
Systems

GC28-0646-4
File No. 5370-39

OS/VS2 TSO
Command Language Reference

VS2 Release 3.8

Includes Selectable Units:

Data Management
TSO/VT AM Level 1
System Security Support
TSO/VT AM Level 2

----- -____ .-II - - ---- ~--- .-.. _ -- - - - ... -
-~-,.-
-~-.-

VS2.03.808
VS2.03.813
5752-832
5752-858

Page of GC28-0646-4
As Updated July 30, 1980
By TNL GN28-4754

Fifth Edition (June, 1978)

This is a major revision of, and obsoletes, GC28-0646-3 and incorporates changes
released in the following Selectable Unit Newsletters and System Library Supplements:

Data Management
TSO/VT AM Level 1
System Security Support
TSO /VT AM Level 2

VS2.03.808 GN28-2748
VS2.03.813 GN28-2652
5752-832 GC28-0847
5752-858 GD23-0045

(dated July 30, 1976)
(dated May 28, 1976)
(dated May 27, 1977)
(dated September 30, 1977)

See the Summary of Amendments following the Contents for a summary of the changes
that have been made to this manual. A vertical line to the left of the text or illustration
indicates a technical change made in this edition; revision bars are not used, however, to
indicate changes made in previous editions, technical newsletters, or supplements.

This edition with Technical Newsletters GN28-4754 and GN28-4699 applies to Release 3.8
of OS/VS2 and to all subsequent releases until otherwise indicated in new editions or Technical
Newsletters. Changes are continually made to the information herein; before using this
publication in connection with the operation of IBM Systems, consult the latest
System/370 Bibliography, GC20-0001, for the editions that are applicable and current.

It is possible that this material may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Publications are not stocked at the address given below; requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Publications
Development, Department D58, Building 706-2, PO Box 390, Poughkeepsie, N. Y.
12602. IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of course,
continue to use the information you supply.

© Copyright International Business Machines Corporation 1972,1974, 1975,1976,1978

®
~: ::E~y= Technical Newsletter

This Newsletter No. GN28-4754

Date July 30, 1980

Base Publication No. GC28-0646A

File No. S370-39

Prerequisite Newsletters/ GN28-4699

Supplements

OS /VS2 TSO Command Language Reference

© Copyright IBM Corp. 1975, 1976,1978

This newsletter contains replacement pages for OS/VS2 TSO Command Language
Reference.

Before inserting any of the attached pages into OS/VS2 TSO Command Language
Reference, read carefully the instructions on this cover. They indicate when and how you should
insert the pages.

Pages to Attached Pages
be Removed to be Inserted*

Cover - Edition Notice Cover - Edition Notice
xi - xii xi - xii
21 - 22 21 - 22.2
29 - 30 29 - 30
45 - 46 45 - 46
61 - 62 61 - 62
115 - 116 115-116
145 - 146 145 - 146
167 - 168 167 - 168
205 - 208 205 - 208
211 - 212 211 - 212
217 - 218 217-218
221 - 222 221 - 222.2
235 - 236 235 - 236
279 - 280 279 - 280
283 - 284 283 - 284
299 - 300 299 - 300
335 - 338 335 - 338.2

*If you are inserting pages from different Newsletters/Supplements and identical
page numbers are involved, always use the page with the latest date (shown in the
slug at the top of the page). The page with the latest date contains the most
complete information.

A change to the text or to an illustration is indicated by a vertical line to the left of
the change.

I BM Corporation, Publications Development, Department 058, Building 706-2
PO Box 390, Poughkeepsie, New York 12602

Printed in U.S.A.

Summary of Amendments

You can find a Summary of Amendments for this Technical Newsletter on page xi,
following the Table of Contents.

Note: Please file this cover letter at the back of the base publication to provide
a record of changes.

January 11, 1980

Preface

This publication describes the syntax and function of the commands and
subcommands of the TSO command language. It is intended for use at a
terminal. The level of knowledge required for this publication depends upon
the command being used. Most commands require little knowledge of TSO
and of the operating system; however, some commands require a greater

, knowledge of the system. As a general rule, the description of each
command requires an understanding of those elements being' manipulated by
the command.

The prerequisite publication, OS/VS2 TSO Terminal User's Guide,
GC28-0645,describes the commands used to perform the following
functions:

• Start and end a terminal session.
• Enter and manipUlate data.
• Program at the terminal.
• Test a program.
• Write and use command procedures.

Once a user is familiar with the Terminal User's Guide, he can use this
publication to code the TSO commands.

The appendixes in the TSO Terminal User's Guide describe how to use
the terminals supported by TSO.

The major divisions in this book are:

• Introduction
• Basic Information for Using TSO
• The Commands
• Command Procedures
• Index

The Introduction describes the TSO command language. The section
entitled "Basic Information for Using TSO" contains general information
necessary to use TSO commands.

The section entitled "The Commands" describes the syntax and function
of each command, its operands and its subcommands. Examples are
included.

The commands are presented in alphabetical order, except that the
foreground-initiated background (Fm) commands are in Appendix A, the
program product commands are in Appendix B, and the Access Method
Services commands are in Appendix C. Subcommands are presented in
alphabetical order following the command to which they apply. The END
and WHEN commands, which are used with command procedures, are
included in sequence instead of appearing in the' Command Procedures
section. Statements, variables, functions, and operators are in the Command
Procedures section.

"Command Procedures" describes the control statements used in
command procedures.

Preface iii

Page of GC28-0646-4
As Updated January 11, 1980
By TNL GN28-4699

The publications referred to in this book are:

OS/VS2 Access Method Services, GC26-3841

January ll, 1980

OS/VS Message Library: VS2 System Messages, GC38-1002

OS/VS2 JCL, GC28-0692

OS / VS2 System Programming Library: System Generation Reference,
GC26-3792

OS / VS2 System Programming Library: . TSO, GC28-0629

IBM System/370 Reference Summary, GX20-1850

OS/VS Assembler Language, GC33-4010

OS/VS2 TSO Terminal Monitor Program and Service Routines Logic,
SY28-0650

OS/VS2 MVS Data Management Services Guide, GC26-3875

OS/VS2 System Programming Library;oJob Management, GC28-0627

iv OS/VS2 TSO Command Language Reference

January 11, 1980

Contents

Summary of Amendments xi

Introduction

Basic Information for Using TSO
Using a Terminal

Entering Information at a Terminal
Correcting Typing Errors

Using TSO Commands .
Positional Operands
Keyword Operands
Comments
Delimiters
Line Continuation
Subcommands . .
Syntax Notation Conventions

Using System-Provided Aids
The Attention Interruption
Messages

Mode Messages
Prompting Messages . .
Informational Messages
Broadcast Messages ..

Using the HELP Command. .
Explanations of Commands
Syntax Interpretation of HELP Information
Explanation of Subcommands . .

Using Data Set Naming Conventions
Data Set Names In General ..
TSO Data Set Names
How to Enter Data Set Names.
Specifying Data Set Passwords .

Using Commands for VSAM and Non-VSAM Data Sets.

The Commands

ALLOCATE Command

A TTRIB Command

CALL Command .

DELETE Command .

3
3
3
l
3
4
4
5
5
5
5
6
7
7
8
8
9
9

10
10
10
10
10
11
11
11
12
14
14

15

17

27

35

37

EDIT Command . . 41
Modes of Operation 48
Tabulation Characters 52
Executing User Written Programs 53
Terminating the EDIT Command 53
Recovering Data after a Terminal Line Has Been Disconnected 53

Subcommands for EDIT. 55
ALLOCATE Subcommand of EDIT. 57
BOTTOM Subcommand of EDIT 59
CHANGE Subcommand of EDIT 61

Quoted-String Notation . . 62
Combinations of Operands 63

COpy Subcommand of EDIT 67
Messages 69

DELETE Subcommand of EDIT 75
DOWN Subcommand of EDIT 77
END Subcommand of EDIT . . 79

Contents v

Page of GC28-0646-4
As Updated January 11, 1980
By TNL GN28-4699

EXEC Subcommand of EDIT
FIND Subcommand of EDIT.
HELP Subcommand of EDIT.
INPUT Subcommand of EDIT
INSERT Subcommand of EDIT ..
Insert/Replace/Delete Function of EDIT
LIST Subcommand of EDIT ..
MOVE Subcommand of EDIT .

Messages _
PROFILE Subcommand of EDIT
RENUM Subcommand of EDIT
RUN Subcommand of EDtT .
SAVE Subcommand of EDIT.

Sequential Data Set. . . .
Partitioned Data Set .. .

SCAN Subcommand of EDIT
SEND Subcommand of EDIT
SUBMIT Subcommand of EDIT
TABSET-Subcommand of EDIT
TOP Subcommand of EDIT ..
UNNUM Subcommand of EDIT
UP Subcommand of EDIT ...
VERIFY Subcommand of EDIT

END Command

EXEC Command

FREE Command

HELP Command

LINK Command

LISTALC Command

LISTBC Command .

LISTCAT Command

LISTDS Command .

LOADGO Command

LOGOFF Command

LOGON Command .

PROFILE Command

PROTECT Command
Passwords ..
Types of Access
Password Data Set .

RENAME Command

RUN Command

SEND Command

TERMINAL Command

TEST Command . .
When to Use TEST

vi OS/VS2 TSO Command Language Reference

,.

81
83
85
87
89
91
93
95
97

103
105
107
111
112
112
115
117
119
121
123
125
127
129

131

133

139

143

147

155

159

161

167

171

175

177

181

187
187
187
189

193

195

201

205

211
211

Page of GC28-0646-4
As Updated January 11, 1980
By TNL GN28-4699

Addressing Conventions Associated with TEST .
Restrictions on Use of Symbols

External Symbols
Internal Symbols
Addressing Considerations.
Examples of Valid Addresses in TEST Subcommands

Assignment of Values Function of TEST. . .
AT Subcommand of TEST . . .
CALL Subcommand of TEST
COPY Subcommand of TEST
DELETE Subcommand of TEST
DROP Subcommand of TEST .
END Subcommand of TEST . .
EQUATE Subcommand of TEST
FREE MAIN Subcommand of TEST .
GETMAIN Subcommand of TEST
GO Subcommand of TEST . . .
HELP Subcommand of TEST. .
LIST Subcommand of TEST . . .
LISTDCB Subcommand of TEST .
LISTDEB Subcommand of TEST .
LISTMAP Subcommand of TEST .
LISTPSW Subcommand of TEST
LISTTCB Subcommand of TEST .
LOAD Subcommand of TEST . .
OFF Subcommand of TEST ...
QUALIFY Subcommand of TEST.
RUN Subcommand of TEST . .
WHERE Subcommand of TEST

TIME Command .

WHEN Command

Command Procedures
Functions Available for Command Procedures

Expressions and Operators
Symbolic Variables

Symbolic Substitution
Concatenation of Symbolic Variables .
Character Set Supported in Command Procedure Statements .

Control Variables.
Built-In Functions

Command Procedure Statements

ATTN Statement. . .

CLOSFILE Statement

CONTROL Statement

DATA-ENDDATA Sequence.

DO-WHILE-END Sequence

ERROR Statement

EXIT Statement .

GETFILE Statement

GLOBAL Statement

GOTO Statement

IF-THEN-ELSE Sequence.

OPENFILE Statement

PROC Statement. . .

. 212
214.1
214.1
214.1
214.1
214.2
. 219

221
225
227
231
233
235
237
239
241
243
245
247
251
253
255
257
259
261
263
265
267
269

271

273

275
275
278
278
279
279
280
280
282
283

285

287

289

291

293

295

297

299

301

303

305

307

309

Contents vii

PUTFILE Statement

READ Statement. .

READDVAL Statement

RETURN Statement

SET Statement

TERMIN Statement

WRITE and WRITENR Statements .

Appendix A: Foreground-Initiated Background Commands .
Using Foreground-Initiated Background (FIB) Commands.
Processing Batch Jobs .. .
Submitting Batch Jobs '.'
Displaying the Status of lobs
Cancelling Batch Jobs •
Controlling the Output of Batch or Foreground Jobs
CANCEL Command. .'
OUTPUT Command .'
CONTINUE Subcommand of OUTPUT
END Subcommand of OUTPUT
HELP Subcommand of OUTPUT
SAVE Subcommand of OUTPUT
STATUS Command
SUBMIT Command

Appendix B: Program Product Commands
ASM Command
COBOL Command
CONVERT Command
COpy Command
FORMAT Subcommand of EDIT
MERGE Subcommand of EDIT
FORMAT Command
FORT Command . .
GO FORT Command
LIST Command . .
MERGE Command .
PU Command
PUC Command ...
TESTCOB Command
TESTFORT Command

Appendix C: Access Method Services Commands

Index '

viii OS/VS2 TSO Command Language Reference

January 11, 1980

311

313

315

317

319

321

323

325'
327
327
227
329
329
330
335
337
343
345
347
349
351
353

357
357
357
357
358
358
358
358
359
359
359
360
360
360
361
361

363

365

January 11, 1980

Figures
Figure 1. Descriptive Qualifiers 12
Figure 2. Default Names Supplied by the System 13
Figure 3. Descriptive Qualifiers Supplied by Default 14
Figure 4. Commands Preferred for VSAM/Non-VSAM Data Sets 14
Figure 5. Default Values for LINE or LRECL and BLOCK or BLKSIZE

Operands . 47
Figure 6. How EDIT Subcommands Affect the Line Pointer Value 51
Figure 7. Subcommands of the EDIT Command. 55
Figure 8. Source Statement/Program Product Relationship . . 107
Figure 9. Default Tab Settings 121
Figure 10. Information Available through the HELP Command 145
Figure 11. System Defaults for Control Characters 181
Figure 12. Source Statement/Program Product Relationship 195
Figure 13. Command Procedure Coding Reference 276
Figure 14. Arithmetic, Comparative, and Logical Operators 278
Figure 15. Control Variables 281
Figure 16. Built-In Functions 282
Figure 17. Command Procedure Statement Categories . 283
Figure 18. Command Procedure Statement Error Codes 283
Figure 19. Submitting a Program as a Batch Job . . . 328
Figure 20. Language Conversions Using the CONVERT Command. 357

Contents ix

January 11, 1980

x OS!VS2 TSO Command Language Reference

Summary of Amendments
for GC28-0646-4
As Updated By: GN28-4754
OS/VS2 Release 3.8

Page of GC28-0646-4
As Updated July 30, 1980
By TNL GN28-47S4

This manual has been updated to reflect service updates to
OS/VS2 Release 3.8. In addition, several technical changes
have been made.

Summary of Amendments
for GC28-0646-4
As Updated By: GN28-4699
OS/VS2 Release 3.8

The section on the TEST command has been rewritten for
technical accuracy and clarity reasons. In addition several
other editorial and technical changes have been made
throughout the book.

Summary of Amendments
for GC28-0646-4
OS/VS2 Release 3.7

This publication contains information that was released in
the following Selectable Unit Newsletters and System
Library Supplements:

OS/VS2 MVS Data Management (VS2.03.808),
GN28-2748

OS/VS2 MVS TSO/VT AM Level 1 (VS2.03.813),
GN28-2652

OS/VS2 MVS System Security Support (5752-832),
GC28-0847

OS/VS2 MVS TSO/VTAM Level 2 (5752-858),
GD23-0045

The section on Command Procedures has been rewritten to
present the material in a format appropriate for a reference
manual. Changes in this section are not barred; therefore,
you should read this section in its entirety.

Miscellaneous editorial and technical changes have been
made throughout the pUblication. References to 2741
Communication Terminals and their use have been changed
to 3270 Display Stations.

Significant technical changes have been made to the
following commands and subcommands:

ALLOCATE
ATTRIB
CALL
EDIT
END (EDIT)
FIND (EDIT)
TABSET (EDIT)
EXEC
FREE
LISTCAT

LISTDS
LOGOFF
LOGON
PROFILE
RENAME
RUN
SUBMIT TERMINAL
TEST
LIST (TEST)
WHEN

Significant technical changes have been made to the
following command procedure statements:

ERROR
OPENFILE
TERM IN

Summary of Amendments xi

Summary of Amendments
for GC28-0646-3
As Updated by GN28-2873

Changes have been made in the following sections of this
publication:

• ALLOCATE command
• CALL command
• EDIT command
• EXEC command
• FREE command
• LIST ALC command
• LlSTCAT command
• LlSTDS command
• RUN command
• SUBMIT command

Summary of Amendments
for GC28-0646-3
OS/VS2 Release 3.7

Changes have been made throughout this publication to
reflect a Service Update to OS/VS2 Release 3.7. In
addition, pertinent technical and editorial changes have
been made. All references to ITF:BASIC and ITF:PLI
Program Products have bee~ deleted from this manual. As
announced in P73-70, these program products have been
withdrawn and reclassified to programming service
classification "C" effective June 28, 1974.

Corrections have been made to the following commands:

ALLOCATE
ATTRIB
CALL
EDIT
LINK
LOGOFF
LOGON
PROFILE
RENAME

xii OS/VS2 TSO Command Language Reference

• TERMINAL command
• TEST command
• WHEN command
• OUTPUT command

CHANGE subcommand of EDIT
FIND subcommand of EDIT
VERIFY subcommand of EDIT
LIST subcommand of TEST
QUALIFY subcommand of TEST
Symbolic substitution examples

July 30, 1980

Command Procedures and Program Product
Commands

RUN
OUTPUT
SUBMIT

Corrections have been made to the following subcommands:

CHANGE (EDIT)
COpy (EDIT)
END (EDIT)
RENUM (EDIT)
RUN (EDIT)
SAVE (EDIT)
SCAN (EDIT)
SUBMIT (EDIT)
TAB SET (EDIT)
UNNUM (EDIT)
AT (TEST)
LIST (TEST)
WHERE (TEST)

)

~,

/

Introduction

TSO allows you and a number of other users to use the facilities of the
system concurrently and in a conversational manner. You can communicate
with the system by typing requests for work (commands) on a terminal,
which may be located far away from the system installation. The system
responds to your requests by performing the work and sending messages
back to your terminal. The messages tell you such things as what the status
of the system is with regard to your work and what input is needed to allow
the work to be done.

By using different commands, you can have different kinds of work
performed. You can store data in the system, change the data, and retrieve
it at your convenience. You can create programs, test them, have them
executed, and obtain the results at your terminal.

When you use a command to request work, the command establishes the
scope of the work to the system. To provide flexibility and greater ease of
use, the scope of some commands' work encompasses several operations
that are identified separately. After entering the command, you may specify
one of the separately identified operations by typing a subcommand. A
subcommand, like a command, is a request for work; however, the work
requested by a subcommand is a particular operation within the scope
established by a command.

This reference manual describes what each command can do and how to
enter a command at your terminal.

Additional commands and sub commands are available for a license fee as
optional program products. Appendix B lists the program product
commands and subcommands.

Appendix C lists the Access Method Services commands that are
available.

Introduction

(

2 OS/VS2 TSO Command Language Reference

Basic Information for Using TSO

Before using TSO you should know how to use:

• Terminals
• TSO commands
• System-provided aids
• Data set naming conventions

U sing a Terminal
A terminal session is designed to be an uncomplicated process for a
terminal user: he identifies himself to the system and then issues commands
to request work from the system. As the session progresses, the user has a
variety of aids available at the terminal which he can use if he encounters
any difficulties.

Entering Information at the Terminal

All TSO terminals have a typewriter-like keyboard through which you enter
information into the system. The features of each keyboard vary from
terminal to terminal; for example, one terminal may not have a backspace
key, while another may not allow for lowercase letters. The features of each
terminal as they apply to TSO are described in TS 0 Terminal User's Guide.
The examples in this book are addressed to a user of an IBM 3270 Display
Station.

Correcting Typing Errors

If you wish to correct typing errors, you must correct them before you
press the ENTER key. Move the cursor under the error and type the
correct character. To replace a character with a space, move the cursor
under the character and press the space bar.

Using TSO Commands
A command consists of a command name followed, usually, by one or more
operands. Operands provide the specific information required for the
command to perform the requested operation. For instance, operands for
the RENAME command identify the data set to be renamed and specify
the new name:

RENAME OLDNAME NEWNAME

command name operand-l operand-2

(old data-set-name) (new data-set-name)

Two types of operands are used with the commands: positional and
keyword.

Basic Information for Using TSO 3

Positional Operands

Positional operands follow the command name in a prescribed sequence. In
the command descriptions within this manual, the positional operands are
shown in lowercase characters. A typical positional operand is:

data-set-name

You must replace "data-set-name" with an actual name when you enter
the command.

When you want to enter a positional operand that is a list of several
names or values, the list must be enclosed within parentheses. The names or
values must not include unmatched right parentheses.

Keyword Operands

Keywords are specific names or symbols that have a particular meaning to
the system. You can include keywords in any order following the positional
operands. In the command descriptions within this book, keywords are
shown in uppercase characters. A typical keyword is:

TEXT

You can specify values with some keywords. The value is entered within
parentheses following the keyword. The way a typical keyword with a value
appears in this book is:

LINESIZE(integer)

Continuing this example, you would select the number of characters that
you want to appear in a line and substitute that number for "integer" when
you enter the operand:

LINESIZE(80)

Note~ If conflicting keywords are entered, the last keyword entered
overrides the previous ones.

Abbreviating Keyword Operands

You can enter keywords spelled exactly. as they are shown or you may use
an acceptable abbreviation. You may abbreviate any keyword by entering
only the significant characters; that is, you must type as much of the
keyword as is necessary to distinguish it from the other keywords of the
command or subcommand. For instance, the LISTBC command has four
keywords:

MAIL

NOMAIL

NOTICES

NONOTICES

The abbreviations are:

M for MAIL (also MA and MAl)
NOM for NOMAIL (also NOMA and NOMAI)

NOT for NOTICES (also NOTI, NOTIC, and NOTICE)

NON for NONOTICES (also NONO, NONOT, NONOTI, NONOTIC,

and NONOTICE)

In addition, the DELETE and LISTCAT commands allow unique
abbreviations for some of their keywords. They are shown with the syntax
and operand descriptions of DELETE and LISTCAT.

4 OS!VS2 TSO Command Language Reference

(

Comments

Comments may be added to a command anywhere a blank might appear.
Simply enter them within the comments delimiters / * and * /. A comment
may be continued to the next line by using a line continuation character (+
or -) at the end of the line.

or

listd (data-set-list) /* my data sets */

listd (data-set-list) /* this is a list of my -
active data sets */

Delimiters

When you type a command, you must separate the command name from
the first operand by one or more blanks. You must separate operands by
one or more blanks or a comma. Do not use a semicolon as a delimiter
because the characters entered after a semicolon are ignored. Using a blank
or a comma as a delimiter, you can type the LISTBC command like this:

LISTBC NOMAIL NONOTICES

or like this:

LISTBC NOMAIL,NONOTICES

or like this:

LISTBC NOMAIL NOTICES

Enter a blank by pressing the space bar at the bottom of your terminal
keyboard.

Line Continuation

When it is necessary to continue to the next line, use a plus or minus sign
as the last character of the line being worked on. Caution: a plus sign will
cause leading delimiters to be removed from the continuation line.

or

list (data-set-list) /* this is a list of my -
active data sets */

alloc dataset(out.data) file(output) new +
space(10,2) tracks release

Subcommands

The work done by some of the commands is divided into individual
operations. Each operation is defined and requested by a subcommand. To
request one of the individual operations, you must first enter the command.
You can then enter a subcommand to specify the particular operation· that
you want performed. You can cQntinue entering sub commands until you
enter the END subcommand.

The commands that have subcommands are EDIT, OUTPUT, and TEST.
When you enter the EDIT command, you can then enter the subcommands
for EDIT. Likewise, when you enter the OUTPUT or TEST commands,
you can enter the appropriate subcommands.

Basic Information for Using TSO 5

Syntax Notation Conventions

The notation used to define the command syntax and format in this
publication is described in the following paragraphs.

1. The set of symbols listed below is used to define the format, but you
should never type them in the actual statement.

hyphen

underscore

braces {}

brackets []

ellipsis

The special uses of these symbols are explained in the following
paragraphs.

2. You should type uppercase letters, numbers, and the set of symbols
listed below in an actual command exactly as shown in the st'atement
definition.

apostrophe

asterisk *
comma

equal sign

parentheses 0
period

3. Lowercase letters, and symbols appearing in a command definition
represent variables for which you should substitute specific
information in the actual command.

Example: If name appears in a command definition, you should
substitute a specific value (for example, ALPHA) for the variable
when you enter the command.

4. Hyphens join lower-case words and symbols to form a single
variable.

Example: If member-name appears in the command syntax, you
should substitute a specific value (for example, BET A) for the
variable in the actual command.

5. An underscore indicates a default option. If you select an underscored
alternative, you need not specify it when you enter the command.

Example: The representation

A
B
C
indicates that you are to select A or B or C; however, if you select B,
you need not specify it because it is the default option.

6. Braces group related items, such as alternatives.

Examples: The representation

ALPHA=({~}'D)
indicates that you must choose one of the items enclosed within the
braces. If you select A, the result is ALPHA=(A,D).

6 OS/VS2 TSO Command Language Reference

c

7. Brackets also group related items; however, everything within the
brackets is optional and may be omitted.

Example: The representation

ALPHA~([~lD)
indicates that you may choose one of the items enclosed within the
brackets or that you may omit all of the items within the brackets. If
you select only D, you may specify ALPHA=(,D).

8. An ellipsis indicates that the preceding item or group of items can be
repeated more than once in succession.

Example:

ALPHA [, BETA ...]

indicates that ALPHA can appear alone or can be followed by
,BET A any number of times in succession.

Using System-Provided Aids

Several aids are available for your use at the terminal:

• The attention interruption allows you to interrupt processing so that
you can enter a command.

• The conversational messages guide you in your work at the terminal.
• The HELP command provides you with information about the

commands.

The Attention Interruption

The attention interruption allows you to interrupt processing at any time so
that you can enter a command or subcommand. For instance, if you are
executing a program and the program gets in a loop, you can use the
attention interruption to halt execution. As another example, when you are
having the data listed at your terminal and the data that you need has been
listed, you may use the attention interruption to stop the listing operation
instead of waiting until the entire data set has been listed.

If, after causing an attention interruption, you want to continue with the
operation that you interrupted, you can do so by pressing the ENTER key
before typing anything else; however, input data that was being typed or
output data that was being displayed at the time of the attention
interruption may be lost. You can also request an attention interruption
while at the command level, enter the TIME command, and then resume
with the interrupted operation by pressing the ENTER key.

Note: One output record from the interrupted program may be displayed
at the terminal after you enter your next command. This is normal for some
programs.

If your terminal has an interruption facility, you can request an attention
interruption by pressing the appropriate key. You can use the TERMINAL
command to specify particular operating conditions that the system is to
interpret as a request for an attention interruption. More specifically, you
can specify a sequence of characters that the system is to interpret as a

Basic Information for Using TSO 7

request for an attention interruption. In addition, you can request the
system to pause after a certain number of seconds of processing time has
elapsed or after a certain number of lines of output has been displayed at
your terminal. When the system pauses, you can enter the sequence of
characters that you define as a request for an attention interruption.

Messages

There are four types of messages:

• Mode messages
• Prompting messages
• Informational messages
• Broadcast messages

Mode Messages

A mode message tells you when the system is ready to accept a new
command or subcommand. When the system is ready to accept a new
command it displays:

READY

When you enter a command that has subcommands and the system is
ready to accept that command's subcommands, it displays the name of the
command, which can be one of the following:

EDIT
OUTPUT
TEST

You can then enter the subcommands you want to use. The TEST
message also appears after each TEST subcommand has been processed. If
the system has to display any output or other messages, as a result of the
previous command or TEST subcommand, it does so before displaying the
mode message.

Sometimes you can save a little time by entering two or more commands
in succession without waiting for the intervening READY message. The
system then prints the READY messages in succession after the commands.
If you enter the following commands without waiting for the intervening
mode messages, your display will be:

READY
delete .. .
free .. .
rename .. .
READY
READY
READY

There is a drawback to entering commands without waiting for the
intervening mode messages. If you make a mistake in one of the commands,
the system sends you messages telling you of your mistake, and then it
cancels the remaining commands you have entered. After you correct the
error, you have to reenter the other commands.

Unless you are sure that there are no mistakes in your input, you should
wait for a READY message before entering a new command.

8 OS/VS2 TSO Command Language Reference

Note: Some terminals "lock" the keyboard after you enter a command,
and therefore you cannot enter commands without waiting for the
intervening READY message. Terminals which do not lock the keyboard
may occasionally do so, for example when all buffers allocated to the
terminal are used. See TSO Terminal User's Guide for information on your
terminal.

Prompting Messages

A prompting message tells you that required information is missing or that
information you supplied was incorrectly specified. A prompting message
asks you to supply or correct that information. For example,
partitioned-data-set-name is a required operand of the CALL command; if
you enter the CALL command without that operand the system will prompt
you for the data-set-name and your display will look as follows:

READY
call
ENTER DATA SET NAME -

You should respond by entering the requested operand, in this case the
data set name, and by pressing the ENTER key to enter it. For example, if
the data set name is ALPHA.DAT A, you would complete the prompting
message as follows:

ENTER DATA SET NAME
alpha. data

If you wish, you will receive prompting messages when appropriate.
However, the PROFILE command can be used to suppress prompting.

Sometimes you can request another message that explains the initial
message more fully. If the second message is not enough, you can request a
further message to give you more detailed information. An indication that a
second or additional message level is available is a plus sign (+) at the end
of the message.

To request an additional level of message:

1. Type a question mark(?) in the first position of the line.

2. Press the ENTER key.

If you enter a question mark, and there are no messages to provide
further detail, you receive the following message:

NO INFORMATION AVAILABLE

You can stop a prompting sequence by entering the requested
information or by requesting an attention interruption to cancel the
command.

Informational Messages

An informational message tells you about the status of the system and your
terminal session. For example, an informational message can tell you how
much time you have used. Informational messages do not require a
response.

Basic Information for Using TSO 9

If an informational message ends with a plus sign (+), you can request
an additional message by entering a question mark (?) after READY, as
described in "Prompting Messages." Informational messages have only one
second level message, while prompting messages may have more than one.

Broadcast Messages

Broadcast messages are messages of general interest to users of the system.
Both the system operator and any user of the system can send broadcast
messages. The system operator can send messages to all users of the system
or to individual users. For example, he may send the following message to
all users:

DO NOT USE TERMINALS #4, 5 AND 6 ON 6/30. THEY ARE
RESERVED FOR DEPARTMENT 791.

You, or any other user, can send messages to other users or to the
system operator. For example, you may send, or receive, the following
message:

DEPARTMENT NO. 4672 WILL BE CHANGED TO, 4675 on 8/15

A message sent by another user will show his user identification so you
will know who sent you the message.

Using the HELP Command
The HELP command can be used by a terminal user to receive all the
information necessary to use any TSO command. The information requested
will be displayed at the user's terminal.

Explanations of Commands

To receive a list of all the TSO commands in the SYSl.HELP data set
along with a description of each, enter the HELP command as follows:

help

Information about installation-written commands may be placed in the
SYSl.HELP data set. You can also get all the information available on a
specific command in SYS I.HELP by entering the specific command name
as an operand on the HELP command, as follows:

help command-name

Syntax Interpretation of HELP Information

The syntax notation used to present HELP information is different from the
syntax notation used in this publication because it is restricted to characters
that can be printed by your terminal. You can get the syntax interpretation
by entering the HELP command as follows:

READY
help help

Explanations of Subcommands

When HELP exists as a subcommand, you may use it to obtain a list of
subcommands or additional information about a particular subcommand.
The syntax of HELP as a subcommand is the same as the HELP command.

10 OS/VS2 TSO Command Language Reference

)

Using Data Set Naming Conventions

A data set is a collection of related data. Each data set stored in the system
is identified by a unique data set name. The data set name allows the data
to be retrieved and helps protect the data from unauthorized use.

The data set naming conventions for TSO simplify the use of data set
names. When a data set name conforms to the conventions, you can refer
to the data set by its fully qualified name or by an abbreviated version of
the name. The following topics:

1. Describe data set names in general.

2. Define the names that conform to the naming conventions for TSO.

3. Tell how to enter a complete data set name, and how to enter the
abbreviated version of a name that conforms to the TSO data set
naming conventions.

Data Set Names in General

A data set name consists of one or more fields. Each field consists of one
through eight alphameric characters and must begin with ap. alphabetic (or
national) character.

Caution: The national characters $, @, and # are accepted as the first
character in a data set name. The characters hyphen (-) and
ampersand-zero (12-0 punch) are not accepted in a data set name.

A simple data set name with only one field may be:

PARTS

A data set name that consists of more than one field is a "qualified"
data set name. The fields in a qualified data set name are separated by
periods. A qualified data set name may be:

PARTS.OBJ

or

PARTS.DATA

Partitioned Data Sets: A partitioned data set is simply a data set with the
data divided into one or more independent groups called members. Each
member is identified by a member name and can be referred to separately.
The member name is enclosed within parentheses and appended to the end
of the data set name:

PARTS.DATA(PART14)

~rname
TSO Data Set Names

A data set name must be qualified in order to conform to the TSO data set
naming conventions. The qualified name must consist of at least the two
required fields of the following three:

1. Your user-prefix (required; defaults to userid; may be redefined using
PROFILE command).

2. A user-supplied name (optional for a partitioned data set).

Basic Information for Using TSO 11

.3. A descriptive qualifier (required).

Normally all three names are used:

USER-PREFIX. USER-SUPPLIED-NAME.DESCRIPTIVE QUALIFIER

The to~al length of the data set name must not exceed 44 characters,
including periods. A typical TSO data set name is:

WRRID.PARTS.DATA

user-prefix - WRRID

user-supplied name - PARTS

descriptive qualifier - DATA

The TSO data set naming conventions also apply to partitioned data sets.
A typical TSO name for a member of a partitioned data set is:

WRRID.PARTS.DATA(PARTt4)

User-Prefix: The user-prefix is always the leftmost qualifier of the full data
set name. For TSO, this qualifier is the prefix selected in the PROFILE
command. If no prefix has been selected, the userid assigned to you by
your installation will be used.

User-Supplied Name: You choose a name for the data sets that you want
to identify. It can be a simple name or several simple names separated by
periods.

Descriptive Qualifier: The descriptive qualifier is always the rightmost
qualifier of the full data set name. To conform to the data set naming
conventions, this qualifier must be one of the qualifiers listed in Figure 1.

Descriptive Qualifier

ASM
CLIST
CNTL
COBOL
DATA
FORT

LINKLIST
LIST
LOAD
LOADLIST
OBJ
OUTLIST
PLI

TESTLIST
TEXT
VSBASIC

Figure 1. Descriptive Qualifiers

Data Set Contents

Assembler (F) input
TSO commands
JCL and SYSIN for SUBMIT command
American National Standard COBOL statements
Uppercase text
FORTRAN (Code and Go, Gt, H)
statements
Output listing from linkage editor
Listings
Load module
Output listing from loader
Object module
Output listing from OUTPUT command
PL/I(F), PL/I Checkout, or PL/I Optimizing
compiler statements.
Output listing from TEST command
Uppercase and lowercase text
VSBASIC statements

How to Enter Data Set Names

The data set naming conventions simplify the use of data set names. If the
data set name conforms to the conventions, you need specify only the
user-supplied name field (in most cases) when you refer to the data set.
The system will add the necessary qualifiers to the beginning and to the end
of the name that you specify. In some cases, however, the system will

12 OS/VS2 TSO Command Language Reference

(

,

)

prompt you for a descriptive qualifier. Until you learn to anticipate these
exceptions to the naming conventions, you may wish to specify both the
user-supplied name and the descriptive qualifier when referring to a data
set. When you are using the LINK command, for example, the system will
add both the user identification and the descriptive qualifier, allowing you
to specify only the user-supplied name. For instance, you may refer to the
data set named USERID.PARTS.OBJ by specifying only PARTS (when
you are using LINK) or by specifying PARTS.OBJ (when you are using
other commands)., You may refer to a member of a partitioned data set
USERID.PARTS.OBJ(PART14) by specifying PARTS(PART14) when you
are using LINK or by specifying PARTS.OBJ(PART14) when you are
using other commands.

When you specify an entire fully qualified data set name, as you must do
if the name does not conform to the TSO data set naming conventions, you
must enclose the entire name within apostrophes, as follows:

'WRRID.PROG.LIST' where WRRID is not your user identification
or

'WRRID.PROG.FIRST' where FIRST is not a valid descriptive qualifier.

The system will not append qualifiers to any name enclosed in
apostrophes.

Defaults for Data Set Names: When you specify only the user-supplied
name, the system adds your user identification and, whenever possible, a
descriptive qualifier. The system attempts to derive the descriptive qualifier
from available information. For instance, if you specified ASM as an
operand for the EDIT command, the system will assign ASM as the
descriptive qualifier. If the information is insufficient, the. system will issue a
message at your terminal requesting the required information. If you specify
the name of a partitioned data set and do not include a required member
name, the system will use TEMPNAME as the default member name. (If
you are creating a new member, the member name will become
TEMPNAME: if you are modifying an existing partitioned data set, the
system will search for a member named TEMPNAME.) Figure 2 illustrates
the default names supplied by the system.

If you specify: The input data The output data set
set name is: name wiD be:

EDIT PARTS ASM UID.PARTS.ASM UID.PARTS.ASM
LINK PARTS or
LINK (PARTS) UID.PARTS.OBJ UID.PARTS.LOAD

(TEMPNAME)
CALL PARTS UID.PARTS.LOAD

(TEMPNAME)
EDIT PARTS(JAN) ASM UID.PARTS.ASM(JAN) UID.PARTS.ASM(JAN)
LINK PARTS(JAN) or
LINK (PARTS(JAN)) UID.PARTS.OBJ(JAN) UID.PARTS.LOAD(JAN)
CALL PARTS(JAN) UID.PARTS.LOAD(JAN)
EDIT (PARTS) ASM UID.ASM(PARTS) UID.ASM(PARTS)
LINK «PARTS)) UID.OBJ(PARTS) UID.LOAD(PARTS)
CALL (PARTS) UID.LOAD(PARTS)

Note: Member names must be enclosed in parentheses to distinguish them from data set
names.

Figure 2. Default Names Supplied by the System

Basic Information for Using TSO 13

Descriptive Qualifiers
Command Input Output Listing
ASM ASM OBJ LIST
CALL LOAD
COBOL COBOL OBJ LIST
CONVERT FORT FORT
EXEC CLIST
FORMAT TEXT LIST
FORT FORT OBJ LIST
LINK OBJ LOAD LINKLIST

LOAD
LOADGO OBJ LOAD LIST

LOAD
OUTPUT OUTLIST
RUN ASM

FORT
COBOL

SUBMIT CNTL
TEST OBJ TESTLIST

LOAD

Figure 3. Descriptive Qualifiers Supplied by Default

Specifying Data Set Passwords

When referencing password protected data sets, you must specify the
password as part of the data set name or you will be prompted for it. The
password is separated from the data set name by a slash (/) and optionally,
by one or more standard delimiters (tab, blank, or comma). ee
discussion on "Password Data Set" that appears under the ROTECT
command for non-VSAM data sets. For VSAM data sets, see
ALTER in OS/VS2 Access Method Services.

Using Commands for VSAM and Non-VSAM Data Sets
Figure 4 gives recommended commands, by function, for VSAM and
non-VSAM data sets. Numbers in parentheses after the commands indicate
order of preference. Program product commands are identified with an
asterisk (*). Refer to OS/VS2 Access Method Services for commands not
covered in this document.

Function Non-VSAM VSAM

Build lists of attributes ATTRIB (None)
Allocate new DASD space ALLOCATE DEFINE
Connect data set to terminal ALLOCATE ALLOCATE
List names of allocated LISTALC LISTALC
(connected) data sets
Modify passwords PROTECT DEFINE,ALTER
List attributes of one or LISTDS (1) LISTCAT (1)
more objects LISTCAT (2) LISTDS (2)
List names of cataloged data sets

Limit by type LISTCAT LISTCAT
Limit by naming convention LISTDS LISTDS

Catalog data sets DEFINE (1) DEFINE
ALLOCATE (2)

List contents EDIT,LIST* PRINT
Rename RENAME ALTER
Delete DELETE DELETE
Copy data set COPY* REPRO

Figure 4. Commands Preferred for VSAM/Non-VSAM Data Sets

14 OS/VS2 TSO Command Language Reference

(;I

'~

(

The Commands

This section contains descriptions of the TSO commands. The commands
are presented in alphabetical order. Subcommands are presented in
alphabetical order following the command to which they apply.

The Commands 15

c
16 OS/VS2 TSO Command Language Reference

ALLOCATE Command

Use the ALLOCATE command or the ALLOCATE subcommand of EDIT
(function and syntax is identical to the ALLOCATE command) to
dynamically allocate the data sets required by a program that you intend to
execute. You may use the ATTRIB command to build a list of attributes for
non-VSAM data sets that you intend to allocate dynamically. During the
remainder of your terminal session you can have the system refer to this list
for data set attributes when you ent~r the ALLOCATE command. The
ALLOCATE command will convert the attributes into the DCB parameters
for data sets being allocated.

ALLOCATE Command 17

{
ALLOCATE}
ALLOC

18 OS/VS2 TSO Command Language Reference

{{
DATASET} { (*) }}rFILE(name) J
DSNAME (dsname-list) l,pDNAME(name)

DUMMY

{
FILE(name) }[{DATASET} { (*) }]
DDNAME(name) DSNAM E . (dsname-list) .

DUMMY

~~~~ ] 
MOD 
NEW 
SYSOUT[(class)] 

[
VOLUME(Serial-list)] 
'MSVGP(jdentifier) 

[

PACE(quantity [,increment] ) 1 BLOCK(value) lJ 
BLKSIZE(value) 

AVBLOCK(value) 
TRACKS 
CYLINDERS 

[01 R(integer)] 

[DEST(stationid)] 

[
HOLD J 
NOHOLD 

[UNIT(type)] 

[ 
UCO. UNT(COunt)] 
PARALLEL 

[LABEL(type) ] 

[POSITION (sequence-no.)] 

[MAXVOL(count)] 

[PRIVATE] 

[VSEQ(vol-seq-no) ] 

[USI NG (attr-list-name)] 

[RELEASE] 

[ROUND] 

[

KEEP J DELETE 
CATALOG 
UNCATALOG 

( 



DATASET(dsname-list or *) or DSNAME(dsname-list or *) 

specifies the name of the data set that is to be allocated. If a list of data 
set names is entered, ALLOCATE will allocate and concatenate 
non-VSAM data sets. The data set name must include the descriptive 
(rightmost) qualifier and may contain a member name in parentheses. 
If you specify a password, you will not be prompted for it when you 
open a non-VSAM data set.· For additional information on VSAM data 
sets see, OS/VS2 Access Method Services, under the section "Data 
Security and Integrity." 
You may substitute an asterisk (*) for the data set name to indicate that 
you want to have your terminal allocated for input and output. If you 
use an asterisk (*), only the FILE or DDNAME, BLOCK or BLKSIZE, 
and USING operands should be entered. All other operands are ignored. 
No message is issued to notify the user. 

Note 1: If you allocate more than one data set to your terminal, the 
blocksize and other data set characteristics which default on the first usage 
will also be used for all other data sets. This happens for input or output. 
The ATTRIB command and the USING keyword of ALLOCATE can be 
used to control the data set characteristics being used. 

Note 2: The system generates names for SYSOUT data sets; therefore, 
you should not specify a data set name when you allocate a SYSOUT data 
set. If you do, the system ignores it. 

Note 3: Data sets residing on the same physical tape volume cannot be 
allocated concurrently. 

Note 4: The following items should be noted when using the concatenate 
function: 

• The data sets specified in the list must be cataloged. You may use the 
CATALOG operand of either ALLOCATE or FREE to catalog a 
data set. 

• The maximum number of data sets that can be concatenated is 255 
sequential or 16 partitioned data sets. The data sets to be 
concatenated must be either all sequential or all partitioned. 

• The data set group will be permanently concatenated. The group must 
be freed in order to be deconcatenated. The filename specified for the 
FILE or DDNAME operand on ALLOCATE must be specified for 
the FILE or DDNAME operand on FREE. 

• All operands are ignored except for the following: 
DATASET /DSNAME, FILE/DDNAME, and status operands. 

DUMMY 

specifies that no devices or external storage space is to be allocated to 
the data set, and no disposition processing is to be performed on the 
data set. Entering the DUMMY keyword will have the same effect as 
specifying NULLFILE as the data set name 0:0. the DATASET or 
DSNAME operand. If DUMMY is specified, only the FILE or 
DDNAME, BLOCK or BLKSIZE, and USING operands should be 
entered. All other operands are ignored. 

ALLOCATE Command 19 



FILE(name) or DDNAME(name) 

specifies the name to be associated with the data set. It may contain no 
more than eight characters .. (This name corresponds to the name on the 
data definition (DD) statement in job control language and must match 
the ddname in the data control block (DCB) that is associated with the 
data set.) For PL/I, this name is the file name in a DECLARE 
statement and has the form "DCL file name FILE"; for instance, DCL 
MASTER FILE. For COBOL, this name is the external-name used in 
the ASSIGN TO clause. For FORTRAN, this name is the data set 
reference number that identifies a data set and has the form 
"FTxxFyyy;" for instance FT06F002. 
If you omit this operand, the system assigns an available file name 
(ddname) from a data definition statement in the procedure that is 
invoked when you enter the LOGON command. 

OLD 

indicates that the data set currently exists and that you require exclusive 
use of the data set. The data set should be cataloged. If it is not, you 
must specify the VOLUME operand. OLD data sets are retained by the 
system when you free them from allocation. The DATASET or 
DSNAME parameter is required. 

SHR 
indicates that the data set currently exists but that you do not require 
exclusive use of the data set. Other tasks may use it concurrently. 
ALLOCATE assumes the data set is cataloged if the VOLUME operand 
is not entered. SHR data sets are retained by the system when you free 
them. The DATASET or DSNAME parameter is required. 

MOD 
indicates that you want to append data to the end of the data set. If the 
data set does not exist, a new data set is created. MOD data sets will be 
retained by the system when you free them. The DATASET or 
DSNAME parameter is required. 

NEW 

(non-VSAM only) indicates that the data set does not exist and that it is 
to be created. For new partitioned data sets you must specify the DIR 
operand. A NEW data set will be kept and cataloged if you specify a 
data set name. If you do not specify a data set name, it will be deleted 
when you free it or log off. 

SYSOUT[(class)] 

indicates that the data set is to be a system output data set. An optional 
sub field may be defined giving the output class of the data set. Output 
data will be initially directed to the job entry subsystem and may later be 
transcribed to a final output device. The final output device is associated 
with output class by the installation. After transcription by the job entry 
subsystem, SYSOUT data sets are deleted .. 

Note: If you do not specify OLD, SHR, MOD, NEW or SYSOUT, a 
default value is assigned, or a value is prompted for, depending on the other 
operands specified: 

1. If any space parameters (SPACE, DIR, BLOCK, BLKSIZE, 
A VBLOCK, TRACKS or CYLINDERS) are specified, then the 
status defaults to NEW. 

20 OS/VS2 TSO Command Language Reference 

( 



July 30, 1980 

2. If none of the space parameters are entered, and the 
DATASET/DSNAME parameter is entered, then the status defaults 
to OLD. 

3. If neither the DATASET or DSNAME parameter is specified or any 
space parameters, then you are prompted to enter a value for status. 

VOLUME(serial-list) 

specifies the serial number(s) of an eligible direct access volume(s) on 
which a new data set is to reside or on which an old data set is located. 
If VOLUME is specified for an old data set, the data set must be on the 
specified volume(s) for allocation to take place. If you do not specify 
VOLUME, new data sets are allocated to any eligible direct access 
volume. Eligibility is determined by the UNIT information in your 
procedure entry in the user attribute data set (UADS). 

MSVGP(identifier) 
specifies an installation-defined group of MSS volumes to be used for 
system selection of a volume or volumes to be mounted. This keyword is 
used for new data set allocation on MSS (3330V) devices only. It is 
ignored for old data sets, DUMMY, SYSOUT and terminal data sets. 
The user's UADS data set must contain the MOUNT attribute. Use of 
this keyword implies PRIV ATE. 

SPACE(quantity, increment) 

specifies the amount of space to be allocated for a new data set. If this 
parameter or the primary space quantity is omitted, the default space is 
(10,50) A VBLOCK (1000). To indicate the unit of space for allocation, 
you must specify one of the following: BLOCK(value) or 
BLKSIZE(value), AVBLOCK(value), TRACKS, or CYLINDERS. The 
amount of space requested is determined as follows: 

BLOCK(value) or BLKSIZE(value) 

- Multiply the value of the BLOCK/BLKSIZE operand by the 
"quantity" value of the SPACE operand. 

AVBLOCK(value) 

- Multiply the value of the A VBLOCK operand by the "quantity" 
value of the SPACE operand. 

TRACKS 
- The "quantity" value of the SPACE operand is the number of tracks 
you are requesting. 

CYLINDERS 

- The "quantity" value of the SPACE operand is the number of 
cylinders you are requesting. 
SPACE may be specified for SYSOUT, NEW, and MOD data sets. 
You must specify a unit of space when you use the SPACE operand. 

quantity 

specifies the number of units of space to be allocated initially for a data 
set. 

increment 

specifies the number of units of space to be added to the data set each 
time the previously allocated space has been filled. 

ALLOCATE Command 21 



Page of GC28-0646-4 
As Updated July 30, 1980 
By TNL GN28-47S4 

BLOCK(value) or BLKSIZE(value) 

specifies the average length (in bytes) of the records that will be written 
to the data set. The block value will be the unit of space used by the 
SPACE operand. You may specify BLOCK (value) or BLKSIZE(value) 
for SYSOUT, NEW, MOD, DUMMY, or terminal data setS"1r'~ 
value is not acceptable. If BLKSIZE (80) is specified an RECFM=U,) 
then the line will be truncated by 1 character. (That position .-/ 
byte) is reserved for an attribute character.) 
The following operands are ignored for SYSOUT data sets: MSVGP, 
VOLUME, PRIVATE, LABEL, MAXVOL, DIR, USE Q, and DISP. 

Note: The value supplied for BLOCK or BLKSIZE also becomes the value 
recorded in the DCB BLKSIZE for the data set unless you specify the 
USING operand. When the USING operand is specified, the value recorded 
in the DCB BLKSIZE is taken from the attribute list. 

AVBLOCK(value) 

specifies only the average length (in bytes) of the records that will be 
written to the data set. 

TRACKS 

specifies that the unit of space is to be a track. 

CYLINDERS 

specifies that the unit of space is to be a cylinder. 

Note: The keywords BLOCK, BLKSIZE, A VBLOCK, TRACKS and 
CYLINDERS may be specified for SYSOUT, NEW or MOD data sets. The 
keywords BLOCK or BLKSIZE can also be specified for dummy or 
terminal data sets. 

DIR(integer) 

specifies the number of 256 byte records that are to be allocated for the 
directory of a new partitioned data set. This operand must be specified if 
you are allocating a new partitioned data set. 

DEST(stationid) 

specifies a remote work station to which SYSOUT data sets will be 
directed upon unallocation. The stationid is the one to seven character 
name of the remote work station receiving the SYSOUT data set. 

HOLD 

specifies that the data set is to be placed on a HOLD queue upon 
unallocation. 

NOHOLD 

specifies that processing of the output should be determined via the 
HOLD /NOHOLD specification associated with the particular SYSOUT 
class specified. However, the specification associated with the SYSOUT 
class may be overridden by using the NOHOLD keyword on the FREE 
command. 

22 OS/VS2 TSO Command Language Referen,ce 



Page of GC28-0646-4 
As Updated July 30, 1980 
By TNL GN28-4754 

UNIT(type) 

specifies the unit type to which a file or data set is to be allocated. You 
may specify an installation-defined group name, a generic device type, or 
a specific device address. If volume information is not supplied, (volume 
and unit information is retrieved from a catalog) the unit type that is 
coded will override the unit type from the catalog. This condition exists 
only if the coded type and class are the same as the cataloged type and 
class. 

ALLOCATE Command 22.1 



July 30, 1980 

22.2 OS/VS2 TSO Command Language Reference 



UCOUNT(count) 
specifies the maximum number of devices to be allocated, where count is 
a value from 1-59. 

PARALLEL 
specifies that one device is to be mounted for each volume specified on 
the VOLUME operand or in the catalog. 

LABEL(type) 
specifies the kind of label processing to be done. Type may be one of 
the following: 
SL, SUL, AL, AUL, NSL, NL, L TM, or BLP. These types correspond to 
the present JCL label-type values. 

POSITION(sequence-no.) 
specifies the relative position (1-9999) of the data set on a multiple data 
set tape. The sequence number corresponds to the data set sequence 
number field of the label parameter in J CL. 

MAXVOL(count) 
specifies the maximum number (1-255) of volumes a data set can use. 
This number corresponds to the count field on the VOLUME parameter 
in JCL. 

PRIVATE 
specifies that the private volume use attribute be assigned to a volume 
that is not reserved or permanently resident. This operand corresponds to 
the PRIVATE keyword of the VOLUME parameter in JCL. 

Note: If VOLUME and PRIVATE operands are not specified and the value 
specified for MAXVOL exceeds the value specified for UCOUNT, the 
system will not demount any volumes when all of th~ mounted volumes 
have been used, causing abnormal termination of your job. If PRIV ATE is 
specified, the system will demount one of the volumes and mount another 

. volume in its place so that processing can continue. 

VSEQ(vol-seq-no.) 
specifies at which volume (1-255) of a multi-volume data set processing 
is to begin. This operand corresponds to the volume sequence number on 
the VOLUME parameter in JCL. VSEQ should only be specified when 
the data set is cataloged. 

USING(attr-list-name) 

specifies the name of a list of attributes that you want to have assigned 
to the data set that you are allocating. The attributes in the list 
correspond to, and will be used for, data control block (DCB) 
parameters. (Note to users familiar with conventional batch processing: 
these DCB parameters are the same as those normally specified by JCL 
and data management macro instructions.) 
An attribute list must be stored in the system before you use this 
operand. You can build and name an attribute list by using the ATTRIB 
command. The ATTRIB command allocates a file with the name being 
the (attr-list-name) specified in the ATTRIB command. The name that 
you specify for the list when you use the ATTRIB command is the name 
that you must specify for this USING(attr-list-name) operand. 

ALLOCATE Command 23 



RELEASE 
specifies that unused space is to be deleted when the data set is freed. 

Note: If RELEASE is used with a new data set with the BLOCK or 
BLKSIZE parameter, then the SPACE parameter must be used. 

ROUND 
specifies that the allocated space be equal to one or more cylinders. This 
operand should be specified only when space is requested in units of 
blocks. This operand corresponds to the ROUND keyword on the 
SPACE parameter in JCL. 

Note: The final disposition of the following operands can be modified by a 
command processor. 

KEEP 
specifies that the data set is to be retained by the system after it is freed. 

DELETE 
specifies that the data set is to be deleted after it is freed. 

CATALOG 
specifies that the data set is to be retained by the system in a catalog 
after it is freed. 

UNCATALOG 
specifies that the data set is to be removed from the catalog after it is 
freed. The data set is still retained by the system. 

Example 1 

Operation: Allocate an existing cataloged data set containing input data for 
a program. The data set name conforms to the data set naming 
conventions, and you need exclusive use of the data. 

Known: 
The name of the data set: MOSER 7 .INPUT .DAT A 

allocate dataset(input.data) old 

Example 2 

Operation: Allocate a new data set. 

Known: 
The name that you want to give the data: MOSER7.0UTPUT.DATA 
The number of tracks expected to be used: 10 
DCB parameters are in an attribute list named A TTR. 

allocate dataset(output.data) new space(10,2) tracks 
using(attr) 

1A OS/VS2 TSO Command Language Reference 



Example 3 

Operation: Allocate your terminal as a temporary input data set. 

allocate dataset(*) file(ft01f001) 

Example 4 

Operation: Allocate an existing data set that is not cataloged and whose 
name does not conform to the data set naming conventions. 

Known: 
The data set name: SYSl.PTIMAC.AM 
The volume serial number: B99RS2 
The DD name: SYSLIB 

alloc dataset( 'sys1.ptimac.am') file(syslib) 
volume(b99rs2) shr 

Example 5 

Operation: Allocate a new partitioned data set. 

Known: 
The data set name: MOSER7.0VERHEAD.TEXT 
The block length: 256 bytes 
The number of blocks: 500 
The number of directory records: 50 

.. ".",,~ 
alloc dataset(overhead.text) new block(256) space(500) 
dir(50) 

Example 6 

Operation: Allocate a new data set to contain the output from a program. 

Known: 
The data set name: MOSER7.0UT.DATA 
The file name: OUTPUT 
You don't want to hold unused space. 

alloc dataset(out.data) file(output) newspace(10,2) 
tracks release 

ALLOCATE COIIIIIIIUId 25 



Example 7 

Operation: Allocate an existing multi-volume data set to SYSDA, with one 
device mounted for each volume. 

Known: 
Data set name - MOSER7.MULTIVOL.DATA 
volumes - D95VLl 

D95VL2 
D95VL3 

filename - SYSLIB 

alloe dataset( 'moser7.multivol.data') old parallel 
file(syslib) volume(d95v11,d95v12,d95v13) 
unit(sysda) 

Example 8 

Operation: Allocate an existing data set on the second file of a 
standard-label tape. 

Known: 
Data set name - MOSER7.TAPEl.DATA 
volume - TAPEVL 
unit - 2400 

alloe dataset( 'moser7.tape1.data') label(sl) 
unit(2400) volume(tapevl) position(2) 

26 OS/VS2 TSO Command Language Reference 

( 



A TfRIB Command 

Use the ATTRIB command to build a list of attributes for non-VSAM data 
sets that you intend to allocate dynamically. During the remainder of your 
terminal session you can have the system refer to this list for data set 
attributes when you enter the ALLOCATE command. The ALLOCATE 
command will convert the attributes into DCB parameters and LABEL 
parameters for data sets being allocated. See also the subparameters of the 
DCB parameter in OS/VS2 JCL. 

The ATTRIB command allocates a file with the same name as your 
attribute-list-name. You can use the LIST ALC command with the STATUS 
keyword to list your active attribute lists. The data set name is NULLFILE 
which is also the data set name for files allocated with the DUMMY 
keyword of the ALLOCATE command. Note that, since this is a 
NULLFILE allocation, it is subject to use and modification by other 
commands. Therefore, it is advisable to allocate those data sets for which 
the attribute list was built before you issue any commands that may cause 
NULLFILE allocation, such as LINK or RUN. 

A TIRIR Command 27 



{
ATTRIB} 
ATTR 

28 OS/VS2 TSO Command Language Reference 

attr-list-name 

[B LKSI ZE (blocksize)] 

[B U F L (buffer-length)] 

[BUFNO(number-of-buffers) ] 

[LRECL ({ IOgiCal-rec~rd-length~)J 

[NCP(no.-of-channel-programs) ] 

[
INPUT ] 
OUTPUT 

[ 
EXPDT(year-day) ] 
R ETPD(no.-of-days) 

[BFALN ({~})J 
[OPTCD(A,B,C,E,F,H,Q,R,T,W, and/or Z)] 

[RECFM(A,B,D,F,M,S,T,U, and/or V)] 

[DIAGNS(TRACE)] 

[LI MCT (search-number)] 

[BUFOFF ({ bIOCk-pr~fiX-I.ngth}) ] 

DA 
DAU 
PO 
POU 
PS 
PSU 

( 



Page of GC28-0646-4 
As Updated July 30, 1980 
By TNL GN28-4754 

attr-list-name 

specifies the name for the attribute list. This name can be specified later 
as a parameter of the ALLOCATE command. The name must consist of 
one through eight alphameric andlor national characters, must begin with 
an alphabetic or national character, and must be different from all other 
attr-list-names and ddnames that are in existence for your terminal 
session. 

BLKSIZE(blocksize) 

specifies the block size for the data sets. The block size must be a 
decimal number and must not exceed 32,760 bytes. 
The block size that you specify must be consistent with the requirements 
of the RECFM operand. If you specify: 
• RECFM(F), then the block size must be equal to or greater than the 

logical record length. 
• RECFM(F B), then the block size must be an integral multiple of the 

logical record length. 
• RECFM(V), then the block size must be equal to or greater than the 

largest block in the data set. (Note: For unblocked variable-length 
records, the size of the largest block must allow space for the four 
byte block descriptor word in addition to the largest logical record 
length. The logical record length must allow space for a four-byte 
record descriptor word.) 

• RECFM(V B), then the block size must be equal to or greater than 
the largest block in the data set. (Note: For block variable length 
records, the size of the largest block must allow space for the four 
byte block descriptor word in addition to the sum of the logical record 
lengths that will go into the block. Each logical record length must 
allow space for a four-byte record descriptor word.) Since the number 
of logical records can vary, you must estimate the optimum block size 
(and the average number of records for each block) based on your 
knowledge of the application that requires the 1/0. 

• RECFM(U) and BLKSIZE(80), then one character will be truncated 
from the line, that character (the last byte) is reserved for an attribute 
character. 

BUFL(buff er-length) 
specifies the length, in bytes, of each buffer in the buffer pool. Substitute 
a decimal number for buffer-length. The number must not exceed 
32,760. 
If you omit this operand and the system acquires buffers automatically, 
the BLKSIZE and KEYLEN operands will be used to supply the 
information needed to establish buffer length. 

BUFNO(number-of -buffers) 
specifies the number of buffers to be assigned for data control blocks. 
Substitute a decimal number for number-of -buffers. The number must 
never exceed 255, and you may be limited to a smaller number of 
buffers depending on the limit established when the operating system was 
generated. The following table shows the condition that requires you to 
include this operand. 

A TfRIB Command 29 



Page of GC28-0646-4 
As Updated July 30, 1980 
By TNL GN28-4754 

When you use one of the following 
methods of obtaining the buffer pool... then: 

(1) BUILD macro instruction 
(2) GETPOOL macro instruction 

(3) Automatically with BPAM or BSAM 
(4) Automatically with QSAM 

29.0 OS/VS2 TSO Command Language Reference 

(1) You must specify BUFNO. 
(2) The system uses the number 

that you specify for 
GETPOOL. 

(3) You must specify BUFNO. 
(4) You may omit BUFNO and 

accept two buffers. 



July 30, 1980 

ATTRIB Command 29.1 



July 30, 1980 

LRECL(logical-record-length) 
specifies the length, in bytes, of the largest logical record in the data set. 
You must specify this operand for data sets that consist of either 
fixed-length or variable-length records. 
Omit this operand if the data set contains undefined-length records. 
The logical record length must be consistent with the requirements of the 
RECFM operand and must not exceed the block size (BLKSIZE 
operand) except for variable-length-spanned records. If you specify: 

• RECFM(V) or RECFM(V B), then the logical record length is the 
sum of the length of the actual data fields plus four bytes for a record 
descriptor word. 

• RECFM(F) or RECFM(F B), then the logical record length is the 
length of the actual data fields. 

• RECFM(U), then you should omit the LRECL operand. 

Note: For variable-length spanned records (VS or VBS) processed by 
QSAM (locate mode) or BSAM, specify LRECL (X) when the logical 
record exceeds 32,756 bytes. 

NCP(number-of-channel-programs) 
specifies the maximum number of READ or WRITE macro instructions 
allowed before a CHECK macro instruction is issued. The maximum 
number must not exceed 99 and must be less than 99 if a lower limit 
was established when the operating system was generated. If you are 
using chained scheduling, you must specify an NCP value greater than 1. 
If you omit the NCP operand, the default value is 1. 

INPUT 
specifies that the data set will be used only as input to a processing 
program. 

OUTPUT 
specifies that the data set will be used only to contain output from a 
processing program. 

EXPDT(year-day) 
specifies the data set expiration date. You must specify the year and day 
in the form 'yyddd', where 'yy' is a two digit decimal number for the 
year and 'ddd' is a three digit decimal number for the day of the year. 
For example, January 1, 1974 is 74001 and December 31, 1975 is 
75365. 

RETPD(number-of -days) 
specifies the data set retention period in days. The value may be a one to 
four digit decimal number. 

BFALN( {~ } ) 

specifies the boundary alignment of each buffer as follows: 
F each buffer starts on a fullword boundary that is not a doubleword 

boundary. 
D each buffer starts on a doubleword boundary. 
If you do not specify this operand and it is not available from any other 
source, data management routines assign a doubleword boundary. 

30 OS/VS2 TSO Command Language Reference 



) 

OPTCD(A,B,C,E,F,H,Q,R,T, Wand/or Z) 

specifies the following optional services that you want the system to 
perform. (See also the OPTCD subparameter of the DCB parameter in 
OS/VS2 JCL for a detailed discussion of these services.) 
A specifies that actual device addresses be presented in READ and 

WRITE macro instructions. 
B specifies that end-of-file (EOF) recognition be disregarded for tapes. 
C specifies the use of chained scheduling. 
E requests an extended search for block or available space. 
F specifies that feedback from a READ or WRITE macro instruction 

should return the device address in the form it is presented to the 
control program. 

H requests the system to check for and bypass. 
Q requests the system to translate a magnetic tape from ASCII to 

EBCDIC or from EBCDIC to ASCII. 
R requests the use of relative block addressing. 
T requests the use of the user totaling facility. 
W requests the system to perform a validity check when data is written 

on a direct access device. 
Z requests the control program to shorten its normal error recovery 

procedure for input on magnetic tape. 
(You can request any or all of the services by combining the values for 
this operand. You may combine the characters in any sequence, being 
sure to separate them with blanks or commas.) 

EROPT({ACC} 
SKP 

ABE 

specifies the option that you want executed if an error occurs when a 
record is read or written. The options are: 
ACC to accept the block of records in which the error was found. 
SKP to skip the block of records in which the error was found. 
ABE to end the task abnormally. 

BITEK( [n ) 
specifies the type of buffering that you want the system to use. The 
types that you can specify are: 
S simple buffering 
E exchange buffering 
A automatic record area buffering 
R record buffering 

ATTRIB Command 31 



( 

RECFM(A,B,D~F,M,S,T,U, and/or V) 
specifies,the format and characteristics of the records in the data set. The 
format and characteristics must be completely described by one source 
only. If they are not available from any source, the default will be an 
undefined-length record. (See also the RECFM subparameter of the 
DCB parameter in OS/VS2 JCL for a detailed discussion of the formats 
and characteristics~) 
Use the following values with the RECFM operand. 
A indicates that the record contains ASCII printer control characters. 
B indicates that the records are blocked. 
o indicates variable-length ASCII records. 
F indicates that the records are of fixed-length. 
M indicates that the records contain machine code control characters. 
S indicates that, for fixed-length records, the records are written as 

standard blocks (there must be no truncated blocks or unfilled tracks 
except for the last block or track). For variable-length records, a 
record may span more than one block. Exchange buffering, 
BFTEK(E), must not be used. 

T indicates that the records may be written onto overflow tracks if 
required. Exchange buffering, BFTEK(E), or chained scheduling, 
OPTCD(C), cannot be used. 

U indicates that the records are of undefined length. 
V indicates that the records are of variable length. 
You may specify ~2g~.&r.".plQr£;~glues for this operand (at least one is 
required). ... 

DIAGNS(TRACE) 

specifies the Open/Close/EOY trace option that gives a 
module-by-module trace of the Open/Close/BOY work area and the 
user's DCB. 

LIMCT(search-number) 
specifies the number of blocks or tracks to be searched for a block or 
available space. The number must not exceed 32,760. 

BUFOFF( {~ock-prenx-Iength } 

specifies the buffer offset. The block prefix length must not exceed 99. 
"L" is specified if the block prefix field is four bytes long and contains 
the block length. 

DSORG( DA 

DAU 

PO 

POU 

PS 
PSU 

specifies the data set organization as follows: 
DA - direct access 
DAU - direct access unmovable 
PO - partitioned organization 
POU - partitioned organization unmovable 
PS - physical sequential 
PSU - physical sequential unmovable 

32 OS/VS2 TSO Command Language Reference 

( 



specifies the magnetic tape density as follows: 
o - 200 bpi/ 7 track 
1 - 556 bpi/7 track 
2 - 800 bpi/7 and 9 track 
3 - 1600 bpi/ 9 track 
4 - 6250 bpi/9 track (IBM 3420 Models 4, 6, and 8, or equivalent) 

TRTCH( ftf 
specifies the recording technique for 7-track tape as follows: 
C data conversion with odd parity and no translation 
E even parity with no translation and no conversion 
T odd parity and no conversion; BCD to EBCDIC translation when 

reading and EBCDIC to BCD translation when writing 
ET even parity and no conversion; BCD to EBCDIC translation when 

reading and EBCDIC to BCD translation when writing 

KEYLEN(key-length) 
specifies the length in bytes of each of the keys used to locate blocks of 
records in the data set when the data set resides on a direct access 
device. The key length must not exceed 255 bytes. If an existing data set 
has standard labels, you can omit this operand and let the system retrieve 
the key length from the standard label. If a key length is not supplied by 
any source before you issue an OPEN macro instruction, a length of zero 
(no keys) is assumed. This keyword is mutually exclusive with TRTCH. 

Example 1 

Operation: Create a list of attributes to be assigned to a data set when the 
data set is allocated. 

Known: 
The following attributes correspond to the DCB parameters that you 

want assigned to a data set. 
Optional services: chained-scheduling, user totaling. 
Expiration date: Dec. 31, 1977. 
Record format: variable-length spanned records. 
Error option: abend when READ or WRITE error occurs. 
Buffering: simple buffering. 
Boundary. alignment: doubleword boundary. 
Logical record length: records may be larger than 32,756 bytes. The 

name for this attribute list is DCBP ARMS. 

attr dcbparms optcd(c t) expdt(77365) recfm(v s) -
eropt(abe) bftek(s) bfaln(d) lrecl(x) 

ATIRIB Command 33 



Example 2 

Operation: This example shows how to create an attribute list, how to use 
the list when allocating two data sets, and how to delete the list so that 
it cannot be used again. 

Known: 
The name for the attribute list: DSATTRS 
The attributes: EXPDT(99365) BLKSIZE(24000) BFTEK(A) 
The name for the first data set: FORMAT.INPUT 
The name of the second data set: TRAJECT.INPUT 

attrib dsattrs expdt(99365) blksize(24000) -
bftek(a) 
allocate dataset(format.input) new block(80) -
space(1,1) volume(111111) using(dsattrs) 
alloc da(traject.input) old bl(80) volume(111111) -
using(dsattrs) 
free attrlist(dsattrs) 

34 OS/VS2 TSO Command Language Reference 

( 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

CALL Command 

Use the CALL command to load and execute a program that exists in 
executable (load module) form. The program may be user-written, or it may 
be a system module such as a compiler, sort, or utility program. 

You must specify the name of the program (load module) to be 
processed. It must be a member of a partitioned data set. 

You may specify a list of parameters to be passed to the specified 
program. The system formats this data so that when the program receives 
control, register one contains the address of a fullword. The three low order 
bytes of this fullword contain the address of a halfword field. This halfword 
field is the count of the number of bytes of information contained in the 
parameter list. The parameters immediately follow the halfword field. 

If the program terminates abnormally, you are notified of the condition 
and may enter a TEST command to examine the failing program. 

CALL 
{ 

dsname } 
dsname(membername) 

[ 'parameter-string'] 

dsname(membername) 
specifies the name of a partitioned data set and the membername 
(program name) to be executed. The membername must be enclosed in 
parentheses. 

Note: A temporary tasklib is established when programs are invoked via the 
CALL command. The tasklib is effective for the execution of the CALL 
command and the tasklib data set is the same as the dsname specified on 
the invocation of the CALL command. 

If the name of the partitioned data set does not conform to the data set 
naming conventions, it must include the member name in the following 
manner: 

dsname(membername) 

If you specify a fully qualified name, enclose it in apostrophes (single 
quotes) in the following manner: 

'wrrid.myprogs.loadmod(a), 
'sys1.1inklib(ieuasm)' 

parameter string 
specifies up to 100 characters of information that you want to pass to 
the program as a parameter list. When passing parameters to a program, 
you should use the standard linkage conventions. 

CALL Command 35 



January 11, 1980 

Example 1 

Operation: Execute a load module. 

Known: 
The: name of the load module: JUDAL.PEARL.LOAD(TEMPNAME) 
'Parameters: 10,18,23 

call pearl '10,'18,23' 

Example ,2 

Operation: Execute a load module. 

Known: 
The name of the load module: JUDAL.MYLIB.LOAD(COSl) 

callmylib(cOs1 ) 

Example 3 

Operation: Execute a load module. 

Known: 
The name of the load module: JUDAL.LOAD(SIN1) 

call (sin1) 

36 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

DELETE Command 

Use the DELETE command to delete one or more data set entries or one 
or more members of a partitioned data set. 

The catalog entry for a partitioned data set is removed only when the 
entire partitioned data set is deleted. The system deletes a member of a 
partitioned data set by removing the member name from the directory of 
the partitioned data set. 

Members of a partitioned data set and aliases for any members must 
each be deleted explicitly. That is, when you delete a member, the system 
does not remove any alias names of the member; likewise, when you delete 
an alias name, the member itself is not deleted. 

If a generation-data-group entry is to be deleted, any generation data 
sets that belong to it must have been deleted. 

For MVS, the original TSO DELETE command has been replaced by 
the Access Method Services command with the same name. The 
explanations given below provide the information required to use these 
services for normal TSO operations. The TSO user who wants to 
manipulate VSAM objects or who wants to use the other Access Method 
Services from his terminal should refer to OS/VS2 Access Method Services. 
For error message information, refer to OS/VS Message Library: VS2 
System Messages. 

The DELETE command supports unique operand abbreviations in 
addition to the usual abbreviations produced by truncation. The syntax and 
operand explanations show these unique cases. 

Before you delete a protected non-VSAM data set, you should use the 
PROTECT command to delete the password from the password data set. 
This will prevent your having insufficient space for future entries. 

DELETE Command 37 



{
DELETE} 
DEL 

(entryname [!password] [ ... ]) 

[CATALOG(catname[!password] )] 

[FJLE(ddname)] 

[{
PURGE} ,] 
PRG 

{~~:~RGE} 

[ {~~:::SE}] NERAS 

[{~~:~:~~CH}J NSCR ' 

CLUSTER 

{
USERCATALOG} 

, UCAT 

{
SPACE} 
SPC 

{
NONVSAM} 

" NVSAM 

ALIAS 

{
GENERATIONOATAGROUP} 

, GOG 

{
PAGESPACE} 
PGSPC 

entryname[/password][ ... J 

January 11, 1980 

is a required parameter that names the entries to be deleted. When more 
than one entry is to be deleted, the list of entry names must be enclosed 
in parentheses. This parameter must be the first parameter following 
DELETE. 

If you want to delete several data set entries having similar names, you 
may insert an asterisk into the data set name at the point of dissimilarity. 
That is, all data set entries whose names match except at the position where 
the asterisk is placed will be deleted. However, you may use only one 
asterisk per data set name, and you must not place it in the first position. 
TSO does not prefix the userid when an asterisk appears in the first 
position. 

For instance, suppose that you have several data set entries named: 

VACOT.SOURCE.PLI 
VACOT.SOURCE2.PLI 
VACOT.SOURCE2.TEXT 
VACOT.SOURCE2.DATA 

38 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

If you specify: 

delete source2.* 

the only data set entry. remaining will be 

VACOT.SOURCE.PLI 

password 

specifies a password for a password-protected entry. Passwords may 
be specified for each entry name or the catalog's password may be 
specified through the CATALOG parameter for the catalog that 
contains the entries to be deleted. 

CATALOG(catname[/password]) 

specif~es the name of the catalog that contains the entries to be deleted. 

catname 

identifies the catalog that contains the entry to be deleted. 

password 

specifies the master password of the catalog that contains the entries 
to pe deleted. 

FILE(ddname) 

specifies the name of the DD statement that identifies the volume that 
contains the data set to be deleted ()r identifies the entry to be deleted. 

PURGE or PRG 

specifies that the entry is to be deleted even if the retention period, 
specified in the TO or FOR parameter, has not expired. 

NOPURGE or NPRG 
specifies that the entry is not to be deleted if the retention period has 
not expired. When NOPURGE is coded and the retention period has not 
expired, the entry is not deleted. If neither PURGE nor NOPURGE is 
coded, NOPURGE is the default. 

ERASE 

specifies that the data ~omponent of a cluster (VSAM only) is to be 
overwritten with binary zeros when the cluster is deleted. If ERASE is 
specified, the volume that contains the data component must be 
mounted. 

NOERASEor NERAS 
specifies that the data component of a cluster (VSAM only) is not to be 
overwritten with binary zeros when the cluster is deleted. 

SCRATCH . . 
. specifies that a non-VSAM data set is to be scratched (removed) from 
the volume table of contents (VTOC) of the volume on which it resides. 
SCRATCH is'the default if neither SCRATCH nor NOSCRATCH is 
specified .. 

. NostRA TCH or NSCR 

, specifies that a non-VSAMdata'set is not to be scratched (removed) 
from the VTOC of the volume on which it resides. 

CLUSTER 
specifies that the entry to be deleted is a cluster entry for a VSAM data 
set. 

DELETE Command 39 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

USERCATALOG or UCAT 

specifies that the entry to be deleted is a user-catalog entry. This 
parameter must be specified if a user catalog is to be deleted. A user 
catalog can be deleted only if it is empty. 

SPACE 

specifies that the entry to be deleted is a data-space entry. This 
parameter is required if a data space is to be deleted. A data space can 
be deleted only if it is empty. 

NONVSAM or NVSAM 

specifies that the entry to be deleted is a non-VSAM data set entry. 

ALIAS 

specifies that the entry to be deleted is an alias entry. 

GENERATIONDATAGROUP or GOG 

specifies that the entry to be deleted is a generation-data-group entry. A 
generation-data-group base can be deleted only if it is empty. 

PAGESPACEorPGSPC 

specifies that a page space is to be· deleted. A page space can be deleted 
only if it is inactive. 

If the FILE parameter is omitted, the entryname is dynamically allocated 
in the following cases: 

• A non-VSAM entry is to be deleted and scratched. 
• An entry is to be deleted and erased. 
• An entry that resides in a data space of its own is to be deleted. 

Example 

Operation: Delete an entry. In this example, a non-VSAM data set is 
deleted: 

Known: 
The prefix in the user's profile is D27UCAT. 
YQur userid is D27UCAT. 

delete example.nonvsam scratch nonvsam 

The DELETE command deletes the non-VSAM data set 
·1 (D27UCAT.EXAMPLE.NONVSAM). Because the catalog in which the 

entry resides is assumed not to be password protected, the CATALOG 
parameter is not required to delete the non-VSAM entry. 

SCRATCH removes the VTOC entry of the non-VSAM data set. 
Because FILE is not coded, the volume that contains 
D27UCAT.EXAMPLE.NONVSAM is dynamically allocated. 

NONVSAM ensures that the entry being deleted is a non-VSAM data 
, set. However, DELETE can still find and delete a non-VSAM data set if 

NONVSAM is omitted. 

40 OS/VS2 TSO Command Language Reference 



EDIT Command 

The EDIT command is the primary facility for entering data into the 
system. Therefore, almost every application involves some use of EDIT. 
With EDIT and its subcommands, you can create, modify, store, submit, 
retrieve, and delete data sets with sequential or partitioned data set 
organization. The data sets may contain: 

• Source programs composed of program language statements (PL/I, 
COBOL, FORTRAN, etc.) 

• Data used as input to a program 
• Text used for information storage and retrieval 
• Commands, subcommands, and/or data (command procedure) 
• Job control language (JCL) statements for background jobs 

The EDIT command will support only data sets that have one of the 
following formats: 

• Fixed blocked, unblocked, or standard block; with or without ASCII 
and machine record formats 

• Variable blocked or unblocked; without ASCII or machine control 
characters 

EDIT support of print control data sets is "read only." Whenever a 
SA VE subcommand is entered for an EDIT data set orginally containing 
print control characters, the ability to print the data set on the printer with 
appropriate spaces and ejects is lost. If you enter SA VB without operands 
for a data set containing control characters, you will be warned that the 
data set will be saved without control characters, and you can elect to 
either save into the original data set or enter a new data set name. If the 
data set specified on the EDIT command is partitioned and contains print 
control characters, a save into it will not be allowed. 

EDIT Command 41 



data-set-name 

data-set-name [/password] 

[
NEW] 
OLD 

Pli [(rnte~er 1 

PliF [(rnte~r 1 

ASM 

COBOL 

~nteger 21] [CHAR60])] 
L 72 J [CHAR48] 

nnteger 21] [CHAR60J)] 
L 11.. J [CHAR48J 

GOFORT [(FREE) ] 
(FIXED) 

FORTGI 

FORTH 

TEXT 

DATA 

CLIST 

CNTL 
VSBASIC 

[
SCAN ] 
NOSCAN 

[
NUM ] [(integerl [integer2])] 
NONUM 

rBLOCK(integer) 1 
l?LKSIZE(integerU 

fLlNE(integer) ] 
l!-RECL(integer) 

fCAPsl 
~SISJ 

specifies the name of the data set that you want to create or edit. 

password 
specifies the password associated with the data-set-name. If the password 
is omitted and the data set is password protected, you will be prompted 
for the data set's password. Read protected partitioned data sets will 
cause a prompt for the password twice, provided it is not entered on the 
EDIT command, or is not the same password as your LOGON userid 
password. 

42 OS/VS2 TSO Command Language Reference 

( 



NEW 

specifies that the data set named by the first operand does not exist. If 
an existing cataloged data set already has the data set name that you 
specified, the syste,m notifies you when you try to save it; otherwise, the 
system allocates your data set when you save it. If you specify NEW 
without specifying a member name, a sequential data set is allocated for 
you when you save it. If you specify NEW and include a member name 
the system allocates a partitioned data set and creates the indicated 
member when you try to save it. 

OLD 

specifies that the data set named on the EDIT command already exists. 
When you specify OLD and the system is unable to locate the data set, 
you will be notified and you will have to reenter the EDIT command. 
If you specify OLD without specifying a member name, the system will 
assume that your data set is sequential; if the data set is in fact a 
partitioned data set, the system will assume that the member name is 
TEMPNAME. If you specify OLD and include a member name, the 
system will notify you if your data set is not partitioned. 
If you do not specify OLD or NEW, the system uses a tentative default 
of OLD. If the data set name or member name that you specified, 
cannot be located, the system defaults to NEW. 

Note: Any user-defined data set type (specified at system generation) is 
also a valid data-set-type keyword and may have subfield parameters 
defined by the user's installation (see Figure 5, note 4). 

PLI 

specifies that the data identified by the first operand is for PL/I 
statements that are to be held as V -format records with a maximum 
length of 104 bytes. The statements may be for the PL/I Optimizing 
compiler or the PL/I Checkout compiler. 

PLIF 

specifies that the data set identified by the first operand is for PL/I 
statements that are to be held as fixed format records 80 bytes long. The 
statements may be for the PL/I Optimizing compiler or the PL/I 
Checkout compiler. 

integerl and integer2 
specify the column boundaries for your input statements. These values 
are applicable only when you request syntax checking of a data set for 
which the PLIF operand has been specified. The position of the first 
character of a line, as determined by the left margin adjustment on your 
terminal, is column 1. The value for integer1 specifies the column where 
each input statement is to begin. The statement can extend from the 
column specified by integer1 up to and including the column specified as 
a value for integer2. If you omit integerl you must omit integer2, and 
the default values are columns 2 and 72; however, you can omit integer2 
without omitting iritegerl. 

CHAR48 or CHAR60 

CHAR48 specifies that the PL/I source statements are written using the 
character set that consists of 48 characters. CHAR60 specifies that the 
source statements are written using the character set that consists of 60 
characters. If no value is entered, the default value is CHAR60. 

EDIT Command 43 



ASM 

specifies that the data set identified by the first operand is for assembler 
language statements. 

COBOL 

specifies that the data set identified by the first operand is for COBOL 
\ 

statements. 

CLiST 

specifies that the data set identified by the first operand is for a 
command procedure and will contain TSO commands and subcommands 
as statements or records in the data set. The data set will be assigned 
line numbers. 

CNTL 

specifies that the data set identified by the first operand is for job 
control language (JCL) statements and SYSIN data to be used with the 
SUBMIT command or subcommand. 

TEXT 

specifies that the data set identified by the first operand is for text that 
may consist of both uppercase and lowercase characters. 

DATA 

specifies that the data set identified by the first operand is for data that 
may be subsequently retrieved or used as input data for processing by an 
application program. 

FORTGI 

specifies that the data set identified by the first operand is for 
FORTRAN IV (Gl) statements. 

FORTH 

specifies that the data set identified by the first operand is for 
FORTRAN IV (H) EXTCOMP statements. 

GOFORT(FREE or FIXED) 

specifies that the data set identified by the first operand is for statements 
that are suitable for processing by the Code and Go FORTRAN program 
product. You may use FORT as an abbreviation for this operand. This is 
the default value if no other FORTRAN language level is specified with 
the FORTGI or FORTH operand. 
FREE specifies that the statements are of variable-lengths and do not 
conform· to set column requirements. This is the default value if neither 
FREE nor FIXED is specified. FIXED specifies that statements adhere 
to standard FORTRAN column requirements and are 80 bytes long. 

VSBASIC 

specifies that the data set identified by the first operand is for VSBASIC 
statements. 

Note: The ASM, CLIST, CNTL, COBOL, DATA, FORTGI, FORTH, 
GOFORT, PLI, PLIF, TEXT, and VSBASIC operands specify the type of 
data set you want to edit or create. You must specify one of these 
whenever: 

• The data-set-name operand does not follow data set naming 
conventions (that is, it is enclosed in quotes). 

44 OS/VS2 TSO Command Language Reference 

( 



Page of GC28-0646-4 
As Updated July 30, 1980 
By TNL GN28-4754 

• The data-set-name operand is a member name only (that is, it is 
enclosed in parentheses). 

• The data-set-name operand does not include a descriptive qualifier; or 
the descriptive qualifier is such that EDIT cannot determine the data 
set type. (See Figure 1 for a list of valid descriptive qualifiers.) 

The system prompts the user for data set type whenever the type cannot 
be determined from the descriptive qualifier (as in the 3 cases above), or 
whenever the user forgets to specify a descriptive qualifier on the EDIT 
command. 

Note: When the descriptive qualifier FORT is entered with no data set type, 
the data set type default is GOFORT(FREE). If PLI is the descriptive 
qualifier, the data set type default is PLI. To use data set types 
GOFORT(FIXED), FORTGI, or FORTH you must enter the data set type 
keyword to save it. 

SCAN 

specifies that each line of data you enter in input mode is to be checked 
statement by statement for proper syntax. Syntax checking is available 
only for statements written in GOFORT, FORTGI, FORTH. 

Note: User-defined data set types can also use this keyword if a syntax 
checker name was specified at system generation time. 

NOSCAN 

specifies that syntax checking is not to be performed. This is the default 
value if neither SCAN nor NOSCAN is specified. 

NUM(integerl integerl) 

specifies that the lines of the data set records are numbered. You may 
specify integerl and integer2 for ASM type data sets only. Integerl 
specifies, in decimal, the starting column (73-80) of the line number. 
Integer2 specifies, in decimal, the length (8 or less) of the line number. 
Integer! plus integer2 cannot exceed 81. If integerl and integer2 are not 
specified, the line numbers will assume appropriate default values. 

NONUM 

specifies that your data set records do not contain line numbers. Do not 
specify this keyword for the GOFORT, VSBASIC, and CLIST data set 
types, since they must always have line numbers. The default is NUM. 

BLOCK(integer) or BLKSIZE(integer) 

specifies the maximum length, in bytes, for blocks of records of a new 
data set Specify this operand only when creating a new data set or 
editing an empty old data set. You cannot change the block size of an 
existing data set except if the data set is empty. If you omit this operand, 
it will default according to the type of data set being created. Default 
block sizes are described in Figure 5. If different defaults are established 
at system generation (SYSGEN) time, Figure 5 values may not be 
applicable. The block size (BLOCK or BLKSIZE), for data sets that 
contain fixed-length records must be a mUltiple of the record length 
(LINE or LRECL); for variable-length records, the block size must be a 
multiple of the record length plus 4. 

Note: If BLKSIZE (80) is coded with RECFM(U), then the line will be 
truncated by 1 character. This byte (the last one) is reserved for an 
attribute character. 

EDIT Command 45 



July 30, 1980 

LlNE(integer) or LRECL(integer) 
specifies the length of the records to be created for a new data set. 
Specify this operand only when creating a new data set or editing an 
empty old data set. The new data set will be composed of fixed-length 
records with a logical record length equal to the specified integer. You 
cannot change the logical record size of an existing data set unless the 
data set is empty. If you specify this operand and the data set type is 
ASM, FORTGI, FORTH, GOFORT(FlXED), COBOL or CNTL the 
integer must be 80. If this operand is omitted, the line size defaults 
according to the type of data set being created. Default line sizes for 
each data set type may be found in Figure 5. This operand is used in 
conjunction with the BLOCK or BLKSIZE operand. 

CAPS 
specifies that all input data and data on modified lines is to be converted 
to uppercase characters. If you omit both CAPS and ASIS, CAPS is the 
default except when the data set type is TEXT. 

ASIS 
specifies that input and output data is to retain the same form (uppercase 
and lowercase) as entered. ASIS is the default for TEXT only. 

46 OS/VS2 TSO Command Language Reference 



LRECL Block Size Line· Numbers 
Data 
Set DSORG LlNE(n) BLOCK(n) NUM (n, m) CAPS/ASIS 

Type 
default specif. default 

I 

ASM PS/PO 80 =80 3120 

CLiST PS/PO 255 (Note 2) 3120 

CNTL PS/PO 80 =80 3120 

COBOL PS/PO 80 =80 400 

DATA PS/PO 80 ,S,255 3120 

FORTGI PS/PO 255 =80 400 

FORTH PS/PO 255 =80 400 

GOFORT PS/PO 255 3120 

(or user supplied data set type - See Note 4) 

PLI PS/PO 104 ~100 400 

PLIF PS/PO 80 '::;'100 400 

TEXT PS/PO 255 (Note 2) 3120 

VSBASIC PS/PO 255 =80 3120 

Notes: 
1. The default or maximum allowable block size may be 

specified at SYSGEN time. 

2. Specifying a LINE value results in fixed length records with 
a LRECL equal to the specified value. The specified value 
must always be equal to or less than the default. If the 
LINE keyword is omitted, variable length records will be 
created. 

3. The line numbers will be contained in the last eight bytes 
of all fixed length records and in the first eight bytes of all 
variable length records. 

4. A user can have additional data set types recognized by the 
EDIT command processor. These user-defined data set 
types, along with any of the data set types shown above, 
can be defined at system generation time by using the EDIT 
macro. The EDIT macro causes a table of constants to be 
built which describes the data set attributes. For more 

I 
I 

CAPS specif. default (n, m) spec. default 
(Note 1) Required 

,$,default Last 8 73< n<80 CAPS Yes - --
'::;'default (Note 3) CAPS Yes 

~default Last 8 CAPS Yes 

.:S,default First 6 CAPS Yes 

,$,default Last 8 CAPS No 

s default 

I 
Last 8 CAPS Yes 

~ default Last 8 CAPS Yes 

..:S.default I First 8 CAPS Yes 

~default (Note 3) CAPS No 

,S,default Last 8 CAPS Yes 

..:S.default (Note 3) ASIS No 

~=32,760 First 5 CAPS Yes 

information on how to specify the EDIT macro at system 
generation time, refer to OS/VS2 SPL: System Generation 
Reference. 

When a user wants to edit a data set type that he has defined 

himself, the data set type is used as the descriptor (right
most) qualifier. The user cannot override any data set types 
that have been defined by IBM. The EDIT command 
processor will support data sets that have the following 
attributes: 

Data Set Organization: Must be either sequential or 
partitioned 

Record formats: Fixed or Variable 
Logical Record Size: Less than or equal to 255 characters 
Block Sizes: User specified - must be less than or 

equal to track length 
Sequence Numbers: V type: First 8 characters 

F type: Last 8 characters 

Figure 5. Default Values for LINE or LRECL and BLOCK or BLKSIZE Operands 

EDIT Command 47 



Modes of Operation 

The EDIT command has two modes of operation: input mode and edit 
mode. You enter data into a data set when you are in input mode. You 
enter subcommands and their operands when you are in edit mode. 

You must specify a data set name when you enter the EDIT command. 
If you specify the NEW keyword, the system places you in the input mode. 
If you do not specify the NEW keyword, you are placed in the edit mode if 
your specified data set is not empty; if the data set is empty, you will be 
placed in input mode. 

If you have limited access to your data set, by assigning a password, you 
can enter a slash (/) followed by the password of your choice after the 
data set name operand of the EDIT command. 

Input Mode 

In input mode, you type a line of data and then enter it into the data set by 
pressing your terminal's carrier return key. You can enter line,S of data as 
long as you are in input mode. One typed line of input becomes one record 
in the data set. 

Caution: If you enter a command or subcommand while you are in input 
mode, the system will add it to the data set as input data. Enter a null-line 
to return to edit mode before entering any subcommands. 

Line Numbers: Unless you specify otherwise, the system assigns a line 
number to each line as it is entered. The default is an interval of 10. Line 
numbers make editing much easier, because you can refer to each line by its 
own number. 

Each line number consists oI not more than eight digits, with the 
significant digits justified on the right and preceded by zeros. Line numbers 
are placed at the beginnjng of variable-length records and at the end of 
fixed-length records (exception: line numbers for COBOL fixed-length 
records are placed in the flrst six positions at the beginning of the record). 
When you are working with a data set that has line numbers, you can have 
the new line number listed at the start of each new input line. If you are 
creating a data set without line numbers, you can request that a prompting 
character be displayed at the terminal before each line is entered. 
Otherwise, none will be issued. 

All input records will be converted to uppercase characters, except when 
you specify the ASIS or TEXT operand. The TEXT operand also specifies 
that character-deleting indicators and tabulation characters will be 
recognized, but all other characters will be added to the data set 
unchanged. 

All assembler source data sets must consist of fixed-length records 80 
characters in length. These records mayor may not have line numbers. If 
the records are line-numbered, the number can be located anywhere within 
columns 73 to 80 of the stored record (the printed line number always 
appears at the left margin). 

48 OS/VS2 TSO Command Language Reference 



You can create a variety of FORTRAN data sets: FORTGI, FORTH, 
and GOFORT. You can enter GOFORT input statements in "free form," 
that is, there are no specific columns into which your statements must go. 
Free form FORTRAN statements will be stored in variable-length records. 

Syntax Cbecking: You can have each line of input checked for proper 
syntax. The system will check the syntax of statements for data sets having 
FORT descriptive qualifiers. Input lines will be collected within the system 
until a complete statement is available for checking. 

When an error is found during syntax checking, an appropriate error 
message is issued and edit mode is entered. You can then take corrective 
action, using the subcommands. When you wish to resume input operations, 
press your terminal's carrier return key without typing any input. Input 
mode is then entered and you can continue where you left off. Whenever 
statements are being checked for syntax during input mode, the system will 
prompt you for each line to be entered unless you specify the NOPROMPT 
operand for the INPUT subcommand. 

Continuation of a Line in Input Mode: In input mode there are three 
independent situations that require you to indicate the continuation of a line 
by ending it with a hyphen or plus sign (that is, a hyphen or plus sign 
followed immediately by pressing the ENTER key). The situations are: 

• The syntax checking facility is being used. 
• The data set type is GOFORT(FREE). 
• The data set type is CLIST (variable-length records). 

If none of these situations apply, avoid ending a line with a hyphen 
(minus sign) since it will be removed by the system before storing the line 
in your data set. 

You must use the hyphen when the syntax checking facility is active to 
indicate that the logical line to be syntax checked consists of multiple input 
lines. The editor will then collect these lines (removing the hyphens) and 
pass them as one logical line to the syntax scanner. However, each 
individual input line (with its hyphen removed) is also stored separately in 
your data set. 

You must use the hyphen or plus sign to indicate logical line continuation 
in a GOFORT(FREE) data set, whether or not syntax checking is active. 
Since the Code and Go FORTRAN free-form input format requires a 
hyphen to indicate continuation to its syntax checker and compiler, the 
hyphen is not removed from the input line by EDIT but becomes part of 
the stored line in your data set. 

The hyphen is also used to indicate logical line continuation in command 
procedures. If the command procedure is in variable-length record format 
(the default), the hyphen is not removed by EDIT but becomes part of the 
stored line in your data set and will be recognized when executed by the 
EXEC command processor. If the command procedure is in fixed-length 
record format, a hyphen, placed eight character positions before the end of 
the record and followed by a blank, will be recognized as a continuation 
when executed by the EXEC command processor. (This assumes that the 
line number field is defined to occupy the last eight positions of the stored 

EDIT Command 49 



record.) For example, if the parameter LINE(80) was specified on the 
EDIT command when defining the command procedure data set, the 
hyphen must be placed in data position 72 of the input line followed 
immediately by a blank. (Location of a particular input data column is 
described under the TABSET subcommand of EDIT.) 

Note that these rules apply only when entering data in input mode. 
When you use a subcommand (for example, CHANGE or INSERT) to 
enter data, a hyphen at the end of the line indicates subcommand 
continuation; the system will append the continuation data to the 
subcommand. 

To insert a line of data ending in a hyphen in situations where the 
system would remove the hyphen (that is, while in subcommand mode or in 
input mode for other than a command procedure data set), enter a hyphen 
in the next-to-Iast column, a blank in the last column, and immediately 
press the ENTER key. 

Edit Mode 

You can enter subcommands to edit data sets when you are in edit mode. 
You can edit data sets that have line numbers by referring to the number of 
the line that you want to edit. This is called line-number editing. You can 
also edit data by referring to specific items of text within the lines. This is 
called context editing. A data set having no line numbers may be edited 
only by context. Context editing is performed by using subcommands that 
refer to the current line value or a character combination, such as with the 
FIND or CHANGE subcommands. There is a pointer within the system 
that points to a line within the data set. Normally, this pointer points to the 
last line that you referred to. You can use subcommands to change the 
pointer so that it points to any line of data that you choose. You may then 
refer to the line that it points to by specifying an asterisk (*) instead of a 
line number. Figure 6 shows where the pointer points at completion of each 
subcommand. 

Note: A current-line pointer value of zero refers to the position before the 
first record, if the data set does not contain a record zero. 

When you edit data sets with line numbers, the line number field will not 
be involved in any modifications made to the record except during 
renumbering. Also, the only editing operations that will be performed across 
record boundaries will be the CHANGE and FIND subcommands, when 
the TEXT and NONUM operands have been specified for the EDIT 
command. In CHANGE and FIND, an editing operation will be performed 
across only one record boundary at a time. 

50 OS/VSl TSO Command Language Reference 

( 



EDIT Subcommands Value of the Pointer at Completion of Subeommand 

ALLOCATE No change 

BOTTOM Last line (or zero for empty data sets) 

CHANGE Last line changed 

COpy Last line copied 

DELETE Line preceding deleted line (or zero if the first line 
of the data set has been deleted) 

DOWN Line n relative lines below the last line referred to, 
where n is the value of the 'count' parameter, or 
bottom of the data set (or line zero for empty data 
sets) 

END No change 

EXEC No change 

FIND Line containing specified string, if any; else, no 
change 

FORMAT(a program product) No change 

HELP No change 

INPUT Last line entered 

INSERT Last line entered 

Insert/Replace/Delete Inserted line or replaced line or line preceding the 
deleted line if any (or zero, if no preceding line 
exists) 

LIST Last line listed 

MERGE(a program product) Last line 

MOVE Last line moved 

PROFILE No change 

RENUM Same relative line 

RUN No change 

SAVE No change or same relative line 

SCAN Last line scanned, if any 

SEND No change 

SUBMIT No change 

T ABSET No change 

TOP Zero value 

UNNUM Same relative line 

UP Line n relative lines above the last line referred to, 
where n is the value of the 'count' parameter, (or 
line zero for empty data sets). 

VERIFY No change 

Figure 6. How EDIT Subcommands Affect the Line Pointer Value 

EDIT Command 51 



Changing from One Mode to Another 

If you specify an existing data set name as an operand for the EDIT 
command, you begin processing in edit mode. If you specify a new data set 
name or an old data set with no records as an operand for the EDIT 
command, you will begin processing in input mode. 

You will change from edit mode to input mode when: 

• You press the ENTER key before typing anything. 

Note: If this is the first time during your current usage of EDIT that input 
m~de is entered, input will begin at the line after the last line of the data 
set (for data sets which are not empty) or at the first line of the data set 
(for empty data sets). If this is not the first time during your current usage 
of EDIT that input mode is entered, input will begin at the point following 
the data entered when last in input mode. 

• You enter the INPUT subcommand. 

Note: If you use the INPUT subcommand without the R keyword and the 
line is null (that is, it contains no data), input begins at the specified line; if 
the specified line contains data, input begins at the first increment past that 
line. If you use the INPUT subcommand with the R keyword, input begins 
at the specified line, replacing existing data, if any. 

• You enter the INSERT subcommand with no operands. 

You will switch from input mode to edit mode when: 

• You press the ENTER key before typing anything. 
• You cause an attention interruption. 
• There is no more space for records to be inserted into the data set 

and resequencing is not allowed. 
• An error is discovered by the syntax checker. 

Data Set Disposition 

The system assumes a disposition of (NEW,CATLG) for new data sets and 
(OLD,KEEP) for existing data sets. 

Tabulation Characters 
When you enter the EDIT command into the system, the system establishes 
a list of tab setting values for you, depending on the data set type. (See 
TSO Terminal User's Guide to determine if your terminal supports tab 
setting.) These are logical tab setting values and mayor may not represent 
the actual tab setting on your terminal. You can establish your own tab 
settings for input by using the TAB SET subcommand. A list of the default 
tab setting values for each data set type is presented in the T ABSET 
subcommand description. The system will scan each input line for tabulation 
characters (the characters produced by pressing the TAB key on the 
terminal). The system will replace each tabulation character by as many 
blanks as are necessary to position the next character at the appropriate 
logical tab setting. 

52 OS/VS2 TSO Command Language Reference 

( 



When tab settings are not in use, each tabulation character encountered 
in all input data will be replaced by a single blank. You can also use the 
tabulation character to separate subcommands from their operands. 

Executing User-Written Programs 
You can compile and execute the source statements contained in certain 
data set types by using the RUN subcommand. The RUN subcommand 
makes use of optional program products; the specific requirements are 
discussed in the description of the RUN subcommand. 

Terminating the EDIT Command 
You can terminate the EDIT operation at any time by switching to edit 
mode (if you are not already in edit mode) and entering the END 
subcommand. Before terminating the EDIT command, you should be sure 
to store all data that you want to save. You can use the SA VB 
subcommand or the SAVE operand of the END subcommand for this 
purpose. 

Recovering Data after a Terminal Line Has Been 
Disconnected 

If a terminal is disconnected during an EDIT session, the system will 
attempt to save a copy of the edited data set (with all changes) into 
another data set. The data set used for saving is named by applying data set 
naming conventions to an intermediate qualifier name of EDITSA VB. This 
data set can be edited when you log on again. 

Example 1 

Operation: Create a data set to contain a COBOL program. 

Known: 
The user-supplied name for the new data set: PARTS 
The fully qualified name will be: WRROS.P ARTS. COBOL 
Line numbers are to be assigned. 

edit parts new cobol 

EDIT Command 53 



Example 2 

Operation: Create a data set to contain a program written in FORTRAN 
to be processed by the FORTRAN (Gl) compiler. 

Known: 
The user-supplied name for the new data set: HYDRLICS 
The fully qualified name will be: WRROS.HYDRLICS.FORT 
The input statements are not to be numbered. 
Syntax checking is desired. 
Block size: 400 
Line length must be: 80 
The data is to be changed to all upper case. 

edit hydrlics new fortgi nonum scan 

Example 3 

Operation: Add data to an existing data set containing input data for a 
program. 

Known: 
The name of the data set: WRROS.MANHRS.DATA 
Block size: 3120 
Line length: 80 
Line numbers are desired. 
The data is to be upper case. 
Syntax checking is not applicable. 

e manhrs.data 

Example 4 

Operation: Create a data set for a command procedure. 

Known: 
The user supplied name for the data set: CMDPROC 

e cmdproc new clist 

54 OS/VS2 TSO Command Language Reference 



Subcommands for EDIT 

Use the subcommands while in edit mode to edit and manipulate data and 
to communicate with the system operator and with other terminal users. 
The format of each subcommand is similar to the format of all the 
commands. Each subcommand, therefore, is presented and explained in a 
manner similar to that for a ·command. Figure 7 contains a summary of 
each subcommand's function. 

Note: For a complete description of the syntax and function of the 
ALLOCATE, EXEC, HELP, PROFILE, SEND, and SUBMIT 
subcommands, refer to the description of the TSO command with th~ same 
name. 

ALLOCATE 
BOTTOM 

CHANGE 
COpy 
DELETE 
DOWN 

END 
EXEC 
FIND 
FORMAT (available as an 

optional 
program product) 

HELP 
INPUT 
INSERT 
Insert/Replace/Delete 
LIST 
MERGE (available as an 

optional 

MOVE 
PROFILE 

RENUM 
RUN 

SAVE 
SCAN 
SEND 

SUBMIT 

TABSET 
TOP 
UNNUM 
UP 

VERIFY 

program product) 

Allocates data sets and filenames. 
Moves the pointer to the last record in 
the data set. 
Alters the contents of a data set. 
Copies records within the data set. 
Removes records. 
Moves the pointer toward the end of 
the data. 
Terminates the EDIT command. 
Executes a command procedure. 
Locates a character string. 
Formats and lists data. 

Explains available subcommands. 
Prepares the system for data input. 
Inserts records. 
Inserts, replaces, or deletes a line. 
Prints out specific lines of data. 
Combines all or parts of data sets. 

Moves records within a data set. 
Specifies characteristics of your 
user profile. 
Numbers or renumbers lines of data. 
Causes compilation and execution of 
data set. 
Retains the data set. 
Controls syntax checking. 
Allows you to communicate with the 
system operator and with other 
terminal users. 
Submits a job for execution in the 
background. 
Sets the tabs. 
Sets the pointer to zero value. 
Removes line numbers from records. 
Moves the pointer toward the start 
of data set. 
Causes current line to be listed 
whenever the current line pointer 
changes or the text of the current 
line is modified. 

Figure 7. Subcommands of the EDIT Command 

Subcommands for EDIT 55 



56 OS/VS2 TSO Command Language Reference 



ALLOCATE Subcommand of EDIT 

Use the ALLOCATE subcommand to dynamically allocate the data sets 
required by a program that you intend to execute. 

Refer to the ALLOCATE command for the description of the syntax 
and function of the ALLOCATE subcommand. 

ALLOCATE Subcommand of EDIT 57 



c 
58 OS/VSl TSO Command Language Reference 



BOTTOM Subcommand of EDIT 

Use the BOTTOM subcommand to change the current line pointer so that 
it points to the last line of the data set being edited or so that it contains a 
zero value, if the data set is empty. This subcommand may be useful when 
subsequent subcommands such as INPUT or MERGE must begin at the 
end of the data set. 

BOTIOM Subcommand of EDIT 59 



60 OS/VS2 TSO Command 'Language Reference 



July 30, 1980 

CHANGE Subcommand of EDIT 

Use the CHANGE subcommand to modify a sequence of characters in a 
line or in a range of lines. Either the first occurrence or all occurrences of 
the sequence can be modified. 

~~e-number-1 [I ine-nUmber-21] 

L* [count 1] 

{
string1 [string2 [AL L] ]} 
count2 

line-number-! 
specifies the number of a line you want to change. When used with 
line-number-2, it specifies the first line of a range of lines. 

line-number-2 

* 

specifies the last line of a range of lines that you want to change. The 
specified lines are scanned for first occurrence of the sequence of 
characters specified for string!. 

specifies that the line pointed to by the line pointer in the system is to 
be used. If you do not specify a line number or an asterisk, the current 
line will be the default value. 

countl 
specifies the number of lines that you want to change, starting at the 
position indicated by the asterisk (*). 

string! 
specifies a sequence of characters that you want to change. The sequence 
must be (1) enclosed within single quotes, or (2) preceded by an extra 
character which serves as a special delimiter. The extra character may be 
any printable character other than a single quote (apostrophe), number, 
blank, tab, comma, semicolon, parenthesis, or asterisk. The hyphen (-) 
and plus (+) signs can be used but should be avoided due to possible 
confusion with their use in continuation. If the first character in the 
character string is an asterisk (*), do not use a slash (/) as the extra 
character. (TSO interprets the / * as the beginning of a comment.) The 
extra character must not appear in the character string. Do not put a 
standard delimiter between the extra character and the string of 
characters unless you intend the delimiter to be treated as a character in 
the character string. 
If string1 is specified and string2 is not, the specified characters are 
displayed at your terminal up to (but not including) the sequence of 
characters that you specified for string 1. You can then complete the line 
as you please. 

CHANGE Subcommand of EDIT 61 



Page of GC28-0646-4 
As Updated July 30, 1980 
By TNL GN28-4754 

string2 
specifies a sequence of characters that you want to use as a replacement 
for stringl. Like string!, string2 must be (1) enclosed within single 
quotes, or (2) preceded by a special delimiter. This delimiter must be the 
same as the extra character used for stringl. (Optionally, this delimiter 
can also immediately follow string2.) 

ALL 

specifies that every occurrence of string! within the specified line or 
range of lines will be replaced by string2. If this operand is omitted, only 
the first occurrence of string! will be replaced with string 2. 

If you cause an attention interruption during the CHANGE subcommand 
when using the ALL keyword, your data set may only be partially 
changed. It is good practice to list the affected area of your data set 
before continuing. 

If the special delimiter form is used, string2 must be terminated by the 
delimiter before typing the ALL operand. 

count2 
specifies a number of characters to be displayed at your terminal, starting 
at the beginning of each specified line. 

Quoted-String Notation 

As indicated above, instead of using special delimiters to indicate a 
character string, you can use paired single quotes (apostrophes) to 
accomplish the same function with the CHANGE subcommand. The use of 
single quotes as delimiters for a character string is called quoted-string 
notation. Following are the rules for quoted-string notation for the string! 
and string2 operands: 

• You cannot use both special-delimiter and quoted-string notation in 
the same subcommand. 

• Each string must be enclosed with single quotes, for example, 'This is 
string!' 'This is string2.' Quoted strings must be separated with a 
blank. 

• A single quote within a character string is represented by two single 
quotes, for example, 'pilgrim"s progress'. 

• A null string is represented by two single quotes, for example, ". 

You can specify quoted-string notation in place of special-delimiter 
notation to accomplish any of the functions of the CHANGE subcommand 
as follows: 

Function 
Replace 
Delete 
Print up to 
Place in 

*Special-Delimiter 
Notation 
!ab!cde! 
!ab!!or!ab! 
lab 

front of !!cde! 
*-using the exclamation point (!) as the delimiter. 

Quoted-String 
Notation 
'ab"cde' 
'ab' " 
'ab' 

" 'cde' 

Note: Choose the form that best suits you (either special-delimiter or 
quoted-string) and use it consistently. It will help you use the subcommand. 

62 OS/VS2 TSO Command Language Referen~e 



) 

Note: If you cause an attention interruption during the CHANGE 
subcommand your data set might not be completely changed. You should 
list the affected part of your data set before entering other subcommands. 

Combinations of Operands 

You can enter several different combinations of these operands. The system 
interprets the operands that you enter according to the following rules: 

• When you enter a single number and no other operands, the system 
assumes that you are accepting the default value of the asterisk (*) 
and that the number is a value for the count2 operand. 

• When you enter two numbers and no other operands, the system 
assumes that they are line-number-I and count2 respectively. 

• When. you enter two operands and the first is a number and the 
second begins with a character that is not a number, the system 
assumes that they are line-number-I and stringi. 

• When you enter three operands and they are all numbers, the system 
assumes that they are line-number-I, line-number-2 and count2. 

• When you enter three operands and the first two are numbers but the 
last begins with a chacter that is not a number, the system assumes 
that they are line-number-I, line-number-2 and stringi. 

Example 1 

Operation: Change a sequence of characters in a particular line of a 
line-numbered data set. 

Known: 
The line number: 57 
The old sequence of characters: parameter 
The new sequence of characters: operand 

change 57 XpararneterXoperand 

Example 2 

Operation: Change a sequence of characters wherever it appears in several 
lines of a line-numbered data set. 

change 24 82 !i.e. !e.g. ! all 

The blanks following the string I and string2 examples (i.e. and e.g. ) are 
treated as characters. 

CHANGE Subcommand of EDIT 63 



Example 3 

Operation: Change part of a line in a line-numbered data set. 

Known: 
The line number: 143 
The number of characters in the line preceding the characters to be 

changed: 18 

change 143 18 

This form of the subcommand causes the first 18 characters of line 
number 143 to be displayed at your terminal. You complete the line by 
typing the new information and enter the line by pressing the ENTER key. 
All of your changes will be incorporated into the data set. 

Example 4 

Operation: Change part of a particular line of a line-numbered data set. 

Known: 
The line number: 103 
A string of characters to be changed: 315 h.p. at 2400 

change 103 m315 h.p. at 2400 

This form of the subcommand causes line number 103 to be searched 
until the characters "315 h.p. at 2400" are found. The line is displayed at 
your terminal up to the string of characters. You can then complete the line 
and enter the new version into the data set. 

Example 5 

Operation: Change the values in a table. 

Known: 
The line number of the first line in the table: 387 
The line number of the last line in the table: 406 
The number of the column containing the values: 53 

change 387 406 52 

Each line in the table is displayed at your terminal up to the column 
containing the value. As each line is displayed, you can type in the new 
value. The next line will not be displayed until you complete the current 
line and enter it into the data set. 

Example 6 

Operation: Add a sequence of characters to the front of the line that is 
currently referred to by the pointer within the system. 

Known: 
The sequence of characters: in the beginning 

change * //in the beginning 

64 OS/VSl TSO Command Language Reference 

( 



Example 7 

Operation: Delete a sequence of characters from a line-numbered data set. 

Known: 
The line number containing the string of characters: 15 
The sequence of characters to be deleted: weekly 

change 15 /weekly// or change 15 /weekly/ 

Example 8 

Operation: Delete a sequence of characters wherever it appears in a 
line-numbered data set containing line numbers 10 to 150. 

Known: 
The sequence of characters to be deleted: weekly 

change 10 999/ weekly// all 

Examples Using Quoted Strings 

Example lA 

Operation: Change a sequence of characters in a particular line of a 
line-numbered data set. 

Known: 
The line number: 57 
The old sequence of characters: parameter 
The new sequence of characters: operand 

change 57 'parameter' 'operand' 

Example 6A 

Operation: Add a sequence of characters to the front of the line that is 
currently referred to by the pointer within the system. 

Known: 
The sequence of characters: in the beginning 

change * " 'in the beginning' 

Example 7A 

Operation: Delete a sequence of characters from a line-numbered data set. 

Known: 
The line number containing the string of characters: 15 
The sequence of characters to be deleted: weekly 

change 15 'weekly' " 

CHANGE Subcommand of EDIT 65 



I 

~ 

( 
66 OS/VS2 TSO Command Language Reference 



) 

COpy Subcommand of EDIT 

Use the COPY subcommand of EDIT to copy one or more records that 
exist in the data set being edited. The copy operation moves data from a 
source location to a target location within the same data set and leaves the 
source data intact. Existing lines in the target area are shifted toward the 
end of the data set as required to make room for the incoming data. No 
lines are lost. 

The target line cannot be within the source area, with the exception that 
the target line (the first line of the target area) can overlap the last line of 
the source area. 

Upon completion of the copy operation, the current line pointer points to 
the last copied-to line, not to the last line shifted to make room in the 
target area. 

Note: If you cause an attention interruption during the copy operation, the 
data set may be only partially changed. As a check, list the affected part of 
the data set before continuing. 

[INCR(lineS)]] 

[I NCR (lines)] 

Note: If COpy is entered without operands, the line pointed to by the 
current line pointer is copied into the current-line + 
EDIT -default-increment location. 

line I 
specifies the first line or the lower limit of the range to be copied. If the 
specified line number does not exist in this data set, the range begins 
with the next higher line number. 

line2 
specifies the last line or the upper limit of the range to be copied. If the 
specified line number does not exist in this data set, the range ends with 
the highest line number that is less than line 2. If line2 is not entered, the 
value defaults to the value of line 1; that is, the source becomes one line. 
Do not enter an asterisk for line2. 

Note: If COpy is followed by two line-number operands, the system 
assumes them to represent linel and line3, and defaults line2 to the value 
of linel. 

COpy Subcommand of EDIT 67 



line3 
specifies the target line number: that is, the line at which the copied-to 
data area will start. If the line3 value corresponds to an existing line, the 
target line is changed to line3 + INCR(lines) and either becomes a new 
line or displaces an existing line at that location. Once the copy 
operation begins, existing lines encountered in the target area are 
renumbered to make room for the incoming data. The increment for 
renumbered lines is one (1). Specifying zero (0) for line3 puts the copied 
data at the top of the data set only if line 0 is empty: if line 0 has data, 
enter TOP followed by COpy with line3 set to *. Note that line3 
defaults to *. 

Note: The value of line3 should not fall in the range from line 1 to line 2 : 
that is, the target line must not be in the range being copied. Exception: 
line3 can be equal to line2. 

* 
represents the value of the current line pointer. 

INCR(lines) 
specifies the line number increment to be used for this copy operation. 
The default is the value in effect for this data before the copy operation. 
When the copy operation is complete, the increment reverts to the value 
in effect before COpy was issued. Range: 1-8 decimal digits but not 
zero. 

Note: The increment for any renumbered lines is one (1). 

'string' 
specifies a sequence of alphameric characters with a maximum length 
equal to or less than the logical record length of the data set being 
edited. When a character string is specified, a search starting at the 
current line is done for the line containing the string. When found, that 
line is the start of the range to be copied for either numbered or 
unnumbered data sets. 

count 
specifies the total number of lines (the range) to be copied. The default 
for count is one (1). Enter 1-8 decimal digits but not zero (0) or asterisk 
(*). 

line4 
applies to both numbered and unnumbered data sets. For unnumbered 
data sets, line4 specifies the target line (the line at which the copied-to 
data area will start) as a relative line number (the nth line in the data 
set). For numbered data sets, line4 is specified the same as line3. 
Specifying zero (0) for line4 puts the copied data at the top of the data 
set only if line (0) is empty; if line (0) has data, enter TOP followed by 
COpy with line4 set to·*. Note that line4 defaults to *. 

68 OS/VS2 TSO Command Language Reference 

( 



) 

Messages 

The COPY subcommand of EDIT causes error messages to be displayed at 
the terminal under specific conditions. To show these conditions, the 
following data set is assumed: 

0010 A 
0020 BB 
0030 CCC 
0040 DDDD 
0050 EEEEE 
0060 FFFFFF 
0070 GGGGGGG 
0080 HHHHHHHH 
0090 111111111 
0100 JJJJJJJJJJ 
0110 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 

1. Entering 
copy'" ...... 

causes: 

INVALID OPERANDS'" INVALID FOR COUNT OR END OF RANGE 
SPECIFICATION 

2. Entering 

copy 10000 ... 

causes: 

INVALID OPERANDS FIRST LINE TO BE MOVE/COPIED DOES NOT EXIST 

3. Entering 
copy 'xyz' ... 

causes: 

INVALID OPERANDS QUOTED STRING NOT FOUND 

4. Entering 

copy 20 10 ... 

causes: 

INVALID OPERANDS END OF RANGE MUST BE GREATER THAN OR EQUAL TO 

THE BEGINNING OF THE RANGE 

S. Entering 

copy 20 ' ... ' 100 

causes: 

INVALID OPERANDS STRING INVALID FOR END OF RANGE 
SPECIFICATION 

6. Entering 

copy'" 0 100 

causes: 

INVALID OPERANDS 0 INVALID FOR COUNT 

7. Entering 

copy 10 40 20 

causes: 

INVALID OPERANDS TRYING TO MOVE/COPY INTO LINE RANGE 

COpy Subcommand of EDIT 69 



In the following examples, CLP refers to the current line pointer. 

Example 1 

Operatiori: Copy the current line right after itself in a line-numbered dat'a set. 

Known: Data set contains lines 10 through 120; current line pointer is at 50; EDIT provides an increment 
of 10. 

Before: Enter: After: 

0010 A copy 50 50 50 0010 A 
0020 BB 0020 BB 
0030 CCC or 0030 CCC 
0040 DDDD 0040 DDDD 
0050 EEEEE copy 50 50 0050 EEEEE 
0060 FFFFFF CLP 0060 EEEEE 
0070 GGGGGGG or 0061 FFFFFF 
0080 HHHHHHHH 0070 GGGGGGG 
0090 111111111 copy 50 0080 HHHHHHHH 
0100 JJJJJJJJJJ 0090 111111111 
0110 KKKKKKKKKKK or 0100 JJJJJJJJJJ 
0120 LLLLLLLLLLLL 0110 KKKKKKKKKKK 

copy 0120 LLLLLLLLLLLL 

or 

copy 'eel 

Example 2 

Operation: Copy the current line right after itself in an unnumbered data set. 

Known: Data set contains 12 lines of sequential alphabetic characters. Current line pointer is at the seventh 
line. 

Before 

A 
BB 
CCC 
DDDD 
EEEEE 
FFFFFF 
GGGGGGG 
HHHHHHHH 
111111111 
JJJJJJJJJJ 
KKKKKKKKKKK 
LLLLLLLLLLLL 

Enter: 

copy * 
or 

copy * 
or 

copy * 
or 

copy 

or 

copy 'gg' 

70 OS!VS2 TSO Command Language Reference 

* 

After: 

A 
BB 
CCC 
DDDD 
EEEEE 
FFFFFF 
GGGGGGG 

CLP GGGGGGG" 
HHHHHHHH 
1111111'11 
JJJJJJJJJJ 
KKKKKKKKKKK 
LLLLLLLLLLLL 

( 



Example 3 

) Operation: Illustrate an attempt to copy a line to a line before it. 

Known: Data set contains lines 10 through 120; source line is 60; target line is 50; EDIT supplies increment 
of 10. 

Before: Ellter: Aft .. : 

0010 A copy 60 50 0010 A 
0020 BB 0020 BB 
0030 CCC 0030 CCC 
0040 DODD 0040 DODD 
0050 EEEEE 0050 EEEEE 
0060 FFFFFF CLP 0060 FFFFFF 
0070 GGGGGGG 0061 FFFFFF 
0080 HHHHHHHH 0070 GGGGGGG 
0090 111111111 0080 HHHHHHHH 
0100 JJJJJJJJJJ 0090 IIIIIIIII 
0110 KKKKKKKKKKK 0100 JJJJJJJJJJ 
0120 LLLLLLLLLLLL 0110 KKKKKKKKKKK 

0120 LLLLLLLLLLLL 

Example 4 

Operation: Find the line containing a specific word and copy it to the bottom of the data set. 

Known: Data set contains nine lines of text; word to be found is "men"; data set is unnumbered. 

BefolY!: 

NOW IS 
THE TIME 
FOR ALL 
GOOD MEN 
TO COME 
TO THE 
AID OF 
THEIR 
COUNTRY 

Example S 

Ellt .. 

top 
copy 'men' 

Aft .. : 

NOW IS 
99999999 THE TIME 

FOR ALL 
GOOD MEN 
TO COME 
TO THE 
AID OF 
THEIR 
COUNTRY 

CLP GOOD MEN 

Operation: Copy lines 10, 20, and 30 into a target area starting at line 100, using an increment of 5. 

Known: Data set contains lines 10 through 120; EDIT provides increment of 10. 

Before: Ellt .. : After: 

0010 A copy 10 30 100 incr(5) 0010 A 
0020 BB 0020 BB 
0030 CCC or 0030 CCC 
0040 DODD 0040 DODD 
0050 EEEEE copy 9 31 100 incr(5) 0050 EEEEE 
0060 FFFFFF 0060 FFFFFF 
0070 GGGGGGG or 0070 GGGGGGG 
0080 HHHHHHHH 0080 HHHHHHHH 
0090 IIIIIIIII copy 39 100 incr(5) 0090 111111111 
0100 JJJJJJJJJJ 0100 JJJJJJJJJJ 
0110 KKKKKKKKKKK 0105 A 
0120 LLLLLLLLLLLL 0110 BB 

CLP 0115 CCC 
0116 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 

COpy Subcommand of EDIT 71 



Example 6 

Operation: Copy four lines from a source area to a target area that overlaps the last line of the source, 
using the default increment. 

Known: Data set contains lines 10 through 120; source lines are 20 through 50; target area starts at line 50; 
EDIT provides increment of 10. 

Before: Enter: After: 

0010 A copy 20 50 50 0010 A 
0020 BB 0020 BB 
0030 CCC 0030 CCC 
0040 DDDD 0040 DDDD 
0050 EEEEE 0050 EEEEE 
0060 FFFFFF 0060 BB 
0070 GGGGGGG 0070 CCC 
0080 HHHHHHHH 0080 DDDD 
0090 111111111 CLP 0090 EEEEE 
0100 JJJJJJJJJJ 0091 FFFFFF 
0100 KKKKKKKKKKK 0092 GGGGGGG 
0120 LLLLLLLLLLLL 0093 HHHHHHHH 

0094 111111111 
0100 JJJJJJJJJJ 
0110 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 

Example 7 

Operation: Copy five lines into a target area that starts before but overlaps into the source area. 

Known: Data set contains lines 10 through 120; source range is line 70 through line 110; target location is 
line 50; increment to be 10. 

Before: Enter: After: 

0010 A copy 70 110 50 incr( 10) 0010 A 
0020 BB 0020 BB 
0030 CCC 0030 CCC 
0040 DDDD 0040 DDDD 
0050 EEEEE 0050 EEEEE 
0060 FFFFFF 0060 GGGGGGG 
0070 GGGGGGG 0070 HHHHHHHH 
0080 HHHHHHHH 0080 111111111 
0090 111111111 0090 JJJJJJJJJJ 
0100 JJJJJJJJJJ CLP 0100 KKKKKKKKKKK 
0110 KKKKKKKKKKK 0101 FFFFFF 
0120 LLLLLLLLLLLL 0102 GGGGGGG 

0103 HHHHHHHH 
0104 111111111 
0105 JJJJJJJJJJ 
0110 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 

Example 8 

Operation: Copy three lines to the top of the data set at line O. 

Known: Data set contains lines 10 through 120; line 0 does not exist; source lines are 80, 90, and 100; 
target area starts at line O. 

72 OS/VS2 TSO Command Language Reference 

( 

( 

~ 



Before: Enter: After: 

0010 A top 0000 HHHHHHHH 
0020 BB copy 80 100 * incr(50) 0050 111111111 
0030 CCC CLP 0100 JJJJJJJJJJ 
0040 DDDD or 0101 A 
0050 EEEEE 0102 BB 
0060 FFFFFF copy 80 100 0 incr(50) 0103 CCC 
0070 GGGGGGG 0104 DDDD 
0080 HHHHHHHH 0105 EEEEE 
0090 111111111 0106 FFFFFF 
0100 JJJJJJJJJJ 0107 GGGGGGG 
0110 KKKKKKKKKKK 0108 HHHHHHHH 
0120 LLLLLLLLLLLL 0109 111111111 

0110 JJJJJJJJJJ 
0111 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 

Example 9 

Operation: Copy three lines to the top of the data set at line 0, using an increment of 50. 

Known: Data set contains lines 0 through 120; line 0 contains data; source lines are 80, 90, and 100; target 
area starts at line O. 

Before: 

0000 
0010 
0020 
0030 
0040 
0050 
0060 
0070 
0080 
0090 
0100 
0110 
0120 

ZIP 
A 
BB 
CCC 
DDDD 
EEEEE 
FFFFFF 
GGGGGGG 
HHHHHHHH 
111111111 
JJJJJJJJJJ 
KKKKKKKKKKK 
LLLLLLLLLLLL 

Enter: 

top 
copy 80 100 * incr( 50 ) 

CLP 

After: 

0050 
0100 
0150 
0151 
0152 
0153 
0154 
0155 
0156 
0157 
0158 
0159 
0160 
0161 
0162 
0163 

The attempt to copy into 
line 0 gets the target data 
to the top of the data set 
but shifts the target line 
by the increment value 

Note: An entry of 

copy 80 100 0 incr(50) 

produces the results 
shown at right. The target 
data is inserted between 
line 0 and the remainder 
of the data set. 

0000 
0050 
0100 

CLP 0150 
0151 
0152 
0153 
0154 
0155 
0156 
0157 
0158 
0159 
0160 
0161 
0162 

HHHHHHHH 
111111111 
JJJJJJJJJJ 
ZIP 
A 
BB 
CCC 
DDDD 
EEEEE 
FFFFFF 
GGGGGGG 
HHHHHHHH 
111111111 
JJJJJJJJJJ 
KKKKKKKKKKK 
LLLLLLLLLLLL 

ZIP 
HHHHHHHH 
111111111 
JJJJJJJJJJ 
A 
BB 
CCC 
DDDD 
EEEEE 
FFFFFF 
GGGGGGG 
HHHHHHHH 
111111111 
JJJJJJJJJJ 
KKKKKKKKKKK 
LLLLLLLLLLLL 

COpy Subconunand of EDIT 73 



( 

74 OS/VSl TSO Command Language Reference 



DELETE Subcommand of EDIT 

Use the DELETE subcommand to remove one or more records from the 
data set being edited. 

Upon completion of the delete operation, the current line pointer will 
point to the line that preceded the deleted line. If the first line of the data 
has been deleted, the current line pointer will be set to zero. 

{
DELETE} 
DEL [~e-number-1 Uine-nUmber-21l. 

* [count] 'J 

line-number-l 
specifies the line to be deleted; or the first line of a range of lines to be 
deleted. 

line-number-2 

* 

specifies the last line of a range of lines to be deleted. 

specifies that the first line to be deleted is the line indicated by the 
current line pointer in the system. This is the default if no line is 
specified. 

count 
specifies the number of lines to be deleted, starting at "the location 
indicated by the preceding operand. 

Example 1 

Operation: Delete the line being referred to by the current line pointer. 

delete * 
or 

delete 
or 

del * 
or 

del 
or 

* 
Any of the preceeding command combinations or abbreviations will 

cause the deletion of the line referred to currently. The last instance is 
actually a use of the insert/replace/delete function, not the DELETE 
subcommand. 

DELETE Subcommand of EDIT 75 



Example 2 

Operation: Delete a particular line from the data set. 

Known: 
The line number: 00004 

delete 4 

Leading zeroes are. not required. 

Example 3 

Operation: Delete several consecutive lines from the data set. 

Known: 
The number of the first line: 18 
The number of the last line: 36 

delete 18 36 

Example 4 

Operation: Delete several lines from a data set with no. line numbers. The 
current line pointer in the system points to the first line to be deleted. 

Known: 
The number of lines to be deleted: 18 

delete * 18 

Example 5 

Operation: Delete all the lines in a data set. 

Known: 
The data set contains less than 100 lines and is not line-numbered. 

top 
delete * 100 

76 OS/VS2 TSO Command· Language Reference 



DOWN Subcommand of EDIT 

Use the DOWN subcommand to change the current line pointer so that it 
points to a line that is closer to the end of the data set. 

DOWN [count] 

count 
specifies the number of lines toward the end of the data set that you 
want to move the current line pointer. If you omit this operand, the 
default is one. 

Example 1 

Operation: Change the pointer so that it points to the next line. 

down 

Example 2 

Operation: Change the pointer so that you can refer to a line that is 
located closer to the end of the data set than the line currently pointed 
to. 

Known: 
The number of lines from the present position to the new position: 18 

down 18 

DOWN Subcommand of EDIT 77 



78 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

END Subcommand of EDIT 

Use the END subcommand to terminate the EDIT command. This 
subcommand may be used with or without the optional keywords SAVE or 
NOSA VE. In either case, the EDIT command terminates processing. If you 
have modified your data set and have not entered the SAVE subcommand 
or the SA VE/NOSA VE operand on END, the system will ask you if you 
want to save the data set. At this point, you may reply SAVE if you wish 
to save the data set. If you do not wish to save the data set, reply END. 

END 
[
SAVE J 
NOSAVE 

Note: Ther(' are no defaults. If a keyword is not specified, and SAVE was 
not entered after the last modification, the user will be prompted by the 
system. 

Regardless of the user's PROMPT/NOPROMPT option, when END (with 
no operands) is found in a CLIST, edit-mode is terminated. (There is no 
SA VB processing done for this portion of the session.) If END (with no 
operands) is found outside a CLIST, the user is prompted to enter END or 
SAVE regardless of the PROMPT /NOPROMPT option. 

SAVE 

specifies that the modified data set is to be saved. 

NOSAVE 

specifies that the modified data set is not to be saved. 

END Subcommand of EDIT 79 



la,nuary 11, 1980 

80 OS/VS2 TSOCommand Language Reference 



END Subcommand of EDIT 

Use the END subcommand to terminate the EDIT command. This 
subcommand may be used with or without the optional keywords SAVE or 
NOSA VE. In either case, the EDIT command terminates processing. If you 
have modified your data set and have not entered the SAVE subcommand 
or the SA VE/NOSA VE operand on END, the system will ask you if you 
want to save the data set. At this point, you may reply SAVE if you wish 
to save the data set. If you do not wish to save the data set, reply END. 

END rSAVE J 
LNOSAVE 

Note: There are no defaults. If a keyword is not specified, and SAVE was 
not entered after the last modification, the user will be prompted by the 
system. 

SAVE 

specifies that the modified data set is to be saved. 

NOSAVE 

specifies that the modified data set is not to be saved. 

END Subcommand of EDIT 79 



80 OS/VS2 TSO Command Language Reference 



EXEC Subcommand of EDIT 

Use the EXEC subcommand to execute a command procedure. Refer to the 
EXEC command for the description of the syntax and function of the 
EXEC subcommand. 

EXEC Subcommand of EDIT 81 



( 
82 OS/VS2 TSO Command Language Reference 



FIND Subcommand of EDIT 

Use the FIND subcommand to locate a specified sequence of characters. 
The system begins the search at the line referred to by the current line 
pointer in the system, and continues until the character string is found or 
the end of the data set is reached. 

~tring [position]] 

Note: If you do not specify any operands, the operands you specified the 
last time you used FIND during this current usage of EDIT are used. The 
search for the specified string will begin at the line following the current 
line. If you issue the TOP subcommand, the search for the specified string 
begins with the second line of the data set. Successive use of the FIND 
subcommand without operands allows you to search a data set, line by line. 

string 
specifies the sequence of characters (the character string) that you want 
to locate. This sequence of characters must be preceded by an extra 
character that serves as a special delimiter. The extra character may be 
any printable character other than a number, apostrophe, semicolon, 
blank, tab, comma, parenthesis, or asterisk. You must not use the extra 
character in the character string. Do not put a delimiter between the 
extra character and the string of characters. 
Instead of using special delimiters to indicate a character string, you can 
use paired single quotes (apostrophes) to accomplish the same function 
with the FIND subcommand. The use of single quotes as delimiters for a 
character string is called quoted-string notation. Following are the rules 
for quoted-string notation for the string operand: 

1. A string must be enclosed within single quotes, for example, 'string 
character' . 

2. A single quote within a character string is represented by two single 
quotes, for example, 'pilgrims"s progress'. 

3. A null string is represented by two single quotes, for example, ". 

position 
specifies the column within each line at which you want the comparison 
for the string to be made. This operand specifies the starting column of 
the field to which the string is compared in each line. If you want to 
consider a string starting in column 6, you must specify the digit 6 for 
the positional operand. For COBOL data sets, the starting column is 
calculated from the end of the six-digit line number. (If you want to 
consider a string starting in column 8, you must specify the digit 2 for 
this operand.) When you use this operand with the special-delimiter form 
of notation for "string", you must separate it from the string operand 
with the same special delimiter as the one preceding the string operand. 

FIND Subcommand of EDIT 83 



Example 1 

Operation: Locate a sequence of characters in a data set. 

Known: 
The sequence of characters: ELSE GO TO COUNTER 

find xelse go to counter 

Example 2 

Operation: Locate a particular instruction in a data set containing an 
assembler language program. 

Known: 
The sequence of characters: LA 3,BREAK 
The instruction begins in column 10. 

find 'la 3,break ' 10 

84 OS/VS2 TSO Command Language Reference 



HELP Subcommand of EDIT 

Use the HELP subcommand to obtain the syntax and function of EDIT 
subcommands. 

Refer to the HELP command for a description of the syntax and 
function of the HELP subcommand. 

HELP Subcommand of EDIT 85 



86 OS/VS2 TSO Command Language Reference 



INPUT Subcommand of EDIT 

Use the INPUT subcommand to put the system in input mode so that you 
can add or replace data in the data set being edited. 

[1!ne-nUmber [increment]] 

[~J 
[

PROMPT ] 
NOPROMPT 

line-number 
specifies the line number and location for the first new line of input. If 
no operands are specified, input data will be added to the end of the 
data set. 

increment 

* 

R 

specifies the amount that you want each succeeding line number to be 
increased. If you omit this operand, the default is the last increment 
specified with the INPUT or RENUM subcommand. If neither of these 
subcommands has been specified with an increment operand, an 
increment of 10 will be used. 

specifies that the next new line of input will either replace or follow the 
line pointed to by the current line pointer, depending on whether you 
specify the R or I operand. If an increment is specified with this 
operand, it is ignored. 

specifies that you want to replace existing lines of data and insert new 
lines into the data set. This operand is ignored if you fail to specify 
either a line number or an asterisk. If the specified line already exists, 
the old line will be replaced by the new line. If the specified line is 
vacant, the new line will be inserted at that location. If the increment is 
greater than 1, all lines between the replacement lines will be deleted. 

specifies that you want to insert new lines into the data set without 
altering existing lines of data. This operand is ignored if you fail to 
specify either a line number or an asterisk. 

PROMPT 
specifies that you want the system to display either a line number or, if 
the data set is not line numbered, a prompting character before each new 
input line. If you omit this operand, the default is: 

• The value (either PROMPT or NOPROMPT) that was established the 
last time you used input mode 

INPUT Subcommand of EDIT 87 



• PROMPT, if this is the first use of input mode and the data set has 
line numbers 

• NOPROMPT, if this is the first use of input mode and the data set 
does not have line numbers 

NOPROMPT 

specifies that you do not want to be prompted. 

Example 1 

Operation: Add and replace data in an old data set. 

Known: 
The data set is to contain line numbers. 
Prompting is desired. 
The ability to replace lines is desired. 
The first line number: 2 
The increment value for line numbers: 2 

input 2 2 r prompt 

The display at your terminal will resemble the following with your input 
in lowercase and the system's response in uppercase. 

edit quer cobol old 
EDIT 
input 2 2 r prompt 
INPUT 
00002 identification division 
00004 program-id.query 
00006 

Example 2 

Operation: Insert data in an existing data set. 

Known: 
The data set contains text for a report. 
The data set does not have line numbers. 
The ability to replace lines is not necessary. 
The first input data is "New research and development activities will" 

which is to be placed at the end of the data set. 
The display at your terminal will resemble the following: 

edit forecast. text old nonum asis 
EDIT 
input 
INPUT 
New research and development activities will 

88 OS/VS2 TSO Command Language Reference 

c 



INSERT Subcommand of EDIT 

Use the INSERT subcommand to insert one or more new lines of data into 
the data set. Input data is inserted following the location pointed to by the 
line pointer in the system. (If no operands are specified, input data will be 
placed in the data set line following the current line.) You may change the 
position pointed to by the line pointer by using the BOTTOM, DOWN, 
TOP, UP, and FIND subcommands. 

[j nsert-datal 

insert-data 
specifies the complete sequence of characters that you wish to insert into 
the data set at the location indicated by the line pointer. When the first 
character of the inserted data is a tab, no delimiter is required between 
the command and the data. Only a single delimiter is recognized by the 
system. If you enter more than one delimiter, all except the first are 
considered to be input data. 

Example 1 

Operation: Insert a single line into a data set. 

Known: 
The line to be inserted is: 

"UCBLFG DS AL1 CONTROL FLAGS" 

The data set is not line-numbered. 
The location for the insertion follows the 71st line in the data set. 
The current line pointer points to the 74th line in the data set. 
The user is operating in edit mode. 

Before entering the INSERT subcommand, the current line pointer must 
be moved up 3 lines to the location where the new data will be inserted. 

up 3 

The INSERT subcommand is now entered. 

INSERT UCBFLG DS AL1 CONTROL FLAGS 

The display at your terminal will be similar to the following: 

up 3 
insert ucbflg ds a11 control flags 

INSERT Subcommand of EDIT 89 



Example 2 

Operation: Insert several lines into a data set. 

Known: 
The data set contains line numbers. 
The inserted lines are to follow line number 00280. 
The current line pointer points to line number 00040. 
The user is operating in EDIT mode. 
The lines to be inserted are: 

"J.W. HOUSE 13-244831 24.73" 

"T.N. HOWARD 24-782095 3.05" 

"B.H. IRELAND 40-007830 104.56" 

Before entering the INSERT subcommand the current line pointer must 
be moved down 24 lines to the location where the new data will be 
inserted. 

down 24 

The INSERT subcommand is now entered: 

insert 

The system will respond with: 

INPUT 

The lines to be inserted are now entered. 

The display at your terminal will be similar to the following: 

down 24 
insert 
INPUT 
00281 j.w.house 13-244831 24.73 
00282 t.n.howard 24-782095 3.05 
00283 b.h.ireland 40-007830 104.56 

New line numbers are generated in sequence beginning with the number 
one greater than the one pointed to by the current line pointer. When no 
line can be inserted, you will be notified. No resequencing will be done. 

90 OS/VS2 TSO Command LangUage Reference 

( 



Insert/Replace/Delete Function of EDIT 

The Insert/Replace/Delete function lets you insert, replace, or delete a line 
of data without specifying a subcommand name. To insert or replace a line, 
all you need to do is indicate the location and the new data. To delete a 
line, all you need to do is indicate the location. You can indicate the 
location by specifying a line number or an asterisk. The asterisk means that 
the location to be used is pointed to by the line pointer within the system. 
You can change the line pointer by using the UP, DOWN, TOP, BOTTOM, 
and FIND subcommands so that the proper line is referred to. 

{ line-n~mber} [string] 

line number 

* 

specifies the number of the line you want to insert, replace, or delete. 

specifies that you want to replace or delete the line at the location 
pointed to by the line pointer in the system. You can use the TOP, 
BOTTOM, UP, DOWN, and FIND subcommands to change the line 
pointer without modifying the data set you are editing. 

string 
specifies the sequence of characters that you want to either insert into 
the data set or to replace an existing line. If this operand is omitted and 
a line exists at the specified location, the existing line is deleted. When 
the first character of "string" is a tab, no delimiter is required between 
this operand and the preceding operand. Only a single delimiter is 
recognized by the system. If you enter more than one delimiter, all 
except the first are considered to be input data. 

How the System Interprets the Operands: 

When you specify only a line number or an asterisk, the system deletes a 
line of data. When you specify a line number or asterisk followed by a 
sequence of characters, the system will replace the existing line with the 
specified sequence of characters or, if there is no existing data at the 
location, the system will insert the sequence of characters into the data set 
at the specified location. 

Example 1 

Operation: Insert a line into a data set. 

Known: 
The number to be assigned to the new line: 62 
The data: ("OPEN INPUT PARTS-FILE") 

62 open input parts-file 

Insert/Replace/Delete Function of EDIT 91 



Example 2 

Operation: Replace an existing line in a data set. 

Known: 
The number of the line that is to be replaced: 287 
The replacement data:· "GO TO HOUR COUNT; " 

287 go to hourcount; 

Example 3 

Operation: Replace an existing line in a data set that does not have line 
numbers. 

Known: 
The line pointer in the system points to the line that is to be replaced. 
The replacement data is: "58 PRINT USING 120,S" 

* 58 print using 120,s 

Example 4 

Operation: Delete an entire line. 

Known: 
The number of the line: 98 
The current line pointer in the system points to line 98. 

98 
or 

* 

92 OS/VS2 TSO Command Language Reference 

( 



) 

LIST Subcommand of EDIT 

Use the LIST subcommand to display one or more lines of your data set at 
your terminal. 

[
line-number-1 [line-number-2TI 
* [count] J 

[
NUM ] 
SNUM 

line-number-l 
specifies the number of the line that you want to be displayed at your 
terminal. 

line-number-l 

• 

specifies the number of the last line that you want displayed. When you 
specify this operand, all the lines from line-number-l through 
line-number-2 are displayed . 

specifies that the line referred to by the current line pointer is to be 
displayed at your terminal. You can change the line pointer by using the 
UP, DOWN, TOP, BOTTOM, and FIND subcommands without 
modifying the data set you are editing. 

Note: If the current line pointer is at zero (for example, as a result of a 
TOP command), and line zero is not already in the data set, the current 
line pointer moves to the first existing line. 

count 
specifies the number of lines that you want to have displayed, starting at 
the location referred to by the line pointer. 

Note: If you do not specify any operand with LIST, the entire data set will 
be displayed. 

NUM 

specifies that line numbers are to be displayed with the text. This is the 
default value if both NUM and SNUM are omitted. If your data set does 
not have line numbers, this operand will be ignored by the system. 

SNUM 

specifies that line numbers are to be suppressed, that is, not displayed at 
the terminal. 

Example 1 

Operation: List an entire data set. 

list 

LIST Subcommand of EDIT 93 



Example 2 

Operation: List part of a data set that has line numbers. 

Known: 
The line number of the first line to be displayed: 27 
The line number of the last line to be displayed: 44 
Line numbers are to be included in the list. 

list 27 44 

Example 3 

Operation: List part of a data set that does not have line numbers. 

Known: 
The line pointer in the system points to the first line to be listed. 
The section to be listed consists of 17 lines. 

list * 17 

94 OS/VS2 TSO Command Language Reference 

( 



MOVE Subcommand of EDIT 

Use the MOVE subcommand of EDIT to move one or more records that 
exist in the data set being edited. The move operation moves data from a 
source location to a target location within the same data set and deletes the 
source data. Existing lines in the target area are shifted toward the end of 
the data set as required to make room for the incoming data. No lines are 
lost in the shift. 

The target line cannot be within the source area, with the exception that 
the target line (the first line of the target area) can overlap the last line of 
the source area. 

Upon completion of the move operation, the current line pointer points 
to the last moved-to line, not to the last line shifted to make room in the 
target area. 

Note: If you cause an attention interruption during the move operation, 
the data set may be only partially changed. As a check, list the affected 
part of the data set before continuing. 

Note: MOVE without operands is ignored. 

line I 

[INCR(lines)] } 

[I NCR(lines)] 

specifies the first line or the lower limit of the range to be moved. If the 
specified line number does not exist in this data set, the range begins the 
next higher line number. 

line2 
specifies the last line or the upper limit of the range to be moved. If the 
specified line number does not exist in this data set, the range ends with 
the highest line number that is less than line2. If line2 is not entered, the 
value defaults to the value of line l; that is, the source becomes one line. 
Do not enter asterisk for line2. 

Note: If MOVE is followed by two line-number operands, the system 
assumes them to represent linel and line3, and defaults line2 to the value 
of linel. 

MOVE Subcommand of EDIT 95 



line3 
specifies the target line number; that is, the line at which the moved-to 
data area will start. If the line3 value corresponds to an existing line, the 
target line is changed to line3 + INCR(lines) and either becomes a new 
line or displaces an existing line at that location. Once the move 
operation begins, existing lines encountered in the target area are 
renumbered to make room for the incoming data. The increment for 
renumbered lines is one (1). Specifying zero (0) for line3 puts the moved 
data at the top of the data set only if line 0 is empty; if line 0 has data, 
enter TOP followed by MOVE with line3 set to *. Note that line3 
defaults to *. 

Note: The value of line3 should not fall in the range from line 1 to line2; 
that is, the target line must not be in the range being moved. Exception: 
line3 can be equal to line2. 

* 
represents the value of the current line pointer. 

INCR(lines) 

specifies the line number increment to be used for this move operation. 
The default is the value in effect for this data before the move operation. 
When the move operation is complete, the increment reverts to the value 
in effect before MOVE was issued. Range: 1-8 decimal digits but not 
zero. 

Note: The increment for any renumbered line is one (1). 

'string' 
specifies a string of alphameric characters with a maximum length equal 
to or less than the logical record length of the data set being edited. 
When a character string is specified, a search starting at the current line 
is done for the line containing the string. When found, that line is the 
start of the range to be moved for either numbered or unnumbered data 
sets. 

count 
specifies the total number of lines (the range) to be moved. The default 
for count is one (1). Enter 1-8 decimal digits but not zero (0) or asterisk 
(*). 

line4 
applies to both numbered and unnumbered data sets. For unnumbered 
data sets, line4 specifies the target line (the line at which the moved-to 
data area will start) as a relative line number (the nth line in the data 
set). For numbered data sets, line4 is specified the same as line3. 
Specifying zero (0) for line4 puts the moved data at the top of the data 
set only if line 0 is empty; if line 0 has data, enter TOP followed by 
MOVE with line4 set to *. Note that line4 defaults to *. 

96 OS/VS2 TSO Command Language Reference 



Messages 

The MOVE subcommand of EDIT causes error messages to be displayed at 
the terminal under specific conditions. To show these conditions, the 
following data set is assumed: 

0010 A 
0020 BB 
0030 CCC 
0040 DDDD 
0050 EEEEE 
0060 FFFFFF 
0070 GGGGGGG 
0080 HHHHHHHH 
0090 111111111 
0100 JJJJJJJJJJ 
0110 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 

1. Entering 
move * * * 

causes: 
IKJ52579I INVALID OPERANDS * INVALID FOR COUNT OR END OF 

RANGE SPECIFICATION 

2. Entering 
move 100000 * 

causes: 
IKJ52579I INVALID OPERANDS FIRST LINE TO BE MOVE/COPIED 

DOES NOT EXIST 

3. Entering 
move 'xyz' * 

causes: 
IKJ52579I INVALID OPERANDS QUOTED STRING NOT FOUND 

4. Entering 
move 20 to 10 * 

causes: 
IKJ52579I INVALID OPERANDS END OF RANGE MUST BE GREATER THAN 

OR EQUAL TO THE BEGINNING OF THE RANGE 

5. Entering 
move 20 '*' 100 

causes: 

IKJ52579I INVALID OPERANDS STRING INVALID FOR END OF RANGE 

SPECIFICATION 

6. Entering 
move * 0 100 
causes: 
IKJ52579I INVALID OPERANDS 0 INVALID FOR COUNT 

7. Entering 
move 10 40 20 
causes: 
IKJ52579I INVALID OPERANDS TRYING TO MOVE/COPY INTO LINE 

RANGE 

MOVE Subcommand of EDIT 97 



In the following examples, CLP refers to the current line pointer. 

Example 1 

Operation: Move the current line right after itself in a line-numbered data set. 

Known: Data set contains lines 10 through 120; current line pointer is at 50; EDIT provides an increment 
of 10. 

Before: Enter: After: 

0010 A move 50 50 50 0010 A 
0020 BB 0020 BB 
0030 CCC or 0030 CCC 
0040 DDDD 0040 DDDD 
0050 EEEEE move 50 50 CLP 0060 EEEEE 
0060 FFFFFF 0061 FFFFFF 
0070 GGGGGGG or 0070 GGGGGGG 
0080 HHHHHHHH 0080 HHHHHHHH 
0090 111111111 move 50 0090 111111111 
0100 JJJJJJJJJJ 0100 JJJJJJJJJJ 
0110 KKKKKKKKKKK or 0110 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL 

move 'ee' 

Note: MOVE is ignored without operands. 

Example 2 

Operation: Move the current line right after itself in an unnumbered data set. 

Known: Data set contains 12 lines of sequential alphabetic characters. Current line pointer is at the seventh 
line. 

Before Enter: After: 

A move * 1 * A 
BB BB 
CCC or CCC 
DDDD DDDD 
EEEEE move * 1 EEEEE 
FFFFFF FFFFFF 
GGGGGGG or CLP GGGGGGG 
HHHHHHHH HHHHHHHH 
111111111 move * 111111111 
JJJJJJJJJJ JJJJJJJJJJ 
KKKKKKKKKKK or KKKKKKKKKKK 
LLLLLLLLLLLL LLLLLLLLLLLL 

move 'gg' 

Note: The effect of the operation is an unchanged data set. 

98 OS/VS2 TSO Command Language Reference 

I 
\ 
'~ 



Example 3 

Operation: Illustrate an attempt to move a line to a line before it. 

Known: Data set contains lines 10 through 120; source line is 60; target line is 50; EDIT supplies increment 
of 10. 

Before: Enter: After: 

0010 A move 60 50 0010 A 
0020 BB 0020 BB 
0030 CCC 0030 CCC 
0040 DDDD 0040 DDDD 
0050 EEEEE 0050 EEEEE 
0060 FFFFFF CLP 0060 FFFFFF 
0070 GGGGGGG 0070 GGGGGGG 
0080 HHHHHHHH 0080 HHHHHHHH 
0090 IIIIIIIII 0090 IIIIIIIII 
0100 JJJJJJJJJJ 0100 JJJJJJJJJJ 
0110 KKKKKKKKKKK 0110 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL 

Example 4 

Operation: Find the line containing a specific word and move it to the bottom of the data set. 

Known: Data set contains nine lines of text; word to be found is "men"; data set is unnumbered. 

Before: 

NOW IS 
THE TIME 
FOR ALL 
GOOD MEN 
TO COME 
TO THE 
AID OF 
THEIR 
COUNTRY 

Example 5 

Enter After: 

top NOW IS 
move 'men' 99999999 THE TIME 

FOR ALL 
TO COME 
TO THE 
AID OF 
THEIR 
COUNTRY 

CLP GOOD MEN 

Operation: Move lines 10, 20, and 30 into a target area starting at line 100, using an increment of 5. 

Known: Data set contains line 10 through 120; EDIT provides increment of 10. 

Before: Enter: After: 

0010 A move 10 30 100 incr(5) 0040 DDDD 
0020 BB 0050 EEEEE 
0030 CCC or 0060 FFFFFF 
0040 DDDD 0070 GGGGGGG 
0050 EEEEE move 9 31 100 incr(5) 0080 HHHHHHHH 
0060 FFFFFF 0090 IIIIIIIII 
0070 GGGGGGG or 0100 JJJJJJJJJJ 
0080 HHHHHHHH 0105 A 
0090 IIIIIIIII move 1 39 100 incr(5) 0110 BB 
0100 JJJJJJJJJJ CLP 0115 CCC 
0110 KKKKKKKKKKK 0116 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL 

MOVE Subcommand of EDIT 99 



Example 6 

Operation: Move four lines from a source area to a target area that overlaps the last line of the source, 
using the default increment. 

Known: Data set contains lines 10 through 120; source lines are 20 through 50; target area starts at line 50; 
EDIT provides increment of 10. 

Before: Enter: After: 

0010 A move 20 50 50 0010 A 
0020 BB 0060 BB 
0030 eee 0070 eee 
0040 DDDD 0080 DDDD 
0050 EEEEE eLP 0090 EEEEE 
0060 FFFFFF 0091 FFFFFF 
0070 GGGGGGG 0092 GGGGGGG 
0080 HHHHHHHH 0093 HHHHHHHH 
0090 111111111 0094 111111111 
0100 JJJJJJJJJJ 0100 JJJJJJJJJJ 
0110 KKKKKKKKKKK 0110 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL 

Example 7 

Operation: Move five lines into a target area that starts before but overlaps into the source area. 

Known: Data set contains lines 10 through 120; source range is line 70 through line 110; target location is 
line 50; increment to be 10. 

Before Enter: After: 

0010 A move 70 110 50 incr( 10 ) 0010 A 
0020 BB 0020 BB 
0030 eee 0030 eee 
0040 DDDD 0040 DDDD 
0050 EEEEE 0050 EEEEE 
0060 FFFFFF 0060 GGGGGGG 
0070 GGGGGGG 0070 HHHHHHHH 
0080 HHHHHHHH 0080 111111111 
0090 111111111 0090 JJJJJJJJJJ 
0100 JJJJJJJJJJ eLP 0100 KKKKKKKKKKK 
0110 KKKKKKKKKKK 0101 FFFFFF 
0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL 

100 OS/VS2 TSO Command Language Reference 

( 

~ 



Example 8 

Operation: Move three lines to the top of the data set at line O. 

Known: Data set contains lines 10 through 120; line 0 doesn't exist; source lines are 80, 90, and 100; target 
area starts at line 0. 

Before: Enter After: 

0010 A top 0000 HHHHHHHH 
0020 BB move 80 100 * incr(50) 0050 111111111 
0030 eee eLP 0100 JJJJJJJJJJ 
0040 DODD or 0101 A 
0050 EEEEE 0102 BB 
0060 FFFFFF move 80 100 0 incr(50) 0103 eee 
0070 GGGGGGG 0104 DODD 
0080 HHHHHHHH 0105 EEEEE 
0090 111111111 0106 FFFFFF 
0100 JJJJJJJJJJ 0107 GGGGGGG 
0110 KK.KKKK.KKKKK 0110 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL 

Example 9 

Operation: Move three lines to the top of the data set at line 0, using an increment of 50. 

Known: Data set contains lines ° through 120; line 0 contains data; source lines are 80, 90, and 100; target 
area starts at line O. 

Before: 

0000 ZIP 
0010 A 
0020 BB 
0030 eee 
0040 DODD 
0050 EEEEE 
0060 FFFFFF 
0070 GGGGGGG 
0080 HHHHHHHH 
0090 111111111 
0100 JJJJJJJJJJ 
01 1 0 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 

Enter: 

top 
move 80 100 * incr(50) 

eLP 
The attempt to move into 
line 0 gets the target data 
to the top of the data set 
but shifts the target line 
by the increment value. 

Nom: An entry of 
move 80 100 0 incr(50) 
produces the results 
shown at right. The 
target data is inserted 
between line 0 and the 
remainder of the data eLP 
set. 

After: 

0050 HHHHHHHH 
0100 111111111 
0150 JJJJJJJJJJ 
0151 ZIP 
0152 A 
0153 BB 
0154 eee 
0155 DODD 
0156 EEEEE 
0157 FFFFFF 
0158 GGGGGGG 
0159 KKKKKKKKKKK 
0160 LLLLLLLLLLLL 

0000 ZIP 
0050 HHHHHHHH 
0100 111111111 
0150 JJJJJJJJJJ 
0151 A 
0152 BB 
0153 eee 
0154 DODD 
0155 EEEEE 
0156 FFFFFF 
0157 GGGGGGG 
0158 KKKKKKKKKKK 
0159 LLLLLLLLLLLL 

MOVE Subcommand of EDIT 101 



102 OS/VS2 TSO Command Language Reference 



PROFILE Subcommand of EDIT 

Use the PROFILE subcommand to change the characteristics of your user 
profile. Refer to PROFILE command for a discussion of the syntax and 
function of PROFILE subcommand. 

PROFILE Subcommand of EDIT 103 



104 OS/VS2 TSO Command Language Reference 



RENUM Subcommand of EDIT 

Use the RENUM subcommand to: 

• Assign a line number to each record of a data set that does not have a 
line number. 

• Renumber each record in a data set that has line numbers. 

New line numbers are placed in the last eight character positions if the 
data set being edited contains fixed-length records. There are three 
exceptions to this general rule: 

• Data set type COBOL - first six positions 
• Data set type VSBASIC - first five positions 
• Data set type ASM and NUM keyword specified on EDIT command -

positions indicated in NUM keyword subfield. 

If fixed-length record data sets are being numbered for the first time, 
any data in the positions indicated above is overlaid. 

If variable-length records without sequence numbers are being edited, the 
records will be lengthened so that an eight-digit sequence field (five-digits if 
VSBASIC) is prefixed to each record. You are notified if any records have 
been truncated in the process. (Records are truncated when the data length 
plus the sequence length exceeds the maximum record length of the data set 
being edited.) 

In all cases the specified (or default) increment value becomes the line 
increment for the data set. 

{
RENUM} 
REN 

new-line-number 

[new-line-number[increment[old-line-number[end-line-number1 ]] ] 

specifies the new line number to be assigned to the first line renumbered. 
If this operand is omitted, the first line number will be 10. 

increment 
specifies the amount by which each succeeding line number is to be 
incremented. (The default value is 10.) You cannot use this operand 
unless you specify a new line number. 

old-line-number 
specifies the location within the data set where renumbering will begin. If 
this operand is omitted, renumbering will start at the beginning of the 
data set. You cannot use this operand unless you specify a value for the 
increment operand or when you are initially numbering a NONUM data 
set. 

end-line-number 
specifies the line number at which renumbering is to end. If this operand 
is omitted, renumbering continues to the end of the data set. You cannot 
use this operand without specifying. all the other operands. 

RENUM Subcommand of EDIT lOS 



Example 1 

Operation: Renumber an entire data set using the default values for each 
operand. 

renum 

Example 2 

Known: 
The old line number: 17 
The new line number: 21 
The increment: 1 

ren 21 1 17 

Example 3 

Operation: Renumber part of a data set from which lines have been 
deleted. 

Known: 
Before deletion of the lines, the data set contained lines, 10, 20, 30, 40, 

and 50. 
Lines 20 and 30 were deleted. 
Lines 40 and 50 are to be renumbered with an increment of 10. 

ren 20 10 40 

Note: The lowest acceptable value for a new line number in this example 
is 11. 

Example 4 

Operation: Renumber a range of lines so that new lines may be inserted. 

Known: 
Before renumbering, the data set lines are numbered 

10,20,23,26,29,30,40, and 50. 
Two lines are to be inserted after line 29. 
Lines 23-29 are to be renumbered with an increment of 2. 
The first new number to be assigned is 22. 

ren 22 2 23 29 

106 OS/VS2 TSO Command Language Reference 



RUN Subcommand of EDIT 

Use the RUN subcommand to compile, load, and execute the source 
statements in the data set that you are editing. The RUN subcommand is 
designed specifically for use with certain program products; it selects and 
invokes the particular program product needed to process your source 
statements. Figure 8 shows which program product is selected to process 
each type of source statement. 

Notes: 

1. Any data sets required by your problem program may be allocated 
before you enter EDIT mode or may be allocated using the 
ALLOCATE subcommand. 

2. If you wish to enter a value for 'parameters,' you should enter this 
prior to any of the other keyword operands. 

If your program or data set contains Then the following Program Product 
statements of this type (or equivalent) can be used: 
(see EDIT): 

ASM TSO ASM Prompter 

COBOL TSO COBOL Prompter and OS Full 
American National Standard COBOL Version 
3 or Version 4 

FORTGI TSO FORTRAN Prompter and 
FORTRAN IV (G1) 

GOFORT Code and Go FORTRAN 

PLI PLII Checkout Compiler or PL/I 
Optimizing Compiler 

VSBASIC VSBASIC 

You can use the CONVERT command to convert Code and Go FORTRAN free-form 
statements to a form suitable for the FORTRAN compiler. 

When the descriptive qualifier for your data set name is .FORT, the Code and Go 
FORTRAN compiler is invoked unless you specify another compiler with the EDIT 
command. 

Note: User-defined data set types can be executed under the RUN subcommand of EDIT 
if a prompter name was specified at system generation time. The RUN command will not 
recognize these same data set types. 

Figure 8. Source Statement/Program Product Relationship 

RUN Subcommand of EDIT 107 



['parameters'] 

[~~~~ST ] 
[ 

LMSG] 
.SMSG 

[
CHECK] 
OPT 

[LI B (data-set-list)] 

[
STORE ] 
NOSTORE 

[~~GO] 
[SIZE(value)] 

[
PAUSE ] 
NOPAUSE 

'parameters' 
specifies a string of up to 100 characters that is passed to the program 
that is to be executed. You may specify this operand only for programs 
which can accept parameters. 

TEST 
specifies that testing will be performed during execution. This operand is 
valid for the VSBASIC program product only. 

NOTEST 
specifies that no testing will be done. If you omit both TEST and 
NOTEST, the default value is NOTEST. 

LMSG 
specifies that you want to receive complete diagnostic messages. This 
operand is valid for the optional Code and Go FORTRAN program 
product only. 

SMSG 
specifies that you want to receive the short, concise diagnostic messages. 
This is the default for Code and Go FORTRAN program product. 

CHECK 
specifies the PL/I Checkout compiler. This operand is valid for the 'PL/I 
program product only. If you omit this operand, the OPT operand is the 
default value for data sets having the PLI descriptive qualifier. 

OPT 
specifies the PL/I Optimizing compiler. This operand is valid for the 
PL/I program product only. This is the default value for data sets having 
the PLI descriptive qualifier if both CHECK and OPT are omitted. 

108 OS/VSl TSO Command Language Reference 

c 



LIB(data-set-list) 
specifies the library or libraries that contain subroutines needed by the 
program you are running. These libraries are concatenated to the default 
system libraries and passed to the loader for resolution of external 
references. This operand is valid only for the following data set types: 
ASM, COBOL, PORTOI, and PLI(Optimizer). 

STORE 
specifies that a permanent OBJ data set is to be created. The dsname of 
the OBJ data set is based on the data set name entered on the EDIT 
command. This operand is valid only for VSBASIC statements. 

NOSTORE 
specifies that a permanent OBJ data set is not to be created. This 
operand is valid only for VSBASIC statements. 

GO 

specifies that the compiled program is to be executed. This operand is 
valid only for VSBASIC statements. 

NOGO 
specifies that the compiled program is not to be executed. This operand 
is valid only for VSBASIC statements. 

SIZE(value) 
specifies the size (1-999) of the user area for VSBASIC. 

PAUSE 

specifies that the user is to be given the chance to add or change certain 
compiler options before proceeding to the next chain program. This 
operand is valid only for VSBASIC statements. 

NOPAUSE 

specifies that the user is not to be given the chance to add or change 
certain compiler options before proceeding to the next chain program. 
This operand is valid only for VSBASIC statements. 

Example 1 

Operation: Execute an assembler language program contained in the data 
set referred to by the EDIT command. 

Known: 
The parameters to be passed to the program are: '1024,PAYROLL' 

run '1024,payroll' 

Example 2 

Operation: Run a FORTRAN IV (01) program that calls an assembler 
language output program to manipulate bit patterns. 

Known: 
The assembler language subroutine in load module form resides in a 

library called USERID.MYLIB.LOAD. 

run lib(mylib.load) 

RUN Subcommand of EDIT 109 



110 OS/VS2 TSO Command Language Reference 



• 

SAVE Subcommand of EDIT 

Use the SAVE subcommand to have your data set retained as a permanent 
data set. If you use SAVE without an operand, the updated version of your 
data set replaces the original version. When you specify a new data set 
name as an operand, both the original version and the updated version of 
the data set are available for further use. 

RENUM [(new-line-number 

UNNUM 

[incr [old-line-number 
[end-line-number] ] ] )] ]] 

specifies that the edited version of your data set is to replace the original 
version. This is the default, if there are no operands entered on the 
subcommand. 

dsname 
specifies a data set name that will be assigned to your edited data set. 
The new name may be different from the current name (see the data set 
naming conventions). If this operand or an asterisk is omitted, the name 
entered with the EDIT command will be used. 
If you specify the name of an existing data set or a member of a 
partitioned data set, that data set or member is replaced by the edited 
data set. (Before replacement occurs, you will be given the option of 
specifying a new data set name or member name.) 
If you do not specify the name of an existing data set or partitioned data 
set member, a new data set (the edited data set) will be created with the 
name you specified. If you specified a member name for a sequentially 
organized data set, no replacement of the data set will take place. If you 
do not specify a member name for an existing partitioned data set, the 
edited data set is assigned a member name of TEMPNAME. 

Note: The following operands cannot be included unless data set name or 
an • is specified. 

RENUM 

specifies that the data set will be renumbered before it is saved. 

SAVE Subcommand of EDIT tit 



new-line-number 
specifies the first line number to be assigned to the data set. If this 
operand is omitted, the first line number will be 10. 

incr 
specifies the amount by which each succeeding line number is to be 
incremented. The default is 10. This operand cannot be included unless 
the new-line-number is specified. 

old-line-number 
specifies the line location within the data set where the renumber process 
will begin. If this operand is omitted, renumbering will start at the 
beginning of the data set. The old-line-number must be equal to or less 
than the new-line-number. This operand cannot be included unless "incr" 
is specified. 

end-line-number 
specifies the line location within the data set where renumbering is to 
end. If this operand is omitted, renumbering stops at the end of the data 
set. The end-line-number must be greater than the old-line-number. This 
operand cannot be included unless the old-line-number is specified. 

UNNUM 

specifies that the data set will be unnumbered before it is saved. 

Note: If the data set being edited originally contained control characters 
(ASCII or machine), and you enter SAVE without operands, the following 
actions apply. 

Sequential Data Set 

• You will be warned that the data set will be saved without control 
characters, that is, the record format will be changed. 

• You will be prompted to enter another data set name for SAVE or a 
null line to reuse the EDIT data set. 

Partitioned Data Set 

Saving into the EDIT data set is not allowed when it is partitioned with 
a control character attribute. You must save into another data set by 
specifying a data-set-name on a subsequent SAVE subcommand entry. 

112 OS/VS2 TSO Command Language Reference 

( 



Example 1 

Operation: Save the data set that has just been edited by the EDIT 
command. 

Known: 
The system is in edit mode. The user-supplied name that you want to 

give the data set is INDEX. 

save index 

Example 2 

Operation: Save the data set that has just been edited, renumbering it first. 

Known: 
new-line-number 
increment (IN CR) 

save * renurn(100 50) 

100 
50 

SAVE Subcommand of EDIT 113 



114 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated July 30, 1980 
By TNL GN284754 

SCAN Subcommand of EDIT 

Use the SCAN subcommand to request syntax checking services for 
statements that will be processed by the FORTRAN(H) compiler or by the 
Code and Go FORTRAN, or FORTRAN IV (Gl), program products. You 
can have each statement checked as you enter it in input mode, or any or 
all existing statements checked. You must explicitly request a check of the 
syntax of statements you are adding, replacing, or modifying, via the 
CHANGE subcommand, the INSERT subcommand with the insert-data 
operand, or the insert/replace/delete function. 

{~~AN } [
line-number-1 [line-number-2]] 
* (count] 

line-number-l 
specifies the number of a line to be checked for proper syntax. 

line-number-l 

• 

specifies that all lines between line number 1 and line number 2 are to 
be checked for proper syntax . 

specifies that the line at the location indicated by the line pointer in the 
system is to be checked for proper syntax. The line pointer can be 
changed by the TOP, BOTTOM, UP, DOWN, and FIND subcommands. 

count 
specifies the number of lines, beginning with the current line, that you 
want checked for proper syntax. 

ON 
specifies that each line is to be checked for proper syntax as it is entered 
in input mode. 

OFF 
specifies that each line is not to be checked as it is entered in input 
mode. 

No*: If no operands are specified, all existing statements will be checked 
for proper syntax. 

SCAN Subcommand of EDIT lIS 



July 30, 1980 

Example 1 

Operation: Have each line of a FORTRAN program checked for proper 
syntax as it is entered. 

scan on 

Example 2 

Operation: Have all the statements in a data set checked for proper syntax. 

scan 

Example 3 

Operation: Have several statements checked for proper syntax. 

Known: 
The number of the first line to be checked: 62 
The number of the last line to be checked: 69 

scan 62 69 

Example 4 

Operation: Check several statements for proper syntax. 

Known: 
The line pointer points to the first line to be checked. 
The number of lines to be checked: 7 

scan * 7 

116 OS/VS2 TSO Command Language Reference 



SEND Subcommand of EDIT 

Use the SEND subcomm~nd to send a message to another terminal user or 
to the system operator. Refer to the SEND command for a description of 
the syntax and function of the SEND subcommand. 

SEND Subcommand of EDIT 117 



118 OS/VSl TSO Command Language Reference 



SUBMIT Subcommand of EDIT 

Use the SUBMIT subcommand of EDIT to submit one or more batch jobs 
for conventional processing. Each job submitted must reside in either a 
sequential data set, a direct-access data set or in a member of a partitioned 
data set. Submitted data sets must be fixed blocked, 80 byte records. Using 
the EDIT command to create a CNTL data set will provide the correct 
format. 

Any of these data sets can contain part of a job, one job, or more than 
one job that can be executed via a single entry of SUBMIT. Each job must 
comprise an input job stream (JCL plus data). Do not submit data sets with 
descriptive qualifiers TEXT or PLI if the characters in these data sets are 
lower case. 

Job cards are optional. The generated jobname will be your userid plus 
an identifying character. SUBMIT will prompt you for the character and 
insert the job accounting information from the user's LOGON command on 
any generated job card. The system or installation default MSGCLASS and 
CLASS are used for submitted jobs unless MSGCLASS and CLASS are 
specified on the job card(s) being submitted. See the first section in 
Appendix A for an example of a generated JOB card. 

* 

{
SUBMIT} 
SUB { 

* } [NOTIFY ] 
(data-set-list) NONOTI FY 

specifies that the data set being edited defines the input stream to be 
submitted. This is the default if no operands are entered on the 
subcommand. 

data-set-list 
specifies one or more data set names or names of members of partitioned 
data sets that define an input stream (JCL plus data). If you specify 
more than one data set name, enclose them in parentheses. 

Note: Either an asterisk or the data-set-list must be specified if any 
keywords are used. 

NOTIFY 
specifies that you are to be notified when your job terminates in the 
background if a JOB statement has not been provided. If you have 
elected not to receive messages, the message will be placed in the 
broadcast data set. You must then enter LISTBC to. receive the message. 
Notify is the default value if a JOB statement is generated. 
If you supply your own JOB statement, use the NOTIFY =userid 
keyword on the JOB statement if you wish to be notified when the job 
terminates. SUBMIT ignores the NOTIFY keyword unless it is generating 
a JOB statement. 

SUBMIT Subcommand of EDIT 119 



NONOTIFY· 

specifies that a termination message will not be issued or placed in the 
broadcast data set. The NONOTIFY keyword is only recognized when a 
JOB statement has not been provided with the job that you are 
processing. If you supply your own JOB statement, you must use the 
NOTIFY = userid keyword on the JOB statement to receive notification. 

Notes: 

• If any of the above types of data sets containing two or more jobs is 
submitted for processing, certain conditions apply. 
The SUBMIT processor will build a job· card for the first job in the 
first data set, if none was supplied, but will not build job cards for 
any other jobs in the data set(s). 
If the SUBMIT processor determines that the first job contains an 
error, none of the jobs are submitted. 
Once the SUBMIT processor submits a job for processing, errors 
occurring in the execution of that job have no effect on the 
submission of any remaining job(s) in that data set. 

• Any job card you supply should have a job name consisting of your 
userid and a single identifying character. If the jobname is not in this 
format, you will not be able to refer to it with the CANCEL 
command. You will be required to specify the jobname in the 
STATUS command if the· IBM-supplied exit has not been replaced by 
your installation and your job name is not your userid plus a single 
identifying character. 

• If you wish to provide a job card but you also want to be prompted 
for a unique jobname character, put your userid in the jobname field 
and follow it with blanks so that there is room for SUBMIT to insert 
the prompted-for character. This allows you to change jobnames 
without re-editing the JCL data set. 

• Once SUBMIT has successfully submitted a job for conventional batch 
processing, it will issue a 'jobname(jobid) submitted' message. The 
jobid is a unique job identifier assigned by the job entry subsystem. 

• This subcommand may be used only by personnel who have been 
given the authority to do so by the installation management. 

Example 

Operation: Submit the data set being edited for batch processing. 

Known: 
The data set has no job card and you do not want to be notified when 

the job is completed. 

submit * nonotify 

120 OS/VS2 TSO Command Language Reference 



) 

TABSET Subcommand of EDIT 

Use the T ABSET subcommand to: 

• Establish or change the logical tabulation settings. 
• Cancel any existing tabulation settings. 

The basic form of the subcommand causes each strike of the tab key to 
be translated into blanks corresponding to the column requirements for the 
data set type. For instance, if the name of the data set being edited has 
FORT as a descriptive qualifier, the first tabulation setting will be in 
column 7. The values in Figure 9 will be in effect when you first enter the 
EDIT command. (See TSO Terminal User's Guide to determine if your 
terminal supports tab setting.) 

Data Set Name Descriptive Qualifier 
ASM 
CLIST 
CNTL 
COBOL 
DATA 
FORT FORTRAN(H) compilers, FORTRAN IV (G1) 

and Code and Go FORTRAN program 
product data set types. 

PLI PL/I Checkout and 
Optimizing compiler data set types. 

TEXT 
VSBASIC 
User-defined 

Figure 9. Default Tab Settings 

Default Tab Settings Columns 
10,16,31,72 
10,20,30,40,50,60 
10,20,30,40,50,60 
8,12,72 
10,20,30,40,50,60 
7,72 

5, to, 15,2Q,25,30,35,4O,45,50 

5,10,15,20,30,40 
10,15,20,25,30,35,40,45,50,55 
10,20,30,40,50,60 

You may find it convenient to have the mechanical tab settings coincide 
with the logical tab settings. Note that, except for line-numbered COBOL 
or VSBASIC data sets, the logical tab columns apply only to the data that 
you actually enter. Since a printed line number prompt is not logically part 
of the data you are entering, the logical tab positions are calculated 
beginning at the next position after the prompt. Thus, if you are receiving 
five-digit line number prompts and have set a logical tab in column 10, the 
mechanical tab should be set 15 columns to the right of the margin. If you 
are not receiving line number prompts, the mechanical tab should be set 10 
columns to the right of the margin. 

In COBOL and VSBASIC data sets the sequence number (line number) 
is considered to be a logical (as well as physical) part of each record that 
you enter. For instance, if you specify the NONUM operand on the EDIT 
command, while editing a COBOL or VSBASIC data set, the system 
assumes that column 1 is at the left margin and that you are entering the 
required sequence numbers in the first six columns; (for COBOL) or the 
first five columns (for VSBASIC); thus, logical tabs are calculated from the 
left margin (column 1). In line-numbered COBOL data sets (the NONUM 
operand was not specified), the column following a line number prompt is 
considered to be column 7 of your data, the first six columns being 
occupied by the system-supplied sequence number (line number). In 
line-numbered VSBASIC data sets, the column following a line number 

TABSET Subcommand of EDIT 121 



prompt is considered to be column 6 of your data, the first five columns 
being occupied by the system-supplied sequence number. 

{
TASSET} 
TAS 

ON (integer-list) 

[

ON [(integer-list) 1] 
OFF 
IMAGE 

specifies that tab settings are to be translated into blanks by the system. 
If you specify ON without an integer list, the existing or default tab 
settings are used. You can establish new values for tab settings by 
specifying the numbers of the tab columns as values for the integer list. 
A maximum of ten values is allowed. If you omit both ON and OFF the 
default value is ON. 

OFF 

specifies that there is to be no translation of tabulation characters. Each 
strike of the tab key will produce a single blank in the data. 

IMAGE 

specifies that the next input line will define new tabulation settings. The 
next line that you type should consist of "t"s, indicating the column 
positions of the tab settings, and blanks or any other characters except 
"t". Ten settings is the maximum number of tabs allowable. Do not use 
the tab key to produce the new image line. A good practice is to use a 
sequence of digits between the "t"s so you can easily determine which 
columns the tabs are set to (see Example 3). 

Example 1 

Operation: Re-establish standard tab settings for your data set. 

Known: 
Tab settings are not in effect. 

tab 

Example 2 

Operation: Establish tabs for columns 2, 18, and 72. 

tab on(2 18 72) 

Example 3 

Operation: Establish tabs at every 10th column. 

tab image 
123456789t123456789t123 ... 

122 OS/VS2 TSO Command Language Reference 

( 



) 

) 

TOP Subcommand of EDIT 

Use the TOP subcommand to change the line pointer in the system to zero, 
that is, the pointer will point to the position preceding the first line of an 
unnumbered data set or of a numbered data set which does not have a line 
number of zero. The pointer will point to line number zero of a data set 
that has one. 

This subcommand is useful in setting the line pointer to the proper 
position for subsequent subcommands that need to start their operations at 
the beginning of the data set. 

In the event that the data set is empty you will be notified, but the 
current line pointer still takes on a zero value. 

TOP 

Example 1 

Operation: Move the line pointer to the beginning of your data set. 

Known: 
The data set is not line-numbered. 

top 

TOP Subcommand of EDIT 123 



( 

124 OS/VS2 TSO Command Language Reference 



) 

) 

UNNUM Subcommand of EDIT 

Use the UNNUM subcommand to remove existing line numbers from the 
records in the data set. 

{
UNNUM} 
UNN 

Example 1 

Operation: Remove the line numbers from an ASM-type data set. 

Known: 
The data set has line numbers. 

unnum 

UNNUM Subcommand of EDIT 125 



( 
126 OS/VS2 TSO Command Language Reference 



UP Subcommand of EDIT 

Use the UP subcommand to change the line pointer in the system so that it 
points to a record nearer the beginning of your data set. If the use of this 
subcommand causes the line pointer to point to the first record of your data 
set, you will be notified. 

UP [count] 

count 
specifies the number of lines toward the beginning of the data set that 
you want to move the current line pointer. If count is omitted, the 
pointer will be moved only one line. 

Example 1 

Operation: Change the pointer so that it refers to the preceding line. 

up 

Example 2 

Operation: Change the pointer so that it refers to a line located 17 lines 
before the location currently referred to. 

up 17 

UP Subcommand of EDIT 127 



128 OS/VS2 TSO Command Language Reference 



) 

) 

VERIFY Subcommand of EDIT 

Use the VERIFY subcommand to display the line that is currently pointed 
to by the line pointer in the system whenever the current line pointer has 
been moved, or whenever a line has been modified by use of the CHANGE 
subcommand. Until you enter VERIFY, you will have no verification of 
changes in the position of the current line pointer. 

ON 

[~~F ] 

specifies that you want to have the line that is referred to by the line 
pointer displayed at your terminal each time the line pointer changes or 
each time the line is changed by the CHANGE subcommand. This is the 
default if you omit both ON and OFF. 

OFF 

specifies that you want to discontinue this service. 

Note: Subcommands that change the current line pointer and cause it to be 
displayed if the VERIFY subcommand is activated are BOTTOM, 
CHANGE, COPY, DELETE, DOWN, FIND, MOVE, RENUM, UNNUM 
and UP. 

Example 1 

Operation: Have the line that is referred to by the line pointer displayed at 
your terminal each time the line pointer changes. 

verify 
or 

verify on 

Example 2 

Operation: Terminate the operations of the VERIFY subcommand. 

verify off 

VERIFY Subcommand of EDIT 129 



( 
130 OS/VS2 TSO Command Language Reference 



) 

END Command 

You may use the END command to end a command procedure. When the 
system encounters an END command in a command procedure, execution 
of the command procedure is halted. This function is better performed by 
the EXIT statement. 

END 

END Command 131 



( 
132 OS/VS2 TSO Command Language Reference 



EXEC Command 

Use the EXEC command to execute a command procedure. 

You can specify the EXEC command or the EXEC subcommand of 
EDIT in three ways: 

• The explicit form: Enter EXEC or EX followed by the name of the 
data set that contains the command procedure. 

• The implicit form: Do not enter EXEC or EX; only enter the 
procedure-name (a member of a command procedure library). A 
command procedure library is a partitioned data set that must be 
allocated to the SYSPROC file name either dynamically by the 
ALLOCATE command or as part of the LOGON procedure. TSO 
will determine if the name is a system command before searching 
SYSPROC for the procedure. 

• The extended implicit form: Enter a percent sign followed by the 
procedure-name. TSO will only search the SYSPROC file for the 
specified name. For procedures that reside in SYSPROC, this form is 
the faster of the implicit forms. 

Some of the commands in a command procedure may have symbolic 
variables for operands. When you specify the EXEC command, you may 
supply actual values for the system to use in place of the symbolic 
variables. 

Note: For more information concerning symbolic variables and command 
procedures, refer to the section "Command Procedures" in this book. 
Command procedures are explained in greater detail in OS I VS2 TSO 
Terminal User's Guide. 

The EXEC command and the EXEC subcommand of EDIT perform the 
same basic functions. However, a command procedure which is executed 
with the EXEC subcommand of EDIT can only execute command 
procedure statements and EDIT subcommands. 

{
{EXEC} data-set_name} 

: procedure-name 

['value-list'] r. NOLlST] 
LLiST [

PROMPT J 
NOPROMPT 

EXEC Command 133 



data-set-name 
specifies the name of the data set containing the command procedure to 
be executed. If the descriptive qualifier for the data set is not CLIST, 
you must enclose the fully-qualified name within apostrophes and the 
data set must contain line numbers according to the following format: 

Variable blocked - First eight characters in each record 
Fixed blpcked - La~t eight characters in each record 

Since any data contained in these columns is lost, you should not enter 
data in these columns. 

[ % ]procedure-name 
specifies a member of a command procedure library. If the percent sign 
(%) is entered, TSO will search only the SYSPROC file for the specified 
name. 

value-list 
specifies the actual values that are to be substituted for the symbolic 
values' in the command procedure. The symbolic values are defined by 
the operands of the PROC statement in the command procedure. The 
actual values to replace the positional operands in the PROC statement 
must be in the same sequence as the positional operands. The actual 
values to replace the keywords in the PROC statement must follow the 
positional values, but may be in any sequence. A keyword defined on the 
PROC statement may have a value consisting of a character string with 
delimiters, provided that the character string is enclosed in quotes. When 
you use the explicit form of the command, the value list must be 
enclosed in apostrophes. If apostrophes appear within the list, then you 
must provide two apostrophes in order to print one. If a quoted string 
appears as the value of a keyword within the value list, the number of 
quotes must be doubled again (see example 3). 

NOLIST 

specifies that the commands and subcommands will not be listed at the 
terminal. The system assumes NO LIST for implicit and explicit EXEC 
commands. 

LIST 

specifies that commands and subcommands will be listed at the terminal 
as they are executed. This operand is valid only for the explicit form of 
EXEC. 

PROMPT 

specifies that prompting to the terminal will be allowed during the 
execution of a command procedure. The PROMPT keyword implies 
LIST, unless NOLIST has been explicitly specified. Therefore, all 
commands and subcommands will be listed at the terminal as they are 
executed. This operand is valid only for the explicit form of EXEC. 

NOPROMPT 

specifies no prompting during the execution of a command procedure. 
This is the default if neither PROMPT nor NOPROMPT is specified. 

134 . OS!VS2 TSO Command Language Reference 

( 



Notes: 

1. The PROMPT keyword is not propagated to nested EXEC 
commands. PROMPT must be specified on a nested EXEC command 
if you wish to be prompted during execution of the command 
procedure it invokes. 

2. No prompting will be allowed during the execution of a command 
procedure if the NOPROMPT keyword operand of PROFILE has 
been specified, even if the PROMPT option of EXEC has been 
specified. 

3. The following is a list of options resulting from specific keyword 
entries: 

Keyword specified 

PROMPT 
NOPROMPT 
LIST 
NOLIST 
PROMPT LIST 
PROMPT NOLIST 
NOPROMPT LIST 
NOPROMPT NOLIST 
No keywords 

Resulting options 

PROMPT LIST 
NOPROMPT NOLIST 
LIST NOPROMPT 
NOLIST NOPROMPT 
PROMPT LIST 
PROMPT NOLIST 
NOPROMPT LIST 
NOPROMPT NOLIST 
NOPROMPT NOLIST 

Suppose the following command procedure exists as a data set named 
ANZAL: 

proc 3 input output list lines( ) 
allocate dataset(~input) file(indata) old 
allocate dataset(~output) block( 100) space(300,100) 
allocate dataset(~list) file(print) 
call proc2 '~lines' 
end 

Note: If the symbolic value must be immediately followed by a period, the 
symbolic value must end with a period. (A single period following a 
symbolic value is ignored.) 

The PROC statement indicates that the three symbolic values, & INPUT, 
& OUTPUT and & LIST, are positional (required) and that the symbolic 
value & LINES is a keyword (optional). 

To replace ALPHA for INPUT, BETA for OUTPUT, COMMENT for 
LIST and 20 for LINES, you would enter: (implicit form) 

anzal alpha beta comment lines(20) 

EXEC Command 135 



Example 1 

Operation: Execute a command procedure to invoke the assembler. 

Known: The name of the data set that contains the command procedure is 
RBJ2l.FASM.CLIST. 

The command procedure consists of: 

proc 1 name 
free file(sysin,sysprint) 
delete (&name .. list,&name .. obj) 
allocate dataset( &name .. asm) file(sysin) old keep 
allocate dataset(&name .. list) file(sysprint) -

block(132) space(300,100) 
allocate dataset( &name .. obj) file(syspunch) block(80) -

space( 100,50) 
allocate file(sysut1) space(3,1) cylinders new delete 
allocate file(sysut2) space(3,1) cylinders new delete 
allocate file(sysut3) space(3,1) cylinders new delete 
allocate file(syslib) da( 'd82Ijp1.tso.macro', 

'sys1.maclib') shr 
call 'sys1.linklib(ifoxOO)' 'deck,noobj,rent' 
free file(sysut1,sysut2,sysut3,sysin,sysprint, -

syspunch,syslib) 
allocate file(sysin) da(*) 
allocate file(sysprint) da(*) 

Note: If the symbolic value must be immediately followed by a period, the 
symbolic value must end with a period. 

The module to be assembled is "TGETASIS". 

You want to have the names of the commands in the command 
procedure displayed at your terminal as they are executed. 

exec fasm 'tgetasis' list 

The display at your terminal will be similar to: 

EX FASM 'TGETASIS' LIST 
FREE FILE(SYSIN,SYSPRINT) 
DELETE (TGETASIS.LIST,TGETASIS.OBJ) 
IDC0550I ENTRY (A) D82LJP1.TGETASIS.LIST DELETED 
IDC0550I ENTRY (A) D82LJP1.TGETASIS.OBJ DELETED 
ALLOCATE DATASET(TGETASIS.ASM) FILE(SYSIN) OLD KEEP 
ALLOCATE DATASET(TGETASIS.LIST) FILE(SYSPRINT) 

BLOCK(132) SPACE(300,100) 
ALLOCATE DATASET(TGETASIS.OBJ) FILE(SYSPUNCH) 

BLOCK(80) SPACE( 100,50) 
ALLOCATE FILE(SYSUT1) SPACE(3,1) CYLINDERS NEW DELETE 
ALLOCATE FILE(SYSUT2) SPACE(3,1) CYLINDERS NEW DELETE 
ALLOCATE FILE(SYSUT3) SPACE(3,1) CYLINDERS NEW DELETE 
ALLOCATE FILE(SYSLIB) DA( 'D82LJP1.TSO.MACRO', 

'SYS1.MACLIB') SHR 
CALL 'SYS1.LINKLIB(IFOXOO)' 'DECK,NOOBJ,RENT' 
FREE FILE(SYSUT1,SYSUT2,SYSUT3,SYSIN,SYSPRINT, 

SYSPUNCH,SYSLIB) 
ALLOCATE FILE(SYSIN) DA(*) 
ALLOCATE FILE(SYSPRINT) DA(*) 
READY 

136 OS/VS2 TSO Command Language Reference 



Example 2 

Operation: Suppose that the command procedure in Example 1 was stored 
in a command procedure library. Execute the command procedure using 
the implicit form of EXEC. 

Known: The name of the member of the partitioned data set that contains 
the command procedure is F ASM2. 

fasm2 tgetasis 

Example 3 

Operation: Enter a fully qualified data set name as a keyword value in an 
EXEC command value list. 

Known: 
The procedure named SWITCH is contained in a command procedure 

library named "MASTER.CLIST" which is allocated as SYSPROC. 

The command procedure consists of: 

PROC 0 DSNl ( ) DSN2( ) 
RENAME &DSNl TEMPSAVE 
RENAME &DSN2 &DSN1 
RENAME TEMPSAVE &DSN2 

If a user whose userid is "USER33" wishes to switch the names of two 
datasets "MASTER. BACKUP" and "USER33.GOODCOPY", he could 
invoke the procedure as follows: 

Explicit form: 

exec 'master.clist(switch)' + 
'dsn1("'" 'master.backup'" "') + 
dsn2 ( goodcopy ) , 

Extended implicit form: 

%switch dsn1(" 'master.backup"') dsn2(goodcopy) 

Note that when the implicit forms are used the specification of quoted 
strings in the value list is made simpler since the value list itself is not a 
quoted string. 

EXEC Command 137 



c 
138 OS/VS2 TSO Command Language Reference 



FREE Command 

Use the FREE command to release (deallocate) previously allocated data 
sets that you no longer need. You can also use this command to change the 
output class of SYSOUT data sets, to delete attribute lists, and to change 
the data set disposition specified with the ALLOCATE command. 

There is a maximum number of data sets that may be allocated to you at 
anyone time. The allowable number must be large enough to 
accommodate: 

• Data sets allocated via the LOGON and ALLOCATE commands 
• Data sets allocated dynamically by the system's command processors 

The data sets allocated by the LOGON and ALLOCATE commands are 
not freed automatically. To avoid the possibility of reaching your limit and 
being denied necessary resources, you should use the FREE command to 
release these data sets when they are no longer needed. 

When a SYSOUT data set is freed, it is immediately available for output 
processing, either by the job entry subsystem (not-held data sets) or by the 
OUTPUT command (held data sets). 

When you free SYSOUT data sets, you may change their output class to 
make them available for processing by an output writer, or route them to 
another liser. 

When you enter the LOGOFF command, all data sets allocated to you 
and attribute lists created during the terminal session are freed by the 
system. 

Note: Data sets that are dynamically allocated by a command processor 
are not automatically freed when the command processor terminates. You 
must explicitly free dynamically allocated data sets. 

FREE 

I
DSNAME(dataset-name-'ist) }' 

. DATASET(dataset-name-list) 
DDNAM E (file-name-list) 
FI LE(file-name-list) 
ATTR LIST(attr-list-names) 

rHOLO J [KEEP 1 LNOHOLO OELETE2 

CATALOG 
UNCATALOG 

[0 EST (station-id)] 

[SYSOUT(class) ] 

, Choose one or more of these parameters within braces. 

20ELETEis the only disposition that is valid for SYSOUT data sets. 

FREE Command 139 



DATASET or DSNAME(data-set-name-list) 

specifies one or more data set names that identify the data sets that you 
want to free. The data set name must .include the descriptive (rightmost) 
qualifier and may contain a member name in parentheses. If you omit 
this operand, you must specify either FILE or DSNAME or the 
ATTRLIST operand. 

F!LE or DDNAME(file-name-list) 

specifies one or more file names that identify the data sets to be freed. If 
you omit this operand, you must specify either the DATASET or 
DSNAME or the ATTRLIST operand. 

A TTRLIST(attr-list-names) 

specifies the names of one or more attribute lists that you want to delete. 
If you omit this operand, you. must specify either the DATASET or 
DSNAME or the FILE or DDNAME operand. 

DEST(stationid) 

specifies a one-to-seven character name of a remote work station to 
which the SYSOUT data sets are directed when ready for unallocation. If 
this keyword is omitted on the FREE command for SYSOUT data sets, 
the data sets will be directed to the work station specified at the time of 
allocation. 

HOLD 
specifies that the data set is to be placed on the HOLD queue. HOLD 
overrides any HOLD/NOHOLD specification made when the data set 
was originally allocated and it also overrides the default 
HOLD /NOHOLD specification associated with the particular SYSOUT 
class specified. 

NOHOLD 
specifies that the data set is not to be placed on the HOLD queue. 
NOHOLD overrides any HOLD /NOHOLD specification made when the 
data set was originally allocated and it also overrides the default 
HOLD/NOHOLD specification associated with the particular SYSOUT 
class specified. 

KEEP 
specifies that the data set is to be retained by the system after it is freed. 

DELETE 
specifies that the data set is to be deleted by the system after it is freed. 
DELETE is not valid for data sets allocated SHR or for members of a 
PDS. Only DELETE is valid for SYSOUT data sets. 

CATALOG 
specifies that the data set is to be retained by the system in a catalog 
after it is freed. 

UNCATALOG 
specifies that the data set is to be removed from the catalog after it is 
freed. The data set is still retained by the system. 

Note: If HOLD, NOHOLD, KEEP, DELETE, CATALOG, and 
UNCATALOG are not specified, the specification indicated at the time of 
allocation remains in effect. 

140 OS/VS2 TSO Command Language Reference 



SYSOUT(class) 

specifies an output class which is represented by a single character. All 
of the system output (SYSOUT) data sets specified in the DATASET or 
DSNAME and FILE or DDNAME operands will be assigned to this 
class and placed in the output queue for processing by an output writer. 
In order to free a file to SYSOUT, the file must have previously been 
allocated to SYSOUT. 

Note: A concatenated data set that was allocated in a LOGON procedure 
or by the ALLOCATE command can be freed only by entering the ddname 
on the FILE or DDNAME operand. 

Example 1 

Operation: Free a data set by specifying its data set name. 

Known: 
The data set name: TOC903.PROGA.LOAD 

free dataset(proga.load) 

Example 2 

Operation: Free three data sets by specifying their data set names. 

Known: 
The data set names: APRIL.PB99CY.ASM, APRIL.FIRSTQTR.DATA, 

MAY.DESK.MSG 

free dataset(pb99cy.asm,firstqtr.data,'may.desk 
.msg' ) 

Example 3 

Operation: Free five data sets by specifying data set names or data 
definition names. Change the output class for any SYSOUT data sets 
being freed. 

Known: 
The name of a data set: WIND.MARCH.FORT 
The filenames (data definition names) of 4 data sets: SYSUTl SYSUT3 

SYSIN SYSPRINT 
The new output class: B 

free dataset(march.fort) file(sysut1,sysut3,sysin, 
sysprint) sysout(b) 

Example 4 

Operation: Delete two attribute lists. 

Known: 
The names of the lists: DCBPARMS ATTRIBUT 

FREE ATTRLIST(DCBPARMS ATTRIBUT) 

FREE Command 141 



( 

142 OS/VS2 TSO Command Language Reference 



HELP Command 

Use the HELP command or subcommand to obtain information about the 
function, syntax, and operands of commands and subcommands and 
information about certain messages. This reference information is contained 
within the system and is displayed at your terminal in response to your 
request for help. By entering the HELP command or subcommand with no 
operands you can obtain a list of all the TSO commands grouped by 
function or subcommands of the command you are using. 

The HELP command may not be used to get additional information 
about command procedure statements. 

[

(SUb)COmmand-name [[ [FUNCTION] [SYNTAX] ] ] ] 
[OPERANDS [(list)] ] 

[ALL] 
[MSGID(list)] 

command-name or subcommand-name 
specifies the name of the command or subcommand that you want to 
know more about. 

FUNCTION 
specifies that you want to know more about the purpose and operation 
of the command or subcommand. 

SYNTAX 
specifies that you want to know more about the syntax required to use 
the command or subcommand properly. 

OPERANDS(list-of -operands) 

specifies that you want to see explanations of the operands for the 
command or subcommand. When you specify the keyword OPERANDS 
and omit any values, all operands will be described. You can specify 
particular keyword operands that you want to have described by 
including them as values within parentheses following the keyword. If 
you specify a list of more than one operand, the operands in the list 
must be separated by commas or blanks. 

ALL 
specifies that you want to see all information available concerning the 
command or subcommand. This is the default value if no other keyword 
operand is specified. 

MSGID(list) 
specifies that you wish to get additional information about VSBASIC 
messages whose message identifiers are given in the list. Information 
includes what caused the error and how to prevent a recurrence. The 
FUNCTION, SYNTAX, OPERANDS or ALL keywords cannot be 
specified with MSGID. 

HELP Command 143 



Help Information: The scope of available information ranges from general 
to specific. The HELP command or subcommand with no operands 
produces a list of valid commands or subcommand and their basic 
functions. From the list you can select the· command or subcommand most 
applicable to your needs. If y<.>u need more information about the selected 
command or subcommand, you may use HELP again, specifying the 
selected (sub ) command name as an operand. You will then receive: 

• A brief description of the function of the (sub ) command 
• The format and syntax for the (sub ) command 
• A description of each operand 

You can obtain information about a command or subcommand only 
when the system is ready to accept a command ot subcommand. 

If you do not want to have all of the detailed information, you may 
request only the portion that you need. 

The information about the commands is contained in a cataloged 
partitioned data set named SYS I.HELP. Information for each command or 
subcommand is kept in a member of the partitioned data set. The HELP 
command or subcommand causes the system to select the appropriate 
member and display its contents at your terminal. 

Figure 10 shows the hierarchy of the sets of information available with 
the HELP command or subcommand. Figure 10 also shows the form of the 
command or subcommand necessary to produce any particular set. 

Example 1 

Operation: Obtain a list of all available commands. 

help 

Example 2 

Operation: Obtain all the information available for the ALLOCATE 
command. 

help allocate 

Example 3 

Operation: Have a description of the XREF, MAP, COBLIB, and OVL Y 
operands for the LINK command displayed at your terminal. 

h link operands(xref,map,coblib,ovly) 

Example 4 

Operation: Have a description of the function and syntax of the LISTBC 
command displayed at your terminal. 

h listbc function syntax 

144 OS/VSl TSO Command Language Reference 

( 



Page of GC28-0646-4 
As Updated July 30, 1980 
By TNL GN28-4754 

When the system is ready 
to accept a command, you 
may request: 

1 List of commands 

Command function 

Command syntax 

List of operands 

6 Each operand 

When the system is ready to accept 
a subcommand, you may request: 

2 List of subcommands 

Subcommand function 

Subcommand syntax 

List of operands 

10 Each operand 

11 VSBASIC message data or: 

12 MSGID (list) 

This form of the command ............................................................... produces: 

OJ 
-0 
o 
E 
>o 
« 
w 
0:: 

'" OJ 
-0 o 
E 
I
CI) 
w 
I
-0 
c: 
co 

1-' 
:::> 
a.. 
I
:::> 
o 
t' 
o 
w 

/'" 
HELP 

HELP commandname 

HELP commandname ALL 

HELP commandname FUNCTION 

HELP commandname SYNTAX 

HELP commandname OPERANDS 

HELP commandname OPERANDS (list of keyword operands) 

HELP commandname MSGID {list of VSBASIC message Ids} 

'-

HELP 

HELP subcommandname 

HELP subcommandname ALL 

HELP subcommandname FUNCTION 

HELP subcommandname SYNTAX 

HELP subcommandname OPERANDS 

HELP subcommandname OPERANDS (list of keyword operands) 

HELP subcommandname MSGI D (list of message ids) 

Figure 10. Information Available Through the HELP Command 

Note: The HELP HELP command is valid only in ready mode. 

1 

345 

345 

3 

4 

5 

6 

11 

2 

789 

789 

7 

8 

9 

10 

12 

HELP Command 145 



July 30, 1980 

146 OS/VSl TSO Command Language Reference 



LINK Command 

Use the LINK command to invoke the linkage editor service program. 
Basically, the linkage editor converts one or more object modules (the 
output modules from compilers) into a load module that is suitable for 
execution. In doing this, the linkage editor changes all symbolic addresses in 
the object modules into relative addresses. 

The linkage editor provides a great deal of information to help you test 
and debug a program. This information includes a cross-reference table and 
a map of the module that identifies the location of control sections, entry 
points, and addresses. You can have this information listed at your terminal 
or saved in a data set on some device. 

You can specify all the linkage editor options explicitly or you can accept 
the default values. The default values are satisfactory for most uses. By 
accepting the default values, you simplify the use of the LINK command. 

If the module that you want to process has a simple structure (that is, it 
is self contained and does not pass control to other modules) and you do 
not require the extensive listings produced by the linkage editor and you do 
not want a load module, you may want to use the LOADGO command as 
an alternative to the LINK command. 

Note: You should not link an object module with the TEST option and 
then attempt to execute the resulting load module in the background 
because an abnormal termination may result. 

LINK Command 147 



LINK (data-set-list) 

[lOAD [(data-set-name)] ] 

[PRINT ({* })] 
. data-set-name 

NOPRINT 

[LI B(data-set-list)] 

[PLI LI B] [REFR ] [TERM ] 
[PLlCMIX] NOREFR NOTERM 

[PLIBASE] [SCTR ] [DCBS(blocksize) ] 
NOSCTR 

[FORTLlB] [AC(authorization-
[OVlY ] [COBLlB] NOOVLY code)] 

[MAP ] 
NOMAP [RENT ] 

NORENT 

[NCAl ] 
NONCAl 

[SIZE(integer1 integer2)] 

[LIST ] [~~NEJ 
NOLIST 

[lET ] [~~OlJ 
NOLET 

[XCAl ] [~gDC ] 
NOXCAl 

[TEST ] 
[XREF ] NOTEST 

NOXREF 

[REUS ] 
NOREUS 

( data-set-list) 
specifies the names of one or more data sets containing your object 
modules and/or linkage editor control statements. (See the data set 
naming conventions). The specified data sets will be concatenated within 
the output load module in the sequence that they are included in this 
operand. If there is only a single name in the data-set-list, parentheses 
are not required unless the single name is a member name of a 
partitioned data set; then, two pairs of parentheses are required, as in: 

link( (parts) ) 

You may substitute an asterisk (*) for a data set name to indicate that 
you will enter control statements from your terminal. The system will 
prompt you to enter the control statements. A null line indicates the end of 
your control statements. 

LOAD(data-set .. name) 
specifies the name of the partitioned data set that will contain the load 
module after processing by the linkage editor (see the data set naming 
conventions). If you omit this operand, the· system will generate a name 
according to the data set naming conventions. 

148 OS/VS2 TSO Command Language Reference 

( 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

PRINT(data-set.;name or *) 

specifies that linkage editor listings are to be produced and placed in the 
specified data set. When you omit the data set name, the data set that is 
generated is named according to the data set naming conventions. This is 
the default value if you specify the LIST, MAP, or XREF operand. You 
may substitute an asterisk (*) for the data set name if you want to have 
the listings displayed at your terminal. 

NOPRINT 

specifies that no linkage editor listings are to be produced. This operand 
causes the MAP, XREF, and LIST options to become invalid. This is the 
default value if both PRINT and NOPRINT are omitted, and you do not 
use the LIST, MAP, or XREF operand. 

LIB (data-set-list) 

specifies one or more names of library data sets to be searched by the 
linkage editor to locate object modules referred to by the module being 
processed; that is,_ to resolve external references. When you specify more 
than one name, the names must be separated by a valid delimiter. If you 
specify more than one name, the data sets are concatenated to the file 
name of the first data set in the list. For control statements, the first 
data set in the list must be preallocated with the ddname or file name 
SYSLffi prior to the LINK command. If you specify more than one 
name, the data sets are concatenated to the file name of the first data set 
and lose their individual identity. See OS/VS2 MVS System 
Programming Library: Job Management for details on dynamic 
concatenation. 

PLILIB 

specifies that the partitioned data set named SYSl.PLILIB is to be 
searched by the linkage editor to locate load modules that are referred to 
by the module being processed. 

PLIBASE 

specifies that the partitioned data set named SYS 1.PLIBASE is to be 
searched to locate load modules referred to by the module being 
processed. 

PLICMIX 
specifies that the partitioned data set named SYS 1.PLICMIX is to be 
searched to locate load modules referred to by the module being 
processed. 

FORTLIB 

specifies that the partitioned data set named SYSl.FORTLIB is to be 
searched by the linkage editor to locate load modules referred to by the 
module being processed. 

COBLIB 
specifies that the partitioned data set named SYSl.COBLIB is to be 
searched by the linkage editor to locate load modules referred to by the 
module being processed. 

MAP 
specifies that the PRINT data set is to contain a map of the output 
module consisting of the control sections, the entry names, and (for 
overlay structures) the segment number. 

LINK Command 149 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

NOMAP 
specifies that· a map of the output module is not to be listed. This is the 
default value if both MAP and NOMAP are omitted. 

149.0 OS/VS2 TSO Command Language Reference 

\~ 



January 11, 1980 

UNK Command 149.1 



January 11, 1980 

NeAL 

specifies that the' automatic library call mechanism is not to be invoked 
to locate the modules that are referred to by the module being processed 
when the object· module refers to other load modules. 

NONCAL 

specifies that the modules referred to by the module being processed are 
to be located by the automatic library call mechanism when the object 
module refers to other load modules. This is the default value if both 
NCAL and NONCAL are omitted. 

LIST 
specifies that a list of all linkage editor control statements is to be placed 
in the PRINT data set. 

NOLIST 

specifies that a listing of linkage editor control statements is not to be 
produced. This is the default value if both LIST and NOLIST are 
omitted. 

LET 
specifies that the output module is permitted to be marked as executable 
even though a severity 2 error is found (a severity 2 error indicates that 
execution of the output module may be impossible). 

NOLET 

specifies that the output module be marked non-executable when a 
severity 2 error is found. This is the default value if both LET and 
NOLET are omitted. 

XCAL 

specifies that the output module is permitted to be marked as executable 
even though an exclusive call has been made between segments of an 
overlay structure. Because the segment issuing an exclusive call is 
overlaid, a return from the requested segment can be made only by 
another exclusive call or a branch. 

NOXCAL 

specifies that both valid and invalid exclusive calls will be marked as 
errors. This is the default value if both XCAL and NOXCAL are 
omitted. 

XREF 

specifies that a cross-reference table is to be placed on the PRINT data 
set. The table includes the module map and a list of all address constants 
referring to other control sections. Since the XREF operand includes a 
module map, both XREF and MAP cannot be specified for a particular 
LINK command. 

NOXREF 

specifies that a cross-reference listing is not to be produced. This is the 
default value if both XREF and NOXREF are omitted. 

REUS 
specifies that the load module is to be marked serially reusable if the 
input load module was reenterable or serially reusable. The RENT and 
REUS operand are mutually exclusive. The REUS operand must not be 
specified if the OVL Y or TEST operands are specified. 

150 OS/VS2TSOCommand Language Reference 



NOREUS 
specifies that the load module is not be be marked reusable. This is the 
default value if both REUS and NOREUS are omitted. 

REFR 
specifies that the load module is to be marked refreshableif the input 
load module was refreshable and the OVL Y operand was not specified. 

NOREFR 
specifies that the load module is not to be marked refreshable. This is 
the default value if both REFR and NOREFR are omitted. 

SCTR 
specifies that the load module created by the linkage editor can be either 
scatter loaded or block loaded. If you specify SCTR, do not specify 
OVLY. 

NOSCTR 
specifies that scatter loading is not permitted. This is the default value if 
both SCTR and NOSCTR are omitted. 

OVLY 

specifies that the load module is an overlay structure and is therefore 
suitable for block loading only. If you specify OVLY, do not specify 
SCTR. 

NOOVLY 

specifies that the load module is not an overlay structure. This is the 
default value if both OVL Y and NOOVL Yare omitted. 

RENT 
specifies that the load module is marked reenterable provided the input 
load module was reenterable and that the OVL Y operand was not 
specified. 

NORENT 
specifies that the load module is not marked reenterable. This is the 
default value if both RENT and NORENT are omitted. 

SIZE(integerl,integer2) 

NE 

specifies the amount of real storage to be used by the linkage editor. The 
first integer (integer 1) indicates the maximum allowable number of bytes. 
Integer2 indicates the number of bytes to be used as the load module 
buffer, which is the real storage area used to contain input and output 
data. If this operand is omitted, SIZE defaults to the size specified at 
system generation (SYSGEN). 

specifies that the output load module cannot be processed again by the 
linkage editor or loader. The linkage editor will not create an external 
symbol dictionary. If you specify either MAP or XREF, this operand is 
invalid. 

NONE 
specifies that the output load module can be processed again by the 
linkage editor and loader and that an external symbol dictionary is 
present. This is the default value if both NE and NONE are omitted. 

LINK Command lSl 



OL 

specifies that the output load module can be brought into real storage 
only by the LOAD macro instruction. 

NOOL 

DC 

specifies that the load module is not restricted to the use of the LOAD 
macro instruction for loading into real storage. This is the default value if 
both OL and NOOL are omitted. 

specifies that the output module can be reprocessed by the linkage editor 
(level E). 

NODC 

specifies that the load module cannot be reprocessed by the linkage 
editor (level E). This is the default if both DC and NODC are omitted. 

TEST 

specifies that the symbol tables created by the assembler and contained 
in the input modules are to be placed into the output module. 

NOTEST 

specifies that no symbol table is to be retained in the output load 
module. This is the default value if both TEST and NOTEST are 
omitted. 

TERM 

specifies that you want error messages directed to your terminal as well 
as to the PRINT data set. This is the default value if both TERM and 
NOTERM are omitted. 

NOTERM 

specifies that you want error messages directed only to the PRINT data 
set and not to your terminal. 

DCBS(blocksize) 
specifies the blocksize of the records contained in the output load 
module. The "blocksize" must be an integer. 

AC(authorization-code) 
specifies an authorization code (0-255) used to maintain data security. 

Example 1 

Operation: Combine three object modules into a single load module. 

Known: 
The names of the object modules in the sequence that the modules must 

be in: TPB05.GSALESA.OBJ TPB05.GSALESB.OBJ 
TPB05.NSALES.OBJ 

You want all of the linkage editor listings to be produced and directed to 
your terminal. 

The name for the output load module: 
TPB05.SALESRPT.LOAD(TEMPNAME) 

link (gsalesa,gsalesb,nsales) load(salesrpt) print(*) -
xref list 

152 OS/VS2 TSO Command Language Reference 



Example 2 

Operation: Create a load module from an object module, an existing load 
module, and a standard processor library. 

Known: 
The name of the object module: V ACID.M33THRUS.OBJ 
The name of the existing load module: 

V ACID.M33PA YLD. LOAD (MOD 1 ) 
The name of the standard processor library used for resolving external 

references in the object module: SYS 1.PLILIB 
The entry name of the load module is MOD2. 
The alias name of the load module is MOD3. 
The name of the output load module: 

V ACID.M33PERFO.LOAD(MOD2) 

link(m33thrus,*) load(m33perfo(mod2)) print(*) -
plilib map list 

Choosing Id2 as a filename to be associated with the existing load module, 
the display at your terminal will be: 

allocate dataset(m33payld.load) file(ld2) 
link (m33thrus,*) load(m33perfo(mod2)) print(*) -

plilib map list 
IKJ76080A ENTER CONTROL STATEMENTS 

include ld2(modl) 
entry mod2 
alias mod3 
(null line) 

IKJ76111I END OF CONTROL STATEMENTS 

LINK Command 153 



154 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

LISTALC Command 

Use the LISTALC command to obtain a list containing both the names of 
the data sets allocated by you and the names of the data sets temporarily 
allocated by previous TSO command processors. Included in the total 
number of data sets that the system will allow a user to allocate 
dynamically, are data sets that had been previously allocated for temporary 
use by a command processor. 

{
LiSTALC} 
LlSTA 

Notes: 

[STATUS] 

[HISTORY] 

[MEMBERS] 

[SYSNAMES] 

• The LIST ALC command without operands will produce a list of all 
data set names (including those that are not partitioned) which have 
either been allocated by you or temporarily allocated by previous TSO 
command processors. This list includes terminal data sets, indicated by 
the word "TERMINAL" and also attr-list-names created by the 
ATTRIB command, indicated by the word "NULLFILE". 

• LIST A displays a list of data set names allocated by the terminal user. 
If an asterisk precedes a data set name it indicates that the data set is 
allocated but marked not-in-use. 

STATUS 
specifies that you want information about the status of each data set. 
This operand provides you with: 

• The data definition name (DDNAME) for the data set allocated and 
the attr-list-names created by the ATTRIB command. 

• The scheduled and conditional dispositions of the data set. The 
keywords denoting the dispositions are CATLG, DELETE, KEEP and 
UNCATLG. The scheduled disposition is the normal disposition and 
precedes the conditional disposition when listed. The conditional 
disposition takes effect if an abnormal termination occurs. CA TLG 
means that the data set is retained and its name is in the system 
catalog. DELETE means that references to the data set are to be 
'removed from the system and the space occupied by the data set is to 
be released. KEEP means that the data set is to be retained. 
UNCATLG means that the data set name is removed from the catalog 
but the data set is retained. 

LIST ALe Command 155 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

HISTORY 

.:)' 

specifies that you want to obtain information about the history of each 
data set. This operand provides you with: 

• The creation date 
. • The expirat1tiri date 
• An indication as to whether ,or not the data set has password 

protection (nort-VSAM only) . 
~. ~ 

; ,."' 

155.0 OS/VS2 TSO Command Language Reference 



January 11, 1980 

,LlSTALC Command 155.1 



January ll, 1980 

• The data set organization (DSORG). The listing will contain: 

PS for sequential 
PO for partitioned 
IS for indexed sequential 
DA for direct access 
VSAM for VSAM data entries 
** for unspecified 
?? for any other specification 

Note: Use the LISTCAT command for further information pertaining to 
VSAM data entries. 

MEMBERS 

specifies that you want to obtain the library member names of each 
partitioned data set having your user's identification as the leftmost 
qualifier of the data· set name. Aliases will be included. 

SYSNAMES 

specifies that you want to obtain the fully qualified names of data sets 
having system-generated names. 

Example 1 

Operation: Obtain a list of the names of all the data sets allocated to you. 

listalc 

Example 2 

Operation: Obtain a list of the names of all the data sets allocated to you. 
At the same time obtain the creation date, the expiration date, password 
protection, and the data set organization for each data set allocated to 
you. 

lista history 

Example 3 

Operation: Obtain all available information about the data sets allocated to 
you. 

lista members history status sysnames 

·156 OSIVS2 TSO Command Language Reference 



The output at your terminal will be similar to the following listing: 

listalc mem status sysnames history 

--DSORG--CREATED--EXPIRES---SECURITY---DDNAME---DISP 

RRED95.ASM 
PS 00/00/00 00/00/00 WRITE EDTDUMY1" KEEP 

RRED95.EXAMPLE 
PO 00/00/00 00/00/00 PROTECTED EDTDUMY2 KEEP,KEEP 

--MEMBERS--
MEMBER1 
MEMBER2 

SYS70140.T174803.RVOOO.TSOSPEDT.R0000001 

** 00/00/00 00/00/00 NONE SYSUT1 DELETE 

ALLOCATION MUST BE FREED BEFORE RESOURCES CAN BE 
RE-USED 

EDTDUMY3 
SYSIN 
SYSPRINT 

READY 

Example 4 

Operation: List the names of all your active attribute lists (allocated with 
ATTRIB command). 

lista status 

The output at your terminal will be similar to the following listing: 

lista status 
--DDNAME---DISP-
SYS1.LPALIB2 

STEPLIB KEEP 
SYS1.UADS 

SYSUADS KEEP 
SYS1.BRODCAST 

SYSLBC KEEP 
TERMFILE SYSIN 
TERMFILE SYSPRINT 
*SYS 1·. HELP 

SYS00005 KEEP,KEEP 
D95BAB1.SEPT30.ASM 

SYS00006 KEEP,KEEP 
NULLFILE A 
NULLFILE B 
READY 

LlSTALC Command 157 



c 
IS8 OS/VS2 TSO Command Language Reference 



LISTBC Command 

Use the LISTBC command to obtain a listing of the contents of the 
SYS 1.BRODCAST data set. The SYS 1.BRODCAST data set contains 
messages of general interest (NOTICES) that are sent from the system to 
all terminals and messages directed to a particular user (MAIL). The system 
deletes MAIL messages from the data set after they have been sent. 
NOTICES must be deleted explicitly by the operator. 

{
LISTBC} 
LlSTB 

MAIL 

[
MAIL ] 
NOMAIL 

[
NOTICES ] 
NONOTICES 

specifies that you want to receive the messages from the broadcast data 
set that are intended specifically for you. This is the default value if both 
MAIL and NOMAIL are omitted. 

NOMAIL 

specifies that you do not want to receive messages intended specifically 
for you. 

NOTICES 
specifies that you want to receive the messages from the broadcast data 
set that are intended for all users. This is the default value if both 
NOTICES and NONOTICES are omitted. 

NONOTICES 

specifies that you do not want to receive the messages that are intended 
for all users. 

Example 1 

Operation: Specify that you want to receive all messages. 

listbc 

Example 2 

Operation: Specify that you want to receive only the messages intended for 
all terminal users. 

listbc nomail 

LlSTBC Command .159 



160 OS/VS2 TSO Command Language Reference 



LISTCAT Command 

The LISTCAT command is used to list entries from a catalog. The entries 
listed can be selected by name or entry type, and the fields to be listed for 
each entry can additionally be selected. 

For MVS, the original TSO LISTCAT command has been replaced by an 
Access Method Services command of the same name. The explanations 
below provide the information required to use these services for normal 
TSO operations. The TSO user who wants to manipulate VSAM objects or 
to use the other Access Method Services from the terminal should refer to 
OS/VS2 Access Method Services. For error message information, see 
OS/VS Message Library: VS2 System Messages. 

The LISTCA T command supports unique operand abbreviations in 
addition to the usual abbreviations produced by truncation. The syntax and 
operand explanations show these unique cases. 

Note: When LISTCAT is invoked and no operands are specified, the 
use rid or the prefix specified by the PROFILE command becomes the 
highest level of entry name qualification. Only those entries associated with 
the use rid ate listed. 

LlSTCAT Command 161 



{
LiSTCAT} 
LISTC 

[CATALOG(catname[/password] )] 

[
OUTFI LE(ddnamen 
OFI LE(ddname) J 

[ 

ENTR I ES(entryname [/password] [ ... ] )] 

{
LEVEL(leVel)} 
LVL(level) 

[CLUSTER] 

[DATA] 

[:~DEX] 

[
SPACE] 
SPC 

[
NONVSAM] 
NVSAM 

[
USERCATALOG] 
UCAT 

[
GEN E RATION DATAG ROUP] 
GOG 

[
PAGESPACEl 
PGSPC J 

[ALIAS] . 

[CREATION(days)] 

[EXPI RATION(days)] 

[

ALL ] NAME 
VOLUME 
ALLOCATION 
HISTORY 

CATALOG(catnamel!password]) 
specifies the name of the catalog that contains the entries that are to be 
listed. When CAT ALOa is coded, only entries from that catalog are 
listed. 

catname 
is the name of the catalog. 

password 
specifies the read level or higher level password of the catalog that 
contains entries to be listed. When the entries to be listed contain 
information about password-protected data sets, a password must be 
supplied either through this parameter or through the ENTRIES 
parameter. If passwords are to be listed, you must specify the master 
password. 

162 OS/VS2 TSO Command Language Reference 



OUTFILE(ddname) or OFILE(ddname) 

specifies a data set other than the terminal to be used as an output data 
set. The ddname may correspond to the name specified for the FILE 
operand of the ALLOCATE command. The data can be listed when the 
file is freed. The ddname identifies a DD statement that in turn identifies 
the alternate output data set. If OUTFILE is not specified, the entries 
are displayed at the terminal. 

The normal output data set for listing is SYSPRINT. The default 
parameters of this data set are: 

• Record format: VBA 
• Logical record length: 125, that is, 121 +4 
• Block size: 629, that is, 5 x (121+4)+4 

Print lines are 121 bytes in length. The first byte is the ANSI control 
character. The minimum specifiable LRECL is 121 (U-format records 
only). If a smaller size is specified, it is overridden to 121. 

It is possible to alter the above defaults through specification of the 
desired values in the DCB parameter of the SYSPRINT statement. The 
record format, however, cannot be specified as F or FB. If you do specify 
either one, it is changed to VBA. 

In several commands you have the option of specifying an alternte 
output data set for listing. If you do speicfy an alternate, you must specify 
DCB parameters in the referenced DD statement. When specifying an 
alternate output data set, you should not specify F or FB record formats. 

ENTRIES( entryname[/ password]) 

specifies the names of the entries to be listed. If neither ENTRIES nor 
LEVEL is coded, only the entries associated with the user's userid are 
listed. See OS/VS2 Access Method Services. 

entry name 
specifies the names or generic names of entries to be listed. Entries that 
contain information about catalogs can be listed only by specifying the 
name of the master or user catalog as the entry name. The name of a 
data space can be specified only when SPACE is the only type specified. 
If a volume serial number is specified, SPACE must be specified. 

Note: A qualified name may be made into a generic name by substituting 
an asterisk (*) for one qualifier. For example, A. * specifies all two-qualifier 
names that have A as first qualifier; A. *.C specifies all three-qualifier 
names that have A for first qualifier and C for third qualifier. 

password 
specifies a password when the entry to be listed is password protected 
and a password was not specified through the CATALOG parameter. 
The password must be the read or higher level password. If protection 
attributes are to be listed, you must supply the master password; if no 
password is supplied, the operator is prompted for each entry's password. 
Passwords cannot be specified for non-VSAM data sets, aliases, 
generation data groups, or data spaces. 

LlSTCA T Command 163 



LEVEL(IeveI) or LVL(IeveI) 

specifies the level of entry names to be listed. If neither LEVEL nor 
ENTRIES is coded, only the entries associated with the user's userid are 
listed. 

CLUSTER 

specifies that cluster entries are to be listed. When the only entry type 
specified is CLUSTER, entries for data and index components associated 
with the clusters are not listed. 

DATA 

specifies that entries for data components, excluding the data component 
of the catalog, are to be listed. If a cluster's name is specified on the 
ENTRIES parameter and DATA is coded, only the data-component 
entry is listed. 

INDEX or IX 

specifies that entries for index components, excluding the index 
component of the catalog, are to be listed. When a cluster's name is 
specified on the ENTRIES parameter and INDEX is coded, only the 
index-component entry is listed. 

SPACE or SPC 

specifies that entries for volumes containing data spaces defined in this 
catalog are to be listed. Candidate volumes are included. If entries are 
identified by entryname or level, SPACE can be coded only when no 
other entry-type restriction is coded. 

NONVSAM or NVSAM 

specifies that entries for non-VSAM data sets are to be listed. When a 
generation data group's name and NONVSAM are specified, the 
generation data sets associated with the generation data group are listed. 

USER CATALOG or UCAT 

specifies that entries for user catalogs are to be listed. USERCATALOG 
is applicable only when the catalog that contains the entries to be listed 
is the master catalog. 

GENERATIONDATAGROUP or GOG 

specifies that entries for generation data groups are to be listed. 

PAGESPACE or PGSPC 

specifies that entries for page spaces are to be listed. 

ALIAS 

specifies that entries for alias entries are to be listed. 

CREATION(days) 

specifies· that entries are to be listed only if they were created no later 
than that number of days ago. 

EXPIRATION(days) 

specifies that entries are to be listed only if they will expire no later than 
the number of days from now. 

ALL/NAME/VOLUME/ ALLOCATION/HISTORY 

specifies the fields to be included for each entry listed. If no value is 
coded, NAME is the default. 

164 OS/VS2 TSO Command Language Reference 



) 

ALL 

specifies that all fields are to be listed. 

NAME 

specifies that the names of the entries are to be listed. The default will 
be NAME. 

VOLUME 

I specifies that the name, owner identification, creation date, expiration 
date, entry type, volume serial numbers and device types allocated to the 
entries are to be listed. Volume information is not listed for cluster 
entries (although it is for the cluster's data and index entries), aliases, or 
generation data groups. 

ALLOCATION 

specifies that the information provided by specifying VOLUME and 
detailed information about the allocation are to be listed. The 
information about allocation is listed only for data and index component 
entries. 

HISTORY 
specifies that the name, owner identification, creation date, and 
expiration date of the entries are to be listed. 

LlSTCAT Command 16~ 



( 
166 OS/VS2 TSO Command Language Reference 



July 30, 1980 

LISTDS Command 

Use the LISTDS command to have the attributes of specific data sets 
displayed at your terminal. You can obtain: 

• The volume identification (VOLID) of the volume on which the data 
set resides. A volume may be a disk pack or a drum. 

• The logical record length (LRECL), the blocksize (BLKSIZE) and for 
non-VSAM data sets, the record format (RECFM) of the data set. 

• The data set organization (DSORG); VSAM for VSAM data entries. 

The data set organization is indicated as follows: 
PS for sequential 

PO for partitioned 

IS for indexed sequential 

DA for direct access 
VSAM for VSAM data entries 

** for unspecified 
?? for any other specification 

Note: Use the LISTCAT command for further information on a 
VSAM data entry. 

• Directory information for members of partitioned data sets if you 
specify the data set name in the form datasetname(membername}. 

• Creation date, expiration date, and, for non-VSAM only, security 
attributes. 

• File name and disposition. 
• Non-VSAM data set control blocks (DSCB). 

Note: Data sets that are dynamically allocated by the LISTDS command 
processor are not automatically freed when the command processor 
terminates. You must explicitly free dynamically allocated data sets. 

INSERT29* 10.6 

LISTDS Command 167 



Page of GC28-0646-4 
As Updated July 30, 1980 
By TNL GN28-4754 

{data-set-list} 

specifies one or more data set names. This operand identifies the data 
sets that you want to know more about. Each data set specified must be 
currently allocated or available from the catalog, and must reside on a 
currently active volume. The names in the data set list may contain a 
single asterisk in place of any level except the first. When this is done, 
all cataloged data sets whose names begin with the specified qualifiers 
are listed. For example, A. *.C specifies all three-qualifier names that 
have A for first qualifier' and C for third qualifier. 

Note: Alias data set names are not to be used with this command. 

STATUS 
specifies that you want the following additional information: 

• The DDNAME currently associated with the data set. 
• The currently scheduled data set disposition and the conditional 

disposition. The keywords denoting the dispositions are CATLG, 
DELETE, KEEP, and UNCATLG. The scheduled disposition is the 
normal disposition and precedes the conditional disposition when 
listed. The conditional disposition takes effect if an abnormal 
termination occurs. CA TLG means that the data set is cataloged. 
DELETE means that the data set is to be removed. KEEP means that 
the data set is to be retained. UNCATLG means that the name is 
removed from the catalog but the data set is retained. 

HISTORY 

specifies that you want to obtain the creation and expiration dates for 
the specified data sets and to find out whether or not the non-VSAM 
data sets are password-protected. 

MEMBERS 
specifies that you want a list of all the members of a partitioned data set 
including any aliases. 

LA~~L 

specifies that you want to have the entire data set control block (DSCB) 
listed at your terminal. This operand is applicable only to non-VSAM 
data sets on direct access devices. The list will be in hexadecimal 
notation. 

CATALOG 
specifies the user catalog that contains the names in the data set list. 
CAT ALOG is required only if the names are in a catalog other than 
STEPCAT or the catalog implied by the first-level qualifier of the name. 

LEVEL 
specifies that the names in the data set list are to be high-level qualifiers. 
All cataloged data sets whose names begin with the specified qualifiers 
are listed. If LEVEL is specified, the names cannot contain asterisks. 

Note: Only one data set list may be specified with the LEVEL option. 

168 OS/VS2 TSOCommand Language Reference 



Example 

Operation: List the basic attributes of a particular data set. 

Known: 
The data set name: ZALD58.CIR.OBJ 

listds cir 

The display at your terminal will be similar to the following: 

listds cir 
ZALD58.CIR.OBJ 
--RECFM-LRECL-BLKSIZE-DSORG 

FB 80 80 PS 
--VOLUMES-

D95LIB 
READY 

LlSTDS Command 169 



( 
170 OS/VS2 TSO Command Language Reference 



LOADGO Command 

Use the LOADGO command to load a compiled or assembled program into 
real storage and begin execution. 

The LOADGO command will load object modules produced by a 
compiler or assembler, and load modules produced by the linkage editor. (If 
you want to load and execute a single load module, the CALL command is 
more efficient.) The LOADGO command will also search a call library 
(SYSLIB) or a resident link pack area, or both, to resolve external 
references. 

The LOADGO command invokes the system loader to accomplish this 
function. The loader combines basic editing and loading services of the 
linkage editor and program fetch in one job step. Therefore, the load 
function is equivalent to the link edit and go function. 

The LOADGO command does not produce load modules for program 
libraries, and it does not process linkage editor control statements such as 
INCLUDE, NAME, OVERLAY, etc. 

{
LOADGO} 
LOAD 

(data-set-I ist) 

[ 'parameters'] 

[ 
PR INT ({ :ata-set-name})] 

NOPRINT 

[L I B (data-set-I ist)] 

[PLI LI B] 

[PLIBASE] 

[PLlCMIX] 

[FORTUB] 

[COBUB] 

[
TERM ] 
NOTERM 

[
RES ] 
NORES 

[
MAP ] 
NOMAP 

[
CALL ] 
NOCALL 

[
LET ] 
NOLET 

[SI ZE (integer)] 

[EP(entry-name) ] 

[NAM E(program-name)] 

LOADGO Command 171 



{data-set-list} 

specifies the names of one or more object modules and/or load modules 
to be loaded and executed. The names may be data set names, names of 
members of partitioned data sets, or both (see the data set naming 
conventions). When you specify more than one name, the names must be 
enclosed within parentheses and separated from each other by a standard 
delimiter (blank or comma). 

'parameters' 

specifies any parameters that you want to pass to the program to be 
executed. 

PRINT(data-set-name or *) 

specifies the name of the data set that is to contain the listings produced 
by the LOADGO command. If you omit the data set name, the 
generated data set will be named according to the data set naming 
conventions. You may substitute an asterisk (*) for the data set name if 
you want to have the listings displayed at your terminal. This is the 
default if you specify the MAP operand. 

NOPRINT 

specifies that no listings are to be produced. This operand negates the 
MAP operand. This is the default value if both PRINT and NOPRINT 
are omitted, and you do not use the MAP operand. 

TERM 

specifies that you want any error messages directed to your terminal as 
well as the PRINT data set. This is the default value if both TERM and 
NOTERM are omitted. 

NOTERM 

specifies that you want any error messages directed only to the PRINT 
data set. 

LlB(data set list) 

specifies the names of one or more library data sets that are to be 
searched to find modules referred to by the module being processed (that 
is, to resolve external references). 

PLiLIB 

specifies that the partitioned data set named SYS 1.PL 1 LIB is to be 
searched to locate load modules referred to by the module being 
processed. 

PLiBASE 

specifies that the partitioned data set named SYS 1.PLIBASE is to be 
searched to locate load modules referred to by the module being 
processed. 

PLlCMIX 

specifies that the partitioned data set named SYS 1.PLICMIX is to be 
searched to locate load modules referred to by the module being 
processed. 

COBLIB 

specifies that the partitioned data set named SYS1.COBLIB is to be 
searched to locate load modules referred to by the module being 
processed. 

172 OS/VS2 TSO Command Language Reference 



FORTLIB 

specifies that the partitioned data set named SYSl.FORTLIB is to be 
searched to locate load modules referred to by the module being 
processed. 

RES 

specifies that the link pack area is to be searched for load modules 
(referred to by the module being processed) before the specified libraries 
are searched. This is the default value if both RES and NORES are 
omitted. If you specify the NOCALL operand the RES operand is 
invalid. 

NORES 

specifies that the link pack area is not to be searched to locate modules 
referred to by the module being processed. 

MAP 

specifies that a list of external names and their real storage addresses are 
to be placed on the PRINT data set. This operand is ignored when 
NOPRINT is specified. 

NOMAP 

specifies that external names and addresses are not to be contained in 
the PRINT data set. This is the default value if both MAP and NOMAP 
are omitted. 

CALL 
specifies that the data set specified in the LIB operand is to be searched 
to locate load modules referred to by the module being processed. This is 
the default value if both CALL and NOCALL are omitted. 

NOCALL 

specifies that the data set specified by the LIB operand will not be 
searched to locate modules that are referred to by the module being 
processed. The RES operand is invalid when you specify this operand. 

LET 

specifies that execution is to be attempted even if a severity 2 error 
should occur. (A severity 2 error indicates that execution may be 
impossible. ) 

NOLET 

specifies that execution is not to be attempted if a severity 2 error should 
occur. This is the default value if both LET and NOLET are omitted. 

SIZE(integer) 
specifies the size, in bytes, of dynamic real storage that can be used by 
the loader. If this operand is not specified, then the size defaults to the 
size specified at system generation (SYSGEN). 

EP(entry-name) 

specifies the external name for the entry point to the loaded program. 
You must specify this operand if the entry point of the loaded program is 
in a load module. 

NAME(program-name) 

specifies the name that you want assigned to the loaded program. 

LOADGO Command 173 



Example 1 

Operation: Load and execute an object module. 

Known: 
The name of the data set: SHEPD58.CSINE.OBJ 

load csine print(*) 

Example 2 

Operation: Combine an object module and a load module, and then load 
and execute them. 

Known: 
The name of the data set containing the object 
module: LARK.HINDSITE.OBJ 
The name of the data set containing the load 
module: LARK.THERMOS.LOAD(COLD) 

load (hindsite thermos(cold)) print(*) + 
lib( 'sys 1 . sortlib' ) + 
nores map size (44k) ep (start23) name(thermsit) 

174 OS/VS2 TSO Command Language Reference 



LOGOFF. Command 

Use the LOGOFF command to terminate your terminal session. When you 
enter the LOGOFF command, the system frees all the data sets allocated to 
you; data remaining in storage will be lost. 

If you intend to enter the LOGON command immediately to begin a 
new session using different attributes, you are not required to LOGOFF. 
Instead, you can just enter the LOGON command as you would enter any 
other command. 

Note: If your terminal is a systems network architecture (SNA) terminal 
that uses TSO/VTAM, you may be required to use a format different from 
the one described here. Your system programmer should provide you with 
this information. 

LOGOFF 

DISCONNECT 

[ 
DISCONNECT] 
HOLDl 

specifies that the line is to be disconnected following logoff. This is the 
default if no operand is specified. 

HOLD' 
specifies that the line is not to be disconnected following logoff. 

Example 1 

Operation: Terminate your terminal session. 

logoff 

, Not supported with terminals that use TSO/VT AM. 

LOGOFF Command 175 



176 OS/VS2 TSO Command Language Reference 



LOGON Command 

Vse the LOGON command to initiate a terminal session. Before you can 
use the LOGON command, your installation must provide you with certain 
basic information. 

• Your user identification (1-7 characters) and, if required by your 
installation, a password (1-8 alphameric characters) 

• An account number (may be optional at your installation) 
• A procedure name (may be optional at your installation) 

You must supply this information to the system by using the LOGON 
command and operands. The information that you enter is used by the 
system to start and control your time sharing terminal session. 

You can also use the operands to specify whether or not you want to 
receive messages from the system or other users. 

If you are a RACF-defined user, your installation will assign you a 
RACF password and a GROUP name (optional). As with your userid, this 
information must be supplied to the system via the LOGON command in 
order to start and control your time sharing session as a RACF-defined 
user. 

For a RACF user of TSO, the password level in the VADS data set is 
bypassed and only the password in the RACF data set is compared for user 
verification during LOGON processing. The remainder of the V ADS tree 
structure (such as account number and procedure name) is enforced. 
Because the password level in the VADS tree structure is bypassed, a 
RACF user must supply an account number if the user has more than one 
account number defined in the VADS data set. 

For TSO users who are not defined to RACF, there is no change in the 
TSO LOGON processing. 

Note: If your terminal uses TSO /VT AM, you may be required to use a 
format different from the one described here. Your system programmer 
should provide you with this information. 

LOGON user-identity [/password [/newpassword] ] 

[ACCT(account) ] 

[PROC(procedure) ] 

[SI ZE (integer)] 

[ 
NOTICES ] 
NONOTICES 

[
MAIL ] 
NOMAIL 

[PERFORM(value)] 

[RECONNECT] 

[GROUP(name)] 

[OIOCARD] 

LOGON Command 177 



user-identity / password/ newpassword 
specifies your user identification and, if required, a valid password or 
new password. Your user identification must be· separated from the 
password by a slash (/) and, optionally, one or more standard delimiters 
(tab, blank, or comma). Your identification and password must match 
the identification contained in the system's user attribute data set 
(UADS) if you are not RACF defined. If you are RACF defined, you 
must enter the password defined in the RACF data set as the value for 
password. N ewpassword specifies the password that is to replace the 
current password. Newpassword must be separated from the password by 
a slash(/) and, optionally, one or more standard delimiters (tab, blank, 
or comma). The newpassword operand is one to eight alphameric 
characters in length. This operand is ignored for non-RACF-defined 
users. (Printing is suppressed for some types of terminals when you 
respond to a prompt for a password.) 

ACCT(account) 

specifies the account number required by your installation. If the UADS 
contains only one account number for the password that you specify, this 
operand is not required. If the account number is required and you omit 
it, the system will prompt you for it. 
For TSO, an account number must not exceed 40 characters, and must 
not contain a blank, tab, quotation mark, apostrophe, semicolon, comma, 
or line control character. Right parentheses are permissible only when 
left parentheses balance them somewhere in the account number. 

PROC(procedure-name) 

specifies the name of a cataloged procedure containing the job control 
language (JCL) needed to initiate your session. 

SIZE(integer) 

specifies the maximum region size allowed for a conditional GETMAIN 
during the terminal session. The VADS contains a default value f.or your 
region size if you omit this operand. The UADS also contains a value for 
the maximum region size that you will be allowed. This operand will be 
rejected if you specify a region size exceeding the maximum region size 
allowed by the UADS (in this case, the VADS value MAXSIZE will be 
used). 

NOTICES 
specifies that messages intended for all terminal users are to be listed at 
your terminal during LOGON processing. This· is the default value if 
both NOTICES and NONOTICES are omitted. 

NONOTICES 
specifies that you do not want to receive the messages intended for all 
users during LOGON processing. 

MAIL 
specifies that you want messages intended specifically for you to be 
displayed at your terminal during LOGON processing. This is the default 
value. if both MAIL and NOMAIL are omitted. 

NOMAIL 
specifies that you do not want to receive messages intended specifically 
for you during LOGON processing. 

178 OS/VS2 TSO Command Language "Reference 



PERFORM(value) 

specifies the performance group to be used for the terminal session. The 
value must be an integer from 1-255. The performance group entered 
must be defined for you in the user attribute data set (UADS). The 
default value is performance group 2. 

RECONNECT 

specifies that you want to re-LOGON after your line has been 
disconnected. If a password was specified in the disconnected session, 
the same password must be specified with the RECONNECT option. 
Any operands other than use rid and password will be ignored if 
RECONNECT is specified. 

GROUP(name) 

specifies a one-to-eight character ID composed of alphameric and/or 
national characters, the first of which must be alphabetic or national. 
This operand is valid only for RACF users. It will be ignored for users 
not defined to RACF. 

OIOCARD 

specifies that the operator identification card is to be prompted for after 
the LOGON command has been entered. This operand is valid only for 
RACF defined users. 
If you are not defined to RACF and enter this keyword, you will be 
prompted for an operator identification card. However, any data you 
enter will be ignored. You may also enter a null line in response. to the 
prompt. 

Example 1 

Operation: Initiate a terminal session. 

Known: 
Your user identification and password: WRRID/23XA$MBT 
Your installation does not require an account number or procedure name 

for LOGON. 

logon wrrid/23xa$mbt 

Example 2 

Operation: Initiate a terminal session. 

Known: 
Your user identification and password: WRRID /MO@ 
Your account number: 288104 
The name of a cataloged procedure: TS951 
You do not want to receive any broadcast messages. 
Your real storage space requirement: 90K bytes 

logon wrrid/mo@ acct(288104) proc(ts951)
size(90) nonotices nomail 

LOGON Command t 79 



( 

( 

180 OS/VS2 TSO Command Language Reference 



PROFILE Command 

Use the PROFILE command or subcommand of EDIT to establish, change, 
or list your user profile; that is, to tell the system how you want to use 
your terminal. You can: 

• Define a character-deletion or line-deletion control character (on some 
terminals) . 

• Specify whether or not prompting is to occur. 
• Specify the frequency of prompting under the EDIT command. 
• Specify whether or not you will accept messages from other terminals. 
• Specify whether or not you want the opportunity to obtain additional 

information about messages from a command procedure. 
• Specify whether or not you want message numbers for diagnostic 

messages that may be displayed at your terminal. 

Note: The syntax and function of the PROFILE subcommand of EDIT is 
the same as that of PROFILE. 

Initially, a user profile is prepared for you when arrangements are made 
for you to use the system. The authorized system programmer creates your 
userid and your user profile. The system programmer is restricted to 
defining the same user profile for every use rid that he creates. This 
"typical" user profile is defined when a user profile table (UPT) is 
initialized to hexadecimal zeroes for any new userid. Thus, your initial user 
profile is made up of the default values of the operands discussed under this 
command. The system defaults shown in Figure 11 provide for the 
character-delete and the line-delete control characters depending upon what 
type of terminal is involved: 

Character-Delete Line-Delete 
TSO Terminal Control Character Control Character 

IBM 2741 Communication Terminal 8S (backspace) ATTN (attention) 

IBM 1052 Printer-Keyboard 8S (backspace) ** 

IBM 2260 Display Station None None 

IBM 2265 Display Station None None 

IBM 3270 Information Display System None None 

IBM 3767 Communication Terminal None None 

IBM 3770 Data Communication System None None 

Teletype* Model 33 ** ** 

Teletype* Model 35 ** ** 

* Trademark of Teletype Corporation. 
** Refer to TSO Terminal User's Guide. 

Figure 11. System Defaults for Control Characters 

Note: If deletion characters, prompting, and message activity are not what 
you expect, check your profile by displaying it with LIST operand. 

Change your profile by using the PROFILE command with the 
appropriate operands. Only the characteristics that you specify explicitly by 
operands will change, other characteristics remain unchanged. The new 
characteristics will remain valid from session to session. If PROFILE 

PROFILE Command 181 



changes do not remain from session to session, your installation may have a 
LOGON pre-prompt exit that is preventing the saving of any changes in the 
UPT. Verify this with your system programmer. 

If no operands are entered on the PROFILE command, the current user 
profile will be displayed. 

{PROFILE} [CHAR ( ta~~ter}) r PROF 

NOCHAR 

[LlNE(tTTN })l character 
CTLX 

NOLINE 

[PROMPT ] 
NOPROMPT 

[INTERCOM ] 
. NOINTERCOM 

[PAUSE ] 
NOPAUSE 

[MSGID ] 
NOMSGID 

[MODE ] 
NOMODE 

[LIST] 

[PR E F I X(dSname-prefiX)] 
NOPREFIX 

[WTPMSG ] 
NOWTPMSG 

CHAR(character) I 

specifies the EBCDIC character that you want to use to tell the system 
to delete the previous character entered. You should not specify a blank, 
tab, comma, asterisk, or parentheses because these characters are used to 
enter commands. You should not specify terminal-dependent characters 
which do not translate to a valid EBCDIC character. 

Note: Do not use an alphabetic character as either a character-delete or a 
line-delete character. If you do, you run the risk of not being able to enter 
certain commands without accidentally deleting characters or lines of data. 
For instance, if you specify R as a character-delete character, each time you 
tried to enter a PROFILE command the R in PROFILE would delete the P 
that precedes it. Thus it would be impossible to enter the PROFILE 
command as long as R was the character-delete control character. 

I Not supported with terminals that use TSO/VTAM. 

182 OS/VS2 TSO Command Language Reference 

!'I 

~ 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

CHAR(BS)1 

specifies that a backspace signals that the previous character entered 
should be deleted. This is the default value set when your user profile 
was created. 

NOCHARI 

specifies that no control character is to be used for character deletion. 

LINE(character)1 

specifies a control character that you want to use to tell the system to 
delete the current line. 

LINE(A TfN)l 

specifies that an attention interruption is to be interpreted as a 
line-deletion control character. This is the default value set when your 
user profile was created. 

Note: If an invalid character and/or line delete control character is entered 
on the PROFILE command, an error message will inform, the user which 
specific control character is invalid; the character or line delete field in the 
user profile table will not be changed. You may continue to use the old 
character or line delete control characters. 

LINE(CTLX)1 

specifies that the X and CCTRL keys (depressed together) on a 
Teletype2 terminal are to be interpreted as a line-deletion control 
character. This is the default value set when your user profile was 
created, if you are operating a Teletype terminal. 

NOLINEI 

specifies that no line-deletion control character (including A TIN) is 
recognized. 

PROMPT 

specifies that you want the system to prompt you for missing 
information. This is the default value set when your user profile was 
created. 

NOPROMPT 

specifies that no prompting is to occur . 

. INTERCOM 

specifies that you are willing to receive messages from other terminal 
users. This is the default value set when your user profile was created. 

NOINTERCOM 
specifies that you do not want to receive messages from other terminals. 

PAUSE 

specifies that you want the opportunity to obtain additional information 
when a message is issued at your terminal while a command procedure 
(see the EXEC command) or an in-storage command list (created via the 
STACK macro) is executing. After a message that has additional levels 
of information is issued, the system will display the word PAUSE and 
wait for you to enter a question mark (?) or press the ENTER key. 

1 Not supported with terminals that use TSO/VTAM. 

2 Trademark of the Teletype Corporation. 

PROFILE Command 183 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

NOPAUSE 

specifies that you do not want to be prompted for a question mark or 
ENTER. This is the default value when your user profile was created. 

MSGID 

specifies that diagnostic messages are to include message identifiers. 

NOMSGID 

specifies that diagnostic messages are not to include message identifiers. 
This is the default value set when your user profile was created. 

LIST 

specifies that the characteristics of the terminal user's profile be listed at 
the terminal. If other operands are entered with LIST, the characteristics 
of the user's profile will be changed first, and then the new profile will 
be listed. 

Notes: 

1. After a new userid is created and before the character-delete and/or 
line-delete control character is changed, entering PROFILE LIST will 
result in CHAR(O) and LINE(O) being listed. This indicates that the 
terminal defaults for character-delete and line-delete control 
characters will be used. 

2. Although you may receive RECOVER/NORECOVER as an option 
for this operand, these options can only be used with the command 
package program product (5740-XT6). However, if the command 
package is installed, you must be authorized to use the RECOVER 
option. 

MODE 

specifies that a mode message is requested at the completion of each 
subcommand of EDIT. 

NOMODE 

specifies that, when this mode is in effect, the mode message (E or 
EDIT) will be issued after a SAVE, RENUM or RUN subcommand is 
issued and also when changing from input to edit mode . 

. PREFIX(dsname-prefix) 

specifies a prefix which will be appended to all non-fully qualified 
dsnames. The prefix is composed of one-to-seven alphameric characters 
that begin with an alphabetic or national character. 

NOPREFIX 
specifies no prefixing of dsnames by any qualifier will be performed. 

Note: The default prefix in the foreground is the userid. No prefixing of 
data set names is the default in the background. 

WTPMSG 

specifies that the user wishes to receive all write-to-programmer messages 
at his terminal. 

NOWTPMSG 
specifies that the user does not want to receive write-to-programmer 
messages. This is the default value set when your user profile was 
created. 

184 OS/VS2 TSO Command Language Reference 



Example 1 

Operation: Establish a complete user profile 

Known: 
The character that you want to use to tell the system to delete the 

previous character: # 
The indicator that you want to use to tell the system to delete the 

current line: ATTN. 
You want to be prompted. 
You do not want to receive messages from other terminals. 
You want to be able to get second level messages while a command 

procedure is executing. 
You do not want diagnostic message identifiers. 

profile char(#) line(attn) prompt nointercom pause 
nomsgid 

Example 2 

Operation: Suppose that you have established the user profile in Example 
1. The terminal that you are using now does not have a key to cause an 
attention interrupt. You want to change the line delete control character 
from ATTN to @ without changing any other characteristics. 

PROF LINE(@) 

Example 3 

Operation: Establish and use a line-deletion character and a 
character-deletion character. 

Known: 
The line-deletion character: & 
The character-deletion character: 

profile line( &) char(!) 

Now, if you type: 

now is the ti&ac!bcg!. 

and press the ENTER key, you will actually enter: 

abc. 

PROFILE Command 185 



186 OS/VSl TSO Command Lanauaae Reference 



PROTECT Command 

Use the PROTECT command to prevent unauthorized access to your 
non-VSAM data set. (Use the Access Method Services ALTER and 
DEFINE commands to protect your VSAM data set. These commands are 
described in OS/VS2 Access Method Services.) This command establishes or 
changes: 

• The passwords that must be specified to gain access to your data 
• The type of access allowed 

Data sets that have been allocated (either during a LOGON procedure or 
via the ALLOCATE command) cannot be protected by specifying the 
PROTECT command. To password-protect an allocated data set, you would 
have to de-allocate it via the FREE command before you could protect it 
via the PROTECT command. 

Passwords 

You may assign one or more passwords to a data set. Once assigned, the 
password for a data set must be specified in order to access the data set. A 
password consists of one through eight alphameric characters. You are 
allowed two attempts to supply a correct password. 

Types of Access 

Four operands determine the type of access allowed for your data set. They 
are PWREAD, PWWRITE, NOPWREAD, NOWRITE. 

Each operand, when used alone, defaults to one of the preceding types 
of access. The default values for each operand used alone are: 

OPERAND 

PWREAD 
NOPWREAD 
PWWRITE 
NOWRITE 

DEFAULT VALUE 

PWREAD 
NOPWREAD 
NOPWREAD 
PWREAD 

PWWRITE 
PWWRITE 
PWWRITE 
NOWRITE 

A combination of NOPWREAD and NOWRITE is not supported and 
will default to NOPWREAD and PWWRITE. 

is: 
If you specify a password but do not specify a type of access, the default 

• NOPWREAD PWWRITE if the data set does not have any existing 
access restrictions 

• The existing type of access if a type of access has already been 
established 

When you specify the REPLACE function of the PROTECT command 
the default type of access is that of the entry being replaced. 

PROTECT Command 187 



{
PROTECT} 
PROT 

data-set-name 

data-set-name 

[

ADD (password 2) J 
REPLACE (password 1 password 2) 
DELETE (password 1) 
LIST (password 1) 

[
PWREAD ] 
NOPWREAD 

[
PWWRITEJ 
NOWRITE 

[DATA(/string/) ] 

specifies the name of the data set that will be subject to the functions of 
this command. 

Note: If the data set is not cataloged, the user must specify the fully 
qualified name. For example: 

protect 'userid.dsn.qual' list(password) 

ADD(password2 ) 
specifies that a new password is to be required for access to the named 
data set. This is the default value if ADD, REPLACE, DELETE, and 
LIST are omitted. \. 
If the data set exists and is not already protecM;y a password, its 
security counter will be set and the password being assigned will be 
flagged as the control password for the data set. The security counter is 
not affected when additional passwords are entered. 

REPLACE(passwordl, password2) 
specifies that you want to replace an existing password, access type, or 
optional security information. The first value (password 1) is the existing 
password; the second value (password2) is the new password. 

DELETE(password l) 
specifies that you want to delete an existing password, access type, or 
optional security information. 
If the entry being removed is the control entry (see the discussion 
following these operand descriptions), all other entries for the data set 
will also be removed. 

LlST(password l) 
specifies that you want the security counter, the access type, and any 
optional security information in the password data set entry to be 
displayed at your terminal. 

passwordl 
specifies the existing password that you want to replace, delete, or have 
its security information listed. 

188 OS/VS2 TSO Command Language Reference 

( 



password2 

specifies the new password that you want to add or to replace an 
existing password. 

PWREAO 

specifies that the password must be given before the data set can be 
read. 

NOPWREAO 

specifies that the data set can be read without using a password. 

PWWRITE 

specifies that the password must be given before the data set can be 
written upon. 

NOWRITE 

specifies that the data set cannot be written upon. 

OAT A('string') 

specifies optional security information to be retained in the system. The 
value that you supply for 'string' specifies the optional security 
information that is to be included in the Password Data Set entry (up to 
77 bytes). 

Password Data Set 

Before you can use the PROTECT command, a password data set must 
'reside on the system residence volume. The password data set contains 
passwords and security information for protected data sets. You can use the 
PROTECT command to display this information about your data sets at 
your terminal. 

The password data set contains a security counter for each protected 
data set. This counter keeps a record of the number of times an entry has 
been referred to. The counter is set to 'zero' at the time an entry is placed 
into the data set, and is increased each time the entry is accessed. 

Each password is stored as part of an entry in the password data set. 
The first entry in the password data set for each protected data set is called 
the control entry. The password from the control entry must be specified 
for each access of the data set via the PROTECT command, with one 
exception: the LIST operand of the PROTECT command does not require 
the password from the control entry. 

If you omit a required password when using the PROTECT command, 
the system will prompt you for it; if your terminal is equipped with the 
'print-inhibit' feature, the system will disengage the printing mechanism at 
your terminal while you enter the password in response. However, the 
'print-inhibit' feature is not used if the prompting is for a new password. 

PROTECT Command 189 



Example 1 

Operation: Establish a password fora, new data set. 

Known: 
The name of the data set: ROBID.SALES.DAT A 
The password: L82GRIFN 
The type of access allowed :PWREAD PWWRITE 
The logon id was: ROBID 

protect sales.data pwread add (182grifn) 

Example 2 

Operation: Replace an existing password without changing the existing 
access type. 

Known: 
The name of the data set: ROBID.NETSALES.DAT A 
The existing password: MTG@AOP 
The new password: P AO$TMG 
The control password: ELHAVJ 
The logon id was: ROBID 

prot netsales.data/elhavj replace(mtg@aop,pao$tmg) 

Example 3 

Operation: Delete one of several passwords. 

Known: 
The name of the data set: ROBID.NETGROSS.ASM 
The password: LETGO 
The control password: APPLE 
The logon id was: ROBID 

prot netgross.asm/apple delete(letgo) 

Example 4 

Operation: Obtain a listing of the security information for a protected data 
set. 

Known: 
The name of the data set: ROBID.BILLS.CNTRLA 
The password required: D#JPJAM 

protect 'robid.bills.cntrla' list(d#jpjam) 

190 OS/VS2 TSO Command Language Reference 



Example 5 

Operation: Change the type of access allowed for a data set. 

Known: 
The name of the data set: ROBID.PROJCTN.LOAD 
The new type· of access: NOPWREAD PWWRITE 
The existing password: DDAY6/6 
The control password: EEYORE 
The logon id was: ROBID 

protect projctn.load/eeyore replace(dday6/6)
nopwread pwwrite 

PROTECT Command 191 



192 OS/VS2 TSO Command Language Reference 



RENAME Command 

Use the RENAME command to: 

• Change the name of a non-VSAM cataloged data set. 
• Change the name of a member of a partitioned data set. 
• Create an alias for a member of a partitioned data set. 

Notes: 

1. The Access Method Services ALTER command changes the name of 
VSAM data sets and is described in OS/VS2 Access Method Services .. 

2. When a password protected data set is renamed, the data set does not 
retain the password. You must use the PROTECT command to assign 
a password to the data set before you can access it. 

{
RENAME} 
REN 

old-name 

old-name new-name 

[ALIAS] 

specifies the name that you want to change. The name that you specify 
may be the name of an existing data set or the name of an existing 
member of a partitioned data set. 

new-name 
specifies the new name to be assigned to the existing data set or 
member. If you are renaming or assigning an alias to a member, you may 
supply only the member name and omit all other levels of qualification. 

ALIAS 

specifies that the member name supplied for new name operand is to 
become an alias for the member identified by the old name operand. 

The RENAME command should not be used to create an alias for a 
linkage-editor created load module. 

You can rename several data sets by substituting an asterisk for a 
qualifier in the old name and new name operands. The system will change 
all data set names that match the old name except for the qualifier 
corresponding to the asterisk's position. 

RENAME Command 193 



Example 1 

Operation: You have several non-VSAM data sets named: 

userid.mydata.data 

userid.yourdata.data 

userid.workdata.data 

that you want to rename: 

userid.mydata.text 

userid. yourdata. text 

userid.workdata.text 

you must specify either: 

rename 'userid.*.data','userid.*.text' 

or 

rename *.data,*.text 

Example 2 

Operation: Assign an alias "SUZIE" to the partitioned data set member 
named "ELIZBETH(LIZ)". 

REN 'ELIZBETH(LIZ)' (SUZIE) ALIAS 

194 OS/VS2 TSO Command Language Reference 



RUN Command 

Use the RUN command to compile, load, and execute the source statements 
in a data set. The RUN command is designed specifically for use with 
certain program products; it selects and invokes the particular program 
product needed to process the source statements in the data set that you 
specify. Figure 12 shows which program product is selected to process each 
type of source statement. 

If your program or data set contains Then the following program product 
statements of this type (see EDIT): (or equivalent) can be used: 

ASM TSO ASM Prompter 

COBOL TSO COBOL Prompter and OS Full American 
National Standard COBOL Version 3 or Version 
4 Compiler 

FORTGI TSO FORTRAN Prompter and FORTRAN IV 
(G I) Compiler 

GOFORT Code and Go FORTRAN 

PLI PUI Checkout Compiler or 
PUI Optimizing Compiler 

VSBASIC TSO VSBASIC Prompter 

You can use the CONVERT command to convert Code and Go FORTRAN free-form 
statements to a form suitable for the FORTRAN compiler. 

Figure 12. Source Statement/Program Product Relationship 

The RUN command and the RUN subcommand of EDIT perform the 
same basic function. 

RUN Command 195 



data-set-name 

[ 'parameters'] 

r-ASM [LI B (data-set-list)] 
COBOL [LI B(data-set-list)] 
FORT [L I B (data-set-I ist)] 
PLI [CHECK] [LlB(data-set-list)] 

OPT 

Note: GOFORT [FIXED] [LMSG] 
Choose FREE SMSG 

only .":.1 VSBASIC [LPREC] [TEST ] [GO ] [STORE ] 
one if SPREC NOTEST NOGO NOSTORE 
any. 

[
PAUSE. ] [SOURCE] [SIZE(value)] 
NOPAUSE· OBJECT 

data-set-name 'parameters' 
specifies the name of the data set containing the source program (see the 
data set naming conventions). A string of up to 100 characters can be 
passed to the program via the "parameters" operand (valid only for data 
sets which accept parameters). 

ASM 

specifies that the TSO Assembler Prompter program product and the . 
Assembler (F) compiler are to be invoked to process the source program. 
If the rightmost qualifier of the data set name is ASM, this operand is 
not required. 

LlB( data-set-list) 
specifies the library or libraries that contain subroutines needed by the 
program you are running. These libraries are concatenated to the default 
system libraries and passed to the loader for resolution of external 
references. This operand is valid only for the following data set types: 
ASM, COBOL, FORT, and PLI (Optimizer). 

COBOL 
specifies that the TSO COBOL Pro?lpter and the OS Full American 
National Standard COBOL (Version 3 or Version 4) program products 
are to be invoked to process the source program. If the rightmost 
qualifier of the data set name is COBOL, this operand is not required. 

FORT 
specifies that the TSO FORTRAN Prompter and the FORTRAN IV 
(G 1) program products are to be invoked to process the source program. 
If the rightmost qualifier of the data set name is FORT, the Code and 
Go FORTRAN compiler will be invoked unless you specify this operand. 

PLI 

specifies that the PL/I Prompter and either the PL/I Optimizer compiler 
or the PL/I Checkout compiler are to be invoked to process the source 
program. If the rightmost qualifier of the data set name is PLI, this 
operand is not required. 

196 OS/VS2 TSO Command Language Reference 



January II, 1980 

CHECK 
specifies the PL/I Checkout compiler.' If you omit this operand, the OPT 
operand is the· default value. 

OPT 

specifies the PL/I Optimizing compiler. This is the default value if both 
CHECK and OPT are omitted. 

GOFORT 

specifies that the Code and Go FORTRAN program product is to be 
invoked for interactive processing of the source program. 

TEST 
specifies that testing of the program is to be performed. This operand is 
valid only for the VSBASIC program product. 

NOTEST 

specifies that the TEST function is not desired. This is the default value, 
and is valid only for the VSBASIC program product. 

LMSG 

specifies that the long form of the diagnostic messages are to be 
provided. This operand is applicable to the Code and Go FORTRAN 
program product. The default value is SMSG. 

SMSG 
specifies that the short form of the diagnostic messages is to be provided. 
This operand is applicable to the Code and Go FORTRAN program 
product. 

LPREC 
specifies that long precision arithmetic calculations are required by the 
program. This operand is valid only for the VSBASIC program product. 

SPREC 
specifies that short precision arithmetic calculations are adequate for the 
program. This operand is valid only for the VSBASIC program product 
and is the default value. 

FIXED 

specifies the format of the source statements to be processed by the 
Code and Go FORTRAN program product. The statements must be in 
standard format when this operand is specified. If you omit this operand, 
the FREE operand is the default value. 

FREE 
specifies that the .source program consists of free form statements 
applicable only to the Code and Go FORTRAN program product. 

VSBASIC 
specifies that the VSBASI C program product is to be invoked to process 
the source program. 

GO 
specifies that the program is to receive control after compilation. This is 
the default if neither GO nor NOGO are specified. This operand is valid 
only for VSBASIC. 

RUN Command 197 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

NOGO 

specifies that the program will not receive control after compilation. This 
operand is valid only for VSBASIC. 

STORE 

specifies that .. the compiler is to store an object program. This operand is 
valid only for VSBASIC; 

NOSTORE 

specifies that the compiler is not to store an object program. This is the 
default if neither STORE nor NOSTORE are specified. This operand is 
valid only for VSBASIC. 

PAUSE 

specifies that the compiler is to prompt to the terminal between program 
chains. This operand is valid only for VSBASIC. 

NOPAUSE 

specifies no prompting between program chains. This is the default if 
neither PAUSE nor NOPAUSE is specified. This operand is valid only 
for VSBASIC. 

SOURCE 

specifies that new source code is to be compiled. This is the default if 
neither SOURCE nor OBJECT is specified. This operand is valid only 
for VSBASIC. 

OBJECT 

specifies that the data set name entered is a fully-qualified name of an 
object data set to be executed by the VSBASIC compiler. 

SIZE(value) 

specifies the number of thousand-byte blocks of user area where value is 
an integer of one-to-three digits. This operand is valid only for 
VSBASIC. 

Determining Compiler Type: The system uses two sources of information to 
determine which compiler will be used. The first source of information is 
the optional operand (ASM, COBOL, FORT, PLI, GOFORT, or 
VSBASIC) that you may specify for the RUN command. If you omit this 
operand, the system checks the descriptive qualifier of the data set name 
that is to be executed (see the data set naming conventions for a list of 
descriptive qualifiers). If the system cannot determine the compiler type 
from the descriptive qualifier, you will be prompted. 

The RUN command uses standard library names, such as 
SYSl.FORTLIB and SYSl.COBLIB, as the automatic call library. This is 
the library searched by the linkage editor to locate load modules referred to 
by the module being processed for resolution of external references. 

Note: RUN causes other commands to be executed from an in-storage list. 
If an error occurs, one of these commands may issue a message that has 
additional levels of information. This additional information will not be 
available· to the user unless the PAUSE option is indicated in the user's 
profile. The PAUSE option is described in the section titled, "PROFILE 
command". 

198 OS/VS2 TSO Command Language Reference 



Example 1 

Operation: Compile, load, and execute a source program composed of 
VSBASIC statements. 

Known: 
The name of the data set containing the source program is 

DDG39T.MNHRS.VSBASIC. 

run mnhrs.vsbasic 

Example 2 

Operation: Compile, load and execute a Code and Go FORTRAN source 
program contained in a data set that does not conform to the data set 
naming conventions. 

Known: 
The data set name TRAJECT.MISSILE FORTRAN statements conform 

to the standard format. Complete diagnostic messages are needed. 
Parameters to be passed to the program are: 50 144 5000 

run 'traject.missile' '50 144 5000' go fort fixed lmsg 

RUN Command 199 



200 OS/VS2 TSO Command Language Reference 



SEND Command 

Use the SEND command or SEND subcommand of EDIT to send a 
message to another terminal user or to the system operator. A message may 
be sent to more than one terminal user. If the intended recipient of a 
message is not logged on, the message can be retained within the system 
and presented automatically when he logs on. You will be notified when the 
recipient is not logged on and the message is deferred. 

Note: The syntax and function of the SEND subcommand of EDIT is the 
same as that of SEND command. 

'text' 

[USER ({USer~d-list}) [~~~~~ [:~~AIT]] 

[
OPERATOR(2) ] 
OPE RATOR (route-code) 

[eN (console-id)] 

'text' 
specifies the message to be sent. You must enclose the text of the 
message within apostrophes (single quotes). The message must not 
exceed 115 characters including blanks. If no other operands are used, 
the message goes to the console operator. If you want apostrophes to be 
printed you must enter two in order to get one. 

USER(userid-list) 

specifies the user identification of one or more terminal users who are to 
receive the message. A maximum of 20 identifications can be used. 

USER(*) 

specifies that the message will be sent to the use rid associated with the 
issuer of the SEND command. If an '*' is used with a SEND command 
in a command procedure, the message will be sent to the user executing 
the command procedure. If used with the SEND command at a terminal, 
an '*' will cause the message to be sent to the same terminal. 

NOW 
specifies that you want the message to be sent immediately. If the 
recipient is not logged on, you will be notified and the message will be 
deleted. This is the default value if NOW, LOGON, and SAVE are 
omitted. 

LOGON 
specifies that you want the message retained in the SYS 1.BRODCAST 
data set if the recipient is not logged on or is not receiving messages. 
When the recipient logs on, the message will be removed from the data 
set and directed to his terminal. If the recipient is currently using the 
system and receiving messages, the message will be sent immediately. 

SEND Command 201 



SAVE 

specifies that the message text is to be entered in the mail section of 
SYS 1.BRODCAST without being sent to any user. Messages stored in 
the broadcast dataset can be retrieved by using either LISTBC or 
LOGON commands. 

WAIT 

specifies that you will wait until system output buffers are available for 
all specified logged-on terminals. This ensures that the message will be 
received by all specified logged-on users, but it also means that you may 
be locked out until all such users have received the message. 

NOWAIT 

specifies that you do not want to wait if system output buffers are not 
immediately available for all specified logged-on terminals. You will be 
notified of all specified users who did not receive the message. If you 
specified LOGON, mail will be created in the SYS 1.BRODCAST data 
set for the specified users whose terminals are busy or who have not 
logged-on. NOW AIT is the default value if neither WAIT nor NOW AIT 
is specified. 

OPERATOR (route-code) 

specifies that you want the message sent to the operator indicated by the 
route-code. If you omit the route-code, the default is two (2); that is, the 
message goes to the master console operator. This is the default value if 
both USER (identifications) and OPERATOR are omitted. The integer 
corresponds to routing codes for the WTO macro. 

CN(console-id) 

specifies that the message is to be queued to the indicated operator 
console. The value for "console-id" must be an integer between 0-64. 

Example 1 

Operation: Send a message to the master console operator. 

Known: 
The message: What is the weekend schedule? 

send 'what is the weekend schedule?' 

Example 2 

Operation: Send a message to two other terminal users. 

Known: 
The message: If you have data set 'mylib.load' allocated, please free it. I 

need it to run my program. 
The user identification for the terminal users: JANET5 

LYNN6 
The message is important and you want to make sure the specified user 

gets it now. 

send 'if you have data set "mylib.load" allocated, -
please free it. i need it to run my program.' -
user(janet5,lynn6) wait 

202 OS/VS2 TSO Command Language Reference 



Example 3 

Operation: Send a message that is to be delivered to 'BETTYT when she 
begins her terminal session or now if she is currently logged on. 

Known: 
The recipients's user identification: BETTY7 
The message: Is your version of the simulator ready? 
If her terminal is busy, you want to put the message into the 

SYS 1.BRODCAST data set. There is no rush for her to get it and 
respond. 

send 'is your version of the simulator ready?' -
user(betty7) logon nowait 

SEND Command 203 



204 OS/VS2 TSO Command Language Reference 



July 30, 1980 

TERMINAL Command 

Use the TERMINAL command to define the operating characteristics that 
depend primarily upon the type of terminal that you are using. You can 
specify the ways that you want to request an attention interruption and you 
can identify hardware features and capabilities. The TERMINAL command 
allows you to request an attention interruption whether or not your terminal 
has a key for the purpose. The TERMINAL command is not allowed as a 
TSO command in the background. 

The terminal characteristics that you have defined will remain in effect 
until you enter the LOGOFF command. If you terminate a session and 
begin a new one by entering a LOGON command (instead of a LOGOFF 
command followed by a LOGON command), the terminal characteristics 
defined in the earlier session will be in effect during the subsequent session. 

If your session is interrupted by a line disconnection and you relogon via 
the LOGON RECONNECT, you must redefine all previously defined 
terminal characteristics. The reason for the redefinition is that all records 
for defined data are lost as a result of the line disconnection. 

{
TERMINAL t 
TERM f [

L I N ES( integer)] 1 
NOLINES 

[
SECONDS(integer)] 1 
NOSECONDS 

[
I NPUT(string)] 1 
NOINPUT 

[
BREAK ] 
NOBREAK 

[
TIMEOUT Jl 
NOTIMEOUT 

[LI NESIZE(integer)] 

[
CLEAR (stringlll 
NOCLEAR J 

[SCRSIZE(rows, length)] 

[
TRAN(name)J 2 

NOTRAN 

[~~~:~R {~·.~~:~~ar·H~··~~:~~ar'} {( { H }) .. } r 
LINES (integer) 1 

specifies an integer from 1 to 255 that indicates you want the 
opportunity to request an attention interruption after that number of 
lines of continuous output has been directed to your terminal. 

1 Not supported with terminals that use TSO/VTAM. 

2 Not supported with terminals that use TSO/TCAM. 

TERMINAL Command 205 



Page of GC28-0646-4 
As Updated July 30, 1980 
By TNL GN28-4754 

NOLINESl 

specifies that output line count is not to be used for controlling an 
attention interruption. This is the default condition. 

SECONDS (integer) 1 

specifies an integer from 10 to 2550 (in multiples of 10) to indicate that 
you want the opportunity to request an attention interruption after that 
number of seconds has elapsed during which the terminal has been 
locked and inactive. If you specify an integer that is not a multiple of 10, 
it will be changed to the next largest multiple of 10. 

NOSECONDSl 

specifies that elapsed time is not to be used for controlling an attention 
interruption. This is the default condition. 

INPUT(string) 1 

specifies the character string that, if entered as input, will cause an 
attention interruption. The string must be the only input entered and 
cannot exceed four characters in length. 

NOINPUTl 

specifies that no character string will cause an attention interruption. This 
is the default condition. 

BREAK 

specifies, for IBM 3767 and IBM 3770 terminals, that the system can 
interrupt your input. For other terminals, it specifies that your terminal 
keyboard will be unlocked to allow you to enter input whenever you are 
not receiving output from the system; the system can interrupt your input 
with high-priority messages. Since use of BREAk with a terminal type 
which cannot support it can result in loss of output or error, check with 
your installation system manager before specifying this operand. 

Note: If a command processor for a display device is operating in 
full-screen mode, TSO /VT AM treats the device as if it were operating in 
NOBREAK mode. For a more detailed description see, OS!VS2 TSO 
Guide to Writing a Terminal Monitor Program or a Command Processor. 

NOBREAK 

specifies, for IBM 3767 and mM 3770 terminals, that the system is not 
allowed to interrupt you (break in) with a message when you are 
entering data. For other terminals, it specifies that your terminal 
keyboard will be unlocked only when your program or a command you 
have used requests input. 

Note: The default for the BREAK/NOBREAK operand is determined 
when your installation defines the terminal features. 

TIMEOUTl 

specifies that your terminal's keyboard will lock up automatically after 
approximately nine to 18 seconds of no input. (This is applicable only to 
the IBM 1052 Printer-Keyboard without the text timeout suppression 
feature.) 

1 Not supported with terminals that use TSO/VTAM. 

2 Not supported with terminals that use TSO/TCAM. 

206 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated July 30, 1980 
By TNL GN28-4754 

NOTIMEOUTl 

specifies that your terminal's keyboard will not lockup automatically after 
approximately nine to 18 seconds of no input. (This is applicable only to 
the IBM 1052 Printer-Keyboard with the text timeout suppression 
feature.) 

Note: The default for the TIMEOUT /NOTIMEOUT operand is determined 
when your installation defines the terminal features. 

LINESIZE(integer) 

specifies the length of the line (the number of characters) that can be 
printed at your terminal. (This is not applicable to the IBM 2260, 2265, 
and 3270 Display Stations.) Default values are as follows: 

IBM 2741 Communication Terminal - 120 characters 
IBM 1052 Printer-Keyboard - 120 characters 
Teletype 33/35 - 72 characters 
IBM 3767 Communication Terminal - 132 characters 
IBM 3770 Communication System - 132 characters 

The integer must not exceed 255. 

Note: If LINESIZE (80) is coded with a RECFM equal to U, then the line 
will be truncated. The byte truncated (the last byte) is reserved for an 
attribute character. 

CLEAR(string) 1 

specifies a character string that, if entered as input, will cause the screen 
of an IBM 2260, 2265, or 3270 Display Station to be erased. The 
'string' must be the only input entered and cannot exceed four characters 
in length. 

NOCLEARl 

specifies that you do not want to use a sequence of characters to erase 
the screen of an IBM 2260, 2265, or 3270 Display Station. This is the 
default condition. 

SCRSIZE(rows,length) 

specifies the screen dimensions of an IBM 2260, 2265, or 3270 Display 
Station. 

'rows' 
specifies the maximum number of lines of data that can appear on the 
screen. 

'length' 

specifies the maximum number of characters in a line of data displayed 
on the screen. Standard screen sizes are: 

rows,length 
6,40 

12,40 
12,80 
15,64 
24,80 
32,80 
43,80 

Note: The default values for the screen sizes are determined when your 
installation defines the terminal features. 

1 Not supported with terminals that use TSO/VTAM 

2 Not supported with terminals that use TSO/TCAM 

TERMINAL Command 207 



July 30, 1980 

TRAN(name)2 

specifies a load module that contains tables used to translate specific 
characters you type at the terminal into different characters when they 
are seen by TSO. Conversely, when these characters are sent by TSO to 
the terminal, they are retranslated. (Translation of numbers and 
uppercase letters is not allowed.) 
Character translation is especially useful when you are using a 
correspondence keyboard and would like to type the characters "<", 
">", and " I ", which are not available on a correspondence keyboard. 
Translation tables make it possible for you to specify that when you type 
the characters "[", "]", and "!", TSO interprets them as "<", ">", and 
"!". 

NOTRAN2 

specifies that no character translation is to take place. 

CHAR2 

specifies one or more pairs of characters, in either hexadecimal or 
character notation, that replace characters in the translation tables 
specified by TRAN(name) or in the default translation tables. When the 
default translate is used, all unprintable characters are set to blanks. The 
first character of the pair is the character typed, printed, or displayed at 
the terminal. The second character is the character seen by TSO. 
(Translation of numbers and uppercase letters is not allowed.) Do not 
select characters that may be device control characters. 

NOCHAR2 

specifies that all character translations previously specified by CHAR are 
no longer in effect. 

Example 1 

Operation: Modify the characteristics of an IBM 2741 Communication 
Terminal to allow operation in unlocked-keyboard mode. 

Known: 
Your terminal supports the break facility. The installation has defined a 
default of NOBREAK for your terminal. 

terminal break 

Example 2 

Operation: Modify the characteristics of an IBM 1052 Printer-Keyboard 
whose attention key cannot be used to interrupt output and whose 
output line size is greater than 80 characters. 

Known: 
You want an opportunity to request an attention interruption after ten 
consecutive lines of output.· You want to limit the output line length to 
80 characters. 

terminal lines(10) linesize(80) 

2 Not supported with terminals that use TSO/TCAM 

208 OS/VS2 TSO Command Language Reference 



,:1:'" 

/ ....... 

'., 

Example 3 

Operation: Establish the characteristics of an IBM 2260 Display Station to 
allow for attention interruption and screen erasure requests. 

Known: 
You want an opportunity to request an attention interruption if neither 

input is requested nor output sent for one minute. You want a $ to 
stand for an attention interruption request during a regular input 
operation. You want a % to stand for a screen erasure request. 

terminal seconds(60) input($) clear(%) 

Example 4 

Operation: Specify character translation for certain characters not available 
on an IBM 3767 Communication Terminal with an EBCDIC keyboard. 

Known: 
Your terminal supports the character translation facility, and you are 

using the default translation table or a previously specified translation 
table (that you specified with the TRAN operand). You now want "[" 
to stand for "<", "J" to stand for ">", and "!" to stand for" I ". 

terminal char( (C' [ , , X' 4C' ), (C' ] , , X' 6E' ), ( C' ! ' , X' FA' ) ) 

TERMINAL Command 209 

jar MM $. ,J.$. I MAJ. .. M WAI;;:; "',,~i\PP W4 



\ 
\ 

( 

210 OS/VS2 TSO Command Language Reference 



Page of GC28-06464 
As Updated July 30, 1980 
By TNL GN2847S4 

TEST Command 

Use the TEST command to test a program or a command processor for 
proper execution and to locate programming errors. To use the TEST 
command and sub commands , you should be familiar with the 
assembler language and addressing conventions. For best results, the 
program to be tested should be written in basic assembler language. To use 
the symbolic names feature of TEST your program should have been 
assembled and link-edited with the TEST operands. 

Note: If the problem program attempts to LOAD, LINK, XCTL, or 
ATTACH another module from a data set that is not in the list of data sets 
in link library list concatenation (LNKLST), LPA, or in your JOBLIB, 
STEPLIB, or T ASKLIB libraries, the module will not be found. (To avoid 
this situation, you may bring the module into virtual storage via the LOAD 
subcommand of TEST.) 

When to Use TEST 

There are two basic situations in which you might use the TEST command: 

• To test a currently executing program 
• To test a program not currently being executed 

You might want to test an executing program because it either: 
terminated abnormally or because you want to check the current 
environment to see that the program is executing properly. 

Note: TEST will be rejected if the terminating or interrupted program is 
either APF authorized, executing in supervisor state or in a PSW protection 
key less than 8. 

If a program terminates abnormally when not under TEST, you receive a 
diagnostic message from the terminal monitor program (TMP) followed by 
a READY message. If you respond to the diagnostic message with anything 
other than TEST, a question mark (?), or TIME, the TMP terminates your 
program. However, if you issue the TEST command (and supply no 
program name), the currently active program remains in storage when the 
TEST command processor gets control and you can use the TEST 
subcommands to debug the defective program. 

Note: Both the ? and the TIME command can be entered before you issue 
the TEST command to debug an abnormally terminating program. However, 
if you want a dump, instead of issuing the TEST command, enter a null 
line. If either a SYSABEND, SYSMDUMP, or SYSUDUMP file has already 
been allocated, the null line will result in a dump being printed. 

If you want to examine the current environment of an executing program 
that is not terminating abnormally, enter a single attention interruption. The 
currently active program remains attached and the TMP responds to your 
interrupJion by issuing a READY message. When you issue the TEST 
command (without a program name) the currently active program remains 
in storage under the control of the TEST command processor. You can 
then use the TEST sub commands to examine the current environment. 

TEST Command 211 



July 30, 1980 

Note: In the case of either the abend or the attention interruption, you 
should not enter a program name following the TEST command. If you do, 
you will lose the current in-storage copy of the program, as TEST loads a 
copy of the specified program. 

To test a program not currently executing, enter the TEST command 
supplying the data set name containing the program to be executed and any 
other applicable operands. When you use the TEST command to load and 
execute a program, that program must be an object module or a load 
module suitable for execution. 

Prior to and during execution, such as when execution is interrupted at a 
breakpoint, you can: 

• Supply initial values (test data) that you want to pass to the program 

• Establish breakpoints at instructions where execution is to be 
interrupted so that you can examine interim results (Breakpoints 
should not be inserted into TSO service routines or into any of the 
TEST load modules.) 

• Display the contents of registers and virtual storage 

• Modify the contents of registers and virtual storage 

• Display the program status word (PSW) 

• List the contents of control blocks 

• Step through sections of the program, checking each instruction for 
proper execution 

Note: When running in (supervisor state or in a PSW protection key less 
than 8, breakpoints will not be honored in any section of y6ur program. 

Addressing Conventions Associated with TEST 

An address used as an operand for a subcommand of TEST must be one of 
the following types: 

• Absolute address - a 1 to 6 hexadecimal digit number followed by a 
period. An absolute address specifies an absolute virtual storage 
address. 

• Relative address - a 1 to 6 hexadecimal digit number preceded by a 
plus sign (+). This type of address specifies an offset from the 
currently qualified virtual storage address. See the section titled 
"Qualified Addresses" for a detailed description of qualified 
addressing. 

• Symbolic address - 1 to 8 alphameric characters, the first of which is 
an alphabetic character. A symbolic address corresponds to a symbol 
in a program or a symbol defined via the EQUATE subcommand. See 
the section titled "Qualified Addresses" for a detailed description of 
qualified symbolic addressing. See the section titled, "Restrictions on 
the Use of Symbols" for a detailed description on the use of symbols. 

• (module-name ].entry-name - a name within a module capable of being 
externally referenced, preceded by a period (.) and optionally 
preceded by a name by which the module is known. An entry name is 
the symbolic address of an entry point into the module, for example, a 

212 OS/VS2 TSO Command Language Reference 



Page of GC28-064()-4 
As Updated January 11, 1980 
By TNL GN28-4699 

CSECT name. A module name may be the name or alias of a load 
module or the name of an object module. If the user did not specify a 
name for an object module when it was loaded by the OS loader, the 
name TEMPNAME is assigned. 

• Qualified addresses - You may qualify symbolic or relative addresses to 
indicate they apply to a particular module and CSECT. To do this you 
must precede the address by the name of the load or object module 

. and the name of the CSECT. The qualified address must be in the 
form: 

or 

modulename.csect.address 

If the address is to apply to the current module, you need only specify 
the CSECT name in the following form: 

csect.address 

If the address is to apply to the current CSECT within the current 
module, only the address is necessary; you do not need to qualify the 
address. The current module and CSECT is initially set to the program 
being tested. This setting is automatically changed each time a module 
under a different request block is invoked. This is referred to as 
automatic qualification. (This happens when a module is invoked via 
ATTACH, XCTL, SYNCH, or LINK. It does not happen when a 
module is loaded, called, or branched to.) The module and/or CSECT 
used in determining a base location for resolving symbolic and relative 
addresses may also be changed by using the QUALIFY subcommand. 

For example, if the name of the module is OUTPUT, the CSECT is 
TAXES, and the symbolic address is YEAR77, you would specify 
either: 

output.taxes.year77 

.taxes.year77 

if the current module is OUTPUT. You would specify: 

year77 

if the current module is OUTPUT and the current CSECT is TAXES. 
If the module name and CSECT name are the same as above and the 
address to be qualified is the relative address +4A, you would specify: 

output.taxes.+4A 

• General registers: You can refer to a general register using the COPY, 
LIST or assignment-of-value subcommands by specifying a decimal 
integer followed by an R. The decimal integer indicates the number of 
the register and must be in the range 0 through 15. Other references 
to the general registers imply indirect addressing. 

TEST Command 213 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

Note: If your program issues the STIMER macro or involves asynchronous 
interruptions, the contents. of your registers may be changed by 
interruptions even though you are in TEST subcommand mode and your 
program does not get control. 

• Floating-point registers: You can refer to a floating-point register using 
the LIST or assignment-of-value subcommand by specifying a decimal 
integer followed by an E or D. The decimal integer indicates the 
number of the register and must be a zero, two, four, or six. An E 
indicates a floating-point register with single precision. A D indicates a 
floating-point register with double precision. The contents of the 
floating-point register must be assigned using the notation described in 
section titled "Assignment of Values Function of TEST". You must 
not use floating,;.point registers for indirect addressing or in 
expressions. 

• Indirect address - a address expression, a general register, or the 
address of a location that contains another address. An indirect 
address must be followed by a percent sign (0/0). (The percent sign 
indicates that the address is indirect.) To use a general register as an 
indirect address, specify a decimal integer (0 through IS) followed by 
an R and a percent sign. For instance, if you want to refer to data 
whose address is located in register 7, then you would specify: 

7r% 

• Address expression· an address followed by any number of expression 
values. Address can be: 

• An absolute address 

• A relative address (unqualified, partially or fully qualified) 

• A symbolic address (unqualified, partially or fully qualified) 

• An indirect address 

An expression value consists of a plus or minus displacement value (a 
l-to-6 digit number that may be expressed in either decimal or 
hexadecimal form) from· an address in virtual storage. Following are 
two examples of address expressions: 

Decimal Example: 

address+ 14n specifies the location that is 14 bytes past that designated by 
"address" 

Hexadecimal Example: 

address + 14 specifies the location that is 20 decimal bytes past that 
designated-by -.-raddress" 

Note: Decimal displacement (either plus or minus) is indicated by the 
n following the numeric offset. You can indicate up to 256 levels of 
indirect addressing by following the initial indirect address with a 
corresponding number of percent signs. An address expression is 
specified like this: 

address {~} value[% ... ] [ {~} value[% ... ]) ... 

214 OS/VS2 TSO Command Language Reference 



Page of GCl8-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

For example, the expression 5R°;b9i>+4O/o refers to the data in location 
922 below. 

Register 5 

Location A24 

Restrictions on Use of ·Symbols 

Location 1C2 

OOOOOA40 

Location 922 

data 

The TEST command processor can resolve external and internal symbolic 
addresses only if these addresses are available to it. Within certain 
limitations, . symbolic addresses are available for both object modules 
(processed by the OS/VS loader) and load modules (fetched by contents 
supervision) . 

External Symbols 

The TSO TEST user can access external symbols, such as CSECT names, 
f~r a program modules if the program was brought into main storage by the 
TEST command or one of its subtasks. This is the case for the program 
being tested, any program brought into storage through the tested program, 
and any program loaded via the LOAD subcommand. 

External symbols for CSECT names that are in object modules are 
available. only if the OS /VS loader had enough main storage to build 
composite external symbol table dictionary (CESD) entries. 

Internal Symbols 

Internal symbols for load modules can be resolved if the CSECT containing 
the symbol was assembled with the TEST parameter, the module was link 
edited .with the TEST parameter;· and the program was brought into storage 
by the TEST command or one of its subtasks as previously explained. 
Names on EQU, ORO, LTORO, CNOP, and DSECT statements cannot be 
resolved. 

The TSO TEST user can not access internal symbols for object modules. 

Addressing Considerations 

If the necessary conditions for symbol processing are not met, you can use 
absolute, relative, or indirect addressing or you can define symbols with the 
EQUATE subcommand of TEST. 

Symbols within DSECTs are available only if the DSECT name has 
been defined with the EQUATE subcommand. 

TFSI' eoa-ad 21 •• 1 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

For example, if NAME is a symbol in a DSECT named DATATBL, then 
to access the data associated with NAME, the user would have to first 
determine the address to be used as a base address for the DSECT. (This is 
the address in the register on the assembler USING instruction.) If the 
address is in register 7 the user may enter: 

equate datatbl 7r% 

This will establish address ability to the DSECT, allowing the symbol 
NAME and all other symbols in the DSECT to be accessed using the 
symbol. 

Note: No symbols are available for a module loaded from a data set, other 
than SYS 1.LINKLm, which is in LNKLST concatenation. 

Examples 0/ Valid A.ddresses in TEST Subcommands 

Below is a list of valid addresses which can be used with subcommands: 

Address: 

A23C40. 

+E4 

5R% 

NAMES 

.SALES.+26 

14R%+28 

PROFIT . SALES 

+16+10n 

. SALES. NAMES 

PROFIT.SALES.NAMES+8n 

DATA+I0 

.SALES 

PROFIT.SALES.NAMES 

6R%+4%+12n%% 

PROFITS.SALES.+CO. 

Type of Address: 

Absolute 

Relative 

Indirect 

Symbol within .program 

Partially-qualified relative 

Expression 

Module and entry name 

Expression 

Partially-qualified symbol 

Expression 

Expression 

Entry name. 

Fully-qualified symbol 

Expression 

Fully qualified relative 

Note: In the above addresses PROFIT is the module name, SALES is the 
CSECT name and NAMES is the symbol. 

214.2 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

TEST ['data-set-name'] 

[ 'parameters'] 

[
LOAD ] 
OBJECT 

[~~cpJ 

'data-set-name' 
specifies the name of the data set containing the program to be tested. 
The program must be a load module that is a member of a partition data 
set or it must be an object module. 

A data set name must be specified to test a program that is not currently 
active. (A currently active program is one that has abnormally terminated 
or has been terminated by an attention interruption.) 

Note: When specifying the data-set-name for TEST, the name should be 
enclosed by single quotes or the LOAD or OBJECT qualifier will be added 
to the name specified. If no name is specified, TEMPNAME is the member 
searched for via the TEST request. 

Caution: The program to be tested should not have the name TEST or the 
name of any existing TSO service routine. For a listing of the existing 
module names see, OS /VS2 TSO Terminal Monitor Program and Service 
Routines Logic. 

'parameters' 
specifies a list of parameters to be passed to the named program. The list 
must not exceed 100 characters including delimiters. 

LOAD 

specifies that the named program is a load module that has been 
processed by the linkage editor and is a member of a partitioned data 
set. This is the default value if both LOAD and OBJECT are omitted. 

OBJECT 

CP 

specifies that the named program is an object module that has not been 
processed by the linkage editor. The program can be contained in a 
sequential data set or a member of a partitioned data set. 

specifies that the named program is a command processor. 

NOCP 
specifies that the named program is not a command processor. This is the 
default value if both CP and NOCP are omitted. 

TEST Command 214.3 



January 28, 1980 

214.4 . OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

Subcommands: The subcommands of the TEST command are: 

ASSIGNMENT OF VALUES(=) 

modifies values in virtual storage and in registers. 

AT 

establishes breakpoints at specified locations. 

CALL 

initializes registers and initiates processing of the program at a specified 
address, using the standard subroutine linkage. 

COpy 

moves data. 

DELETE 

deletes a load module from virtual storage. 

DROP 
removes symbols established by the EQUATE command from the 
symbol table of the module being tested. 

END 
terminates all operations of the TEST command and the program being 
tested. 

EQUATE 
adds a symbol to the symbol table and assigns attributes and a location 
to that symbol. 

FREEMAIN 

frees a specified number of bytes of virtual storage. 

GETMAIN 
acquires a specified number of bytes of virtual storage for use by the 
program being processed. 

GO 

restarts the program at the point of interruption or at a specified address. 

HELP 

lists the subcommands of TEST and explains their function, syntax, and 
operands. 

LIST 

displays the contents of a virtual storage area or registers. 

LISTDCB 
lists the contents of a data control block (DCB) (you must specify the 
address of the DCB). 

LISTDEB 

lists the contents of a data extent block (DEB) (you must specify the 
address of the DEB). 

LISTMAP 
displays a map of the user's virtual storage. 

LISTPSW 
displays a program status word (PSW). 

TEST Command 215 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

LISITCB 

lists the contents of the current control block (TCB) (you may specify 
the address of another TCB). . 

LOAD 

loads a program into virtual storage. 

OFF 

, removes breakpoints. 

QUALIFY 

establishes the starting or base location for resolving symbolic or relative 
addresses; resolves identical external symbols within a load module. 

RUN 

terminates TEST and completes execution of the program. 

WHERE 

displays the virtual address of a symbol or entry point, or the address of 
the next executable instruction. WHERE may also be used to display the 
module and CSECT name and the displacement into the CSECT 
corresponding to an address. 

Example 1 

Operation: Enter TEST mode after experiencing either an abnormal 
termination of your program or an interruption. 

Known: 
Either you have received a message saying that your foreground program 

has terminated abnormally, or you have struck the attention key while 
your· program was executing. In either case, you would like to begin 
"debugging" your program. 

test 

Example 2 

Operation: Invoke a program for testing. 

Known: 

or 

The name of the data set that contains the program: 
TLC55.PAYER.LOAD(THRUST) 

The program is a load module and is not a command processor. 
The prefix in the user's profile is TLC55. 
The parameters to be passed: 2048, 80 

test payer(thrust) '2048,80' 

test payer.load(thrust) 

216 OS!VS2 TSO Command Language Reference 



Page of GC28-06464 
As Updated July 30, 1980 
By TNL GN2847S4 

Example 3 

Operation: Invoke a program for testing. 

Known: 
The name of the data set that contains the 
program: TLC55.PA YLOAD.OBJ 
The prefix in the user's profile is TLC55. 
The program is an object module and is not a 'command processor. 

test payload object 

Example 4 

Operation: Test a command processor. 

Known: 
The name of the data set containing the command processor: 
TLC55.CMDS.LOAD(OUTPUT) 

test cmds(output) cp 

or 

test cmds.load(output) cp 

Note: You will be prompted to enter a command for the command 
processor. (TSO prompts you for the commands you wish to test.) 

Example 5 

Operation: Invoke a command processor for testing. 

Known: 
The name of the data set containing the command processor is 
TLC55.LOAD(OUTPUT). 
The prefix in the user's profile is TLC55. 

test (output) cp 

TEST Command 217 



July 30, 1980 

218 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

Assignment of Values Function of TEST 

When processing is halted at a breakpoint or before execution is initiated, 
you can modify values in virtual storage and in registers. This function is 
implicit; that is, you do.p.ot enter a subcommand name. The syst~m 
performs the function in response to operands that you enter. 

address.=,data-type "val ue' 

address' 
specifies the location that. you want to contain a new value. Address can 
be: 

• An absolute address 
• A symbolic addres~ 
• A relative address 
• An indirect address 
• An address. e_xpression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period) 
• A general register 
• . A floating point register 

data-type 'value'[,data-type'value'] •.• 
specifies the type of data and the value that you want to place in the 
~peCified .location. You indicate the type of data by one of the following 

"codes: " . ' . 

Code Type of Data Maximum Length (Bytes)1 Storage Boundary 
Data types must 
begin on speci-
ied boundary for 
a virtual 
storage address 

C Character One line of input, C-byte 
continued'lines 
permitted 

X Hexadecimal '64 X-byte 
B Binary 64 B-byte 
H Fixed point binary (halfword). 6 H-halfword 
F, Fixed point binary (fullwprd) 11 F-fullword 
E Floating p<?int (single precision) 13 E-fullword 
D Floating point (double precision) 22 D-doubleword 
P Packed decimal .... 32 P-byte 
Z Zoned decimal 17 Z-byte 
A Address constant 11 A-fullword 
S Address (base +. displacement) 8 S-halfword 
Y Address constant (halfword) 6 Y-halfword 

1 All characters within the quotes are included in the length. 

Assignmentof Values Function of TEST 219 



Page of GC28-06464 
As Updated January 11, 1980 
By TNL GN28-4699 

Following is a list of valid entries and syntax for data type: 

C 'character value' 

X 'hexadecimal value' 

B 'binary value' 

H '[+1 decimal value' 
The minimum value for H-type is -32768 and 
the maximum value is 32767. 

F '[ + 1 decimal value' 
The minimum value for F-type is -2147483648 and 
the maximum is 2147483647. 

E '[+1 decimal value[E[+l decimal exponent)' 
A maximum of 8 digits are allowed for the decimal 
value and a maximum of 2 digits are allowed for the 
decimal exponent. 

D '[+1 decimal value [E[+l decimal exponeQt)' 
A maximum of 17 digits are allowed for the decimal 
value and a maximum of 2 digits are allowed for the 
decimal exponent. 

p '[+1 decimal value' 
A maximum of 31 digits are allowed. 

Z '[ + 1 decimal value' 
A maximum of 16 digits are allowed. 

A '[+1 decimal value' 
The minimum decimal value is -2147483648 and the 
maximum value is 2147483647. 

S 'decimal value (register number )' 
The decimal value can be from 0 to 4095 and the 
register number must be from 0 to 15 (decimal form). 

Y '[+1 decimal value' 
The decimal value may be from 0 to 32767 .. 

You include your data following the code. Your data must be enclosed 
within apostrophes. Any single apostrophes within your data must be coded 
as two single apostrophes. Character data will be entered, all other data 
types will be translated into uppercase (if necessary). 

A list of data may be specified by enclosing the list in parentheses. The 
data in the list will be stored beginning at the location specified by the 
address operand. 

Values assigned to general registers are placed in registers right-justified 
and padded with binary zeroes. 

Nota: 

• When a virtual storage address is assigned a list of data-type values 
the address must reside on the appropriate boundary for the specified 
data-type of the first value .. Storage bytes for subsequent data-type 
values will be skipped to align data on the appropriate boundary for 
the data type requested. 

• The following restrictions apply to general and floating-point registers: 

• Only one data-type should be specified for floating-point registers. 
(Additional values are ignored.) 

219.0 OS/VS2 TS6Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

- Assign only X or E data types to single precision floating-point 
registers. 

- Assign only X or D data types to double precision floating-point 
registers. 

- With the exception of the D-type of data, general registers can be 
assigned any data type . 

• When a general register is assigned a list of data-type 'values', the first 
value is assigned to the specified register; subsequent data-type values 
are assigned to contiguous higher-numbered registers. If register ISis 
reached and data-type values remain, the values are wrapped around 
to register 0 and subsequent registers if needed. 

• If data is assigned to a storage area that contains a breakpoint, the 
breakpoint is removed and a warning message is displayed at the 
terminal. 

Assignment of Values Function of TEST 219.1 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

Example 1 

Operation: Insert a character string· at a particular location in virtual storage. 

Known: 
The address .is a symbol: INPOINT 
The data: January 1, 1970 

inpoint=c'jan~ary 1, 1970' 

Example 2 

Operation: Insen:a binary number into a.register. 

Known: 
The number of the register: Register 6 
The data: 0000 0001 0110 0011 

6r=b'0000000101100011' 

Example 3 

Operation: Initialize registers 0 through 3 to zeroes and register 15 to 4. 

15R=(x'4' ,x'O' ,x'O' ,x'O'x'O') 

Note: The sixteen (16) general registers are treated as contiguous fields with 
register 0 immediately following register 15. 

Example 4 

Operation: Assign a new base and displacement for an instruction that was 
found to be in error. 

Known: 
LA instruction at +30 is X'41309020'. In this instruction the current 

base register is 9 and the displacement is a decimal value of 32 
(hexadecimal value of 20). The base register should be 10 and the 
decimal displacement should be 98 (hexadecimal value of 62). 

+32=S'98( 10)' 

After this assignment the instruction at +30 will be: 

X'4130A062' 

220 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

Example 5 

Operation: Insert a number in packed format at a particular address in 
virtual storage. 

Known: 
Absolute address: C3D41, decimal value to be packed is -1038. 

c3d41.=p'-1038' 

Assignment of Values F..aioD of TFSr 220.1 



January 11, 1980 

220.2 OS/VS2 TSO Command Language Reference 



Page of GC28-06464 
As Updated July 30, 1980 
By TNL GN28-47S4 

AT Subcommand of TEST 

Use the AT subcommand to establish breakpoints where processing is to be 
temporarily halted so that you can examine the results of execution up to 
the point of interruption. Processing is halted before the instruction at the 
breakpoint is executed. 

No~ 1: A breakpoint should not be established at: 

• The target of an execute instruction or the execute instruction itself 
• An instruction that will be modified by the execution of other in-line 

code prior to the execution of the breakpoint 
• An user written SVC exit 

AT 

address 

{
address [:addreSS]} 
(address-list) 

[(subcommands-list) ] 

[COUNT(integer) ] 

[
NODEFERJ 
DEFER 

[
NOTIFY J 
NONOTIFY 

specifies a location that is to contain a breakpoint. The address must be 
on a halfword boundary and contain a valid op code. See Note' 2. 

address: address 
specifies a range of addresses that are to contain breakpoints. Each 
address must be on a halfword boundary. A breakpoint will be 
established at each instruction between the two addresses. When a range 
of addresses is specified, assignment of breakpoints halts when an invalid 
instruction is encountered. See Note 2. 

address-list 
specifies several addresses that are to contain breakpoints. Each address 
must be on a halfword boundary. The list must be enclosed within 
parentheses, and the addresses in the list must be separated by standard 
delimiters (one or more blanks or a comma). A breakpoint will be 
established at each address. See Note 2. 

No~ 2: Address can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry name (separated by a period) 
• An entry-name (preceded by a period) 

AT Subcommand of TEST 221 



July 30, 1980 

subcommands-Iist 
specifies one or more subcommands to be executed when the program is 
interrupted at the indicated location. If you specify more than one 
subcommand, the subcommands must be separated by semicolons. The 
list cannot be longer than 255 characters. 

Note: If an OFF subcommand in the list removes the breakpoint for which 
a list is specified all remaining subcommands in that list are ignored. 

COUNT (integer) 
specifies that processing will not be halted at the breakpoint until it has 
. been encountered the specified number of times. This operand is directly 
applicable to program loop situations, where an instruction is executed 
several times. Processing will be halted each time the breakpoint has 
been encountered for the number of times specified for the 'integer' 
operand. The integer specified cannot exceed 65,535. 

DEFER 

specifies that the breakpoint is to be established in a program that is not 
yet in virtual storage. The program to contain the breakpoint will be 
brought in as a result of a LINK, LOAD, ATTACH, or XCTL macro 
instruction by the program being tested. You must qualify the address of 
the breakpoint either: 

MODULENAME.ENTRYNAME.RELATIVE 

or 

MODULENAME. ENTRYNAME. SYMBOL 

when you specify this operand. All breakpoint addresses listed in an AT 
subcommand with the DEFER operand must refer to the same load 
module. 

NODEFER 

specifies that the breakpoint is to be inserted into the program now in 
virtual storage. This is the default value if both DEFER and NODEFER 
are omitted. 

NOTIFY 

specifies that when it is encountered the breakpoint will be identified at 
the terminal. This is the default value if both NOTIFY and NONOTIFY 
are omitted. 

NONOTIFY 

specifies that when it is encountered the breakpoint will not be identified 
at the terminal. 

Note: If your program is running in supervisor state or in a PSW protection 
key less than 8, breakpoints are ignored. 

Example 1 

Operation: Establish breakpoints at each instruction in a section of the 
program that is being tested. 

221 OS/VSl TSO COIIBDaDd Language Reference 



Page of GC28-0646-4 
As Updated July 30, 1980 
By TNL GN28-4754 

Known: 
The addresses of the first and last instructions of that section that is to 
be tested: LOOPA EXITA 
The subcommands to be executed are: LISTPSW, GO 

at loopa:exita (listpsw;go) 

AT Subcommand of TEST 222.1 



July 30, 1980 

222.2 OS!VS2 TSO Command Language Reference 



Page of GCl8-06464 
As Updated January 11, 1980 
By TNL GNl8-4699 

Example 2 

Operation: Establish breakpoints at several locations in a program. 

Known: 
The addresses for the breakpoints: +8A LOOPBEXITB 

at (+8A loopb exitb) 

Example 3 

Operation: Establish a breakpoint at a location in a loop. The address of the 
location is contained in register 15. You only want to have an 
interruption every tenth cycle through the loop. 

Known: 
The address for the breakpoint: 15R 0/0 

at 15r% count(10) 

Example 4 

Operation: Establish a breakpoint for a program that is not presently in 
virtual storage. 

Known: 
The name of the load module: CALCULAT 
The CSECT name: INTEREST 
The symbolic address for the breakpoint: TOTAL 

at calculat.interest.total defer 

Example S 

Operation: Have t~e following subcommands executed when the breakpoint 
at TAC is reached: LISTTCB PRINT(TCBS), LISTPSW, and GO 
CALCULAT 

at tac (listtcb print(tcbs) listpsw;go calculat) 

Example 6 

Operation: Request that the following subcommands be executed when the 
breakpoint at symbol NOW is reached: LISTMAP, LISTfCB, OFF 
NOW, AT +32, and GO. 

at now (listrnap;listtcb;off now;at +32;go) 

Note: The last two (2) subcommands will not be executed Because the 
breakpoint (NOW) and its subcommand list will have been removed. 

AT SubconBand of TEST 113 



January 11, 1980 

.~ " 

224 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

CALL Subcommand of TEST 

Use the CALL subcommand to initiate processing at a specified address 
and to initialize registers 1, 14, and 15. You can pass parameters to the 
program that is to be tested. 

Caution: The contents of registers 1, 14, and 15 are altered by the use of 
the CALL subcommand. To save the contents of these registers, use the 
COPY subcommand of TEST (see Examples 2 and 3 under the COPY 
subcommand). 

CALL address 

[PARM(address-list) ] 

[VL] 

[RETURN(address)] 

address 
specifies the address where processing is to begin. Register 15 contains 
this address when the program under test begins execution. 

Address can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period) 

PARM(address-list) 

VL 

specifies one or more addresses that point to data to be used by the 
program being tested. The list of addresses will be expanded to fullwords 
and placed into contiguous storage. Register 1 will contain the address of 
the start of the list. If P ARM is omitted, register 1 will point to a 
fullword that contains the address of a halfword of zeroes. 

specifies that the high order bit of the last fullword of the list of 
addresses pointed to by general register one is to be set to one. 

RETURN(address) 

specifies that register 14 is to contain the address that you supply as the 
value for this keyword. After the program executes, the system will 
return control to the point indicated by register 14. If RETURN is 
omitted, register 14 will contain the address of a breakpoint instruction. 

Example 1 

Operation: Initiate execution of the program being tested at a particular 
location. 

CALL Subcommand of TEST 225 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN284699 

Known: 
The starting address: +OA 
The addresses of data to be passed: CTCOUNTR LOOPCNT TAX 

call +Qa parm(ctco~ntr loopcnt tax) 

Note: The following message is issued after completion of the called routine: 

'IKJ57023I PROGRAM UNDER TEST HAS TERMINATED NORMALLY + , 

This message is issued because no return address was specified. If GO is 
now specified without an address, the TEST session will be terminated. 

225.0 OS/VS2 TSO Command Language.Reference 



January 11, 1980 

CALL Subcommand of TEST 225.1 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

Example 2 

Operation: Initiate execution at a particular location. 

Known: 
The starting address: ST ARTBD 
The addresses of data to be passed: BDFLAGS 
PRFTTBL COSTTBL ERREXIT 
Set the high order bit of the last address parameter to one so that the 

program can tell the end of the list. After execution, control is to be 
returned to: + 24A 

call startbd parm(bdflags prfttbl costtbl errexit)
vi return(+24a) 

Example 3 

Operation: Initiate execution at label COMPUTE and have execution begin 
at label NEXT when control is returned via register 14. 

call compute return(next) 

226 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

COpy Subcommand of TEST 

Use the COpy subcommand to transfer data or addresses from one virtual 
storage address to another, from one general register to another, from a 
register to virtual storage, or from virtual storage to a register. 

The COpy subcommand can be used to: 

• Save or restore the contents of the general registers. 
• Propagate the value of a byte-throughout a field. 
• Move an entire data field from one location to another. 

address 1 address 2 

[LENGTH ( int;ger )] 

[
POINTER ] 
NOPOINTER 

addressl 

specifies a location that contains data to be copied. 

address 2 

specifies a location that will receive the data after it is copied. 

Address 1 and address 2 can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• A general register 

LENGTH (integer) 

specifies the length, in decimal, of the field to be copied. If an integer is 
not specified, LENGTH will default to 4 bytes. The maximum length is 
256 bytes. 

POINTER 

specifies that address 1 will be validity checked to see that it does not 
exceed maximum virtual storage size and will then be treated as an 
immediate operand (hexadecimal literal) with a maximum length of 4 
bytes (that is, an address will be converted to its hexadecimal equivalent) 
and will be transferred into the location specified by address2. When 
using the POINTER keyword, do not specify a general register as 
addressl. 

NOPOINTER 
specifies that address 1 will be treated as an address. If neither POINTER 
nor NOPOINTER is specified, NOPOINTER is the default. 

" COpy Subcommand of TEST 227 



I 

I 

Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

Note: 

1. The COPY subcommand treats the 16 general registers as contiguous 
fields. The user can specify 10 bytes be moved from general register 0 
to another location. 

copy or 80060. length(10) 

The COPY subcommand will move the 4 bytes of register 0, the 4 
bytes of register 1 and the high order 2 bytes of register 2 to virtual 
storage begitming at location 80060. When a register is specified as 
address 1, the maximum length of data that will be transferred is the 
total length of the general registers, or 64 bytes. 

2. When the value of address2 is one greater than addressl, propagation 
of the data in address 1 will occur. When the value of address2 is more 
than one greater than the value of address 1, no propagation will 
occur. 

Example 1 

Operation: Transfer two full words of data from one virtual storage location 
to another. 

Known: 
The starting address of the data: 80680 
The starting address of where the data is to be: 80685 

copy 80680. 80685. length(8) 

Example 2 

Operation: Copy the .contents of one register into another register. 

Known: 
The register which contains the data to be copied: 10 
The register which will contain the data: 5 

copy 10r 5r 

Example 3 

Operation: Save the contents of the general registers. 

Known: 
The first register to be saved: 0 
The starting address of the save area: A0200 

c Or a0200. 1(64) 

228 OS/VS2 TSO.Command Language Reference 



Page of GCl8-0646-4 
As Updated January 11, 1980 
By TNL GN284699 

Example 4 

Operation: Propagate the value in the first byte of a buffer throughout the 
buffer. 

Known: 
The starting address of the buffer: 80680 
The length of the buffer: 80 bytes 

c 80680. 80681. 1(79) 

Example S 

Operation: Insert a hexadecimal value into the high-order byte of a register. 

Known: 
The desired value: X'80' 
The register: 1 

copy 80. 1r 1( 1 ) pointer 

Note: Specifying the pointer operand causes 80 to be treated as an 
immediate operand and not as an address. 

Example 6 

Operation: Insert the entry point of a routine into a virtual storage location. 

Known: 
The module name and the entry point name: IEFBRI4.IEFBRI4 
The desired virtual storage location: ST ARTPTR 

c iefbr14.iefbr14 startptr p 

Example 7 

Operation: Copy the contents of an area pointed to by a register into 
another area. 

Known: 
The register which points to the area that contains the data 
to be moved: 14 
The real storage location which is to contain the data: 80680 
The length of the data to be moved: 8 bytes 

c 14r% 80680. 1(8) nopoint 

COpy Subconnand of TFSf 229 



January II, 1980 

230 OS/VS2 TSOCommand· Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

DELETE Subcommand of TEST 

Use the DELETE subcommand to delete, from virtual storage, a load 
module that was loaded by the tested program or one of its subtasks. 

I {DELETE} 
DEL 

load-module-name 

load-module-name 

specifies the name of the load module to be deleted. The load name is 
the name (which might be and alias name) by which the program is 
known to the system when it is in virtual storage. The name must not 
exceed eight characters. 

Example 1 

Operation: Delete a load module from virtual storage. 

Known: 
The name of the load module: TOTAL 

delete total 

or 

del total 

DELETE Subcommand of TEST 231 



January 11, 1980 

232 OS/VS2 TSO Command Language Reference 



Page of GC28-06464 
As Updated January 11, 1980 
By TNL GN28-4699 

DROP Subcommand of TEST 

Use the DROP subcommand to remove symbols from the symbol table of 
the module being tested. You can only remove symbols that you established 
with the EQUATE subcommand or EQUATE operand of the GETMAIN 
subcommand. You cannot remove symbols that were established by the 
linkage editor. If the program being tested was assembled with the TEST 
option and the EQUATE subcommand was used to override the location 
and type of the symbol within the program, then when the DROP 
subcommand is used to delete that symbol from the symbol table, the 
symbol will reflect the original location and type within the program. 

DROP (symbol-list) 

(symbol-list) 
specifies one or more symbols that you want to remove from the symbol 
table created by the EQUATE subcommand. When you specify only one 
symbol, you do not have to enclose that symbol within parentheses; 
however, if you specify more than one symbol you must enclose them 
within parentheses. If you do not specify any symbols, the entire table of 
symbols will be removed. 

Example 1 

Operation: Remove all symbols that you have established with the 
EQUATE subcommand. 

drop 

Example 2 

Operation: Remove a symbol from the symbol table. 

Known: 
The name of the symbol is DATE. 

drop date 

Example 3 

Operation: Remove several symbols from the symbol table. 

Known: 
The names of the symbols: STARTADD TOTAL WRITE SUM 

drop (startadd total writesurn) 

DROP Subcommand of TEST 233 



January tt, t980 

234 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated July 30, 1980 
By TNL GN28-47S4 

END Subcommand of TEST 

Use the END subcommand to terminate all functions of the TEST 
command and the program being tested. 

END 

Note: The END subcommand will not close an opened data set; use the GO 
subcommand for this process. Normal exit cleanup procedures should also 
be used. 

END Subcommand of TEST 23S 



July 30, 1980 

236 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

EQUATE Subcommand of TEST 

Use the EQUATE subcommand to add a symbol to the symbol table of the 
module being tested. This subcommand allows you to establish a new 
symbol that you can use to refer to an address or to override an existing 
symbol to reflect a new address or new attributes. If no symbol table exists, 
one is created and the specified name is added to it. Symbol within DSECT 
may be accessed if the DSECT name is defined using the EQUATE 
subcommand. For restrictions on symbols see the section titled, "Internal 
Symbols". You can also modify the data attributes (type, length, and 
multiplicity); use the EQUATE subcommand to modify attributes of 
existing equated symbols. The DROP subcommand removes symbols added 
by the EQUATE subcommand. Symbols established via the EQUATE 
subcommand are defined for the duration of the TEST session only. 

symbol address [data-type] 

[LENGTH(jnteger) ] 

[MUL TIPLE(integer)] 

symbol 
specifies the symbol (name) that you want to have added to the symbol 
table so that you can refer to an address symbolically. The symbol must 
consist of one through eight alphameric characters, the first of which is 
an alphabetic character. 

address 
the address that you specify will be equated to the symbol that you 
specify. 

Address can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry name (preceded by a period) 

data-type 
specifies the characteristics you wish to attribute to the data at the 
location given by "address." These mayor may not be the same as the 
original characteristics. You indicate the type of data by one of the 
following codes: 

EQUATE Subcommand of TEST 237 



Page of GC28-06464 
As Updated January 11, 1980 
By TNL GN28-4699 

Code 
C 
X 
B 
I 
H 
F 
E 
D 
P 
Z 
A 
S 
y 

237.0 . OS/VS2 TSO Command Language Reference 

Type of Data 
Character 
Hexadecimal 
Binary 
Assembler instruction 
Fixed point binary (halfword) 
Fixed point binary (fullw()td) 
Floating point (single precision) 
Floating point (double precision) 
Packed decimal 
Zoned decimal 
Address constant 
Address (base + displacement) 
Address constant (halfword) 

Maximum Length (Bytes) 
256 
256 
256 
256 
8 
8 
8 
8 
16 
16 
4 
2 
2 



January 11, 1980 

EQUATE Subcommand of TEST 237.1 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

LENGTH (integer) 
specifies the length of the data. The maximum value of the integer is 
256. If you do not specify the length, the following default values will 
apply: 

Type of Data 
C,B,P,Z 
H,S,Y 
F,E,A,X 

Default Length (Bytes) 
1 
2 
4 

D 8 
I variable 

MULTIPLE (integer ) 
specifies a multiplicity factor. The multiplicity factor means that one 
element of the data appears several times in succession; the number of 
repetitions is indicated by the number specified for "integer." The 
maximum value of the integer is 256. 

Notes: 

• If you do not specify any keywords, the defaults are: 

type - X 
multiplicity - 1 
length - 4 

• If both multiplicity and length are specified for data-type I, the 
multiplicity is ignored. 

Example 1 

Operation: Add a symbolic address to the symbol table of the module that 
you are testing. 

Known: 
The symbol: EXITRTN 
The address: TOTAL+4 

equate exitrtn total+4 

Example 2 

Operation: Change the address and attributes for an existing symbol. 

Known: 
The symbol: CONSTANT 
The new address: IFAAO. 
The new attributes: type: C 

length: L(8) 
multiplicity: M(2) 

eq constant 1faaO. c m(2) 1(8) 

Example 3 

Operation: Add the symbol NAMES to the symbol table to access a list of 
6 names. Each name is 8 characters long. 

238 OS/VS2 TSO Command Language Reference 



Page of GC28-06464 
As Updated January 11, ·1980 
By TNL GN28-4699 

Known: 
The names are stored one after the other at relative address + 12C. 

equate names +12c 1(8) m(6) c 

EQUATE Subcommand of TEST 238.1 



January 11, 1980 

238.2 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

FREEMAIN· Subcommand of TEST 

Use the FREEMAIN subcommand to free a specified number of bytes of 
virtual storage. 

{ 
FREE!\IIAIN} 
FREE 

integer 

integer address 

specifies the number of decimal bytes of virtual storage to be released. 

address 
this address is the location of the space to b~ freed and must be a 
multiple of 8 bytes. 
The LISTMAP subcommand may be: used to help locate previously 
acquired virtual storage. 

Address can be: 

• An absolute address 
• A symbolic address 

I. • A relative address 
• An indirect ·address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry name (preceded by a period) 

sP(integer) 
specifies the number of the subpool that contains the space to be freed. 
If you omit this ope· rand, the default value is subpool zero. The integer 
must be in the range zero through 127. 

Example 1 

Operation: Free space in virtual storage that was acquired previously by a 
GETMAIN macro instruction in the module being tested. 

Known: 
The size of the space, in bytes: 500 
The absolute address of the space: 054A20 
The number of the subpool that the space was acquired from: 3 

free 500 054a20. sp(3) 

FREEMAIN Subcommand of TEST 239 



Page of GC28-06464 
As Updated January 11, 1980 
By TNL GN28-4699 

Example ;2 

Operation: Free space in virtual storage that was obtained previously by a 
GETMAIN subcommand. 

Known: 
The size of the space is 100 decimal bytes. The address of the space to 

be freed is A4 (hexadecimal form) past the address in register 3. The 
space to be freed is in subpool O. 

cfreemain 100 3r%+A4 

Example 3 

Operation: Free .subpool 127. 

freemain 0 0 sp(127) 

Warning: Do not attempt to free all of subpool 78. If you desire to free a 
portion of subpool 78, be careful not to free the storage obtained by the 
TMP. (This would result in your freeing the TMP's data areas because 
subpool 78 is shared.) The deletion of the TMP portion of subpool 78 will 
cause your session to ter:rrdnate. 

Note: You may release. an entire subpool by specifying a length of 0, an 
absolute address of 0; and a subpool in the range of 1 through 127. 

If you specify a non-zero address the len~h must also be non-zero. 

240 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

GETMAIN Subcommand of TEST 

Use the GETMAIN subcommand to obtain a specified number of bytes of 
virtual storage. The GETMAIN subcommand displays the starting address 
of the virtual storage obtained. 

{
GETMAIN} 
GET 

integer 

integer 

[EQUATE(name)] 

specifies the number of decimal bytes, in decimal form, of virtual storage 
to be obtained. 

Sp(int~ger) 

specifies the number of a subpool from which the virtual storage is to be 
obtained. If you omit this operand, the default value is subpool zero. The 
integer must be in the range zero through 127. 

EQUATE(name) 

specifies that the address of acquired virtual storage is to be equated to 
the symbol specified by "name". and placed in the TEST internal symbol 
table. 

'Example 1 

Operation: Obtain 240 decimal bytes of virtual storage from subpool O. 

getmain 240 

Example 2 

Operation: Obtain 500 bytes of virtual storage from subpool 3 and equate 
starting address to symbolic name AREA. 

get 500 sp(3) equate(area) 

GETMAIN Subcommand of TEST 241 



J.....,. 11, 1980 

242 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

GO Subcommand of TEST 

Use the GO subcommand to start or restart program execution from a 
particular address. If the program was interrupted for a breakpoint and you 
want to continue from the breakpoint, there is no need to specify the 
address. However, you may start execution at any point by specifying the 
address. • 

GO [address] 

address 
specifies a symbolic address, a relative address, an absolute address, or a 
general register containing an address. Execution will begin at the 
address that you specify. 

When the problem program completes processing, the following message 
is displayed at the terminal: 

'IKJ57023I PROGRAM UNDER TEST HAS TERMINATED NORMALLY+' 

If the GO subcommand is the issued with no address specified, the TEST 
session will be terminated. 

Example 1 

Operation: Begin execution of a program at the point where the last 
interruption occurred or initiate execution of a program. 

go 

Example 2 

Operation: Begin execution at a particular address. 

go calculat 

GO Subcommand of TEST 243 



Januuy 11, 1980 

244 OS/VS2 TSO Command Language Reference 



Page of GC28-06464 
As Updated January 11, 1980 
By TNL GN28-4699 

HELP Subcommand of TEST 

Use the HELP subcommand to obtain the syntax and function of the TEST 
subcommands. Refer to the HELP command for a description of the syntax 
and function of the HELP subcommand. 

HELP Subcommand of TEST 245 



January tl, 1980 

246 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

LIST Subcommand of TEST 

Use the LIST subcommand to have the contents of a specified area of 
virtual storage, or the contents of registers, displayed at your terminal or 
placed into a data set. 

{~IST } 
{

address [:addreSS]} d 
(address-list) ata-type 

[LENGTH (integer)] 

[MUL TIPLE(integer)] 

[PR I NT(data-set-name)] 

address 
specifies the location of data that you want displayed at your terminal or 
placed into a data set. See the following note. 

address: address 
specifies that you want the data located between the specified addresses 
displayed at your terminal or placed into a data set. See the following 
note. 

{address-list} 
specifies several addresses of data that you want displayed at your 
terminal or placed into a data set. The data at each location will be 
retrieved. If the first address of a range is a register, the second address 
must also be the same type of register (floating point or general). The 
list of addresses must be enclosed within parentheses, and the addresses 
must be separated by standard delimiters (one or more blanks or a 
comma). See the following note. 

Note: Address can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry name (preceded by a period) 
• A general register 
•. A floating point register 

data-type 
specifies the type of data that is in the specified location. You indicate 
the type of data by one of the following codes: 

LIST Subcommand of TEST 247 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

Code 
C 
X 
B 
I 
H 
F 
E 
D 
P 
Z 
A 
S 
Y 

Type of Data 
Character 
Hexadecimal 
Binary 
Assembler instruction 
Fixed point binary (halfword) 
Fixed point binary (fullword) 
Floating point (single precision) 
Floating point (double precision) 
Packed decimal 
Zoned decimal 
Address constant 
Address (base + displacement) 
Address constant (halfword) 

Maximum Length (Bytes) 
256 
256 
256 
256 
8 
8 
8 
8 
16 
16 
4 
2 
2 

All accepted data types will allow the specified address to be aligned on a 
byte boundary even though certain data types cannot be assigned to a byte 
boundary. The default for data-type is hexadecimal. 

Notes: 

1. A general register will be displayed in decimal format if the F data 
type is used. Otherwise, regardless of the type specified, a general 
register will be displayed in hexadecimal. Floating-point registers will 
be listed in floating-point format if data-type is not specified. 
However, floating-point registers can be listed in hexadecimal format 
by using the X data type. If any data type other than D, E, or X is 
specified for floating-point registers, data-type is ignored and the 
register is listed in floating-point format. 

2. If an area is to be displayed using the I data type and that area 
contains an invalid op code, only the area up to that invalid op code 
will be displayed. 

3. If a range of addresses is specified on LIST and the ending address is 
in fetch protected storage, the user will be prompted (if in PROMPT 
mode) to reenter the address. If a range of addresses is still desired, 
the user must reenter the range, not just the ending address. 

247.0 OS/VS2 TSO Command Language Reference 



January 11, 1980 

liST Subcommand of TEST 247.1 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

LENGTH (integer) 

indicates the length, in bytes of the data that is to be listed. If you use a 
symbolic address and do not specify LENGTH, the value for the 
LENGTH parameter will be retrieved from the internal TEST symbol 
table or from the length associated with a symbol in a program. 
Otherwise, the following default values will apply: 

Type of data 
C,B,P,Z 
H,S,Y 
F,E,A,X 
D 
I 

Default Length (Bytes) 
1 
2 
4 
8 
variable 

When the data type is I, either LENGTH or MULTIPLE may be 
specified, but not both. If both are specified, the MULTIPLE parameter 
is ignored but no error message is printed. 

MUL TIPLE(integer) 

Used with the LENGTH operand. Gives the user the following options: 

• The ability to format the data to be listed (see Example 7) . 
• A way of printing more than 256 bytes at a time. (The value supplied 

for "integer" determines how may "lengths" or multiples of data-type 
the user wants listed.) The value supplied for integer cannot exceed 
256. 

For I type data, the value supplied for MULTIPLE defines the number 
of instructions to be displayed. If you use a symbolic address and do not 
specify either LENGTH or MULTIPLE, the length retrieved from the 
internal TEST symbol table or from the program will be used and 
multiplicity will be ignored. 

PRINT(data-set-name) 

specifies the name of a sequential data set to which the data is directed 
(see data set naming conventions). If you omit this operand, the data will 
go to your terminal. 
The data format is blocked variable-length records. Old data sets with 
the standard format and block size are treated as NEW if being opened 
for the first time, otherwise, they are treated as MOD data sets. 
If PRINT ( data-set-name) is specified, use the following table to 
determine the format of the output. 
If the data-set-name is not specified within quotes, the descriptive 
qualifier, "TESTLIST" is added. 

If your record type was: I Fixed, Fixed Blocked, Variable or 
Variable Blocked 

I-
or Undefined 

Th~n iti~ changed _to R~~ordsize ~OCk~~:-- ---R-e-co-r-d-S--iz-e-S-I-oC-k-Si-ze---
vanable blocked With 
the following attributes: I 125 _ 1629 125 129 

Note: Record and block sizes greater than those specified in the preceding 
table are unchanged. 

248 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

The specified data set is kept open until: 

• The TEST session is ended by a RUN or END subcommand, or 
• A LIST subcommand is entered specifying a different PRINT data set. 

In this case, the previous data set is closed and the current one 
opened. 

LIST Subcommand of TEST 248.1 



January 11, 1980 

248.2 OS/VS2 TSOCommand Language Reference 



Page ofGC28-0646-4 
As Updated January 11, 1980 
8y TNL GN28-4699 

Example 1 

Operation: List the contents of floating-point register 2 in single precision. 

list 2e 

Example 2 

Operation: List all of the general registers. 

list Or:15r 

Example 3 

Operation: List all of the floating point registers in double precision. 

list Od:6d 

Example 4 

Operation: List 20 instructions starting with address +3A 

list +3a i m(20) 

Example 5 

Operation: List the contents of an area of virtual storage. 

Known: 
The area to be displayed is between labels COUNTERA and DT ABLE. 
The data is to be listed in character format for a length of 130 bytes. 
The name of the data set which the data is to be put is: 

MYDATA.DCDUMP. 

list countera:dtable 
c 1(130) m(1) print ('rny~ata.dcdump') 

Example 6 

Operation: List the contents of virtual storage at several addresses. 

Known: 
The addresses: TOT ALl, TOT AL2, TOT AL3, and ALL TOT AL 
Each address is to be displayed in fixed-point binary format in 3 lines of 

3 bytes each. 

list (tota11 tota12 tota13 alltotal) f 1(3) m(3) 

LIST Subcommand of TEST 249 



:1 

Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

Example 7 

Operation: List the first six fullwords in the communications vector table 
(CVT). 

Known: 
The absolute address of the CVT: 10. 
The user is operating in TEST mode. 
The data is to be listed in hexadecimal form in six lines of 4 bytes each. 

Note: First use the QUALIFY subcommand of TEST to establish the 
beginning of the CVT as a base location for displacement values. 

qualify 10.% 

TEST: The system response 

list +0 1(4) m(6) 

The display at your terminal will resemble the following: 

+0 00000000 
+4 00012A34 
+8 00000B2C 
+C 00000000 
+10 001A0408 
+14 00004430 

Note: In the preceding example the hexadecimal data-type was not specified, 
it was the default. 

250 OS/VS2 'ISO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

LISTDCB Subcommand of TEST 

Use the LISTDCB subcommand to list the contents of a data control block 
(DCB). You must provide the address of the beginning of the DeB. 

If you wish, you can have only selected fields displayed .. The field 
identification is based on the sequential access method DCB for direct 
access. Fifty-two bytes of data are displayed if the data set is closed; 
forty-nine bytes of data are displayed if the data set is opened. 

LlSTDCB address 

[FIELD(names)] 

[PR INT(data-set-name)] 

address 

specifies the address of the DCB that you want displayed. The address 
must be on a fullword boundary. 

Address can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period) 

FIELD(names) 
specifies one or more names of the particular fields in the DCB that you 
want to have displayed at your terminal. The segment name will not be 
printed when you use this ope!and. If you omit this operand, the entire 
DCB will be displayed. 

Following is a list of the valid field names for the DCB: 

DCBBFALN 
DCBBFfEK 
DCBBUFCB 
DCBBUFL 
DCBBUFNO 
DCBDDNAM 
DCBDEBAD 
DCBDEVT 
DCBBUFNO 
DCBDVTBL 
DCBLODAD 
DCBEXLST 

DCBFDAD 
DCBHIARC 
DCBIFLGS 
DCBIOBAD 
DCBKEYCN 
DCBKLYLE 
DCBMACRF 
DCBOFLGS 
DCBRECFM 
DCBRELAD 
DCBTIOT 
DCBTRBAL 

LISTDCB SubcOllllll8lld of TFSf lSI 



Page of GC28-0646-4 
As Updated January 11, 1980 
. By TNL GN28-4699 

PRINT(data-set-name) 

specifies the name of the sequential data set to which data is to be 
directed (see data set naming conventions). If you omit this operand, the 
d&ta will be displayed at your terminal. 
The data format is blocked variable-l~ngth records. Old data sets with 
the stanpard record format and. blocksize are treated as NEW if they are 
being opene~ for the first time; otherwise, they are treated as MOD data 
sets. 
If the data-set-name is not specified within quotes, the descriptive 
qualifier TESTLIST is added: 
If PRINT(data-set...;name) is'specified, use the following table to 
determine the format of the output. 

If your record type Fixed, Fixed Blocked, Variable or 
was: or Undefined Variable Blocked 

Then it is changed to Recordsize Blocksize Recordsize Blocksize 
variable blocked with 125 1629 125 129 
the following attributes: 

Note: Record and block sizes greater than those specified in the preceding 
table are unchanged. 

The specified data set is kept open until: 

• The LIST session is ended by a RUN or END subcommand, or 
• A LIST subcommand is entered that specifies a different PRINT data 

set. In this case, the former data set is closed and the current one 
opened. 

2S1.00S/VS2 TSOCommandLanguage Reference 



January 11, 1980 

LISTDCB Subcommand of TEST 251.1 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

Example 1 

Operation: List the RECFM field of a DCB for the program that is being 
tested. 

Known: 
The DCB begins at location: DCBIN 

listdcb dcbin field(dcbrecfm) 

Example 2 

Operation: List an entire DCB. 

Known: 
The absolute address of the DeB: A33B4 

listdcb a33b4. 

252 OS!VS2 TSO Command Language Reference 



Page of GCl8-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

LISTDEB Subcommand of TEST 

Use the LISTDEB subcommand to list the contents of a data extent block 
(DEB). You must provide the address of the DEB. 

In addition to the 32 byte basic section, you may4-eceive up to 16 direct 
access device dependent sections of 16 bytes each until the full length "has 
been displayed. If you wish, you can have only selected fields displayed. 

LlSTDEB 

address 

address 

[FIELD(names)] 

[PR INT(data-set-name}] 

specifies the address is the beginning of the DEB, and must be on a 
fullword boundary. 

Address can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period) 

FIELD(names) 

specifies one or more names of the particular fields in the DEB that you 
want to have displayed at your terminal. If you omit this operand, the 
entire DEB will be listed. 

Following is a list of DEB names that are valid for the LISTDEB 
subcommand: 

DEBAMLNG 
DEBAPPAD 
DEBDCBAD 
DEBDEBAD 
DEBDEBID 
DEBECBAD 
DEBEXSCL 
DEBFLGSI 
DEBIRBAD 

DEBNMEXT 
DEBNMSUB 
DEBOFLGS 
DEBOPATB 
DEBPRIOR 
DEBPROTG 
DEBQSCNT 
DEBTCBAD 
DEBUSPRG 

Following is a list of the valid DEB names in the direct access section: 

DEBBlNUM 
DEBDVMOD 
DEBENDCC 
DEBENDHH 

DEBNMTRK 
DEBSTRCC 
DEBSTRHH 
DEBUCBAD 

Note: These fields cannot be accessed unless there is a direct access section 
in the DEB. 

LISTDEB Subcommand of TEST 253 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

PRINT(data-set-name) 

specifies the name of the sequential data set to which data is to be 
directed (see data set naming conventions). If you omit this operand, the 
data will be displayed at your terminal. 
The. data format is blocked variable length records. Old data sets with 
the standard record format and blocksize. are treated as NEW if they are 
being opened for the first time; otherwise, they are treated as MOD data 
sets. 
If the data-set-name is not specified within quotes, the descriptive 
qualifier TESTLIST is added. 
If PRINT ( data-set-name) is specified, use the following table to 
determine the format of the output. 

If· your record type Fixed, Fixed Blocked, Variable or 
was: or Undefined Variable Blocked 

Then it is changed to Recordsize Blocksize Recordsize Blocksize 
variable blocked with 125 1629 125 129 
the following attributes: 

Note: Record and block sizes greater than those specified in the preceding 
table are unchanged. 

The specified data set is kept open until: 

1. The TEST session is ended by a RUN or END subcommand, or 

2. A LIST subcommand is entered that specifies a different PRINT data 
set. In this case, the former data set is closed and the current one 
opened. 

253.0 OS/VS2 tso Command Language Reference 



Janu3IY 11, 1980 

USTDEB Subcommand of TEST 253.1 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

Example 1 

Operation: List the entire DEB for the DCB that is named DCBIN. 

Known: 
The address of the DEB is 44 decimal (2C hexadecimal) bytes past the 

beginning of the DCB. 
The address of the DEB: DCBIN+2C% 

listdeb dcbin+2c% 

Example 2 

Operation: List the following fields in the DEB: DEBDCBAD and 
DEBOFLGS 

Known: 
The address of the DEB is 44 decimal (2C hexadecimal) bytes past the 

beginning of the DCB. The address of the DCB is in register 8. 

listdeb Br%+2c% field(debdcbad,deboflgs) 

254 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

LISTMAP Subcommand of TEST 

Use the LISTMAP subcommand to display a virtual storage map at the 
terminal. The map identifies the location and assignment of any storage 
assigned to the program. 

All storage assigned to the problem program and its subtasks as a result 
of GETMAIN requests is located and identified by subpool (0-127). All 
programs assigned to the problem program and its subtasks are identified by 
name, size, location, and attribute. Storage assignment and program 
assignment are displayed by task. 

L1STMAP [PR INT(data-set-name)] 

PRINT(data-set-name) 

specifies the name of the sequential data set to which data is to be 
directed (see data set naming conventions). If you omit this operand, the 
data will be displayed at the terminal. 
The data format is blocked variable length records. Old data sets with 
the standard record format and blocksize are treated as NEW if they are 
being opened for the first time; otherwise, they are treated as MOD data 
sets. 
If the data-set-name is not specified within quotes, the descriptive 
qualifier, TESTLIST, is added. 
If PRINT ( data-set-name) is specified, use the following table to 
determine the format of the output. 

If your record type Fixed, Fixed Blocked, Variable or 
was: or Undefined Variable Blocked 

Then it is changed to Recordsize Blocksize Recordsize Blocksize 
variable blocked with 125 1629 125 129 
the following attributes: 

Note: Record and block sizes greater than those specified in the preceding 
table are unchanged. 

The specified data set is kept open until: 

• The TEST session is ended by a RUN or END subcommand, or 
• A LIST subcommand is entered that specifies a different PRINT data 

set. In this case, the former data set is closed and the current one 
opened. 

LIST MAP Subcommand of TEST 255 



Page of GC28-0646-4 . 
As Updated January 11, 1980 
By TNL GN28-4699 

Example 1 

Operation: Display a map of virtual storage at your terminal. 

listmap 

Example 2 

Operation: Direct a map of virtual storage to a data set. 

Known: 
The name for the data set: ACDQP.MAP.TESTLIST 
The prefix in the user's profile is ACDQD. 

listmap print(map) 

256 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

LISTPSW Subcommand of TEST 

Use the LISTPSW subcommand to display a program status word (PSW) at 
your terminal. 

LlSTPSW [ADD R (address)] 

[PR I NT(data-set-name)] 

ADDR(address) 

specifies the address identifies a particular PSW. If you do not specify an 
address, you will receive the current PSW for the program that is 
executing. 

Address can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• . An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period) 

PRINT(data-set-name) 

specifies the name of the sequential data set to which data is to be 
directed (see data set naming conventions). If you omit this operand, the 
data will be displayed at your terminal. 
The data format is blocked variable length records. Old data sets with 
the standard record format and blocksize are treated as NEW if they are 
beirig opened for the first time; otherwise, they are treated as MOD data 
sets. 
If the data-set-name is not specified within quotes, the descriptive 
qualifier, TESTLIST, is added. 
If PRINT ( data-set-name) is specified, use the following table to 
determine the format of the output. 

If your record type Fixed, Fixed Blocked, Variable or 
was: or Undefined Variable Blocked 

Then it is changed to Recordsize Blocksize Recordsize Blocksize 
variable blocked with 125 1629 125 129 
the following attributes: 

Note: Record and block sizes greater than those specified in the preceding 
table are unchanged. 

The specified data set is kept open until: 

• The TEST session is ended by a RUN or END subcommand, or 
• A LIST subcommand is entered that specifies a different PRINT data 

set. In this case, the former data set is closed and the current one 
opened. 

LISTPSW Subcommand of TEST 257 



Page of GC28-0646-4 
As Updated January 11, 1980 
8y TNL GN28-4699 

Example 1 

Operation: Display the current PSW at your terminal. 

listpsw 

Example 2 

Operation: Direct the input/output old PSW into a data set. 

Known: 
The prefix in the user's profile is ANZAL2. 
The address of the PSW (in hexadecimal): 38. 
The name for the data set: ANZAL2.PSWS. TESTLIST 

listpsw addr(38.) print(psws) 

258 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

January 11, 1980 

LISTfCB Subcommand of TEST 

Use the LISTTCB subcommand to display the contents of a task control 
block (TCB). You may provide the address of the beginning of the TCB. 

If you wish, you can have only selected fields displayed. 

LlSTTCB 

ADDR(address) 

[ADDR(address)] 

[FIELD(names)] 

[PR INT(data-set-name)] 

specifies the address must be on a fullword boundary. The address 
identifies the particular TCB that you want to display. If you omit an 
address, the TCB for the current task is displayed. 

Address can be: 

• An absolute address 
• A symbolic address 
• A relative· address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period) 

FIELD(names) 

specifies one or more names of the particular fields in theTCB that you 
want to have displayed. If you omit this operand, the entire TCB will be 
displayed. 

Following is a list of the valid LISTTCB field names: 

TCBABCUR 
TCBAECB 
TCBAFFN 
TCBAQE 
TCBBACK 
TCBCCPVI 
TCBCMP 
TCBDAR 
TCBDDEXC 
TCBDDWTC 
TCBDEB 
TCBDSP 
TCBECB 
TCBESTAE 
TCBEXTI 
TCBEXT2 
TCBFBYTI 
TCBFLGS 
TCBFLGS6 
TCBFLGS7 
TCBFOE 
TCBFSAB 
TCBGRS 
TCBGTFA 

TCBIOBRC 
TCBIOTIM 
TCBIQE 
TCBJLB 
TCBJPQ 
TCBJSCB 
TCBJSTCB 
TCBLLS 
TCBLMP 
TCBLTC 
TCBMSS 
TCBNDSPO 
TCBNDSPI 
TCBNDSP2 
TCBNDSP3 
TCBNDSP4 
TCBNDSP5 
TCBNSTAE 
TCBNTC 
TCBOTC 
TCBPIE 
TCBPKE 
TCBPQE 
TCBQEL 

TCBRBP 
TCBRCMP 
TCBRTM12 
TCBRTWA 
TCBSTABB 
TCBSTMCT 
TCBSTPCT 
TCBSWA 
TCBSYSCT 
TCBTCB 
TCBTCBID 
TCBTCT 
TCBTFLG 
TCBTID 
TCBTIO 
TCBTIRB 
TCBTME 
TCBTMSAV 
TCBTRN 
TCBTSDP 
TCBTSFLG 
TCBTSLP 
TCBUSER 

LISTICB Subcommand of TEST 259 



I 

Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

PRINT(data-set-name) 

specifies the name of the sequential data set to which data is to be 
directed (see data set naming conventions). If you omit this operand, the 
data will be displayed at your terminal. 
The data format is blocked variable length records. Old data sets with 
the standard record format and blocksize are treated as NEW if they are 
being opened for the first time; otherwise, they are treated as MOD data 
sets. 
If data-set-name is not specified within quotes, the descriptive qualifier, 
TESTLIST, is added. 
If PRINT (data-set-name) is specified, use the following table to 
determine the format of the output. 

If your record type Fixed, Fixed Blocked, Variable or 
was: or . Undefined Variable Blocked 

Then it is changed to Recordsize Blocksize Recordsize Blocksize 
variable blocked with 125 1629 125 129 
the following attributes: 

Note: Record and block sizes greater than those specified in the preceding 
table are unchanged. 

The specified data set is kept open until: 

1. The TEST session is ended by a RUN or a END subcommand, or 

2.A LIST subcommand is entered that specifies a different PRINT data 
set. In this case, the former data set is closed and the current one 

. opened. 

259.0 OS/VS2 TSO Command Language Reference 



January 11, 1980 

LISTTCB Subcommand of TEST 259.1 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

Example 1 

Operation: Direct a copy of the TCB for the current task into a data set. 

Known: 
The prefix in the user's profile is NAN75. 
The name of the data set: NAN75.TCBS.TESTLIST 

listtcb print(tcbs) 

Example 2 

Operation: Save a copy of some fields of a task's control block that is not 
active in a data set for future information. 

Known: 
The symbolic address of the TCB: MYTCB2 
The fields that are being requested: TCBTIO TCBCMP TCBGRS 
The name of the data set: SCOTT.TCBDATA 

listtcb addr(mytcb2) field(tcbtio,tcbcmp,tcbgrs)
print( 'scott.tcbdata' ) 

Example 3 

Operation: List the entire TCB for the current task. 

listtcb 

260 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

January 11, 1980 

LOAD Subcommand of TEST 

Use the LOAD subcommand to load a program into real storage for 
execution. 

LOAD data-set-name 

data-set-name 
specifies the name of the partitioned data set containing the module to 
be loaded. Note that if the member name is not specified, TEMPNAME 
will be used. If the data-set-name is not specified within quotes the 
"LOAD" qualifier will be added. 

Example 1 

Operation: Load a program named GSCORES from the data set 
ATX03.LOAD. 

Known: 
The prefix in the user's profile is ATX03. 

load 'atx03.load (gsores)' 

or 

load (gscores) 

WAD Subcommand of TEST 261 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

Example 2 

Operation: Load a module named ATTEMPT from data set 
ATX03.TEST.LOAD. 

Known: 
The prefix in the user's profile is A TX03. 

load 'atx03.test.load(attempt), 

or 

load test(attempt) 

However do not specify: 

test.load(attempt) 

as this results in ATX03.TEST.loadJoad being searched for. 

Example 3 

Operation: Load a module named PERFORM from data set ATX03.TRY. 

load 'atx03.try(perform), 

262 OS/VS2 TSO Command Language Reference 



Page of GC18-06464 
As Updated January 11, 1980 
By TNL GN18-4699 

OFF Subcommand of TEST 

Use the OFF subcommand to remove breakpoints from a program. 

OFF 

address 

[
address [ :address]] 
(address-list) 

specifies the location of a breakpoint that you want to remove. The 
address must be on a haHword boundary. 

If no address is specified, all breakpoints are removed. Address can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period) 

address: address 
specifies a range of addresses. All breakpoints in the range of addresses 
will be removed. See the description of address for a list of valid address 
types. 

(address-list) 
specifies the location of several breakpoints that you want to remove. 
See the description of address for a list of valid address types. 

Note: The list must be in parentheses with address separated by one or 
more blanks or a comma. 

Example 1 

Operation: Remove all breakpoints in a section of the program. 

Known: 
The beginning and ending addresses of the section: LOOPC EXITC 

off loopc:exitc 

Example 2 

Operation: Remove several breakpoints located at different positions. 

Known: 
The addresses of the breakpoints: COUNTRA +2c 3r% 

off (countra +2c 3r%) 

OFF Subcommand of TEST 263 



Page of GC18-0646-4 
As Updated January 11, 1980 
By TNL GN18-4699 

Example 3 

Operation: Remove all breakpoints in a program. 

off 

Example 4 

Operation: Remove one (1) breakpoint. 

Known: 
The address of the breakpoint is in register 6. 

off 6r% 

264 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

QUALIFY Subcommand of TEST 

Use the QUALIFY subcommand to qualify symbolic and relative addresses; 
that is, to establish the starting or base location to which displacements are 
added so that an absolute address is obtained. The QUALIFY subcommand 
allows you to specify uniquely which program and which csect within that 
program you intend to test using symbolic and relative addresses. 

Alternately, you can specify an address to be used as the base location 
only for subsequent relative addresses. Each time you use the QUALIFY 
subcommand, previous qualifications are voided. Automatic qualification 
overrides previous qualifications via the QUALIFY subcommand. See the 
subsection titled "Qualified Addresses" at the beginning of this section for 
a more detailed description of qualified addresses. 

Symbols that were established by the EQUATE subcommand before you 
enter QUALIFY are not affected by the QUALIFY subcommand. 

{
address } 
module-name [.entryname] [TCB(address)]· 

address 
specifies the base location to be used in determining the absolute address 
for relative addresses only. It does not affect symbolic addressing. 
Address can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period) 

module-name [entryname][TCB (address)] 
specifies the name by which a load module is known, and optionally an 
externally referable name within a module. If only a module is specified, 
the first entry point in the module will be supplied. 

TCB(address) 
specifies the address of a task control block (TCB). This operand is 
necessary when programs of the same name are assigned to two or more 
subtasks and you must establish uniquely which one is to be qualified. 

Note: When using the QUALIFY and WHERE (with relative addressing) 
command combination for routines such as user exit routines and validity 
check routines, the load module or CSECT indicated may differ from the 
one that was qualified. This is due to system control processing of 
automatic qualification. 

QUALIFY Subcommand of TEST 265 



Page of GC28-06464 
As Updated January 11,· 1980 
By TNL GNl84699 

Example 1 

Operation: Establish the absolute address 5F820 as a base location for 
relative addressing. 

qualify .5f820 

·Note: This is useful in referring ·to relative. addresses (offsets) within a 
control block or data area. 

265.0 OS/VS2 TSO C9mmapd Language Reference 



January 11, 1980 

QUALIFY Subcommand of TEST 265.1 



Page of GC28-0646-4 
As Updated January 11, 1980 
8y TNL GN28-4699 

Example 2 

Operation: Establish a base location for resolving relative addresses. 

Known: 
The module name is BILLS. 
The relative address is + 2A. 

qualify bills +2a 

Example 3 

Operation: Establish an address as a base location for resolving relative 
addresses. 

Known: 
The address is 8 bytes past the address in register 7. 

q 7r%+8 

Example 4 

Operation: Establish a base location for relative addresses to a symbol 
within the currently qualified program. 

Known: 
. The base address: QST AR T 

qualify qstart 

Example 5 

Operation: Establish a symbol as a base location for resolving relative 
addresses. 

Known: 
The module name is MEMBERS 
The CSECT name is BILLS. 
The symbol is NAMES. 

qualify members.bills.names 

Example 6 

Operation: Define the base location for relative and symbolic addressing. 

Known: 
The base location is the address of a program named OUTPUT. 

q output 

266 OS/VS2 TSO Command Language. Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

Example 7 

Operation: Change the currently qualified module and CSECT. This means 
defining the base location for relative and symbolic addresses to a new 
program. The module can be a unique name under any task, or a module 
under the current task (where there is another one by the same name 
under a different task, the module under the current task would be 
used). 

Known: 
The module name is PROFITS. 
The CSECT name is SALES. 

qualify profits.sales 

Example 8 

Operation: Change the base location for symbolic and relative addresses to 
a module that has an identical name as another module under a different 
task. 

Known: 
The module name is SALESRPT. 
The desired module is the one under the task represented by the TCB 

whose address is in general register 5. 

q salesrpt tcb(5r%) 

QUALIFY Subcommand of TFST 266.1 



January 11, 1980 

266.2 OS!VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January II, 1980 
8y TNL GN28-4699 

RUN Subcommand of TEST 

Use the RUN subcommand to cause the program that is being tested to 
execute to termination without recognizing any breakpoints. When you 
specify this subcommand, TEST is terminated. When the program 
completes, you can enter another command. Overlay programs are not 
supported by the RUN subcommand. Use the GO subcommand to execute 
overlay programs. 

[address] 

address 
execution begins at the specified address. If you do not specify an 
address, execution begins at the last point of interruption or at the entry 
point if the GO or CALL subcommand was not previously specified. 

Address can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period) 

Example 1 

Operation: Execute the program to termination from the last point of 
interruption. 

run 

Example 2 

Operation: Execute a program to termination from a specific address. 

Known: 
The address: + A8 

run +a8 

RUN Subcommand of TFSf 267 



January 11, 1980 

268 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

WHERE Subcommand of TEST 

Use the WHERE subcommand to obtain an absolute address, the name of a 
module and CSECT, a relative offset within the CSECT, and the address of 
the TCB for the specified address. You may also use the WHERE 
subcommand to obtain the absolute address serving as the starting or base 
location for the symbolic and relative addresses in the program. Alternately, 
you can obtain the absolute address of an 'entry point in a particular module 
or control section (CSECT). If you do not specify any operands for the 
WHERE subcommand, you will receive the address of the next executable 
instruction. 

address 

{
i'address '
module-name! 

Address can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period) 

module-name 
specifies the name by which a load module is known or the name of an 
object module. The output of the WHERE subcommand is the module 
name, the CSECT name, the offset within the CSECT, the absolute 
address, and the address of the TCB. If only the module name was 
specified, the only output will be the absolute address of the module and 
the address of the TCB for the task under which the module was found. 
If the specified address is not within the extent of any user program, 
only the absolute address is returned. (Along with the absolute address a 
message will be returned stating that the specified address is not within 
the program extent.) If no operands are specified, the absolute address 
returned is the address of the next executable instruction. 

Example 1 

Operation: Determine the absolute address of the next executable 
instruction. 

where 

WHERE Subcommand of TEST 269 



Page of GC28-0646-4 
As Updated January 11, 1980 
8y TNL GN28-4699 

Example 2 

Operation: Determine in which module an absolute address is located. 

Known: 
The· absolute address: 3E2B8 

where 3e2b8. 

Example 3 

Operation: Obtain absolute address of + 2c4. 

w +2t4 

Note: An unqualified relative address is calculated from the currently 
qualified address (as specified via the QUALIFY command or the 
current module and CSECT, if no other qualification exists). The module 
name, CSECT name and TCB address are also obtained along with the 
absolute· address. 

269.0 OS/VS2 TSO Command Language Reference 



January 11, 1980 

WHERE Subcommand of TEST 269.1 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

Example 4 

Operation: Obtain offset of the symbol SALES in the current program. 

where sales 

Note: The module name, CSECT name, absolute address, and the TCB 
address are returned along with the offset of SALES. 

Example S 

Operation: Determine in which module the address in register 7 is located. 

w 7r% 

Note: The offset, absolute address, and the TCB address are also 
returned with the module name. 

Example 6 

Operation: Obtain the virtual address of the module named CSTART. 

where cstart 

Example 7 

Operation: Obtain the virtual address of the CSECT named JULY in the 
module named NETSALES. 

where netsales.july 

Example 8 

Operation: Determine the relative address of symbol COMPARE in the 
module named CALCULAT and CSECT named AVERAGE. 

w calculat.average.compare 

Note: The absolute address and TCJJ address are also returned with the 
relative address. 

Example 9 

Operation: Determine the virtual address of + leA. 

Known: 
The CSECT is MARCH. 
The module is GETDATA. 

where getdata.march.+1ca 

Note: You will also get the TCB address with the virtual address. 

Example 10 

Operation: Obtain the absolute address for relative address + 2C in CSECT 
named PRINTIT within the currently qualified module. 

where .printit.+2C 

270 OS/VSl TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

TIME Command 

Use the TIME command to obtain the following information: 

• Cumulative CPU time (from LOGON) 
• Cumulative session time (from LOGON) 
• Service units used 

where service units can be: 

CPU Service Units - The task execution time, divided by an SRM 
constant, that is CPU model-dependent. 

110 Service Units - The sum of individual SMF data set activity 
EXCP counts for all data sets associated with the address space. 

Storage Service Units - The number of real page fr~mes multiplied by 
CPU service units, multiplied by .02. The decimal .02 is a scaling 
factor designed to bring the storage service component in line with the 
CPU component. 

• Local time of day 

where "local time of day" refers to the time of execution for this 
command. It is displayed in the following manner: 

local time of day in hours(HH), 
minutes(MM), anq seconds(SS), 
(am or pm is also displayed) 

• Today's date 

To enter the command while a program is executing, you must first cause 
an attention interruption. The TIME command has no effect upon the 
executing program. 

TIME 

TIME Command 271 



January It, 1980 

272 OS/VS2 TSO Command Language Reference 



January 11, 1980 

WHEN Command 

Use the WHEN command to test return codes from programs invoked via 
an immediately preceding CALL or LOADGO command, and to take a 
prescribed action if the return code meets a certain specified condition. 

WHEN SYSRC(operator integer) 

[
END ] 
command-name 

SYSRC 

specifies that the return code from the previous function (the previous 
command in the command procedure) is to be tested according to the 
values specified for operator and integer. 

operator 
specifies one of the following operators: 

EQ or = means equal to 
NE or ,= means not equal to 
GT or > means greater than 
LT or < means less than 
GE or >= means greater than o~ equal to 
NG or ,> means not greater than 
LE or <= means less than or equal to 
NL or .< means not less than 

integer 
specifies the numeric constant that the return code is to be compared to. 

END 

specifies that processing, is to be terminated if the comparison is true. 
This is the default if you do not specify a command. 

command-name 
specifies any valid TSO command name and appropriate operands. The 
command will be processed if the comparison is true. 

Note 1: WHEN will terminate CLIST processing and then execute the TSO 
command-name specified. 

Note 2: Successive WHEN commands may be used to determine an exact 
return code and then perform some action based on that return code. 

Example 1: Using successive WHEN commands to determine an exact 
return code. 

CALL 
WHEN 

WHEN 

WHEN 

compiler 
SYSRC(= 0) 

SYSRC(= 4) 

SYSRC(= 8) 

EXEC LNKED 

EXEC LNKED 

EXEC ERROR 

WHEN COIIIIIWld 273 



January 11, 1980 

274 OS/VS2 TSO Command Language. Reference 



January 11, 1980 

Command Procedures 

A command procedure is a prearranged executable sequence of TSO 
commands, subcommands, and command procedure statements that can be 
invoked by issuing the EXEC command or the EXEC subcommand of 
EDIT. It is often referred to as a CLIST (command list). The TSO 
commands and sub commands have been described in previous sections of 
this book. This section describes command procedure statements and 
functions that can be used with them. 

You should be familiar with the more detailed descriptions of command 
procedures found in OS/VS2 TSO Terminal User's Guide. This section is 
intended to be reference material and does not deal with all aspects of the 
use of command procedures. 

See the description of the EXEC command in this book for information 
on invoking command procedures. 

Functions Available for Command Procedures 
The facilities that can be used with command procedure statements are: 

• Symbolic variables, which can be specified on TSO commands, 
subcommands, and command procedure statements 

• Control variables, a type of symbolic variable, which can only be 
specified on command procedure statements 

• Built-in functions, a type of symbolic variable, which can only be 
specified on command procedure statements 

An expression consists of these variables, whole numbers, and character 
strings combined with operators. Expressions are used on some of the 
command procedure statements. 

The following topics describe the use of expressions and operators, 
symbolic variables, control variables, and built-in functions. 

Figure 13 is a coding reference for command procedures. It lists, in 
alphabetic order, command procedure statements and facilities that can be 
coded on command procedure statements, a brief description of each, and 
the topic under which each is discussed. 

Command Procedures 275 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

Name Meaning 

< (or LT) Less than 
<= (or LE) Less than or equal 
+ Addition 

I (or OR) Or 
&& (or AND) And 
&DATATYPE Determine expression type 

& EVAL Evaluate arithmetic expression 
&LASTCC Get last return code 
& LENGTH Determine expression length 

&MAXCC Get highest return code 
&STR Define character string 
&SUBSTR Define substring 

&SYSDATE Current date 
&SYSDLM Terminal delimiter 
&SYSDVAL Terminal delimiter parameters 

&SYSICMD Implicit execution member name 
&SYSNEST Nested procedure indicator 
&SYSPCMD Current primary command name 

&SYSPREF Data set name prefix 
&SYSPROC Logon procedure name 
&SYSSCAN Symbolic substitution scan limit 

&SYSSCMD Current subcommand name 
&SYSTIME Current time 
&SYSUID Current userid 

* Multiplication 

** Exponentiation 
...,> (or NG) Not greater than 

...,< (or NL) Not less than 

...,= (or NE) Not equal 
Subtraction 

I Division 
II Remainder 
> (or GT) Greater than 

>= (or GE) Greater than or equal 
= (or EQ) Equal 
AND And 

ATTN Attention exit 

CLOSFILE Close open file 

CONTROL Control options 

DATA(-ENDDATA) Starts DATA group 

DO(-WHILE-END) Start DO group 

OF-THEN-)ELSE Start IF-not action 

(DO-WHILE-)END End DO group 

See 

Expressions and Operators 
Expressions and Operators 
Expressions and Operators 

Expressions and Operators 
Expressions and Operators 
Built-In Functions 

Built-In Functions 
Control Variables 
Built-In Functions 

Control Variables 
Built-In Functions 
Built-In Functions 

Control Variables 
Control Variables 
Control Variables 

Control Variables 
Control Variables 
Control Variables 

Control Variables 
Control Variables 
Control Variables 

Control Variables 
Control Variables 
Control Variables 

Expressions and Operators 
Expressions and Operators 
Expressions and Operators 

Expressions and Operators 
Expressions and Operators 
Expressions and Operators 

Expressions and Operators 
Expressions and Operators 
Expressions and Operators 

Expressions and Operators 
Expressions and Operators 
Expressions and Operators 

Command Procedure 
Statements 
Command Procedure 
Statements 
Command Procedure 
Statements 
Command Procedure 
Statements 
Command Procedure 
Statements 
Command Procedure 
Statements 
Command Procedure 
Statements 

Figure 13. Command Procedure Coding Reference (Part 1 of 2) 

276 OS/VS2 TSO Command Language Reference 



Name Meaning See 

END End the command procedure END Command 
(DAT A-)ENDDAT A Ends DATA group Command Procedure 

Statements 
EQ Equal Expressions and Operators 
ERROR Error exit Command Procedure 

Statements 
EXEC Invoke a command procedure EXEC Command 
EXIT Exit from nested procedure Command Procedure 

Statements 
GE Greater than or equal Expressions and Operators 
GETFILE Get record from open file Command Procedure 

Statements 
GLOBAL Define global symbolic variables Command Procedure 

Statements 
GOTO Unconditional branch Command Procedure 

Statements 

GT Greater than Expressions and Operators 
IF(-THEN-ELSE) Tests IF condition Command Procedure 

Statements 
LE Less than or equal Expressions and Operators 

LT Less than Expressions and Operators 
NE Not equal Expressions and Operators 
NG Not greater than Expressions and Operators 

NL Not less than Expressions and Operators 
OPENFILE Open a file Command Procedure 

Statements 
OR Or Expressions and Operators 

PROC Set and use symbolic parameters Command Procedure 
Statements 

PUTFILE Put record into open file Command Procedure 
Statements 

READ Get input from terminal Command Procedure 
Statements 

READDVAL Get input from & SYSDV AL Command Procedure 
Statements 

RETURN Return control from attn/err exit Command Procedure 
Statements 

SET Assign values to variables Command Procedure 
Statements 

TERMIN Request terminal input Command Procedure 
Statements 

(IF-)THEN(-ELSE) Start IF action Command Procedure 
Statements 

WHEN Inspect program return code WHEN Command 
(DO-)WHILE(-END) DO loop control Command Procedure 

Statements 
WRITE Send output to terminal Command Procedure 

Statements 
WRITENR Send output to terminal with Command Procedure 

Statements 
no return at end 

Figure 13. Command Procedure Coding Reference (Part 2 of 2) 

Command Procedures 277 



Expressions and Operators 

Operators are used in command procedures to specify operations to be 
performed on terms in an expression. Operators are in three categories: 

• Arithmetic operators, which specify fixed-point arithmetic operations 
to be performed on numeric operands. These operators connect whole 
numbers, character strings, symbolic variables, control variables, and 
built-in functions to form simple expressions. 

• Comparative operators, which specify comparison functions to be 
performed between two simple expressions, and thereby form 
comparative expressions. 

• Logical operators, which specify a logical connection between two 
comparative expressions, and thereby form logical expressions. 

Figure 14 lists the operators in the three categories and shows how to 
enter them. 

For the function: Enter: 

Arithmetic Addition + 
Subtraction -
Multiplication * 
Division I 
Exponentiation ** (see Note 1) 
Remainder II 

Comparative Equal = or EQ 
Not equal ... = or NE 
Less than < or LT 
Greater than > or GT 
Less than or equal < = or LE 
Greater than or equal > = or GE 
Not greater than ... > or NG 
Not less than ... < or NL 

Logical And & & or AND 
Or II or OR 

Note 1: Negative Exponents are handled as exponents of zero. 

Figure 14. Arithmetic, Comparative, and Logical Operators 

Symbolic Variables 

The term "symbolic variable" refers to any character string in a command 
procedure for which different values may be substituted at different times. 
Symbolic variables add flexibility to command procedures by symboli~ing 
real values that can change dynamically during execution of a command 
procedure and that can be different for each invocation of a command 
procedure. 

278 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated July 30, 1980 
By TNL GN28-4754 

A symbolic variable consists of an ampersand (& ) followed by a 
maximum of 31 alphameric characters, the first of which is alphabetic. 
Types of symbolic variables are: 

• Parameters on PROC, READ, or READDV AL statements 
• Control variables 
• Built-in functions 
• Global variables on GLOBAL statements 
• File names on OPENFILE, CLOSFILE, GETFILE, and PUTFILE 

statements 

You define a symbolic variable by including it on a SET, GLOBAL, 
READ, READDV AL, PROC, or OPENFILE statement. Symbolic variables 
are replaced by real values during a process called symbolic substitution. 
Concatenation can be used to create new variables on SET and OPENFILE 
statements. The following topics describe symbolic substitution and 
concatenation. 

You may use abbreviations of the symbolic variables as long as the 
abbreviation is not a duplication of any existing operand. 

Symbolic Substitution 

Symbolic substitution is the process of replacing symbolic variables with real 
values. Each line is scanned from left to right, and the symbolic variables 
are replaced with their real values. The real value substituted for a symbolic 
variable may actually be another symbolic variable (nested symbolic 
variables). If there are nested symbolic variables, the line is scanned more 
than once to resolve all symbolic variables. (You can limit the number of 
times a line can be rescanned by setting a control variable.) 

The use of double ampersands requires special processing by the 
symbolic substitution routine. Each pair of ampersands is replaced by a 
single ampersand. This substitution takes place only after all other symbolic 
substitution in a line is complete. Consider the following: 

set &a = &str(&&x) 

After symbolic substitution, the value of & a is the string & x, which is 
another symbolic variable. An exception to this rule for substitution of 
double ampersands is the file name on a file 110 statement, in which case 
double ampersands are not replaced. 

Concatenation of Symbolic Variables 

Concatenation can be used to establish variables on SET and OPENFILE 
statements. Concatenation of symbolic variables consists of writing the 
symbolic variable names next to each other with no delimiters. For 
example: 

&a&b&c 

Command Procedures 279 



July 30, 1980 

Concatenating symbolic variables and character strings requires use of a 
period as a delimiter when the symbolic variable precedes the character 
string. For example: 

&varnarne.alpha 

No delimiter is required when the character string precedes the symbolic 
variable. For example: 

alpha&type 

Character Set Supported in Command Procedure Variables 

Using command procedure file I/O statements can cause characters other 
than those you can enter at a terminal to become part of the value of a 
symbolic variable. Certain hexadecimal codes are used by the system in 
command procedure internal processing and s}1ould not appear in data 
processed by command procedure file I/O statements. Command 
procedures support all codes' from x'40' through x'FF', with the 
understanding that lowercase characters are translated to uppercase and 
lowercase numbers (x'BO' -x'B9') are translated to standard numbers 
(x'FO-x'F9'). Additionally, the following control characters are supported: 

• x'05' HT (Horizontal tab) 
• x'14' RES (Restore) 
• x'16' BS (Backspace) 
• x'l7' IL (Idle) 
• x'24' BYP (Bypass) 
• x'25' LF (line feed) 

All other codes between x'OO' and x'3F' are reserved for comniand 
procedure internal processing; the use of file I/O statements to process data 
sets containing these codes is not supported. For example, file I/O 
statements cannot be used to process OBJ or LOAD type data sets. 

Refer to IBM System/3 70 Reference Summary for the characters 
associated with the internal hexadecimal codes. 

Control Variables 

Control variables can be used in command procedures to obtain information 
about the current command procedure environment and the user who 

invoked the command procedure. To obtain and use this information, 
specify the appropriate symbolic variable in a command procedure 
statement. TSO replaces the symbolic variable with the current information. 

Four of these control variables can be set or changed by the writer of 
the command procedure. These are & LASTCC, & MAXCC, & SYSDV AL, 
and & SYSSCAN. If the writer tries to change any of the other control 
variables, an error message is issued. 

The control variables and their uses are described in Figure 15. 

280 OS/VS2 TSO Command Language Reference 



Symbolic 
Variable 

& LASTCC 

& MAXCC 

& SYSDATE 

& SYSDLM 

& SYSDVAL 

& SYSICMD 

& SYSNEST 

& SYSPCMD 

& SYSPREF 

& SYSPROC 

& SYSSCAN 

&SYSSCMD 

& SYSTIME 

& SYSUID 

Use 
Can be changed 

by the writer 

To obtain the return code from the last operation, whether Yes 
TSO command, subcommand, or command procedure 
statement. (See Note 1) 
To obtain the highest return code issued up to this point Yes I 
in the command procedure or passed back from a nested 
command procedure. The return code is in decimal 
format. (See Note 1.) 
To obtain the present date in the format mm/dd/yy, No 
where mm is month, dd is day, and yy is year. 
To identify which character string, of those specified on No 
the TERMIN statement, the terminal user entered to return 
control to the command procedure. 
(1) To obtain any parameters the terminal user entered, 'Yes 
besides the delimiter, when he returned control to the 
command procedure after a TERMIN statement. (2) To 
obtain the terminal user's response line when a READ 
statement requests terminal input. 
To obtain the name by which the user implicitly invoked No 
this command procedure. This value is null if the 
command procedure was invoked explicitly. 
To determine if the currently executing command No 
procedure was invoked from another procedure. 
& SYSNEST is replaced with "YES" if this is a nested 
procedure and "NO" if it is not. 
To obtain the name (or abbreviation) of the most recently No 
executed TSO command (with the exception of the TIME 
command) in this procedure. The initial value is "EXEC" 
(or "EX") in the command environment and "EDIT" (or 
"E") in the subcommand environment. 
To obtain the data-set-name prefix from the user profile No 
table (UPT) for the command procedure user. 
To obtain the procedure name specified when the No 
command procedure user logged on. 
To obtain the maximum number of times that symbolic y~"""") 
substitution is allowed to rescan a line to evaluate 
symbolic variables. The defaultis 16 times. The maximum 
value is two to the 31st power minus one (+2, 147, 483, 
647); the minimum is O. 
To obtain the name (or abbreviation) of the subcommand No 
currently executing. The initial value is null if EXEC was 
issued in the command environment and 'EXEC' (or 'EX') 
if EXEC was issued as a subcommand of EDIT. The value 
is null whenever the procedure is in the command 
environment. 
To obtain the present time in the format hh:mm:ss, where No 
hh is hours, mm is minutes, and ss is seconds. 
To obtain the userid of the user currently executing the No 
command procedure. 

Note 1: The command procedure statement return codes are in Figure 18. The TSO 
command and subcommand return codes are: 

o Normal completion. 
12 A terminating error occurred during execution; however, the command 

processor might have been able to prompt for information necessary to 
recover from the error. 

Figure 15. Control Variables 

Command Procedures 281 



Built-In Functions 

Built-in functions can be used in command procedures to perform certain 
evaluations of expressions and character strings. To request a built-in 
function, specify the appropriate symbolic variable with an expression or 
character string on a command procedure statement. TSO evaluates the 
expression first, if necessary, and then performs the requested function. The 
symbolic variable is replaced by the result of performing the built-in 

function. 

The built-in functions are & DATATYPE, & LENGTH, & EVAL, 
& STR, and & SUBSTR. Their uses are described in Figure 16. 

Symbolic variable 

& DATA TYPE( expression) 

&EV AL(expression) 

& LENGTH( expression) 

Use 

To find out whether an evaluated expression 
is entirely numeric. &DATATYPE is 
replaced by 'NUM' if the expression is all 
numeric or by 'CHAR' if there is at least one 
non-numeric character. 

To find the result of an arithmetic expression. 
&EVAL is replaced by the result of 
evaluating the expression. 
To find the number of characters in the result 
of an evaluated expression. &LENGTH is 
replaced by the number of characters in the 
result. (Leading zeroes are ignored.) 

&STR(string) To use the indicated string as a real value. 
Nested built-in functions and symbolic 
substitution are performed but no other 
evaluation is done. & STR is replaced by the 
string. 

&SUBSTR(expression[:expression],string) To use the indicated portion of a string as a 
real value. Nested built-in functions and 
symbolic substitution are performed but no 
other evaluation is done. & SUBSTR is 
replaced by the specified portion of the string 
(substring) . 

Figure 16. Built-In Functions 

282 OS/VS2 TSO Command Language Reference 

The start and end of the substring are 
indicated by the two expressions. To select a 
one-character substring, you need to enter 
only the first expression. 

( 



July 30, 1980 

Command Procedure Statements 

Command procedure statements assign values, set controls, select options, 
and control the conditions under which command procedures execute. 
Statements operate in both the command and subcommand environment, 
which means that statements will work in command procedures invoked 
either by the EXEC command or by the EXEC subcommand of EDIT. In 
general, statements fall into control, assignment, conditional, and file access 
categories. See Figure 17. 

Control Assignment Conditional 

ATTN 
CONTROL 
DATA-ENDDATA 
ERROR 
EXIT 
GLOBAL 
GOTO 
PROC 
RETURN 
TERM IN 
WRITE 
WRITENR 

READ DO-WHILE-END 
READDVAL IF-THEN-ELSE 
SET (WHEN Command) 

Figure 17. Command Procedure Statement Categories 

File Access 

CLOSFILE 
GETFILE 
OPENFILE 
PUTFILE 

Figure 18 lists the error codes set by the command procedure statements. 

16 Not enough virtual storage 
300 User tried to update an unauthorized variable 
304 Invalid keyword on EXIT statement 
308 Code specified, but no code given on EXIT statement 
312 Internal GLOBAL processing error 
316 TERMIN delimiter greater than 256 characters 
324 GETLINE error 
328 More than 64 delimiters on TERMIN 
332 Invalid file name syntax 
336 File already open 
340 Invalid OPEN type syntax 
344 Underlined OPEN type 
348 File specified did not open (for example, the filename was not allocated) 
352 GETFILE - filename not currently open 
356 GETFILE - the file has been closed by the system (for example, file 

opened under EDIT and EDIT has ended) 
360 PUTFILE - file name not currently open 
364 PUTFILE - file closed by system (see code 356) 
368 PUTFILE - CLOSFILE - file not opened by OPENFILE 
372 PUTFILE - issued before GETFILE on a file opened for update 
400 GETFILE end of file (treated as an error, which can be handled by 

ERROR action) 
8xx Evaluation routine error codes 
800 Data found where operator was expected 
804 Operator found where data was expected 
808 A comparison operator was used in a SET statement 
812 (Reserved) 
816 Operator found at the end of a statement 
820 Operators out of order 
824 More than one exclusive operator found 
828 More than one exclusive comparison operator 
832 The result of an arithmetical calculation is outside the range extending 

from -2,147,483,684 to +2,147,483,647. 

Figure 18. Command Procedure Statement Error Codes (Decimal) (Part 1 of 2) 

Command Procedures 283 



Page of GC28-0646-4 
As Updated July 30, 1980 
By TNL GN28-47S4 

836 
840 
844 
848 
852 
856 
860 
864 
868 
872 
900 
904 
908 

912 
916 
920 
924 
932 

936 
940 
944 
948 
952 
956 
960 
964 

968 

972 
999 

* Sxxx 

* Uxxx 

(Reserved) 
Not enough operands 
No valid operators 
Attempt to load character from numeric value 
Addition error - character data 
Subtraction error - character data 
Multiplication error - character data 
Divide error - character data or division by 0 
Prefix found on character data 
Numeric value too large 
Single ampersand found 
Symbolic variable not found 
Error occurred in an error action range that received control because of 
another error 
Substring range invalid 
Non-numeric value in substring range 
Substring range value too small (zero or negative) 
Invalid substring syntax 
Substring outside of the range of the string, for example, 1:3,AB; (AB is 
only two characters) 
A built-in function that requires a value was entered without a value 
Invalid symbolic variable 
A label was used as a symbolic variable 
Invalid label syntax on a GO TO statement 
GOTO label was not defined 
GO TO statement has no label 
& SYSSCAN was set to an invalid value 
&LASTCC was set to an invalid value and EXIT tried to use it as a 
default value 
DATA PROMPT-ENDDATA statements supplied, but no prompt 
occurred. 
TERMIN command cannot be used in background jobs. 
Internal command procedure error 
A system ABEND code 
A user ABEND code 

* Printed in hexadecimal 

Figure 18. Command Procedure Statement Error Codes (Decimal) (Part 2 of 2) 

284 OS/VS2 TSO Command Language Reference 



A 1TN Statement 

The ATTN statement sets up an environment that detects attention 
interruptions processed by the terminal monitor program (TMP). The 
detection of an attention interruption invokes a specified action which is 
considered to be an attention exit. 

[label: ] 

label: 

ATTN [OF,F J 
action 

specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

OFF 

specifies that any previous attention action is nullified. When no action is 
specified on the ATTN statement, OFF is the default. 

action 
specifies any executable statement, commonly a DO-group constituting a 
routine. This routine must specify either a command or a null before the 
RETURN statement. Results: 

Null: Ignore the attention, 

Not-null (a command was specified): Give control to the command that 
was specified. 

Example 

Operation: Pass control to a command on an attention exit. 

ATTN 

END 

DO 
SET &CMD= /* Default to null */ 
WRITE ATTENTION IN CONTROL 
IF &OKTOTERMINATE=YES THEN + 

DO 
WRITE DO YOU WANT TO TERMINATE (Y OR N) 
READ &ANS 

END 
ELSE + 

IF &ANS=Y THEN + 
SET &CMD=END 

WRITE IGNORING YOUR ATTENTION 
&CMD /* The TSO command */ 
RETURN 

A TIN Statement 285 



( 

286 OS/VS2 TSO Command Language Reference 



CLOSFILE Statement 

The CLOSFILE statement is used to close a file that was previously opened 
by an OPENFILE statement. It is not necessary to specify file type. Only 
one file can be closed with one statement. 

File variables are only scanned once (no rescans) and only on 
OPENFILE. 

[label:] CLOSFI LE filename 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank:. 

filename 
specifies the ddname by which the file was allocated and opened (via 
OPENFILE). 

CLOSFILE Statement 287 



288 OS/VS2 TSO Command Language Reference 



CONTROL Statement 

The CONTROL statement defines certain processing options to be in effect 
for the command procedure. The options are in effect from the time 
CONTROL executes until either the procedure terminates or another 
CONTROL is issued. 

Command procedures without CONTROL statements execute with 
options MSG, NOLIST, NOPROMPT, NOCONLIST, NOSYMLIST, and 
FLUSH. The user can set PROMPT and LIST by entering them as 
keywords on the EXEC command or subcommand that invokes the 
command procedure. 

CONTROL has no default operands. If you enter CONTROL with no 
operands, the system uses options already in effect because of system 
predefinition, presetting via EXEC, or setting by a previous CONTROL 
statement. In addition, when there are no operands specified, the system 
will display those options which are currently in effect. 

Note: CONTROL operands cannot be entered as symbolic variables. 

[label:] CONTROL 

label: 

[
FLUSH ] 
NOFLUSH 

[
PROMPT ] 
NOPROMPT 

[
LIST ] 
NOLIST 

[
CON LIST ] 
NOCONLIST 

[
SYMLlST ] 
NOSYMLlST 

[~~~SGJ 
[MAIN] 

[END(string) ] 

specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

FLUSH 
specifies that the system can purge (flush) the queue called the input 
stack. The system normally flushes the stack on an execution error. 

NOFLUSH 
specifies that the system cannot flush the stack. 

PROMPT 
specifies that the command procedure can prompt the terminal for input. 

CONTROL Statement 289 



NOPROMPT 

specifies that the command procedure cannot prompt the terminal for 
input, even if the procedure has prompting capabilities. 

LIST 

specifies that commands and subcommands are displayed at the terminal 
after symbolic substitution but before execution. 

NOLIST 

specifies that commands and subcommands are not displayed at the 
terminal after symbolic substitution but before execution. 

CON LIST 

specifies that command procedure statements are displayed at the 
terminal after symbolic substitution but before execution. 

NOCONLIST 

specifies that command procedure statements are not displayed at the 
terminal after symbolic substitution but before execution. 

SYMLIST 

specifies that executable statements are displayed at the terminal once 
before the scan for symbolic substitution. Executable statements include 
commands, subcommands, and command procedure statements. 

NOSYMLIST 

specifies that executable statements are not displayed at the terminal 
before symbolic substitution. 

MSG 

specifies that PUTLINE informational messages from commands and 
statements in the' procedure are displayed at the terminal. 

NOMSG 

specifies that PUTLINE informational messages NOMSG from 
commands and statements in the command procedure are not displayed 
at the terminal. 

MAIN 

specifies that this is the main command procedure in your TSO 
environment and cannot be deleted by a stack flush request from the 
system. When MAIN is specified, FLUSH and NOFLUSH are ignored. 
The attention exit in the TMP cannot delete the command procedure and 
any error exit used by this command procedure is protected. 

END (string) 
specifies that a character string will be recognized by the system as an 
END statement that concludes a DO-group. Enter the string as 1-4 
characters, the first alphabetic and the rest alphameric. Since END no 
longer signifies the end of a DO-group, the writer of the command 
procedure can include END commands and subcommands without 
prematurely ending the DO-group. 

290 OS/VS2 TSO Command Language Reference 



DATA-ENDDATA Sequence 

The DATA and ENDDAT A statements are used to designate a group of 
commands and subcommands that are looked at as data by the command 
procedure but as commands and sub commands by the system. Symbolic 
substitution is performed before execution of the group. Command 
procedure statements included in the DATA-ENDDATA group cause 
failures because TSO attempts to execute them as commands or 
subcommands. A DO-group ignores an END in an included 
DATA-ENDDATA group, instead of terminating the DO-group. 

[label:] DATA 

ENDDATA 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. You cannot specify a label 
for ENDDATA. 

Example 

Operation: Perform an EDIT operation without ending a DO-group. 

IF &ADDIT=YES THEN -
DO 

END 

ELSE 

DATA 
EDIT OLD.DATA 
BOTTOM 
INSERT * &NEW ENTRY 
END SAVE 

ENDDATA 

DATA-ENDDATA Sequence 291 



292 OS/VS2 TSO Command Language Reference 



DO-WHILE-END Sequence 

The DO, WHILE and END statements are used to form commands, 
subcommands, and statements into DO-groups of related instructions. DO 
and END denote the start and end, respectively, of the DO-group. WHILE 
specifies a condition and causes the DO-group to re-execute as long as the 
condition is true. 

The string specified on the END operand of the CONTROL statement 
can be used instead of the END statement. 

[label:] DO [WHI LE logical-expression] 

[label :] END 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

logical-expression 
is a group of comparative expressions grouped by logical operators (see 
"Definitions of Command Procedure Terminology"). The minimal entry 
.lor logical-expression is a comparative expression. 

DO-WHILE-END Sequence 293 



294 OS/VS2 TSO Command Language Reference 



Page of GC28-06464 
As Updated January 11, 1980 
By TNL GN28-4699 

ERROR Statement 

The ERROR statement sets up an environment that checks for nonzero 
(error-condition) return codes from comm,ands, subcommands, and 
command procedure statements in the currently executing command 
procedure. When an error code is detected, an action· can be invoked. This 
action is effectively an error exit. 

The error exit must be protected from being flushed from -the input Stack 
by the system. Stack flushing makes the error return codes unavailable. Use 
the MAIN or NOFLUSH operands of the CONTROL statement to prevent 
stack flushing. 

When ERROR is entered with no operands, the system displays any 
command, subcommand, or statement in the command procedure that ends 
in error. The system then attempts to continue with the next sequential 
statement, if possible. 

Note: If the LIST option was requested for the command procedure -being 
executed the NULL error statement will be ignored. 

The ERROR statement must precede any statements that might cause a 

~b_r_a_n_Ch __ t_O_i_t. __________________________________________________ __ 

[label:] ERROR [OFF] 
action 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

OFF 

specifies that any action previously set up by an ERROR statement is 
nullified. Note that OFF is not a default. 

action 
specifies any executable statement, commonly a DO-group constituting a 
routine. 

Example 

Operation: Perform an error analysis routine whenever an error occurs in 
the command procedure. 

ERROR DO 

/* Error analysis routine */ 

END 

ERROR Statement 295 



January 11, 1980 

296 OS/VS2 TSO Command Language Reference 



EXIT Statement 

The EXIT statement causes control to be returned to the routine that called 
the currently executing command procedure. The return code associated 
with this exit can be specified by the user or allowed to default to the value 
in control variable & LASTCC. 

A procedure that is called by another procedure is said to be nested. A 
called procedure can also call a procedure, which would be considered to be 
nested two levels. Levels of nesting are limited only by the extent of 
storage and the skill of the programmer. The structure of the nesting is 
called the hierarachy. You go "up" in the hierarchy when control passes 
from the called to the calling procedure; TSO itself is at the top. 

Entering EXIT causes control to go up one level. When EXIT is entered 
with the QUIT operand, the system attempts to pass control upward to the 
first procedure encountered that has MAIN or NOFLUSH in effect (see 
CONTROL Statement). If no such procedure is found, control passes up to 
TSO, the input stack is flushed of all command procedures, and control 
passes to the terminal. 

[label :] EXIT [CODE(expression)] 
[QUIT] 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

CODE(expression) 

specifies a user-defined return code for this exit, with the code 
specifiable in most simple form as a number or in most complex form as 
a simple expression (see "Definitions of Command Procedure 
Terminology"). When CODE is not specified, the system uses the 
contents of & LASTCC. 

QUIT 

specifies that control is passed up the nested hierarchy until a procedure 
is found with the MAIN or NOFLUSH option active or until TSO 
receives control. 

EXIT Statement 297 



298 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated July 30, 1980 
By TNL GN28-47S4 

GETFILE Statement 

The GETFILE statement allows the user to get a record from an open 
QSAM file. One record is obtained for one execution of GETFILE. You 
must know the filename ( ddname) by which you allocated and opened (via 
OPENFILE) the file for this terminal session. 

After GETFILE executes, the file variable &fi1ename contains the record 
obtained. 

File variables are scanned only once (no rescans) and only on 
OPENFILE. 

r [label:] GETFI LE &filename 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

&fi1ename 
specifies the ddname by which the file was allocated and opened (via 
OPENFILE). 

GETFILE Statement 299 



July 30, 1980 

300 OS/VS2 TSO Command Language Reference 



GLOBAL Statement 

The GLOBAL statement must precede any statement that uses its variables. 
The GLOBAL statement defines unique symbolic variables that will be used 
globally, which in the application means in all lower nested levels of the 
hierarchy. The first-level command procedure defines global variables; 
lower-level procedures must include a GLOBAL statement if they intend to 
refer to the global variables specified in the first level. The number of 
global variables defined in the first-level procedure is the maximum number 
that can be referenced by any lower-level procedure. 

The global variables are positional, both in the first-level procedure and 
in all lower-level procedures that reference this same set of variables. This 
means that the Nth name on any level GLOBAL statement refers to the 
same variable, even though the symbolic name at each level may be 
different .. Note, however, that the names must still be unique among those 
at that level. 

Since the global variables are symbolic variables, they must have an & 
prefix except in READ and READDV AL statements, where the & is 
optional. 

[label: ] GLOBAL name1 [name2 .... nameN] 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

namel-nameN 
specify valid symbolic variable names for this procedure. 

Example 

Operation: Specify a set of global variables for three levels of procedures, 
where some names are unique to their level. 

First-level procedure: GLOBAL NAMEI NAME2 NAME3 NAME4 
Second-level procedure: GLOBAL FIRST SECOND THIRD 
Third-level procedure: GLOBAL PARMI PARM2 PARM3 PARM4 

Note that & NAME3, & THIRD, and & PARM3 would access the same 
variable. 

GLOBAL Statement 30t 



302 OS/VS2 TSO Command Language Reference 

( 
\~ 



GOTO Statement 

The GOTO statement causes an unconditional branch within a command 
procedure. Branching to another command procedure is not supported. 
When GOTO is specified, control passes to the statement or command that 
has the label called out as the target. 

[label:] GOTO target 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

target 
specifies either a label or an expression that reduces to a valid label value 
after symbolic substitution. 

Example 

Operation: Illustrate branching within a command procedure. 

BEGIN: SET &RET=NEXT 
GOTO LAB1 

NEXT: WRITENR TWO, 
SET &N=2 
GOTO LAB&N 

LAB1: WRITENR ONE, 
GOTO &RET 

LAB2: WRITE THREE 
EXIT /* ONE, TWO, THREE HAS BEEN WRITTEN 

TO THE TERMINAL*/ 

GOTO Statement 303 



304 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

IF-THEN-ELSE Statement 

The IF-THEN-ELSE sequence defines a condition, tests the truth of that 
condition, and initiates an action based on the test results. 

Note that a continuation character is required if the THEN or ELSE 
statement extends to the next line. If no continuation character is present 
and no other text is on the same line, the THEN and ELSE will be treated 
like null statements. 

[label:] 

label: 

I F logical-expression THEN [action] 
[ELSE [action]] 

specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

logical-expression 
is a group of comparative expressions grouped by logical operators (see 
"Definitions of Command Procedure Terminology"). The minimal entry 
for logical-expression is a comparative expression. 

action 
specifies an executable statement, which includes commands, 
subcommands, and command procedure statements. The THEN action is 
invoked if the IF condition is satisfied. The ELSE action is invoked if 
the IF condition is not satisfied and ELSE is specified. If the IF 
condition is not satisfied and ELSE is not specified, control passes to the 
next sequential statement. 

IF-THEN-ELSE Sequence lOS 



January ll, 1980 

306 OS/VS2 TSO Command Language Reference 



OPENFILE Statement 

The OPENFILE statement opens a specific file for QSAM I/O. One 
execution of OPENFILE opens one file. File variables are scanned only 
once (no rescans) and only on OPENFILE. 

Complete your file I/O on a specific file before you change modes from 
command to subcommand or vice versa. Crossmode file I/O is not 
supported and will cause miscellaneous abnormal terminations. 

Specify NOFLUSH (see the CONTROL statement) for a command 
procedure that uses file I/O. 

If a system action causes you to be flushed because you did not specify 
NOFLUSH, you will have to log off the system to recover. You will 
recognize the condition by getting a message similar to "FILE NOT 
FREED, DATA SET IS OPEN." 

For reference information on QSAM I/O, see OS/VS2 Data 
Management Services Guide. 

[label: ] 

label: 

OPEN FI LE filename [I NPUT ] 
OUTPUT 
UPDATE 

specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

filename 
specifies the ddname of a file that has been previously allocated by the 
TSO ALLOCATE command or by step allocation. The filename becomes 
a symbolic variable that will contain either: 

• The results of a GETFILE, or 
• A record that was set by the user for a PUTFILE. 

The filename name does not have to be previously defined. 

INPUT 
specifies that the filename will open for input. The default is INPUT 
when neither INPUT, OUTPUT, nor UPDATE is entered. 

OUTPUT 
specifies that the filename will open for output. 

UPDATE 
specifies that the filename will open for updating in place; that is, you 
can replace a previously read record by issuing a PUTFILE statement. 

OPEN FILE Statement 307 



308 OS/VS2 TSO Command Language Reference 



PROC Statement 

The PROC statement defines the parameters that can be passed to the 
command procedure via the value-list parameter of the EXEC command. 
PROC is optional for a command procedure, but if it is used, it must be the 
first statement in the command procedure. 

Note that a label cannot be entered for a PROC statement. 

PROC positional-specification 

[positional- parameters] 

[keyword-parameters [(values)]] 

positional-specification 
specifies the number of required positional parameters to be passed. 
Enter 1-5 decimal digits. Enter 0 if none. 

positional-parameters 
specifies the positional parameters, in sequence, that require initial values 
in the value list before the command procedure is invoked. Parse will 
prompt for an initial value if one is not there, except when 
positional-specification=O and no prompting is needed because there are 
no positional parameters. 
Positional parameter names are 1-252 characters, the first alphabetic and 
the rest alphameric. The values must be character strings without 
delimiters. 

keyword-parameters (values) 
specify the keyword parameters, either with or without values, that do 
not require initial values in the value list before the command procedure 
is invoked. 
Keyword parameter names are 1-31 characters, the first alphabetic and 
the rest alphameric. Keywords without values have nothing appended. 
Keywords with values have the values enclosed in parentheses and 
appended to their names. A value can be a null entry (keep parentheses), 
a quoted character string, or an unquoted character string. A quoted 
character string can include delimiters. These values are defaults and are 
used when a keyword name is not valid and a value is required. 

Note: All symbolic parameters have an initial value at the time the 
command procedure begins execution. The symbolic parameter value can be 
changed dynamically by specifying the symbolic parameter name on the 
READ, SET or READDV AL statements. 

PROC Statement 309 



310 OS/VS2·TSO Command Language Reference 



PUTFILE Statement 

The PUTFILE statement puts a record into an already open QSAM file. 
One execution of PUTLINE transfer one record. This record must be 
initialized each time by an assignment statement such as SET unless you 
want the same record sent more than once. You must know the 
filename(ddname) by which you allocated and opened (via OPENFILE) the 
file for this terminal session. 

File variables are scanned only once (no rescans) and only on 
OPENFILE. 

[label: ] PUTFI LE filename 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

filename 
specifies the ddname by which the file was allocated and opened (via 
OPENFILE). The record that is put is the value of the file variable 
& FILENAME. 

Example 

Operation: Illustrate typical file 1/0. 

OPENFILE MYOUTPUT OUTPUT 

SET &MYOUTPUT = TEXT STRING 
PUTFILE MYOUTPUT /* TEXT STRING is put to the file */ 

PUTFILE Statement 311 



312 OS/VS2 TSO Command Language Reference 



READ Statement 

The READ statement makes terminal user input available to the command 
procedure as values in symbolic variables. These variables may be named in 
the READ statement or already named elsewhere in the command 
procedure. The READ statement is usually preceded by a WRITE to the 
terminal to identify the expected input. 

[label:] READ [name1 [name2 ... nameN]] 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric 
followed by a colon and at least one blank. 

Note: If READ is entered without parameter names, the value of the 
terminal input line is read into & SYSDV AL. 

namel-nameN 
specify any syntactically valid parameter names; the & prefix is optional. 
These symbolic parameters need not be previously defined. The 
parameters are positional in the sense that recognizable values entered by 
the command procedure user are set sequentially into the names specified 
here. Recognizable values are: 

• A character string 
• A quoted string 
• A parenthesized string 
• A null value, specified by entering two adjacent commas (,,) or two 

adjacent quotes (' '). Double quotes (") will not work. 

Any or all of the types specified may be entered on one READ 
statement. 

READ Statement 313 



( 

\ 

314 OS/VS2 TSO Command Language Reference 



READDV AL Statement 

The READDV AL statement causes the current value of & SYSDV AL to be 
parsed into syntactical words and assigns these words to the symbolic 
parameters specified on the READDV AL statement. 

Syntactical words are defined as character strings, quoted strings, 
parenthesized strings, or null values indicated by two adjacent commas (,,) 
or quotes (' '). 

The assignment is done sequentially on the parameters in the order they 
are specified; parameters not assigned a value will default to null values. If 
there are more words than parameters, the leftover words are not assigned. 

Habel:] READDVAL [name1 [name2 .... nameN] ] 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

namel-nameN 
specify any syntactically valid parameter names; the & is optional. These 
symbolic parameters need not have been previously defined. The 
parameters are positional in the sense that syntactical words from 
& SYSDV AL are set sequentially into the names specified here. 

Note: If READDV AL is entered without symbolic parameters, the 
statement is ignored. 

READDVAL Statement 315 



316 OS/VS2 TSO Command Language Reference 



RETURN Statement 

The RETURN statement specifically returns control from an error range or 
attention range to the statement following the one that ended in error or 
the one that was interrupted by an attention. 

RETURN is valid only when issued from an activated error action range 
or an activated attention action range from this command procedure. If 
neither of these conditions exists, the RETURN is treated as a 
no-operation. 

[label:] RETURN 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and one or more blanks. 

RETURN Statement 3 t 7 



318 OS/VS2 TSO Command Language Reference 



SET Statement 

The SET statement assigns a specified value to a specified symbolic variable 
name. One value is assigned to one variable for one execution of SET. The 
variable need not have been predefined elsewhere. 

The variable to be set cannot be a built-in function. 

[label:] SET symbolic-variable-name { ;0 } expression 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

symbolic-variable-name 
specifies the syntactically valid symbolic variable or allowable control 
variable that is to be set. 

EQ or = 
specifies the comparison operator EQUAL. 

expression 
specifies a simple expression as defined in "Definitions of Command 
Procedure Terminology." 

SET Statement 319 



320 OS/VS2 TSO Command Language Reference 



TERMIN Statement 

The TERMIN statement passes control from the command procedure 
currently executing to the terminal user. TERMIN also defines the character 
strings that a user can enter to return control to the command procedure. A 
null value can be specified as a character string that the user can enter. 
TERMIN is usually preceded by a WRITE statement that identifies the 
expected response to the terminal user. 

Control returns to the command procedure at the statement after 
TERMIN. When control returns, & SYSDLM and & SYSDV AL have been 
set. 

[label:] TERMIN rtr:ng1] [string2 .... stringN] 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

stringl-stringN 
specify character strings that the terminal user can enter to return control 
to the command processor. The & SYSDLM control variable contains the 
number of the string which was entered (1 for stringl, 2 for string2, 
etc.) and & SYSDVAL contains the balance of the entered line. 

,(comma) 
can be used only in the first string position and specifies that the 
terminal user can enter a null line to return control to the command 
procedure. 

TERMIN Statement 321 



322 OS/VS2 TSO Command Language Reference 



WRITE and WRITENR Statements 

The WRITE and WRITENR statements send text to the terminal user from 
the command procedure. Thus text can be used for messages, information, 
prompting, or whatever the writer of the command procedure wishes. 

[label: ] WRITE [N R] text 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

WRITE 

statement specifies that the cursor moves to a new line after the text is 
displayed. 

WRITENR 

statement specifies that the cursor does not move to a new line after the 
text is displayed. 

text 
specifies what is to be sent to the terminal. You can enter any character 
string, including symbolic variables. Data enclosed within /* and * / 
delimiters is also sent to the terminal even though it may appear as a 
comment. 

Example 

Operation: Illustrates WRITE and WRITENR usage. 

WRITENR ONE 
WRITENR TWO/ 
WRITENR THREE 
WRITE FOUR 
WRITE FIVE 

The display at the terminal will be: 

ONETWO/THREEFOUR 
FIVE 

WRITE and WRITENR Statements 323 



324 OS/VS2 TSO Command Language Reference 



Appendix A: Foreground-Initiated Background Commands 

You may use the foreground-initiated background (FIB) cQmmands to 
submit or control jobs for execution in a batch environment. 

Appendix A: Foreground-Initiated Background Commands 325 



326 OS/VS2 TSO Command Language Reference 



Using Foreground-Initiated Background (FIB) Commands 

Use CANCEL, OUTPUT, STATUS and SUBMIT commands primarily to 
control the submission and processing of jobs in a batch environment. Also, 
the OUTPUT command may be used to control foreground-created output. 

Processing Batch Jobs 

You can submit batch jobs for processing if your installation authorizes you 
to do so. This authorization is recorded in the system with your user 
attributes. If you have this authorization, the system lets you use the four 
commands (SUBMIT, STATUS, CANCEL and OUTPUT) that control the 
processing of batch jobs. You can use those commands to submit a batch 
job, to display the status of a batch job, to cancel a batch job, and to 
control the output of a batch job. 

Submitting Batch Jobs 

Before you submit a batch job with the SUBMIT command you can use the 
EDIT command to create a data set (or a member of a partitioned data set) 
that contains the job or jobs you want to submit. Each job consists of job 
control language (JCL) statements and of program instructions and data. 

The first JCL statement in the data set is usually a JOB statement. The 
jobname in the JOB statement can be up to eight characters in length and 
should consist of your user identification followed by one or more letters or 
numbers, for example, SMITH23 or JONESXYZ. 

If the jobname does not begin with your user identification, you can 
submit it with the SUBMIT command and request its status with the 
STATUS command, but you cannot refer to it with the CANCEL or 
OUTPUT command unless the IBM-supplied installation exit is replaced. 

If the jobname consists of only your user identification, the system will 
prompt you for one or more characters to complete the jobname. This 
allows you to change jobnames without re-editing the data. For example, 
you may submit the same job several times, and supply a different character 
for the job name each time you are prompted. 

If the first non-job entry subsystem statement of your data set is not a 
JOB statement, the system generates the following JOB statement when 
you submit it with the SUBMIT command. 

Iluserid JOB accounting info, 
II userid, ** JOB STATEMENT GENERATED BY SUBMIT ** 
II NOTIFY=userid, 
II MSGLEVEL=( 1,1) 

You will be prompted for a character to complete the jobname. The job 
accounting information is the information specified by the user at LOGON. 

Using Foreground-Initiated Background (FIB) Commands 327 



When you enter the SUBMIT command, you must give the name of a 
data set (or data sets) containing the batch job (or jobs). You can also 
specify the NONOTIFY operand to specify that you do not want to be 
notified when a batch job with a generated JOB statement terminates. 

Figure 19 shows how to create and submit a batch job. The data set type 
on the EDIT command should be CNTL for better system performance. 
The SUBMIT command will perform best if the fully-qualified data set 
name is entered in quotes. Submitted data sets must have a logical record 
length of 80 bytes, a record format of fixed-blocked (FB), and must not 
contain lowercase characters. 

You may include more than one job in one data set. You can omit the 
JOB statement for the first job, but all jobs after the first must have their 
own JOB statement. Although you submit all jobs in the data set with one 
SUBMIT command, you can subsequently refer to each job with separate 
STATUS, CANCEL, and OUTPUT commands. 

When you submit more than one job with a single command, and TSO 
finds an error while processing the first job, the second job is not 
processed. An error that occurs in the second job does not affect the first. 
Any jobs processed prior to the error are submitted for execution; jobs that 
were not processed because of the error should be resubmitted after the 
error is corrected. 

READY 
Edit backpgm new cntl 
INPUT 

0010//smith3 job 7924,smith,msglevel=( 1,1), 
0020// notify=smith3 
0030//step1 exec p11lfc,parm.p11l='nodeck,list' 
0040//p11l.sysin dd * 
0050 source statement 
0060 
0070 
0080/* 
0090//step2 exec p11lfclg 
0100//p11l.sysin dd * 
0110 source statements 
0120 
0130 
0140/* 
0150//go.sysin dd * 
0160 
0170 
0180 
0190 input data 
0200 
0210 
0220/* 

(null line) 
EDIT 
end save 
READY 
submit backpgm 
ENTER JOBNAME CHARACTERS+ -
a 
JOB SMITH3A(JOB00071) SUBMITTED 
READY 

Figure 19. Submitting a Program as a Batch Job 

328 OS/VS2 TSO Command Language Reference 



The user would get a job-ended message with a time stamp at the 
terminal because the NOTIFY keyword is specified on the JOB card. 

A submitted data set need not contain an entire job. A JCL data set and 
a source data set could be used if both were the proper type of data set, as 
follows: 

submit (jcldsl sourceds jclds2 sourceds) 

If each JCL data set contained a job card, then two jobs would be 
submitted above. JCLDS1 could contain the JCL needed to print the source 
data set following in the input stream and JCLDS2 could contain the JCL 
needed to assemble the same data set. 

Displaying the Status of Jobs 
Any time after you submit a background job you can use the STATUS 
command to have its status displayed. The display will tell you whether the 
job is awaiting execution, is currently executing, or has executed but is still 
on the output queue. The display will also indicate whether a job is in hold 
status. For example, if you want to display the status of SMITH3A, enter: 

READY 
status smith3a 

If you have submitted two jobs with jobname SMITH3A, but just want 
the status of the job submitted in Figure 19, you should enter the jobid 
with the jobname, as follows: 

READY 
status smith3a(job71) 

If you want to know the status of all the jobs with jobnames consisting 
of your user identification plus one character, enter the STATUS command 
without operands: 

READY 
status 

You may also check the status of data sets held from previous 
foreground sessions by using the STATUS command. 

Cancelling Batch Jobs 
The CANCEL command cancels execution of a batch job. For example, if 
you want to cancel job JONESAB, and cancel its output if it has already 
executed, enter: 

READY 
cancel jonesab,p 

After you enter the CANCEL command, the system will send you a 
READY message and will notify the operator that the job has been 
cancelled. 

Using Foreground-Initiated Background (FIB) Commands 329 



Controlling the Output of Batch' or Foreground Jobs 

The OUTPUT command may be used to manipulate all held output, 
regardless of whether the output is produced during the current LOGON 
session, a previous LOGON session, or by a batch job submitted from any 
source. This output must be held for terminal access in one of two ways: 

• Explicitly via HOLD= YES on a DD statement or via the 
ALLOCATE or FREE command, for example: 

IISMITH6 JOB MSGLEVEL=1,MSGCLASS=C,NOTIFY=SMITH 
PGM=IEBDG II EXEC 

IISYSPRINT DD 
II 

SYSOUT=M,HOLD=YES 

II remainder of JCL statements 
II 

or 

• Implicitly by specifying an installation-defined reserved class for 
SYSOUT and MSGCLASS. It is not necessary to have them reserved 
in the same class. For example: 

IisMITH6 JOB MSGLEVEL=1,MSGCLASS=R,NOTIFY=SMITH 
PGM=IEBDG II EXEC 

IISYSPRINT DD 
II 

SYSOUT=S 

II remainder of JCL statements 
II 

The OUTPUT command can: 

• Direct the JCL statements, system messages (MSGCLASS), and 
system output data sets (SYSOUT) produced by a job to your 
terminal. 

• Direct the MSGCLASS and SYSOUT output from a job to a specific 
data set. 

• Change an output class used in a job. 
• Route the MSGCLASS and SYSOUT output from a job to a remote 

station. 
• Release the output of a job for printing. 
• Delete the output data sets (SYSOUT) or the system messages 

(MSGCLASS) for jobs. 

If you have NOTIFY =userid on the job cards that were submitted, a 
message is written to your terminal or placed in the broadcast data set 
when the background job terminates. Provided you have held the output, 
you can then use the OUTPUT command to control the held output 
produced by the job. 

For example, assume that job GREEN67 produces held output in classes 
A, B, D, M, G, and 6. If you want the output in classes G and M displayed 
at the terminal, enter: 

READY 
output green67 class(g m) print(*) 

330 OS/VS2' TSO Command' Language Reference 



If you want the output of class B to be listed in the 
GREEN.KEEP.OUTLlST data set, enter: 

READY 
output green67 class(b) print(keep) 

If you want to change the output in class A to class C, enter: 

READY 
output green67 class(a) newclass(c) 

If you want to delete the output from class D, enter: 

READY 
output green67 class(d) delete 

If you want to release the output of class 6, and have it printed in the 
background by output services, enter: 

READY 
output green67 class(6) nohold 

You can enter the PAUSE operand in the OUTPUT command to make 
the system stop after each data set is displayed on your terminal or on the 
data set you indicate with the PRINT operand. When the system pauses it 
sends you the message OUTPUT. You then have the option of pressing the 
ENTER key to continue processing or entering the CONTINUE, SAVE, 
END or HELP subcommand. 

The CONTINUE subcommand allows you to continue processing your 
output after an interruption occurs. An interruption occurs when: 

• The printing of a data set is completed and you used the PAUSE 
operand in the OUTPUT command. 

• You press the attention interruption key. 

Note: An attention interruption can cause unpredictable results in the print 
processing. When the attention interruption key is hit, the data set may be 
checkpointed 10 to 20 records back. 

To retrieve data created during previous LOGON sessions, issue 
ST A TUS userid. STATUS will return a jobid and status for each LOGON 
session as a job on the output queue. It will also return jobid and status for 
the current LOGON session as a job in execution. 

Using Foreground-Initiated Background (FIB) Commands 331 



When you enter the CONTINUE subcommand, the system will resume 
the display with the next data set to be processed. In the following example 
you request that the held data sets inoutput classes Band C be displayed 
at your terminal. The system pauses after displaying the data set in B. You 
enter the CONTINUE subcommand to resume processing with data set in 
C. 

READY 
output jones2 class(b c) print(*) pause 

output class B 

OUTPUT 
continue 

output class C 

If the interruption was not caused by a pause, you may prefer to resume 
displaying at the beginning of the data set being processed. To resume 
displaying at the beginning, enter: 

OUTPUT 
continue begin 

If you prefer to resume displaying approximately 10 lines before the 
interruption occurred, enter: 

OUTPUT 
continue here 

The CONTINUE subcommand also lets you respecify the PAUSE 
operand of the OUTPUT command. If you entered PAUSE in the 
OUTPUT command, you can enter NOPAUSE in the CONTINUE 
subcommand, for example: 

READY 
output smithc class(d) print(data) pause 

OUTPUT 
continue begin nopause 

If you did not specify PAUSE in the OUTPUT command, you can do so 
in the CONTINUE subcommand. This causes the system to pause at the 
end of each data set processed subsequently. 

The SA VE subcommand allows you to place the data set listed before 
the pause into another data set. This allows you to retrieve the data set 
later. In the following example, if your LOGON identifier is Brown, you 
request that held data sets in output classes E and F be listed at your 
terminal. After listing the data set in E you request that it be saved in the 
BROWN.OUTDATA.OUTLIST data set. You continue processing the next 
data set after saving the data set in class E. 

332 OS/VS2 TSO Command Language Reference. 



Note: If you want to display output at a terminal when submitting one or 
more jobs, the name you specify must begin with your userid and optionally 
end with one or more alphameric characters (if the IBM-supplied 
installation exit is used). 

READY 
output brownb class(e f) print(*) pause 

OUTPUT 
save outdata 
OUTPUT 
continue 

The END subcommand is used to terminate the OUTPUT command. For 
example: 

READY 
output dept30a class(a) print(*) pause 

OUTPUT 
end 
READY 

Using Foreground-Initiated Background (FIB) Commands 333 



( 
334 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated July 30, 1980 
By TNL GN28-4754 

CANCEL Command 

Use the CANCEL command to halt processing of batch jobs that you have 
submitted from your terminal. A READY message will be displayed at your 
terminal if the job has been canceled successfully. A message will also be 
displayed at the system operator's console when a job is canceled. 

Installation management must authorize the use of CANCEL. This 
command is generally used in conjunction with the SUBMIT, STATUS, and 
OUTPUT commands. 

CANCEL (jobname[(jobid)] ·Iist) 

[
NOPURGEJ 
PURGE 

(jobname[ (jobid) ]-list) 

specifies the names of the jobs that you want to cancel. The jobnames 
must consist of your user identification plus one or more alphameric 
characters up to a maximum of eight characters unless the IBM-supplied 
exit has been replaced by your installation. 
Also, you cannot cancel a TSO user or a started task that is not on an 
output queue. The optional jobid subfield may consist of one to eight 
alphameric characters (the first character must be alphabetic or national). 
The jobid is a unique job identifier assigned by the job entry subsystem 
at the time the job was submitted to the batch system. The jobid is 
needed if you have submitted two jobs with the same name. 

Notes: 

• When you specify a list of several job names, you must separate the 
jobnames with standard delimiters and you must enclose the entire list 
within parentheses. 

• Jobs controlled by the subsystems are considered started tasks and 
cannot be cancelled via the CANCEL command. 

PURGE 
specifies that the job and its output (on the output queue) are to be 
purged from the system. 

NOPURGE 
specifies that jobs are to be canceled if they are in execution; output 
generated by the jobs will remain available. If the jobs have executed, 
the output still remains available. 

CANCEL Command 335 



Example 1 

Operation: Cancel a batch job. 

Known: 
The name of the job: JE024Al 

cancel je024a1 

Example 2 

Operation: Cancel several batch jobs. 

Known: 

July 30, 1980 

The names of the jobs: D58BOBTA D58BOBTB(J51) D58BOBTC 

cancel (d58bobta d58bobtb(j51) d58bobtc) 

336 OS/VS2 TSO Command Language Reference 



July 30, 1980 

OUTPUT Command 

Use the OUTPUT command to: 

• Direct the output from a job to your terminal. The output includes the 
job's job control language statements (JCL), system messages 
(MSGCLASS), and system output (SYSOUT) data sets. 

• Direct the output from a job to a specific data set. 
• Delete the output for jobs. 
• Change the output class(es) for a job. 
• Route the output for a job to a remote work station. 
• Release the output for a job for printing by the subsystem. 

{
OUTPUT} 
OUT 

(jobname [(jobid)] -list) 

[CLASS(classname-list) ] 

rPRINTf/5.!. t\lJ~BEGINJ [PAUSE J[KEEP[HOLD 1J L L\ldsnameVJ HERE NOPAUSE NOHOLDJ 
NEXT NO KEEP 

[DELETE] 

[N EWCLASS(classname)] [DEST(station-id)] 

(jobname[ (jobid) ]-list) 

specifies one or more names of batch or foreground jobs. The jobname 
for foreground session is userid. Each jobname must begin with your user 
identification and, optionally, can include one or more additional 
characters unless the IBM -supplied installation exit that scans and checks 
the jobname and user identification is replaced by a user-written routine. 
The system will process the held output from the jobs identified by the 
job-name-list. You should include the optional jobid for uniqueness to 
avoid duplicate jobnames. 

CLASS( classname-list) 

specifies the names of the output classes to be searched for output from 
the jobs identified in the jobname list. If you do not specify the name of 
a class, all held output for the jobs will be available. A class name is a 
single character or digit (A-Z or 0-9). 

PRINT(dsname or *) 

specifies the name of the data set to which the output is to be directed. 
If unqualified, the data-set-name will have the user prefix added and the 
qualifier OUTLIST appended to it. You, may substitute an asterisk for 
the data set name to indicate that the output is to be directed to your 
terminal. If you omit both the data set name and the asterisk, the default 
value is the asterisk. PRINT is the default value if you omit PRINT, 
DELETE, NEWCLASS, DEST, and HOLDjNOHOLD . 

. If the PRINT data set is not pre-allocated, RECFM defaults to FBS, 
LRECL defaults to 132, and the BLKSIZE defaults to 3036. 

OUTPUT Command 337 



July 30, 1980 

BEGIN 

indicates that output operations for a data set are to start from the 
beginning of the data set whether it has been checkpointed or not. 

HERE 

indicates that output operations for a data set that has been checkpointed 
are to be resumed at the approximate point of interruption. If the data 
set is not checkpointed, it will be processed from the beginning. HERE is 
the default value if you omit HERE, BEGIN, and NEXT. 

NEXT 

indicates that output operations for a data set that has been previously 
checkpointed are to be skipped. Processing resumes at the beginning of 
the uncheckpointed data sets. Caution: The checkpointed data sets that 
are skipped will be deleted unless the KEEP operand is specified. 

PAUSE 

indicates that output operations are to pause after each SYSOUT data 
set is listed to allow you to enter a SA VE or CONTINUE subcommand. 
(Pressing the ENTER key after the pause will cause normal processing to 
continue.) This operand can be overridden by the NOPAUSE operand of 
the CONTINUE subcommand. 

NOPAUSE 

indicates that output operations are not to be interrupted. This operand 
can be overridden by the PAUSE operand of the CONTINUE 
subcommand. This is the default if neither PAUSE nor NOP AUSE is 
specified. 

KEEP 

specifies that the SYSOUT data set will remain enqueued after printing 
(see also HOLD and NOHOLD). 

NOKEEP 

specifies that the SYSOUT data set be deleted after it is printed. 
NOKEEP is the default if neither KEEP nor NOKEEP is specified. 

HOLD 

specifies that the kept SYSOUT data set be held for later access from 
the terminal. 

NOHOLD 

specifies that the kept SYSOUT data set be released for printing by the 
subsystem. This is the default for KEEP if neither HOLD nor NOHOLD 
is specified. 

DELETE 

specifies that the classes of output specified with the CLASS operand are 
to be deleted. 

NEWCLASS( classname) 

is used to change one or more SYSOUT classes to the class specified by 
the "classname" subfield. 

DEST(station id) 

routes SYSOUT classes to a remote work station specified by the 
"station id" subfield. 

338 OS/VS2 TSO Command Language Reference 



Page of GC28-0646-4 
As Updated July 30, 1980 
By TNL GN28-4754 

Note: Unless 5740-XT60 is installed, the DEST operand is 7 characters; 
otherwise it is 8 characters. 

OUTPUT Command 338.1 



July 30, 1980 

338.2 OS/VS2 TSO Command Language Reference 



Considerations: The OUTPUT command applies to all jobs whose job 
names begin with your user identification. Access to jobs whose job names 
do not begin with a valid user identification must be provided by an 
installation-written exit routine. The SUBMIT, STATUS, and CANCEL 
commands apply to conventional batch jobs. You must have special 
permission to use these commands. 

Note: You can simplify the use of the OUTPUT command by including 
the NOTIFY keyword either on the JOB card or on the SUBMIT command 
when you submit a job for batch processing. The system will notify you 
when the job terminates, giving you an opportunity to use the OUTPUT 
command. MSGCLASS and SYSOUT data sets should be assigned to 
reserved classes or explicitly held in order to be available at the terminal. 

Output Sequence: Output will be produced according to the sequence of 
the jobs that are specified, then by the sequence of classes that are 
specified for the CLASS operand. For example, assume that you want to 
retrieve the output of the following jobs: 

IIJWSD581 
II 
IISYSPRINT 
IISYSUT1 
II 
II 
II 
IISYSUT2 
IISYSIN 

1* 
IIJWSD582 
II 
IISYSPRINT 
IIDD2 
II 
IISYSIN 

1* 

JOB 91435,MSGCLASS=X 
EXEC PGM=IEBPTPCH 
DD SYSOUT=Y 
DD DSNAME=PDS,UNIT=3330, 
VOL=SER=11112,LABEL=( ,SUL), 
DIPS=(OLD,KEEP), 
DCB=(RECFM=U,BLKSIZE=3036) 
DD SYSOUT=Z 
DD * 

PRINT TYPORG=PS,TOTCONV=XE 
LABELS DATA=NO 

JOB 91435,MSGCLASS=X 
EXEC PGM=IEHPROGM 
DD SYSOUT=Y 
DD UNIT=3330,VOL=SER=333000, 
DISP=OLD 
DD * 

SCRATCH VTOC,VOL=3330=333000 

To retrieve the output, you enter: 

output (jwsd581 jwsd582) class (x y z) 

Your output will be displayed in the following order: 

1. Output of job JWSD581 

a. class X (J CL and messages) 

b. class Y (SYSPRINT data) 

c. class Z (SYSUT2 data) 

2. Output of job JWSD582 

a. class X (JCL and messages) 

b. class Y (SYSPRINT data) 

c. message (No CLASS Z OUTPUT FOR JOB JWSD582) 

If no classes are specified, the jobs will be processed as entered. Class 
sequence is not predictable. 

OUTPUT Command 339 



Subcommands: Subcommands for the OUTPUT command are: 
CONTINUE, END, HELP, and SAVE. When output has been interrupted, 
you can use the CONTINUE subcommand to resume output operations. 

Interruptions causing subcommand mode occur when: 

• Processing of a sysout data set completes and the PAUSE operand 
was specified with the OUTPUT command. 

• You press the attention key. 

Note: Pressing the attention key purges the input/output buffers for the 
terminal. Data and system messages in the buffers at this time may be lost. 

Although the OUTPUT command attempts to back up 10 records to 
recover the lost information, results are unpredictable due to record length 
and buffer size. The user may see records repeated or he may notice 
records missing if he attempts to resume processing of a data set at the 
point of interruption (using the HERE operand of CONTINUE, or in the 
next session using HERE on the command). 

You can use the SAVE subcommand to copy a SYSOUT data set to 
another data set for retrieval by a different method. Use the END 
subcommand to terminate OUTPUT. The remaining portion of a job that 
has been interrupted will be kept for later retrieval at the terminal. 

Checkpointed Data Set: A data set is checkpointed if it is interrupted 
during printing and never processed to end of data during a terminal 
session. 

Interruptions which cause a data set to be checkpointed occur when: 

• Processing terminates in the middle of printing a data set because of 
an error or ABEND condition. 

• The attention key is pressed during the printing of a data set and the 
CONTINUE NEXT subcommand is entered. The KEEP operand must 
be present or the data set will be deleted. 

• The attention key is pressed during the printing of a data set and the 
END subcommand is entered. 

Example 1 

Operation: Direct the held output from a job to your terminal. Skip any 
checkpointed data sets. 

Known: 
The name of the job: SMITH2 
The job is in the system output class: SYSOUT=X 
Output operations are to be resumed with the next SYSOUT data set or 

group of system messages that have never been interrupted. You want 
the system to pause after processing each output data set. 

output smith2 class(x) print(*) next pause 

340 OS/VS2 TSO Command Language Reference 



Example 2 

Operation: Direct the held output from two jobs to a data set so that it can '
be saved and processed at a later date. 

Kn_own: 
The name of the jobs: JANA JANB 
The name for the output data set: JAN.AUGPP.OUTLIST 

output (jana,janb) class(r,s,t) print(augpp) 

Example 3 

Oper~tion: Change an output class. 

Known: 
The name of the job: KEANI 
The existing output class: SYSOUT=S 
The new output class: T 

output keanl class(s) newclass(t) 

Example 4 

Operation: Delete the held output instead of changing the class (see 
Example 3). 

out keanl class(s) delete 

Example 5 

Operation: Retrieve SYSOUT data from your session at your terminal. 

Known: 
The TSO userid: SMITH 
A JES held_SYSOUT class: X 
The filename of the SYSOUT data set: SYSUT2i 

free file(sysut2) sysout(x) 
status smith 
SMITH(TSU0001) EXECUTING 
output smith(tsu0001) 

OUTPUT Command 341 



342 OS/VS2 TSO Command Language Reference 



CONTINUE Subcommand of OUTPUT 

Use the CONTINUE subcommand to resume output operations that have 
been interrupted. 

Interruptions occur when: 

• An output operation completes and the PAUSE operand was specified 
with the OUTPUT command. 

• You press the attention key. 

[
BEGIN] 
HERE 
NEXT 

[
PAUSE ] 
NOPAUSE 

BEGIN 

indicates that output operations are to be resumed from the beginning of 
the data set being processed at the time of interruption. 

NEXT 

halts all processing of the current data set and specifies that output 
operations are to be resumed with the next data set. 
The next data set is determined by the BEGIN, HERE, or NEXT 
operand on the OUTPUT command. If BEGIN was specified on the 
command, processing will start at the beginning of the next data set. If 
HERE was specified, processing will start at the checkpoint of the next 
data set, or at its beginning if no checkpoint exists. If NEXT was 
specified, processing will start at the beginning of the next 
uncheckpointed data set. NEXT is the default value if BEGIN, HERE, 
and NEXT are omitted. 

Note: The data set that was interrupted and any that are skipped will be 
deleted unless KEEP was specified on the command. 

HERE 

indicates that output operations are to be resumed at a point of 
interruption. If the attention key was pressed, processing resumes at the 
approximate point of interruption in the current data set. If end of data 
was reached and PAUSE was specified, processing resumes at the 
beginning of the next data set (even if it was checkpointed and HERE 
was specified on the command). 

PAUSE 

indicates that output operations are to pause after each data set is 
processed to allow you to enter a SAVE subcommand. (Pressing the 
ENTER key after the pause will cause normal processing to continue.) 
You can use this operand to override a previous NOPAUSE condition 
for output. 

CONTINUE Subcommand of OUTPUT 34~ 



NOPAUSE 

indicates that output operations are not to be interrupted. You can use 
this operand to override a previous condition for output. 

Example 1 

Operation: Continue output operation with the next SYSOUT data set. 

continue 

Example 2 

Operation: Start output operations over again with the current data set 
being processed. 

continue begin 

344 OS/VS2 TSO Command Language Reference 



END Subcommand of OUTPUT 

Use the END subcommand to terminate the operation of the OUTPUT 
command. 

END 

END Subcommand of OUTPUT 345 



346 OS/VS2 TSO Command Language Reference 



HELP Subcommand of OUTPUT 

Use the HELP subcommand to obtain the syntax and function of the 
OUTPUT subcommands. Refer to the HELP command for a description of 
the syntax and function of the HELP subcommand. 

HELP Subcommand of OUTPUT 347 



348 OS/VS2 TSO Command Language Reference 



SAVE Subcommand of OUTPUT 

Use the SAVE subcommand to copy the SYSOUT data set from the spool 
data set to the named data set. This data set can be any data set that would 
be valid if used with the PRINT operand. There is no restriction against 
saving JCL. To use SAVE, you should have specified the PAUSE keyword 
on the OUTPUT command. SAVE will not save the entire SYSOUT output 
of the job, only the data set currently being processed. 

data-set-name 

data-set-name 
specifies the new data set name to which the SYSOUT data set is to be 
copied. 

Example 1 

Operation: Save an output data set. 

Known: 
The name of the data set: ADT023.NEWOUT.OUTLIST 

save newout 

Example 2 

Operation: Save an output data set. 

Known: 
The name of the data set: BXZ037A.OLDPART.OUTLIST 
The data set member name: MEMS 
The data set password: ZIP 

save oldpart(mem5)/zip 

SAVE Subcommand of OUTPUT 349 



350 OS/VS2 TSO Command Language Reference 



STATUS Command 

Use the STATUS command to have the status of conventional batch jobs 
displayed at your terminal. You can obtain the status of all batch jobs, of 
several specific batch jobs, or of a single batch job. The information that 
you receive for each job will tell you whether it is awaiting execution, is 
currently executing, or has completed execution but is still on an output 
queue. It will also indicate whether the job is in hold status. 

This command may be used only by personnel who have been given the 
authority to do so by the installation management. 

jSTATUS} 
tST 

[(jobname [(jobid)] -I ist)] 

(jobname[ (jobid) l-list) 
specifies the names of the conventional batch jobs for which you want to 
know the status. If two or more jobs have the same jobname, the system 
will display the status of all the jobs encountered and supply jobids for 
identification. When more than one jobname is included in the list, the 
list must be enclosed within parentheses. If you do not specify any 
jobnames, you will receive the status of all batch jobs in the system 
whose jobnames consist of your userid and one identifying character 
(alphameric or national). 
The optional jobid subfield may consist of one to eight alphameric 
characters (the first character must be alphabetic or national). The jobid 
is a unique job identifier assigned by the job entry subsystem at the time 
the job was submitted to the batch system. 

Note: When you specify a list of job names, you must separate the 
jobnames with standard delimiters. 

STATUS Command 351 



352 OS/VS2 TSO Command Language Reference 



SUBMIT Command 

Use the SUBMIT command to submit one or more batch jobs for 
conventional processing. Each job submitted must reside in either a 
sequential data set, a direct-access data set, or in a member of a partitioned 
data set. Submitted data sets must be fixed blocked, 80 byte records. Using 
the EDIT command to create a CNTL data set will provide the correct 
format. 

Any of these data sets can contain part of a job, one job, or more than 
one job that can be executed via a single entry of SUBMIT. Each job must 
comprise an input job stream (JCL plus data). Do not submit data sets with 
descriptive qualifiers TEXT or PLI if the characters in these data sets are 
lower case. 

Job cards are optional. The generated jobname will be your userid plus 
an identifying character. SUBMIT will prompt you for the character and 
will insert the job accounting information from the user's LOGON 
command on any generated job card. The system or installation default 
MSGCLASS and CLASS are used for submitted jobs unless MSGCLASS 
and CLASS are specified on the job card(s} being submitted. See the first 
section in Appendix A for an example of a generated JOB card. 

{
SUBMIT} 
SUB 

(data-set-list) 

(data-set-list) 
[
NOTIFY J 
NONOTIFY 

specifies one or more data set names or names of members of partitioned 
data sets that define an input stream (JCL plus data). If you specify 
more than one data set name, enclose them in parentheses. 

NOTIFY 

specifies that you are to be notified when your job terminates in the 
background if a JOB statement has not been provided. If you have 
elected not to receive messages, the message will be placed in the 
broadcast data set. You must then enter LISTBC to receive the message. 
NOTIFY is the default value if a JOB statement is generated. 
When you supply your own JOB statement, use the NOTIFY = use rid 
keyword on the JOB statement if you wish to be notified when the job 
terminates. SUBMIT ignores the NOTIFY keyword unless it is generating 
a JOB statement. 

NONOTIFY 

specifies that a termination message will not be issued or placed in the 
broadcast data set. The NONOTIFY keyword is only recognized when a 
JOB statement has not been provided with the job that you are 
processing. 

SUBMIT Command 353 



Notes: 

• If any of the above types of data sets containing two or more jobs is 
submitted for processing, certain conditions apply. 
The SUBMIT processor will build a job card for the first job in the 
first data set, if none· was supplied, but will not build job cards for 
any other jobs in the data set(s). 
If the SUBMIT processor determines that the first job contains an 
error, none of the jobs is submitted. Once the SUBMIT processor 
submits a job for processing, errors occurring in the execution of that 
job have no effect on the submission of any remaining job(s) in that 
data set. 

• Any job card you supply should have a job name consisting of your 
userid and a single identifying character. If the jobname is not in this 
format, you will not be able to refer to it with the CANCEL 
command. You will be required to· specify the jobname in the 
STATUS command if the IBM -supplied exit has not been replaced by 
your installation and your job name is not your userid plus a single 
identifying character. 

• If you wish to provide a job card but you also want to be prompted 
for a unique jobname character, put your userid in the jobname field 
and follow it with blanks so that there is room for SUBMIT to insert 
the prompted-for character. This allows you to change jobnames 
without re-editing the J CL data set. 

• Once SUBMIT has successfully submitted a job for conventional batch 
processing, it will issue a 'jobname(jobid) submitted' message. The 
jobid is a unique job identifier assigned by the job entry subsystem. 

• This command may be used only by personnel who have been given 
the authority to do so by the installation management. 

• If SUBMIT is to generate a JOB statement preceding one or more job 
entry subsystem control cards, make the first card of your data set a 
comment card. If this is not done, SUBMIT will generate the JOB 
statement following any job entry subsystem control cards. 

Note: Data sets that are dynamically allocated by the SUBMIT command 
processor are not automatically freed when the command processor 
terminates. You must explicitly free dynamically allocated data sets. 

354 OS/VS2 TSO Command Language Reference 



Example 1 

Operation: Submit two jobs for conventional batch processing. 

Known: 
The names of the data sets that contain the jobs: 

ABTJQ. STRESS. CNTL 
ABTJQ.STRAIN.CNTL 

submit (stress, strain) 

Example 2 

Operation: Data sets may be concatenated and submitted as a single job. 

Known: 

JCL.CNTL(ASMFCLG): contains JCL for the job. 
MYDATA.DATA: contains the input data. 

submit (Jcl(asmfclg) mydata) 

This will cause a single background job to be submitted and will 
simultaneously concatenate a generated job card (if required), job control 
language, and the data. Each data set will not be submitted as a separate 
job. 

SUBMIT Command 355' 



356 OS/VS2 TSO Command Language Reference 



Appendix B: Program Product Commands 

ASM Command 

The ASM command is provided as part of the optional TSO ASM Prompter 
program product, which is available for a license fee. See as /TSO 
Assembler Prompter User's Guide, SC26-3740, for detailed information on 
this command. 

Use the ASM command to process assembler language data sets and 
produce object modules. The prompter requests required information and 
enables you to correct your errors at the terminal. 

COBOL Command 
The COBOL command is provided as part of the optional COBOL 
Prompter program product, which is available for a license fee. See IBM 
as (TSO) COBOL Prompter Terminal User's Guide and Reference, 
SC28-6433, for detailed information on this command. 

Use the COBOL command to compile American National Standard 
(ANS) COBOL programs. This command reads and interprets parameters 
for the OS Full American National Standard COBOL Version 3 or Version 
4 compiler and prompts you for any information that you have omitted or 
entered incorrectly. It also allocates required data sets and passes 
parameters to the compiler. 

COBOL also allows specification of the TEST operand to compile 
programs suitable for testing with the COBOL Interactive Debug program 
product (see TESTCOB command). 

CONVERT Command 

The CONVERT command is provided as part of the Code and Go 
FORTRAN program product, which is available for a license fee. See IBM 
System/360 as (TSO) Code and Go FORTRAN Processor Terminal 
User's Guide, SC28-6842, for detailed information on this command. 

The CONVERT command converts language statements contained in 
data sets to a form suitable for a compiler other than the one for which 
they were originally intended. The conversions that can be accomplished 
with this command are shown in Figure 20. 

FROM 

Free-form statements suitable 
for the Code and Go 
FORTRAN compiler 

Fixed-form statements 
suitable for the FORTRAN 
(G 1) compiler or the Code 
and Go FORTRAN compiler 

TO 

Fixed-form statements suitable 
for the FORTRAN compilers. 

Free-form statements suitable 
for the Code and Go FORTRAN 
compiler. 

Figure 20. Language Conversions Using the CONVERT Command 

Appendix B: Program Product Commands 357 



COpy Command 

The COpy command is provided as part of the optional TSO Data 
Utilities: COpy, FORMAT, LIST, MERGE program product, which is 
available for a license fee. See OS/MVT and OS/VS2 TSO Data Utilities: 
COPY, FORMAT, LIST, MERGE User's Guide and Reference, 
GC28-6765, for detailed information on this command. 

Use the COpy command to copy sequential or partitioned data sets. You 
can also use this command to: 

• Add members to or merge partitioned data sets. 
• Resequence line numbers of copied records. 
• Change the record length, the block size, and the record format when 

copying into a sequential data set. 

FORMAT Subcommand of EDIT 
The FORMAT subcommand is provided as part of the optional TSO Data 
Utilities: COPY, FORMAT, LIST, MERGE program product, which is 
available for a license fee. See OS/ MVT and OS/VS2 TSO Data Utilities: 
COPY, FORMAT, LIST, MERGE User's Guide and Reference, 
SC28-6765, for detailed information on this subcommand. 

Use the FORMAT subcommand to format textual output. This 
subcommand provides the facilities to: 

• Print a heading on each page. 
• Center lines of text between margins. 
• Control the amount of space for all four margins. 
• Justify left and right margins of text. 
• Number pages of output consecutively. 
• Halt printing when desired. 
• Print mUltiple copies of selected pages. 
• Control line and page length. 
• Control paragraph indentation. 

MERGE Subcommand of EDIT 
The MERGE subcommand is provided as part of the optional TSO Data 
Utilities: COpy, FORMAT, LIST, MERGE program product, which is 
available for a license fee. See OS/ MVT and OS/VS2 TSO Data Utilities: 
COPY, FORMAT, LIST, MERGE User's Guide and Reference, 
SC28-6765, for detailed information on this subcommand. 

Use the MERGE subcommand to: 

• Merge, into the data set being edited, all or part of itself. 
• Merge, into the data set being edited, all or part of another data set. 

FORMAT Command 

The FORMAT command is provided as part of the optional TSO Data 
Utilities: COpy, FORMAT, LIST, MERGE program product, which is 
available for a license fee. See OS/MVT and OS/VS2 TSO Data Utilities: 
COPY, FORMAT, LIST, MERGE User's Guide and Reference, 
SC28-6765, for detailed information on this command. 

358 OS/VS2 TSO Command Language Reference 



Use the FORMAT command to format textual output. This command 
provides the facilities to: 

• Print a heading on each page. 
• Center lines of text between margins. 
• Control the amount of space for all four margins. 
• Justify left and right margins of text. 
• Number pages of output consecutively. 
• Halt printing when desired. 
• Print multiple copies of selected pages. 
• Control line and page length. 
• Control paragraph identation. 
• Store a data set that has already been formatted. 
• Print all or part of a sequential or partitioned data set. 

FORT Command 
The FORT command is provided as part of the optional TSO FORTRAN 
Prompter program product, which is available for a license fee. See IBM 
System/360 OS (TSO) Terminal User's Supplement for FORTRAN IV 
(G 1) Processor and TSO FORTRAN Prompter, SC28-6855, for detailed 
information on this command. 

Use the FORT command to compile a FORTRAN IV (Gl) program. 
You will be prompted for any information that you have omitted or entered 
incorrectly. It also allocates required data sets and passes parameters to the 
FORTRAN IV (Gl) compiler. 

FORT also allows specification of the TEST operand to compile 
programs suitable for testing with the FORTRAN Interactive Debug 
program product (see the TESTFORT command). 

GOFORT Command 

The GOFOR T comma,nd is provided as part of the optional TSO Code and 
Go FORTRAN processor. See IBM System/360 OS (TSO) Code and Go 
FORTRAN Processor Terminal User's Guide, SC28-6842, for detailed 
information on this command. It may be used to compile, load and execute 
a source program that has previously been saved. The GOFORT command 
permits the execution of programs initially coded using the BCD character 
set; neither the RUN command nor the RUN subcommand of EDIT 
provides this capability. 

GOFORT also allows specification of the TEST operand to compile 
programs suitable for testing with the FORTRAN Interactive Debug 
program product (see the TESTFORT command). 

LIST Command 
The LIST command is provided as part of the optional TSO Data Utilities: 
COPY, FORMAT, LIST, MERGE program product, which is available for 
a license fee. See OS/MVT and OS/VS2 TSO Data Utilities: COPY, 
FORMAT, LIST, MERGE User's Guide and Reference, SC28-6765, for 
detailed information on this command. 

Appendix B: Program Product Commands 359 



Use the LIST command to display a sequential data set or a member of 
a partitioned data set. You can arrange fields within records for output; you 
can include or suppress record numbers; you can list all or part of a 
particular line of data; and you can list a single line of data, a group of 
lines, or a whole data set. 

MERGE Command 

The MERGE command is provided as part of the optional TSO Data 
Utilities: COPY, FORMAT, LIST, MERGE program product, which is 
available for a license fee. See OS/ MVT and OS/VS2 TSO Data Utilities: 
COPY, FORMAT, LIST, MERGE User's Guide and Reference, 
SC28-6765, for detailed information on this command. 

Use the MERGE command to: 

• MERGE a complete or part of a sequential or member of a 
partitioned data set into a sequential or member of a partitioned data 
set. 

• Copy a complete or part of a sequential or member of a partitioned 
data set into a new or (pre-allocated) empty sequential data set. 

• Copy a complete or part of a sequential or member of a partitioned 
data set into a new member of an existing partitioned data set. 

• Copy a complete or part of a sequential or member of a partitioned 
data set into a new or (pre-allocated) empty partitioned data set. 

PLI Command 

The PLI command is provided as part of the optional PL/I Optimizing 
compiler program product, which is available for a license fee. See OS 
PL/ I Optimizing Compiler: TSO User's Guide, SC33-0029, for detailed 
information on this command. The program product includes the PL/I 
Prompter. 

Use the PLI command to invoke the PL/I Optimizing compiler. The 
prompter will allocate required data sets and prompt you for any 
information that you have omitted or entered incorrectly, then it will pass 
control to the compiler. 

PLIC Command 

The PLIC command is provided as part of the optional PL/I Checkout 
compiler program product, which is available for a license fee. See OS 
PL/ I Checkout Compiler: TSO User's Guide, SC33-0033, for detailed 
information on this command. The program product includes the PL/I 
Prompter. 

Use the PLIC command to invoke the PL/I Checkout compiler. The 
prompter will allocate required data sets and prompt you for any 
information that you have omitted or entered incorrectly, then it will pass 
control to the compiler. 

Subcommands of the PLIC command are provided to aid checking-out of 
the PL/I program. These allow the programmer to intervene during 
execution of the program and temporarily modify it. 

360 OS/VS2 TSO Command Language Reference 



TESTCOB Command 

The TESTCOB command is provided as part of the optional COBOL 
Interactive Debug program product, which is available for a license fee. See 
IBM OS COBOL Interactive Debug Terminal User's Guide and Reference, 
SC28-6465, for detailed information on this command. Used with Full 
American National Standard COBOL Version 4, Compiler or the OS/VS 
COBOL Compiler, COBOL Interactive Debug enables the COBOL 
programmer to monitor and control the execution of his COBOL program 
from a terminal. It greatly simplifies the debugging of COBOL object 
programs by providing facilities that make errors readily apparent and easily 
correctable. 

TESTFORT Command 
The TESTFORT command is provided as part of the optional FORTRAN 
Interactive Debug program product, which is available for a license fee. See 
IBM FORTRAN Interactive Debug for os (TSO) and VM/370 (CMS) 
Terminal User's Guide, SC28-6885, for detailed information on this 
command. Used in conjunction with Code and Go FORTRAN or 
FORTRAN IV(Gl), FORTRAN Interactive Debug provides comprehensive 
capabilities for program monitoring and checkout. 

Appendix B: Program Product Commands 361 



362 OS/VS2 TSO Command Language Reference 



Appendix C: Access Method Services Commands ! 

Access Method Services is a multifunction service program that primarily 
establishes and maintains Virtual Storage Access Method (VSAM) data sets 
(see also Figure 4). The following Access Method Services commands 
provide the service functions applicable to VSAM data sets and are used in 
the same way as TSO commands at the terminal: 

ALTE changes attributes in catalog entries. 

BLDINDEX(BIX) builds alternate indexes. 

DEFINE (DEF) creates catalog entries for data sets. Subcommands are: 

ALIAS 
ALTERNATEINDEX(AIX) 
CLUSTER(CL) 
GENERATIONDATAGROUP(GDG) 
NONVSAM(NVSAM) 
PAGESPACE(PGSPC) 
PATH 
SPACE(SPC) 
USERCATALOG(UCAT) 

DELETE (DEL) deletes catalog entries. 

EXPORT (EXP) copies a data set for backup. 

EXPORTRA (XPRA) makes entries and data from a recoverable catalog 
portable. 

IMPORT (IMP) reads a backup copy of a data set. 

IMPORTRA (MPRA) reestablishes entries and data made portable by 
EXPORTRA. 

LISTCAT (LISTC) lists catalog entries. 

LISTCRA (LISTR) lists catalog entries in the the catalog recovery area 
(eRA). 

PRINT prints VSAM data sets. 

REPRO copies data sets and converts sequential and indexed-sequential data 
sets to VSAM format. 

RESETCAT (RCAT) synchronizes a damaged catalog with specified catalog 
recovery areas. 

VERIFY (VFY) causes a catalog to correctly record the end of a data set 
after a data set closing error may have caused the end to be recorded 
incorrectly. 

CNVTCAT converts the contents of an OS catalog or control volume into 
entries in an MVS or Release 3 catalog. 

For additional information about the syntax and function of these 
commands, refer to OS/VS2 Access Method Services. 

Appendix C: Access Method Services Commands 363 



364 OS/VS2 TSO Command Language Reference 



*operand 
CHANGE subcommand (EDIT) 61 
COpy subcommand (EDIT) 68 
DELETE subcommand (EDIT) 75 
INPUT subcommand (EDIT) 87 
INSERT/REPLACE/DELETE function (EDIT) 91 
LIST subcommand (EDIT) 93 
MOVE subcommand (EDIT) 96 
SAVE subcommand (EDIT) 111 
SCAN subcommand (EDIT) 115 
SUBMIT subcommand (EDIT) 119 

%operand (EXEC) 134 

abbreviating keyword operands 4 
AC operand (LINK) 152 
access method services commands 363 
ACCT operand (LOGON) 178 
action operand 

ATTN 285 
ERROR 295 
IF-THEN-ELSE 305 

ADD operand (PROTECT) 188 
ADDR operand 

LISTPSW (TEST) 257 
LISTTCB (TEST) 259 

address operand 
assignment of values function (TEST) 219 
AT subcommand (TEST) 221 
CALL subcommand (TEST) 225 
COpy subcommand (TEST) 227 
EQUATE subcommand (TEST) 237 
FREEMAIN subcommand (TEST) 239 
GO subcommand (TEST) 243 
LIST subcommand (TEST) 247 
LISTDCB subcommand (TEST) 251 
LISTDEB subcommand (TEST) 253 
OFF subcommand (TEST) 263 
QUALIFY subcommand (TEST) 265 
RUN subcommand (TEST) 267 
WHERE subcommand (TEST) 269 

aids to terminal users 7 
ALIAS operand 

DELETE 40 
LISTCAT 164 
RENAME 193 

ALIAS subcommand (DEFINE) 363 
ALL operand 

CHANGE subcommand (EDIT) 62 
HELP 143 
LISTCAT 164 

ALLOCATE 
command 17 
subcommand (EDIT) 57 

allocation of data sets 17 
ALLOCATION operand (LISTCAT) 164 
ALTER command 363 
AL TERNATEINDEX subcommand 363 
ampersand, rules for substitution of 279 
ASIS operand (EDIT) 46 

ASM 
command 357 
operand (EDIT) 44 
operand (RUN) 196 

assignment of values function (TEST) 219 
assignment statements (command procedures) 

READ 313 
READDV AL 315 
SET 319 

assignment of values function (TEST) 219 
AT subcommand (TEST) 221 
attention interruption 7 
ATTN statement 285 
attr-list-name operand (A TTRIB) 29 
ATTRIB command 27 
attributes for data sets 27 
ATTRLIST operand (FREE) 140 
A VBLOCK operand (ALLOCATE) 22 

basic TSO information 3 
BEGIN operand 

CONTINUE subcommand (OUTPUT) 343 
OUTPUT 338 

BFALN operand (ATTRIB) 30 
BFTEK operand (ATTRIB) 31 
BLDINDEX command 363 
BLKSIZE operand 

ALLOCATE 22 
ATTRIB 29 
EDIT 45 

BLOCK operand 
ALLOCATE 22 
EDIT 45 

BOTTOM subcommand (EDIT) 59 
BREAK operand (TERMINAL) 206 
broadcast messages 10 
BUFL operand (ATTRIB) 29 
BUFNO operand (ATTRIB) 29 
BUFOFF operand (ATTRIB) 32 
built-in functions (command procedures) 

&DATATYPE 282 
&EVAL 282 
&LENGTH 282 
&STR 282 
&SUBSTR 282 

CALL 
command 35 
operand (LOADGO) 173 
subcommand (TEST) 225 

CANCEL command 335 
cancelling batch jobs 329 
CAPS operand (EDIT) 46 
CATALOG operand 

ALLOCATE 24 
DELETE 39 
FREE 140 
LISTCAT 162 
LISTDS 168 

CHANGE subcommand (EDIT) 61 
changing modes of operation 52 
CHAR operand 

PROFILE 182 
TERMINAL 208 

CHAR48 operand (EDIT) 43 
CHAR60 operand (EDIT) 43 

Index 

Index 365 



character set supported in command procedure variables 
280 

character string evaluation 282 
CHECK operand 

RUN 197 
RUN subcommand (EDIT) 108 

CLASS operand (OUTPUT) 337 
CLEAR operand (TERMINAL) 207 
CLIST operand (ED IT) 44 
CLOSFILE statement 287 
CLUSTER operand 

DELETE 39 
LISTCAT 164 

CN operand (SEND) 202 
CNTL operand (EDIT) 44 
CNVTCAT command 363 
COBLIB operand 

LINK 149 
LOAD GO 172 

COBOL 
command 357 
operand 

EDIT 44 
RUN 196 

CODE operand (EXIT) 297 
coding reference 276 
command-name operand (WHEN) 273 
command procedures 275 
command procedure statements 283 

assignment 
READ 313 
READDVAL 315 
SET 319 

conditional 
DO-WHILE-END 293 
IF-THEN-ELSE 305 

control 
ATTN 285 
CONTROL 289 
DATA-ENDDATA 291 
ERROR 295 
EXIT 297 
GLOBAL 301 
GOTO 303 
PROC 309 
RETURN 317 
TERMIN 321 
WRITE 323 
WRITENR 323 

file-access 
CLOSFILE 
GETFILE 
OPENFILE 
PUTFILE 

comments 5 

287 
299 

307 
311 

concatenation of symbolic variables 279 
conditional statements (command procedures) 

DO-WHILE-END 293 
IF-THEN-ELSE 305 

CONLIST operand (CONTROL) 290 
context editing 50 
CONTINUE subcommand (OUTPUT) 343 
CONTROL statement 289 

366 OS/VS2 TSO Command Language Reference 

'1Ontr0j' ~tatements (command procedures) 
I ATTN 287 

CONTROL 289 
DATA-ENDDATA 291 
ERROR 295 
EXIT 297 
GLOBAL 301 
GOTO 303 
PROC 309 
RETURN 317 
TERMIN 321 
WRITE 323 
WRITENR 323 

control variables (command procedures) 
&LASTCC 281 
&MAXCC 281 
&SYSDATE 281 
&SYSDLM 281 
&SYSDVAL 281 
&SYSICMD 281 
& SYSNEST 281 
& SYSPCMD 281 
& SYSPREF 281 
& SYSPROC 281 
&SYSSCAN 281 
& SYSSCMD 281 
& SYSTIME 281 
&SYSUID 281 

controlling output of jobs 330 
CONVERT command 357 
COUNT operand (AT subcommand of TEST) 222 
count operand 

CHANGE subcommand (EDIT) 61 
COpy subcommand (EDIT) 68 
DELETE subcommand (EDIT) 75 
DOWN subcommand (EDIT) 77 
LIST subcommand (EDIT) 93 
MOVE subcommand (EDIT) 96 
SCAN subcommand (EDIT) 115 
UP subcommand (EDIT) 127 

COpy 
command 358 
subcommand (TEST) 227 
subcommand (EDIT) 67 

CP operand (TEST) 214 
CREATION operand (LISTCAT) 164 
CYLINDERS operand (ALLOCATE) 22 

DATA operand 
EDIT 44 
LISTCAT 164 
PROTECT 189 

DATA-ENDDATA statement 291 
data-set-name operand 

CALL 35 
EDIT 42 
EXEC 134 
LINK 148 
LISTDS 168 
LOAD GO 172 
PROTECT 188 
SAVE subcommand (EDIT) 111 
SAVE subcommand (OUTPUT) 349 
SUBMIT 353 
TEST 214 



data set naming conventions 11 
data-type operand 

EQUATE subcommand (TEST) 237 
LIST subcommand (TEST) 247 

DATASET operand 
ALLOCATE 19 
FREE 140 

DC operand (LINK) 152 
DCBS operand (LINK) 152 
DDNAME operand (FREE) 140 
DEFER operand (AT subcommand of TEST) 222 
DEFINE command 363 
definitions of command procedure terminology 

simple expressions 278 
comparative expressions 278 
logical expressions 278 

DELETE 
command 37,363 
operand 

ALLOCATE 24 
FREE 140 
PROTECT 188 
OUTPUT 338 

subcommand 
EDIT 75 
TEST 231 

delimiters 5 
DEN operand (ATTRIB) 33 
D EST operand 

ALLOCATE 22 
FREE 140 
OUTPUT 338 

DIAGNS operand (ATTRIB) 32 
DIR operand (ALLOCATE) 22 
DISCONNECT operand (LOGOFF) 175 
displaying status of jobs 329 
DO-WHILE-END statements 293 
DROP subcommand (TEST) 233 
DSORG operand (ATTRIB) 32 
DSNAME operand 

ALLOCATE 19 
FREE 140 

DUMMY operand (ALLOCATE) 19 

ED IT command 41 
edit mode 50 
editing 

context 50 
line number 50 

EDITSAVE qualifier 53 
END 

operand 
WHEN 273 
CONTROL 290 

command 131 
subcommand 

EDIT 79 
OUTPUT 345 
TEST 235 

end-line-number operand 
RENUM subcommand (EDIT) 105 
SAVE subcommand (EDIT) 112 

entering information at a terminal 3 
ENTRIES operand (LISTCA T) 163 
entryname operand (DELETE) 38 
EP operand (LOADGO) 173 
EQUATE 

operand (GETMAIN subcommand of TEST) 241 
subcommand (TEST) 237 

ERASE operand (DELETE) 39 
EROPT operand (ATTRIB) 31 
error codes (command procedures) 283 
ERROR statement 295 
EXEC 

command 133 
subcommand (EDIT) 81 

EXIT statement 297 
EXPDT operand (A TTRIB) 30 
EXPIRATION operand (LISTCAT) 164 
explicit form of EXEC 133 
EXPORT command 363 
EXPORTRA command 363 
expressions in command procedures 

simple 278 
comparative 278 
logical 278 

FIELD operand 
LISTDCB subcommand (TEST) 251 
LISTDEB subcommand (TEST) 253 
LISTTCB subcommand (TEST) 259 

file access statements 
CLOSFILE 287 
GETFILE 299 
OPENFILE 307 
PUTFILE 311 

FILE operand 
ALLOCATE 20 
DELETE 39 
FREE 140 

filename operand 
CLOSFILE 287 
GETFILE 299 
OPEN FILE 307 
PUTFILE 311 

FIND subcommand (EDIT) 83 
FIXED operand (RUN) 197 
FLUSH operand (CONTROL) 289 
foreground-initiated background commands 327 
FORMAT 

command 358 
subcommand (EDIT) 358 

FORT 
command 359 
operand (RUN) 196 

FORTGI operand (EDIT) 44 
FORTH operand (EDIT) 44 
FORTLIB operand 

LINK 149 
LOADGO 173 

FREE 
command 139 
operand (RUN) 197 

FREEMAIN subcommand (TEST) 239 
FUNCTION operand (HELP) 143 
functions available for command procedures 275 

Index 367 



generated JOB statement 327 
GENERATIONDAT AGROUP operand 

DELETE 40 
LISTCAT 164 

GENERATIONDATAGROUP(GDG) subcommand 
(DEFINE) 363 

GETFILE statement 299 
GETMAIN subcommand (TEST) 241 
GLOBAL statement 301 
GO operand 

RUN 197 
RUN subcommand (EDIT) 109 

GO subcommand (TEST) 243 
GOFORT 

command 359 
operand 

EDIT 44 
RUN 197 

GO TO statement 303 
GROUP operand (LOGON) 179 

HELP 
command 143 
subcommand 

EDIT 85 
OUTPUT 347 
TEST 245 

HERE operand 
CONTINUE subcommand (OUTPUT) 343 
OUTPUT 338 

HISTO R Y operand 
LISTALC 155 
LISTCAT 164 
LISTDS 168 

HOLD operand 
ALLOCATE 22 
FREE 140 
LOGOFF 175 
OUTPUT 338 

I operand (INPUT subcommand of EDIT) 87 
IF-THEN-ELSE statements 305 
IMAGE operand (TAB SET subcommand of EDIT) 122 
implicit form of EXEC 133 
IMPORT command 363 
IMPORTRA command 363 
INCR operand 

COpy subcommand (EDIT) 68 
MOVE subcommand (EDIT) 96 

incr operand (SAVE subcommand of EDIT) 112 
increment operand 

INPUT subcommand (EDIT) 87 
RENUM subcommand (EDIT) 105 

INDEX operand (LISTCAT) 164 
informational messages 9 
INPUT 

operand 
ATTRIB 30 
TERMINAL 206 
OPENFILE 307 

subcommand (EDIT) 107 

368 OS/VS2 TSO Command Language Reference 

input mode 48 
insert-data operand (INSERT subcommand of EDIT) 89 
INSERT subcommand (EDIT) 89 
insert/replace/delete function (EDIT) 91 
integer operand 

FREEMAIN subcommand (TEST) 239 
GETMAIN subcommand (TEST) 241 

INTERCOM operand (PROFILE) 183 
interpretation of HELP information 10 

jobname operand 
CANCEL 335 
OUTPUT 337 
STATUS 351 

KEEP operand 
ALLOCATE 24 
FREE 140 
OUTPUT 338 

KEYLEN operand (ATTRIB) 33 
keyword operands 4 
keyword-parameters operand (PROC) 309 

LABEL operand 
ALLOCATE 23 
LISTDS 168 

LENGTH operand 
COpy subcommand (TEST) 227 
EQUATE subcommand (TEST) 238 
LIST subcommand (TEST) 248 

LET operand 
LINK 150 
LOADGO 173 

LEVEL operand 
LISTCAT 163 
LISTDS 168 

LIB operand 
LINK 149 
LOADGO 172 
RUN 196 
RUN subcommand (EDIT) 109 

LIMCT operand (ATTRIB) 32 
line continuation 5 
line disconnection 53 
line number editing 50 
line-number operand 

INPUT subcommand (EDIT) 87 
input/replace/delete function (EDIT) 91 

line-number-1 operand 
CHANGE subcommand (EDIT) 61 
DELETE subcommand (EDIT) 75 
LIST subcommand (EDIT) 93 
SCAN subcommand (EDIT) 115 

line-number-2 operand 
CHANGE subcommand (EDIT) 61 
DELETE subcommand (EDIT) 75 
LIST subcommand (EDIT) 93 
SCAN subcommand (EDIT) 115 

LINE operand 
EDIT 46 
PROFILE 183 



LINES operand (TERMINAL) 205 
LlNESIZE operand (TERMINAL) 
line 1 operand 

COpy subcommand (EDIT) 
MOVE subcommand (EDIT) 

line2 operand 
COpy subcommand (EDIT) 
MOVE subcommand (EDIT) 

line3 operand 
COpy subcommand (EDIT) 
MOVE subcommand (EDIT) 

line4 operand 
COpy subcommand (EDIT) 
MOVE subcommand (EDIT) 

LINK command 
LIST 

command 359 
operand 

CONTROL 
EXEC 134 
LINK 150 
PROFILE 
PROTECT 

subcommand 
EDIT 93 
TEST 247 

147 

290 

184 
188 

LlSTALC command 155 
LlSTBC command 159 
LlSTCA T command 161 
LlSTCRA command 363 

67 
95 

67 
95 

68 
96 

68 
96 

207 

LlSTDCB subcommand (TEST) 251 
LlSTDEB subcommand (TEST) 253 
LlSTDS command 167 
LlSTMAP subcommand (TEST) 255 
LlSTPSW subcommand (TEST) 257 
LlSTTCB subcommand (TEST) 259 
LMSG operand 

RUN 197 
RUN subcommand (EDIT) 108 

LOAD 
operand 

LINK 148 
TEST 214 

subcommand (TEST) 261 
load-module-name operand 

DELETE subcommand (TEST) 231 
QUALIFY subcommand (TEST) 265 
WHERE subcommand (TEST) 269 

LOADGO command 171 
LOGOFF command 175 
LOGON 

command 177 
operand (SEND) 201 

LPREC operand (RUN) 197 
LRECL operand 

ATTRIB 30 
EDIT 46 

MAIL operand 
LlSTBC 159 
LOGON 178 

MAIN operand (CONTROL) 290 
MAP operand 

LINK 149 
LOADGO 173 

MAXVOL operand (ALLOCATE) 23 
MEMBERS operand 

LlSTALC 156 
LlSTDS 168 

MERGE command 360 
MERGE subcommand (EDIT) 358 
messages 

broadcast 10 
information 9 
mode 8 
prompting 9 

MOD operand (ALLOCATE) 20 
MODE operand (PROFILE) 184 
MOVE subcommand (EDIT) 95 
MSG operand (CONTROL) 290 
MSGID operand 

HELP 143 
PROFILE 184 

MSVGP operand (ALLOCATE) 21 
MULTIPLE operand 

EQUATE subcommand (TEST) 
LIST subcommand (TEST) 

name operand 
GLOBAL 301 
READ 313 
READDVAL 315-

NAME operand 
LISTCAT 164 
LOADGO 173 

248 
238 

naming conventions for TSO data sets 11 
NCAL operand (LINK) 150 
NCP operand (ATTRIB) 30 
NE operand (LINK) 151 
new-name operand (RENAME) 193 
NEW operand 

ALLOCATE 20 
EDIT 43 

new-line-number operand 
RENUM subcommand (EDIT) 105 
SAVE subcommand (EDIT) 112 

NEWCLASS operand (OUTPUT) 338 
NEXT operand 

OUTPUT 338 
CONTINUE subcommand (OUTPUT) 343 

NOBREAK operand (TERMINAL) 206 
NOCALL operand 

LOADGO 173 
NOCLEAR operand (TERMINAL) 207 
NOCONLIST operand (CONTROL) 290 
NOCHAR operand 

PROFILE 183 
TERMINAL 208 

NOCP operand (TEST) 214 
NODC operand (LINK) 152 
NODEFER operand (AT subcommand of TEST) 222 
NO ERASE operand (DELETE) 39 
NOFLUSH operand (CONTROL) 289 
NOaO operand 

RUN 198 
RUN subcommand (EDIT) 109 

Index 369 



NOHOLD operand 
ALLOCATE 22 
FREE 140 
OUTPUT 338 

NO INPUT operand (TERMINAL) 206 
NOINTERCOM operand (PROFILE) 183 
NOKEEP operand (OUTPUT) 338 
NOLET operand 

LOADGO 173 
LINK 150 

NOLINE operand (PROFILE) 183 
NO LINES operand (TERMINAL) 205 
NOLIST operand 

EXEC 134 
LINK 150 
CONTROL 290 

NOMAP operand 
LINK 149 
LOADGO 173 

NOMAIL operand 
LISTBC 159 
LOGON 178 

NOM ODE operand (PROFILE) 184 
NOMSG operand (CONTROL) 290 
NOMSGID operand (PROFILE) 184 
NON CAL operand (LINK) 150 
NONE operand (LINK) 151 
NONOTICES operand 

LISTBC 159 
LOGON 178 

NONOTIFY operand 
AT subcommand of TEST 222 
SUBMIT 353 

NONUM operand (EDIT) 45 
NONVSAM operand 

DELETE 40 
LISTCAT 164 

NOOL operand (LINK) 152 
NOOVL Y operand (LINK) 151 
NO PAUSE operand 

CONTINUE subcommand of OUTPUT 343 
OUTPUT 338 
PROFILE 184 
RUN 198 
RUN subcommand of EDIT 109 

NOPOINTER operand (COpy subcommand of TEST) 
227 

NOPREFIX operand (PROFILE) 184 
NOPRINT operand 

LINK 149 
LOADGO 172 

NOPROMPT operand 
CONTROL 290 
EXEC 134 
INPUT subcommand (EDIT) 88 
PROFILE 183 

NOPURGE operand 
CANCEL 335 
DELETE 39 

NOPWREAD operand (PROTECT) 189 
NOREFR operand (LINK) 151 
NO RENT operand (LINK) 151 

370 OS/VS2 TSO Command Language Reference 

NORES operand (LOADGO) 173 
NO REUS operand (LINK) 151 
NOSAVE operand (END subcommand of EDIT) 79 
NOSCAN operand (EDIT) 45 
NOSCRATCH operand (DELETE) 39 
NOSCTR operand (LINK) 151 
NOSECONDS operand (TERMINAL) 206 
NOSTORE operand 

RUN 198 
RUN subcommand (EDIT) 109 

NOSYMLIST operand (CONTROL) 290 
NOTERM operand 

LINK 152 
LOADGO 172 

NOTEST operand 
LINK 152 
RUN 197 
RUN subcommand of EDIT 108 

NOTICES operand 
LISTBC 159 
LOGON 178 

NOTIFY operand 
AT subcommand of TEST 222 
SUBMIT 353 

NOTIMEOUT operand (TERMINAL) 206 
NOTRAN operand (TERMINAL) 208 
NOW operand (SEND) 201 
NOWAIT operand (SEND) 202 
NOWRITE operand (PROTECT) 189 
NOWTPMSG operand (PROFILE) 184 
NOXCAL operand (LINK) 150 
NOXREF operand (LINK) 150 
NUM operand (EDIT) 45 

OBJECT operand 
RUN 198 
TEST 214 

OFF 
operand 

ATTN 285 
ERROR 295 
SCAN subcommand (EDIT) 115 
T ABSET subcommand (EDIT) 122 
VERIFY subcommand (EDIT) 129 

subcommand (TEST) 263 
offset operand (WHERE subcommand of TEST) 269 
OlD CARD operand (LOGON) 179 
OL operand (LINK) 152 
old-line-number operand 

RENUM subcommand (EDIT) 105 
SAVE subcommand (EDIT) 112 

old-name operand (RENAME) 193 
OLD operand 

ALLOCATE 20 
EDIT 43 

ON operand 
SCAN subcommand (EDIT) 115 
T ABSET subcommand (EDIT) 122 
VERIFY subcommand (EDIT) 129 

OPENFILE statement 307 
operands 

keyword 4 
positional 4 



OPERANDS operand (HELP) 143 
OPERATOR operand (SEND) 202 
operators in command procedures 

arithmetic 278 
comparison 278 
logical 278 

OPT operand 
RUN 197 
RUN subcommand (EDIT) 108 

OPTCD operand (ATTRIB) 31 
OUTFILE operand (LISTCAT) 163 
OUTPUT command 337 
OUTPUT operand 

ATTRIB 30 
OPENFILE 307 

OVLYoperand (LINK) 151 

PAGESPACE 
operand 

DELETE 40 
LISTCAT 164 

subcommand (DEFINE) 363 
parameter-string operand (CALL) 35 
parameters operand 

LOAD GO 172 
TEST 214 

PARM operand (CALL subcommand of TEST) 225 
PARALLEL operand (ALLOCATE) 23 
password data set 189 
passwords, specifying 14 
password operand (PROTECT) 188 
PATH subcommand (DEFINE) 363 
PAUSE operand 

CONTINUE subcommand (OUTPUT) 343 
OUTPUT 338 
PROFILE 183 
RUN 198 
RUN subcommand (EDIT) 109 

PERFORM operand (LOGON) 179 
PLI 

command 360 
operand 

EDIT 43 
RUN 196 

PLIBASE operand 
LINK 149 
LOAD GO 172 

PLIC command 360 
PLICMIX operand 

LINK 149 
LOAD GO 172 

PLIF operand (EDIT) 43 
PLILIB operand 

LINK 149 
LOAD GO 172 

POINTER operand (COpy subcommand of TEST) 227 
POSITION operand (ALLOCATE) 23 
position operand (FIND subcommand of EDIT) 83 
positional-specification operand (PROC) 309 
positional-parameters operand (PROC) 309 
PREFIX operand (PROFILE) 184 

PRINT 
command 363 
operand 

LINK 149 
LOADGO 172 

January II, 1980 

LIST subcommand (TEST) 248 
LISTDCB subcommand (TEST) 251 
LISTDEB subcommand (TEST) 253 
LISTMAP subcommand (TEST) 255 
LISTPSW subcommand (TEST) 257 
LISTTCB subcommand (TEST) 259 
OUTPUT 337 

PRIV ATE operand (ALLOCATE) 23 
PROC operand (LOGON) 178 
PROC statement 309 
procedure-name operand (EXEC) 134 
processing batch jobs 327 
PROFILE 

command 181 
subcommand (EDIT) 103 

program-name operand (LOAD subcommand of TEST) 
261 

program product commands 357 
PROMPT operand 

EXEC 134 
INPUT subcommand (EDIT) 87 
PROFILE 183 
CONTROL 289 

PROTECT command 187 
PURGE operand 

CANCEL 335 
DELETE 39 

PUTFILE statement 311 
PWREAD operand (PROTECT) 189 
PWWRITE operand (PROTECT) 189 

QUALIFY subcommand (TEST) 265 
QUIT operand (EXIT) 297 
quoted string notation 62 

R operand (INPUT subcommand of EDIT) 87 
READ statement 313 
READDVAL statement 315 
RECFM operand (ATTRIB) 32 
RECONNECT operand (LOGON) 179 
recovering data after line disconnection 53 
REFR operand (LINK) 151 
RELEASE operand (ALLOCATE) 24 
RENAME command 193 
RENT operand (LINK) 151 
RENUM 

operand (SAVE subcommand of EDIT) 111 
subcommand (EDIT) 105 

REPLACE operand (PROTECT) 188 
REPRO command 363 
RES operand (LOADGO) 173 
RESETCAT command 363 
RETPD operand (ATTRIB) 30 
RETURN operand (CALL subcommand of TEST) 225 
RETURN statement 317 
REUS operand (LINK) 150 
ROUND operand (ALLOCATE) 24 

Index 371 



RUN 
command 195 
subcommand (EDIT) 107 
subcommand (TEST) 267 

SAVE 
operand 

END subcommand (EDIT) 79 
SEND ,202 

subcommand (EDIT) 111 
subcommand (OUTPUT) 349 

SCAN 
operand (EDIT) 45 
subcommand (EDIT) 115 

SCRATCH operand (DELETE) 39 
SCRSIZE operand (TERMINAL) 207 
SCTR operand (LINK) 151 
SECONDS operand (TERMINAL) 206 
SEND 

command 201 
subcommand (EDIT) 117 

SET statement 319 
SHR operand (ALLOCATE) 20 
SIZE operand 

LINK 151 
LOAD GO 173 
LOGON 178 
RUN 198 
RUN subcommand (EDIT) 109 

SMSG operand 
RUN 197 
RUN subcommand (EDIT) 108 

SNUM operand (LIST subcommand of EDIT) 93 
SOURCE operand (RUN) 198 
SP operand 

FREE MAIN subcommand (TEST) 239 
GETMAIN subcommand (TEST) 241 

SPACE 
operand 

ALLOCATE 21 
DELETE 40 
LISTCAT 164 

subcommand (DEFINE) 363 
SPREC operand (RUN) 197 
statements 

(See command procedure statements) 
STATUS 

command 351 
operand 

LISTALC 155 
LISTDS 168 

STORE operand 
RUN 198 
RUN subcommand (EDIT) 109 

string operand 
CHANGE subcommand (EDIT) 61 
COpy subcommand (EDIT) 68 
FIND subcommand (EDIT) 83 
insert/ replace/ delete function (EDIT) 91 
MOVE subcommand (EDIT). 96. 
TERMIN 321 

372 OS/VS2 TSO Command Language Reference 

Page of GC28-0646-4 
As Updated January 11, 1980 
By TNL GN28-4699 

subcommand-list operand (AT subcommand of TEST) 
222 . 

subcommands 
explanation of 5 
EDIT 55 
TEST 215 
OUTPUT 340 

SUBMIT 
command 353 
subcommand (EDIT) 119 

submitting batch jobs 327 
substitution of 

symbolic variables 279 
concatenated variables 279 
double ampersands 279 

symbol operand 
DROP subcommand (TEST) 233 
EQUATE subcommand (TEST) 237 

symbolic substitution, rules for symbolic variables 279 
SYMLIST operand (CONTROL) 290 
syntax notation 6 
SYNTAX operand (HELP) 143 
SYSNAMES operand (LIST ALC) 156 
SYSOUT operand 

ALLOCATE 20 
FREE 141 

SYSRC operand (WHEN) 273 
system-provided aids 7 

TAB SET subcommand (EDIT) 121 
tabulation characters 52 
target operand (GOTO) 303 
TCB operand (QUALIFY subcommand of TEST) 265 
TERM operand 

LINK 152 
LOADGO 172 

TERMIN statement 321 
TERMINAL command 205 
terminal, using a 3 
TEST 

addressing considerations 214.1 
addressing conventions associated with TEST 212 
command 211 
examples of valid addresses 214.2 
operand 
restrictions on the use of TEST 214.1 
symbols 214. 1 
types of addresses use with TEST 212 
when to use 211 

LINK 152 
RUN 197 
RUN subcommand (EDIT) 108 

TESTCOB command 361 
TESTFORT command 361 
TEXT operand (EDIT) 44 
text operand 

SEND 201 
WRITE statement 323 
WRITENR statement 323 

/ 

~ 



TIME command 271 
TIMEOUT operand (TERMINAL) 206 
TOP subcommand (EDIT) 123 
TRACKS operand (ALLOCATE) 22 
TRAN operand (TERMINAL) 207 
TRTCH operand (ATTRIB) 33 
TSO, basic information 3 

UCOUNT operand (ALLOCATE) 23 
UNCAT ALOG operand 

ALLOCATE 24 
FREE 140 

UNIT operand (ALLOCATE) 22 
UNNUM 

operand (SAVE subcommand of EDIT) 112 
subcommand (EDIT) 125 

UP subcommand (EDIT) 127 
UPDATE operand (OPENFILE) 307 
user-identity operand (LOGON) 178 
USER operand 

SEND 201 
USERCAT ALOG 

operand 
DELETE 40 
LISTCAT 164 

subcommand (DEFINE) 363 
USING operand (ALLOCATE) 23 

using a terminal 3 

value-list operand (EDIT) 134 
VERIFY 

command 363 
subcommand (EDIT) 129 

VL operand (CALL subcommand of TEST) 225 
VOLUME operand 

ALLOCATE 21 
LISTCAT 164 

VSBASIC operand 
EDIT 44 
RUN 197 

VSEQ operand (ALLOCATE) 23 

WAIT operand (SEND) 202 
WHEN command 273 
WHERE subcommand (TEST) 269 
WRITE statement 323 
WRITENR statement 323 
WTPMSG operand (PROFILE) 184 

XCAL operand (LINK) 150 
XREF operand (LINK) 150 

Index 373 



GC28·0646-4 

0 
rn ...... 
< rn 
I\) 

~ 
0 
0 
0 
3 
3 
AI 

5-
r-
AI 
::l cc 
C 

c§ 
::c 
(1) 

c;t 
; 
::l 
Q 
en 
w ..... 
<;' 
w 
S 

'"0 
~ 

S' 
S 
Q. 

S' 
c en 
~ 
G') 
0 
~ 
6 
~ -- - - cp --- - ~ - - ---- - --- - ---- - - ---------- - . -



~ o 
Z 

OS/VS2 TSO Command Language Reference 

GC28-0646-4 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, 
and operators of IBM systems. This form may be used to communicate your views about this 
pUblication. They will be sent to the author's department for whatever review and action, ifany, 
is deemed appropriate. 

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted 
information, in any form, for any and all purposes, without obligation of any kind to the sub
mitter. Your interest is appreciated. 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, 
to your IBM representative or to the IBM branch office serving your locality. 

Possible topics for comments are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If comments apply to a Selectable Unit, please provide the name of the Selectable Unit _____ . 

If you wish a reply, give your name and mailing address: 

Please circle the description that most closely describes your occupation. 

(Q) (U) (X) (Y) 

Customer Install System System System 
Mgr. Consult. Analyst Prog. 

(Z) (F) 

Appllca. System 
Prog. Oper. 

(I) 

I/O 
Oper. 

Te 
Op 

~ 
L:J 

(S) (P) (A) (B) (C) (D) (R) (G) (J) (E) (N) (T) 

IBM System Prog. System System Applica. Dev. Compo System I/O Ed. Cust. Tech. 
Eng. Sys. Analyst Prog. Prog. Prog. Prog. Oper. Oper. Dev. Eng. Staff 

Rep. Rep. Rep. 

Number of latest Newsletter associated with this publication: _____________ _ 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, 
an IBM office or representative will be happy to forward your comments.) 



GC28-0646-4 

Reader's Comment Form 

Fold and tape Please Do Not Staple 

I I II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

I nternational Business Machines Corporation 
Department 058, Building 706-2 
PO Box 390 
Poughkeepsie, New York 12602 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape Please Do Not Staple Fold and tape 

==-= =® - - -------- - ---- .- - -----.-----_.- 6C28-0646-4 

(') 

S 
Q 
'TI o 
ii 
» a 
::I 
IJQ 

r-
5· 
to 



Q) 

o 
z 

OSjVS2 MVS JCL 

GC28-0692-4 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, 
and operators of IBM systems. This form may be used to communicate your views about this 
publication. They will be sent to the author's department for whatever review and action, if any, 
is deemed appropriate. 

IBM may use or distribute any of the informatipn you supply in any way it believes appropriate 
without incurring any obligation whatever. You may, of course, continue to use the information 
you supply. 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, 
to your IBM representative or to the IBM branch office serving your locality. 

Possible topics for comments are: 

Clarity Accuracy Comp leteness Organization Coding Retrieval Legibility 

If comments apply to a Selectable Unit, please provide the name of the Selectable Unit ___ _ 

If you wish a reply, give your name and mailing address: 

Please circle the description that most closely describes your occupation. 

(Q) (U) (X) (Y) 

Customer Install System System System 
Mgr. Consult. Analyst Prog. 

(Z) (F) 

Applica. System 
Prog. Oper. 

(I) 

I/O 
Oper. 

(L) 

Term. 
Oper. 

~ 
L:J 

(S) ,(P) (A) (B) (C) (D) (R) (G) (J) (E) (N) (T) 

IBM System Prog. System System Applica. Dev. Compo System I/O Ed. Cust. Tech. 
Eng. Sys. Analyst Prog. Prog. Prog. Prog. Oper. Oper. Dev. Eng. Staff 

Rep. Rep. Rep. 

Number of latest Newsletter associated with this publication: ______ --_____ _ 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, 
an IBM office or representative will be happy to forward your comments.) 



GC28-0692-4 

Reader's Comment Form 

Fold and tape 

Fold and tape 

--- -® ----- -'---- ---- -... ----- - - ------.----'-'1IiI!I'" 

Please Do Not Staple 

""" 
BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

POSTAGE WILL BE PAID BY ADDRESSEE: 

I nternational Business Machines Corporation 
Department 058, Building 706-2 
PO Box 390 
Poughkeepsie, New York 12602 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

I 
I 
I 
I 
I 
I 

- - - - - - - - - - - - - - - - - - - - - -I 
Please Do Not Staple Fold and tape 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 


