIMIT value minus currently alloc 

space ~ request 
IEALIMIT value minus currently alloc 

space < request 

Results 

Satisfied 

Rejected 

Variable-length: (REGION parm < IEALIMIT or REGION parm > IEALIMIT 
and IEALlMIT=O) 

REGION parm minus currently alloc Maximum is allocated. 
space ~ max 

min ~ REGION parm minus currently Unallocated is allocated. 
alloc space ~ max 

REGION parm minus currently alloc Minimum is allocated as 
space ~ min long as IEALIMIT is not exceeded (in which case the 

request fails unless IEALIMIT=O). 
Variable-length: (REGION parm ~ IEALIMIT and IEALIMIT :F 0) 
IEALIMIT minus currently alloc Maximum is allocated. 

space ~ max 
min ~ IEALIMIT minus currently alloc 

space ~ max 
Unallocated amount is 
allocated. 
Minimum is allocated as IEALIMIT minus currently alloc 

space ~ min long as IEALIMIT is not exceeded (in which case the 
request fails). 

Figure 28. The Effects of IEALIMIT and REGION Values on Various GETMAINs 

For example, assume that application program A has the following characteristics: 

IEALIMIT value l50K 
REGION-parameter value lOOK 
Currently allocated space 80K 

Program A issues the following variable-length GETMAIN requests in the order indicated: 

1. Request 5K-10K: 10K is allocated; currently allocated space is now 90K. Because the 
amount currently allocated (80K) does not exceed the REGION-parameter value (lOOK) 
and because the amount unallocated (20K - relative to the REGION-parameter value) is 
greater than the maximum amount requested (10K), the maximum is allocated. 

2. Request 5K-100K: 10K is allocated; currently allocated space is now lOOK. Because the 
amount unallocated (lOK - relative to the REGION-parameter value) is between the 
minimum and maximum, the amount unallocated is allocated. 

3. Request 40K-100K: 40K is allocated; currently allocated space is now 140K. Because 
the amount unallocated (OK - relative to the REGION-parameter value) is less than the 
minimum amount requested (40K), the minimum amount is allocated. 

4. Request 15K-50K: the GETMAIN request fails. The amount unallocated (OK - relative 
to the REGION-parameter value) is less than the minimum amount requested (15K). If 
the minimum amount were allocated, the currently allocated amount would become 
155K, which exceeds the IEALIMIT value (150K). Therefore, the request fails. 

Virtual Storage Management 119 



120 OS/VS2 System Programming Library: Supervisor 



o Part n: Reference - Macro Instructions 

You can communicate service requests to the control program using a set of macro instructions 
provided by ffiM. Most of the macro instructions have no restrictions on use by applications 
programmers, however, use of some of the macro instructions should be restricted to systems 
programmers and installation-approved personnel. 

This section describes those Supervisor· macro instructions that should be 
installation-controlled. Some macro instructions should be totally restricted in use; these are 
described fully in this book. Other macro instructions are not restricted in use, but do contain 
some parameters that should be restricted; in these cases, only the parameters that should be 
restricted are fully described in this book. In all cases, however, the format of the complete 
macro instruction is described. 

Figure 29 lists all macro instructions described in this book, and indicates which ones are 
fully described and which ones are partially described. 

Part II: Reference - Macro Instructions 121 

._---_ .. _--_._----



Macro Instruction Fully Partially 
Described Described 

CALLDISP X 
CALLRTM X 
CHANGKEY X 
CIRB X 
DSGNL X 
EXTRACT X 
FESTAE X 
MODESET X 
NIL X 
OIL X 
PGFIX X 
PGFREE X 
PURGEDQ X 
QEDIT X 
RACDEF X 
RACINIT X 
RACLIST X 
RESERVE X 
RESUME X 
RISGNL X 
RPSGNL X 
SCHEDULE X 
SDUMP X 
SETFRR X 
SETLOCK X 
SPOST X 
STAE X 
SUSPEND X 
SYNCH X 
TCTL X 
TESTAUTH X 
T6EXIT X 

ATTACH X 
DEQ X 
ENQ X 
ESTAE X 
EVENTS X 
FREEMAIN X 
GETMAIN X 
POST X 
RACHECK X 
SETRP X 
SPIE X 
STATUS X 
WTO X 
WTOR X 

Figure 29. Macro Instruction Coverage 

The macro instructions are available only when programming in the assembler language, and 
are processed by the assembler program using macro definitions supplied by mM and placed in 
the macro library when the· system was generated. The processing of the macro instruction by 
the assembler program results in a macro expansion, generally consisting of data and 
executable instructions in the form of assembler language statements. The data fields are the 
parameters to be passed to the requested control program routine. The executable instructions 
generally consist of a branch around the data, instructions to load registers, and either a 
branch instruction or a supervisor call (SYC) to give control to the proper program. The exact 
macro expansion appears as part of the assembler output listing. 

122 OS/VS2 System Programming Library: Supervisor 

I 
I 



o 

c) 

-----------~-- ----.... __ .. - -------- -- --- --- ----

Macro Instruction Forms 

.. _ .... - -_. ·_---_.- _ ... _ ... _-_._---_. __ .. ----

When written in the standard form, some of the macro instructions result in instructions that 
store into an inline parameter list. The option of storing into an out-of-line parameter list is 
provided to allow the use of these macro instructions in a reenterable program. You can 
request this option through the use of list and execute forms. When list and execute forms 
exist for a macro instruction, their descriptions follow the description of the standard form. 

Use the list form of the macro instruction to provide a parameter list to be passed either to 
the control program or to a problem program, depending on the macro instruction. The 
expansion of the list form contains no executable instructions; therefore registers cannot be 
used in the list form. 

Use the execute form of the macro instruction in conjunction with one or two parameter 
lists established using the list form. The expansion of the execute form provides the executable 
instructions required to modify the parameter lists and to pass control to the required program. 

The descriptions of the following macro instructions assume that the standard begin, end, 
and continue columns are used -- for example, column 1 is assumed as the begin column. To 
change the begin, end, and continue columns, code the ICTL instruction to establish the 
coding format you wish to use. If you do not use ICTL, the assembler recognizes the standard 
columns. To code the ICTL instruction, see OS/VS - DOS/VS - VM/370 Assembler Language. 

Part II: Reference - Macro Instructions 123 

------------------------------



Coding the Macro Instructions 

The table appearing near the beginning of each macro instruction indicates how the macro 
instruction is to be coded. The table does not attempt to explain the meanings of the 
parameters; the parameters are explained following the table. 

Figure 30 presents a sample macro instruction, TEST, and summarizes all the coding 
information that is available for it. The table is divided into three columns. 

CPcP <r 
name 

b 

@--TEST 

b 

MATH 

@--HIST 
GEOG 

,DATA=data addr 

@------- ,LNG=data length 

,FMT=HEX 

@---- ,FMT=DEC 

,FMT=BIN 

,P ASS=value 

Figure 30. Sample Macro Instruction 

name: symbol. Begin name in column 1. 

One or more blanks must precede TEST. 

One or more blanks must follow TEST. 

data addr: RX-type address, or register (2) - (12). 

data length: symbol or decimal digit, with a maximum value of 

256. 

Default: FMT=HEX 

value: symbol, decimal digit, or register (1) or (2) - (12). 

Default: P ASS=65 

• The first column,0, contains those parameters thaLare required for that macro 
instruction. If a single line appears in that column, @' the parameter on that line is 
required and must be coded. If two or more lines appear together, @' the parameter 
appearing on one and only one of the lines must be coded. 

• The second column,@, contains those parameters ;b{t are optional for that macro 
instruction. If a single line appears in that column, ~, the parameter on that line is 
optional. If two or more lines appear together,lB2\, although the entire parameter is 
optional, if you elect to make an entry, one anYonly one of the line~ may be coded. 

• The third column, ©, provides additional information for coding the macro instruction. 
When substitution of a variable is required, the following classifications should be 
understood: 

symbol: any symbol valid in the assembler language. That is, an alphabetic character followed 
by 0-7 alphameric characters, with no special characters and no blanks. 

decimal digit: any decimal digit up to the value indicated in the parameter description. If both 
symbol and decimal digit are indicated, an absolute expression is also allowed. 

register (2) - (12): one of general registers 2 through 12, specified within parentheses, 
previously loaded with the right-adjusted value or address indicated in the parameter 
description. The unused high-order bits must be set to zero. The register may be designated 
symbolically or with an absolute expression. 

124 OS/VS2 System Programming Library: Supervisor 

, , 

, , 



---------------_._---_._----------_.--- ---------------- -- _ .. _-------- .... -----._------

C
" 

I 

o 

register (0): general register 0, previously loaded as indicated under register (2) - (12) above. 
Designate the register as (0) only. 

register (I): general register 1, previously loaded as indicated under register (2) - (12) above. 
Designate the register as (1) only. 

RX-type address: any address that is valid in an RX-type instruction (for example, LA). 

A-type address: any address that may be written in an A-type address constant. 

default: a value that is used in default of a specified value, and that is assumed if the 
parameter is not coded. 

Use the parameters to specify the services and options to be performed, and write them 
according to the following general rules: 

• If the selected parameter is written in all capital letters (for example, STEP, DUMP, or 
RET=USE), code the parameter exactly as shown. 

• If the selected parameter is written in italics (for example, value or comp code), 
substitute the indicated value, address, or name. 

• If the selected parameter is a combination of capital letters and italics separated by an 
equal sign (for example, EP=entry point), code the capital letters and equal sign as 
shown, and then make the indicated substitution for the italics. 

• Read the table from top to bottom. 

• Code commas and parentheses exactly as shown. 

• Positional parameters (parameters without equal signs) appear first and must be coded in 
the order shown. Keyword parameters (parameters with equal signs) may be coded in 
any order. 

• If a parameter is selected, read column 3 before proceeding to the next parameter. 
Column 3 will often contain notes pertaining to restrictions on coding the parameter. 

Continuation Lines 

You can continue the parameter field or' a macro instruction on one or more additional lines 
according to the following rules: 

1. Enter a continuation character (not blank, and not part of the parameter coding) in 
column 72 of the line. 

2. Continue the parameter field on the next line, starting in column 16. All columns to the 
left of column 16 must be blank. 

You can code the parameter field being continued in one of two ways. Code the parameter 
field through column 71, with no blanks, and continue in column 16 of the next line; or 
truncate the parameter field by a comma, where a comma- normally falls, with at least one 
blank before column 71, and then continue in column 16 of the next line. Figure 31 shows an 
example of each method. 

NAME 1 OP1 OPERAND1,OPERAND2,OPERAND3,OPERAND4,OPERA X 
ND5,OPERAND6 THIS IS ONE WAY 

NAME 2 OP2 OPERAND1,OPERAND2, THIS IS ANOTHER X 
OPERAND3, WAY X 
OPERAND4 

Figure 31. Continuation Coding 

Part II: Reference - Macro Instructions 125 

----_._._------_ ....... _--- ....... --. ._----------



ATTACH - Create a New Task 

The ATTACH macro instruction is described in the OS/VS2 Supervisor Senices and Macro 
Instructions, with the exception of the JSTCB, SM, SVAREA, KEY, DISP, JSCB, TID, 
NSHSPV, NSHSPL, and RSAPF parameters. These parameters are restricted in use and should 
only be used with tasks in supervisor mode and/or having a system protection key. If they are 
used with other tasks, the default values are used. 

The syntax of the complete ATTACH macro instruction is shown as follows. However, only 
the explanation of the restricted parameters is presented. Explanation of the other parameters 
can be found in OS/VS2 Supervisor Senices and Macro Instrnctions. 

The standard form of the ATTACH macro instruction is written as follows: 

116 OS/VS1 System Programming Library: Supervisor 

-------------------~--- -- ------_.---, ---



o 

name 
b 
ATTACH 
b 

EP=entry name 
EPLOC=entry name addr 
DE=list entry addr 

,DCB=dcb addr 
,LPMOD=limit prior nmbr 
,DPMOD=disp prior nmbr 
,PARAM=(addr) 
,PARAM= (addr) ,VL= 1 

,ECB=eeb addr 
,ETXR=exit rtn addr 
,GSPV=subpool nmbr 
,GSPL=subpool list addr 
,SHSPV=subpool nmbr 
,SHSPL=subpool list addr 
,SZERO=YES 
,SZERO=NO 
,TASKLIB=deb addr 
,ST AI=(exit addr) 
,STAI=(exit addr,parm addr) 
,ESTAI=(exit addr) 
,ESTAI=(exit addr,parm addr) 
,PURGE=QUIESCE 
,PURGE=NONE 
,PURGE=HALT 
,ASYNCH=NO 
,ASYNCH= YES 

,TERM=NO 
,TERM=YES 
,JSTCB=NO 
,JSTCB=YES 
,SM=PROB 
,SM=SUPV 
,SVAREA= YES 
,SVAREA=NO 
,KEY=PROP 
,KEY=ZERO 
,DISP=YES 
,DISP=NO 
,JSCB=jseb addr 
,TID=task id 

,NSHSPV=subpool nmbr 
,NSHSPL=subpool list addr 
,RSAPF=NO 
,RSAPF=YES 
,RELATED = value 

~ .... ---... -----...... ----

name: symbol. Begin name in column 1. 

One or more blanks must precede ATTACH. 

One or more blanks must follow ATTACH. 

entry name: symbol. 
entry name addr: A-type address, or register (2) - (12). 
list entry addr: A-type address, or register (2) - (12). 
deb addr: A-type address, or register (2) - (12). 

limit prior nmbr: symbol, decimal digit, or register (2) - (12). 

disp prior nmbr: symbol, decimal digit, or register (2) - (12). 

addr: A-type address, or register (2) - (12). 
Note: addr is one or more addresses, separated by commas. For 
example, PARAM=(addr,addr,addr) 
ecb addr: A-type address, or register (2) - (12). 

exit rtn addr: A-type address, or register (2) - (12). 

subpool nmbr: symbol, decimal digit, or register (2) - (12). 
subpool list addr: A-type address, or register (2) - (12). 

sub pool nmbr: symbol, decimal digit, or register (2) - (12). 
subpool list addr: A-type address, or register (2) - (12). 

Default: SZERO= YES 

deb addr: A-type address, or register (2) - (12). 

exit addr: A-type address, or register (2) - (12). 
parm addr: A-type address, or register (2) - (12). 

Note: PURGE may be specified only if ST AI or ESTAI is specified. 
Default for STAI: PURGE=QUIESCE 
Default for ESTAI: PURGE=NONE 
Note: ASYNCH may be coded only if ST AI or EST AI is specified. 
Default for STAI: ASYNCH=NO 
Default for ESTAI: ASYNCH=YES 
Note: TERM may be specified only if EST AI is specified. 
Default: TERM=NO 
Default: JSTCB=NO 

Default: SM=PROB 

Default: SV AREA= YES 

Default: KEY =PROP 

Default: DISP=YES 

jseb addr: A-type address, or register (2) - (12). 
task id: decimal digits 0-255, or register (2) - (12). 
Default: TID=O 
subpool nmbr: symbol, decimal digit, or register (2) - (12). 
subpool list addr: A-type address, or register (2) - (12). 
Default: RSAPF=NO 

value: any valid macro keyword specification. 

The parameters restricted in use are explained as follows. (The other parameters are explained 
in OS/VS2 Supervisor Services and Macro Instructions.) 

A IT ACH - Create a New Task 127 

._-_. __ ..... _----_._ ... ---_ .... - ..... __ .. _-----------------_ .. _---_. __ . 



,JSTCB=NO 
,JSTCB=YES 

specifies whether the attached task is a new job step (YES) or a task in the present job step 
(NO). If YES is specified, the address of the TCB of the newly created task is placed in the 
TCBJSTCB field of the TCB; if NO is specified, the TCBJSTCB field of the task using 
ATTACH is propagated to the new task. 

,SM=PROB 
,SM=SUPV 

specifies that the system is to run in problem program mode (PROB) or in supervisor mode 
(SUPV) when executing the attached task. 

,SV AREA = YES 
,SVAREA=NO 

specifies whether a save area is needed for the attaching task. If YES is specified, the 
A IT ACH routine obtains a 72-byte save area. If both attaching and attached task share 
subpool zero, the save area is obtained there; otherwise, it is obtained from a new 4K-byte 
block. 

,KEY = PROP 
,KEY = ZERO 

specifies whether the protection key of the newly created task should be zero (ZERO) or 
copied from the TCBPKF field of the TCB for the task using ATTACH (PROP). 

,DISP=YES 
,DISP=NO 

specifies whether the subtask is to be dispatchable (YES) or nondispatchable (NO). (Note: 
If DISP=NO is specified, the attaching task must use the STATUS macro instruction to 
reset the TCBANDSP nondispatchability bit to 0, before the ATTACH processing can be 
completed for the new task.) 

,JSCB = jscb addr 
specifies the address of the job step control block. If specified, the JSCB is used for the 
new task. Otherwise, the JSCB of the attaching task is also used for the new task. 

,TID = task id 
specifies the task identifier to be placed in the TCBTID field of the attached task. 

,NSHSPV = subpool nmbr 
,NSHSPL = subpool list addr 

specifies the virtual storage subpool number 236 or 237, or the address of a list of virtual 
storage subpool numbers 236 and 237. The subpools specified will not be shared with the 
subtask. 
If NSHSPL is specified, the first byte of the list contains the number of bytes remaining in 
the list; each of the following bytes contains a virtual storage subpool number. 

,RSAPF = YES 
specifies that the attached subtask may come from an unauthorized library. If, however, it 
comes from an APF-authorized library and is link-edited with the APF-authorized attribute, 
then the step begins execution with APF authorization. 
The default (RSAPF=NO) applies unless the following conditions are met: 

• The caller is running in supervisor state, system key (0-7), or both. 
• The caller is running non-APF authorized. 
• The attached task is ATTACHed in the problem program state and with a non-system 

key. 

,RELATED = value 
specifies information used to self-document macro instructions by "relating" functions or 
services to corresponding functions or services. The format and contents of the information 
specified are at the discretion of the user, and may be any valid coding values. 

128 OS/VS2 System Programming Library: Supervisor 



-----------------~-----

The RELATED parameter is available on macro instructions that provide opposite services 
(for example, ATIACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and 
on macro instructions that relate to previous occurrences of the same macro instructions (for 
example, CHAP and ESTAE). 

The parameter may be used, for example, as follows: 

ATTCH1 ATTACH EP=MYJOB,ECB=MYECB,RELATED=(DETCH1, 
'CREATE SUBTASK' ) 

DETCH1 DETACH (1 ),RELATED=(ATTCH1,'DETACH SUBTASK') 

When control is returned, register 15 contains one of the following return codes: 

Hexadecimal 
Code 

00 
04 
08 

OC 

14 

18 

Meaning 

Successful completion. 
A IT ACH was issued in a ST AE exit; processing not completed. 
Insufficient storage available for control block for ST AI/EST AI request; processing not 
completed. 
Invalid exit routine address or invalid parameter list address specified with ST AI 
parameter; processing not completed. 
Authorized task specifying JSTCB= YES was not itself a job step task; processing not 
completed. 
Attempt to create a new subtask would result in both job step tasks and non-job step 
tasks being subtasks of current task; processing not completed. 

Note: For any return code other than 00, register 1 is set to zero upon return. 

Note: The program manager processing for ATIACH is performed under the new subtask 
after control has been returned to the originating task. Therefore, it is possible for the 
originating task to obtain return code 00, and still not have the subtask successfully created 
(for example, if the entry name could not be found by the program manager). In such cases, 
the new subtask is abnormally terminated. 

Example 1 

Operation: Attach program SYSPROGM, which will run with protection key 0 and in 
supervisor mode. SubpoolO is not to be shared, and the new task is not to have a savearea 
provided. 

ATTACH EP=SYSPROGM,KEY=ZERO,SM=SUPV,SZERO=NO,SVAREA=NO 

Example 2 

Operation: Attach as a new job step the program name addressed in register 7. The new task 
is to run in problem program mode, a savearea is to be provided, a job step control block is 
provided, subpool 0 is not to be shared, a task library DeB is provided, and the new task is to 
be nondispatchable. 

ATTACH EPLOC=(7),SM=PROB,JSTCB=YES,SVAREA=YES,SZERO=NO, 
JSCB=(5),DISP=NO,TASKLIB=(8) 

ATIACH - Create a New Task 129 



CALLDISP - Force Dispatcher Entry 

The CALLDISP macro instruction expands into an SVC that results in the caller's status being 
saved in the current TCB/RB, then the dispatcher is entered. The dispatcher then searches for 
the highest priority ready work to dispatch. When this task is redispatched, control is returned 
to the next sequential instruction. 

The CALLDISP macro instruction is written as follows: 

name 

CALLDISP 

BRANCH=NO 

BRANCH=YES 

name: symbol. Begin name in column 1. 

One or more blanks must precede CALLDISP. 

One or more blanks must follow CALLDISP. 

Default: NO 

The parameters' are explained as follows: 

BRANCH=NO 
BRANCH = YES 

specifies whether the branch entry (BRANCH = YES) or the SVC entry to the dispatcher is 
to be used. The default, BRANCH=NO, results\-in the use of the SVC entry. 

Example 1 

Operation: Pass control to a higher priority ready task. 

CALLDISP 

130 OS/VS2 System Programming Library: Supervisor 

\ 



C) 

C:I 

CALLRTM - Call Recovery ITermination Manager 

The CALLR TM macro instruction is used to direct the services of the recovery/termination 
manager to a task or address space other than itself or its callers. The recovery/termination 
manager selects the appropriate recovery or termination process according to the status of the 
system and the requests of its invokers. 

CALLRTM may be used only by key zero supervisor state routines. After execution of the 
macro instruction, control usually returns to the caller. H, however, the current task is 
abnormally terminated (ABTERM), control does not return to the caller. H the current address 
space is terminated (MEMTERM), control might or might not return to the caller before the 
MEMTERM takes effect. 

The CALLRTM macro instruction is written as follows: 

name 

CALLRTM 

TYPE=ABTERM 
TYPE = MEMTERM 

,COMPCOD=comp code 

,ASID=asid 

,TCB =tcb addr 

,DUMP=YES 
,DUMP=NO 

,STEP=NO 
,STEP=YES 

,DUMPOPT=parm list addr 

name: symbol. Begin name in column 1. 

One or more blanks must precede CALLRTM. 

One or more blanks must follow CALLRTM. 

comp code: symbol, decimal digit, or register (2) - (12). 

asid: decimal digits 0 - 32,765 or register (2) - (15). 

tcb addr: 0, or register (2) - (12). 
Note: This parameter may only' be specified with 

TYPE=ABTERM. 

Default: DUMP=YES 
Note: This parameter may only be specified with 
TYPE=ABTERM. 

Default: STEP=NO 
Note: This parameter may only be specified with 
TYPE=ABTERM. 

pann list addr: register (3) - (15). 

The parameters are explained as follows: 

TYPE == ABTERM 
TYPE == MEMTERM 

specifies that the services of the recovery / termination manager are being directed towards 
another task (ABTERM) or that an address space is to be terminated (MEMTERM). For 
MEMTERM, all recovery processing in the address space is circumvented. 

Note: H MEMTERM is specified, the caller must pass the address of an 18-word save area 
in register 13. 

CALLRTM - CaD Recovery/fennination Manager 131 



,COMPCOD ==comp code 
specifies the system completion code associated with the abnormal termination. This 
parameter can be specified as a hexadecimal code (x'80A'), a decimal code (2058), or a 
register containing a hexadecimal code; in all cases, the result is hexadecimal. 

,ASID == asid 
specifies the address space identifier of the address space to be terminated (for 
MEMTERM) or the address space identifier of the address space containing the TCB of the 
task to be terminated (for ABTERM). 

,TCB=lcb addr 
specifies the TCB address of the task to be terminated. 

,DUMP = YES 
,DUMP=NO 

specifies that a dump is (YES) or is not (NO) to be taken. If the DUMP OPT parameter is 
not also specified, the contents of the dump are defined by the / /SYSABEND, 
/ /SYSMDUMP, or / /SYSUDUMP DD statement and the system or user defined defaults. 

,STEP == NO 
,STEP==YES 

specifies that the entire job step is (YES) or is not (NO) to be abnormally terminated. 
,DUMP OPT == parm list addr 

specifies the address of a parameter list valid for the SNAP macro instruction. The 
parameter list is used to produce a tailored dump, and may be created using the list form of 
the SNAP macro instruction, or a compatible list may be created. The system dump options 
specified by the CHNGDUMP operator command can add to or override this parameter list. 
All recovery routines entered for the failure can also add to the list of dump options. The 
TCB, DCB, and STRHDR options available on SNAP are ignored if they appear in the 
parameter list; the TCB used is for the task that received ABEND, the DCB used is 
provided by the ABDUMP routine. If a / /SYSABEND, / /SYSMDUMP, or 
/ /SYSUDUMP DD statement is not provided, the DUMPOPT parameter is ignored. 

Example 1 

Operation: Terminate the current address space with a completion code of 123. 

CALLRTM TYPE=MEMTERM,COMPCOD=123,ASID=O 

Example 2 

Operation: Schedule ABTERM of the TCB whose address is specified in register 8. The 
ABTERM of this TCB takes place in the address space identified by the ASIO specified in 
register 5, and has a completion code of 123. 

CALLRTM TYPE=ABTERM,COMPCOD=123,ASID=(5),TCB=(8) 

132 OS/VS2 System Programming Library: Supervisor 

--------------------------------. 

( 



o 

f" 
L/ 

CHANGKEY - Change Virtual Storage Protection Key 

The CHANGKEY macro instruction changes the protection key and fetch protection status of 
one or more pages of virtual storage. The CHANGKEY function is available only for use by 
system components that execute in supervisor state under protection key zero. 

The CHANGKEY function is valid for virtual storage obtained by GETMAIN in page 
multiples from problem program subpools. The requesting program must hold the local lock, 
but should not hold the SALLOC because execution of the CHANGKEY macro instruction 
results in the release of SALLOC. 

The CHANGKEY macro instruction is written as follows: 

name 

CHANGKEY 

R,BA=page addr ,EA=page addr 

L,LIST AD:list addr 

,KEY =slor key 

,BRANCH= YES 

name: symbol. Begin name in column 1. 

One or more blanks must precede CHANGKEY. 

One or more blanks must follow CHANGKEY. 

page addr: A-type address or register (1)-(13). 

Note: The R-type macro expansion alters the contents or register 

2. EA should not be specified as (1). 

list addr: A-type address or register (1)-(13). 

stor key: Decimal digit 0-15 or register (0) or register (3)-(13). 

Required. 

The explanation of the parameters follows: 

R,BA = page addr,EA = page addr 
L,LIST AD = list addr 

specifies the type of CHANGKEY request: 
R indicates a request to change the key of a single area of virtual storage. 

L indicates a request to change the key of one or more areas of virtual storage. 

BA specifies the address of the first byte of the first page of the virtual storage area whose 
key is to be changed. 

EA specifies the address of the first byte of the last page of the virtual storage area whose 
key is to be changed. 

Note: BASEA 

LIST AD specifies the address of the first double-word of a variable length parameter list in 
fixed storage. The first word of each element is defined as BA above and the second word 
of each element as EA above. The last element in the parameter list is indicated by the high 
order bit in the second word when the bit is one. 

CHANG KEY - Change Virtual Storage Protection Key 133 

--_ ....... "., .. _._-"_.,, .. __ .. _-" .... _--_ .. _---"".--_._. --_.- ... " .. ","---



,KEY = stor key 
specifies the new storage key and fetch protection status for the virtual storage areas ,I 

specified. If the stor key specification is a decimal digit, then the supervisor assumes the 
user wants fetch protection. If the user does not want fetch protection, he should specify 
the protection key he wants in bits· 24-27 of a register and leave bit 28 at zero to indicate 
that he doesn't want fetch protection. 

,BRANCH == YES 
The only entry available into the CHANGKEY service routine is branch entry. 
Note: The requestor must have address ability to the CVT. 

Upon completion of the CHANGKEY macro instruction, register 15 contains a zero return 
code. Register 0 contains the original protection key and fetch protection flag of the first page 
in the virtual storage area specified in bits 24-28. 

Example 1 

Operation: Change the storage key and ensure fetch protection of a single page of virtual 
storage addressed by register 5. 

CHANGKEY R,BA=(REGS),EA=(REGS),KEY=8,BRANCH=YES 

Example 2 

Operation: Change the storage key and ensure fetch protection of two non-contiguous pages 
of virtual storage addressed by PAGEl and PAGE2 respectively. 

CHANGKEY L,LISTAD=PLIST,KEY=10,BRANCH=YES 

PLIST 

• 
• 
• 
DC 2A(PAGEl ) 
DC A(PAGE2) 
DC AL 1 ( X' 80' ) 
DC AL3(PAGE2) 

134 OS/VS2 System Programming Library: Supervisor 

FIRST ELEMENT IN LIST 
BA PART OF SECOND ELEMENT 
INDICATES LAST ELEMENT IN LIST 
EA PART OF SECOND ELEMENT 



CIRB - Create Interruption Request Block 

The CIRB macro instruction is included in SYS1.MACLm and must be included in the system 
at system generation time if the macro instruction is to be used. The issuing of this macro 
instruction causes a supervisor routine (called the exit effector routine) to create an 
interruption request block (IRB). In addition, other parameters of this macro instruction may 
specify the building of a register save area and/or a work area to contain interruption queue 
elements, which are used by supervisor routines in scheduling the execution of user exit 
routines. 

Note: The IRB address is returned in register 1. 

The CIRB macro instruction is written as follows: 

name 

b 

CIRB 

b 

EP=entry point addr 

,KEY=PP 

,KEY=SUPR 

,MODE=PP 

,MODE=SUPR 

,SVAREA=NO 

,SVAREA= YES 

,RETIQE= YES 

,RETIQE=NO 

,ST AB=(DYN) 

,WKAREA=workarea size 

,BRANCH=NO 

,BRANCH= YES 

,RETRN=NO 

,RETRN=YES 

name: symbol. Begin name in column 1. 

One or more blanks must precede CIRB. 

One or more blanks must follow CIRB. 

entry point addr: RX-type address, or register (0) or (2) - (12). 

Default: KEY =PP 

Default: MODE=PP 

Default: SV AREA=NO 

Default: RETIQE= YES 

workarea size: Decimal digit, or register (2) - (12). 

Default: zero 

Default: B,RANCH=NO 

Default: RETRN=NO 
Note: This parameter has meaning only if RETIQE=NO is 

specified above. 

The parameters are explained as follows: 

CIRB - Create Interruption Request Block 135 



EP = entry point addr 
specifies the address of the entry point of the user's asynchronous exit routine. 

,KEY=PP 
,KEY=SUPR 

specifies whether the asynchronous exit routine operates with a key of zero (SUPR) or with 
a key obtained from the TCB of the task issuing the CIRB macro instruction (PP). 

,MODE=PP 
,MODE = SUPR 

specifies whether the asynchronous exit routine executes in problem program (PP) or 
supervisor (SUPR) mode. 

,SVAREA=NO 
,SV AREA = YES 

specifies whether to obtain a 72-byte register save area from the virtual storage assigned to 
the problem program. If a save area is requested, CIRB places the save area address in the 
IRB. The address of this area is passed to the user routine via register 13. 

,RETIQE = YES 
,RETIQE=NO 

specifies whether the associated queue elements are request queue elements (YES) or 
interruption queue elements (NO). 

,STAB = (DYN) 
specifies that the IRB (including the work area) is freed by EXIT. 

Branch Entry Interface 

For BRANCH= YES, the branch entry interface is as follows: 

• The caller must be in supervisor state, key zero, and own the local lock and no locks 
above the SALLOC in the locking hierarchy. 

• The caller must pass a TCB address in register 4 to be used by GETMAIN when 
allocating space for the IRB and for the problem program save area. Also, if a problem 
key is specified in the KEY = parameter of the CIRB, the TCBPKF field of that TCB is 
used. 

• Upon return, register 1 contains the address of the created IRB, registers 0, and 2-14 are 
unchanged, and register 15 is unpredictable. 

• Control is returned in supervisor state, key zero, with the same locks held as on entry. 

Note: If the STAB parameter is omitted from the CIRB macro instruction, the IRB will 
remains available for later use by the task issuing the macro. 

,WKAREA= workarea size 
specifies the size, in doublewords, of the work area to be included in the IRB. The area may 
be used to build IOE's. The maximum size is 255 double words. 

,BRANCH=NO 
,BRANCH = YES 

specifies that branch linkage (YES) or SVC linkage (NO) to CIRB will be provided. 
,RETRN=NO 
,RETRN=YES 

specifies that the IOE is (YES) or is not (NO) returned to the available queue when the 
asynchronous exit terminates. 

136 OS/VS2 System Programming Library: Supervisor 

l 

I 
\ 



o 

CI 

_ .... _._---_._-----_. __ .. _----------

Example 1 

Operation: Create an IRB to be used in scheduling an asynchronous exit. The exit is scheduled 
via the IQE interface to Stage 2 Exit Effector, and receives control in the supervisor state. The 
IRB is freed when it terminates. The exit receives control at the IQERTN label. 

CIRB EP=IQERTN,MODE=SUPR,RETIQE=NO,STAB=(DYN),BRANCH=NO 

Example 2 

Operation: Create an IRB to be used in scheduling an asynchronous exit. The RQE interface 
to Stage 2 Exit Effector is used to schedule the routine. The exit gets control at the RQETEST 
label. 

CIRB EP=RQETEST,KEY=SUPR,MODE=SUPR,STAB=(DYN),BRANCH=NO 

CIRB - Create Interruption Request Block 137 



DEQ - Release a Serially Reusable Resource 

The DEQ macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of the RMC, GENERIC, TCB, and UCB parameters. These 
parameters are restricted in use and should only be used with tasks that are authorized. The 
UCB parameter is used to release a device that was reserved with a RESERVE macro 
instruction. 

The syntax of the complete DEQ macro instruction appears below. However, only the 
explanation of the restricted parameters is presented. Explanation of the other parameters can 
be found in OS/VS2 Supervisor Services and Macro Instructions. 

The standard form of the DEQ macro instruction is written as follows: 

name 

t; 

DEQ 

t; 

qname addr 

,mame addr 

,mame length 

,STEP 
,SYSTEM 
,SYSTEMS 

, var1234 

,RET=HAVE 
.RET=NONE 

,RMC=NONE 
,RMC=STEP 

,GENERIC=NO 
,GENERIC=YES 

,TCB=teb addr 

,UCB=ueb addr 

,RELATED=va!ue 

name: symbol. Begin name in column 1. 

One or more blanks must precede DEQ. 

One or more blanks must follow DEQ. 

qname addr: A-type address, or register (2) - (12). 

mame addr: A-type address, or register (2) - (12). 

mame length: symbol, decimal digit, or register (2) - (12). 
Note: mame length must coded if a register is specified for 

mame addr. 

Default: STEP 

var1234: The preceding 4 parameters may be repeated up to 

65,535 times. 

Default: RMC=NONE 
Default: GENERIC=NO 
Note: If GENERIC = YES is specified, you must also specify 

RET=HAVE above. 

teb addr: A-type address, or register (2) - (12). 

Note: TCB cannot be specified with RMC above. 

ueb addr: RX-type address, or register (2) - (12). 

value: any valid macro keyword specification. 

The parameters restricted in use are explained as follows. (The other parameters are explained 
in OS/VS2 Supervisor Services and Macro Instructions.) 

138 OS/VS2 System Programming Library: Supervisor 



o 

,RMC=NONE 
,RMC = STEP 
,GENERIC=NO 
,GENERIC = YES 

specifies optional parameters available to the system programmer: 
RMC specifies that the reset-must-complete function is not to be used (NONE) or that the 
requesting task is to release the resources and terminate the must complete function 
(STEP). The NONE or STEP subparameter must agree with the subparameter specified in 
the SMC parameter of the corresponding ENQ macro instruction. 

GENERIC specifies whether or not (YES or NO) all queue elements for the task under the 
specified major name are dequeued, regardless of whether they have control of the resource. 

,TCB = teb addr 
specifies a register that points to a TCB or specifies the address of a fullword on a fullword 
boundry that points to a TCB on whose behalf the DEQ is to be done. The caller (not the 
directed task) is abnormally terminated if the RET parameter is omitted and an attempt is 
made to DEQ a resource not requested or not owned by the directed task. 

,UCB=ucb addr 
specifies the address of a fullword that contains the address of a DCB for a reserved device 
that is now being released. 

Return codes are provided by the control program only if RET=HA VE is designated. If all 
of the return codes for the resources named in DEQ are 0, register 15 contains 0. If any of 
the return codes are not 0, register 15 contains the address of a virtual storage area containing 
the return codes as shown in Figure 32. 

Address 
Returned in 
Register 15 

12 

24 

36 
,.. 

2 

Figure 32. Return Code Area Used by DEQ 

3 

Return 
Codes 

1 

RC 1 

RC 2 

RC 3 

.... 

4 

< 

12 

Return codes are 
12 bytes apart, 
starting 3 bytes 
from the address 

( in register 15. 

DEQ - Release a SeriaUy Reusable Resource 139 



The return codes are placed in the parameter list resulting from the macro expansion in the 
same sequence as the resource names in the DEQ macro instruction. The return codes are 
shown below. 

Hexadecimal 
Code 
o 
4 

8 

Example 1 

Meaning 
The resource has been released. 
The resource has been requested for the task, but the task has not been assigned 
control. The task is not removed from the wait condition. (This return code could 
result if DEQ is issued within an exit routine which was given control because of an 
interruption.) 
Control of the resource has not been requested by the active task, or the resource has 
already been released. 

Opera/ion: Unconditionally release control of the resource in Example 1 of ENQ, and reset 
the "must-complete" state. 

DEQ (MAJOR1,MINOR1,8,STEP),RMC=STEP 

Example 2 

Operation: Conditionally release control of the resource in Example 2 of ENQ. 

DEQ (MAJOR2,MINOR2,4,SYSTEM),TCB=(R2),RET=HAVE 

Example 3 

Operation: Unconditionally release control of the resource (device) in Example 1 of 
RESERVE. 

DEQ (MAJOR3,MINOR3"SYSTEMS),UCB=(R3) 

140 OS/VS2 System Programming Library: Supervisor 

---~.--------.----------. 



C
", 

i 

DEQ (List Form) 

The list form of the DEQ macro instruction is written as follows: 

name 

b 

DEQ 

b 

qname add, 

,rname addr 

"name length 

,STEP 
,SYSTEM 
,SYSTEMS 

, vorl 234 

,RET=HAVE 
,RET=NONE 

,RMC=NONE 
,RMC=STEP 
,GENERIC=NO 
,GENERIC=YES 

,TCB=O 

,UCB=ucb addr 

,RELATED = value 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede DEQ. 

One or more blanks must follow DEQ. 

qname add,: A-type address. 

mame add,: A-type address. 

mame length: symbol or decimal digit. 

Default: STEP 

va,1234: The preceding 4 parameters may be repeated up to 
65,535 times. 

Default: RET=NONE 

Default: RMC=NONE 
Default: GENERIC=NO 
Note: If GENERIC = YES is specified, you must also specify 

RET=HAVE above. 

Note: TCB cannot be specified with RMC above, and" must be 
specified on the list form if used on the execute form. 

ucb addr: A-type address. 

value: any valid macro keyword specification. 

The parameters restricted in use are explained under the standard form of the DEQ macro 
instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro 
Instructions. 

DEQ (List Form) 141 



DEQ (Execute Form) 

The execute form of the DEQ macro instruction is written as follows: 

name 

b 

DEQ 

b 

qname addr 

,mame addr 

, mame length 

,STEP 
,SYSTEM 
,SYSTEMS 

, var1234 

,RET=HAVE 
,RET=NONE 

,RMC=NONE 
,RMC=STEP 
,GENERIC=NO 
,GENERIC=YES 

,TCB=teb add, 

,UCB=ueb addr 

,RELATED = value 

,MF=(E ,etrl addr) 

name: symbol. Begin name in column 1. 

One or more blanks must precede DEQ. 

One or more blanks must follow DEQ. 

Note: ( and ) are the beginning and end of a parameter list. The 
entire list is optional. If nothing in the list is desired, then (, ), 
and all parameters between ( and ) should not be specified. If 
something in the list is desired, then (, ), and all parameters in 
the list should be specified as indicated at the left. 

qname addr: RX-type address, or register (2) - (12). 

rname addr: RX-type address, or register (2) - (12). 

rnarne length: symbol, decimal digit, or register (2) - (12). 

var1234: The preceding 4 parameters may be repeated up to 
65,535 times. 

Note: See note opposite ( above. 

Note: If GENERIC= YES is specified, you must also specify 
RET=HAVE above. 

teb addr: RX-type address, or register (2) - (12). 

Note: TCB cannot be specified with RMC above, and must be 
specified on the execute form if used on the list form. 

ueb addr: RX-type address, or register (2) - (12). 

value: any valid macro keyword specification. 

etrl addr: RX-type address, or register (1) or (2) - (12). 

The parameters restricted in use are explained under the standard form of the DEQ macro 
instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro 
Instructions. 

142 OS/VS2 System Programming Library: Supervisor 

( 



DSGNL - Issue Direct Signal 

The DSGNL macro instruction uses the signal processor (SIGP) instruction to modify or sense 
the physical state of one of the processors in a tightly coupled multiprocessing system. Ten of 
the twelve SIGP hardware functions are defined as direct services and are accessible via the 
DSGNL macro instruction. The other two SIGP functions are accessible via the RISGNL and 
RPSGNL macro instructions. 

The DSGNL macro instruction is written as follows: 

name 

DSGNL 

t> 

SENSE 
START 

STOP 
RESTART 
IPR 

PR 

SSS 
IMPL 
ICPUR 

CPUR 
(0) 

,CPU=PCCA addr 

name: symbol. Begin name in column 1. 

One or more blanks must precede DSGNL. 

One or more blanks must follow DSGNL. 

PCCA addr: RX-type address, or register 0). 

The parameters are explained as follows: 

SENSE 
START 
STOP 
RESTART 
IPR 
PR 
SSS 
IMPL 
ICPUR 
CPUR 
(0) 

specifies the action to be performed. If (0) is specified, the code indicating the desired 
function has already been loaded into bits 24-31 of register O. The actions and codes are: 

DSGNL - Issue Direct Signal 143 



SENSE 
START 
STOP 
RESTART 
IPR 
PR 
SSS 
IMPL 
ICPUR 
CPUR 

Code 
01 
04 
05 
06 
07 
08 
09 
OA 
OB 
OC 

Action 
State of specified processor is to be sensed 
Start function 
Stop function 
Restart function 
Initial program reset function 
Program reset function 
Stop and store status function 
Initial microprogram load function 
Initial processor reset function 
processor reset function 

Note: Codes OA, OB, and OC are only valid on a Model 168. 

,CPU == PCCA addr 
specifies the address of the physical configuration communication area (PCCA) of the CPU 
on which the function is to be executed. 
When control is returned, register 15 contains one of the following return codes: 

Hexadecimal 
Code 
00 
04 

08 
12 
16 

Meaning 
Function successfully initiated, but not necessarily completed. 
Function not completed because access path to the addressed processor was busy or 
the addressed processor was in a state where it could not accept and respond to the 
function code. 
Function unsuccessful. Status returned in register O. 
Specified CPU is either not installed, not configured into the system, or powered off. 
CPU is a uniprocessor and does not have signal processor sending and receiving 
capabilities. 

With a return code of 8, register 0 contains: 

Bits 
o 
1-23 
24 
25 
26 
27 
28 
29 
30 
31 

Example 1 

Meaning 
Equipment check 
Reserved 
External call pending 
Stopped 
Operator intervening 
Check stop 
Not ready 
Reserved 
Invalid function 
Receiver check 

Operation: The state of the processor whose PCCA is located at PCCA is requested. If the 
processor is executing or is in a wait state, register 15 contains a 0 return code; otherwise, 
register 0 contains a return code of 8 with status indicators. 

DSGNL SENSE,CPU=PCCA 

Example 2 

Opera/ion: The processor whose PCCA address is in register 1 will be placed in the STOP 
state. 

DSGNLSTOP,CPU=(1) 

144 OS/VS2 System Programming Ubrary: Supervisor 

( 



ENQ - Request Control of a Serially Reusable Resource 

The ENQ macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of the SMC, ECB, and TCB parameters. These parameters are 
restricted in use and should only be used with tasks that are authorized. 

The syntax of the complete ENQ macro instruction is shown below. However, only the 
explanation of the restricted parameters is presented. Explanation of the other parameters can 
be found in OS/VS2 Supervisor Services and Macro Instructions. 

ENQ - Request Control of a SeriaDy Reusable Resource 145 



The standard form of the ENQ macro instruction is written as follows: 

name 

b 

ENQ 

qname addr 

,mame addr 

,E 

,S 

,mame length 

,STEP 

,SYSTEM 

,SYSTEMS 

, var12345 

,RET=CHNG 

,RET=HAVE 

,RET=TEST 

,RET=USE 

,RET=NONE 

,SMC=NONE 

,SMC=STEP 

,ECB=eeb addr 

,TCB=teb addr 

,RELATED = value 

name: symbol. Begin name in column 1. 

One or more blanks must precede ENQ. 

One or more blanks must follow ENQ. 

qname addr: A-type address, or register (2) - (12). 

mame addr: A-type address, or register (2) - (12). 

Default: E 

mame length: symbol, decimal digit, or register (2) - (12). 

Default: assembled length of mame 

Note: mame length must be coded if a register is specified for 

mame addr. 

Default: STEP 

var12345: The preceding 5 parameters may be repeated up to 

65,535 times. 

Default: RET=NONE 

eeb addr: A-type address, or register (2) - (12). 

teb addr: A-type address, or register (2) - (12). 

Default: SMC=NONE 

Note: ECB cannot be specified with RET above. ECB and TCB 

can be specified together. If TCB and ECB are specified, then 

RET cannot be specified. If TCB is specified but not ECB, then 

RET=CHNG, TEST or USE must be specified above. 

value: any valid macro keyword specification. 

The parameters restricted in use are explained as follows. (The other parameters are explained 
in OS/VS2 Supervisor Services and Macro Instructions.) 

146 OS/VS2 System Programming Library: Supervisor 

( 

" I , 



._------------_. ~-- .. ---......... _ ...................... _._----

,SMC==NONE 
,SMC==STEP 
,ECB == ecb addr 
,TCB == tcb addr 

specifies optional parameters available to the system programmer: 
SMC specifies that the set-must-complete function is not to be used (NONE) or that it is to 

place other tasks for the step nondispatchable until the requesting task has completed its 
operations on the resource (STEP). 

ECB specifies the address of an ECB, and conditionally requests all of the resources named 
in the macro instruction. If the return code for one or more requested resources is 4 and 
the request is not nullified by a corresponding DEQ, the ECB is posted when all the 
requested resources (specifically, those that initially received a return code of 4) are 
assigned to the requesting task. 

TCB specifies a register that points to a TCB or specifies the address of a fullword on a 
fullword boundary that points to a TCB on whose behalf the ENQ is to be done. 

Return codes are provided by the control program only if you specify RET = TEST, 
RET=USE, RET=CHNG, RET=HAVE, or ECB=; otherwise return of the task to the active 
condition indicates that control of the resource has been assigned to the task. If all return 
codes for the resources named in the ENQ macro instruction are 0, register 15 contains 0. If 
any of the return codes are not 0, register 15 contains the address of a storage area containing 
the return codes, as shown in Figure 33. 

Address 
Returned in 
Register 15 

12 

24 

36 
,.. 

2 3 

..... 

Return 
Codes 

RC 1 

RC2 

RC 3 

... 

4 12 

< 

~ 

C,---~I ----,--" _... ..L---

RCN ~-I ] D 
FlgUl'e 33. Return Code Area Used by ENQ 

Return codes are 
12 bytes apart, 
starting 3 bytes 
from the address 
in register 15. 

ENQ - Request Control of a Serially Reusable Resource 147 

-....... --_ .. _ ..... _ .. _-.... _. __ .. _ ........ -----------------------------_ .... _. __ .. _---- . 



The return codes are placed in the parameter list resulting from the macro expansion in the 
same sequence as the resource names in the ENQ macro instruction. The return codes are ( 
shown below. 

Hexadecimal 
Code 
o 

4 

8 

20 

Example 1 

Meaning 
For RET = TEST, the resource was immediately available. 
For RET=USE, RET=HAVE, or ECB=, control of the resource has been assigned to 
the active task. 
For RET=CHNG, the status of the resource has been changed to exclusive. 
For RET=TEST or RET=USE, the resource is not immediately available. 
For RET=CHNG, the status cannot be changed to exclusive. 
For ECB=, the ECB will be posted when available. 
For RET=TEST, RET=USE, RET=HAVE, or ECB=. a previous request for control 
of the same resource has been made for the same task. Task has control of resource. 
For RET=CHNG, the resource has not been queued. 
If bit 3 is on - shared control of resource; if bit 3 is off - exclusive control. 
A previous request for control of the same resource has been made for the same task. 
Task does not have control of resource. 

Operation: Unconditionally request exclusive control of a serially reusable resource that is 
known only within the address space (STEP), and place other tasks for the step 
nondispatchable until the requesting task has completed its operations on the resource. 

ENQ (MAJOR1,MINOR1,E,8,STEP),SMC=STEP 

Example 2 

Operation: Conditionally request control of a serially reusable resource in behalf of another 
task. The resource is known by more than one address space, and is only wanted if 
immediately available. 

ENQ (MAJOR2,MINOR2,S,4,SYSTEM),TCB=(R2),RET=USE 

148 OS/VS2 System Programming Library: Supervisor 

,-----------.-... --.--..• -.--~.-.---.--... -... ------

,.
: 
" 



o 

CI 

ENQ (List Form) 

The list form of the ENQ macro instruction is written as follows: 

name 

b 

ENQ 

b 

qname addr 

, 
,mame addr 

, 
,E 
,S 

, 
,rname length 

, 
,STEP 
,SYSTEM 
,SYSTEMS 

, var12345 

,RET=CHNG 
,RET=HAVE 
,RET=TEST 
,RET=USE 
,RET=NONE 

,SMC=NONE 
,SMC=STEP 
,ECB=ecb addr 
,TCB=O 

,RELATED=value 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede ENQ. 

One or more blanks must follow ENQ. 

qname addr: A-type address. 

rna me addr: A-type address. 

Default: E 

mame length: symbol or decimal digit. 
Default: assembled length of mame 

Default: STEP 

var12345: The preceding 5 parameters may be repeated up to 65,535 
times. 

Default; RET=NONE 

ecb addr: A-type address. 
Default: SMC=NONE 
Note: ECB cannot be specified with RET above. 
Note: TCB or ECB must be specified on the list form if it is used on 
the execute form. ECB and TCB can be specified together. If TCB and 
ECB are specified, then RET cannot be specified. If TCB is specified 
but not ECB, then RET=CHNG, TEST or USE must be specified 
above. 

value: any valid macro keyword specification. 

The parameters restricted in use are explained under the standard form of the ENQ macro 
instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro 
Instructions. 

ENQ (List Form) 149 



ENQ (Execute Form) 

The execute form of the ENQ macro instruction is written as follows: 

name 

b 

ENQ 

b 

qname addr 

,rnameaddr 

,E 
,S 

,marne length 

,STEP 
,SYSTEM 
,SYSTEMS 

, vorl 2345 

,RET=CHNG 
,RET=HAVE 
,RET=TEST 
,RET=USE 
,RET=NONE 

,SMC=NONE 
,SMC=STEP 
,ECB=ecb addr 

,TCB=tcb addr 

,RELA TED = value 

,MF=(E ,ctrl addr) 

156 OS/VS2 System Programming Library: Supervisor 

name: symbol. Begin name in column 1. 

One or more blanks must precede ENQ. 

One or more blanks must follow ENQ. 

Note: ( and ) are the beginning and end of a parameter list. The 
entire list is optional. If nothing in the list is desired then (, ), 
and all parameters between ( and ) should not be specified. If 
something in the list is desired, then (, ), and all parameters in 
the list should be specified as indicated at the left. 

qnarne addr: RX-type address, or register (2) - (12). 

marne addr: RX-type address, or register (2) - (12). 

rnarne length: symbol, decimal digit, or register (2) - (12). 

var12345: The preceding 5 parameters may be repeated up to 
65,535 times. 

Note: See note opposite ( above. 

ecb addr: A-type address, or register (2) - (12). 

teb addr: A-type address, or register (2) - (12). 

Note: ECB cannot be specified with RET above. 
Note: ECB and TCB can be specified together. If TCB and ECB 
are specified, then RET cannot be specified. If TCB is specified 

but not ECB, then RET=CHNG, TEST or USE must be 
specified above. 

value: any valid macro keyword specification. 

CIT! addr: RX-type address, or register (1) or (2) - (12). 

r 

I , 



o 

-------------- ----------------------

The parameters restricted in use are explained under the standard form of the ENQ macro 
instruction. The other parameters are explained in OS/VS2 Supervisor Senices and Macro 
Instructions. 

Note: If ECB (or TCB) is specified in the execute form, ECB (or TCB=O) must be specified 
in the list form. 

ENQ (Execute Fonn) 151 



ESTAE - Extended STAE 

The EST AE macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of the RECORD, BRANCH, and SVEAREA parameters. 

The syntax of the complete ESTAE macro instruction is shown below. However, only the 
explanation of the restricted parameters is presented. Explanation of the other parameters can 
be found in OS/VS2 Supervisor Services and Macro Instructions. 

The standard form of the EST AE macro instruction is written as follows: 

name 

ESTAE 

exit addr 

o 

,CT 
,OV 

,P ARAM=Iis-t addr 

,XCTL=NO 
,XCTL=YES 

,PURGE=NONE 
,PURGE=QUIESCE 
,PURGE=HAL T 

,ASYNCH= YES 
,ASYNCH=NO 

,TERM=NO 
,TERM=YES 

,BRANCH=NO 
,BRANCH= YES, 

SVEAREA=save area 

KEY=SAVE 
KEY =storage key 

,RECORD=NO 
,RECORD=YES 

,RELATED = value 

name: symbol. Begin name in column 1. 

One or more blanks must precede EST AE. 

One or more blanks must follow ESTAE. 

exit addr: A-type address, or register (2) - (12). 

Default: CT 

lis-t addr: A-type address, or register (2) - (12). 

Default: XCTL=NO 

Default: PURGE=NONE 

Default: ASYNCH= YES 

Default: TERM=NO 

Default: BRANCH=NO 
save addr: A-type address, or register (2) - (12) or (13). 

storage key: any numeral in the range 0-15 

Default: RECORD=NO 

value: any valid macro keyword specification. 

The parameters reserved for supervisor use are explained as follows. (The explanation of the 
other parameters is as explained in OS/VS2 Supervisor Services and Macro Instructions.) 

IS2 OS/VS2 System Programming Library: Supervisor 

- ---_._-----------------------

/ , 
\. 



o 

,PURGE = QUIESCE 
specifies that all outstanding requests for I/O operations are to be saved when the first 
ESTAE exit is taken (QUIESCE). The user's retry routine can restore the outstanding I/O 
requests. 

,BRANCH=NO 
,BRANCH = YES,SVEAREA = save addr 

specifies that an SVC 60 entry to the ESTAE service routine is to be performed (NO) or 
that a branch entry is to be performed (YES). The save area is a 72-byte area used to save 
the general registers. If the caller is not in key zero, the KEY parameter must be specified. 

KEY = SAVE 
KEY = storage key 

specifies that supervisor state users who are not in key zero may use the branch entry 
interface to the ESTAE service processor. 
If the user specifies KEY =SA VE, the system saves the current PSW protection key in 
register 2 and issues a set protection key instruction (SPKA) to change to protection key 
zero. When the EST AE service processor returns control, the original PSW key is restored 
from register 2. Because of the above, the user should save register 2 before the macro 
expansion and restore it afterwards. Specifying KEY-SAVE causes register 2 to lose its 
contents during the macro expansion. 

On the other hand, if the user knows the current PSW protection key, he may specify it 
directly in the form KEY=(O-15) to eliminate saving and restoring the original protection 
key. This procedure eliminates an IPK instruction and prevents the use of register 2 in the 
macro expansion. 

,RECORD=NO 
,RECORD = YES 

specifies that the SDWA workarea is not written to SYSl.LOGREC (NO) or that the entire 
SDWA workarea, both fixed and variable, is written to SYS1.LOGREC (YES). 

Control returns to the instruction following the EST AE macro instruction. When control 
returns, register 15 contains one of the following return codes: 

Hexadecimal 
Code 
00 
04 

DC 

10 
14 

Example 1 

Meaning 
Successful completion of EST AE request. 
EST AE OV was specified with a valid exit address, but the current exit is either 
nonexistent, not owned by the user's RB, or is not an ESTAE exit. 
Cancel or an exit address equal to zero was specified, and either there are no exits for 
this TCB, the most recent exit is not owned by the caller, or the most recent exit is not 
an EST AE exit. 
An unexpected error was encountered while processing this request. 
EST AE was unable to obtain storage for an SCB. 

Operation: Take the EST AE exit specified by register 4, allow asynchronous exit processing, 
do not allow special error processing, do not branch enter SVC 60, and default to CT (create) 
and PURGE=NONE. 

ESTAE (4),ASYNCH=YES,TERM=NO,BRANCH=NO 

ESTAE - Extended STAE 153 

._-------------_ .•. __ ._ ................. _._ .... _ .. 



ESTAE (List Form) 

The list form of the ESTAE macro instruction is used to construct a remote control program 
parameter list. 

The list form of the EST AE macro instruction is written as follows: 

name 

ESTAE 

1> 

exit addr 

,P ARAM=list addr 

,PURGE=NONE 
,PURGE=QUIESCE 
,PURGE=HALT 

,ASYNCH=YES 
,ASYNCH=NO 

,TERM=NO 
,TERM=YES 

,RECORD=NO 
,RECORD= YES 

,RELATED = value 

,MF==L 

name: symbol. Begin name in column 1. 

One or more blanks must precede EST AE. 

One or more blanks must follow EST AE. 

exit addr: A-type address. 

list addr: A-type address. 

Default: PURGE=NONE 

Default: ASYNCH= YES 

Default: TERM=NO 

Default: RECORD=NO 

value: any valid macro keyword specification. 

The parameters restricted in use are explained under the standard form of the ESTAE macro 
instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro 
Instructions. 

154 OS/VS2 System Programming Library: Supervisor 

! 



---.... ----.. _---

ESTAE (Execute Form) 

A remote control program parameter list is used in, and can be modified by, the execute form 
of the EST AE macro instruction. The control program parameter list can be generated by the 
list form of the EST AE macro instruction. If the user desires to dynamically change the 
contents of the remote EST AE parameter list, he may do so by coding a new exit address 
and/ or a new parameter list address. If exit address or P ARM = is coded, only the associated 
field in the remote EST AE parameter list is changed. The other field remains as it was before 
the current EST AE request was made. 

The execute form of the EST AE macro instruction is written as follows: 

name 

ESTAE 

exit addr 
o 

,CT 

,OV 

,PARAM=list addr 

,XTCL=NO 

,XCTL=YES 

,PURGE=NONE 
,PURGE=QUIESCE 

,PURGE=HALT 

,ASYNCH= YES 

,ASYNCH=NO 

,TERM=NO 

,TERM=YES 

,BRANCH=NO 
,BRANCH= YES, 

SVEAREA=save addr 

,RECORD=NO 

,RECORD= YES 

,RELATED=value 

,MF=(E, ctrl addr) 

name: symbol. Begin name in column 1. 

One or more blanks must precede EST AE. 

One or more blanks must follow ESTAE. 

exit addr: RX-type address, or register (2) - (12). 

list addr: RX-type address, or register (2) - (12). 

save addr: RX~type address, or register (2) - (12) or (13). 

value: any valid macro keyword specification. 

ctrl addr: RX-type address, or register (1) or (2) - (12). 

The parameters restricted in use are explained under the standard form of the EST AE macro 
instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro 
Instructions. 

EST AE (Execute Form) 155 



Example 1 

Opemtion: Take the ESTAE exit labeled ADDR, allow synchronous exit processing, halt I/O, 
allow special error processing, branch enter SVC 60, provide 72-byte save area at SADDR, 
and execute the execute form of the macro instruction. EXEC is the label of the ESTAE 
parameter list built by the list form of the macro instruction. 

ESTAE ADDR,ASYNCH=YES,PURGE=HALT,TERM=YES,BRANCH=YES, 
SVEAREA=SADDR,MF=(E,EXEC) 

156 OS/VS2 System Programming Ubrary: Supervisor 

" 

I , 
\ 



------------------------------_._-_ .•. _._ .... __ .. _--

o 

o 

o 

EVENTS - Wait for Events 

The EVENTS macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of the BRANCH parameter. This parameter is restricted in use 
and should only be used by programs executing in supervisor state, under protection key zero, 
and owning the local lock. 

The syntax of the complete EVENTS macro instruction is shown below. However, only the 
explanation of the restricted parameter is presented. Explanation of the other parameters can 
be found in OS/VS2 Supervisor Services and Macro Instructions. 

The EVENTS macro instruction is written as follows: 

name 

EVENTS 

ENTRIES=nmbr 

ENTRIES=DEL,TABLE=tab addr 

T ABLE=tab addr 

,ECB=ecb addr 

,LAST=last addr 

,WAIT=YES 

,WAIT=NO 

,BRANCH=NO 
,BRANCH= YES 

name: symbol. Begin name in column 1. 

One or more blanks must precede EVENTS. 

One or more blanks must follow EVENTS. 

nmbr. decimal digits 1-32767. 

tab addr: symbol, RX-type address, or register (2) -(12). 

Note: If the ENTRIES parameter is specified as indicated in the 

first two formats, no other parameters may be specified. 

ecb addr: symbol, RX-type address, or register (2) - (12). 

last addr: symbol, RX-type address, or register (2) - (12). 

Note: If LAST is specified, WAIl' must also be specified. 

Default: BRANCH=NO 

The parameters restricted in use are explained as follows. (The other parameters are explained 
in OS/VS2 Supervisor Services and Macro Instructions.) 

,BRANCH = NO 
,BRANCH = YES 

specifies that an SVC entry (BRANCH=NO) or a branch entry (BRANCH=YES) is to be 
performed. 

EVENTS - Wait for Events 157 



EXTRACT - Extract TCD Information 

The EXTRACT macro instruction causes· the control program to provide information from 
specified fields of the task control block or a subsidiary control block for either the active task 
or one of its subtasks. The control program places the information in an area provided by the 
problem program. For a description of this area see "Providing an EXTRACT Answer Area" 
in the chapter "Subtask Creation and Control." 

Note: If the EXTRACT macro is used to obtain the TIOT in order to find the UCB, it is the 
user's responsibility to ensure that the TIOT contains the UCB address. To find the DCB 
address, refer to the topic "Finding the UCB Address" in Part 1 of this publication. 

The standard form of the EXTRACT macro instruction is written as follows: 

name 

EXTRACT 

answer addr 

,'S' 

,tcb addr 

,FIELDS=(tcb info) 

name: symbol. Begin name in column 1. 

One or more blanks must precede EXTRACT. 

One or more blanks must follow EXTRACT. 

answer addr: A-type address, or register (2) - (12). 

tcb addr: A-type address, or register (2) - (12). 

Default: 's' 

tcb info: any combination of the following, separated by 

commas: 

ALL 
GRS 

FRS 
AETX 

PRI 

CMC 

TIOT 

COMM 

TSO 

PSB 

TJID 
ASID 

The parameters are explained as follows: 

answer addr 
specifies the address of the answer area to contain the requested information. The address is 
of one or more fullwords, starting on a fullword boundary. The number of fullwords 
required is the same as the number of fields specified in the FIELDS parameter, unless ALL 
is coded. If ALL is coded, seven fullwords are required. 

,'S' 
,tcb addr 

specifies the address of a fullword on a fullword boundary containing the address of a task 
control block for a sub task of the active task. If'S' is coded or assumed, no address is' 
specified and the active task is assumed. 

,FIELDS = (tcb info) 
specifies the task control block information requested: 
ALL requests information from the GRS, FRS, reserved, AETX, PRJ, CMC, and TIOT 

fields. (If ALL is specified, 7 words are required just for ALL.) 
GRS is the address of the save area used by the control program to save the general 

registers 0-15 when the task is not active. 

158 OS/VS2 System Programming Library: Supervisor 

( 

j 

\ 

( 



o 

------ .... __ ... _-_._ ... -

FRS is the address of the save area used by the control program to save the floating point 
registers 0, 2, 4, and 6 when the task is not active. 

AETX is the address of the end of task exit routine specified in the ETXR parameter of the 
ATIACH macro instruction used to create the task. 

PRI is the current limit (third byte) and dispatching (fourth byte) priorities of the task. The 
two high-order bytes are set to zero. 

CMC is the task completion code. If the task is not complete, the field is set to zero. 
TIOT is the address of the task input/output table. 
COMM is the address of the command scheduler communications list. The list consists of a 

pointer to the communications event control block and a pointer to the command input 
buffer. 

TSO is the address of a byte in which a high bit of 1 indicates a TSO address space, and a 
high bit of 0 indicates a non-TSO address space. 

PSB is the address of the protected storage control block, which is extracted from the job 
step control block. 

TllD is the address space identifier (ASID) for a TSO address space, and zero for a 
non-TSO address space. 

ASID is the address space identifier. 

Example 1 

Opera/ion: Provide information from all the fields of the indicated TCB except ASID. 
WHERE is the label of the answer area, ADDRESS is the label of a fullword that contains the 
address of the subtask TCB for which information is to be extracted. 

EXTRACT WHERE,ADDRESS,FIELDS=(ALL,TSO,COMM,PSB,TJID) 

Example 2 

Opera/ion: Provide information from the current TCB, as above. 

EXTRACT WHERE,'S',FIELDS=(ALL,TSO,COMM,PSB,TJID) 

EXTRAcr - Extract TeD Information 159 



EXTRACT (List Form) 

The list form of the EXTRACT macro instruction is used to construct a remote control 
program parameter list. 

The list form of the EXTRACT macro instruction is written as follows: 

name 

EXTRACT 

answer addr 

,'S' 

,teb addr 

,FJELDS=(teb info) 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede EXTRACT. 

One or more blanks must follow EXTRACT. 

answer addr: A-type address. 

tcb addr: A-type address. 

Default: 's' 

tcb info: any combination of the following, separated by 

commas: 

ALL 

GRS 

FRS 

AETX 

PRJ 

CMC 

TIOT 

COMM 

TSO 

PSB 

TJID 

ASJD 

The parameters are explained under the standard form of the EXTRACT macro instruction, 
with the following exception: 

,MF=L 
specifies the list form of the EXTRACT macro instruction. 

160 OS/VS2 System Programming Library: Supervisor 

- ----------

/ 

/ 



o 

o 

EXTRACT (Execute Form) 

The execute form of the EXTRACT macro instruction uses, and can modify, a remote control 
program parameter list. If the FIELDS parameter restricted in use is coded in the execute 
form, any TCB information specified in a previous FIELDS parameter is canceled and must be 
respecified if required for this execution of the macro instruction. 

The execute form of the EXTRACT macro instruction is written as follows: 

name 

EXTRACT 

answer addr 

,'S' 

,tcb addr 

,FIELDS=(tcb info) 

,MF=(E, ctrl addr) 

name: symbol. Begin name in column 1. 

One or more blanks must precede EXTRACT. 

One or more blanks must follow EXTRACT. 

answer addr: RX-type address, or register (2) - (12). 

tcb addr: RX-type address, or register (2) - (12). 

tcb info: any combination of the following, separated by 

commas: 

ALL 
GRS 

FRS 
AETX 

PRI 
CMC 

TIOT 
COMM 

TSO 
PSB 

TJID 
ASID 

ctrl addr: RX-type address, or register (1) or (2) - (12). 

The parameters are explained under the standard form of the EXTRACT macro instruction, 
with the following exception: 

,MF = (E, clrl addr) 
specifies the execute form of the EXTRACT macro instruction using a remote control 
program parameter list. 

EXTRACT (Execute Form) 161 



FESTAE - Fast Extended STAE 

The FESTAE macro instruction allows an SVC to establish an ESTAE environment with 
minimal overhead and no locking requirements. The EST AE exit activated by FEST AE 
receives control in the same sequence and under the same conditions as though created by the 
EST AE macro instruction. 

The FEST AE macro expansion has no extemallinkage. The macro instruction is written as 
follows: 

name 

FESTAE 

0, WRKREG = work reg addr 
EXITADR=exit addr, 

RBADDR=svrb addr 

,TCBADDR=teb addr 

,PARAM=lirt addr 

,XCTL=NO 
,XCTL=YES 

,PURGE=NONE 
,PURGE=HALT 
,PURGE=QUIESCE 

,ASYNCH= YES 
,ASYNCH=NO 

,TERM=NO 
,TERM=YES 

,RECORD=NO 
,RECORD=YES 

,ERRET = label: 

name: symbol. Begin name in column 1. 

One or more blanks must precede FEST AE. 

One or more blanks must follow FEST AE. 

work reg addr: A-type address or register (1)-(14) 

exit addr: A-type address or register (1)-(14) 
nrb addr: A-type address or register (1)-(14) 

teb addr: A-type address or register (1)-(14) 

lirt addr: A-type address or register (1)-(14) 

Default: XCTL=NO 

Default: PURGE=NONE 

Default: ASYNCH= YES 

Default: TERM=NO 

Default: RECORD=NO 

label: any valid assembler name 

The parameters are explained as follows: 

O,WRKREG 
specifies that the most recent ESTAE exit is canceled. A work register must be specified for 
use by the FEST AE macro expansion. 

EXITADR 
specifies a register that contains the address of an EST AE exit routine to be entered if the 
task terminates abnormally. This register is used as a work register that is not reloaded. If 0 
(the cancel option) is specified, the user must be certain that the EST AE is the current exit. 
If the user cannot determine this, he should use the branch entry service instead. 

162 OS/VS2 System Programming Library: Supervisor 

.' 



o 

o 

o 

.--------_._ .... _ ... _ ... _-_._._----------------

RBADDR 
specifies a register that contains the address of the current SVRB prefix (RBPRFX). 
RBADDR must be specified if EXIT ADR has also been specified. The specified register is 
not altered. 

TCBADDR 
specifies the register containing the current TCB address. This register is not altered, and its 
specification results in the generation of more efficient code. 

PARAM 
specifies the register containing the address of a user-defined parameter list that has data to 
be used by the EST AE exit routine. The exit routine receives this address upon its 
scheduling for execution. The use of this parameter list is optional, but the user should zero 
out any spurious data it may contain whether or not he intends to use it. If the user does 
not select the P ARAM option, the exit routine receives instead the 24 byte parameter area 
in the SVRB. In this case, the user must locate this SVRB parameter area and initialize it 
with appropriate data. 

ERRET 
specifies a label within the CSECT issuing the FEST AE for which address ability has been 
established. The FEST AE macro branches to this label if it is returning a code other than 
zero. This option saves the user the instructions necessary to check the return code. If the 
user does not specify the ERRET option, control returns instead to the instruction 
immediately following the FESTAE macro instruction. The return code is in register 15. 

All the other FEST AE parameters have the same meaning as their EST AE counterparts, as 
described in OS/VS2 Supervisor Services and Macro Instructions. 

Upon conclusion of FEST AE processing, control resumes at the instruction following the 
FESTAE macro instruction. Register 15 then contains one of the following return codes: 

Hexadecimal 
Code 
00 
08 

OC 

Example 1: 

Meaning 
Successful completion of the FEST AE request. 
A previous create has been issued with BRANCH= YES or FEST AE for this SVRB; 
the request has been ignored. 
Cancel has been specified under one of the following conditions: 
1) There are no exits for this TCB. 
2) The most recent exit is not owned by the caller. 
3) The most recent exit was not created by FEST AE. 

Operation: Take the EST AE exit specified by register 2, allow asynchronous exit processing, 
do not allow special error processing, default to PURGE=NONE, and pass the parameter list 
pointed to by register 7 to the EST AE exit routine. 

FESTAE EXITADR=(REG2),RBADDR=(REG3),TCBADDR=(REG6), x 
PARAM=(REG7),ASYNCH=YES,TERM=NO 

FESTAE - Fast Extended STAE 163 

_ .. _---_ ..... _ ...... _._----------------------



FREEMAIN - Free Virtual Storage 

The FREEMAIN macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of the BRANCH and KEY parameters. These parameters are 
restricted in use and should only be used by programs executing in supervisor state, under 
protection key zero. 

Note: This macro instruction requires that the CVT mapping macro be assembled as a 
DSECT into the caller's program. 

The syntax of the complete FREEMAIN macro instruction is shown below. However, only 
the explanation of the restricted parameters is presented. Explanation of the other parameters 
can be found in OS/VS2 Supervisor Services and Macro Instructions. 

The standard form of the FREEMAIN macro instruction is written as follows: 

164 OS/VS2 System Programming Library: Supervisor 

- - -~-~-----------.-----------------

.' 

\. 

/ 



/'--"\ 
L; 

0 

name 

b 

FREEMAIN 

b 

LC,LA=length addr 

LU,LA=length addr 

L,LA=length addr 

VC 

VU 

V 

EC,L V = length value 

EU,LV=length value 

E,L V =Iength value 

RC,L V =Iength value 

RC,SP=subpool nmbr 

RU,LV=length value 

RU,SP=subpool nmbr 

R,LV = length value 

R,SP=subpool nmbr 

,A=addr 

,SP=subpool nmbr 

,BRANCH= YES 
,BRANCH=(YES,GLOBAL) 

,KEY=nmbr 

,RELATED = value 

name: symbol. Begin name in column 1. 

One or more blanks must precede FREEMAIN. 

One or more blanks must follow FREEMAIN. 

length addr: A-type address, or register (2) - (12). 

length value: symbol, decimal digit, or register (2) - (12). If R is 

specified, register (0) may also be specified. 

subpool nmbr: symbol, decimal digit 0-127, or register (0) or (2) 
- (12). If R,SP=(O) is specified, the high order byte of register 0 

must contain the subpool number and the low order 3 bytes 

must contain the length value. 

Note: For a subpool FREEMAIN, if the formats RC,SP=subpool 

nmbr or RU,SP=subpool nmbr or R,SP=subpool nmbr are 

specified, no other parameters may be specified. 

addr: A-type address, or register (2) - (12). 

subpool nmbr: symbol, decimal digit 0-127, or register (0) or (2) 

- (12). If R,SP=(O) is specified, the high order byte of register 0 

must contain the subpool number and the low order 3 bytes 

must contain the length value. 

Note: BRANCH=(YES,GLOBAL) may only be specified with 
RC or RU above. Also, the macro expansion uses register 4 for 

the address of the global save area pointed to by the CVT. The 

previous contents of register 4 is overridden. BRANCH requires 

inclusion of the CVT mapping macro. 

nmbr: decimal digits 0-15, or register (2) - (12). 

Note: This parameter may be specified only with BRANCH and 

RC or RU above. 

value: any valid macro keyword specification. 

The parameters restricted in use are explained as follows. (The other parameters are explained 
in OS/VS2 Supervisor Services and Macro Instruction.) 

,BRANCH == YES 
,BRANCH == (YES , GLOBAL) 

specifies that a branch entry is to be used instead of an SVC entry. IT (YES,GLOBAL) is 
specified, the GLBRANCH entry point to service global storage requests without the need 
for the local memory lock will be used; the SALLOC lock must be held. 
IT BRANCH = YES is specified, the caller must pre-load register 4 with the TCB address, 
pre-load register 7 with the ASCB address, and hold the local address space lock prior to 
entry. Register 7 will not contain the ASCB address when control is returned to the caller. 
Register 3 will also be destroyed if RC or RU was specified. 

FREEMAIN - Free Virtual Storage 165 



If BRANCH=(YES,GLOBAL) is specified, registers 4 and 7 need not contain the TCB and 
ASCB addresses; and registers 3 and 4 are changed when control is returned to the caller. ( 
Additionally, the SP parameter may only designate subpools 227, 228, 231, 239, 241, or 
245. 

The FREEMAIN macro instruction, with BRANCH=(YES,GLOBAL) specified, requires 
that the IHA WSA VT mapping macro be assembled as a DSECT into the caller's program. 

Note: Subpool freemains can be issued only for the following subpools: 0-128, 229, 230, 233, 
236, 237, and 250-253. Any attempt to issue a subpool freemain for any other subpool causes 
a 478 abend. 

,KEY = key nmbr 
specifies the key (in bits 24-27 of the register) in which the requested storage was obtained. 
This parameter applies to subpools 227, 228, 229, 230, 231, and 241, and allows both 
global and local storage to be freed in the requestor's storage protection key. 
When control returns, register 15 may contain the following return code: 

Hexadecimal 
Code 
8 

Meaning 
Part of area being freed is still fixed. 

The parameters restricted in use are explained under the standard form of the FREEMAIN 
macro instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro 
Instructions. 

Example 1 

Operation: Free 400 bytes of storage addressed by register 1 via a branch entry. If the storage 
is successfully freed, register 15 contains 0; otherwise, register 15 contains a nonzero value. 

FREEMAIN EC,LV=400,A=(1 ),BRANCH=YES \ 

Example 2 

Operation: Free 48 bytes of the storage (addressed by register 5) in subpool 231. Register 3 
has been preset to contain the storage key of the storage to be released. If the request is 
unsuccessful, the caller is abnormally terminated. 

FREEMAIN RU,LV=48,A=(S),SP=231,KEY=(3),BRANCH=(YES,GLOBAL) 

166 OS/VS2 System Programming Library: Supervisor 

-----~ .-.- .. __ .. _ .••.. _-- --~---



------' -_ .. _-_._._---_._--

_ ~_FREEMAIN (List Form) 

The list form of the FREEMAIN macro instruction is written as follows: 

name 

FREE MAIN 

LC 

LV 

L 
VC 

VU 

V 

EC 

EV 
E 

,LA=length addr 

,LV =length value 

,A=addr 

,SP=subpool nmbr 

,RELATED = value 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede FREEMAIN. 

One or more blanks must follow FREEMAIN. 

length addr: A-type address. 

length value: symbol or decimal digit. 

Note: LA may only be specified with LC, LV, or Labove. 
Note: LV may only be specified with EC, EV, or E above. 

addr: A-type address. 

subpool nmbr: symbol or decimal digit 0 - 127. 

value: any valid macro keyword specification. 

The parameters restricted in use are explained under the standard form of the FREEMAIN 
macro instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro 
Instructions. 

FREE MAIN (List Fonn) 167 

-----"'--------



FREEMAIN (Execute Form) 

The execute form of the FREEMAIN macro instruction is written as follows: 

name 

FREEMAIN 

LC 
LV 
L 

VC 
VU 

V 

EC 

EV 
E 

,LA=length addr 

,LV = length value 

,A=addr 

,SP=subpool nmbr 

,BRANCH= YES 

,RELATED = value 

,MF=(E ,etrl prog) 

name: symbol. Begin name in column 1. 

One or more blanks must precede FREEMAIN. 

One or more blanks must follow FREEMAIN. 

length addr: RX-type address or register (2) - (12). 
length value: symbol, decimal digit, or register (2) - (12). 

Note: LA may only be specified with LC, LV, or Labove. 
Note: LV may only be specified with EC, EU, or E above. 

addr: RX-type address, or register (2) - (12) 

subpool nmbr: symbol, decimal digit, or register (0) or (2) - (12). 

value: any valid macro keyword specification. 

etrl prog: RX-type address, or register (1) or (2) - (12). 

The parameters restricted in use are explained under the standard form of the FREEMAIN 
macro instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro 
Instructions. 

168 OS!VS2 System Programming Library: Supervisor 

( 

/ 



o 

o 

GETMAIN - Allocate Virtual Storage 

The GETMAIN macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of the BRANCH and KEY parameters. These parameters are 
restricted in use and should only be used by programs executing in supervisor state, under 
protection key zero. 

Note: This macro instruction requires that the CVT mapping macro instruction be assembled 
as a DSECT into the caller's program. 

The syntax of the complete GETMAIN macro instruction is shown below. However, only 
the explanation of the restricted parameters is presented. Explanation of the other parameters 
can be found in OS/VS2 Supervisor Services and Macro Instructions. 

The standard form of the GETMAIN macro instruction is written as follows: 

name 

GETMAIN 

LC,LA=length addr,A=addr 

LU,LA=length addr,A=addr 

VC,LA=length addr,A=addr 

VU,LA=length addr,A=addr 

EC,LV =length value, A=addr 

EU,LV=length value,A=addr 

RC,LV=length value 

RU,LV=length value 

R,L V =Iength value 

,SP=subpool nmbr 

,BNDRY=DBLWD 

,BNDRY=PAGE 

,BRANCH= YES 
,BRANCH=(YES,GLOBAL) 

,KEY =key number 

,RELATED = value 

name: symbol. Begin name in column 1. 

One or more blanks must precede GETMAIN. 

One or more blanks must follow GETMAIN. 

length addr: A-type address, or register (2) - (12). 

length value: symbol, decimal digit, or register (2) - (12). If R is 
specified, register (0) may also be specified. 

addr: A-type address, or register (2) - (12). 

subpool nmbr: symbol, decimal digit 0 - 127, or register (0) or 
(2) - (12). 

Note: If R,LV=(O) is specified above, SP may not be specified. 

Default: BNDRY=DBLWD 

Note: This parameter may not be specified with R above. 

Note: BRANCH=(YES,GLOBAL) may only be specified with 

RC or RU above. Also, the macro expansion uses register 4 for 

the address of the global save area pointed to by the CVT. The 

previous contents of register 4 is overridden. BRANCH requires 

inclusion of the CVT mapping macro. The macro expansion also 

uses register 3. 

key nmbr: decimal digits 0-15, or register (2) - (12). 

Note: This parameter may be specified only with BRANCH and 

RC or RU above. 

value: any valid macro keyword specification. 

The parameters restricted in use are explained as follows. (The other parameters are explained 
in OS/VS2 Supervisor Services and Macro Instructions.) 

GETMAIN - Allocate Virtual Storage 169 



,BRANCH = YES 
,BRANCH = (YES , GLOBAL) (' 

specifies that a branch entry is to be used instead of an SVC entry. If (YES, GLOBAL) is 
specified, the GLBRANCH entry point to service global storage requests without the need 
for the local memory lock is used; the SALLOC lock must be held. 
If BRANCH= YES is specified, the caller must pre-load register 4 with the TCB address, 
pre-load register 7 with the ASCB address, and hold the local address space lock prior to 
entry. Register 7 does not contain the ASCB address when control is returned to the caller. 
Register 3 will also be destroyed if RC or RU was specified. 

If BRANCH=(YES,GLOBAL) is specified, registers 4 and 7 need not contain the TCB and 
ASCB addresses; and register 3 and 4 are changed when control returns to the caller. 
Additionally, the SP parameter may only designate subpools 227, 228, 231, 239, 241, or 
245. 

The parameter LV=(O) for BRANCH=(YES,GLOBAL) must contain only the length 
value. The subpool id is specified with the SP parameter. 

The GETMAIN macro instruction, with this parameter specified, requires that the 
IHA WSA VT mapping macro be assembled as a DSECT into the caller's program. 

,KEY=key nmbr 
specifies the key (in bits 24-27 of the register) in which the requested storage is to be 
obtained. This parameter applies to subpools 227, 228, 229, 230, 231, and 241, and allows 
both global and local storage to be obtained in the requester's storage protection key. 
When control is returned, register 15 may contain the following return code: 

Hexadecimal 
Code 
8 

Example 1 

Meaning 
On request for SQA or LSQA, no real storage page is available. 

Operation: Obtain 248 bytes of storage from the user's region via a branch entry. If the 
routine is in supervisor state, subpool 252 is used; otherwise, subpool 0 is used. If the storage 
cannot be obtained, the caller is abnormally terminated. 

GETMAIN EU,LV=248,A=AREAADDR,BRANCH=YES 

Example 2 

Operation: Obtain one page of storage from the common service area, and cause the acquired 
storage to be initialized with a storage key of 9. A return code of 0 (if successful) or 4 (if 
unsuccessful) is returned. 

GETMAIN RC,LV=4096,SP=231,BRANCH=(YES,GLOBAL),BNDRY=PAGE,KEY=9 

170 OS/VS2 System Programming Library: Supervisor 

/ 
\ 
\, 



GETMAIN (list Form) 

The list form of the GETMAIN macro instruction is written as follows: 

name 

GETMAIN 

LC 
LV 
VC 
VU 
EC 
EV 

,LA=length addr 

,LV =Iength value 

,A=addr 

,SP=subpool nmbr 

,BNDRY=DBLWD 
,BNDRY=PAGE 

,RELATED = value 

,MF=L 

name: Begin name in column 1. 

One or more blanks must precede GETMAIN. 

One or more blanks must follow GETMAIN. 

length addr: A-type address. 
length value: symbol or decimal digit. 
Note: LA may be specified with EC or EV above. 

Note: LV may not be specified with LC, LV, VC or VU above. 

addr: A-type address. 

subpool nmbr: symbol or decimal digit 0-127. 

Default: BNDRY=DBLWD 

value: any valid macro keyword specification. 

The parameters restricted in use are explained under the standard form of the GETMAIN 
macro instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro 
Instructions. 

GETMAIN (List Form) 171 



GETMAIN (Execute Form) 

The execute form of the GETMAIN macro instruction is written as follows: 

name 

GETMAIN 

LC 
LV 
VC 

VU 
EC 

EV 

,LA=length addr 

,LV = length value 

,A=addr 

,SP=subpool nmbr 

,BNDRY =DBL WD 

,BNDRY =PAGE 

,BRANCH= YES 

,RELATED = value 

,MF=(E ,ctrl prog) 

name: symbol. Begin name in column 1. 

One or more blanks must precede GETMAIN. 

One or more blanks must follow GETMAIN. 

length addr: RX-type address or register (2) - (12). 

length value: symbol, decimal digit, or register (2) - (12). 

Note: LA may not be specified with EC or EV above. 

Note: LV may not be specified with LC, LV, VC, or VU above. 

addr: RX-type address, or register (2) - (12). 

subpool nmbr: symbol, decimal digit 0-127, or register (0) or (2) 

- (12). 

Default: BNDRY=DBLWD 

value: any valid macro keyword specification. 

ctrl prog: RX-type address, or register (1) or (2) - (12). 

The parameters restricted in use are explained under the standard form of the GETMAIN 
macro instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro 
Instructions. 

172 OS/VS2 System Programming Library: Supenisor 

.I 

/ 

\ 



------ ,---- -,_.,._---_._- .... _----_ .. _----- ------

o 

MODESET - Change System Status 

The MODE SET macro instruction is used to change system status by altering the PSW key or 
mode indicator. It causes a supervisor routine (lEA VMODE) to alter the RB old program 
status word (RBOPSW) so that the desired PSW is loaded when MODE SET returns to the 
caller. MODESET also generates inline code that saves and/or changes the protection key in 
the current PSW. 

The standard form of the MODESET macro instruction has two forms: the form that 
generates an SVC and the form that generates inline code. The form that generates inline code 
uses the SPKA instruction (see mM System/370 Principles of Operation), and is executable only 
in supervisor state. The form that generates an SVC is executable by users in supervisor state, 
under protection key 0-7, or APF-authorized. 

The standard form of the MODESET macro instruction that generates inline code is written 
as follows: 

name 

MODESET 

EXTKEY=key 
KEY ADDR=key addr 

,SA VEKEY =old key addr 

, WORKREG=reg 

,RELATED = value 

,----_ ...... _.-. __ ._ .. 

name: symbol. Begin name in column 1. 

One or more blanks must precede MODESET. 

One or more blanks must follow MODESET. 

key: one of the following: 
SCHED SRM ZERO 
JES SUPR TCB 

RSM DATAMGT RBTI 
VSM TCAM RBT234 

key addr: A-type address or register (2). 
Note: The WORKREG parameter is required if the following are 

specified: 
EXTKEY=TCB EXTKEY =RBT234 

EXTKEY =RBTI KEY ADDR=A-type address 

Note: The WORKREG parameter should be register 1-15 if one 
of these four parameters is specified because WORKREG is used 

as a base register on the SPKA instruction. WORKREG=O sets 
the PSW key to zero. 

old key addr: A-type address or register (2). 
Note: If KEY ADDR=(2) is specified above, then SA VEKEY =(2) 
cannot be specified. 

Note: The WORKREG parameter is required if 

SA VEKEY =A-type address is specified. 

reg: decimal digits 0 - 15. 

value: any valid macro keyword specification. 

MODESET - Change System Status 173 



The parameters are explained as follows: 

EXTKEY=key 
KEYADDR=keyaddr 

specifies the key to be set in the current PSW or the address of the key. 
SCHED - Scheduler key. 

JES - Job entry subsystem key. 

RSM - Real storage management key. 

VSM - Virtual storage management key. 

SRM - System resource management key. 

SUPR - Supervisor key. 

DATAMGT - Data management key. 

TeAM - Telecommunications access method key. 

ZERO - Key of zero is to be set. 

TCB - Key is to be obtained from TCB field TCBPKF. 

RBTI - Key is to be obtained from the RBOPSW field of the active RB of type 1 SVC 
routine issuing MODE SET. 

RBT234 - Key is to be obtained from the RBOPSW field of the RB preceding SVRB 
of type 2, 3, or 4 SVC routine issuing MODE SET. 

KEY ADDR specifies a location 1 byte in length which contains the key in bit positions 0-3. 
If register (2) is specified, the key is contained in bit positions 24-27 (bits 28-31 are 
ignored). This parameter permits a previously saved key to be restored. If TCB, RBT1 or 
RBT234 is specified as the key address, the TCB mapping macro IKJATCB is required. 
The user is expected to establish address ability to the TCB with a USING statement. 

,SA VEKEY == old key addr 
specifies a location 1 byte in length where the current PSW key is to be saved, in bit 
positions 0-3. If register (2) is specified, the key is left in register 2. 

,WORKREG -= reg 
specifies the register into which the contents of register 2 are to be saved while performing 
the SA VEKEY function, or the working register to be used by the EXTKEY or 
KEY ADDR function. If WORKREG=2 is specified, no register saving takes place. 

,RELATED - value 
specifies information used to self-document macro instructions by 'relating' functions or 
services to corresponding functions or services. The format and contents of the information 
specified are at the discretion of the user, and may be any valid coding values. 
The RELATED parameter is available on macro instructions that provide opposite services 
(for example, A'ITACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and 
on macro instructions that relate to previous occurrences of the same macro instructions (for 
example, CHAP and ESTAE). 

The parameter may be used, for example, as follows: 

GET1 GETMAIN R,LV=4096,RELATED=( FREE 1 ,'GET STORAGE' ) 
FREE1 FREEMAIN R,LV=4096,A=(1 ),RELATED=(GET1,'FREE STORAGE') 

Note: This form of the macro instruction does not generate any return codes. 

174 OS/VS2 System Programming Ubrary: Supervisor 



o 

o 

._---------------_ ... -----

The standard form of the MODE SET macro instruction that generates an SVC is written as 
follows: 

name 

MODESET 

KEY=ZERO 

KEY=NZERO 

,MODE=PROB 

,MODE=SUP 

,RELATED=value 

name: symbol. Begin name in column 1. 

One or more blanks must precede MODESET. 

One or more blanks must follow MODESET. 

Note: KEY is required only if no other parameter is specified. 

Note: MODE is required only if no other parameter is specified. 

value: any valid macro keyword specification. 

The parameters are explained as follows: 

KEY = ZERO 
KEY = NZERO 

specifies that the PSW key (bits 8-11) is to be either set to zero (ZERO) or set to the value 
in the caller's TCB (NZERO). 

,MODE=PROB 
,MODE = SUP 

specifies that the PSW mode indicator (bit 15) is to be either turned on (PROB) or turned 
off (SUP). 

Note: This form of the macro instruction does not generate any return codes. 

Example 1 

Operation: Save the current PSW key, and change the key to that of the scheduler. 

MODESET EXTKEY=SCHED,SAVEKEY=KEYSAVE,WORKREG=1 

Example 2 

Operation: Change to supervisor mode and key zero. 

MODESET KEY=ZERO,MODE=SUP 

MODESET - Change System Status 175 



MODESET (List Form) 

The list form of the MODESET macro instruction is written as follows: 

name name: symbol. Begin name in column 1. 

One or more blanks must precede MODESET .. 

MODESET 

One or more blanks must follow MODESET. 

RELATED = va[ue, value: any valid macro keyword specification. 

MF=L 

The parameters are explained under the standard form of the MODE SET macro instruction, 
with the following exception: 

MF=L 
specifies the list form of the MODESET macro instruction. 

176 OS/VS2 System Programming Library: Supervisor 

~-~---~~ ~ ---_. 

( 

( 



o 

o 

MODESET (Execute Form) 

The execute form of the MODESET macro instruction is written as follows: 

name name: symbol. Begin name in column 1. 

One or more blanks must precede MODESET. 

MODESET 

One or more blanks must follow MODESET. 

RELATED = value, value: any valid macro keyword specification. 

MF=(E ,list addr) list addr: RX-type address, or register (1). 

The parameters are explained under the standard form of the MODESET macro instruction, 
with the following exception: 

MF=(E ,Iist addr) 
specifies the execute form of the MODE SET macro instruction, using a parameter list 
address. 

MODESET (Execute Form) 177 



NIL - Provide a Lock Via an AND IMMEDIATE (NI) Instruction 

The NIL macro instruction is used to provide a lock on a byte of storage on which an AND 
IMMEDIATE (NI) instruction is to be executed. The byte of storage exists in a 
multiprocessing environment and the possibility exists that the byte may be changed by 
another CPU at the same time. Storage modification during NIL processing is accomplished in 
the same manner as that used by the COMPARE AND SWAP (CS) instruction. 

For details on the AND IMMEDIATE and COMPARE AND SWAP instructions, see mM 
System/370 Principles of Operation. 

The NIL macro instruction is written as follows: 

b 

NIL 

b 

name 

byte addr 

,mask 

,REF=stor addr 

,WREGS=(regl ,reg2, reg3) 
,WREGS=(regl,reg2) 
,WREGS=(regl"reg3) 
,WREGS=(,reg 2, reg3) 
, WREGS=(regJ) 
,WREGS=(,reg 2) 
,WREGS=(" reg3) 

name: symbol. Begin name in column 1. 

One or more blanks msut precede NIL. 

One or more blanks must follow NIL. 

byte addr: A-type address. 

mask: symbol or self defining term. 

stor addr: A-type address. 

regl: symbol, or decimal digits 0-16. 
reg2: symbol, or decimal digits 1-16. 
reg3: symbol, or decimal digits 0-16. 
Default for reg]: 0 
Default for reg2: 1 
Default for reg3: 2 

The parameters are explained as follows: 

byte addr 
specifies the address of the byte to which the AND function is to be applied. 

, mask 
specifies the value to be ANDed to the byte at the address specified above. 

,REF=stor addr 
specifies the address of a storage location on a fullword boundary. This address provides the 
means by which the COMPARE AND SWAP instruction may be executed. The address 
must be less than or equal to the byte address specified above, and the difference between 
the addresses must be less than 4096. The two addresses must be addressable via the same 
base register. 

,WREGS = (reg 1, reg2 , reg 3) 
,WREGS = (reg 1,reg2) 
,WREGS = (reg 1"reg3) 
,WREGS = (,reg2,reg3) 
,WREGS = (reg 1) 
,WREGS = (, reg2) 
,WREGS = ("reg3) 

specifies the work registers to be used to perform the COMPARE AND SWAP instruction. 
reg] is used to contain the "old" byte; reg2 is used to contain the "updated" byte; and 
reg3 is used to contain the mask. 

178 OS/VS2 System Programming Library: Supervisor 

( 



Cj 

------ -----------

Example 1 

Operation: Provide a lock on the byte of storage specified by the address STRESTAT. 
UCBOB is the address used to reference the byte, and FSRTECGS is the mask used. 
NIL SRTESTAT,FSRTECGS,WREGS=(15,4,5},REF=UCBOB 

NIL - Provide a Lock Via an AND IMMEDIATE (NI) Instruction 179 

----------,-,------



OIL - Provide a Lock Via an OR IMMEDIATE (01) Instruction 

The OIL macro instruction is used to provide a lock on a byte of storage on which an OR 
IMMEDIATE (01) instruction is to be executed. The byte of storage exists in a 
multiprocessing environment and the possibility exists that the byte may be changed by 
another CPU at the same time. Storage modification during OIL processing is accomplished in 
the same manner as that used by the COMPARE AND SWAP (CS) instruction. 

For details on the OR IMMEDIATE and COMPARE AND SWAP instructions, see mM 
System/370 Principles of Operation. 

The OIL macro instruction is written as follows: 

b 

OIL 

b 

name 

byte addr 

,mask 

,REF=stor addr 

, WREGS=(regJ ,reg2, reg3) 
, WREGS=(regJ ,reg 2) 
,WREGS=(regl"reg3) 
, WREGS=(,reg2,reg3) 
,WREGS=(regl) 
, WREGS=(,reg2) 
,WREGS=("reg3 ) 

name: symbol. Begin name in column 1. 

One or more blanks must precede OIL. 

One or more blanks must follow OIL. 

byte addr: A-type address. 

mask: symbol or self defining term. 

stor addr: A-type address. 

regJ: symbol, or decimal digits 0-16. 
reg2: symbol, or decimal digits 0-16. 
reg3: symbol, or decimal digits 0-16. 
Default for regJ: 0 
Default for reg2: 1 
Default for reg3: 2 

The parameters are explained as follows: 

byte addr 
specifies the address of the byte to which the OR function is to be applied. 

, mask 
specifies the value to be ORed to the byte at the address specified above. 

,REF=stor addr 
specifies the address of a storage location on a fullword boundary. This address provides the 
means by which the COMPARE AND SWAP instruction may be executed. The address 
must be less than or equal to the byte address specified above, and the difference between 
the addresses must be less than 4096. The two addresses must be addressable via the same 
base register. 

,WREGS = (reg 1, reg2 ,reg 3) 
,WREGS= reg1,reg2) 
,WREGS = (reg1"reg3) 
,WREGS = (, reg2 ,reg3) 
,WREGS=(reg1) 
,WREGS = (,reg2) 
,WREGS = ("reg3) 

specifies the work registers to be used to perform the COMPARE AND SWAP instruction. 
reg 1 is used to contain the "old" byte; reg2 is used to contain the "updated" byte; and 
reg 3 is used to contain the mask. 

180 OS/VS2 System Programming Library: Supervisor 

---- - ---------- -------- ----- ------

( 



------ .... _-------_ ..... _ .. -_._ ..... _-_ .•. -----_ .•... __ ... _ ......... _ .. _- ...... _-

o 

o 

Example 1 

Operation: Provide a lock on the byte of storage specified by the address SRTESTAT. 
UCBOB is the address used to reference the byte, and SRTECHGS is the mask used. 

OIL SRTESTAT,SRTECHGS,WREGS=(15,4,5),REF=UCBOB 

OIL - Provide a Lock Via an OR IMMEDIATE (On Instruction 181 



PGFIX - Fix Virtual Storage Contents 

The PGFIX macro instruction makes virtual storage areas resident in real storage and ineligible 
for page-out while the requesting task's address space occupies real storage. The PGFIX 
function is available only to authorized system functions and users. 

PGFIX does not prevent pages from being paged out when an entire address space is 
swapped out of real storage. Consequently, when using the PGFIX macro instruction, you can 
not assume a constant real address mapping for fixed pages that are susceptible to swapping. 

The standard form of the PGFIX macro instruction is written as follows: 

name 

PGFIX 

b 

R 

L 

,LA=/ist add, 

,A=start addr 

,ECB=ecb add, 

,EA=end add, 

,LONG=Y 

,LONG=N 

,RELEASE=N 

,RELEASE=Y 

,RELATED=value 

name: symbol. Begin name in column 1. 

One or more blanks must precede PGFIX. 

One or more blanks must follow PGFIX. 

list addr: A-type address, or register (1) or (2) - (12). 

start add,: A-type address, or register (1) or (2) - (12). 

ecb addr: A-type address, or register (0) or (2) - (12). 

end addr: A-type address, or register (2) - (12) or (15). 

Default: start addr + 1 

Default: LONG= Y 

Default: RELEASE=N 

Note: RELEASE = Y may only be specified with EA above. 

value: any valid macro keyword specification. 

The parameters are explained as follows: 

R 
specifies that no parameter list is being supplied with this request. 

L 
specifies that a parameter list is being supplied with this request. 

,LA=list addr 
specifies the address of the first entry of a virtual subarea list. 

,A = start addr 
specifies the start address of the virtual area to be fixed. 

,ECB =ecb addr 
specifies the address of the ECB that is used to signal event completion. 
Note: If the user intends to wait on the ECB as part of an ECB list, he must ensure that 
the list and associated ECBs are fixed in real storage before issuing the WAIT. The PGFIX 
service routine ensures that the specified ECB is fixed. 

182 OS/VS2 System Programming Library: Supervisor 

r " 

I 
\ 

/ 

\ 



o 

..•.. -- ... - .. ---~ .. -.. ------------ .... ---_ ... _- ...•. _--

,EA = end addr 
specifies the end address + 1 of the virtual area to be fixed. 

,LONG=Y 
,LONG=N 

specifies that the relative real time duration anticipated for the fix is long (Y) or short (N). 
,RELEASE=N 
,RELEASE=Y 

specifies that the contents of the virtual area is to remain intact (N) or be released (Y). 
,RELATED = value 

specifies information used to self-document macro instructions by "relating" functions or 
services to corresponding functions or services. The format and contents of the information 
specified are at the discretion of the user, and may be any valid coding values. 
The RELATED parameter is available on macro instructions that provide opposite services 
(for example, ATfACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and 
on macro instructions that relate to previous occurrences of the same macro instructions (for 
example, CHAP and ESTAE). 

The parameter may be used, for example, as follows: 

GET1 GETMAIN R,LV=4096,RELATED=(FREE1,'GET STORAGE') 

FREE 1 FREEMAIN R,LV=4096,A=(1 ),RELATED=(GET1,'FREE STORAGE') 

Upon completion, register 15 contains one of the following return codes: 

Hexadecimal 
Code 

00 
04 

08 

10 

Meaning 

Operation completed normally; ECB posted complete. 
Operation abnormally terminated with a 171 abend. Operation incomplete because of 
invalid address in virtual subarea list entry; ECB posted complete. See OS/VS 
Message library: VS2 System Codes, GC38-1016 for a complete description of the 
register contents after a 171 abend. 
Operation proceeding; ECB will be posted when all requested pages are fixed in real 
storage. 
Operation abnormally terminated with a 171 abend. Virtual subarea list entry or ECB 
address invalid; no ECB is posted. See OS/VS Message library: VS2 System 
Codes, GC38-1016 for a complete description of the register contents after a 171 
abend. 

The ECB is unchanged if the request was initiated but not complete (return code 8), or if 
an ABEND was issued with return code 10. Otherwise, the ECB is posted complete with code: 

o - operation completed successfully. 
4 - operation incomplete because of invalid address in VSL entry. 

If the return code issued is 8, the ECB is posted asynchronously when paging I/O has 
completed, with code: 

o - operation completed successfully. 
4 - operation incomplete because of paging error; requesting TCB will be abnormally 

terminated. 

The ECB code is posted in the low-order 3 bytes of the ECB, and is right-justified. 

PGFIX - Fix Virtual Storage Contents 183 

------_._--_._ ....... . 



Example 1 

Operation: Fix a single byte of virtual storage addressed by register 3. Note that the full 
4096-byte page containing the specified byte is actually be fixed. The storage is long fixed. 

PGFIX R,A=(R3),ECB=(R5) 

Example 2 

Operation: Fix virtual storage without using a virtual subarea list. Storage is long fixed. 

PGFIX R,A=(R3),EA=(R4),ECB=ECB1 

Example 3 

Operation: Fix, but not long-fix, virtual storage, and ensure that the pages fully included in the 
address range are forfeited before fixing the area specified by registers 3 and 4. 

PGFIX R,A=(R3),EA=(R4),ECB=(R5),LONG=N,RELEASE=Y 

184 OS/VS2 System Programming Library: Supervisor 

( ." 

/ 

\ 



----------_._-_. __ ._._._ ...... -------.-.----.-.-.- ------ -_._---_.. .. -._._--_ .... _._._-

c 

o 

PGFREE - Free Virtual Storage Contents 

The PGFREE macro instruction makes virtual storage areas that fixed via the PGFIX macro 
instruction eligible for page-out. The PGFREE function is available only to authorized system 
functions and users. 

Note that a fixed page is not considered page able until the number of PGFREEs issued for 
the page is equal to the number of PGFIXes previously issued for that page. That is, a page is 
not automatically removed from real storage as the result of issuing a PGFREE macro 
instruction. 

The standard form of the PGFREE macro instruction is written as follows: 

name name: symbol. Begin name in column 1. 

One or more blanks must precede PGFREE. 

PGFREE 

One or more blanks must follow PGFREE. 

L 

,LA=list addr list addr: A-type address, or register (1) or (2) - (12). 

R 

,A=Start addr start addr: A-type address, or register (1) or (2) - (12). 

,ECB=ecb addr 

,EA=end addr 

,RELEASE=N 

,RELEASE=Y 

,RELATED=value 

ecb addr: A-type address, or register (0) or (2) - (12). 

end addr: A-type address, or register (2) - (12) or (15). 

Default: start addr + 1 

Default: RELEASE=N 

Note: RELEASE= Y may only be specified with EA above. 

value: any valid macro keyword specification. 

The parameters are explained as follows: 

L 
specifies that a parameter list is being supplied with this request. 

,LA == list addr 
specifies the address of the first entry of a virtual subarea list. 

R 
specifies that no parameter list is being supplied with this request. 

,A == start addr 
specifies the start address of the virtual area to be freed. 

,ECB ==ecb addr 
specifies the address of the ECB that was used in a prior PGFIX request. This parameter is 
used if there is any possibility that the ECB for the previously issued PGFIX was not 
posted complete. 

,EA = end addr 
specifies the end address + 1 of the virtual area to be freed. 

PGFREE - Free Virtual Storage Contents 185 



,RELEASE==N 
,RELEASE == Y r 

specifies that the contents of the virtual area is to remain intact (N) or be released (Y). 
,RELATED == value 

specifies information used to self-document macro instructions by "relating" functions or 
services to corresponding functions or services. The format and contents of the information 
specified are at the discretion of the user, and may be any valid coding values. 
The RELATED parameter is available on macro instructions that provide opposite services 
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and 
on macro instructions that relate to previous occurrences of the same macro instructions (for 
example, CHAP and ESTAE). 

The parameter may be used, for example, as follows: 

GET1 GETMAIN R,LV=4096,RELATED=(FREE1,'GET STORAGE') 
FREE 1 FREEMAIN R,LV=4096,A=(1 ),RELATED=(GET1,'FREE STORAGE') 

When control is returned, register 15 contains one of the following return codes: 

Hexadecimal 
Code 

00 
04 

10 

Example 1 

Meaning 

Operation completed normally. 
Operation abnormally terminated. Operation incomplete because of invalid address in 
virtual subarea list entry. 
Operation abnormally terminated. Virtual subarea list entry or ECB address invalid. 

Operation: Free the storage in Example 1 of standard-form PGFIX. 

PGFREE R,A=(R3) 

Example 2 

Operation: Free the storage in Example 2 of standard-form PGFIX. 

PGFREE R,A=(R3),EA=(R4) 

Example 3 

Operation: Free the storage in Example 3 of standard-form PGFIX, and forfeit the pages full 
included in the address range. 

PGFREE R,A=(R3),EA=(R4),ECB=(RS),RELEASE=Y 

186 OS!VS2 System Programming Library: Supenisor 



o 

o 

POST - Signal Event Completion 

The POST macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of the ASCB and ERRET parameters. These parameters are 
restricted in use and should only be used with tasks in supervisor state, APF-authorized, or 
with protection key 0-7. 

The syntax of the complete POST macro instruction is shown below. However, only the 
explanation of the restricted parameters is presented. Explanation of the other parameters can 
be found in OS/VS2 Supervisor Services and Macro Instructions. 

The standard form of the POST macro instruction is written as follows: 

name 

POST 

ecb addr 

,camp code 

,ASCB=addr, ERRET=e" addr 

,ASCB=addr, ,ERRET=e" addr, 

ECBKEY=key 

,RELATED = value 

name: symbol. Begin name in column 1. 

One or more blanks must precede POST. 

One or more blanks must follow POST. 

ecb addr: RX-type address, or register (2) - (12). 

camp code: symbol, decimal or hexadecimal digit, or register (0) 

or (2) - (12). 

Range of values: 0 - 230_1 

Default: 0 

addr: RX-type address, or register (2) - (12). 

e" addr: RX-type address, or register (2) - (12). 

addr: RX-type address, or register (2) - (12). 
err addr: RX-type address, or register (2) - (12). 

key: symbol, decimal or hexadecimal digit, or 
register (2) - (12). 

Range of values: 0 - 15 (decimal) 

Default: none. 
Note: If the register form is specified, bits 24-27 of the 

register must contain the key. 

value: any valid macro keyword specification. 

The parameters restricted in use are explained as follows. (The other parameters are explained 
in OS/VS2 Supervisor Services and Macro Instructions.) 

,ASCB = addr,ERRET = err addr 
specifies the address of the ASCB of the address space containing the ECB being posted, 
and the address of the routine to be given control when an error condition resulting from a 
POST failure is detected. 

POST - Signal Event Completion 187 



,ASCB == addr, ERRET ==e" addr, ECBKEY == key 
specifies the address of the ASCB containing the ECB being posted, the address of the 
routine to be given control when an error condition resulting from a POST failure is 
detected, and the storage protection key of the ECB to be posted. If the ECB does not 
identify a current wait condition against it, the ECB is checked against the key before it is 
updated with the post completio~ code. Otherwise, the ECB is checked against the 
protection key of the waiting task. 

Example 1 

Operation: Post an event control block whose address is ECB, where the address space 
containing the ECB has an ASCB specified by register 5, and where ERRRTN is the routine 
to be given control on error conditions. 

POST ECB,ASCB=(REG5),ERRET=ERRRTN 

Example 2 

Operation: Post the ECB from example 1 with a hexadecimal completion code of 3FF. 

POST ECB,X'3FF',ASCB=(REG5),ERRET=ERRRTN 

188 OS/VS2 System Programming Ubrary: Supemsor 

------------------- ---------~-----

( 

( 



c 

o 

c) 

--_ .. - --_ . .---._-_.------------------

POST (List Form) 

The list form of the POST macro instruction is written as follows: 

name 

POST 

t> 

ecb addr 

,ASCB=addr, ERRET=e" addr 

,ASCB=addr,ERRET=e" addr, 
ECBKEY=YES 

name: symbol. Begin name in column 1. 

One or more blanks must precede POST. 

One or more blanks must follow POST. 

ecb addr: A-type address. 

addr: A-type address. 
err addr: A-type address. 

addr: A-type address 
err addr: A-type address 

,RELATED=value value: any valid macro keyword specification. 

.MF=L 

The parameters are explained under the standard form of the POST macro instruction, with 
the following exceptions: 

,MF-L 
specifies the list form of the POST macro instruction. 

,ASCB -addr, ERRET -e" addr, ECBKEY 0= YES 
specifies that the storage protection key of the ECB is defined in the execute form of the 
POST macro instruction. 

POST (List Form) 189 



POST (Execute Form) 

The execute form of the POST macro instruction is written as follows: 

name 

POST 

ecb addr 

,comp code 

,ASCB=addr, ERRET=e" addr 

,ASCB=addr, ERRET =e" addr, 
ECBKEY=key 

,RELATED = value 

,MF=(E ,prob addr) 

name: symbol. Begin name in column 1. 

One or more blanks must precede POST. 

One or more blanks must follow POST. 

ecb addr: RX-type address, or register (2) - (12). 

comp code: symbol, decimal or hexadecimal digit, or register (0) 

or (2) - (12). 
Range of values: 0 - 230_1 

addr: RX-type address, or register (2) - (12). 

err addr: RX-type address, or register (2) - (12). 

addr: RX-type address, or register (2) - (12). 

e" addr: RX-type address, or register (2) - (12). 

key: symbol, decimal or hexadecimal digit, or register 
(2) - (12). 

Range of values: 0 - 15 (decimal). 
Default: none. 
Note: If the register form is specified, bits 24-27 of the 
register must contain the key. 

value: any valid macro keyword specification. 

prob addr: RX-type address, or register (1) or (2) - (12). 

The parameters are explained under the standard form of the POST macro instruction, with 
the following exception: 

,MF == (E ,prob addr) 
specifies the execute form of the POST macro instruction using a remote control program 
parameter list. 

190 OS/VS2 System Programming Library: Supervisor 



c 

o 

c' 

._--._-----._---------------_.,_.,--_._-._--- --- -",-.. ,_._- ._-- .... '-------

PURGEDQ - Purge SRB Activity 

The PURGEDQ macro instruction allows a task to purge particular SRB activity. Because an 
SRB routine is dispatched asynchronously to the actual issuance of a SCHEDULE macro 
instruction, the conditions that existed in the system at the time the SCHEDULE was issued 
may have totally changed by the time the routine is dispatched. If, in this time interval, the 
environment that the asynchronous routine requires to run successfully has been changed, the 
results are unpredictable. For this reason, the PURGEDQ macro instruction is available to: 

• Dequeue SRBS not yet dispatched . 
• Dequeue or allow completed processing for SRBs previously scheduled. 
• "Clean up" each de queued SRB. 

The stan4ard form of the PURGEDQ macro instruction is written as follows: 

name 

PURGEDQ 

b 

RMTR=RMTR addr 

,ASID=ASID addr 

,ASIDTCB= TCB addr 

name: symbol. Begin name in column 1. 

One or more blanks must precede PURGEDQ. 

One or more blanks must follow PURGEDQ. 

RMTR addr: RX-type address, or register (2) - (12). 

ASID addr: RX-type address, or register (2) - (12). 

TCB addr: RX-type address, or register (2) - (12). 

The parameters are explained as follows: 

RMTR = RMTR addr 
specifies the address of the resource manager termination routine. 

,ASID =ASID addr 
specifies the address of a halfword containing the address space identifier. PURGEDQ 
searches for SRBs scheduled to be dispatched into the address space specified by ASID. 

,ASIDTCB = TeB addr 
specifies the address of a doubleword in the following format: 

bytes 0-1 Reserved 
bytes 2-3 ASID or zero 
bytes 4-7 TCB address or zero 

Example 1 

Opemtion: All SRBS scheduled into the current address space and related to the current 
(terminating) task are to be purged by the RMTR routine lEA VRSPG. 

PURGEDQ RMTR=IEAVRSPG 

PURGEDQ - Purge SRD Activity 191 



PURGEDQ (List Form) 

The list form of the PURGEDQ macro instruction is used to construct a remote program 
parameter list. 

The list form of the PURGEDQ macro instruction is written as follows: 

name 

PURGEDQ 

t> 

RMTR=RMTR addr 

,ASID=ASID addr 

,ASIDTCB=TCB addr 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede PURGEDQ. 

One or more blanks must follow PURGEDQ. 

RMTR addr: A·type address. 

ASID addr: A·type address. 

TCB addr: A·type address. 

The parameters are explained under the standard form of the PURGEDQ macro instruction, 
with the following exception: 

,MF=L 
specifies the list form of the PURGEDQ macro instruction. 

192 OS/VSl System Programming Library: Supervisor 

f ." 

/ 



c 

C\ 
,) 

c~ 

-_. __ ....•. _._._--_._---- ---- --------_._-----_ .... _._----_ .. 

PURGEDQ (Execute Form) 

The execute form of the PURGEDQ macro instruction uses a remote control program 
parameter list. The parameter list is constructed using the list form of PURGEDQ. 

The execute form of the PURGEDQ macro instruction is written as follows: 

name 

b 

PURGEDQ 

b 

RMTR=RMTR addr 

,ASID=ASID addr 

,ASIDTCB=TCB addr 

,MF=(E, clrl addr) 

name: symbol. Begin name in column 1. 

One or more blanks must precede PURGEDQ. 

One or more blanks must follow PURGEDQ. 

RMTR addr: RX-type address, or register (2) - (12). 

ASID addr: RX-type address, or register (2) - (12). 

TeB addr: RX-type address, or register (2) - (12). 

ctrl addr: RX-type address, or register (1) or (2) - (12). 

The parameters are explained under the standard form of the PURGEDQ macro instruction, 
with the following exception: 

,MF=(E, ctrl addr) 
specifies the execute form of the PURGEDQ macro instruction, using a remote control 
program parameter list. 

Example 1 

Operation: All SRBs scheduled into the address space designated by register 6 are to be 
purged by the RMTR routine lEA VRSPG. Register 1 is a pointer to the parameter list, and 
register 7 indicates that all SRBs are to be purged. 

PURGEDQ MF=(E,R1 )),ASID=(R6),ASIDTCB=(R7),RMTR=IEAVRSPG 

PURGEDQ (Execute Fonn) 193 



QEDIT - Command Input Buffer Manipulation 

The QEDIT macro instruction generates the required entry parameters and processes the 
command input buffer for the following uses: 

• Dechaining and freeing of a command input buffer (em) from the em chain for a task. 
• Setting a limit for the number of ems that may be simultaneously chained for a task. 

The QEDIT macro instruction is written as follows: 

name 

QEDIT 

b 

ORIGIN=CIB addr ptr 

,BLOCK=CIB addr 

,CIBCTR=CIB nmbr 

name: symbol. Begin name in column 1. 

One or more blanks must precede QED IT. 

One or more blanks must follow QED IT. 

CIB addr plr: RX-type address, or register (2) - (12). 

CIB addr: RX-type address, or register (2) - (12). 

CIB nmbr: decimal digit, with a maximum value of 255. 

The parameters are explained as follows: 

ORIGIN = CIB addr ptr 
specifies the address of the pointer to the first em chain for the task. This address is 
obtained using the EXTRACT macro instruction. If ORIGIN is the only parameter 
specified, the caller must be executing under system key 0-7; in this case, the entire cm 
chain is freed. 

,BLOCK = CIB addr 
specifies the address of the em to be freed from the cm chain for a task. 

,CmCTR=CIB nmbr 
specifies the limit for the number of cms to be chained at any time for a task. 

Note: When using any address returned from the EXTRACT macro instruction as input to 
the QEDIT macro instruction, the user must use IEZeOM to establish addressability based on 
the address returned by EXTRACT. 

Example 1 

Operation: Free the entire cm chain, where register 8 contains the address of the pointer to 
the cm chain. 

QEDIT ORGIN=(8) 

Example 2 

Operation: Free the em whose address is in register 5 from the em chain. Register 8 
contains the address of the pointer to the em chain. 

QEDIT ORIGIN=(8),BLOCK=(5) 

194 OS!VS2 System Programming Library: Supervisor 

--_._---_ .. _.---. __ .•. __ ...• -.... 

( " 



( 
\ 

Page of GC28-0628-3 
As Updated September 30, 1981 
By TNL GN284978 

RACDEF - Define a Resource to RACF 

The RACDEF macro instruction is used to define, modify, or delete resource profiles for 
RACF. RACF uses the profiles to perform RACHECK authorization checking. 

\ 

The RACDEF caller must be authorized (APF-authorized, in system key 0-7, or in 
supervisor state). 

A RACF user can change or add the RACDEF parameters, OWNER, LEVEL, UACC, or 
AUDIT by means of the RACDEF pre-processing routine. This routine is described in OS/VS2 
MVS Resource Access Control Facility (RACF): Installation Reference Manual. 

The standard form of the RACDEF macro instruction is written as follows: 

RACDEF - Derme a Reso ... ce to RACF 195 



Page of GC28-0628-3 
As Updated September 30, 1981 
By TNL GN28-4978 

name 

b 

RACDEF 

b 

ENTITY =resource name addr 

,VOLSER=vol addr 

,TYPE=DEFINE 
,TYPE=DEFINE,NEWNAME 
=new dsn addr 
,TYPE=ADDVOL,OLDVOL= 
old vol addr 
,TYPE=CHGVOL,OLDVOL= 
old vol addr 
,TYPE=DELETE 

,DSTYPE=N 
,DSTYPE=V 
,DSTYPE=M 

,INSTLN=parm list addr 

,CLASS=' c1assname' 
,CLASS=c1ass name addr 

,MENTITY =entity addr 

,MVOLSER=volser addr 

,ACEE=acee addr 

,UNIT =unit addr 

,SPECIAL= YES 
,SPECIAL=NO 

,OWNER=owner name addr 

,LEVEL=number 
,LEVEL=reg 

,UACC=ALTER 
,UACC=CONTROL 
,UACC=UPDATE 
,UACC=READ 
,UACC=NONE 
,UACC=reg 

,DAT A=data addr 

,AUDIT=ALL 
,AUDIT=SUCCESS 
,AUDIT=FAILURES 
AUDIT=NONE 
,AUDIT=reg 

name: symbol. Begin name in column 1. 

One or more blanks must precede RACDEF. 

One or more blanks must follow RACDEF. 

resource name addr A-type address, or register (2) - (12). 

vol addr: A~type address, or register (2) - (12). 
Note: VOLSER is required only for CLASS='DATASET and 
DSTYPE not equal to M. .-

new dsn addr: A-type address, or register (2), - (12). 

old vol addr: A-type address, or register (2) - (12). 

old vol addr: A-type address, or register (2) - (12). 

Default: TYPE=DEFINE 

Default: DSTYPE=N 

parm list addr: A-type address, or register (2) - (12). 
Default: zero. 

c1assname: DASDVOL, DATASET, or TAPEVOL 
class name addr: A-type address, or register (2) - (12). 
Default: CLASS='DATASET 

entity addr,: A-type address, or register (2) - (12). 
Default: zero. 

volser addr: A-type address, or register (2) - (12). 
Default: zero. 

acee addr: A-type address, or register (2) - (12). 
Default: zero. 

unit addr: A-type address, or register (2) - (12). 

Default: SPECIAL=NO 

owner name addr: A-type address, or register (2) - (12). 

Default: zero. 
reg: register (2) - (12). 

reg: register (2) - (12). 

data addr: A-type address, or register (2) - (12). 

reg: register (2) - (12). 

195.0 OS/VSl System Programming Ubnry: Supervisor 



Page of GC28-0628-3 
As Updated September 30, 1981 
By TNL GN284978 

The parameters are explained as follows: 

ENTITY = resource naine addr 
specifies the address of the name of the resource that is to be defined to, modified, or 
deleted from RACF. The resource name is a 44-byte DASD data set name for 
CLASS='DATASET' or a 6-byte volume serial name for CLASS='DASDVOL' or 
CLASS='T APEVOL'. The name must be left justified in the field and padded with blanks. 
The length of all other resource names is determined by the class descriptor table. 

RACDEF - Def"me a Resource to RACF 195.1 



Page of GC28-0628-3 
As Updated September 30, 1981 
By TNL GN284978 

,VOLSER = vol addr 
specifies the address of the volume serial number: 
• For TYPE=ADDVOL, of the new volume to be added to the definition of the data set. 
• For TYPE=ADDVOL and CLASS='TAPEVOL', of the new volume being added to the 

tape volume set identified by ENTITY. 
• For TYPE=DEFINE and CLASS='DATASET', of the catalog (for a VSAM data set), 

or of the volume on which the data set resides (for a non-VSAM data set). 

The volume serial number is ,optional if DSTYPE=M is specified. 

The field pointed to by the specified address c~ntains the volume serial number (padded to 
the right with blanks, if necessary, to make six characters). 

,TYPE = DEFINE 
,TYPE=DEFINE,NEWNAME'=new dsn addr 
,TYPE = ADDVOL,OLDVOL = old vol addr 

I' ,TYPE=CHGVOL,OLDVOL=old vol addr 
,TYPE = DELETE 

specifies the type of action to be taken: 
• TYFE=DEFINE - The definition of the resource is added to the RACF data set, and the 

current user is established as the owner of the defined entity. If NEWNAME is specified, 
the address points to a 44-byte field containing the new name for the data set that is to 
be renamed. NEWNAME is only valid with CLASS='DATASET'. 

• TYPE=ADDVOL - The new volume is added to the definition of the specified resource. 
For the DATASET class, the OLDVOL address specifies a previous volume of a 
multivolume data set. For the T APEVOL class, the ENTITY address specifies a previous 
volume of a tape volume set. 

• TYPE=CHGVOL - The volume serial number in the definition of the specified resource 
is changed from the old volume serial number identified in OLDVOL to the new volume 
serial number identified in the VOLSER parameter. 

• TYPE = DELETE - The definition of the resource is removed from the RACF data set. 
(If a multivolume data set or a tape volume set, only the specified volume is removed 
from the definition.) 

,DSTYPE=N 
,DSTYPE=V 
,DSTYPE=M 

specifies whether the data set associated with the request is VSAM (V), non-VSAM (N), or 
a model profile (M). DSTYPE should only be specified for CLASS='DATASET'. 

,INSTLN = parm list addr 
specifies the address of an area that is to contain parameter information meaningful to the 
RACDEF installation exit. This information is passed to the installation exit when it is given 
control from the RACDEF routine. 
The INSTLN parameter can be used by an application program acting in the capacity of 
resource manager that needs ,to pass information to the RACDEF installation exit. 

,CLASS = 'classname' 
,CLASS = class name addr 

specifies that a profile is to be defined, modified, or deleted for a data set or tape volume. 
If an address is specified, the address must point to a one byte length field followed by the 
class name (for example, DATASET or TAPEVOL). 

,MENTITY = entity addr 
specifies the ,address of the name of the resource whose profile is to be used as a model in 
defining the ENTITY profile. MENTITY is valid for the DATASET class only, and is valid 
only if TYPE=DEFINE is specified and NEWNAME= is not specified. The name is 
contained in a 44 byte field pointed to by the specified address. The name is left justified in 
the field and padded with blanks. 

196 OS/VS2 System Programming Library: Supervisor 



( 
r 

\~.-. 

c' 

Page of GC28-0628--3 
As Updated September 30, 1981 
By TNL GN284978 

,MVOLSER = volser addr 
specifies the address of the volume serial number of the volume on which the MENTITY 
data set resides (for a non-VSAM data set), or of the catalog (for a VSAM data set). The 
field pointed to by the specified address contains the volume serial number, padded to the 
right with blanks, if necessary, to make six characters. 

RACDEF - Derme a Resource to RACF 196.1 



September 30, 1981 

/ 

196.2 OS/VS2 System Programming Library: Supervisor 



Page of GC28-0628-3 
As Updated September 30, 1981 
By TNL GN284978 

,ACEE = acee addr 
specifies the address of the accessor control environment element (ACEE) to be used 
during RACDEF processing. If no ACEE is specified, or if a register that contains zeros is 
specified, RACF uses the main ACEE. The main ACEE is pointed to by the ASXBSENV 
field(x'C8') in the address space extension block. 

,UNIT = unit addr 
specifies the address of a field containing unit information. UNIT is valid only if 
TYPE=CHGVOL or TYPE=DEFINE is specified. If a unit address is specified, the unit 
information in the data set profile is replaced by the unit information pointed to by this unit 
address. The unit address must point to a field containing a one-byte length field (whose 
value can range from 4 to 8) followed by the actual unit information. If the value in the 
length field is 4, the unit information is assumed to contain a copy of the information in the 
UCBTYP field of the UCB; otherwise, the unit information is assumed to be in the generic 
form (for example, 3330-1). 

,SPECIAL = YES 
,SPECIAL = NO 

specifies whether or not a RACDEF operation is to be completed if the requestor has the 
SPECIAL authority. SPECIAL=YES is required for a TSO user who defines a data set 
(either for another user or in a group that does not have the necessary authority) to RACF 
using ADDSD. 

,OWNER=owner name addr 
specifies the address of a field containing the profile owner's name. OWNER is valid only if 
TYPE = DEFINE is specified. The owner's name must be a valid (RACF-defined) userid. 
The address must point to an 8-byte field containing the owner's name, left-justified and 
padded with blanks. 

Note: RACF does not check the validity of the userid if it has been added or modified by 
the RACDEF pre-processing exit. 

,LEVEL';" number 
,LEVEL = reg 

specifies a level value for the profile. LEVEL is valid only if TYPE = DEFINE is specified. 
The level number must be a valid decimal number in the range 00 to 99. If a register is 
specified, its low-order byte must contain the binary representation of the number. 

Note: RACF does not check the validity of this number if it has been added or modified by 
the RACDEF pre-processing exit. 

,UACC=ALTER 
,UACC = CONTROL 
,UACC=UPDATE 
,UACC=READ 
,UACC=NONE 
,UACC = reg 

specifies a universal access authority for the profile. UACC is valid only if TYPE=DEFINE 
is specified. UACC must contain a valid universal access authority (ALTER, CONTROL, 
UPDATE, READ; or NONE). If a register is specified, the low-order byte must contain one 
of the following valid universal access authorities: 

X'SO' - ALTER 
X'40' - CONTROL 
X'20' - UPDATE 
X'IO' - READ 
X'Ol'-NONE 

Note: RACF does not check the validity of the universal access authority if it has been 
added or modified by the RACDEF pre-processing exit. 

RACDEF - Denne a Reso.ce to RACF 197 



Page of GC28-0628-3 
As Updated September 30, 1981 
By TNL GN28-4978 

,DATA=data addr 
specifies the address of a field that contains up to 255 characters of installation-defined data 
to be placed in the profile. DATA is valid only if TYPE = DEFINE is specified. The data 
address must point to a field containing a· one-byte length field (whose value can range from 
o to 255) followed by the actual installation-defined data. 

,AUDIT = ALL 
,AUDIT = SUCCESS 
,AUDIT = FAILURES 
,AUDIT = NONE 
,~UDIT=reg 

specifies the types of access that are to be logged to the SMF data set. AUDIT is valid only 
if TYPE = DEFINE is specified. AUDIT must contain a valid audit value (ALL, SUCCESS, 
FAILURES, or NONE). If a register is specified, its low-order byte must contain one of the 
following valid audit types: 

X'80' - ALL 
X'40' - SUCCESS 
X'20' - FAILURES 
X'10' - NONE 

Note: RACF does not check the validity of the audit type if it has been added or modified 
by the RACDEF pre-processing exit. 

When control is returned, register 15 contains one of these return codes: 

Hexadecimal 
Code 

00 
04 

08 

OC 

10 

Meaning 

RACDEF has completed successfully. 
For DEFINE, the resource name was previously defined. For NEWNAME, the new 
resource name was previously defined. For DELETE, the resource name was not previously 
defined. 
For DEFINE or DELETE, RACDEF was failed by the installation exit, the data set name 
was not qualified by a RACF-defined userid or group name, or the user was not authorized 
to create group data sets. For TYPE=DEFINE, the user is not a RACF defined user. For 
ADDVOL, the old volume was not defined. 
For NEWNAME, the old data set name was not defined; or if the generation data group 
(GDG) modelling function is active, an attempt was made to rename a GDG name to a 
name that requires the creation of a new profile. 
For DEFINE with MENTITY, the model resource was not defined. 

197.0 OS/VS2 System Programming Library: Supervisor 

• 



September 30, 198-1 

(_oj 

It 

C,' 
RACDEF - Define a Resource to RACF 197.1 



Page of GC28-0628-3 
As Updated September 30, 1981 
By TNL GN28-4978 

RACDEF (list Form) 

The list form of the RACDEF macro instruction is written as follows: 

198 OS/VS2 System Programmiog ,Ubrary: Supervisor 

.. 

~ ..... , 



I 
\. / 

l~ 

Page of GC28-0628-3 
As Updated September 30, 1981 
By TNL GN28-4978 

name 

b 

RACDEF 

b 

ENTITY =resource name addr 

,VOLSER=vol addr 

,TYPE=DEFINE 
,TYPE=DEFINE,NEWNAME= 
new dsn addr 
,TYPE=ADDVOL,OLDVOL= 
old vol addr 
,TYPE=CHGVOL,OLDVOL= 
old vol addr 
,TYPE=DELETE 

,DSTYPE=N 
,DSTYPE=V 
,DSTYPE=M 

,INSTLN =parm list addr 

,CLASS=' classname' 
,CLASS=class name addr 

,MENTITY =entity addr 

,MVOLSER=volser addr 

,ACEE=acee addr 

,UNIT =unit addr 

,SPECIAL= YES 
,SPECIAL=NO 

,OWNER=owner name addr 

,LEVEL=number 
,LEVEL=level number addr 

,UACC=ALTER 
, UACC=CONTROL 
,UACC= UPDATE 
,UACC=READ 
,UACC=NONE 
,UACC=uacc addr 

,DATA=data addr 

,AUDIT=ALL 
,AUDIT=SUCCESS 
,AUDIT = FAILURES 
,AUDIT=NONE 
,AUDIT=audit addr 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede RACDEF. 

One or more blanks must follow RACDEF. 

resource name addr: A-type address. 
Note: ENTITY must be specified on either the list or the execute form 
of the macro. 

vol addr: A-type address. 
Note: VOLSER is required only for CLASS='DATASET' and 
DSTYPE not equal to M. 

new dsn addr: A-type address. 

old vol addr: A-type address. 

old vol addr: A-type address. 

Default: TYPE=DEFINE 

Default: DSTYPE=N 

parm list addr: A-type address. 
Default: zero. 

classname: DASDVOL, DATASET, or TAPEVOL 
class name addr: A-type address. 
Default: CLASS= 'DATASET' 

entity addr: A-type address. 
Default: zero. 

volser addr: A-type address. 
Default: zero. 

acee addr: A-type address 
Default: zero. 

unit addr: A-type address. 

Default: SPECIAL=NO 

owner name addr: A-type address. 

Default: zero. 
level number addr: A-type address. 

uacc addr: A-type address. 

data addr: A-type address. 

audit addr: A-type address. 

RA~DEF (List Form) 198.1 



Page of GC28-0628-3 
As Updated September 30, 1981 
By TNL GN284978 

The parameters are explained under the standard form of the RACDEF. macro instruction, 
with the following e~ception: 

,MF=L 
specifies the list form of the RACDEF macro instruction. 

198.2 OS/VS2 System Programming Ubnry: Supervisor 



( 
-~' 

1 

Page of GC28-0628-3 
As Updated September 30, 1981 
By TNL GN284978 

RACDEF (Execute Form) 

The execute form of the RACDEF macro instruction is written as follows: 

name 

tJ 

RACDEF 

tJ 

ENTITY =resource name addr 

,VOLSER=vol addr 

,TYPE=DEFINE 

name: symbol. Begin name in column 1. 

One or more blanks must precede RACDEF. 

One or more blanks must follow RACDEF. 

resource name addr: RX-type address, or register (2) - (12). 
Note: ENTITY must be specified on either the list or the execute form 
of the macro. 

vol addr: RX-type address, or register (2) - (12). 
Note: VOLSER is required only for CLASS='DATASET and 
DSTYPE not equal to M. 

,TYPE=DEFINE,NEWNAME new dsn addr: RX-type address, or register (2) - (12). 
new dsn addr 
,TYPE=ADDVOL,OLDVOL= old vol addr: RX-type address, or register (2) - (12). 
old vol addr 
,TYPE=CHGVOL,OLDVOL= old vol addr: RX-type address, or register (2) - (12). 
old vol addr 
,TYPE=DELETE 

,DSTYPE=N 
,DSTYPE=V 
,DSTYPE=M 

,INSTLN=parm list addr 

,CLASS=class name addr 

,MENTITY =entity addr 

,MVOLSER=vo[ser addr 

,ACEE=acee addr 

,UNIT =unit addr 

,SPECIAL= YES 
,SPECIAL=NO 

,OWNER=owner name addr 

,LEVEL=number 
,LEVEL=reg 

,UACC=ALTER 
,UACC=CONTROL 
,UACC=UPDATE 
,UACC=READ 
,UACC=NONE 
,UACC=reg 

,DA T A=data addr 

,AUDIT=ALL 
,AUDIT=SUCCESS 
,AUDIT=FAILURES 
,AUDIT=NONE 
,AUo'IT=reg 

,MF=(E,ctrl addr) 

parm list addr: RX-type address, or register (2) - (12). 

class name addr: RX-type address, or register (2) - (12). 

entity addr: RX-type address, ,or register (2) - (12). 

volser addr: RX-type address, or register (2) - (12). 

acee addr: RX-type address, or register (2) - (12). 

unit addr: RX-type address, or register (2) - (12). 

owner name addr: RX-type address, or register (2) - (12). 

reg: register (2) - (12). 

reg: register (2) - (12). 

data addr: RX-type address or register (2) - (12). 

reg: register (2) - (12). 

ctrl addr: RX-type address, or register (1) or (2) - (12). 

RACDEF (Execute FOfID) 199 



Page of GC28-0628-3 
As Updated September 30, 1981 
By TNL GN28-4978 

The parameters are explained under the standard form of the RACDEF macro instruction, 
with the following exception: 

,MF = (E,ctrl addr) 
specifies the execute form of the RACDEF macro instruction using a remote control 
program parameter list. 

199.0 OS/VS2 System Programming Library: Supervisor 

\ 



September 30, 1981 

• 

RACDEF (Exealte Form) 199.1 



Page of GC28-0628-3 
As Updated September 30, 1981 
By TNL GN28-4978 

RACHECK - Check RACF Authorization 

The RACHECK macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of the PROFILE, CSA, ACEE, and LOG parameters. These 
parameters are restricted in use and must only be used by programs that are authorized 
(APF-authorized, in system key 0-7, or in supervisor state). 

The syntax of the complete RACHECK macro instruction is shown below. However, only 
the explanation of the restricted parameters is presented. Explanation of the other parameters 
can be found in OS/VS2 Supervisor Services and Macro Instructions. 

The standard form of the RACHECK macro instruction is written as follows: 

200 OS/VS2 System Programming library: Supervisor 



Page of GC28-0628-3 
As Updated September 30, 1981 
By TNL GN28-4978 

name 

RACHECK 

PROFILE=profile addr 

ENTITY = (resource name addr) 

ENTITY = (resource name addr, CSA) 

,VOLSER=vol addr 

,CLASS=' c1assname' 

,CLASS=c1assname addr 

,ATTR=READ 

,ATTR=UPDATE 

,ATTR=CONTROL 

,ATTR=ALTER 

,ATTR=reg 

,DSTYPE=N 

,DSTYPE=V 

,DSTYPE=M 

,INSTLN=parm list addr 

,LOG=ASIS 

,LOG=NOFAIL 

,LOG=NONE 

,OLDVOL=old vol addr 

,APPL= 'applname' 

,APPL=applname addr 

,ACEE=acee addr 

,PWNER=userid addr 

name: symbol. Begin name in column 1. 

One or more blanks must precede RACHECK. 

One or more blanks must follow RACHECK. 

profile addr: A-type address, or register (2) - (12). 

resource name addr: A-type address, or register (2) - (12). 

vol addr: A-type address, or register (2) - (12). 

Note: VOLSER is required only for CLASS='DATASET' and 
DSTYPE not equal to M. 

c1assname: DATASET, DASDVOL, or TAPEVOL 

classname addr: A-type address, or register (2) - (12). 

Default: CLASS='DATASET' 

reg: register (2) - (12). 

Default: ATTR=READ 

Default: DSTYPE=N 

parm list addr: A-type address, or register (2) - (12). 

Default: zero. 

, Default: LOG=ASIS 

old vol addr: A-type address, or register (2) - (12). 

Default: zero. 

applname addr: A-type address, or register (2) - (12). 

acee addr: A-type address, or :register (2) - (12). 

userid addr: A-type address, or register (2) - (12). 

The parameters restricted in use are explained as follows. (The other parameters are explained 
in OS/VS2 Supervisor Services and Macro Instructions.) 

RACHECK - Check RACF Authorization 200.1 



September 30, 1981 

\ 

6 

200.2 OS!VS2 System Programming Library: Supervisor 



... 

Page of GC28-0628-3 
As Updated September 30, 1981 
By TNL GN28-4978 

PROFILE=pro!ile addr 
ENTITY = (resource name addr, CSA) 

PROFILE=pro!ile addr specifies that RACF authorization checking is to be performed for 
the resource whose profile is pointed to be the specified address. 

ENTITY=(resource name addr,CSA) specifies that RACF authorization checking is to be 
performed for the indicated resource, and that a copy of the profile is to be maintained in 
main storage. The storage acquired for the profile is obtained from the common storage area 
(CSA), and must be freed by the issuer of RACHECK when the profile is no longer 
needed. If CSA is specified (and the return code produced by the RACHECK macro 
instruction is 00 or 08), the address of the profile is returned in register 1. 

By establishing and maintaining a resource profile, the resource manager can reduce the 1/0 
required to perform RACF authorization checks on highly-accessed resources . 

,LOG = ASIS 
,LOG = NOFAIL 
,LOG = NONE 

specifies the types of access attempts to be recorded on the SMF data set: 
ASIS - Attempts to be recorded are as specified on the ADDSD or ALTDSD command that 
was issued for the data set or the RDEFINE or RALTER command for the tape or DASD 
volume. 
NOF AIL - If the authorization check fails, the attempt is not recorded. If the authorization 
check succeeds, the attempt is recorded as in ASIS. 
NONE - The attempt is not to be recorded. 

,ACEE = acee addr 
specifies the address of the accessor control environment element (ACEE) to be used for 
checking authorization during RACHECK processing. If no ACEE is specified, RACF uses 
the main ACEE for the address space. The main ACEE is pointed to by the ASXBSENV 
field(X'C8') of the address space extension block. 

RACHECK - Check RACF Authorization 201 



Page of GC28-0628-3 
As Updated September 30, 1981 
By TNL GN28-4978 

RACHECK (List Form) 

The list form of the RACHECK macro instruction is written as follows: 

name 

b 

RACHECK 

b 

name: symbol. Begin name in column 1. 

One or more blanks must precede RACHECK. 

One or more blanks must follow RACHECK. 

PROFILE=profile addr profile addr: A-type address. 
ENTITY=(resource name addr) resource name addr: A-type address. 
ENTITY = (resource name addr, CSA) Note: PROFILE or ENTITY is required on either the list or the 

execute form of the macro. 

,VOLSER=vol addr 

,CLASS=' classname' 
,CLASS=classname addr 

,ATTR=READ 
,ATTR=UPDATE 
,A TTR=CONTROL 
,A TTR=ALTER 

,DSTYPE=N 
,DSTYPE=V 
,DSTYPE=M 

,INSTLN=parm list addr 

,LOG=ASIS 
,LOG=NOFAIL 
,LOG=NONE 

,OLDVOL=old vol addr 

,APPL=' applname' 
,APPL=applname addr 

,ACEE=acee addr 

,OWNER=userid addr 

,MF=L 

vol addr: A-type address. 
Note: VOLSER is required only for CLASS='DATASET' and 
DSTYPE not equal to M. 

classname: DATASET, DASDVOL, or TAPEVOL 
classname addr: A-type address. 
Default: CLASS='DATASET' 

Default: A TTR=READ 

Default: DSTYPE=N 

pann list addr: A-type address. 
Default: zero. 

Default: LOG=ASIS 

old vol addr: A-type -address. 
Default: zero. 

'applname addr: A-type address. 
Default: zero. . 

acee addr: A-type address. 
Default: zero. 

userid addr: A-type address. 

The parameters restricted in use are explained under the standard form of the RACHECK 
macro instruction. The other parameters are explained in OS/VSl Supervisor Services'and Macro 
Instructions. 

202 OS/VSl System ProgrammiDg 1..Jbrary: Supervisor 

6 



( 
\ ... , .. J 

.- . 

Page of GC28-0628-3 
As Updated September 30, 1981 
By TNL GN28-4978 

RACHECK (Execute Form) 

The execute form of the RACHECK macro instruction is written as follows: 

name 

b 

RACHECK 

b 

name: symbol. Begin name in column 1. 

One or more blanks must precede RACHECK. 

One or more blanks must follow RACHECK. 

PROFILE=pro!i1e addr profile addr: RX-type address, or register (2) - (12). 
ENTITY = (resource name addr) resource name addr: RX-type address, or register (2) - (12). 
ENTITY =(resource name addr, CSA) Note: PROFILE or ENTITY is required on either the list or the 

,VOLSER=vol addr 

,CLASS=classname addr 

,ATTR=READ 
,A TTR=UPDATE 
,A TTR=CONTROL 
,A TTR=ALTER 
,ATTR=reg 

,DSTYPE=N 
,DSTYPE=V 
,DSTYPE=M 

,INSTLN=pann list addr 

,LOG=ASIS 
,LOG=NOFAIL 
,LOG=NONE 

,OLDVOL=old vol addr 

,APPL=applname addr 

,~CEE=acee addr 

,OWNER=userid addr 

,MF=(E,ctrl addr) 

execute form of the macro. 

VO~r addr: RX-type address, or register (2) - (12). 
Note: VOLSER is required only for CLASS='DATASET and 
DSTYPE not equal to M. 

classname addr: RX-type address, or register (2) - (12). 

reg: register (2) - (12). 

parm list addr: RX-type address, or register (2) - (12). 

old vol addr: RX-type address. 
Default: zero. 

applname addr: RX-type address or registers (2) - (12). 

acee addr: RX-type address, or registers (2) - (12). 

userid addr: RX-type address, or registers (2) - (12). 

ctrl addr: RX-type address, or register (1) or (2) - (12). 

The parameters restricted in use are explained under the standard form of the RACHECK 
macro instruction. The other parameters are explained in OS/VSl Supervisor Service$ and Macro 
Instructions. . 

RACHECK (Execute Form) 203 



September 30, 1981 

RACINIT -Identify a RACF-Defined User 

The RACINIT macro instruction is used to provide Resource Access Control Facility (RACF) 
user identification and verification. The macro instruction identifies a user and verifies that the 
user is defined to RACF and has supplied a valid password and/or operator ID card. 

To issue the RACINIT macro instruction with the NEWP ASS keyword, the calling module 
must be authorized (APF-authorized, in system key 0-7, or in supervisor state). To issue the 
RACINIT macro without the NEWPASS keyword, the calling module must either be 
authorized (APF-authorized, in system key 0-7, or in supervisor state) or in the 
RACF-authorized caller table and fetched from an authorized library. 

The standard form of the RACINIT macro instruction is written as follows: 

204 OS/VS2 System Programming Library: Supervisor 



G 

o 

name 

t> 

RACINIT 

t> 

USERID=userid addr 

,PASSWRD=password addr 

,START=procname addr 

name: symbol. Begin name in column 1. 

One or more blanks must precede RACINIT. 

One or more blanks must follow RACINIT. 

userid addr: A-type address, or register (2) - (12). 
Defau1t: zero. 

password addr: A-type address, or register (2) - (12). 
Default: zero. 

procname addr: A-type address, or register (2) - (12). 
Default: zero. 

,NEWPASS=new password addr new password addr: A-type address, or register (2) -(12). 

,GROUP=group addr 

Default: zero. 

group addr: A-type address, or register (2) - (12). 
Default: zero. 

,PGMNAME=programmer name programmer name addr: A-type address, or register (2) - (12). 
addr Defau1t: zero. 

,ACTINFO=account addr 

,OIDCARD=oid addr 

,TERMID=terminal addr 

,JOBNAME=jobname addr 

,ENVIR=CREATE 
,ENVIR=CHANGE 
,ENVIR=DELETE 

,INSTLN=parm list addr 

,APPL=' applname' 
,APPL=applname addr 

,ACEE=acee addr 

,SUBPOOL=subpool number 

,SMC=YES 
,SMC=NO 

,PASSCHK= YES 
,PASSCHK=NO 

account addr: A-type address, or register (2) - (12). 
Default: zero. 

oid addr: A-type address, or register (2) - (12). 
Default: zero. 

terminal addr: A-type address, or register (2) - (12). 
Default: zero. 

jobname addr: A-type address, or register (2) - (12). 
Default: zero. 

Defau1t: ENVIR=CREATE 
Note: ENVIR=CHANGE may not be specified with USERID=, 
PASSWRD=, START=, NEWPASS=, ACTINFO=, PGMNAME=, 
OIDCARD=, or TERMID= above. 
Note: ENVIR=DELETE may not be specified with USERID=, 
PASSWRD=, START=, NEWPASS=, GROUP=, ACTINFO=, 
PGMNAME=, OIDCARD=, or TERMID= above. 

parm list addr: A-type address, or register (2) - (12). 
Default: zero. 

opp/name addr: A-type address, or register (2) - (12). 

acee addr: A-type address, or register (2) -(12). 

subpool number: decimal digit 0-255. 

Default: SMC= YES. 

Default: PASSCHK= YES 

RACINIT - Identify a RACF -Dermed User 205 



The parameters are explained as follows: 

USERID = urerid addr 
specifies the user identification of the user who has entered the system. The address points 
to a one-byte length field, followed by the userid. 

,P ASSWRD = password addr 
specifies the currently defined password of the user who has entered the system. The 
address points to a one-byte length field, followed by the password. 

,START = procname addr 
specifies the PROC name of a started task. The address points to an eight-byte area 
containing the PROC name (left-justified and padded with blanks, if necessary). 
The START parameter is not used by RACINIT authorization checking, but it is passed to 
the installation exit. 

,NEWP ASS = new password addr 
specifies the password which is to replace the user's currently defined password. The 
address points to a one-byte length field, followed by the password. 

,GROUP=group addr 
specifies the group specified by the user who has entered the system. The address points to 
a one-byte length field, followed by the group name. 

,PGMNAME = programmer name addr 
specifies the address of the name of the user who has entered the system. This twenty byte 
area is passed to the RACINIT installation exit; it is not used by the RACINIT routine. 

,ACTINFO = account addr 
specifies the address of a field containing accounting information. This 144 byte area is 
passed to the RACINIT installation exit; it is not used by the RACINIT routine. The 
accounting field, if supplied, should have the following format: 

• First byte of field contains the number (binary) of accounting fields. 
• Following bytes contain accounting fields, where each entry for an accounting field 

contains the length of the field (one byte) followed by the field. 
,OIDCARD=oid addr 

specifies the address of the currently defined operator ID card of the user who has entered 
the system. The address points to a one byte length field followed by the operator ID card. 

,TERMID = terminal addr 
specifies the address of the identifier for the terminal through which the user is accessing 
the system. The address points to an eight byte area containing the terminal identifier. The 
area must reside in a non-task-related storage subpool. 

,JOBNAME = jobname addr 
specifies the address of the JOB name of a background job. The address points to an eight 
byte area containing the JOB name (left justified and padded with blanks, if necessary). 
The JOBNAME parameter is not used by RACINIT authorization checking, but it is passed 
to the installation exit. 

,ENVIR = CREATE 
,ENVIR = CHANGE 
,ENVIR = DELETE 

specifies the action to be performed by the user initialization component: 
CREATE - The user should be verified and an access environment element created. 
CHANGE - The access environment pointed to by the ASXB should be modified according 
to other parameters specified on RACINIT. 
DELETE - The access environment element pointed to by the ASXB should be deleted. 
This parameter should only be used if a previous RACINIT has completed successfully. 

206 OS/VS2 System Programming Library: Supervisor 



----------_ .. __ .. _._.- ...... -- .....• _-----_._. __ ._ .....• _-----

C) 

o 

,INSTLN == parm list addr 
specifies the address of an area containing parameter information meaningful to the 
RACINIT installation exit. This area is passed to the installation exit when the exit is given 
control from the RACINIT routine. 
The INSTLN parameter can be used by an installation having a user verification or job 
initiation application, and wanting to pass information from one installation module to the 
RACINIT installation exit. 

,APPL == 'applname' 
,APPL =applname addr 

specifies the name of the application issuing the RACINIT. If an address is specified, the 
address must point to an 8-byte application name, left justified and padded with blanks, if 
necessary. 

,ACEE==acee addr 
specifies the address of the ACEE. 
For ENVIR=CHANGE or ENVIR=DELETE: 

specifies the address of a fullword that contains the address of the accessor control 
environment element (ACEE) to be changed or deleted. If ACEE= is not specified, 
RACF uses the main ACEE for the address space. The main ACEE is pointed to by the 
ASXBSENV field(x'C8') in the address space extension block. 

For ENVIR=CREATE: 
specifies the address of a full word into which the RACINIT function will place the 
address of the ACEE created. If an ACEE is not specified, a pointer to the ACEE is 
placed in the ASXBSENV field(x'C8') of the address space extension block. 

,SUBPOOL == subpool number 
specifies the storage subpool from which the ACEE and related storage are obtained. 

,SMC==YES 
,SMC==NO 

specifies the use of the step-must-complete function of RACINIT processing. SMC= YES 
specifies that RACINIT processing should continue to place other tasks for the step 
non-dispatchable. SMC=NO specifies that the step-must-complete function is not used. 
Note: SMC=NO should not be used if DADSM ALLOCATE/SCRATCH functions 
execute simultaneously in the same address space as the RACINIT function. 

,PASSCHK = YES 
,PASSCHK==NO 

specifies that the user's password is to be verified. P ASSCHK= YES specifies that RACINIT 
verifies the user's password. PASSCHK=NO specifies that the user's password is not 
verified. 

When control is returned, register 15 contains one of these return codes: 

Hexadecimal 
Code 

00 
04 
08 
OC 
10 
14 
18 
lC 
20 
24 
28 
2C 
30 

Meaning 

RACINIT has completed successfully. 
The user profile is not defined to RACF. 
The password is not authorized. 
The password has expired. 
The new password is invalid. 
The user is not defined to the group. 
RACINIT was failed by the installation exit. 
The user access has been revoked. 
RACF is not active. 
The user's access to the specified group has been revoked. 
Operator ID card is required but not supplied. 
Operator ID card is invalid for specified user. 
The user is not authorized to use the terminal. 

RACINIT - Identify a RACF-Defmed User 207 



RACINIT (List Form) 

The list form of the RACINIT macro instruction is written as follows: 

name 

t> 
RACINIT 

t> 

USERID=userid addr 

,PASSWRD=password addr 

,START=procname addr 

name: symbol. Begin name in column 1. 

One or more blanks must precede RACINIT. 

One or more blanks must follow RACINIT. 

userid addr: A-type address. 
Default: zero. 

password addr: A-type address. 
Default: zero. 

procname addr: A-type address. 
Default: zero. 

,NEWP ASS=new password addr new password addr: A-type address. 
Default: zero. 

,GROUP=group addr group addr: A-type address. 
Default: zero. 

,PGMNAME=programmer name programmer name addr: A-type address. 
addr Default: zero. 

,ACTINFO=account addr 

,OIDCARD=oid addr 

,TERMID=tenninal addr 

,JOBNAME=jobname addr 

,ENVIR=CREATE 
,ENVIR=CHANGE 
,ENVIR=DELETE 

,INSTLN=pann list addr 

,APPL='applname 
,APPL=applname addr 

,ACEE=acee addr 

,SUBPOOL=subpool number 

,SMC=YES 
,SMC=NO 

,P ASSCHK= YES 
,PASSCHK=NO 

,MF=L 

208 OS/VS2 System Programming Library: Supervisor 

account addr: A-type address. 
Default: zero. 

oid addr: A-type address. 
Default: zero. 

tenninal addr: A-type address. 
Default: zero. 

jobname addr: A-type address. 
Default: zero. 

Default: ENVIR=CREATE 
Note: ENVIR=CHANGE may not be specified with USERID=, 
PASSWRD=, START=. NEWPASS=, ACTINFO=. PGMNAME=, 
OIDCARD=, or TERMID= above. 
Note: ENVIR=DELETE may not be specified with USERID=, 
PASSWRD=, START=. NEWPASS=, GROUP=, ACTINFO=, 
PGMNAME=. OIDCARD=. or TERMID= above. 

parm list addr: A-type address. 
Default: zero. 

applname addr: A-type address. 
Default: zero. 

acee addr: A-type address. 
Default: zero. 

subpool number: decimal digit 0-255. 

Default: SMC= YES. 

Default: P ASSCHK= YES 

( 



The parameters are explained under the standard form of the RACINIT macro instruction, 
with the following exception: 

MF=L 
specifies the list form of the RACINIT macro instruction. 

RACINIT (List Form) 209 

.. ---_ ....... __ ... ",,, ... _---_ ...... _-.. _---- .. _-_._.- .. ,' .. _._-----



RACINIT (Execute Form.) 

The execute form of the RACINIT macro instruction is written as follows: 

name 

t> 
RACINIT 

1> 

USERID=werid addr 

,PASSWRD=pa.uword addr 

name: symbol. Begin name in column 1. 

One or more blanks must precede RACINIT. 

One or more blanks must follow RACINIT. 

werid addr: RX-type address, or register (2) - (12). 

pa.uword addr: RX-type address, or register (2) - (12). 

,START=procname addr procname addr: RX-type address, or register (2) - (12). 

,NEWP ASS=new pa.uword addr new pa.uword addr: RX-type address, or register (2) - (12). 

,GROUP=group addr group addr: RX-type address, or register (2) - (12). 

,PGMNAME=programmer name programmer name addr: RX-type address, or register (2) - (12). 
addr 

,ACTINFO=account addr 

,OIDCARD=oid addr 

, TERMID=tenninal addr 

,JOBNAME=jobname addr 

,ENVIR=CREATE 
,ENVIR=CHANGE 
,ENVIR=DELETE 

,INSTLN=pann list addr 

,APPL=applname addr 

,ACEE=acee addr 

,SUBPOOL=subpool number 

,SMC=YES 
,SMC=NO 

,PASSCHK= YES 
,PASSCHK=NO 

,MF=(E~ctrl addr) 

account addr: RX-type address, or register (2) - (12). 

oid addr: RX-type address, or register (2) - (12). 

tenninal addr: RX-type address, or register (2) - (12). 

jobname addr: RX-type address, or register (2) - (12). 

Note: ENVIR=CHANGE may not be specified with USERID=, 
PASSWRD=, START=, NEWPASS=, ACTINFO=, PGMNAME=. 
OIDCARD=, or TERMID= above. 
Note: ENVIR=DELETE may not be specified with USERID=, 
PASSWRD=, START=, NEWPASS=, GROUP=, ACTINFO=, 
PGMNAME=, OIDCARD=, or TERMID= above. 

parm list addr: RX-type address, or register (2) - (12). 

applname addr: RX-type address, or register (2) - (12). 

acee addr: RX-type address, or register (2) - (12). 

subpool number: decimal digit 0-255. 

crrl addr: RX-type address, or register (1) or (2) - (12). 

The parameters are explained under the standard form of the RACINIT macro instruction, 
with the following exception: 

,MF - (E,ctri addr) 
specifies the execute form of the RACINIT macro instruction using a remote control 
program parameter list. 

210 OS/VS2 System Programming Library: Supervisor 

/ 



c~ 

\ 

Page of GC28-0628-3 
As Updated June 16, 1980 
By TNL GN28-4738 

RACLIST - Build In-Storage Profiles 

RACLIST is used to build in-storage profiles for RACF defined resources. RACLIST 
processes only those resources described by class descriptors. The primary advantage of using 
the RACLIST macro is to use the resource grouping function -and to improve resource 
authorization checking performance. 

The module calling the RACLIST macro instruction must either be authorized 
(APF-authorized, in system key 0-7, or in supervisor state) or in the RACF-authorized caller 
table and fetched from an authorized library. 

The standard form of the RACLIST macro is written as follows: 

name name: symbol. Begin name in column 1. 

b One or more blanks must precede RACLIST. 

RACLIST 

CLASS=' classname' 

CLASS=classname addr 

,LIST = list addr 

,ACEE=acee addr 

,INSTLN =parm list addr 

,APPL=' applname' 

,APPL=applname addr 

,SUBPOOL=(sub#1,sub#2) 

,ENVIR=CREA TE 

,ENVIR=DELETE 

,OWNER=YES 

,OWNER=NO 

One or more blanks must follow RACLIST. 

classname addr: A-type address or register (2) - (12). 

list addr: A-type address or register (2) - (12). 

Default: zero. 

acee addr: A-type address or register (2) - (12). 

Default: zero. 

parm list addr: A-type address or register (2) - (12). 

applname addr: A-type address or register (2) - (12). 

Default: zero. 

sub#,sub#2: decimal digit 0-255. 

Default: ENVIR=CREA TE. 

Default: OWNER=NO. 

The parameters are explained below: 

CLASS = 'c/assname' 
CLASS = c/assname addr 

specifies that RACLIST is to build an in-storage profile for the resources of the specified 
class. If an address is specified, the address must point to an 8-byte field containing the 
class name, left justified and padded with blanks, if necessary. The class name must be 
defined by a class descriptor; if not, the class is not considered to be defined. 

RACLIST - Build In-Storage Profiles 211 



June 16, 1980 

,LIST=addr 
specifies the address of a list of resource names for which RACLIST is to build the 
in-storage profiles. The list consists of a 2-byte field containing the number of the names in 
the list, followed by one or more variable length names. Each name consists of a I-byte
length field, followed by the name. A zero in the 2-byte field causes the operand to be 
omitted. If LIST = is omitted, in-storage profiles are built for all the profiles defined to 
RACF in the given class as well as each member for a resource grouping associated with the 
specified class. 
Note: This operand can be specified only with ENVIR=CREATE. If ENVIR=DELETE is 
specified, the RACLIST macro instruction issues a return code of 18. 

,ACEE = acee addr 
specifies the address of the accessor control environment element (ACEE). The ACEE 
points to the in-storage profiles. If an ACEE is not specified, RACF uses the main ACEE 
to obtain the list of the in-storage profiles. The main ACEE is pointed to by the 
ASXBSENV field(x'08') of the address space extension block. If an ACEE is not specified 
and there is no main ACEE, the in-storage profiles are not constructed. 

,INSTLN = parm list addr 
specifies the address of an area that contains parameter information for the RACLIST 
installation exit. The address is passed to the installation exit when the exit is given control 
by the RACLIST routine. The INSTLN parameter can be used by an application or an 
installation program to pass information to the RACLIST installation exit. 

,APPL = 'applname' 
,APPL = applname addr 

specifies the name of the application requesting the authorization checking. This information 
is not used for the authorization checking process but is made available to the installation 
exit(s). If an address is specified, it should point to an 8-byte area containing the 
application name, left justified and padded with blanks, if necessary. 

,SUBPOOL = (sub#1,sub#2) 
specifies the subpool numbers of the storage into which the components of the in-storage 
profiles are to be built. Sub#l represents the subpool of the profile index. Sub#2 represents 
the subpool of the profile proper. If the subpools are not specified they default to subpool 
255. Registers can be used to specify sub#l and sub#2. 

,ENVIR = CREATE 
,ENVIR = DELETE 

specifies the action to be performed by the RACLIST macro. 
CREATE - In-storage profiles for the specified class are to be built. The RACLIST 
function issues a return code of 18, if an in-storage list currently exists for the specified 
class. 
DELETE - The in-storage profiles for the specified class are to be freed. If class is not 
specified, the in-storage profiles for all classes are freed. 
Note: It is the responsibility of the user issuing the RACLIST macro to assure that no 
multi-tasking that results in the issuing of a RACHECK, FRACHECK, RACINIT, or 
RACLIST macro instruction occurs at the same time that the RACLIST occurs. 

212 OS/VS2 System Programming Library: Supervisor 

) -

I 



c ) 

o 

,OWNER = YES 
,OWNER=NO 

specifies that the resource owner is to be placed in the profile access list with the ALTER 
authority. If the OWNER= operand is omitted, the default is NO. 
When control is returned, register 15 contains one of the following return codes: 

Hexadecimal 
Code 

00 
04 

08 
OC 
10 
14 
18 
lC 

Meaning 

RACLIST function completed successfully. 
Unable to perform the requested function. Register 0 contains additional codes as 
follows: 

o - Unable to establish an EST AE environment. 
I - The function code (the third byte of the parameter list) does not represent a 

valid function. X'OI' represents the RACF manager; X'02' represents the 
RACLIST macro. 

The specified class is not defined to RACF. 
An error was encountered during RACLIST processing. 
RACF and/or the resource class is not active. 
RACLIST installation exit error occurred. 
Parameter list error. 
RACF CVT does not exist (RACF is not installed) or an insufficient level of RACF is 
installed. 

Note: If the resource class specified by the CLASS= operand is inactive, RACLIST does 
not build the in-storage profiles and a code of OC is returned. If the resource group class is 
not active, RACLIST builds an in-storage profile but only from the individual resource 
profiles; resource group profiles are ignored. 

RACLIST - Build In-Storage Prof'des 213 



RACLIST (List Form) 

The list form of the RACLIST macro instruction is written as follows: 

name 

RACLIST 

CLASS=' classname' 

CLASS=classname addr 

,LIST=lirt addr 

,ACEE=acee addr 

,INSTLN=parm list addr 

,APPL=' applname' 

,APPL=applname addr 

,SUBPOOL=(sub#l ;sub#2) 

,ENVIR=CREATE 
,ENVIR=DELETE 

,OWNER=YES 

,OWNER=NO 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede RACLIST. 

One or more blanks must follow RACLIST. 

classname addr: A-type address. 

Default: zero. 

list addr: A-type address. 

Default: zero. 

acee addr: A-type address. 

Default: Zero. 

parm lirt addr: A-type address. 

Default: zero. 

applname addr: A-type address. 

Default: zero. 

sub#1,sub#2: decimal digit 0-255. 

Default: 255. 

Default: ENVIR=CREATE. 

Default: OWNER=NO. 

The parameters are explained under the standard form of the RACLIST macro instruction 
with the following exception: 

MF=L 
specifies the list form of the RACLIST macro instruction. 

214 OS/VS2 System Programming Library: Supervisor 



c:/ 
RACLIST (Execute Form) 

The execute form of the RACLIST macro instruction is written as follows: 

name 

RACLIST 

CLASS=classname add, 

,LIST=list add, 

,ACEE=aeee addr 

,INSTLN=pann list add, 

,APPL=applname addr 

,SUBPOOL=(sub#1,sub#2) 

,ENVIR=CREATE 

,ENVIR=DELETE 

,OWNER=YES 

,OWNER=NO 

,MF=(E,etrl add,) 

name: symbol. Begin name in column 1. 

One or more blanks must precede RACLIST. 

One or more blanks must follow RACLIST. 

c1assname add,: RX-type address or register (2) - (12). 

list addr: RX-type address or register (2) - (12). 

aeee addr: RX-type address or reg!ster (2) - (12). 

parm list addr: A-type address or register (2) - (12). 

applname addr: RX-type address or register (2) - (12). 

sub#1,sub#2: decimal digit 0-255. 

etrl addr: RX-type address or register (2) - (12). 

The parameters are explained under the standard form of the RACLIST macro instruction 
with the following exception: 

,MF=(E,ctrl addr) 
specifies the execute form of the RACLIST macro instruction using a remote control 
program parameter list. 

RACLIST (Execute Form) 215 



RESERVE - Reserve a Device (Shared DASD) 

The RESERVE macro instruction is used to reserve a device for use by a particular system; it 
must be issued by each task needing device reservation. The RESERVE macro instruction 
protects the issuing task from interference by other tasks in the system and locks out the other 
processor. When the reserving program no longer needs the reserved device, it should issue a 
DEQ macro instruction, specifying the UCB parameter, to release the device. If a task issues 
two RESERVE instructions for the same resource without an intervening DEQ, an abnormal 
termination results unless the second RESERVE specifies the keyword parameter RET= or 
ECB=. (If a restart occurs when a RESERVE is in effect for devices, the system does not 
restore the RESERVE; the user's program must reissue the RESERVE.) If a DEQ is not 
issued for a particular device, termination routines release devices reserved by a terminating 
task. 

To use the shared DASD option in higher level languages, an assembler language subroutine 
should be written to issue the RESERVE macro instruction. The following information should 
be passed to this routine: ddname, qnameaddress, rnameaddress, rnamelength, and RET 
parameter. 

The standard form of the RESERVE macro instruction is written as follows: 

name 

RESERVE 

qname add, 

,rname add, 

,E 
,S 

,mame length 

,SYSTEMS 

,RET=TEST 
,RET=USE 
,RET=HAVE 

,ECB=ecb add, 

,UCB=ucb add, 

,RELATED=value 

216 OS/VS2 System Programming Library: Supervisor 

name: symbol. Begin name in column 1. 

One or more blanks must precede RESERVE. 

One or more blanks must follow RESERVE. 

qname add,: A-type address, or register (2) - (12). 

mame add,: A-type address, or register (2) - (12). 

Default: E 

rname length: symbol, decimal digit, or register (2) - (12). 

ecb add,: A-type address, or register (2) - (12). 

ucb add,: A-type address, or register (2) - (12). 

value: any valid macro keyword specification. 



o 

o 

o 

--------------------------------- -------

The parameters are explained as follows: 

specifies the beginning of the resource description. 
qnarne addr 

specifies the address in virtual storage of an 8-character name. The name should not start 
with SYS, so that it will not conflict with system names. Every task issuing RESERVE 
against the same resource must use the same qnarne and marne to represent the resource. 

,rname addr 

,E 
,S 

specifies the address in virtual storage of the name used in conjunction with qnarne to 
represent a single resource. The name can be qualified, and must be from 1 to 255 bytes 
long. 

specifies whether the request is for exclusive (E) or shared (S) control of the resource. If 
the resource is modified while under control of the task, the request must be for exclusive 
control; if the resource is not modified, the request should be for shared control. 

, marne length 
specifies the length of the rname described above. If this parameter is omitted, the 
assembled length of the rname is used. You can specify a value between 1 to 255 to 
override the assembled length, or you may specify a value of O. If 0 is specified, the length 
of the marne must be contained in the first byte at the marne addr specified above. 

,SYSTEMS 
specifies that the resource is shared between systems. 

specifies the end of the resource description. 
,RET = TEST 
,RET = USE 
,RET = HAVE 

specifies a conditional request for all the resources named above. 
RET == TEST the availability of the resources is to be tested, but control of the resources is 

not requested. 
RET = USE control of the resources is to be assigned to the active task only if the resources 

are immediately available. 
RET = HAVE control of the resources is requested only if a request has not been made 

previously for the same task. 
,ECB =ecb addr 

specifies the address of an ECB, and conditionally requests the resource named in the 
macro instruction. If the return code for one or more requested resources is 4 and the 
request is not nullified by a corresponding DEQ, the ECB is posted when all the requested 
resources (specifically, those that initially received a return code of 4) are assigned to the 
requesting task. 

,UCB=ucb addr 
specifies the address of a fullword that contains the address of the DCB for the device to 
be reserved. The UCB must be allocated to the job step before RESERVE is issued unless 
the issuer is in supervisor state, system key, or APF-authorized. 

RESERVE - Reserve a Device (Shared DASD) 217 



,RELATED = value 
specifies information used to self -document macro instructions by "relating" functions or 
services to corresponding functions or services. The format and contents of the information 
specified are at the discretion of the user, and may be any valid coding values. 
The RELATED parameter is available on macro instructions that provide opposite services 
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and 
on macro instructions that relate to previous occurrences of the same macro instructions (for 
example, CHAP and ESTAE). 

The parameter may be used, for example, as follows: 

GET1 GETMAIN R,LV=4096,RELATED=(FREE1,'GET STORAGE') 

FREE 1 FREEMAIN R,LV=4096,A=(1 ),RELATED=(GET1, 'FREE STORAGE') 

Return codes are provided by the control program only if you specify RET = TEST, 
RET=USE, RET=HA VE, or ECB=; otherwise, return of the task to the active condition 
indicates that control of the resource has been assigned to the task. If return code for the 
resource named in the RESERVE macro instruction is 0, register 15 contains o. If the return 
code is not 0, register 15 contains the address of a storage area containing the return codes, as 
shown in Figure 34. 

Address 
Returned in 
Register 15 

o ~ 

12 

24 

36 
10. 

2 3 

Return 
Codes 

RC 1 

RC2 

RC 3 

4 12 

~ 

-

CI ... ~RC~N·I JD 
Figure 34. Return Code Area Used by RESERVE 

218 OSIVS2 System Programming Library: Supervisor 

Return codes are 
12 bytes apart, 
starting 3 bytes 
from the address 
in register 15. 

c 



o 

The return code is placed in the parameter list resulting from the macro expansion. The 
return codes are shown below. 

Hexadecimal 
Code 
o 

4 

8 

20 

Example 1 

Meaning 

For RET=TEST, the resource was immediately available. 
For RET=USE, RET=HAVE, or ECB=, control of the resource has been assigned to 
the active task. 
For RET=TEST or RET=USE, the resource is not immediately available. 
For ECB=, the ECB will be posted when available. 
A previous request for control of the same resource has been made for the same task. 
Task has control of resource. If bit 3 is on - shared control of resource; if bit 3 is off 
- exclusive control. 
A previous request for control of the same resource has been made for the same task. 
Task does not have control of resource. 

Operation: Unconditionally reserve exclusive control of a device. The length of the marne is 
allowed to default. 

RESERVE (MAJOR3,MINOR3,E"SYSTEMS),UCB=(R3) 

RESERVE - Resene a Device (Shared DASD) 219 



RESERVE (List Form) 

The list form of the RESERVE macro is written as follows: 

name 

RESERVE 

qname addr 

,mame addr 

,E 
,S 

,rname length 

,SYSTEMS 

,RET=TEST 
,RET=USE 
,RET=HAVE 

,ECB=ecb addr 

,UCB=O 

,RELATED=value 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede RESERVE. 

One or more blanks must follow RESERVE. 

qname addr: A-type address. 

rna me addr: A-type address. 

mame length: symbol or decimal digit. 
Note: mame length must be coded if a register is specified for 
marne addr above. 

eeb addr: A-type address. 

value: any valid macro keyword specification. 

The parameters are explained under the standard form of the RESERVE macro instruction, 
with the following exception: 

,MF==L 
specifies the list form of the RESERVE macro instruction. 

120 OS/VS1 System Programming Library: Supervisor 

( 



o 

o 

RESERVE (Execute Form) 

The execute form of the RESERVE macro instruction is written as follows: 

name 

RESERVE 

qname addr 

,mame addr 

,E 
,S 

,marne length 

,SYSTEMS 

,RET=TEST 
,RET=USE 
,RET=HAVE 

,ECB=ecb addr 

,UCB=ucb addr 

,RELATED=value 

,MF=(E, ctrl addr) 

name: symbol. Begin name in column 1. 

One or more blanks must precede RESERVE. 

One or more blanks must follow RESERVE. 

Note: ( and ) are the beginning and end of a parameter list. The 

entire list is optional. If nothing in the list is desired, the (, ), 

and all parameters between ( and ) should not be specified. If 

something in the list is desired, then (, ), and all parameters in 

the list should be specified as indicated at the left. 

qname addr: RX-type address, or register (2) - (12). 

mame addr: RX-type address, or register (2) - (12). 

mame length: symbol, decimal digit, or register (2) - (12). 

ecb addr: RX-type address, or register (2) - (12). 

ucb addr: RX-type address, or register (2) - (12). 

value: any valid macro keyword specification. 

cITI addr: RX-type address, or register (1) or (2) - (12). 

The parameters are explained under the standard form of the RESERVE macro instruction, 
with the following exception: 

,MF = (E, ctrl addr) 
specifies the execute form of the RESERVE macro instruction using a remote control 
program parameter list. 

RESERVE (Execute Form) 221 



RESUME - Resume Execution of a Suspended Request Block Task 

The RESUME macro instruction causes suspended RBs to resume execution. 

The RESUME macro instruction is coded as follows: 

name 

RESUME 

TCB=(4) 

TCB=tcbaddr 

RB=(5) 

RB=rbaddr 

RETURN=Y 

RETURN=N 

name: symbol. Begin name in column 1. 

One or more blanks must precede RESUME. 

One or more blanks must follow RESUME. 

Default: TCB address contents of register (4). 
tchaddr: A-type address or registers (2) - (12). 

Default: RB address contents of register (5). 

rbaddr: A-type address or registers (2) - (12). 

Default: Y 

The parameters are explained as follows: 

TCB==(4) 
TCB .. tcbaddr 

specifies the TCB address of the task to be resumed. Register (4) is the default; it is 
assumed to contain the TCB address. 

RB=(5) 
RB-rbaddr 

specifies the address of the RB to be resumed. Register (5) is the default; it is assumed to 
contain the address of the RB to be resumed. The specification of the RB operand 
determines which RB will have its suspend count decremented (which RB will be made 
ready for resumption of execution). 

RETURN==Y 
RETURN==N 

specifies whether control is to return to the caller (RETURN = Y). If the caller is an SRB 
and the specification is RETURN=N, either the TCTL function receives control or an 
abend occurs. 

111 OS/VS1 System Programming Library: Supervisor 

/ 
I 

\ 



o 

o 

--------- ------------

The RESUME macro instruction uses registers as follows: 

Register Use 

0-1 Work registers 

2-3 Unchanged 

4 TCB address 

5 RB address 

6-10 Unchanged 

11-13 Work registers 

14 Return point 

15 EPA of the RESUME routine, or return code, if RETURN = Y was specified. 

Example 1 

Opera/ion: Resume execution of the task specified in the address labeled CURRTCB. Use the 
request block address in register 5. Pass control back to the task (the issuer is currently in 
SRB mode, and this step terminates SRB mode processing). 

RESUME TCB=CURRTCB,RB=(5),RETURN=N 

RESUME - Resume Execution of a Suspended Request Block Task 223 



RISGNL - Issue Remote Immediate Signal 

The RISGNL macro instruction uses the emergency signal (ES) function of the signal 
processor (SlOP) instruction to invoke the execution of a specified software program on one 
of the processors in a tightly coupled multiprocessing system. The program may be requested 
to execute in parallel or serially with the function requesting the program. 

Ten of the twelve SlOP hardware functions are defined as direct services and are accessible 
via the DSGNL macro instruction. The other SlOP function is accessible via the RPSONL 
macro instruction. 

The RISGNL macro instruction is written as follows: 

name 

RISGNL 

PARALLEL 

SERIAL 

,CPU=PCCA addr 

,EP=entry name add, 

,PARM=pa,m add, 

name: symbol. Begin name in column 1. 

One or more blanks must precede RISGNL. 

One or more blanks must follow RISGNL. 

PCCA add,: RX-type address, or register (1). 

entry name add,: RX-type address, or register (12). 

parm addr: RX-type address, or register (11). 

The parameters are explained as follows: 

PARALLEL 
SERIAL 

specifies that control is to be returned to the caller when the specified receiving routine has 
been given control (PARALLEL) or has completed execution (SERIAL) on the designated 
processor. 

,CPU=PCCA addr 
specifies the address of the physical configuration communication area (PCCA) of the 
processor on which the function is to be performed. 

,EP = entry name addr 
specifies the address of the entry name of the receiving routine to be executed on the 
specified processor. 

,PARM = parm addr 
specifies the address of a user-defined fullword parameter to be passed to the receiving 
routine. 

224 OS/VS2 System Programming Library: Supervisor 

\. 



o 

o 

-------,-". __ ... ,' .. _-_ ... ---

When control is returned, register 15 contains one of the following return codes: 

Hexadecimal 
Code 

00 

04 
08 

12 

16 

20 

Meaning 

Specified receiving routine has been given control or has completed execution, as 
requested. 
Function not initiated because addressed processor not online. 
Function unsuccessful. Emergency signal could not be generated on processor. Status 
returned in register o. 
Function unsuccessful. Specified processor is either not installed, not configured into 
system, or powered off. 
Processor is a uniprocessor and does not have signal processor sending and receiving 
capabilities. 
Processor alive bit was turned off during the remote immediate window spin routine. 

With a return code of 8, register 0 contains: 

Bits Meaning 

o 
1-24 
25 
26 
27 
28 
29 
30 
31 

Example 1 

Equipment check 
Reserved 
Stopped 
Operator intervening 
Check stop 
Not ready 
Reserved 
Invalid function 
Receiver check 

Operation: The routine whose address is in register 12 is to be given control on the processor 
whose PCCA address is in register 1. The routine will execute in parallel with the caller who 
invoked RISGNL. 

RISGNL PARALLEL,CPU=(1 ),EP=(12) 

Example 2 

Operation: The routine whose address is in register 12 is to be given control on the processor 
whose PCCA address is in register 1. The routine will complete before the caller of RISGNL 
receives control again. Register 11 will contain the address of a parameter to be passed. 

RISGNL SERIAL,CPU=(1 ),EP=(12),PARM=(11) 

RISGNL - Issue Remote Immediate Signal 225 



RPSGNL - Issue Remote Pendable Signal 

The RPSGNL macro instruction uses the external call (EC) function of the signal processor 
(SIGP) instruction to invoke the execution of o~e of six software programs on one of the 
processors in a tightly coupled multiprocessing system. 

Ten of the twelve SIGP hardware functions are defined as direct services and are accessible 
via the DSGNL macro instruction. The other SIGP function is accessible via the RISGNL 
macro instruction. 

The RPSGNL macro instruction is written as follows: 

name 

RPSGNL 

SWITCH 
SIO 
RQCHECK 

GTFCRM 

MODE 

MFITCH 

,CPU=PCCA addr 

name: symbol. Begin name in column 1. 

One or more blanks must precede RPSGNL. 

One or more blanks must follow RPSGNL. 

PCCA addr: RX-type address, or register 0). 

The parameters are explained as follows: 

SWITCH 
SIO 
RQCHECK 
GTFCRM 
MODE 
MFITCH 

specifies the action to be performed: 
SWITCH Memory/task switch function 
SIO lOS start I/O function 
RQCHECK Timer supervision TOE check function, to ensure that TOE in real time queue 
is being timed. 
GTFCRM GTF function, to modify monitor call control registers 
MODE RMS function, to modify RMS-oriented control registers 
MFI TCH MFI function, to issue TCH instructions on processor to which channels are 

attached. 
,CPU=PCCA addr 

specifies the address of the physical configuration communication area (PCCA) of the 
processor on which the function is to be executed. 

226 OS/VS2 System Programming Library: Supervisor 

/ 

/ 



c 

C
.., 
) 

When control is returned, register 15 contains one of the following return codes: 

Hexadecimal 
Code 

00 

04 
08 

12 
16 

MeaniDg 

Specified processor is online and has been notified that the specified service is to be 
executed. 
Function not initiated because addressed processor not online. 
Function unsuccessful. External call signal could not be generated on processor. Status 
returned in register o. 
Specified processor is either not installed, not configured into system, or powered off. 
Processor is a uniprocessor and does not have signal processor sending and receiving 
capabilities. 

With a return code of 8, register 0 contains: 

Bits MeaniDg 

o 
1-25 
26 
27 
28 
29-30 
31 

Example 1 

Equipment check 
Reserved 
Operator intervening 
Check stop 
Not ready 
Reserved 
Receiver check 

o,.,otion: The service routine of memory switch is to be given control on the processor 
whose PCCA address is in register 1. 

RPSGNL SWITCH,CPU=(1) 

Example 1 

OpeI'lltiOll: The lOS start I/O routine is to be given control on the processor whose PCCA 
address is in register 1. 

RPSGNL SIO,CPU=(1) 

RPSGNL - Issue Remote Peoclable Signal 117 



SCHEDULE - Schedule System Services for Asynchronous Execution 

The SCHEDULE macro instruction schedules system services for asynchronous execution. 
These services may be scheduled for execution in any address space and may be scheduled at 
either global or local priorities. 

Services scheduled at a global priority have a priority that is greater than, and independent 
of, any address space priority. Services scheduled at a local· priority have the priority of the 
specific address space they execute in, but still have a priority greater than that of any task 
within the address space. To use SCHEDULE you must be in supervisor state, key zero. 

Note: This macro instruction requires that the SRB and CVT mapping macros be assembled 
as a DSECT into the caller's program. 

The SCHEDULE macro instruction is written as follows: 

name 

SCHEDULE 

SRB=SRB addr 

,SCOPE=LOCAL 
,SCOPE=GLOBAL 

name: symbol. Begin name in column 1. 

One or more blanks must precede SCHEDULE. 

One or more blanks must follow SCHEDULE. 

SRB addr: RX-type address, or register (1) or (2) - (12). 

Default: SCOPE=LOCAL. 

The parameters are explained as follows: 

SRB==SRB addr 
specifies the address of the service request block (SRB). 

,SCOPE == LOCAL 
,SCOPE== GLOBAL 

specifies whether the service is to be scheduled at a local or global priority. 

Example 1 

Operation: Schedule an SRB at a global priority. 

SCHEDULE SRB=(1 ),SCOPE=GLOBAL 

Example 2 

Operation: Schedule an SRB at a local priority. 

SCHEDULE SRB=( 1 ),SCOPE=LOCAL 

228 OS/VS2 System Programming Library:· Supervisor 

/ 



-----... _ ..... _._---_ ... ----- ------_ .. _-_ .... 

C' 

o 

SDUMP .:...... Dump Virtual Storage 

The SDUMP macro instruction provides a dumping capability for the system routines. It 
invokes SVC Dump to provide a fast unformatted dump of virtual storage to a data set. It is 
intended to be used by system routines that suffer errors. 

SVC Dump is available only to authorized programs. Issuers of SDUMP with entry by SVC 
must be authorized via APF or have a control program key. Branch entry callers must be key 
zero, supervisor state, and must be in SRB mode, or own a lock, or be disabled (with 
supervisor bit on). 

The service of initiating an SVC Dump in any address space is provided for callers who 
need to dump address spaces other than the one in which they are running. A branch entry to 
this service is also provided for callers who wish a dump of their own or another address space 
but cannot issue an SVC. The system operator can take SVC Dumps by issuing the DUMP 
command. For more information see Operator's Library: OS/VS2 MVS System Commands. 

The standard form of the SDUMP macro instruction is written as follows: 

SDUMP - Dump Virtual Storage 229 



name 

1; 

SDUMP 

1; 

HDR-'dump title' 

HDRAD-du"V' title addr 

,DCB-deb addr 

,ASID-ASID addr 

,ASIDLST-/ist . addr 

,ECB-eeb addr 

,SDATA-(data code) 

,STORAGE-(strt addr,end addr) 

,LIST-list addr 

,BUFFER-NO 
,BUFFER-YES 

,QUIESCE-YES 
,QUIESCE-NO 

,BRANCH-NO 
,BRANCH-YES 

,SUMLISTa/ist addr 

230 OS/VSl System Programming Library: Superrisor 

name: symb()l. Begin ~me in column 1. 

One or more blanks must follow SDUMP. 

One or more blanks must follow SDUMP. 

dump title: from 1 to 100 characters. 
dump title addr: A-type address, or register (2) - (12). 

deb addr: A-type address, or register (2) - (12). 

ASID addr: A-type address, or register (2) - (12). 

list addr: A-type address, RX-type address, or register (2) - (12). 

eeb addr: A-type address, or register (2) - (12). 
Note: If ECB is specified, ASID or ASIDLST must also be 
specified. 

data code: any combination of the following, separated by 
commas: 

PSA CSA 
NUC SWA 
LSQA ALLPSA or NOALLPSA (abbreviated NOALL) 
RON SQA or NOSQA 
LPA SUMDUMP (abbreviated SUM) or 
TRT NOSUMDUMP (abbreviated NOSUM) 

Note: Executing the SDUMP macro results in the ALLPSA, 
SQA, and SUMDUMP storage areas being dumped unless 
excluded by the NOALLPSA, NOSQA, or NOSUMDUMP 
parameter. 

stTt addr: A-type address, or register (2) - (12). 
end addr: A-type address, or register (2) - (12). 
list addr: A-type address, or register (2) - (12). 
Note: One or more pairs of addresses may be specified, 
separated by commas. For example: 
,STORAOE=(strt addr,end addr,strt addr,end addr) 

Default: BUFFER=NO 

Default: QUIESCE= YES 

Default: BRANCH=NO 
Note: If BRANCH= YES is specified, ASID or ASIDLST must 
also be specified. 

list addr: A-type address, RX-type address, or register (2) - (12). 



,r- \ 
~' 

o 

The parameters are explained as follows: 

HDR = 'dump title' 
HDRAD = dump title addr 

specifies the title or address of the title to be used for the dump. If HDR is specified, the 
title must be 1-100 characters enclosed in apostrophes, although the apostrophes do not 
appear in the actual title. If HDRAD is specified, the first byte at the indicated address 
specifies the length of the title in bytes. 
Note: The Print Dump Service Aid inserts the first 62 characters of the title on its output 
pages. 

,DCB=dcb addr 
specifies the address of a previously opened data control block for the data set that is to 
contain the dump. If this parameter is omitted, one of the SYS1.DUMP data sets is used. 
The data control block must be addressable from all the address spaces in which the SVC 
Dump routine executes. The control blocks built by OPEN must also be addressable from 
the address spaces. The DCB must support EXCP. 
The DCB must reference device type supported by SVC dump. Eligible device types are 

unlabeled 9-track 2400-series tape devices (or tape devices compatible with the 2400-series) 
and any direct access devices supported by the system that have a track size of at least 4104 
bytes. (4104 bytes equals 1 SVC dump output record.) The following are examples of 
supported direct access devices: 

• 2314 
• 2319 
• 3330 
• 3330-1 
• 2305~1 
• 2305-2 
• 3340/3344 
• 3350 

,ASID =ASID addr 
,ASIDLST = list addr 

specifies the address of a halfword or a list of halfwords containing the hexadecimal address 
space identifier of an address space to be dumped. If register notation is used, the low order 
halfword of the register contains the address space identifier of the address space to be 
dumped. If both parameters are omitted, the current address space will be dumped. If 0 is 
specified for the address space identifier, a dump is scheduled in the current address space. 

No private area storage will be included in the dump for the specified address space(s) if 
either of the following events occurred: 

• No SDATA parameters were specified that apply to the private area of the requested 
address space(s). 

• The CHNGDUMP operator command was used to set an overriding parameter in the 
system dump options list that limits SVC Dumps to areas outside of the private area: 

The ASID list can contain a maximum of 15 address space identifiers. The high order bit of 
the halfword containing the last identifier of the list must be set to 1, and all other high 
order bits must be set to O. 

,ECB =ecb addr 
specifies the address of a fullword containing the address of an event control block that is 
posted on completion of a scheduled dump. If this parameter is omitted, the caller is not 
notified of the completion of the scheduled dump. The fullword and the event control block 
must be addressable from all the address spaces in which the SVC Dump routine executes. 

SDUMP - Dump Virtual Storage 231 



,SDATA=(data code) 
specifies the system control program information to be dumped: 

SQA - The system queue area(subpools 227, 228, 239, and 245). 
ALLPSA - All of the prefixed storage areas in the system. 
PSA - The prefixed storage area for the current processor. 
NUC - The nucleus. 
LSQA - The local system queue area for each address space being dumped (subpools 
229, 230, 233-235, and 253-255). 
RON - The allocated pages in the private area of each address space being dumped. 
This includes the LSQA and the SW A. 
LPA - The active link pack area modules and SVCs for each address space being 
dumped. 
TRT - The GTF trace buffers if GTF tracing is active, or the supervisor trace table if it 
is not active. If a dump occurs in a GTF address space, no attempt is made to include 
trace information. If master trace is active, the master trace table is also included in the 
dump. 
CSA - The common service area subpools (subpools 231 and 241). 
SW A - The scheduler work area subpools for each address space being dumped 
(subpools 236 and 237). 
NOALLPSA(NOALL) - Only the prefixed storage area for the current processor are 
dumped. 
NOSQA - The system queue area is not dumped. 
NOSUMDUMP(NOSUM) - A summary dump is not included in the SVC Dump. 
SUMDUMP(SUM) - A summary dump is written to the same dump data set as the 
other portions of the SVC Dump. 

If the BRANCH = YES parameter is specified, the following system areas are included 
in the summary dump output: 

• Any storage areas specified with the SUMLIST parameter. 
• The physical configuration communication area (PCCA), the logical configuration 

communication area (LCCA), and the prefixed storage area (PSA) for each 
functioning processor. 

• The supervisor trace table, if tracing is requested and GTF tracing is not active. 
Note that GTF trace records are not dumped. 

• The interrupt handler save area (llISA) and 2K of storage before and after every 
valid, unique address in the registers that are saved in the rnSA. 

• Any system diagnostic work area (SDWA) associated with the failure of the system 
routine, and 2K of storage before and after every valid, unique address in the 
registers that are saved in the SDW A at the time of the error. 

• The global, processor, and local work/save area vector tables (W ASVTG, 
WSA VTC, WSA VTL) and the work/save areas pointed to by the addresses in 
these vector tables. 

• 2K of storage before and after the instruction counter values of the External Old 
PSW, Program Check Old PSW, I/O Old PSW, and Restart Old PSW saved in the 
PSA of the current processor. 

• The functional recovery routine (FRR) stack for the current processor. 

If the BRANCH=NO parameter is in effect, the following system areas are included 
in the summary dump output: 

• Any storage areas specified with the SUMLIST parameter. 
• The supervisor trace table, if tracing is requested and GTF tracing is not active. 

Note that GTF trace records are not dumped. 

232 OS/VS2 System Programming Ubrary: Supervisor 

/ 

I 

\. 



C:~ 

• Each RTM2 work area (RTM2WA) associated with the failing task, and 2K of 
storage before and after every valid, unique address in the PSW and registers for 
the failing task. (The PSW and registers for the failing task are saved in each 
RTM2WA.) 

Notet: 

The following system control blocks are dumped in all SVC Dumps: 

- The communications vector table (CVT) 
- The global data area (GDA) 
- The prefixed storage area (PSA) for the current CPU 
- Unit control blocks (UCBs) 
- The address space vector table (ASVT) 
- The address space control block (ASCB) for each address space being dumped 

Executing the SDUMP macro results in the ALLPSA, SQA, and SUMDUMP storage 
areas being dumped unless excluded by the NOALLPSA, NOSQA, or NOSUMDUMP 
parameter. 

The system dump options specified by the CHNGDUMP operator command can add to 
or override the SDATA options specified with the SDUMP macro instruction. 

,STORAGE==(strt addr,end addr) 
,LIST == list addr 

specifies one or more pairs of starting and ending addresses or a list of starting and ending 
addresses of areas to be dumped. (Each starting address must be less than its corresponding 
ending address.) The storage list must contain an even number of addresses, and each 
address must occupy one fullword. In the list, the high order bit of the fullword containing 
the last ending address of the list must be set to 1; all other high order bits must be set to 
O. The list specified must be addressable from at least one of the address spaces in which 
the SVC Dump routine will execute. 

The STORAGE parameter is not recommended for programs issuing the ASID or ASIDLST 
parameters and executing in a non-common area of storage. 

,BUFFER == NO 
,BUFFER == YES 

specifies that the contents of the SQA buffer is (YES) or is not (NO) to be included in the 
dump. (The SQA buffer does not include the SDUMP parameter list or any data pointed to 
by the parameter list.) Using BUFFER = YES requires special serialization. Refer to the 
topic "SQA Buffer" in Part 1. 

,QUIESCE == YES 
,QUIESCE == NO 

specifies that the system is to be set nondispatchable until the contents of the SQA and the 
CSA are dumped (YES), or that the system is to be left dispatchable (NO). If the SDATA 
parameter does not specify SQA or CSA, the QUIESCE= YES request is ignored. 

Note: Summary dumps (SUMDUMP) for branch entries (BRANCH = YES) always cause 
the system to be set non-dispatchable until the summary dump is written. 

,BRANCH = NO 
,BRANCH == YES 

specifies that a branch entry is to be used for interfacing with SVC DUMP to schedule a 
dump (YES), or that an SVC 51 instruction is to be generated for interfacing with SVC 
DUMP. This parameter can only be used by key 0, supervisor state routines that are in SRB 
mode, locked, or disabled to schedule a dump. 

Routines that issue SDUMP with BRANCH = YES must also issue the CVT mapping macro 
instruction with the PREFIX= YES parameter. 

SDUMP - Dump Virtual Storage 233 



,SUMLIST = list addr 
specifies a list of starting and ending addresses of areas to be included in a summary dump. 
(SUMDUMP must be specified as an SDAT A parameter and each starting address must be 
less than its corresponding ending address.) 

The storage list must contain an even number of addresses, and each address must occupy 
one fullword. In the list, the high order bit of the fullword containing the last ending 
address of the list must be set to 1, and all other high order bits must be set to O. 

When BRANCH = YES is also specified, each address in the list must specify a paged-in 
area. Each specified area must be addressable with the page and segment tables of the 
current address space. 
If the ASID or ASIDLST parameter was not specified, register 15 contains one of the 

following return codes when control is returned: 

Hexadecimal 
Code 
00 
04 
08 

Meaning 
A complete dump was taken. 
A partial dump was taken because the dump data set did not have sufficient space. 
The system was unable to take a dump. 

If the ASID or ASIDLST parameter was specified, register 15 contains one of the following 
return codes when control is returned: 

Hexadecimal 
Code 
00 

08 

Meaning 
A dump was scheduled. If an ECB was supplied, it will be posted on completion of the 
dump. 
The system was unable to schedule a dump. 

If an ECB was supplied, one of the following codes is returned in the ECB: 

Hexadecimal 
Code 
00 
04 
08 

Example 1 

Meaning 
A complete dump was taken. 
A partial dump was taken. 
The system was unable to take a dump. 

Opemtion: This example shows how SVC DUMP may be branch entered to initiate a dump in 
an address space by callers who cannot issue an SVC. Areas to be dumped are requested via 
three parameters (BUFFER, SDATA, and STORAGE). The dump has the title indicated in 
the HDR parameter, and the caller requests to be notified of the completion of the scheduled 
dump via the ECB parameter. 

SDUMP HDR='USER DATA FOR TEST A',DCB=TESTADCB,BUFFER=YES, 
ASID=TSTAASID,ECB=(8),QUIESCE=YES,BRANCH=YES, 
STORAGE=(A,B,C,D,(9),E),SDATA=(ALLPSA,PSA,NUC,SQA,LSQA, 
RGN,LPA,SWA,CSA) 

234 OS/VS2 System Programming Library: Supervisor 



o 

o 

Example 2 

OpemtiOll: This example shows how SVC DUMP can be invoked via a branch entry to 
initiate a dlJnlp of several address spaces by callers who cannot issue an SVC. Areas to be 
dumped are requested via four parameters (BUFFER, SDATA, LIST, and SUMLIST). The 
address spaces to be qumped are described by the ASIDLST parameter., Note that areas 
specified by SUMLIST only apply to the current address space. The LIST addressed by the 
LIST keyword must be addressable from any address space. The dump has the title indicated 
in the HDR parameter, and the caller requests to be notified of the completion of the 
scheduled dump via the BCB parameter. 

SDUMP HDR='USER DATA FOR TEST B', 
BUFFER=YES,ASIDLST=TSTALIST,ECB=(8), 
QUIESCE=YES,BRANCH=YES,LIST=(9), 
SDATA=(ALLPSA,PSA,NUC,SQA,RGN,SUMDUMP,LPA,CSA), 
SUMLIST=TSTSLIST 

. 
TSTALIST DC X'OOOOOOOA800B' 
TSTSLIST DC X'0000000080400000' 

SDUMP - Dump Virtual Storage 135 



SDUMP (List Form) 

Use the list form of the SDUMP macro instruction to construct a control program parameter 
list. You can specify any number of storage addresses using the STORAGE parameter. 
Therefore, the number of starting and ending address pairs in the list form of SDUMP must be 
equal to the maximum number of addresses specified in the execute form of the macro 
instruction. . 

The list form of the SDUMP macro instruction is written as follows: 

name 

SDUMP 

HOR='dllmp title' 

,HORAO=dump title addr 

,OCB=dcb addr 

,SOA TA=(data code) 

,STORAGE=(strt addr,end addr) 

,LIST=/irt add, 

,BUFFER=NO 
,BUFFER= YES 

,QUIESCE=YES 
,QUIESCE=NO 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede SOUMP. 

One or more blanks must follow SOUMP. 

dump title: from 1 to 100 characters. 
dump title addr: A-type address. 

dcb addr: A-type address. 

data code: any combination of the following, separated by 

commas: 
PSA CSA 
NUC SWA 
LSQA ALLPSA or NOALLPSA (abbreviated NOALL) 
RON SQA or NOSQA 
LPA SUMOUMP (abbreviated SUM) or 

TRT NOSUMOUMP (abbreviated NO SUM) 
Default: SOATA=(ALLPSA,SQA,SUMOUMP) 

ALLPSA, SQA, and SUMDUMP are the defaults even if other 
parameters are specified for SOAT A. NOALLPSA, NOSQA, 

and NOSUMOUMP must be specified to suppress these defaults. 

strt addr: A-type address. 
end add,: A-type address. 

Note: One or more pairs of addresses may be specified, 
separated by commas. For example: 

,STORAGE=(strt addr,end addr,strt addr,end add,) 

Default: BUFFER=NO 

Default: QUIESCE= YES 

The parameters are explained under the standard form of the SDUMP macro instruction, with 
the following exception: 

,MF==L 
specifies the list form of the SDUMP macro instruction. 

The list form expansion creates a 40-byte parameter list. 

236 OS/VS2 System Programinmg Ubrary: Supervisor 

( 



~- ... ~ 

~) 

------_ ..... _. __ .....• - ... _--

SDUMP (Execute Form) 

A remote control program parameter list is referred to and can be modified by the execute 
form of the SDUMP macro instruction. 

If you code one or more of the SDATA parameters on the execute form of the macro 
instruction, any SDAT A parameters coded on the list form are lost. 

The execute form of the SDUMP macro instruction is written as follows: 

SDUMP (Execute Form) 237 



name 

b 

SDUMP 

b 

HDR- 'dump title' 
HDRAD-dump title addr 

,DCB-deb addr 

,ASID=ASID addr 

,ASIDLST=list addr 

,ECB-ecb addr 

,SDATA-(data code} 

,STORAGE-fstrt addr,end addr) 
,LIST .Iist addr 

,BUFFER .... NO 
,BUFFER-YES 

,QUIESCE-YES 
,QUIESCE-NO 

,BRANCH-NO 
,BRANCH. YES 

,SUMLIST-list addr 

,MF-(E, clrl addr) 

name: symbol. Begin name in column 1. 

One or more blanks must precede SDUMP. 

One or more blanks must follow SDUMP. 

dump title: from 1 to 100 characters. 
dump title addr: RX-type address, or register (2) - (12). 

dcb addr: RX-type address, or register (2) - (12). 

ASID addr: RX-type address, or register (2) - (12). 

list addr: RX-type address, or register (2) - (12). 

ecb addr: RX-type address, or register (2) - (12). 

data code: any combination of the following, separated by 
commas: 

PSA CSA 
NUC SWA 
LSQA ALLPSA or NOALLPSA (abbreviated NOALL) 
RGN SQA or NOSQA 
LPA SUMDUMP (abbreviated SUM) or 
TRT NOSUMDUMP (abbreviated NOSUM) 

Default: SDATA.(ALLPSA,SQA,SUMDUMP) 
ALLPSA, SQA, and SUMDUMP are the defaults even if other 
parameters are specified for SDAT A. NOALLPSA, NOSQA, 
and NOSUMDUMP must be specified to suppress these defaults. 

stft addr: RX-type address, or register (2) - (12). 
end addr: RX-type address, or register (2) - (12). 
list addr: RX-type address, or register (2) - (12). 
Note: One or more pairs of addresses may be specified, 
separated by commas. For example: 
,STORAGE-(slrt addr,end addr,srrt addr,end addr} 

Note: If BRANCH. YES is specified, ASID or ASIDLST must 
also be specified. 

list addr: RX-type address, or register (2) - (12). 

crrl addr: RX-type address, or register (1) or (2) - (12). 

The parameters are explained under the standard form of the SDUMP macro instruction, with 
the following exception: 

,MF - (E, ctr! addr) 
specifies the execute form of the SDUMP macro instruction using a remote control program 
parameter list. (. 

'-

238 OS/VSl System Programming Library: Supervisor 



o 

o 

------- ------._.-... _._----_. 

Example 1 

O~",tiOll: The execute form is used to add (SDATA areas) and change (BUFFER and 
QUIESCE) options in the SDUMP parameter list. The list form of SDUMP was previously 
used to create the basic SDUMP parameter list located by register 1. 

SDUMP SDATA=(SQA,LPA),BUFFER=NO,QUIESCE=NO,MF=(E,(1» 

SDUMP (Execute Form) 239 

-----.---.-.. _._.,_._----



SETFRR - Set Up Functional Recovery Routines 

The SETFRR macro instruction provides control program functions with the ability to define 
their recovery in the FRR (functional recovery routine) LIFO stack, which is used during 
processing of the system recovery manager. Each branch-entered control program function can 
use SETFRR to define its own unique recovery environment. 

The SETFRR macro instruction can be used to add, delete, or replace FRRs in the LIFO 
stack, or to purge all FRRs in the stack. The macro instruction also optionally returns to the 
user the address of a parameter area that is eventually passed to the FRR when an error 
occurs. The parameter area can be initialized with information such as tracking data that may 
be useful to the FRR. 

SETFRR has no external linkages and expands directly inline. To issue a SETFRR the user 
must be in supervisor state key zero. If the user is not in SRB or physically disabled mode, the 
user must also hold a lock. These conditions must be maintained for the duration of the 
SETFRR environment. All SETFRR users must include the DSECTs for the FRR stack (via 
the IHAFRRS mapping macro instruction) and the PSA (via the lliAPSA mapping macro 
instruction) prior to using the SETFRR macro instruction. Note that it is necessary to copy 
lliAPSA from AMODGEN into MACLffi unless AMODGEN is concatenated to SYSLffi. 

When the FRR is entered: 

• Register 0 points to a 200-byte work area on a double word boundary for use by the 
FRR. 

• Register 1 points to the SDW A, the first word of which (SDW AP ARM) points to the 
same 24-byte area that was set up for the user at the time the SETFRR macro was 
issued if he coded the P ARMAD parameter. 

• Register 13 points to a variable recording area in the SDWA (SDWA VRA). 
• Register 14 contains the return address. 
• Register 15 points to the FRR entry point. 

Note: FRRs need not restore registers upon return. 

240 OS/VS2 System Programming Library: Supervisor 

,/ 



-----_. --.. ---- ..... ----.- .... --~ .... _ .. _.. ...._ .. _--._----_ .. _.-

o 

The SETFRR macro instruction is written as follows: 

name name: symbol. Begin name in column 1. 

One or more blanks must precede SETFRR. 

SETFRR 

One or more blanks must follow SETFRR. 

A,FRRAD=FRR addr 
R,FRRAD=FRR addr 
D 

FRR addr: A-type address, or register (2) - (12). 

P 

,WRKREGS = (reg J,reg2) regJ: decimal digits 1-15. 

reg2: decimal digits 1-15. 

,PARMAD=pann area addr parm area addr: A-type address, or register (2) - (12). 

Note: This parameter may only be specified with A or R above. 

,RELATED=value value: any valid macro keyword specification. 

The explanation of the parameter is as follows: 

A,FRRAD=FRRAD addr 
R,FRRAD=FRRAD addr 
D 
P 

specifies the operation to be performed on the FRR LIFO stack: 
A - an FRR address is to be added to the stack. 
R - the FRR address last added to the stack is to be replaced by another FRR address. 
D - the FRR address last added to the stack is to be deleted. 
P - all entries in the stack are to be purged. 
FRRAD specifies the address of a fullword containing the FRR address that is to be 
added or replaced. The parameter specifies the FRR address in a register or specifies the 
address of a storage location containing the FRR address. 

,WRKREGS = (regl,reg2) 
specifies two unique general purpose registers to be used as work registers in the code 
generated by the SETFRR macro expansion. 

,PARMAD = parm area addr 
specifies the address of a fullword to receive the address of the 24-byte parameter area 
provided by the system to the issuer of SETFRR. If a register is specified, the address of 
the 24-byte parameter area is placed in the register. This parameter area is associated with 
the FRR address that has either been added to or has replaced an FRR address on the 
stack. This parameter area is passed to the FRR when an error occurs. 

,RELATED = value 
specifies information used to self-document macro instructions by "relating" functions or 
services to corresponding functions or services. The format and contents of the information 
specified are at the discretion of the user, and may be any valid coding values. 
The RELATED parameter is available on macro instructions that provide opposite services 
(for example, ATIACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and 
on macro instructions that relate to previous occurrences of the same macro instructions (for 
example, CHAP and ESTAE). 

SETFRR - Set Up Functional Recovery Routines 241 

------- _ ........ _-_ .. . 



The parameter may be used, for example, as follows: 

GET1 GETMAIN R,LV=4096,RELATED=( FREE 1 ,'GET STORAGE' ) 

FREE 1 FREEMAIN R,LV=4096,A=(1 },RELATED=(GET1,'FREE STORAGE') 

Example 1 

Opemtion: Add an FRR to the FRR stack, and return the address of the parameter list to the 
issuer of the SETFRR. The FRR address contained in register (Rl) is placed on the FRR 
stack in the next available FRR entry. On return, register (R2) contains the address of the 
parameter list associated with this FRR entry. Registers R3 and R4 are work registers used in 
the code generated by SETFRR in performing its operations. 

SETFRR A,FRRAD=(R1 ),PARMAD=(R2),WRKREGS=(R3,R4) 

Example 2 

Operation: Delete the last FRR added to the FRR stack. 

SETFRR D,WRKREGS=(1,6) 

242 OS/VS2 System Programming Library: Supenisor 

---- ------.~-.-

c: 



------_ .... _-----_ .... _._--_. __ . __ .. - .-------- .... _-_._-----_._---._--_._ .. _------

o 

o 

SETLOCK - Control Access to Serially Reusable Resources 

The SETLOCK macro instruction is used to control access to serially reusable resources. Each 
kind of serially reusable resource is assigned a separate lock. To use SETLQCK, you must be 
executing in supervisor state with protection key zero. Also, SETLOCK users must include the 
DSECT for the PSA (via IHAPSA mapping macro) prior to using the SETLOCK macro 
instruction. Note that it is necessary to copy IHAPSA from AMODGEN into MACLm unless 
AMODGEN is concatenated to SYSLffi. 

SETLOCK can be used to: 

• Obtain a specified lock or set of locks. 
• Release a specified lock or set of locks . 
• Test a specified lock or set of locks to determine if the lock is held on the requestor's 

processor. 

There are two classes of locks: global and local. There are two types of locks: spin and 
suspend. The descriptions of these locks and the hierarchy structure in which these locks are 
arranged are described under locking in this publication. . . 

Note: In MVS a locked routine is not allowed to issue an SVC, or invoke a routine that 
would issue an SVC on the locked routine's behalf. 

Caution should be used if SETLOCK is invoke4 and register 11, 12, 13 or 14 is used as the 
program's base register. Some options of the SETLOCK macro cause branch instructions to be 
ge~erated after setting registers 11-14 to the required values. 

SETLOCK - Control Access to Serially Reusable Resources 243 



The OBTAIN option of SETLOCK macro instruction is written as follows: 

name 

SETLOCK 

OBTAIN 

,TYPE=IOSCAT,ADDR=(1l) 
,TYPE=IOSUCB,ADDR=(1l) 

,TYPE=IOSLCH,ADDR=(1l) 
,TYPE=IOSYNCH,ADDR=(1l) 

,TYPE=ASM,ADDR=(1l) 

,TYPE=DISP 
,TYPE=SALLOC 
,TYPE=SRM 
,TYPE=CMS 
,TYPE=LOCAL 

,MODE=COND 
,MODE=UNCOND 
,MODE=UNCOND,DISABLED 

,REGS=SAVE 
,REGS=USE 

,RELATED=va/ue 

name: symbol. Begin name in column 1. 

One or more blanks must precede SETLOCK. 

One or more blanks must follow SETLOCK. 

Note: DISABLED may not be specified if TYPE=CMS or 
TYPE=LOCAL is specified above. 
Note: Registers 11-14 will be destroyed if this parameter is 

omitted. 

value: any valid macro keyword specification. 

The parameters are explained as follows: 

OBTAIN 
specifies that the lockword is to be obtained or locked on the caller's behaH. 

,TYPE = IOSCAT,ADDR= (11) 
,TYPE == IOSDCB,ADDR == (11) 
,TYPE = IOSLCH,ADDR = (11) 
,TYPE = IOSYNCH,ADDR == (11) 
,TYPE == ASM,ADDR == (11) 
,TYPE=DISP 
,TYPE == SALLOC 
,TYPE=SRM 
,TYPE==CMS 
,TYPE = LOCAL 

specifies the type of lock that is to be obtained on the caller's behaH. 
ADDR == (11) specifies that the address of the lockword indicated by the TYPE parameter 

has been loaded into register 11 prior to the SETLOCK request. 
IOSCAT lOS channel availability table lock. It is a global spin lock used by lOS to serialize 

access and updates to the channel availability table. 
IOSUCB lOS unit control block lock. These locks (one per UCB) are global spin locks used 

to serialize access and updates to UCBs. 
IOSLCH lOS logical channel queue lock. These locks (one per channel queue) are global 

spin locks used to serialize access and updates to the lOS logical channel queues. 

244 OS/VS2 System Programming Library: Supervisor 

I, 



IOSYNCH lOS synchronization lock. It is a global spin lock used to serialize the global lOS 
functions. 

ASM Auxiliary storage manager lock. It is a global spin lock used to serialize use of the 
global ASM control blocks. 

DISP Global dispatcher lock. It is a global spin lock used to serialize all functions 
. associated with· the dispatching process. 

SALLOC Real storage manager and virtual storage manager space allocation lock. It is a 
global spin lock used to serialize the global functions of RSM and VSM. 

SRM Systems resource manager lock. It is a global spin lock used to serialize use of the 
SRM control algorithms and associated data. 

CMS Cross memory services lock. It is a global suspend lock used to serialize on more than 
one virtual storage where this serialization is not provided by one or more of the global 
locks. 

LOCAL Storage lock of the storage the SETLOCK caller is executing. It is a local suspend 
lock used by supervisor functions which require serialization within that particular storage 
only. 

,MODE=COND 
,MODE = UNCOND 
,MODE = UNCOND,DISABLED 

specifies whether the lock is to be conditionally or unconditionally obtained. 
COND specifies that the lock is to be conditionally obtained. That is, if the lock is not 

owned on another processor, it is acquired on the caller's behalf. If the lock is already 
held, control is returned to the caller indicating that the lock is held and that either the 
caller already owns the lock or that another processor or storage owns the lock. 

UNCOND specifies that the lock is to be unconditionally obtained. That is, if the lock is not 
owned on another processor, it is acquired on the caller's behalf. If the lock is already 
held by the caller, control is returned to the caller indicating that he already owns the 
lock. If the lock is held on another processor, the caller's processor spins on the lock 
until it is released or suspends the SETLOCK caller until the lock is released. 

DISABLED specifies that the caller is already in a physically disabled state. 
,REGS = SAVE 
,REGS-USE 

specifies the use of registers 11 through 1. 
SA VB specifies that register contents are to be saved. Registers 11 through 14 are saved in 

the area pointed to by register 13, and are restored upon completion of the SETLOCK 
request. The save area consists of at least 5 words. Register 15 contains the return code. 

Note: The save area used for the REGS=SA VB parameter must be a different area than the 
standard linkage save area used by the program. 

USE specifies that registers 14, 15, 0, and 1 are available for use. Registers 11, 12, and 13 
are saved in registers 15, 0, and 1, respectively, and are restored upon completion of the 
SETLOCK request. Register 14 is used as a link register; register 15 contains the return 
code. 
Note: If neither SA VB nor USE is specified, registers 11-14 are destroyed and register 
13 contains the return code. 

,RELATED = value 
specifies information used to self-document macro instructions by "relating" functions or 
services to corresponding functions or services. The format and contents of the information 
specified are at the discretion of the user, and may be any valid coding values. 
The RELATED parameter is available on macro instructions that provide opposite services 
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and 
on macro instructions that relate to previous occurrences of the same macro instructions (for 
example, CHAP and ESTAE). 

SETLOCK - Control Access to Serially Reusable Resources 245 



The parameter may be used, for example, as follows: 

GETLL SETLOCK OBTAIN, TYPE=LOCAL,MODE=UNCOND, 
RELATED=(FREELL,'free local lock') 

FREELL SETLOCK RELEASE, TYPE=LOCAL, 
RELATED=(GETLL,'get local lock') 

When control,is returned, register 15 (register 13, if neither SA VB nor USE is specified) 
contains one of the following return codes: 

Hexadecimal 
Code MeaaiDg 

00 The lock was successfully obtained. The lock was free and is now held on the caller's 
behalf. 

04 
08 

The lock was already held by the caller. The lockword id matches the caller's ide 
The obtain process was unsuccessful. The lockword id does not match the caller's ide 

Example 1 

Op.wtlon: The global dispatcher lock DISP is to be conditionally requested. The RELATED 
parameter indicates that the DISP lock serializes the TeB resource, and the lock is either freed 
at the location represented by NAME or SYMl in module IEFVHA or by SYM2 in module 
IEFVFA. 

SETLOCK OBTAIN,TYPE=DISP,MODE=COND,RELATED=(TCB,IEFVHA(NAME, 
SYM1},IEFVFA(SYM2)} 

The RELEASE option of the SETLOCK macro instruction is written as follows:' 

name 

b 

SETLOCK 

b 

RELEASE 

,TYPE~IOSCAT,ADDR-(11) 

,TYPE-IOSUCB,ADDR-(11) 
, TYPE-IOSLCH,ADDR-(ll) 
,TYPE-IOSYNCH,ADDR-(1l) 
,TYPE-ASM,ADDR-(1l) 
,TYPE-DISP 
,TYPE.SALLOC 
,TYPE-SRM 
,TYPE-CMS 
.TYPE-LOCAL 
,TYPE-SPIN 
,TYPE-ALL 
,TYPE-(reg) 

, ,DISABLED 

,REGS-SAVE 
,REGS-USE 

,RELATED-value 

246 OS/VSl System Programming Ubrary: SupenIsor 

name: symbol. Begin name in column 1. 

One or more blanks must precede SETLOCK. 

One or more blanks must follow SETLOCK. 

reg: decimal digit 2 - 10. 

Note: DISABLED may not be specified if TYPE-CMS or 
TYPE-LOCAL is specified above. 

value: any valid macro keyword specification. 

/ 



'I C
·,-, 

o 

The parameters are explained under the OBTAIN option of the SETLOCK macro instruction, 
with the following exceptions: 

RELEASE 
specifies that the lockword is to be released. 

,TYPE = SPIN 
,TYPE = ALL 
,TYPE = (reg) 

specifies the type of lock that is to be released. 
SPIN All spin locks currently held on the processor are to be released. 
ALL All locks currently held on the processor are to be released. 
(reg) The specified register contains a bit string identifying the locks to be released. A 

value of 1 indicates that the lock held is to be released; a value of 0 indicates that the 
status of the lock will not change. The bit meanings are: 

Bit 19 DISP 
Bit 20 ASM 
Bit 21 SALLOC 
Bit 22 IOSYNCH 
Bit 23 IOSCAT 
Bit 24 IQSUCB 
Bit 25 IOSLCH 
Bit 26 Reserved 
Bit 27 Reserved 
Bit 28 Reserved 
Bit 29 SRM 
Bit 30 CMS 
Bit 31 LOCAL 

,DISABLED 
specifies that control is to be returned to the caller with the processor in a physically 
disabled state (except for machine check) when a lock is successfully released. This form 
should be used only by those routines which do not have the disabled supervisor indicator 
on when they are executing and which, upon release of a global spin lock, must remain 
physically disabled due to noninterruptibility or no recursion restraints. 
When control is returned, register 15 contains one of the following return codes: 

Hexadecimal 
Code 

00 
04 
08 

Meaning 

The lock was successfully released. 
The lock was not owned. The lock was free when the release request was issued. 
The release process was unsuccessful. The lockword id does not match the caller's id. 

Note: No return codes are supported for multiple releases. That is, return code register 
contents are unpredictable. 

Example 1 

Opera/ion: The local lock is requested to be released. 

SETLOCK RELEASE,TYPE=LOCAL,RELATED=(TCBRQ,MOD1(NAME1 ), 
MOD 2 ( NAME2» 

Example 2 

Operation: The IOSUCB lock whose address is in register 11 is requested to be released. 

SETLOCK RELEASE,TYPE=IOSUCB,ADDR=(11 ),RELATED=(AXYZ,MOD1(LABEL» 

SETLOCK - Control Access to Serially Reusable Resources 247 

... __ •.......•. _ .••............. _-- ----- ..... _--_ ..•.. _ •... 



The TEST option of the SETLOCK macro instruction is written as follows: 

name 

SETLOCK 

TEST 

, TYPE=IOSCAT 
,TYPE=IOSUCB 
, TYPE=IOSLCH 
,TYPE=IOSYNCH 
,TYPE=ASM 
,TYPE=DISP 
,TYPE=SALLOC 
,TYPE=SRM 
,TYPE=CMS 
,TYPE=LOCAL 
,TYPE=SPIN 
,TYPE = ALL 
,TYPE=(reg) 

,ADDR=(reg) 

,BRANCH=(HELD,addr) 
,BRANCH=(NOTHELD,addr) 

,REGS = (reg) 

,RELATED=va!ue 

name: symbol. Begin name in column 1. 

One or more blanks must precede SETLOCK. 

One or more blanks must follow SETLOCK. 

reg: decimal digit 2 - 12 

reg: decimal digit 2 - 12 
Note: ADDR may not be specified if any of the following was 
specified above: 

TYPE=DISP 
TYPE=SALLOC 
TYPE=SRM 
TYPE=CMS 

addr: RX-type address. 

reg: decimal digit 2 - 12. 

TYPE=LOCAL 
TYPE=SPIN 
TYPE=ALL 
TYPE=(reg) 

Note: REGS may only be specified if any of the following was 
specified above: 

TYPE=SPINTYPE=ALL TYPE=(reg) 

value: any valid macro keyword specification. 

The parameters are explained under the OBTAIN or RELEASE option of the SETLOCK 
macro instruction, with the following exceptions: 

TEST 
specifies that the lockword is to be checked to determine if it is currently held on the 
requesting processor. 

,BRANCH - (HELD,addr) 
,BRANCH - (NOTHELD,addr) 

specifies that the return code' setting output of the macro instruction is to be suppressed and 
replaced by a direct branch to the specified address. 

248 OS!VS2 System Programming Library: Supervisor 

( 
" 



o 

o 

----------------------- - ---------- --------

If HELD is specified, the address is branched to; if the specified lock, or at least one lock 
for TYPE=ALL or TYPE=SPIN, or all the specified locks for TYPE=(reg) are held on the 
requesting processor. 

If NOTHELD is specified, the address is branched to; if the specified lock is not currently 
held on the requesting processof, Of if not all the locks specified fOf TYPE=(reg) are held, 
or if no lock fOf TYPE=ALL or TYPE=SPIN is held. 

,REGS = (reg) 
specifies the register containing a bit string identifying which locks are held. If the bit string 
is partially correct (that is, one of the locks specified is not held), the connected string is 
returned in the register specified. 
When control is returned, register 15 contains one of the following return codes: 

Hexadecimal 
Code 

00 

04 

Example 1 

Meaning 

The lock was held by the requestor, or all the locks were held (if the request was for 
several locks via a register), or at least one lock was held (if TYPE = ALL or 
TYPE=SPIN was specified). 
The lock was not held by anybody, or not all the locks were held (if the request was 
for several locks via a register), or no lock was held (if TYPE=ALL or TYPE=SPIN 
was specified). 

Operation: If the local lock is not held, a branch to DSRLLINT is to be performed; 
otherwise, the next sequential instruction is to be executed. 

SETLOCK TEST,TYPE=LOCAL,BRANCH=(NOTHELD,DSRLLINT) 

SETLOCK - Control Access to Serially Reusable Resources 249 

-----------,-----._._--------------------------,-----



SETRP - Set Return Parameters 

The SETRP macro instruction is used to indicate the various requests that a recovery exit can 
return. 

The macro instruction is valid only for exits established via functional recovery exits and 
EST AB/EST AI/EST AR exits. The table following the description of the macro instruction 
indicates which parameters are valid for each situation. 

The SETRP macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of the RECORD, RECPARM, FRELOCK and CPU 
parameters. These parameters are restricted in use and should be used only by programs 
executing in supervisor state or under protection key 0-7 and executing as a functional 
recovery routine. 

The syntax of the complete SETRP macro instruction is shown below. However, only the 
explanation of the restricted parameters is presented. Explanation of the other parameters can 
be found in OS/VS2 Supervisor Services and Macro Instmctions. 

Note: This macro instruction requires that the IHASDW A mapping macro be assembled as a 
DSECT into the caller's program. 

The SETRP macro instruction is written as follows: 

250 OS/VS2 System Programming Library: Supervisor 

/ 



o 

o 

name 

tJ 

SETRP 

tJ 

WKAREA=(reg) 

,REGS = (reg 1) 
,REGS=(reg 1, reg2) 

,DUMP=IGNORE 
,DUMP=YES 
,DUMP=NO 

,DUMPOPT=parm list addr 

,RC=O 
,RC=4 
,RC=16 

,RET ADDR=retry addr 

,RETREGS=NO 
,RETREGS= YES 
,RETREGS= YES,RUB=in!o 
addr 

,FRESDWA=NO 
,FRESDWA= YES 

,COMPCOD=code 
,COMPCOD=(code ,USER) 
,COMPCOD=(code ,SYSTEM) 

,FRELOCK=(locks) 

,CPU=reg 

,RECORD=IGNORE 
,RECORD= YES 
,RECORD=NO 

,RECP ARM = record list addr 

name: symbol. Begin name in column 1. 

One or more blanks must precede SETRP. 

One or more blanks must follow SETRP. 

reg: decimal digits 1-12. 
Default: WKAREA=(l) 

regJ: decimal digits 0-12, 14, 15. 
reg2: decimal digits 0-12, 14, 15. 
Note: If regJ and reg2 are both specified, order is 14, 15, 0-12. 

Default: DUMP=IGNORE 

parm list addr: RX-type address, or register (2) - (12). 
Note: This parameter may be specified only if DUMP=YES is specified 
above. 

Default: RC=O 

retry addr: RX-type address, or register (2) - (12). 
Note: This parameter may be specified only if RC=4 is specified 
above. 

info addr: RX-type address, or register (2) - (12). 
Default: RETREGS=NO 
Note: This parameter may be specified only if RC=4 is specified 
above. If RETREGS= YES is specified for a FRR, all registers are 
restored from SDWASRSV with the exception of register 15. Register 
15 always contains the entry point of the retry routine. 

Default: FRESDW A=NO 
Note: This parameter may be specified only if RC=4 is specified 
above. 

code: symbol, decimal digit, or register (2) - (12). 
Default: COMPCOD=(code,USER) 

locks: any combination of the following, separated by commas: 
DISP 10 SCAT(lockword) 
SRM IOSUCB(lockword) 
SALLOC IOSLCH(lockword) 
CMS 10 SYNC H(lo ck word) 
LOCAL ASM(lo ck word) 

lockword: RX-type address. 
Note: This parameter may be specified only if RC=O is specified 
above. 

reg: decimal digits 2-12. 

Default: RECORD=IGNORE 

record list addr: RX=type address, or register (2) - (12). 
Note: This parameter may be specified only if RECORD=IGNORE or 
RECORD= YES is specified above. 

The parameters restricted in use are explained as follows. (The other parameters are explained 
in OS/VS2 Supervisor Services and Macro Instructions.) 

SETRP - Set Return Parameters 251 

---_ ............ __ ._-_._-------------_. 



,FRELOCK = (locks) 
specifies the locks to be freed and the corresponding lockwords: 
DISP - Global dispatcher lock. 
SRM - Systems resource manager lock. 
SALLOC - Real storage manager and virtual storage manager space allocation lock. 
CMS - Cross memory services lock. 
LOCAL - Storage lock of the storage the caller is executing in. 
IOSCAT - lOS channel availability table lock. 
IOSUCB - lOS unit control block lock. 
IOSLCH - lOS logical channel queue lock. 
IOSYNCH - lOS synchronization lock. 
ASM - Auxiliary storage manager lock. 

,CPU = (reg) 
specifies the register that contains the logical processor identification of the processor 
holding the resource that this processor is waiting for. 

,RECORD,= IGNORE 
,RECORD = YES 
,RECORD=NO 

specifies that the entire SDW A, both fixed and variable areas, is to be written on 
SYS1.LOGREC (YES), is not to be written on SYS1.LOGREC (NO), or is to be written 
as indicated prior to the SETRP macro instruction (IGNORE). 

,RECPARM = record list addr 
specifies the address of a user-supplied record parameter list. The parameter list consists of 
three 8-byte fields: 
• The first field contains the module name (microfiche name). 
• The second field contains the CSECT name. 
• The third field contains the FRR identification. 

The three fields are left-justified, and padded with blanks. 

Notes: 

1. The variable information record, containing two 2-byte length fields at the beginning of the 
record consists of: 

• The first field, filled in by the system, specifies the total length available to the user 
(exclusive of the two length fields). 

• The second field, filled in by the user, defines the format of the data to be dumped in 
the first byte and the actual length of the data in the second byte. 

2. The FRESDW A parameter cannot be specified or defaulted for a functional recovery 
routine (FRR). The SDW A is always released before an FRR's retry routine gets control. 

252 OS/VS2 System Programming Library: Supervisor 

. ---'- ---------' ---~--,.---- .. -----

I 



-------- -~----

(\ 
U 

o 

o 

The following table indicates which parameters are available to functional recovery routines 
(FRRs) and which parameters are available to ESTAE/ESTAE exits. 

Parameter FRR ESTAE 
WKAREA x x 
REGS x x 
DUMP x x 
DUMPOPT x x 
RC=O x x 
RC=4 x x 
RC=16 x 
RETADDR x x 
RETREGS x x 
RUB x x 
FRESDWA x 
COMPCOD x x 
FRELOCK x 
CPU x 
RECORD x x 
RECPARM x x 

Example 1 

Operation: Request continue with termination and freeing of the IOSCAT and SRM locks. 
The IOSCAT lockword is label X. 

SETRP RC=O,FRELOCK=(IOSCAT(X),SRM) 

Example 2 

Operation: Cause a restart interruption on the processor identified by the contents of register 
7. In this example, the interrupted function is spinning on a lock currently being held by the 
processor identified in register 7. 

SETRP CPU=(7) 

SETRP - Set Return Parameters 253 



SPIE - Specify Program Interruption Exit 

The SPIE macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of interruption type 17. This interruption type designates page 
faults and may be specified by an installation-authorized system programmer. 

Each succeeding SPIE macro instruction completely overrides the previous SPIE macro 
instruction specification for that task. The specified exit routine is given control in the key of 
the TCB (TCBPKF) when one of the specified program interruptions occurs in any problem 
program of the task. When a SPIE macro instruction is issued from a SPIE exit routine, the 
PIE is reset (ZEROED). Thus a SPIE exit routine should save any required PIE data prior to 
issuing a SPIE. If the current SPIE environment is cancelled during SPIE exit routine 
processing, the control program will not return to the interrupted program when the SPIE 
program terminates. Therefore, if the SPIE exit routine wishes to retry within the interrupted 
program, a SPIE cancel should not be issued within the SPIE exit routine. 

For more information on the SPIE macro instruction, see the section on "Interruption, 
Recovery/Termination, and Dumping Services". 

The syntax of the complete SPIE macro instruction is shown below. 

The standard form of the SPIE macro instruction is written as follows: 

name 

SPIE 

exit addr, (interrupts) 

254 OS/VS2 System Programming Library: Supervisor 

-- ----- -- -----------------------------------

name: symbol. Begin name in column 1. 

One or more blanks must precede SPIE. 

One or more blanks must follow SPIE. 

exit addr: A-type address, or register (2) - (12). 

inte"upts: decimal digits 1-15, or 17 expressed as 
single values: (2,3,4,7,8,9,10) 

ranges of values: «2,4),(7,10» 

combinations: «2,4),6,8,(10,13),15) 

------------ ---------------------



o 

o 

o 

----------- _. __ ._--

The parameters are explained as follows: 

exit addr,{inte"upts) 
specifies the address of the exit routine to be given control when a program interruption of 
the type specified occurs. The interruption types are: 

Number 

1 

Note: 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
17 

Interruption Type 

Operation 
Privileged operation 
Execute 
Protection 
Addressing 
Specification 
Data 
Fixed-point overflow (maskable) 
Fixed-point divide 
Decimal overflow (maskable) 
Decimal divide 
Exponent overflow 
Exponent underflow (maskable) 
Significance (maskable) 
F1oating~point divide 
Page fault 

• If a specified program interruption type is maskable, the corresponding bit is set to 1. 
Interruption types not specified above are handled by the control program. 

• The control program returns the address of the previous PICA in register 1. If no 
previous SPIE environment existed, the control program returns zeros in register 1. 

• If an exit address is zero or no parameters are specified, the SPIE environment is 
cancelled. 

Example 1 

Operation: Give control to an exit routine for interruptions 17. DOITSPIE is the address of 
the SPIE exit routine. 

SPIE DOITSPIE,(17) 

SPIE - Specify Program Interruption Exit 2SS 

._--------_ ... _._---.------_ ... - " .. -----



SPIE (List Form) 

Use the list form of the SPIE macro instruction to construct a control program parameter list 
in the form of a program interruption control area. 

The list form of the SPIE macro instruction is written as follows: 

name 

SPIE 

exit addr 

, (interrupts) 

name: symbol. Begin name in column 1. 

One or more blanks must precede SPIE. 

One or more blanks must follow SPIE. 

exit addr: A-type address. 

interrupts: decimal digits 1-15, or 17, expressed as 
single values: (2,3,4,7,8,9,10) 

ranges of values: «2,4,),(7,10» 

combinations: «2,4),6,8,(10,13),15) 

The parameters are explained under the standard form of the SPIE macro instruction, with the 
following exception: 

,MF=L 
specifies the list form of the SPIE macro instruction. 

Note: If SPIE is coded with a 0 as the control address, the SPIE environment is cancelled. 

256 OS/VS2 System Programming Library: Supervisor 

( 
l" 



-------- -_ .. _---------.- .. _----------------------------

c 

o 

o 

SPIE (Execute Form) 

A remote control program parameter list (program interruptions control area) is used in, and 
can be modified by, the execute form of the SPIE macro instruction. The PICA (program 
interruptions control area) can be generated by the list form of SPIE, or you can use the 
address of the PICA returned in register 1 following a previous SPIE macro instruction. If this 
macro instruction is being issued to reestablish a previous SPIE environment, code only the 
MF parameter. 

The address of the remote control program parameter list associated with any previous SPIE 
environment is returned by the SPIE macro instruction. 

The execute form of the SPIE macro instruction is written as follows: 

name 

SPIE 

exit addr 

, (interrupts) 

,MF=(E,etrl addr) 

name: symbol. Begin name in column 1. 

One or more blanks must precede SPIE. 

One or more blanks must follow SPIE. 

exit addr: RX-type address, or register (2) - (12). 

interrupts: decimal digits 1-15, or 17, expressed as 
single values: (2,3,4,7,8,9,10) 

ranges of values: «2,3),(7,10» 
combinations: «2,4),6,8,(10,13),15) 

etr! addr: RX-type address, or register (1) or (2) - (12). 

The parameters are explained under the standard form of the SPIE macro instruction, with the 
following exception: 

,MF == (E,ctrl,addr) 
specifies the execute form of the SPIE macro instruction using a remote control program 
parameter list. 

SPIE (Execute Fonn) 257 



SPOST - Synchronize POST 

The SPOST macro instruction is used in a cross-memory post environment to ensure that all 
outstanding cross-memory post requests to the current address space have completed. SPOST 
resolves a synchronization problem that arises when it becomes necessary to free an ECB that 
is a potential target for a cross-memory post request. Before issuing SPOST, you must stop 
any new posts from being initiated. 

For explanation of the parameters in a cross-memory post request, see the POST macro 
instruction. 

SPOST invokes the PURGEDQ SVC. For details, see the PURGEDQ macro instruction. 

The SPOST macro instruction is written as follows: 

name name: symbol. Begin name in column 1. 

One or more blanks must precede SPOST. 

SPOST 

Note: SPOST contains no optional or required parameters. 

Example 1 

Operation: Execute the SPOST macro instruction, with a comment. 

SPOST ,ISSUE SPOST 

258 OS/VS2 System Programming Library: Supervisor 

/ 



c 

o 

o 

---------------------- ----------- ----- - ------

ST AE - Specify Task Abnormal Exit 

The ST AE macro instruction enables the user to intercept a scheduled ABEND and to have 
control returned to him at a specified exit routine address. The ST AE macro instruction 
operates in both problem program and supervisor modes. 

Note: The ST AE macro instruction is available for compatibility with release 1 of VS2 and 
with MFT and MVT. However, it is recommended that EST AE be used. 

The standard form of the STAB macro instruction is written as follows: 

name name: symbol. Begin name in column 1. 

One or more blanks must precede ST AE. 

STAE 

One or more blanks must follow ST AE. 

o exit addr: A-type address, or register (2) - (12). 

exit addr 

o 

,CT 

,OV 

,P ARAM=list addr 

,XCTL=NO 

,XCTL=YES 

,PURGE=QUIESCE 

,PURGE=HALT 

,PURGE=NONE 

,ASYNCH=NO 

,ASYNCH= YES 

,RELATED = value 

Default: CT 

list addr: A-type address, or register (2) - (12). 

Default: XCTL=NO 

Default: PURGE=QUIESCE 

Default: ASYNCH=NO 

value: any valid macro keyword specification. 

The parameters are explained as follows: 

o 
exit addr 

specifies the address of a ST AE exit routine to be entered if the task issuing this macro 
instruction terminates abnormally. If 0 is specified, the most recent ST AE request is 
canceled. 

,CT 
,OV 

specifies the creation of a new ST AE exit (CT) or indicates that the parameters passed in 
this ST AE macro instruction are to overlay the data contained in the previous ST AE exit 
(OV). 

,P ARAM = list addr 
specifies the address of a user-defined parameter list containing data to be used by the 
STAB exit routine when it is scheduled for execution. 

STAE - Specify Task Abnormal Exit 259 



,XCTL==NO 
,XCTL==YES 

specifies that the STAB macro instruction will be canceled (NO) or will not be canceled 
(YES) if an XCTL macro instruction is issued by this program. 

,PURGE == QUIESCE 
,PURGE==HALT 
,PURGE == NONE 

specifies that all outstanding requests for I/O operations are not saved when the ST AE exit 
is taken (HALT), that I/O processing is allowed to continue normally when the ST AE exit 
is taken (NONE), or that all outstanding requests for I/O operations are saved when the 
STAB exit is taken (QUIESCE). For QUIESCE, at the end of the STAB exit routine, the 
user can code a retry routine to handle the outstanding I/O requests. 

Note: If any mM-supplied access method, except EXCP, is being used, the PURGE = NONE 
option is recommended. If you use PURGE=NONE, all control blocks affected by 
input/ output processing can continue to change during STAB exit routine processing. 

If PURGE = NONE is specified and the ABEND was originally scheduled because of an error 
in input/output processing, an ABEND recursion develops when an input/output interruption 
occurs, even if the exit routine is in progress. Thus, it appears that the exit routine failed when, 
in reality, input/output processing caused the failure. 

ISAM Notes: If ISAM is being used and PURGE=HALT is specified or PURGE=QUIESCE 
is specified but I/O is not restored: 

• Only the input/output event on which the purge is done is posted. Subsequent event 
control blocks (ECBs) are not posted. 

• The ISAM check routine treats purged I/O as normal I/O. 

• Part of the data set may be destroyed if the data set is being updated or added to when 
the failure occurred. 

,ASYNCH==NO 
,ASYNCH == YES 

specifies that asynchronous exit processing is allowed (YES) or is not allowed (NO) while 
. the STAB exit is executing. 

ASYNCH=YES must be coded if: 

• The STAB exit routine requests any supervisor services that require asynchronous 
interruptions to complete their normal processing. 

• PURGE=QUIESCE is specified for any access method that requires asynchronous 
interruptions to complete normal input/output processing. 

• PURGE=NONE is specified and the CHECK macro instruction is issued in the STAB 
exit routine for any access method that requires asynchronous interruptions to complete 
normal input/output processing. 

Note: If ASYNCH= YES is specified and the ABEND was originally scheduled because of an 
error in asynchronous exit handling, an ABEND recursion develops when an asynchronous 
interruption occurs. Thus, it appears that the exit routine failed when, in reality, asynchronous 
exit handling caused the failure. 

260 OS/VS2 System Programming Library: Supervisor 

( 



-----------------._---------

o 

o 

o 

,RELATED = value 
specifies information used to self-document macro instructions by "relating" functions or 
services to corresponding functions or services. The format and contents of the information 
specified are at the discretion of the user, and may be any valid coding values. 

The RELATED parameter is available on macro instructions that provide opposite services 
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and 
on macro instructions that relate to previous occurrences of the same macro instructions (for 
example, CHAP and ESTAE). 

The parameter may be used, for example, as follows: 

GET1 GETMAIN R,LV=4096,RELATED=(FREE1,'GET STORAGE') 

FREE 1 FREEMAIN R,LV=4096,A=(1 ),RELATED=(GET1,'FREE STORAGE') 

Control returns to the instruction following the ST AE macro instruction; register 15 
contains one of the following return codes: 

Hexadecimal 
Code 

00 
04 
08 
OC 

10 

Example 1 

Meaning 

Successful completion of ST AE request. 
ST AE was unable to obtain storage for ST AE request. 
Attempt was made to cancel or overlay a nonexistent ST AE request. 
Exit routine or parameter list address was invalid, or ST AI request was missing a TCB 
address. 
Attempt was made to cancel or overlay a ST AE request of another user, or an 
unexpected error was encountered while processing this request. 

Operation: Request an overlay of the existing ST AE recovery exit with the following options: 
new exit address is ADDR, parameter list is at PLIST, halt I/O, do not take asynchronous 
exits, transfer ownership to the new request block resulting from any XCTL macro 
instructions. 

STAE ADDR,OV,PARAM=PLIST,XCTL=YES,PURGE=HALT,ASYNCH=NO 

STAE - Specify Task Abnormal Exit 261 



ST AE (List Form) 

The list form of the ST AE macro instruction is used to construct a remote control program 
parameter list. 

The list form of the ST AE macro instruction is written as follows: 

name 

STAE 

b 

exit addr 

,P ARAM=Iis't addr 

,PURGE=QUIESCE 
,PURGE=HALT 
,PURGE=NONE 

,ASYNCH=NO 
,ASYNCH= YES 

,RELATED = va lue 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede ST AE. 

One or more blanks must follow STAE. 

exit addr: A-type address. 

list addr: A-type address. 

Default: PURGE=QUIESCE 

Default: ASYNCH=NO 

value: any valid macro keyword specification. 

The parameters are explained under the standard form of the ST AE macro instruction, with 
the following exception: 

,MF==L 
specifies the list form of the STAB macro instruction. 

262 OS/VS2 System Programming Library: Supervisor 

c. 



o 

o 

ST AE (Execute Form) 

A remote control program parameter list is used in, and can be modified by, the execute form 
of the STAB macro instruction. The control program parameter list can be generated by the 
list form of the STAB macro instruction. If you want to dynamically change the contents of 
the remote STAB parameter list, he may do so by coding a new exit address and/or a new 
parameter list address. If exit address or P ARM = is coded, only the associated field in the 
remote ST AE parameter list is changed. The other field remains as it was before the current 
STAB request was made. 

The execute form of the STAB macro instruction is written as follows: 

name 

STAE 

exit addr 

o 

,CT 

,OV 

,PARAM=list addr 

,XCTL=NO 

,XCTL=YES 

,PURGE=QUIESCE 

,PURGE=HALT 

,PURGE=NONE 

,ASYNCH=NO 

,ASYNCH=YES 

,RELATED=va[ue 

,MF=(E, crrl addr) 

name: symbol. Begin name in column 1. 

One or more blanks must precede ST AE. 

One or more blanks must follow ST AE. 

exit addr: RX-type address, or register (2) - (12). 

list addr: RX-type address, or register (2) - (12). 

value: any valid macro keyword specification. 

ctrl addr: RX-type address, or register (1) or (2) - (12). 

The parameters are explained under the standard form of the STAB macro instruction, with 
the following exception: 

,MF = (E, ctrl addr) 
specifies the execute form of the STAB macro instruction using a remote control program 
parameter list. 

Example 1 

Operation: Provide the pointer to the recovery code in the register called EXITPTR, and the 
address of the STAB exit parameter list in register 9. Register 8 points to the are~ where the 
STAB parameter list (created with the MF=L option) was moved. 

STAE (EXITPTR), PARAM=( 9 ) ,MF=( E, ( 8) ) 

STAE (Execute Form) 263 



STATUS - Change Subtask Status 

The STATUS macro instruction is described in the OS/VS2 Supervisor Senices and Macro 
Instmctions, with the exception of those parameters that are restricted in use and available only 
to supervisor state, key zero callers. These restricted parameters allow the caller to manipulated 
the dispatchability of TCBs, SRBs, ASCBs, a STEP, or the SYSTEM. 

The description of the STATUS macro instruction has been divided into two parts: the 
START /STOP option, and the SET/RESET option. 

The START/STOP options of the STATUS macro instruction are written as follows: 

name 

STATUS 

START 
STOP 

,TCB=tcb addr 
,SRB 

,SRB,ASID=ASID addr 
,SYNCH 

,RELATED=value 

The parameters are as follows: 

START 
STOP 

name: symbol. Begin name in column 1. 

One or more blanks must precede STATUS. 

One or more blanks must follow STATUS. 

tcb addr: RX-type address, or register (2) - (12), or O. 

ASID addr: RX-type address, or register (2) - (12). 

Note: ASID may only be specified with START. 

Note: SYNCH may only be specified with STOP. 

value: any valid macro keyword specification. 

specifies that the appropriate START/STOP count is to be adjusted and the dispatchability 
bits are to be set/reset. 

,TCB =tcb addr 
,SRB 
,SRB,ASID=ASID addr 
,SYNCH 

specifies the status of the stop/start function: 
TCB specifies the address of a fullword on a fullword boundary containing the address of 

the TCB that is to have its START/STOP count adjusted. 
SRB specifies that the STOP function affects the dispatchability of system-level SRBs only; 

all other tasks in the address space area set/reset nondispatchable. For START, the 
ASID addr specifies the address of a halfword containing the address space identifier. 

SYNCH specifies that the STOP function affects all the subtasks of the caller. If any of the 
subtasks are deferring STOPs when the request is issued, the caller is placed in a WAIT 
condition. The issuer is taken out. of the wait state when all deferred stops are complete. 

264 OS/VS2 System Programming Library: Supenisor 

( 



C) 

tRELATED = value 
specifies information used to self-document macro instructions by "relatingn functions or 
services to corresponding functions or services. The format and contents of the information 
specified are at the discretion of the user t and may be any valid coding values. 
The RELATED parameter is available on macro instructions that provide opposite services 
(for example, ATTACH/DETACH, GETMAIN/FREEMAINt and LOAD/DELETE, and 
on macro instructions that relate to previous occurrences of the same macro instructions (for 
example, CHAP and ESTAE). 

The parameter can be used, for example, as follows: 

GETl GETMAIN R,LV=4096,RELATED=(FREE1,'GET STORAGE') 
FREEl FREEMAIN R,LV=4096,A=(1 ),RELATED=(GET1,'FREE STORAGE') 

The SET/RESET options of the STATUS macro instruction are written as follows: 

name 

STATUS 

SET 

RESET 

,MC 

,MC,STEP 

,SO 

,NO 

,SYSTEM 

,STEP 

,STEP'{mask) 

,teb addr,(mask) 

" (mask) 

,E 

,ASIO=ASID addr 

,RELATEO=value 

name: symbol. Begin name in column 1. 

One or more blanks must precede STATUS. 

One or more blanks must follow STATUS. 

Note: If MC or MC,STEP is specified, no other parameters can 

be specified. 

mask: for SO, any of decimal digits 1-32 (except 18), separated 

by commas; for NO, any of decimal digits 1-16 (except 14), 

separated by commas. 

teb addr: RX-type address, or register (2) - (12). 

Default: STEP 

Note: This parameter can only be specified with teb addr, (mask). 

ASID addr: RX-type address, or register (2) - (12). 

Note: For SET, this parameter can only be specified with teb 

addr, (mask). For RESET, this parameter may not be specified 

with SYSTEM. 

value: any valid macro keyword specification. 

STATUS - Cbange Subtask Status 265 

\ 



The parameters are explained as follows: 

SET 
RESET 

specifies that the TCBs or ASCBs are to be set or reset nondispatchable. 
,MC 
,MC,STEP 
,SD 
,ND 

specifies the nondispatchability status: 
ND specifies that the primary nondispatchability bits are affected by this request. 
SD specifies that the secondary nondispatchability bits are affected by this request. 
MC and MC,STEP specifies that the initiator and all TCBs in the job step TCBs (except the 

issuer's TCB) are to be set/reset nondispatchable. 
,SYSTEM 
,STEP 
,STEP, (mask) 
,tcb addr, (mask) 
,,(mask) 

specifies more information on the nondispatchability status: 
SYSTEM specifies that all ASCBs are to be set/reset nondispatchable except for certain 

exempt ones (for examples, the master scheduler or the issuer). 
STEP specifies that all job step TCBs (except the issuer's TCB) are to be set/reset 

nondispatchable. 
tcb addr specifies that the specified TCB and all its subtasks are to be set/reset 

nondispatchable. 
(mask) specifies the nondispatchability bits that are to be set/reset. 

,E 
specifies that only the specified TCB is to be set/reset nondispatchable. 

,ASID =ASID addr 
specifies the address of a halfword containing the address space identifier. 

,RELATED = value 
specifies information used to self-document macro instructions by "relating" functions or 
services to corresponding functions or services. The format and contents of the information 
specified are at the discretion of the user, and may be any valid coding values. 
The RELATED parameter is available on macro instructions that provide opposite services 
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE, and 
on macro instructions that relate to previous occurrences of the same macro instructions (for 
example, CHAP and ESTAE). 

The parameter may be used, for example, as follows: 

GET1 GETMAIN R,LV=4096,RELATED=(FREE1,'GET STORAGE') 
FREE 1 FREEMAIN R,LV=4096,A=(1 ),RELATED=(GET1,'FREE STORAGE') 

Example 1 

Operation: Set primary nondispatchability bit 3 for the specified TCB and all its subtasks. 

STATUS SET,ND,TCBADDR,(3) 

266 OS/VS2 System Programming Library: Supervisor 

--------------------------------------------- ------------------ -----------

c 



----------_ .. __ .•. _ .. _---_. __ ._. __ ._------

C! 

o 

SUSPEND - Suspend Execution of a Request Block Task 

The SUSPEND macro instruction places a request block (RB) task in a suspended state until 
an expected event occurs, causing the task to resume processing. 

The SUSPEND macro instruction is written as follows: 

name 

b 

SUSPEND 

b 

RB=PREVIOUS 

RB=CURRENT 

name: symbol. Begin name in column 1. 

One or more blanks must precede SUSPEND. 

One or more blanks must follow SUSPEND. 

Default: PREVIOUS 

The parameters are explained as follows: 

RB = PREVIOUS 
RB=CURRENT 

specifies which RB on the TCB to suspend. The previous RB is the caller's RB. The current 
RB is the first RB on the TCB chain. 

The SUSPEND macro instruction uses registers as follows: 

Register Use Contents after SUSPEND 

0 TCB pointer TCB address suspended 

RB pointer RB address suspended 

2-10 Unused Unchanged 

11-13 Work registers Unpredictable 

14 Return address Return address after SUSPEND 

15 Work register Unpredictable 

Example 1 

Opemtion: Suspend the execution of the most recently chained request block of the current 
task. 

SUSPEND RB=CURRENT 

SUSPEND - Suspend Execution of a Request Block Task 267 

---_ .... _---_. __ .. _---_ .•..... _- ----



SYNCH - Take a Synchronous Exit to a Processing Program 

The SYNCH macro instruction makes it possible for a supervisor routine to take a 
synchronous exit to a processing program. The SYNCH routine initializes a PRB (program 
request block) 'and schedules execution of the requested program. After the processing program 
has been executed, the supervisor routine that issued the SYNCH macro instruction regains 
control. 

The SYNCH macro instruction is written as follows: 

name 

SYNCH 

entry point addr 

,RESTORE=NO 
,RESTORE= YES 

,KEY ADDR=addr 

,KEYADDR=NOKEY ADDR 

,STATE=PROB 

,STATE=SUPV 

,MF=(E, ctrl addr) 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede SYNCH. 

One or more blanks must follow SYNCH. 

entry point addr: RX-type address, or register (2) - (12) or (15). 

Default: RESTORE=NO 

address: RX-type address, or register (2) - (12) 

Default: STATE=PROB 

ctrl addr: RX-type address or register (1), (2) - (12) 

The parameters are explained as follows: 

entry point addr 
specifies the address of the entry point of the processing program to receive control. 

,RESTORE == NO 
,RESTORE == YES 

specifies whether registers 2-13 are to be restored when control is returned to the caller. 
,KEY ADDR == addr 
,KEY ADDR == NOKEY ADDR 

addr specifies the address of a one-byte area that contains the key in which the exit is to 
receive control. The key must be in bits 0-3; bits 4-7 must be zero. H KEYADDR=addr is 
not specified, the key in the TCB is used as the default. 
NOKEY ADDR is used with the execute form of the macro to specify that the default 
should be used instead of the key in the parameter list previously defined by a list form of 
the macro. 
To use this keyword, the issuer must be in supervisor state, system key, or APF-authorized. 

,STATE== PROB 
,STATE == SUPV 

specifies the state in which the requested program receives control. 
To use this keyword, the issuer must be in supervisor state, system key, or APF-authorized. 

268 OS/VS2 System Programming Library: Supervisor 

._---_._----_ ....•.. _ ...• _---_. __ ._--

( 



c ...... , 
\ 

j 

o 

,MF(E,ctri addr) 
specifies the execute form of the SYNCH macro instruction using a list generated by the list 
form of SYNCH. 

,MF-L 
specifies the list form of the SYNCH macro instruction. 

Example 1 

Operation: Take a synchronous exit to a processing program whose entry point address is 
specified in register 8. 

SYNCH (8) 

Example 2 

Operation: Take a synchronous exit to a processing program labeled SUBRTN and restore 
registers 2-13 when control is returned. 

SYNCH SUBRTN,RESTORE=YES 

SYNCH - Take a Synchronous Exit to a Processing Program 269 



TCTL - Transfer Control from an SRB Process 

The TCTL (transfer control) macro instruction allows an SRB process to exit from its 
processing and to pass control directly to a task without going through the dispatcher. 

The TCTL macro instruction is coded as follows: 

name 

TCTL 

TCB=(4) 

TCB=tcbaddr 

name: symbol. Begin name in column 1. 

One or more blanks must precede TCTL. 

One or more blanks must follow TCTL. 

Default: TCB address contents of register (4) 
tcbaddr: A-type address or registers (2) - (12). 

The parameters are explained as follows: 

TCB == (4) 
TCB == tcbaddr 

specifies the task designated for dispatching. Register (4) is the default; it is assumed to 
contain the appropriate TCB address. 

The TCTL macro instruction uses registers as follows: 

Register Use 

0-3 Work registers 

4 TCB address 

5-14 Work registers 

15 EPA of the TCTL routine 

Example 1 

Operation: From SRB mode processing, terminate the SRB and give control to the task 
specified in register 4. 

TCTL TCB=(4) 

270 OS/VS2 System Programming Library: Supenisor 

/ 

( 



--- _._------_ ....... _-.. -._._-------- -----------

TESTAUTH - Test Authorization of Caller 

The TEST AUTH macro instruction is used on behalf of a privileged or sensitive function to 
verify that its caller is appropriately authorized. 

TESTAUTH supports the authorized program facility (APF) - a facility that permits the 
identification of programs that are authorized to use restricted functions. In addition, 
TESTAUTH provides the capability for testing for system key 0-7 and supervisor state. 

The TESTAUTH macro instruction is written as follows: 

name 

TESTAUTH 

FCTN=/ctn 
FCTN=/ctn,AUTH=auth 

,STATE=NO 

,STATE=YES 

,KEY=NO 
,KEY=YES 

,RBLEVEL=2 

,RBLEVEL=I 

,BRANCH=NO 
,BRANCH= YES 

name: symbol. Begin name in column 1. 

One or more blanks must precede TEST AUTH. 

One or more blanks must follow TESTAUTH. 

/ctn: decimal digit 0 or 1 or register (2) - (12). 

auth: decimal digit 0 or 1, or register (2) - (12). 

Default: FCTN=O 

Default: STATE=NO 

Default: KEY =NO 

Default: RBLEVEL=2 

Default: BRANCH=NO 

The parameters are explained as follows: 

FCTN=!ctn 
FCTN = !ctn~AUTH =auth 

specifies the authorization (via APF) of a program. 
FCTN = 0 specifies that APF-authorization is not checked. 
FCTN = 1 specifies that APF -authorization is checked. 
AUTH = 0 specifies that the job step is not authorized to perform any restricted function. 
AUTH = 1 specifies that the job step is authorized to perform restricted functions. 

Note: If FCTN= 1 is specified by itself (that is, without the AUTH parameter), the JSCB is 
used to check for authorization. AUTH should only be coded when it is not possible for 
TESTAUTH to acquire the code from the JSCB. In MVS, AUTH is generally not be coded 
except in a testing environment. 

,STATE = NO 
,STATE = YES 

specifies whether or not (YES or NO) a check is to be made for supervisor/problem 
program state. (Supervisor state is authorized, problem program state is not authorized.) 

TESTAUTH - Test Authorization of Caller 271 



,KEY-NO 
,KEY-YES 

specifies whether or not (YES or NO) a check is to be made of the protection keys. 
(Protection keys 0-7 are authorized, protection keys 8-15 are not authorized.) 

. Note: TESTAUTH Is used to test one or more of three conditions FCTN ,STATE, or KEY. If 
any of the requested conditions are tested favorably, a return code of 0 is returned in register 
15. If all of the requested conditions are tested unfavorably, the return code is set to 4. 

,RBLEVEL ... 2 
,RBLEVEL .... 1 

specifies whether the TESTAUTH caller is a type 2, 3, or 4 SVC (RBLEVEL=2), or a 
type 1 SVC (RBLEVEL=I). 

,BRANCH-NO 
,BRANCH-YES 

specifies a branch entry (YES) or an SVC entry (NO). If BRANCH = YES is specifi· ~ 

registers 2 and 3 are modified by the TESTAUTH routine. 
When control is returned, register 15 contains one of the following return codes: 

Hexadecimal 
Code 

00 
04 

Example 1 

Meaning 

Task is authorized. 
Task is not authorized. 

Opera/ion: Test jobstep for APF authorization. 

TESTAUTH FCTN=1 

Example 2 

Ope1'lltion: Test for APF authorization and supervisor state, and do not check protection keys. 

TESTAUTH STATE=YES,KEY=NO,FCTN=1 

272 OS/VS2 System Programming Library: Supervisor 

( 



o 

T6EXIT - Type 6 Exit 

The T6EXIT macro instruction returns control from a Type 6 SVC routine to the SVC first 
level interrupt handler (FLIH). This exit macro can only be used in a Type 6 SVC. 

The T6EXIT macro instruction is written as follows: 

name name: any valid assembler symbol 

One or more blanks must precede T6EXIT. 

T6EXIT 

One or more blanks must follow T6EXIT. 

RETURN = CALLER CALLER is the default. 

RETURN=DISPATCH 

RETURN=SRB 

The explanation of the RETURN parameter is as follows: 

RETURN = 
specifies how the Type 6 SVC has chosen to exit. 

CALLER specifies that the return is directly to the caller or issuer of the SVC without going 
through the dispatcher. The operand is the default return option. 

DISPATCH specifies that the return should be through the dispatcher. This function is for the 
use of routines that have suspended the current task. 

Note: No registers are returned to the caller. 

SRB specifies that the SVC FLIH should immediately dispatch an SRB. This SRB must: 
• be initialized by the Type 6 SVC 
• be pointed to by register 1 
• execute in the same address space as the SVC.The SRB has the same format as the 

SCHEDULE SRB. 

Note: No registers are returned to the caller. 

Example 1 

Operation: Terminate Type 6 SVC processing and return control from the Type 6 SVC to the 
caller of the SVC. 

T6EXIT RETURN=CALLER 

T6EXIT - Type 6 Exit 273 



WTO - Write to Operator 

The WTO macro instruction is described· in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of the DESC, AREAID, MSGTYP, and MCSFLAG 
parameters. The MSGTYP and MCSFLAG parameters should only be used by system 
programmers familiar with MCS, because using the parameters improperly could impede the 
entire message routing scheme. The AREAID parameter can only be used by authorized 
(supervisor state, protection key 0-7, or APF authorized) users. 

The syntax of the complete WTO macro instruction is shown below. However, only the 
explanation of the DESC, AREAID, MSGTYP and MCSFLAG parameters are presented. 
Explanation of the other parameters can be found in OS/VS2 Supervisor Services and Macro 
Instructions. An authorized user can issue a multiple line WTO (MLWTO) of up to 255 lines 
with one WTO macro instruction. Additional lines can be added as discussed in "Writing a 
Multiple-Line Message" in "Miscellaneous Services". 

The standard form of the WTO macro instruction is written as follows: 

name 

b 

WTO 

b 

'msg' 
('text') 
('text', line type) 

lengths and maximum numbers are 

,ROUTCDE=(route code) 

,DESC=(desc code) 

,AREAID=id char 

,MSGTYP=(msg type) 

,MCSFLAG=(field name) 

name: symbol. Begin name in column 1. 

One or more blanks must precede WTO. 

One or more blanks must follow WTO. 

msg: Up to 124 characters. 
text: Up to 124 characters. 
The permissible line types, text 

shown below: 
line type text maximum number 

C 34 char 1 C type 
L 70 char 2 L type 
D 70 char 10 D type 
DE 70 char 1 DE type 
E None 1 E type 

The maximum total number of line types that can be coded in one 
instruction is 255. 

route code: decimal digit from 1 to 16. The route code is one or more 
codes, separated by commas. 

desc code: decimal digit from 1 to 16. The desc code is one or more 
codes, separated by commas. 

id char: alphabetic character A - Z. 

msg type: any of the following 
N SESS,JOBNAMES 
Y SESS,STATUS 
SESS JOBNAMES,STATUS 
JOBNAMESSESS,JOBNAMES,STATUS 
STATUS 

field name: any combination of the following, separated by commas: 
REGO HRDCPY 
RESP QREGO 
REPLY NOTIME 
BRDCST NOCPY 

The parameters restricted in use are explained as follows. (The other parameters are explained 
in OS/VS2 Supervisor Services and Macro Instruction.) 

274 OS/VS2 System Programming Library: Supervisor 

c 



o 

o 

--------- -----------_._------- ---------

,DESC=(desc code) 
specifies the message descriptor code(s) to be assigned to the message. Descriptor codes 1 
through 6 and descriptor code 11 are mutually exclusive. Codes 7 through 10 can be 
assigned in combination with any other code. 
The descriptor codes are: 

1 System failure 
2 Immediate action required 
3 Eventual action required 
4 System status 
5 Immediate command response 
6 Job status 

7 
8 
9 
10 
11 
12-16 

Application program processor 
Out-of-line message 
Operator request 
Dynamic status displays 
Critical eventual action required 
Reserved for future use 

Note: All WTO messages with descriptor codes of 1, 2, or 11 are action messages. An 
asterisk appears before the first character of an action message to indicate a need for 
operator action. 

If both the ROUTCDE and DESC parameters are omitted and the message is not a 
ML WTO message, the routing code specified in the OLDWTOR parameter of the system 
generation CONSOLE macro instruction is assigned; and no descriptor code is assigned. If the 
OLDWTOR parameter is omitted, no descriptor or routing codes are assigned. Routing codes 
should be used with ML WTO messages; If DESC is specified with no ROUTCDE, a default 
routing code of zero is generated, causing a message to be queued to the master console by 
default. 

,AREAID = id char 
specifies a display area of the console screen on which a multiple-line message is to be 
written. This parameter is meaningful only for out-of-line (descriptor code 8 and 9) 
MLWTO messages that are to be sent to CRT consoles. 

The character Z designates the message area (the screen's general message area, rather than 
a defined display area); it is assumed nothing is specified. 

Note: You must be an authorized (supervisor state, key 0-7, or APF-authorized) user to use 
this parameter. Otherwise, Z is used. Also, if this parameter specifies an area, the area could 
be overlaid by a currently running dynamic display. Support for queuing messages with 
descriptor code 8 is by console id only. 

,MSGTYP=(msg type) 
specifies how the message is to be routed. 
For SESS, JOBNAMES, or STATUS, the message is to be routed to the console and TSO 
terminal in operator mode that issued the MONITOR SESS, MONITOR JOBNAMES, or 
MONITOR STATUS command, respectively. When the message type is identified by the 
operating system, the message is routed only to those consoles that requested the 
information. 

For Y or N, the message type specifies whether flags are to be set in the WTO macro 
expansion to describe what functions (MONITOR SESS, MONITOR JOBNAMES, and 
MONITOR STATUS) are desired. N, or omission of the MSGTYP parameter, indicates that 
the message is to be routed as specified in the ROUTCDE parameter. 

,MCSFLAG = (field name) 
specifies that the macro expansion should set bits in the MCSFLAG field as indicated by 
each name coded. The names and corresponding bit settings are shown in Figure 35. 

WTO - Write to Operator 275 



Name 

REGO 
RESP 

REPLY 
BRDCST 
HRDCPY 
QREGO 

NOTIME 

NOCPY 

Bit 

0 
1 
2 
3 
4 
5 
6 
7 

8 
9-12 
13 

14--15 

Meaning 

Invalid entry. 
Queue the message to the console whose source ID is passed in register O. 
The WTO is an immediate command response. 
Invalid entry. 
The WTO macro instruction is a reply to a WTOR macro instruction. 
Broadcast the message to all active consoles. 
Queue the message for hard copy only. 
Queue the message unconditionally to the console whose source ID is passed 
in Register O. 
Do not append time to the message. 
Invalid entry. 
If the WTO or WTOR macro instruction is issued by a program in the 
supervisor state, do not queue the message for hard copy. Otherwise, this 
parameter is ignored. 
Invalid entry. 

Note: Invalid specifications are ignored and produce an appropriate error message from the assembler. 

Figure 35. MCSFLAG Fields 

Example 1 

Operation: Send a WTO message to the hardcopy log only. 

WTO 'THIS MSG IS TO HARDCOPY ONLY WITH RC=ALL' ,MCSFLAG=HRDCPY, 
ROUTCDE=(1,2,3,4,S,6,7,B,9,10,11,12,13,14,lS,16) 

Example 2 

Operation: Send a WTO message to all active consoles and broadcast it to all consoles or 
terminals which have issued MONITOR commands. 

WTO 'THIS MSG IS BROADCAST WITH RC=ALL',MCSFLAG=BRDCST, 
ROUTCDE=(1,2,3,4,S,6,7,B,9,10,11,12,13,14,lS,16) 

Example 3 

Operation: Send a WTO message to all consoles and TSO terminals which have issued a MN 
JOBNAMES command. 

WTO 'WTO BY MSGTYP=JOBNAMES WITH RC=ALL,NO CONSOLE MONITORING 
JOBNAMES',MSGTYP=JOBNAMES,ROUTCDE=(1,2,3,4,5,6,7,B,9,10,11, 
12,13,14,15,16 ) 

276 OS/VS2 System Programming Library: Supervisor 

------------------.. --_.-. -----

( 



----_ ..... _----

.r-'\ 
! . 

'''-,.". I 

.-...... __ . __ ... ------_ ... ----_ .. _. ... . --------_ .... _-----------

WTO (List Form) 

The list form of the WTO macro instruction is described in the OS/VS2 Supervisor Services and 
Macro Instructions, with the exception of the DESC, AREAID, MSGTYP and MCSFLAG 
parameters. These parameters are restricted in use, and are described below. 

The list form of the WTO macro instruction is written as follows: 

name 

WTO 

b 

'msg' 

( 'text') 

('text',line type) 

,ROUTCDE=(route code) 

,DESC=(desc code) 

,AREAID=id char 

,MSGTYP=(msg type) 

,MCSFLAG=(!ield name) 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede WTO. 

One or more blanks must follow WTO. 

msg: up to 124 characters. 

The permissable line types, text lengths and maximum numbers 

are shown below: 

line type text 

C 34 char 

L 
D 

DE 

70 char 

70 char 

70 char 

maximum number 

1 C type 
2 L type 

10 D type 

1 DE type 

E None 1 E type 

The maximum total number of line types that can be coded in 

one instruction is 255. 

route code: decimal digit from 1 to 16. The route code is one or 

more codes, separated by commas. 

desc code: decimal digit from 1 to 16. The desc code is one or 

more codes, separated by commas. 

id char: an alphabetic character A-Z. 

msg type: anyone of the following: 

N SESS,JOBNAMES 

Y SESS, STATUS 

SESS JOBNAMES , STATUS 

JOBNAMES SESS,JOBNAMES,ST ATUS 

STATUS 

field name: any combination of the following, separated by 

commas: 

REGO 

RESP 

HRDCPY 

QREGO 

REPLY NOTIME 

BRDCST NOCPY 

The restricted parameters are explained under the standard form of the WTO macro 
instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro 
Instructions. 

WTO (List Fonn) 277 



WTOR - Write to Operator with Reply 

The WTOR macro instruction is described in the OS/VS2 Supervisor Services and Macro 
Instructions, with the exception of the MSGTYP and MCSFLAG parameters. These parameters 
should be used only by system programmers familiar with MCS, since using the parameters 
improperly could impede the entire message routing scheme. 

The syntax of the complete WTOR macro instruction is shown below. However, only the 
explanation of the MSGTYP and MCSFLAG parameters are presented. Explanation of the 
other parameters can be found in OS/VS2 Supervisor Services and Macro Instructions. 

The standard form of the WTOR macro instruction is written as follows: 

name 

WTOR 

tmg 

,replyaddr 

,reply length 

,ecb addr 

,ROUTCDE=(route code) 

,DESC=(desc code) 

,MSGTYP=(msg type) 

,MCSFLAG=(!ield name) 

name: symbol. Begin name in column 1. 

One or more blanks must precede WTOR. 

One or more blanks must follow WTOR. 

tmg: up to 121 characters. 

reply addr: A-type address, or register (2) - (12). 

reply length: symbol, decimal digit, or register (2) - (12). The 

minimum length is 1; the maximum length is 115 when the 
operator enters REPLY id, 'reply' and 119 when the operator 
enters Rid, 'reply'. 

ecb addr: A-type address, or register (2) - (12). 

route code: decimal digit from 1 to 16. The route code is one or 
more codes, separated by commas. 

desc code: decimal digit from 1 to 16. The desc code is one or 
more codes, separated by commas. 

msg type: anyone of the following: 
N SESS,JOBNAMES 

Y SESS,STATUS 
SESS JOBNAMES,STATUS 

JOBNAMES SESS,JOBNAMES,STATUS 
STATUS 

field name: any combination of the follpwing, separated by 

commas: 

REGO 

RESP 

HRDCPY 

QREGO 

REPLY NOTIME 

BRDCST NOCPY 

The parameters restricted in use are explained as follows. (The other parameters are explained 
in OS/VS2 Supervisor Services and Macro Instnictions.) 

278 OS/VS2 System Programming Library: Supervisor 



C) 

.r-\ I , 
! I 

'-/ 

---- --------------------------------~--- ------

,MSGTYP = (msg type) 
specifies how the message is to be routed. 
For SESS, JOBNAMES, or STATUS, the message is to be routed to the console or TSO 
terminal in operator mode which issued the MONITOR SESS, MONITOR JOBNAMES, or 
MONITOR STATUS command, respectively. When the message type is identified by the 
operating system, the message is routed only to those consoles that had requested the 
information. 

For Y or N, the message type specifies whether flags are to be set in the WTO macro 
expansion to describe what functions (MONITOR SESS, MONITOR JOBNAMES, and 
MONITOR STATUS) are desired. N, or omission of the MSGTYP parameter, indicates that 
the message is to be routed as specified in the ROUTCDE parameter. 

,MCSFLAG = (field name) 
specifies that the macro expansion should set bits in the MCSFLAG field as indicated by 
each name coded. The names and corresponding bit settings are shown in Figure 30 that 
appears in the description of WTO. 

Example 1 

Opera/ion: Send a WTOR message to the hardcopy log only. 

WTOR 

Example 2 

'THIS MSG IS TO HARDCOPY ONLY WITH RC=ALL' ,MCSFLAG=HRDCPY, 
ROUTCDE=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16) 

Opera/ion: Send a WTOR message to all active consoles and broadcast it to all consoles or 
terminals which have issued MONITOR commands. 

WTOR 

Example 3 

'THIS MSG IS BROADCAST WITH RC=ALL',MCSFLAG=BRDCST; 
ROUTCDE=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16) 

Opera/ion: Send a WTOR message to all consoles and TSO terminals which have issued a 
MN JOBNAMES command. 

WTOR 'WTOR BY MSGTYP=JOBNAMES WITH RC=ALL, NO CONSOLE MONITORING 
JOBNAMES',MSGTYP=JOBNAMES,ROUTCDE=( 1,2,3,4,5,6,7,8,9,10,11, 
12,13,14,15,16 ) 

WTOR - Write to Operator with Reply 279 



WTOR (List Form) 

The list form of the WTOR macro instruction is described in the OS/VS2 Supervisor Services 
and Macro Instructions, with the exception of the MSGTYP and MCSFLAG parameters. These 
parameters are restricted in use, and are described below. 

The list form of the WTOR macro instruction is written as follows: 

name 

WTOR 

'msg' 

,replyaddr 

,reply length 

,ecb addr 

,ROUTCDE=(route code) 

,DESC=(desc code) 

,MSGTYP=(msg type) 

,MCSFLAG=(field name) 

,MF=L 

name: symbol. Begin name in column 1. 

One or more blanks must precede WTOR. 

One or more blanks must follow WTOR. 

msg: up to 121 characters. 

reply addr: an A-type address. 

reply length: symbol or decimal digit. The minimum length is 1; 

the maximum length is 115 when the operator enters REPLY id, 

'reply' and 119 when the operator enters Rid, 'reply'. 

ecb addr: A-type address. 

route code: decimal digit from 1 to 16. The route code is one or 

more codes, separated by commas. 

desc code: decimal digit from 1 to 16. The desc code is one or 

more codes, separated by commas. 

msg type: anyone of the following: 

N SESS,JOBNAMES 

Y SESS,STATUS 

SESS JOBNAMES,STATUS 

JOBNAMES SESS,JOBNAMES,STATUS 

STATUS 

field name: any combination of the following, separated by 

commas: 

REGO HRDCPY 
RESP QREGO 

REPLY NOTIME 

BRDCST NOCPY 

The restricted parameters are explained under the standard form of the WTOR macro 
instruction. The other parameters are explained in OS/VS2 Supervisor Services and Macro 
Instructions. 

280 OS/VS2 System Programming Library: Supervisor 

--- ------------------------------------

-" 

/ 



( . 

~) 

r"'. 
J I 

'- / ...... -

A parameter 
FREEMAIN macro instruction 165 
GETMAIN macro instruction 169 
PGFIX macro instruction 182 
PGFREE macro instruction 185 
SETFRR macro instruction 241 

A-type address, meaning of 124 
ABEND macro instruction 50 
ABTERM parameter 49 
AC= parameter 23 
ACEE parameter 195-215 
ACTINFO parameter 206 
ADDR parameter 244 
address, finding UCB 19-20 
address space termination 48 
address, subsystem screen table 107 
ADDSD command 201 
ADDVOL parameter 195 
allocate virtual storage (GETMAIN) 169-172 
ALLPSA parameter 232 
ALTDSD command 201 
ALTER parameter 200-203 
alternate power down 87,88 
AMDPRDMP service aid 73,74 
AND IMMEDIATE (N!) instruction, providing a lock via 

178-179 
answer area (EXTRACT) 6 
APF (authorized program facility) 23-27 
APF authorization code 23 
APFTABLE 24 
APPL parameter 200-215 
AREAID parameter 275 
ASCB parameter 187 
ASCBTCBS count 40 
ASID parameter 

CALLR TM macro instruction 131 
PURGEDQ macro instruction 191 
SDUMP macro instruction 229 
STATUS macro instruction 264-266 

ASIDLST parameter on the SDUMP macro instruction 
231 

ASIDTCB parameter 191 
ASIS I?arameter 200-203 
ASM (auxiliary storage management) 50 
ASM lock 11 
ASM lock 15 (5740-XE1) 
asymmetric storage feature 88 
ASYNCH parameter 

ATTACH macro instruction 127 
EST AE macro instruction 152 
ST AE macro instruction 260 
used for serialization of resources 29 
used for serialization of resources 11 (5740-XE1) 

asynchronous execution, scheduling system services for 
228 

Asynchronous Exit Routines 97 
ASXB 206 
ATTACH macro instruction 126-129,51 

authorization considerations 27 
parameters ignored in MVS 129 
use of restricted parameters 4 
User modifications 4 

A TTR parameter 200,202-203 
AUTH parameter 271 
authorization 23 
authorization rules 27 
authorization, testing 271-272 

authorized job step task 
authorized library 

general information 23 
SVC routines 100-103 

authorized program facility (APF) 23-27 
auxiliary storage management (ASM) 49 
auxiliary storage manager lock (ASM) 11 

Index 

auxiliary storage manager lock (ASM) 15 (5740-XEl) 

BLOCK parameter 194 
BNDRY parameter 169 
branch entering POST 35 
branch entering WAIT 36 
branch entry 

CHANGKEY 81 
EVENTS 31 
GETMAIN and FREEMAIN 81 
output, POST 126 
POST 35 
SDUMP 76 
WAIT 

description 126 
register contents for 126 

BRANCH parameter 
CHANGKEY macro instruction 81 
CIRB macro instruction 136 
EST AE macro instruction 152 
EVENTS macro instruction 157 
FREEMAIN macro instruction 166,81 
GETMAIN macro instruction 169,81 
SDUMP macro instruction 233 
SETLOCK macro instruction 248 
TEST AUTH macro instruction 272 

BRANCH=YES option of CALLDISP 41 
BUFFER parameter 229 
build in-storage profiles for RACK 211 
bypassing the POST routine 31-32 

call recovery/termination manager (CALLR TM) 131-132 
CALLDISP macro instruction 131 
CALLRTM macro instruction 131-132 

general use of 48-50 
use by FORCE command 50 

CHANGE parameter 204-210 
change subtask status (STATUS) 264-266 
change system status (MODESET) 173-177 
CHANGKEY macro instruction 

coding description 133-134 
examples of 134 
how to use 81 
parameters of 133-134 

channel ends 108-11 0 
check RACF authorization macro 200 
checkpoint/restart considerations 9 
check stop status condition 30 
CHNGDUMP, use of 71 
CIB (command input buffer) 5-6 
CIB chain, manipulation of 5-6 
CIBCTR parameter 194 
CIRB macro instruction 135-137 

branch entry interface 136 
parameters ignored in MVS 136 
use in Asynchronous Exit Routines 97-99 

CLASS parameter 195-215 
classes of locks 12 

Index 281 



CLEAR parameter 228.1 (S740-XEt) 
clock comparator value 78 
CMS lock 78 
CMS (cross memory services lock) 

general information 12 
SVC routines 102 

CMS (general cross memory services lock) 14 (S740-XEt) 
CMSEQDQ (ENQ/DEQ cross memory services lock) 14 

(S740-XEl) 
CMSSMF (SMF cross memory services lock) 14 

(S740-XEt) 
coding the macro instructions 123-125 
command input buffer (CIB) 5-6 
command input buffer manipulation (QEDIT) 194 
common service area subpools 81 
COMPARE AND SWAP (CS) instruction 

NIL macro instruction 178-179 
OIL macro instruction 180-181 
POST macro instruction 31-32,34 

COMPAT parameter 228.1 (S740-XEt) 
COMPCOD parameter 

CALLRTM macro instruction 131 
SETRP macro instruction 251 

console switching 90 
continuation lines 125 
control access to serially reusable resources (SETLOCK) 

243-249 
CONTROL parameter 200-203 
control program extensions 45 
control track record 116 
correlating diagnostic material 74-76 
CPU parameter 

DSGNL macro instruction 144 
RISGNL macro instruction 224 
RPSGNL macro instruction 226 
SETRP macro instruction 251 

CPU 
reset function 29 
RESUME macro instruction influence 40 

CPUR parameter 143 
create a new task (ATTACH) 3 
create interruption request block (CIRB) 135-137 
CREATE parameter 204-210 
cross-memory post 31 
cross memory services lock (CMS) 12 
CS (COMPARE AND SWAP) instruction 178,180 
CT parameter 

EST AE macro instruction 152 
ST AE macro instruction 259 

CTRLPROG macro instruction 87 
CURRENT parameter 267 
CVT mapping macro 39 
CVTQTDOO field 79 
CVTTPC field 76 
CVTTQEOO field 78 
CVTVWAIT 38 
CVTOPTOI 37 
CVTOPT02 37 

D parameter 241,242 
DASD, shared 17 
DATASET macro instruction 104 
DATASET parameter 200-203 
DCB parameter 

ATTACH macro instruction 127 
SDUMP macro instruction 230-231 

DDR swaps 108 
DE parameter 127 
DEFINE parameter 196,197 
decimal digit, meaning of 124 
default, meaning of 124 

282 OS/VS2 System Programming Library: Supenisor 

define a resource to RACF macro 195 
DELETE parameter 195 
deleting exit routines 33 
DEQ macro instruction 138-142,15 

and RESERVE 216 
execute form 142 
list form 141 
standard form 138-140 
use of restricted parameters 15-16 

DESC parameter 
WTO macro instruction 274 
WTOR macro instruction 278 

descriptor codes 92 
device, reserving a 216-221 
diagnostic material, correlation of 74-76 
DIE 76-78 

(see also disabled interrupt exit) 
direct class 29 
direct signal, issuing 143-144 
disabled interrupt exit (DIE) 

characteristics 76 
clock failure 79 
execution 76-77 
exit from 78 
interval cancellation 79 
RESUME macro instruction restriction 40 
task queue element control 

freeing 78 
obtaining 79 
serializing 78 

DISABLED parameter 244-245 
DISABLED parameter 228.1,236-240 (S740-XEl) 
disable, enable low address protection (PROTPSA) 190.1 

(S740-XEl) 
disabling 14 
DISP (global dispatcher lock) 11 
DISP (global dispatcher lock) 14 (S740-XEt) 
DISPATCH parameter 273 
dispatch ability tests 41 
DISP parameter 126-128 
DPMOD parameter 127 
DSGNL macro instruction 

general information 143-144 
use of 29 

DSTYPE parameter 195 
DUMP parameter 

CALLRTM macro instruction 131 
SETRP macro instruction 250 

dump virtual storage (SDUMP) 229-239 
DUMPOPT parameter 

CALLRTM macro instruction 132 
SETRP macro instruction 251 

dumps of virtual storage 68,71-72 
duplicate names, restrictions 24 

E parameter 
ENQ macro instruction 146 
FREEMAIN macro instruction 165 
RESERVE macro instruction 216 
STATUS macro instruction 266 

EA parameter 
PGFIX macro instruction 182 
PGFREE macro instruction 185 

EC (external calI) function 30 
EC parameter 

FREEMAIN macro instruction ' 165 
GETMAIN macro instruction 169 

ECB extension 
illustration 33-34 
in example 34 
initializing 33 

r" 
( 
\. 



ECB for POST exit 32 
ECB parameter 

A IT ACH macro instruction 127 
ENQ macro instruction 147 
EVENTS macro instruction 157 
PGFIX macro instruction 182 
PGFREE macro instruction 185 
RESERVE macro instruction 216 
SDUMP macro instruction 230 

ECBIND parameter 
PGFIX macro instruction 184 
PGFREE macro instruction 186 

emergency signal (ES) function 30 
ENABLE parameter 

CIRB macro instruction 136 
MODESET macro instruction 177 

ENQ macro instruction 145-151 
execute form 150-151 
list form 149 
standard form 146-148 
use of restricted parameters 15-16 

ENQ/DEQ cross memory services lock (CMSEQDQ) 14 
(S740-XEl) 

ENTITY parameter 195 
ENTRIES parameter 157 
ENVIR parameter 204-215 
EP parameter 

A IT ACH macro instruction 127 
CIRB macro instruction 135 
RISGNL macro instruction 224 

EPLOC parameter 127 
equipment check status condition 30 
ERRET parameter 187 
error identifiers 75 
errorid 74-75 
ES (emergency signal) function 30 
establishing a timer disabled interrupt exit 76-78 

(see also disabled interrupt exit) 
ESTAE environment 54 
ESTAE exit routine 51-53 
ESTAE extended capabilities 52-54 
EST AE macro instruction 152-156 

execute form 155 
list form 154 
standard form 152-153 
use of 52-54,56-64 

EST AE recovery routine 50 
EST AE retry routine 58 
ESTAI exit routine 52-53 
EST AI parameter 127 
EST AI recovery routine 50 
EST AI retry routine 58 
ETXR parameter 127 
EU parameter 

FREEMAIN macro instruction 168 
GETMAIN macro instruction 169 

event completion 31-32 
EVENTS 32 
PGFIX 84 
POST 31 
SPOST 31 

EVENTS macro instruction 
general information 157 
use of 32 

examples 
AITACH 129 
CALLDISP 130 
CALLRTM 132 
CIRB 137 
DEQ 140 
DSGNL 144 
ENQ 148 

ESTAE 153, 
EXTRACT 159 
FREEMAIN 166 
GETMAIN 170 
INTSECT 172.1 (S740-XEl) 
MODESET 175 
NIL 179 
OIL 181 
PGFIX 184 
PGFIXA 184.1 (S740-XEl) 
PGFREE 186 
POST 188 
PROTPSA 190.1 (S740-XEl) 
PURGEDQ 191,193 
QEDIT 194 
RESERVE 219 
RISGNL 225 
RPSGNL 227 
SCHEDULE 228 
SDUMP 234,235 
SETFRR 242 
SETLOCK 245,247,249 
SETRP 253 
SPIE 255 
SPOST 243 
ST AE 261,263 
STATUS 266 
SYNCH 269 
TEST AUTH 271 
WTO 274 
WTOR 279 

execute form of macro instruction, use of 123 
exit, SNAP/ABEND 72 
explicit serialization 14 
explicit serialization 11 (S740-XEl) 
extended ECB 

illustration 34 
initializing 133 
purpose 132 

extended STAE (ESTAE) 152-156 
external call (EC) function 30 
external call pending status condition 30 
EXTKEY parameter 173-174 
EXTRACT macro instruction 158-161 

execute form 161 
list form 160 
standard form 158-159 

extract TCB information (EXTRACT) 158-161 

fast extended STAE (fast ESTAE) 51-52 
(see also FEST AE) 

fast path to fix virtual storage contents (PGFIXA) 184.1 
(S740-XEl) 

fast path to free virtal storage contents (PGFREEA) 
186.1 (S740-XEl) 

FCTN parameter 271 
FEST AE (fast extended ST AE) 

exit routines 51 
macro instruction 

coding description 162 
how to use 52 

RBFEP ARM parameter area 52 
task recovery 60 

FIELDS parameter 158 
fix virtual storage contents (PGFIX) 182-184 
FLIH, role in subsystem SVC screening 105 
FORCE command 50 
force dispatcher entry (CALLDISP) 130 
frames, page 83 
free virtual storage (FREEMAIN) 168-171 
free virtual storage contents (PGFREE) 185-186 

Index 283 



FREEMAIN macro instruction 164-168 
disabling 14 
execute form 168 
list form 167 
standard form 168-169 
use of restricted parameters 81 

FRELOCK parameter 252 
FRESDWA parameter 251 
FRR parameter 228 (5740-XE1) 
FRR stack 50-51 
FRRAD parameter 234 
FRRs (functional recovery routines) 57,60,50 
functional recovery routines (FRRs) 

general information 57,60,50 
setting up 241 

general cross memory services lock (CMS) 14 (5740-XE1) 
GENERIC parameter 138 
GETMAIN macro instruction 169-172 

execute form 172 
list form 171 
standard form 169-170 
use of restricted parameters 81 

GIVEJPQ parameter 129 
GLBRANCH 81 
global branch entry point 81 
global dispatcher lock (DISP) 11 
global dispatcher lock (DISP) 14 (5740-XEl) 
global locks 

general information 12 
user-written SVC routines 100 

global priority 95 
global spin locks 77 
global storage subpools 81 
GROUP parameter 204,208-210 
GSPL parameter 127 
GSPV parameter 127 
GTFCRM parameter 226 
guidelines for using APF 27 

hardcopy log 90 
HDR parameter 230 
HDRAD parameter 230 
hierarchy, locking 13 
Hot I/O 

changing threshold values 110 
intercepting 110 

ICFBDFOO 112 
ICFBIFOO 114 
ICPUR parameter 143 
ICTL instruction 123 
identifying exit routines 33 
IEAAPFOO 24 
IEALIMIT 117 
IEAVTRML 64 
lEA VVTPC mapping macro 76 
IEAVWAIT 38 
IEAOPTOI 36 
IEAOPT02 36 
IEA911A system message 74 
IEAOPTOE entry point 35 
IEECVXIT 92 
IGFINTVL 108 
IHAABDPL mapping macro 73 
IHAECB mapping macro 33 
IHAFRRS mapping macro instruction 51,240 
IHAPSA mapping macro instruction 51,240 
IHARMPL mapping instruction 65 

284 OS/VS2 System Programming Library: Supervisor 

IHASDW A mapping macro instruction 250 
IHASRB 106 
IHAWSAVT 166,173 
IMPL parameter 143 
initial processor reset function 29 
initial microprogram load function 29 
initial program reset function 29 
initializing extended ECBs and ECB extension 33 
installation-written clean-up routines 64-65 
INSTLN parameter 195-210 
integrity 41-45 
intercepting Hot I/O 110 
intercepting system errors 65 

(see also SLIP command) 
interface 

to EST AE/EST AI exit 56 
to functional recovery routines 54 
to STAE/STAI exit 55 

interlock conditions 18 
interprocessor communications 28-31 
interruption handler, missing 108 
interruption request block, creating 97 
interruption, recovery/termination, and dumping services 

47-79 
interruption request block (IRB) 135,97 
interrupts, Mass Storage System 108 
interrupts, synchronous 39 
intersect with the dispatcher (INTSECT) 29,175.0 

(5740-XE1) 
INTSECT macro instruction 14,172.1 (S740-XE1) 
invalid function status condition 31 
lOS channel availability table lock (IOSCAT) 11 
lOS channel availability table lock (IOSCAT) 14 

(S740-XEl) 
lOS logical channel queue lock (IOSLCH) 11 
lOS logical channel queue lock (lOSLCH) 14 (5740-XEl) 
lOS synchronization lock (lOSYNCH) 11 
lOS synchronization lock (IOSYNCH) 14 (5740-XE1) 
lOS unit control block lock (IOSUCB) 11 
lOS unit control block lock (IOSUCB) 14 (5740-XEl) 
IOSCAT (lOS channel availability table lock) 11 
IOSCAT (lOS channel availability table lock) 14 

(S740-XE1) 
IOSLCH (lOS logical channel queue lock) 11 
IOSLCH (lOS logical channel queue lock) 14 (5740-XEl) 
10SUCB (lOS unit control block lock) 11 
IOSUCB (lOS unit control block lock) 14 (S740-XEl) 
10SYNCH (lOS synchronization lock) 11 
IOSYNCH (lOS synchronization lock) 14 (5740-XE1) 
IPR parameter 143 
IRB (interruption request block) 97 
issue direct signal (DSGNL) 143-144 
issue remote immediate signal (RISGNL) 224-225 
issue remote pendable signal (RPSGNL) 226-227 

job step authorization 23 
JOB NAME parameter 206 
JSCB parameter 128 
JSCBAUTH bit 25 
JSTCB parameter 27,128 

KEY parameter 
ATTACH macro instruction 
CIRB macro instruction 135 
FREEMAIN macro instruction 
GETMAIN macro instruction 
MODESET macro instruction 
TEST AUTH macro instruction 

KEYADDR parameter 173 

128 

166,81 
169 
175 
271 

\ 



c L parameter 
FREEMAIN macro instruction 165 
RACDEF macro instruction 197 
RACHECK macro instruction 202 

LA parameter 
FREEMAIN macro instruction 165 
GETMAIN macro instruction 169 

label processing 9 
LAST parameter 157 
LC parameter 

FREEMAIN macro instruction 165 
GETMAIN macro instruction 169 

library, authorized 23 
limiting user region size 117 
list form of macro instruction, use of 123 
LIST parameter 233 
LLOCK parameter 228 (S740-XEl) 
LOCAL (local storage lock) 12 
LOCAL (local storage lock) 14 (S740-XEl) 

GETMAIN and FREEMAIN 81 
SVC routines 100 

local locks 12 
local locks 13 (S740-XEl) 
local priority 95 
local storage subpools 81 
local storage lock (LOCAL) 12 
local storage lock (LOCAL) 14 (5740-XEl) 
locking 11 
locking 13 (5740-XEl) 

categories of locks 12 (5740-XEl) 
classes of locks 12 
classes of locks 27 (5740-XEl) 
considerations 12-15 
considerations 14 (5740-XEl) 
hierarchy 13 
hierarchy 13 (5740-XEl) 
locks 11-12 
locks 12-14 (5740-XEl) 
manager 11 
manager 12 (5740-XEl) 
types of locks 12-13 
types of locks 12 (5740-XEl) 

LOG parameter 200-203 
long-term fix 83 
low address protection 119 (5740-XEl) 
LPMOD parameter 127 
LSQA for subsystem SVC screening 107 
LSQA parameter 129 
LU parameter 

FREEMAIN macro instruction 165 
GETMAIN macro instruction 169 

LV parameter 
FREEMAIN macro instruction 165 
GETMAIN macro instruction 169 

machine check handler appendage, adding code to 
110-112 

macro instruction forms 123 
Mass Storage System missing interrupts 108 
master scheduler initialization module 

adding code to 110 
general information 114-115 

MC parameter 265 
MCS (multiple console support) 90 
MCSFLAG parameter 

WTO macro instruction 274 
WTOR macro instruction 277 

MEMSWT parameter 226 (5740-XEl) 
MEMTERM parameter 49 
MENTITY parameter 196 
message IEA911A 74 

.... _-_ .. _--..... _--

message routing 89 
message routing exit routines 90-93 
MF parameter 

DEQ macro instruction 141,142 
ENQ macro instruction 149,150 
ESTAE macro instruction 154,155 
EXTRACT macro instruction 160,161 
FREEMAIN macro instruction 167,168 
GETMAIN macro instruction 171,172 
MODESET macro instruction 176,177 
POST macro instruction 189,190 
PURGEDQ macro instruction 192,193 
RACF macro instructions 198,199,202,203,209,211 
RESERVE macro instruction 220,221 
SDUMP macro instruction 236 
SPIE macro instruction 256,257 
ST AE macro instruction 262,263 
WTO macro instruction 277 
WTOR macro instruction 280 

MFITCH parameter 226 
miscellaneous services, supervisor 89-119 
missing interruption handler 108 

choosing time intervals 109 
use of CSECT IGFNTVL 108 

MODE parameter 
CIRB macro instruction 135 
MODESET macro insi:ruction 175 
RPSGNL macro instruction 226 
SETLOCK macro instruction 236 

MODESET macro instruction 173-177 
disabling 122 
execute form 177 

incompatible parameters 177 
list form 176 
standard form 173-175 
use of 28 

MOUNT command 108 
MP systems 87-88,9 
MSGTYP parameter 

WTO macro instruction 275 
WTOR macro instruction 278 

multiple console support (MCS) 90 
multiple-line message 90 
multiple locks 13 
mUltiprocessing configuration 87-88 
mUltiprocessing considerations 9 
must complete function 15-16 
MVOLSER parameter 196 

N parameter 196-203 
ND parameter 265 
NEWNAME parameter 196-199 
NEWPASS parameter 204-210 
NI (AND IMMEDIATE) instruction 178 
NIL macro instruction 178-179 
NOALL parameter 232 
NOALLPSA parameter 232 
NOFAIL parameter 200-203 
NONE parameter 200-203 
non-preemptable SVCs 

description of 106 
restrictions for 106 

nonquiesceable priority level 95 
NOSQA parameter 232 
NOSUM parameter 232 
NOSUMDUMP parameter 232 
not ready status condition 31 
NSHSPL parameter 128 
NSHSPV parameter 128 

Index 285 



OBTAIN parameter 243 
01 (OR IMMEDIATE) instruction 180 
OlD CARD parameter 206 
OIL macro instruction 180-181 
OLDVOL parameter 197 
operator 

writing to with reply 278 
writing to without reply 274 

operator communication with a problem program 5 
operator intervening status condition 30-31 
operator messages 89-90 
OR IMMEDIATE (01) instruction, providing a lock via 

180-181 
ORIGIN parameter 194 
OV parameter 

EST AE macro instruction 152 
ST AE macro instruction 259 

P parameter 241 
page fixing 83 
page frames 83 
PARALLEL parameter 224 
PARAM parameter 

ATTACH macro instruction 127 
EST AE macro instruction 152 
ST AE macro instruction 259 

P ARM parameter 224 
PARMAD parameter 242 
partitioned data set, SVC routines 103 
PASSCHK parameter 205 
PASSWRD parameter 204-210 
PER traps 65-70 
PGFIX macro instruction 182-184 

incompatible parameters with MVS 184 
standard form 182-184 
use of 83-84 
virtual subarea list 84-85 

PGFlXA macro instruction 184.1 (5740-XEl) 
considerations 84 (5740-XEl) 
restrictions 184.2 (5740-XEl) 
standard form 184.1 (5740-XEl) 

PGFREEmacro instruction 185-186 
incompatible parameters with MVS 186 
standard form 185-186 
use of 83 
virtual subarea list 84-85 

PGFREEA macro instruction 186.1 (5740-XEl) 
considerations 84 (5740-XEl) 
restrictions 186.1 (5740-XEl) 
standard form 186.1 (5740-XEl) 

PGLOAD macro instruction, virtual subarea list 84-85 
PGMNAME parameter 206 
PGOUT macro instruction, virtual subarea list 84-85 
PGRLSE macro instruction, virtual subarea list 84-85 
PICA 47 
PIE 47 
PIRL (see purged I/O request list) 
POST macro instruction 187-190 

branch entry output 37 
branch entry to 35 
cross address space 34 
execute form 190 
exit routines, writing 32 
example of using exit function 34 
initializing extended ECBs and ECB extension 33 
intedace with exit routines 34 
list form 189 
re-entry from POST exit 34 
sch~duling SRB for 34 
standard form 187 
use of restricted parameters 31 

286 OS/VS2 System Programming Library: Supervisor 

------------------------

POST, synchronizing 258 
power warning feature support 110-112 
PR parameter 143 
PREVIOUS parameter 267 
priorities 95 
priority considerations 10 
PROFILE parameter 200-203 
program FLIH 47 
program management 9 
program reset function 29 
PROTPSA macro instruction 190.1 (5740-XEl) 

restrictions 190.1 (5740-XEl) 
provide a lock via an AND IMMEDIATE (NI) instruction 

(NIL) 178-179 
provide a lock via an OR IMMEDIATE (01) instruction 

(OIL) 180-181 
PURGE parameter 

A IT ACH macro instruction 127 
EST AE macro instruction 152 
ST AE macro instruction 260 

purge SRB activity (PURGEDQ) 191-193 
PURGEDQ macro instruction 191-193 

and SPOST 258 
execute form 193 
list form 192 
standard form 191 
use of 93-95 

purpose of extended ECB 32 

QEDIT macro instruction 
general information 194 
uses of 5-6 

QUIESCE parameter 233 

R parameter 
FREEMAIN macro instruction 165 
GETMAIN macro instruction 169 
PGFIX macro instruction 182 
PGFREE macro instruction 185 
SETFRR macro instruction 241 

RACDEF macro instruction 
coding descriptions 

execute form 199 
list form 198 
standard form 195 

how to use 46 
RACF' 44-46 

(see also resource access control facility) 
RACHECK macro instruction 

coding descriptions 
execute form 203 
list form 202 
standard form 200 

how to use 46 
RACINIT macro instruction 

coding descriptions 
execute form 210 
list form 208 
standard form 204 

how to use 46 
RACLIST macro instruction 

coding descriptions 
execute form 215 
list form 214 
standard form 211 

how to use 46 
RB parameter 222,267 
RBFEPARM parameter area 53 
RBLEVEL parameter 271 
RBSCF suspend count field 39,40 

(~

\~ . 



RBWCF wait count field 38 
RC parameter 

FREE MAIN macro instruction 165 
GETMAIN macro instruction 169 
SETRP macro instruction 251 

READ parameter 200-203 
real storage manager and virtual storage manager space 

allocation lock (SALLOC) 11 
real storage manager and virtual storage manager space 

allocation lock (SALLOC) 14 (5740-XEl) 
real storage management 83-88 
real storage manager 83 
receiver check status condition 31 
reconfiguration using vary storage command 85 
RECORD parameter 

EST AE macro instruction 152 
SETRP macro instruction 252 

recovery environment 31 
recovery guidelines 95 
recovery routines 50-64 
recovery/termination 48-64 
recovery/termination manager (RTM) 48 
recovery/termination manager, calling 131,132 
RECP ARM parameter 250 
reenterable SVC routines 100 
reentrant modules 10 
REF parameter 

NIL macro instruction 178 
OIL macro instruction 180 

reference - macro instructions and commands 121-280 
refreshable SVC routines 100 
register (0), meaning of 124 
register 0), meaning of 124 
register (2) - (12), meaning of 124 
REGS parameter 

SETLOCK macro instruction 245,248 
SETRP macro instruction 251 

RELATED parameter 
ATTACH macro instruction 127 
DEQ macro instruction 138 
ENQ macro instruction 146 
EST AE macro instruction 152 
FREEMAIN macro instruction 165 
GETMAIN macro instruction 169 
MODESET macro instruction 174 
PGFIX macro instruction 182 
PGFREE macro instruction 185 
POST macro instruction 187 
RESERVE macro instruction 216 
SETFRR macro instruction 241 
SETLOCK macro instruction 245 
ST AE macro instruction 260 
STATUS macro instruction 264,266 

release a serially reusable resource (DEQ) 138-142 
RELEASE parameter 

PGFIX macro instruction 182 
PGFREE macro instruction 185 
SETLOCK macro instruction 246 

remote class 30 
remote immediate signal, issuing 224-225 
remote pendable signal, issuing 226-227 
reporting interface, using the SRM 120 (5740-XEl) 
request control of a serially reusable resource (ENQ) 

145-151 
reserve a device (RESERVE) 216-221 
RESERVE macro instruction 216-221 

execute form 221 
list form 220 
standard form 216-219 
use of 18-22 

RESET parameter 266 

II' 

resource access control facility (RACF) 
data set 45,46 
group name 46 
identification 45-46 
password 46 
profiles 46 
RACDEF macro instruction 
RACHECK macro instruction 
RACINIT macro instruction 
RACLIST macro instruction 
resource manager 46 
scope of authorization 46 
userid 46 
verification 45-46 

resource serializatio 14 

46 
46 

46 
46 

resource control I~-45 

resource serializatio 11 (5740-XEl) 
restart function 29 ' 
RESTART parameter 143 
restricted functions 23 
restricting , 

load module access 25 
SVC service routines 23,25 

RESUME macro instruction 
coding description 222-223 
considerations 40 
considerations (5740-XEl) 

conditional 40.1 (5740-XEl) 
unconditional 40 (5740-XEl) 

how to use 40 
lock restrictions 40-41 
restrictions (5740-XEt) 

conditional 223 (5740-XEl) 
unconditional 223 (5740-XEt) 

resumption and suspension of request block tasks 38-41 
resumption and suspension of tasks 39-40.1 (5740-XEt) 
RET parameter 

DEQ macro instruction 138 
ENQ macro instruction 146 
RESERVE macro instruction 217 

RETADDR parameter 251 
RETIQE parameter 136 
RETREGS parameter 251 
RETRN parameter 136 
retry routines 57-64 
return codes 

ATIACH macro instruction 129 
DEQ macro instruction 140 
DSGNL macro instruction 144 
ENQ macro instruction 148 
EST AE macro instruction 153 
EXTRACT macro instruction 163 
FREEMAIN macro instruction 166 
GETMAIN macro instruction 170 
PGFIX macro instruction 183 
PGFREE macro instruction 186 
RACDEF macro instruction 197 
RACINIT macro instruction 204 
RACLIST macro instruction 210.1, 210.2 
RESERVE macro instruction 219 
RISGNL macro instruction 224-225 
RPSGNL macro instruction 227 
SDUMP macro instruction 234 
SETLOCK macro instruction 245,247,249 
ST AE macro instruction 261 
TEST AUTH macro instruction 272 

RETURN parameter 222 
return parameters, setting 250-253 
RISGNL macro instruction 

general information 224-225 
use of 30 

RMC parameter 138 

Index 287 



RMTR parameter 191,96 
ROUTCDE parameter 

WTO macro instruction 274 
WTOR macro instruction 278 

routing codes 91 
RPSGNL macro instruction 

general information 226 
use of 30 

RQCHECK parameter 226 
RSAPF keyword 28 
RTM (recovery/termination manager) 48 
RU parameter 

FREEMAIN macro instruction 165 
GETMAIN macro instruction 169 

RUB parameter 251 
RX-type address, meaning of 124 

S parameter 
ENQ macro instruction 146 
EXTRACT macro instruction 158 
RESERVE macro instruction 217 

SALLOC (real storage manager and virtual storage 
manager space allocation lock) 

general information 11 
general information 14 (5740-XE1) 
GETMAIN and FREEMAIN 81 

SA VEKEY parameter 174 
SCHEDULE macro instruction 228 

and PURGEDQ 191 
use of 93-94 

schedule system services for asynchronous execution 
(SCHEDULE) 228 

SCOPE parameter 228 
screen flag bit (TCBSVCS) 107 
screen table address (TCBSVCA2) 107 
screening, subsystem SVC 107 
SD parameter 266 
SDATA parameter on the SDUMP macro instruction 229 
SDUMP dump requests 71 
SDUMP macro instruction 229-239 

execute form 238-239 
list form 236 
standard form 229-235 
use of 71 

SDW A (see system diagnostic work area) 
SDWACLUP 63 
SDWAFMID 63 
SDWAPERC 63 
sense function 29 
SENSE parameter 143 
SERIAL parameter 224 
serialization 

considerations 14 
of POST 33 
of resources 14 
of resources 11 (5740-XE1) 
of SVC routines 100 
requirements 14 
requirements 11 (5740-XE1) 

serially reusable resources 
controlling access to 243-249 
locking 11-14 
locking 12-14 (5740-XE1) 
releasing 138-142 
requesting control of 145-151 

service aids 73 
service classes 29-30 
service management 93-97 
service request block (SRB) 93-97 
serviceability level interception processing 65-67 

(see also SLIP command) 

288 OS/VS2 System Programming Library: Supervisor 

SET parameter on the STATUS macro instruction 265 
set return parameters (SETRP) 250-253 
set up functional recovery routines (SETFRR) 240-242 
SETCODE statement 26 
SETDIE 76-77 

(see also disabled interrupt exit) 
SETDIE entry point 76 
SETFRR macro instruction 240-242 

type 6 SVC recovery 105 
use of 50-51 

SETLOCK macro instruction 
general information 243-249 
use of 15 

SETRP macro instruction 250-253 
shared DASD 17,216 
SHSPL parameter 127 
SHSPV parameter 127 
signal event completion (POST) 187-190 
signal processor (SIGP) instruction 

DSGNL macro instruction 143 
RISGNL macro instruction 224 
RPSGNL macro instruction 226 

SIGP (signal processor) instruction 29·30 
SIO parameter 226 
SLIP command, examples of 

obtaining a dump with queue elements and control 
blocks 68 

obtaining a dump with SQA control blocks 67 
replacing an SVC dump with a standalone dump 68 
setting interception definitions for an application 

program 69 
setting a trap using instruction fetch PER event 69 
setting a trap using storage alteration PER event 69 
setting a trap using storage alteration PER event and the 

ACTION=IGNORE option 7C 
setting a trap using successful branch PER event 70 
using 66 

SM parameter 128 
SMC parameter 147,205,207 
SMF cross memory services lock (CMSSMF) 14 

(5740-XE1) 
SNAP/ABEND user exit 73 
SP parameter 

FREEMAIN macro instruction 166 
GETMAIN macro instruction 169 

special clean-up processing 64 
specify program interruption exit (SPIE) 254-257 
specify task abnormal exit (ST AE) 259-263 
SPIE macro instruction 254-257 

execute form 257 
list form 256 
standard form 254 
use of restricted interruptions 47 

SPIE processing 47 
SPIE 17 routine 47 
spin locks 

general information 12 
general information 12 (5740-XE1) 
SVC routines 102 

SPOST macro instruction 
general information 258 
use of 31 

SQA buffer 71 
SQA for subsystem SVC screening 107 
SRB (service request block) 93-96 

input format 106 
mode processing, type 6 SVC 105 

SRB activity, purging 191-193 
SRB parameter 

SCHEDULE macro instruction 228 
STATUS macro instruction 264 
T6EXIT macro instruction 273 

\ / 

( 



--------- . ------_._._._._--_._---_ .... -_._._---------

SRBASCB field 94 
SRBASID field 95 
SRBCPAFF field 94 
SRBEP field 94 
SRBPARM field 94 
SRBPKF field 94 
SRBPRIOR field 94 
SRBPTCB field 95 
SRBRMTR field 94 
SRBSA VE field 94 
SRM (system resource manager) lock 12 
SRM (system resource manager) lock 13 (S740-XEl) 
SRM (system resource manager) reporting interface 120 

(S740-XEl) 
SSM instruction 14 
SSS parameter 143 
SSTMASK screening area 107 
SSTSVCN subsystem SVC entry area 107 
STAB parameter 136 
STAE environment 51-52 
STAE exit routines 51-52 
ST AE macro instruction 259-263 

execute form 263 
list form 262 
standard form 259-261 
use of 51-52 

STAE recovery routine 50,51 
STAE retry routine 57,58 
stage 1 exit effector 97 
stage 2 exit effector 97 
stage 3 exit effector 97 
STAI environment 51-52 
ST AI exit routines 51-52 
ST AI parameter 127 
ST AI recovery routine 50,51 
STAI retry routine 57-58 
start function 29 
START parameter 

DSGNL macro instruction 143 
STATUS macro instruction 264 
RACINIT macro instruction 206 

STATE parameter 271 
status conditions 30-31 
STATUS macro instruction 264-266 
STCK instruction 78 
STEP parameter 

CALLRTM macro instruction 132 
DEQ macro instruction 138 
ENQ macro instruction 146 
STATUS macro instruction 258 

stimulus for event completion 40 
stop and store status function 29 
stop function 29 
STOP parameter 

DSGNL macro instruction 143 
STATUS macro instruction 264 

stopped status condition 30 
STORAGE parameter 233 
SUBPOOL parameter 205,207,211,212 
subpools 

common service area 82 
fetch protected 82 
global 82 
not fetch protected 82 
system queue area 81 
227 81-82 
228 81-82 
229 81-82 
230 81-82 
231 81-82 
236 81-82 
237 81-82 

239 81-82 
241 81-82 
245 81-82 

subsystem SVC entry area (SSTSVCN) 107 
subsystem SVC screening 107 
subtask creation and control 3 
subtask status, changing 264-266 
SUMDUMP parameter 232 
SUMLIST parameter 232 
supervisor services 121 
suspend count field (RBSCF) 39-40 
suspend locks 12 
SUSPEND macro instruction 

coding description 267 
considerations 39-40 
examples of 39 
how to use 38-40 

SUSPEND parameter 184 
suspension and resumption of request block tasks 38-41 
suspension and resumption of tasks 39-40.1 (S740-XEl) 
SV AREA parameter 

ATTACH macro instruction 128 
CIRB macro instruction 135 

SVC dumps, error correlation 79-80 
SVC routines, user-written 100-108 

calling SVC routines 54 
characteristics 100 
inserting 103 
programming conventions 100-103 
specifying 103 

SVC screening, subsystem 107 
SVC 34, in response to FORCE command 50 
SVC Table entries 104 
SVCT ABLE macro instruction 103, 
SVCT ABLE options 105 
SVEAREA parameter 152 
SVRB, SVC routines 103 
SWITCH parameter 226 
symbol, meaning of 124 
SYNCH macro instruction 

general information 268 
use of 9 

SYNCH parameter 264 
synchronize POST (SPOST) 258 
synchronous exits, taking 268 
SYSABEND dump requests 72 
SYSEVENT macro instruction 269.1 (S740-XEl) 

return codes 269.2 (S740-XEl) 
examples 269.2 (S740-XEl) 

SYSMASK parameter 177 
system diagnostic workarea 54-64 
system generation, SVC routines 103 
system integrity 40-44 
system log 92 
system message IEA911A 74 
SYSTEM parameter 

DEQ macro instruction 138 
ENQ macro instruction 152 
STATUS macro instruction . 264 

system queue area subpools 81 
system resource manager lock (SRM) 12 
system resource manager lock (SRM) 14 (S740-XEl) 
system status 173-178 
SYSTEMS parameter 

DEQ macro instruction 138 
ENQ macro instruction 146 
RESERVE macro instruction 217 

SYS1.AOSCE 114 
SYS l.LINKLIB 

APF authorization 24 
power warning feature support 110 
SVC routines 100 

Index 289 



SYS1.LOGREC records 74-75 
SYS1.LPALIB 

APF authorization 24 
clean-up routines 64 
SVC routines 100 

SYS1.NUCLEUS, power warning feature support 110-112 
SYS 1.SVCLIB 

APF authorization 24 
SVC routines 100 

SZERO parameter 127 

TABLE parameter 157 
take asynchronous exit to a processing program (SYNCH) 

264 
task abnormal exit 

extended 152-155 
specifying 259-263 

task, creating a new 30 
task recovery routines 50-64 
task termination 49-50 
TASKLIB parameter 127 
TCB information, extracting 158-161 
TCB mode processing, Type 6 SVC 105 
TCB parameter 

CALLRTM macro instruction 131 
DEQ macro instruction 138 
ENQ macro instruction 46 
RESUME macro instruction 222 
STATUS macro instruction 264 

TCBACTIV flag 107 
TCBSVCA2 screen table address 107 
TCBSVCS screen flag bit 107 
TCTL macro instruction 

coding description 270 
how to use 40 

TERM parameter 
ATTACH macro instruction 127 
EST AE macro instruction 152 

TERMID parameter 206 
test authorization of caller (TESTAUTH) 271-272 
TEST parameter 248 
TEST UNDER MAST (TM) instruction 31 
TEST AUTH macro instruction 

general information 271-272 
use of 23,25 

TID parameter 128 
time interval for missing interruption handler 108-110 
time intervals, DIE 76 
timer disabled interrupt exit 76 

(see also disabled interrupt exit) 
timer SLIH 77 
timer supervision work area 76 
TM (TEST UNDER MASK) instruction 31 
TOO clock 79 
TPCSDIE field 76 
TQE DEQUEUE routine 78 
TQE ENQUEUE routine 78 
TQEAID field initialization 77 
TQEASCB field 77 
TQEDREGS field 78 
TQEEXIT field initialization 78 
TQETCB field 78 
TQEV AL field initialization 78 
trapping system errors 

(see SLIP command) 
TRAXERPT parameter 269.1 (S740-XEt) 
TRAXFRPT parameter 269.1 (S740-XE1) 
TRAXRPT parameter 269.1 (S740-XEl) 
TYPE parameter 

CALLRTM macro instruction 131 
CIRB macro instruction 136 

290 OS/VS2 System Programming Library: Supervisor 

RACDEF macro instruction 196 
SETLOCK macro instruction 243 

types of locks 12-13 
type 5 SVC 104 
type 6 SVC routine 

considerations for use 105 
description 104-105 
exit options 105 
location 100 
modification plans 105 
SRB mode processing 105 
TCB mode processing 105 

T6EXIT macro instruction 
coding description 273 
use of 105 

UCB parameter 
DEQ macro instruction 138 
RESERVE macro instruction 217 

UPDATE parameter 200-203 
user region size 117 
user storage areas 42 
user-written message routing exit routines 90-93 
user-written SVC routines 97-106 
USERID parameter 204 

V parameter 164,199-203 
varying storage 85-86 
VC parameter 

FREEMAIN macro instruction 165 
GETMAIN macro instruction 169 

virtual storage 
allocating 169-172 
dumping 229-239,67-75 
freeing 164-168 

virtual storage contents 
fixing 182-184,83-84 
freeing 185 

virtual storage, dumping 67-74 
virtual storage management 81 
virtual subarea list (VSL) 84-85 
VL parameter 127 
VOLSER parameter 195 
volume handling 17 
VSL (virtual subarea list) 84-85 
VU parameter 

FREEMAIN macro instruction 165 
GETMAIN macro instruction 169 

wait for events (EVENTS) 157 
WAIT macro instruction 

SVC routines 103 
WAIT parameter 157 
WKAREA parameter 

CIRB macro instruction 136 
SETRP macro instruction 251 

WORKREG parameter 174 
WREGS parameter 

NIL macro instruction 178 
OIL macro instruction 180 

write-to-operator (WTO) 274-277 
write-to-operator-with-reply (WTOR) 278-280 
writing POST exit routines 32 
WRKREGS parameter 240 
WTO macro instruction 274-277 

list form 277 
standard form 274-276 
use of restricted parameters 89-93 

( 



,r-",'. 
I I 

\ ... -./ 

(j 

._------------- ., ------------------

WTOR macro instruction 278-280 
list form 280 
standard form 278-280 
use of restricted parameters 89-93 

XCTL macro instruction, SVC routines 103 

XCTL parameter 
EST AE macro instruction 152 
ST AE macro instruction 259 

Y parameter 222 

Index 291 



292 OS/VS2 System Programming Library: Supervisor 

------------------ --------------- -----



"'''''--''''"''1 

~ o 
Z 

--------, .... _--------

OS/VS2 System Programming 
Library: Supervisor 
GC28-0628-3 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, 
and operators of IBM systems. This form may be used to communicate your views about this 
publication. They will be sent to the author's department for whatever review and action, if any, 
is deemed appropriate. 

IBM may use or distribute any of the information you supply in any way it believes appropriate 
without incurring any obligation whatever. You may, of course, continue to use the information 
you supply. 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, 
to your IBM representative or to the IBM branch office serving your locality. 

Possible topics for comments are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If comments apply to a Selectable Unit, please provide the name of the Selectable Unit ___ . 

If you wish a reply, give your name and mailing address: 

Please circle the description that most closely describes your occupation. 

(Q) (U) (X) (Y) 

Customer Install System System System 
M~. Consult. Analyst Prog. 

(Z) (F) 

Applica. System 
Prog. Opere 

(I) 

I/O 
Opere 

(l) 

Term. 
Opere 

~ 
L:J 

(S) (P) (A) (8) (C) (D) (R) (G) (J) (E) (N) (T) 

IBM System Prog. System System Applica. Dev. Camp. System 1/0 Ed. Cust. Tech. 
Eng. Sys. Analyst Prog. Prog. Prog. Prog. Opere Opere Dev. Eng. Staff 

Rep. Rep. Rep. 

Number of late.st Newsletter associated with this publication: _____________ _ 

Thank you for your cooperation. No postage stamp-necessary if mailed in the U.S.A. (Elsewhere, 
an IBM office or representative will be happy to forward your comments.) 

----_ .. _-_ .. 



GC28-0628-3 

Reader's Comment Form 

Fold and tape Please Do Not Staple 

11111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

POSTAGE WILL BE PAID BY ADDRESSEE: 

Fold and tape 

--- -® ------ ----- ~--- --. _ ..... -- - ------_ ... --..-... _ .. -

International Business Machines Corporation 
Department 058, Building 706-2 
PO Box 390 
Poughkeepsie, New York 12602 

Please Do Not Staple 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, N.Y. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue. White Plains. N.Y., U.S.A. 10601 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 

(") 
So ,.-

0 
U'J -< 
U'J 
I\.J 
U'J 
-< 
VI 
.-+ 
CD 

3 
-c 
~ 

0 
to 
~ 
Q) 

3 
~. 
:J 
to 

c: " ri' 

C'" 
~ 
Q) 
~ 

-< 

U'J 
C 

"C 
~ 
< 
iii· 
0 
~ 

~ 
:J 
.-+ 
CD 
0-

:J 

C en 
~ 
G) 
(') 
I\.J 
00 
6 en 
I\.J 
00 
iN 


