
Systems

GC28-0984-1
File No. S370-34

OS/VS2 MVS Overview

Your opinions, please ...

This manual will be updated to reflect MVS at an overview
level. You can submit your opinions about the kinds of
information that you would like published in this manual.
Use the reader's comment or MVS Overview input formes)
at the back of this manual and send your information to:

IBM Corporation
Programming Publications
Department D58, Building 706-2
P.O. Box 390
Poughkeepsie, New York 12602
ATTN: MVS Overview

--------- --------- ~ ----- - - -------,.------ - .. -

Second Edition (May, 1980)

This is a major revision of, and obsoletes, GC28-0984-0. See the Summary of Amendments
following the Contents for a summary of the changes that have been made to this manual.

This edition applies to release 3.8 of OS/VS2 MVS, and to all subsequent releases and
modifications until otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370
Bibliography, GC20-0001, for the editions that are applicable and current.

It is possible that this material may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming or service in your country.

Publications are not stocked at the address given below; requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for reader's comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, Department 058, Building 706-2,
PO Box 390, Poughkeepsie, New York 12602. IBM may use or distribute any of the information
you supply in any way it believes appropriate without incurring any obligation whatever. You
may, of course, continue to use the information you supply.

©Copyright International Business Machines Corporation 1978, 1980

/

I.
~i

•

u

Preface

This book describes the main features of MVS. It explains each of these
features and describes the flow of work through the major parts of the
system. It does not, however, describe every feature of the system. The
emphasis here is on what MVS does and how it accomplishes its objectives.

The book is intended for a general audience, but some knowledge of
operating systems is necessary.

Chapter 1 is an introduction to the basic features of MVS. It shows how
MVS accomplishes its main objective of doing more work. Those who
require only a high-level overview of the system can obtain this from
Chapter 1.

Chapters 2 - 10 provide detailed information on each of the concepts
Chapter 1 introduces. Chapters 2 - 10 are, generally speaking, a
chronological view of the system. That is, they take the reader from the
concepts of virtual storage through initializing the system to entering,
scheduling, and supervising work. The main topics they discuss are MVS,
the System Resource Manager, Job Entry Subsystems, I/O, Error Recovery,
and Multiprocessing.

Chapter 11 is an overview of the programs that an installation can use to
monitor MVS system activity and to measure MVS system performance.
These programs include the system management facilities (SMF), the
Resource Measurement Facility (RMF), and the MVS tracing and dumping
facilities (such as system trace, the generalized trace facility (GTF), and
SNAP and ABEND dumps).

There are no prerequisites to this publication; however, a number of
topics require a familiarity with assembler language programming. Related
publications are:

OS/VS2 System Programming Library: Initialization and Tuning Guide,
GC28-0681

OS/VS2 MVS Release Guide, GC28-0707
OS/VS2 System Programming Library: System Generation Reference,

GC26-3792
OS/VS2 System Programming Library: Supervisor, GC28-0628
OS/VS2 Supervisor Services and Macro Instructions, GC28-0683
OS/VS2 MVS Multiprocessing: An Introduction and Guide to Writing

Operating and Recovery Procedures, GC28-0952
OS/VS2 Conversion Notebook, GC28-0689
OS/VS2 MVS Performance Notebook, GC28-0886
OS/VSl to OS/VS2 Conversion Notebook, GC28-0953
OV/VS2 System Modification Program (SMP) System Programmer's Guide,

GC28-0673
Operator's Library: OS/VS2 MVS System Commands, GC28-0229
OS/VS2 MVS JCL, GC28-0692
Operator's Library: OS / VS2 MVS JES2 Commands, GC23-0007
Operator's Library: OS/VS2 MVS JES3 Commands, GC23-0008
OS/VS2 MVS System Programming Library: JES2, GC23-0001
OS/VS2 MVS System Programming Library: JES3, GC28-0608

Preface iii

iv OS/VS2 MVS Overview

OS/VS2 System Programming Library: Job Management, GC28-0627
Introduction to JES3, GC28-0607
OS/VS2 MVS JES3 Overview, GC23-0038
OS/VS2 System Programming Library: Debugging Handbook, GC28-0708
OS/VS2 System Programming Library: System Management Facilities

(SMF), GC28-6712
OS/VS2 System Programming Library: Supervisor, GC28-07S3
OS/VS2 System Programming Library: Data Management, GC26-3830
OS/VS2 System Programming Library: Service Aids, GC28-0647
OS/VS2 System Programming Library: SYS1.LOGREC Error Recording,

GC28-0677
System Programming Library: TSO, GC28-0629
OS/VS2 Supervisor Services and Macro Instructions, GC28-0683
OS/VS2 MVS Diagnostic Techniques, GC28-072S
OS/VS Environmental Recording Editing and Printing (EREP) Program,

GC28-0772
OS/VS TCAM Concepts and Applications, GC30-2049
OS/VS2 Interactive Problem Control System (IPCS) User's Guide and

Reference, GC34-2006
Operator's Library: Network Job Entry Facility for JES2, Commands,

SC23-0011
Network Job Entry Facility for JES2 General Information Manual,

GC23-0010
Network Job Interface General Information Manual, GH20-1941
JES3 Networking General Information Manual, GH20-2204
OS/VS2 MVS Resource Measurement Facility (RMF): General Information

Manual, GC28-0921
OS/VS2 MVS Resource Measurement Facility (RMF): Reference and User's

Guide, SC28-0922
Introduction to VTAM, GC27-6987
VT AM Concepts and Planning, GC27 -6998
IBM Teleprocessing System Summary, GA24-3090
System Network Architecture General Information, GA27-3102
IBM System Journal, Volume 17, Number 3, 1978
Service Level Reporter (SLR) General Information Manual, GH19-6028
Introduction to IBM Data Processing Systems, GC20-1684
Operations Planning and Control (OPC) General Information Manual,

GH19-6120
System/370 Principles of Operation, GA22-7000

,/

'''''

.' -..
\

•

Chapter 1: Introduction . . .
Direct Benefits

Multiple Virtual Storage .
Addressing in MVS
Sharing Real Storage .
Summary

Multiprocessing
Tightly-Coupled and Loosely-Coupled Multiprocessing.
Availability
Flexibility
Attached Processor System . .

Error Recovery.
Recovery Management Support
Recovery Termination Management

Summary of Direct Benefits
Indirect Benefits. . . ~

Greater Support for Interactive Users .
Sessions and Transactions
Terminal I/O . . .
Swapping

Improved Performance . .
Control of Performance
Overview of the SRM
Reduction in Bottlenecks

Improved Security and Integrity .
Isolate and Protect . .
Validate and Authorize
User Responsibility .

Enhanced Function
Job Entry Subsystem

JES2
JES3 . '
Subsystem Interface

System Generation and Initialization
System Generation.
System Initialization
System Operation

Virtual Storage Access Method (VSAM)
Summary

Chapter 2: Virtual Storage in MVS
Pages, Frames, and Slots
Integrity

Storage Protect Keys
Address Space . . .

Dynamic Address Translation .
Virtual Address.
Segment and Page Tables
Two-Level Table Lookup

Paging
Demand Paging
Swapping
Page Stealing. .

Page Frame Table
System Components

Real Storage Manager (RSM)
Auxiliary Storage Manager (ASM)
Virtual Storage Manager (VSM) .

Program Loading .
Virtual Storage Areas

System Area
Common Area

System Queue Area (SQA)
Pageable Link Pack Area (PLP A)
Common Service Area (CSA) . .

Contents

1-1
1-1
1-1
1-2
1-3
1-4
1-4
1-5
1-5
1-6
1-6
1-6
1-7
1-8
1-9
1-9
1-9
1-9

1-10
1-10
1-10
1-10
1-11
1-11
1-13
1-13
1-14
1-14
1-14
1-14
1-14
1-15
1-15
1-15
1-16
1-16
1-16
1-16
1-16

2-1
2-1
2-3
2-3
2-6
2-6
2-6
2-8
2-9

· 2-10
2-10

· 2-11
· 2-11
· 2-11
· 2-13
· 2-13
· 2-13
· 2-13
· 2-14
· 2-15
· 2-17
· 2-17
· 2-17
· 2-17
· 2-18

Contents v

Private Area · 2-18
Local System Queue Area (LSQA) · 2-18 ~

Scheduler Work Area (SW A) · 2-19
Subpools 229/230 · 2-19 ._./

System Region · 2-19
Virtual (V = V) User Region · 2-19
Real (V =R) User Region · 2-20

Extensions and Options · 2-21
Fixed Link Pack Area (FLP A) · 2-23
Modified Link Pack Area (MLP A) · 2-23
BLDL Lists · 2-23

Chapter 3: Installing and Servicing the System 3-1
Installing the System . 3-1 ,;

Preliminary Considerations 3-1
The Installation Plan 3-1

Installation Tasks 3-2
Checkpoints and Interdependencies 3-3
Performance 3-3
Staffing and Personnel 3-3

System Generation 3-3
Planning and Preparing for the System Generation 3-4
Executing the System Generation 3-5
Verifying the System Generation 3-7

MVS System Installation Productivity Option (MVS System IPO) 3-7
The MVS System IPO 3-7
MVS System IPO Documentation 3-8
The MVS System IPO Installation Plan 3-10

Servicing the System . 3-13
The System Modification Program (SMP) . 3-13

Installing Selectable Units (SUs) . 3-13
SMP Option. · 3-15
Installing Programming Temporary Fixes (PTFs) · 3-15
Installing User Modifications · 3-16
SMP Control Functions 3-16 ,-~

,"
Chapter 4: Preparing the System for Work 4-1 -,--
Overview of the Initialization Process 4-1

Initiating the Load Procedure 4-2
The System Residence Volume 4-2
The System Console 4-2

Initial Program Loading 4-3
Clearing Storage 4-3
Loading the Nucleus 4-4

Nucleus Initialization via NIP . 4-4
Initializing Real Storage . 4-5
Initializing A Master Address Space 4-6
Obtaining System Parameters 4-7

The System Parameter Lists 4-9
System Operator Activity . 4-9

Resource Initialization Via RIMs .4-10
Initializing I/O Devices · 4-11
Initializing Volume Attributes · 4-12
Initializing System Consoles .4-13
Initializing the System Catalog · 4-14 • Initializing the System Resources Manager · 4-16

Automatic Priority Group (APG) Initialization · 4-16
Installation Performance Specification Initialization (IPS) · 4-16
Optional System Tuning Parameter Initialization (OPT) · 4-16
Additional SRM Initialization . · 4-17

Initializing the Auxiliary Storage Manager · 4-17
Page Data Set Initialization . · 4-17
Swap Data Set Initialization · 4-18
Duplex Data Set Initialization . · 4-18
VIO Data Set Initialization · 4-18

Initializing the Program Manager · 4-18
Pageable Link Pack Area Initialization . · 4-19
Fixed Link Pack Area Initialization · 4-22
Modified Link Pack Area Initialization . .4-24 (',
Table and List Initialization · 4-24 \ ,-,'

vi OS/VS2 MVS Overview

c:
Master Scheduler Initialization

Initializing the Master Scheduler Base
Initiating the Master Scheduler. . . .
Initializing the Master Scheduler Region

Job Entry Subsystem Initialization. . .
Creating an Address Space for JES .
Initializing the Region Control Task
Initiating JES

Address Space Creation
TSO Initialization . . .

· 4-25
· 4-27
· 4-27
· 4-27
· 4-28
· 4-28
· 4-28
· 4-28
· 4-29
· 4-32

Chapter 5: Entering and Scheduling Work 5-1
Job Entry Subsystem Processing. 5-4

Input 5-4
Execution 5-5

JES2 Job Scheduling 5-5
JES3 Job Scheduling 5-6
Additional Job Scheduling Functions 5-7

Output 5-8
Purge 5-8

JES2 Features . . 5-8
JES3 Features . . 5-8
Device Allocation 5-12

Job Step Allocation 5-13
JES3 Device Allocation 5-13
Dynamic Allocation. . 5-14

Chapter 6: Supervising the Execution of Work
Interruption Processing.

The Role of Program Status Words ...
The Interruption Handler (IH) Routines

Creating Dispatchable Units of Work
Task Control Blocks (TCBs) .
Service Request Blocks (SRBs) .

Dispatching Work
Serializing the Use of Processors

Enqueueing
Locking

Chapter 7: Managing System Resources
How the SRM Meets Its Objectives

Major Functional Areas of SRM
Communicating With SRM

SRM Control
Swap Analysis . . .

The Workload Manager
The Resource Manager .

Storage Management
I/O Management ..
Processor Management
Resource Monitoring .

Chapter 8: Satisfying I/O Requests and Data Management
Access Methods . . .

Data Organization
Access Techniques
Conventional Access Methods . . .
Telecommunication Access Methods

Scheduling I/O
User Program Functions .

OPEN Processing ..
I/O Request
CLOSE Processing. .

Access Method Function
Control Blocks
Channel Program . . .
EXCP Macro Instruction
Appendages

6-1
6-2
6-2
6-4
6-7
6-7
6-9
6-9

6-10
6-10
6-10

7-1
7-1
7-2
7-2
7-3
7-3
7-4
7-5
7-5
7-6
7-6
7-7

8-1
8-4
8-4
8-5
8-5
8-6
8-7
8-7
8-8

8-10
8-11

· 8-12
8-12
8-13
8-13
8-14

Contents vii

viii OS/VS2 MVS Overview

Input/Output Supervisor (lOS) Functions
EXCP Driver Front End .
Channel Scheduler
I/O Interruption Handler.
EXCP Driver Disabled Interruption Exit (DIE)
Post Status
EXCP Driver Back End

Summary
Virtual Input/Output (VIO)
Virtual Storage Access Method (VSAM)

Control Interval
Key-Sequenced Data Set
Entry-Sequenced Data Set
Relative Record Data Set
Alternate Indexes
System Catalog.

Chapter 9: Recovering from Errors
Recovery Termination

Task Recovery Routines. . .
Functional Recovery Routines

Recovery Management Support .
Machine Check Handler. . .

Alternate CPU Recovery .
Channel Reconfiguration Hardware and Channel Set Switching

Channel Check Handler
Dynamic Device Reconfiguration .
Missing Interrupt Handler

Chapter 10: Multiprocessing .
Loosely-Coupled Multiprocessing
Tightly-Coupled Multiprocessing

Configuration
Logical Reconfiguration
Physical Reconfiguration

Communication
MVS-Initiated Communication
Hardware-Initiated Communication

Control
Physical Addresses
Status and Control Information

Attached Processor System

Chapter 11: Monitoring System Activity
System Management Facilities
Resource Measurement Facility
Dumping Facilities.

SNAP Dump ...
ABEND Dump ..
SVC Dump
Stand-Alone Dump

Trace Facilities . . .
System Trace. . .
Generalized Trace Facility.
Master Trace

Serviceability Level Indication Processing
Program Event Recording Events
Error Events . . .

Slip Actions
Using SLIP Traps.

SYS1.LOGREC Error Recording

Index

8-14
8-15
8-16
8-17
8-17
8-18
8-18
8-19
8-20
8-21
8-22
8-24
8-25
8-25
8-26
8-26

9-1
9-1
9-2
9-2
9-3
9-3
9-4
9-5
9-5
9-6
9-6

10-1
10-1
10-1
10-2
10-2
10-3
10-3
10-3
10-4
10-5
10-5
10-5
10-6

11-1
11-2
11-5
11-8
11-9
11-9

11-10
11-11
11-14
11-16
11-18
11-21
11-23
11-23
11-24
11-24
11-24
11-27

1-1

./

•

Figures
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

2.10
2.11
2.12

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.11
4.12
4.13
4.14
4.15

5.1
5.2
5.3
5.4
6.1
6.2
6.3
6.4
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

8.10
8.11
8.12
8.13
8.14
8.15
9.1

Basic Virtual Storage Concepts . 2-2
The Key in Storage 2-4
Storage Protect Key Assignment 2-5
Virtual Storage Address 2-7
Segment Table and Page Tables 2-8
Dynamic Address Translation 2-9
Page Frame Table. . . 2-12
Page-out and Page-in . . 2-14
Program Loading 2-15
Virtual Storage Layout . 2-16
V =R Storage Mapping . 2-20
Extensions and Options . 2-22
Installation Planning Phases 3-2
Creating an MVS System with System Generation Procedure 3-4
Executing the System Generation 3-6
1/ 0 Device Generation 3-8
MVS System IPO Documentation. 3-9
The MVS System IPO Installation Phase Plan 3-11
Sysgen Install Option 3-14
SMP Install Option 3-15
SMP Functions 3-17
System Initialization Summary 4-1
Initial Program Loading . . . 4-3
Loading the Nucleus 4-4
Initializing Real Storage . . . 4-5
Initializing the Master Address Space 4-6
System Parameters 4-7
Paths to a Device 4-11
Specifying Volume Attributes . 4-12
Locating a Master System Console . 4-13
Locating the System Catalog 4-15
Initializing the PLP A 4-19
System Pack List and ALP AQ Initialization . 4-21
Initializing FLP A 4-23
Master Scheduler Initialization . . . 4-26
Creating an Address Space. 4-30
Job Entry Subsystems - Differences 5-3
Network Job Entry Facility 5-9
A JES3 Installation 5-11
JES2 and JES3 Job Networking 5-12
The Use of Program Status Words (PSWs) in Interruption Processing 6-3
Summary of Interruption Processing 6-6
Task Control Block (TCB) Structure 6-8
Summary of MVS Locks. 6-12
Conventional I/O Path 8-1
Telecommunication Path. 8-2
Multiple I/O Paths . . . 8-3
Major Steps in a Standard 110 Operation 8-9
Relationships Established by OPEN. . . 8-10
Access Method and User Program in an Address Space 8-11
CLOSE Processing Summary. 8-12
Control Block Structure for the EXCP Driver 8-13
lOS Drivers 8-15
Flow of an I/O Request 8-19
VIO Window 8-20
Control Intervals and Physical Records . . . 8-23
Data Records and Control Information Placement 8-23
Relationships Between Levels of a Prime Index 8-25
Structure of the System Catalog 8-27
MCH Control Flow . 9-4

Contents ix

x OS/VS2 MVS Overview

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

11.10

System Management Facilities - Overview
Summary of RMF.
Summary of MVS Dumping Services .
The Hook Concept
System Trace Overview
Generalized Trace Facility - Summary
Master Trace Overview
Serviceability Level Indication Processing Summary
SYS I.LOGREC Error Recording Overview
MVS Monitoring Mechanisms - Summary

. 11-4

. 11-7
11-13
11-15
11-17
11-20
11-22
11-26
11-29
11-31

/

•

-----------_._----------------

("

/

o

Summary of Amendments
for GC28-0984-1
OS/VS2 MVS Overview

This edition of the OS/VS2 MVS Overview corresponds to
an MVS system with OS/VS2 MVS Processor Support 2
(SU64). Major changes have been made to the following
chapters:

Chapter 4: Initializing the System for Work

This chapter now describes TSO initialization and address
space creation (formerly in Chapter 5).

Chapter 5: Entering and Scheduling Work

This chapter, which is totally reorganized and rewritten,
now includes JES2 and JES3 job networking and job
scheduling.

._---------------_._--- -------

Chapter 8: Satisfying I/O Requests and Data Management

This chapter now contains telecommunication access
techniques and access methods (such as VT AM and
TCAM).

Chapter 11: Monitoring System Activity

This new chapter describes the various MVS programs and
program products that monitor and measure system activity,
such as the system management facilities (SMF), the
generalized trace facility (GTF), and the Resource
Measurement Facility (RMF).

Summary of Amendments xi

,/

"'--"

•

xii OS/VS2 MVS Oveniew

C' "\

I

C
-,

o

-----------_._.-.. --_._---

Chapter 1: Introduction

The basic difference between the IBM Operating System/Virtual Storage
with Multiple Virtual Storage (MVS) and previous mM operating systems is
that MVS does more work. This ability to do more work benefits the user
directly and indirectly:

• Directly, it provides greater support for a larger number of users, both
interactive and batch. The user can have many more activities going on
in the system simultaneously without loss of time.

• Indirectly, the ability to do more work allows the system to enhance its
own capabilities by providing improved performance, improved security
and integrity, and enhanced function.

What then allows MVS to do more work and what are these
improvements to the basic abilities of any operating system?

Direct Benefits
There are several basic MVS features that enable it to do more work. They
are:

• Multiple virtual storage
• Increased multiprocessing capabilities
• Enhanced error recovery

These MVS features provide the most direct benefits to the user.

Multiple Virtual Storage

Main storage is a scarce resource and even when it can be shared, the
amount of space an installation's programs and data require far exceeds the
amount of main storage available. In previous systems, this was true not
only on an installation basis, but on a program basis:

amount of storage available
to a particular program

amount of storage available in the
system - (system requirements + amount
of storage already being used by other
programs)

Furthermore, previous systems had to preallocate storage before the job
executed, the preallocated storage had to belong to the job for the duration
of the job, and the programmers had to plan complicated overlay structures
to fit their programs into the available space. This caused three very
expensive problems:

1. Some portions of storage may not be used at all.

Chapter 1: IntrodUqiOD 1-1

1-2 OS/VS2 MVS Overview

Example: The system has one million bytes of main storage. Job A
requests and receives 384,000 bytes; these bytes belong to Job A until
it completes - they cannot be shared; Job B and Job C request and
receive 300,000 bytes each. Now there is a fragment of 16,000 bytes
that cannot be used at all unless the system starts a job that requires
only that much. This is known as storage fragmentation - unused
fragments, too small to start a normal job, exist throughout storage.

2. Though occupied, some locations did not contain active programs.
These programs were waiting for some event to occur or they were
waiting for another part of the program to be brought into storage to
overlay the completed part. In any case, they tied 'up storage without
being active.

3. To deal with the size limitations, users had to design complicated
overlay structures. This took a great deal of programmer time. Also,
the system had to wait while finding and bringing in the next part of
the overlay structure.

In short, even though main storage was scarce, previous systems still
wasted it. To help overcome this problem, mM developed virtual storage
and then multiple virtual storage systems. To understand how MVS
overcomes these three problems, you must know a bit about addressing.

Addressing in MVS

Generally speaking, an address is a group of digits that identify a physical
location in main storage (called real storage in MVS). In MVS, an address
has 24 positions (called binary digits or bits). An addressing scheme based
on 24-bit addressing allows up to 16,777,216 addresses (16 megabytes) to
be accessed.

Of course, a normal system may not have this many real storage
locations - and, even if it did, there would be other programs in real
storage at the same time so that the 16 megabytes would have to be divided
among them.

MVS allows each programmer to use all 16 million addresses, even
though real storage includes only, for example, 4 million physical locations.

How?

The range of addresses in a program - from entry to completion, is
called the program address space. A program references certain pieces of
information as it runs. These references are usually of a symbolic nature,
such as: STORE V ALVEI, where V ALVEI identifies a storage location. In
previous systems, each of these program references had to be associated
with a real storage location. Thus, specific real storage locations had to be
preallocated to them leading, as we mentioned, to the problem of
fragmentation.

In MVS, references in the program address space are not associated with
a particular real storage location. They remain references to a particular
piece of information. But where does virtual come in?

c

c.-

---.. -.-.• ------.~--.--

The references in the program are not references to real storage
addresses but to pieces of information, they are called virtual addresses.
They become real only when assigned to a physical location, and these real
locations need not be assigned either contiguously or in a particular place.
For example, the program might occupy 16,000 bytes in lower storage,
48,000 in the middle of storage, and another 64,000 bytes at the higher end
of real storage. If that program had to be removed from real storage and
later returned, it could be located or loaded anywhere in real storage: that
is, it need not be in the same location as before.

When the program is ready to execute, the system, using a System/370
hardware feature called Dynamic Address Translation (or, more familiarly,
the DAT feature), maps the virtual addresses in the program to the real
storage addresses and resolves all references (for a more detailed
description of this process see Chapter 2: Virtual Storage Management). By
doing this, MVS can make the program address space larger than the
number of physical locations available in real storage because each program
can create references up to the theoretical limit of the addressing scheme:
16 megabytes. Thus, each program can operate as if it had access to all of
storage.

In summary, then, there are three levels of addressing in MVS:

1. The theoretical limit, derived from the 24-bit addressing scheme: 16
megabytes. All users of MVS can program up to this limit, that is,
there can be multiple virtual user address spaces.

2. Virtual addresses. These are the addresses within the program address
space. They refer to a specific piece of information and not to a real
storage location.

3. Real·storage addresses. These are the addresses of the locations in the
storage hardware unit.

When the program is ready to execute, the DAT feature translates the
virtual addresses to real storage addresses. The real storage locations that
the program occupies depend on which ones are available.

However, addressing is only part of the story. The second part is
concerned with how the system makes use of it to do more work, how it
allocates and shares real storage.

Sharing Real Storage

MVS views real storage in 4K blocks called frames. When it allocates
storage, that is, assigns storage areas to specific tasks, it allocates a certain
number of frames. These frames may be contiguous, but they need not be.
Because it allocates storage on a 4K -one page- basis, it minimizes the
problem of fragmentation (if a fragment does exist, it will be smaller than
4K). If, for example, there are 10 frames available and they are scattered
through storage, MVS can still allocate them as if they were contiguous.

What happens, though, if a hundred programs, each larger than the
available real storage are ready to execute at the same time?

Chapter 1: Introduction 1-3

........ ~- -.~.-" -..... ,.,.,~.-.---.. ---............. - ... '"'
~. - --

1-4 OS/VS2 MVS Overview

When MVS, is fully loaded, the only portion of a program allowed in
real storage is one that is active~ that is, one that is using the processor or
being referenced. The remaining parts of the program remain on auxiliary
storage (data storage other than real storage; for example, storage on direct
access devices; space on auxiliary storage is called a slot; a slot is 4K) until
they become active. (Note: The user does not have to worry about any of
this ... the system determines what should be in real storage and what
remains on auxiliary storage). When a program in real storage must wait, it
is moved from real storage to auxiliary storage, and another job or another
part of the same program is brought in. (The process of moving a part of a
program between real storage and auxiliary storage is called paging; a page
is 4K. An access method - see the chapter "Satisfying I/O Requests" -
moves the program from direct access storage to real storage and back.)
When the program is again ready to execute, it is assigned whatever frames
(MVS keeps track of the activity of each frame) are available - not
necessarily the same ones it previously occupied. Thus, generally speaking, a
program in MVS real storage is a working program, not a waiting one.

Summary

These are the essential points to grasp about multiple virtual storage:

1. MVS does not waste very much storage. It does not preallocate
storage thus significant fragments do not occur. In a fully loaded
system, only active portions of programs occupy real storage
locations.

2. MVS reduces program design time: the user does not have to worry
about fitting his program into real storage.

Because of these factors, MVS can share the real storage resource among
many more programs and start many more programs running. Thus, it can
do more work.

Multiprocessing

MVS supports many new hardware developments. Among them are:

• The IBM System/370 provides more capacity and speed than previous
IBM systems, and at comparable prices. More real storage is available
and the cost per byte has been significantly reduced. For example, the
System/360 Model 50 had a maximum real storage size of 512K, while
many System/370 models have more than 4 megabytes of real storage,
more than eight times that of the Model 50.

• Complementing these real storage improvements are faster, more capable
processors. For example, the processor cycle time on the System/360
Model 50 was 500 nanoseconds (one-thousand-millionth of a second);
on the System/370 Model 158 it is only 115 nanoseconds, and on other
models it is less.

• Block multiplexer channels (a multiplexer channel that interleaves
-accesses two or more streams of data from distinct storage units
simultaneously-blocks of data rather than bytes as in a byte multiplexer
channel), not available on System/360, are standard on many
System/370 models. While maintaining compatibility with the
System/360 selector channels, block multiplexer channels can sustain
much higher data rates.

/

•

c

C
""",
--.~'

Each of these hardware improvements contribute to MVS's ability to do
more work. An even more direct influence is MVS's multiprocessing (MP)
capability, which is incorporated into the MVS system control program. The
optional MP and the Attached Processor (AP) System can increase the
instruction processing capability of the installation; the AP system is
discussed later in this chapter and in more detail in Chapter 10:
Multiprocessing.)

Tightly-Coupled & Loosely-Coupled Multiprocessing

Multiprocessing simply means executing two or more tasks simultaneously
on two or more processors. It is a logical extension of multiprogramming, in
which two or more tasks logically execute concurrently on a single
processor.

When a single processor shares a common workload with other
processors, but does not share storage, it becomes part of a loosely-coupled
multiprocessing complex.

When a single processor shares real storage with another processor, and
when both are controlled by a single system control program, they become
part of a tightly-coupled multiprocessing complex. Both processors can run
under the MVS system control program in multiprocessor (MP) mode.
When a single processor is not sharing real storage, it can run under MVS
in uniprocessor (UP) mode.

Our emphasis here is on tightly-coupled Model 158 or Model 168
multiprocessors or the 3033 Multiprocessor Complex, which have the
following characteristics:

• The processors share access to all processor storage available to them.

• The processors communicate by storing data in shared storage and by
direct processor-to-processor signals (both program-initiated and
hardware-initiated) .

• The processors operate under the control of a single operating system
(MVS) that is resident in the shared processor storage. The operating
system treats the processors as resources, assigning them to process
tasks. Also, the operating system maintains one input queue and one task
queue and can use either processor to process (although not
concurrently) a single job, if necessary.

A component of MVS, called the Job Entry Subsystem (JES2 or JES3)
assumes the role of coordinator and controls the flow of work through the
system, that is JES controls the entry and exit of work to and from the
system.

Availability

Clearly, if you can now do two things where before you could only do one,
you can now do more work. Multiprocessing also offers increased
availability. Availability in data processing means the percent of scheduled
time the system or an application is capable of processing. A system is
available when both its hardware and programming system can process jobs.
An application is available when it can perform processing for its end users.

Chapter 1: Introduction 1-5

1-6 OS/VS2 MVS Overview

The improved availability MVS offers derives from the ability to:

• Automatically switch from a failing unit to an alternate for it
• In MP, the system can switch work from a failing processor to the good

one
• Reconfigure hardware components to fit an installation's needs
• Reconfigure hardware components to allow service personnel to perform

concurrent maintenance

Thus, over a period of time, the system does more work because it loses
less time due to failing hardware.

Flexibility

You can divide a multiprocessor into two systems that operate in
uniprocessor mode when necessary. For example, you might need a
uniprocessor system for preventative maintenance, a test system for a
system programmer, or a programming system other than MVS (VM/370,
for .example). The installation can divide the two systems so that only the
hardware components actually required for the special system are allocated
to one processor, leaving the balance of the hardware resources available
for normal work on the other processor.

Thus, MP not only does more work in the sense of doing two things at
one time, but also is available more responding to the different needs of an
installation at different times.

Attached Processor System

The attached processor (AP) consists of a System/370 Model 158, or
Model 168 processor, a 3031 processor or a 3033 A-series processor (Each
of these processors is called the host processor). combined with an attached
processing unit to form a tightly-coupled processing system. The host
processor provides instruction processing, I/O, and storage functions. The
attached processor has a similar instruction processing capability, but no
I/O or storage facilities of its own; the attached processor shares the
storage facilities of the host processor. When joined in a tightly-coupled
configuration to an Attached Processor system, the host and the attached
processor provide significantly increased instruction processing power.

Error Recovery

As mentioned, one way of doing more work is to ensure that the system is
available when necessary. Multiprocessing is one means of increasing
availability. Another is eliminating the need for unscheduled shutdowns.

When an error occurred in previous systems, the system could not do
any work until the installation reinitialized the system. When an error
occurs in the MVS system, the system attempts to continue operating. MVS
attempts to retain availability through error recovery routines that:

• Isolate and record
• Clean up and repair
• Retry and reconfigure

Processing continues while the system carries out these tasks. Primarily,

/'

recovery management support and the recovery termination manager f~
1\...../

--------------_ .. ------

c

C·"':
.-'

o

--------------------.. --

perform these functions (see Chapter 9 for more information on error
recovery.)

Recovery Management Support

One means of increasing availability is to reconfigure the system when there
is a problem with a hardware component. In this way, the system can
continue working. MVS provides this ability through RMS routines.

Missing Interruption Handler: The missing interruption handler (MIH)
checks whether expected I/O interruptions occur within a specified time
period. If the interruptions do not occur, the operator is notified so he can
take steps to correct the situation before the system status is harmed.

The MIH checks for pending device ends, channel ends, DDR swaps,
and MOUNT commands. When a pending condition is found, the condition
is indicated in the UCB of the device. After a specified time elapses,
another check is made for the pending condition. If the condition is still
pending, a message is used informing the operator what condition is
pending and what operator action is required.

Dynamic Device Recomaguration: The operator may invoke dynamic device
reconfiguration (DDR) when a device cannot be made ready, or the system
may invoke it to bypass a permanent I/O failure. DDR makes it possible to
move a demountable DASD or tape volume from one device to another.
MVS processes DDR requests without shutting down the system and may
eliminate the need for terminating a job.

Channel Check Handler: The channel check handler (CCH) receives control
when a channel error is detected. CCH builds an error control block and
records the error environment. When the CCH is entered due to an error
affecting an entire channel, it invokes I/O restart routines to recover the
I/O activity on the failing channel.

Machine Check Handler: The machine check handler (MCH) in MVS
supports the expanded machine check hardware in the IBM System/370. A
machine check is an interruption that a malfunction causes. Some machine
checks can be corrected by hardware. Others require software recovery.
The MCH records all machine checks and invokes software recovery
routines when necessary. If the MCH determines that processing cannot
continue on a processor, it terminates operations on that processor.

Alternate CPU Recovery: When running in MP mode, alternate CPU
recovery (ACR) allows work in progress on a failing processor to be
recovered on the good processor. The object is to retain system availability
and continue system operation.

The ACR routine takes responsibility for all work in progress on the
failing CPU, including I/O. If critical I/O devices are symmetrical (that is
attached to both processors), or if channel reconfiguration hardware (CRH)
is available, critical I/O can be recovered. ACR will attempt to restore
resources to an operable state, recover from the failure, and continue
operation. (The operator must also take actions such as reducing the
workload or reconfiguring hardware if the system is to continue running
efficiently.)

Chapter 1: Introduction 1-7

1-8 OS/VS2 MVS Overview

ACR is available only in MP and AP mode, and it can provide
significant added availability.

Recovery Termination Management

Recovery termination management (RTM) cleans up system resources when
a task or address space terminates. Specifically, RTM performs normal and
abnormal task termination, normal and abnormal address space termination,
writes dumps, records errors, provides for recovery of supervisory routines
via routing control to functional recovery routines, and recovers the system
when a processor in a tigbtly-coupled multiprocessing environment fails.
RTM provides these functions for both system and problem program
routines.

Functional Recovery Routines: FRRs are provided for critical system
components - those that have high availability requirements, such as the
interruption handlers, the lock manager, and the dispatcher. Upon entry, a
functional component establishes an FRR by issuing the SETFRR, a macro
instruction. FRR's are placed in LIFO - last in, first out order in an FRR
stack maintained by the R TM. Each FRR stack represents the functions
being performed in a single path through the system control program. When
an error occurs in a path, the R TM passes control to the most recent FRR
placed in the appropriate stack. That FRR will attempt to contain the error,
record it, repair it, and either request retry or termination. If retry is
requested, RTM will reenter the function at a specified location. If
termination is requested, the error is passed to the next FRR in the stack to
attempt recovery; this process is called percolation.

Task Recovery: Task recovery routines may be written for critical units of
user or subsystem work. Task recovery routines should be written for those
critical user or subsystem tasks that have a. high availability requirement. If
they are not, the availability of critical subsystems, or critical user jobs may
be unnecessarily reduced.

An MVS facility called the extended subtask abend exit (ESTAE)
supports task recovery. With this facility, users can write and establish
recovery routines in the form of user exits that will receive control at
appropriate times during abnormal termination of the task. A recovery exit
may be set up when a task is created or it may be established at any time
by issuing an EST AE macro instruction. Each EST AE routine is placed in
LIFO order on a chain established for that task. When RTM is entered, it
routes control to the last EST AE routine in a task's chain. That task
recovery routine attempts to contain the error, record it, and repair it if
possible. It will then request either retry or termination of the task. If retry
is requested, RTM reenters the failing task or subtask at a specified
location.

If you want your own exit routine to receive control for certain
exceptions, you can issue the specify program interruption exit (SPIE)
macro instruction. Any problem program being executed in performance of
a task can issue SPIE. When the task is active, your exit routine receives
control for all interruptions resulting from exceptions the SPIE macro
instruction specifies unless the current routine for the task is operating in
supervisor mode. For other program interruptions, control is given to the
control program exit routine. Each succeeding SPIE macro instruction
completely overrides specifications in the previous macro instruction.

c

o

--_ _ .. _._----

- ~---.. ----------.------ .. --.. --.. --- .. -----

Percolation: If an FRR or EST AE routine is requesting or continuing
termination, percolation occurs. The recovery termination manager passes
the error to the next recovery routine in the FRR stack or in the EST AE
chain. This represents the previous or the next higher level of control.
Hence, the term, percolation. This process continues until a retry results in
recovery or until the FRR stack or EST AE chain has been exhausted.

Summary of Direct Benefits

MVS can do more work because:

1. MVS makes more effective use of real storage, in effect increasing
the space available for installation programs.

2. MVS provides more throughput by extensive use of
multiprogramming. Through MP and AP it can do two things
simultaneously.

3. MVS has higher availability more of the time over the long term
through enhanced error recovery function.

Indirect Benefits
The ability of MVS to do more work also allowed IBM to improve the
basic functions of the operating system itself. These indirect benefits lead
to:

• Greater support for interactive users
• Improved performance
• Improved security and integrity
• Enhanced functions

Greater Support for Interactive Users

The Time Sharing Option (TSO) is an integral part of MVS. mM has
enhanced TSO as follows:

• Each TSO user is assigned a private address space, and so has more
space for processing and is protected from other users.

• TSO users may allocate a greater variety of data sets and devices.
• TSO command processors and service routines may be in page able

storage.
• TSO driver and swapping functions have been integrated into MVS.

TSO makes the operating system available to both local and remote
terminal users. A TSO user, identified by a unique userid, can initiate a
TSO session by issuing a LOGON command. Each TSO user can develop,
test, and execute programs interactively without experiencing the usual
delays associated with batch job processing.

Sessions and Transactions

MVS allocates data sets and 110 devices to a user at the beginning of a
TSO session. In this respect, a TSO session is like a batch job. Interaction
with a terminal user involves a terminal read, the appropriate processing,
and a terminal write. Each such interaction is called a TSO transaction.

Chapter 1: Introduction 1-9

._---_ _.-

1-10 OS/VS2 MVS Overview

A user may be entering a line of input or compiling a program; both are
transactions. Additional resources may be allocated during transaction
processing. In this respect, a TSO transaction is somewhat like a batch job
step.

Some TSO transactions are trivial and some are not. For example, TSO
provides an EDIT facility to create and modify user data sets. When a data
set is being created, EDIT prompts the user for a new line of input by
displaying a line number. A line of data is entered, stored by EDIT, and a
new line number is displayed. This is a trivial transaction because entering a
line of data requires very little processing and not much. I/O.

By contrast, the user may enter a transaction that invokes a COBOL
compiler. The response can be a full source listing with compiler
diagnostics. This is a non-trivial transaction.

Terminal 1/0

All terminal I/O for TSO is controlled by the telecommunications access
method (TCAM) or the virtual telecommunications access method
(VTAM). (For information on TCAM and VTAM see OS/VS TCAM
Concepts and Applications, GC30-2049 and Introduction to VTAM,
GC27-6987.) A TSO address space is frequently in the wait state because
terminal I/O is slow compared to internal processor speeds and the terminal
user tends to require "think time." During this time, processing is suspended
and the TSO address space can be swapped out.

Swapping

Swapping means moving address spaces in and out of real storage. When an
address space is swapped out, the virtual storage pages associated with that
user are moved from real storage frames to auxiliary storage. The address
spaces of users who have processing to do can then use the frames. When
the swapped-out address space is again ready to run, the appropriate virtual
storage pages can be swapped in and processing can be resumed.

MVS uses swapping to manage the workload and control the job mix.
Swapping takes place for almost all TSO and batch users. A new MVS
function, the system resources manager (SRM), makes swapping decisions
to meet performance objectives and to balance the use of resources. (For
more information on swapping, see Chapter 2.)

Improved Performance

Improved performance derives from control of system resources and a
reduction in bottlenecks.

Control of Performance

As discussed, MVS allows more users (address spaces) to be active
concurrently in the system. More users mean more competition for available
system resources - processor time, I/O resources, and real storage. An
address space has access to these resources only when it is in real storage.
The system resources manager (SRM) is the component in MVS that
decides which address spaces to swap in or out and when to swap them in
or out; therefore, it is the component that controls access to system
resources.

c

C"\
/

c

._---_ .. _._ _----

The SRM has two objectives:

• Objective One: Meet installation-specified performance guidelines, which
reflect the installation's response and turnaround time requirements

• Objective Two: Achieve the optimal use of processor time, real storage,
and 110 resources, from the viewpoint of system throughput.

SRM makes decisions that represent trade-offs between these two
conflicting objectives.

Overview of the SRM

The installation specifies its requirements for the first SRM objective in a
member of the parameter library (SYS 1.P ARMLIB) called the installation
performance specification (IPS). Through IPS, the installation divides its
types of work into distinct groups, assigns relative importance to each
group, and specifies the desired performance characteristics for each address
space within each group.

A secondary means of specifying requirements to the SRM is through the
OPT, member of PARMLIB. (The OPT member contains parameters that
affect swapping decisions by the SRM.) Through a combination of IPS and
OPT parameters, an installation can exercise a degree of control over
system throughput characteristics (objective two). That is, an installation
can specify whether, and under what circumstances, throughput
considerations are more important than response and turnaround
requirements when the need arises to make tradeoffs between objectives
one and two.

The SRM attempts to ensure optimal use of system resources by
monitoring and balancing resource utilization. If resources are
under-utilized, the SRM attempts to increase the system load. If resources
are over-utilized, the SRM attempts to alleviate this by reducing the system
load or by shifting commitments to under-utilized resources. Examples of
such resources are the processor, logical channels, auxiliary storage, and
pageable real storage.

For more information on the SRM see Chapter 7. For information on
performance analysis see OSIVS2 MVS Performance Notebook.

Reduction in Bottlenecks

A bottleneck is an obstruction, something that slows down work. While
specific bottlenecks differ from installation to installation, there are some
general ones. MVS design has attempted to reduce the impact of these and
improve performance by:

• Reducing path lengths
• Increasing parallelism
• Reducing contention for system resources

These concepts are defined and illustrated in the following descriptions
of:

• The Scheduler Work Area
• Device Allocation
• Virtual Input/Output
• Service Request Blocks
• Multiple Locks

Chapter 1: Introduction 1·11

----_. _ _---.. .

1-12 OS/VS2 MVS Overview

Scheduler Work Area: In MVS, the scheduler work area (SWA) contains
much of the same job control information that the System Job Queue
(SYSJOBQE) did in previous systems. SYSJOBQE was a major source of
contention in MVT and SVS because almost every component of the job
scheduler (and every job in execution) required concurrent access to it.

SW A is, in effect, a local job queue for each MVS user and it resides in
the user's private address space. All control information that applies to a
single job, such as data set and device allocation information, is placed in
SW A when a job is selected. It is available to the job scheduler and the
user while he is executing. It improves performance, therefore, by
eliminating SYSJOBQE.

Device Allocation: The process used to allocate I/O resources is called
device allocation. Data sets, volumes, and devices are allocated to a batch
user when a job step is initiated and to a TSO user when a session begins.
They may also be allocated dynamically. In MVT and SVS, allocation
requests are processed one at a time. This serialization eliminates potential
conflicts and possible deadlocks. However, in a fully loaded MVT or SVS
system, device allocation can be a serious bottleneck.

MVS eliminates this bottleneck by processing requests in parallel. The
process may be summarized as follows:

• Associate a user data set with a volume
• Associate the volume with a device
• Allocate the device to the user

Significant performance improvement has been realized through this
redesign of device allocation.

Virtual Input/Output: In MVS, temporary data sets can be handled by a
new facility called virtual input/output (VIO). Data sets for which VIO has
been specified reside in paging space on auxiliary storage. However, to a
user or to one of the access methods, the data appears to reside in a real
data set on a DASD volume. A VIO specification exists only for the
duration of the job.

During system generation, one or more unit names can be defined as
VIO and associated with a real DASD device type, such as a 3350. These
unit names are then specified on the job control statements requesting
device allocation. These requests are processed in parallel and no device is
allocated for the VIO request.

After the job has gone through the device allocation process, and as data
is being stored in 4K blocks on a VIO data set, real storage frames and
auxiliary storage slots are assigned as required. These frames and slots may
not be contiguous and the data niay be dispersed in real storage and on
auxiliary storage. When a user accesses a VIO data set, the desired data is
paged in and out of real storage as required. The auxiliary storage slots are
released when the data set is deleted or the job ends and are immediately
available for paging. VIO offers these performance advantages:

• Elimination of some device allocation and data management overhead
• Generally more efficient use of DASD space
• Use of the I/O load balancing capability of the auxiliary storage manager

(ASM) C,'

----------------- -_ . .- .. _-----------_._ ... ----

c

-----_._--

Service Requests: Service requests, a new facility in MVS, improve
performance and make MVS a more responsive system. The system, a
privileged (authorized) user, or subsystem may issue them.

The requester builds a service request block (SRB) and issues the
SCHEDULE macro instruction. The SRB represents work to be done and
the SCHEDULE macro instruction places the SRB on one of the service
manager queues. An SRB for a particular address space is given control
before any tasks associated with that address space.

An SRB is an efficient way to communicate between address spaces.
SRBs also make it possible to handle multiple events in parallel.

Multiple Locks: A lock is a means of serialization. MVS has implemented
multiple system locks to improve and standardize serialization techniques.
There are two different categories of locks. A global lock protects a serially
reusable resource that relates to the whole system - for example, there is a
global lock for each unit control block (UCB) associated with each device
in the system. A local lock serializes address space related storage areas.
Implementation of these locks offers the MVS user these performance
improvements:

• A standard for path serialization techniques
• Less disabled processor time and a more responsive system
• More parallelism and less contention

Improved Security and Integrity

Increased security and integrity are major design objectives of MVS:

• Security is the ability to protect resources from unauthorized access,
alteration, or destruction.

• Integrity is the inability of any program not authorized by a mechanism
under the customers control to:

1. Circumvent or disable store or fetch protection

2. Access a password-protected or a RACF-protected resource (RACF is
the Resource Access Control Facility program product)

3. Obtain control in an authorized state, that is, in supervisor state, with
a protection key less than eight, or protected by the authorized
program facility

A goal of MVS is to build integrity into the base system so that if an
installation wishes, it can add a security system to it.

Isolate and Protect

In MVS, virtual storage consists of a system area, a common area, and a
private area. Every MVS user can address one private area. MVS isolates
each user from every other user in a private address space - thereby
preventing him from violating another user's address space. MVS uses
multiple storage protect keys to protect the system and subsystems from
unauthorized users.

Chapter 1: Introduction 1-13

----- _._ '--'-'---'- .. _--_ .. .-_-_._ ... _-_ ... _----- ---.----_._------

1·14 OS/VS2 MVS Overview

Validate alld Authorize

Before MVS performs services on behalf of the users, it takes steps to
validate any protected resources that are to be used and to authorize the
use of any restricted functions. This is done to prevent possible security
violations through the use of invalid control blocks or the execution of
unauthorized code and to avoid user-induced system failures due to
improperly specified requests.

User Responsibility

To avoid compromising MVS security, each installation must assume
responsibility for:

• The integrity of user written authorized programs
• Password protection of critical system libraries
• Access to the system by programmers and operators
• The physical security of the computing systems

Increased security and integrity costs some processor time and real
storage space. However, every effort has been made to employ efficient
programming techniques that do not significantly impact performance.

Enhanced Function
There is an overall enhancement of function in MVS. MVS function has
been enhanced by integrating into the system many functions that
previously were only available as add-on support and by extending these
functions to include multiple virtual storage. In particular this enhancement
applies to:

• JES2 and JES3
• System generation and initialization
• The virtual storage access method (VSAM)

Job Elltry Subsystem

Job management has been enhanced by the implementation of JES2 and
JES3. Either JES2 or JES3 may be specified as the primary job entry
subsystem. Job management in MVS is handled by the job entry
subsystems. (JES2 and JES3). They control the entry of jobs and perform
job scheduling functions upon request. MVS interfaces with these job entry
subsystems via a new component, the subsystem interface (SS1). For further
information on JES, see Chapter 5.

JES2
JES2 is the MVS replacement for HASP II (Houston automatic spooling
program). Most of the functions performed by HASP II have been
integrated along with many functions formerly performed by the job
scheduler in MVT and SVS. These are some of the functions performed by
JES2:

• Reading jobs and SYSIN data, both local and remote
• Spooling jobs and input data to direct access storage

\ C
--,·"

o

_ .. _, -_ __ _-_._---

• Scheduling, initiating, and monitoring jobs
• Reading SYSIN data and writing SYSOUT data for active jobs
• Writing jobs and SYSOUT data, both local and remote

An extensive set of JES2 operator commands is provided. Job
accounting, joumaling, and restarting capabilities have been integrated into
the subsystem; and the scheduling of TSO sessions and the control of batch
output for TSO users is done by JES2.

JES3

JES3 functions, integrated into MVS, are generally the equivalent of those
in ASP (asymmetric multiprocessing system) Version 3. Multiple processors
in a variety of loosely-coupled combinations are supported.

When JES3 is used to manage a loosely-coupled multiprocessing
complex, it controls job scheduling and device allocation for the entire
complex. The controlling processor is called a global processor and the
others are called local processors or ASP mains. A local processor with
access to the necessary 110 devices and connected to all other processors
can assume global functions if the global processor fails. JES3 provides
even more extensive job management functions than those listed for JES2.
In addition to increasing availability, JES3 permits more efficient use of
system resources by providing:

• Automatic scheduling of jobs to multiple processors
• Controlled allocation of all 110 devices in the complex
• Mounting and verifying of private volumes before scheduling a job
• Deadline scheduling

Subsystem Interface

Both JES2 and JES3 use MVS functions and service MVS requests. Each is
considered a subsystem and communicates with MVS via a component,
called the subsystem interface (SSI). SSI makes it easier to add subsystems
to MVS, including those written by users.

System Generation and Initialization

During system generation and system initialization, an installation can select
options and specify parameters that tailor an operating system to meet
specific needs. In MVS, the number of SYSGEN options that must be
specified have been minimized and initialization flexibility has been
increased. Operating procedures have been simplified and dependence upon
the system operator has been reduced, while the control of system resources
has become more automated during system initialization. Preset initialization
options may be stored in the parameter library and invoked by specifying
the parmlib member at initial program load (IPL).

Chapter t: Introduction 1-15

._----_._ _._------_._--_ .. _---

1-16 OS/VS2 MVS Overview

System Generation

Macro instructions are used during system generation to select options from
IBM Distribution Libraries (DLffis). This process has been simplified for
MVS in the following ways:

• Many previous options are now standard
• Several macro instructions have been eliminated, consolidated, or

clarified
• Multiple jobs can be run to speed up the SYSGEN process

See Chapter 3 for more information on system generation.

System Initialization

The installation can use the console to select parameter lists from
P ARMLIB or to specify additional parameters during system initialization.
In MVS, changes have been made to the initialization process that provide
greater flexibility in specifying parameters, and that simplify the process by
reducing the amount of operator intervention required. These changes
include:

• Fewer operator messages and fewer replies
• Multiple parameter lists and selective merging of parameters

See Chapter 4 for more information on system initialization.

System Operation

MVS depends less upon the system operator than any of its predecessors.
Operator commands are used to request system and user status and to
initiate, alter, or terminate system functions. Many functions that previously
depended upon operator commands are now performed by JES2 or JES3.
In some cases, the system may not wait for operator intervention when
devices being allocated are offline or not ready. The operator is usually not
required to make job scheduling and storage configuration decisions.

Virtual Storage Access Method (VSAM)

The virtual storage access method (VSAM) is a high performance access
method for direct access storage. It is designed to run in virtual storage and
uses virtual storage to buffer input and output operations. VSAM provides
support for batch users, online transactions and data base applications.
Through a master catalog, VSAM controls the allocation of data space on
VSAM volumes and the location and use of VSAM data sets. In MVS, the
VSAM master catalog is also the system catalog. (See Chapter 8 for more
information on VSAM.)

Summary

Through better management of real storage, increased multiprocessing and
instruction processing capability, and enhanced error recovery MVS can do
more work than previous systems. This has improved the system's basic
operating capabilities, especially in the areas of resource management,
integrity, and function.

c

(

I

./

--_ _----

MVS integrates many items, such as TSO and tightly-coupled
multiprocessing, into the overall system that has been special purpose
options.

Some of the major new features that MVS includes are recovery
facilities, VSAM, virtual I/O, and multiple virtual address spaces.

MVS offers more space to more users, greater throughput, high
availability, and more control of the system. In short, it does more work
than previous systems.

Chapter 1: IDtrodUCtiOD 1·17

'-_ .. /'

~
I

1-18 OS/VS2 MVS Overview

c
Chapter 2: Virtual Storage in MVS

Storage in an MVS system - or any computing system, for that matter -
consists of a number of locations available for programs and data. In a
system without virtual storage, the range of addresses (the number of
storage locations, each having a unique address) is equal to the number of
addressable physical locations in the main storage installed. In a system with
virtual storage, however, the range of addresses available for programs and
data is equal to the theoretical limit of the addressing scheme. In MVS, this
theoretical limit - the size of the virtual storage available to the
programmer - is 16 megabytes, the maximum number of addresses
allowed by the 24-bit addressing scheme that MVS uses. Virtual storage is
larger than main storage (called real storage in MVS); how much larger
depends on the size of real storage installed. Therefore, the use of virtual
storage increases the number of storage locations available to hold programs
and data.

In most computing systems, a program cannot execute unless there is a
single block of storage big enough to hold it, and the block of storage is
allocated to the program until it has finished. However, when a program
executes in virtual storage under MVS, only the parts of the program that
are currently active need be in real storage at any particular time. The
inactive parts of any executing program are held in auxiliary storage, in
special data sets that most probably reside on a high-speed direct access
device. Thus, the programmer is freed from the problem of designing a
program to fit a predetermined limit of real storage. Additionally, more
programs can occupy real storage concurrently because only the active parts
of each program are in real storage at any particular time; thus, the system
can start more jobs.

Pages, Frames, and Slots
To enable the movement of the parts of a program executing in virtual
storage between real storage and auxiliary storage, the MVS system breaks
real storage, virtual storage, and auxiliary storage into blocks:

• A block of real storage is a frame.
• A block of virtual storage is a page.
• A block of auxiliary storage is a slot.

A page, a frame, and a slot are all the same size; each is 4K bytes. An
active virtual storage page resides in a real storage frame; an inactive virtual
storage page resides in an auxiliary storage slot. Moving pages between real
storage frames and auxiliary storage slots is called paging.

Chapter 2: Virtual Storage in MVS 2-1

2-2 OS/VS2 MVS Overview

Figure 2.1 shows how paging is performed for a program running in
virtual storage. Parts A, B, and C of a ~hree-page program are in virtual
storage. Page A is active and executing in a real storage frame, while pages
Band C reside in auxiliary storage slots. At point D page B is required;
the system brings B in from auxiliary storage and puts it in an available real
storage frame. At point' fJ page C is required; the system brings C in
from auxiliary storage and puts it in an available real storage frame. If page
A became inactive and the system needed its frame in real storage, page A
would be moved to an auxiliary storage slot, as shown at point D .

Virtual
Storage

Real Storage

Figure 2.1. Basic Virtual Storage Concepts

Auxiliary
Storage

(-~

I

"',,_ /

"'-..

-----~----.-------------------------_.-.. __ ._-------------_._ .. _._---_._-------~-

c,

C'· \
-'

Thus, the entire program resides in virtual storage; the system moves
pages of the program between real storage frames and auxiliary storage
slots to ensure that the pages that are currently active are in real storage
when they are required. Note also that both the frames and the slots
allocated to a program need not be contiguous; thus, a page could occupy
several different frames and several different slots during the execution of a
program. That is, if page A in the example become active again, MVS could
move it to any available frame.

Integrity

Figure 2.1 showed how virtual storage works for one program; in reality, of
course, many programs or users would be competing for use of the system.
MVS implements two techniques to preserve the integrity of each user's
work: (1) a private address space for each user and (2) mUltiple storage
protect keys. Each of these techniques is described in the following text.

Storage Protect Keys

Under MVS, the information in real storage is protected from unauthorized
use by means of multiple storage protect keys. A control field in storage
called a key is associated with each 2K block of real storage. This field or
key, is not itself addressable.

The key in storage contains the protect key of the owner and a fetch
protect bit (as well as the reference and change bits maintained by the
hardware and used by the software to make paging decisions, as described
later in this chapter under "Paging.") The protect key protects the block of
storage from unauthorized modification. The fetch protect bit protects the
block of storage from an unauthorized attempt to read or fetch its contents.
Figure 2.2 shows the format of the key in storage.

Chapter 2: Virtual Storage in MVS 2-3

-------. --_ __ ._--_ .. _.

24 OS/VS2 MVS Overview

Real
Storage

2K 2K

o

2K

Key

3 5 6 7

Key - 4·bit protect key
F - Fetch protect
R Storage has been referenced
C - Storage has been changed
U - Reserved

2K 2K

~~---------------------~--------------------~)
Addressable Storage

Figure 2.2. The Key in Storage

When a request is made to modify the contents of a real storage
location, the key is compared to the storage protection key associated with
the request, which appears in the current program status word (PSW). (See
"The Role of Program Status Words" in Chapter 6 for more information
about the PSW.) If the keys match, the request is satisfied. If the key
associated with the request does not match the key in storage, the system
rejects the request and issues a program exception interruption.

When a request is made to access (read or fetch) the contents of a real
storage location, the request is automatically satisfied unless the fetch
protect bit is on. When the fetch protect bit is on, the block of storage is
fetch-protected. When a request is made to access the contents of a
fetch-protected real storage location, the key in storage is compared to the
key associated with the request. If the keys match, the request is satisfied.
If the keys do not match, the system rejects the request and issues a
program exception interruption.

There are sixteen possible storage protect keys available. A specific key
is assigned according to the type of work being performed. Figure 2.3
summarizes the assignment of storage protect keys.

c

--_._---------------------------

c

(j

.. _-_ _ _---_._-----

Storage protect keys 0 through 7 are reserved for the MVS system
control program and various subsystems. Storage protect key 0 is the master
key. When a storage protect key of 0 is associated with a request to access
or modify the contents of a real storage location, the request is
automatically satisfied. Thus, the use of key 0 is restricted to those parts of
the MVS system control program that require unlimited store and fetch
capabilities.

Storage protect keys 8 through 15 are assigned to users. Because all
users are isolated in private address spaces, most users - those whose
programs run in a virtual region - can use the same storage protect key.
These users are assigned a key of 8. Some users, however, must run in a
real region. These users require individual storage protect keys, which are
assigned from the range of 9 through 15. Descriptions of a virtual region
and a real region appear later in this chapter under "Virtual (V = V) User
Region" and "Real (V=R) User Region."

Key Use

o MVS system control program

1 Job scheduler and job entry subsystems
(JES2 or JES3)

2-4 Reserved

5 Data management
6 TeAM and VT AM

7 IMS

8 V=V users

9-15 V=R users

Figure 2.3. Storage Protect Key Assignment

Frequently, a user program requests a service from a system (or
subsystem) program; with the request the program passes the address of an
area in storage to be modified by the system program. This area should
belong to the user. However, if an error occurs and the area really belongs
to the system instead of the user, the system could be destroyed. Thus, the
system program does a key switch before performing the service for the
user. A key switch means that the system program uses the storage protect
key of the user rather than its own storage protect key while performing the
requested service. The key switch is thus another mechanism MVS uses to
provide protection from possible destruction.

Chapter 2: Virtual Storage in MVS 2-5

...... __ .- _-- -----.--.. -- .. _- ---_ .. _._- _---_._ _-

2-6 OS/VS2 MVS Overview

Address Space

MVS assigns each user his own map of virtual storage. The 16-megabyte
virtual storage available to each user is called an address space. A
16-megabyte address space is available to each job, TSO user, or system
task. Each address space competes with all other active address spaces for
the use of real storage and other system resources, and the work being
performed in each address space is paged between real and auxiliary
storage.

In order for this paging activity to take place quickly and efficiently, the
system must be able to translate a virtual address (the address of a specific
instruction or data item in virtual storage) into a real address (the address
of the corresponding location in real storage). The solution is dynamic
address translation.

Dynamic Address Translation
Dynamic address translation (OAT) is a System/370 hardware feature that
makes virtual storage possible. The OAT feature hardware works in
conjunction with MVS system software to translate a virtual address into a
real address.

Virtual Address

In order to obtain a virtual address, MVS breaks the 16 megabytes of
virtual storage into 256 segments, numbered 0 through 255. Each segment
consists of 64K bytes. The 64K bytes in each segment are further broken
down into 16 pages, numbered 0 through 15. Each page, as stated earlier,
consists of 4K bytes. Within each page, a specific location is addressed by
its byte displacement, that is, the number of bytes between the page origin
and the specific location.

I

\
..............

c

-------_ .. _---------_._--

c

,._,,------,. ,'.,,,.,----

A virtual address consists of the segment numlJer, the page number
within that segment, and the byte displacement within that page. Figure 2.4
shows how virtual storage is broken down to provide a virtual address that
consists of a segment number, a page number, and a byte displacement.

Virtual storage of
16,777,216 bytes
(16,384K)

I Page 15

Segment 255

16,320K I--_P_a_g_e _0~1L..-_______ --I

Segments 2 to 254 ------ --
Hex 0 1 F 0 0 4

128K

T Page 15 8 16 20 31

Segment 1 l 00000001 1111 000000000100

Page 0 I Segment Page Byte

\. 1 15 4 J
I Page 15 ""-../

Virtual Storage Address

64K

Segment 0

o Page 0 I
64K segments, 4K pages

Figure 2.4. Virtual Storage Address

Chapter 2: Virtual Storage in MVS 2-7

Segment and ,Page Tables

To translate a virtual address into a 24-bit real address, the OAT feature
requires tables that describe each address space. These tables are the
private segment table and the private page tables. The segment table has
one entry for each of the 256 segments in the address space; each entry
contains a pointer to the page table for that particular segment. The page
table for each segment has one entry for each of the 16 pages in the
segment. If a page is currently in a real storage frame, the entry consists of
the real storage address of that page. If a page is not currently in real
storage, the entry in invalid; that is, the system must move the page from
auxiliary storage to real storage and update the page table before the virtual
address can be successfully translated. Figure 2.5 shows the relationship
between the segment table, the page tables, and the pages in virtual storage.

Segment Table

Segment 255

Segment 254

Segment 1

Segment 0

Page Tables

Page 15 1
"'---,.~--------~ -

Virtual Storage

Segment 255

12 13 14 15

8 9 10 11

4 5 6 7

-...; 0 ,1 2 3

..... 1..- -..Ji.-
-I""'" -r--

12 13 14 15

8 9 10 11

4 5 6 7

~ 0 1 2 3

Segment 0

Figure 2.5. Segment Table and Page Tables

2-8 OS/VS2 MVS Overview

c

-- ~- ~~--~-.... ~ ... ----

c

--.~--.~ •... ~. ,.', .. " ,,-,----

STOR

Two-Level Table Lookup

To translate a virtual address into a real address, DAT uses a two.level
table lookup. Figure 2.6 illustrates this process. The first table lookup D
uses the segment table origin in the segment table origin register (STOR)
and the segment number in the virtual address (multiplied times 4, the
length of each segment table entry) to locate the origin of the page table
for that segment. The second table lookup fJ uses the page table origin
from the segment table entry and the page number in the virtual address
(multiplied times 2, the length of each page table entry) to locate the
required entry in the page table. Unless the entry is invalid, the page table
entry contains the address of the real storage frame that holds the page
specified in the virtual address. The final step II in dynamic address
translation adds the address of the real storage frame to the byte
displacement in the virtual address to compute the 24-bit real address. This
value is load~d into a hardware storage address register (SAR).

Virtual Address

Byte Displacement

Figure 2.6. Dynamic Address Translation

Chapter 2: Virtual Storage in MVS 2-9

2-10 OS/VS2 MVS Overview

Each time a virtual address is successfully translated into a real address, the
system saves the address of the real storage frame in a special hardware (~
buffer called the translation lookaside buffer (TLB). The TLB contains the '~/
segment number and page number from the virtual address and the
corresponding real storage address for the most active virtual pages. The
DAT hardware checks the TLB before beginning the process of address
translation, and, because a very high percentage of addresses can be found
in the TLB, address translation time is significantly reduced by bypassing
the two-level table lookup process.

When the second step of the table lookup process encounters an invalid
page table entry, the required page is not in real storage. The DAT
hardware thus cannot translate the virtual address, and a page translation
exception, known as a page fault, occurs. Paging - the movement of pages
between auxiliary storage and real storage - is required to bring the page
into real storage.

Paging

Paging is the movement of pages between real storage and auxiliary storage
to ensure that currently active pages are in real storage. In addition to the
DAT hardware and the segment and page tables required for address
translation, paging activity involves a number of system components to
perform the movement of pages and several additional tables to keep track
of where each page is at any particular time.

Demand Paging

To understand how paging works, assume that DAT encounters an invalid
page table entry during address translation, indicating that a page is
required that is not in a real storage frame. To resolve this page fault, the
system must locate an available real storage frame. If there is 'no available
frame, an assigned frame must be freed. To fre~ a frame, the system moves
its contents to auxiliary storage. This movement is called a page-out. The
system performs a page-out only when the contents of the frame have been
changed since the page was brought into real storage.

Once a frame is located for the required page, the contents of the page
are moved from auxiliary storage to real storage. This movement is called a
page-in. The process of bringing a page from auxiliary storage to real
storage in response to a page fault is called demand paging.

MVS tries to avoid the time-consuming process of demand paging by
keeping an adequate supply of available real storage frames constantly on
hand. Swapping is one means of ensuring this adequate supply. Page
stealing is another.

(,

c Swapping

Swapping is the movement of an entire address space between virtual
storage and auxiliary storage. It is one of several methods MVS employs to
balance system workload, as well as to ensure that an adequate supply of
available real storage frames is maintained. Address spaces that are
swapped in are active, having pages in real storage frames and pages in
auxiliary storage slots. Address spaces that are swapped out are inactive;
the address space resides on auxiliary storage and cannot execute until it is
swapped in. Swapping is performed in response to recommendations from
the system resources manager (SRM), described later in this book in
"Chapter 7: Managing System Resources."

Page Stealing

In addition to swapping, the system uses page stealing to ensure an
adequate supply of available real storage frames. Page stealing occurs when
the system takes a frame assigned to an active user and makes it available
for other work. The decision to steal a particular page is based on the
activity history of each page currently residing in a real storage frame.

Page Frame Table

To determine the page~ that are to be stolen, MVS examines the activity
history of the pages that are currently in storage. This information is held in
the page frame table. There is one page frame table for the entire system,
and it has an entry for each frame of real storage. Each entry identifies a
page frame and includes the address space identifier and the segment and
page number within the address space for the virtual page that is currently
using the frame.

Other information in the entry describes the activity history of the page.
The status field indicates whether the frame is currently in use or is
available. Two additional bits associated with the entry, the reference bit
and the change bit, are relevant when the frame is in use. (Note: These bits
are actually part of a control field associated with each 2K block of storage.
They are maintained by the hardware and used by the software to make
paging decisions; they are therefore described here as if they were
physically part of the page frame table.) The unreferenced interval count
indicates how long it has been since an address space referenced the frame.

The reference bit is set on by the hardware whenever a page frame is
referenced. At regular intervals, the system checks the reference bit for
each page frame. If the reference bit is not on -- that is, the frame has not
been referenced -- the system adds one to the page frame's unreferenced
interval count. If the reference bit is on, the frame has been referenced and
the system sets the unreferenced interval count for the page frame to zero.
Those page frames with high unreferenced interval counts are candidates
for page stealing.

The system maintains a supply of page frames. When a page that is not
in real storage is referenced by a program, the system uses a real storage
page frame from this supply. When this supply becomes low, page frames
that have not yet been referenced for the longest time (as indicated by the
unreferenced interval count) are stolen.

Chapter 2: Virtual Storage in MVS 2-11

2-12 OS/VS2 MVS Overview

The change bit is set to zero when a page is initially brought into a real
storage frame. When the contents of the page are changed during execution
of work in the address space, the change bit is set on. Setting the change
bit on tells the system that it must move the contents of the frame to
auxiliary storage before making the frame available for other work.
Checking the change bit ensures that no changes made during program
execution are lost during the paging process.

Figure 2.7 shows how the page frame table entries are set up and how
the status, reference, and change information and the unreferenced interval
count are used to determine which pages will be stolen. All of the pages in
the table are in use; the status field is set to one. The system checks the
reference bits and finds two pages that have not been referenced recently
and are, therefore, temporarily inactive. These two pages will be stolen. The
first page D has not been changed since it was brought in from auxiliary
storage; therefore, no physical page-out is required to save its contents
because the copy of the page in real storage is the same as the copy of the
page in auxiliary storage. The second page II has been changed; therefore
the system performs a page-out before it steals the page, and the contents
of the page are written to auxiliary storage. The system is thus able to steal
two pages, only one of which requires a page-out. (The first page is a
better candidate for stealing than the second page because of its higher
unreferenced interval count.)

'PAGE FRAME TABLE,

o
f)

Address Unreferenced
Space Segment & Page Interval
Identifier Number Status Count

1 a
1 a
1 6

1 a
1 2

1 a
1 a
1 a
1 a (

Part of Storage
Protect Key

~

Reference Change
Bit Bit

1 1
1 a
a a
1 1

~O 1

/,1 1

V 1 1

1 1

1 a

This page has not been recently
referenced, but It has been changed
since page·ln. Before page stealing
occurs, It must be paged-out.

Figure 2.7. Page Frame Table

•

c.

_ _ .. _ _--

c

o

.. _-_ .. _._._ .. _ _ _- -------------

System Components

Through swapping, page stealing, and, when required, demand paging, MVS
ensures that the most active pages of each address space are in real storage
when required and keeps track of the exact location of each page. This
complex paging process is transparent to the user; each program ruris in its
own address space as if it were the only program executing at any particular
time and as if it had all of virtual storage at its disposal. The paging process
is managed by several components of MVS. The three major ones are the
real storage manager, the auxiliary storage manager, and the virtual storage
manager.

Real Storage Manager (RSM)

The real storage manager (RSM) checks and maintain~ the entries in the
page frame table. It determines which pages are to be moved out of real
storage in response to a request for swapping an entire address space out of
storage or in response to a need for page stealing or demand paging.

The real storage manager also verifies the storage protect keys. The use
of storage protect keys is described earlier in this chapter under "Storage
Protect Keys."

Auxiliary Storage Manager (ASM)

The auxiliary storage manager (ASM) keeps track of the contents of the
page data sets and swap data sets. Page data sets contain virtual pages that
are not currently occupying a real storage frame. Swap data sets contain the
LSQA pages of swapped out address spaces.

The ASM also maintains a table called the external page table. Entries in
the external page table enable ASM to determine the location of a page
residing in an auxiliary storage slot. When a page-in is required, the RSM
locates an available frame, and the ASM uses the external page table to
find the required page on auxiliary storage and bring it into real storage.
When a page-out is required, ASM locates a slot on auxiliary storage,
moves the page from real storage to auxiliary storage, and updates the
external page table.

Virtual Storage Manager (VSM)

The virtual storage manager (VSM) provides the map of virtual storage for
each address space. VSM works with RSM to handle subpool management,
requests to obtain and free virtual storage, and storage allocations for
programs that must run in real storage rather than virtual storage.

Figure 2.8 summarizes the paging process, showing how pages move
between real and auxiliary storage in response to a page fault or to fill the
need for an adequate supply of real storage frames.

Chapter 2: Virtual Storage in MVS 2-13

------- -_ ... '" _ ... __ .-. __ •. _------

VIRTUAL STORAGE

Segment N
(pages 0 to 15)

,-

:~ Virtual :::::
storage
pages
within
segments

.:.~ ::.~

Segment 1
(pages 0 to 15)

Segment 0
(pages 0 to 15)

..L.

Tables
map pages
and slots

Paged area

(Nucleus)

AUXI LlARY STORAGE

Slots
(containing
pages of
instructions
and data)

Contents of
pageable
virtual storage

\. , , , , , ,
\.

Tables map
pages and
frames

" REAL STORAGE

Frames
(containing active
pages of executing
programs)

Nucleus

----- -- ___ ---'---------'

Figure 2.8. Page-out and Page-in

2-14 OS/VS2 MVS Overview

Program Loading

Paging also takes place when the program loader initially loads a program
into virtual storage. The program loader brings an entire program into
virtual storage from the library on which the program resides. Virtual
storage is obtained for the user program. Each page in the program is
brought into real storage; that is, a real storage frame is allocated to each
page and an entry is built in the page frame table. Each page is then active
and subject to the normal paging activity; that is, the most active pages are
retained in real storage while the pages not currently active are paged out
to auxiliary storage. Figure 2.9 summarizes the program loading process.

•

c:

C
-·,·

"

......... _-_ _ .. _._ ... _---

... ---------.-.----~

Figure 2.9. Program Loading

Loader
Program
is executing

Control
Program

REAL STORAGE

,/
/

/
/

/

/

Control
Program

VIRTUAL STORAGE

Up to this point, virtual storage has been described as if the entire
16-megabyte address space is available for user programs and as if all of
real storage is available for paging. As Figure 2.8 and 2.9 show, however,
some virtual storage and a corresponding amount of real storage are taken
up by the control program, also called the nucleus. In most systems, an area
of approximately eight to ten megabytes is available for user programs in an
address space. The map of virtual storage for each address space includes
both the areas used by the control program and the area available for a
user program. The remainder of this chapter describes the map of virtual
storage in more detail to show how storage is organized in MVS to make
effective use of real storage, an important system resource.

Virtual Storage Areas

Each virtual storage area consists of a system area, a private area, and a
common area. The address space each user controls enables him to address
all three areas. However, private segment and page tables and storage keys
isolate one address space from all other address spaces and protect the
system from destruction.

Chapter 2: Virtual Storage in MVS 2-15

---_. __ ,,---_

Common
Area

Private
Area

D
System
Area

{
r

r
l

Figure 2.10 shows the major parts of virtual storage. The system area o and the common area fJ contain the system control program and
various routines and data areas that pertain to the entire system. The
private area II is the area available for user programs. As the figure
shows, both the common area and the private area contain several separate
parts. The contents of the system area, the common area, and the private
area are described in the following text.

In addition to the basic storage layout shown in Figure 2.10, the system
area and the common area can be extended or changed, depending on the
configuration or options a particular installation selects. These additions to
the storage layout are described later in this chapter under "Extensions and
Options."

System Queue Area
Hi

Pageable Link Pack Area

Common Service Area

gh Address

I
I

Local System Queue Area
----- - -

Scheduler Work Area
--- - ---

Subpools 229/230 ,
User's Private Address Space

+
User Region

r--

f--.

System Region

Nucleus

L ow Address

Figure 2.10. Virtual Storage Layout

2-16 OS!VS2 MVS Overview

c

c

..

•

c

-------"-----------------------

c

--.. -------

System Area

The system area is allocated from the bottom of virtual storage during
system initialization. It contains the nucleus load module and any extensions
to the nucleus, the page frame table entries, DEBs (data extent blocks) for
the system libraries, recovery management support routines, and unit"
control blocks. The nucleus and the other contents of the system area make
up the resident part of the MVS system control program.

The system area is initialized after initial program load (IPL) by the
nucleus initialization program (NIP). The system area is .fixed; that is, it is
non-pageable and non-swappable. Its contents are mapped one for one into
real storage frames at initialization time and remain fixed for the duration
of the IPL. While the size of the system area varies depending on the
system configuration and the extensions and options an installation chooses,
the size of the system area does not change once it is initialized.

Common Area

The common area is allocated from the top of virtual storage. It contains
parts of the system control program, control blocks, tables, and data areas.
The basic parts of the common area are:

• The system queue area (SQA), which contains tables and queues that are
used by the entire system .

• The pageable link pack area (PLPA), which contains system programs,
such as SVC routines and access methods, and selected reentrant user
programs .

• The common service area (CSA), which contains system and user data
areas.

System Queue Area (SQA)

The system queue area (SQA) contains tables and queues relating to the
entire system. For example, the page tables that define the system area and
the common area are held in SQA. The contents of SQA depend on an
installation's configuration and job requirements.

SQA is allocated from the top of virtual storage in 64K segments; a
minimum of three segments are allocated during system initialization.
Within the virtual segments, SQA space is allocated as long-term fixed
frames when it is required. Because it consists of long-term fixed frames,
allocated SQA space is both non-swapp able and non-pageable.

Pageable Link Pack Area (PLP A)

The pageable link pack area (PLPA) contains SVC routines, access
methods, other system programs, and selected user programs. As its name
implies, PLPA is pageable; however, no physical page-outs are performed.
Because any changes made to a module would be lost and because the
modules in PLP A are shared by all users, all program modules in PLP A
must be reentrant and read-only.

PLPA space is allocated in 4K blocks directly below SQA. The size of
PLP A is determined by the number of modules included, and, once the size
is set, PLP A does not expand.

Chapter 2: Virtual Storage in MVS 2-17

2-18 OS/VS2 MVS Oveniew

Common Service Area (CSA)

The common service area (CSA) contains pageable system and user data
areas. It is addressable by all active virtual storage address spaces and is
shared by all swapped-in users. Data associated with an individual address
space can be isolated by a storage protect key.

Virtual storage for CSA is allocated in 4K pages directly below PLPA.
The amount of storage allocated is determined by the value specified for
the CSA parameter during system initialization. CSA is paged in and out of
storage as required.

Private Area

As stated earlier, each address space can access the contents of the system
area and the common area. In addition, each address space has its own
private area. Virtual storage for the private area is allocated from the top of
the system area up, and from the bottom of the common area down.

In most installations, the size of the private area ranges from eight to ten
megabytes. Even when there are significant extensions to the nucleus, SQA,
CSA, and PLP A, more than five megabytes should be available to each
user. The private area is made up of the local system queue area (LSQA),
the scheduler work area (SW A), subpools 229/230, and a system region, in
addition to the user region.

The user region is the space within the private area that is available for
running the user's problem programs. There are two types of user regions:
virtual (V=V) and real (V=R). The two types are mutually exclusive; that
is, a user region can be V=V or V=R, but it cannot be both.

The two types of user regions, as well as the other areas within the private
area, are described in the following text.

Local System Queue Area (LSQA)

The local system queue area (LSQA) contains tables and queues that are
unique to a particular address space. For example, LSQA includes the user's
private segment table and private page tables. LSQA also contains all the
control blocks required by the region control task (RCT). The region
control task is the highest level task in each address space; it plays a key
role when an address space must be swapped in or out.

LSQA is allocated downward from the top of the private area,
intermixed with the scheduler work area (SW A) and subpools 229/230.
LSQA for each address space that is swapped in is fixed in real storage
frames.

c

c

C~I

---,,-"-----

Scheduler Work Area (SW A)

The scheduler work area (SW A) contains the control blocks that exist from
task initiation to task termination. It is, in effect, a local job queue, and the
information it contains eliminates contention for a system job queue. The
information in SW A is created when a job is interpreted and used during
job initiation and execution. "Chapter 5: Entering and Scheduling Work"
describes how MVS processes a job.

SWA is allocated from the top of each private area, intennixed with
LSQA and subpools 229/230. It is pageable and swappable.

Subpools 229/230

A subpool is a logical group of storage blocks that share some common
characteristics; each type of subpool has a unique identifying number.
Subpools 229 and 230 are both protected by the user's storage key - that
is, a key relevant to the program that is using the storage. In addition,
subpool 229 is fetch-protected, which means that its contents cannot even
be read unless the key in storage matches the key in the PSW.

Subpools 229/230 contain user control blocks that can be used only by
programs with the appropriate storage protect key. Protected user resources,
such as the data extent block (DEB) that describes a user data set, reside in
these subpools.

Space for subpools 229/230 is allocated from the top of each private
area, intennixed with LSQA and SW A.

System Region

The system region within the private area is used by system functions
performing work for an address space. These system functions run under
the region control task (RCT) and obtain the storage they need from the
system region by issuing GETMAIN macro instructions.

The system region consists of four virtual pages (16K) allocated from the
bottom of the private area. It is pageable and exists for the life of the
address space.

Virtual (V = V) User Region

A virtual (V = V) user region can be any size up to the size of the private
area minus the size of LSQA, SWA, subpools 229/230, and the system
region. Its size can be limited by the REGION parameter on the user's JOB
or EXEC statement.

V = V user regions are page able and swappable. Only enough real storage
frames are allocated at any particular time to hold the active (paged-in)
parts of the problem program. A V = V region, as shown earlier in Figure
2.10, begins at the top of the system region and is allocated upward to the
bottom of LSQA, SW A, and subpools 229/230.

Chapter 2: Virtual Storage in MVS 2-19

Real (V = R) User Region

*V=R Limit~

A real (V =R) user region is assigned a virtual space within the private area
that maps one for one with real storage; that is, each virtual address in the
region always corresponds to the same real address. Figure 2.11 illustrates
V =R storage mapping. Real storage for the entire region is allocated and
fixed when the real region is created. An installation must use the
ADDRSPC=REAL parameter at system generation time to reserve
sufficient storage for all V =R regions that might exist at any particular
time. The system uses storage in the V=R area for normal paging activity if
the V =R storage is not being currently used for V =R jobs. Particularly
when system activity is high, a V =R job might not be started immediately;
it must wait until the system can free the storage the V=R job requires.

VIRTUAL STORAGE

Common Area

REAL STORAGE

LSQA, SWA and LSQA, SWA and LSQA, SWA and
229/230 229/230 229/230

Pageable Area

V=R JOB3 V=R; JOB3

V=R JOB2 V=R; JOB2

V=R JOB1 V=R; JOB1

System Region System Region System Region

System Area
System Area

* Limit of storage available for running V = R jobs

Figure 2.11. V=R Storage Mapping

2-20 OS/VS2 MVS Overview

c.

c

o

Real regions should be used only for jobs with time-dependent functions
(that is, jobs that cannot wait for paging activity to take place) or for jobs
that cannot run in the virtual environment, such as jobs with channel
programs that use the program control interruption (PCI) to dynamically
modify themselves. See "Chapter 8: Satisfying I/O Requests" later in this
book for more information about channel programs.

V=R region size is controlled by the VRREGN parameter specified at
IPL or by the REGION parameter in a user JOB or EXEC statement.

Extensions and Options

Both the system area and the common area can be extended, depending on
the configuration of the system or options an installation selects. Figure
2.12 shows all possible extensions, in addition to the storage areas
described earlier (which are shaded in the figure).

Two of the extensions, the RMS (recovery management support) nucleus
extension and the prefixed save area (PSA), depend on your system
configuration.

The RMS nucleus extension contains the recovery management support
routines that increase the availability of the MVS system. The size of this
extension depends on the particular configuration at an installation, but it is
always present in the system area.

The SYSGEN prefixed save area (PSA) is only present in a
multiprocessor system. It contains an uninitialized copy of the PSA and is
used to initialize the PSA for each new CPU that is brought on line.
"Chapter 10: Multiprocessing" describes in more detail the use of the PSA
in a multiprocessor system. The SYSGEN PSA occupies 4K of virtual
storage and is allocated in the common area just above the CSA.

Other extensions are optional; you choose them at either system
generation time or IPL time. These extensions are:

• The fixed link pack area (FLP A)
• The modified link pack area (MLP A)
• The BLDL list, which can be either fixed or pageable

Each of these optional areas is described in the following text.

Chapter 2: Virtual Storage in MVS 2-21

Common Area

Private User Area

System Area

MVS VIRTUAL STORAGE Built from the

</ .••..••..••..•.•.•..••••••...• , down T
high address

\i\\ ... /\.. .•.•.. <// i i< \ I

~~~~~~~~~~:t]~~~~~~~~~~J ----64K boundary 
W - - -- 4K boundary 

Modified Link Pack Area* 
~----------------------I - - - - 4K boundary 

Pageable BLDL Table** 
1-------------------------1 - - - - 4K boundary 

SYSGEN Prefixed Save Area*** 
(4K) 

1-------------~--~~-------1 - - - - 4K boundary 

~~._ ... 11111_ ...... 111111 ....... 11111 ........... - - - - 64K boundary 

'" '" Mutually 
....... > Exclusive 
./ Private 

,/ Region Areas 

J..,.;.-,;..;..-..o.-,;..;..,;..;.....;..-...;..--...;..---,;..;..,;..;.....;..-...;..-...;..--~...;..-...;..-...;..-~~ - - - - 4K boundary 

':::~.III ......... III .................... 1Iif -- - - 64K boundary 

"-L';";"';";"';";"';";"';";",;..;.....;.._--.';";"",;,,_';";"';";"';";"';";"';";"';";""';"_';";"';";"';";"';";"';";""" ~ Built from the 
low address up 

*The MLPA is optional. 
**The pageable and fixed BLDL tables are mutually exclusive. 

***The SYSGEN PSA is only for MP systems. 

Figure 2.12. Extensions and Options 

2-22 OS/VS2 MVS Overview 

c 



----_._.- .. _. __ ._------... - ....... _._---_._----------------- .. _--._ .. _ .... _---

c 

c. 

o 

Fixed Link Pack Area (FLP A) 

The fixed link pack area is an extension to the system area that an 
installation defines at system generation time. It contains reentrant, 
read-only modules similar to those loaded in PLP A. 

Because FLP A is fixed - mapped one for one against real storage - it 
reduces the amount of storage available for running installation programs. 
Thus, the modules selected fOf FLPA should be chosen with care. The 
paging algorithm MVS uses tends to keep a heavily-used PLP A module in 
real storage. Therefore, the most likely candidates for FLPA are modules 
that significantly improve system performance when they are fixed rather 
than paged, such as a module that is infrequently used but that requires 
rapid response when it is needed. 

Modified Link Pack Area (MLPA) 

The modified link pack area (MLP A) can be used for reentrant modules 
from selected system or user libraries; it acts as an extension to PLP A, but 
it exists only for the duration of the current IPL. That is, the MLP A is not 
saved from IPL to IPL as the PLPA is. 

MLP A modules do not have to be read-only, and they can be modified. 
One effective use of MLPA is to modify and test modules before adding 
them to PLP A. 

When MLP A is specified during system initialization, it is allocated just 
below PLP A in the common area. It exists for the life of the IPL, and it is 
pageable. 

BLDL Lists 

A BLDL list is a list of directory entries for modules residing on a system 
library. Specifying a BLDL list can improve system performance because 
the system does not have to perform a library search to locate a required 
module. Each entry in a BLDL list contains the information the system 
requires to locate the module. The type of module that can be most 
effectively included in a BLDL list would be a heavily-used module that 
cannot be loaded in FLP A or PLP A because either it is too large or it is 
not reentrant. 

A BLDL list can be either fixed or pageable, but not both. An 
installation can choose either a fixed or a pageable BLDL list during system 
initialization. 

Fixed BLDL: If you choose a fixed BLDL list, the BLDL is allocated in the 
system area directly above the nucleus. As part of the system area, it is not 
pageable. Fixed BLDL removes a relatively small amount of real storage 
from use by installation programs. However, fixed BLDL can reduce the 
number of page faults that occur during system execution and should be 
considered when fast processing by the modules in the list is critical. 

Pageable BLDL: If you choose a pageable list, the BLDL is allocated in the 
common area below PLP A, or below MLP A, if present. 

Chapter 2: Virtual Storage in MVS 2-23 



c 

...... _-

c 
2-24 OS/VS2 MVS Overview 



c 

C-" 

Chapter 3: Installing and Servicing the System 

This chapter contains information on installing and servicing an MVS 
system. Among the items discussed are: installation planning; system' 
generation; an alternative to system generation called the MVS System 
Installation Productivity Option (MVS System IPO); and the System 
Modification Program (SMP) used to service the system. 

Installing the System 
The installation of OS/VS2 MVS involves the creation of an MVS system 
tailored to the needs of a specific installation and to a particular set of user 
requirements. The installation can choose to perform a full system 
generation, use the IBM-provided installation productivity option (MVS 
System IPO), or use combinations of these to assist in the tailoring process. 

Preliminary Considerations 

For many locations, installing MVS includes converting existing OS/MVT 
functions, SVS functions, or OS/VSl functions to comparable MVS 
functions and adding certain new OS/VS2 MVS features and 
enhancements. Such an effort requires a good deal of preliminary thought 
prior to system generation in the areas of migration planning, conversion 
planning, and installation planning. Those installations who are migrating or 
converting from MVT or SVS should refer to OS/VS2 Conversion Notebook, 
for information on migration and conversion planning. Those installations 
who are migrating or converting from VSl should also refer to OS/VSl to 
OS/VS2 Conversion Notebook for information on migration and conversion 
planning. This section focuses on installation planning, system generation, 
and the MVS System IPO. 

The Installation Plan 

Installation planning is a key step to successfully installing OS/VS2 MVS. 
A well thought out, managed, documented, and executed plan takes into 
consideration everyone who uses or supports the system. The installation 
should prepare a planning document that includes: 

• A guide that indicates the appropriate tasks to be performed and 
identifies who should perform these tasks 

• Appropriate checkpoints, interdependencies, and deadlines 

• User goals and performance expectations 

• Staffing and assignment of personnel 

Chapter 3: Installing and Servicing the System 3·1 



3-2 OS/VS2 MVS Overview 

Installation Tasks: Installation tasks can be categorized in five phases, as (' 
shown in Figure 3.1: overall installation planning, generating the system, .~ 

integrating and testing the various components, testing the production 
system, and stabilizing the production system. These phases are basically 
the same as those provided in the MVS System IPO installation plan 
discussed later in this chapter. Refer to that discussion for details on how 
each of the planning phases should be handled if the MVS System IPO is 
going to be used. 

Overall 
installation 
planning 

I 
Plan 

r-- - --
Generate the 
system 

I 
Plan 

- ---
I ntegrate and 
test 

I 
Plan 

----
Test the 
production 
system 

1 
Plan 

--- -
Stabilize the 
production 
system 

Figure 3.1. InstaUation Planning Phases 

\ 

\. 

c 



----------------------------

c 

-------------_._-------

Checkpoints and Interdependencies: Checkpoints should be established for 
each of the tasks within a given phase. Interdependencies of tasks, 
identification of tasks that can be run in parallel, and other related planning 
information can be established and documented during the overall 
installation planning phase. 

Performance: In order to migrate or convert to an MVS system from an 
existing system, the installation must understand the performance of the 
current system and the desired performance of the new system. 
Performance expectations should be documented in the installation plan and 
should include such items as: 

• Turnaround time for all classes of batch jobs 
• Response time for online transactions 
• Elapsed time for long-running jobs 

In addition, the installation should create a workload profile to document 
the expected volume of transactions and storage requirements. It may also 
be possible to estimate processor use, channel use, and system paging rates. 
Several IBM facilities are available to help the installation perform this task. 
These include the Generalized Trace Facility (GTF), System Activity 
Measurement Facility (MF /1), and the Resource Measurement Facility 
(RMF), an IBM program product. Once performance expectations are 
understood and system growth is projected, the proper hardware and 
software configuration can be designed and generated. The OS/VS2 MVS 
Performance Notebook, includes information on defining performance 
objectives. 

Stafrmg and Personnel: Ideally, the installation plan will be carried out by 
the current system programming staff. As an example, a typical 
programming staff for installing MVS might include: 

• Two people for MVS with JES2/JES3 experience 
• One person for TSO with TCAM/VTAM experience 
• One person for IMS/CICS (IBM program products) 

This staff would be responsible for system generation, problem diagnosis, 
monitoring and tuning, and other operation support activities. Each 
participant should be fully educated, either in a classroom or self-study 
environment, on how to handle each of the installation planning tasks to 
which he is assigned. This education time should not be compromised. 

System Generation 

System generation is the process of selecting modules, options, and 
parameters from IBM distribution libraries (DLIBS) and using them to 
tailor the installation's MVS system. As shown in Figure 3.2, the system 
generation procedure uses an MVS starter system (or a previously-working 
MVS system), a set of IBM distribution libraries, and a set of 
installation-specified JCL and macro instructions (user specifications) to 
produce the new MVS system. 

Chapter 3: Installing and Servicing the System 3-3 



JCL and macros 

MVS starter 
system 

or 
Prior MVS 
system 

System 
generation 

Diagnostics 
and listings 

Figure 3.2. Creating an MVS System with tbe System Generation Procedure 

3-4 OSIVS2 MVS Overview 

When the MVS system is already generated but the installation wishes to 
change the machine configuration or certain other program configurations, 
an I/O device generation can be performed. Refer to the pUblication 
OS/VS2 SPL: System Generation Reference, for a detailed description of 
I/O device generation. 

Note: Distribution libraries can be modified prior to system generation to 
include specific mM-supplied selectable units (a new way of packaging 
function). This enables the installation to reap the benefits of an improved 
MVS packaging and distribution process provided under the selectable unit 
(SU) concept. More is said on this new process under "Servicing the 
System." 

Planning and Preparing for the System Generation 

To prepare for the system generation process, the installation must: 

1. Order the MVS distribution libraries from mM.' Information on how 
to do this is in the latest edition of the OS/VS2 Release Guide. 

2. Select the appropriate MVS system control program options from 
those available with MVS. Selected options, with the standard 
features, comprise the installation's system. An explanation of all 

c 



c 

o 

MVS-supported options is available through the local mM branch 
office representative. 

Note that in MVS the number of system generation options that must 
be specified has been reduced. Many of the previous options have 
been made standard under MVS. In addition, several macros (used to 
specify the selected options) have been eliminated, consolidated, or 
clarified. 

3. Select and code the system generation macro instructions that specify 
the selected options, standard features, and the allocation or 
pre-allocation of data sets on the system. Instructions on defining 
system data sets and a list of system generation macros and their uses 
can be found in OS/VS2 MVS SPL: System Generation Reference. 

If program products, such as IMS or CICS, are included in the 
system, consult the local mM Branch Office representative for the 
appropriate documentation. 

4. Initialize the DASD volumes required for the system generation. 
Before the system can be generated, the DASD volumes that contain 
the MVS distribution libraries, the MVS starter system (or prior MVS 
system), and the MVS system-to-be must be initialized. 

Executing the System Generation 

With MVS system generation, mUltiple jobs can be run in parallel to speed 
up the process. In addition, because many of the previous system options 
have been standardized, installation time is saved in coding applicable 
macro instructions for these options. 

System generation is executed in two stages, as shown in Figure 3.3. In 
Stage I, the system generation macros are assembled and then expanded 
into job control statements, utility control statements, assembler statements, 
and linkage editor control statements. Together, these statements describe: 

• The hardware configuration 
• The system control program 
• The access methods 
• Installation routines that are to become part of the system 
• Installation-selected program options that are to be included in the new 

system 

In other words, the statements describe the new, tailored MVS system. 
(Additional tailoring can be done during subsequent initializations of the 
generated MVS system.) 

Cbapter 3: Installing and Servicing tbe System 3-5 



User-suppl ied 
JC L and macros 

MVS starter 
system 

or 
Existing MVS 
system 

MVS starter 
system 

or 
Existing MVS 
system 

Figure 3.3. Executing the System Generation 

3-6 OS/VS2 MVS Overview 

Stage I 

Assembles 

Stage II 

Assembles, 
link edits, 
copies 

Documentation 
listing and 
diagnostic 

Punched cards, 
card images on tape, 
or data set on disk 

JCL and 
control statements 

Documentation 
listing 

c 



c 

o 

.. " ....... _-_ .....•.. _ .. -._---

The output of Stage I is input to Stage II. During Stage II, modules from 
the distribution libraries are assembled, link edited, and copied to the data 
sets that are allocated on the new system volumes. 

For a full system generation, Stage II consists of six or seven jobs, 
depending on what the installation has pre-defined. For an I/O device 
generation, Stage II consists of only five jobs. In all cases, the sequence of 
execution is the same and is designed so that mUltiple jobs are executed in 
parallel; that is, it is a multiprogrammed job stream. 

The output of Stage II is the installation's MVS system control program 
and a listing that documents Stage II execution. 

Verifying the System Generation 

After the system generation process completes, an IBM-supplied installation 
verification procedure (IVP) should be performed to verify that the new 
system is operating properly on the specified hardware configuration. 
Optionally, the installation can perform an I/O device generation to alter or 
extend the I/O configuration of the MVS system. The Installation 
Productivity Option (MVS System IPO), to be discussed next, contains 
information on system integration and testing of the production system. 

MVS System Installation Productivity Option (MVS System IPO) 

The MVS System IPO, an alternative to the full system generation process, 
is a new approach to packaging, distributing, installing, and servicing a 
system. It is a result of an MVS installation completed at an IBM internal 
location. As such, the MVS System IPO package provides the installation 
with the benefit of extensive installation experience. It should help to 
achieve full production status with fewer resources as well as to significantly 
reduce the time and effort required to plan, prepare, and execute the 
installation of the MVS system. 

This section discusses the MVS System IPO, the MVS System IPO 
installation plan, and the documentation provided in support of the MVS 
System IPO. 

The MVS System IPO 

MVS System IPO comes to the installation as a pre-generated extension of 
the MVS starter system, supporting batch and TSO operation. The standard 
version includes JES2, an expanded I/O configuration, TeAM or VTAM 
support for TSO or IMS (a separately orderable feature of the MVS System 
IPO is available for IMS/VS), and the most common MVS system options. 

The system is a moderately tuned, two-volume MVS system that can be 
used as is or altered to meet the installation's requirements. It comes with a 
set of installed selectable units and programming temporary fixes (PTFs). 
(Though the MVS System IPO is not formally tested when the SUs and 
PTFs are applied, IBM uses the latest distribution level as a production 
system at the IBM installation producing the MVS System IPO package.) 

Chapter 3: Installing and Servicing the System 3-7 



To simplify the installation process, the MVS System IPO package 
includes examples of JCL usage and procedures to show how the 
installation can use certain functions, change them, or incorporate them into 
the MVS system. TSO llserids, LOGON procedures, and a sample 
command processor are provided, as is information about operating a 
time-sharing system, including initializing, monitoring, and terminating TSO. 
In addition, examples of exit routines are provided. 

The MVS System IPO can be used to educate the installation's system 
programmers, system operators, and users. With it, the installation can: 

• Perform early testing without extensive tailoring or reconfiguration 
• Minimize the number of installation decisions to be researched, 

implemented, and tested 
• Reduce the stand-alone machine time required 

Note, however, that the mM intemallocation where the MVS System 
IPO package was constructed was limited by the specific hardware/software 
configuration at that location. Therefore, the installation should do an I/O 
device generation to match the configuration of the installation's system, as 
shown in Figure 3.4. Later, the system can be tailored and extended to 
meet installation and user requirements. 

I/O 
generation 

Figure 3.4. I/O Device Generation 

3-8 OS!VS2 MVS Overview 

The MVS System IPO package also contains supporting documentation 
and an installation plan. Discussions of each of these follow. 

MVS System IPO Documentation 

The MVS System IPO package includes a comprehensive set of documents 
to assist the installation in using the MVS System IPO package. These 
documents, shown in Figure 3.5, explain how to use the MVS System JPO, 
describe how to build a production test system, and provide hints and 
techniques relating to the installation process. 

c 



--~ ~.'~-----~~' .. _---

c 
Hard copy 

Others 

Memo to Users 

Mach ine-readable 
or 

Hard-copy 

Tuning Guide Machine-readable 

System & I nstatlation 
Guide 
(2 Volumes) 

MVS System I PO 
Contents 

Mach i ne-readable 

Mach I ne-readab Ie 

Figure 3.5. MVS System lPO Documentation 

c 

o 

.. -.--.-.. --......... ----

All MVS System IPO documents except the planning document are 
distributed in machine-readable form. Because of this, they reflect the latest 
experience and the most current MVS System IPO information. The 
machine-readable documents can be listed on a system printer or displayed 
on a TSO terminal. Their contents follow: 

• Memo to Users: This document contains a general description of the 
MVS System IPO package. It includes the purpose and concept of the 
MVS System IPO, a description of the physical characteristics of the 
tapes on which it is distributed, and a brief summary of each MVS 
System IPO document. 

• Planning an MVS System [PO Installation: This document contains 
general information about MVS System IPO. It is intended to assist those 
responsible for installation planning in evaluating the use of the MVS 
System IPO for their installation. It describes in detail a structured 
installation plan that makes maximum use of the MVS System IPO 
package. 

• MVS System [PO System Contents: This document contains a physical 
description of the: 

MVS System IPO distribution libraries and the MVS System IPO 
itself 

Installed selectable units and applied programming temporary fixes 

110 configuration and defined UNITNAMEs 

Contents of the MVS System IPO data sets, physical data set 
characteristics, and library members 

Chapter 3: Installing and Servicing the System 3-9 



3-10 OS/VS2 MVS Overview 

• System and Installation Guide, Volume I: This document discusses 
the procedure for installing the MVS System IPO and the rationale (\ 
behind the procedure. In addition to discussing the basic system ~' 
set-up, it describes procedures for: 

Printing the MVS System IPO documents and listings 

Coding system generation macro instructions 

Performing an I/O device generation 

Verifying the initial system 

Building a test production system 

• System and Installation Guide, Volume II: This document discusses 
the techniques for tailoring the MVS System IPO. These techniques 
include the use of the System Modification Program (SMP), user SVC 
routines, user exits, and the program properties table. It also discusses 
password protection and provides catalog examples, hints about 
system back-up, and fall-back and recovery techniques. 

• Tuning Guide: This document discusses IBM experience in measuring 
and tuning the MVS system along with experience in using certain 
programs and aids for tuning purposes. It provides a tuning 
methodology, discusses the tailoring of MVS System IPO, and offers 
general tuning advice. 

There are various other MVS System IPO documents as well. For example: 

• MVS System IPO User's Guide 
• MVS System I PO Communication and Interactive Guide 
• MVS System IPO Operator's Guide 
• Program Product Usage and Experience Guide 
• Various Conversion Guides 

These are explained in more detail in the publication Installation 
Productivity Option (IPO) for OS/VS2 Release 3.7 (MVS): Planning an 
MVS System IPO Installation, GC20-18S2-2. 

The MVS System IPO Installation Plan 

The MVS System IPO package includes an installation plan that helps the 
installation's project leaders develop their own plans tailored to the needs of 
the installation. The MVS System IPO installation plan, which is divided 
into five phases, does the following: 

• It defines the required tasks. 
• It identifies those tasks that can be performed in parallel. 
• It suggests a schedule for executing the various tasks. 

As shown in Figure 3.6, each of the system installation phases following 
the initial planning effort is preceded by planning activity pertinent to that 
phase. Keep in mind while reading the discussions of each of these phases 
that the MVS System IPO installation plan formalizes some of the activities 
that the installation should seriously consider doing whether or not the 
MVS System IPO, itself, is used. 

r', 
I 

1...'--

c 



c 
Overall planning 
and preparation 

I 
Plan 

r-----
Build a test 
system 

I 
Plan 

1--- --
I ntegrate and test 

I 
Plan 

1---- -
Test the production 
system 

I 
Plan 

r-- -- --
Stabilize the 
production system 

Figure 3.6. The MVS System IPO Installation Phase Plan 

Phase 1 -- Plan and Prepare: During Phase 1, the MVS programming group 
will obtain the necessary MVS education and study the MVS publications. 
Then, after printing and reviewing the MVS System IPO documentation, 
detailed tasks can be incorporated into the installation plan. Note that 
similar tasks are performed in parallel by TSO and IMS programming 
groups, as well as operations and users. (This applies to the other phases, as 
well.) 

To use the new operator and user facilities MVS offers, the installation 
may have to revise its standards and procedures. Those responsible for 
operations and user applications should evaluate this need. 

Chapter 3: Installing and Servicing the System 3-11 

.------.-........ _--_._--_ ..... _._--_. __ .-... -.. _--



3-12 OS/VS2 MVS Overview 

When the installation has completed all other Phase 1 planning and 
preparation, the MVS System IPO and the distribution libraries should be 
moved from mM tapes to installation DASD volumes in preparation for an 
110 device generation. 

Phase 2 -- Build a Test System: During this phase, an MVS system tailored 
to the installation's needs and suitable for subsequent production testing is 
built. Activities in this phase include: 

• An 110 device generation 
• Creating P ARMLm and PROCLm members 
• Entering user data sets in the catalog 
• System verification 
• Preparing the TSO component 
• Component testing 

The MVS System IPO documents and listings include detailed 
instructions for completing this phase. 

Phase 3 -- Integrating and Testing: The objective of this phase is to ensure 
that the individual components, with system enhancements and extensions, 
work with one another to accomplish the various system functions. At the 
end of this phase, the system that the installation began building in Phase 2 
is available for production testing. All functions and options are completely 
integrated and the structure of the MVS system is complete. (Note, 
however, that overall system tuning is not completed until the system 
stabilization phase is executed.) 

To expedite this phase, there is much parallelism and overlapping that 
can be done in the testing of the various components. For this reason, it is 
important that the installation synchronize the various activities, and that 
the various TSO, IMS, operations, and user groups communicate with each 
other and with the MVS system programming group before and during the 
testing. 

Phase 4 -- Testing the Production System: The objective of this phase is to 
test the entire system with simulated production. The MVS system 
programming group should control the testing, but all groups are involved. 
Several tests should be planned and executed early, including terminal 
simulations, if required. Many installations schedule at least one production 
test with live, on-line users prior to releasing the system for limited 
production. In any event, it should prove useful to introduce the MVS 
system to end users during this phase to familiarize them with new 
procedures, modified standards, and enhanced facilities. The MVS System 
I PO Tuning Guide provides excellent guidance for this phase. 

Before proceeding into limited production (assuming that production 
testing has gone satisfactorily), fall-back procedures should also be tested. 
The MVS System IPO Operator's Guide includes recommended steps and 
procedures. 

Phase S -- Stabilizing the Production System: The objective of this phase is 
to bring the MVS system to a point where it can move into full production 
status. Phase 5 is a continuous activity that includes releasing the system for 
limited production and for eventual full production. During limited 
production, the tuning process is continued to ensure that the system is 
adjusted to meet installation performance expectations. Full production is 

/". 
I ',,-./ 

c: 



c 

c' 

o 

achieved when performance expectations and all planned user requirements 
have been met. In addition to the MVS System I PO Tuning Guide, the 
installation will find the following publications useful in reaching full 
production status: OS/VS2 MVS Performance Notebook, and OS/VS2 
System Programming Library: Initialization and Tuning Guide. 

Servicing the System 
After full production status has been attained, the installation will want to 
control the application of service, including the installation of new 
selectable units (SUs), program temporary fixes (PTFs), and user 
modifications. System service may also involve ordering a more current 
release of the MVS System IPO and repeating some of the key installation 
tasks. 

The System Modification Program (SMP) is the primary ffiM-provided 
tool for servicing the MVS system. 

The System Modification Program (SMP) 

The SMP controls the application of service at the installation. To do this, 
SMP creates a record of all modules and macro instructions in the target 
system (that is, the system to be serviced). As service for the system is 
received (in the form of new SUs, PTFs, or user modifications), SMP 
checks these records to see what modifications have been made. In this 
manner, a high degree of control of what is to be included in the system 
can be maintained. 

SMP can also be used to modify and keep a record of modifications to 
permanent user libraries and the IBM distribution libraries. This section 
discusses the kinds of modifications that can be made, namely: 

• Installing new selectable units 
• Installing programming temporary fixes 
• Installing user modifications 

In addition, some information is included about the SMP functions used 
to carry out these modifications. 

Installing Selectable Units (SUs) 

Selectable units (SUs) represent a recent change to the MVS packaging and 
distribution process. By choosing appropriate selectable units, the 
installation can add enhanced or new functions to their MVS system 
whenever these functions are needed by the installation. This means 
installation on a more timely basis with fewer untimely disruptions to 
operations. 

SUs are installed using a new MVS macro called the INSTALL macro. 
The parameters in this macro identify the SUs to be installed and indicate 
where the SUs are to be installed. SUs can be installed in the distribution 
library for a subsequent MVS system generation (called the SYSGEN 
option) or they can be installed from a distribution library into the target 
system itself (called the SMP option). The SMP program controls both 
methods. 

Chapter 3: Installing and Servicing the System 3-13 



SYSGEN Option: When the SYSGEN option is selected, the INSTALL 
/'" macro creates a new set of distribution libraries from the IBM distribution ( 

library and the SU tape. Various SMP functions are performed during the \ ... _/ 

IBM distribution 
library tape 

o 

installation process, as discussed under "SMP Control Functions." The 
resulting modified distribution libraries (see Figure 3.7) can be used to 
generate a new MVS system that will include the selected SUs. 

Note that when the SYSGEN option is selected, the target system, itself 
is not affected. 

Customer 
SU selections 

Customer SYSG EN 
library 

IBM SU tape o SU1 'SU2 ···· 

INSTALL 
macro 

FlgUl'e 3.7. SYSGEN INSTALL Option 

3-14 OS/VS2 MVS Overview 

SYSGEN 

Customer's updated 
MVS system 

c 



-----------------------------

c 

c 

o 

SMP Option 

When the SMP option is selected, the INST ALL macro receives applicable 
SU s, applies them to the existing MVS system, and accepts them as 
modifications to the permanent user libraries or to the distribution libraries. 
This is carried out according to the SMP function control statements 
encountered by SMP. When the SMP option is selected, the target system is 
directly modified, as shown in Figure 3.8 -- no new system generation is 
required. 

IBM SU tape 

Q 
Existing MVS system 

Figure 3.S. SMP INSTALL Option 

Customer 
SU selections 

INSTALL 
macro 

Updated MVS 
system 

Installing Programming Temporary Fixes (PTFs) 

A programming temporary fix (PTF) is an IBM-supplied correction to a 
defect in one of its programs. It is intended to fix or prevent problems. 
Unless the defect is removed in a later release, the PTF becomes a 
permanent part of the system. IBM distributes these corrections on a PTF 
tape. IBM also distributes program update tapes (PUT) to reduce the effort 
required to perform service. The tapes contain selected PTFs organized and 
arranged to facilitate easy application. 

Chapter 3: Installing and Servicing the System 3-15 



3-16 OS/VS2 MVS Overview 

Each PTF contains a series of SMP function control statements and one 
or more changes. The control statements: 

• Identify the change. 

• Verify that the change applies to the installation's system. 

• Specify prerequisite additions to or deletions from the system for this 
particular PTF. (In some cases, a PTF cannot be applied unless one or 
more prior PTFs are first added, or unless a PTF added earlier is first 
removed.) 

• Indicate whether the change is to macro instructions, source modules, 
object modules, or load modules. 

• Indicate whether the change is an update or a replacement. 

Installing User Modifications 

Once your system is installed, you may want to develop and code your own 
changes. These changes may be new or replacement macros or source, load, 
or object modules. Changes can be assembled and link edited, if that is 
required, or SUPERZAP statements can be used. Each change should have 
an identifying number. 

SMP can be used to apply user modifications. It provides the same 
control capabilities and benefits for user modifications as it does for 
applying mM PTFs. To install user modifications with SMP, you write SMP 
function control statements to specify the changes you want to make and to 
verify the correct base level of the system. The SMP statements should also 
be used to check prerequisite changes or changes in the system that might 
preclude the present change. 

SMP Control Functions 

SMP can process several changes at once and can accept input in the form 
of SUPERZAP statements, module replacements, and in PTF form. It 
controls application of changes through the use of SMP function control 
statements. Figure 3.9 illustrates the function provided by the SMP control 
statements. Additional details can be found in the publication OS/VS 
System Modification Program (SMP) System Programmer's Guide. 

c 

c 

c 



c 

c 

o 

RECEIVE 
processing 

Yes 

APPLY 
processing 

Yes 

ACCEPT 
processing 

Figure 3.9. SMP Functions 

No REJECT 
processing 

No RESTORE 
processing 

SMP control 
data set 
(SMPCDS) 

Chapter 3: Installing and Servicing the System 3-17 



3-18 OS/VS2 MVS Overview 

RECEIVE Function: The RECEIVE function creates essential control 
information used to determine whether or not to add the current 
modification to the system. This information is placed in an SMP control 
data set called SMPCDS. The RECEIVE function also checks the syntax of 
control statements and verifies that the current modification applies to your 
particular system. Additionally, it prints a listing to help you determine 
which changes should be applied to tIle system or rejected. 

REJECT Function: If you decide not to apply a particular change after 
RECEIVE processing, the REJECT function deletes the appropriate control 
information from the SMPCDS data set. 

APPLY Function: The APPLY function first determines that all necessary 
changes are either on the system or being applied. It also identifies any 
previous changes that might precede this change. When you are satisfied 
that you can proceed with the change, the APPLY function makes the 
modification. 

RESTORE Function: If you find during a testing period that a change does 
not work or that you must remove one or more changes for any reason, the 
RESTORE function will remove the changes from the system and update 
the SMPCDS data set. 

ACCEPT Function: The ACCEPT function places into permanent libraries 
or into the distribution libraries any changes that the RECEIVE and 
APPL Y functions have processed. An SMP alternate control data set 
(SMPACDS) is updated to reflect any changes to the distribution libraries. 

( 
"-



o 

System 
operator 
initiates 
load 
procedure 

Chapter 4: Preparing the System for Work 

Before productive work can be done, the MVS system must be initialized to 
specific starting values. These values, some of which were previously 
established during the system generation process and some of which may be 
provided by the system operator during the initialization process, provide 
installation tailoring to the MVS system. 

Overview of the Initialization Process 

IPL 

Locates, 
loads 
nucleus 

As shown in Figure 4.1, the initialization process consists largely of 
locating, loading, and initializing the nucleus, initializing system resources, 
initializing the master scheduler, and initiating the primary job entry 
subsystem (JES). The process can also include initiating TSO. In the course 
of the initialization process, an initial program loader (IPL), a nucleus 
procedure (NIP), various resource initialization modules (RIMs), and a 
master scheduler initializer are loaded and activated to perform the 
appropriate initialization steps. To provide additional flexibility to the 
initialization process, the system operator can interact with the various 
initialization routines through a system console. 

NIP 

• Initializes • 1 
RIMs 

nucleus • 

Initialize 
system 
resources 

T 

Master 
scheduler 
initializer 

Initializes 
master 
scheduler 

Initiate 
JES 

Initiate 
TSO 

Figure 4.1. System Initialization Summary 

Chapter 4: Preparing the System for Work 4-1 



4-2 OS/VS2 MVS Overview 

Initiating the Load Procedure r"', 
The load procedure is initiated by the system operator. He ensures that the ~ .. / 
system residence volume (SYSRES) is mounted and that the load device is 
readied. Then, using the system console, he selects the load device and 
initiates the load procedure. 

The System Residence Volume 

The system residence volume (SYSRES) must be online and ready during 
system initialization because it contains the initial program loader and some 
of the system data sets necessary during the initialization process. For 
example, three such data sets that must be on the SYSRES volume are: 

SYS1.NUCLEUS 

SYS1.LOGREC 

SYS1.SVCLIB 

SYS1.NUCLEUS contains the resident nucleus to be loaded and 
initialized. It also contains the nucleus initialization procedure modules 
(NIP), the resource initialization modules (RIMs), and the modules used to 
initialize the master scheduler. 

SYS 1.LOGREC contains a record of hardware, software, and 
input/ output errors that occur during system operation. The data set is 
opened during initialization so that error recording can take place. 

SYS l.SVCLffi is an authorized program library that contains certain 
supervisor routines that are not part of the resident nucleus but that are 
invoked by NIP. 

The System Console 

The operator uses the system console to operate and control the system. 
The system console consists of a control panel and a console device. On 
some System/370 models, the operator uses the control panel to select the 
load device and initiate the load procedure. On other models, he or she uses 
the console device, which includes a keyboard, a light pen, and a display 
screen. In the case in which the console device is used, the operator must 
first perform an initial micro program load (IMPL) after powering up the 
processor. The initial micro program controls the display screen, thereby 
permitting function selections to be made available as "menu" items. In any 
case, the operator's initial actions bring the initial program loader into 
storage. 

c 



c 

o 

Initial Program Loading 
When the operator initiates the load process, the stand-alone initial program 
loader (IPL) is loaded from SYSRES into real storage starting at location 
zero, as shown in Figure 4.2. Then IPL receives program control. 

Real storage 

Key ~ 
~ Data transfer 

____ • Program control 

SYSRESU~~ __ 
IPL 

Console c=J --+ J----'-----.I 
Load key 

Figure 4.2. Initial Program Loading 

The initial program loader has two major functions: clearing storage and 
loading the nucleus. 

Clearing Storage 

IPL clears the general registers and floating point registers. Then it limits 
the size of real storage to a size specified. by the system operator. Or, if no 
size is specified, the system default size contained in the system parameter 
library is used. Next, IPL clears real storage and resets the storage keys. 

Chapter 4: Preparing the System for Work 4-3 



4-4 OS/VS2 MVS Ovemew 

Loading the Nucleus 

After storage has been cleared, IPL searches the system residence volume 
for the nucleus, or, if applicable, for an operator-specified alternative 
nucleus. When it finds the nucleus, IPL relocates itself and then loads the 
nucleus load module (IEANUCOx) and the NIP module (lEA VNIPO) 
starting at location zero. IPL then passes control to NIP. This is illustrated 
in Figure 4.3. 

Key 

~ Data transfer 

____ • Program control 

Figure 4.3. Loading the Nucleus 

Nucleus InitiaIization via NIP 

Real storage 

IEAVNIPO NIP 

..., 
IEANUCOx 

Nucleus load module 

After NIP receives control from IPL, it first performs a few preliminary 
initialization functions such as verifying that the nucleus has been properly 
loaded, initializing the SYSRES unit control block (UCB), and building a 
SYS1.NUCLEUS data extent block (DEB). Then NIP performs three major 
initialization functions. It: 

• Initializes real storage. 
• Establishes an address space. 
• Processes SYS I.P ARMLm-specified and operator-specified initialization 

parameters. 

In addition, NIP controls initialization of system resources. (The 
appropriate resource initialization modules actually initialize the resources, 
however.) 

c 



c 

C: 

o 

----- -----~ .. - .. ----.... - .. - .... ----

Initializing Real Sto,.age 

As previously described, IPL clears real storage as specified by the system 
operator or as an installation default limit. In a multiprocessing (MP) 
system, NIP overrides this limit, clears all real storage, and sets aU storage 
keys to zero. Then NIP reserves space for permanent data areas and control 
blocks in real storage, after which it initializes these items. 

As shown in Figure 4.4, space at the high end of real storage is reserved 
for the system queue area (SQA), and the control blocks necessary for the 
management of virtual storage and the processor are built and initialized. 

Once SQA space is reserved and initialized, space for the master 
scheduler's local system queue area (LSQA) is obtained from the next 
available real storage frame below SQA. As with the SQA, appropriate 
control blocks are built in that area. Finally, NIPO initializes the NIP 
transient area, which is used to execute the various load modules that 
constitute NIP. 

The bottom of the NIP transient area is the top of the system area, as 
shown in Figure 4.4. If an installation attempts to extend the system area 
beyond this limit, MVS abnormally terminates and needs to be reinitialized. 

NIP also initializes the page frame table entry (PFTE) for each real 
storage frame it allocates. 

Key 

__ ......,> Data transfer 

••• _. Program control 

Figure 4.4. Initializing Real Storage 

Real storage 

SOA 

LSOA 

IEAVNIPO System 
area 

,--_I_E_A_N_U_C_O_X_.......J _ _ j_ 

Chapter 4: Preparing tbe System for Work 4-S 



4-6 OS!VS2 MVS Overview 

Initializing A Master Address Space 

NIP establishes a master address space in virtual storage. The master 
address space contains a system area, a common area, and a private area. 
(NIP and the master scheduler execute in the private area.) As shown in 
Figure 4.5, virtual space is allocated in the common area for SQA, PLPA, 
MLPA, and CSA. Space is allocated in the private area for the master 
scheduler LSQA and SW A, the master scheduler region, and the system 
region. Space is also allocated in the system area for the nucleus load 
module and, optionally, for fixed LPA and fixed BLDL. 

Real storage 

SOA 

LSOA 

NIP transient area 

IEAVNIPO 

IEANUCOx 

/ 

/ 
/ 

/ 

Virtual storage 

SOA 

PLPA 

MLPA 

CSA 

LSOA and SWA 

Master 
scheduler 
region 

System region 

Fixed LPA 

Fixed BLDL 

IEANUCOx 

Figure 4.5. Initializing the Master Address Space 

Common area 

Private area 

System area 

Next, NIP builds a segment table in the master scheduler's LSQA and 
initializes it with pointers to page tables for the nucleus and NIP. These 
page tables are built and initialized in SQA. At this point, NIP is ready to 
initialize system resources. However, before going into system resource 
initialization, a discussion on where NIP gets its initialization values is in 
order. 

c 



c 

o 

.. '--'-''''--'---'---' 

-----... -~ .... -~----"-'--""-' . 

Obtaining System Parameters 

NIP depends on system parameters to tell it what initialization functions to 
perform, what values to use, and which SYS I.P ARMLm members to use to 
initialize the system. Figure 4.6 provides an overview of all system 
parameters. While these parameters are not discussed here at any length, 
some of them should be meaningful to the installation from previous 
discussions. Others will be discussed later. (Many of them, for example, 
directly affect the initialization of system resources, a topic that will be 
covered later in this chapter.) 

IEASYSxx Function Performed~Value SYS1.PARMLIB 
Parameter Specified/Data Set amed list Real 

APF Authorized library name lEAAPFxx 

APG Automatic priority group for system resources 
manager 

BLDL Pageable directory for SYS 1.LlNKLlB lEABLDxx 

BLDLF Nonpageable directory for SYS 1.LlNKLIB lEABLDxx 

CLPA New link pack area to be created lEALODOO 

CMD Command to be issued internally COMMNDxx 

CSA Size of the common service area 

CVIO Delete all VIO data sets from paging space 

DUMP Data sets for SYSl.DUMP 

DUPLEX Duplex data set name 

FIX Reenterable routines for nonpageable LPA lEAFIXxx 

HARDCPY Hard copy log 

105 specifies parmlib member containing options IECIOSxx 
used by 1/0 Supervisor 

IPS Installation performance specification lEAIPSxx 

LNK Names of data sets concatenated to LNKLSTxx 
SYS1. LlNKLlB 

LOGCLS Output class for log data set 

LOGLMT WTL limit for log data set 

MAXUSER Maximum number of virtual address spaces 

Figure 4.6. System Parameters (Part 1 of 2) 

Chapter 4: Preparing the System for Work 4-7 



4-8 OS/VS2 MVS Overview 

IEASYSxx Function Performed,Value SYS1.PARMLIB 
Parameter Specified/Data Set amed List Real 

MLPA Modifications to pageable LPA IEALPAxx 

OPI SYS 1. PARMLIB operator intervention 
restrictions 

OPT System resources manager tuning parameters IEAOPTxx 

PAGE Page data set names 

PAGNUM Number of page and swap data sets that may 
be added 

PURGE Demounts all mass storage system volumes 

REAL V = R address area size 

RSU Number of storage units available for storage 
reconfiguration 

in an MP SMF parameters SMFPRMxx 
system 
SMF 

SQA Size of the system queue area 

SWAP Swap data set names 

SYSP System parameter list to be merged with IEASYSxx 
IEASYSOO 

VAL Volume characteristics VATLSTxx 

VRREGN Default region size for a V = R request 

WTOBFRS Number of buffers for WTO (write to 
operator) routine use 

WTORPLY Number of operator reply elements for WTOR 
routine use 

Fagure 4.6. System Parameters (Part 2 of 2) 

System parameters are provided to the initialization process from two 
sources: from system parameter fists, which are established on the system 
residence volume when the system is generated, and directly from the 
system operator during the initialization process. 



c 

c 

o 

...... __ ....•.•..•... _--

The System Parameter Lists 

System parameter lists are contained in SYS1.P ARMLIB. NIP always reads 
the primary system parameter list (IEASYSOO). This list contains basic 
initialization instructions, installation-specified initialization defaults, and 
other initialization values that will not change from IPL to IPL. 

SYS I.P ARMLIB may also contain secondary parameter lists (IEASYSxx's 
other than IEASYSOO) that can be merged with the primary parameter list 
at initialization time. The secondary lists, sometimes called alternate lists, 
contain values that override previous values in the primary list. They may 
also contain additional values not originally specified in the primary list. 
Secondary lists should contain parameters that are subject to change -- for 
example, they might contain the kinds of changes that are necessary 
between shifts. For more information on these parameters, refer to 
as / VS2 System Programming Library: Initialization and Tuning Guide. 

System Operator Activity 

The system operator is the key to a successful initialization. After console 
communication has been established and the system catalog opened, NIP 
asks the system operator to: 

SPECIFY SYSTEM PARAMETERS. 

If one or more secondary parameter lists are to be merged with the 
primary list, the system operator identifies them at this time. In addition, 
the system operator may directly specify certain system parameters at this 
time. Such a "direct specification" would include parameters that are unique 
for a specific IPL. If no secondary parameter lists or direct specifications 
are indicated by the system operator, the primary system parameter list is 
the sole source of initialization values. 

Parameters specified in secondary parameter lists override previous 
parameters in the primary list. Likewise, directly supplied parameters 
override previous parameters in primary and secondary lists. For example, if 
IEASYSOO contains: 

MLPA=OO,BLDL=OO 

and IEASYSOI contains: 

MLPA=(Ol,02),BLDL=Ol 

and IEASYS02 contains: 

MLPA=03,SQA=10 

and the system operator specifies: 

R OO,'SYSP=(Ol,02),SQA=2' 

Note: The SYSP parameter specifies which secondary lists 
are to be merged with the primary list. 

then the system parameters used by NIP will be: 

MLPA=03,BLDL=01,SQA=2. 

Chapter 4: Preparing the System for Work 4-9 



4-10 OS/VSl MVS Overview 

While the use of secondary lists. and operator-supplied parameters (' 
provides flexibility in tailoring MVS, it increases dependence on the system "--/ 
operator and tends to slow down the initialization process. By specifying 
OPI=NO in the primary system parameter list, the installation can forego 
operator intervention. And by specifying OPI=NO for secondary lists or for 
selected "critical" parameters in these lists, the installation can restrict 
operator intervention. 

Resource InitiaIization Via RIMs 
NIP controls the initialization of each system resource. However, the actual 
initialization is done by a resource initiaIization module (RIM) that belongs 
to the function owning the resource. For example, because the input/ output 
supervisor (IDS) uses and controls the unit control blocks (UeBs) that 
represent the I/O devices, the RIM that initializes these devices belongs to 
the input/ output supervisor. Likewise, the RIM that initializes the system 
consoles belongs to the communications task because that task owns the 
consoles, and so on. Developing and distributing RIMs in this way tends to 
increase system reliability and simplify service. 

This section deals with the initialization of the following system 
resources: 

• I/O devices 
• System consoles 
• System catalog 

and the following resource managers: 

• System resources manager 
• Auxiliary storage manager 
• Program manager 

( 

'''---

c 



-------._ .. '--------------------

C
" '\ 

\ 

o 

Path 

CPU 

Chn 

Dev 

Initializing I/O Devices 

o 

Each device is represented by a unit control block (UeB) that is used for 
subsequent device allocation and to control I/O operations. The I/O RIM 
initializes each device's UeB by setting status and condition flags in the 
UeB and, for DASD, by recording volume information in the UeB. , 
However, before device UeBs can be initialized, the I/O Rllvl must ensure 
that the devices and paths to those devices are available and accessible. 

An available path includes an online processor, a physical channel 
attached to an online processor, and at least one online device to complete 
the path. Figure 4.7 illustrates a configuration in which I/O device 1 has a 
single path, and devices 2, 3, and 4 have multiple paths. Note that for a 
device to be available, there must be at least one path to that device. 
Devices generated offline and devices generated online but with no 
available paths are unavailable. 

234 

o 0 

2 11 

222 

567 8 9 

o 

YlgUl'e 4.7. Paths to a Device 

Chapter 4: Preparing the System for Work. 4-11 



The I/O RIM tests the accessibility of each available device on all 
available paths. To do this, the RIM requests an I/O operation on each 
available path. The results of these I/O operations will determine on which 
paths a device can be accessed. For DASD, the first of these I/O 
operations attempts to read the volume label to determine the volume serial 
number and the location of the volume table of contents (VTOe). For 
shared DASD, the RIM will issue an I/O operation to see if the device is 
actually sharable. Unavailable devices are not tested for accessibility. 

After the applicable UeBs have been initialized, the RIM scans online 
DASD UeBs for duplicate volume serial numbers. If any duplicate volumes 
are found, the operator is requested to remove them. 

Initializing Volume Attributes 

SYS1.PARMLIB 

r' .......... 
r--.... ...."" 

~ ~ 

Volume attributes are actually initialized toward the end of NIP processing 
by a separate RIM called the volume attribute RIM. The installation can 
specify mount and use attributes for DASD volumes in a volume attribute 
list (V A TLSTxx), a member of SYS l.P ARMLffi. The list is selected at 
initialization time when the V AL system parameter is encountered in a 
system parameter list or is specified by the operator. 

As shown in Figure 4.8, the volume attribute RIM processes the 
V ATLSTxx and, accordingly, sets the mount and use attributes in the 
UeBs for all mounted volumes. If a volume is not mounted, the system 
operator is asked to mount it. 

Volume 
attribute UCB 

RIM UCBPRES Permanently resident 
} MOUNT 

~I UCBRESV Reserved 
J\. 

VATLSTxx 
~ / 

'---v V

L 
UCBSTR Storage volume 

} USE UCBPUB Public volume 

'- / 
UCBPRI Private volume 

Figure 4.8. Specifying Volume Attributes 

4-12 OS/VS2 MVS Overview 

The MOUNT attribute indicates the conditions under which a volume 
can be subsequently demounted. You'll remember that a permanently 
resident volume (PRES) cannot be physically removed, or cannot be 
demounted until the device is varied offline. Such volumes, which include 
the system residence volume and volumes containing critical system data 
sets such as SYS l.LINKLffi or the paging data sets, are always marked 
PRES. Their MOUNT attributes should not be included in VA TLSTxx. 

c 



-----------

c 

o 

Reserved volumes, on the other hand, are demountable. They remain 
mounted only until the operator issues a subsequent UNLOAD or a VARY 
OFFLINE command. A volume is marked RESV if so specified in a 
VATLSTxx, or if the operator issues a MOUNT command for the volume. 

The use attributes indicate the types of requests for which a volume can 
be allocated. Volumes will be marked as storage volumes (STR), public 
volumes (PUB), or private volumes (PRV), as applicable. 

Initializing System Consoles 

The system console is the 110 device the system operator uses to provide 
system parameters and otherwise control the initialization process. Because 
it is used for operator-to-system communication, it is actually one of the 
first devices to be initialized. 

The RIM that initializes the system console must locate an available 
console, designate it as the master console, and initialize it. To do this, it 
looks first for the installation-specified master console. If the 
installation-specified master is not available, it will search for an available, 
installation-specified, alternate console to designate as master. If no 
alternate consoles are available, it will search for any other available 
console to designate as master. 

Figure 4.9 shows how the RIM locates a master console. The RIM first 
locates the UeB for the installation-specified master console by searching 
the unit control module table (UeM), which contains an entry for each 
console in the system. The RIM checks the online flag in the appropriate 
UeB. If the console is online and available, it is selected as the master 
console. 

UCM 

Master console 

Alternate console 

Alternate console 

Other console 

Online flag 

Online flag 

Online flag 

• • 
• 

Figure 4.9. Locating a Master System Console 

Chapter 4: Preparing the System for Work 4-13 



4-14 OS/VS2 MVS Overview 

If the installation-specified master console is not available, the RIM C 
searches the UCM for an online, available, alternate console. If it finds one, 
it selects it as the master console, it resets flags in the UCM entry for the 
installation-specified master console, and it sets like flags in the entry for 
the selected alternate console. If no suitable alternate console is located, the 
first other available console the RIM finds is designated as the master 
console, and the appropriate UCM entries are modified accordingly. 

After a master console has been selected, the RIM passes the UCB 
address to NIP so that the console can be opened and used to communicate 
with the system operator. Finally, the RIM acquires buffer space in SQA 
for messages issued by NIP. NIP uses this space to pass messages to the 
communication tasks so that the messages can be written as hardcopy 
during master scheduler initialization. 

System parameters RIM uses to initialize the system consoles include: 
HARDCPY, LOGCLS, LOGLMT, WTOBFRS, and WTORPLY. You may 
want to review the explanation for these parameters given in Figure 4.6. 

Initializing the System Catalog 

The system catalog is used to locate cataloged data sets and other catalogs. 
It contains the volume serial number and device type of each cataloged data 
set. Unlike MVT and SVS, the MVS system catalog is a VSAM (virtual 
storage access method) data set serving as the VSAM master catalog. It can 
contain entries for VSAM data sets and VSAM user catalogs, as well as 
entries for OS data sets and OS user catalogs. 

NIP can open data sets residing on the system residence volume whether 
or not the system catalog has been opened. However, system data sets 
residing on volumes other than the system residence volume are located 
through system catalog pointers and cannot be opened or accessed until the 
system catalog is initialized. For example, before NIP can complete the 
opening of SYSl.LINKLID, and before any parameters can be read from 
SYS I.P ARMLffi, the system catalog must be opened. 

r 
\.._-

c 

-- -------------------



c 

c 

o 

Various VSAM RIMs open, initialize, and close the system catalog at 
initialization time. As shown in Figure 4.10, one of the VSAM RIMs 
obtains the volume serial number and device type of the system catalog 
from SYS1.NUCLEUS. It then locates the UCB representing the device on 
which the volume is mounted. If the volume containing the system catalog 
is not mounted, the operator is requested to mount it. A VSAM RIM then 
searches the VTOC of the mounted volume to locate the system catalog. 
When it has been found, another VSAM RIM builds the control blocks 
necessary to access a VSAM data set. It then opens the data set and 
initializes it as the system catalog. 

SYSRES 

Volume serial 

Figure 4.10. Locating the System Catalog 

• • • 

After NIP initialization has completed (before NIP terminates), a VSAM 
RIM is again invoked to close the system catalog. After system initialization 
is complete, the first reference to a cataloged system data set will cause the 
system catalog to be opened normally. 

Chapter 4: Preparing the System for Work 4-15 



4-16 OS/VS2 MVS Oveniew 

Initializing the System Resources Manager 

It is the job of the system resources manager (SRM) to provide an 
installation-specified level of acceptable user service while making the most 
efficient use of available system resources. SRM initialization consists of 
establishing system constants and processing certain SRM system 
parameters. 

System constants are used to adjust processor, storage, and I/O loads, 
and are based on such variables as the processor model, the number of 
online processors, and the number of logical channels. (A logical channel is 
the set of all paths to a specific device or group of devices. Figure 4.7, for 
example, depicts four logical channels, one for each device.) 

The installation establishes the level of user service in various system 
parameter lists and values selected at initialization time. The APG, IPS, and 
OPT system parameters specify or point to: 

• The automatic priority group (APG) 
• Installation performance specifications (IPS) 
• Optional system tuning parameters (OPT) 

Automatic Priority Group (APG) Initialization 

Through use of the APG system parameter, the installation establishes a 
range of dispatching priorities designated as an automatic priority group. 
During subsequent system operation, the APG value is one of the values 
used to determine the position of APG group address spaces on the 
dispatching queue. If the installation chooses not to set this value initially, a 
default value is established at initialization time. During a subsequent IPL, 
the system operator can override an existing APG value by specifying a 
system parameter directly. 

Installation Performance Specification Initialization (IPS) 

The SRM manages the workload and apportions appropriate service to the 
current users of the system based on an installation-specified service rate 
provided as the installation performance specification. The installation 
performance specification is included in one of the IEAIPSxx lists, each of 
which is a member of SYSl.PARMLm. The IPS system parameter tells the 
SRM RIM which list to use at initialization time. 

Optional System Tuning Parameter Initialization (OPT) 

The SRM makes tuning decisions based on recommendations from the 
workload manager and the various resource managers. Optional system 
tuning parameters are used to weight the recommendations of the processor 
and I/O resource managers and to attempt to prevent the users from tying 
up serially reusable resources. 

Optional system tuning parameters are supplied to the SRM in one of the 
IEAOPTxx system parameter lists, each of which is a member of 
SYSl.PARMLffi. The OPT system parameter tells the SRM RIM which list 
to use at initialization time. 

c 



c 

o 

... ---....... ------........... -~-

Additional SRM Initialization 

After processing the APG, IPS, and OPT system parameters, the SRM RIM 
builds an SRM user control block (OUCB) and a user extension block 
(OUXB) for the master scheduler address space. Once the master scheduler 
is initialized, these blocks, used by SRM to control each user, are 
subsequently built for each address space as the address space is created. 

After the SRM is initialized, NIP passes control to the RIM for the 
auxiliary storage manager. 

Initializing the Auxiliary Storage Manager 

The auxiliary storage manager (ASM) controls the auxiliary storage used for 
paging and swapping, and the I/O operations associated with these 
activities. To page efficiently, the ASM divides paging requirements into 
page able link pack area (PLP A), common, and local pages. When the 
system is generated, the installation allocates, catalogs, and formats page 
data sets to meet the requirements of the three types of page data sets 
mentioned above. The installation places the names of the data sets into the 
primary system parameter list. Additional page data sets can be specified in 
secondary system parameter lists or supplied directly by the system operator 
at initialization. 

Optionally, the names of installation-defined swap data sets and/or 
duplex data sets can be specified in the same manner. Also, the installation 
can indicate whether it wants VIO data sets to be reestablished when 
subsequent IPLs are performed. 

After initialization, additional page and swap data sets can be 
dynamically added to the system. To do this, the system operator uses the 
P AGEADD command and names the page and/or swap data sets to be 
added. The total number of page and swap data sets is limited at 
initialization by the PAGNUM system parameter, which is obtained from a 
system parameter list or supplied directly by the operator. 

Page Data Set Initialization 

Page data sets are opened and initialized by the ASM RIM according to the 
type of IPL start - cold, quick, or warm. During a cold start (defined as 
the first IPL after the system is generated or any IPL in which the 
CLPA--create link pack area--system parameter is specified), the PAGE 
system parameter specifies applicable page data set names. The PAGE 
parameter is included in a primary system parameter list. Alternative page 
data sets can be specified in secondary lists and additional page data sets 
can be specified by the operator using the PAGE parameter. 

During a quick start the link pack area address ability is rebuilt. That is, 
the page and segment tables are reset to match the last-created link pack 
area. The applicable page data set names are obtained from the PAGE 
system parameter or supplied by the operator as responses to system 
messages. 

Chapter 4: Preparing the System for Work 4-17 



4-18 OS/VS2 MVS Oveniew 

During a warm start, the page data set names are those used in the 
previous IPL. Also, the PAGE parameter can still be used to specify r 
additional data sets, but it does not override the existing specification for ',--/ 
page data sets. (Note that the PAGE parameter cannot be used to replace 
data sets. That is, secondary or directly-specified PAGE parameter values 
are concatenated to those specified in the primary list. They do not override 
existing values.) 

To successfully initialize the ASM, one PLP A, one common, and at least 
one local page data set must be specified and available. All page data sets 
(a maximum of 64) must be allocated, cataloged, and formatted as VSAM 
data sets prior to IPL. The sum of the local page data sets should be large 
enough to hold all of the private area pages and any VIO pages. The PLP A 
page data set should be large enough to hold all PLP A pages, and the 
common page data set large enough to hold all other pages in the common 
area (CSA, MLPA, BLDL lists). 

Swap Data Set Initialization 

Swap data sets are optional, but their use can significantly improve 
performance. (If no swap data sets are specified, LSQA pages will be 
directed to a local page data set.) Swap data set names are specified by the 
SWAP system parameter contained in one of the system parameter lists or 
supplied directly by the operator. Unlike the PAGE parameter, the SWAP 
parameter permits both the addition and replacement of data set names 
specified in the system parameter lists. 

Swap data sets must be allocated, cataloged, and formatted prior to the 
IPL. A maximum of 25 swap data set names can be specified. When SWAP 
is specified, at least one swap data set must be available at IPL time. 

Duplex Data Set Initialization 

The installation can define a duplex data set to hold a duplicate copy of all 
pages written to the pageable link pack area (PLP A) and common page 
data sets. The DUPLEX system parameter, contained in a system parameter 
list or specified directly by the system operator, specifies the data set name. 

Only one duplex data set can be specified, and then only on cold starts. 
For warm starts, the ASM RIM uses the duplex data set name specified on 
the most recent cold start. 

If the duplex parameter is used, there must be a duplex data set 
available. It must be allocated, cataloged, and formatted as a VSAM data 
set prior to IPL. 

VIO Data Set Initialization 

For warm starts, the ASM RIM will reestablish all VIO data sets if the 
volumes containing the previous local page data sets are available. However, 
for all cold starts, or if the clear VIO (CVIO) system 'parameter is specified 
for quick starts, the ASM RIM will delete all VIO data sets from local page 
space. 

~. 

( 

c:. 



c 

Cr 

o 

._-_ ..... _----------

Initializing the Program Manager 

The program manager locates, loads, deletes, and transfers control between 
load modules residing in either the link pack area (LP A) or job pack area. 
This section discusses initialization of the LP A. (Modules in the job pack 
area are associated with job steps and are not discussed here.) During 
initialization, the program manager RIM loads LP A modules into the 
common area and builds and initializes related control blocks and queues. 
The following areas are initialized: 

• The pageable link pack area (PLP A) 
• The fixed link pack area (FLP A) 
• The modified link pack area (MLPA) 
• Various tables and lists 

Pageable Link Pack Area Initialization 

The pageable link pack area is allocated in the common area of virtual 
storage directly below SQA. For cold starts, the program manager RIM 
loads the LPA modules from the link pack area library (SYSl.LPALffi) into 
the PLP A, as shown in Figure 4.11. Each module is represented by an 
entry that is built and initialized in the PLP A directory (PLP AD) as the 
module is loaded. 

For warm starts, the PLP A is still in auxiliary storage from a previous 
IPL, and is not reloaded. Instead, the program manager RIM calls a real 
storage RIM to reconstruct PLP A page tables and segment table entries, 
and to place the auxiliary storage slot addresses in the appropriate external 
page table entries. This procedure speeds up the IPL process. 

Program 
manager 
RIM Common area 

1 SQA 

'-- ~ Load modules 
-'" PLPA 
v 

SYS1.LPALIB Directory entries 
'" PLPAD 
v 

Figure 4.11. Initializing tbe PLPA 

Cbapter 4: Preparing tbe System for Work 4-19 

. __ .......... _ ... -_._ ...... _ .. _-_ ...... _-_.-...... _-----



4-10 OS/VS2 MVS Overview 

To reduce page faults and improve performance, it is sometimes 
appropriate to group PLP A modules that refer to each other or that execute 
in sequence. In this manner, the grouped modules will tend to occupy the 
same page, or at least be in real storage at the same time. The system pack 
list (IEAPAKOO), which is a member of SYSl.PARMLm created when the 
system is generated, is used to provide such a grouping. It contains the 
names of the modules to be grouped. 

As shown in Figure 4.12, the program manager RIM refers to the system 
pack list to determine the order in which SYS 1.LP ALm modules are to be 
loaded into PLP A. If no pack list exists, modules are loaded as they are 
encountered, starting at the top of PLP A space. Note that there are no 
alternate pack lists; however, IEAPAKOO can be modified (or eliminated) 
by the installation prior to initialization. 

If it is important to speed up the search procedure for certain link pack 
area modules, the load list (IEALODOO) can be used to do this. As shown 
in Figure 4.12, the program manager RIM creates and initializes an entry in 
the active link pack area queue (ALPAQ), within the SQA, for each 
module in the load list. During subsequent MVS system operation, the 
program manager searches the ALPAQ before searching the LPA directory. 

_._------- ---- .... --~---.- ... - -----

( 
''--' 

c 



c 

o 

Program 
manager 
RIM 

, 

-I Refers to 

I IEAPAKO _0_--__ 

~ 

\ 
\ 
\ 

1 , 

For info on which 
modules to group, 

.-/ Load list (\ EALODOO) entries 

SYS1.LPALIB Load modules 

Directory entries 

Figure 4.12. System Pack List and ALPAQ Initia1ization 

c ommon area 

SOA 

'\I I ALPAO 
vi 

.J\. 

v PLPA 

f\. 
PLPAD 

v 

Chapter 4: Preparing the System for Work 4-21 

._---- -------........ ----..... -. -_ .... _-_._ .. - ... -...... __ ._---



~22 OS/VS2 MVS Oveniew 

Fixed Link Pack Area Initialization 

The fixed link pack area is an extension of the nucleus and is located 
directly above it in the system area of virtual storage. It contains reentrant 
modules in fixed V =R pages, which can be used by any task in the system. 

As shown in Figure 4.13, FLPA modules are loaded by the program 
manager RIM as directed by a fix list (IEAFIXxx) in SYS 1.P ARMLm. 
Since there can be multiple fix lists, the FIX system parameter is used to 
specify which list is to be used. If FIX is not specified, no FLP A modules 
will be loaded. The fix list can contain names from SYS 1.LP ALffi, 
SYSl.SVCLffi, and SYSl.LINKLffi. 

In addition, up to 15 libraries, from which FLP A modules can be loaded, 
can be concatenated with SYS 1.LINKLm. To concatenate libraries, the 
installation creates and/or modifies one or more link lists (LNKLSTOO or 
LNKLSTxx). The link lists contain the names of libraries to be 
concatenated. At initialization, the LNK system parameter is used to specify 
which link lists are to be used. If LNK is not specified, only the default 
LNKLSTOO will be used. (This list, as created when the system is 
generated, contains only the name SYSl.LINKLffi.) 

As the program manager RIM loads FLP A, it builds an SQA ALP AQ 
entry for each module. After FLPA is loaded, it is possible for modules 
from SYS 1.LP ALm to now exist in both PLPA and FLP A. In these cases, 
the FLP A module represented in the ALP AQ is the one used. The PLP A 
module will be in the PLP A directory, but not on the active queue. 

c 

c 



c 

o 

Program 
manager 
RIM 

I I 

~ 
~ 

8 
Figure 4.13. Initializing FLPA 

- ----------,,--,,"'-"--,---------"""---, .. -'"----

SQA 
ALPAQ entries 

Load modules 

FLPA 

Nucleus 

Chapter 4: Preparing the System for Work 4-23 



4-24 OS/VS2 MVS Overview 

Modified Link Pack Area Initialization 

The modified link pack area (MLP A) is an optional area located directly 
below the PLP A directory in virtual storage. It constitutes an extension to 
PLP A that remains on the paging data sets and on the ALP AQ only until 
the next IPL. With the next IPL, the area is cleared. 

As a choice of modules to put in the MLP A, the installation might select 
those modules that have been tentatively modified and are being tested. 
The original module is not removed from PLP A, but the MLP A module is 
substituted for the original module during the current IPL. 

Modules to be included in MLP A must be named in one of the modified 
LPA lists (IEALPAxx) specified by the MLPA system parameter. If MLPA 
is not specified, no MLP A modules are loaded. The program manager RIM 
loads each MLP A module and builds an entry for that module on the 
ALPAQ. MLPA modules, like FLPA modules, can be loaded from 
SYSl.LPALIB, SYSl.SVCLIB, and SYSl.LINKLIB. Additional 
concatenated libraries can be included. 

Table and List Initialization 

In addition to initializing LP A, the program manager RIM initializes tables 
and lists used by the program manager. These include: 

• BLDL list 
• SVC table 
• APF table 

BLDL List: The BLDL list contains directory entries for frequently-used 
modules from SYS 1.LINKLffi or any of the concatenated libraries. The 
program manager uses the BLDL list to eliminate the I/O required to bring 
the directory into storage when accessing a module that is not in virtual 
storage. (An in-storage copy of the directory is .used.) A well thought out 
BLDL list can significantly improve performance. It can be in fixed storage 
directly above FLP A, or in pageable storage directly below MLP A. (A 
fixed BLDL list improves performance even more by eliminating the page 
faults that might otherwise be encountered in searching the list itself.) 

The names of the modules to be included are contained in a IEABLDxx 
list. The BLDLF system parameter specifies the fixed BLDL list to be used. 
The BLDL system parameter specifies the pageable list. The program 
manager builds and initializes either a fixed list or a page able list. 

SVC Table: The SVC table contains an entry for each available SVC 
routine. The program manager RIM initializes entries for SVC routines that 
are not a part of the resident nucleus but have been placed in the LP A. It 
searches the ALPAQ and the PLPA directory for SVC load modules and 
places their addresses in the appropriate entries within the SVC table. If a 
load module cannot be found, the RIM places the address of the SVC error 
routine in the SVC table. 

APF Table: The authorized program facility (APF) permits an installation to 
identify the system and user libraries that contain programs authorized to 
use restricted functions. The names of these authorized libraries are placed 
in an APF table that the program manager RIM builds in SQA. Entries in c· 
the table are established at initialization for SYSl.LINKLffi and 



G 

C
"" 

I 

o 

SYS l.SVCLIB. As a result, these libraries are always authorized. Note: 
Because concatenated libraries are assumed to be part of SYS l.LINKLIB, 
they are authorized when accessed through the link list. If accessed in any 
other way (such as, through STEPLIB), they are authorized only if included 
in the APF table. 

In addition, the installation can specify authorized libraries in any APF 
list (IEAAPFxx) contained in SYS l.P ARMLIB. The list to be used is 
specified by the APF system parameter. The program manager RIM 
initializes an entry in the APF table for each library named in the 
applicable IEAAPFxx list. 

Master Scheduler Initialization 

Master scheduler initialization consists of three steps, as shown in Figure 
4.14. In the first step, the base initialization routine performs some basic 
initialization functions. In the second step, the initiator initiates the master 
scheduler by attaching the master scheduler region initialization routine as a 
job step task. To do this, it invokes, through the subsystem interface, the 
master subsystem - a primitive form of the job entry subsystem consisting of 
some basic job scheduler functions. The master subsystem processes a set 
of master JCL (MSTRJCL) statements obtained from SYS l.LINKLIB. In 
the third step, additional tasks are attached by the region initialization 
routine. In addition, automatic commands contained in a command list 
(COMMNDxx) on SYS1.PARMLIB are executed or scheduled for 
execution, as the case may be. After region initialization is completed, 
control is transferred to the master scheduler wait routine. 

Chapter 4: Preparing the System for Work 4-25 



NIP c 
Master scheduler 

Base initialization 

Subsystem interface 

Initiator 

Device allocation 

Master scheduler 

Region initialization 

Master scheduler 

Wait 

Figure 4.14. Master Scheduler Initialization 

( 

4-26 OS/VSl MVS Overview 



c 

o 

Initializing the Master Scheduler Base 

The master scheduler base initialization routine is entered from NIP. It 
creates and initializes the control blocks needed to invoke the initiator. 
Then it locates and stores entry points for certain job scheduler routines. It 
initializes the subsystem interface, the communications task, some TSO 
addresses and parameters, and the time-of -day clock. Finally, it attaches the 
initiator to initiate the master scheduler. 

Initiating the Master Scheduler 

Before the initiator can attach the master scheduler region initialization 
routine, it must read the JCL to do so. (Applicable job step task control 
blocks must be created and data sets must be allocated.) As yet, however, 
no JES readers are active and no procedure libraries are open. So the 
initiator gets the necessary JCL from a load module (MSTRJCL) 
established on SYS l.LINKLIB at system generation time. 

To read and process MSTRJCL, the initiator uses the subsystem 
interface to request job entry services, as shown in Figure 4.14. The request 
is passed to the master subsystem, which reads the MSTRJCL and invokes 
job scheduler routines to process the JCL and initialize necessary control 
blocks. The last statement in MSTRJCL is a command to START JES. This 
command is passed to the command processor portion of the master 
scheduler and scheduled for execution. 

The initiator uses the device allocation routine to allocate the data sets 
indicated in MSTRJCL and required by the master scheduler (data sets 
such as SYSl.PROCLIB and SYSl.PARMLffi). These are required when 
JES is subsequently started. Two internal readers are also allocated. They 
are used later to pass JCL from system routines to JES. Lastly, the initiator 
attaches master scheduler region initialization as the job step task, and the 
master scheduler is active. 

Initializing the Master Scheduler Region 

The region initialization routine attaches other tasks to be run in the master 
scheduler region and passes commands located in SYS l.P ARMLffi to the 
command processor for execution or scheduling. These commands are 
contained in a command list (COMMNDxx), a member of 
SYS l.P ARMLffi. Because there can be multiple command lists, the CMD 
system parameter is used to tell master scheduler initialization which list to 
use. 

After initialization of the master scheduler completes, control is 
transferred to the master scheduler wait routine; this routine waits for 
individual system commands to be issued and then activates the processing 
of each command. When the START JES command appears in MSTRJCL, 
the master scheduler wait routine starts the initialization of the job entry 
subsystem. 

Chapter 4: Preparing the System for Work 4-27 



4-18 OS!VSl MVS Overview 

Job Entry Subsystem InitiaIization 
When the master scheduler wait routine recognizes the START JES 
command, it begins the initialization of the job entry subsystem (JES). This 
initialization of the job entry subsystem consists of creating an address 
space for JES, initializing a region control task (RCT) to ready the JES 
address space for execution, initiating JES by building JCL statements that 
invoke the JES initialization procedure, and passing this JCL to an initiator 
to start JES. 

Creating an Address Space for JES 

The master scheduler attaches the address space create routine. This routine 
asks the system resources manager (SRM) if a new address space can be 
created. After the address space create routine receives permission to 
proceed, it builds LSQA in the private area and initializes segment tables 
and page tables to represent the new address space. Lastly, it builds task 
control blocks for a region control task (RCT) and places the address space 
control block (ASCB) on the dispatching queue. (This processing is the 
same when creating any address space.) 

"Address Space Creation," later in this chapter, describes this process in 
more detail. 

Initializing the Region Control Task 

The region control task (RCT) is the highest priority task in the new 
address space. Therefore, when the JES address space becomes active, the 
RCT is the first task dispatched. RCT controls the address space and 
prepares it for execution. 

After RCT is initialized, it attaches the started task control routine to 
initiate JES. 

Initiating JES 

The started task control (STC) routines uses information from the START 
JES command to. build the JCL necessary to invoke the JES procedure. 
Then STC starts the job entry subsystem. 

The initiator invokes the master subsystem, which uses job scheduler 
routines much as it did when initiating the master scheduler. However, to 
start JES, the initiator uses the internal JCL built by STC rather than 
MSTRJCL. 

/,,--, 

\ '_. 

c 



• 

o 

----_._._ .. " .... _---

.------~ .. -- ... -.----

After all JCL has been processed and after job scheduler control blocks 
have been built in the SW A, the initiator calls device allocation to allocate 
the data sets specified in the JES procedure. Then, using the program name 
from the EXEC statement of the JES procedure, the initiator attaches the 
primary job entry subsystem. JES is started and MVS is ready for work. 

Address Space Creation 
When a START, MOUNT, or LOGON command is issued, the master 
scheduler wait routine uses other system components to create a new 
address space and a task that performs the requested function (initiating a 
job, reserving a volume, or initiating a TSO session) in the task's own 
address space. Figure 4.15 summarizes the process of creating an address 
space. 

Chapter 4: Preparing the System for Work 4-29 



Master Scheduler's 
Address Space 

r-------, 
I User issues I 

I 
START, MOUNT, or I 

~OGON ~m~d _ J 

1 
Address space 
creation routine 

• assigns ASID 

• creates control 
blocks 

• notifies SRM 
1-- ---

• if SRM rejects, 
unassigns ASID, 
releases storage, 
and informs 
operator 

• if SRM approves, 
invokes VSM 

Virtual Storage 
Manager (VSM) 

• assigns virtual 
storage 

• sets up addressability 

• builds an LSQA 

• creates R CT 
control blocks 

Initiator subroutine 
ofSTC 

System Resources 
Manager (SRM) 

• approves or 
rejects new 
address space 

I .. 

I 

I 
I 

I 

I 

I 
I 
I 

_J 

JES 

User's Address Space 

Region Control 
Task (RCT) 

• builds control 
blocks 

Started Task 
Control (STC) 

• determines which 
command is being 
processed 

• builds in-storage 
JCL for job 

Job Entry 
Subsystem (JES)* 

• reads job 

• scans JCL and 
writes it to spool 

• invokes converter 

• queues the job 

• assigns job I D & 
passes it to initiator 

1 

Converter* 

• transforms the 
spooled JCL to 
internal text 

Interpreter 

• asks JES to 
prepare job for 
execution 

~"' __ ~... • invokes interpreter ... ,, __ --~ ~ 
• builds control 

blocks from 
internal text 

• invokes allocation 
routines 

• initiates the 
job's execution 

FJgUre 4.15. Creating an Address Space 

":'30 OS/VS2 MVS Overview 

*These functions run in the 
JES address space. 

(~ 

I 
\ 

.... -.~ 

c.: 



", 

C
'-, 

o 

The address space creation routine, operating in the master scheduler's 
address space, assigns an address space identifier (ASID) to the new 
address space and creates control blocks for it. Then the routine notifies the 
system resources manager (SRM) that a new address space is to be created. 
SRM decides (based on the availability of system resources) whether, the 
creation of an address space is advantageous. If system conditions are 
unfavorable for creating a new address space (such as when there is a 
shortage of auxiliary storage, page able frames, or SQA), SRM does not 
allow the address space to be created. Instead the address space creation 
routine unassigns the ASID and frees the storage used by the control 
blocks. The operator receives a message indicating that the address space 
could not be created. If current system conditions are favorable to creating 
the new address space, the address space creation routine invokes virtual 
storage management (VSM) to assign virtual storage and set up 
address ability for the address space. VSM builds a local system queue area 
(LSQA) and sets up a segment table, page table, and external page tables 
in it. VSM also creates control blocks to operate the region control task 
(RCT) for the address space. 

Note: The MAXUSER parameter specified during system initialization limits 
the number of address spaces that can exist at anyone time; within the 
MAXUSER limit, SRM controls the number of address spaces that actually 
exist at anyone time. 

Next the RCT receives control in the new address space. One RCT 
exists for each address space. When the address space is created, the RCT 
is the only task associated with it. The RCT builds control blocks that 
further define the address space, then attaches the started task control 
(STC) routine. 

STC determines which command is being processed (START, MOUNT, 
or LOGON), builds in-storage JCL for the task associated with the 
command, then passes the JCL to the job entry subsystem. The job entry 
subsystem reads the job, scans the JCL and writes it on a spool data set, 
invokes the converter to transform the spooled JCL into internal text, 
queues the job on an internal queue, and assigns a job ID, which it returns 
to STC. 

Next, STC uses its initiator subroutine to pass this job ID back to the job 
entry subsystem with ~ request to prepare the job for execution. The job 
entry subsystem invokes the interpreter to build and initialize the scheduler 
control blocks for the address space from the internal text created by the 
converter. Upon return from the job entry subsystem, the initiator 
subroutine invokes the allocation routines and then issues an A TT ACH 
macro instruction for the task related to the address space: any started 
program (START), the MOUNT command processor (MOUNT), or the 
terminal monitor program (LOGON). 

Chapter 4: Preparing the System for Work 4-31 



4-32 OS/VS2 MVS Overview 

TSO Initialization 
When TSO sessions are part of an installation's workload, TSO must be 
initialized before TSO logons can be accepted. TSO initialization requires 
two steps. 

First, an operator START command starts the telecommunication access 
method (TCAM or VT AM) selected by the installation. (These 
telecommunication access methods are described in more detail later, in 
Chapter 8: Satisfying I/O Requests and Data Management.) The master 
scheduler wait routine recognizes the START command and creates an 
address space for the access method. 

Then a second operator START command allows the access method to 
communicate with the TSO user. TSO users can now log on. For more 
information about TSO initialization, see OS/VS2 System Programming 
Library: TSO. 

When a TSO user issues the LOGON command, the master scheduler 
causes an address space to be created for the user. This new address space 
is associated with the TSO user and contains a region control task (RCT), 
the highest priority task in the new address space. When the new address 
space becomes active, the region control task is the first task dispatched, 
and it readies the address space for use. The region control task attaches 
the started task control (STC) routine, which recognizes that a LOGON 
was issued and invokes LOGON initialization for the TSO user. 

The LOGON initialization routine verifies all the user-supplied LOGON 

c 

parameters, prompts the user for any additional ones, and builds the JCL ;----. 
necessary to invoke the LOGON procedure. LOGON initialization then l_ . 
passes this JCL to the job entry subsystem. The job entry subsystem reads 
the user-specified LOGON procedure from the system's procedure library 
and converts it to internal text. The job entry subsystem then uses the 
initiator to allocate those resources the TSO user needs to interact with the 
system. After these resources are allocated, the initiator eventually attaches 
the terminal monitor program (TMP), the program that controls the 
interchange of user commands with TSO. After the TMP is started and the 
TSO user is logged on the system, the familiar _"READY" message appears 
at the terminal to indicate that the user can now enter TSO commands. 

c 



_._--_ ... _._--_._---------- ------_ ..... _--

c 

C\ 
I 

;" 

o 

Chapter 5: Entering and Scheduling Work 

MV8 processes an installation's workload as jobs. A job is a series of job 
control language (JCL) statements that identify both a program to run, and 
such things as the relative importance of the job compared with other jobs 
in the system (that is, its priority) and the system resources the job needs to 
use when it runs, such as a particular data set, devices, and volumes. Each 
job consists of the lCL statements and can also include the job's input 
data. A collection of jobs presented to MV8 in this way is called an input 
stream. 

Each user classifies a job in an input stream by assigning it a job class. A 
job class is defined by the installation. lobs of similar characteristics and 
processing requirements are generally assigned to the same job class. For 
example, long-running data reduction programs that require considerable 
setup of volumes throughout their execution can disrupt the turnaround 
time for a daily workload of invoice and accounts receivable processing. 
The long-running jobs can be assigned to a single job class, and MV8 can 
process them when the system is less busy and when the resources they 
need are more available. 

A user also classifies each job's output by output class. An output class, 
which is defined by the installation, describes the characteristics of the 
output a job expects to produce, such as requirement for special devices, 
special forms, or special data sets. Grouping output with similar 
characteristics by output class allows MV8 to keep the existing system 
output devices as active as possible. 

Other installation-specified job characteristics also help MV8 use system 
resources effectively. A job's priority is an important one. If MV8 knows 
the priority of each job, it can order its processing of jobs, running high 
priority jobs before low priority jobs. 

The job entry subsystem (JE8) is the MV8 component that reads an 
input stream. It reads each job and places it on a spool, a direct access 
device, such as disk. The spool holds the jobs that need to be run and also 
jobs that have already run. Because each job has a job class, priority, and 
output class, the job entry subsystem can select jobs for execution in way 
that encourages the effective use of system resources. 

An MV8 installation requires a job entry subsystem in order to process 
jobs. There are two IBM job entry subsystems to pick from: lE82 or lE83. 
For a single processor installation, lE82 and lE83 perform the same basic 
functions. That is, they read jobs into the system, convert them to internal 
form, select them for execution, process their output, and purge them from 
the system. But, for an installation with more than one processor in the 
configuration, there are noticeable differences between lE82 and lE83 
processing. Figure 5.1 illustrates these differences: 

D lE82 exercises independent control over its job processing functions. 
Each lE82 processor controls its own job input, job scheduling, and 
job output processing. All the lE82 processors, however, share the 
same work queues on the spool, and one lE82 processor can be 
processing a job's input while another JE82 processor schedules and 
executes the same job. 

Chapter 5: Entering and Scheduling Work. 5-1 



5-2 OS/VS2 MVS Overview 

II JES3, in contrast, exercises centralized control over its job processing C 
functions. JES3 controls the job input, job scheduling, and job output ./ 
processing in a single processor, called the global JES3 processor. 
Other JES3 processors attached to the global processor are called 
local processors and are under the control of the global JES3 
processor. The global JES3 processor and each local JES3 processor 
communicate over a channel-to-channel (CTC) adapter. 

Note: CTC adapters normally do not connect JES2 processors: when 
they do, the JES2 processors act independently of one another in a 
job networking relationship. Job networking is explained in more 
detail later in this chapter. 

II Both JES2 and JES3 process jobs read into the system and placed on 
the spool. Each JES2 processor has access to the spool and 
independently selects jobs for processing from the spool. In contrast, 
only the global JES3 processor selects jobs from the spool for 
processing even though all JES3 processors share the spool. The local 
processors access the spool only as the global JES3 processor directs. 

(' 
\ '- .. 

c 



c 

o 

o JES2 (Independent Control) 

fJ JES3 (Centralized Control) 

/ 
/ 

/ 

LOCAL 
MVS/JES3 
PROCESSOR 

/ 
/ 

/ 
/ 

/ 

MVS/JES2 
PROCESSOR 

MVS/JES2 
PROCESSOR 

GLOBAL 
MVS/JES3 
PROCESSOR 

Figure 5.1. Job Entry Subsystems: Differences 

" '\ '\ 
"\ 

'\ 
"\ 

Legend: 

- - - CTC adapter 

"
'\ 

LOCAL 
MVS/JES3 
PROCESSOR 

Chapter 5: Entering and Scheduling Work 5-3 



54 OS/VS2 MVS Overview 

The remainder of this chapter describes in more detail how the job entry (' 
subsystem works, how it ensures that system resources are allocated to the "---, 
job, and how it works in various MVS environments. 

How MVS specifically controls a job once it is selected to execute is 
described in Chapter 6, "Supervising the Execution of Work." 

Job Entry ~ubsystem Processing 
Job entry subsystem (JES) processing occurs in five stages: 

• Input 
• Conversion 
• Execution 
• Output 
• Purge 

The system operator can communicate with the job entry subsystem in 
all these stages by using JES commands. For information about the JES 
commands, see Operator's Library: OS/VS2 MVS JES2 Commands, 
Operator's Library: OS/VS2 MVS JES3 Commands, or Operator's 
Library: Network Job Entry Facility for JES2, Commands. 

The following descriptions of the five stages of processing generally 
apply to either MVS job entry subsystem. Any unique processing performed 
by either JES2 or JES3 is indicated. 

Input 

The job entry subsystem can read an input stream from a card reader, a 
remote terminal, a local terminal, a magnetic tape, or a direct access device. 
Input streams can also come from internal readers. An internal reader is not 
actual hardware device such as a card reader; it is a special data set that 
other programs can use to submit jobs control statements, and commands to 
the job entry subsystem. Any job executing in MVS can use an internal 
reader to pass an input stream to the job entry subsystem, and the job 
entry subsystem can receive multiple jobs simultaneously through multiple 
internal readers. 

MVS uses two internal readers, allocated during system initialization, to 
pass the JCL for started tasks, mount commands, and TSO LOGON 
requests to the job entry subsystem. They are: 

• STCINRDR, which the started task control (STC) routine uses to 
process a START or MOUNT command. When starting VTAM, for 
example, STC creates the JCL to run the VTAM procedure and passes 
this JCL to the job entry subsystem through the STCINRDR internal 
reader. 

• TSOINRDR, which is used by the TSO LOGON command to initiate a 
TSO terminal session. The LOGON command generates a job identifying 
the user's logon procedure. The job entry subsystem reads this job from 
the TSOINRDR internal reader. 

Details on using internal readers can be found in OS/VS2 MVS System 
Programming Library: Job Management. 

As the job entry subsystem reads the input stream, it assigns a job ID to 
each job and places each job's JCL, optional JES control statements, and 



_._._ .•. - ..... _-- ... _--

c 

c 

o 

input data into spool data sets. The job entry subsystem then selects jobs 
from the spool for processing and subsequent execution. 

The job entry subsystem uses a converter program to analyze each job's 
JCL statements. The converter takes the job's JCL, merges it with JCL 
from a procedure library (usually SYSl.PROCLIB), and converts the 
composite JCL into internal text (a form of data that the job entry 
subsystem and the job scheduler functions of MVS both recognize). This 
internal text is then stored on the spool data set. If the converter detects 
any syntactic errors in the J CL, it issues diagnostic messages and places the 
job on the output queue; the job won't be selected to run. If the job has no 
syntactic errors, it is queued for execution. JES2 queues the job according 
to its priority within its job class; JES3, however, performs additional 
processing before it queues the job for execution. 

JES3, after converting the J CL and optional JES control statements to 
internal text, invokes an interpreter to build and initialize control blocks 
from the internal text the converter built; these control blocks become part 
of the scheduler work area (SWA) of the job's address space when the job 
is run. JES3 then determines the job's requirements for devices. It reserves 
the devices the job will use, issues messages asking the operator to obtain 
the volumes and mount them, (if they are not mounted) and allocates the 
devices, volumes, and data sets to the job. After these resources are 
allocated, JES3 queues the job for execution according to its priority. 

Execution 

The execution phase of job entry subsystem processing responds to requests 
for jobs from the MVS job scheduler function. (This function includes an 
initiator program, which is described later in this chapter). The job entry 
subsystem selects jobs from a job queue and sends them to this function. 
The job queue contains jobs in the following stages of processing: 

• Jobs waiting to run 
• Jobs currently running 
• Jobs waiting for their output to be produced 
• Jobs having their output produced 
• Jobs (for which all processing has completed) waiting to be purged from 

the system. 

By distinguishing among jobs on the job queue, the job entry subsystem 
can manage the flow of jobs through the system. JES2 and JES3, however, 
schedule jobs in different ways. 

JES2 Job Scheduling 

To process the jobs on the job queue, JES2 communicates with an initiator. 
An initiator is a system program that the operator starts or that JES2 starts 
automatically when the system is initialized. An initiator starts a job by 
allowing it to compete for system resources with other jobs that are already 
running. 

The· initiator asks JES2 for a job. JES2 knows what job class or job 
classes are assigned to the initiator and in what order the job classes should 
be searched for a job. If the initiator, for example, is assigned two job 
classes, JES2 scans the job queue to determine if any jobs in the first class 
are waiting for execution before scanning the job queue for any jobs in the 

Chapter 5: Entering and Scheduling Work 5-5 



5-6 OS/VS2 MVS Overview 

second class. Within a given class, JES2 selects jobs according to their 
priority. JES2 selects the lowest priority job in the first class ahead of the 
highest priority job in the second class. It selects jobs from the second class 
only when there are no jobs in the first class. When JES2 selects a job it 
passes it to the initiator. 

Associating each initiator with one or more job classes in this way allows 
an installation to control job selection to encourage a more efficient use of 
available system resources. Suppose, for example, the following job class 
assignments exist: 

Class B = jobs that need special devices 
Class C = jobs with high instruction processing requirements 
Class D = jobs with high I/O-request requirements and the following 
initiator assignments apply: 

Initiator 1 can process classes B, C, and D 
Initiator 2 can process classes C, D, and B 
Initiator 3 can process classes D, B, and C 
Initiator 1 can accept jobs in classes B, C, and D, 

but the lowest-priority job in class B will be executed ahead of the 
highest-priority job in class C, and so on. Initiator 1 will process class C 
jobs only when class B is empty, and class D jobs only when classes Band 
C are empty. If there are jobs on the queue in all three classes and all 
necessary resources (for example, I/O devices and data sets) are available, 
then three jobs (one from each of the three different classes) can run 
concurrently. 

After JES2 selects the highest priority job in a job class for the initiator 
and passes the job to it, the initiator invokes the interpreter to to build 
control blocks from the internal text that the converter created for the job. 
The interpreter builds these control blocks in the scheduler work area 
(SW A) of the initiator's address space. 

The initiator then allocates the input and output devices specified in the 
JCL for the first step of the job. This allocation ensures that the devices 
are available before the job step starts running. (A more detailed 
description of device allocation appears later in this chapter). The initiator 
then starts the program requested in the EXEC statement. 

JES3 Job Scheduling 

To process a job on the job queue, JES3, like JES2, communicates with an 
initiator. While JES2, relies on the installation to control the job mix 
through its assignments of job classes to initiators, JES3 job scheduling 
algorithms try to control the job mix to provide the correct proportion of 
I/O-bound and processor-bound jobs; to control the job mix, JES3 uses 
predefined job class groups. 

JES3 associates a job class group, a set of job classes, with one or more 
initiators and also with specific devices and processors. The installation 
defines job class groups during JES3 initialization; this definition allows 
JES3 to control: 

• The maximum number of jobs of a given class that can be readied to 
run, that can run in the JES3 installation, and that can run on a given C 
processor at one time 



c 

o 

• The resources a job uses, such as initiators, storage, and devices 

• The kind of job selection and job priority adjustments allowed for jobs 
waiting to be selected to run 

After JES3 readies a job to run, it passes the job to the initiator. The 
initiator can normally activate the job immediately because IES3 has 
allocated the devices this job needs. Once the job is running, the initiator 
performs any additional device allocations that are needed. 

Additional Job Scheduling Functions 

When all initiators are busy, throughput of certain jobs might fall below 
normal expectations. To help in these situations, IES2 and JES3 perform 
additional scheduling functions that attempt to reduce the time required to 
schedule jobs, that help to ensure that certain jobs are selected to run by a 
certain time, and that schedule jobs dependent on the success of failure or 
other jobs. These scheduling functions are: 

• Execution batch scheduling (IES2) 
• Deadline scheduling (IES3) 
• Priority aging (IES2 and JES3) 
.0 Dependent job control (IES2 and IES3) 

Execution batch scheduling is an extension of normal IES2 job scheduling 
that helps to increase throughput by reducing the job scheduling overhead 
for certain types of jobs. Jobs eligible for execution batch scheduling are 
jobs of relatively short duration, especially single-step jobs that have 
common device setup requirements and that are run frequently. Examples 
of such jobs are compile-and-go, debugging, order-entry, and file-inquiry 
jobs. 

To use the execution batch scheduling facility, an installation must write 
an execution batch (XBA TCH) processing program and a procedure to 
initiate it, and assign the jobs a unique job class associated with the 
execution batch procedure. Also the installation must include execution 
batch scheduling parameters when initializing IES2. When IES2 recognizes 
a job with the execution-batch-scheduling job class, IES2 builds and 
processes ICL to invoke the XBATCH procedure. Once the XBATCH 
procedure initiates the XBA TCH program, the program remains active as 
long as it has jobs to process. Thus execution batch scheduling involves 
gathering related jobs into a single input stream and passing them as an 
input data set to the user-written XBATCH program. This process reduces 
the initiator's overhead associated with setting up for and processing 
numerous individual jobs or job steps. 

For more information on the XBATCH program see OS/VS2 MVS 
System Programming Library: JES2. 

Deadline scheduling allows a IES3 installation to specify a time of day 
(deadline) by which a given job should be selected to run. A job requests 
deadline scheduling and specifies the deadline time through IES3 control 
statements in its ICL. If the job remains in the job queue as the deadline 
approaches, JES3 increases the job's selection priority--that is, the priority 
at which the job is selected to run--until the job is selected to run or until a 
maximum priority is reached. The operator can modify the parameters that 
affect deadline scheduling in order to deal with unforeseen changes in the 
installation's workload. 

Chapter 5: Entering and Scheduling Work 5-7 



5-8 OS/VS2 MVS Overview 

Priority aging ensures that jobs that have been waiting to run in the 
workload of either a JES2 or JES3 installation have a chance of being 
selected to run before those jobs that just entered the system. JES2 and 
JES3, however, differ in how they implement priority aging. 

JES2 can increase the priority of a job within its job class depending on 
the length of time the job has been in the system. By using priority aging, a 
JES2 installation can increase the priority of a waiting job. The longer the 
job waits, the higher its priority becomes and the greater its chances of 
being selected to run. 

JES3, on the other hand, increases the priority of a job depending on the 
number of times the job has been passed over for selection. 

Dependent job control (DJC) is a JES3 function that allows jobs to run 
in a predefined order. That is, the user can specify that one set of jobs be 
completed before another set of jobs. Also, devices used by a set of jobs 
under dependent job control can be reserved for those jobs in that set, 
ensuring that they'll be available when needed. A similar function is 
available to JES2 in the Operations Planning and Control (OPC) program 
product (Program Number S740-XT9). 

Output 

The job entry subsystem controls all SYSOUT processing. While running, a 
job can produce system messages that must be printed, as well as data sets 
that must be printed or punched. After the job finishes, the job entry 
subsystem analyzes the characteristics of the job's output in terms of its 
output class and setup requirements and processes its output accordingly. 
Specifically, the job entry subsystem gathers the output data by output 
class, device availability and set up characteristics and queues it for 
processing. 

MVS includes an external writer program (XWTR) that the installation 
can use in order to write to devices other than those supported by the job 
entry subsystem. Installation written external writer programs can also 
control the output; these programs can tailor the output to the installation's 
needs. Details on using external writers can be found in OS/VS2 System 
Programming Library: Job Management. 

Purge 

When all processing for a job is completed, the job entry subsystem releases 
the spool space assigned to the job, making it available for allocation to 
subsequent jobs. The job entry subsystem also issues a message to the 
operator to indicate that the job has been purged from the system. 

JES2 Features 
Each JES2 processor in a mUltiple processor configuration, commonly called 
a multi-access spool configuration, operates independently of the other JES2 
processors in the configuration. The JES2 multi-access spool configuration, 
also called a JES2 node, consists of two or more JES2 processors at the 
same physical location, all sharing the same spool. Each JES2 processor can 
read jobs from local and remote card readers, select jobs for execution, 
print and punch results on local and remote output 

c 

( 
'-.. 



... C·"· 

o 

devices, and communicate with the operator. The JES2 processors share a 
common job queue, which resides on the spool. 

This common job queue enables each JES2 processor to share in 
processing the installation's workload; jobs can execute on whatever 
processor is available and print or punch output on whatever processor has 
an available device with the proper requirements. If one processor in the 
configuration fails, the others can continue processing from the shared job 
queue. Only work in process on the failed processor is interrupted; the 
other JES2 processors continue their processing. 

JES2 nodes, each at different physical locations, can be joined through 
communication lines (such as those used for telephone or satellite 
communications) to form a network. The JES2 nodes in the network use 
the Network Job Entry (NJE) Facility program product (Program Number 
5740-XR8), illustrated in Figure 5.2, to process jobs. the NJE facility 
enables JES2 to: 

• Manage the paths between the JES2 nodes joined in a network so that 
work moves from place to place. 

• Transmit and receive input streams, commands, messages, and output 
among JES2 nodes in the network. 

• Allow the system operator at any node to control jobs throughout the 
network. 

With NJE, each JES2 node in the network can process jobs from other 
JES2 nodes. JES2 nodes can pass both jobs and job output among 
themselves for processing, performing what is commonly known as job 
networking. 

London VVashington D.C. 

JES2 JES2 

CTC 
JES2 adapter JES2 

New York 

Figure 5.2. Network Job Entry Facility 

Chapter 5: Entering and Scheduling Work 5-9 



5-10 OS/VS2 MVS Overview 

Job networking allows the installation to balance workloads across the r' 
locations in the network. Also, a job entered at one location can be ',,---/ 
transmitted to another location in the network where it can use, for 
example, special hardware, or software features, a centralized data base, or 
special applications. Similarly, reports produced by an accounting program, 
for example, can be distributed automatically to several locations in the 
network. 

A JES2 NJE network can also be extended to contain non-JES2 nodes, 
such as VM/370 and JES3. The Network Job Interface (NJI) programming 
RPQ (P09007, Program Number 5799-ATA) for example, allows a 
VM/370 node to participate in job networking with a JES2 NJE node. 
JES3 with its own networking support programming RPQ (P09022, 
Program Number 5799-AZT) can also participate in job networking with a 
JES2 NJE node as well as with non-JES2 nodes such as VM/370 with NJI. 

For more comprehensive descriptions of JES2 job networking, see the 
IBM Systems Journal, Volume 17, Number 3, 1978. Also, refer to 
Network Job Entry Facility for JES2 General Information Manual and 
Network Job Interface General Information Manual. 

JES3 Features 
As described earlier, the JES3 operating environment differs from the 

JES2 environment in the way that JES3 controls job processing. Where 
JES2 exercises independent control over job processing, JES3 exercises 
centralized control; the global JES3 processor controls the other processors 
in the JES3 installation. As shown in Figure 5.3, each local JES3 processor 
is attached to the global JES3 processor by a channel-to-channel (CTC) 
adapter, which carries control information between the global and local 
JES3 processors. The global JES3 processor controls the processing of the 
installation's workload by running jobs itself, or by routing them to local 
JES3 processors to run. 

c 



c 

c 

o 

'---",."",-_ .. _.,- -.. 

--_._-_._-_ .. -._--"._--

/ 
/ 

/ 

LOCAL 
MVS/JES3 
PROCESSOR 

/ 
/ 

/ 
/ 

/ 

Figure 5.3. A JES3 Installation 

GLOBAL 
MVS/JES3 
PROCESSOR 

" , 
"-
" "-

"-

Legend: 

- - - CTC adapter 

" " 
LOCAL 
MVS/JES3 
PROCESSOR 

As with IES2, each IES3 processor can access the spool, which consists 
of SYSIN and SYSOUT data, ICL, and the job queue for the entire JES3 
installation. The global IES3 processor reads jobs from its local an remote 
input devices, places them on the spool, and selects them to run on any 
local JES3 processor; the global JES3 processor controls all the processing 
of job output. 

The JES3 system operator can dynamically bring up a local JES3 
processor as the global JES3 processor if the global processor fails. The 
relink of this new global JES3 processor to the remaining local JES3 
processors is performed automatically. Jobs that were executing on the 
failed processor can be recovered. 

JES3, like JES2, also allows job networking through a JES3 function 
called network job processing (NJP). A network of JES3 nodes can be 
joined together by communication lines. Each global JES3 processor in the 
network communicates with other global JES3 processors at other JES3 
nodes, offering advantages similar to those that JES2 NJE offers; jobs can 
be submitted at one location and executed at another, and job output can 
be produced at any location within the network. As Figure 5.4 illustrates, 
all nodes in a IES3 NIP network must be JES3 nodes. A non-NIP JES3 
node with the networking support programming RPQ (P09022, Program 
Number 5799-AZT), though, can communicate with JES2 NJE nodes as 
well as with other NJI nodes in the network. Refer to JES3 Networking 
General Information Manual for more detail. 

Chapter 5: Entering and Scheduling Work 5-11 



JES2 JES3 JES3 JES3 

NJE (*) NJP NJP 

VM/370 

NJI NJP 

(*) JES3 Networking Support 

Figure 5.4. JES2 and JES3 Job Networking 

Device Allocation 

5-12 OS/VS2 MVS Oveniew 

Most jobs have auxiliary storage requirements. That is, a job generally 
needs to use 110 devices, volumes, and data sets when it runs. MVS assigns 
these resources to jobs through a function called device allocation. Device 
allocation uses the information in the job's JCL statements to assign the 
proper resources -- devices, volumes, and data sets -- to the job. 

Each job's JCL statements identify the job (JOB statement), each job 
step within the job (EXEC statement), and the data sets to be used by the 
job (DD statements). A job can have one step (single EXEC statement) or 
mUltiple steps (multiple EXEC statements). Each EXEC statement is 
normally followed by DD statements that identify the data sets that are to 
be allocated for use by the job step. The parameters on the DD statement 
identify such things as: 

• The name of the data set 
• The name of the volume on which the data set resides 
• The type of 110 device that holds the data set 
• The format of the records on the data set 
• Whether the data set exists or is to be created 
• The size and type of data set to be created 

Device allocation uses this information to identify the devices, volumes, and 
data sets to be used by the job steps and to assign them to the job step so 
that (1) those devices, volumes, and data sets that can be shared are 
available to other job steps and (2) .those devices, volumes, and data sets 
that cannot be shared are used only by this job step. Through device 
allocation, MVS tries to ensure that no job step that is ready to execute has 
to wait for its devices, volumes, or data sets to be assigned. 



c 

o 

Device allocation performs the following general functions to allocate 
resources: 

• Locating the volume and unit information for a requested data set 
• Resolving relationships between two or more requests 
• Creating, through data management, new data sets 
• Assigning I/O devices to the request 
• Instructing the operator to mount necessary volumes 
• Allowing dynamic concatenation of data sets 

Device allocation performs the following general functions to deallocate 
auxiliary storage: 

• Controlling what happens to a data set when a job step finishes using it 
• Releasing a data set, reserved by an initiator, for use by other job steps 
• Releasing I/O devices for use by other job steps 

MVS has three forms of device allocation to assign resources to jobs: 

• Job step allocation: The initiator does the device allocation as part of 
initiating a job step. 

• JES3 device allocation: JES3 does the device allocation before passing a 
job to the initiator. 

• Dynamic device allocation: A job does the device allocation as it executes. 

Job Step Allocation 

Job step allocation consists of various system allocation routines that 
analyze the DD statement information for each job step. JES2 is the 
primary user of job step allocation; JES3, as will be described later, can 
perform many allocation functions itself. 

As described earlier, after 1ES2 selects a job to run and passes it to the 
initiator, the initiator invokes the interpreter to create SW A control blocks 
that describe the job's resource requirements. The initiator then passes 
control to the system allocation routines for the first step in the job. The 
system allocation routines use the SWA control block information to 
analyze the job's device, volume, and data set requirements and allocate 
those resources needed by the program for that job step. The initiator does 
not start running the job step until the system allocation routines assign all 
the resources the job step needs. When all resources are ready, the system 
allocation routines return to the initiator, which starts the job step. After 
the job step finishes running, the initiator uses the system unallocation 
routines to release those resources no longer needed; the initiator then 
repeats its use of the system allocation routines for the next job step. 

An allocation process similar to this one occurs when a time-sharing user 
issues a LOGON command to start a TSO terminal session or when a 
started task is initiated. 

JES3 Device Allocation 

A user whose job is processed by JES3 can use JES3 device allocation to 
allocate resources before the job is selected to run. The user controls the 
extent to which JE83 allocates devices, volumes, and data sets to the job. 
At one extreme, the user can bypass JES3 device allocation altogether. At 
the other extreme, the user can have 1ES3 allocate devices, volumes, and 
data sets for all of the steps in the job before the job is selected to run. In 

Chapter 5: Entering and Scheduling Work. 5-13 



5-14 OS/VS2 MVS Overview 

either case, JES3 creates the SW A control blocks for the job and passes C~' 
them to the initiator when the job is selected to run. The initiator invokes _ 
the system allocation routines of job step allocation. These routines analyze 
the SW A control blocks and endorse the allocation decisions already made 
by JES3, or they assign required devices, volumes or data sets that have not 
yet been allocated to the job. 

Three categories of devices can be defined for the JES3 installation: 

• JES3 devices, which are exclusively managed by JES3 
• JES3 and MVS devices, which are jointly managed by JES3 and MVS 
• MVS devices, which are exclusively managed by MVS 

JES3 can take an active role in assigning the devices it exclusively 
manages and the devices it jointly manages by: 

• Selecting certain jobs over other jobs competing for resources in order to 
keep each processor as busy as possible. For example, JES3 normally 
grants the first job (within a given priority) that can acquire resources on 
a given processor those resources. 

• Selecting an eligible processor on which to allocate devices for a selected 
job. JES3 compares each job's resource requirements with the 
JES3-managed devices attached to each processor. JES3 selects the 
processor with the best match of sharable devices. This emphasis on 
sharable devices helps to increase the number of concurrent device 
allocations that can be performed, thus increasing the number of jobs 
that can be processed concurrently. 

• Assigning devices, volumes, and data sets to jobs to maximize the use of 
the devices and minimize the physical movement of volumes. 

A JES3 installation can also define a pool of devices (called a fence) to 
be used exclusively by a set of jobs in a specific job class or a group of job 
classes. In addition, the installation can optionally allow this set of jobs to 
use devices not in this fence and have other devices allocated as needed. 
This device fencing gives the installation the flexibility to tailor its device 
use to its anticipated workload. 

OS/VS2 System Programming Library: JES3 and OS/VS2 System 
Programming Library: JES2 describe, in more detail, how JES3 and JES2 
allocate job resources. 

Dynamic Allocation 

Because resource requirements might not be fully known before execution, 
dynamic allocation routines are available to enable jobs and time-sharing 
users to acquire resources as the need develops. Dynamic allocation also 
allows resources to be used more efficiently because the resources can be 
acquired just before use and released immediately after use. 

A typical use for dynamic allocation is in a program that needs 
temporary use of a device, volume, or data set for which there is heavy 
contention. In such a case, dynamic allocation provides the means for a job 
to tie up the resource for only as long as necessary rather than for the life 
of the job. 

c 



o 

Another common use for dynamic allocation is in a job whose need for 
allocated resources might vary according to its input. Dynamic allocation 
permits such jobs to dynamically allocate and free only the data sets 
necessary to process the input, so the specific resources supporting the 
required data set can be in use for the minimum time. A job can use 
dynamic allocation to free a SYSOUT data set so that the job entry 
subsystem can process it while the job is still executing. Such data sets are 
called spin-off data sets. 

For more information on dynamic allocation, see OS /.VS2 System 
Programming Library: Job Management. 

Chapter 5: Entering and Scheduling Work 5-t5 



c 

c-.... · .... -'/ 

c. 
5-16 OS/VS2 MVS Oveniew 



c 

CI 

o 

............ _---_ ..• _._ .. _--------

Chapter 6: Supervising the Execution of Work 

As described in the preceding chapters, work enters the system, is assigned 
a private address space, and is scheduled for execution. Once the work is 
brought into real storage (where it has access to the processor), it becomes 
the responsibility of the supervisor. 

The supervisor provides the controls needed for multiprogramming. This 
chapter describes the following functions of the supervisor: 

• Interruption processing. In order to achieve mUltiprogramming, some 
technique must exist to switch control from one routine to another - so 
that, for example, when routine A must wait for an I/O request to be 
satisfied, routine B can be executing. In MVS, as in MVT and SVS, this 
is achieved by interruptions, which are events that alter the sequence in 
which the processor executes instructions. When an interruption occurs, 
the supervisor receives control, saves the execution status of the 
interrupted routine, analyzes the interruption, and passes control to the 
appropriate routine to process the interruption. 

• Creating dispatchable units of work. The supervisor requires some way of 
identifying and keeping track of all the work in the system. It does this 
by representing each unit of work with a control block. Two types of 
control blocks represent dispatchable units of work in MVS systems: task 
control blocks (TCBs), which also exist in MVT and SVS systems and 
which represent tasks executing within an address space; and service 
request blocks (SRBs), which were introduced in MVS as an efficient 
way to provide high priority for system services. 

• Dispatching work. After supervisor routines process interruptions, they 
either return control to the routine that was interrupted or pass control 
to a routine called the dispatcher. (Which action occurs is described in 
detail in the topic "The Interruption Handler (IR) Routines.") The 
dispatcher determines which unit of ready work, of all the ready units of 
work in the system, has the highest priority and passes control to that 
unit of work. 

• Serializing the use of resources. In a multiprogramming system, almost 
any sequence of instructions can be interrupted, to be resumed later. If 
that set of instructions manipulates or modifies a resource (for example, 
a control block or a record in a data set), the supervisor must prevent 
other programs from using the resource until the interrupted program has 
completed its processing of the resource. 

In MVS, the supervisor provides two techniques for serializing the use of 
resources: enqueuing (via the ENQ or, for shared DASD, RESERVE macro 
instruction), which is also available in MVT and SVS systems; and locking 
using multiple locks, which was introduced in MVS as an efficient way to 
serialize the use of resources by supervisor routines and, in a 
tightly-coupled multiprocessing environment, by processors. 

For detailed information on supervisor functions see System 
Programming Library: Supervisor and Supervisor Services and Macro 
Instructions. 

Chapter 6: Supervising the Execution of Work 6-1 



6-2 OS/VS2 MVS Overview 

Interruption Processing ('" 
An interruption is an event that alters the sequence in which the processor ',,-_/ 
executes instructions. An interruption may be planned (specifically 
requested by the task the processor is currently executing) or unplanned 
(caused by an event that may be either related or unrelated to the task 
currently executing). There are six types of interruptions: 

• SVC (supervisor call) interruptions, which occur when the program issues 
an SVC instruction. An SVC is a request for a particular system service 
- for example, to open a data set (SVC 19 - OPEN), to obtain 
storage (SVC 4 - GETMAIN), to write a message to the operator 
(SVC 35 - WTO/WTOR). 

• I/O interruptions, which occur when a channel or device signals a change 
of status. For example, an I/O operation completes, an error occurs, or a 
device becomes ready. 

• External interruptions, which indicate any of several events for example, a 
time interval expires, the operator presses the interrupt key on the 
console, or a signal is received from another processor. 

• Restart interruptions, which occur when the operator presses the restart 
button on the console or when a restart SIGP (signal processor) 
instruction is received from another processor. 

• Program interruptions, which are caused by program errors (for example, 
the program attempts an invalid operation), page faults (the program 
references a page that is not in real storage), or requests to monitor an 
event. 

• Machine check interruptions, which are caused by machine malfunctions. 

The supervisor includes six routines called interruption handlers (IHs) to 
process the six types of interruptions: an SVC IH, I/O IH, external IH, 
restart IH, program IH, and machine check IH. When an interruption 
occurs, the system must save the status of the program that was interrupted 
and route control to the appropriate interruption handler routine. This is 
accomplished by means of a hardware feature called program status words 
(PSWs). 

The Role of Program Status Words 

Program status words (PSWs) are used to control the order in which 
instructions are executed and to hold and indicate the status of the system 
in relation to the program currently being executed. There are three types 
of PSWs: current PSW, new PSWs, and old PSWs. 

The current PSW indicates the next instruction to be executed. It also 
indicates whether the processor is enabled or disabled for I/O interruptions, 
external interruptions, machine check interruptions, and certain program 
interruptions. When the processor is enabled, these interruptions can occur. 
When the processor is disabled, these interruptions are ignored or remain 
pending; they are processed when the unit of work that is executing in the 
disabled state completes its processing. (The processor is never disabled for 
SVC, restart, or certain program interruptions.) 

c. 



c/ 

C 

o 

.---------------... -- .... -~ .. - ... - .... 

, I 

A new PSW and an old PSW are associated with each of the six types of 
interruptions. The new PSW contains the address of the interruption 
handler routine that can process its associated interruption. If the processor 
is not disabled when an interruption occurs, the System/370 hardware 
switches PSW s by: 

D Storing the current PSW in the old PSW associated with the type of 
interruption that occurred 

fI Moving the contents of the new PSW for the type of interruption that 
occurred into the current PSW 

The current PSW, which indicates the next instruction to be executed, 
now contains the address of the appropriate IH routine to handle the 
interruption (see figure 6.1); this has the effect of transferring control to 
the appropriate interruption-handling routine. 

NEW PSWs OLD PSWs 

Contains address of Provides a save area for 
routine within supervisor PSW that was current at 
to handle interruption time of interruption 

RESTART RESTART 

EXTERNAL EXTERNAL 

SUPERVISOR CALL 
Current PSW SUPERVISOR CALL 

PROGRAM CHECK Hardware switches PROGRAM CHECK 
PSWs 

MACHINE CHECK MACHINE CHECK 

I/O I/O 

Figure 6.1. The Use of Program Status Words (PSWs) in Interruption Processing 

Chapter 6: Supervising the Execution of Work 6-3 

____ ... __ .______ • ___ .. _0 ... -· 



6-4 OS/VS2 MVS Overview 

The Interruption Handler (IH) Routines 

The interruption handler (IH) that receives control saves the status (general 
registers and the old PSW) of the unit of work that was interrupted, 
analyzes the interruption, and determines the control program action 
required. Specifically: 

• The SVC interruption handler determines the type and location of the 
requested SVC routine and, if the requested SVC requires that the caller 
be authorized, checks that the caller has the appropriate authorization. 
(The request is denied if the caller lacks necessary authorization.) There 
are several types of SVCs, each type having different execution 
characteristics. For example, some types of SVCs reside in the nucleus, 
others in the link pack area; some types can issue other SVCs, other 
types cannot. If the requested SVC is a type that can issue other SVCs, 
the SVC IH builds a control block called an SVC request block (SVRB) 
for the requested routine. The SVRB is needed to save status 
information about the routine so that it can be resumed after an SVC 
interruption has been processed. After checking for proper authorization 
and, if necessary, building an SVRB, the SVC IH passes control to the 
requested SVC routine. 

• The 110 interruption handler passes control to the input/output 
supervisor (IDS). IDS performs all processing for I/O requests and 
controls all I/O error processing. For more information on IDS, see 
chapter 8. 

• The external interruption handler determines the cause of the external 
interruption and passes control to the appropriate external service 
routine. 

• The restart interruption handler routes control to the recovery termination 
manager (RTM). For more information on RTM, see Chapter 9. 

• The machine check interruption handler records all machine checks and, if 
the machine check cannot be corrected by hardware, calls the recovery 
termination manager (RTM) - see Chapter 9. 

• The program interruption handler determines the cause of the program 
interruption and, depending on the cause, passes control to one of the 
following: 

Real storage management (RSM), if the program interruption was 
caused by a page fault. RSM determines if the page fault is valid 
and, if it is, starts the processing necessary to bring the referenced 
page into real storage. 

Generalized trace facility (GTF), if the interruption occurred as the 
result of a request to monitor an event. GTF (if it is active) records 
the event. 

A user-provided program-interruption exit routine, if the program 
interruption was caused by an error in user code (for example, 
using an incorrect address or attempting to execute privileged 
instructions) and the user provided an error-handling routine (by 
means of the SPIE -set-program-interruption-element- macro 
instruction) . 



c 

o 

--_ .. "" ..... _-_._ •.... 

The recovery termination manager (RTM), if the program 
interruption was caused by an error in system code or, if the user 
does not provide his own error-handling routine, in user code. 

Serviceability level indication processing (SLIP) if the interruption 
occurred as a result of a request to monitor an instruction fetch, 
successful branch, or storage alteration event. SLIP performs a 
diagnostic action for such an event. 

The routine that receives control after the interruption is processed 
depends on whether the interrupted unit of work was non-preemptive. A 
non-preemptive unit of work can be interrupted but must receive control 
after the interruption is processed. All SRBs are non-preemptive; a TCB is 
non-preemptive if it is executing a non-preemptive SVC (the installation 
identifies which SVCs will be non-preemptive during system generation). If 
the interrupted unit of work was preemptive, the dispatcher receives control 
and determines which unit of work should be performed next. 

Figure 6.2 summarizes the processing of interruptions; for more 
information on the dispatcher, see the topic "Dispatching Work." 

Chapter 6: Supervising the Execution of Work 6-5 



System/370 

Unit of Work - executing 

Interruption 
occurs 

\ 
\ 

Highest Priority Ready \ 
Unit of Work \ 

" \ 
\\1 

Figure 6.2. Summary of Interruption Processing 

6-6 OS/VS2 MVS Overview 

Yes 

Interruption-handling Routine 

• Analyzes interruption 

• Determines action required 

• Routes control to appropriate part 
of control program 

Routine that Performs Requested 
Service 

Some services might require another 
service and, therefore, cause an 
interruption, which causes the supervisor 
cycle to be restarted. 

No 

Dispatcher 

The dispatcher dispatches the highest 
priority ready unit of work, which might 
be the unit of work that was interrupted 
or might be another task or SRB. 

c 



c 

o 

------~- ... _._,._--

Creating Dispatchable Units of Work 

In MVS, dispatchable units of work are represented by two different 
control blocks: 

• Task control blocks (TCBs), which represent tasks executing within an 
address space - user programs and system programs executed to 
support the user programs. 

• Service request blocks (SRBs), which represent requests to execute a 
service routine. SRBs are typically created when one address space is 
executing and an event occurs that affects a different address space; they 
provide the mechanism for almost all communication between address 
spaces. 

Task Control Blocks (TCBs) 

Task control blocks (TCBs) are created in response to an ATTACH macro 
instruction. By issuing ATTACH, a user or system routine causes the 
supervisor to begin the execution of the program specified on the ATTACH 
macro as a subtask of the caller's task. As a sub task, the specified program 
can compete for processor time and may use certain resources already 
allocated to the caller's task. 

The A IT ACH macro instruction causes an SVC interruption. The SVC 
interruption handler branches to the A IT ACH SVC routine to perform the 
requested service. The A IT ACH routine does the following: 

• Obtains storage for a new TCB 

• Places in the new TCB information needed to control the subtask 

• Places the new TCB on the chain of TCBs for that address space 

• Branches to program management routines to locate the first program to 
be executed for the new subtask and, if necessary, fetch the program 
from a program library. 

The region control task (RCT), which is responsible for preparing an 
address space for swap-in and swap-out, is the highest priority task in an 
address space. All tasks within an address space are subtasks of the RCT. 
The RCT's TCB is pointed to from the address space control block 
extension (ASXB) and points to the next TCB in the address space. Figure 
6.3 illustrates the basic TCB structure for batch jobs, operator-started jobs, 
and TSO users. 

Chapter 6: Supervising the Execution of Work 6-7 



System Area - SQA Private Area - LSOA 

Batch job 

ASCB ASXB TCB TCB TCB TCB TCB .. 

_/v ! RCT I DUMP f STC f INIT V JOB 
~ - STEP 

-.-/ ........ ""--" 

i....--.-

Operator-started job 

ASCB ASXB TCB TCB TCB TCB 

V- I! If I( V J/ RCT DUMP STC Started 
job - -- ""--" -" 

'---

TSO User 

ASCB ASXB TCB TCB TCB TCB TCB 

/ 
V""" ! I If I r RCT DUMP STC LOGON TMP 

- - ........ - - .-/ 
'---

Legend: 
ASCB - address space control block 
ASXB - address space control block extension 
DUMP - dump task 
INIT - initiator 

LOGON - TSO LOGON task 
LSQA - local system queue area 

RCT - region control task 
SQA - system queue area 
STC - started task control 
TCB - task control block 
TMP - terminal monitor program 

Figure 6.3. Task Control Block (TCB) Structure 

6-8 OS/VS2 MVS Overview 



c 

c 

o 

_._----_ .... ---

Service Request Blocks (SRBs) 

Service request blocks (SRBs) are typically created when one address space 
is executing and an event occurs that affects a different address space. For 
example, address space A is executing and an I/O interruption occurs 
because an I/O operation requested by address space B has completed. The 
I/O interruption handler collects the necessary information about the 
interruption and builds and schedules a service request block (SRB). The 
I/O interruption handler can then start I/O requests that were waiting for 
the I/O path used by the request that just completed and can accept any 
additional pending interruptions. Delaying complete processing of the 
interruption by building the SRB allows faster re-use of the I/O path and 
less disabled interruption time. 

The SRB identifies the routine to be executed and the address space in 
which the routine should be executed. In the preceding example, the SRB 
would be executed in address space B, because that address space had 
requested the I/O operation. To schedule an SRB, the routine that builds 
the SRB issues the SCHEDULE macro instruction. On the SCHEDULE 
macro instruction, the routine indicates the priority of the request relative to 
other requests in the system by specifying either GLOBAL or LOCAL. 
SRBs with a global priority are given a priority higher than that of any 
address space, regardless of the actual address space in which they will be 
executed. SRBs with a local priority receive a priority equal to that of the 
address space in which they will be executed, but higher than that of any 
TCB within that address space. The assignment of global or local priority 
depends on the "importance" of the request; fur example, SRBs for I/O 
interruptions are scheduled at a global priority, so that I/O delays are 
minimized. 

Dispatching Work 
Dispatching work consists of routing control to the highest priority unit of 
work that is ready to execute. The dispatcher, a supervisor routine, 
dispatches work in the following order: 

1. Special exits. These are exits to routines that have a high priority 
because of specific conditions in the system. For example, if one 
processor of a tightly-coupled multiprocessing system fails, alternate 
CPU recovery (ACR) will be invoked by means of a special exit to 
recover work that was being executed on the failing processor. 

2. SRBs that have global priority. If a global SRB cannot be dispatched 
(for example, the address space in which it will execute is swapped 
out), the dispatcher reschedules it at a local priority. 

Chapter 6: Supervising the Execution of Work 6-9 



6-to OS/VS2 MVS Overview 

3. Ready address spaces in order of priority. An address space is ready C' 
to execute if it is swapped in and not waiting for some event to 
complete; an address space's priority is determined by the dispatching 
priority specified by the user or the installation. The address space 
control block (ASCB) contains the address space's dispatching 
priority; ASCBs that represent ready address spaces are queued'in 
storage according to their dispatching priority. To select an address 
space, the dispatcher selects the first ready ASCB on the chain of 
ASCBs. 

After selecting the highest-priority ASCB, the dispa'tcher first 
dispatches SRBs with a local priority that are scheduled for that 
address space and then TCBs in that address space. 

If there is no ready work in the system, the dispatcher loads an enabled 
wait PSW. 

The dispatcher receives control after a task is interrupted or becomes 
non-dispatchable, after an SRB completes or is suspended, (that is, an SRB 
is delayed because a required resource is not available), and from other 
supervisor routines that want higher priority work dispatched without 
waiting for an interruption to occur. The dispatcher saves the status of the 
unit of work relinquishing control, selects a unit of work, builds a program 
status word (PSW) for the selected unit of work, and issues a load PSW 
(LPSW) instruction, which results in the selected routine receiving control. 
That routine executes until an interruption occurs or until the routine 
voluntarily gives up control (for example, by issuing a WAIT SVC). 

Serializing the Use of Resources 
The supervisor provides two techniques for serializing the use of resources: 
enqueuing, which was available in MVT and SVS systems; and locking 
using multiple locks, which is a new technique for MVS. 

Enqueuing 

Enqueuing is accomplished by means of the ENQ (enqueue) and DEQ 
(dequeue) macro instructions, which can be used by both user and system 
programs; or, for devices shared between systems, by means of the 
RESERVE and DEQ macro instructions. On ENQ or RESERVE, a user 
specifies the name(s) of one or more resources and requests shared or 
exclusive control of those resources. If the resources are to be modified, the 
user must request exclusive control; if the resources are not to be modified, 
the user should request shared control, which allows the resource to be 
shared by other users that do not require exclusive control. The DEQ 
macro instruction is used to release control of a resource. 

Locking 

Locking using multiple locks is a new technique in MVS that serializes the 
use of system resources by supervisor routines and, in a tightly-coupled 
multiprocessing system, by processors. A lock is simply a field in storage 
that indicates if a resource is being used and who is using it. In MVS, there 
are two kinds of locks: global locks, for resources related to more than one 
address space, and local locks, for resources assigned to a particular address C 
space. Global locks are provided for non-reentrant routines and the 
following control blocks: 



c 

o 

-------- ------- ---------

• Control blocks the dispatcher uses. 

• Control blocks the auxiliary storage manager (ASM) uses. 

• Routines of real storage management (RSM) and virtual storage 
management (VSM) that allocate storage. 

• Control blocks and functions of the input/output supervisor (lOS). 
These include locks for the following: global lOS functions; the channel 
availability table (used by lOS to allocate a channel.to an I/O request); 
each unit control block (updated by lOS when units are assigned to or 
released by I/O requests); each logical channel queue (maintained by 
lOS for requests waiting for a logical channel). 

• Control blocks used by VT AM. There is one lock for each of the 
following types of control blocks: VT AM node control blocks; VT AM 
destination node control blocks; VT AM data extent blocks. 

• The control algorithms and control blocks the system resources manager 
(SRM) uses. 

• Control blocks that provide cross-memory services that are not protected 
by any of the preceding locks. 

A local lock is provided for each address space to serialize the allocation of 
storage and the use of control blocks within the address space. 

To use a resource protected by a lock, a routine must first request the 
lock for that resource. A part of the supervisor called the lock manager 
acquires and maintains all locks. If the lock is unavailable (that is, already 
held by a different program or processor), the action taken by the program 
or processor that requested the lock depends on the type of lock; there are 
two types of locks -spin locks and suspend locks: 

• If a spin lock is unavailable, the requesting processor continues testing 
the lock until the other processor releases it. As soon as the lock is 
released, the requesting processor can obtain the lock and, therefore, 
control of the protected resource. All of the global locks except the 
cross-memory-services lock are spin locks. 

• If a suspend lock is unavailable, the unit of work requesting the lock is 
delayed until the lock is available; the requesting processor is dispatched 
to do other work. The cross-memory-services global lock and all local 
locks are suspend locks. 

To prevent deadlocks, MVS locks are arranged in a hierarchy and a 
processor or routine may unconditionally request only locks higher in the 
hierarchy than locks it currently holds. For example, a deadlock could occur 
if processor 1 held lock A and required lock B; and processor 2 held lock B 
and required lock A. In MVS, this situation cannot occur because locks 
have to be acquired in hierarchical sequence. Assume, in the preceding 
example, lock A precedes lock B in the hierarchy. Processor 2, then, cannot 
hold lock B without already holding lock A; the deadlock cannot occur. 
Figure 6.4 summarizes the locks provided in MVS and lists them in 
hierarchical order. 

Chapter 6: Supervising the Execution of Work 6-11 

---- ---- "" .. _--_ .. _----_ .... 



6-12 OS/VS2 MVS Overview 

Class of lock Name of Resource protected Type of 
lock'" lock 

Global DISP Dispatcher control blocks 

ASM ASM control blocks 

SALLOC RSM and VSM routines 

10SYNCH Global lOS functions Spin 

10SCAT Channel availability table 

10SUCB Unit control blocks 

10SLCH Lo~c~ chann~ queues 

TPNCB VT AM node control blocks 

TPDNCB VT AM destination node control 
blocks 

TPACBDEB VT AM data extent blocks 

SRM SRM algorithms and control blocks 

CMS Cross memory services 

CMSEQDQ Cross memory services Suspend 
(ENQ/DEQ) 

CMSSMF Cross memory services (SMF) 

Local LOCAL Address space storage and control 
blocks 

*Locks are listed in hierarchical order, from highest. to lowest. 

Figure 6.4. Summary of MVS Locks 

The design of locking in MVS allows supervisor routines to execute and 
allows one processor in a tightly-coupled multiprocessing system to use one 
resource while the other processor uses a different resource - two benefits 
that were not provided by earlier techniques to serialize the use of 
resources. 

(" 
'''---- ... 

\ ............ - ' 



\, 0
, 

o 

-----_ .... _----------_ .. _-._--- .. _._.-

Chapter 7: Managing System Resources 

Managing system resources in MVS is the responsibility of a component 
called the system resources manager (SRM). SRM has two objectives: 

• To distribute the system's resources (processor time, I/O resources, and 
real storage) among individual address spaces as specified in the 
installation performance specification (IPS) 

• To achieve the optimal use of processor time, real storage, and I/O 
resources by active address spaces, as seen from the viewpoint of system 
throughput 

This chapter describes how SRM attempts to meet these objectives: the 
decisions it makes and the factors it considers in making those decisions. 
The system programmer can influence almost all of the decisions made by 
SRM routines by means of the installation performance specification (IPS) 
and the IEAOPTxx member of the SYS I.P ARMLIB data set. The 
Initialization and Tuning Guide contains detailed information on SRM's 
processing and how the installation can influence it. 

Note: Except where noted, this chapter describes SRM as it exists when 
SU7 (Supervisor Performance #2) has been installed. 

How SRM Meets Its Objectives 
SRM's two objectives are contradictory in terms of the availability of 
resources. Optimizing throughput implies keeping resources busy; meeting 
the installation's objectives for response and turnaround time (as reflected 
in the IPS) implies the availability of any resource when it's required. SRM 
makes decisions that represent trade-offs between its two conflicting 
objectives. 

The decisions SRM makes include the following: 

• Which address spaces should be permitted access to the system's 
resources (that is, swapped in) 

• When to steal pages and which pages to steal 

• When to change the dispatching priority of address spaces (called 
"chapping") 

• Which device should be allocated, when allocation routines have a choice 
of devices 

• When to inhibit the creation of new address spaces 

These decisions are the controls SRM uses to meet its objectives. 

Chapter 7: Managing System Resources 7-1 



7-2 OS/VS2 MVS Overview 

Major Functional Areas of SRM 

To reach its decisions, SRM is divided into three major functional areas: 

• SRM control, which determines the processing required by SRM and 
routes control to the appropriate SRM routines. SRM control decides 
when and which address spaces will be swapped in or out. To make this 
decision, it obtains recommendations from the other functional areas of 
SRM: the workload manager and the resource manager. 

• Workload manager, which monitors the use of resources by the various 
address spaces. It gives the SRM control function swapping 
recommendations that attempt to maintain each address space's use of 
system resources as specified in the IPS. 

• Resource manager, which monitors system-wide use of resources to 
determine if they are over- or under-utilized. It makes swapping 
recommendations to the SRM control function that are intended to 
optimize throughput - to optimize use of the processor(s), I/O 
resources, and storage. In addition, the resource manager is responsible 
for implementing other SRM controls related to the use of resources: 
inhibiting the creation of new address spaces or stealing pages when 
certain shortages of storage exist; changing the dispatching priority of 
address spaces, which controls the rate at which the address spaces are 
allowed to consume resources; choosing the device to be allocated if a 
choice of devices exists, in order to balance the use of I/O resources. 

Communicating with SRM 

Other system components communicate with SRM by means of the 
SYSEVENT macro instruction. All SYSEVENTs have a code, which 
indicates the processing SRM is to do. Essentially, all codes fall into one of 
two categories: 

• SYSEVENTs that notify SRM of a change in status for a particular 
address space or for the system as a whole. For example: real storage 
has been configured into or out of the system; an address space has been 
deleted; an initiator selects or terminates a job; a swap-in is started or a 
swap-out completes. In response to these SYSEVENTs, SRM updates, 
builds, or releases control blocks that contain information on system and 
address space activity. 

• SYSEVENTs that invoke SRM's decision-making functions. For example: 
an address space enters a long wait (SRM will swap the address space 
out of real storage); an address space is to be created (if a shortage of 
SQA or page able storage exists, SRM will prohibit creation of the 
address space); allocation routines have a choice of devices to be 
allocated to a request (SRM will recommend one of the devices); a time 
interval expires. The timer-interval SYSEVENT is the exclusive means to 
invoke most of SRM's algorithms, which provide data on which SRM 
bases its decisions. 

Most SYSEVENTs cause the SRM control function to be called, which 
in tum can call the resource or workload manager for the processing of 

c 

various algorithms. The remainder of this chapter describes in greater detail c· 
SRM control, the workload manager, and the resource manager. 



------_ .. _---_ .. -------------------------

c 

o 

------------------

SRM Control 

SRM control is the dispatcher of SRM. It schedules actions and algorithms 
to be performed by other SRM routines and is responsible for the swapping 
of address spaces. 

The installation provides guidelines for SRM's swap decisions by defining 
a domain for each distinct type of work (for example, batch work). For 
each domain, the installation defines a minimum and maximum MPL 
(multiprogramming level) and the domain's importance relative to other 
domains. The definition of each domain's importance is used by resource 
manager routines, as described in the topic "Resource Monitoring." The 
MPLs state the minimum and maximum number of address spaces in each 
domain that should be in real storage (that is, swapped in) at the same 
time. Within the boundaries of the minimum and maximum MPL and based 
on factors such as the total utilization of system resources, SRM 
periodically computes an optimal MPL for each domain, called the target 
MPL. The objective of the swap analysis performed by SRM control is to 
maintain the MPL of each domain at its target value. 

Swap Analysis 

Swap analysis is triggered by several events -for example, a user becomes 
ready to execute or a time interval expires. The swap analysis must answer 
two questions: whether a swap is necessary; and, if so, which address 
space(s) to swap. 

To determine whether a swap is necessary, SRM control goes through the 
following steps: 

1. SRM control examines each domain, to locate any domain(s) whose 
current MPL exceeds its target MPL. SRM control swaps out the 
required number of address spaces to lower the domain's MPL to its 
target value. 

2. If a user is swapped out and enqueued on a resource requested by 
another user, SRM control swaps in the enqueued user. 

3. SRM control examines each domain, to locate any domain(s) whose 
current MPL is less than its target MPL. SRM control swaps in the 
required number of users to raise the current MPL to its target value. 

4. If a domain's MPL equals its target value, SRM control analyzes 
swapped-in users and swapped-out users to determine if an exchange 
swap should occur (that is, a swapped-in user and swapped-out user 
change places). 

Each time swap analysis is called, SRM control proceeds with the preceding 
steps until it reaches the end of a step that has resulted in at least one swap 
or it determines no swap is required. 

To determine which address space(s) within a domain to swap in or out, 
SRM control asks the workload manager and resource manager for swap 
recommendations, which take the form of swap recommendation values 
(RVs). The workload manager's RVs aim to maintain an address space's 

Chapter 7: Managing System Resources 7-3 

---- ----------,.,-----,----_ .. , 



7-4 OSIVS2 MVS Overview 

use of resources as specified in the IPS. The resource manager's RVs aim to 
correct imbalances in I/o or processor utilization. By combining the RVs of C 
the workload manager and resource manager, SRM control makes trade-offs J 

between its two objectives: distributing resources as specified in the IPS and 
optimizing throughput. 

The Workload Manager 
The workload manager has three basic functions: 

• To monitor service rates -the rates at which system resources are being 
provided to individual address spaces 

• To provide swapping recommendations requested by SRM control 

• To collect data for certain measurement tools -for example, the system 
activity measurement facility (MF /1) or the Resource Measurement 
Facility (RMF), Program Product #S740-XXH 

The workload manager measures the rate at which resources are used in 
terms of service units per second. Service units are computed as a 
combination of three basic system resources: processor time used, I/O 
activity (EXCP counts for data sets associated with the address space), and 
real storage frames occupied. Service rate, then, is the result of dividing the 
number of service units by a time interval, which includes both the time an 
address space is swapped into real storage and the time it is swapped out 
but otherwise ready to execute. 

To arrive at a swapping recommendation, the workload manager 
measures the service rates of different address spaces and compares them in (-"" 
light of factors defined by the installation in the IPS (installation ',-/ 
performance specification). By means of these factors, the installation can 
instruct SRM to give certain users better service at the expense of other 
users. For example, assume two address spaces exist in real storage and one 
must be swapped out; the installation-defined IPS factors will dictate how 
the workload manager views measured service rates: 

• Address space A has a higher service rate than address space B. Based 
on IPS factors associated with these two address spaces, the workload 
manager determines that address space B should be swapped out. (A 
different IPS could result in the opposite decision - that address space 
A should be swapped out.) 

• Address space A has a lower service rate than address space B. The IPS 
indicates that address space A is more important and, based on the IPS, 
the workload manager determines that address space B should be 
swapped out. 

• Address space A and address space B have identical service rates. Again, 
IPS factors indicate which address space is more important and which, 
therefore, should remain in storage. 

The IPS factors that dictate the workload manager's swap 
recommendations are described in detail in the Initialization and Tuning 
Guide. The workload manager passes its swap recommendations to SRM 
control, which combines them with recommendations from the resource 
manager. c 



c 

o 

The Resource Manager 

The resource manager includes algorithms that are concerned with 
improving the system-wide use of resources (as contrasted to an individual 
address space's use of resources, which is the concern of the workload 
manager). The resource manager's routines can be divided into four 
functional areas: 

• Storage management, which is concerned with SRM's decisions to steal 
pages and to prevent the creation of new address spaces 

• 110 management, which is concerned with SRM's swap decisions and 
device allocation decisions 

• Processor management, which is concerned with SRM's swap decisions 
and decisions to change an address space's dispatching priority 

• Resource monitoring, which is concerned with adjusting the target MPLs 
of individual domains based on the need to raise or lower the 
system-wide multiprogramming level 

Storage Management 

Storage management routines of SRM take action when shortages of the 
following are detected: available frames in real storage; space in the system 
queue area (SQA); slots on auxiliary storage; and pageable frames in real 
storage. 

The system maintains an available frame queue, which indicates the 
number of available frames in real storage. When the number of available 
frames falls below a "LOW" threshold, SRM storage management routines 
begin to steal the least-recently used pages from the working sets of address 
spaces in real storage. The storage management routines continue stealing 
pages until the count of available frames plus the number of pages stolen 
exceeds an "OK" threshold for the available frame queue. 

SQA shortages are detected by the virtual storage manager (VSM), 
which calls SRM's storage management routines when a shortage is 
detected. The storage management routines prevent the creation of new 
address spaces until the shortage is relieved. The routines also write 
messages to the operator when the shortage is detected and when the 
shortage is relieved. 

SRM's storage management routines periodically check that the number 
of available auxiliary storage slots has not fallen below a certain limit. 
Shortages of page able real storage are detected by real storage management 
(RSM) when the percentage of fixed frames to total frames exceeds a 
certain limit; RSM then notifies SRM's storage management routines. The 
action taken by SRM for shortages of auxiliary storage slots or pageable 
real storage is the same; SRM: 

• Prevents the creation of new address spaces 

• Delays newly-initiated jobs 

• Sets the multiprogramming level in each domain to its minimum MPL 

Chapter 7: Managing System Resources 7-5 



7-6 OS!VS2 MVS Overview 

• Swaps out the user who is acquiring slots at the greatest rate (for 

C" .. ". shortages of auxiliary storage) or the user who has the most fixed frames " 
(for shortages of real storage) 

• Notifies the operator of the shortage and the identity of the swapped-out 
user 

When the shortage is relieved, creation of address spaces is again 
allowed, the operator is notified, and address spaces that were swapped out 
are again made eligible for swap-in. 

I/O Management 

SRM's I/O management routines are called to: 

• Choose a device when allocation routines have a choice of devices to 
allocate 

• Give swap recommendations to SRM control 

In both cases, the objective of I/O management is to balance I/O activity 
across logical channels. When choosing a device for allocation, I/O 
management seeks candidates on the logical channel that has the lowest 
utilization; for direct access devices, it then chooses the device with the 
lowest number of allocated data sets. When giving swap recommendations 
to SRM control, I/O management bases its recommendations on the extent 
to which the swap-in or swap-out of a user would correct a detected I/O 
imbalance: it recommends, via swap recommendation values, that a 
significant user of an over-utilized logical channel be swapped out; or that a 
significant user of an under-utilized logical channel be swapped in. ,/" .'" 

Processor Management 

Processor management routines have three responsibilities: 

• Controlling the APG (automatic priority group) subset of dispatching 
priorities 

• Preventing the swap-out of users who are enqueued on resources 
required by other users 

• Making swap recommendations to correct under- or over-utilization of 
the processor 

The APG is a range of dispatching priorities under the control of SRM. 
Dispatching priority controls the rate at which address spaces are allowed to 
consume resources after they have been given access to those resources. By 
placing jobs in the APG range, the installation, via the IPS and SRM, can 
alter the dispatching priorities of address spaces as their execution 
characteristics change. 

The APG is divided into three groups: the mean-time-to-wait (MTTW) 
group, rotate priority, and fixed priorities. (If MVS System Extensions, 
Program Product #5740-XE1, is installed, the installation can define more 
than one MTTW group and more than one rotate priority.) 

c 



c 

o 

_._-------_ .. _--_._------- -----_ .. -

• The MTIW group can be used to increase system throughput by 
increasing processor and I/O overlap (that is, the processor is not 
waiting while I/O requests are satisfied). Users in the MTTW group 
have a dispatching priority based on the user's mean execution time 
before entering a wait state; users who quickly release the processor 
receive a high priority within the MTTW group. 

• The rotate priority can be used to ensure that one address space does not 
dominate the processor in relation to other address spaces also assigned 
the rotate priority. Processor management routines periodically reposition 
the address space that is highest in the rotate priority group to the 
bottom of the group. 

• SRM does not change fixed priorities; they are available so that the 
installation can associate, via the IPS, a different fixed priority with 
different periods in the life of a job or transaction. 

By means of the APG, the installation can give SRM control even over 
nonswappable address spaces. 

For users enqueued on resources in demand by other users, processor 
management routines prevent their swap-out until they have released the 
resource or executed for a fixed period of time (whichever occurs first). 
The installation can specify the execution time interval via an SRM tuning 
parameter. 

If processor management routines determine that the processor is over
or under-utilized, they will search for heavy processor users and calculate 
swap recommendation values for swap-out (to correct over-utilization) or 
swap-in (to correct under-utilization). A heavy processor user is one that 
meets or exceeds a certain mean execution time before entering the wait 
state. The processor is considered over-utilized if, during the period under 
consideration, it did not enter the wait state and any ready address space 
on the dispatching queue was not dispatched. The processor is considered 
under-utilized when its utilization is less than a certain percentage. 
Processor management routines take into account the extent to which the 
processor is over- or under-utilized when computing swap recommendation 
values for SRM control. 

Resource Monitoring 

The resource monitoring function of the resource manager periodically 
checks several system resource usage indicators, such as length of the ASM 
queue, which indicates paging and swapping requests not yet satisfied, and 
processor utilization. If measured resource usage (averaged over a number 
of sample intervals) is greater than a "high" threshold or less than a "low" 
threshold for that indicator, the resource monitoring function recommends 
that the system-wide multiprogramming level (MPL) be lowered or raised. 
(The system-wide MPL is the total number of address spaces in the system 
that are swapped in.) 

If the system-wide MPL is to be raised or lowered, resource monitoring 
routines then identify the individual domain whose MPL will be raised or 
lowered to achieve the recommended system-wide MPL. The domain 
selected for MPL adjustment depends on the relative importance of the 
domains, as defined by the installation in the IPS. 

Chapter 7: Managing System Resources 7-7 



7-8 OS/VS2 MVS Overview 



--_. __ ._----

c 

c~ 

o 

------_ .......• -._------------- .... __ . __ .. _--_ ...... _---

Chapter 8: Satisfying I/O Requests and Data Management 

An input/output (I/O) operation involves the movement of data over a 
path between processor storage and an I/O device, such as a tape, disk, 
card reader, or printer, or a telecommunication device, such as a terminal or 
telecommunication control unit. This path between storage and an I/O 
device contains a channel - a link between the processor and the I/O 
device. 

In System/370, the processor initiates the I/O operation by signaling a 
channel. The channel then executes independently of the processor to move 
data over the path between storage and the I/O device. The channel's 
ability to function independently of the processor allows an I/O operation 
to overlap with the processor activity. An I/O operation takes a long time 
to complete compared to the time the processor requires to execute a series 
of instructions. The overlap of I/O operations with processor activity is 
then one of the key ways to achieve efficient movement of data over the 
path between storage and the device -- a path that is either a conventional 
I/O path or a telecommunication I/O path. 

The conventional I/O path consists of storage, a channel, a control unit, 
and a device. Using this path, output data moves from storage across the 
channel to the control unit to the device without any change in its original 
form. Input data moves from the device to the control unit across the 
channel to storage. 

Figure 8.1 illustrates the path. 

Data 

Control 
Unit 

Figure 8.1. Conventional I/O Path 

Channel 

Data 

Processor 
Storage 

The conventional I/O path is normally used in a batch computing 
environment where I/O devices are used for local storage of data that is 
processed by user programs. 

Chapter 8: Satisfying I/O Requests and Data Management 8-1 



Transmitted 
Data 

Control 
Unit 

The telecommunication I/O path consists of storage, a channel, a 
communications controller, a data link, a control unit, and a device often a 
terminal). Input data moves from the terminal to the control unit to the 
data link. In the data link, the data is changed by a modem 
(modulator / demodulator) into a form that is transmitted over the 
communication line (such as a telephone line) to the processor location. At 
the processor location, another modem receives the data and converts it 
back to its original form. The data then moves through the communications 
controller across the channel to storage. 

Figure 8.2 illustrates this input path. 

Communication 
Line 

t------Data Link------t 

Received 
Data 

Communications 
Controller Channel Processor 

Storage 

Figure 8.2. Telecommunication Input Path 

8·2 OS/VS2 MVS Overview 

. Output data uses the same path in reverse order; it moves from storage 
across the channel to the communications controller. From the 
communications controller, the data moves to the data link. In the data link, 
the data is changed by a modem into a form that is transmitted over a 
communication line to the terminal location. At the terminal location, 
another modem receives the data and converts it back to its original form. 
The terminal at the remote location then receives the data. 

Telecommunication I/O paths are normally used in an interactive 
computing environment where terminal users converse with applications 
(such as TSO and IMS) that are executing on a processor at another 
location. 

Most MVS installations support a combination of both batch and 
interactive processing and thus use both conventional and 
telecommunication I/O operations. For either the conventional or 
telecommunication path, MVS allows the definition of multiple I/O paths to 
a single device; multiple paths enable MVS to schedule I/O requests to 
balance the load over physical channels and devices and also to allow 
continued access to the device if one of the multiple paths is inoperative. 

c: 



c 

c 

o 

-----_ ....... _--_._ ... _---

Figure 8.3 shows the use of multiple paths to devices. Data can move 
between storage and disk A, disk B, and the tape device by using the path 
over channel 1 or the path over channel 2. If an input operation is under 
way to disk A through channell, then channel 2 can be used for an input 
operation to disk B or the tape device without having to wait for the input 
operation on disk A to complete. Data can move between storage and the 
communications controller (and subsequently to terminals C, D, and E by 
way of the data link) by using the path over channel 1 or the path over 
channel 3. If terminal C and terminal D are using channel 3 to interact with 
an application, terminal E can use another application and channel 1 
without affecting the response time of terminal C and terminal D. 

Processor 
Storage 

Application 

D 

Application 

D 

Figure 8.3. Multiple I/O Paths 

Communications 
Controller 

Controlling the I/O processing for a job that is using multiple paths to 
an I/O device is a complex process. MVS controls this I/O processing (not 
only for one job, but for the many jobs that run concurrently in the 
system) by providing a number of services and facilities that make the 
complexity of an I/O operation largely transparent to the user. One of 
these services is the access method. 

Chapter 8: Satisfying I/O Requests and Data Management 8-3 



OS/VS2 MVS Overview 

Access Methods 

An access method is a data management routine that moves data between 
storage and an I/O device in response to requests made by a program. The 
program could just as well move the data itself and not use the access 
method, but it would then need to consider the many details of the I/O 
operation, which the access method is designed to handle, such as the 
transmission characteristics of the path over which the data is to move, the 
channel programming needed to actually access the data on the device, and 
the order in which to move the data between the I/O device and storage. 
With an access method, the program is insulated from these details and 
need concern itself only with using the proper access method to meet its 
needs. 

There are several MVS access methods, each of which offers differing 
functions to the user program. These access methods fall into two 
categories: conventional access methods and telecommunication access 
methods. Conventional access methods move data over conventional I/O 
paths between storage and I/O devices; the I/O device is used to hold data 
the program would normally not keep in storage. Telecommunication access 
methods move data over telecommunication I/O paths between storage and 
I/O devices; the I/O device is normally used to communicate and interact 
with the program and not to hold data. Although the access method 
performs the actual I/O operation, the program using the access method 
still needs to be concerned with the organization of the data and the access 
technique the access method uses to move the data. 

Data Organization 

Conventional access methods move data that resides in a data set. A data set 
is a collection of related records that are associated with a particular device 
or group of devices. If the device is a tape or a disk, the data set occupies a 
specific area on a volume mounted on the device. A data set can be 
organized in one of four ways: 

• Sequential. Records are stored and retrieved according to their physical 
order within the data set. 

• Indexed sequential. Records are physically ordered according to a key. An 
index or set of indexes maintained by the access method gives access to 
the records. 

• Direct. The records in the data set, which must be on a direct access ., 
device, can be organized -in any way that meets the user's needs. Records 
are stored and retrieved according to the address of each record within 
the data set. 

• Partitioned. The data set, which must be on a direct access volume, 
consists of members. A member is an independent group of 
sequentially-organized records that is accessed through its name in the 
directory of the data set. Partitioned data sets are generally used to store 
libraries of similar things, such as programs, macros, or procedures. 

c 



G 

o 

Telecommunication access methods move data as messages. A message is 
a collection of related pieces of data sent and received as a single unit 
between the remote device and storage. If the remote device is an 
interactive terminal, the data in the message is the data the terminal user 
enters at the keyboard and sends to the application, or the data that the 
application sends to the terminal for display or printing. The terminal or 
access method turns this data into a message by embedding in it standard 
communications line control information, and the modems further convert 
the message characters into a form suitable for transmission over the data 
link. 

Access Techniques 

There are two techniques a program can use to access the records in a data 
set or the contents of a message: the queued access technique or the basic 
access technique. Some data sets can be accessed by either technique. 

With queued access, the program uses the GET and PUT macro 
instructions to transfer data. The queued technique assumes that the records 
or messages are to be accessed sequentially, and the access method 
automatically groups records or messages in anticipation of future I/O 
requests. Records or messages are then generally available when needed. 
Also, the access method does not return control to the program that uses 
the GET and PUT macro instructions until the requested I/O operation has 
completed. 

With basic access, the program uses the READ and WRITE macro 
instructions to transfer data. The basic technique allows access to any -
records in the data set or messages from a telecommunications device. No 
grouping of records or messages takes place. No anticipation of future I/O 
requests occurs. Also, the program that uses the READ and WRITE macro 
instructions must test for the completion of the I/O operation because the 
access method returns control to the program before the I/O operation is 
completed. 

Conventional Access Methods 

MVS provides an access method, the virtual storage access method 
(VSAM), that is specifically designed to take advantage of virtual storage; 
it is described under "Virtual Storage Access Method (VSAM)" later in this 
chapter. MVS also supports the following access methods: 

• Basic sequential access method (BSAM). Records in a data set processed 
by BSAM are sequentially organized and are stored and retrieved in 
physical blocks. The READ and WRITE macro instructions initiate I/O 
operations. The user's program must test for completion of the operation 
and perform any required blocking or deblocking. 

• Queued sequential access method (QSAM). Records in a data set 
processed by QSAM are stored and retrieved as logical records; QSAM 
handles any physical blocking or deblocking required. On input, QSAM 
anticipates the need for a record based on its physical order; normally, 
the desired record is in storage, ready for use, before the request for it is 
made. On output, QSAM holds the logical records in a buffer and 
performs physical output only when the buffer is filled. 

Chapter 8: Satisfying I/O Requests and Data Management 8-5 



8-6 OS/VS2 MVS Oveniew 

• Basic direct access method (BDAM). Records in a data set processed by 
BDAM can be organized in any manner chosen by the programmer. The C' 
data set must reside on a direct access volume. Records are stored and 
retrieved by actual or relative addresses within the data set. 

• Indexed sequential access method (ISAM). Records in a data set 
processed by ISAM are arranged in sequential order according to the 
contents of a key. ISAM maintains an index structure that is used to 
locate a particular record. Access to the records can be either sequential 
(QISAM) or direct (BISAM). 

• Basic partitioned access method (BP AM). A data set processed by BP AM 
consists of a number of members and a directory that holds the name 
and location of each member. A member contains a group of records 
that are organized sequentially. BP AM maintains and accesses the 
directory; once BP AM locates the desired member, the records within 
the member are processed by BSAM, or QSAM. 

A user program can also request I/O operations without using a specific 
access method by issuing the execute channel program (EXCP or 
EXCPVR) macro instruction. (These macros are described in OS / VS2 
System Programming Library: Data Management.) 

To request an I/O operation, either the access method or the user 
program presents information about the operation to the components of the 
MVS system control program that manage the actual physical I/O 
operation. These components are the EXCP driver and the I/O supervisor 
(lOS). How the EXCP driver and lOS handle the I/O operation and how 
their functions and responsibilities fit together with those of the user 
program and the access method are described under "Scheduling I/O" later 
in this chapter. 

As a means of improving system performance by eliminating much of the 
overhead and time required to allocate a device and move data physically 
between main storage and an I/O device, MVS provides virtual 
input/output (VIO). VIO can be used only for temporary data sets; it uses 
the system paging routines to transfer data into and out of a page data set. 
"Virtual Input/Output (VIa)", later in this chapter, describes how the 
system intercepts a VIa request and branches to VIO. 

Telecommunication Access Methods 

MVS provides three access methods for moving data over 
telecommunication I/O paths between storage and the I/O device. 

• Basic telecommunication access method (BT AM). The READ and WRITE 
macro instructions move messages between storage and the device. 
BT AM manages the messages it processes across all the various 
communication lines being used. 

• Telecommunication access method (TeAM). The GET or READ macro 
instructions and the PUT or WRITE macro instructions move messages 
between storage and the device. TCAM allows an application to perform 
its own message routing, message editing, and error checking. 

c 



o 

c 

o 

• Virtual telecommunication access method (VT AM). Data transfer between 
the application and the terminal occurs in either record mode or basic 
mode. In record mode, the application issues SEND and RECEIVE 
macro instructions to transmit data between the terminal and storage. In 
basic mode, the application issues READ and WRITE macro instructions 
to transmit messages between the terminal and storage. 

VT AM is the primary access method used to support the system network 
architecture (SNA), an overall system definition of the functional 
responsibilities of telecommunication system components upon which new 
teleprocessing applications can be planned and implemented. For more 
information on SNA, see System Network Architecture General Information, 
GA27-3102. 

Additional information on telecommunication I/O operations can be found 
in the following manuals: 

• Introduction to IBM Data Processing Systems, GC20-1684 
• IBM Teleprocessing System Summary, GA24-3090 
• Introduction to VTAM, GC27-6087 
• VTAM Concepts and Planning, GC27-6998 
• OS/VS TCAM Concepts and Applications, GC30-2049 

Introduction to Advanced Communication Function, GC30-3033, 
provides information on how SNA, TCAM, and VT AM are used in multiple 
system data communication networks. The remainder of this chapter applies 
only to I/O operations over conventional I/O paths using conventional 
access methods. 

Scheduling I/O 

To satisfy a Conventional I/O request, the user program, with or without 
an access method, describes the operation required, and the system 
components perform the operation, handle the interruption that signals the 
completion of the operation, and post its status. 

Figure 8.4 shows the major steps required to perform an I/O operation. 
The figure summarizes the responsibilities and functions of the user 
program, the access method, and the system components; the circled 
numbers show the sequence of events. The figure assumes the use of an 
access method and that the user is executing in a virtual region. When a 
program does not use an access method, or when it executes in a real 
region, the process differs slightly from the one shown in the figure. 
However, the I/O services provided by MVS can handle these special cases. 

The following text explains the standard operation in more detail and 
describes the actions taken to handle special cases, such as the user who 
must get control during the execution of an I/O operation. 

User Program Functions 

The user program that issues the I/O request must describe the data set to 
be used and the specific operation to be performed on the data set. This 
information comes from both the DD statement of the program's JCL and 
the data control block (DCB), which the program creates. After the DCB is 
filled in with all the relevant data set information, the program issues an 
OPEN macro instruction. 

Chapter 8: Satisfying I/O Requests and Data Management 8-7 

----------_ ... """'"'''' ." ...... " ...... __ ......... " .. _ ....................... _-



8·8 OS/VS2 MVS Overview 

OPEN Processing 

When the user program issues an OPEN macro instruction, it invokes the 
system OPEN routines. These routines merge information from various 
sources to build a complete description of the data set. The information 
used comes from: 

• The job file control block (JFCB) and a task I/O table (TIOT) entry 
built from information in the DD statement included in the JCL for the 
user program. After the device for the data set has been allocated, the 
TIOT entry points to the unit control block (UCB) for. the required 
device. 

• The data set control block (DSCB) that describes the data set. For data 
sets on a direct access device, for example, the DSCB comes from the 
volume table of contents (VTOC) for the volume containing the data 
set. 

• The data control block (DCB) the user program builds. The DCB 
includes a great deal of information, one piece of which is the access 
method that the user program needs to perform I/O operations on the 
data set. Other information might include how the data set is organized 
and how its records are to be accessed. 

--------------~- ----~-~---- --~------------------------------

c 

c 



--------_ .... -... _---

c User Program Access Method System Components 

0 Describes data set. 

H Issues OPEN macro to 
prepare data set. 

D Issues I/O request to call 
the access method. 

0 Builds control blocks and 
channel program to 
describe request. 

m Issues EXCP macro to 
invoke the system 
components. 

II Builds control blocks, fixes 
pages and translates channel 
program, schedules or starts 
operation with an 510 
instruction, and returns to 
the requester. 

0 Waits for operation to 
complete. (User program 
waits on completion if using 
basic access technique.) 

II Handles' I/O interruption 
that signals completion of 
the operation, analyzes and 
posts the status of the 
operation, and returns to the 
dispatcher. 

D Continues processing when 
I/O operation is complete. 

Em ? 
Issues CLOSE macro when 
all operations on a data set 
are complete. 

Figure 8.4. Major Steps in a Standard I/O Operation 

o 
Chapter 8: Satisfying I/O Requests and Data Management 8-9 



8-10 OS/VS2 MVS Overview 

The OPEN routines can acquire the information they need from any of (~" 
these sources, giving the user a great deal of flexibility in specifying I/O "--_/ 
operations. To achieve device independence, for example, a user can specify 
a minimal amount of DCB information in the program and supply the rest 
of the information on the JCL for a particular execution of his program. 

The OPEN routines build a data extent block (DEB), which specifies the 
device on which the volume is mounted and the physical extent of the data 
set on that volume. OPEN processing also places addresses in the DCB that 
provide linkage between the user program and the access method. If the 
user program needs access method appendages or user exits to perform such 
functions as analyzing data errors or processing end-of -data conditions, 
linkage between the user program and the required routines is also built 
into the DCB. Figure 8.5 summarizes the relationships the OPEN routines 
establish between the control blocks and between the user program and the 
access method. 

User Access 
Exits Method 

~ ~ 
Figure 8.5. Relationships Established by OPEN 

Once the data set to be used for the operation is successfully opened, it 
is ready to be used. The user program can then issue an I/O request. 

I/O Request 

To transfer data between a data area in storage and an I/O device using an 
access method, the user program issues a macro instruction. GET and PUT 
are used for queued input and output requests; the access method does not 
return control to the user program until the I/O operation is complete. 
READ and WRITE are used for basic input and output requests; control 
returns to the user program once the I/O operation is initiated, and the 
user program must test for the completion of the operation. 

{r--' 

'-... ... 



c 

o 

------------------

Either type of request causes a branch to the access method. The access 
method routines reside in PLPA, but, as shown in Figure 8.6, both the user 
program and the access method run in the user's address space. 

SQA 

__ --t~~ PLPA* 

User 

\ 

Program 

~ 1 OPEN ~ GET/PUT (DCB) 
CLOSE 

*Access 
Method 

CSA 

Nucleus 

Figure 8.6. Access Method and User Program in an Address Space 

If the access method cannot satisfy the request because of a specification 
error in the request, the access method immediately returns control to the 
user with indicators set to describe the nature of the error. If the request 
was made correctly, processing of the I/O operation continues as described 
later in this chapter under "Access Method Functions." 

A user program can also issue an I/O request with an EXCP or 
EXCPVR macro instruction to invoke the EXCP driver directly. See 
"EXCP Driver Front End" later in this chapter for more information. 

When the user program has made all its requests for work to be done on 
a data set, it must free the data set by issuing a CLOSE macro instruction. 

CLOSE Processing 

Issuing a CLOSE macro instruction causes the user program to invoke the 
system CLOSE routines. The CLOSE routines modify the DCB to break 
the logical connections between control blocks and between the user 
program and the access method; these connections were established when 
the data set was opened. The CLOSE routines free any storage acquired by 
the OPEN routines. 

These routines also rewrite the DSCB for the data set to the volume. 
Because the DSCB can be modified during OPEN processing, a user 
program can change the specifications for the data set by opening and 
closing it. 

Chapter 8: Satisfying I/O Requests and Data Management 8-11 



8-12 OS/VS2 MVS Overview 

Figure 8.7 summarizes the control blocks used as input to the CLOSE C' 
routines, the functions the CLOSE routines perform, and the modified ,/ 
control blocks that are created during CLOSE processing. 

Input-----... ~~ Process -----... ~. Output 

DeB 

DEB 

• Write DSCB 

• Restore DCB 

• Release storage 
acquired by OPEN 

Figure 8.7. CLOSE Processing Summary 

Access Method Functions 

DCB 

Because the OPEN routines place the address of the required access 
method in the DCB for the data set, the access method gets control when 
the user program issues an I/O macro instruction. The access method uses 
the control block structure built by the OPEN routines to build control 
blocks for the EXCP driver and a channel program for the I/O request. 
The access method then issues an EXCP macro instruction to pass control 
to the EXCP driver. 

Control Blocks 

The access method builds two control blocks: the input/output block (lOB) 
and the event control block (ECB). The lOB points to the DCB; through 
the DCB, the EXCP driver can access the contents of the DEB and the 
UCB. The lOB also points to the ECB and to the channel program. The 
lOB thus contains pointers to all of the information lOS needs about the 
I/O request. 

The ECB is logically empty when it is built; it is used when the 
operation is complete to post the status of the operation. The access 
method or the user program can thus test the contents of the EeB to find 
out when the I/O operation is finished. 

I~' 

c 



c 

o 

Channel Program 

The access method builds a channel program for the I/O operation. A 
channel program consists of a string of channel command words (CCWs) 
that describe the operation to the channel. Channel command words 
provide the channel with all of the information that it needs to perform the 
operation, such as the address of the data area and the number of bytes of 
data to be transferred. 

EX CP Macro Instruction 

When the lOB and ECB have been built and initialized and the channel 
program has been created, the access method issues an EXCP macro 
instruction. The EXCP macro instruction causes an SVC interruption to 
occur. As a result of this interruption, the SVC interruption handler causes 
control to be passed to the EXCP driver and then to lOS to schedule and 
execute the physical I/O operation. 

Figure 8.8 summarizes the control block structure and the channel 
program built by the access method and the pointers it sets before causing 
control to pass to the EXCP driver. 

Channel 
Program 

EXCP 

~ 
SVC 

Access Method 

lOB 

REGl 

~
EG4 

RB 
TCB 

EXCP Driver 

Figure S.S. Control Block Structure for the EXCP Driver 

When the EXCP driver and lOS have completed or scheduled the 
operation, control returns to the access method. If the request used a GET 
or PUT macro instruction (queued access technique), the access method 
issues a WAIT against the ECB for the operation. In this case, the access 
method waits until the ECB is posted complete, and then it returns control 
to the user program. If the request used a READ or WRITE macro 
instruction (basic access technique), the access method returns control to 
the user program, which issues the WAIT macro instruction against the 
ECB and waits until the request is completed. 

Chapter 8: Satisfying I/O Requests and Data Management 8-13 



8-14 OS/VS2 MVS Overview 

Appendages 

Appendages are routines that enable a user to get control at various points 
during the execution of an I/O operation. Some are entered before 
execution of the I/O operation, others after execution, and one, the PCI 
appendage, enables a user to get control during execution to modify the 
channel program while it is executing. 

To establish these exits, authorized routines from authorized libraries 
identified during system generation can be loaded during OPEN processing 
for authorized users. The DEB contains the pointers to the appendage 
routines. 

Input/Output Supe,.viso,. (lOS) Functions 

The MVS input/output supervisor (lOS) has been rewritten and 
restructured to: 

• Support multiprocessing 
• Increase system responsiveness 
• Make effective use of virtual storage 
• Use the MVS recovery capabilities 

To maintain compatibility and achieve the improved function described in 
the preceding list, new interfaces to lOS were created. These interfaces are 
the lOS drivers. Because the standard access methods use the EXCP driver 
as an interface to lOS, the balance of this description is concerned only 
with the relationship between lOS and the EXCP driver. As this 
relationship is explained, you will see that the EXCP driver is tailored to 
meet the needs of its intended users. 

C~' 
.. / 

\ 

'-.. 



C 

C/I 

o 

-------~- --- --------

Figure 8.9 shows some of the drivers that were developed to meet the 
needs of various IDS users. 

lOS USER DRIVER lOS 

AUTHORIZED 
USER 

ACCESS METHO~ los/VS I 
JES2 

PAGING ~I I ASM 
RSM ASM 

·1 VSAM 
VSAM (ABP) 

\. .. lOS 
PROGRAM ~I 

I -
MANAGER 

FETCH 

VTAM ~I VTAM 

~I ,FE 
OLTEP 

DIAGNOSTICS 

MSS ~I MSS 

JES3 ~I JES3 

Figure 8.9. lOS Drivers 

The EXCP driver has three major parts: the front end, the disabled 
interruption exit (DIE), and the back end. These parts function in response 
to the needs of the I/O request to interact with the three major parts of 
lOS: the channel scheduler, the I/O interruption handler, and the post 
status routines. The driver is separate from lOS, acting primarily as an 
interface between the I/O requestor and lOS. However, the following 
description of the functions of the driver and IDS is presented in 
chronological order to show the steps involved in satisfying a single I/O 
request. 

EXCP Driver Front End 

The front end of the EXCP driver gets control from the SVC interruption 
handler when an I/O requestor issues an EXCP or EXCPVR macro 
instruction. The EXCP macro instruction is used by the standard access 
methods and most user programs. The EXCPVR macro instruction is used 
by programs that have special I/O needs, such as a program that must 
dynamically modify a channel program. 

Chapter 8: Satisfying I/O Requests and Data Management 8-15 



8-16 OS/VS2 MVS Overview 

Most user programs and the standard access methods run with virtual 
addresses. Thus, user data areas, control blocks, and the channel programs 
built by the standard access methods are in virtual storage, use virtual 
addresses, and are pageable. However, the System/370 channels transfer 
data into and out of real storage locations. Therefore, the data areas, the 
control blocks, and the channel program for the I/O operation must be 
fixed and use real addresses. 

The front end of the EXCP driver performs the address translation and 
page fixing required by the user running in a virtual (V = V) region. Such 
users invoke the driver with an EXCP macro instruction. · 

However, users that run in a real (V =R) region do not require address 
translation or page fixing. The EXCP driver recognizes a V =R user and 
bypasses the address translation and page fixing functions. 

Users who invoke the driver with an EXCPVR macro instruction must 
construct their own channel programs and build a list of pages to be fixed 
by the EXCP driver. 

Thus, a user who needs to dynamically modify his channel program must 
either run V=R or use the EXCPVR macro instruction to invoke the 
driver. Note that the disabled interruption exit (DIE) of the EXCP driver 
can be invoked only by a user who runs in a V =R region or issues the 
EXCPVR macro instruction. 

Whether or not address translation and page fixing are performed, the 
EXCP driver front end processing constructs the control blocks lOS 
requires and branches to the lOS channel scheduler. I~"" 

I 

The EXCP driver front end gets control again when the channel ',-.. 
scheduler has initiated or scheduled the requested I/O operation. At that 
point, the front end returns control to the access method or user program 
that issued the EXCP or EXCPVR macro instruction. 

Channel Scheduler 

The lOS channel scheduler gets control from the EXCP driver. The channel 
scheduler initiates the physical I/O operation by attempting to establish a 
path from the processor through a channel to a device. 

If no path is available because the device, the control unit, or the 
physical channel is busy, the channel scheduler queues the request. To 
queue a request, the channel scheduler places it on a logical channel queue 
where it waits until the required path becomes available. (MVS allows the 
definition of multiple logical paths to a single device, thus giving more 
flexibility in scheduling I/O requests to balance the load over physical 
channels and devices.) 

If a path is available, the channel scheduler initiates the I/O operation 
by issuing a start I/O (SIO) instruction to the channel. Before issuing the 
SIO instruction, the channel scheduler places the address of the channel 
program in the channel address word ( CAW) in a fixed real stvrage 
location. When the SIO instruction is issued, the channel fetches and loads 
the CAW and uses its contents to locate the channel program, which it then 
proceeds to execute without requiring further intervention from the 
processor. 



---_.- ... --.---

c 

C 
.. -·· 

/ 

o 

- ._--.. __ .... _---

._----_ .. _--- _ .. _------

After queuing or initiating the I/O operation, the channel scheduler 
returns control to the front end of the EXCP driver. 

During the course of system execution, the channel scheduler is also 
invoked by the I/O interruption handler each time an I/O interruption 
occurs, which usually signals the completion of an I/O operation. When the 
channel scheduler is invoked by the I/O interruption handler, it searches 
the logical channel queues for an operation that was queued but not 
initiated because a path was not available. If an operation is waiting for a 
path that is now available, the channel scheduler issues an SIO instruction 
to initiate the operation before returning to the I/O interruption handler. 
Control then passes to either the interrupted program or the dispatcher. 

110 Interruption Handler 

When the physical I/O operation completes, the channel sends an I/O 
interruption to the processor. The status of the operation is stored in a 
fixed real storage location called the channel status word (CSW). The 
hardware then passes control to the I/O interruption handler in the 
supervisor, called the first-level interruption handler. This routine passes 
control to the interruption handler in lOS, the second-level interruption 
handler. 

If the I/O request was initiated from a V=R region or by means of an 
EXCPVR macro instruction and if the interruption was a program 
controlled interruption (PCI), control also passes to the disabled 
interruption exit (DIE) of the EXCP driver. 

After analyzing the status information about the operation and, if 
required, taking the disabled interruption exit, the second-level I/O 
interruption handler schedules execution of the lOS post status routines and 
passes control to the channel scheduler so that any scheduled I/O 
operations can be initiated. 

EXCP Driver Disabled Interruption Exit (DIE) 

The disabled interruption exit (DIE) of the EXCP driver is entered only 
when the I/O interruption that occurred was a program controlled 
interruption (PCl) and the user is either running in a V =R region or has 
issued the EXCPVR macro instruction. 

In each CCW in a channel program, there is a PCI bit. When the PCI 
bit is on, an I/O interruption occurs when the CCW is loaded into the 
channel. Setting the PCI bit on, which indicates that the user might want to 
modify his channel program while it is executing, causes control to pass to 
the DIE. 

When the DIE gets control, the processor is in supervisor state and 
disabled for I/O interruptions. For the DIE to function, the address of a 
valid PCI appendage must have been placed in the DEB during OPEN 
processing. The PCI appendage and the DIE make it possible for an 
authorized user to get control during the execution of the I/O request. 

After the user program has processed the PCI;-it-remrns control to the 
DIE. The DIE then returns control to the second-level I/O interruption 
handler. 

Chapter 8: Satisfying I/O Requests and Data Management 8-17 



8-18 OS!VSl MVS Overview 

Post Status 

The I/O interruption handler schedules an SRB to invoke lOS post status. 
When post status is dispatched, it passes control to the EXCP driver back 
end, which handles any appendages requested by the user, and returns 
control to the post status routine. 

Post status then analyzes the status indicators from the completed 
operation and returns to the back end of the EXCP driver. If an error has 
occurred, post status passes control to an error recovery procedure (ERP) 
before returning to the back end of the EXCP driver. After the back end 
of the EXCP driver completes its processing and returns control, post status 
returns to the dispatcher. 

EXCP Driver Back End 

The back end of the EXCP driver receives control after lOS has analyzed 
the status of the event. The back end exits to any access method 
appendages that are to receive control after the execution of an I/O 
request. Upon return from any appendages, the EXCP driver back end 
issues a POST macro instruction to post the status of the completed 
operation in the ECB and returns control to the post status routine. 

The access method or user program that is waiting for the ECB to be 
posted then becomes ready for execution and is eventually dispatched. 
Control returns to the user program or access method at the instruction 
immediately following the WAIT for the completion of the I/O request. 



Co' 

o 

... -- .. --.. -....... ---

Program 

GET/PUT 

? 
BRANCH 

? 

CLOSE--

[§J 

I DATAl 

Access 
Method 
Exits 

.... _-_ ..• _-_._._--. __ . -_ ..... _ .. _---

Summary 

The preceding explanation described the part each component of the EXCP 
driver and lOS performs in satisfying an I/O request made by a user 
program directly or by an access method on behalf of a user program. 
Figure 8.10 presents an overview of the interaction between the user 
program, the access method, the EXCP driver, and lOS, showing the flow 
of a single operation and the means of passing control from step to step. 

Access 
Method 

--2 
EXIT 

,,~ 

CREATES 
CHANNEL 
PGM 

Driver 
Exits 

Software (Storage) 

EXCP 
Driver 

FRONT END 

DISPATCHER 

lOS 

CHANNEL 
SCHEDULER 

ERP 

Hardware 

DevicE> 

Figure 8.10. Flow of an I/O Request 

Chapter 8: Satisfying I/O Requests and Data Management 8-19 



8-20 

Virtual Input/Output (VlO) 

A physical input/output operation reads data from or writes data to a data 
set on an I/O device. A virtual input/output (VIO) operation uses the 
system paging routines to transfer data. 

To use VIO, an installation specifies one or more I/O unit names for 
VIO at system generation time. Then, a user program or access method can 
build a channel program to send data to a system-named temporary data set 
on a unit that was specified for VIO. The EXCP driver intercepts such a 
channel program and branches to VIO instead of invoking lOS to transfer 
the data over a channel to a device. VIO uses a move instruction to move 
that data from the channel program buffers to a special buffer in the user's 
address space. This special buffer is called a window. VIO routines assign 
this window for output use or in response to a page fault when reading 
input data. 

The window contains enough contiguous virtual storage pages to hold all 
of the data that could be placed on a track for a real device. For example, 
a 2314 track requires a two-page window, and a 3330 or 2305 track 
requires a four-page window. Figure 8.11 shows the movement of data 
between the channel program buffer and the VIO window. 

iii E .... § E __ Q) 

r - - -, 
I 

~ e :l 

~IL~_se_r'_s~I_U~~L-____ ~_m~~~ ______ ~ __ ~:~WTin_do_W~:I ________ ~ 
Address 
Space 

Move 
Instruction ~ ---I} I I t----I 

1- __ J 
I I 
L __ ....J 

Virtual 
Data Set 

Pages 

Figure B.11. VIO Window 

OS/VS2 MVS Overview 

When the user program or access method determines that the track is 
full, it builds another channel program to place data on a second track. 
When VIO detects this track switch, it writes the contents of the window to 
a page data set, using the system paging operations. The system keeps VIO 
data set pages in real storage after this page-out, whenever possible. VIO 
then disconnects the window from the frames that contain the VIO data set 
pages. When VIO moves new data (the second track) to the window, 
another page fault occurs, causing fresh frames to be assigned to the 
window. 

'-. 

c 



c 

o 

---------- ---------------------- --- ----- .. _---

As the data set is created and external page storage assigned, the system 
keeps track of the locations of each page of the VIO data set. The paging 
data set slots, like the real storage frames, are not necessarily contiguous; 
they are allocated dynamically throughout external page storage as the data 
set is created. 

When data is to be retrieved from the VIO data set, VIO locates the 
pages that contain the required data. If the data is not currently in the 
window, VIO changes the appropriate page table entries to point to the 
required pages in external page storage. Then VIO uses the MVC 
instruction to move data from the window to the channel program buffers. 
This instruction causes a page fault, and the proper page is either reclaimed 
or brought into real storage and made addressable through the window. 

Thus, VIO uses paging rather than explicit I/O to transfer data. VIO 
eliminates the channel program translation and page fixing done by the 
EXCP driver as well as some device allocation and data management 
overhead. It also provides dynamic allocation of DASD space as it is 
needed. Another advantage of VIO is that the data set can remain in real 
storage after it is created because VIO attempts to keep the pages in real 
storage as long as possible. In this case, no actual I/O operations are 
required to create or retrieve data from the VIO data set. 

Virtual Storage Access Method (V SAM) 

The virtual storage access method (VSAM) is a high performance access 
method for direct access storage that runs in virtual storage and uses virtual 
storage to buffer input and output operations. VSAM supports batch users, 
online transactions, and data base applications. 

Through a master catalog, VSAM controls allocation of data space on 
VSAM volumes and the location and use of VSAM data sets. An MVS 
system requires at least one VSAM master catalog; this required catalog is 
also the system catalog. It is maintained by VSAM, but, because it is 
required for system operation, it is discussed separately later in this chapter 
under "System Catalog." 

VSAM can process three types of data sets: key-sequenced, 
entry-sequenced, and relative record. The order in which the data set is 
initially loaded and updated is different for each type. 

For a key-sequenced data set, records are loaded, as the name implies, in 
key sequence. Each record must have a key, and the ordering of the records 
is determined by the collating sequence of the keys. Any new records 
subsequently added to the data set are added in key sequence. 

For an entry-sequenced data set, records are loaded in sequential order as 
they are entered. New records are added at the end of the data set. 

For a relative record data set, records are loaded according to a relative 
record number that can be assigned either by VSAM or by the user 
program. When VSAM assigns the relative record number, new records are 
added at the end of the data set. When the user program assigns the 
relative record number, new records can be added in relative record number 
sequence. 

Chapter 8: Satisfying I/O Requests and Data Management 8-2 t 



8·22 OS/VS2 MVS Overview 

When a VSAM data set of any type is created, it is defined to VSAM as (' 
a cluster. A cluster for a key-sequenced data set consists of an index ,, __ / 
component and a data component. A cluster for an entry-sequenced or 
relative record data set consists of only a data component. 

A VSAM data set of any type is allocated in a data space. A VSAM data 
space is an area of direct access storage defined in a volume table of 
contents (VTOC) for exclusive VSAM use. A data space can consist of a 
single extent (area) on a single volume, multiple extents on multiple 
volumes, or multiple data spaces on multiple volumes. A single volume can 
contain both VSAM data spaces and non-VSAM areas. 

Within a VSAM data set, VSAM stores the records for each type of data 
set in the same way - in a fixed-length area of "direct access storage called 
a control interval. 

Control Interval 

A control interval is a continuous area of direct access storage that VSAM. 
uses for storing data records and the control information that describes 
them. It is the area that VSAM transfers between virtual and direct access 
storage during an input or output operation. A control interval can contain 
stored records, free space, or both stored records and free space. 

The size of the control interval for a data set can be chosen by either the 
user or VSAM. Once chosen, the size is fixed, and all control intervals 
within the data set are the same length. When VSAM chooses the size of 
the control interval, it considers the following factors: ,r--' 

• The type of direct access device used for the data set \ 
• The size of the data records 
• The smallest amount of virtual storage the user program can provide for 

I/O buffers 

When the user chooses the size of the control interval, the size chosen must 
fall within limits that VSAM finds acceptable, based on the factors listed 
above. 

c 



c 

c 

o 

I Physica 
Record 

~ 
i' 

-----_ ......• 

The size of the control interval need not correspond to the size of a 
track on the device. Figure 8.12 shows the independence of control 
intervals from physical records, which are limited by the capacity of a track 
on a particular device. 

Control Interval Control Interval Control Interval 

I I I I I I I I I 
Track 1 Track 2 Track 3 

Control Interval Control Interval Control Interval 

I I I I I I 
Track 1 Track 2 Track 3 Track 4 

Figure 8.12. Control Intervals and Physical Records 

Control intervals are grouped together in a control area. A control area is 
the unit of a data set that VSAM preformats for data integrity as records 
are added to the data set. The number of control intervals in a control area 
is fixed by VSAM; the minimum is two. In a key-sequenced data set, 
control areas are also used for placing portions of the index next to the 
data set and for distributing free space throughout the data set. Free space 
is distributed as a percentage of control intervals in each control area. 

The records in a VSAM data set can be either fixed or variable; VSAM 
treats both types in the same way. It puts control information at the end of 
a control interval to describe the data records stored in that control interval. 
The combination of a· data record and its control information, even though 
they are not physically adjacent, is called a stored record. When adjacent 
records are the same length, they share control information. Figure 8.13 
shows how data records and control information are stored in a control 
interval. 

Although the records for each type of VSAM data set are similar in that 
they are all stored in control intervals, there are significant differences in 
the way VSAM processes each data set type. These differences are 
explained in the following text. 

Control Interval 

Data Data Data Data Data Data Control 
Record Record Record Record Record Record Information 

Figure 8.13. Data Records and Control Information Placement 

Chapter 8: Satisfying I/O Requests and Data Management 8·13 



8-24 OS/VS2 MVS Overview 

Key-Sequenced Data Set 

A key-sequenced data set is always defined with an index and distributed 
free space. The index relates key values to the location of the associated 
record in the data set. The index created with the data set is the prime 
index; other indexes, called alternate indexes, can also be created for the 
data set, as described later in this chapter under "Alternate Indexes." 
Distributed free space is the number of control intervals within a control 
area that are initially left blank; VSAM uses the distributed free space to 
add records to the data set in key sequence. VSAM also reclaims space 
freed by the deletion or shortening of records; that is, such space is also 
available to hold additional records. 

The index for a key-sequenced data set has one or more levels, each of 
which is a set of records that contains entries giving the location of the 
records in the next lower level. The index records at the lowest level are 
called the sequence set; they give the location of control intervals containing 
data records. The records in all higher levels are called the index set; they 
point to lower-level index records. The highest level always consists of only 
one record. The index of a small data set thus might consist of one record. 

Figure 8.14 shows the levels of a prime index and the relationship 
between a sequence-set index record and a control area. Note that the 
highest-level index record (A) controls the entire next level (B through Z) 
and that each sequence-set index record points to a control area as well as 
to control intervals within the control area. 

Figure 8.14 also shows both vertical and horizontal pointers. Vertical 
pointers are followed to access records directly by key. Horizontal pointers 
are followed between the sequence-set index records to access records 
sequentially by key. To reduce the size of the index, keys can be 
compressed; that is, VSAM retains only those characters required to 
distinguish one key from another. 

Because VSAM transmits control intervals between direct access storage 
and virtual storage, index keys are compared and stored and records are 
accessed while they are in virtual storage. 

c 



c 

c 

o 

} Index Set 

Index 

Sequence Set 

Data Set ••• 

Control Intervals of First Control Area Control I ntervals of Second Control Area 

Figure 8.14. Relationships Between Levels of a Prime Index 

Entry-Sequenced Data Set 

Records in an entry-sequenced data set are loaded in the order in which 
they are received. When VSAM places a record in the data set, it returns 
the relative byte address (RBA) of the record to the user program. Thus, 
the records could be accessed directly because the user program can create 
an index based on the RBAs returned by VSAM. 

When the records are accessed sequentially, VSAM retrieves them in the 
order in which they were stored. Thus, an entry-sequenced data set is very 
useful for such applications as a journal or a log. 

No prime index is associated with an entry-sequenced data set; however, 
it can have an alternate index. See "Alternate Indexes" later in this chapter. 

Relative Record Data Set 

In a relative record data set, each record occupies a fixed-length slot, each 
of which has a relative record number ranging from one up to the total 
number of records in the data set. A record is stored and retrieved 
according to the number of the slot that it occupies. 

Because a slot can contain data or be empty, a data record can be 
inserted, moved, or deleted without affecting the position of other data 
records. Records can be accessed either sequentially or directly but only by 
relative record number; a record cannot be accessed by its relative byte 
address (RBA). 

Chapter 8: Satisfying I/O Requests and Data Management 8-25 



8·26 OS/VS2 MVS Overview 

A relative record data set is appropriate for many applications that use 
fixed-length records. A user program could, for example, process a field in 
each record to yield a unique relative record number for each record. Then, 
a record could be located directly through the contents of the field. In this 
way, a relative record data set could be accessed as if it were a 
key-sequenced data set but without the overhead required to search through 
index records to locate a particular record. 

Like a key-sequenced or entry-sequenced data set, records in a relative 
record data set are grouped together in control intervals. Each control 
interval contains the same number of slots, the size of which is the record 
length specified when the data set is defined. The number of slots in a 
control interval is determined by the control interval size and the record 
length. 

Alternate Indexes 

An alternate index provides another way to gain access to a single data set, 
thus eliminating the need to keep multiple copies of the same information 
organized in different ways for different applications. For example, a 
payroll data set indexed by employee number can also be indexed by other 
fields, such as employee name or department number. Thus, mUltiple 
alternate indexes can be associated with the same base data set, allowing 
multiple logical paths to the same data. 

VSAM can build an alternate index for either a key-sequenced or an 
entry-sequenced data set. Each entry in an alternate index for a 
key-sequenced data set contains an alternate key and one or more prime 
key pointers. Each entry in an alternate index for an entry-sequenced data 
set contains a key and an RBA pointer. Alternate indexes can be used to 
access a data set either sequentially or directly. 

Alternate indexes must, of course, be updated to reflect changes to the 
base data set. Either VSAM or the user program can maintain the alternate 
indexes. 

System Catalog 

Under MVS, the VSAM master catalog, which acts as a central information 
point for volumes, data spaces, and data sets controlled by VSAM, is also 
the system catalog. 

The system catalog contains pointers to VSAM data sets, to all system 
data sets that must be cataloged, to VSAM user catalogs, and to 
non-VSAM data sets and user catalogs. Non-VSAM data sets are called OS 
data sets, and non-VSAM user catalogs are called CVOLs. Figure 8.15 
shows the structure of the system catalog. 

There can be only one system catalog. It is established at system 
generation time and must be available to the system during system 
initialization and operation to locate user catalogs, data spaces, and data 
sets. The volume on which the system catalog is defined must be 
permanently mounted. 



c 

o 

OS 
Data Set 
Information 

OS 
CVOL 
Information 

Figure 8.15. Structure of the System Catalog 

MVS 
Master Catalog 

VSAM 
and 
Other 
Data Sets 

VSAM 
Data Sets 

VSAM 
and 
Other 
Data Sets 

Optional 
VSAM 
User 
Catalog(s) 

VSAM 
Data Sets 

Chapter 8: Satisfying I/O Requests and Data Management 8-27 



c 

8-28 OS/VS2 MVS Overview 



. ----------_ .... _---_. 

c 

o 

._ .. _-_._ ... _ .. _----._------------------

Chapter 9: Recovering From Errors 

A system is available when both its hardware and software are capable of 
processing jobs. Error recovery in MVS is designed to increase the 
availability of the system and reduce the impact on users when errors occur 
in critical software and hardware components. If recovery is not possible, 
MVS attempts to continue without the damaged facility. In general, 
recovery is attempted in such a manner that the recovet;Y processes are 
transparent to the user. 

Recovery routines have four objectives: 

• To isolate the error 
• To assess the damage, and attempt to confine it to one user or task 
• To indicate the actions, such as dumping, that should be taken 
• To repair the damage and perform clean-up processing so that the 

function is reinvokable 

In MVS, error processing of software failures is handled by recovery 
termination, and error processing of hardware failures is handled by 
recovery management support (RMS). As a result of these facilities, MVS 
processing continues with minimal downtime. 

Recovery Termination 

The recovery termination manager (R TM) monitors the flow of software 
recovery processing by handling all abnormal termination of tasks and 
address spaces, and passing control to recovery routines associated with the 
terminating functions. The RTM enables user programs to establish their 
own recovery protection and system programs to enhance system 
serviceability and reliability. 

The RTM is invoked for the following conditions: 

• I/O error during a page-in operation 
• Program error not handled by a program interruption routine 
• Machine error not handled by hardware recovery 
• Supervisor call that is invalid 
• Restart operation initiated by the console operator 
• CALLRTM macro instruction directed towards another task (ABTERM) 
• CALLRTM macro instruction directed towards an address space 

(MEMTERM) 
• ABEND macro instruction 
• Dynamic address translation (DAT) error 
• Branch entries for abnormal termination requests 
• Reentry for abnormal termination requests 
• Reentry for machine checks 

Two types of recovery routines are identified by the RTM: task recovery 
routines and functional recovery routines. These routines are described in 
the following sections. (For more information on the recovery routines and 
the RTM, see OS/VS2 System Programming Library: Supervisor, 
GC28-0628.) 

Chapter 9: Recovering From Errors 9-1 

,---_.- ... __ ..... _, .. __ .... _--



9-2 OS/VS2 MVS Overview 

Task Recovery Routines 

Task recovery routines (ST AE/ST AI, EST AE/EST AI) provide recovery for 
those programs that run enabled, unlocked, and in task mode. They are 
established by using the ST AE or EST AE macro instruction or the ST AI or 
EST AI parameter of the ATTACH macro instruction. 

Issuance of the STAE or ESTAE macro instruction or ATTACH with 
the ST AI or EST AI option allows the user to intercept an anticipated 
abend. Control is given to a user-specified routine in which the user may 
perform pretermination processing, diagnose the cause of the abend, and 
specify a retry address if he wishes to avoid the termination. The routines 
operate in the mode (problem program or supervisor) that existed at the 
time the ST AE/EST AE request was made. 

Note: The STAE macro instruction is available with OS/VS2 Release 1 
(SVS) and with OS/MVT and OS/MFT. Although ST AE is also available 
in MVS, it is recommended that ESTAE be used in MVS. ESTAE provides 
increased capabilities over ST AE: it can schedule clean-up processing under 
certain instances for which ST AE routines do not get control, and it can 
provide defaults for the most commonly used options. 

If a task is scheduled for abnormal termination, the recovery routine 
specified by the most recently issued ESTAE (or STAB) macro instruction 
is given control. If the EST AE routine cannot provide recovery for the 
error, the next higher-level ESTAB routine (if any) associated with the task 
is given control. (This process of passing control from a recovery routine to 
a higher-level recovery routine along a preestablished path is called 

c 

percolation, and does not apply to STAE routine.) Each ESTAE routine for ,,/'"~" 
the task is then given control, one at a time in LIFO (last-in first-out) " 
order, until retry is requested or all routines for the task are exhausted. 
When EST AE processing is exhausted, abnormal t~rmination occurs. 

Functional Recovery Routines 

Functional recovery routines (FRRs) provide recovery for those system 
programs that run disabled, locked, or in SRB (service request block) mode. 
The system programs establish the FRRS by using the SETFRR macro 
instruction. 

The SETFRR macro instruction provides each system program with the 
ability to define its own unique recovery environment. Each FRR 
established by a system program is placed in an FRR LIFO (last-in 
first-out) stack that is used during processing of the RTM. The SETFRR 
macro instruction can be used to add, delete, or replace FRRs in the stack, 
or to purge all FRRs in the stack. 

Each FRR stack used by R TM contains the addresses of the FRRs 
established to protect a single path through the system control program. 
When an error occurs in a path, the RTM passes control to the last FRR in 
the associated stack. If the FRR cannot provide recovery for the error, the 
previously-established FRR in the stack is given control (percolation.) Each 
FRR in the stack is eventually given control, one at a time in LIFO order, 
until retry is requested or the stack is exhausted. When FRR processing is 
exhausted, appropriate task recovery routines (if any exist) are given 
control; otherwise, abnormal termination occurs. C 



c 

o 

Any user-written routines outside the control program that are qualified 
to issue the SETFRR macro instruction may add one, and only one, FRR 
to a stack. If more than one FRR is added to a stack, abnormal termination 
may occur when SETFRR is issued. 

Recovery Management Support 

Recovery management support (RMS) includes those standard MVS 
facilities that gather information about hardware reliability and allow retry 
of operations that fail because of processor, I/O device, or channel errors. 
The facilities are designed to keep the system operational in the event of 
hardware failures. 

The RMS facilities are: 

• Machine check handler 
- Alternate CPU recovery 
- Channel reconfiguration hardware 

• Channel check handler 
• Dynamic device reconfiguration 
• Missing interruption handler 

For information on the RMS facilities in an MP environment, see OS/VS2 
MVS Multiprocessing: An Introduction and Guide to Writing Operating and 
Recovery Procedures, GC28-09S2. 

Machine Check Handler 

The machine check handler (MCR) minimizes the impact of machine 
malfunctions on System/370 models supported by MVS. It alerts the 
control program of any hardware failures that could affect the successful 
execution of the control program. 

Recovery from machine malfunctions is initially attempted by the 
hardware instruction retry (RIR) and error checking and correction (ECC) 
facilities of the hardware. If the hardware recovery attempts are 
unsuccessful, MCH is invoked to analyze the data and isolate the source of 
error. MCR then provides the recovery termination manager (RTM) with 
an analysis of the error. 

When the RTM receives control, it records the error analysis on the 
SYS 1.LOGREC data set and invokes the appropriate functional recovery 
routines to attempt recovery from the machine check. If recovery is 
possible, RTM resumes the interrupted program at the point of interruption; 
if recovery is not possible, RTM terminates the interrupted program. 

In a uniprocessing environment, if MCR determines that processing 
cannot continue on the processor, it will terminate execution on that 
processor and place the processor in a disabled wait state. In a 
multiprocessing environment, however, MCH will invoke the alternate CPU 
recovery routine. 

Figure 9.1 demonstrates the flow of control through the machine check 
handler and, also, through alternate CPU recovery and channel 
reconfiguration hardware. 

Chapter 9: Recovering From Errors 9-3 



I Task I n Execution 

r--_...l'....:A~t:..T.:..:i.;.;.me Of Error 

~ 

~ ~ 

~ 

~~ 

~ 

~---

~ 

ABEND -

Machine Check 

Repairable 
Machine 
Check 

Retry 

Terminate 

Machine Check 
Handler (MCH) 

Terminating 
Machine Check 

Nonrepairable 
Machine Check MP 

UP .. 

Alternate ~ 
-

.Ir , 

Recovery 
Termination 
Manager 
(RTM) 

Recovery 
Routines 
(FRRs, ESTAEs) 

CPU Recovery 
(ACR) r---

System 
Terminates 

I/O Restart 

Channel 
Reconfigu ration 
I;fardware (CRH) 
*168 MP Only 

Channel Set 
Switching 

3033 Only 

Figure 9.1. MCH Control Flow 

9-4 OS/VS2 MVS Overview 

Alternate CPU Recovery 

The alternate CPU recovery (ACR) routine provides a multiprocessing 
system with the ability to recover system operations on the operational 
processor after one processor fails. Where possible, it will take responsibility 
for all work in progress on the failing processor, including I/O. 



c 

C: 

o 

-------... ---... -.-.-~-.-

In a multiprocessing environment, if MCR is unsuccessful because of a 
recursive error or a damaged processor, MCR invokes ACR on the 
operative processor to terminate execution on the failing processor. When 
ACR receives control, it attempts to transfer work that was in progress on 
the failing processor to the operative processor. The recovery termination 
manager then initiates recovery by invoking the appropriate functional 
recovery routines to free resources associated with the failing processor. 

ACR then cleans up resources associated with the failing processor and 
frees them, where possible, for use by the operative processor. The failing 
processor is logically disconnected along with all devices uniquely affiliated 
with that processor. Since the remaining processor cannot continue to 
handle the load of two processors, it is important for the installation to take 
appropriate actions to reduce workload and reconfigure I/O. 

In a system without channel reconfiguration hardware (CRH) or channel 
set switching, a processor failure in a multiprocessing environment means 
the loss of all I/O paths through channels attached to the inoperative 
processor. ACR uses the CRR for the Model 168 or the channel set 
switching for the 3033 multiprocessor complex to allow access to the 
channels of the inoperative processor. 

Channel Reconfiguration Hardware and Channel Set Switching 

Channel reconfiguration hardware (CRR) enables either processor in a 
Model 168 MP to control the operation of the channels normally dedicated 
to the other processor. The facility is intended as a short-term recovery aid, 
and can degrade system performance if kept active indefinitely. 

CRR receives control when a hardware failure in one processor causes 
ACR to take that processor offline, or when the operator varies online a 
channel that is attached only to an offline processor. It is available only on 
a 168 MP and is included with the 168 hardware; however, it is activated 
only if included during system generation. 

With eRR, since the operative processor can access the channels on the 
inoperative processor, all devices in the configuration remain accessible to 
the system. In addition, CRR allows access to symmetric devices when the 
paths through the operative processor are busy or offline, or when the 
device is reserved through a path on the inoperative processor. 

Because the operation of eRR can result in significant system overhead, 
the installation should deactivate CRR as soon as possible. Channel set 
switching for the 3033 multiprocessor complex enhances the CRR function, 
and like CRR, enables a processor in the 3033 multiprocessor complex to 
control the operation of channels normally dedicated to another processor 
in the complex. 

Channel Check Handler 

The channel check handler (CCH) reduces the impact of channel 
malfunctions on System/370 models supported by MVS. It aids the I/O 
supervisor (lOS) in recovering from channel errors and informs the operator 
or system maintenance personnel when errors occur. 

Chapter 9: Recovering From Errors 9-5 



9-6 OS/VS2 MVS Overview 

CCH receives control from the lOS after a channel malfunction is 
detected. It analyzes the type and extent of the error using the information 
stored by the channel. If the error condition affects the entire channel, 
CCH invokes the I/O restart function of lOS to recover the active I/O on 
the failing channel. If any other error condition occurs, CCH allows the 
device-dependent error recovery procedures to retry the failing I/O, forcing 
the retry on an alternate channel path (if one is available). Records 
describing the error are written to the SYS1.LOGREC data set. 

CCH performs no error recovery itself: it does not retry any operation or 
make any changes to the system. Recovery from channel errors is 
performed only by the device-dependent routines. 

Dynamic Device Reconfiguration 

Dynamic device reconfiguration (DDR) allows the system and user to 
circumvent an I/O failure, if possible, by moving a demountable volume 
(tape or disk) from one device to another or by substituting one unit record 
device (reader, punch, or printer) for another. DDR requests are processed 
without shutting down the system and may eliminate the need for 
terminating a job. 

A DDR swap can be initiated by either the system or an operator. When 
a permanent I/O error occurs, the system initiates a swap along with a 
proposed alternate device to take over the processing of the device on 
which the error occurred. The operator can accept the swap and proposed 
device, accept the swap but select another device, or refuse the swap. The 
operator himself may initiate a swap (via the SWAP command) if a device 
cannot be made ready, if one unit record device is to be substituted for 
another, or if, for example, cleaning procedures are to be carried out on a 
device. 

For additional information on DDR, see Operator's Library: OS/VS2 
MVS System Commands, GC38-0229. 

Missing Interruption Handler 

The missing interruption handler (MIH) checks whether expected I/O 
interruptions occur within a specified period of time. If an interruption does 
not occur, the operator is notified so that corrective steps can be taken 
before system status is harmed. MIH does support locally - attached 
teleprocessing devices (such as the IBM 3704 and 3705 communications 
controllers). MIH does not, however, support any devices that are marked 
offline. 

MIH is invoked as part of the master scheduler. It checks for missing 
interruptions caused by pending device and channel ends, DDR swaps, and 
MOUNT commands. The absence of such interruptions may indicate, for 
example, that a device is not ready, a MOUNT message has not been 
satisfied, or a device has malfunctioned. Channel and device end 
interruptions are recorded on the SYS 1.LOGREC data set. 

If a pending condition is found and remains pending after a user or 
system-specified time interval has elapsed, a missing interruption condition 

c 

is determined to exist and the operator is notified. The specific pending (-.. 
condition determines what operator action is needed to correct the situation. 



c 

c 

o 

------------_._---

Chapter 10: Multiprocessing 

With the growth of multiple applications and the proliferation of online 
users, an installation may find that a single processor cannot service its 
needs. More capacity and higher speed are often required. A viable solution 
to the need for more computing power is a configuration of several 
processors sharing one or more critical resources. In such a configUration 
the processors share the workload and synchronize their activities. 

Sharing, synchronizing, and controlling the work on several processors is 
generally called multiprocessing. The two basic types of multiprocessing are: 

• Loosely-coupled multiprocessing, which allows processors to operate 
independently, yet share a common workload queue. The processors are 
connected by channel-to-channel adapters or by shared DASD. 

• Tightly-coupled multiprocessing, which allows two processors to operate 
under the control of a single operating system. The processors are 
connected by a multisystem unit. 

Loosely-Coupled Multiprocessing 

Loosely-coupled multiprocessing affords an easy growth path. The 
installation can connect many combinations of System/360 and System/370 
processors into a single configuration with the following traits: 

• JES2 or JES3 supports the processors' access to a common workload 
queue. 

• Each processor has its own control program. 
• The 110 device configurations on the various processors need not be 

identical. However, availability can be improved by including redundant 
components and by making the configuration symmetrical. 

• Jobs can be routed to a particular processor, if necessary. 

For a description of JES2 and JES3 multiprocessing support in this book, 
see Chapter 5, "Entering and Scheduling Work." 

For more detailed information about JES2 and JES3 multiprocessing 
support, refer to OS/VS2 MVS System Programming Library: JES2 and 
Introduction to JES3 (or OS/VS2 MVS JES3 Overview), respectively. 

Tightly-Coupled Multiprocessing 
In a tightly-coupled multiprocessor (MP), the two processors share all 
processor storage, communicate directly with each other, and operate under 
the control of a single system control program (OS/VS2 MVS). MVS 
supports tightly-coupled MPs and APs on the mM System/370 Model 158 
and Model 168 and on the mM 3033 and 3031. 

Chapter 10: Multiprocessing 10-1 



10-2 OS/VS2 MVS Oveniew 

A Model 158 or 168 tightly-coupled MP configuration in some respects 
has less complex operational requirements than two uncoupled 158 or 168 
processors. The MP presents a single system image to the operator even 
though there are two processors available for work. The operator has one 
operational interface to the entire system, one job scheduling interface, and 
one point of control for all the resources available. In addition, the operator 
must communicate with and control only one operating system instead of 
two. 

Three other important characteristics of a tightly-coppled MP are: 

• The ability to dynamically change the hardware configuration to meet 
various needs 

• The ability to communicate between the processors to coordinate their 
activity 

• The ability to control the operation of the two processors and yet keep 
their individual control and status information separate 

Configuration 

A tightly-coupled MP configuration consists of many hardware components, 
which MVS regards as resources. "Reconfiguration" refers to the process of 
changing the configuration of these hardware components. It involves 
varying system resources online or offline as well as changing some control 
switches on the processors' configuration control panel to establish the 
corresponding physical configuration. 

Change to the configuration can occur for several reasons, such as: 

• A segment of storage that experiences failures must be disabled from 
both processors. By removing the failing storage from the system while 
the system is still processing, the system operator can isolate the failure 
from the MVS system and allow the repairs to take place. 

• A scheduled change from MP mode to UP mode can allow MVS to 
continue uninterrupted on one processor while the other processor runs a 
secondary operating system or undergoes repairs. 

Logical Reconfiguration 

The process of varying system resources online and offline with the V AR Y 
command is called logical reconfiguration. The system operator uses the 
VARY command to make system resources (processor, storage, I/O device) 
either available or unavailable for system use, for example, changing from 
MP mode to UP mode by varying a processor offline. This command, along 
with other system commands and operator actions, can separate a system 
resource from an active MP system without necessarily interrupting the 
work being processed. 



--_ .. _ ... _-----

c 

o 

Physical Reconfiguration 

When the system operator changes the logical configuration, he must make 
corresponding changes to the physical configuration. This process, called 
physical reconfiguration, involves the configuration control panel which is 
housed in the multisystem unit that connects the two processors. The 
configuration control panel contains rotary switches, toggle switches, 
pushbuttons, and display lights that allow the operator to establish: 

• System mode - MP mode in which the processors share real storage 
and communicate with each other, or UP mode in which the processors 
operate independently, do not share real storage, and do not 
communicate with each other. 

• Storage configuration - Each storage switch assigns a real storage 
address range to its associated segment of storage (a storage element). 
Furthermore, each storage element can be enabled for access by one or 
both processors or disabled for access by both processors. 

• I/O device configuration - A pair of I/O allocation switches (one for 
each processor) is assigned to each control unit connected to the 
configuration control panel. Each switch establishes the associated 
processor's access to a particular control unit. As with segments of 
storage, each control unit can be enabled for access by one or both 
processors or disabled for access by both processors. 

• Validity of a desired configuration - The configuration-validity 
indicators show whether the desired configuration control panel settings 
are acceptable (valid). If the specified configuration is valid, pressing the 
ENTER CONFIG pushbutton causes the control panel settings to take 
effect. 

Communication 

To control the system resources, the two processors must communicate with 
each other. Communication between the processors is referred to as 
interprocessor communication (IPC). The MVS software and the 
System/370 hardware both provide support for IPC. 

MVS-Initiated Communication 

MVS establishes interprocessor communication for several purposes: 

• To perform system initialization 
• To dispatch work or start an I/O operation 
• To stop or restart a processor during reconfiguration 
• To attempt alternate CPU recovery 

To accomplish this communication, MVS uses the signal processor (SIGP) 
instruction. A SIGP instruction indicates the address of the processor being 
signaled and transmits a request to that processor. The request indicates the 
function to be performed. When the addressed processor receives the signal, 
an external interruption occurs. As a result of the interruption, the 
addressed processor decodes the request, performs the requested function 
(if possible), and transmits a response to the calling processor. The 
response contains a condition code and status information. 

Chapter 10: Multiprocessing 10-3 



10-4 OS/VS2 MVS Overview 

The following topics describe some of the SIGP requests used by the 
system. 

Initialization: During the initialization of a tightly-coupled MP system, MVS 
can determine whether the other processor is online by issuing a SIGP 
sense instruction. The addressed processor responds with an indication of its 
status. If the response indicates the processor is online, MVS can issue a 
SIGP start inst~ction. The addressed processor performs the start function 
just as though an operator had pressed the START key on the processor's 
console. When initialization is complete, multiprocessing operation can 
proceed on both processors. 

Operation: Normal operation proceeds with each processor receiving work 
from the MVS dispatcher routine. The dispatcher is normally entered after a 
system event occurs or when a unit of work is complete .. However, if one 
processor has entered the wait state because it had no work to perform, the 
other processor may wish to tell the idle processor that new work has 
arrived. This kind of communication is called "shoulder-tapping." 

Other situations may arise that make shoulder-tapping necessary. For 
example, a program running on processor A may need to issue an I/O 
request to a device that is attached only to processor B. Using the SIGP 
external-call instruction, processor A can ask processor B to perform the 
operation. 

Reconf'JgUration: When the operator varies a processor offline or online, 
MVS-initiated communication may be necessary. For example, if the master 
scheduler is running in processor A when a VARY command is received to 
vary processor B offline, processor A must tell processor B to stop. To do 
this, processor A issues a SIGP stop instruction. Processor B enters the 
stopped state just as it would if the STOP key on the processor's system 
console had been pressed. To vary processor B back online, processor A 
can issue a SIGP restart instruction. Processor B performs a restart function 
just as though the RESTART key had been pressed. 

Recovery: When one processor wants the other to perform an action 
immediately, it executes a SIGP emergency-signal (EMS) instruction, which 
also results in an external interruption on the other processor. A SIGP 
emergency-signal is used to initiate actions such as a request from a failing 
processor for alternate CPU recovery activity on the operative processor. 
The operative processor can transmit a SIGP program-reset instruction to 
reset any pending I/O operations that were in progress on the failing 
processor. The operative processor may also issue a SIGP 
stop-and-store-status instruction to determine the status of the failing 
processor. If the status can be obtained, the MVS recovery routines have a 
better chance of succeeding. 

Hardware-Initiated Communication 

In addition to the signals exchanged between processors through use of the 
SIGP instruction, the System/370 hardware supports direct communication 
between the processors. This communication is necessary to ensure: 

• Clock synchronization 
• Storage control 
• Recovery 

c 

c 



c 

o 

Clock Synchronization: In a tightly-coupled MP configuration, each 
processor has a time-of-day (TOD) clock. When the two processors operate 
in MP mode, the TOD clock in one processor transmits synchronizing 
pulses to the other processor to keep the TOD clocks synchronized. When 
the operator initializes (IPLs) a tightly-coupled MP system or varies a 
processor online, he must ensure that the TOD clocks are synchronized. If 
MVS detects that the clocks have become unsynchronized, an external 
interruption occurs and the processor that accepts the interruption first can 
reset the clocks and initiate operator intervention, if necessary. 

Storage Control: Because storage is shared between the processors, the 
processors must communicate with each other to ensure that all references 
to shared storage refer to the most current data. Therefore, each processor 
(for example, processor A) notifies the other processor (for example, 
processor B) when it modifies the contents of a real storage location. 
Processor B then determines whether its high-speed buffer currently 
contains the contents of that same real storage location. If processor B's 
buffer contains this same storage, this copy of the storage is no longer 
current; processor B invalidates its copy in the buffer. 

Recovery: When a processor experiences a failure that causes it to enter the 
check-stop state, the failing processor generates a malfunction-alert 
interruption on the other processor, which then attempts recovery. Alternate 
CPU recovery routines receive control and attempt to keep MVS running 
on the operative processor. 

Control 

Although tightly-coupled MPs share all real storage and run under the 
control of a single MVS operating system, each processor must have a 
unique physical address for identification purposes. Likewise, each processor 
must have its own status and control information. 

Physical Addresses 

In a tightly-coupled MP, one processor is called processor A and the other 
is called processor B, as indicated on the configuration control panel. 
Internally, the processors have addresses of 0 and 1, respectively, which the 
processors must use when signaling each other and when recording the 
processor identifier in operator messages, SMF records, and so on. The 
operator must use 0 and 1 when issuing the configuration commands (for 
example, VARY PATH, VARY CPU). These addresses are permanent and 
apply in both MP and UP modes. 

Status and Control Information 

The System/370 hardware and MVS software maintain status and control 
information in specifically-assigned real storage locations. This information 
consists of data such as PSWs. A 4096-byte block of fixed storage is 
reserved for the information in the low-address range (storage locations 
0-4095) of real storage. However, the two processors can execute two jobs 

Chapter 10: Multiprocessing 10-5 



10-6 OS/VS2 MVS Overview· 

concurrently, one in each processor. In order to keep the jobs separate, 
each processor must have its own storage area. The technique used to 
achieve this is called preiIXing, whereby the two processors do not use 
absolute locations 0-4095 (0-4K) for status and control information. Each 
processor has its own separate 4K-byte prefixed save area (PSA) of real storage. 

Attached Processor System 
An attached processor (AP) system consists of a System/.370 Model 158 or 
Model 168 processing unit or the IBM 3033 A-series or 3031 processing 
unit (This processing unit is called the host processor) and a compatible 
attached processing unit. The host processor provides instruction processing, 
I/O control, and storage control. The attached processor has a similar 
instruction processing ability, but has no I/O or storage control of its own. 
The host processor shares its I/O and storage control with the attached 
processor. 

Most communication and control facilities of a tightly-coupled MP also 
apply to an AP system. However, an AP system's availability is not 
significantly increased over a UP system because an AP system's ability to 
reconfigure is limited. An attached processor does not have the same 
configuration control panel that an MP has. If an attached processor fails, it 
can be varied offline and MVS can continue on the host processor in UP 
mode. But if the host processor fails, it cannot be varied offline and MVS 
cannot continue on the attached processor. [Exception: (1) The Model 168 
does allow the operator to reinitialize (re-IPL) an attached processor as a 
stand-alone host processor with access to channels and storage. (2) The 
3033 and 3031 attached processors can be used as stand-alone host 
processors with access to channels and storage.] 

The advantage of an attached processor system is increased performance. 
Just as in a tightly-coupled MP system, an AP system can execute two tasks 
concurrently, one in each processor. 

( " 
./ 



C: 

c 

Chapter 11: Monitoring System Activity 

The primary purpose of an operating system is to provide job-to-job 
transition. That is, the operating system reads a job, lets it run to 
completion, reads another job, lets it run to completion, and so forth. Early 
operating systems did this in a simple way. MVS does it in a complex way. 

The first operating systems were simple to use and fix, yet inefficient in 
several ways. Long-running jobs held up other jobs, and only those 
resources associated with the active program were used. All other resources 
waited. This inefficiency derived from the system's simple operation. On the 
other hand, the system's simple operation also had specific benefits. When 
there was a system error, it was generally easy to determine what program 
was executing at the time. Also, accounting algorithms for charging users 
involved simple computations (job stop time minus job start time). Using 
the system efficiently was more a matter of establishing efficient installation 
procedures for processing jobs rather than using sophisticated operating 
system function to handle the job-to-job transition. 

In contrast, MVS is not a simple system, yet it is efficient. Its enabled 
design keeps more work going on in parallel. More interruptions occur. 
More task switches take place. More resources are shared. More non-serial 
operation occurs. MVS does these things through sophisticated control 
programs - programs that dispatch work, that save job status, that switch 
from one piece of work to another, that keep things straight among the 
many programs that share common resources, and that read jobs into the 
system and produce their output in parallel with controlling the jobs already 
in execution. 

MVS, like earlier operating systems, still handles job-to-job transition, 
but a single job is generally not as easy to identify because MVS splits each 
job into pieces. The job entry subsystem, for example, processes a job as 
records on the spool, the dispatcher as address spaces, TCBs, and SRBs, 
the interruption handlers as status save areas, and the system resources 
manager as swapped-in or swapped-out address spaces. As a result, jobs 
lose much of their identity. The single job, started, executed, and 
completed, is a collection of individual pieces of work efficiently dispatched, 
interrupted, redispatched, and eventually completed. An MVS job, then, 
equals all the completed pieces of work. So when a job fails in MVS, the 
diagnosis must focus on locating the piece that failed. And, because of 
MVS' complexity, finding this piece can be difficult. 

MVS helps to make this diagnosis easier by providing various monitoring 
mechanisms that can keep track of the individual pieces of work in the 
system. These;! monitoring mechanisms condense the pieces of work into a 
processing history the installation can use to isolate, diagnose, and fix 
program errors. 

Other MVS monitoring mechanisms, or tools, enable the installation to 
evaluate system performance and overall resource use. These mechanisms 
produce reports the installation can use to adjust MVS in order to maximize 
its efficiency and, as a result, improve its job processing capability. 

Chapter ll: Monitoring System Activity 11-1 



11-2 OS/VS2 MVS Overview 

The remainder of this chapter describes these monitoring mechanisms. 
They are: 

• The system management facilities (SMF) 

• The Resource Measurement Facility (RMF) Version 2 program product 
(Program Number 5740-XY4) 

• Dumping facilities, specifically SNAP dump, ABEND dump, SVC dump, 
and stand-alone dump 

• Trace facilities, specifically system trace, generalized trace facility (GTF), 
and master trace 

• Serviceability level indication processing (SLIP) 

• SYS 1.LOGREC error recording 

System Management Facilities 
The system management facilities (SMF) collects various types of system 
information the installation can use to account for system use and to 
analyze system performance. SMF collects information about MVS 
processing by writing records to SMF data sets. These records describe 
system events, such as the start of TSO, the logon and logoff of TSO users, 
the reconfiguration of devices, individual job starts and terminations, and 
the sign-on and sign-off of NJE users. SMF records also describe system 
status information, such as data set status (opened, closed, or scratched), 
VSAM catalog information, and job output statistics (cards punched and 
lines printed). An installation uses this recorded data to measure its 
processing capabilities charge its users for processing time and resource 
usage, and make adjustments where necessary to provide ~etter overall 
service. 

Figure 11.1 presents an overview of SMF processing. The major 
elements of SMF processing are as follows: 

D SMF is part of the MVS control program and is initialized with MVS 
. using parameters from SYS1.P ARMLffi. The SMFPRMxx member of 

SYS 1.P ARMLffi contains the parameters that define how SMF is to 
operate. Some SMFPRMxx parameters are required. Others are 
optional. Required parameters specify, for example, the identifier of 
the system on which SMF is running. Optional parameters specify, for 
example, the record types the installation chooses to have SMF write, 
whether the operator can modify SMF parameters, and whether SMF 
exit routines are used. 

fI Various MVS components include routines that provide data to SMF. 
Some components provide this data in complete records ready to be 
written to the SMF data sets; other components provide unformatted 
data, which SMF formafs into records. ~--

II Some system routines that provide data to SMF also communicate 
with installation-written SMF exit routines to perform additional 
processing for certain events. The system routines invoke these exits 
at various times during job and job step processing. 

' ....... " 



c 

o 

--------_ .. _-

a Installation exit routines can, for example, enforce those standards of 
job processing unique to the installation (such as supplying defaults 
for missing JCL parameters), collect installation-dependent job 
information, or enforce the installation's standards for resource usage. 

II SMF routines collect unformatted data and format this data into SMF 
records, write formatted SMF records to an SMF data set, and issue 
messages to the operator about system events, such as the start of 
TSO, TSO logons, and TSO logoffs. 

II SMF writes records to an SMF data set. When the data set is full, 
SMF writes records to another data set. The data in the full data set 
can then be saved on tape. 

D The installation can use a data reduction program and a report 
program to process SMF data. These programs execute as ordinary 
jobs. The data reduction program can collect SMF measurements into 
meaningful units of information by extracting or sorting the data and 
analyzing it. The report program can format and print the results of 
the analysis. Reports on direct access volume activity, data set 
activity, and resource use can help an installation assess its computing 
efficiency. The Service Level Reporter (SLR) program product 
(Program Number 5740-DC3) is an example of such a report 
program. 

For more information on using SMF see OS/VS2 MVS System 
Programming Library: System Management Facilities (SMF), OS/VS2 
MVS Initialization and Turning Guide, and OS/VS2 MVS Performance 
Notebook. The Service Level Reporter (SLR) General Information Manual 
explains how to use the Service Level Reporter. 

Chapter 11: Monitoring System Activity 11-3 



11 

System routines 
providing data 
to SMF 

System routines 
providing data 
to SMF 
and 
invoking SMF 
exit routines 

User-written 
Exit Routines 

D 
MVS 

SMF 
Routines 

Figure 11.1. System Management Facilities - Overview 

11-4 OS/VS2 MVS Overview 

D 

fJ 

System 
Console 

Data Reduction 
and Report 
Routines 

Dumped 
Data 
Sets 

(' 



c 

c~) 

o 

_ .......... _-_ .... _- - ...... _---

Resource Measurement Facility 

The Resource Measurement Facility (RMF) Version 2 program product 
(Program Number 5740-XY4) is a measurement program the installation 
can use to analyze the performance of its system. RMF measures the use of 
many system resources, such as the processors, physical and logical 
channels, devices, and real storage. Also, RMF measures the resource 
contention that enqueueing causes, the processing service that the system 
gives to different classes of users, and the interaction that takes place 
among real storage, the processor, and the system resources manager 
(SRM). 

An execution of RMF is called a session. Some sessions are of long 
duration, while others can be short. Some sessions are interactive, while 
others can be background jobs. The installation selects the sessions that 
best meet its needs. 

Monitor I sessions measure a variety of system data over many intervals 
of time; they generally produce hardcopy reports spanning large amounts of 
processing time. When each interval elapses, RMF summarizes the data it 
has measured, formats it, and reports it in a form the installation has 
selected. 

Within an interval, RMF measures data by exact count or by sampling. 
RMF makes an exact count measurement of a. system indicator by 
computing the difference between its value at the beginning of an interval 
and its value at the end of the interval. RMF makes a sampling 
measurement of a system indicator by recording its value at each cycle 
within the interval; cycle is a subdivision of an interval. (Each minute in an 
interval can be divided into sixty I-second cycles, for example.) At the end 
of the interval, RMF gathers the data collected at each cycle and prepares 
to report the results. The installation controls the length of the interval and 
the cycle for the session. 

Monitor II sessions, in contrast, take snapshots of the system's 
performance and normally produce reports on the screen for immediate 
inspection. These sessions are interactive sessions (called display sessions) 
and can be short in duration; the interval of measurement is normally the 
time between the request at the terminal and the response on the screen. 

Through Monitor I and Monitor II sessions, RMF can measure resource 
use in various system areas. 

• Processor activity indicates the extent of wait time each processor 
experiences. 

• Address space activity describes the status of address spaces and how 
they're being used. 

• Channel activity for both logical and physical channels relates to extent 
of activity tat exists on the configured paths to the I/O devices. 

• 110 device activity gives the status of the 110 devices in the 
configuration and describes the distribution of 110 activity among those 
devices. 

• Paging activity shows the amount of paging and swapping taking place. 

Chapter II: Monitoring System Activity 11-5 



11-6 OS/VS2 MVS Overview 

• Workload activity shows what system services are being provided to 
particular users or groups of users. 

• Page/swap data set activity describes the use of the paging data sets and 
swap data sets. 

• ASM/RSM/SRM trace activity traces the contents of various control 
block fields ASM, RSM, and SRM use to perform swapping for address 
spaces. 

• Enqueue activity shows the contention for serially-reusable resources. 

• Real storage/processor/SRM activity gives an overview of system 
activity. 

The installation uses these measurements of system activity to identify 
exceptional use of system components and resources, to relate how well 
service is provided to different classes of users for a given IPL, to identify 
bottlenecks where contention for resources is high, and to locate excessive 
users of particular resources. 

RMF produces three forms of output: SMF records, printed reports, and 
display reports. RMF produces SMF records during session processing. 
Printed reports can be produced either as a part of session processing or by 
the RMF post processor at a later time. The post processor can produce 
printed interval reports and various types of summary reports. The type of 
output RMF can produce depends on the type of RMF session. 

The user starts an RMF session by issuing a START RMF command at a 
system console, by submitting a background job that starts RMF, or by 
issuing an RMFMON TSO Command at a TSO terminal. During a 
non-display RMF session, the installation can use the MODIFY Command 
to control RMF processing and display RMF status. An RMF session ends 
when its time limit expires or when the operator or terminal user stops the 
session. 

RMF can invoke user exit routines at various points within a session; the 
type of session dictates the number of exits available. An installation exit 
routine, for example, can sample additional data at each cycle within a 
measurement interval, format and write its own SMF records, and produce 
its own reports. 

Figure 11.2. summarizes the functions of the Resource Measurement 
Facility. OS/VS2 MVS Resource Measurement Facility (RMF) General 
Information Manual and OS/VS2 MVS Resource Measurement Facility 
(RMF) Reference and User's Guide explain RMF in more detail and 
explain how to use it. OS /VS2 MVS Performance Notebook explains how 
an installation uses RMF for performance analysis. 

c 



c 

c 

o 

"---,,"" '"-""'""--"---,---,---'"""'""------

START system command 
RMFMON TSO command 
Background job 

~ 
Resource Measl,.lrement Facility 

Measures: 
processor activity 
channel activity 
I/O device activity 
workload activity 
paging activity 
enqueue activity 
ASM/RSM/SRM trace 
page/swap data set activity 
address space activity 
real storage/activity 
user-specified activity 

RMF 
Post 
Processor 

• 
• 
• 

Summary 
Reports 

Figure 11.2. Summary of RMF 

MODIFY 
~---STOP 

DISPLAY 

Chapter 11: Monitoring System Activity 11-7 



11-8 OS/VS2 MVS Overview 

Dumping Facilities 

Dumps are snapshots of what virtual storage looks like at a given instant in 
time; they are hard copy listing of the contents of the. system's virtual 
storage locations. Dumps can be as extensive as all locations of virtual 
storage or as limited as a few locations. They can contain control blocks 
and data areas used by programs, the programs themselves, or both. While 
dumps can be taken to validate specific processing when the system is 
running normally, they are most frequently used to solve system problems 
and error conditions. 

Dumping system information when an error occurs requires precise 
timing. As the system operates, the control blocks and data areas for both 
system and user programs keep changing. Because these control blocks and 
data areas are volatile, taking a dump too early can reveal too little about a 
problem, and taking a dump too late can mean that the pertinent 
information has been overlaid with new data. A useful dump, then, is one 
that captures the contents of virtual storage when the error occurs or as 
close as possible to when the error occurs. Being able to take this kind of 
dump depends, to a large degree, on whether the error is job-related or 
system-related. 

Job-related errors are those that a job can try to anticipate. That is, the 
user program or programs that make up the job include logic that plans for 
the occurrence of an error, such as an erroneous value in a control block or 
an unsuccessful return code frm a called routine. When such a job-related 
error occurs, the program can immediately dump critical control blocks and 
data areas. These dumps then represent an accurate view of the contents of 
virtual storage that the problem solver can use to solve the problem. 

System-related errors, on the other hand, are those that cannot be 
anticipated by a user job. A system-related error can affect the system, a 
major subsystem (the job entry subsystem (JES), the information 
management system (IMS) or several components of MVS. This type of 
error is generally not localized to a specific job -- although a specific job 
might be running at the time -- and what to dump is not obvious. The MVS 
dumping service, itself, might fail because of the system error. And, unless 
system activity is quiesced shortly after such an error occurs, too much 
system information can change, rendering a dump of the error less useful. 

MVS dumping facilities handle either kind of error; the dumps they 
produce are the SNAP dump, ABEND dump, SVC dump, and stand-alone 
dump. SNAP and ABEND dumps are generally taken for job-related errors. 
SVC dumps and stand-alone dumps are generally taken for system-related 
errors. 

Each of these dumps can contain two types of information: system data 
and program data. System data includes the MVS nucleus, system queue 
area (SQA), local system queue area (LSQA), and control blocks associated 
with the units of work in MVS, such as the TCBs, ASCBs, and SRBs. 
Program data includes the program's PSW, its register contents, its TCB and 
associated RBs, its save areas, and the program itself. 

The remainder of this section presents more information about each of 
these dumps, including when they're used, how they're taken, and what 
output they produce. ( 

'-... 



c 

o 

SNAP Dump 

The SNAP dump, as its name implies, is a snapshot of virtual storage 
requested by a program. This dump is formatted and easy to read. A 
program can take a SNAP dump at any time during its processing. During 
program testingJ for example, a program can take a SNAP dump to print 
intermediate results of certain calculations. The programmer can analyze 
this dump to ensure that the program is operating correctly. For a 
job-related errorJ a program can take a SNAP dump to capture critical 
program storage areas at the time it detects the error. The programmer can 
then analyze this dump to determine the specific nature of the error and the 
reason for it. 

To take a SNAP dump, the program uses the SNAP macro instruction; its 
operands identify the information to be dumped and the output data set for 
the dump. The output data set can be sent to a printer for analysis of hard 
copy results J to a disk or tape for printing and analysis at a later time, or to 
a display terminal vor viewing on the screen. 

After the SNAP dumping service finishes processing the dump, it returns 
control to the program that invoked it. The program can then take other 
SNAP dumps at other points in its processing; the result is a comprehensive 
collection of information 

ABEND Dump 

An ABEND dump is a display of virtual storage that a program can request 
directly when it can't circumvent an error and wants to terminate its 
processing. MVS can also provide an ABEND dump indirectly when it 
detects job-related processing errors that can be circumvented only by 
terminating a job. In either case, the program can't circumvent the error, 
and the only remaining action is to dump critical program storage and 
terminate. The programmer can then analyze this dump to determine what 
caused the abnormal termination. 

To request an ABEND dump, the program uses the ABEND macro 
instruction with the DUMP operand. The ABEND dumping service writes 
the dump to a data set identified by a DD statement in the terminating 
job's JCL. This DD statement must be named SYSUDUMP, SYSABEND, 
or SYSMDUMP. 

A SYS I.P ARMLm member exists for each of these names. Each 
member defines default dump optionsJ which specify the default system and 
program data to be dumped to the SYSUDUMP, SYSABEND, or 
SYSMDUMP data set. The types of information dumped to these data sets 
are: 

• SYSUDUMP - Storage associated with the failing task, such as its 
enqueue control blocks and the scheduler work area for the task's 
address space. This information is formatted by the ABEND dumping 
service and is ready for printing . 

• SYSABEND - Storage associated with the failing task-same as the 
storage for the SYSUDUMP DD statement-with the addition of the local 
system queue area and lOS control blocks. This information is formatted 
by the ABEND dumping service and is ready for printing. 

Chapter ll: Monitoring System Activity 11-9 



11-10 OS/VS2 MVS Overview 

• SYSMDUMP - Storage used by the system to process the failing task, C 
such ahs thehMdVS

I 
nUcleuks, the sysdtemh que.ue area, theflohcal sdYdstem queue

f 
.~/ 

area, t e sc e u er wor area, an t e pnvate area 0 tea ress space or 
the failing task. This information is not formatted by the ABEND dumping 
service. Analysis and formatting programs can process this output to 
pro~uce a'readable dump. The AMDPRDMP MVS service aid (called print 
dump) and the Interactive Problem Control System (IPCS) are such 
programs. IPCS allows the programmer to format and view dumps at a 
display terminal without having to print them. 

The program requesting the ABEND dump can accept these default 
dump options or alter them through other operands on the ABEND macro. 
The final contents of the ABEND dump, however, might not be what the 
program requested because the operator can alter the system default dump 
options through the CHNGDUMP command. Also, any recovery routines, 
invoked by the recovery termination manager as a result of the program's 
abnormal termination, can also alter these dump options. OS/VS2 MVS 
Initialization and Tuning Guide and OS/VS2 MVS System Commands 
give more detailed information about altering ABEND dump options. 

SVCDump 

SVC dumps serve system programs in the same way as SNAP dumps serve 
user programs. That is, SVC dumps are the control program's equivalent to 
the user program's SNAP dump. Also, only authorized programs or those 
running in control program key can request SVC dumps. Among these 
programs are: 

• Programs that are part of MVS. These programs take SVC dumps for 
system-related errors they can anticipate. 

• MVS recovery routines (FRRs and ESTAEs). These programs take SVC 
dumps for unanticipated system-related errors that occur in the programs 
that define them. 

• Authorized installation programs and user modifications to MVS. These 
programs take SVC dumps both for system-related error conditions and 
as part of normal processing. SVC dumps during normal processing help 
to test the program before installing it in MVS. 

• Programs that process the DUMP operator command. The operator issues 
the DUMP command for certain system error conditions, and these 
programs request the SVC dump. 

To take an SVC dump, the program uses the SDUMP macro instruction, 
either specifying operands that identify the information that is to be 
dumped and a specific data set to be used for the dump or accepting the 
system default options. As with ABEND dumps, the operator can change 
the default SVC dump options through the CHNGDUMP command. 

SVC dump output data sets (named SYS 1.DUMPxx) reside on disk or 
tape. Because SVC dump output is unformatted on these data sets, an 
analysis and formatting program must process this dump output to produce 
readable dumps. Similar to the ABEND dump for the SYSMDUMP DD 
statement, the AMDPRDMP MVS service aid and IPCS can be used to 
format the SVC dump into a readable form. r 

~ 



o 

----------------------.--- -----

The AMDPRDMP MVS service aid is such a program, and the Interactive 
Problem Control System (IPCS) is another. IPCS allows the programmer to 
format and view dumps at a terminal without having to print them. 

After the SVC dump service finishes producing the dump, it returns 
control to the program that invoked it. The program can then take 
additional SVC dumps at other points in its processing. This ability to take 
several SVC dumps is helpful for any recovery routine that handles 
system-related errors. By requesting SVC dumps at various points in its 
recovery processing, the recovery routine can produce a comprehensive 
collection of system program information reflecting its recovery actions. If 
the system does fail, these SVC dumps can help to isolate the cause of the 
failure. 

Stand-Alone Dump 

A stand-alone dump is a dump produced by a program that the operator 
executes. When MVS fails, the operator loads the stand-alone dump 
program into storage from a volume where it resides. The program runs by 
itself and dumps all of real storage and selected portions of virtual storage. 
The dump includes the MVS nucleus, the MVS trace table of system events, 
the real storage contents and selected virtual storage contents of all address 
spaces, the prefixed save area (PSA), and the system queue area (SQA). 

Before running the stand-alone dump program, the operator performs a 
STORE STATUS procedure that stores the processor time, current PSW, 
general purpose registers, and other processor-type information into 
permanently assigned locations in storage. This procedure preserves in the 
dump the processor status existing at the time the system failure was 
detected. 

There are two forms of stand-alone dumps: a low-speed form and a 
high-speed form. The low-speed form dumps storage and automatically 
formats it for printing. The high-speed form merely dumps storage in 
unformatted form to tape or disk for formatting and printing at a later time. 
(AMDPRDMP and IPCS can be used to format the high-speed stand-alone 
dump). 

Figure 11.3 summarizes the MVS dumping facilities. For more detailed 
information on using these facilities, refer to the following manuals: 

• OS/VS2 MVS System Programming Library: Supervisor and OS/VS2 
MVS Supervisor Services and Macro Instructions describe how to 
request SNAP dumps, ABEND dumps, and SVC dumps. 

• OS/VS2 MVS Diagnostic Techniques describes ways to use MVS 
dumping facilities to solve system problems. 

• OS/VS2 MVS Debugging Handbook illustrates the formats for the 
various dumps. 

• OS/VS2 MVS Service Aids describes how to generate a stand-alone 
dump program and how to run it. This manual also describes how to use 
the AMDPRDMP service aid to analyze and format dump output. 

• OS/VS2 MVS Interactive Problem Control System (IPCS) User's Guide 
and Reference describes how to use IPCS to format and analyze dumps. 

Chapter 11: Monitoring System Activity 11-11 



11-12 OS/VS2 MVS Overview 

• OS/VS2 MVS Programming Library: Initialization and Training Guide C 
describes how to establish ABEND dump options and how to select .. 
devices for the SYS 1.DUMPxx data set. 

• OS /VS2 MVS System Commands describes the CHNGDUMP 
command. 



C~ 

o 

SNAP Dump 

User 
Program 

SNAP 

SVC Dump 

System 
Program 

SDUMP 

SNAP 
Dumping 
Service 

SVC 
Dumping 
Service 

SYS1.DUMPxx 

EJ 
o 

Dump 
Formatting 
Program 

Dump 

Figure 11.3. Summary of MVS Dumping Services 

ABEND Dump 

User or 
System 
Program 

ABEN D 

~ 

CHNGDUMP 
Command 

RTM 

J~ 

1r 
ABEND 
Dumping 
Service 

Stand-alone Dump 

Dump 

§ 
8 

'\ 
v 

.sYS1.PARMLIB 

c:J 
§ 
8 

Processor 
Status 

Storage 

Chapter 11: Monitoring System Activity 11-13 



Trace Facilities 

11-14 OS/VSl MVS Oveniew 

Tracing system events provides valuable information for performance 
analysis and problem diagnosis. For example, a sequence of I/O 
interruptions from specific devices can pinpoint high or low device use. Or, 
a sequence of program interruptions can either eliminate programs as 
possible sources of an error or, in fact, isolate the program that did cause 
the error. Any tracing mechanism must be able both to capture the system 
event and to record pertinent information about the event for later use. 

Three MVS tracing mechanisms -- system trace, master trace, and the 
generalized trace facility (GTF) -- capture system events by using hooks. 
The hook is a sequence of instructions that signal the event to the tracing 
mechanism, capture the relevant system data, and either pass this data to 
the tracing mechanism directly or freeze the data until the tracing 
mechanism records it. Figure 11.4 shows how a hook can capture 
information about a program interruption. The sequence of events is as 
follows; 

D Program A attempts to store data in an area of storage that is 
protected from access. This action causes a protection exception 
program interruption. 

fJ When the program interruption occurs, the processor immediately 
switches control from program A to the program check first-level 
interruption handler (PCFLllI), which saves the processing. status of 
the interrupted program. 

II The PCFLIH contains a hook, a sequence of instructions that calls 
the tracing mechanism to trace the program interruption. 

II The tracing mechanism, after recording the program interruption 
event and the relevant system data (such as processor identifier, time 
of the interruption, PSW of program A) preserved by the PCFLIH, 
returns to the PCFLIH, which finishes its processing of the 
interruption. 

Hooks, then, reside in those programs that need to trace events and not 
in the tracing mechanism. MVS programs use hooks to invoke system trace, 
the generalized trace facility (GTF), and master trace. System trace and GTF 
record a common set of system events; GTF, though, can trace additional 
types of events. Master trace records external system activity, such as the 
commands entered by the operator, responses to these commands, and 
other system messages. 

Each MVS tracing mechanism is started and stopped by operator 
commands. Either system trace or GTF, but not both, can operate in MVS 
at any given time. Master trace operates independently of system trace or 
GTF. The operator uses the TRACE Command with the ON or OFF 
operand to start or stop system trace and master trace. The START GTF 
and STOP GTF Commands perform the same functions for GTF. 

c 

c 



c 
Program A 

D *ERROR* 

HOOK 

Figure 11.4. The HOOK Concept 

o 

----- .. _---_ .. _ .... _ ..• __ . __ ... _--_. 

Program Check 
First-Level Interruption 
Handler 

Program Status 

II 

Tracing 
Mechanism 

Chapter 11: Monitoring System Activity 11-15 



11-16 OSIVS2 MVS Oveniew 

System Trace 

The installation starts system tracing by issuing the TRACE Command 
before initializing the job entry subsystem. From that point on, system trace 
records the following types of events: 

• External interruptions caused by the processor's interval timer expiring or 
other external interruption events, such as pressing the external 
interruption key on the console. 

• SIO instructions the I/O supervisor issues to initiate an I/O operation to 
a particular device. 

• I/O interruptions caused when an I/O operation to a device, such as a 
TSO terminal, completes. 

• Program interruptions, such as addressing exceptions, protection 
exceptions, and page translation exceptions. 

• Supervisor call (SVC) interruptions caused by programs that issue SVC 
instructions. 

• Dispatcher events, such as the dispatching of a task or the dispatching of 
a service request. 

The hooks in the interruption handlers, the dispatcher, and the I/O 
supervisor capture pertinent system data and invoke system trace. 

System trace logs these events in a system trace table in virtual storage. 
Each entry in the table includes for each event: 

1. a unique code that identifies the event 

2. data associated with the program affected by the event, such as the 
processor identifier, the address of the current TCB, and the contents 
of the PSW. 

The trace table is a wraparound table. That is, after system trace logs a 
system event in the last entry of the table, it uses the first entry of the table 
to record the next event. trace table be incorporated into their dumps. 

Figure 11.5 illustrates the system trace function and the MVS 
components that invoke it. OS/VS2 MVS System Programming Library: 
Initialization and Tuning Guide' and OS/VS2 MVS System Commands 
give details about using system trace. 

,r 
I 

\ .. , 



c' 

o 

-------_.---------

Figure 11.5. System Trace Overview 

System 
Trace 
Routine 

Trace 
Table 

Cbapter 11: Monitoring System Activity 11-17 



11:"11 OS{VSl MVS Overview 

Generalized Trace Facility 

The generalized trace facility (GTF) provides a more extensive tracing 
capability· than system trace does, and GTF produces trace output in more 
ways. GTF not only traces the same events as system trace but also traces 
events such as the recovery termination manager's (RTM's) routing control 
to recovery routines (FRRs and ESTAEs), MVS programs invoking the 
system resources manager, and processing activities associated with a 
VT AM network, user programs, and subsystems. 

GTF traces in two modes: internal mode or external mode. In internal 
mode, GTF builds the trace records in virtual storage. These records are 
similar to the table built by system trace, and users of the MVS dumping 
facilities can optionally request that these records be incorporated into their 
ABEND dumps, SNAP dumps, and SVC dumps. (Stand-alone dumps 
always contain GTF trace records.) In external mode, GTF provides the 
same functions as those for internal mode and also writes each trace record 
to a data set that resides on an external storage device (either a tape or 
disk). The trace records on the external storage device can be formatted, 
analyzed and printed at a later time to produce reports of system activity. 
The EDIT function of the AMDPRDMP MVS service aid program is 
normally used to format these GTF trace records and print them in a form 
that is easy to read. 

GTF is a started task. The system operator issues the START Command 
to start GTF and the STOP Command to stop it. The options that govern 
its operation reside in the GTFPARM member of SYSl.PARMLIB; these 
options define the events GTF is to trace and the mode of tracing GTF is 
to use. The operator has the ability to override these options. 

Like system trace, GTF uses hooks to trace system events. The 
difference between system trace hooks and GTF hooks, though, lies in how 
the hook causes tracing to occur. System trace hooks invoke system trace 
directly, in contrast to GTF hooks, which cause a program interruption that 
switches control to GTF. The monitor call (MC) instruction, which is part of 
each GTF hook, selectively produces this program interruption. 

GTF uses this characteristic of the MC instruction to define classes of 
events that it can monitor. When GTF is started, these classes of events are 
specified as trace options inGTFPARM or as responses to GTF prompt 
messages. Hooks for events that match the initialized events cause the MC 
program interruption and switch of control to GTF. Hooks for events that 
do not match the initialized events cause no MC program interruptions; 
these events are ignored and not traced. 

Programs use the HOOK or GTRACE macro instructions to set the 
hooks that trace the system events. MVS supervisory functions use the 
HOOK macros to trace, for example, programs interruptions, SIOs, 
dispatches, and RTM routing to recovery routines. User programs and 
subsystems use the GTRACE macro to trace events unique to them. 

Detailed information on using GTF and using the EDIT function of the 
AMDPRDMP service aid is in OS/VS2 System Programming Library: 
Service Aids. Additional information about using GTF in performance 
analysis is in OS/VS2 MVS Performance Notebook, and OS/VS2 MVS 
Diagnostic Techniques shows the uses of GTF for diagnosing problems. 

/ 

.. 



---- ----------------- --- ------ ------

o 

Figure 11.6 summarizes GTF processing; the figure highlights the 
following processing steps: 

D The system operator starts or stops GTF at the system console using 
the START and STOP commands. The GTFPARM member of 
SYS1.pARMLm or operator replies to GTF prompting messages 
define the system events GTF is to trace. 

D GTF operates in internal mode or external mode. In internal mode, 
GTF builds the trace records in storage. In external mode, GTF 
builds the trace records in storage and also writes the trace records to 
a data set for printing or analysis at a later time. MVS dumping 
facilities can include trace records in dumps for either GTF operating 
in internal or external mode. 

II User programs or subsystems use the GTRACE macro to define GTF 
hooks to record events unique to them. Supervisory programs use the 
HOOK macro to define GTF hooks to record system events. 

The monitor call instruction, generated from these macros, causes a 
program interruption if the events defined by the hook match the 
events to be monitored. As a result of the program interruption, the 
processor switches control to GTF to trace the event defined by the 
hook. After GTF traces the event, control returns to the program that 
invoked GTF. 

Chapter 11: Monitoring System Activity 11-19 



User or Subsystem Program 

GTRACE .. 

MC .... 

o 
START or 
STOP GTF 

Supervisory 
Program 

HOOK ... 

MC ... 

II 

GTF Address Space 

GTF fJ 
External 
Mode 

Internal 
Mode 

Figure 11.6. Generalized Trace Facility - Summary 

11-20 OS/VS2 MVS Oveniew 

EITroce glRecordS 



c 

c 

o 

Master Trace 

A hardcopy listing of the system console message traffic can help in 
debugging a system failure, especially if an I/O device caused the failure. In 
reconstructing the events that led up to such a failure, the system trace 
table (previously described in this chapter) would contain entries for I/O 
errors that occurred when programs accessed the faulty device. This 
information might be enough to pinpoint a device problem, but a listing of 
console traffic showing when volumes were mounted would also help. By 
comparing the time when a volume was mounted to the times associated 
with the I/O errors, the problem solver can pinpoint the problem as a 
faulty device. Knowledge of console traffic then, generally helps to create a 
more complete picture of the system environment and decreases the chance 
of overlooking obvious causes of errors. 

MVS monitors console traffic through a function called master trace. 
Unlike the tracing functions of system trace and GTF, which preserve 
internal system activity (I/O interruptions, dispatches, routing to FRRs, and 
so forth), master trace preserves external system activity, such as mount 
messages, status displays, operator issued commands, system responses to 
commands, and other messages, recording this activity when it occurs in a 
wraparound table in storage. 

When the master trace function is started, the communications task 
actually schedules the tracing. Because the communications task normally 
handles message traffic within MVS anyway, it is in a perfect position to 
trace such traffic; it routes each message to master trace, and master trace 
preserves each message in the wraparound trace table. (A hardcopy log 
function, separate from master trace, provides a permanent record of the 
same kinds of console traffic master trace preserves.) 

Because the master trace table resides in virtual storage, it can also be 
dumped. That is, users of those MVS dumping facilities, described earlier in 
this chapter, can request that the contents of the master trace table be 
included in their dumps, thus providing a more complete collection of 
information regarding an error condition. The installation sets the size of 
the master trace table with the operands on the TRACE Command issued to 
start master trace. 

Figure 11.7 illustrates the master trace function. For additional 
information concerning its use, see OS/VS2 MVS System Programming 
Library: Initialization and Tuning Guide and OSjVS2 MVS System 
Commands. OSjVS2 MVS Diagnostic Techniques explains using master 
trace to diagnose errors. 

Chapter ll: Monitoring System Activity 11-21 



I I Operator 
Commands 

-
I I Command ~ System I t-. 

[ " Responses v I Console I v 

I System I Messages 

Figure 11.7. Master Trace Overview 

11-22 OS!VS2 MVS Overview 

Master 
Scheduler 

Communications 
Task 

A~ 

" 
Master 
Trace 

C
-~ 

-.~, ... ./ 

Master 
'" ) Trace 
v 

Table 

"'.7 

Dumps 

'" --



----- .. -----.----.. - ... - .... --- .. __ .. --------------

c 

\ C" 

o 

._.--------- --_. 

Serviceability Level Indication Processing 

Serviceability Level Indication Processing (SLIP) aids in error diagnosis. 
Diagnosing a problem requires information about the problem. This 
information includes the events that led to the error and the contents of 
critical data areas and control blocks at the time of the error. Dumps supply 
a picture of virtual storage when the error occurs. Traces supply a record of 
system events. SLIP joins these two diagnostic mechanisms into a powerful 
debugging tool that associates a prescribed diagnostic action, like dumping 
or tracing, with a specific event, like a program interruption, ABEND, or 
storage reference. 

The description of the system event that is to be intercepted and the 
action to be taken as a result is called a trap. At the system console or an 
authorized TSO terminal, the problem solver enters the SLIP Command to 
describe each trap. Operands on the SLIP command specify the system 
event to be intercepted, the action to take place when the event occurs, and 
whether the trap is to be enabled or disabled. An enabled trap is one for 
which the action is taken if the system event to be intercepted does, in fact, 
occur. A disabled trap, on the other hand, is ignored; that is, no check is 
made for the system event. The problem solver can enable and disable traps 
as system conditions change. 

SLIP traps can intercept two classes of system events: program event 
recording (PER) events and error events. 

Program Event Recording Events 

PER events take place because the processor can cause a program 
interruption when certain system events occur. Specifically, the PSW, which 
controls the processor's execution of instructions, contains a program event 
recording bit. When this bit is on, a program interruption or PER 
interruption (as it is commonly called) can occur for one of the following 
conditions: 

• The instruction executed was fetched from a storage location that falls 
within a specific range of addresses. 

• The instruction executed is a successful branch instruction. 

• The altered storage location falls within a specific range of addresses. 

The PER interruption that occurs in these cases is handled by the 
program check first-level interruption handler (PCFLIH), which alters the 
sequence of processing from the program that contains the instruction to 
SLIP. The processor, in effect, recognizes an instruction fetch, a successful 
branch, or a storage alteration 01 a program and gives control to SLIP. 
After SLIP processes the PER event, it normally returns control to the 
interrupted program. (SLIP traps can be defined so that the program 
interrupted by PER events in abnormally terminated.) 

Chapter 11: Monitoring System Activity 11-23 



11-24 OS/VS2 MVS Overview 

Error Events 

Error events are a subset of errors that cause recovery termination manager 
(RTM) processing. Chapter 9, "Recovering from Errors", lists the errors 
that cause RTM processing. Of these, the errors that SLIP can trap are: 

• Program check interruptions. Programs cause errors, such as addressing 
exception and storage protection checks. 

• Dynamic address translation errors. The DAT hardware fails or the 
contents of the page tables become invalid. 

• Machine checks. The machine check is not recoverable by the hardware, 
and the software must try to recover. 

• Abnormal address space termination. MVS components request RTM to 
terminate an address space and clean up its resources. 

• An ABEND. A task abnormally terminates. 

• SVC error. A locked, disabled, or SRB mode program issues a supervisor 
call instruction. 

• Restart interruption. The operator presses the restart key on the system 
console. 

SLIP Actions 

For either a PER event or an error event SLIP can perform one of the 
following actions: 

• Take an SVC dump tailored to the needs of the problem solver. 

• Cause a GTF trace record to be written. 

• Put the system into the wait state so that the problem solver can 
manually display or alter storage or take a stand-alone dump. 

• Ignore the event altogether. 

For error events only, SLIP can also suppress ABEND and SVC dumps. 

Using SLIP Traps 

The SLIP command can define a trap, alter the state of existing traps (that 
is, activate or deactivate them). to meet new system conditions, or delete 
traps that are no longer useful. SLIP traps can be defined so that they are 
automatically disabled after they have been matched a specified number of 
times. Also, SLIP traps for PER events can be defined so that they are 
automatically disabled when processing the PER events identified by these 
traps consumes a specified percentage of system processing time. 

The system interprets a sequence of SLIP traps in a "last-in-first-out" 
(LIFO) order. That is, the most recently-defined trap is processed first, 
then the next most recent, and so on until the conditions 'specified in the 
trap match the system events. When a match occurs, SLIP takes the action 
specified by the trap, and the process of interpreting the traps begins again 
in LIFO order with the most recently-defined trap. The problem solver uses 

c 



c 

c\ 

o 

this ordered processing of traps to control the way in which system events 
are intercepted. For example, assume that a program is modifying location 
X, but JES2 is the only program that should morlify location X. To identify 
any other program that is modifying location X, the problem solver sets two 
traps in the following order: 

D TRAP 1: A SLIP trap to intercept the PER event of storage alteration 
for location X for all programs in all address spaces. Take an SVC 
dump if this event is intercepted. 

fJ TRAP2: A SLIP trap to intercept the PER event of storage alteration 
for location X for only address space 2, which belongs to JES2. 
ignore the event when it's intercepted. 

Because of the LIFO order in processing traps, TRAP2 is processed first. 
When JES2 alters location X, the event is ignored. TRAP 1 is not 
processed. When a program running in an address space other than address 
space 2 alters location X, TRAP2 is processed but does not match. TRAP 1 
is then processed. TRAP1 does match this event, and an SVC dump is 
taken. In this way, a sequence of SLIP traps can be designed to filter out 
known processing and expose the unknown processing. 

Figure 11.8 summarizes the basic SLIP concepts and functions. The 
following description highlights these concepts and functions: 

o The problem solver establishes a SLIP trap by entering the SLIP 
command at the system console or an authorized TSO terminal. 

D A PER event SLIP trap interrupts the program when a PER event 
occurs. The PER events are instruction fetch, successful branch, and 
storage alteration. 

II An error event SLIP trap intercepts error events. SLIP error events 
are a subset of those errors that cause RTM processing. They include 
program check interruptions, SVC errors, and DAT errors. 

II Each SLIP trap indicates actions that" are to take place when a PER 
event or error event is intercepted. These actions include dumping 
critical storage areas and control blocks, writing GTF trace records to 
the SYS 1. TRACE data set, or ignoring the event altogether. 

Chapter ll: Monitoring System Activity 11-25 



Control 
Registers 
9,10,11 

fJ PER Event Trap 

Program A 

Figure 11.8. Serviceability Level Indication Processing Summary 

11-26 OS/VS2 MVS Overview 

II Error Event Trap 

Program B 

SLIP 

c 

(~ 

'\ 
" 

• 

c 



--------- -_._---- _. --~---... --------

c 

--_._-_. _ .. _----

Additional information about how to use SLIP to diagnose system errors 
appears in OS / VS2 MVS System Programming Library: Supervisor and 
OS/VS2 MVS Diagnostic Techniques. OS/VS2 MVS System Commands 
and OS/VS2 MVS System Programming Library: TSO describes the full 
syntax of the SLIP command. 

SYSl.LOGREC Error Recording 

c 

o 

Diagnosing errors in MVS can require more information than is supplied by 
those monitoring and dumping mechanisms already described. In order to 
recreate certain environmental conditions important to the solution of the 
problem, the problem solver might need a knowledge of the system's 
complete history, sometimes going back as far as when the system was 
initialized for operation. The time when early system events occurred and 
the order in which they occurred can help to reveal the cause or causes of 
system failures. 

SYS I.LOGREC error recording creates such a history by recording 
hardware failures, selected software errors, and other system events for the 
entire processing life of the system - from initialization to shutdown. 
Various MVS system control programs write system error information onto 
SYS1.LOGREC, a permanently-resident system data set, creating, over a 
period of time, a system history. The recovery termination manager (RTM), 
for example, records the error analysis the machine check handler does for 
a machine check interruption and also records the data error recovery 
routines supply about software errors; the channel check handler records 
channel malfunctions; and the missing interruption handler records the 
absence of channel end and device end interruptions. 

Chapter 4, "Preparing the System for Work", describes SYSl.LOGREC 
as one of the data sets on the system-resident volume. During the first 
stages of MVS initialization, SYSl.LOGREC error recording takes place; it 
ends only when the system stops operating (whether through normal 
shutdown or abnormal failure). The SYS I.LOGREC data set, then, 
becomes a running log of valuable information about errors -- such as 
hardware errors associated with failing storage or devices and software 
errors associated with failing programs -- that occurred during the system's 
operation. The installation can use this information to make configuration 
changes and debug system problems. 

Figure 11.9 illustrates the following steps in SYSl.LOGREC error 
recording: 

o During system generation, the IFCDIPOO service aid program 
initializes the SYS I.LOGREC data set. This program creates a time 
stamp record that contains the time when MVS was generated, the 
time of a forthcoming IPL, and various other system-related data; this 
record is the starting point for the history of MVS processing. After 
IFCDIPOO finishes the initialization, SYS I.LOGREC is ready to 
receive error records. 

fJ During system operation, various MVS routines format and write 
records to SYSl.LOGREC about failing hardware (such as a channel, 
device, or processor), software errors (such as program errors, 
machine checks, ABENDS), and other system events (such as device 
demounts, reconfigurations, and end-of-day or shutdown events). For 

Chapter 11: Monitoring System Activity 11-27 



11-28 OS/VS2 MVS Overview 

most of these situations, the recording routines write to r" 
SYS 1.LOGREC regardless of whether or not the system was able to L, 
recover from the error. Each record, while identifying the error and 
the time it occurred, also contains other information, such as the 
current device hardware status, any results of software recovery, and 
statistical data on the number of such errors that have occurred to 
date. 

D The environmental recording editing and printing (EREP) service aid 
program, IFCEREPl, retrieves data from SYSl.LOGREC to (1) 
produce reports useful for diagnosing system errors or to (2) dump 
the SYS 1.LOGREC data to an auxiliary data set so that 
SYSl.LOGREC can be used again. Many auxiliary data sets can be 
generated as SYS 1.LOGREC fills up, forming an archive of 
SYSl.LOGREC data that the installation can use to extend the 
history of error activity beyond the capacity of SYS 1.LOGREC. To 
produce detailed reports of the system's error activity, EREP can 
process any or all of the data sets in the archive, including the data 
on SYSl.LOGREC itself. 

For more information on the SYS 1.LOGREC error recording function 
and the IFCDIPOO and IFCEREPI service aid programs, see OS/VS2 
MVS System Programming Library: SYS 1.LOGREC Error Recording and 
OS/VS Environmental Recording Editing and Printing (EREP) Program. 



c 

o 

------- .. -... -.------...... ----

MVS Control Program 

Service 
Aid 

IFCD/POO 

Service 
Aid 

IFCEREP1 

Figure 11.9. SYS1.LOGREC Error Recording Overview 

o 

SYS1.LOGREC 

Archive of 
auxiliary data 
sets 

Chapter 11: Monitoring System Activity 11-29 



Summary 

11-30 OS/VS2 MVS Overview 

Figure 11.10 summarizes all the monitoring mechanisms described in this 
chapter. References for more detailed information are given for each one. 



-_ .. _._-_ .. ---- -------.---- ----

c 

o 

Monitoring Facility Use 

System Management Facilities (SMF) Accounting, Performance 

OS/VS2 MVS System Programming Library: System Management Facilities (SMF) 
OS/VS2 MVS System Programming Library: Initialization and Tuning Guide 
OS/VS2 MVS Performance Notebook 
Service Level Reporter (SLR) General Information Manual 

-------------------------------------------------------------------------------------------------------------

-~~~~-~~~~-~-~~:~~=~=~~-~~~~~~-~~~~~---------------------l------------------~=~-~-~~-~~=------------------
OS/VS2 MVS Resource Measurement Facility (RMF): General Information Manual 
OS/VS2 MVS Resource Measurement Facility (RMF): Reference and User's Guide 
OS/VS2 MVS System Programming Library: Initialization and Tuning Guide 
OS/VS2 MVS Performance Notebook 

~--------------------------------------------------------------------------------------------------------------
Dumps I Diagnosis 

SNAP dumps 

SVC dumps 
Stand-alone dumps 

ABEND dumps I 
----------------------------------------------------------- -------------------------------------------------

OS/VS2 MVS System Programming Library: Supervisor 
OS/VS2 MVS System Programming Library: Service Aids 
OS/VS2 MVS System Programming Library: Initialization and Tuning Guide 
OS/VS2 MVS Supervisor Services and Macro Instructions 
OS/VS2 MVS Diagnostic Techniques 
OS/VS2 Interactive Problem Control System (JPCS) User's Guide and Reference 

-------------------------------------------------------------------------------------------------------------
_::~~=~_~~~~~ _____________________________________________ l _____________ ~_e~!~~~~~~~_~~~~~~~i~ ____________ _ 

OS/VS2 MVS System Programming Library: Initialization and Tuning Guide 
OS/VS2 MVS Performance Notebook 
OS/VS2 MVS Diagnostic Techniques 
OS/VS2 MVS System Commands 

--------------------------------------------------------------------------------------------------------------
_~~=~~~~~~_~~~~~_~_~~~i~_~~~~l ________________________ ---l-------------~-~~~~~~~~~~-~~~~~~~~-------------
OS/VS2 MVS System Programming Library: Service Aids 
OS/VS2 MVS Performance Notebook 
System/370 Principles of Operation 

-------------------------------------------------------------------------------------------------------------
_~~:~~~~~_~~~ _____________________________________________ l ____________________ ~~~~~_~:i~ ___________________ _ 

OS/VS2 MVS System Programming Library: Initialization and Tuning Guides 
OS/VS2 MVS Diagnostic Techniques 
OS/VS2 MVS System Commands 

--------------------------------------------------------------------------------------------------------------
_:~~~~~~~~~~~_:_~~=~~~~~~~~i~~_~~_~~=~~~:_~~=~: ___________ L ___________________ ~~~~~_~~i~ ___________________ _ 

OS/VS2 MVS System Programming Library: Supervisor 
OS/VS2 MVS Diagnostic Techniques 
OS/VS2 MVS System Commands 
System/370 Principles of Operation 

-------------------------------------------------------------------------------------------------------------
SYS1.LOGREC Error Recording 1 Diagnosis 

----------------------------------------------------------- -------------------------------------------------
OS/VS2 MVS System Programming Library: Service Aids 
OS/VS2 MVS System Programming Library: SYSl.LOGREC Error Recording 
OS/VS2 MVS Diagnostic Techniques 
OS/VS Environmental Recording Editing and Printing (EREP) Program 

Figure ll-IO. MVS Monitoring Mechanisms - Summary 

Chapter ll: Monitoring System Activity 11-31 



c 

c-

11-32 OS!VS2 MVS Overview 



c 

o 

A 
ABEND 

dump 11-9 
macro instruction 11-9 

abnormal termination (see recovery termination 
management) 

ACCEPT function 3-18 
accepting work 5-1 
access method 1-4,8-4 

appendages 8-14 
conventional types 8-5 
description 8-14 
functions 8-12 
telecommunication types 8-6 
two categories 8-4 
VSAM 8-21 

access techniques 8-5 
accessible 

devices-checking for 4-12 
paths-checking for 4-12 

ACR (alternate CPU recovery) 1-7,9-4 
activity measurements of RMF 11-5 
additional job scheduling functions of JES 5-7 

deadline scheduling 5-7 
dependent job control 5-8 
execution batch scheduling (XBA TCH) 5-7 
operations planning and control (OPC) 5-8 
priority aging 5-8 

address 1-2 
address space 2-6 

activity measurements 11-5 
content of 4-6 
creation of 4-29 

when prevented by SRM 7-5,7-6 
improved performance I-to 
initialization 4-6 
locks for 6-11,6-12 
serialization 1-13 
swapping 1-10 

address space control block (see ASCB) 
address space control block extension (ASXB), in TCB 

structure 6-8 
address space identifier (ASID) 4-31 
addresses 0 and 1 10-5 
addressing 

in MVS 1-2 
scheme 1-2 

allocating 
internal readers during initialization 4-27 
I/O resources (see device allocation) 
storage 1-3 
virtual space during initialization 4-6 

allocation 
device 5-12 
dynamic 5-14 
forms of 5-13 
general functions 5-12 
influenced by SRM 7-6 
JES3 device 5-13 
job step 5-13 
major functions 5-13 

allocation routines 
called by initiator 5-13 

for JES2 5-5 
for JES3 5-6 

ALPAQ initialization 4-21 
alternate 

console, initializing 4-13 
CPU recovery (ACR) 1-7,9-4 
indexes 8-24,8-26 
parameter list 4-9 
SMP control data set 3-18 

AMDPRDMP service aid 11-11 
EDIT function 11-18 

AP (see attached processor) 

APF (authorized program facility) 
initializing 4-24 
list (IEAAPFxx), use during initialization 4-25 
system parameter use 4-25 
table, initializing 4-24 

APG (automatic priority group) 
controlled by SRM 7-6 
initialization 4-16 

appendages to access methods 8-14 
APPLY function 3-18 
ASCB (address space control block) 

containing dispatching priority 6-10 
in a dump 11-8 
in TCB structure 6-8 
initialization 4-28 

ASID (address space identifier) 4-31 
ASM (auxiliary storage manager) 2-13 

initializing 4-17 
locks 6-11,6-12 
trace activity measurements 11-6 

ASP main processors 1-15 
assembling system generation macros 3-5 
assigning 

a job class 5-1 
a job ID 4-31,5-4 
a master console 4-14 
resources to jobs 5-12 

ASXB (address space control block extension) 
in TCB structure 6-8 

A TT ACH macro instruction 9-2 
ATTACH routine processing 6-7 
to create TCBs 6-7 

attached processor (AP) 1-5,1-6,10-6 
reconfiguring 10-6 

attaching the initiator during initialization 4-27 
attribute list, volume (V A TLSTxx) 4-12 
attributes, initializing volume 4-12 
authorized program facility (see APF) 
automatic priority group (see APG) 
auxiliary storage 1-4 

allocating 5-12 
shortages detected by SRM 7-5 

auxiliary storage manager (see ASM) 
availability 1-5 

multiple virtual storage 1-6 
multiprocessing 1-5 

available 

B 

devices-checking for 4-11 
frame queue, used by SRM 7-5 
path, definition of 4-12 
paths-checking for 4-11 

back end of EXCP driver 8-18 
base, initialization of master scheduler 4-27 
basic access technique 8-5 
basic direct access method (BDAM) 8-6 
basic partitioned access method (BP AM) 8-6 
basic sequential access method (BSAM) 8-5 

Index 

basic telecommunication access method (BT AM) 8-6 
batch jobs, TCB structure for 6-8 
BDAM (basic direct access method) 8-6 
BLDL list 2-23 

initializing 4-24 
BLDLF system parameter use 4-24 
block multiplexer channels 1-4 
bottlenecks 

device allocation 1-12 
multiple locks 1-13 
reduction in 1-11 
service requests 1-13 
virtual input/output 1-12 

BP AM (basic partitioned access method) 8-6 
BSAM (basic sequential access method) 8-5 

Index 1-1 



BT AM (basic telecommunication access method) 8-6 
building a test system phase of MVS system IPO 3-12 

C 
CAW (channel address word) 8-16 
CCH (channel check handler) 1-7,9-5 
CCW (channel command word) 8-13 
centralized control of JES3 5-2 
change, bit 2-4,2-11,2-12 
changes, identifying prerequisite PTF or user 3-18 
changing 

the hardware configuration 10-2 
the MVS machine configuration 3-4 

channel 
block multiplexer 1-4 
function 8-1 
logical 4-16 
malfunction recovery 9-6 
reconfiguration hardware (CRH) 1-7,9-5 
roLt! in I/O operation 8-1 
scheduler 8-16 
set switching 9-5 

channel activity measurements 
channel address word (CA W) 
channel check handler (CCH) 
channel command word (CCW) 
channel paths, multiple 8-2 
channel program 

definition 8-13 

11-5 
8-16 
1-7,9-5 

8-13 

dynamically modifying (see also PCI) 
dynamically modifying 8-14,8-15 

channel reconfiguration hardware (CRH) 1-7,9-5 
channel set switching 9-5 
channel status word (CSW) 8-17 
channel use, planning for 3-3 
channel-to-channel (CTC) adapter 5-2,5-10,10-1 
checkpoints, installation planning 3-3 
CHNGDUMP command 11-10 
classes of jobs 5-1,5-5 
clearing storage during initialization 4-3 
CLOSE macro instruction processing 8-11 
closing the system catalog during initialization 4-14 
CLP A system parameter usage 4-17 
cluster 8-22 
CMD system parameter use 4-27 
CMS (cross-memory services) 

locks for 6-11,6-12 
cold start 

page data set initialization 4-17 
PLPA initialization 4-19 
VIO data set initialization 4-18 

command list (COMMNDxx) use during initialization 
4-27 

COMMNDxx use during initialization· 4-27 
common area 

of virtual storage 2-17 
space allocation 4-6 

common job queue 5-9 
common service area (CSA) 2-18 
communication between processors 10-3 

clock synchronization 10-4,10-5 
during initialization 10-4 
during operation 10-4 
during reconfiguration 10-4 
during recovery 10-4,10-5 
hardware-initiated 10-4 
MVS-initiated 10-3 
shoulder-tapping 10-4 
storage control 10-5 

communication line 8-2 
in JES2 environment 5-9 
in JES3 environment 5-11 

communications controller 8-2 
3704 9-6 
3705 9-6 

communications task 11-21 
communications task initialization 4-27 
concatenating 

libraries during initialization 4-22 

1-2 OS/VS2 MVS Oveniew 

PAGE parameter values 4-17 
concepts of job scheduling 5-1 
configurability commands 10-5 
configuration 

changing the MVS machine 3-4 
control panel 10-2 
for multiprocessor 10-2 
multi-access spool 5-8 

configuration-validity indicator 10-3 
configuring 

hardware components 10-2 
I/O devices 10-3 
storage 10-3 

console traffic 11-21 
control 

and status information 10-5 
area 8-23 
functions 

SMP 3-16,3-17 
interval 8-22 
within an MP 10-5 

control blocks 
ASCB and ASXB in TCB structure 6-8 
ASCB containing dispatching priority 6-10 
for an I/O operation 8-12 
locks for 6-11,6-12 
representing dispatch able units of work 6-1 
use of SVRB in interruption processing 6-4 

control program 
generating the MVS system 3-7 
options, selecting system 3-4 

control statements 
SMP function 3-15,3-16,3-18 
syntax checking 3-18 

conventional access methods 8-4,8-5 
conventional I/O path 8-1 
converter program 5-5 
creating 

an address space 4-28,4-29 
dispatchable units of work 6-7 

overview of 6-1 
SRBs 6-9 
TCBs 6-7 

CRH (channel reconfiguration hardware) 1-7,9-5 
cross-memory services (CMS), locks for 6-11,6-12 
CSA (common service area) 2-18 
CSW (channel status word)· 8-17 
CTC (channel-to-channel) adapter 

in JES2 5-2,5-9 
in JES3 5-2,5-11 
in network job entry facility (NJE) 5-9 

current MPL (see target MPL) 
CVIO system parameter usage 4-18 
cycle, in RMF 11-5 

D 
DASD volumes, initializing prior to system generation 3-5 
DAT (dynamic address translation) 2-6 
data control block (DCB) 8-7 
data extent block (DEB) 8-10 
data in dumps 

program 11-8 
system 11-8 

data link 8-2 
data management 8-4,8-6 
data organization 8-4 
data set 

definition 8-4 
organization 8-4 

data sets 
spin-off 5-15 
SYS1.DUMPxx 11-10 
SYS I.LINKLIB 4-12.4-14,4-22,4-24,4-25 
SYSl.LOGREC 4-2,9-6,11-27 
SYS1.LPALIB 4-19,4-20,4-22,4-24 
SYS1.NUCLEUS 4-2,4-15 
SYSl.PARMLIB 4-7,11-2,11-18 
SYS1.PROCLIB 4-27,5-5 
SYS1.SVCLIB 4-2,4-24,4-25 



c 

c 

o 

----_._-_._-_ ... _-_._---

SYS1.TRACE 11-25 
data space 8-22 
DCB (data control block) 8-7 
DO statement 5-12 
DDR (dynamic device reconfiguration) 1-7,9-6 
DDR swap 9-6 
deadline scheduling 5-7 
deadlocks, role of locks in preventing 6-11 
DEB (data extent block) 8-10 
defects, correcting program 3-15 
defining performance objectives, instructions on 3-3 
deleting information from SMPCDS 3-18 
demand paging 2-10 
demountable volumes, initializing 4-13 
dependent job control (DJC) 5-8 
DEQ macro instruction (see enqueuing) 
device 

allocation 1-12,5-12 
dynamic 5-14 
JES3 5-13 
job step 5-13 
general functions 5-12 
major functions 5-12,5-13 
purpose 5-12 

checking for accessible 4-12 
checking for available 4-11 
deallocation, major functions 5-13 
fencing 5-14 
generation 

I/O 3-4,3-7,3-8 
diagnosing errors 11-1 
DIE (disabled interruption exit) of EXCP driver 8-17 
direct 

data set organization 8-4 
specification of system parameters 4-9 

disabled state 6-2 
disabled trap 11-23 
dispatcher (see also dispatching work) 

locks for 6-11,6-12 
dispatching priorities 

establishing a range of 4-16 
under control of SRM 7-6 

dispatching work 6-10 
after interruption processing 6-7 
creating dispatchable units of work 6-7 

SRBs 6-9 
TCBs 6-7 

functions of dispatcher 6-10 
order of dispatching 6-10 
role of dispatcher 6-1 
when dispatcher receives control 6-10 

display reports of RMF 11-6 
display sessions of RMF 11-5 
distributed free space 8-24 
distribution libraries 1-16 

creating new 3-15 
modifying 3-4 
modifying with SMP 3-13 
MVS system IPO 3-8 
ordering IBM 3-4 

DJC (dependent job control) 5-8 
DLIBs (see distribution libraries) 
document, installation planning 3-1 
documentation 

MVS system IPO 3-9 
printing the MVS system IPO 3-11 

domain, providing guidelines for SRM's swap decision 7-3 
dump data sets 

SYSABEND 11-9 
SYSMDUMP 11-10 
SYSUD UMP 11-9 
SYS1.DUMPxx 11-10 

dumping facilities 11-8 
ABEND dump 11-9 
SNAP dump 11-9 
stand-alone dump 11-11 
SVC dump 11-10 

duplex data set initialization 4-18 
DUPLEX system parameter usage 4-18 
duplicate VOLSER, scanning for during initialization 4-12 

dynamic address translation (OAT) 1-3,2-6 
dynamic allocation 5-14 
dynamic device reconfiguration (DDR) 1-7,9-6 

E 
ECB (event control block) 8-12 
ECC (error checking and correction) 9-3 
EDIT function of AMDPRDMP 11-18 
effective real storage, limiting size of 4-3 
element of storage 10-3 
emergency-signal (EMS) SIGP instruction 10-4 
enabled state 6-2 
enabled trap 11-23 
enhanced function 1-14 

job entry subsystem 1-14 
system generation and initialization 1-15 
system operation 1-16 
virtual storage access method 1-16 

ENQ macro instruction (see enqueuing) 
enqueue activity measurements of RMF 11-6 
enqueuing 

overview of 6-1 
SRM control of users enqueued on resources 7-7 

ENTER CONFIG pushbutton 10-3 
entering and scheduling work 5-1 
entry-sequenced data set 8-21,8-25 
EREP (environmental recording editing and printing) 

program 11-28 
ERP (error recovery procedure) in post status 8-18 
error checking and correction (ECC) 9-3 
error diagnosis 11-1 
error events of SLIP 11-24 
error processing 

of hardware failures 9-1 
of software failures 9-1 

error recovery 1-6,9-1 
alternate CPU recovery (ACR) 1-8,9-3 
channel check handler (CCH) 1-7,9-5 
dynamic device reconfiguration (DDR) 1-7,9-6 
functional recovery routines (FRRs) 1-8,9-2 
machine check handler (MCH) 1-7,9-3 
missing interruption handler (MIH) 1-7,9-6 
percolation 1-8,9-2 
procedure in post status 8-18 
recovery management support (RMS) 1-7,9-3 
recovery termination management (RTM) 1-8,9-1 
task recovery 1-8 

errors, recovering from 9-1 
establishing recovery routines 1-8 
ESTAE 1-8 

macro instruction 9-2 
recovery routine 9-2 

ESTAI 
parameter 9-2 
recovery routine 9-2 

event tracing mechanisms 
generalized trace facility (GTF) 11-18 
master trace 11-21 
serviceability level indication processing (SLIP) 11-23 
system trace 11-16 

event control block (ECB) 8-12 
exact count measurements 11-5 
exclusive control of resources, requested on ENQ 6-10 
exclusively - managed devices of JES3 5-14 
EXCP driver 

back end 8-18 
disabled interruption exit (DIE) 8-17 
front end 8-15 

EXCP macro instruction 8-13 
EXCPVR macro instruction 8-16 
EXEC statement 5-12 
execution batch scheduling (XBA TCH) 5-7 
execution processing stage of JES 5-5 
extended subtask abend exit (see EST AE) 
extension to MVS starter system 3-7 
extensions and options 2-21 
external interruptions 6-2 

enabled/ disabled state 6-2 
interruption handler 6-4 

Index 1-3 



external mode in GTF 11-18 
external writer 5-8 

F 
failure of global JES3 processor 5-11 
fetch protection 2-3,2-4 
fix list (IEAFXxx), use during initialization 4-22 
FIX system parameter use 4-22 
fixed 

BLDL list 2-23 
link pack area (FLP A) 2-23 

initialization 4-22 
priority of APG 7-7 

flexibility 1-6 
FLP A (fixed link pack area) 2-23 

initialization 4-22,4-23 
fragmentation 1-2 
frame 1-3 

definition 2-1 
shortages 

detected by SRM 7-5 
front end of EXCP driver 8-15 
FRRs (see functional recovery routines) 
full production status, achieving 3-7,3-12 
function control statements, SMP 3-15,3-16,3-18 
functional recovery routines 1-8,9-2 

SETFRR macro instruction 1-8,9-2 
functions of job entry subsystem 5-1 

G 
generalized trace facility (GTF) 11-8 

receiving control from program interruption handler 
6-4 

summary 11-19 
use by SLIP 11-24 
use during installation planning 3-3 

generation 
I/O device 3-4,3-7,3-8 
planning for system 3-4 
system 3-3 
verifying system 3-7 

GET macro instruction 8-5,8-6 
global 

locks 1-13,6-11 
priority SRBs 6-10 

in dispatching order 6-10 
JES3 processor 5-2,5-10 

failure 5-11 
greater support for interactive users 1-9 
GTF (see generalized trace facility) 
GTFPARM of SYSl.PARMLIB 11-18 
GTRACE macro instruction 11-18 

H 
hardcopy log 11-21 
hardware 

configuration 10-2 
error processing 9-1 
instruction retry (HIR) 9-3 
recovery, communication during 10-5 

hardware-initiated communication 10-4 
clock synchronization 10-5 
during recovery 10-5 
storage control 10-5 

HASP II 1-14 
hierarchical order of locks 6-11,6-12 
high-speed stand-alone dump 11-11 
HIR (hardware instruction retry) 9-3 
hook concept 11-15 
HOOK macro instruction 11-18 
host processor 1-6,10-6 

I 
IBM distribution libraries 3-3 

modifying 3-4 
ordering 3-4 

14 OS/VS2 MVS Overview 

IEAAPFxx list, use of 4-25 
IEABLDxx use during initialization 4-24 
IEAFIXxx use during initialization 4-22 
IEAIPSxx lists 4-16 
IEALODOO use during initialization 4-20 
IEALP Axx use during initialization 4-24 
IEANUCOx nucleus load module 4-4 
IEAOPTxx list selection 4-16 
IEAOPTxx member of SYSl.PARMLIB, used to influence 

SRM decisions 7-1 
IEAPAKOO use during PLP A initialization 4-20 
IEASYSOO 4-9 
lEA VNIPO, relocating during initialization 4-4 
IFCDIPOO service aid 11-27 
IFCEREP 1 service aid 11-28 
IH routines (see interruption handler routines) 
IMPL (initial micro program load) 4-2 
improved performance 1-10 

device allocation 1-12 
mUltiple locks 1-13 
scheduler work area (SWA) 1-12 
service request blocks (SRBs) 1-13 
system resources manager (SRM) 1-10 
virtual input/output (VIO) 1-12 

index set 8-24 
indexed sequential access method (ISAM) 8-6 
indexed sequential data set organization 8-4 
initial micro program load (IMPL) 4-2 
initial program loader (IPL) 4-1 

bringing into storage 4-2 
functions of 4-3 

initial program loading 4-3 
initialization 

clearing storage during 4-3 
functions, preliminary 4-4 
instructions, list contaiuing 4-9 
of the link pack area (LP A) 4-19 
process overview 4-1 
relocating IPL during 4-4 
via RIMs 4-10 

initializing 
ALPAQ 4-20 
an address space 4-6 
an alternate console 4-13 
APF table 4-24 
ASCB 4-28 
ASM, rules for 4-18 
authorized program facility (APF) 4-24 
automatic priority group (APG) 4-16 
auxiliary storage manager (ASM) 4-17 
BLDL list 4-24 
communications task 4-27 
DASD prior to system generation 3-5 
demountable volumes 4-13 
duplex data sets 4-18 
fixed link pack area 4-22 
FLPA 4-22 
installation performance specification (IPS) 4-16 
I/O devices 4-11 
LSQA 4-5 
job entry subsystem (JES) 4-28 
logon 4-32 
master console 4-13 
master scheduler 4-1,4-25 
master scheduler base 4-27 
master scheduler region 4-27 
modified link pack area 4-24 
MVS system 4-1 
NIP transient area 4-5 
nucleus 4-1,4-4 
optional system tuning parameters 4-16 
page data sets 4-17 
page frame table entry 4-5 
pageable link pack area 4-19 
permanently resident volumes 4-12 
primary job entry subsystem 4-1 
private volumes (PRV) 4-13 
program manager 4-19 
public volumes (PUB) 4-13 
real storage 4-5 

c 

/ 

,/ 
! 
\ 



c 

o 

region control task 4-28 
reserved volumes 4-13 
SQA 4-5 
storage volumes (STR) 4-13 
subsystem interface (SSI) 4-27 
SVC table 4-24 
swap data sets 4-18 
system catalog 4-14 
system console 4-2 
system consoles 4-13 
system pack list 4-19 
system resources 4-1 
system resources manager (SRM) 4-16 
time-of-day (TOO) clock 4-27 
TSO 4-32 
VIO data sets 4-18 
volume attribute 4-12 

initiating 
JES 4-28 
the load procedure 4-2 

initiator 5-5 
associating classes with 5-5 
attaching during initialization 4-27 
attaching a task 4-31 
calls allocation routines 5-13 
in TSO initialization 4-32 
subroutine, and address space creation 4-31 

input 
processing 5-4 
stream 5-1 

input/output (see I/O request) 
input/output block (lOB) 8-12 
input/ output supervisor (see lOS) 
INSTALL 

macro instruction 3-13 
options 3-15 

SMP 3-15 
installation 

considerations, preliminary 3-1 
planning 3-1 

document 3-1 
facilities 3-3 
phases 3-2 

productivity option 3-7 
staffing 3-3 
standards and MVS system IPO 3-11 
tasks 3-2 
verification procedure (IVP) 3-7 

installation performance specification (IPS) 1-11,7-1 
initialization 4-16 
used to influence SRM decisions 7-1 

installation plan 
MVS system IPO 3-10 

phase 1 3-11 
phase 2 3-12 
phase 3 3-12 
phase 4 3-12 
phase 5 3-12 

installing 
PTFs 3-13,3-15 
selectable units 3-13,3-15 
SUs 3-13 
the MVS system 3-1 
user modifications 3-13,3-16 

integrating and testing phase of MVS system IPO 3-12 
integrity 1-13 

use of address space 2-3 
use of storage protect keys 2-3 

interactive problem control system (IPCS) 11-11 
interactive RMF sessions 11-5 
interactive users 1-9 
internal 

JCL use during initialization 4-28 
mode for GTF 11-18 
text 5-5 

internal readers 
allocating during initialization 4-27 
definition of 5-4 
IBM-supplied RDR 5-4 
STCINRDR 5-4 

TSOINRDR 5-4 
interpreter 

JES2 use 5-6 
JES3 use 5-5 

interprocessor communication OPC) 10-3 
MVS-initiated 10-3 

interruption handler routines 6-2,6-4 
switching control to 6-4 

interruption processing 6-2 
definition of interruption 6-2 
enabled/disabled for interruptions 6-2 
interruption handler routines 6-2,6-4 
overview of 6-1 
role of PSWs 6-2,6-4 
summary of 6-7 
types of interruptions 6-2 

interruptions 
(see also interruption processing) 
definition 6-2 
monitor call (MC) 11-18 
program event recording (PER) 11-23 

interval cycles in RMF 11-5 
interval measurements in RMF 

exact count 11-5 
sampling 11-5 
interval reports 11-6 

invalid page table entry 2-8 
invoking 

the JES procedure 4-28 
I/O allocation switches 10-3 
I/O device 

checking for accessible 4-12 
checking for available 4-12 
configuration 10-3 
generation 3-4,3-7,3-8 
initialization 4-11 

I/O interruption handler 8-17 
I/O interruptions 6-2 

enabled! disabled state 6-2 
interruption handler 6-4 

I/O loads, establishing 4-16 
I/O management function of SRM 7-6 
I/O operation summary 8-19 
I/O paths, multiple 8-2 
I/O request 

in user program 8-10 
processing 8-1 

lOB (input/output control block) 8-12 
lOS (input/ output supervisor) 

channel scheduler 8-16 
drivers 8-15 
function 8-14 
I/O interruption handler 8-17 
locks for 6-11,6-12 
post status 8-18 
receiving control from I/O interruption handler 6-4 
recovery 9-6 

IPC (see interprocessor communication) 
IPCS (interactive problem control system) 11-11 
IPL (initial program loader) 1-15,4-1,4-3 

bringing into storage during initialization 4-2 
functions of 4-3 
relocating during initialization 4-4 

IPO (installation productivity option) 3-7 
documentation 3-9 
installation plan 3-10 

phase 1 3-11 
phase 2 3-12 
phase 3 3-12 
phase 4 3-12 
phase 5 3-12 

memo to users documentation 3-9 
planning an installation documentation 3-9 
system and installation guide 3-10 
system contents documentation 3-9 
tuning guide 3-10 
uses for 3-8 

IPS (see installation performance specification) 
ISAM (indexed sequential access method) 8-6 
isolate and protect 1-13 

Index 1-5 



IVP (installation verification procedure) 3-7 

J 
JCL usage with MV8 system IPO 3-8 
JE8 (see job entry subsystem) 
JE82 (job entry subsystem 2) 1-14,5-1 

channel-to-channel (CTC) adapter 5-9 
converter use 5-5 
dependent job control (DJC) 5-8 
device allocation 5-13 
environment 

common work queue 5-1 
independent control 5-1 
JE82 node 5-8 
job networking 5-9 
multi-access spool configuration 5-8 
network 5-9 
network job entry (NJE) 5-9 
network job interface (NJI) 5-10 

features 5-8 
initiator use 5-5 
installation 5-1,5-3 
interpreter use 5-6 
job scheduling 5-5 
priority aging 5-8 

JE83 (job entry subsystem 3) 1-15,5-1 
centralized control 5-2 
channel-to-channel (CTC) adapter 5-3,5-11 
converter use 5-5 
deadline scheduling 5-7 
dependent job control (DJC) 5-8 
device allocation 5-13 
device fencing 5-14 
environment 

centralized control 5-2 
network job processing (NJP) 5-11 
network support PRPQ 5-11 

features 5-10 
global processor 5-2,5-11 

failure 5-11 
initiator use 5-6 
installation 5-11 
interpreter use 5-5 
job class group 5-6 
job networking 5-11 
job scheduling 5-6 
jointly - managed devices 5-14 
local processor 5-2,5-11 
managing devices 5-14 
network job processing (NJP) 5-11 
priority aging 5-8 

job 
control 

by JE82 5-5 
by JE83 5-6 

definition 5-1 
ID, assigning 4-31,5-4 
input 5-1,5-4 
input stream 5-1,5-4 
management (see job entry subsystem) 
output 5-1,5-8 

job class 5-1 
job class group 5-6 
job control language (JCL) statements 5-1 

DD statements 5-12 
EXEC statement 5-12 
JOB statement 5-12 

job entry subsystem (JE8) 1-14,5-1 
address space 4-28 
and address space creation 4-30 
as an acronym 5-1 
basic functions 5-4 
concepts 5-1 
converter use 5-5 
control statements 5-4 
different types 5-3 
execution batch scheduling (XBA TCH) 5-7 
external writer 5-8 
initializing 4-1 

1-6 OS/VS2 MVS Overview 

initiating 4-28 
internal reader 5-4 
interpreter use 5-5 
JE82 1-15,5-1 
JE83 1-15,5-1 
job networking 

network job entry (NJE) 5-9 
network job interface (NJI) 5-9 
network job processing (NJP) 5-11 
network support PRPQ for JE83 5-11 

multi-access spool configuration 5-8 
node, JE82 5-8 
operator communication with 5-4 
output processing 5-8 
priority aging 5-8 
priority of a job 5-1 
procedures, invoking 4-28 
processing 5-4 
purge processing 5-8 
queues 5-1 
stages of processing 5-4 

conversion 5-5 
execution 5-5 
input 5-4 
output 5-8 
purge 5-8 

start-up 4-27 
subsystem interface (88I) 1-15 
terminology 5-1 
use of 

converter 5-5 
initiator 5-5,5-6 
internal reader 5-4 
interpreter 5-5,5-6 
job scheduler function 5-5 

job entry subsystem 2 (see JE82) 
job entry subsystem 3 (see JE83) 
job output processing 5-8 
job priority 5-1,5-8 
job-related errors 11-8 
job scheduling 5-5,5-6 
job step 

allocation 5-13 
attached by initiator 5-6 
unallocation 5-13 

job-to-job transition 11.-1 

K 
key switch 2-5 
key-sequenced data set 8-21,8-24 

L 
last in - first out (LIFO) order in 8LIP 11-24 
layout of virtual storage 2-16 
level of user service, establishing 4-16 
limited production, proceeding into 3-12 
link list (LNKL8TOO or LNKL8Txx) creation or 

modification 4-22 
link pack area (LP A) 

fixed 2-23 
initialization 4-18 
library (8Y81.LPALIB) use during initialization 4-19 
modified 2-23 
pageable 2-17 

list, volume attribute 4-12 
LNK system parameter use 4-22 
load list use during initialization 4-20 
load procedure, initiating 4-2 
loading 

programs into virtual storage 2-14 
the nucleus 44 

for initialization 4-1 
local 

JE83 processor 5-2 
job queue (see scheduler work area) 
locks 1-13,6-11 
priority 8RBs 6-10 

in dispatching order 6-10 



c 

c' 

o 

-I -----_ .. _-------------

processor 5-3,5-11 
teleprocessing devices 9-6 

local system queue area (see LSQA) 
locating the nucleus for initialization 4-1 
lock manager 6-11 
locking 6-10 

definition of lock 6-10 
global locks 1-13,6-10 
hierarchical order of locks 6-11,6-12 
local locks 1-13,6-11 
overview of 6-1 
spin locks 6-11 
summary of locks 6-12 
suspend locks 6-11 

locks (see locking) 
logical channel, definition of 4-16 
logical reconfiguration 10-2 
logon initialization 4-32 
LOGON command, and address space creation 4-31 
loosely-coupled multiprocessing 1-5 

definition 10-1 
JES configurations 5-3 
traits of 10-1 

low-speed stand-alone dump 11-11 
LP A (see link pack area) 
LSQA (local system queue area) 2-18 

initialization of 4-5 
pages 4-18 

M 
machine check handler (MCH) 1-7,9-3 

control flow 9-4 
machine check interruptions 6-2 

disabled state 6-2 
enabled state 6-2 
interruption handler 6-4 

machine configuration, changing the MVS 3-4 
machine-readable IPO 3-9 
macro instructions 

ABEND 11-9 
ATTACH 6-7,9-2 
CLOSE 8-11 
DEQ 6-1 
ENQ 6-1 
ESTAE 9-2 
EXCP 8-9 
EXCPVR 8-16 
GET 8-5,8-6 
GTRACE 11-18 
HOOK 11-18 
OPEN 8-8 
PUT 8-5 
READ 8-5 
RECEIVE 8-7 
RESERVE 6-1 
SCHEDULE 1-13,6-9 
SDUMP 11-10 
SEND 8-7 
SETFRR 1-8,9-2 
SNAP 11-9 
SPIE 1-8 
STAE 9-2 
SYSEVENT 7-2 
system generation 3-5 
WRITE 8-6,8-7 

main storage (see real storage) 
malfunction-alert (MFA) interruption 10-5 
master catalog 1-16,8-27 
master console, initializin~ 4-13 
master JCL load module (MSTRJCL) 4-25,4-27 
master scheduler 

address space 4-31 
and address space creation 4-31 
initialization 4-1,4-25 
initialization overview 4-26 
initialization routine, attaching 4-27 
preliminary set-up 4-17 
region initialization 4-27 
wait routine 4-27 

master trace 11-21 
maximum MPL, providing guidelines for SRM's swap 

decisions 7-3 
MAXUSER parameter 4-31 
MC (monitor call) instruction 11-18 
MCH (see machine check handler) 
mean-time-to-wait (MTTW) group of APG 7-7 
memo to users documentation, MVS system IPO 3-9 
merging system parameters 4-9 
MFA (malfunction-alert) interruption 10-5 
migrating installations, instructions to 3-1 
MIH (missing interruption handler) 1-7,9-6 
minimum MPL, providing guidelines for SRM's swap 

decisions 7-3 
missing interruption handler (MIH) 1-7,9-6 
MLP A (see modified link pack area) 
model 158 or 168 multiprocessor 10-2 
modem (modulator/ demodulator) 8-2 
modified link pack area (MLP A) 2-23 

initialization 4-24 
system parameter use 4-2 

modified LP A list (IEALP Axx), use of during initialization 
4-24 

MODIFY command usage for RMF 11-6 
modifying IBM distribution libraries 3-4 
modulator/demodulator (modem) 8-2 
monitor call (MC) instruction, used in GTF 11-18 
monitor I RMF sessions 11-5 
monitor II RMF sessions 11-5 
monitoring mechanisms or tools 11-1 
monitoring mechanisms summary 11-31 
monitoring system activity 11-1 

dumping facilities 11-8 
ABEND dump 11-9 
SNAP dump 11-9 
stand-alone dump 11-11 
SVC dump 11-10 

resource measurement facility (RMF) 11-5 
serviceability level indication processing (SLIP) 11-23 
summary 11-30 
system management facilities (SMF) 11-2 
SYS1.LOGREC error recording 11-27 
trace facilities 11-14 

generalized trace facility (GTF) 11-18 
master trace 11-21 
system trace 11-16 

MOUNT 
attribute 

initializing 4-12 
purpose of 4-12 
rules for inclusion in VA TLSTxx 4-12 

command 9-6 
and address space creation 4-31 

MP (see multiprocessing) 
MP mode (see multiprocessing) 
MPLs (multiprogramming levels) 

providing guidelines for SRM's swap decisions 7-3 
system-wide, monitored by resource monitoring function 

of SRM 7-7 
MSTRJCL (master JCL load module) 4-27,4-28 

use during initialization 4-27 
MTTW (mean-time-to-wait) group of APG 7-7 
multi-access spool configuration 5-8 
multiple I/O paths 8-2 
mUltiple locks 1-13 
multiple virtual storage (MVS) 1-1 

addressing 1-2,1-3 
availability 1-5 
levels of addressing 1-3 
monitoring 11-1 
security and integrity 1-13 
sharing real storage 1-3 
summary 1-4 
time-sharing option (TSO) 4-32 

mUltiprocessing 1-4 
ACR recovery 9-4 
alternate CPU recovery 1-7,9-4 
availability 1-5 
channel set switching 9-5 
CRH recovery 9-5 

Index 1-7 



definition 10-1 
flexibility 1-6 
job entry subsystem 1-5,1-14,5-1 
loosely-coupled 1-5,10-1 
MCH recovery 9-3 
MP mode 10-3 
networking support 5-10,5-11,5-12,8-7 
tightly-coupled 1-5,10-1 

locking, overview of 6-1 
UP mode 10-3 

multiprocessing with JES 5-1 
multiprocessing systems, shared DASD, RESERVE macro 

instruction (see enqueuing) 
multiprocessor complex 1-5,1-6,9-5,10-1 
multiprocessor mode 10-3 
multiprocessors 10-2 

communication between 10-3 
with JES2 or JES3 5-3 

multiprogramming, controls provided by supervisor 6-1 
multiprogramming levels (see MPLs) 
mUltisystem unit 10-1,10-3 
MVS (multiple virtual storage) 1-1 

installing 3-1 
monitoring 11-1 
servicing 3-1 
tailoring 3-1,3-3 

MVS dumping facilities 11-8 
MVS installation 

considerations, preliminary 3-1 
planning phases 3-2 
tasks 3-2 

MVS machine configuration, changing the 3-4 
MVS monitoring 11-1 
MVS starter system 3-3 

contents of 3-7 
extension to 3-7 

MVS system 
control program, generating the 3-7 
initializing 4-1 
producing a new 3-4 
servicing 3-13 

MVS system IPO 3-7 
build a test system phase 3-12 
contents documentation 3-9 
contents of 3-8 
distribution libraries 3-8 
documentation 3-8 
installation guide 3-10 
installation plan 3-10 

phase 1 3-11 
phase 2 3-12 
phase 3 3-12 
phase 4 3-12 
phase 5 3-12 

integrating and testing phase 3-12 
JCL usage with 3-8 
memo to users documentation 3-9 
planning an installation documentation 3-9 
planning and preparing phase 3-11 
printing 3-11 
stabilizing the production system phase 3-12 
testing the production system phase 3-12 
testing with 3-8 
tuning guide 3-10 
uses for 3-8 

MVS-initiated communication 10-3 
during initialization 10-4 
during operation 10-4 
during reconfiguration 10-4 
during recovery 10-4 

MVS trace facilities 11-14 

N 
nanoseconds 1-4 
network 

architecture 8-7 
job entry (NJE) 5-9 
job interface (NJI) 5-9 
job processing (NJP) 5-11 

1-8 OS/VS2 MVS Oveniew 

support for JES3 (PRPQ) 5-11 
NIP (nucleus initialization procedure) 4-1 

preliminary initialization functions 4-4 
transient area, initializing 4-5 

NJE (network job entry) 5-9 
NJI (network interface) 5-9 
NJP (network job processing) 5-11 
non-preemptive units of work 6-5 
nontrivial transaction 1-10 
nucleus 

o 

initialization 4-1,4-4 
initialization procedure (NIP) 4-1 
load module (IEANUCOx) 4-4 
loading 4-1,4-4 
locating 4-1 

obtaining system parameters. 4-7 
OPC (see Operations Planning and Control) 
OPEN macro instruction processing 8-8 
opening the system catalog during initialization 4-14 
Operations Planning and Control (OPC) 5-8 
operator intervention, restrictions 4-10 
operator-started jobs, TCB structure for 6-8 
operator-supplied system parameters 4-9 
OPI= NO 4-10 
OPT (optional system tuning parameter) initialization 

4-16 
optional system tuning parameter (OPT) initialization 

4-16 
options 

installation productivity 3-7 
selecting system control program 3-4 
SMP 3-15 
SMP INSTALL 3-15 
SYSGEN 3-14 
SYSGEN INSTALL 3-15 

ordering IBM distribution libraries 3-4 
organization of data sets 8-4 
OUCB (user control block), building the 4-17 
output 

characteristics 5-1,5-8 
class 5-1 
data in an I/O operation 8-1,8-2 
data sets for 

ABEND dumps 11-9 
generalized trace facility (GTF) 11-19 
SNAP dumps 11-9 
SVC dumps 11-10 
SYS1.LOGREC error recording 11-28 

processing 5-8 
OUXB (user extension block), building 4-17 
overriding 

APG initialization values 4-16 
system parameter values 4-9 

overview of 

P 

initialization processing 4-1 
dumping facilities 11-13 
generalized trace facility (GTF) 11-20 
master tracing 11-22 
RMF processing 11-7 
serviceability level indication processing (SLIP) 11-26 
SMF processing 11-4 
system tracing 11-17 
SYS1.LOGREC error recording 11-29 

page 1-4 
definition 2-1 
fault 2-10 
stealing 2-11 
translation exception 2-10 

page data sets 2-13 
dynamically adding to the system 4-17 
initialization 4-17 
limiting the number of 4-17 

page frame table (PFT) 2-11 
entry (PFTE), initializing 4-5 

c 

/ 



c 

o 

---- --_._----.. _--. 

PAGE system parameter usage 4-17,4-18 
page table 2-8 

initializing 4-6 
pageable 

BLDL list 2-23 
link pack area (PLP A) 2-17 

initialization 4-19 
PAGEADD command usage 4-17 
page-in 2-10 
page-out 2-10 
page/swap data set activity 11-6 
paging 2-10 

activity measurements 11-5 
concepts example 2-2 
rates, planning for system 3-3 

PAGNUM system parameter usage 4-17 
parameter library 1-11 

storing options 1-15 
system initialization 1-15 

PARMLIB (see SYS I.P ARM LIB data set) 
partitioned data set organization 8-4 
paths 

checking for accessible 4-12 
checking for available 4-11 
multiple I/O 8-2 

PCI (program controlled interruption) 8-14,8-17 
pending condition 9-6 
PER events 11-23 
percolation 1-9,9-2 
performance 

expectations, documenting 3-3 
planning prior to installation 3-3 

permanent user libraries, modifying 3-13 
permanently resident volume, initializing 4-12 
phase plan, MVS system IPO 3-11 
physical 

addresses 10-5 
reconfiguration 10-3 

planning 
an MVS system IPO installation documentation 3-9 
and preparing phase of MVS system IPO 3-11 
document 3-1 
for system generation 3-4 
phases, installation 3-2 
to install MVS 3-1 

PLPA (pageable link pack area) 2-17 
directory use during initialization 4-19 
initialization 4-19 

PLPAD (pageable link pack area directory) use during 
PLP A initialization 4-19 

post processor of RMF 11-6 
post status 8-18 
preallocated storage 1-1 
preemptive units of work 6-5 
prefixed save area (PSA) 10-6 

layout in virtual storage 2-21 
status and control information 10-6 

prefixing 10-5 
preparing the system for work 4-1 
prerequisite PTF identification 3-18 
PRES volumes, initializing 4-12 
primary 

job entry subsystem, initializing 4-1 
system parameter list 4-9 

prime index 8-24 
printing the MVS system IPO tapes 3-11 
priority 5-1 

aging 5-8 
in JES 5-6,5-7 

private 
address space 2-6 
area of virtual storage 2-18 
area space allocation 4-6 
page table 2-8 
segment table 2-8 
volumes (PR V), initializing 4-13 

problem program mode 9-2 
procedure library 5-5 
processing I/O requests 8-1 
processing I/O requests in parallel (see device allocation) 

processor 
activity measurements 11-5 
addresses 10-5 
enabled/ disabled state 6-2 
loads, establishing 4-16 
management function of SRM 7-6 
relationships with JES 5-1 
use, planning for 3-3 
utilization monitored by SRM 7-7 

production 
status 

achieving 3-7,3-12 
system, stabilizing 3-12 
testing, system availability for 3-12 

productivity option, installation 3-7. 
profile preparation, workload 3-3 
program address space 1-2 
program controlled interruption (PCI) 8-14,8-17 
program data in dumps 11-8 
program event recording (PER) events 11-23 
program interruptions 6-2 

enabled/disabled state 6-2 
interruption handler 6-4 
monitor call (MC) type 11-18 
program event recording (PER) type 11-23 

program loading 2-14 
program manager initialization 4-19 
program status words (see PSWs) 
program update tapes (PUT) 3-15 
PSA (prefixed save area) 10-6 

layout in virtual storage 2-21 
SYSGEN 2-21 

PSWs (program status words) 
built by dispatcher 6-10 
current PSW 6-2 
in a dump 11-8 
indicating processor is enabled/disabled 6-2 
new PSW 6-2 
old PSW 6-2 
role of 6-2,6-4 
status and control information 10-5 
switching 6-4 

PTFs (program temporary fixes) 
definition of 3-15 
installing 3-13,3-15 
removing changes from the system 3-18 

public volumes (PUB), initializing 4-13 
publications, MVS system IPO 3-9 
purge processing 5-8 
PUT macro instruction 8-5 
PUT tapes 3-15 

Q 
QSAM (queued sequential access method) 8-5 
queued access 

GET macro instruction 8-5 
PUT macro instruction 8-5 

queued access technique 8-5 
queued sequential access method (QSAM) 8-5 
queue 

work 5-1 
job 5-5 

quick start 

R 

page data set initialization 4-17 
PLP A initialization 4-19 
VIO data set initialization 4-18 

RB (request block) 
in a dump 11-8 

RCT (see region control task) 
READ macro instruction 8-5 

BSAM 8-5 
BTAM 8-6 
TCAM 8-6 
VT AM in basic mode 8-7 

real (V =R) user region 2-18,2-20 
real storage 1-2 

Index 1-9 



addresses 1-3 
initializing 4-5 
limiting effective 4-3 
shortages of available frames detected by SRM 7-5 
shortages of pageable frames detected by SRM 7-5 

real storage management (RSM) 2-13 
locks for 6-11,6-12 
trace activity measurements 11-6 
receiving control from program interruption handler 

6-4 
real storage/processor/SRM activity measurements 11-6 
RECEIVE function 3-18 
RECEIVE macro instruction 8-7 
reconfiguration 10-2 

communication during 10-4 
logical 10-2 
physical 10-3 

recovery 
communication during 10-4,10-5 
error 9-1 

recovery management support (RMS) 1-7,9-3 
nucleus extension 2-21 

recovery routines 
device-dependent 9-6 
ESTAE 9-2 
ESTAI 9-2 
functional 9-2 
objectives of 9-1 
STAE 9-2 
STAI 9-2 
take SVC dumps 11-10 
task 9-2 
tracing when they run 11-18 
types of 9-1 

recovery termination 9-1 
recovery termination management (RTM) 1-8,9-1 

extended subtask abend exit (ESTAE) 1-8,9-2 
functional recovery routines (FRRs) 1-8,9-2 
percolation 1-8,9-2 
receiving control from machine check interruption 

handler 6-4 
receiving control from program interruption handler 

6-5 
receiving control from restart interruption handler 6-4 
specify program interruption exit (SPIE) 1-8 
task recovery 1-8 
when invoked 9-1 

reference bit 2-4,2-11 ,2-12 
region control task (RCT) 4-28 

and address space creation 4-30,4-31 
and TSO initialization 4-32 
in LSQA 2-18 
in system region 2-19 
in TeB structure 6-7 
initializing 4-28 

region initialization routine 4-27 
registers in a dump 11-8 
REJECT function 3-18 
relative record data set 8-21,8-25 
removing changes from the system 3-18 
RESERVE macro instruction (see enqueuing) 
reserved volume, initializing 4-12 
reserving devices via JES3 5-6,5-13 
resource 

allocation 5-12 
initialization modules (RIM) 4-1 
initialization via RIMs 4-10 
management facility, use during installation planning 

3-3 
measurement facility (RMF) 11-5 
monitoring function of SRM 7-7 

resource manager function of SRM 
description of 7-5 

II 0 management function 7-6 
processor management function 7-6 
resource monitoring function 7-7 
storage management function 7-5 

overview of 7-2 
resources manager, initializing the system 4-16 
Resource Measurement Facility (RMF) 

1-10 OS/VS2 MVS Overview 

forms of output 11-6 
interval cycles 11-5 
interval measurements 

exact count 11-5 
sampling 11-5 

processing summary 11-7 
reports 

display 11-6 
interval 11-6 
summary 11-6 

sessions 
monitor I 11-5 
monitor II 11-5 

restart interruption 6-2 
enabled state 6-2 
interruption handler 6-4 

RESTORE function 3-18 
restoring the MVS system IPO 3-11 
restricted functions, locating users of 4-24 
restricting operator intervention 4-10 
RIM (resource initialization module) 4-1 

initialization 4-10 
table and list initialization 4-24 

RMF (see Resource Measurement Facility) 
RMF measurements 11-5 
RMF processing summary 11-7 
RMFMON TSO command 11-6 
RMS (see recovery management support) 
rotate priority of APG 7-7 
RSM (see real storage management) 
RTM (see recovery termination management) 
RVs (see swap recommendation values) 

S 
sampling measurements in RMF 11-5 
SAR (storage address register) 2-9 
satisfying I/O requests and data management 8-1 
SCHEDULE macro instruction 1-13 

used to schedule SRB 6-9 
scheduler, initializing 4-1,4-25 
scheduler work area (SWA) 1-12,2-19 

JES2 use 5-6 
JES3 use 5-5 

scheduling work 5-1 
by a deadline 5-7 
by aging job priorities . 5-8 
by execution batch (XBA TCH) scheduling 5-7 
by JES2 5-5 
by JES3 5-6 
under centralized control 5-2 
under independent control 5-1 

SDUMP macro instruction 11-10 
secondary parameter list 4-9 
security 1-13 

isolate and protect 1-13 
user responsibility 1-14 
validate and authorize 1-14 

segment table 2-8 
initializing 4-6 
origin register (STOR) 2-9 

selectable units (SUs) 
installing 3-13 
modifying distribution libraries to accommodate 3-4 

selecting a master console 4-14 
selecting a job from the job queue 5-5 
SEND macro instruction 8-7 
sequence set 8-24 
sequential data set organization 8-4 
serializing the use of resources 6-10 

enqueuing 6-10 
locking 6-10 
overview of 6-1 

serially reusable resources, ensuring the freedom of 4-16 
service 

controlling the application of 3-13 
rate 

definition 7-4 
establishing 4-16 . 

request block (see SRBs) 

c 

\.. 

--- --.. --.-.-------- ... --~------ -"---_._--_ •.. _---_. 



o 

requests 1-13 
SCHEDULE macro instruction 1-13 
service request blocks 1-13 

units, definition 7-4 
service aids 

AMDPRDMP 11-10,11-11 
IFCDIPOO 11-27 
IFCEREPI 11-28 

Service Level Reporter (SLR) 11-3 
service level indication processing (SLIP) 11-23 

actions 11-24 
error events 11-24 
invoked by PCFLIH 6-5 
PER events 11-23 
SLIP command 11-23 
summary 11-26 
using SLIP traps 11-24 

sessions and transactions 1-9 
sessions of RMF 

monitor I 11-5 
monitor II 11-5 

SETFRR macro instruction 1-8,9-2 
shared control of resources, requested on ENQ 6-10 
shared DASD, RESERVE macro instruction (see 

enqueuing) 
shared storage, controlling in MP 10-5 
sharing real storage 1-3 
shoulder-tapping 10-4 
signal processor (see SIGP instruction) 
signaling a channel 8-1 
SIGP (signal processor) instruction 10-3 

emergency-signal 10-4 
external-call 10-4 
program-reset 10-4 
restart 10-4 
sense 10-4 
start 10-4 
stop 10-4 
stop-and-store-status 10-4 

single system image 10-2 
SIO (start I/O) instruction 8-16 
SLIP (see serviceability level indication processing) 
slot 1-4 

definition 2-1 
shortages 

detected by SRM 7-5 
SLR (see Service Level Reporter) 
SMF (system management facilities) 11-2 

processing overview 11-4 
SMFPRMxx member or SYS1.PARMLIB 11-2 
SMP (system modification program) 3-13 

control data set 3-18 
alternate 3-18 

control functions 3-16 
function control statements 3-15,3-16,3-18 
INSTALL options 3-15 
option 3-15 

SMPACDS control data set 3-18 
SMPCDS control data set 3-18 

deleting information from 3-18 
SNA (system network architecture) 8-7 
SNAP 

dump 11-9 
macro instruction 11-9 

software error processing 9-1 
special exits, in dispatching order 6-10 
specify program interruption exit (SPIE) macro instruction 

1-8 
providing error-handling routine 6-4 

specifying 
a job class 5-1 
an output class 5-1 
device parameters 5-12 
dump options 11-9 
system parameters 4-9 

SPIE macro instruction 1-8 
providing error-handling routine 6-4 

spin locks 6-11,6-12 
spin-off data sets 5-15 
spool 5-1 

multi-access 5-8 
spool data set 5-5 

reading and writing to 5-1,5-5 
SQA (system queue area) 2-17 

in a dump 11-8 
initialization 4-5 
shortages 

detected by SRM 7-5 
SRB mode 9-2 
SRBs (service request blocks) 1-13 

global 6-9 
in a dump 11-8 
in dispatching order 6-10 
local 6-9 
non-preemptive 6-5 
representing dispatchable units of work 6-7 

SRM (see system resources manager) 
SSI (see subsystem interface) 
stabilizing the production system phase of MVS system IPO 

3-12 
STAE 

macro instruction 9-2 
recovery routine 9-2 

staffing during installation 3-3 
STAI 

parameter 9-2 
recovery routine 9-2 

standards, revising installation 3-11 
stand-alone dump 11-11 
START command activates 

GTF 11-18 
JES 4-27 
RMF 11-6 
TeAM 4-32 
TSO 4-32 
VTAM 4-32 

START command, and address space creation 4-28,4-31 
start I/O (SIO) instruction 8-16 
START JES command 

encountering during initialization 4-28 
location of 4-27 

started task control (STC) 4-28 
routine, and address space creation 4-31 
routine, and its internal reader 5-4 
routine in TSO initialization 4-32 

starter system 
contents of 3-7 
extension to MVS 3-7 
MVS 3-3 

start-up, JES 4-28 
statements, SMP function control 3-15,3-16,3-18 
status and control information 10-5 
STC (see started task control) 
STCINRDR internal reader 5-4 
stealing pages, initiated by SRM 7-5 
STOR (segment table origin register) 2-9 
storage 

address register (SAR) 2-9 
configuring 10-3 
control, communication for 10-5 
element 10-3 
in a dump 11-8 
layout 2-16 
management function of SRM 7-5 
protect keys 2-3 

assignment of 2-4,2-5 
requirements, planning for 3-3 
segments of 10-3 
volumes (STR), initializing 4-13 

STORE STATUS procedure 11-11 
stored record 8-19 
subpools 229/230 2-19 
subsystem interface (SSI) 1-15 

initialization 4-27 
summary of 

generalized trace facility (GTF) 11-20 
master trace processing 11-22 
MVS dumping services 11-13 
MVS monitoring mechanisms 11-30 
RMF processing 11-7 

Index 1-11 



SLIP processing 11-26 
SMF processing 11-4 
system trace processing 11-17 
SYS1.LOGREC error recording 11-29 

summary reports of RMF 11-6 
supervising the execution of work (see supervisor) 
supervisor 

creating dispatchable units of work 6-7 
interruption processing 6-2 
mode 9-2 
overview of functions 6-1 

supervisor call interruption (see SVC interruption) 
SUPERZAP statements 3-16 
SUs (see selectable units) 
suspend locks 6-11,6-12 
SVC dump 11-10 

output 11-10 
program using 11-10 

SVC interruptions 6-2 
enabled state 6-2 
interruption handler 6-4 

SVC request block (SVRB), used in SVC interruption 
processing 6-4 

SVC table, initializing 4-24 
SVCs, preemptive and non-preemptive 6-5 
SVRB, used in SVC interruption processing 6-4 
SW A (scheduler work area) 1-12,2-19 

JES2 use 5-6 
JES3 use 5-5 

SWAP command 9-6 
swap data sets 2-13 

dynamically adding to the system 4-18 
initialization 4-18 
limiting the number of 4-18 

swap recommendation values (RVs) 
provided by I/O management function of SRM 7-6 
provided by workload manager function of SRM 7-4 
used in SRM's swap analysis 7-3 

SWAP system parameter usage 4-18 
swapping 1-10,2-11 

in reaction to storage shortages 7-6 
influenced by I/O management function of SRM 7-6 
influenced by processor management function of SRM 

7-6,7-7 
influenced by workload manager function of SRM 7-4 
swap analysis done by SRM 7-3 
the system resources manager (SRM) 1-10 

switching PSWs 6-3 
synchronizing time-of-day (TOD) clocks 10-5 
syntax checking control statements 3-18 
SYSEVENT macro instruction, used to communicate with 

SRM 7-2 
SYSGEN INSTALL option 3-15 
SYSGEN option 3-14 
SYSIN data (see spool) 
SYSJOBQE, elimination of 1-12 
SYSOUT data (see spool) 
SYSP (system parameter) 4-9 
SYSRES, mounting for initialization 4-2 
system activity measurement facility, use during installation 

planning 3-3 
system activity, monitoring 11-1 
system allocation routines 

used by JES2 5-13 
used by JES3 5-14 

system and installation guide, MVS system IPO 3-10 
system area 

of virtual storage 2-17 
space allocation 4-6 

system catalog 
closing during initialization 4-14 
format of 8-26,8-27 
initializing 4-14 
opening during initialization 4-14 

system components used in paging 2-13 
system console initialization 4-2,4-13 

system parameters for 4-14 
system constants, variables used to establish 4-16 
system contents documentation, MVS system IPO 3-9 
system control program 

1-12 OS/VS2 MVS Overview 

generating the MVS 3-7 
options, selecting 3-4 

system data in a dump 11-8 
system events monitored 

error events 11-24 
program event recording (PER) events 11-23 

system generation 1-16,3-3,3-4 
distribution libraries 1-16 
executing the 3-5,3-6 
initializing DASD volumes prior to 3-5 
macro instructions 3-5 

assembling 3-5 
option 3-14 
planning for 3-4 
stages 3-5 
verifying 3-7 

system initialization 1-16,4-1 
system management facilities (SMF) 

overview 11-4 
processing 11-2 

system mode 10-3 
system modification program (see SMP) 
system network architecture (SNA) 8-7 
system operation 1-16 
system operator 

activity during initialization 4-9 
communicating with JES 5-4 
parameter specification 4-9 
performs logical reconfiguration 10-2 
taking a stand-along dump 11-11 

system pack list (IEAPAKOO) 
initialization 4-20 
use during PLP A initialization 4-20 

system paging rates, planning for 3-3 
system parameters 

for system console initialization 4-14 
lists 4-9 
merging 4-9 
obtaining 4-7 
specifying 4-9 
table 4-7 

system queue area (see SQ A) 
system region 2-19 
system residence volume, initializing 4-2 
system resources, initializing 4-1 
system resources manager (SRM) 1-10 

activity, RMF supplied 11-6 
and address space creation 4-28,4-31 
communicating with SRM 7-2 
control 7-3 

description of 7-3 
overview of 7-2 
swap analysis 7-3 

how SRM meets its objectives 7-1 
improved performance 1-10 
initializing 4-16 
installation performance specification (IPS) 1-11 
locks for 6-11,6-12 
major functional areas of SRM 7-2 
objectives of 1-11,7-1 
OPT member 1-11 
overview 1-11 
resource manager 7-5 

I/O management 7-6 
processor management 7-6 
resource monitoring 7-7 
storage management 7-5 

swapping 1-10 
trace activity measurements 11-6 
user control block, building the 4-17 
workload manager 7-4 

system trace 11-16 
events traced 11-16 
overview 11-17 

system/370 model 158 or 168 multiprocessor 10-2 
SYSABENO DO statement use 11-9 
SYSMDUMP DO statement use 11-10 
SYSUDUMP 00 statement use 11-9 
SYS1.DUMPxx data set 11-10 
SYS I.LINKLIB 



C
· 

" 

j 

o 

a critical data set 4-12 
source of MCPA modules 4-22 
source of MSTRJCL 4-25 

SYS1.LOGREC 
error analysis 9-3 
error recording 11-27 
opening during initialization 4-2 

SYS I.LPALIB 
members in a fix list 4-22 
source of MLP A modules 4-24 
source of LP A modules 4-19 

SYS1.NUCLEUS, contents of 4-2 
SYS I.P ARMLIB 

GTFPARM member, used for GTF 11-18 
IEAOPTxx member, used to influence SRM decisions 

7-1 
SMFPRMxx member, used for SMF 11-2 
usage during initialization 4-7,4-9 

SYS I.PROCLIB 4-27,5-5 
SYS l.SVCLIB 4-2 
SYS1.TRACE 11-25 

T 
table and list initialization, RIM 4-24 
tailoring the MVS system 3-1,3-3,4-1 

statements to 3-5 
target MPL 

computed by SRM 7-3 
providing guidelines for SRM's swap decisions 7-3 

task 
control block (see TCBs) 
mode 9-2 
recovery 1-8 

extended subtask abend exit (ESTAE) 1-8,9-2 
specify program interruption exit (SPIE) 1-8 

recovery routines 9-2 
tasks, MVS installation 3-2 
TCAM (telecommunication access method) 8-6,8-7 

GET macro instruction 8-6 
in TSO initialization 4-32 
PUT macro instruction 8-6 
READ macro instruction 8-6 
WRITE macro instruction 8-6 

TCBs (task control blocks) 6-7 
in a dump 11-8 
in dispatching order 6-10 
representing dispatchable units of work 6-7 
structure 6-8 

telecommunication 
access methods 

BTAM 8-6 
TCAM 8-6,8-7 
VTAM 8-7 

control unit 8-2 
I/O path 8-2 

temporary data sets, handling 1-12 
termimil I/O 1-10 
terminal monitor program (TMP) 

in TSO initialization 4-32 
terminology of 

I/O request processing 8-1 
job scheduling 5-1 

testing 
for accessibility of devices 4-12 
the production system phase of MVS system IPO 3-12 
with MVS system IPO 3-8 

tightly-coupled multiprocessing 1-5 
definition 10-1 
locking, overview of 6-1 
traits of 10-1 

time-sharing option (TSO) 1-9 
initialization 4-32 
initiating 4-1 
internal reader 5-4 
sessions and transactions 1-9 
swapping 1-10 
terminalI/O 1-9 

time-of-day (TOO) clocks, synchronizing 10-5 
TLB (translation lookaside buffer) 2-10 

TOO (time-of-day) clocks 
initializing 4-27 
synchronizing 10-4 

TRACE command 
for activating trace facilities 11-14 
for master trace 11-21 
for system trace 11-16 

trace facilities 
generalized trace facility (GTF) 11-14,11-18 
master trace 11-14,11-21 
system trace 11-14,11-16 

trace overview 
generalized trace facility (GTF) 11-20 
master trace 11-22 
system trace 11-17 

trace records 11-20 
trace table for 

master trace 11-21 
system trace 11-16 

transactions 1-9 
planning for expected 3-3 

transient area, initializing 4-5 
translation lookaside buffer (TLB) 2-10 
trap, used in SLIP 11-23 
trivial transactions 1-10 
TSO (see time sharing option) 
TSO initialization 4-32 
TSO users, TCB structure for 6-8 
TSOINRDR internal reader 5-2 
tuning guide, MVS system IPO 3-10 
two-level table lookup 2-9 

U 
UCB (unit control block), initializing I/O device 4-11 
UCM (unit control module table), use during initialization 

4-13 
UIC (see unreferenced interval count) 
unavailable devices, description of 4-12 
uniprocessing, MCH recovery 9-3 
uniprocessor mode 10-3 
unique physical addresses 10-5 
unit control block (see UCB) 
unit control module table (see UCM) 
unreferenced interval count (UIC) 2-11 
UP mode (see mUltiprocessing) 
use attribute, initializing 4-12 
user control block (OUCB), building the 4-17 
user exit routines for RMF 11-6 
user exits (see task recovery) 
user extension block (OUXB), building the 4-17 
user libraries, modifying with SMP 3-13 
user modifications, installing 3-13,3-16 
user program functions in I/O operation 8-7 
user service, establishing the level of 4-16 

v 
VAL system parameter use 4-12 
valid configuration 10-3 
validate and authorize 1-14 
VARY command 10-2 
varying resources online and offline 10-2 
VATLSTxx 4-12 
verification procedure, installation 3-7 
verifying the system generation 3-7 
VIO (see virtual input/output) 
VIO data set initialization 4-18 
virtual (V=V) user region 2-18,2-19 
virtual addresses 1-3,2-6,2-7 
virtual input/output 1-12 

data set initialization 4-18 
description 8-20 
during system generation 1-12 

virtual space allocation during initialization 4-6 
virtual storage 

access method (VSAM) 1-16 
areas 2-15 
in MVS 2-1 

virtual storage access method (see VSAM) 

Index 1-13 



virtual storage manager (VSM) 2-13 
and address space creation 4-31 
locks for 6-11,6-12 

virtual telecommunications access method (VT AM) 
basic mode 8-7 

READ macro instruction 8-7 
WRITE macro instruction 8-7 

locks for 6-11,6-12 
record mode 8-7 

RECEIVE macro instruction 8-7 
SEND macro instruction 8-7 

used in TSO initialization 4-32 
volume attribute list (VATLSTxx) 4-12 
volume attributes, initializing 4-12 
volume serial numbers, scanning for duplicates 4-12 
VSAM (virtual storage access method) 1-16 

concepts 8-21 
entry-sequenced data set 8-25 
key-sequenced data set 8-24 
master catalog 8-27 
relative record data set 8-25 

VSM (see virtual storage manager) 
VT AM (see virtual telecommunications access method) 

W 
warm start 

page data set initialization 4-18 
PLP A initialization 4-19 
VIO data set initialization 4-18 

window 8-20 
work, scheduling 5-1 

1-14 OS/VS2 MVS Overview 

workload 
activity measurements 11-6 
manager function of SRM 

description of 7-4 
overview of 7-2 

profile preparation 3-3 
WRITE macro instruction 8-5,8-6,8-7 

BSAM 8-5 
BTAM 8-6 
TCAM 8-6 
VT AM in basic mode 8-7 

writer, external 5-8 

X 
XBATCH (execution batch) routine 5-7 

1 
158 or 168 mUltiprocessor 10-2 

2 
24-bit addressing 1-2 

3 
3031 attached processor 10-1,10-6 
3033 multiprocessor complex 1-5,1-6,9-5,10-1 
3704, 3705 communications controllers 9-6 



c' 

o 

OS/VS2 MVS Overview 

GC28-0984-1 

You can use this form to submit your opinions about 
the kinds of information you would like published in 
this manual. It is understood that IBM and its affiliated 
companies shall have the non-exclusive right, in their 
discretion, to use, copy, and distribute all submitted 
information or maten'al, in any form, for any and all 
purposes, without any obligation to the submitter, and 
that the submitter has the unqualified right to submit 
such information or material upon such basis. 

MVS OVERVIEW 

INPUT 
FORM 

Your views about this publication might help improve its 
usefulness; this form will be sent to the author's depart
ment for appropriate action. Using this form to request 
system assistance or additional publications will delay 
response, however. For more direct handling of such 
requests, please contact your IBM representative or the 
IBM Branch Office serving your locality. 

If you wish a reply, give your name and mailing address: 

What is your occupation? _________________________________ _ 

Number of latest Technical Newsletter (if any) concerning this publication: _______________ _ 

Please answer the following questions. 

(") What did you like best about this manual? 
c: 
.-t 

g 

" o 
0: 
l> 
0' 
:;:) 
cc 
r 
:;' 
CII 

What did you like least about this manual? 

What material would you like added? 

What material would you like deleted? 

Why did you read this manual? 

Please supply your additional opinions in the space below. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward you comments.) 



GC28-0984-1 

Overview I nput Form 

Fold and tape Please Do Not Staple 

IIIIII 
BUSINESS REPLY MAIL 

FI RST CLASS PERMIT 40 ARMONK, NEW YORK 

Fold and tape 

------- - ------... _ .... -- - - ------------,,-
International Business Machines Corporation 
Data Processing 0 ivision 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Department 058, Building 706-2 
PO Box 390 
Poughkeepsie, New York 12602 

Please Do Not Staple 

1133 Westchester Avenue, White Plains, N.V. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N.V., U.s.A. 105~1 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains,. N.V., U.S.A, 10601 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

FOld and tape 

/' 

0 ,--
en -< en 
I'J 

~ 
< en 
0 
< 
CD 
~ 

< 
<D' 
=E 

"tJ 
~ 

:;' 
.-+ 
CD 
C. ~ 
:;' 
c en .. 
~ 

G) 
n 
I'J 
00 
6 
CO 
00 
f" .... 



c· 

) 

Q) 

o z 

---_ .• ---_. __ •. _ ... -- ... ---

OSjVS2 MVS Overview 
GC28-0984-1 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, 
and operators of IBM systems. This form may be used to communicate your views about this 
publication. They will be sent to the author's department for whatever review and action, if any, 
is deemed appropriate. 

IBM may use or distribute any of the information you supply in any way it believes .appropriate 
without incurring any obligation whatever. You may, of course, continue to use the information 
you supply. 
Note: Copies of IBM publications are not stockedat the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, 
to your IBM representative or to the IBM branch office serving your locality. 

Possible topics for comments are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If comments apply to a Selectable Unit, please provide the name of the Selectable Unit ___ . 

If you wish a reply, give your name and mailing address: 

Please circle the description that most closely describes your occupation. 

(Q) (U) (X) (Y) 

Customer In.stall System System System 
Mgr. Consult. Analyst Prog. 

(Z) (F) 

Applica. System 
Prog. Oper. 

(I) 

I/O 
Oper. 

(L) 

Term. 
Oper. 

~ 
L:J 

(S) (P) (A) (B) (C) (D) (R) (G) (J) (E) (N) (T) 

IBM System Prog. System System Applica. Dev. Compo System I/O Ed. Cust. Tech. 
Eng. Sys. Analyst Prog. Prog. Prog. Prog. Oper. Oper. Dev. Eng. S~aff 

Rep. Rep. Rep. 

Number of latest Newsletter associated with this publication: _____________ _ 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, 
an IBM office or representative will be happy to forward your comments.) 



GC28-0984-1 

Reader's Comment Form 

Fold and tape Please Do Not Staple 

I II II I 

BUSINESS REPLY MAIL 

FIRST CLASS PERMIT 40 ARMONK, NEW YORK 

Fold and tape 

----------------. -~-- - -.-.----_ .. -
-~-y-

International Business Machines Corporation 
Data Processing 0 ivision 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Department 058, Building 706-2 
PO Box 390 
Poughkeepsie, New York 12602 

Please Do Not Staple 

1133 Westchester Avenue, White Plains, N.Y. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains, N.Y., U,S.A. 10601 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

Fold and tape 

o 
S. 
g 
." 
o a: 
:> 
0' 
:l 

OQ ,... 
5' 
III 

'---

/'" 
I 
I 

0 
en -< en 
~ 

s: 
< en 
0 
< 
CD .., 
< 
(ii' 

:E 

." .., 
5' 
~ 
CD 
c. 

1. 
5' 

~ 
en "l 
~ 

G> 
n 
~ 
IX) 

6 
CO 
IX) 

~ 
~ 


