
Systems

c·····
. ..,-/'

GC26-3875-1
File No. 5370-30

OS/VS2 MVS Data Management
Services Guide

Release 3.8

--- ------ - ---- ~--- ~ --.-- - - -----_ ----- -'-

This publication was produced using the
IBM Document Composition Facility

(program number 5748-XX9)
and the master was printed on the

IBM 3800 Printing Subsystem.

Second Edition (October 1980)

This edition, as amended by technical newsletter GN26-0996,
applies to Release 1.0 of Data Facility Device Support, Program
Product 5740-AM7, as well as to Release 3.8 of OS/VS2 MVS and to
any subsequent releases until otherwise indicated in new
editions or technical newsletters.

The changes for this edition are summarized under "Summary of
Amendments" followins the preface. Specific changes are
indicated by a vertical bar to the left of the change. These
bars will be deleted at any subsequent republication of the page
affected. Editorial changes that have no technical significance
are not noted.

Changes are periodically made to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable
and current.

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs),
programming, or services that are not announced in your country.
Such references or information must not be construed to mean
that IBM intends to announce such IBM products, programming, or
services in your country.

Publications are not stocked at the address given below;
requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1976,
1980

PREFACE

(
'-~---

"\ C
'

This book describes all IBM data management except for VSAM
(virtual storage access method) and specialized applications
such as the time sharing option (T50), graphics, teleprocessing,
optical character readers, optical reader-sorters, and magnetic
character readers. These specialized applications are described
in separate publications that are listed in IBM System/370
Bibliography,GC20-0001. To learn about VSAM or to wri-t:e programs
that create and process VSAM data sets, refer to:

• Planning for Enhanced V5AM Under 05/V5, GC26-3842, which
introduces VSAM and describes its concepts and functions.

• 05/V5 Vi rtua I 5torl'lgf! Access Method (V5A~1) Pro.ru:.ammer' 5
Guide, GC26-3838, which describes how to create VSAM data
sets and code the macro instructions required to process
them.

• 05/V52 Access Method 5ervices, GC26-3841, describes the
service program commands used to manipulate V5AM data sets.

• 05/ V 5 Vir t u a 1St 0 rag e A c c e s s M.e tho d (V 5 AM) 0 p t.i 0 nsf 0 r
Advanced Applications, GC26-3819, which describes
applications not required in the normal use of VSAM.

If you know how to write assembler-language programs and use job
control statements, you can use this book and 05/V52 MVS Data
Management Macro Instructions, GC26-3873, to write programs that
create and process data sets. To use this book you must have
basic knowledge of the operating system as contained in OS/V52
Release 3 Guide, GC28-0770; of assembler language as described
in 05/VS-DOS/VS-VM/370 Assembler LanQuage, GC33-4010; and of job
control language (JCL) as explained in OS/VS2 JCL, GC28-0692.

This book has three parts: "Part 1: Introduction to Data
Management" introduces you to the characteristics of data sets,
how you name them, how the system catalogs them, and how you
format the records in them. The format of tracks on a
direct-access storage device is explained briefly.

Part 1 also describes the data control block (DCB) and the
information it supplies to the operating system. Special
processing routines that you specify in the DCB macro
instruction are also explained in this section.

In "Part 2: Data Management Processing Procedures" there is an
explanation of data-processing techniques that includes the
macro instructions for the queued access technique and the basic
access technique and the macro instructions for analyzing input
and output errors. The section on data-processing techniques
also tells how to select an access method and how to begin and
end processing of a data set.

The section "Buffer Acquisition and Control" in Part 2 explains
three different methods you can use to obtain buffers and the
macro instructions you use with each method. This section also
describes ways to control buffers: simple buffering for the
queued access technique, direct buffering and dynamic buffering
for the basic access technique. In addition, for the queued
access technique, there is an explanation of the four modes of
moving the records in virtual storage: move mode, data mode,
locate mode, and substitute mode. Macro instructions for
controlling buffers are described here, too.

The next four sections of Part 2 concern processing data sets of
four different types: a sequential data set, a partitioned data
set, an indexed sequential data set, and a direct data set. They
explain the organization of the data set= and the macro
instructions used to process them. In the examples the macro

Preface iii

instructions are coded in just enough detail to make the
examples clear. For a complete description of the operands and
options available, see OS/yS2 MVS Data MaJlQggment~~
Instructions, GC26-3873. "Part 3: Data Set Disposition and Space
Allocation" tells you how to figure the amount of space you need
for a data set on a direct-access storage device and how to
request that space in your JCl DD statement. You are given
special directions for allocating space for a partitioned data
set and an indexed sequential data set. Part 3 also tells how to
indicate in the JCL DD statement the status of the data set at
the beginning of and during processing and how to indicate what
you want the system to do with the data set when processing has
terminated. You also are told how to use the DO statement to
route the data set to a system output writer, to concatenate
data sets, to catalog data sets, and to protect confidential
data sets.

Appendix A d~scribes data set labeling. Appendix B explains
control characters you can use to control card punches and
printers. A glossary of acronyms and abbreviations used in this
book and the index follow Appendix B.

The following manuals are referred to in the text.

• OS/VS Message Library: VS2 Systp.m Codes, GC38-1008

• OS/VS Message Library: VS2 System Messagp.s, GC38-1002

• OS/VS2 JCL, GC28-0692

• OS/VS2 MVS CVOL Processor, GC26-3864

• OS/VS2 MVS Resource Access Control Facility (RACF): General
Information Manual, GC28-0722

• OS/VS2 Supervisor 'Services and Macro Instruction§, GC28-0683

• OS/VS2 System Programming Library: Data Management,
GC26-3830

• OS/VS2 System Programming LibrarV: Debugging Handbook,
Volume 1, GC28-0708

• OS/VS2 System Programming Library: Debugging Handbook,
Volume 2, GC28-0709

• OS/VS2 System Programming Library: Debugging Handbook!
Volume 3, GC28-0710

• OS/VS2 System Programming Library: Initialization and Tuning
Guide, GC28-0681

• OS/VS2 System Programming Library: Service Aids, GC28-0633

• OS/VS2 System Programming Library: Supervisor, GC28-0628

• OS/VS2 System Prpgramming Library: Syst-em Generation
Reference ,. GC26-3792

• IBM 3800 Printing Subsystem Programmer's Guide, GC26-3846

• IBM 3890 Document PrQcessor Machine and Programming
Description, GA24-3612

• OS Data Management Services and Macro Instructions for IBM
1419/1275, GC21-5006

• OS and OS/VS Programming SY.eB..Q..rt for the IBM 3505 Card
Readp.r and IBM 3525 Card Punch, GC21-5097

• OS/VS IBM 3886 Optical Character Reader Modell Reference,
GC24-5101

; v OS/VS2 Data Management Serv; ces Gu; de

,

•

(

-----_ .. _. __ .. _

• OS/VS Mass storage System (MSS) Planning Guide, GC35-0011

• OS/VS Mass Storage System (MSS) Services: General
Information, GC35-0016

• OS/VS Tape Labels, GC26-3795

• OS/VS2 MVS Utilities, GC26-3902

In this manual, any references made to an IBM program product
are not intended to state or imply that only IBM's program
product may be used; any functionally equivalent program may be
used instead. This manual has references to the following IBM
program products:

• RACF-Resource Access Control Facility Program Number,
5740-XXH

Preface v

Page of GC26-3875-1 as updated 3 April 1981 byTNl GN26-0996

SUMMARY OF AMENDMENTS

I DATA FACILITY DEVICE SUPPORT - 3375 SUPPORT

The information to support the IBM 3375 is included. For more
information, see Introduction to 3375 Direct Access Storage,
GA26-1666.

An entry for the 3375 has been added to the figures
"Direct-Access Storage Device Capacities" and "Direct-Access
Device Overhead Formulas."

OS/VS2 MVS DATA FACILITY DEVICE SUPPORT (5740-AM71

SERVICE CHANGES

The information to support the IBM 3380 is included. For
additional information, see Introduction to 3380 Direct Access
Storage, GA26-1662.

An' entry for the 3380 has been added to the figures
"Direct-Access Storage Device Capacities" and "Direct-Access
Device Overhead Formulas."

In "Ba~ic Access Technique" the description of issuing the CHECK
macro to check a READ or WRITE has successfully completed has
been updated.

"Retrieving a Sequential Data Set" has been updated concerning
PURGE HALT I/O not being used to terminate outstanding I/O.

In "Updating a Sequential Data Set" the description of
overlapping I/O operations has been updated.

In "Indexed Sequential Buffer and Work Area Requirements" the
field HIRPD has been replaced by DS2HIRPR in the calculation of
SMSW.

In "Tape-to-disk update-direct data set" a qualification has
been added concerning updating variable length records.

"Routing Data through the system input and output streams" has
been updated concerning SYSIN support for undefined records.

In "Concatenating sequential and partitioned data sets" the
maximum number of data sets has been updated. Also, the
concatenation of unlike data sets with RPS considerations has
been updated.

OS/VS2 MVS 3800 ENHANCEMENTS

Information to support the 3800 Enhancements is included in the
following sections:

• Exits to Special Processing Routines

• SETPRT-Printer Setup

• Routing Data Through the System Input and Output Streams

vi OS/VS2 Data Management Services Guide

c ... /

C
''''~''

/

Page of GC26-3875-1 added 3 April 1981 by TNL GN26-0996

NEW PROGRAMMING SUPPORT

The information to support the IBM 3203 model 5 printer has been
included. For additional information about the IBM 3203 Printer,
see IBM 3203 Printer Component Description.and Operator's Guide,
GA33-1515.

Summary of Amendments vi.l

,/ ",

'\." .. ",.,

'\. ",

/'-"-,

''-

----_ •. _ .. _ .. _ ..• _ .•..........•... __ •..••. _--_ ..• _-_ .. _-_

SERVICE CHANGES

•

AUGUST, 1978

..

c'····,
.../1

"Data Set Identification" has been updated concerning the
cataloging of data set names. "Basic Access Techniques" has been
updated concerning the overlapping of I/O requests with BDAM.

A clarification has been added to "Chained Scheduling for I/O
Operations."

Another restriction when search direct cannot be used has been
added to the section "Search Direct for Input Operations (Except
5740-AM3)."

The section "Search Direct for Input Operations (5740-AM3)" has
been updated.

The restriction for chained scheduling has been updated under
"Determining the Length of a Record when using the BSAM READ
macro."

The section "FIND-Position to a Member" has been updated
concerning the requirement to close and reopen a data set.

A new section "Processing a Partitioned Data Set Residing on
MSS" has been added to "Processing a Partitioned Data Set."

The section "Indexed Sequential Buffer and Work Area
Requirements" has been updated concerning a high level index
greater than 65,535 byte.s.

The section "Specifying Space Requirements" has been updated
concerning cYlinder allocation.

The section "Absolute Generation and Version Numbers" has been
updated.

The section "Relative Generation Numbers" has been updated and
the section "Programming Considerations for Multiple Step Jobs"
has been added.

The information contained in the System Library Supplement
GC26-3892, OS/VS2-MVS System Security Support· Select§ble Unit:
Data Management Services-SU32 (5752-832) has been incorporated
into this publication by this Technical Newsletter.

A note has been added to the description of the DSORG operand
concerning the creation of a direct data set. This is in "Data
Set Organization (DSORG)."

Under "Synchronous Error Routine Exit (SYNAD)," a note has been
added concerning EROPT and a physical block of data .

Under "Standard User Label Exit," the specification of labels by
use of the LABEL= parameter in a DO statement has been updated
and the defer input trailer label exit ac has been qualified.

Under "User Totaling (BSAM and QSAM only)," a note has been
added regarding the user tot~ling facility.

Under "End of Volume Exit," a note has been added concerning
concatenated data sets with unlike attributes.

Under "Opening and Closing a Data Set," the description of an
indeterminate error has been updated .

The description of RLSE under "CLOSE-Terminate Processing. of a
Data Set" has been updated.

Summary of Amendments vii

The default value for BUFNO when using QSAM has been updated.

A note has been added regarding the 4-byte buffer chain pointer
under "FREEPOOl-Free a Buffer Pool."

In the section "Chained Scheduling for I/O Operations," a new
item has been added to the chained scheduling restrictions. A
restriction for chained scheduling with printer channel control
tapes has also been added.

Under "Updating a Sequential Data Set," a new rule has been
added for locate mode.

Under "Find-Position to a Member," a note has been added
regarding the search of a concatenated series of directories.

In the section "Creating an Indexed Sequential Data Set," the
paragraph concerning blocked records has been updated.

A paragraph has been added about subtasking under the heading
"Sharing a BISAM DCB between Related Tasks."

The figure, "Directly Updating an Indexed Sequential Data Set"
has been updated.

In the section "Processing a Direct Data Set," a paragraph has
been added concerning the DSORG parameter.

Under "Adding or Updating Records on a Direct Data Set," a note
has been added regarding extended search.

Under "Concatenating Sequential and Partitioned Data Sets," a
note has been added about spool data sets, and about data sets
with unlike attributes.

Under "Relative Generation Number," the description of skipping
absolute generation numbers has been expanded. Also the
paragraph concerning cataloging via JCL has been updated. The
paragraph concerning cataloging of new generation data groups
has been updated also.

SEQUENTIAL ACCESS METHOD-EXTENDED (SAM-E) RELEASE 1 (5740-AM3)

BPAM, BSAM, and QSAM support of direct-access storage devices
(except BSAM MACRF=WL, create BDAM data set) has been modified
to internally use the EXCPVR interface to lOS. This modification
includes the functions of the chained scheduling option
(OPTCD=C) and the search-direct option OPTCD=Z). These options,
therefore, need not be requested and are ignored if requested.

viii OS/VS2 Data Management Services Guide

\ ,

•

•

..

•

c'

Part 1: Introduction to Data Management
Data Set Cha racter i st i cs

Data Set IdQntification
Data Set Storage ..••

Direct-Access Volumes
Magnetic-Tape Volumes

Data Set Record Formats
Fixed-Length Records ••.•
Variable-Length Records •••.
Undefined-Length Records ••••
Control CharClcter' •.•• • •••

3800 TClble Reference Character .••
Direct-Access Device Characteristics

Track Format .•••..••
Track Addressing ••...•.••.
Track Overflow •••.•••
Write-Validity-Check Option

The Data Control Block
Data Set Description •
Processing Program Description

Mac r 0 Ins t r u c t ion For m (~1 A C R F) ••
Exits to Special Processing Routines

Modifying the Data Control Block
Shari ng a Da'ca Set ..••••••••

Part 2: Data Hanagem~nt process;ng Procedures
Data Processing Techniques •••••••

Queued Access T echn i que • • • • •
GET-Retr i eve a Record ••••
PUT-l~ri te a Record. • • • • • •••••••
P UTX-Wr i te an Updated Reco rd •.••• • • • • •
Parallel Input Processing (QSAM Only) •••••

Basi c Access Techni que • . • • . • . • • •••
READ--Read a Block • • • • • • . • • • • • • • • • •
W R I T E-W r i tea B I 0 c k . . • • . • • . • • • • • •
CHECK-Test Compl et i on of Read or Wr i te Operat jon •
WA I T-Wa it fo r Compl et i on of a Read 0 r Wr i te Ope rat ion
Data Event Control Block (DECB) ••.•••••••

Error Handling•..••••••.•
SYHADAF-Perform SYNAD Analysi s Functi on •••.•
SYHADRLS--Release SYNADAF Message and Save Areas
ATLAS-Perform Alternate Track Location Assignment

Selecting an Access Method ...•...•.....•
Opening and Closing a Data Set .••••••• • ••••

OPEN-Prepare a Data Set for Processi ng .
CLOSE-Term; nate Pt'ocessi ng of a Data Set
End-of-Volume Processi ng ••••
FEOV-Fo rce End 0 f Volume • • • • • • • •

Buffer Acquisition and Control ••••
Buffer Pool Constr'uct ion • • ••••.

BUILD-Construct a Buffer Pool ••.••••••••••
BUILDRCD--Build a Buffer Pool and a Record Area
GETPOOL--Get a Buffer Pool •
Automatic Buffer Pool Construction
FREEPOOL--Ft'ee a Buffer Pool

Buffer Control .•••.•.•••••••
Simple Buffering ••••.•••••••••••
Exhange Buffering .•.•••••••• • •••
RELSE-Release an Input Buffer •••• • •••
TRUNC-Truncate an Output Buffer .••••
GETBUF-Get a Buffer from a Pool ••••
FREEBUF-Return a Buffer to a Pool .•••
FREEDBUF--Return a Dynarni c Buffer to a Pool

Processing a Sequential Data Set •.••
Data Format--Device Type Considerations

Magnetic Tape (TA) ..••• • ••••
Paper-Tape Reader (PT)
Card Reader and Punch (RD/PC)

1
1
3
4
4
5
6
6
9

15
16
16
17
18
18
19
19
20
22
23
23
24
43
44

49
49
49
49
49
50
50
51
53
54
55
55
55
56
56
56
56
57
58
60
61
63
65
66
66
67
67
68
68
68
69
71
7 (t
75
75
76
76
76
76
77
77
78
79

Content.s i x

Printer (PR)
Direct-Access Device (DA)

Device Control ...
CNTRL--Control an I/O Device .
PRTO\l-Tost for Printer OverflcnoJ
S ETPRT-P r 1 nter Setup. ••.•.•
SSP-Backspace a ~l()gnet:i c Tape or Di rect-Access Volume
NOTE-Return the Relati ve Address of a Block . . .•.
P a I N r-Po 5 ; t ; 0 n t a a B I 0 c k •. .

Dev ice Independence .. • . ..• •••
System Generation Considerations • •. • ••.•.
Programming Consider'Cltions ...••• .•

Chained Scheduling for I/O Operations (including
Nondirect-Access Devices for 5740-AM3 only)

Search Direct for Input Operations (Except 5740-AM3)
Search Direct for Input Operations (5740-AM3 only)
Creating a Sequential Data Set
Retrieving a Sequential Data Set
Updating a Sequential Data Set
Extending a Sequential Data Set
Determining the length of a Record When Using the BSAM

READ Macro •
Writing a Short Block When Using the BSAM WRITE Macro

Processing a Partitioned Data Set
Parti ti oned Data Set Di rectory . •. .•
Processing a Member of a Partitioned Data Set •.

BLDL-Construct a Di rectory Entry List .•••
FIND-Position to a Member • • • • • • .. • ••.•
STOW-Update the Di rectory .. • .. • •.

Creating a Partitioned Data Set . . • . ••
Retrieving a Member of a Partitioned Data Set
Updating a Member of a Partitioned Data Set

Updating in Place ••. .•..
Rewr it i ng a Member . . .

Processing a Partitioned Data Set Residing on MSS
Processing an Indexed Sequential Data Set

Indexed Sequential Data Set Organization
Prime Area . •. ••..
Index Areas ••
Overflo~oJ Areas •. •

Adding Records to an Indexed Sequential Data Set
Inserting New Records into an Existing Indexed
Sequential Data Set . .• ••... .

Adding Hew Records to the End of an Indexed Sequential
Data Set . .• . .. ••

Maintaining an Indexed Sequential Data Set •.
Indexed Sequential Buffer and Work Area Requirements
ContraIL i ng an Indexed Sequent i al Data Set Devi ce •..

SETl-Speci fy Start of Sequent fal Retri eval •••.
ESETL-End Sequential Retrieval •..•••••.

Creating an Indexed Sequential Data Set ..
Retrieving and Updating an Indexed Sequential Data Set

Sequential Retrieval and Update .••.
Di rect Retr; eval and Update ••.... •..••••

Processi ng a D1 rect Data Set ...• ••• ••
Organi zing a Dj rect Data Set • . .•
Referring to a Record in a Direct Data Set
Cr'eat i ng a Direct Data Set .. ••
Adding or Updating Records on a Direct Data Set

Part 3: Data set Disposition and space Allocation
Allocati ng Space on Di rect-Access Volumes •••

Specifying Space Requirements. • .••••
Est i mat i ng Space Requ i rement s • ..•. .••
Allocating Space for a Partitioned Data Set .•
Allocating Space for an Indexed Sequential Data Set

S pee ify i n gaP rim e 0 a t a Area •• •
Speci fyi ng a Separate Index Area .• . .•
Specifying an Independent Overflow Area .••
Calculating Space Requirements for an Indexed
Sequential Data Set •. •. • •••

Control and Di spos; ti on of Data Sets •.. ..
Routing Data through the System Input and Output Streams
Concatenating Sequential and Partitioned Data Sets

x OS/VS2 Data Management Serv ices Gu ide

79
80
80
80
81
81
82
82
82
83
83
84

85
86
87
87
88
89
90

90
91
92
93
96
96
96
97
98

100
101
101
102
103
103
103
104
105
106
107

107

107
109
111
114
114
115
115
118
118
119
123
124
124
126
127

130
130
130
131
133
134
136
137
137

137
141
142
144

•

.'

•

..

C
" ' .

./

Rotational Position Sensing Considerations
Catalog; ng Data Sets

Entering a Data Set Name in the Catalog
Generation Data Groups ...•.•...•.

Absolute Generation and Version Numbers .•••
Relative Generation Number

Programming Considerations for Multiple-Step Jobs
Building a Generation Index in a CVOL•
Creat i ng a New Generat ion .•...•...•..•.

Allocating a Generation ...•••.•......
Passing a Generation
Creating an ISAM Data Set as Part of a Generation Data

Group •.......••.•••.•.•.•.
Retrieving a Generation .•.•.•.........••.

Controlling Confidential Data•...••.
Password Protection for Non-VSAM Data Sets

RACF Protect i on for Non-VSAM DASD Data Sets and Tape
Volumes• ~ •..•...•

Appendix A. Direct-Access Labels
Volume-Label Group ...• •.

Initial Volume Label Format
Data Set Control Block (DSCB)
User LClbel Groups .•.•.. •

User Header and Trai ler Label Format

APpendix B. control Characters
Machine Code ••.•..•... . •......
Extended American National Standards Institute Code

Glossary of Acronyms And Abbreviations

INDEX

146
146
147
147
148
148
149
150
150
150
151

151
151
152
152

153

155
155
156
157
157
158

159
159
161

162

165

Contents xi

FIGURES

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.

Figure 14.
Figure 15.
Figure 16.
Figure 17.

Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.

Figure 25.

Figure 26.
Figure 27.
Figure 28.
Figure 29.

Figure 30.
Figure 31.

·Figure 32.

Figure 33.
Figure 34.
Figure 35.
Figure 36.

Figure 37.
Figure 38.
Figure 39.

Figure 40.

Figure 41.

Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.

Figure 48.
Figure 49.

Figure 50.
Figure 51.
Figure 52.

F i xed- Length Reco rds • •••. •
Fixed-length Records for ASCII Tapes ••.•
Nonspanned, Vari Clble-length Records ••••
Spanned Variable-length Records ••••
Segment Control Codes .•• •.••
Spanned Variable-length Records for BDAM Data
Set s. .•. • •
Variable-length Records for ASCII Tapes
Unde"fi ned-Length Records • .• . •••
Undefined-length Records for ASCII Tapes
2316 Di sk Pack .•. . . . ••.
Di rect-Access Volume Track Formats ••
Completing the Data Control Block •
Sources and Sequence of Operations for
Completing the Data Control Block
Data Management Exit Routines •••
Format and Contents o"f an Exi t list .•...
Parameter list Passed to User label Exit Routine
System Response to a User label Exit Routine
Return Code •. •••. ••
System Response to Block Count Exit Return Code
Defining an FCB Image for a 3211 •••
Parameter List Passed to DCB ABEND Exit Routine
Conditions for which Recovery Can Be Attempted
Recovery Work Area . • • ••
Modifying a Field in the Data Control Block
JCl, Macro Instructions, and Procedures
Required to Share a Data Set Using Multiple
DCB s. . •• • • •
Macro Instructions and Procedures Required to
Share a Data Set Using a Single DCB
Parallel Processing of Three Data Sets
Data Management Access Methods . •
Opening Three Data Sets Simultaneously
Record Processed When LEAVE or REREAD is
Speci fi ed for CLOSE TYPE=T • •.
Closing Three Data Sets SimultaneouslY
Constructing a Buffer Pool From a Static
Storage Area • ••..•
Constructing a Buffer Pool Using GETPOOL and
FREEPOOL .•• • • .
Simple Buffering with MACRF=GL and MACRF=PM
Simple Buffering with MACRF=GM and MACRF=PM
Simple Buffering with MACRF=GL and MACRF=PL
Simple Buffering with MACRF=GL and
MACRF=PM-UPDAT Mode •• ••• •.•..•
Buffer i ng Techn i que and GET IPUT Processi ng Modes
Tape Density (DEN) Values . • •.•••
Creating a Sequential Data Set-Move Mode,
Simple Buffering .••.••••••.•..
Creating a Sequential Data Set--Locate Mode,
Simple Buffering •••.• •
One Method of Determining the Length of the
Record When Using BSAM to Read Undefined-Length
Records. . • • •
A Partitioned Data Set •.
A Partitioned Data Set Directory Block
A Partitioned Data Set Directory Entry
B u ; 1 d Lis t For ma t ••. • . • . .
Creating One Member of a Partitioned Data Set
Creating Members of a Partitioned Data Set
Using STOW •• • . •.
Retrieving One Member of a Partitioned Data Set
Retrieving Several Members of a Partitioned
Data Set Using BLDL, FIND, and POINT
Updating a Member of a Partitioned Data Set
Indexed Sequential Data Set Organization
Format of Track Index Entri es ...••.

xii OS/VS2 Data Management Services Guide

7
8
9

11
12

13
14
15
16
17
18
20

21
24
29
30

32
37
38
39
41
42
44

45

47
52
57
61

62
63

69

69
72
73
73

74
75
78

88

89

91
92
93
94
97
99

99
100

101
102
104
106

•

•

' '"

(

Figure 53.

Figure 54.

Figure 55.
Figure 56.

Figure 57.

Figure 58.

Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.

Figure 66.
Figure 67.
Figure 68.
Figure 69.

Adding Records to an Indexed Sequential Data
Set •. . • ...• • •••
Deleting Records From an Indexed Sequential
Data Set •• ..• . • •
Creating an Indexed Sequential Data Set
Sequentially Updating an Indexed Sequential
Data Set. •.• • •• ••
Directly Updating an Indexed Sequential Data
Set • •
Directly Updating an Indexed Sequential Data
Set with Variable-Length Records
Creati ng a Di rect Data Set •.••.
Addi ng Records to a 01 rect Data Set •••
Updati ng a Di rect Data Set ••. •••
Direct-Access Storage Device Capacities
Direct-Access Device Overhead Formulas •••
Requests for Indexed Sequential Data Sets •
Reissuing a READ for Unlike Concatenated Data
Set s •••. . • • •
MVS Catalog Structure
Direct-Access Labeling
Initial Volume Label
User Header and Trai ler Labels

108

110
117

119

121

123
127
128
129
132
133
136

145
146
155
156
157

Figures xiii

PART Ie INTRODUCTION TO DATA MANAGEMENT

DATA SET CHARACTERISTICS

The data management programs of the operating system help you
achieve maximum efficiency in managing the mass of data
associated with the many programs that are processed at your
installation by providing systematic and effective means of
organizing, identifying, storing, cataloging, and retrieving all
data, including programs, processed by the operating system.

Data set storage control, along with an extensive catalog
system, makes it possible for you to retrieve data by symbolic
name alone, without specifying device types and volume serial
numbers. In freeing computer personnel from maintaining involved
volume serial number inventory lists of stored data and
programs, the catalog reduces manual intervention and the
likelihood of human error.

Data sets stored within the cataloging system can be classified
according to installation needs. For example, a sales department
could classify the data it uses by geographic area, by
individual salesman, or by any other logical plan.

The cataloging system also makes it possible for you to classify
successive generations or updates of related data. These
generations can be given an identical name and subsequently be
referred to relative to the current generation. The system
automatically maintains a list of the most recent generations.

You can request data from a direct-access volume, a remote
terminal, or a tape volume, and data organized sequentially or
directly, in essentially the same way. In addition, data
management provides:

• Allocation of space on direct-access volumes. Flexibility
and efficiency of direct-access devices are improved through
greater use of available space.

• Automatic retrieval of data sets by name alone.

• Freedom to defer specifications such as buffer length, block
size, and device type until a job is submitted for
processing. This permits the creation of programs that are
in many ways independent of their operating environment.

Control of confidential data is provided by the data set
security part of the operating system. You can prevent
unauthorized access. to payroll data, sales forecast data, and
all other data sets that require special security attention. An
individual can use a security-protected data set only after
furnishing a· predefined password.

Input/output routines are provided to efficiently schedule and
control the transfer of data between storage and input/output
devices. Routines are available to:

• Read data

• Write data

• Translate data from ASCII (American National Standard Code
for Information Interchange) to EBCDIC (Extended Binary
Coded Decimal Interchange Code) and back

• Block and deblock records

• Overlap reading, writing, and processing operations

Part 1: Introduction to Data Management 1

• Read and verify volume and data set labels

• Write data set labels

• Automatically position and reposition volumes

• Detect error conditions and correct them when possible

• Provide exits to user-written error and label routines

OS/VS data management programs also provide for a variety of
methods for gaining access to a data set. The methods are based
on data set organi~ation and data access technique.

OS/VS data sets can be organized in four ways:

• ~Q.9!.!p-nj; i al: Records are placed ; n physi cal rather than
logical sequence. Given one record, the location of the next
record is determined by its physical position in the data
set. Sequential organization is used for all magnetic-tape
devices, and may be selected for direct-access devices.
Punched tape, punched cards, and printed output are
sequentially organized.

• illi~xed_~eglJen..:~ i al.: Records are arranged in sequence,
according to a key that is a part of every record, on the
tracks of direct-access volume. An index or set of indexes
maintained by the system gives the location of certain
principal records. This permits direct as well as sequential
access to any record.

•

•

Direct: The records within the data set, which must be on a
direct-access volume, may be organized in any manner you
choose. All space allocated to the data set is available for
data records. No space is required for indexes. You specify
addresses by which records are stored and retrieved
directly.

Partitioned: Independent groups of sequentially organized
records, called members, are in direct-access storage. Each
member has a simple name stored in a directory that is part
of the data set and contains the location of the member's
starting point. Partitioned data sets are generally used to
sto~e programs. As a result, they are often referred to as
libraries.

Requests for input/output operations on data sets through macro
instructions employ hoJO techniques: the technique for queued
acces~ and the technique for basic ag.ce.2.§.. Each technique is
identified according to its treatment of buffering and
synchronization of input and output with processing. The
combination of an access technique and a given data set
orga~ization is called an access method. In choosing an access
method for a data set, therefore, you must consider not only its
organ i zat ion, but al so Lo,lhat you need to spec i fy through macro
instructions. Also, you may choose a data organization according
to the access techniques and processing capabilities available.

The code generated by the macro instructions for both techniques
is optionally reenterable depending on the form in which
parameters are expressed.

In addition to the access methods provided by the operating
system, an elementary access technique called execute channel
E.!:.Q.Sr:£1.m (EXCP) is also provided. To lise this technique, you must
establish your own system for organizing, storing, and
retrieving data. Its primary advantage is the complete
flexibility it allows you in using the computer directly.

An important feature of data management is that much of the
detailed information needed to store and retrieve data, such as
device type, buffer processing technique, and format of output
records need not be supplied until the job is ready to be
executed. This device independence permits changes to those

2 OS/VS2 Data Management Serv ices Gu ide

',,- ,'"

..

(--/

specifications to be made without changes in the program.
Therefore, you may design and test a program without knowing the
exact input/output devices that will be used L.Jhen it is
executed.

Device independence is a feature of both access techniques for
procGssing a sequential data set. To some extent, you determine
the degree of device independence achieved. Many useful
device-dependent features are available as part of certain macro
instructions, and achieving device independence requires some
selectivity in their use.

DATA SET IDENTIFICATION

Any information that is a named, organized collection of
logically related records can be classified as a data set. The
information is not restricted to a specific type, purpose, or
storage medium. A data set may be, for example, a source
program, a library of macro instructions, or a file of data
records used by a processing program.

Whenever you indicate that a new data set is to be created and
placed on auxiliary storage, you (or the operating system) must
give the data set a name. The data set name identifies a group
of records as a data set. All data sets recognized by name
(referred to without volume identification) and all data nets
residing on a given volume must be distinguished from one
another by unique names. To assist in this, the system provides
a means of qualifying data set names.

A data set name is one simple name or a series of simple names
joined tog~ther so that each represents a level of
qualification. For example, the data set name DEPT58.SMITH.DATA3
is composed of three simple names. Proceeding from the left,
each simple name is a category within which the next simple name
is a subcategory. The first name is referred to as the high
level index, the last as the low level index.

Each simple name consists of from 1 to 8 alphameric characters,
the first of which must be alphabetic. The special character
period (.) separates simple names from each other. Including all
simple names and periods, the length of the data set name must
not exceed 44 characters. Thus, a maximum of 22 simple names can
make up a data set name.

Data set names cannot be cataloged in a CVOL if a name is
already cataloged whose levels match the highest or higher
levels of the specified name. For example, the qualified name
A.B.C.D cannot be cataloged if the name A.B. or A.B.C. is
already cataloged, but the name A.B.C.D can be cataloged if AB.C
or A.B.C.E is cataloged.

To' permi t di fferent execut ions of a program to process different
data sets without program reassembly, the data set is not
referred to by name in the processing program. When the program
is executed, the data set name and other pertinent information
(such as unit type and volume serial number) are specified in a
job control statement called the data definition (DO) statement.
To gain access to the data set during processing, reference is
made to a data control block (DCB) associated with the name of
the DO statement. Space for a data control block, which
specifies the particular data set to be used, is reserved by a
DCB macro instruction when your program is assembled.

Part 1: Introduction to Data Management 3

DATA SET STORAGE

System/370 provides a variety of devices for collecting,
storing, and distributing data. Despite the variety, the devices
have many common characteristics. The generic term volume is
used to refer to a standard unit of a~xiliary storage. A volume
may be a reel of magnetic tape, a disk pack, or a drum.

Each data set stored on a volume has its name, location,
organization, and other control information stored in the data
set label or volume table of contents (for direct-access volumes
only). Thus, when the name of the data set and the volume on
which it is stored are made known to the operating system, a
complete description of the data set, including its location on
the volume, can be retrieved. Then, the data itself 'can be
retrieved, or new data added to the data set.

Various groups of labels are used to identify magnetic-tape and
direct-access volumes, as well as the data sets they contain.
Magnetic-tape volumes can have standard or nonstandard labels,
or they can be unlabeled. Direct-access volumes must use
standard labels. Standard labels include a volume label, a data
set label for each data set, and optional user labels.

Keeping track of the volume on which a particular data set
resides can be a burden and a source of error. To alleviate this
problem, the system provides for automatic cataloging of data
sets. The system can retrieve a cataloged data set if given only
the name of the data set. If the name is qualified, each
qualifier corresponds to one of the indexes in the catalog. For
example, the system finds the data set DEPT58.SMITH.DATA3 by
searching a master index to determine the location of the index
name DEPT58, .by searching that index to find the location of the
index SMITH, and by searching that index for DATA3 to find the
identification of the volume containing the data set.

By use of the catalog, collections of data sets related by a
common external name and the time sequence in which they were
cataloged (their generation) can be identified; they are called
ggneration data groups. For example, a data set name
LAB.PAYROLL(O) refers to the most recent data set of the group;
LAB.PAYROLL(-l) refers to the second most recent data set, etc.
The same data set names can be used repeatedly with no
requirement to keep track of the volume serial numbers used.

Direct-Access Volumes

Direct-access volumes are used to store executable programs,
including the operating system itself. Direct-access storage is
also used for data and for temporary working storage. One
direct-access storage volume may be used for many different data
sets, and space on it may be reallocated and reused. A volume
table of contents (VTOC) is used to account for each data set
and available space on the volume.

Each direct-access volume is identified by a volume label, which
is stored in track 0 of cylinder O. You may specify up to seven
additional labels, located after the standard volume label, for
further identification.

The VTOC is a data set consisting of data set control blocks
(DSCBs) that describe the contents of the direct-access voiume.
The VTOe can contain seven kinds of DSCBs, each with a different
purpose and a different format number. OS/VS2 System Programming
Library: Debugging Handbook describes the seven kinds of DSCBs,
their purposes, and their formats.

Each direct-access volume is initialized by a utility program
before being used on the system. The initialization program
generates the volume label and constructs the table of contents.
For additional information on direct-access labels, see
"Appendix A: Direct-Access Labels."

4 OS/VS2. Data Managemtmt Serv ices Gu ide

I\,,,_~./

\"" -

•

_ ... _--_ __ .. _. __ ._. __ ... _ _--_• __ . __ .. _ •... -.•.. ----- -._ .. _--_._. __ . __ ..• -... _ .. _- ...•. _ .. _-_ ... - .•...

(
'--

When a data sat is to be stored on a direct-access volume, YOll
must supply the operating system with the amount of space to be
allocated to the data set, expressed in blocks, ~racks, or
cylinders. Space allocation can be·independent of device type if
the request is expressed in blocks. If the request is made in
tracks or cylinders, you must be aware of such device
considerations as cylinder capacity and track size.

Magnetic-Tape Volumes

Because data sets on magnetic-tape devices must be organized
sequentially, the operating system does not require space
allocation procedures comparable to those for direct-access
devices. When a new data set is to be placed on a magnetic-tape
volume, you must specify the data set sequence number if it is
not the·first data set on the reel. The operating system
positions a volume with IBM standard labels, American National
Standard labels, or no labels so that the data set can be read
or written. If the data set has nonstandard labels, you must
provide for volume positioning in your
nonstandard-label-processing routines. All data sets stored on a
given magnetic-tape volume must be recorded in the same density.

When a data set is to be stored on an unlabeled tape volume and
you have not specified a volume serial number, the system
assigns a serial number to that volume and to any additional
volumes required for the data set. Each such volume is assigned
a serial number of the form Lxxxyy where xxx indicates the data
set sequence number from IPL to IPL and yy indicates the volume
sequence number for the data set. If you specify volume serial
numbers for unlabeled volumes on which a data set is to be
stored, the system assigns volume serial numbers to any
additional volumes required. If data sets residing on unlabeled
volumes are to be cataloged or passed, you should specify the
volume serial numbers for the volumes required. This will
prevent data sets residing on different volumes from being
cataloged or passed under identical volume serial numbers.
Retrieval of such data sets could result in unpredictable
errors.

Each data set and each data set label group on magnetic tape
that is to be processed by the operating system must be followed
by a tapemark. Tapemarks cannot exist with~n a data set. When
the operating system is used to create a tape with standard
labels or no labels, all tapemarks are automatically written.
Two tapemarks are written after the last trailer label group on
a volume to indicate the last data set on the volume.· On an
unlabeled volume, the two tapemarks are written after the last
data set.

When the operating system is used to create a tape data set with
nonstandard labels, the delimiting tapemarks are not written. If
the data set is to be retrieved by the operating system, those
tapemarks must be written by your nonstandard-label-processing
routine. Otherwise, tapemarks are not required after nonstandard
labels since positioning of the tape volumes must be handled by
installation routines.

For more information on labels for magnetic-tape volumes, refer
to OS/VS Tape labels.

The data on magnetic-tape volumes can be in either EBCDIC or
ASCII. ASCII is a 7-bit code consisting of 128 characters. It
permits data on magnetic tape to be transferred from one
computer to another even though the two computers may be
products of different manufacturers.

Data management support of ASCII and of American National
Standard tape labels is such that data management can translate
records on input tapes in ASCII into EBCDIC for internal
processing and translate the EBCDIC back into ASCII for output.
Records on such input tapes may be sorted into ASCII collating
sequence.

Part 1: Introduction to Data Management 5

DATA SET RECORD FORMATS

A data set is composed of a collection of records that normally
have some logical relation to one another. The record is the
basic unit of information used by a processing program. It might
be a single character, all information resulting from a given
business transaction, or measurements recorded at a given point
in an experiment. Much data processing consists of reading,
processing, and writing individual records.

The process of grouping a number of records before writing them
on a volume is referred to as blocking. A block is made up of
the data between interrecord gaps (IRGs). Each block can consist
of one or more records. Blocking conserves storage space on the
volume because it reduces the number of IRGs in the data set. In
many cases, blocking also increases processing efficiency by
reducing the number of input/output operations required to
process a data set.

Records may be in one of four formats: fixed-length (format-F),
variable-length for data in EBCDIC (format-V), variable-length
for data to be translated to or from ASCII (format-D), or
undefined-length (format-U). The main consideration in the
selection of a record format is the nature of the data set
itself. You must know the type of input your program will
receive and the type of output it will produce. Selection of a
record format is based on this knowledge, as well as on an
understanding of the input/output devices that are used to
contain the data set and the access method used to read and
write the data records. The record format of a:data set is
indicated in the data control block according to specifications
in the DCB macro instruction, the D~ statement, or the data set
label.

For ASCII tapes, data can be in format-F, format-D, and format-U
with the restrictions noted under "Fixed-length Records, ASCII
tapes," "Variable-Length Records-Format 0," and
"Undefined-Length Records." When data management reads records
from ASCII tapes, it translates the records into EBCDIC. When
data management writes reco~ds onto ASCII tapes, it translates
the records into ASCII. Because you use input records after they
are translated and because output records are translated when
you ask data management to write them, you work only with
EBCDIC. Note: There is no minimum requirement for block size;
however, if a data check occurs on a magnetic-tape device, any
block shorter than 12 bytes in a Read operation or 18 bytes in a
Write operation is treated as a noise record and lost. No check
for noise is made unless a data check occurs. The sort/merge
program does not accept physical blocks or logical records
shof'ter than 18 bytes from any devi ceo

For the 3800 printer, the data in the record can contain two
optional bytes. The optional control character used for carriage
control, followed by an optional table reference character used
for dynamically selecting a character arrangement table during
printing. See the IBM 3800 Prinsinq Subsystem Proqramrner's Guide
for more information on the table referenc~ character.

Fixed-Length Records

The size of fixed-length (format-F) records, shown in Figure 1,
is constant for all records in the data set. The number of
records within a block is constant for every block in the data
set, unless the data set contains truncated (short) blocks. If
the data set contains unblocked format-F records, one record
constitutes one block.

The system automatically performs physical length checking
(except for card readers) on blocked or unblocked format-F
records. Allowances are made for truncated blocks.

6 OS/VS2 Data Management Services Guide

•

/
"-/

------------------.

Format-F records are shown in Figure 14 on page 24. The optional
control character (c), used for stacker selection or carriage
control, may be included in each record to be printed or
punched.

Block .A

Blocked Records Record A Record B

Block

Unblocked AeoordS[Aeoo~d A]

Record C

,-
" " " , ,

"

..........
..........

Block
.A

Record 0 Record E

.....

" Record
'\. '?:::;==::::::.A:::==== ~

c Data

\ L Optional Control /
\ Character· 1 Byte /
\ I

\ I
\ I
\ I

1 Aeoord C r

Block

r Aec:ro B 1

Figure 1. Fixed-Length Records

Record F

Block

[Ae~ro 0 1

FIXED-LENGTH RECORDS, STANDARD FORMAT: During creation of a
sequential data set (to be processed by BSAM or QSAM) with
fixed-length records, the RECFM subparameter of.the DCB macro
instruction may specify a standard format (RECFM=FS or FBS). A
standard-format data set must conform to the following
specifications: '

• All records in the data set are format-F records.

• No block except the last block is truncated. (With BSAM you
must ensure that this specification is met.)

• Every track except the last one contains the same number of
blocks.

• Every track except the last one is filled to c~pacity as
determined by the track capacity formula established for the
device. (These formulas are presented in Part 3 of this book
under "Allocating Space on Direct-Access Volumes.")

• The data set organization is physical-sequential. A member
of a partitioned data set cannot be specified.

A sequential data set with fixed-length records having a
standard format can be read more efficiently than a data set
that doesn't specify a standard format. This efficiency is
possible because the system is able to determine the address of
each record to be read because each track contains the same
number of blocks.

You should never extend a data set of this type (by coding
DISP=MOO) if the last block is truncated, because the extension
will cause the. data set to contain a truncated block that isn't
the last block. This type of data set on magnetic tape should
not be read backward, because then the data set would begin with
a truncated block. Consequently, you probably won't want to use

Part 1: Introduction to Data Management 7

Blocked
Records

this type of d~ta set with magnetic tape. If you use one of the
basic access techniques with this type of data set, you should
not specify that the tr~ck overflow foature is to be u$ed with
the data sat. '

Standard format should not be used to read records from a data
set that was created using a RECFM other than standard since
other record formats may not create the precise format required
by standard.

If at any time the characteristics of your data set are altered
from the specifications described above, then the data set
should no longer be processed with the standard format
specification.

FIXED-LENGTH'RECORDS, ASCII TAPES: For ASCII tapes, format-F
records are the same as described above, with two exceptions:

• Control characters, if present, must be American National
Standards Institute (ANSI) control characters.

• Records or blocks of records can contain block prefixes.

Figure 15 on page 29 shows the format of fixed-length records
for ASCII tapes and where control characters and block prefixes
go if they exist.

Block Block . .
Optional Optional

Block Record A Record B Record C
Prefix

Block Record 0 Record E Record F
Prefix

"-

" '

.............
............. ,

Record '

c Data

LOptional Control -'

\ Character-1 Byte /
\ /

\ /
/ Block Block

,-------"'------.
Block .

Optional
Unblocked Block
Records Prefix

Record A
Optional

Block Record B

~ ____ \'+-______ ~/ r~----~'~----~
Optional

Block
Prefix

Record C
Optional
Block
Prefix

Record 0
Prefix

Figure 2. Fixed-Length Records for ASCII Tapes

The block prefix can vary in length from 0 to 99 bytes but the
length must be constant for the data set being processed. For
blocked records, the block prefix precedes the first logical
record. For unblocked records, the block ~rrifix precedes each
logical record.

Using QSAM and BSAM to read records with,block prefixes requires
that you specify the BUFOFF operand in the DCB. When using QSAM,
you cannot read the block prefix on input. When using BSAM, you
must account for the block prefix on both input and output. When
using either QSAM or BSAM, you must account for the length of
the block prefix in the BlKSIZE and BUFL operands of the DCB.

8 OS/VS2 Data Management Serv ices Gu ide

',--/

(

•

When you use BSAM on output records, the operating system does
not recognize a block prefix. Ther~fore, if you want a block
prefix, it must be part of your record. Note that you cannot
include block prefixes in QSAM output records.

The block prefix can contain any data you want, but you must
avoid using data types such as binary, packed decimal, and
floating-point that cannot be translated into ASCII.

For more information about control characters, refer to "Control
Character" and to "Appendix B: Control Characters."

variable-Length Records

Blocked Records

The variable-l~ngth record formats are format-V and format-D.
Format-V records can be spanned; that is, records can be larger
than the blocksize, as described below. Format-D records are
used for ASCII tape data sets and cannot be spanned. Figure 3
shows blocked and unblocked variable-length records without
spanning.

Block
BOW ~--------------------------~ .

~L

LL 00 Record A Record 8 Record C LL 00 Record 0 Record E Re~ord F

t L Reserved - 2 Bytes
1 --\ -- --Block Len th - ---9 \

\, ROW
2 Bytes

Record 11 00 c

I Optional Control Character /
I Reserved - 2 Bytes / /

I
'"-----Record Length- /

2 Bytes /

I // Block

~ /~d---'
Ir-L-LL--r-

I

ooo-o--t-I----R-e-co-r-d-C----'r LL 00 Record D

Reserved - 2 Bytes
~--Block Length - 2 Bytes

Figure 3. Nonspanned, Variable-Length Records

VARIABLE-LENGTH RECORDS-FORf1AT V: Format V provi des for
variable-length records, variable-length record segments, each
of which describes its own characteristics, and variable-length
blocks of such records or record segments. Except when
variable-length track overflow records are specified for volumes
on devices with the rotational position sensing feature, the
control program performs length checking of the block and uses
the record or segment length information in blocking and
deblocking. The first 4 bytes of each record, record segment, or
block make up a descriptor word containing control information.
You must allow for these additional 4 bytes in both your input
and output buffers.

Part 1: Introduction to Data Management 9

Bl6ck Descriptor Word: A variable-length block consists of a
block descriptor word (nOW) followed by one or more logical
records or record segments. The block descriptor word is a
4-byte field that describes the block. The first 2 bytes specify
the block length ('ll')-4 bytes for the BDW plus the total
length of all records or 'segments within the block. This length
can be from 8 to 32,760 bytes or, when you are using WRITE with
tape, from 18 to 32,760. The third and fourth bytes are reserved
for future system use and must be O. If the system does your
blocking--that is, when you use the queued access technique--the
operating system automaticallY provides the BOW when it writes
the data set. If you do your own blocking--that is, when you use
the basi c access techni que--you must ,supply the BDW.

Record Descriptor Word: A variable-length logical record
con~ists of record descriptor word (RDW) followed by the data.
The record descriptor word is a 4-byte field describing the
record. The first 2 bytes contain the length ('il') of the
logical record (including the 4-byte RDW). The length can be
from 4 to 32,756. For information about processing a sequential
data set, see "Data Format--Device Type Considerations." All
bits of the third and fourth bytes must be 0, as other values
are used for spanned records. For' output, you must provide the
ROW except in data mode for spanned records (described under
"Buffer Control"). For output in data mode, you must provide the
total data length in the physical record length field (OCBPRECL)
of the DCB. For input, the operating system provides the ROW
except in data mode. In data mode, the system passes the record
length to your program in the logical record length field
(DCBLRECL) of the DCB. The optional control character (c) may be
specified as the fifth byte of each record and must be followed
by at least one byte of data (the length in the ROW, in this
case, would be six). The first byte of data is a table reference
character if OPTCD=J has been specified. The ROW, the optional
control character, and the optional table reference character
are not punched or printed.

spanned Variable-Length Records (Sequential Access Method): The
spanning feature of the queued and basic sequential access
methods enables you to create and process variable-length
logical records that are larger than one physical block and/or
to pack blocks with variable-length records by splitting the
records into segments so that they can be written into more than
one block, as shown in Figure 4 on page 11.

10 OS/VS2 Data f'1anagement Serv ices Gu ide

J&

•

(

..

C----\

/

Block
A

/ ~L '\ BOW

LL
Last

Segment
of Logical
Record A

I

First Segment
of Logical
Record B

LL I ntBrmediate Segment
of Logical Record B LL

Last First Segment
of Logical of Logical
Record B Record C

"' ,
l " Reserved - I , \ ,
I ,

I "
2 Bytes : " \ \

\ ,
Block Length - I ,
2 Bytes I 11 " \ H \ I .11"

First
Segment
of Logical
Record

~~-S-O-W----.A Data ~. ~,.. ____ A.'-__ ---..~

SOW Data
\ .____---"A ------.,'
\(SOW Data '\

Inter-
mediate till Last
Segment J(.)C. Segment 11 c
of Logical of Logical
Record L---L-r-L-......I-------' Record L.---'-...-'---'-___ ---'

Optional Control Segment Control
Character Code
Reserved - 1 Byte
Segment Control Code -
1 Byte (See Figure 5)

~---Segment Length - 2 bytes U

Segment Control
Code

(~ __________________ ~A~ _________ ~_~,\

ROW Data Portion of Logical Record B

Logical Record IJ.
(I n User's Work Area)

A .A

Data Portion: Data Portion
c of l of

First Segment i I ntermediate Segment

t LOptional Control Character
L....: Reserved - 2 Bytes

'-----Record Length - 2 Bytes

Data Portion
of Last

Segment

Figure 4. Spanned Variable-length Records

When spanning is specified for blocked records, the system tries
to fill all blocks. For unblocked records, a record larger than
blocksize is split and written in two or more blocks, each block
containing only one record or record segment. Thus the blocksize
may be set to the one that is best for a given device or
processing situation. It is not restricted by the maximum record
length of a data set. A record may, therefore, span several
blocks, and may even span volumes. Note that a logical record
spanning three or more volumes cannot be processed in update
mode (descri bed under "Buffer Control") by QSA~1. A block can
contain a combination of records and record segments, but not
multiple segments of the same record. When records are added to
or deleted from a data set, or when the data set is processed
again with different blocksize or record-size parameters, the
record segmenting will change.

Con5iderations 10r Proc€5sing spanned Record Data sets: When
spanned records span volumes, reading errors may occur when
using QSAM if a volume which begins with a middle or last
segment is mounted first or if an FEOV macro instruction is
issued followed by another GET. QSAM cannot begin reading from
the middle of the record. The errors include duplicate records,
~rogram checks in the user's program, and invalid input from the
spanned record data set.

When a spanned record data set is to be opened in UPDAT mode and
QSAN is used, a record area must be provided by using the
BUILDRCD macro instruction or by specifying BFTEK=A in the DCB.

Pa rt 1: I nt rorluct i on to D<:"Ita f'1~IHlgcmcl).t~ 11

If you issue the FEOV macro instruction when reading a data set
that spans volumes, or if a spanned multivolume data set is
opened to other than the first volume, make sure that each
volume begins with the first (or only) segment of a logical
record. Input routines cannot begin reading in the middle of a
logical record.

Segment Descriptor Word: Each record segment consists of a
segment descriptor word (SDW) followed by the data. The segment
descriptor word, similar to the record descriptor word, is a
4-byte field that describes the segment. The first 2 bytes
contain the length ('11') of the segment, including the 4-byte
SDW. The length can be from 5 to 32,756 bytes or, when you are
using WRITE with tape, from 18 to 32,756 bytes. The third byte
of the SDW contains the segment control code, which specifies
the relative position of the segment in the logical record. The
segment control code is in the rightmost 2 bits of the byte. The
segment control codes are shown in Figure 5. The remaining bits
of the third byte and all of the fourth byte are reserved for
future system use and must be O.

Binary Code Relative position of segment

00 Complete logical record

01 First segment of a multi segment record

10 last segment of a multi segment record

11 Segment of a multi segment record other than the
first or last segment

Figure 5. Segment Control Codes

The SDW for the first segment replaces the RDW for the record
after the record has been segmented. You or the operating system
can build the SDW, depending on which mode of processing is
used. In the basic sequential access method, you must create and
interpret the spanned records yourself. In the queued sequential
access method move mode, complete logical records, including the
ROW, are processed in your work area. GET consolidates segments
into logical records and creates the ROW. PUT forms segments as
required and creates the SDW for each segment. Data mode is
similar to move mode, but allows reference only to the data
portion of the logical record in your work area. The logical
record length is passed to you through the DCBlRECl field of the
data control block. In locate mode, both GET and PUT process one
segment at a time. However, in locate mode, if you provide your
own record area using the BUIlDRCD macro instruction or if you
ask the system to provide a record area by specifying BFTEK=A,
then GET, PUT, and PUTX process one logical record at a time.
(BFTEK=A or the BUIlDRCD macro cannot be specified when logical
records exceed 32,760 bytes. To process logical records that
exceed 32,760 bytes, you must use locate mode and specify
lRECl=X in your DCB macro.)

A logical record spanning three or more volumes cannot be
processed when the data set is opened for update.

When unit-record devices are used with spanned records, the
system assumes that unblocked records are being processed and
the block size must be equivalent to the length of one print
line or one card. Records that span blocks are written one
segment at a time.

SYSIN and SYSOUT Restrictions: Spanned variable-length reco~ds
cannot be specified for a SYSIN data set. If you're using QSAM

12 OS/VS2 Data Management Serv ices Gu ide

c/

---~------------------------

Track 1

to process a SYSOUT data set, move mode (see "Buffer Control")
is more efficient than locate mode.

Null segments: A 1 in bit position 0 of the SOW indicates a null
segment. A null segment means that there are no more segments in
the block. Bits 1-7 of the SDW and the remainder of the block
must be binary zeros. A null segment is not an
end-of-logical-record delimiter. (You do not have to be
concerned about null segments unless you have created a data set
using null segments.)

Spanned Variable-Length Records (Basic Direct Access Method):
The spanning feature of the basic direct access method (BDAM)
enables you t~ create and process variable-length unblocked
logical records that are longer than one track. The feature also
enables you to pack tracks with variable-length records by
splitting the records into segments. These segments can then be
written onto more than one track, as shown in Figure 6.

Track 2 Track 3 ~ ______ A ______ ~
r-________ ~A~ __________ ~

Block
BOW / -~ '\
-"

First Segment
LL of Logical

Record A

Reterv~d -
2 Bytes \ ,

,
" " , ,

"

LL
I ntermediate Segment of

Logical Record A

Last Segrrsnt
LL of Logical

Record A

lL = track size \ \
\
\ \
\ \

I \
I \
I \
I \
I \

Block length -
2 Bytes

\ "-\ ,
\ ,

\ ,
\ Rl.',

\ \
\ \

\~
I \
I \
I \

I u' \

First

r;....-S-o-W----"'-o---'...;...\
ata 'r----s OW Data

r::::::::::;~=::::'::::==4 I ntermed iate r-....... ,--.... --/'---...
Segment r---"T-r-+------~ Last

Segment D"
of Logical .tx.

of Logical l1li Segment
Record Jf.}{. of Logical

Record Record

Reserved - 1 Byte
Segment Control Code -
1 Byte (See Figure 5)

L-. ___ Segment Length . 2 Bytes

L}-

Segment Control
Code

BOW Data Portion of Logical Record A
.A.

I..--_____ .A.'-__ ~

(SOW Data'

Segment Control
Code

Logical Record
On User's Work
Area)

Data Portion !
of I

I

First Segment /

Data Portion IOata Portion
of

I of Last I
I

I ntermediate Segment I Segment

Block length -
2 Bytes ~

Figure 6.

Reserved·
2 Bytes

No e: Not All Se ment and Block Combinations are Re 9 presented

Spanned Variable-Length Records for BDAM Data Sets

When you specify spanned, unblocked record format for the basic
direct access method and when a complete logical record cannot
fit on the track, the system tries to fill the track with a
record segment. 'Thus the maximum record length of a data set is
not restricted by block size. Furthermore, segmenting records
allows a record to span several tracks, with each segment of the
record on a different track. However, since the system does not
allow a record to span volumes, all segments of a logical record
;n a direct data set are on the same volume.

Part 1: Introduction to Data Management 13

Blocked
Records

r
Optional

Block
Prefix

Unblocked
Records

VARIABLE-LENGTH RECORDS--FORHAT D: For ASCII tapes,
variable-length records must be format-D records. Format-D
records are the same as format-V records, except:

• Control characters, if present, must be ANSI control
characters.

• Records or blocks of records can contain block prefixes.

Figure 7 shows the format of variable-l~ngth records for ASCII
tapes, where the record descriptor word (RDW) must go, and where
block prefixes and control characters can go when they exist.

Block .
Record A Record B

\
\
\

\

Record C

Block .
(

Optional
Block Record 0 Record E
Prefix

\(.---________ -A-________ -~ __ \

ROW Data . .
y

11. c

/ Optional Control Character
/ Reserved· 2 Bytes

/ / '----- Record Length..,;-- - ..-
/ 2 Byte~--

/ _ - - Block

.-----+/_-----.....,- -
Optional!

r \
Optional'

Block I
Prefix

Record C Block I Record 0
Prefix I

\

--
Optional

Block
Prefix

Record F

Block

Record E

\

Note: Block prefixes on output records must be 4-bytes long.

Figure 7. Variable-Length Records for ASCII Tapes

To specify a block prefix, code the BUFOFF operand in the DCB
macro. The block prefix can vary in length from 0 to 99 bytes
but its length must remain constant for the data set being
processed. For blocked records, the block prefix precedes the
first logical record in each block. For unblock~d records, the
block prefix precedes each logical record. If the block prefix
exists, it precedes the RDW.

To specify that the block prefix is to be treated as a BDW by
data management for format-D records on output, code BUFOFF=L as
a DCB operand. Your block prefix must be 4 bytes long, and it
must contain the length of the block, including the block
prefix. The ma>cimum length of a format D, BUFOFF=L block is 9999
because the length (stated in binary by the user) is translated
to a four-byte zoned decimal field on the ASCII tape when the
tape is written, and is then converted back to a two-byte length
field in binary followed by two bytes of zeros when the block is
read. If you use QSAM to write records, data management fills in
the block prefix for you. If you use BSAM to write records, you
must fill in the block prefix yourself. If you are using chained
scheduling to read blocked format-D records, coding
BUFOFF=absolute expression in the DeB is not allowed. Instead,

14 OS/VS2 Data Management Serv ices Gu; de

BUFOFF=L is required, because the access method needs binary
RDWs and valid end-of-block addresses to unblock the records.

When using QSAM, you cannot read the block prefix on input. When
using BSAM, y~u must account for the block prefix on both input
and output. When using either QSAM or BSAM, you must account for
the length of the block prefix in the BLKSIZE and BUFL operands.

When you use BSAM on output records, the operating system does
not recognize the block prefix. Therefore, if you want a block
prefix, it must be part of your record.

The block prefix can contain any data you want, but you must
avoid using data types, such as binary, packed decimal, and,
floating-point, that cannot be translated into ASCII. For
format-D records, the only time the block prefix can contain
binary data is when yau have coded BUFOFF=L, which tells data
management that the prefix is a BOW. Unlike the block prefix,
the RDW must always be in binary.

If you create variable-length records that are shorter than 18
bytes, data management pads each one up to a length of 18 bytes
when ~he records are written onto ASCII tape. The padding
character used is the ASCII circumflex.

For more information about control characters, refer to "Control
Character" and to "Appendix B: Control Characters."

Undef;ned-Length Records

Format U permits processing of records that do not conform to
the F or V format. As shown in Figure 8, each block is treated
as a record; therefore, deblocking must be performed by your
program. The optional control character may be used in the first
byte of each record. Because the system does not perform length
checking on format-U records, your program may be designed to
read less than a complete block into virtual storage.

Record

c Data

\ lo tiona I Control
I

/ \ P
\ Character-1 Byte I
\ I

Block

~
\ I
\ Block I

1 R.~rd B I
Block

8
Figure 8. Undefined-Length Records

For ASCII tapes, format-U records are the same as described
above, with the two exceptions described for format-F records on
ASCII tapes.

Figure 9 shows the format of undefined-length records for ASCII
tapes and where a control character and block prefix, if any,
go.

For format-U records, the user must specify the record length
when issuing the WRITE, PUT, or PUTX macro instruction. No
length checking is performed by the system, so no error

Part 1: Introduction to Data M~nagement 15

Record
"

Optional
Block c Data
Prefix

\ to tional Control
I

\ I p
\ Character-1 Byte /

\ I
\ I
\ BI~ck I BI~ck
v~----~A-----~,/ I~--~--~------~

Block ,..-------------..,
Optional Optional Optional

Block Record A
Prefix

Block Record B Block
Prefix Prefix

Record C

Figure 9. Undef~ned-Length Records for ASCII Tapes

indication w~ll be given if the specified length does not match
the buffer size or physical record size.

In update mode, you must issue a GET or READ macro before you
issue a PUTX or WRITE macro to a data set on a direct-access
device. If you change the record length when you issue the PUTX
or WRITE macro, the record will be padded with zeros or
truncated to match the length of the record received when the
GET or READ macro was issued. No error indication will be given.

control Character
You may specify in the DD statement, the DCB macro instruction,
or the 'data set label that an optional control character is part
of each record in the data set. The 1-byte character is used to
indicate a carriage control channel when the dataset is printed
or a 'stacker bin when the data set is punched. Although the
character is a part of the record ~n storage, it is never
printed or punched. For that reason, buffer areas must be large
enough to accommodate the character. If the immediate
destination of tha record is a device, such as disk, that does
not recognize the control character, the system assumes that the
control character is the first byte of the data port~on of the
record. If the destination of the record is a printer or punch
and you have not ind~cated the presence of a control character,
the system regards the control character as the first byte of
data. A list of the control characters is in "Appendix B:
Control Characters."

3800 TABLE REFERENCE CHARACTER

The 3800 Table Reference Character is a numeric character
(0,1,2, or 3) corresponding to the order in which the character
arrangement table name~ have been specified with the CHARS
keyword. It is used for s~lection of a character arrangement
table during printing. See IBM 3800 Printing Subsystem
Programmer's Guide for more information on the table reference
character.

16 OS/VS2 Data Management Serv ices' Gu ide

(-"

(

(,

c

......... -.. -._._._ _----

DIRECT-ACCESS DEVICE CHARACTERISTICS

Regardless of organization, data sets created using the
operating system can be stored on a direct-access'volume~ Each
block of data has a distinct location and a unique address,
making it possible to locate any record without extensive
searching. Thus, records can be stored and retrieved either
directly or sequentially.

Although direct-access devices differ in physical appearance,
capacity, and speed, they are similar in data recording, data
checking, data format, and programming. The recording:5urface of
each volume is divided into many concentric tracks. The number
of tracks and their capacity vary with the device. Each device
has some type of access mechanism, containing read/write heads
that transfer data as the recording surface rotates past them.
Only one head at a time can transfer data.

The logjcal arrangement of rel~ted tracks is vertical rather
than horizontal. As shown in Figure 10, a cylinder of a 2316
disk pack is composed of 20 tracks, one for each recording
surface. Because there are 203 tracks per recording surface,
there are 203 vertical cylinders of 20 tracks each. If a data
set extends to more than 1 track, it is continued on the next
track in the cylinder, not the next track on the same recording
surface.· .

Comb-Type
Access Assembly

Figure 10. 2316 Disk Pack

Tracks

Disks

Part 1: Introduction to Data Management 17

TRACK FORMAT

I Count I B
Track Descriptor

Record (RO)

I Count I B
Track Descriptor

Record (RO)

Information is recorded on all direct-access volumes in a
standard format. In addition to device data, each track contains
a track descriptor record (capacity record or RO) and data
records.

As shown in Figure 11, there are two possible data record
formats--count-data and count-key-data--only one of which can be
used for a particular data set.

Count-Data Format

8B DO I Count I B
Data Record (R 1) Data Record (Rn)

Count-Key-Data Format

8BB DO I Count I B B
Data Record (R 1) Data Record (Rn)

Figure 11. Direct-Access Volume Track Formats

In addition to device data, the count area contains 8 bytes that
identify the location 6f the record by cylinder, head, and
record numbers, its key length (0 if no keys are used), and its
data length.

If the records are written with keys, the key area (1 to 255
bytes) contains a record key that specifies the data record by
part number, account number, sequence number, or some other
identifier. In some cases, records are written with keys so that
they can be located quickly.

TRACK ADDRESSING

Two types of addresses can be used to store and retrieve data on
a direct-access volume: actual addresses and relative addresses.
The only advantage of using actual addresses is the elimination
of time required to convert from relative to actual addresses
and vice versa. When sequentially processing a multiple-volume
data set, you can refer only to records of the current volume.

ACTUAL ADDRESSES: When the system returns the actual address of
a record on a direct-access volume to your program, it is in the
form MBBCCHHR, where:

M
is a I-byte binary number specifying the relative location
of an entry in a data extent block (DEB). The data extent
block is created by the system when the data set is opened.
Each extent entry describes a set of consecutive tracks
allocated ~or the data set.

BBCCHH
is three 2-byte bi nar~' ,numbers spec; fy; ng the cell (bi n),
cylinder, and head number for the record (its track
address). The cylinder and head numbers are recorded in the
count area for each record.

18 OS/VS2 Data Managemcmt Serv i CElS Gu ide

(
1,,-,../'

TRACK OVERFLOW

R
is a 1-byte binary number specifying the relative block
number on tha track. The block number is also recorded in
the count araa.

If you use actual addresses in your program, the data set must
be treated as unmovable.

RELATIVE ADDRESSES: Two kinds of relative addresses can be used
to refer to records in a direct-access data set: relative block
addresses and relative track addresses.

The relative block address is a 3-byte binary number that
indicates the position of the block relative to the first block
of the data set. Allocation of noncontinuous sets of blocks does
not affect the number. The first block of a data set always has
a relative block address of O.

The reiative track address has the form TTR, where:

TT

R

is a 2-byte binary number specifying the position of the
track relative to the first track allocated for the data
set. The TT for the first track is O. Allocation of
noncontinuous sets of tracks does not affect the number.

is a 1-byte binary number specifying the number of the
block relative to the first block on the track TT. The R
value for the first block of data on a track is 1.

If the record overflow feature is available for the
direct-access device being used, you can reduce the amount of
unused space on the volume by specifying the track overflow
option in the DO statement or the DeB macro instruction
associated with the data set. If the option is used, a block
that does not fit on the track is partially written on that
track and continued on the next track. (The track onto which the
record is continued must be physically next and must be part of
the same extent as the track that holds the first part of the
record.) Each segment (the portion written on one track) of an
overflow block has a. count area. The data length field in the
count area specifies the length of that segment only. If the
block is written with a key, there is only one key area for the
block. It is written with the first segment. If the track
overflow option is not used, blocks are not split· between
tracks.

WRITE-VALIDITY-CHECK OPTION

You can specify the write-validity-check option in either the DO
statement or the DeB macro instruction. After a record is
transferred from main to secondary storage, the system reads the
stored record (without data transfer) and, by testing for'a data
check from the 1/0 device, verifies that the record was written
correctly. This verification requires an additional revolution
of the device for each record that was written. Standard error
recovery procedures are initiated if an error condition is
detected.

Part 1: Introduction to Data Management 19

THE DATA CONTROL BLOCK

DCB Macro

B F G H J

You must describe the characteristics of a data set, the volume
on which it resides, and its processing requirements before
processing can begin. During execution, the descriptive
information is made available to the oper~ting system in the
data control block (DCB). A DCB is required for each data set
and is created in a processing program by a DCB m~cro
instruction.

Primary sources of informati~n to be placed in the data control
block are a DCB macro instruction, a data definition (DO)
statement, and a data set label. In addition, you can provide or
modify some of the information during execution by storing the
pertinent data in the appropriate field of the data control
block. The specifications needed for input/output operations are
supplied during the initialization procedures of the OPEN macro
instruction. Therefore, the pertinent data c~n be provided when
your job is to be executed rather than when you write your
program (see Figure 12).

D D Statement Data Set Label

C D A E

Data Control Block

ABCDEFGHIJ

Figura 12. Completing the Data Control Block

When the OPEN macro instruction is executed, the Open routine:

• Completes the data control block

• loads all necessary access method routines not already in
virtual·storage

• Initializes data sets by reading or writing labels and
control information

• Constructs the necessary system control blocks

Information from a DO statement is stored in the job file
control block (JFCB) by the operating system. When the job is to
be executed, the JFCB is made available to the open routine. The
data control block is filled in with information from the DCB
macro instruction, the JFCB, or an existing clata set label. If
more than one source specifies information for a particular
field, only one source is used. A DO statement takes precedence
over a data set label, and a DCB macro instruction over both.
However, you can modify most data control block fields either
before the clata set is opened or when the operating system
returns control to your program (at the data control block open
exit). Some fields can be modified during processing.

20 OS/VS2 Data Management Serv ices Gu ide

(

"

Figure 13 illustrates the process and the sequence of filling in
the data control block from various sources. The primary source
is your program, that is, the DCB macro instruction. In general,
you should use only those DCB parameters that are needed to
ensure correct processing. The other parameters can be filled in
when your program is to be executed. When a direct-access d~ta
set is opened (6r a magnetic tape with standard labels is opened
for INPUT, RDBACK, or INOUT), any field in the JFCB not
completed by a DD statement is filled in from the data set label
(if one exists). When opening a magnetic tape for output, the
tape label is assumed not to exist or to apply to the current
data set unless you specify DISP=MOD and a volume serial number
in the volume parameter of the DD statement. Any field not
completed in the DCB is filled in from the JFCB. Fields in the
DCB can then be completed or modified by your own DCB exit
routine. Then all DCB fields are unconditionally merged into
corresponding JFCB fields if your data set is opened for output.
This is done by specifying OUTPUT, aUTIN, EXTEND, or OUTINX in
the OPEN macro instruction. The DSORG field is not merged unless
this field contains zeros in the JFCB. If your data set is
opened for input (INPUT, INOUT, RDBACK, or UPDAT is specified in
the OPEN macro instruction), the Dcn fields are not merged
unless the corresponding JFCB fields contain zeros.

DCB
Macro

DO
Statement Control

Block

Old
Data Set

Label

DCB
Exit

Routine

New
Data Set

Label

Figure 13. Sources and Sequence of Operations for Completing
the Data Control Block

When the data set is closed, the data control block is restored
to the condition it had before the data set was opened (the
buffer pool is not freed). The open and close routines also use
the updated JFCB to write the data set labels for output data
sets. If the data set is not closed when your program
terminates, the operating system will close it automatically.

Part 1: Introduction to Data Management 21

---- --------------------------------

DATA SET DESCRIPTION

For each data set you are going to process, there must be a
corresponding DCB and DD statement. The characteristics of the
data set and device-dependent information can be supplied by
either source. In addition, the DD statement must supply data
set identification, device characteristics, space allocation
requests, and related information as specified in OS/VS2 JCL.
You establish the logical connection between a DCB and a DD
statement by specifying the name of the DO statement in the
DDNAME field of the DCB macro instruction, or by completing the
field yourself before opening the data set.

Once the data set characteristics haie been specified in the DCB
macro instruction, they can be changed only by modification of
the DCB during execution. The fields of the DCB discussed below
are common to most data organizations and access techniques.

DATA SET ORGANIZATION (DSORG): specifies the organization of the
data set as.physical sequential (PS), indexed sequential (IS),
partitioned (PO), or direct (DA). If the data set contains
absolute rather than relative addresses, you must mark it as
unmovable by adding a U to the DSORG parameter (for example, by
coding DSORG=PSU). You must specify the data set organization in
the DCB macro instruction. When creating or processing an
indexed sequential organization data set or creating a direct
data set, you must also specify DSORG in the DO statement. When
creating a direct data set, the DSORG in the DCB macro must
specify PS or PSU and the DO statement must specify DA or DAU.

RECORD FOR HAT (RECFM): specifies the characteristics of the
records in the data set as fixed-length (F), variable-length
(V), or undefined-length (U). Blocked records are specified as
FB or VB. You may also specify the records as fixed-length
standard by using FS or FBS. You can request track overflow for
records other than standard format by adding a T to the RECFM
parameter (for example, by coding FBT).

RECORD LENGTH (LRECL): specifies the length, in bytes, of each
record in the data set. If the records are of variable length,
the maximum record length must be specified. For input, the
field should be omitted for format-U records.

BLOCKSIZE (BLKSIZE1: specifies the maximum length, in bytes, of
a block. If the records are of format F, the blocksize must be
an integral multiple of the record length except for SYSOUT data
sets. (See "Routing Data Through the System Input and Output
Streams" in Part 3 of this book.) If the records are of format
V, the blocksize'specified must be the maximum blocksize. If
records are unblocked, the blocksize must be 4 bytes greater
than the record length (LRECl). When spanned variable-length
records are speci fi ed, the blocksi ze i,s independent of the
record length.

KEY LENGTH (KEYLEN): specifies the length (0-255) in bytes of an
optional key which precedes each block on a direct-access
device. The value of KEYLEN is not included in BlKSIZE or lRECL
but must be included in BUFL if buffer length is specified.
Thus, BUFL=KEYLEN+BLKSIZE.

Each of the data set description fields of the data control
block, except as noted for data set organization, can be
specified when your job is to be executed. In addition, data set
identification and disposition, as well as device
characteristics, can be specified at that time. The parameters
of the DO statement discussed below are common to most data set
organizations and devices.

DATA DEFINITION NAME (DDNAME): is the name of the DO statement
and connects the DO statement to the data control block that
specifies the same DDNAME.

DATA SET NAME (DSNAME): specifies the name of a newly defined
data set, or refers to a previously defined data set.

22 OS/VS2 Data Management Serv; ces Gu ide

..

c: ____

c

DATA CONTROL BLOCK (DCB): provides, by means of subparameters,
information to be used to complete those fields ~f the data
control block that were not specified in the DCB macro
instruction. This parameter cannot be used to modify a data
control block.

CHANNEL SEPARATION AND AFFINITY (SEP/AFF): requests that
specified data sets use different channels during input/output
operations.

INPUT/OUTPUT DEVICE (UNIT): specifies the number and type of I/O
devices to be allocated for use by the data set.

SPACE ALLOCATION (SPACE): designates the amount of space on a
direct-access volume that should be allocated for the data set.
Unused space can be released when your job is finished.

VOLUME IDENTIFICATION (VOLUME): identifies the particular volume
or volUmes, or the number of volumes, to be assigned to the data
set, or the volumes on which existing data sets reside.

DATA SET LABEL (LABEL): indicates the type and contents of the
label or labels associated with the data set. The operating
system verifies standard labels. Standard labels include those
specified in the DD statement as Sl (standard labels), SUl
(standard user labels), Al (American National Standard labels),
and AUL (American National Standard user labels). Nonstandard
labels (NSL) can be specified only if your installation has
incorporated into the operating system routines to write and
process nonstandard labels.

DATA SET DISPOSITION (DISP): describes the status of a data set
and indicates what is to be done with it at the end of the job
step.

PROCESSING PROGRAM DESCRIPTION

The operating system requires several types of processing
information 'to ensure proper control of your input/output
operations. The forms of macro instructions in the program,
buffering requirements, and the addresses of your special
processing routines must be specified during either the assembly
or the execution of your program. The DCB parameters specifying
buffer requirements are discussed in "Buffer Acquisition and
Control."

Because macro instructions are expanded during the assembly of
your program, you must supply the macro instruction forms that
are to be used in processing each data set in the associated DCB
macro instruction. You can supply buffering requirements and
related information in the DCB macro instruction, the DD
statement, or by storing the pertinent data in the appropriate
field of the data control block before the end of your DCB exit
routine. If the addresses of special processing routines are
omitted from the DCB macro instruction, you must complete them
in the DCB before opening the data set.

Macro Instruction Form (MACRFl

The MACRF parameter of the DCB macro instruction specifies not
only the macro instructions used in your program, but also the
processing mode as discussed in the section "Buffer Control."
The organization of your data set, the macro instruction form,
and the processing mode determine which of the data access
routines will be used during execution.

Part 1: Introduction to Data Management 23

Exits to special Processing Routines

Exit Routine

End-of-Data-Set

Error Analysis

The DCB macro instruction can be used to identify the location
of:

• A routine that performs end-of-data procedures

• A routine th~t supplements the operating system's error
recovery routine

• A list that contains addresses of special exit routines

The exit addresses can be specified in the DCB macro instruction
or you can complete the DCB fields before opening the data set.
Figure 14 summarizes the exits that you can specify either
explicitly in the DCB, or implicitly by specifying the address
of an exit list in the DCB.

When Available

When no more sequential
records or blocks are
available

After an uncorrectable
input/output error

Where

EODAD

SYNAD

specified

operand

operand

Standard User label
(physical sequential

When opening, closing,
or reaching the end of
a data set, and when
changing volumes

EXlST operand and
exit list

or direct organization)

DCB Open

JFCBE

End-of-Volume

Block Count

FCB Image

DCB ABEND

When opening a data set

When opening a data set
for the 3800

When changing volumes

After unequal block count
comparison by end-of-volume
routine

When opening a data set or
issuing a SETPRT macro

When an ABEND condition
occurs in Open, Close, or
end-of-volume routine.

EXLST operand and
exit list

EXLST operand and
exit list

EXLST operand and
exit list

EXLST operand and
exit list

EXLST operand and
exit list

EXlST operand and
exit list

Figure 14. Data Management Exit Routines

END-OF-DATA-SET EXIT ROUTINE (EOOAO): The EODAD parameter of the
DCB macro instruction specifies the address of your end-of-d~ta
routine, which may perform any final processing on an input data
set. This routine is entered when an FEOV macro is ;ssued or
when e CHECK or GET macro is issued and there are no more
records or blocks to be retrieved. (On a READ request, this
routine is entered when you issue a CHECK macro instruction to
check for completion of the read operation. For a BSAM data set
that is opened for UPDAT, this routine is entered at the end of
each volume." This allows you to issue WRITE macros before an
FEOV macro is issued.)

The EODAD routine is not a subroutine, but rather a continuation
of the routine which issued the CHECK, GET, or FEOV macro
instruction. Once in your EODAD routine, you can continue normal

24 OS/VS2 Data Management Serv ices Gu ide

(
\

c

processing, such as reposition and resume processing of the data
set, close the data set, or process another data set.

For BSAM, you must first reposition the data set that reached
end-of-data if you wish to issue a BSP, READ, or WRITE macro
instruction. You can reposition your data set by iS5uing a CLOSE
TYPE=T macro instruction. If a READ macro is issued before the
data set is repositioned, unpredictable results will occur.

For BPAM, you may reposition the data set by issuing a FIND or
POINT macro instruction. (CLOSE TYPE=T with BPAM results in a no
operation performed.)

For QISAM, you can continue processing the input data set that
reached end-of-data by first issuing an ESETL macro to end the
sequential retrieval, then issuing a SETL macro to set the lower
limit of sequential retrieval. You can then issue GET macros to
the data set.

Your task will be abnormally terminated under either of the
following conditions:

• No exit routine is provided.

• A GET macro instruction is issued in the EO DAD routine to
the DCB which caused this routine to be entered (unless the
access method is QISAM).

When control is passed to the EODAD routine, the registers
contain the following information:

Register contents

0-1 Reserved

2-13

14

15

Contents before execution of CHECK, GET, or FEOV macro
instruction

Address of the instruction after the last issued GET,
CHECK, or FEOV macro instruction

Reserved

SYNCHRONOUS ERROR ROUTINE EXIT (SYNAD): The SYNAD parameter of
the DCB macro instruction specifies the address of an error
routine that is to be given control when an input/output error
occurs. This routine can be used to analyze exceptional
conditions or uncorrectable errors. The block being read or
~Jritten can be accepted or skipped, or processing can be
terminated.

If an input/output error occurs during data transmission,
standard error recovery procedures, provided by the operating
system, attempt to correct the error before returning control to
your program. An uncorrectable error usually causes an abnormal
terminaticin of the task. However, if you specify in the DCB .
macro instruction the address of an error analysis routine
(called a SYHAD routine), the routine is given control in the
event of an uncorrectable error.

You can write a SYHAD routine to determine the cause and type of
error that occurred by examining:

• The contents of the general registers

• The data event control block (discussed in Part 2 under
"Basic Access Technique")

• The exceptional condition code

• The standard status and sense indicators

Pat't 1: Il'Itroducti on to D~ta Mr.mClQ(IIT1cnt 25

You can use the SYNADAF macro instruction to perform this
analysis automatically. This macro instruction produces an error
message that can be printed by a subsequent PUT or WRITE macro
; n s t r'u c t ion .

After completing the analysis, you can return control to the
operating system or close the data set. If you close the data
set, note that you may not use the temporary close (CLOSE
TYPE=T) option in the SYNAD routine. To continu~ processing the
same data set, you must first return control to the control
program by a RETURN macro instruction. The control program then
transfers control to your processing program, subject to the
conditions described below. In no case should you attempt to
reread or rewrite the record , because the system has already
attempted to recover from the error.

When you are using GET and PUT to process a sequential data set,
the operating system provides three automatic error options
(EROPT) to be used if there is no SYNAD routine or if you want
to return control to your program from the SYNAD routine:

•
•
•

ACC

SKP

ABE

accept the erroneous block

sk i p the '~rroneous block

abnormally terminate the task

These options are applicable only to data errors, as control
errors result in abnormal termination of the task. Data errors
affect only the validity of a block of data. Control errors
affect information or operations necessary for continued
processing of the data set. These options are not applicable to
output errors, except output errors on the printer. If the EROPT
and SYNAD fields are not completed, ABE is assumed.

Since EROPT applies to a physical block of data, and riot to a
logical record, use of SKP or ACC may result in incorrect
assembly of spanned records.

When you use READ and WRITE macro ; nstruct ions, err'ors are
detected when you issue a CHECK macro instruction. I-f you are
processing a direct or sequential data set and you return to the
control program from your SYNAD routine, the operating system
assumes that you have accepted the bad record. If you are
creating a direct data set and you return to the control program
from your SYNAD rout~ne, your task is abnormally terminated. In
the case of processing a direct data set, the return should be
made to the control program via register 14 in order to make a
control block (the lOB) available for reuse in a subsequent READ
or WRITE macro instruction.

For a detailed description of the register contents upon entry
to your SYNAD routine, refer to the tables in OS/VS2 MVS Data
Management ~'acro Instruct; ons. The tables there descri be--
register contents for programs using QISAM, BISAM, BDAM, BPAM,
BSAM, and QSAM.

Your SYNAD routine can end by branching to ~nother routine in
your program, such as a routine that closes the dnta set. It can
also end by returning-control to the control program, which then
returns control to the next sequential instruction (after the
macro) in your program. If your routine returns control, the
conventions for saving and restoring register contents are as
follows:

• The SYNAD routine must preserve the contents of registers 13
and 14. If required by the logic of your program, the
routine must also preserve the contents of registers 2
through 12. Upon return to your program, the contents of
registers 2 through 12 will be the same as upon return to
the control program from the SYNAD routine.

26 OS/VS2 Data Management Serv i cas Gu ide

\ ... _ .. '

('---"

(

• The SYNAD routine must not use the save area whose address
is in register 13, because this area is used by the control
program. If the routine saves and restores register
contents, it must provide its own save area.

• If the SYNAD routine calls another routine or issues
supervisor or data management macro instructions, it must
provide its own save area or issue a SYNADAF macro
instruction. The SYNADAF macro instruction provides a save
area for its own use, and then makes this area available to
the SYNAD routine. Such a save area must be removed from the
save area chain by a SYNADRLS macro instruction before
control is returned to the control program.

When you use QSAM to read and translate paper-tape characters,
your SYNAD routine receives control when you request the record
preceding the record in error. Before giving control to your
SYNAD routine, the system translates the requested record into
your buffer.

For example, suppose that you are using QSAM to read and
translate a paper-tape data set and that you have specified, in
your DCB, SYNAD=(address) and EROPT=ACC. Suppose also that the
third record of the data set has a parity error. When you issue
a GET request for the second record, the system translates that
record into your buffer and, as a result of the error in the
third record, passes control to your SYNAD routine. Because you
specified the accept option, the system returns control to your
program after your SYNAD error analysis routine completes its
processing. When you issue a GET request for the third record,
all characters other than the erroneous one are translated into
your buffer; the erroneous character is moved, in normal
sequence, into your buffer without translation.

If the error analysis routine receives control from the Close
routine when indexed sequential data sets are being created (the
DeB is opened for QISAM load mode), bit 3 of the IOBFLAGS field
in the load mode buffer control table (IOBBCT) is set to one.
The DCBWKPT6 field in the DCB contains an address of a list of
work area pointers (ISLVPTRS). The pointer to the IOBBCT is at
offset 8 in this list as shown in the following diagram:

DCS
Work Area
Pointers

lr-______ 1V : (lSLVPTRSJ

.48 1 DCBWKPT6 _ A (lDBBCTJ

IOSSCT

IOSFLAGS

If the error analysis routine receives control from the Close
routine when indexed sequential data sets are being processed
using QISAM scan mode, bit 2 of the DCB field DCBEXCD2 is set to
one.

EXIT LIST (EXLST): The EXlST parameter of the DeB macro
instruction specifies the address of a list that contains the
addresses of special processing routines, a forms control buffer
(FCB) image, or a user totaling area. An exit list must be
created if user label, data control block, end-of-volume, block
count, JFCBE, or DCB ABEND exits are used, or if a PDAB macro or
FCB image is defined in the processing program.

Part 1: Introduction to Data Management 27

The exit list is constructed of 4-byte entries that must be
aligned on fullword boundaries. Each exit list entry is
identified by a code in the high-order byte, and the address of
the routine, image, or area is specified in the 3 low-order
bytes. Codes and addresses for the exit list entries are shown
in Figure 15.

You can activate or deactivate any entry in the list by placing
the required code in the high-order byte. Care must be taken,
however, not to destroy the last entry indication. The operating
system routines scan the list from top to bottom, and the first
active entry found with the proper c~de is selected.

You can shorten the list during execution by setting the
high-order bit to 1, and extend it by setting the high-order bit
to O.

When control is passed to an exit routine, the registers contain
the following information:

Re9iste~ contents

o Variable; see exit routine description.

1 The three, low-order bytes contain the address of DCB
currently being processed, except when user-label
exits (X'OI'-'04'), user totaling exit (X'OA'), or DCB
ABEND exit (X'!!') is taken, when register 1 contains
the address of a parameter list. The contents of the
parameter list are described in each exit routine
description.

2-13 Contents before execution of the macro instruction.

14

15

Return address (must not be altered by the exit
routine).

Address of exit routine entry point.

The conventions for saving and restoring register contents are
as follows:

• The exit routine must preserve the contents of register !4.
It need not preserve the contents of other registers. The
control program restores the contents of registers 2-13
before returning control to your program.

• The exit routine must not use the save area whose address is
in register 13, because this area is used by the control
program. If the exit routine calls another routine or issues
supervisor or ~ata management macro instructions, it must
provide the address of a new save area in register 13.

standa~d Use~ Label Exit: When you create a data set with
physical sequential or direct organization, you can provide
routines to create your own data set labels. You can also
provide routines to verify these labels when you use the data
set as input. Each label is 80 characters long with the first 4
characters UHL1,UHl2, ... ,UHL8 for a header label or
UTLl,UTL2, ... ,UTl8 for a trailer label. User labels are not
allowed on indexed sequential data sets.

28 OS/VS2 Data Management Services Guide

c

(

('
\

Hexadecimal
Entry Type Code

Inactive entry 00

Input header label exit 01

Output header label exit 02

Input trailer label exit 03

Output trailer label exit 04

Data contr~l block exit

End-of-volume exit

JFCB exit

User tota~ing area

Block count exit

Defer input trailer
label

Defer nonstandard
input trailer label

FCB image

DCB ABEND exit

QSAM parallel input

JFCBE exit

Last entry

05

06

07

08-09

OA

OB

OC

00

DE-OF

10

11

12

13-14

15

16-7F

80

3-byte Address--Purpose

Ignore the entry; it is not active.

Process a user input header label.

Create a user output header label.

Process a user input trailer label.

Create a user output trailer label.

Take a data control block exit.

Take an end-of-volume exit.

JFCB address for RDJFCB and
OPEN TYPE=J SVCs.

Reserved for future use

Address of beginning of user's
totaling area.

Take a block-count-unequal exit.

Defer processing of a user
input trailer label
from end-of-data until closing.

Defer processing a nonstandard input
trailer labelmagnetic tape unit from
end-of-dat~ until closing
(no exit routine address).

Reserved for future use

Define an FCB image.

Examine the ABEND condition and select
one of several options.

Address of the PDAB for which this DCB
is a member.

Reserved for future use

Take an exit during open to allow user
to examine JCL=specified setup
requirements for a 3800 printer.

Reserved for future use

Treat this entry as last
entry in list.
This code can be specified with
any of the above but must always be
specified with the last entry.

Figure 15. Format and Contents of an Exit List

The physical location of the labels on the data set depends on
the data set organization. For direct (BDAM) data sets, user
labels are placed on a separate user label track in the first
volume. User label exits are taken only during execution of the
open and close routines. Thus you may create or examine up to
eight user header labels only during execution of open and up to
eight trailer labels only during execution of close. Since the
trailer labels are on the same track as the header labels, the

Part 1: Introduction to Data Management 29

first volume of the data set must be mounted when the data set
is closed.

For physical sequential (BSAM or QSAM) data sets, you may create
or examine up to eight header labels and eight trailer labels on
each volume of the data set. For ASCII tape data sets, you may
create an unlimited number of user header and trailer labels.
The user label exits are taken during open, close, and
end-of-volume processing.

To create or verify labels, you must specify the addresses of
your label exit routines in an exit list as shown in Figure 15.
Thus you may have separate routines for creating or verifying
header and trailer label groups. Care must be taken if a
magnetic tape is read backward, since the trailer label group is
processed as header labels and the header label group is
processed as trailer labels ..

When your routine receives control, the contents of register
are unpredictable. Register 1 contains the address of a

parameter list. The contents of registers 2-13 are the same as
when the macro instruction was issued. However, if your program
does not issue the CLOSE macro in~truction, or abnormally
termi nates before i ssui ng CLOSE, the' CLOSE macro i nstructi on
will be issued by the control program, with control-program
information in these registers.

The parameter list pointed to by register 1 is a 16-byte area
aligned on a fullword boundary. Figur~ 16 shows the contents of
the area.

a
Address of aO-byte buffer area

4
Address of DeB being processed

a
Address of status information

12
Address of user totaling image area

Figure 16. Parameter List Passed to User Label Exit Routine

The first address in the parameter list points to an SO-byte
label buffer area. For input, the control program reads a user
label into this area before passing control to the label
routine. For output, the user label exit routine constructs
labels in this area and returns to the control program, which
writes the label. When an input trailer label routine receives
control, the EOF flag (high-order byte of the second entry in
the parameter list) is set as follows:

bit 0 = 0: Entered at end-of-volume
bit 0 = 1: Entered at end-of-file
bits 1-7: Reserved

30 OS/VS2 Data Management Serv ices Gu ide

/
\
'-

•

(~

When a user l~bel exit routine receives control after an
uncorrectable I/O error has occurred, the third en~ry of the
parameter list cont~ins the address of the standard status
information. The error flag (high-order byte of the third entry
in the parameter list) is set as follows:

bit 0 = 1: Uncorrectable I/O error
bit 1 = 1: Error occurred during writing of updated label
bits 2-7: Reserved

The fourth entry in the parameter list is the address of the
user totaling image area. This image area is the entry in the
user totaling save area that corresponds to the last record
physically written on the volume. The image area is discussed
further under "User Totaling."

Each routine must create or verify one label of a header or
trailer label group, place a return code in register 15, and
return control to the operating system. The operating system
responds to the decimal return code as shown in Figure 17.

You can create user labels only for data sets on m~gnetic-tape
volumes with IBM standard labels or American Nation~l Standard
labels and for data sets on direct-access volumes. When you
specify both user labels and IBM standard labels in a DD
statement by specifying LABEL=(,SUL) and there is an active
entry in the exit list, a label exit is always taken. Thus, a
label exit is taken even when an.input data set' does not contain
user labels, or when no user label track has been allocated for
writing labels on a direct-access volume. In either case, the
appropriate exit routine is entered with the buffer area address
parameter set to o. On return from the exit routine, normal
processing is resumed; no return code is necessary.

Label exits are not taken for system output (SYSOUT) data sets,
or for data sets on volumes that do not have standard labels.
For other data sets, exits are taken as follows:

• When an input data set is opened, the input header label
exit 01 is taken. If the data set is on tapa being opened
for ROBACK, user trailer labels will be processed.

Part 1: Introduction to Data Management 31

Routine Type

Input header
or
trai ler label

Output header
or trailer label

Return Code

o

4

o

4

8

system Response

Normal processing is resumed.
If there are any remaining
labels in the label group, they
are ignored.

The next user label ;s read into
the label buffer area and control
is returned to the exit routine.
If .there are no more labels in
the label group, normal processing
is resumed.
The label is written from the
label buffer area and normal
processing is resumed.

The label is written from the
label area, the next label is read
into the label buffer area, and
control is returned to the label
processing routine.
If there are no more labels,
processing is resumed.

Normal processing is resumed;
no label is written from the label
buffer area.

User label is written
from the label buffer area.
Normal processing is resumed.
User label is written from the label
buffer area.
If fewer than eight labels have been
created, control is returned to the
exit routine, which then creates
the next label.
If eight labels have been created,
normal processing is resumed.

lYour input label routines can return these codes only when
you are processing a physical sequential data set opened
for UPDAT or a direct data set opened for OUTPUT or UPDAT.
These return codes allow you to verify the existing labels, update
them if necessary, then request that the system write
the updated labels.

Figure 17. System Response to a User Label Exit Routine Return Code

32 OS/VS2 Data Man.:lgt;:!mcnt Serv ices GI.I ide

(
'------ -

/

~--

•

•

When an output data set is opened, the output header label
exit 2 is taken. However, if the data set already exists and
DISP=MOD is coded in the 00 statement, the input trailer
label exit 03 is taken to process any existing trailer
labels. If the input trailer label exit 03 does not exist,
then the def~rred input trailer label exit ac is taken if it
exists; otherwise, no label exit is taken. For tape, these
trailer labels will be overwritten by the new output data or
by EOV or close processing when writing new standard trailer
l~bels. For direct-access devices, these trailer labels will
still exist unless rewritten by EOV or close processing in
an output trailer label exit.

When an input data set reaches end-of-volume, the input
trailer label exit 03 is taken. If the data set is on tape
opened for ROBACK, header labels will be processed. The
inp~t trailer label exit 03 is not taken if you issue an
FEOV macro instruction. If a defer input trailer label exit
OC is present, ~nd an input trailer label exit 03 is not
present, the OC exit is taken. After switching volumes, the
input header label exit 01 is taken. If the data set is on
tape opened for RDBACK, trailer labels will be processed.

• When an output data set reaches end-of-volume, the output
trailer label exit 04 is taken. After switching volumes,
output header label exit 02 is taken.

• When an input data set reaches end-of-data, the input
trailer label exit 03 is taken before the EOOAD exit, unless
the DCB exit list contains a defer input trailer label exit
QC.

• When an input data set is closed, no exit is taken unless
the data set was previously read to end-of-data and the
defer input trailer label exit OC is present. If so, the
defer input trailer label exit OC is taken to process
trailer labels, or if the tape is opened for ROBACK, header
labels.

• When an output data set is closed, the output trailer label
exit 4 is taken.

To process records in reverse order, a data set on magnetic tape
can be read backward. When you read backward, header label exits
are taken to process trailer labels, and trailer label exits are
taken to process header labels. The system presents labels from
a label group in ascending order by label number, which is the
order in which the labels were created. If necessary, an exit
routine can determine label type (UHL or UTL) and number by
examining the first four characters of each label. Tapes with
IBM standard labels and direct-access devices can have as many
as eight user labels. Tapes with American National Standard
labels can have unlimited user labels.

If an uncorrectable error occurs during reading or writing of a
user label, the system passes control to the appropriate exit
routine with the third word of the parameter list flagged and
pointing to status information.

After an input error, the exit routine must return control with
an appropriate return code (0 or 4). No return code is required
after an output error. If an output error occurs while the
system is opening a data set, the data set is not opened (nCB is
flagged) and control is returned to your program. If an output
error occurs at any other time, the system attempts to resume
normal processing.

User Totaling (BSAM and QSAM only): When creating or processing
a data set with user labels, you may develop control totals for
each volume of the data set and store this information in your
user labels. For example, control total that was accumulated as
the data set was created can be stored in your user label and
later compared with a total accumulated during processing of the
volume. User totaling assists you by synchronizing the control

Part 1: Introduction to Data Management 33

data you create with records physically written on a volume. For
an output data set without user labels, you can also develop a
control total that will be available to your end-of-volume
routine.

To request user totaling, you must specify OPTCD=T in the DCB
macro instruction or in the DCB parameter of the DO statement.
The area in which you accumulate the control data (the user
totaling area) must be identified to the control program by an
entry of hexadecimal OA in the DCB exit list. OPTCD=T cannot be
specified for SYSIN or SYSOUT data sets.

The user totaling area, an area in storage that you provide,
must begin on a halfword boundary and be large enough to contain
your accumulated data plus a 2-byte length field. The length
field must be the first 2 bytes of the area and specify the
length of the entire area. A data set for which you have
specified user totaling (OPTCD=T) will not be opened if either
the totaling area length or the address in the exit list is 0,
or if there is no X'OA' entry in the exit list.

The control program establishes a user totaling save area, in
which the control program preserves an image of your totaling
area, when an I/O operation is scheduled. When the output user
label exits are taken, the address of the save area entry (user
totaling image area) corresponding to the last record physically
written on a volume is passe.d to you in the fourth entry of the
user label parameter list. This parameter list is described in
the section "Standard User Label Exit." When an end-of-volume
exit is taken for an output data set and user totaling has been
specified, the address of the user totaling image area is in
register O.

When using user totaling for an output data set, that is, when
creating the data set, you must update your control data in your
totaling area before issuing a PUT or a WRITE macro instruction.
The control program places an image of your totaling area in the
user totaling save area when an I/O operation is scheduled. A
pointer to the save area entry (user totaling image area)
corresponding to the last record physically written on the
volume, is passed to you in your label processing routine. Thus
you can include the control total in your user labels. When
subsequently using this data set for input, you can accumulate
the same information as you read each record and compare this
total with the one previously stored in the user trailer label.
If you have stored the total from the preceding volume in the
user header label of the current volume, you can process each
volume of a multivolume data set independently and still
maintain this system of control.

When variable-length records are specified with the totaling
facility for user labels, special considerations are necessary.
Since the control program determines whether a variable-length
record will fit in a buffer after a PUT or a WRITE has been
issued, the total you have accumulated may include one more
record than is actually written on the volume. In the case of
variable-length spanned records, the accumulated total will
include the control data from the volume-spanning record
although only a segment of the record is on that volume.
However, when you process such a data set, the volume-spanning
record or the first record on the next volume will not be
available to you until after the volume switch and user label
processing are completed. Thus the totaling information in the
user label may not agree with that developed during processing
of the volume.

One way you can resolve this situation is to maintain, when you
are creating a data set, control data pertaining to each of the
last two records and include both totals in your user labels.
Then the total related to the last complete record on the volume
and the volume-spanning record or the first record on the next
volume would.be available to your user label routines. During
subsequent processing of the data set, your user label routines

34 OS/VS2 Data Management Services Guide

' . .;'

" ,.

'" ."

(

•

•

c

can determine if there is agreement between the generated
information and one of the two totals previously saved.

When the totaling facility for user labels is selected with DASD
devices and secondary space is specified, the total accumulated
may be one less than the actual written.

Data Control Block open Exit: You can specify in an exit list
the address of a routine that completes or modifies a DCB and
does any additional processing required before the data set is
completely open. The routine is entered during the opening
process after the JFCB has been used to supply information for
the DCB. The routine can determine data set characteristics by
examining fields completed from the data set labels. When your
DCB exit routine receives control, the three, low-order bytes of
register 1 will contain the address of the DCB currently being
processed .

As with label processing routines, register 14's contents must
be preserved and restored if any macro instructions are used in
the routine. Control is returned to the operating system by a
RETURN macro instruction; no return code is required.

This exit is mutuallY exclusive with the JFCBE exit. If you need
both the JFCBE and data control block open exits, you must use
the JFCBE exit to pass control to your routines.

QSAM Parallel Input Exit: A request for parallel input
processing is indicated by including the address of a parallel
data access block (PDAB) in the DCB exit list. The address must
be on a fullword boundary with the first byte of the entry
containing X'12' or, if it is the last entry, X'92'. For more
information on parallel input processing, see "Parallel Input
Processing (QSAM Only)."

JFCBE Exit: Jel-specified setup requirements for the 3800
printer cause a JFCB extension (JFCBE) to be created to reflect
those specifications. A JFCBE exits if BURST, MODIFY, CHARS,
FLASH, or any copy group is coded on the .DD statement. The JFCBE
exit can be used to examine or modify those specifications in
the JFCBE. You can provide a JFCBE exit routine to examine or
modify those specifications. The address of the routine should
be placed in an exit list. The device allocated does not have to
be a 3800. This exit is taken during open processing and is
mutually exclusive with the data control block exit. If you need
both the JFCBE and data control block exits, you must use the
JFCBE exit to pass control to your routines.

With 3800 Enhancements, when you issue the SETPRT macro to a
SYSOUT data set the JFCBE is further updated from the
information in the SETPRT parameter list.

When control is passed to your exit routine, the contents of
register and 1 will be:

Register contents

o If a JFCBE exists, this register will point to an area
in unprotected storage into which a copy of the JFCBE
has been placed. If a JFCBE does not exist, this
register will be zero.

1 The address of the DCB being processed.

Registers 2-15 will contain the standard user exit contents.

The area pointed to by register 0 will also contain the 4-byte
FCB identification which is obtained from the JFCB. The FeB
identification is placed in the four bytes following the
176-byte JFCBE. If the FCB operand was not coded on the DD
statement, this FCB field will be binary zeros.

Part 1: Introduction to Data Management 3S

If your copy of the JFCBE 1S modified during an exit routine,
you should indicate this fact by turning on bit JFCBEOPN (X'80'
in JFCBFlAG) in the JFCBE copy. On return to open, this bit
indicates whether the system copy is to be updated. The 4-byte
FCB identification ;n your area will be used to update the JFCB
regardless of the bit setting. Checkpoint/restart also
interrogates this bit to determine which version of the JFCBE
will be used at restart time. If this bit is not on, the JFCBE
generated by the restart JCL will be used.

End-of-Volume Exit: You can specify in an exit list the address
of a routine that is entered when end-of-volume is reached in
processing of a physical sequential data set.

When you concatenate data sets with unlike attributes, no EOV
exits are taken.

When the end-of-volume routine is entered, register 0 contains 0
unless user totaling was specified. If you specified user
totaling in the DCB macro instruction (by coding OPTCD=T) or in
the DO statement for an output data set, register 0 contains the
address of the user totaling image area. The routine is entered
after a new volume has been mounted and all necessary label
processing has been completed. If the volume is a reel of
magnetic tape, the tape is positioned after the tapemark that
precedes the beginning of the data.

You can use the end-ot-volume (EOV) exit routine to take a
checkpoint by issuing the CHKPT macro instruction, which 1S
discussed in OS/VS2 Checkpoint/Restart; specifications for the
CHKPT macro are also included in PS/VS2 MVS Data Management
Macro Instructions. If a checkpointed job step terminates
abnormally, it can be restarted from the EOV checkpoint. When
the job step is restarted, the volume is mounted and positioned
as upon entry to the routine. Restart becomes impossible if
changes are made to the link pack area (LPA) library between the
time the checkpoint is taken and the time the job step is
restarted. When the step is restarted, pointers to end-of-volume
modules must be the same as when the checkpoint was taken.

The end-of-volume exit routine returns control in the same
manner as the data control block exit routine. Register 14's
contents must be preserved and restored if any macro
instructions are used in the routine. Control is returned to the
operating system by a RETURN macro instruction; no return code
is required.

Block Count Exit: You can specify in an exit list the address of
a routine that will allow you to abnormally terminate the task
or continue processing when the end-of-volume routine finds an
unequal block count condition. When you are using standard
labeled input tapes, the block count in the trailer label is
compared by the end-of-volume routine with the block count in
the DCB. The count in the trailer label reflects the number of
blocks written when the data set was created. The number of
blocks read when the tape is used as input is contained in the
DCBBLKCT field of the DCB.

The routine is entered during end-of-volume processing. The
trailer label block count is passed in register O. You may gain
access to the count field in the DCB by using the address passed
in register 1 plus the proper displacement, as given in OS/VS2
System ProgramminS-library: Debugging Handbook. It the block
count in the DCB differs from that in the trailer label when no
exit routine is provided, the task is abnormally terminated. The
routine must terminate with a RETURN macro instruction and a
return code that indicates what action is to be taken by the
operating system, as shown in Figure 18. As with other exit
routines, register 14's contents must be saved and restored if
any macro instructions are used.

36 OS/VS2 Data Management Serv ices Gu ide

•

\ .. -

/'
\ ---

c,

Return Code system Action

0 The task is to be abnormally terminated.

4 Normal processing is to be resumed.

Figure 18. System Response to Block Count Exit Return Code

Defer Nonstandard Input Trailer Label Exit: In an exit list, you
can specify a code that indic~tes that you want to defer
nonstandard input trailer label processing from end-of-data
until the data set is closed. The address portion of the entry
is not used by the operating system.

An end-of-volume condition exists in several situations. Two
examples are: (1) when the system,reads a filemark or tapemark
at the end of a volume of a multivolume data set but that volume
is not the last, and (2) when the system reads a filemark or
tapemark at the end of a data set. The first situation is
referred to here as an end-of-volume condition, and the second
as an end-of-data condition, although it, too, can occur at the
end of a volume.

For an end-ot-volume (EOV) condition, the EOV routine passes
control to your nonstandard input trailer label routine, whether
or not this exit code is specified. For an end-of-data condition
when this exit code is specified, the EOV routine does not pass
control to your nonstandard input trailer label routine.
Instead, the close routine passes control to your end-of-data
routine.

FCB Image Exit: You can specify in an exit list the address of a
forms control buffer (FCB) image. This FCB image can be loaded
into the forms control buffer of the printer control unit. The
FCB controls the movement of forms in printers that do not use a
carriage control tape.

Multiple exit list entries in the exit list ca~ define FCBs. The
open and SETPRT routines search the exit list for requested FeBs
before searching SYS1.IMAGELIB.

The first 4 bytes of the FCB image contain the image identifier.
To load the FeB, this image identifier is specified in the FeB
parameter of the DO statement, by the SETPRT macro instruction,
or by the system operator in response to message IEC127D or
IEC129D.

For a 3211 the image. identifier is followed by the FeB image
descr i bed in OS/VS.u.y.stem P rogramm i 1"19 L; brary: Data Management.
For a 3800, see IBM 3800 Printing Subsystem Programm~r's Guide.

You can use an exit list to define an FeB image only when
writing to an online printer. Figure 19 illustrates one way the
exit list can be used to define an FeB image.

Part 1: Introduction to Data Management 37

DCB .. ,EXLST=EXLIST

EXLIST DS
DC
DC
DC

FCBIMG DC
DC
DC
DC * 16 line character
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

OF
X'lO'
Al3(FCBIMG)
X'BOOOOOOO'
CL4'IMG1'
X' 00'
All(67)
X'90'

positions to the
X' 00'
5X'00'
X' 01'
6X'OO'
X'02'
5X'OO'
X'03'
9X'OO'
X'04'
19X'OO'
X'OS'
X'06'
X'07'
X'08'
X'09'
X'OA'
X'OB'
X'OC'
8X'OO'
X'lO'

Flag code for FCB image
Address of FCB image
End of EXLST and a null entry
FCB identifier
FCB is not a default
Length of FCB
Offset print line

right
Spacing is 6 lines per inch
Lines 2-6 no channel codes
Line 7 channell
Lines 8-13 no channel codes
Line (or Lines) 14 channel 2
Line (or Lines) 15-19 no channel
Line (or Lines) 20 channel 3
line (or Lines) 21-29 no channel
Line (or Lines) 30 channel 4
line (or Lines) 31-49 no channel
Line (or Lines) 50 channel 5
Line (or Lines) 51 channel 6
line (or Lines) 52 channel 7
Line (or Lines) 53 channel 8
Line (or Lines) 54 channel 9
Line (or Lines) 55 channel 10
Lin~ (or Lines) 56 channel 11
Line (or Lines) 57 channel 12
line (or Lin~s) 58-65 no channel
End of FCB image

//ddname
/*

END
DO UNIT=3211,FCB=(IMGl,VERIFY)

Figure 19. Defining an FCB Image for a 3211

codes

codes

codes

codes

DeB ABEND Exit: The .DCB ABEND exit is provided to gi"ve you some
options regarding the action you want the system to take when a
condition arises that may result in abnormal termination of your
task. This exit can be taken any time an ABEND condition arises
during the process of opening, closing, or handling an
end-of-volume condition for a DCB associated with your task.

When an ABEND condition arises, a write-to-programmer message
about the ABEND is issued and your DCB ABEND exit is given
control, provided there is an active DCB ABEND exit routine
address in the DCB being processed. If STOW called the
end-of-volume routines to get secondary space to write an
end-of-file mark for a partitioned data set, or if the DCB being
processed is for an indexed sequential data set, the DCB ABEND
exit routine will not be given control if an ABEND condition
occurs. The contents of the registers when your exit routine is
entered are the same as for other DCB exit list routines except
that the three, low-order bytes of register 1 contain the
address of the parameter list described in Figure 20. Your ABEND
exit routine can choose one of four options:

• to immediately terminate your task,

• to delay the ABEND until all of the DCBs in the same OPEN or
CLOSE macro instruction are opened or closed,

• to ignore the ABEND condition and continue processing
without making reference to the DCB on which the ABEND
condition was encountered, or

• to try to recover from the error.

38 OS/VS2 Data Management Services Guide

(
\. /

Displacement

o

4

8

12

Bit

0-3

4

5

6

7

Fullword Boundary

System Completion Code * I Return Code

DCB Address

Open/Close/End-of-Volume Work Area Address

00 I Recovery Work Area Address

*'n the first 12 bits.

Meaning

Reserved for Future Use

OK to Recover

OK to Ignore

OK to Delay

Reserved for Future Use

I Option Mask

Figure 20. Parameter List Passed to DeB ABEND Exit Routine

Not all of these options are available for each ABEND condition.
Your DeB ABEND exit routine ~ust determine which option is
av~ilable by examining the contents of the option mask byte
(byte 3) of the parameter list. The address of the parameter
list is passed in register 1. Figure 20 shows the contents of
the parameter list and the possible settings of the option mask
when your routine receives control. All information in the
parameter list is in binary.

When your DeB ABEND exit routine returns control to the system
control program (this can be done using the RETURN macro'
instruction), the option mask byte should contain the setting
that specifies the action you want to take. These actions and
the corresponding settings of the option mask byte are!

Part 1: Introduction to Data ManagemQnt 39

Bit setting Action

o abnormally terminate the task immediately

4

g

12

ignore the ABEND condition

delay the ABEND until the other DeBs being
processed concurrently are opened or closed

make an attempt to recover

You must inspect bits 4, 5, and 6 of the option mask' byte (byte
3 of the parameter list) to determine which options are
available. If a bit is set to 1, the corresponding option is
available. Indicate your choice by inserting the appropriate
value io byte 3 of the parameter list, overlaying the bits you
inspected. If you use a value that specifies an option that 1$
not available, the ABEND is issued immediately.

If the contents of the option mask are 0, you must request an
immediate ABEND by leaving the value of 0 in the option mask
unchanged.

If bit 5 of the option mask is set to 1, you can ignore the
ABEND by placing a decimal value of 4 in byte 3 of the parameter
list. Processing on the current DeB stops. If you subsequently
attempt to use this DCB, the results are unpredictable. If you
ignore an error in end-of-volume, the data set will be closed
before control is returned to your program at the point which
caused the end-of-volume condition (unless the end-of-volume
routines were called by the close routines). If the
end-of-volume routines were called by the close routines, an
ABEND macro will be issued even though the ignore option was
selected.

If bit 6 of the option mask is set to 1, you can delay the ABEND
by placing a decimal value of 8 in byte 3 of the parameter list.
All other DeBs waiting for open or close processing will be
processed before the ABEND is issued. For end-of-volume,
however, you can't delay the ABEND because the end-of-volume
routine never has more than one DCB to process.

If bit 4 of the option mask is set to 1, you can attempt to
recover. Place a decimal value of 12 in byte 3 of the parameter
list and provide information for the recovery attempt. Figure 21
lists the ABEND conditions for which recovery can be attempted.
For ABEND conditions which can be ignored or delayed, see OS/VS
Message library: VS2 System Messages.

40 OS/VS2 Data Management Servi ces GUl de

(

(, system
completion
Code

213

237

413

613

713

717

813

Return
Code

04

04

18

08

OC

10

14

04

10

04

Description of Error

DSCB was not found on volume specified.

Block count in DCB does not agree with block
count in trailer label.

Data set was opened for input and no volume
serial number was specified.

I/O error occurred during reading of tape label.

Invalid tap~ label was read.

I/O error occurred during writing of tape label.

I/O error occurred during writing of
tapemark following header labels.

A data set on magnetic tape was opened
for INOUT, but the volume contained a data set
whose expiration date had not been reached and the
operator denied permission.

I/O error occurred during reading of trailer
label 1 to update block count in DCB.

Data set name on header label does not match
data set name on DD statement.

Figure 21. Conditions for which Recovery Can Be Attempted

Recovery Requirements: For the recovery attempt, you should
supply a recovery work area (see Figure 22) with a new volume
serial number for each volume associated with an error. If no
new volumes are supplied, recovery will be attempted with the
existing volumes, but the likelihood of successful recovery is
greatly reduced.

Part 1: Introduction to Data Management 41

Displacement
o

4

Halfword Boundary

Length of This Work Area

Bit

o

2-7

Meaning

Free This Work Area

Volume Serial Numbers Are
Provided

Reserved for Future Use

Option Byte Subpool Number

Number of
New Volumes I New Volume Serial Numbers (6 bytes each)

~------------~

T
Figure 22. Recovery Work Area

If you request recovery for system completion code 213, return
code 04, you must indicate 1n your job control language (JCL)
that the volumes are nonsharable by specifying unit affinity,
deferred mounting, or more volumes than units for the data set.

If you request recovery for system completiori code '237, return
code 04, you don't need to supply new volumes or a work area.
The condition that caused the ABEND is the disagreement between
the block count in the DCB and that in the trailer label. This
disagreement is ignored to permit recovery.

If you request recovery for system completion code 717, return
code 10, you don't need to supply new volumes or a work area.
The ABEND is caused by an I/O error during updating of the DCB
block count. To permit recovery, the block count is not updated.
Consequently, an abnormal termination with system completion
code 237, return code 04, may result when you try to read from
the tape after recovery. You may attempt recovery from the ABEND
with system completion code 237, return code 04, as explained in
the preceding paragraph.

System completion codes and their associated return codes are
described in OS/VS Message Library: VS2 System Codes.

42 OS/VS2 Data Management Serv ices Gu ide

r'
I
'-.......

The work area that you supply for the recovery attempt must
begin on a halfword boundary and can contain the information
described in Figure 22. Place a pointer to the work area in the
last 3 bytes of the parameter list pointed to by register land
described in Figure 20.

If you acquire the storage for the work area by using the
GETMAIN macro instruction, you can request that it be freed by a
FREEMAIN macro instruction after all information has been
extracted from it. Set the high-order bit of the option byte in
the work area to 1 and place the number of the subpool from
which the work area was requested in byte 3 of the recovery work
area.

Only one recovery attempt per data set ;s allowed during open,
close, or end-of-volume processing. If a recovery attempt is
unsuccessful, you may not request another recovery. The second
time through the exit routine you may request only one of the
other options (if allowed): issue the ABEND immediately, ignore
the ABEND, or delay the ABEND. If at any time you select an
option that is not allowed, the ABEND is i.ssued immediatelY.

Note that if recovery is successful, you still receive an ABEND
message on your listing. This message refers to the ABEND that
would have been issued if the recovery had not been successful.

MODIFYING THE DATA CONTROL BLOCK

You can complete or modify the DCB during execution of your
program. You can also determine data set characteristics from
information supplied by the data set labels. Changes or
additions can be made before opening of the data set, after
closing it, during the DCB exit routine, or while the data set
is open. Naturally, any information must be supplied before it
is needed.

Because each DCB does not have a symbolic name for each field, a
DeBD macro instruction must be used to supply the symbolic
names. By loading a base register with the address of the DeB to
be processed, you can refer to any field symboliFally.

The DeBD macro instruction generat'es a dummy control section
(DSECT) named IHADCB. The name of each field consists of DCB
follol~ed by the first five letters of the keyword operand that
represents the field in the DCB macro instruction. For example,
the field reserved for blocksize is referred to as DCBBLKSI. For
the names of other fields, including names of bits, see OS/VS2
System Programming library: Debugging Handbook.

The attributes of each DeB field are defined in the dummy
control section. Because each field in the DeB is not
necessarily aligned on a fullword boundary, care must be taken
when storing or moving data into the field. The length attribute
and the alignment of each field can be determined from an
assembly listing of the DeaD macro instruction.

The DCBD macro instruction can be coded once to describe all
DeBs even though their fields differ because of differences in
data set organization and access technique. It must not be coded
more than once for a single assembly. If it is coded before the
end of a control section, it must be followed by a eSECT or
DSECT statement to resume the original control section.

CHANGING AN ADDRESS IN THE DATA CONTROL BLOCK: Figure 23
illustrates how you can modify a field in the data control
block. The DeBD macro instruction defines the" symbolic name of
each field.

Part 1: Introduction to Data Management 43

EOFEXIT

INERROR

OUT ERROR

TEXTDCB

OPEN

CLOSE
lA
USING
MVC
B
STM

STM

DCB

DCBD

(TEXTDCB,INOUT)

(TEXTDCB,REREAD),TYPE=T
lO,TEXTDCB
IHADCB,lO
DCBSYNAD+l(3),=Al3(OUTERROR)
OUTPUT
14,l2,SYHADSA+12

14,12,SYNADSA+12

DSORG=PS,MACRF=(R,W),DDNAME=TEXTTAPE,
EODAD=EOFEXIT,SYNAD=INERROR

DSORG=PS

C

Figure 23. Modifying a Field in the Data Control Block

The data set defined by the data control block TEXTDCB is opened
for use as both nn input and an output data set. When its use as
an input data set is completed, the EODAD routine closes the
data set temporarily to reposition the volume for output. The
EODAD routine then uses the dummy control section IHADCB to
change the error exit address (SYNAD) from INERROR to OUTERROR.

The EODAD routine loads the address TEXTDCB into register 10,
which it uses as a base register for IHADCB. It then moves the
address OUTERROR into the DCBSYNAD field of the DCB. This field
is a fullword, but contains information that must not be
disturbed in the high-order byte. For this reason, care must be
taken to change only the 3 low-order bytes of the field.'

All unused address fields in the DCB, except DCBEXlST, are set
to 1 during the DCB macro expansion. Many system routines
interpret a value of 1 in an address field to mean "no address
specified." If you modify an address field and then want to
reset it to "no address specified," you should set it to a value
of 1.

SHARING A DATA SET

There are two conditions under which a data set on a
direct-access device can be shared by two or more tasks:

• Two or more DCBs are opened and used concurrently by the
tasks to refer to the same, shared data set (multiple DCBs).

• Only one DCB is opened and used concurrently by multiple
tasks in a single job step (a single, shared DCB).

Job control language (JCl).statements and macro instructions are
provided in the operating system to help you to ensure the
integrity of the data sets you wish to share among the tasks
that process them. Figures 24 and 25 show which JCl and macro
instructions you should use, depending on the access method your
task is using and mode of access (input, output, or update).

Figure 24 describes the macro instructions, JCl, and processing
procedures you should use if more than one DeB has been opened
to the shared data set. The DCBs can be used by tasks in the
same or different job steps.

44 OS/VS2 Data Management Serv ices Gu ide

(
\ MULTIPLE DeBs

Access Method
Access Hode

BSAM,BPAM, QSAM BDAM QlSAM BlSAH
BOAN create

Input OISP :: SHR DISP :: SHR OISP :: SHR DISP :: SHR DISP :: SHR

No Facility No Facility DISP :::: SHR No Facility DISP = SHR
Output and ENQ on

Data Set

DISP :: SHR DISP :: SHR DISP = SHR DISP :: SHR DISP = SHR
and ENQ on and Guarantee and ENQ on and ENQ on and ENQ on

Update Block Discrete Block Data Set and Data Set and
Blocks Guarantee Guarantee

Discrete Discrete
Blocks Blocks

DISP::SHR:
Each job step sharing an existing data set must code SHR as the
subparameter of the DISP parameter on the DD statement for the shared data
set to allow the steps to execute concurrently. For additional information
about ensuring data set integrity, see OS/VS2 JCL. If the tasks are in the
same job step, DISP=SHR is not required.

No Facility:
There are no facilities in the operating system for sharing a data set
under these conditions.

ENQ on Data set:
In addition to coding DISP=SHR on the-DD"statement for the data set that
is to be shared, each task must issue ENQ and DEQ macro instructions
naming the data set as resource for which exclusive control is required.
The ENQ must be issued before the GET (READ); the DEQ macro ~hould be
issued after the PUTX or C~iECK macro that concludes the operation. See
OS/VS2 Supervisor Services and Macro Instructions for additional
information on the use of ENQ and DEQ macro instructions.

Guarantee Discrete Blocks:
When you are using the access methods that provide blocking and unblocking
of records (QSAM, QISAM, and BISAM), it is necessary that every task
updating the data set ensure that it is not updating a block that contains
a record being updated by any other task. There are no facilities in the
operating system for ensuring that discrete blocks are being processed by
different tasks.

ENQ on Block:
If you are updating a shared data set (specified by coding DISp::SHR on the
DO statement) using BSAM or BPAM, your task and all other tasks must
serialize processing of each block of records by issuing an ENQ macro
instruction before the READ macro and a DEQ macro after the CHECK macro
that follows the WRITE macro you issued to update the record. If you are
using BDAM, the same procedure may be used; however, BDAM provides for
enqueuing on a block of records using the READ exclusive option, which is
requested by coding MACRF=X in the DCB and an X in the type operand "of the
READ and WRITE macr'o i nstructi ons. See "Exclusi ve Control for Updat i ng" in
the section "Processing a Direct Data Set" of Part 2 for an example of the
use of the BDAM macros.

Figure 24. JCl, Macro Instructions, and Procedures Required to Share a Data
Set Using Multiple DeBs

Figure 25 describes the macros you can use to serialize
processing of a shared data sat when a single DCB is being
shared by several tasks in a job step. The DISP=SHR
specification on the DD statement is not required.

Part 1: Introduction to Data Management 45

Data sets can also be shared both ways at the same time: more
than one DCB can be opened for a shared data set, while more
than one task can be sharing one of the DCBs. Under this
condition, the serialization techniques specified for indexed
sequential and direct data sets in the Figure 24 satisfy the
requirement. For sequential and partitioned data sets, the
techniques specified in Figure 24 and Figure 25 must be used.

More information on opening and closing data sets by more than
one task is contained in Part 2, "Opening and Closing a Data
Set."

SHARED DIRECT-ACCESS STORAGE DEVICES: At some installations, a
direct-access storage device is shared by two or more
independent computing systems. Tasks executed on these systems
can share data sets stored on the device. For details, refer to
OS/VS2 System Programming library: Supervisor.

46 OS/VS2 Data Management Serv i CQS Gu ide

\

(' , /

(
"--

A SINGLE SHARED DCB

Access Method
Access Mode

BSAN,BPAM, QSAM SOAN QISAM BISAM
BDAM Create

Input ENQ ENQ No Action ENQ ENQ
Required

Output ENQ ENQ No Action ENQ and Key ENQ
Required Sequence

Update ENQ EHQ ENQ on· Block ENQ ENQ

ENQ:
When a data set is being shared by two or more tasks in the same job step
(all of which must be using the same DCB), each task processing the data
set must issue an ENQ macro instruction on a predefined resource name
before issuing the macro or macros that begin the input/output operation.
Each task must also release exclusive control by issuing the DEQ macro
instruction at the next sequential instruction following the input/output
macro. If, however, you are processing an indexed sequential data set
sequentially using the SETl and ESETL macros, you must issue the ENQ macro
before the SETl macro and the DEQ macro after the ESETL macro. Note also
that if two tasks are writing different members of a partitioned data set,
each task should issue the ENQ macro instruction before the FIND macro and
issue the DEQ macro after the STOW macro that completes processing of the
member. Additional reference information on the ENQ and DEQ macros is
presented in OS/VS2 Supervisor Services and Macro Instructions. For an
example of the use of ENQ and DEQ macro instructions with BISAM, see
Figure 59.

No Action Required:
Sharing a Direct Data Set: BDAM supports multiple task users of a single
DCB when working with existing data sets. When operating in load mode,
however, only one task may use the DCB at a time. The following
restrictions and comments apply when operating in a multitasking mode with
existing data sets:

• Subpool 0 must be shared.

• The user should insure that a WAIT or CHECK macro has been issued for
all outstanding BDAM requests before the task issuing the READ or
WRITE macro terminates. In case of abnormal termination this can be
done through a STAE/STAI or ESTAE exit.

• FREEDBUF and/or RELEX macros should be issued to free any resources
that could still be held by the terminating task. This can be done
during or after task termination.

ENQ on Block:
When updating a shared BDAM data set, every task must use the BDAM
exclusive control option, which is requested by coding MACRF=X in the DCB
macro and an X in the type operand of the READ and WRITE macro
instructions. See "Exclusive Control for Updating" in this book for an
example of the use of BDAM macros. Note that all tasks sharing a data set
must share subpool 0 (see the ATTACH macro description in OS/VS2
Supervisor Services and Macro Instructions).

Key Sequence:
Tasks sharing a QISAM load-mode DCB must ensure that the records to be
written are presented in ascending key sequence; otherwise, a sequence
check will result in (1) control being passed to the SYNAD routine
identified by the DCB, or (2) if there is no SYNAD routine, terminat~on of
the task.

Figure 25. Macro Instructions and Procedures Required to Share a Data Set
Using a Single DCB

Part 1: Introduction to Data Management 47

'-........ ~

(
PART 2: DATA MANAGEMENT PROCESSING PROCEDURES

DATA PROCESSING TECHNIQUES

The operating system allows you to concentrate most of your
efforts on processing the records read or written by the data
management routines. To get the records read and written, your
main responsibilities are to describe the data set to be
processed, the buffering techniques to be used, and the access
method. An access method has been defined as the combination of
data set organization and the technique used to gain access to
the data. Data access techniques are discussed here in two
categori es-queued and basi c." .. .

QUEUED ACCESS TECHNIQUE

The queued access technique provides GET and PUT macro
instructions for transmitting data within virtual storage. These
macro instructions cause automatic blocking and deblocking of
the records stored and retrieved. Anticipatory (look-ahead)
buffering and synchronization (overlap) of·input and output
operations with central processing unit (CPU) processing are
automatic features of the queued access technique.

Because the operating ~ystem controls.buffer processing, you can
use as many input/output (I/O) buffers as needed without
reissuing GET or PUT macro instructions to fill or empty
buffers. Usually, more than one input block is in storage at any
given time, so I/O operations do not delay record processing.

Because the operating system synchronizes input/output with
processing, you need not test for completion, errors, or
exceptional conditions. After a GET or PUT macro instruction is
issued, control is not returned to your program until an input
area is filled or an output area is available. Exits to error
analysis (SYNAD) and end-of-volume or end-of-data (EODAD)
routines are automatically taken when necessary.

GET--Retrieve a Record

The GET macro instruction obtains a record from an input data
set. It operates in a logical sequential and device-independent
manner. As required, the GET macro instruction schedules the
filling of input buffers, deblocks records, and directs input
error recovery procedures. For sequential data sets, it also
merges record segments into logical records. After all records
have been processed and the GET macro instruction detects an
end-of-data indication, the system automaticallY checks labels
on sequential data sets and passes control to your end-of-data
(EODAD) routine. If an end-of-volume condition is detected for a
sequential data set, the system provides automatic volume
switching if the data set extends across several volumes or if
concatenated data sets are being processed. If you specify
OPTCD=Q in the DCB, GET causes input data to be translated from
ASCII to EBCDIC.

PUT--Write a Record

The PUT macro instruction places a record into an output data
set. Like the GET macro instruction, it operates in a logical
sequential and device-independent manner. As required, the PUT
macro instruction schedules the emptying of output buffers,
blocks records, and handles output error correction procedures.
For sequential data sets, it also initiates automatic volume
switching and label creation, and also segments rec6rds for

Part 2: Data Management Processing Procedures 49

spanning. If you specify OPTCD=Q in the DCB, PUT causes output
to be translated from EBCDIC to ASCII.

If the PUT macro instruction is directed to a card punch or
printer, the 5ystem automatically adjusts the number of records
or record segments per block of format-F or format-V blocks to
1. Thusl you can specify a record length (LRECL) and blocksize
(BlKSIZE) to provide an. optimum blocksize if the records are
temporarily placed on magnetic tape or a direct-access volume.

For spanned variable-length records, the blocksize must be
equivalent to the length of one card or one p~int line. Record
size may be greater than blocksize in this case.

PUTX--Write an Updated Record

The PUTX macro instruction is used to update a data set or to
create an output data set using records from an input data set.
as a base. PUTX updates, replaces, or inserts records from
existing data sets but does not create records.

When you use the PUTX macro instruction to update, each record
is returned to the data set referred to by a previous locate
mode GET macro instruction. The buffer containing the updated
record is flagged and written back to the same location on the
direct-access storage device from which it was read. The block
is not written until a GET macro instruction is issued for the
next buffer, except when a spanned record is to be updated. In
that case, the block is written with the next GET macro
instruction.

When the PUTX macro instruction is used to create an output data
set, you can add new records by using the PUT macro instruction.
As .required, the PUTX macro instruction blocks records,
schedules the writing of output buffers, and handles output
error correction procedures.

Parallel Input Processing (QSAM Only)

QSAM parallel input processing may be used to process two or
more input data sets concurrently, such as sorting or merging
several data sets at the same time. This elimina~es the need for
issuing a separate GET macro instruction to each DCB processed.
The get routine for parallel input processing selects a DCB with
a ready record and then transfers control to the normal get
routine. If there is no DCB with a ready record, a multiple WAIT
macro instruction is issued.

Parallel input processing provides a logical input record from a
queue of· data sets with equal priority. The function supports
QSAM with input processing, simple buffering, locate or move
mode, and fixed, variable, or undefined length records. Spanned
records, track-overflow records, dummy data sets, and SYSIN data
sets are not supported.

Parallel input processing can be interrupted at any time to
retrieve records from a specific data set, or to issue control
instructions to a specific data set. When the retrieval process
has been completed, parallel input processing may be resumed.

Data sets can be added to or deleted from the data set queue at
any time. It is important to note, however, that as each data
set reaches an end-of-data condition, the data set must be
removed from the queue with the CLOSE macro instruction before a
subs.quent GET macro instruction is issued for the queue;
otherwise, the task may be terminated abnormally.

A request for parallel input processing is indicated by
including the address of a parallel data access block (PDAB) in
the DCB exit list. For additional information on the DCB exit
list, see "Exit List (EXLST)."

50 OS/VS2 Data Management Servi ces Gui de

(--
I

'

(/

(
"-- /

c

W~th the use of the PDAB macro instruct~on, you can create and
format a work area that identifies the maximum number of DCBs
that can be processed at anyone time. If you exceed the maximum
number of entries indicated in the PDAD macro when adding a DCB
to the queue with the OPEN macro, the data set will not be
available for parallel input processing; hot~ever, it may be
available for sequential processing.

When issuing a parallel GET macro. register 1 must always point
to a PDAB. You may load the register or let the GET macro do it
for you. When control is returned to you. register 1 contains
the address of a logical record from one of the data sets in the
queue; registers 2-13 cont~in their original contents at the
time the GET macro was issued; registers 14, 15, and 0 are
changed. You can locate the data set from which the record was
retrieved through the PDAB. A.fullword address in the PDAB
(PDADCBEP) points to the address of the DCB. It should be noted
that this pointer may be invalid from the time a CLOSE macro is
issued to the issuing of the next parallel GET macro.

In Figure 26, not more than three data sets (MAXDCB=3 in the
PDAB operand) will be open for par.allel processing at any given
time. Assuming that data definition statements and data sets are
supplied, DATASET!, DATASET2, and DATASET3 will be opened for
parallel input processing as specified in the input processing
OPEN macro instruction. Other attributes of each data set are
QSAM (MACRF=G), simple buffering by default, locate or move mode
(MACRF=L or M), fixed length records (RECFM=F), and exit list
entry for a PDAB (X'92'). Note that both locate and move modes
may be used in the same data set queue. The mapping macros, DeBD
and PDABD, are used to reference the DCBs and the PDAB
respectively.

Following the OPEN macro instruction, tests are made to
determine whether the DCBs were opened for parallel processing.
If not, the sequential processing routine is given control.

When one or more data sets are opened for parallel processing,
the get routine retrieves a record, saves the pointer in
register 10, processes the record, and writes it to DATASET4.
This process continues until an end-of-data condition is
detected on one of the input data sets; the end-of-data routine
locates the completed input data set and removes it from the
queue with the CLOSE macro instruction. A test's then made to
determine whether any data sets remain on the queue. Processing
continues in this manner until the queue is empty.

BASIC ACCESS TECHNIQUE

The basic access technique provides the READ and WRITE macro
instructions for transmitting data between virtual and auxiliary
storage. This technique is used when the operating system cannot
predict the sequence in which the records are to be processed or
when you do not want some or all of the automatic functions
performed by the queued access technique. Although the system
does not provide anticipatory buffering or synchronized
scheduling, macro instructions are provided to help you program
these operations.

Part 2: Data Management Processing Procedures 51

GETRTN

EODRlN

DATASET!

DATASET2

DATASET3

DATASET4

DCBQUEUE
SET3XLST
ZEROS

OPEN (DA1ASET1,(INPUT),DATASET2,(INPUT),DATASET3, X
(IHPUT),DATASET4,(OUTPUT»

TM DATASET1+DCBQSWS-IHADCB,DCBPOPEH Opened for parallel

BZ
TM
BZ
TM
BZ
GET
lR

PUT
B
EQU
l
L
CLOSE
CLC
BL

DCB

DCB

DCB

DCB

PDAB
DC
DC
DCBD
PDABD

processing
SEQRTN Branch on no to sequential routine
DATASET2+DCBQSWS-IHADCB,DCBPOPEN
SEQRTN
DATASET3+DCBQSWS-IHADCB,DCBPOPEN
SEQRTN
DCBQUEUE,BUFFERAD,TYPE=P
10,1 Save record pointer

DATASET4,(lO)
GETRTH

Record updated in place

* Close DCB which just reached EODAD
2,DCBQUEUE+PDADCBEP-IHAPDAB
2,0(0,2)

((2))
ZEROS(2),DCBQUEUE+PDANODCB-IHAPDAB Any DCBs left?
GETRTN Branch if yes

DDNAME=ODNAME1,DSORG=PS,MACRF=Gl,RECFM=FB, X
lRECl=80,EODAD=EODRTN,EXLST=SET3XLST
DDNAME=DDNAME2,DSORG=PS,MACRF=GL,RECFM=FB, X
lRECl=80,EODAD=EODRTN,EXLST=SET3XLST
DDNA~1E=DDNAME3,DSORG=PS,MACRF=GMC,RECFM=FB, X
LRECL=80,EODAD=EODRTN,EXLST=SET3XLST
DDNAME=DDHAME4,DSORG=PS,MACRF=PM,RECFM=FB, X
LRECL=80
MAXDCB=3
OF'O',X'92',AL3(DCBQUEUE)
X'OOOO'
DSORG=QS

Note: The number of bytes required for PDAB is equal to 24+8n, where n is the
value of the keyword, MAXDCB.

Figure 26. Parallel Processing of Three Data Sets

The READ and WRITE macro instruct;ons process blocks, not
records. Thus, blocking and deblocking of records is your
responsibility. Buffers, allocated by either you or the
operating system, are filled or emptied individually each time a
READ or WRITE macro instruction is issued. Moreover, the READ
and WRITE macro instructions only initiate input/output
operations. To ensure that the operation is completed
successfully, you must issue a CHECK macro instruction to test
the data event control block (DECB). (The only exception to.this
is that when the SYHAD or EODAD routine is entered, a CHECK
macro instruction should not be issued to previously outstanding
READ or WRITE requests.) The number of READ or WRITE macro
instructions issued before a CHECK macro instruction is used
should not exceed the specified number of channel programs
(HCP).

GROUPING RELATED CONTROL BLOCKS IN A PAGING ENVIRONMENT: In an
as/vs system, related control blocks (the DCB and DECB) and data
areas (buffers and key areas) should be coded so they assemble
in the same area of your program. This will reduce the number of
paging operations required to read from and write to your data
set.

52 OS/VS2 Data Management Serv ices Gu ide

\ _." .. '

",.--"

\

..

..

USING OVERLAPPED I/O WITH BSAM: When using BSAM with overlapped
I/O (multiple I/O requests outstanding at one time), more than
one DECB must be used. A different DECB should be specified for
each channel program. For example, if you specify NCP=3 in your
DCB for the data set and you are reading records from the data
set, you should code the following macros in your program:

READ DECBl, .. .
READ DECB2, .. .
READ DECB3, .. .
CHECK DECBl
CHECK DECB2
CHECK DECB3

USING OVERLAPPED I/O WITH BDAM: When using BDAM with overlapped
I/O requests, a different DECB must be used for each request
that will be outstanding when another request is issued. In
addition, consecutive requests for the same record (such as a
write followed by a read) must not be overlapped. In this case,
the completion of the write request must be tested prior to
issuance of the read request.

READ--Read a Block

The READ macro instruction retrieves a data block from an input
data set and places it in a designated area of virtual storage.
To allow overlap of ' the input operation with processing, the
system returns control to your program before the read operation
is completed. The DECB created for the read operation must be
tested for successful completion before the record is processed
or the DECB is reused.

If an indexed sequential data set is being read, the block is
brought into virtual storage and the address of the record is
returned to you in the DECB.

When you use the READ macro instruction for BSAM to read a
direct data set with spanned records and keys and you specify
BFTEK=R in your DCB, the data management routines displace
record segments after the first in a record by key length. Thus,
you can expect the block descriptor word and the segment
descriptor word at the same locations in your buffer or buffers,
regardless of whether you read the first segment of a record,
which is preceded in the buffer by its key, or a subsequent
segment, which does not have a key. This procedure is called
offset reading.

You can specify variations of the READ macro instruction
according to the organization of the data set being processed
and the type of processing to be done by the system as follows:

sequential

SF Read the data set sequentially.

5B Read the data set backward (magnetic tape, format-F and
format-U only). When RECFM=FBS, data sets with the last
block truncated cannot be read backward.

Indexed Sequential

K Read the data set.

KU Read for update. The system maintains the device address of
the record; thus, when a WRITE macro instruction returns
the record, no index search is required.

Direct

D Use the direct access method.

Part 2: Data Management Processing ProcQdures 53

I Locate the block using a block identification.

K

F

l~cate the block using a key.

Provide device position feedback.

X Maintain exclusive control of the block.

R Provide next address feedback.

U Next address can be a capacity record or logical record,
whichever occurred first.

WRITE--Write a Block

The WRITE macro instruction places a data block in an output
data set from a designated area of virtual storage. The WRITE
macro instruction can also be used to return an updated record
to a data set. To allow overlap of output operations with
processing, the system returns control to your program before
the write operation is completed. The DECB created for the write
operation must be tested for successful completion before the
DECB can be reused. For ASCII tape data sets, do not issue more
than one WRITE on the same record, because the WRITE macro
instruction causes the data in the record area to be translated
from EBCDIC to ASCII.

As with the READ macro instruction, you can specify variations
of the WRITE macro instruction according to the organization of
the data set and the type of processing to be done by the system
as follows:

Sequential

SF

SFR

Write the data set sequentially.

Write the data set sequentially with next-address
feedback.

Indexed sequential

K Write a block containing an updated record, or replace a
record with a fixed, unblocked record having the same
key. The record to be replaced need not have been read
into virtual storage.

KN Write a new record or change the length of a
variable-length record.

Direct

SD

SZ

D

I

K

A

F

X

Write a dummy fixed-length record.

Write a capacity record (RO). The system supplies the
data, writes the capacity record, and advances to the
next track.

Use the direct access method.

Search argument identifies a block.

Search argument is a key.

Add a new block.

Provide record location data (feedback).

Release exclusive control.

54 OS/VS2 Data Management Serv ices Gu ide

..

\
" "

(,.

•

c

CHECK--Test Completion of Read or write operation

When processing a data set, you can test for completion of a
READ or WRITE request by issuing a CHECK macro instruction. The
system tests for errors and exceptional conditions in the data
event control block (DECB). Successive CHECK macro instructions
issued for the same data set must be issued in the same order as
the associated READ and WRITE macro instructions.

The check routine passes control to the appropriate exit
routines specified in the DCB for error analysis (SYHAD) or, for
sequential data sets, end-of-data (EODAD). It also automatically
initiates end-of-volume procedures (volume switching or
extending output data sets).

If you specify OPTCD=Q in the DCB, CHECK causes input data to be
translated from ASCII to EBCDIC .

WAIT--Wait for Completion of a Read or write operation

When processing a data set, you can test for completion of any
READ or WRITE request by issuing a WAIT macro instruction. The
input/output operatidn is synchronized with processing, but the
DECB is not checked for errors or exceptional conditions, nor
are end-of-volume procedures initiated. Your program must
perform these operations.

For BDAM and BISAM, a WAIT macro must be issued for each READ or
WRITE macro if MACRF=C is not coded in the associated DCB. When
MACRF=C is coded, and at all times for B5AM and BPAM, a CHECK
macro must be issued for each READ or WRITE macro. Since the
CHECK macro incorporates the function of the WAIT macro, a WAIT
is normally redundant for those access methods. The ECBlIST form
of the WAIT macro may be useful, though, in selecting which of a
number of outstanding events should be checked first.

The WAIT macro instruction can be used to await completion of
multiple read and write operations. Each operation must then be
checked or tested separately. Example: You have opened an input
DCB for BSAM with NCP=2, and an output DCB for BISAM with HCP=!
and without specifying MACRF=C. You have issued tt~O BSAM READ
macros and one BISAM WRITE macro. You now issue the WAIT macro
with ECBlIST pointing to the BISAM DECB and the first BSAM DECB.
(Since BSAM requests are serialized, the first request must
execute before the second one.) When you regain control, you
will inspect the DECBs to see which has completed (second bit
on). If it was BISAM, you will issue another WRITE macro. If it
was BSAM, you will issue a CHECK macro and then another READ
macro.

Data Event Control Block (DECB)

A data event control block is a 16- to 32-byte area reserved by
each READ or WRITE macro instruction. It contains control
information and pointers to standard statui indicators. It is
described in detail in Appendix A of OS/VS2 MVS Data Management
Macro Instructions.

The DECB is examined by the check routine when the I/O operation
is completed to determine if an uncorrectable error or
exceptional condition exists. If it does, control is passed to
your SYNAD routine. If you have no SYHAD routine, the task is
abnormally terminated.

Part 2: Data Management Processing Procedures 55

ERROR HANDLING

The basic and queued access techniques both provide special
macro instructions for analyzing input/output errors. These
macro instructions can be used in SYNAD routines and in error
analysis routines that are entered directly when you use the
basic access technique with indexed sequential data sets.

SYNADAF--Perform SYNAD Analysis Function

The SYNADAF macro instruction analyzes the status, sense, and
exceptional condition code data that is available to your error
analysis routine. It produces an error message that your routine
.can write into any appropriate data set. The message is in the
form of an unblocked variable-length record, but you can write
it as a fixed-length record by omitting the block length and
record length fields that precede the message text.

The text of the message is 120 characters long, and begins with
a field of 36 or 42 blanks; you can use the blank field to add
your own remarks to the message. Following is a typical message
with the blank field omitted: .

,TESTJOBb,STEP2bbb,283,TA,MASTERbb,READb,DATA CHECKbbbbb,
0000015,BSAM

Note: In the above example, a b indicates a blank.

This message indicates that a data check occurred during reading
of the fifteenth block of a data set. The data set was
identified by a DO statement named MASTER, and was on a
magnetic-tape volume on unit 283. The name of the job was
TESTJOB; the name of the job step was STEP2.

If the error analysis routine is entered because of an input
error, the first 6 bytes of the message (bytes 8-13) contain
binary information. If no data was transmitted or if the access
method is QISAM, the first 6 bytes are blanks or binary zeros.
If the error did not prevent data transmission, the first 6
bytes contain the address of the input buffer an.d the number of
bytes read. You can use this information to process records from
the block; for example, you might print each record after
printing the error message. Before printing the message,
however, you should replace this binary information with EBCDIC
characters.

The SYNADAF macro instruction provides its own save area and
makes this area available to your error analysis routine. When
used at the entry point of a SYNAD routine, it fulfills the
routine's responsibility for providing a save area.

SYNADRLS--Release SYNADAF Message and Save Areas

The SYNADRLS macro instruction releases the message and save
areas provided by the SYNADAF macro instruction. You must issue
this macro instruction before returning from the error analysis
routine.

ATLAS--Perform Alternate Track Location Assignment

The ATLAS macro instruction enables your program to recover from
permanent input/output errors when processing a data set in
direct-access storage. After a data check, or in certain
missing-address-marker conditions, you can issue ATLAS to assign
an alternate track to replace the error track or transfer data
from the error track to the alternate track.

The use of this macro requires a knowledge of channel
programming. A detailed description of the macro instruction and
its use is included in OS/V52 System Programming Library: Data
Management.

56 OS/VS2 Data Management Servi ces Gui de

1

(~

\ -_.

I~-"
I
I,

•

If you do not use the ATLAS macro instruction, you can use the
IEHATLAS utility program to perform the same function. The
principal difference between the macro instruction and the
utility program is that the latter provides error recovery only
after your own program has been completed. For a detailed
description of IEHATLAS, refer to OS/VS Utilities.

SELECTING AN ACCESS METHOD

Access methods are identified primarily by the data set
organization to which they apply. For instance, BDAM is the
basic access method for direct organization. Nevertheless, there
are times when an access method identified with one organization
can be used to process data set usually thought of as organized
in a different manner. Thus, a data set created by the basic
access method for sequential organization (BSAM) may be
processed by the basic direct access method (BDAM). If the·
queued access technique is used to process a sequential data
set, the access method is referred to as the queued sequential
access method (QSAM).

Basic access methods are used for all data organizationsl while
queued access methods apply only to sequential and indexed
sequential data sets as shown in Figure 27.

Data Set
Organization

Sequential
Partitioned
Indexed Sequential
Direct

Access Technique
Basic Queued

BSAM
BPAM
BISAM
BDAM

QSAM

QISAM

Figure 27. Data Management Access Methods

It is possible to control an I/O device directly while
processing a data set wittl any data organization without using a
specific access method. The execute channel program (EXCP) macro
instruction uses the system programs that provide for scheduling
and queuing I/O requests, efficient use of channels and devices,
data protection, interruption procedures, error recognition and
retry. Complete details about the EXCP macro are in OS/VS2
System ProQramming library: Data Management.

Temporary data sets can be handled by a facility called virtual
I/O (VIa). Data sets for which VIa is specified are located in
external page storage. However, to the access· methods (BDAM,
BPAM, BSAM, QSAM, and EXCP), the data sets appear to reside on a
real direct-access storage device. VIa provides these
advantages:

• Elimination of some of the usual I/O device allocation and
data management overhead for temporary data sets.

• Generally more efficient use of direct-access storage space.

To use VIa, you must specify VIO=YES in the UNITNAME macro
during system generation, and you must specify a unit name
(defined in the UNITNAME macro) on the DO statement for your
data set. For additional information on VIO, see OS/VS~~tem
f.!:Qgramm;llQ l; bl:i1.Q!..:Jn it i ali ~£.t i on and Tun i ng-.2gi de. For
information on the UNITNAME macr~o, see OS/VSLSystem Programming
1..i.brar~System Generation Refgr-en,f.g. For information on changes
to the DD statement, see OS/VS2 JCL.

Part 2: Data Management Processing Procedures 57

OPEHIN~ AND CLOSING A DATA SET

Although your program has been assembled, the various data
management routines required for I/O operations are not a part
of the object code. In other words, your program is not
completely assembled until the DCBs are initialized for
execution. You accomplish initialization by issuing the OPEN
macro instruction. Aft~r all DCBs have been completed, the
system ensures that all required access mathod routines are
loaded and ready for use and that all channel command word lists
and buffer areas are ready.

Access method routines are selected and loaded according to data
control fields that indicate:

• Data organization

• Buffering technique

• Access technique

• I/O unit characteristics

This information is used by the system to allocate
virtual-storage space and load the appropriate routines. These
routines, the channel command word (CCW) lists, and buffer areas
created automatically by the system remain in virtual storage
until the close routine signals that they are no longer needed
by the DCB that was using them.

When I/O operations for a data set are completed, you should
issue a CLOSE macro instruction to return the DCB to its
original status, handle volume disposition, create data set
labels, complete writing of queued output buffers, and free
virtual and auxiliary storage.

MANAGING BUFFER POOLS WHEN CLOSING DATA SETS: After closing the
data set, you should issue a FREEPOOL macro instruction to
release the virtual storage used for the buffer pool. If you
plan to process other data sets, use FREEPOOL to regain the
buffer pool storage space. If you expect to reopen a data set
using the same DCB, use FREEPOOL unless the buffer pool created
the first time the data set was opened will meet your needs when
you reopen the data set. FREEPOOL is discussed in more detail in
the section "Buffer Pool Construction."

After the data set has been closed, the DCB can be used for
another data set. If you do not close the data set before a task
terminates, the operating system closes it automatically. If the
DCB is not available to the system at that time, the operating
system abnormally terminates the task, and data results can be
unpredictable. Note, however, that the operating system cannot
automatically close any open data sets after the normal
termination of a program that was brought into virtual storage
by the loader. Therefore, loaded programs must include CLOSE
macro instructions for all open data sets.

SIMULTANEOUS OPENING AND CLOSING OF MULTIPLE DATA SETS: An OPEN
or CLOSE macro instruction can be used to initiate or terminate
processing of more than one data set. Simul~aneous·opening or
closing is faster than issuing separate macro instructions;
however, additional storage space is required for each data set
specified. The coding examples in Figures 28 and 29 show the
macro expansions for simultaneous open and close operations.

OPENING AND CLOSING DATA SETS SHARED BY HORE THAN ONE TASK: When
more than one task is sharing a data set, the following
restrictions must be recognized. Failure to adhere to these
restrictions endangers the integrity of the shared data set.

• All tasks sharing a DCB must be in the job step that bpened
the DCB (see "Sharing a Data Set").

58 OS/VS2 Data Managemen t Servi ces Gu ide

,~'
I
"'---_/

C
·--'"

I

• Each task sharing a DCB must ensure that all of the input
and output operations it initiated using a given DCB are
complete, before the task terminates. A CLOSE macro
instruction issued for the DCB will ensure termination of
all input and output operations.

• A DCB can be closed only by the task that opened it.

Conside~ations fo~ opening and Closing Data sets:

• Two or more DeBs should never be concurrently open for
output to the same data set on a direct-access device,
except with the basic indexed sequential access method
(BISAM). Otherwise the end-of-file record written by CLOSE
for one DCB may overlay data associated with another DCB.

• If one DCB is concurrently open for input and one for output
to the same data set on a direct-access device, the input
DCB may be unable to read what the output DCB wrote if the
output DCB extended the data set.

• If you want to use the same DD statement for two or more
DCBs, you cannot specify parameters for fields in the first
DCB and then be assured of obtaining the default parameters
for the same fields in any subsequent DCB using the same DD
statement. This is true for both input and output and is
especially important when you are using more than one access
method. Any action on one DCB that alters the JFCB affects
the other DCB(s) and thus can cause unpredictable results.
Therefore, unless the parameters of all DCBs using one DD
statement are the same, you should use separate DD
statements.

• Associated data sets for the 3525 Card Punch can be opened
in any order, but all data sets must be opened before any
processing can begin. Associated data sets can be closed in
any order, but once a data set has been closed, I/O
operations cannot be performed on any of the associated data
sets. See OS an~ OS/VS Programming Support for the IBM 3505
Card Reader and IBM 3525 Card Punch for more information.

• Volume disposition specified in the OPEN or CLOSE macro
instruction can be overridden by the system if necessary.
However, you need not be concerned; the system automatically
requests the mounting and demounting of volumes, depending
upon the availability of devices at a particular time.
Additional information on volume disposition is provided in
OS/VS2 JCL.

There are two classes of errors that can occur during open,
close, and end-of-volume processing; determinate and
indeterminate errors. Determinate errors are errors associated
with a system completion code. For example, a condition
associated with the 213 completion code with a return code of 04
might be detected during open processing, indicating that a
format-l DSCB could not be found for a data set being opened.
Indeterminate errors are errors that cannot be anticipated, such
as a program check.

If a determinate error occurs during the processing resulting
from a concurrent OPEN or CLOSE macro instruction, an attempt
will be made to complete open or close processing of the DCBs
that are not associated with the DCB in error. Hote that you can
also choose to abnormally terminate the task immediately by
coding a DCB ABEND exit routine that indicates the "immediate
termination" option (see "DCB ABEND Exit"). When all open or
close processing is completed, abnormal termination processing
is begun. Abnormal termination involves forcing all DCB~
associated with a given OPEN or CLOSE macro to close status,
thereby freeing all storage, devices, and other system resources
related to the DCBs.

Part 2: Data Management Processing Procedures 59

If an indeterminate error (such as a program check) occurs
during open, close, or EOV processing, no attempt is made by the
system control program to complete concurrent open or close
processing. The DeBs associated with the OPEN or CLOSE macro are
forced to close status if possible, and the resources related to
each DCB are freed.

To determine the status of any DCB after an indeterminate error,
the OPEN (CLOSE) return code in register 15 must be interrogated
for the following values:

o All entries in -the parameter list opened successfully.

4 All entries in the parameter list have successfully

8

completed open, but one or more entries have a warning
message.

One or more entries in the parameter list were not opened
successfully. The entries with errors were restored to their
pre-open status.

12 One or more entries in the parameter list were not opened
successfully. The entries with errors were not restored, and
cannot be reopened without restoration.

For more information on error processing and system recovery,
see OS/VS2 System ProQramming Library: Supervisor.

• During task termination the system issues a CLOSE macro for
each data set which is still open. If this is an abnormal
termination, the QSAM close routines (which would normally
finish processing buffers) are bypassed. Any outstanding I/O
requests are purged. Thus, your last data records may be
lost for a QSAM output data set.

• It is a good procedure to close an ISAM data set before task
termination because, if an I/O error is detected, the ISAM
close routines cannot return the problem program registers
to the SYNAD routine, causing unpredictable results.

OPEN--Prepare a Data set for processing

The OPEN macro instruction is used to complete a data control
block for an associated data set. The method of· processing and
the volume positioning instruction in the event of an
end-of-volume condition can be specified.

PROCESSING METHOD: You can process a data set as either input or
output. This is done by coding INPUT, OUTPUT, or EXTEND as the
processing method operand of the OPEN macro. For BSAM, code
INOUT, OUTIN, or OUTINX. If the data set resides on a
direct-access volume, you can code UPDAT in the processing
method operand to indicate that records can be updated. By
coding ROBACK in this operand, you can specify that a
magnetic-tape volume containing format-F or format-U records ;s
to be read backward. Variable-length records cannot be read
backward. If the processing method operand is omitted from the
OPEN macro instruction, INPUT is assumed. The operand is ignored
by the basic indexed sequential access method (BISAM); it must
be specified as OUTPUT or EXTEND when you are using the queued
indexed sequential access method (QISAM) to create an indexed
sequential data set. You can override the INOUT, OUTIN, UPOAT,
or OUTINX at execution by using the LABEL parameter of the DD
statement, as .discussed in OS/VS2 JCL.

SYSIN and SYSOUT data sets must be opened for INPUT and OUTPUT,
respectively. INOUT is treated as INPUT, OUTIN, EXTEND, or
OUTINX is treated as OUTPUT. UPDAT and ROBACK cannot be used.

In Figure 28, the data sets associated with three DCBs are to be
opened simultaneously.

60 OS/VS2 Data Management Snrv; ces Gu ide!

("
\ .. /

c

(OPEN (TEXTDCB"CONVDCB,(OUTPUT),PRINTDCB,
(OUTPUT»

+ CNOP 0,4 Align list to fullword
+ BAL l,~Hl6 Load regl w/list address
+ DC ALICO) Option byte
+ DC AL3(TEXTDCB) DeB addl'ess
+ DC ALl(lS) Option byte
+ DC AL3(CONVDCB) DCB address
+ DC AL1(143) Option byte
+ DC AL3(PRINTDCB) DCB address
+ SVC 19 Issue open SVC

Figure 28. Opening Three Data Sets Simultaneously

Since no processing method operand is specified for TEXTDCB, the
system assumes INPUT. Buth CONVDCB and PRINTDCB are opened for
output. No volume positioning options are specified; thus, the
disposition indicated by the DD statement DISP parameter is
used.

At execution, the SVC 19 instruction passes control to the Open
routine, which then initializes the three DCBs and loads the
appropriate access method routines.

CLOSE--Terminate Processing of a Data set

The CLOSE macro instruction is used to terminate processing of a
data set and release it from a DCB. The volume positioning that
is to result from closing the data set can also be specified.
Volume positioning options are the same as those that can be
specified for end-of-volume conditions in the OPEN macro
instruction or the DD statement. An additional volume
positioning option, REWIND, is available and can be specified by
the CLOSE macro instruction for magnetic-tape volumes. REWIND
positions the tape at the load point 'regardless of the direction
of processing.

You can code CLOSE TYPE=T and perform some close functions for
sequential data sets on magnetic tape and direct-access volumes
processed with BSAM. When you use TYPE=T, the DCB used to
process the data set maintains its open status, and you should
not issue another OPEN macro instruction to continue processing
the same data set. This option cannot be used in a SYNAD
routine.

The TYPE=T operand causes the system control program to process
labels, modify some of the fields in the system control blocks
for that data set, and reposition the volume (or current volume
in the case of multivolume data sets) in much the same way that
the normal CLOSE macro does. When you code TYPE=T, you can
specify that the volume either be positioned at the end of data
(the LEAVE option) or be repositioned at the beginning of data
(the REREAD option). Magnetic-tape volumes are repositioned
either immediately before the first data record or immediately
after the last data record; the presence of tape labels has no
effect on repositioning. Figure 29, which assumes a sample data
set containing 1000 records, illustrates the relationship
between each positioning option and the point at which you
resume processing the data set after issuing the temporary
close.

If you code the release (RLSE) operand on the DD statement for
an output data set, it is ignored by temporary close (CLOSE
TYPE=T). If the last operation occurring prior to closing the
data set was a write, any unused space will be released when you
finally issue the normal CLOSE macro instruction.

Part 2: Data Management Processing Procedures 61

Begin
processing

d7
Record

1
Record Record

2 3

If you CLOSE TYPE = T and specify

LEAVE

LEAVE (with tape data set open
for read backward)

REREAD

REREAD (with tape data set open
for read backward)

-) 1 ,

1)
~ {

Record
999

Begin processing
tape data set
(open for read

backward) ~

Record
1000

After temporary close, you will
resume processing

Immediately after record 1000

Immediately before record 1

Immediately before record 1

Immediately after record 1000

Figure 29. Record Processed When LEAVE or REREAD is Specified
for CLOSE TYPE=T

It is possible to use BSAM to process a data set that is not
physical-sequential; if you use CLOSE TYPE=T for them~ the
following restrictions apply:

• The DCB for the data set you are processing on a
direct-access device must specify either DSORG=PS or
DSORG=PSU for input processing, and either DSORG=PS,
DSORG=PSU~ DSORG=PO, or DSORG=POU for output processing.

• The DCB must not be open for input to a member of a
partitioned data set.

• If you open a data set on a direct-access device for output
and issue CLOSE TYPE=T, the volume will be repositioned only
if the data set was created with DSORG=PS~ DSORG=PSU~
DSORG=PO, or DSORG=POU (you cannot specify the REREAD option
if DSORG=PO or DSORG=POU is specified)., (This restriction
prohibits the use of temporary close following or during the
building of a BDAM data set that is created by specifying
BSAM MACRF=WL).

• If you open the data set for input and issue CLOSE TYPE=T
with the LEAVE option, the volume will be repositioned only
if the data set specifies DSORG=PS or DSORG=PO.

Note: When a data control block is shared among multiple tasks,
only the task that opened the data set can close it unless
TYPE=T is specified. -

Before issuing the CLOSE macro, a CHECK macro must be issued for
all DECBs that have outstanding I/O from WRITE macro
instructions. When CLOSE TYPE=T is specified, a CHECK macro must
be issued for all DECBs that have outstanding I/O from either
WRITE or READ macro instructions.

62 OS/VS2 Data Management Serv ices Gu ide

-..

c

(~

c

+
+
+
+
+
+
+
+
+

CLOSE
CNOP
BAL
DC
DC
DC
DC
DC
DC
SVC

In Figure 30, thQ data sets associated with three DeBs are to be
closed simultaneously.

(TEXTDCB"CONVDCB"PRINTDCB)
0,4 Align list to fullword
1,*+16 Load regl w/list addr
AlICO) Option byte
Al3CTEXTDCD) DCB address
ALlCO) Option byte
AL3(CONVDCD) DCB address
ALl(128) Option byte
AL3CPRINTDCB) OCB address
20 Issue close SVC

Figure 30. Closing Three Data Sets Simultaneously

Because no volume positioning operands are specified, the
position indicated by the DD statement DISP parameter is used.

At execution, the SVC 20 instruction passes control to the Close
routine, which terminates processing of the three data sets and
returns the three DeBs to their original status.

RELEASING DATA SETS AND VOLUMES: You are offered the option of
being able to release data sets and the volumes the data sets
reside on when your task is no longer using them. Assuming that
you are not sharing data sets, these data sets and the volumes
on which they reside, would otherwise remain unavailable for use
by other tasks until the job step that opened them is
terminated.

There are two ways to code the CLOSE macro instruction that can
result in releasing a data set and the volume on which it
resides at the time the data set is closed:

In conjunction with the FREE=CLOSE parameter of the DD statement
you can code:

CLOSE
CLOSE

(OCDI,OrSP) or
(DCBI, REt~IND)

If you do not code FREE=CLOSE on the 00 statement, you can code:

CLOSE (DCBl,FREE)

See OS/VS2 JCl for information about how to use and code the
FREE=CLOSE parameter of the DO statement.

In either case, tape data sets and the volume on which the tape
is mounted will be freed for use by another job step. Data sets
on direct-access devices will be freed and the volumes on which
they reside will be freed if no other data sets on the volume
are open. Additional information on volume disposition is
provided in OS/VS2 JCL.

Data sets being temporarily closed (using CLOSE TYPE=T) cannot
be released at the time the data set is closed. They will be
released at termination of the job step.

Refer to OS/VS Data Man.£illement Macro Instructions for additional
information and coding restrictions.

End-of-Volume Processing

Control is passed automaticallY to the data management
end-of-volume routine when any of the following conditions is
detected:

Part 2: Data Management Processing Procedures 63

• Tapemark (input tape volume)

•
•

Filemark or end of last extent (input direct-access volume)

End-of-data indicator (input device other than magnetic tape
or direct-access volume). An example of this would be the
last card read on a card reader.

• End of reel (output tape volume)

• End of extent (output direct-access volume)

You may issue a force end-of-volume (FEOV) macro instruction
before the end-of-volume condition is detected.

If the LABEL parameter of the associated DO statement indicates
standard labels, the end-of-volume routine checks or creates
standard trailer labels. If SUL or AUL is specified, control is
passed to the appropriate user label routine if it is specified
in your exit list.

If multiple-volume data sets are specified in your DD statement,
automatic volume switching is accomplished by the end-of-volume
routine. When an end-of-volume condition exists on an output
data set, additional space is allocated as indicated in your 00
statement. If no more volumes are specified or if more than
specified are required, the storage is obtained from any
available volume on a device of the same type. If no such volume
is available, your job is terminated.

VOLUME POSITIONING: When an end-of-volume conditi~n is detected,
the system positions the volume according to the disposition
specified in the OD statement unless the volume disposition is
specified in the OPEN macro instruction. Volume positioning
instructions for a sequential data set on magnetic tape can be
specified as LEAVE or REREAD.

LEAVE
positions a labeled tape to the point following the tape
mark that follows the data set trailer label group, and an
unlabeled volume to the point following the tape mark that
follows the last block of the data set.

REREAD
positions a labeled tape to the point preceding the data
set header label group, and an unlabeled tape to the point
preceding the first block of the data set.

If the tape was last read backward:

LEAVE
positions a labeled tape to the point preceding the data
set header label group, and an unlabeled tape to the point
preceding the first block of the data set.

REREAD
positions a labeled tape to the point following the tape
mark that follows the data set trailer l~bel group, and an
unlabeled tape to the point following the tape m~rk that
follows the last block of the data set.

If, however, you want to position the current volume according
to the option specified in the DISP parameter of the DO
statement, you code DISP ~n the OPEN macro instruction.

DISP
specifies that a tape volume is to be disposed of in the
manner implied by the DO statement associated with the data
set. Direct-access volume positioning and disposition are
not affected by this parameter of the OPEN macro
instruction. There are several dispositions that can be
specified in the DISP parameter of the DD statement; DISP
can be PASS, DELETE, KEEP, CATLG, or UHCATLG.

64 OS/VS2 Data Managem~nt Servi ces GLli de

The resultant action at the time an end-of-volume condition
arises depends on (1) how many tape units are allocated to
the data set and (2) how many volumes are specified for the
data set in the DD statement. This is determined by the
UNIT and VOLUME parameters of the DO statement associated
with the data set. If the number of volumes is greater than
the number of units allocated, the current volume will be
rewound and unloaded. If the number of volumes is less than
or equal to the number of units, the current volume is
merely rewound.

A volume positioning instruction can be specified only if
the processing method operand has been specified. It is
ignored if devices other than magnetic-tape and
direct-access are used, or if the number of volumes exceeds
the number of available units.

For magnetic-tape volumes that are not being unloaded,
positioning varies according to the direction of the last
input operation and the existence of tape labels.

If the tape was last read forward:

LEAVE
positions a labeled tape to the point following the
tapemark that follows the data set trailer label group, and
an unlabeled volume to the point following the tapemark
that follows the last block of the data set.

REREAD
positions a labeled tape to the point preceding the data
set header label group, and an unlabeled tape to the point
preceding the first block of the data set.

If the tape was last read backward:

LEAVE
positions a labeled tape to the point preceding the data
set header label group, and an unlabeled tape to the point
preceding the first block of the data set.

REREAD
positions a labeled tape to the point following the
tapemark that follows the data set trailer label group, and
an unlabeled tape to the point following the tapemark that
follows the last block of the data set.

FEOV--Force End of Volume

The FEOV macro instruction directs the operating system to
initiate end-of-volume processing before the physical end of the
current volume is reached. If another volume has been specified
for the data set, volume switching takes place automaticallY.
The volume positioning options REWIND and LEAVE are available.

If an FEOV macro is issued for a spanned multivolume data set
which is being read using QSAM, errors may occur when the next
GET macro is issued. These errors are documented in the section,
"Spanned Variable-Length Records" in "Part 1: Introducti'on to
Data Management."

The FEOV macro instruction can only be used when you are using
BSAM or QSAM. FEOV is ignored if issued for a SYSIN or SYSOUT
data set.

Part 2: Data M~nagRment Procqssing Proc~durAs 65

BUFFER ACQUISITION AND CONTROL

The operating system provides several methods of buffer
~cquisition and control. Each .Q!Jffer (virtual-s,torage area used
for intermediate storage of input/output data) usually
corresponds in length to the size of a block in the data set
being processed. When you use the queued access technique, any
reference to a buffer actually refers to the next record (buffer
segment).

You can assign more than one buffer to a data set by associating
the buffer with a buffer pool. A buffer pool must be constructed
in a virtual-storage area allocated for a given number of
buffers of a given length.

The number of buffers you assign to a data set should be a
tradeoff against the frequency with which you refer to each
buffer~ A buffer that is not referred to for a relatively long
period of time may be paged out. If this were allowed to happen
to any considerable degree, it could result in a greater number
of buffers actually decreasing throughput.

Buffer segments and buffers within the buffer pool are
controlled automatically by the system when the queued access
technique is used. However, you can terminate processing of a
buffer by issuing a release (RELSE) macro instruction for input
or a truncate (TRUNe) macro instruction for output. Two
buffering techniques, simple and exchange, can be used to
process a sequential data set. Only simple buffering can be used
to process an indexed s~quential data set.

If you use the basic access technique, you can use buffers as
work areas rather than as intermediate storage areas. You' can
control them directly, by using the GETBUF and FREEBUF macro
instructions, or dynamically for BDAM and BISAM, by requesting
dynamic buffering in your DeB macro instruction and your READ or
WRITE macro instruction. If you request dynamic buffering, the
system will automatically provide a buffer each time a READ
macro instruction is issued. That buffer will be freed when you
issue a WRITE or FREEDBUF macro instruction.

BUFFER POOL CONSTRUCTION

Buffer pool construction can be accomplished in any of three
ways:

• StaticallY using the BUILD macro instruction

• Explicitly using the GETPOOL macro instruction

• Automatically by the system when the data set is opened

If QSAM simple buffering is used, the buffers are automatically
returned to the pool when the data set is closed. If the buffer
pool is constructed explicitly or automatically, the virtual
storage area must be returned to the system by the FREEPOOL
macro instruction.

In many applications, fullword or doubleword alignment of a
block within a buffer is important. You can specify in the DeB
that buffers are to start on either a doubleword boundary or a
fullword boundary that is not also a doubleword boundary (by
coding BFAlN=D or F). If doubleword alignment is specified for
format-V records, the fifth byte of the first record in the
block is so aligned. For that reason, fullword alignment must be
requested to align the first byte of the variable-length record
on a doubleword boundary. The alignment of the records following
the first in the block depends on the length of the previous
records.

66 OS/VS2 Data Management Serv ices Gu ide

c'

(

•

("

Hote that buffer alignment provides alignment only for the
buffer. If records from ASCII magnetic tape are read and the
records use the block p~efix, the boundary alignment of logical
records within the buffer depends on the length of the block
prefix. If the length is 4, logical records are on fullword
boundaries. If the length is 8, logical records are on
doubleword boundaries.

If the BUILD macro instruction is used to construct the buffer
pool, alignment depends on the alignment of the first byte of
the reserved storage area.

When you process multiple QISAM data sets, you can use a common
buffer pool. To do this, however, you must use the BUILD macro
in~truction to reformat the buffer pool before opening each data
set .

BUILD--Construct a Buffer Pool

When you know, before pr~gram assembly, both the number and the
size of the buffers required for a given data set, you can
reserve an area of appropriate size to be used as a buffer pool.
Any type of area can be used-for example, a predefined storage
area or an area of coding no longer needed.

A BUILD macro instruction, issued during execution of your
program, structures the reserved storage area into a buffer
pool. The address of the buffer pool must be the same as that
specified for the buffer pool control block (BUFCB) in your DCB.
The buffer pool control block is an 8-byt~ field preceding the
buffers in the buffer pool. The number (BUFNO) and length (BUFL)
of the buffers must also be specified. For QSAM, the length of
BUFL must be at least the blocksize.

When the data set using the buffer pool is closed, you can reuse
the area as required. You can also reissue the BUILD macro
instruction to reconstruct the area into a new buffer pool to be
used by another data set.

You can assign the buffer pool to two or more data sets that
require buffers of the same length. To do this, you must
construct an area large enough to accommodate the total number
of buffers required at anyone time during execution. That is,
if each of two data sets requires five buffers (BUFNO=5), the
BUILD macro instruction should specify ten buffers. The area
must also be large enough to contain the 8-byte buffer pool
control block.

BUILDRCD--Build a Buffer Pool and a Record Area

The BUILDRCD macro instruction, like the BUILD macro
instruction, causes a buffer pool to be constructed in an area
of virtual storage you provide. In addition, BUILDRCD makes it
possible for you to access variable-length, spanned records as
complete logical records, rather than as segments.

You must be processing with QSAM in the locate mode and you must
be processing either VS or VBS records, if you want to access
the variable-length, spanned records as logical records. If you
issue the BUILDRCD macro before the data set is opened, or
during your DCB exit routine, you automatically get logical
records rather than segments of spanned records.

Only one logical record storage area is built, no matter how
many buffers are specified; therefore, you can't share the
buffer pool with other data sets that may be open at the same
time.

Part 2: Dota Mc'll',a(~H1tnent Proce 55 i ng Prcct':'lc/ur(1s 67

GETPOOL--Get a Buffer Pool

If a specified area is not reserved for use as a buffer pool, or
you LoJant to defer speci fyi ng the number and length of the
buffers until execution of your program, you should use the
GETPOOL macro instruction. It enables you to vary the size and
number of buffers according to the needs of the data set being
processed.

The GETPOOL macro instruction structures a virtual-storage area
allocated by the system into a buffer pool, assigns a buffer
pool control block, and associates the pool with a specific data
set. The GETPOOL macro instruction should be issued either
before opening of the data set or during your DCB exit routine.

When using GETPOOL with QSAM, specify a buffer length CBUFL) of
at least as large as the blocksize.

Automat;c Buffer Pool construction

If you have requested a buffer pool and have not used an
appropriate macro instruction by the end of your DCB exit
routine, the system automatically allocates virtual-storage
space for a buffer pool. The buffer pool control block is also
assigned and the pool is associated with a specific DCB. For
BSAM, a buffer pool is requested by specifying BUFNO. For QSAM,
BUFNO can be specified or allowed to default to 5. If you are
using the basic access technique to process an indexed
sequential or direct data set, you must indicate dynamic buffer
control. Otherwise, the system does not construct the buffer
pool automatically.

Because a buffer pool obtained automatically is not freed
automatically when you issue a CLOSE macro instruction, you
should also issue a FREEPOOL or FREEMAIN macro instruction,
which is discussed in the next section.

FREEPOOL--Free a Buffer Pool

Any buffer pool assigned to a DCB either automatically by the
OPEN macro instruction (except when dynamic buffer control is
used) or explicitly by the GETPOOL macro instruction should be
released before your program is terminated. The FREEPOOL macro
instruction should be issued to release the virtual-storage area
as soon as the buffers are no longer needed. When you are using
the queued access techni que, a data· set must be closed fi rst.
When you are using exchange buffering, the buffer pool must not
be released until all the data sets have been closed.

If the OPEN macro was issued while running under a protect key
of zero, a buffer pool which was obtained by OPEN should be
released by issuing the FREEMAIN macro instead of the FREEPOOL
macro. This is necessary because the buffer pool acquired under
these conditions will be in storage assigned to subpool 252.

CONSTRUCTING A BUFFER POOL: Figures 31 and 32 illustrate several
possible methods of constructing a buffer pool. They do not take
into account the method of processing or controlling the buffers
in the pool.

68 OS/VS2 Data Management S~rv ices Gu ide

•

c

(
'---

c

BUILD
OPEN

ENDJOB CLOSE

RETURN
INDCB DCB
OUTDCB DCB
CNOP 0,8
INPOOL OS

Processing
INPOOL,lO,52 Structure- a buffer pool
(INDCB"OUTDCB,(OUTPUT»)

Processing
(H·mCB , , OUTDCn)

Processing
Return to system control

BUFNO=5,BUFCB=INPOOL,EODAD=ENDJOB,--
BUFNO=5,BUFCB=INPOOl,---

Force boundary alignment
CL528 Buffer pool

Figure 31. Constructing a Buffer Pool From a Static Storage Area

ENDJOB

INDCB
OUlDCn

In Figure 31, a static storage area named INPOOL is allocated
during program assembly. The BUILD macro instruction, issued
during execution, arranges the buffer pool into ten buffers~
each 52 bytes long. Five buffers are assigned to INDCB and five
to OUTDCB, as specified in the DCB macro instruction for each.
The two data sets share the buffer pool because both specify
INPOOL as the buffer pool control block. Notice that an
additional 8 bytes have been allocated for the buffer pool to
contain the buffer pool control block. The 4-byte chain pointer
which occupies the first four bytes of the buffer is included in
the buffer, so no allowance need be made for this field.

In Figure 32, two buffer pools are constructed-explicitly by the
GETPOOL macro instructions. Ten input buffers are provided, each
52 bytes long, to contain one fixed-length record; five output
buffers are provided, each 112 bytes long, to contain two
blocked records plus an 8-byte count field (required by ISAM).
Notice that both data sets are closed before the buffer pools
are released by the FREEPOOL macro instructions. The same
procedure should be used if the buffer pools were constructed
automatically by the OPEN macro instruction.

GETPOOl
GET POOL
OPEN

INDCB,lO,52 Construct a lO-buffer pool
OUTDCB,5,112 Construct a 5-buffer pool
(INDCll"OUTDCB,(OUTPUT»

CLOSE
FREEPOOL

FREEPOOL

RETURN
DCB
DCB

(INDCB"OUTDCB)
INDCB

OUTDCB

Release buffer pools after all
I/O is complete

Return to system control
DSORG=PS,BFAlN=F,lRECl=52,RECFM=F,EODAD=ENDJOB,--
DSORG=IS,BFALN=D,LRECl=52,KEYLEN=10,BLKSIZE=104,

RKP=O,RECFM=FB,---
C

Figure 32. Constructing a Buffer Pool Using GETPOOL and FREEPOOl

BUFFER CONTROL

Your program can use four techniques to control the buffers used
by your program. The advantages of each depend to a great extent
lIpon the type of job you are doing. Simple and exchange
buffering are provided for the queued access technique. The
basic access technique provides for either direct or dynamic
buffer control.

Although only simple buffering can be used to process an indexed
sequential data set, buffer segments and buffers within a buffer
pool are controlled automatically by the operating system.

Part 2: Data Management Processing Procedures 69

In addition, the queued access technique provides four
processing modes that determine the extent of data movement in
virtual storage. Move, data, locate, or substitute mode
processing can be specified for either the GET or PUT macro
instruction. The buffer proc~s5ing mode is specified in the
MACRF field of the DCB macro instruction. The movement of a
record is determined as follows:

• Move mode: The record is moved from an input buffer to your
wOrk-<lrea, or from your Hork area to an output buffer.

• QQi.? mode (ruM formc.:lt-V s...E.£lnn~d record_s onW: The same as
tIle move mode except only the data portion of the record is
moved.

• Locate mode: The record is not moved. Instead, the address
of--the next input or output buffer is placed in regi ster 1.
For QSAM format-V spanned records, if you have specified
logical records by specifying BFTEK=A or by issuing the
BUILDRCD macro instruction, the address returned in register
1 points to a record area where the spanned record is
assembled or segmented.

The PUT-locate routine uses the value in the DCBLRECL field
to determine whether another record will fit into your
buffer. Therefore, when you write a short record, you can
maximize the number of records per block by modifying the
DCBlRECL field Qefor~ you issue a PUT-locate to get a buffer
segment for the short record. The processing sequence
follows!

1. Register 1 is returned to you with the address of the
next buffer segment.

2. Move the record into the output buffer segment.

3. Put the length of the next (short) record into DCBLRECl.

4. Issue PUT-locate.

5. Move the short record into the buffer segment.

• Substitute mode: Move mode is used when substitute mode is
requested ~VS.

Two processing modes of the rUTX macro instruction can be used
in conjunction with a GET-locate macro instruction. The update
mode returns an updated record to the data set from which it was
read; the output mode transfers an updated record to an output
data set. There is no actual movement of data in virtual
storage. The processing mode is specified by the operand of the
PUTX macro instruction, as explained in 05/VS2 MVS Data
ManaoenJ.Ent MacrLln~trllc..tJ ons.

If you use the basic access technique, you can control buffers
in one of two ways:

• Directly, using the GETBUF macro instruction to retrieve a
buffer constructed as descri bed above. A buffet .. can thnn be
returned to the pool b~1 the FREEI3UF macro instruct ion.

• Dynamically, by requesting a dynamic buffer in your READ or
WRITE macro instruction. This technique can be used only
when you are using BISAM or BDAM. If you request dynamic
buffering, the system automatically provides a buffer each
time a READ macro instruction is issued. The buffer is
supplied from a buffer pool that is created by the system
when the data set is opened. The buffer is released
(returned to the pool) upon completion of a WRITE macro
instruction when you are updating. If you do not update the
record in the buffer and thus release the buffer when the
record is written, the FREEDBUF macro instruction may be
used. If you arQ processing an indexed sequential-data set,
the buffer is automatically released upon the next issuance

70 OS/VS2 Data Management Services Guide

•

('
/1

Simple Buffering

of the READ macro instruction if there has been no
intervening WRITE or FREEDBUF macro instruction.

The term si m£!.igjtuff.eri ng refers to the relat i onshi p of segments
within the buffer. All segments in a simple buffer are together
in storage and are always associated with the .SClme data set.
When the buffer pool is constructed, the system creates a
channel command word (CC~~) for each buffer in the buf·fer pool.
For this reason, each record must be physically moved from an
input buffer segment to an output buffer segment. It can be
processed within either segment or in a work area.

If you use simple buffering, records of any format can be
processed. New records can be inserted and old records deleted
as required to create a new data set. A record can be moved and
processed as follows:

• Processed ill an input buffer' and then moved to an output
buffer (GET-locate, PUT-move/PUTX-output)

• Moved from an input buffer to an output buffer where it can
be processed (GET-move, PUT-locate)

• Moved from an input buffer to a work area where it can be
processed and then moved to an output buffer (GET-move,
PUT-move)

• Processed in an input buffer and returned to the data set
(GET-locate, PUTX-update)

The following examples illustrate tt,e control of simple buffers
and the processing modes that can be used. The buffer pools milY
have been constructed in any way previously described.

Simple Buffering-GET-locate, PUT-move/PUTX-output: The GET.
macro instruction (step A, Figure 33) locates the next input
record to be processed. Its address is returned in register 1 by
the system. The address is passed to the PUT macro instruction
in register O.

Part 2: Duta Management Processing Procedures 71

GET

/
A OUTPUT OUTPUT

PUT

NEXTREC GET

LR
PUT
B

INDCB DCB
OUTDCB DCB

INDCB

0, 1
OUTDCB,(O)
NEXTREC
MACRF=(GL), --
MACRF=(PM), --~

Figure 33. Simple Buffering with MACRF=GL and MACRF=PM

The PUT macro instruction (step B, Figure 33) specifies the
address of the record in register O. The system then moves the
record to the next output buffer.

Note: The PUTX-output macro instruction can be used in place of
the PUT-move macro instruction~ However, processing will be as
described under exchange buffering (see PUT-substitute).

Simple suffering-GET-move, PUT-locate: The PUT macro
instruction locates the address of the next available output
buffer. Its address is returned in register 1 and is passed to
the GET macro instruction in register O.

The GET macro instruction specifies the address of the output
buffer into which the system moves the next input record.

A filled output buffer is not written until the next PUT macro
instruction is issued.

simple Buffering-GET-move, PUT-move: The GET macro instruction
(step A, Figure 34) specifies the address of a work area into
which the system moves the next record from the input buffer.

72 OS/VS2 Data Managen:tentServ ices Gu ide

..

(
'-- "

c

GET

A I OUTPUT I OUTPUT i

PUT

NEXTREC GET INDCB,WORKAREA

OUTDCB,WORKAREA
NEXTREC
CLSO

B INPUT e
PUT
B

WORKAREA DS
INDCB DCB
OUTDCB DCB

MACRF=(GM), -:;
MACRF=(PM) , ---

Figure 34. Simple Buffering with MACRF=GM and MACRF=PM

GET

A IEhl:ll~WI

c

Figure 35.

The PUT macro instruction (step Bt Figure 34) specifies the
address of a work area from which the system moves the record
into the next output buffer.

Simple Buffering--GET-locate, PUT-locate: The GET macro
instruction (step A, Figure 35) locates the address of the next
available input buffer. The address is returned in register 1.

OUTPUT OUTPUT NEXTREC GET INDCB
LR 7 , 1

INPUT

PUT OUTDCB
LR 6, 1

PUT LA S,INDCB

INPUT
/' USING IHADCB,S

I
LH 4,DCBLRECL

OUTPUT OUTPUT SH 4,=H'1'
EX 4,MOVEREC

B NEXTREC
MOVEREC MVC 0(1,6),0(7)
INDCB DCB MACRF= (GL) ,

EODAD=EOF,---
OUTDCB DCB MACRF==(PL),---

DCBD DSORG==(LR)
EOF

Simple Buffering with MACRF=GL and MACRF=PL

The PUT macro instruction (step B, Figure 35) locates the
address of the next available output buffer. Its address is
returned in register 1. You must then move the record from the
input buffer to the output buffer (step C, Figure 35).

Part 2: Data Management Processing Procedures 73

GET

INPUT/
OUTPUT

Processing can be done either before or after the move
operation.

A filled output buffer is not written until the next PUT macro
instruction is issued. The CLOSE and FEOV macro instructions
write the last record of your data set by issuing TRUNC and PUT
macro instructions. Be careful not to issue an extra PUT before
issuing CLOSE or FEOV. Otherwise, when the CLOSE or FEOV macro
instruction tries to write your last record, the extra PUT will
write a meaningless record or produce a sequence error.

Note that if records other than 'format-F records are being
moved, the length attribute of the MVC instruction must be
changed as shown by th~ code beginning with the USING statement
in Figure 35. If the record is more than 256 bytes, you can code
a move routine or use a MVCl instruction to process the complete
record.

SIMPLE BUFFERING-UPDAT MODE: When a data set is opened with
UPDAT specified (Figure 36), only GET-locate and PUTX-update are
supported. The GET macro locates the next input record to be
processed and its address is returned in register 1 by thc
system. The user may update the record and issue a PUTX macro
which will cause the block to be written back ;n its original
location in the data set after all the logical records in that
block have been processed.

INPUT/ OPEN (UPDCB, (UPDAT))

OUTPUT NEXTREC GET UPDCB

PUTX UPDCB

PUTX B NEXTREC
DCB MACRF=(GL,PM),---UPDCB

(No movement of data takes place)

Figure 36. Simple Buffering with MACRF=Gl and MACRF=PM-UPDAT Mode

Exhange Buffering

Exchange buffering is not supported in MVS. Its request is
ignored by the system and move mode ;s used instead.

BUFFERING TECHNIQUES AND GET/PUT PROCESSING MODES: As you can
see from the previous examples, the most efficient code is
achieved by use of automatic buffer pool construction, and
GET-locate and PUTX-output with simple buffering. Figure 37
summarizes the combinations of buffering techniques and
processing modes that can be used.

74 OS/VS2 Data Management Serv ices Gu ide

'''"- ~'

(~--"

\ /

(

•

Q,)
Q,)

Q,) +'" +'" co > co Q,) u 0 u > ..9 E ..9 0

Input ~ ~ ~ ~
::> +'" ::> ::>

Buffering: -. :::l 0.. 0.. "E 0.. 0..

Simple cU Q,). cU cU ~8~ +'" +'" > > co co rJ ~ rJ 0 0 u u
E E 0 0

~~~ 
Actions ~ ~ ~ ~ I- .- I-

~ 
w w w w w g'::> 
(!) (!) (!) (!) (!) =- 0.. 

Program must move X X 
record 

System moves record X X X 

System moves record X 
segment 

Work area required X 

PUTX - output can X 
be used 

Figure 37. Buffering Technique and GET/PUT Processing Modes 

RELSE--Release an Input Buffe~ 

When using the queued access technique to process a sequential 
or indexed sequential data set, you can direct the system to 
ignore the remaining records in the input buffer being 
processed. The next GET macro instruction retrieves a record 
from another buffer. If format-V spanned records are being used, 
the next logical record obtained may begin on any segment in any 
subsequent block. 

If you are using move mode, the buffer is made available for 
refilling as soon as the RELSE macro instruction is issued. When 
you are using locate mode, the system does not refill the buffer 
until the next GET macro instruction is issued. If a PUTX macro 
instruction has been used, the block is written before the 
buffer is refilled. 

TRUNC--Truncate an output Buffer 

When using the queued access technique to process a sequential 
data set, you can direct the system to write a short block. The 
first record in the next buffer is the next record processed by 
a PUT-output or PUTX-output mode. 

If the locate mode is being used, the system assumes that a 
record has been placed in the buffer segment pointed to by the 
last PUT macro instruction. 

Part 2: Data Management Processing Procedures 75 



The last block of a data set 1S truncated by the Close routine. 
Note that a data set containing format-F records with truncated 
blocks cannot be read from direct-access storage as efficiently 
as a standard format-F data set. 

GETBUF--Get a Buffer from a Pool 

The GETBUF macro instruction can be used with the basic access 
technique to request a buffer f~om a buffer pool constructed by 
the BUILD, GETPOOL, or OPEN macro instruction. The address of 
the buffer is returned by the system in a register you specify 
when you issue the macro instruction. If no buffer is available, 
the register contains 0 instead of an address. 

FREEBUF--Return a Buffer to a Pool 

The FREEBUF macro instruction is used with the basic access 
technique to return a buffer to the buffer pool from which it 
was obtained by a GETBUF macro instruction. Although the buffers 
need not be returned in the order in which they were obtain~d, 
they must be returned when they are no longer needed. 

FREEDBUF--Return a Dynamic Buffer to a Pool 

Any buffer obtained through the dynamic buffer option must be 
released before it can be used again. When you are processing a 
direct data set, if you do not update the block in the buffer 
and thus free the buffer when the block is written, you must use 
the FREEDBUF macro instruction. If there is an'uncorrectable 
input/output error, the control program releases the buffer. 
When you are processing an indexed sequential data set, if you 
do not update the block in the buffer or if there is an 
uncorrectable input error, the control program releases the 
buffer when the next READ macro instruction is issued on the 
same DECB, unless you use the FREEDBUF macro instruction. 

To effect the release, you must specify the address of the DECB 
that was used when the block was read using the dynamic 
buffering option, as well as the address of the DCB associated 
with the data set being processed. 

PROCESSING A SEQUENTIAL DATA SET 

Data sets residing on all volumes other than direct-access 
volumes must be processed sequentially. In addition, a data set 
residing on a direct-access volume, regardless of organization, 
can be processed sequentially. This includes data sets created 
using ISAM or a similar access method. Since the entire data set 
(prime, index, and overflow areas) will be processed, care 
should be taken to determine the type of records being 
processed. This feature of the operating system allows you to 
write your program with little regard for the type of device to 
be used when the program is executed, except for restrictions on 
the use of certain device-dependent macro instructions and 
processing options. 

Either the queued or the basic access technique may be used to 
store and retrieve the records of a sequential data set. 
Additionally, a technique called chained scheduling can be used 
to accelerate the input/output operations required for a 
sequential data set (residing on nondirect-access devices for 
5740-AM3). 

76 OS/VS2 Data Management Servi ces Gu ide 

• 



DATA FORMAT--DEVICE TYPE CONSIDERATIONS 

Before execution of your program, you must supply the operating 
system with both the record format (RECFM) and device-dependent 
(DEVD) information in a DCB macro instruction, a DD statement, 
or a data set label. The DCB subpararneters for the DD statement 
differ slightly from those described here. A complete 
description of the DO statement and a glossary of DCB 
5ubparameters are contained in OS/VS2 JCl. 

The record format (RECFM) parameter of the DCB macro instruction 
specifies the characteristics of the records in the data set as 
fixed-length (RECFM=F), variable-length (RECFM=V or D), or 
undefined-length (RECFM=U). Fixed-length blocked records 
(RECFM=FB) can be. specified as standard (RECFM=FBS), which means 
there are no truncated (short) blocks or unfilled tracks within 
the data set, with the possible exception of the last block or 
track. Data sets with a fixed-length, standard format were 
described previously under "Fixed-Length Records, Standard 
Format." 

As an optional feature, a control character can be contained in 
each record. This control character will be recognized and 
processed if the data set is printed or punched. The control 
characters are transmitted on both tapes and direct-access 
volumes. The presence of a control character is indicated by M 
or A in the RECFM field of the data control block. M denotes 
machine code; A denotes American National Standards Institute 
(ANSI) code. If either M or A is specified, the character must 
be present in every record; the printer space (PRTSP) or stacker 
select (STACK) field of the DCB is ignored. The optional control 
character must be in the first byte of format-F and format-U 
records and in the fifth byte of format-V records and format-D 
records where BUFOFF=l. Control character codes are listed in 
"Appendix B: Control Characters." The device-dependent (DEVD) 
parameter of the DCB macro instruction specifies the type of 
device on which the data set's volume resides: 

TA magnetic tape 
PT paper tape reader 
PR printer 
PC card punch 
RD card reader 
DA direct-access device or 

Mass Storage System (MSS) virtual volumes 

Magnetic Tape (TAl 

Format-F, V, D, and U records are acceptable for magnetic tape. 
Format-V records are not acceptable on 7-track tape if the data 
conversion feature is not available. ASCII records are not 
acceptable on 7-track tape. 

When you create a tape data set with variable-length record 
format (V or D), the control program pads any data block shorter 
than 18 bytes. For format-V records, it pads to the right with 
binary zeros so that the data block length equals 18 bytes. For 
format-D (ASCII) records, the padding consists of ASCII 
circumflex characters which are equivalent to X'SE's. 

Note that there is no minimum requirement for blocksize; 
however, if data check occurs on a magnetic-tape device, any 
record shorter than 12 bytes in a read operation or 18 bytes in 
a write operation will be treated as a noise record and lost. No 
check for noise will be made unless a data check occurs. 

Tape density (DEN) specifies the recording density in bits per 
inch per track, as shown in Figure 38. If this information is 
not supplied, the highest applicable density is assumed. 

Part 2: Data Management Processing Procedures 77 



Recording Density 

DEN 7-Track Tape 9-Track Tape 
o 200 
1 556 
2 800 800 (NRZI) 
3 1600 (PE) 
4 6250 (GCR) 
NRZI is for non-return-to-zero-inverted 
PE is for phase encoded mode 
GCR is for group coded recording mode 

mode 

Specifying DEN=O for a 7-track 3420 tape attached to a 3803-1 
will result in 556 bits per inch recording, but corresponding 
messages and tape labels will indicate 200 bits per inch 
recording density. 

Figure ~8. Tape Density (DEN) Values 

The track recording technique (TRTCH) for 7-track tape can be 
specified as: 

C Data conversion is to be used. Data conversion makes it 
possible to write 8 binary bits of data on 7 tracks. 
Otherwise, only 6 bits of an 8-bit byte are recorded. The 
length field of format-V records contains binary data and ;s 
not recorded correctly without data conversion. 

E Even parity is to be used; if E is omitted, odd parity is 
assumed. 

T BCDIC to EBCDIC translation is required. 

Paper-Tape Reader (PT) 

The paper-tape reader accepts format-F and format-U records. If 
you use QSAM, you should not specify the records as blocked. 
Each format-U record is followed by an end-af-record character. 
Data read from paper tape may optionally be converted into the 
System/370 internal representation of one of six standard 
paper-tape codes. Any character found to have a parity error 
will not be converted when the record is transferred into the 
input area. Characters deleted in the conversion process are not 
counted in determining the block size. 

The following symbols indicate the code in which the data was 
punched. If this information is omitted, I is assumed. 

I IBM BCD perforated tape and transmission code (8 tracks) 
F Friden (8 tracks) 
B Burroughs (7 tracks) 
C National Cash Register (8 tracks) 
A ASCII (8 tracks) 
T Teletype l (5 tracks) 
N No conversion 

Note that when you are using QSAM, the processing mode must be 
move mode. 

Trademark of the Teletype Corporation 

78 OS/VS2 Data Management Services Guide 



( 
'-

----- -.-------------------

Card Reader and Punch (RD/PC) 

Printer (PR) 

Format-F and U records are acceptable to both the reader and 
punch; format-V records are acceptable to the punch only. The 
device control character, if specified in the RECFM parameter, 
is used to select the stacker; it is not punched. The first 4 
bytes (record descriptor word or segment descriptor word) of 
format-V records or record segments are not punched. For 
format-V records, at least 1 byte of data must follow the record 
or segment descriptor word or the carriage control character. 

Each punched card corresponds to one physical record. Therefore, 
you should restrict the maximum record size to 80 (EBCDIC mode) 
or 160 (column binary mode) data bytes. When mode (C) is used 
for the card punch, BlKSIZE must be 160 unless you are using 
PUT. Then you can specify BLKSIZE as 160 or a multiple of 160, 
and the system handles this as described earlier under 
"PUT-Write a Record" in the section "Queued Access Techniques." 
You can specify the read/punch mode of operation (MODE) 
parameter as either card image (column binary) mode (C) or 
EBCDIC mode (E). If this information is omitted, E is assumed. 
The stacker selection parameter (STACK) can be specified as 
either 1 or 2 to indicate which bin is to receive the card. If 
it is not specified, 1 is assumed. 

For all QSAM, RECFM=FB, card punch data sets, the block size in 
the DCB will be adjusted by the system to equal the logical 
record length. This data set will be treated as RECFM=F. If the 
system builds the buffers for this data set, the buffer length 
will be determined by the BUFl parameter .. If the BUFl parameter 
was not specified, the adjusted block si~e is used for the 
buffer length. 

If the DCB is to be reused with a block size larger than the 
logical record length, you must reset DCBBLKSI in the DCB and 
ensure that the buffers are large enough to contain the largest 
block size expected. You may ensure the buffer size by 
specifying the BUFl parameter before the first time the data set 
is opened or by issuing the FREEPOOL macro instruction after 
each CLOSE macro so the system will build a new buffer pool of 
the correct size each time the data set is opened. 

Punch error correction on the IBM 2540 Card Read Punch is not 
performed when using MVS. 

The 3525 Card Punch accepts only format-F records for print data 
sets and for associated data sets. Other record formats are 
allowed for the read data set, the punch data set, and the 
interpret punch data set. See OS and OS/VS Programming Support 
for the IBM 3505 Card Reader and IBM 3525 Card Punch for more 
information on programming for the 3525 Card Punch. 

Records of format-F, V, and U are acceptable to the printer. The 
first 4 bytes (record descriptor word or segment descriptor 
word) of format-V records or record segments are not printed. 
For format-V records, at least 1 byte of data must follow the 
record or segment descriptor word or the carriage control 
character. The carriage control character, .if specified in the 
RECFM parameter, is not printed. The system does not position 
the printer to channell for the first record unless specified 
by a carriage control character. 

Because each line of print corresponds to one record, the record 
length should not exceed the length of one line on the printer. 
For variable-length spanned records, each line corresponds to 
one record segment, and blocksize should not exceed the length 
of one line on the printer. 

If carriage control characters are not specified, you can 
indicate printer spacing (PRTSP) as 0, 1, 2, or 3. If it is not 
specified, 1 is assumed. 

Part 2: Data Management Processing Procedures 79 



For all QSAM, RECFM=FB, printer data sets, the block size in the 
DCB will be adjusted by the system to equal the logical record 
length. This data set will be treated as RECFM=F. If the system 
builds the buffers for this data set, the buffer length will be 
determined by the BUFL parameter. If the BUFL parameter was not 
specified, the adjusted block size is used for the buffer 
length. 

If the DCB is to be reused with a block size larger than the 
logical record lengt~, you must reset DCBBLKSI in the DCB and 
insure that the buffers are large enough to contain the largest 
block size expected. You may insure the buffer size by 
specifying the BUFL parameter before the first time the data set 
is opened or by issuing the FREEPOOL macro instruction after 
each CLOSE macro so the system will build a new buffer pool of 
the correct size each time the data set is opened. 

D i I'ect-Access Dev i ce ,( DA) 

DEVICE CONTROL 

Direct-access devices accept records of format-F, V, or U. If 
the records are to be read or written with keys, the key length 
(KEYLEN) must be specified. In addition, the operating system 
has a standard track format for all direct access volumes. Each 
track contains data information as well as certain control 
information such as: 

• The address of the track 

• The address of each record 

• The length of each record 

• Gaps between areas 

A complete description of track format is contained in the 
section "Direct-Access Device Characteristics." Your only 
concern in creating a sequential data set is to allow for an 
8-byte track descriptor record (capacity record or RO) when 
requesting space on a direct-access volume. In addition, device 
overhead, which varies with the device, must b~ allocated for 
each block on the track. 

The operating system provides you with six macro instructions 
for controlling input/output devices. Each is, to varying 
degrees, device-dependent. Therefore, you must exercise some 
care if you wish to achieve device independence. 

When you use the queued access technique, only unit record 
equipment can be controlled directly. When using the basic 
access teeehn i que, lim i ted dev ice independence can be achi eved 
between magnetic-tape and direct-access devices. You must check 
all read or write operations before issuing a device control 
macro instruction. 

CNTRL--control an I/O Device 

The CNTRL macro instruction performs these device-dependent 
control functions: 

• Card reader stacker selection (SS) 

• Printer line spacing eSP) 

• Printer carriage control (SK) 

• Magnetic-tap~ backspace (BSR) over a specified number of 
blocks 

80 OS/VS2 Data Management Servi ces Gu; de 

-----.------.-.----------

CI 



( 
• 

• 

Magnetic-tape backspace (BSM) past a tapemark and forward 
space over the tapemark 

Magnetic-tape forward space (FSR) over a specified number of 
blocks 

• Magnetic-tape forward space (FSM) past a tapemark and a 
backspace over the tapemark 

Backspacing moves the tape toward the load point; forward 
spacing moves the ~ape away from the load point. 

Note that the CNTRl macro instruction cannot be used with an 
input data set containing variable-length records on the card 
reader. 

You can use the CNTRl macro instruction to position DOS tapes 
that contain embedded DOS checkpoint records if you specify 
OPTCD=H in the DCB parameter field of the DD statement. The 
CNTRL macro instruction cannot be used to backspace DOS 7-track 
tapes that are written in data conver~ mode and contain embedded 
checkpoint records. 

PRTOV--Test for Printer Overflow 

The PRTOV macro instruction tests for channel 9 or 12 of the 
printer carriage control tape or the forms control buffer (FCB). 
An overflow condition causes either an automatic skip to channel 
lor, if specified, transfer of control to your routine for 
overflow processing. If you specify an overflow exit routine, 
set DCBIFLGS to X'OO' before issuing another PRTOV. 

If the data set specified in the DCB is not for a printer, no 
action is taken. 

SETPRT--Printer setup 

The SETPRT macro instruction is used to initially set or 
dynamically change the specifications of the 3800 Printing 
Subsystem. The SETPRT macro instruction is also used to 
dynamically change the specifications of the 3203 or 3211 
printers or the 1403 printer with UCS. For additional 
information on how to use the SETPRT macro with the 3800 
printer, see IBM 3800 Printing Subsystem Programmer's Guide. 

For printers that have a universal character set CUCS) buffer or 
a forms control buffer (FCB), the SETPRT macro instruction is 
used to fetch UCS and FCB images from the image library 
(SYSl.IMAGElIB) and load them into their respective buffers. 
Hote that FCB images for the 3203, 3211, and 3800 are not 
compatible. The universal character sets for the 1403, 3203, or 
3211 and the character arrangement tables for the 3800 are also 
incompatible. 

The SETPRT macro allows you to request the operator to verify 
loading of the buffer. For the 1403, 3203, and 3211 printers, 
the SETPRT macro allot~s you to specify the printing of lowercase 
EBCDIC characters in uppercase when no uppercase/lowercase print 
chain or train is available. 

For a printer that has no carriage control tape, you can use the 
SETPRT macro instruction to load the FCB, to request operator 
verification of buffer loading, and to allow the operator to 
align the paper in the printer. 

The FCB contents can be fetched from the system library or 
defined in your program through the exit list of the DCB macro 
instruction, as discussed under "Exit List (EXlST)." 

When issued, the SETPRT macro instruction can load the UCS 
buffer from the system library. The library contains images of 
standard IBM character sets and of your own special character 

Part 2: Data t'lcHH'1 rJemnnt rrocC?~si ng Pr!'JcedLl:"0.5 81 



sets. The operator can be requested to verify the loaded image 
after mounting the appropriate print chain or train. 

With 3800 Enhancements, the SETPRT macro can be used to fetch 
3800 load modules from SYSl.IMAGElIB or from an alternate 
library that you specify. 

The SETPRT macro instruction can be used to block or unblock 
printer data checks. When data checks are blocked, unprintable 
characters are treated as blanks and do not cause an error 
condition. 

Except for the 3800, if the specified UCS or FCB image is not 
found in the image library (or DCB exit list for an FCB image), 
the operator is requested to specify a different one (message 
IEC127D· is issued). If the operator is unable to supply a valid 
name, or the device is a 3800, the SETPRT macro will give an 
error return code. 

BSP--Backspace a Magnetic Tape o~ Di~ect-Access Volume 

The BSP macro instruction backspaces one block on the magnetic 
tape or direct-access volume being processed. The block can then 
be reread or rewritten. An attempt to rewrite the block destroys 
the contents of the remainder of the tape or track. 

The direction of movement is toward the load point or beginning 
of the extent. You may not use the BSP macro instruction if the 
track overflow option was specified or if the CNTRl, NOTE, or 
POINT macro instruction is used. The BSP macro instruction 
should be used only when other device control macro instructions 
could not be used for backspacing. 

Any attempt to backspace across a file mark will result in a 
return code of X'04' and your tape or direct-access volume will 
be positioned after the file mark. This means you cannot issue a 
successful backspace command once your EODAD routine is entered 
unless you first reposition the tape or direct-access volume 
into your data set. (CLOSE TYPE=T can get you positioned at the 
end of your data set.) 

You can use the BSP macro instruction to backspace DOS tapes 
containing embedded DOS checkpoint records. If you use this 
means of backspacing, you must test for and bypass the embedded 
checkpoint records. You cannot use the BSP macro instruction for 
DOS 7-track tapes written in translate mode. 

NOTE--Retu~n the Relative Address of a Block 

The NOTE macro instruction requests the relative address of the 
block just read or written. In a multivolume data set, the 
address is relative to the beginning of the volume currently 
being processed. 

The address provided by the operating system is returned in 
register 1. The address is in the form of a 4-byte relative 
block address for magnetic tape; for a direct-access device, it 
is a 4-byte relative track address. The amount of unused space 
available on the track of the direct-access device is returned 
in register O. 

POINT--Position to a Block 

The POINT macro instruction causes repositioning of a magnetic 
tape or direct-access volume to a specified block. The next read 
or write operation begins at this block. In a multivolume data 
set, you must ensure that the volume referred to is the volume 
currently being processed. If a write operation follows the 
POINT mac~o instruction, all of the track following the write 
operation is erased unless the data set is opened for UPDAT. 
POINT is not meant to ba used before a WRITE macro instruction 

82 OS/VS2 Data Management Serv ices Gu ide 

,r-...." 

'" 
...... _/ 



( 
" .. "".' 

c' 

when a data set is opened for UPDAT. You can use the POINT macro 
instruction to position DOS tapes that contain embedded 
checkpoint records if you specify OPTCD=H in the DCB parameter 
field of the DD statement. The POINT macro instruction cannot be 
used to backspace DOS 7-track tapes that are written in data 
convert mode and contain embedded checkpoint records. 

When using the POINT macro for a direct-access device that is' 
opened for OUTPUT, OUTIN, or INOUT, and the record format is not 
standard, the number of blocks per t~ack may vary slightly. 

DEVICE INDEPENDENCE 

The ability to request input/output operations without regard 
for the physical chara~teristics of the I/O devices makes it 
possible for you to write one program that will fulfill a 
variety of needs. Device independence may be useful for: 

• Accepting data from a number of recording devices, such as a 
disk pack, 7- or 9-track magnetic tape, or unit-record 
equipment. This situation. could arise when several type~ of 
data-acquisition devices are feeding.a centralized complex. 

• Observing constraints imposed by the availability of 
input/output devices (for example, when devices on order 
have not been installed). 

• Assembling, testing, and debugging on one System/370 
configuration and processing on a different configuration. 
For example, a 2314 drive can be used as a substitute for 
several magnetic-tape units. 

Device independence is not difficult to achieve, but requires 
some planning and forethought. There are two areas of planning 
necessary to achieve device independence--system generation 
considerations and programming considerations. 

system Generation Considerations 

You can provide for device independence when the system is 
generated by generating a system that not only meets the current 
input/output configuration requirements but includes anticipated 
device attachments. Creating such a system entails looking ahead 
at expected delivery of input/output devices and, during system 
generation, constructing the necessary control blocks and 
tables. Thus, when the devices are delivered, they need only be 
physically attached. The operating system recognizes the devices 
without modification. However, until the devices are physically 
connected, the operator must designate them as being offline, 
using the VARY command, unless OPTIONS=DEVSTAT was specified on 
the CTRlPROG macro during system generation. For information on 
the CTRLPROG macro, see OS/VS2 System Programming library: 
System Generation Reference. 

When new device attachments cannot be fully anticipated, you can 
add new devices by performing an I/O device generation. This is 
a limited type of system generation that enables you to change 
your I/O configuration without regenerating other parts of the 
system. 

System generation techniques for effecting a smooth transition 
to new input/output devices do not include addition of new 
device types. When support for new devices. is provided, a new 
system must be generated. A complete description of system 
generation techniques is contained in OS/VS2 System Programming 
library: System Generation Reference. 

Part 2: Data Management Processing Procedures 83 



Programming Considerations 

Each of three data set organizations--partitioned, indexed 
sequential, and direct-requires the use of a direct-access 
device. Device independence is meaningful, then, only for a 
sequentially organized data set, that is, a data set where one 
block of data follows another, thus allowing input or output to 
be on a magnetic tape drive, a direct-access device, a card 
read/punch, a printer, or a spooled data set. 

Your program will be device-independent if you do two things: 

• Omit all device-dependent macro instructions and macro 
instruction parameters from your program. 

• Defer specifying any required device-dependent parameters 
until the program is ready for execution. That is, supply 
the parameters on your data definition (DO) statement or 
during the open exit routine. 

In examining the following list of macro instructions, consider 
only the logical layout of your data record without regard for 
the type'of device used. Also, consider that any reference to a 
direct-access volume is to be treated like a reference to 
magnetic tape, that is, you must create a new data set rather 
than attempt to update. 

OPEN 

READ 

WRITE 

PUTX 

Specify INPUT, OUTPUT, INOUT, OUTIN, OUTINX, or EXTEND. 
The parameters ROBACK and UP OAT are device-dependent and 
cause an abnormal termination if directed to a device of 
tile wrong type. 

Specify forward reading (SF) only. 

Specify forward writing (SF) only; use only to create new 
records. 

Use only output mode. 

NOTE/POINT 

SSP 

These macros are valid for both magnetic-tape and 
direct-access volumes. 

This macro is valid for magnetic-tape or direct-access 
volumes. However, its us~ would be an attempt to perform 
device-dependent action. 

CNTRL/PRTOV 
These macros are device-dependent. 

DeB Subparameters 

MACRF 

DEVD 

Specify R/W or G/P. Processing mode can also be indicated. 

Specify DA if any direct-access device may be used. 
Magnetic-tape and unit-record equipment OCBs will fit in 
the area provided during assembly. Specify unit-record 
devices only if you expect never to change to tape or 
direct-access devices. Key length (KEYLEN) can be specified 
on the DO statement if necessary. 

RECFM, LRECL, BLKSIZE 
These can be specified in the DO statement. However, you 
must consider maximum record size for specific devices, and 
track overflow cannot be specified unless supported. 

84 OS/VS2 Data Management Serv ices Gu ide 



( 

(~ 

DSORG 
Specify sequential organization (PS or PSU). 

OPTCD 
This subpararneter is device-dependent; specify it in the DD 
statement. 

SYHAD 
Any device-dependent error checking is automatic. 
Generalize your routine so that no device-dependent 
information is required. 

CHAINED SCHEDULING FOR I/O OPERATIONS (INCLUDING NONDIRECT-ACCESS DEVICES FOR 
5740-AM3 ONLY) 

To accelerate the input/output operations required for a data 
set, the operating system provides a technique called chained 
2£he~ulin9. When requested, the system bypasses the normal I/O 
routines and dynamically chains several input/output operations 
together. A series of separate read or write operations, 
functioning with chained scheduling, is issued to the computing 
system as one continuous operation. In a nonpageable partition 
or address space, the program-controlled interruption (PCI) flag 
in the CCWs is used for synchronization of the I/O operations. 

The I/O performance is improved by reduction in both the CPU 
time and the channel start/stop time required to transfer data 
within virtual storage. Some factors that affect performance 
improvement are: 

• Address space type (real or virtual) 

• BUFHO for QSAM 

• The number of overlapped requests for BSAM 

• Other activity on the CPU and channel 

The effects of rotational delay are also reduced, since several 
successive blocks, requested separately, can be retrieved in a 
single rotation. Chained scheduling can be used only with simple 
buffering. Each data set for which chained scheduling is 
specified must be assigned at least two and preferably three 
buffers with QSAM, or must have a value of at least two and 
preferably three for HCP with BSAM or BPAM. 

Chained scheduling will be used by MVS whether it ;s requested 
or not (except for printers and format-U input records). Chained 
scheduling will not be used where it is not allowed. 

For 5740-AM3 the following two paragraphs replace the paragraph 
above: 

The system will default to chained scheduling for 
nondirect-acceS5 devices (other than printers and format-U 
records on nondirect-access devices) except for those cases in 
which it is not allowed. 

A request for exchange buffering in MVS is not honored, but 
compatibly defaults to move mode and therefore has no effect on 
either a request for chained scheduling or a default to chained 
scheduling. 

A request for chained scheduling will be ignored and normal 
scheduling used if any of the following are encountered when the 
data set is opened: 

• Direct Access Device (5740-AM3 only) 

• Search Direct (This line is deleted by 5740-AM3) 

Part 2: Data Management Processing Procedures 85 



• 

• 

BDAM CREATE, that is, MACRF=(WL) (This line is deleted by 
5740-AM3) 

Track overflow 

• UPDAT in the operand of the OPEN macro instruction 

• CNTRL macro instru~tion to be used 

• Device type is paper tape reader 

• Bypassing of embedded DOS checkpoint records on tape input 
data sets 

• Spooled data sets (SYSIN or SYSOUT) 

• A print data set or any associated data set for the 3525 
Card Punch. (See OS and OS/VS Programming Support for the 
IBM 3505 Card Reader and IBM 3525 Card Punch for more 
information on programming for the 3525.) 

The number of channel program segments that can be chained is 
limited to the value specified in the NCP operand of BSAM and 
BPAM DCBs, and to the value specified in the BUFNO operand of 
QSAM DCBs. 

Chained scheduling should not be specified (DCB=OPTCD=C) when 
channel 9 or channel 12 is in the carriage control tape. 

When chained scheduling is being used, the automatic skip 
feature of the PRTOV macro instruction for the printer will not 
function. Format control must be achieved by ANSI or machine 
control characters. (Control characters are discussed in more 
detail in Part 1 under "Control Character," in Part 2 under 
"Data Format-Device Type Considerations," and in "Appendix B: 
Control Characters.") When you read undefined-length records 
with QSAM, the DCBLRECL field is equal to the BLKSIZE field, not 
the actual record length. The entire block is moved to your work 
area in the move mode. When you are using QSAM under chained 
scheduling to read variable-length, blocked, ASCII tape records 
(format-DB), you must code BUFOFF=L in the DCB.for that data 
set. 

Note also that if you are using BSAM with the chained scheduling 
option to read format-DB records and have coded a value for the 
BUFOFF operand other than BUFOFF=L, the input buffers will be 
converted from ASCII to EBCDIC as usual, but the record length 
returned to the DCBLRECL field will equal the block size, not' 
the actual length of the record read in; the record descriptor 
word (ROW), if present, will not have been converted from ASCII 
to binary. 

A request for the chained scheduling technique overrides a 
request for the search direct technique. If you request both 
techniques, or if chained scheduling is defaulted and search 
direct is requested, then chained scheduling is used. 

Chained scheduling is most valuable for programs that require 
extensive input and output operations. Because a data set using 
chained scheduling may monopolize available time on a channel in 
a V=R region, separate channels should be assigned~ if possible, 
when more than one data set is to be processed. 

SEAR~H DIRECT FOR INPUT OPERATIONS (EXCEPT 5740-AM31 

To accelerate the input operations required for a data set on 
DASD, the operating system provides a technique called seurch 
direct. Search direct reads in the requested record and the 
count field of the second record. This allows the operation to 
get the next record directly, along with the count field of the 
following record. Search direct can be used with all record 
formats except format-UT, format-FBT, format-FS, format-FBS, and 
spanned. You request search direct by coding OPTCD=Z in the DCB 

86 OS/VS2 Data Management Serv ices Gu ide 



( 
'--- ' 

(j 

C\' 
/ 

--------------------------

macro instruction. For FS and FBS records, the access method 
routines always use a form of search-direct processing. Search 
direct cannot be used under the following conditions: 

• In conjunction with the NOTE and POINT macro instructions 

• When you specify the UPDAT option of the OPEN macro 
instruction 

• For partitioned data sets 

• When chained scheduling is used 

SEARCH DIRECT FOR INPUT OPERATIONS (S740-AM3 ONLY) 

To accelerate the input operations required for a data set on 
DASD, the operating system provides a technique called search 
direct. Search direct reads in the requested record and the 
count field of the second record. This allows the operation to 
get the next record directly, along with the count field of the 
following record. 

The function provided by the search-direct option is supplied 
whether or not it is requested. OPTCD=Z need not be coded and if 
used is ignored. 

Except under the following conditions: 

• In conjunction with the NOTE and POINT macro instructions 

• When you specify the UPDAT option of the OPEN macro 
instruction 

• For partitioned data sets 

• When chained scheduling is used 

you may receive unpredictable results when your application runs 
on a system with the Sequential Access Method-Extended (SAM-E) 
installed and your application has a dependency that prevents 
the use of search direct. For example, you may receive 
unpredictable results when multiple DCBs are open for a file and 
one of the applications is updating or adding records. 

CREATING A SEQUENTIAL DATA SET 

As discussed earlier, a processing program should be developed 
using, as much as possible, factors that are constant, with 
variable factors specified at execution. For that reason, the 
following examples are generalized as much as possible. They are 
n~ither exhaustive nor intended as complete examples. Rather, 
they are presented as introductory sequences. 

In creating a sequential data set on a magnetic tape or 
direct-access device, you must do the following: 

• Code DSORG=PS or PSU in the DCB macro instruction 

• Code a DD statement to describe the data set (See QS/VS2 
JCL. ) 

• Process the data set with an OPEN macro instruction (data 
set is opened for output or QUTIN), a series of PUT or WRITE 
and CHECK macros, and then a CLOSE macro 

TAPE-TO-PRINT, MOVE MODE-SIMPLE BUFFERING: In Figure 39, the 
GET-move and PUT-move require two movements of the data records. 
If the record length (LRECL) does not change in processing, only 
one move is necessary; you can process the record in the input 
buffer segment. A GET-locate can be used to provide a pointer to 
the current segment. 

Part 2: Data Management Processing Procedures 87 



NEXTREC 

TAP ERROR 

ENDJOB 

OPEN 
GET 
AP 
UNPK 
PUT 
B 
SYNADAF 
lA 
ST 
PUT 
SYNADRLS 
L 
RETURN 
CLOSE 

(INDATA"OUTDATA,(OUTPUT» 
INDATA,WORKAREA 
NUMBER,=P'l' 
COUNT,NUMBER 
OUTDATA,COUNT 
NEXTREC 
ACSMETH=QSAM 
0,68(0,1) 
14,SAVE14 
OUTDATA,(O) 

14,SAVE14 

(INDATA"OUTDATA) 

Move mode 

Record count adds 6 
bytes to each record 

Control program returns 
message address in register 1. 
SYNAD routine prints part of 
the message (beginning with 
the unit number) as a 56-byte 
fixed-length record. It then 
returns to the control 
program. 

WORKAREA OS Cl50 
COUNT OS 
NUMBER DC 
SAVE14 OS 
INDATA DCB 

OUT DATA DCB 

Cl6 
Pl4'O' 
F, 
DDNAME=INPUTDD,DSORG=PS,MACRF=(GM),EROPT=ACC, 

SYNAD=TAPERROR,EODAD=ENDJOB 
DDNAME=OUTPUTDD,DSORG=PS,MACRF=(PM),EROPT=ACC 

C 

Figure 39. Creating a Sequential Data Set-Move Mode, Simple Buffering 

TAPE-TO-PRINT, LOCATE MODE--SIMPLE BUFFERING: This example 
(Figure 40) is similar to that in Figure 39. However, since 
there is no change in the record length, t~e records can be 
processed in the input buffer. Only one move of each data record 
is required. 

RETRIEVING A SEQUENTIAL DATA SET 

In retrieving a sequential data set on a magnetic tape or 
direct-access device, you must do the following: 

• Code DSORG=PS or PSU in the DCB macro instruction 

• Tell the system where your data set is located (by coding a 
DO statement; see OS/VS2 JCl). 

• Process the data set with an OPEN macro instruction (data 
set ;s opened for input, INOUT, ROBACK, or UPDAT), a series 
of GET or READ macros and then a CLOSE macro. 

• PURGE HALT I/O should not be used to terminate outstanding 
I/O from READ or GET macros if you intend to continue 
reading records from the data set after the PURGE. The 
results are unpredictable and can result in a wait state if 
you are using chained scheduling or Sequential Access 
Method-Extended (SAM-E), 5740-AM3. 

88 OS/VS2 Data Managemnnt Servi ce5 Gu ide 



( OPEN 
NEXTREC GET 

LR 
AP 
UNPK 
PUT 
MVC 
B 

(INDATA"OUTDATA,(OUTPUT),ERRORDCB,(OUTPUT» 
INDATA Locate mode 
2,1 Save pointer 

Process in input area 
Locate mode 
Move record to output buffer 

TAPERROR SYNADAF 
ST 

NUMBER,=P'1' 
0(6,2),NUMBER 
OUTDATA 
0(50,1),0(2) 
NEXTREC 
ACSMETH=QSAM 
2,SAVE2 
2,8(0,1) 
8(70,1),50(1) 
78(1),C' , 
79(49,1),78(1) 
2,128(1) 
0,=H'4' 
MOVERCD 

Message address in register 1 
Save register 2 contents 

l 
MVC 
MVI 
MVC 
ST 
CH 
BE 
BL 
CLI 
BE 

MOVERCD MVC 
PRINTIT LA 

lR 

PRINT IT 
128(1),C' , 
PRINTIT 
78(50,1),0(2) 
0,4(1) 

Load pointer to input buffer 
Shift nonblank message fields 
Blank end of message 

Save address for debugging 
Test SYNADAF return code 
Branch if data read 
Branch if data not read 
See if data read anyway 
Branch if definitely no data 
Add input record to message 
Load address of message 
Save return address 

PUT 
SYNADRlS 
LR 

2,14 
ERRORDCB,(O) 

14,2 
2,SAVE2 

Print message (move mode) 
Release message and save area 
Restore return address 
Restore register 2 contents 
Return to control program 

l 
RETURN 

ENDJOB CLOSE 

NUMBER DC 
INDATA DCB 

OUTDATA DCB 
ERRORDCB DCB 

SAVE2 DS 

(INDATA"OUTDATA"ERRORDCB) 

Pl4'O' 
DDNAME=INPUTDD,DSORG=PS,MACRF=(GL),EROPT=ACC, 

SYNAD=TAPERROR,EODAD=ENDJOB 
DDNAME=OUTPUTDD,DSORG=PSyMACRF=(PL) 
DDNAME=SYSOUTDD,DSORG=PS,MACRF=(PM),RECFM=V, 

BLKSIZE=128,lRECL=124 
F 

C 

C 

Figure 40. Creating a Sequential Data Set--locate Mode, Simple Buffering 

UPDATING A SEQUENTIAL DATA SET 

When you update in place, you read records, process them, and 
write them back to their original positions without destroying 
the remaining records on the track. The following rules apply: 

• You must specify the update option (UPDAT) in the OPEN macro 
instruction. To perform the update, you can use only the 
READ, WRITE, CHECK, NOTE, POINT, GET, and PUTX macro 
instructions. 

• You cannot use chained scheduling. 

• You cannot delete any record or change its length; you 
cannot add new records. 

• The data set must be on a direct-access device. 

A record must be retrieved by a READ or GET macro instruction 
before it can be, updated by a WRITE or PUTX macro instruction. A 
WRITE or PUTX macro instruction does not need to be issued after 
each READ or GET macro instruction. The READ and WRITE macro 
instructions must be execute forms that refer to the same DECB; 
the DECB must be provided by the list forms of the READ or WRITE 
macro instructions. (The execute and list forms of the READ and 
WRITE macro instructions are described in OS/VS2 MVS Data 
Management Macro Instructions.) 

Part 2: Data Management Processing Procedures 89 



UPDATING WITH OVERLAPPED OPERATIONS: To overlap input/output and 
CPU activity, you can start several read or write operations 
before checking the first for completion. You cannot overlap 
read with write operations, however, as operations of one type 
must be checked for completion before operations of the other 
type are started or resumed. Note that each concurrent read or 
write operation requires a separate channel program and a 
separate DECBw If a single DECB were used for successive read 
operations, only the last record read could be updated. 

In Figure 50, overlap is achieved by having a read or write 
request outstanding while each record is being processed. Note 
the use of the execute and list forms of the READ and WRITE 
macro instructions, identified by the operands MF=E and MF=L. 

EXTENDING A SEQUENTIAL DATA SET 

If you want to add records at the end of your data set, you must 
open the data set for output with DISP=MOD specified in the DD 
statement or specify the EXTEND option of the OPEN macro. You 
can then issue PUT or WRITE macros to the data set. 

DETERMINING THE LENGTH OF A RECORD WHEN USING THE BSAM READ MACRO 

When you read a sequential data set, you can determine the 
length of the record in one of the following four ways, 
depending upon the record format of the data set: 

• For fixed-length, unblocked records, the length of all 
records is the value in the DCBBLKSI field of the DCB. 

• For variable-length records, the block descriptor word in 
the record contains the length of the record. 

• For fixed-length blocked or undefined-length records, the 
following method can be used to calculate the block length. 
(This method should.not·be used when reading track overflow 
records on a device with the rotational position sensing 
(RPS) f'eature or when using chained scheduling t-Jith format U 
records. In these cases, the length of a record cannot be 
determined.) (For 5740-AM3 only, this method should not be 
used for chained scheduling on non-direct access devices. 
The length of a record cannot be determined when using 
chained scheduling.) After checking the DECB for the READ 
request but before issuing any subsequent data management 
macro instructions that specify the DCB for the READ 
request, obtain the lOB address from the DECB. The lOB 
address can be loaded from the location 16 bytes from the 
start of the DECS. 

Obtain the residual count from the channel status word (CSW) 
that has been stored in the input/output block (lOB). The 
residual count is in the halfword 14 bytes from the start of 
the lOB. Subtract this residual count from the number of 
data bytes requested to be read by the READ macro 
instruction. If "5" was coded as the length parameter of the 
READ macro instruction, the number of bytes requested is the 
value of DCBBLKSI at the time the READ was issued. If the 
length was coded in the READ macro instruction, this value 
is the number of data bytes and it is contained in the 
halfword 6 bytes from the beginning of the DECB. The result 
of the subtraction is the length of the block read. See 
Figure 41. 

90 OS/VS2 Data Management Services Guide 

-.-.----------~-.-....... --.-----~ 



• 

( 

OPEN CDCB,CINPUT» 
LA DCBR,DCB 
USING IHADCB,DCBR 

READ DECBl,SF,DCB,AREAl,'S' 
READ DECB2,SF,DCB,AREA2,50 

CHECK DECBl 
LH WORKl,DCBBLKSI Block size at time of READ 
L WORK2,DECBl+16 lOB address 
SH WORK1,14(WORK2) WORKl has block length 

CHECK DECB2 
LH WORKl,DECB2+6 Length requested 
L WORK2,DECB2+16 lOB address 
SH WORKl,14(WORK2) WORKl has block length 

MVC DCBBlKSI,lENGTH3 Length to be read 
READ DECB3,SF,DCB,AREA3 

CHECK DECB3 
LH WORKl,LENGTH3 Block size at time of READ 
L WORK2,DECB+16 lOB address 
SH WORKl,14(WORK2) WORK1 has block length 

DCB DCB ... RECFM=U,NCP=2, ... 
DCBD 

Figure 41. One Method of Determining the Length of the Record When Using BSAM 
to Read Undefined-Length Records 

• Except for 5740-AM3, for undefined-length records, the lRECl 
operand should be omitted; the actual length can be supplied 
dynamically in a READ/WRITE macro instruction. (This method 
should not be used when reading track overflow records on p 
device with the rotational position sensing (RPS) feature or 
when using chained scheduling on any device.) When an 
undefined-length record is read, the actual length of the 
record is returned by the system in the DCBlRECl field of 
the data control block. 

• For 5740-AM3, when an undefined-length record is read, the 
actual length of the record is returned in the DCBLRECL 
field of the data control block. Because of this use of 
DCBlRECL, the lRECL operand should be omitted. The length to 
be read or wri-tten can be supplied dynamically in a 
READ/WRITE macro instruction using BSAM. This method cannot 
be used when using chained scheduling on any non-direct 
access device. 

WRITING A SHORT BLOCK WHEN USING THE BSAM WRITE MACRO 

When you are writing blocks for a sequential data set, you can 
change the length of a block if you have fixed-blocked record 
format. The DCB block size field (DCBBLKSI) can be changed to 
specify a block size that is shorter than what was originally 
specified for the data set. The DCBBLKSI field must be changed 
before issuing the WRITE macro instruction and must be a 
multiple of the LRECL parameter in the DCB. Any subsequent WRITE 
macro instructions issued will write records with the new block 
length until the block size is changed again. The DCB block size 
field should not be changed to specify a block size that is 
greater than what was originally specified for the data set. 

Part 2: Data Management Processing Procedures 91 



PROCESSING A PARTITIONED DATA SET 

Directory 
Records 

A partitioned data set can be stored only on a direct-access 
device. It is divided into sequentially organized !DJlmbers, each 
made up of one or more records (see Figure 42). Each member has 
a unique name, 1 to 8 characters long, stored in a directory 
that is part of the data set. The records of a given member are 
stored or retrieved sequentially. 

Entry for 
Member A 

Entry for 
Member B 

Entry for 
Member C 

Entry for 
Member K 

Space from 
Deleted 
Member 

Available 
Area 

Figure 42. A Partitioned Data Set 

The main advantage of using a partitioned data set is that you 
can retrieve any individual member once the data set is opened· 
without searching the entire data set. For example, a program 
library can be stored as a partitioned data set, each member of 
which is a separate program or subroutine. The individual 
members can be added or deleted as required. When a member is 
deleted, the member name is removed from the directory, but the 
space used by the member cannot be reused until the data set is 
reorganized. 

The directory, a series of records at the beginning of the data 
set, contains an entry for each member. Each directory entry 
contains the member name and the starting location of the member 
within the data set, as shown in Figure 42. In addition, you can 
specify up to 62 characters of information in the entry. The 
directory entries are arranged in alphameric collating sequence 
by name. 

The track address of each member is recorded by the system as a 
relative track address within the data set rather than as an 
absolute track address. Thus, an entire data set can be moved 
without changing the relative track addresses in the directory. 
The data set can be considered as one continuous set of tracks 
regardless of how the space was actually allocated. 

If there is not sufficient space available in the directory for 
an additional entry, or not enough space available within the 
data set for an additional member, no new members can be stored. 

92 OS/VS2 Data Management Services Guide 



( 
'-

--------------

PARTITIONED DATA SET DIRECTORY 

Count Key 

The directory of a partitioned data set occupies the beginning 
of the area allocated to the data set on a direct-access volume. 
It is searched and maintained by the FIND and STOW macro 
instructions. The directory consists of member entries arranged 
in ascending order according to the binary value of the member 
name or alias. 

Member entries vary in length and are blocked into 256-byte 
blocks. Each block contains as many complete entries as will fit 
in a maximum of 254 bytes; any remaining bytes are left unused 
and are ignored. Each directory block contains a 2-byte count 
field that specifies the number of active bytes in a block 
(including the count field). As shown in Figure 43, each block 
;s preceded by a hardware-defined key field containing the name 
of the last member entry in the block, that is, the member name 
with the highest binary value. 

Data 
Name of 
Last 
Entry in 
Block 

Number of 
Bytes Used 
(Maximum 

256) 

Member Member 
Entry A Entry B ~~~~~ !lil~:!;!~~:li: 

'--y---/ ~~~------------------------~v~------------------------~/ 
Bytes 8 2 254 

Figure 43. A Partitioned Data Set Directory Block 

Each member entry contains a member name or alias. Each entry 
also contains the relative track address of the member and a 
count field, as shown in Fig~re 44. In addition, it may contain 
a user data field. The last entry in the last directory block 
has a name field of maximum binary value-all Is. 

Part 2: Data Management Processing Procedures 93 



Member 
Name 

8 

Pointer to 
First Record 
of Member 

TTR 

Bits 

Optional User Da 
C 

I TTRN ~ 1 TTRN TTRN 

----~ ta 

------~-~,~ ________________ ~y-----v----_________ -J 

-.......... 0-31 halfwords 
............ _ (Maximum 62 bytes) 

-- ........ -........ 
........ -- -- -- ...... 

........ ---1 If Number of Number of User 
Name is an User Data Data Halfwords 

Alias TTRNs 

o 1-2 3-7 

Figure 44. A Partitioned Data Set Directory Entry 

NAME 

TTR 

c 

specifies the member name or alias. It contains up to 8 
alphameric characters, left-justified and padded with 
blanks if necessary. 

is a pointer to the first block of the member; TT is the 
number of the track, relative to the beginning of the data 
set, and R is the number of the block, relative to the 
beginning of that track. 

Note: This pointer is created by adding I to the TTR for 
the last block of the previous member (which is an 
end-of-file mark). If track TT is full, the next block will 
begin at record 1 of track TT + 1, and the pointer .will be 
updated accordingly. The control program finds the block by 
searching in multitrack mode using TT(R-I) as a search 
argument. 

specifies the number of halfwords contained in the user 
data field. It may also contain additional information 
about the user data field, as shown below: 

Bits o 1-2 3-7 

o when set to 1, indicates that the NAME field contains 
an alias. 

1-2 specifies the number of pointers to locations within 
the member. 

A maximum of three pointers is allowed in the user 
data field. Additional pointers may be contained in a 
record referred to as a note list, discussed below. 
The pointers can be updated automatically if the data 
set is moved or copied by a utility program such as 
IEHMOVE. The data set must be marked unmovable under 
the following conditions: 

94 OS/VS2 Data Management Serv ices Gu ide 

-_ ... __ . __ ._.-_ ..• -----



( 

( 

c' 

• 

• 

More than three pointers are used in the user data 
field. 

The pointers in the user data field or note list 
do not conform to the standard format. 

• The pointers are not placed first in the user data 
field. 

• Any direct access address (absolute or relative> 
is embedded in any data blocks or in another data 
set that refers to this data set. 

3-7 contains a binary value indicating the number of 
halfwords of user data. This number must include the 
space used by pointers in the user data field. 

You can use the user data field to provide variable data as 
input to the STOW macro instruction. If pointers to locations 
within the member are provided, they must be 4 bytes long and 
placed first in the user data field. The user data field format 
is as follows: 

User Data 

TTRH I TTRH I TTRN Optional 

TT is the relative track address of the note list or area to 
which you are pointing. 

R is the relative block number on that track. 

N is a binary value that indicates the number of additional 
pointers contained in a note list pointed to by the TTR. If 
the pointer is not to a note list, N=O. 

A note list consists of additional pointers to blocks within the 
same member of a partitioned data set. You can divide a member 
into subgroups and store a pointer to the beginning of each 
subgroup in the note list. The member may be a load module 
containing many control sections (CSECTs), each CSECT being a 
subgroup pointed to by an entry in the note list. You get the 
pointer to the beginning of the subgroup by using the NOTE macro 
instruction after you write the first record of the subgroup. 
Remember that the pointer to the first record of the member is 
stored in the directory entry by the system. 

If the existence of a note list was indicated as shown above, 
the list can be updated automaticallY when the data set is moved 
or copied by a utility program such as IEHMOVE. Each 4-byte 
entry in the note list has the following format: 

TTRX 

TT is the relative track address of the area to which you are 
pointing. 

R is the relative block number on that track. 

X is available for any use. 

To place the note list in the partitioned data set, you must use 
the WRITE macro instruction. After checking the write operation, 
use the NOTE macro instruction to determine the address of the 
list and place that address in the user data field of the 
directory entry. 

Part 2: Dnta Managemnnt Processing Procedures 95 



PROCESSING A MEMBER OF A PARTITIONED DATA SET 

Because a member of a partitioned qata set is sequentially 
organized, it is processed in the same manner as a sequential 
data set. Either the basic or queued access technique can be 
used. However, you cannot alter the directory when using the 
queued technique. 

To locate a member or to process the directory, several macro 
instructions are provided by the operating system. The BlDl 
macro instruction can be used to structure a list of directory 
entries in virtual storage; the FIND macro instruction locates a 
member of the data set for subsequent processing; the STOW macro 
instruction adds, deletes, replaces, or changes a member name in 
the directory. To use these macro instructions, you must specify 
DSORG=PO or POU in the DeB macro instruction. Before issuing 
FIND, BlDL, or STOW macro instruction, you must check all 
preceding input/output operations for completion. 

BLDL--Construct a Directory Entry List 

The BlDL macro instruction is used to place directory 
information in virtual storage. The data is placed in a build 
list, which you construct before the BlDL macro instruction is 
issued. The format of the list is similar to that of the 
directory. For each member name in the list, the system supplies 
the address of the member and any additional information 
contained in the directory entry. Note that if there is more 
than one member name in the list, the member names must be in 
collating sequence regardless of whether the members are from 
the same library or from different libraries. 

You can optimize retrieval time by directing a subsequent FIND 
macro instruction to the build list rather than the directory to 
locate the member to be processed. 

The build list, as shown in Figure 45, must be preceded by a 
4-byte list description that indicates the number of entries in 
the list and -the length of each entry (12 to 76 bytes). The 
first 8 bytes of each entry contain the member name or alias. 
The next 6 plus some control data. If there is no user data 
entry, only the TTR and C fields are required. If additional 
information is to be supplied from the directory, up to 62 bytes 
can be reserved. 

FIND--Position to a Member 

To determine the starting address of a specific member, you must 
issue a FIND macro instruction. The system places the correct 
address in the data control block so that a subsequent input or 
output operation begins processing at that point. 

There are two ways you can direct the system to the right member 
when you use the FIND macro instruction: specify the address of 
an area containing the name of the member or specify the address 
of the TTR field of the entry in a build list you have created 
by using the BlDl macro instruction. In the first case, the 
system searches the directory of the data set for the relative 
track address; in the second case, no search ;s required because 
the relative track address is in' the build list entry. 

96 OS/VS2 Data Management Serv ices Gu ide 

• 

c 



( 

• 

·-.---.--...... -_ ... __ .... _-_ ..• _----_._---_._--_ .. _---- ----

List 
Description FFLL I 

Member 
Name (C) 

(Each entry starts on halfword boundary) 

Filled in by BLDL 
I 

;... 

TTR K Z C 
(3) (1 ) (1 ) (1 ) 

-

I 
User D ata 

words) (C Half 
I 

\ 

) 
-

Programmer Supplies: 
FF Number of member entries in list. 
LL Even number giving byte length of each entry (minimum of 12). 

Member name Eight bytes, left-justified. 

B LD L Supplies: 
TTR Member starting location. 

K If only data set = O. If concatenation = number. 
Not required if no user data. 

Z Source of directory entry. Private library = O. 
Link library = 1. Job or step library = 2. 
Not required if no user data. 

C Same C field from directory. Gives number of user data halfwords. 
User data As much as will fit in entry. 

Figure 45. Build List Format 

The system will also search a concatenated series of directories 
when (1) a DCB is supplied that is opened for a concatenated 
partitioned data set of (2) a DCB is not supplied, in which case 
either JOBLIB or STEPLIB (themselves perhaps concatenated) 
followed by LINKLIB is searched. 

If you want to process only one member, you can process it as a 
sequential data set (DSORG=PS) using either BSAM or QSAM. You 
indicate the name of the member you want to process and the name 
of the partitioned data set in the DSNAME parameter of the DD 
statement. When you open the data set, the system places the 
starting address in the data control block so that a subsequent 
GET or READ macro instruction begins processing at that point. 
You cannot use the FIND, BLDL, or STOW macro instructions when 
you are processing one member as a sequential data set. 

Since the DCBRELAD address in the data control block is updated 
when the FIND macro is used, you should not issue the FIND macro 
after WRITE and STOW processing without first closing the data 
set and reopening it for INPUT processing. 

STOW--Update the Di~ecto~y 

When you add several members to a partitioned data set, you must 
issue a STOW macro instruction after writing each member so that 
an entry for each one will be added to the directory. To use the 
STOW macro instruction, DSORG=PO or POU must be specified in the 
DCB macro instruction. 

Part 2: Data Management Processing Procedures 97 



You can also use the STOW macro instruction to delete, replace, 
or change a member name in the directory, as well as to store 
additional information with the directory entry. Since an alias 
can also be stored in the directory the same way, you should be 
consistent in altering all names associated with a given member. 
For example, if you replace a member, you must delete related 
alias entries or change them so that they point to the new 
member. 

If you add only one m~mber to a partitioned data set and 
indicate the member name in the DSHAME parameter of the DD 
statement, it is not necessary for you to use BPAM and a STOW 
macro instruction in your program. If you wish to do so, you may 
use BPAM and STOW, or BSAM or QSAM. If you use a sequential 
access method, or if you use BPAM and issue a CLOSE macro 
instruction without issuing a STOW macro instruction, the system 
will issue a STOW macro instruction using the member name you 
have specified on the DO statement. When the system issues the 
STOW, the directory entry that is added is the minimum length 
(12 bytes). This automatic STOW macro instruction will not be 
issued if the CLOSE macro instruction is a TYPE=T or if the TeB 
indicates the task is being abnormally terminated when the DeB 
is being closed. The DISP parameter on the DO statement 
determines what directory action parameter will be chosen by the 
system for the STOW macro instruction. 

If DISP=NEW or MOD was specified, a STOW macro instruction with 
the add option will be issued. If the member name on the DO 
statement is not present in the data set directory, it will be 
added. If the member name is already present in the directory, 
the task will be abnormally terminated. 

If DISP=OLD was specified, a STOW macro instruction with the 
replace option will be issued. The member name will be inserted 
into the directory, either as an addition if the name is not 
already present or as a replacement if the name is present. 

Thus, with an existing data set, you should use DISP=OLD to 
force a member into the data set; you should use DISP=MOD to add 
members with protection against the accidental ~estruction of an 
existing member. 

CREATING A PARTITIONED DATA SET 

If you have no need to add entries to the directory, that is," 
the STOW and BLDL macro instructions will not be used, you can 
create a new data set and write the first member as follows (see 
Figure 46 on page 99): 

• Code DSORG=PS or DSORG=PSU in the DCB macro instruction. 

• Indicate in the DO statement that the data is to be stored 
as a member of a new partitioned data set, that is, 
DSNAME=name (membername) and DISP=HEW. 

• Request space for the member and the directory in the DD 
statement. 

• Process the member with an OPEN macro instruction, a series 
of PUT or WRITE macro instructions, and then a CLOSE macro 
instruction. A STOW macro instruction is issued 
automatically when the data set is closed. 

As a result of these steps, the data set and its directory are 
created, the records of the member are written, and a 12-byte 
entry is made in the directory. 

To add additional members to the data set, follow the same 
procedure. However, a separate DD statement (with the space 
request omitted) is required for each member. The disposition 
should be specified as modify, DISP=MOD. The data set must be 
closed and reopened each time new member is specified. 

98 OS/VS2 Data Management Serv ices Gu ide 

(' 
\ 
'-_/ 



(--, 

C---
/ 

IIPDSDD 

OUTDCB 

DO 

DCB 

To take full advantage of the STOW macro instruction, and thus 
the BlDl and FIND macro instructions in future processing, you 
can provide additional information with each directory entry. 
You do this by using the basic access technique, which also 
allows you to process more than one member without closing and 
reopening the data set, as follows (see Figure 47). 

• Request space in the DO statement for the members and the 
directory. 

• Define DSORG=PO or DSORG=POU in the DCB macro instruction. 

• Use WRITE and CHECK to write and check the member records. 

• Use NOTE to note the location of any note list written 
within the member, if there is a note list. 

---,DSNAME=MASTFIlECMEMBERK),SPACE=CTRK,(lOO,5,7», 
DISP=CNEW,KEEP) 

--,OSORG=PS,DDNAME=PDSDD,---

C 

OPEN COUTDCB,COUTPUT» 
PUT[or WRITE] 

CLOSE (OUTDCB) Automatic Stow 

Figure 46. Creating One Member of a Partitioned Data Set 

IIPDSOD 

OUTDCB 

** 
* 

* 

* * 

* * Repeat 

DO 

DCB 
OPEN 

WRITE 
CHECK 

WRITE 
CHECK 

NOTE 
ST 

WRITE 
CHECK 
NOTE 
ST 
STOW 

--,DSNAME=MASTFILE,SPACE=(TRK,(lOO,5,7»,DISP=MOD 

--,DSORG=PO,DDNAME=PDSDD,-
(OUTDCB,(OUTPUT» 

Write and check first record of member. 
The system will supply the relative 
track address for the directory entry. 
Write and check remaining records of 
member. 

If you are dividing the member into 
subgroups, note the location of the first 
record in subgroup, storing pointer 
in note list. 
Write note list at end of member. 

Note location of note list, storing 
pointer in list for STOW. 
Enter information in directory for 
this member after all records and note 
lists are written. 

from ** for each additional member 
CLOSE (OUTDCB) 

Figure 47. Creating Members of a Partitioned Data Set Using STOW 

• 

• 

When all the member records have been written, issue a STOW 
macro instruction to enter the member name, its location 
pointer, and any additional data in the directory. 

Continue to write, check, note, and stow until all the 
members of the data set and the directory entries have been 
written. 

Part 2: Data Management Processing Procedures 99 



RETRIEVING A MEMBER OF A PARTITIONED DATA SET 

//PDSDD 

INDeB 

DD 

To retrieve a specific member from a partitioned data set, 
either the basic or queued access technique can be used as 
follows (see Figure 48): 

• Code DSORG=PS or DSORG=PSlJ in the DCB macro instruction. 

• Indicate in the 00 statement that the data is a member of an 
existing partitioned data set by coding 
DSNAME=name(membername) and DISP=OLD. 

• Process the member with an OPEN macro instruction, a series 
of GET and READ macro instructions, and then a CLOSE macro 
instruction. 

--,DSNAME=MASTFIlE(MEMBERK),DISP=OLD 

DCB --,DSORG=PS,DDNAME=PDSOD,--
OPEN (INDCB) Automatic Find 
GET (or READ) 
CLOSE (INDCB) 

Figure 48. Retrieving One Member of a Partitioned Data Set 

When your program is executed, the directory is searched 
automatically and the location of the member is placed in the 
DCB. 

To process several members without closing and reopening, or to 
take advantage of addJtional data in the directory, this 
technique should be used (see Figure 49): 

• Code DSORG=PO or POU in the DCB macro instruction. 

• Build a list (BLDL) of needed member entries from the 
directory. 

• Indicate in the DO statement the data set name of the 
partitioned data set by coding DSNAME=name and DISP=OlD. 

• Use the FIND or POINT macro instruction to prepare for 
reading the member records. 

• The records may be read from the beginning df the member, or 
a note list may be read first, to obtain additional 
locations that point to subcategories within the member. 

• Read (and check) the records until all those required have 
been processed. 

• Point to additional categories, if required, and ~ead the 
records. 

• Repeat this procedure for each member to be retrieved. 

100 OS/VS2 Data Management Serv ices Gu ide 



( 

---....... _-_ .. _-_ .... _--

//PDSDD DD --,DSNAME=MASTFILE,DISP=OLD 

INDCB DCB --,DSORG=PO,DDNAME=PDSDD,--
OPEN (INDCB) 
BlDl Build a list of selected member names 

in virtual storage. 
FIND (or POINT) 

**Read note list. 
READ 
CHECK 
POINT locate subgroup by using note list. 
READ 
CHECK Read member records. 

Repeat from ** for each additional member. 
CLOSE (INDCB) 

Figure 49. Retrieving Several Members of a Partitioned Data Set Using BlDl, 
FIND, and POINT 

UPDATING A MEMBER OF A PARTITIONED DATA SET 

A member of a partitioned data set can be updated in place, or 
can be deleted and rewritten as a new member. 

Updating in Place 

When you update in place, you read records, process them, and 
write them back to their original positions without destroying 
the remaining records on the track. The following rules apply: 

• You must specify the update option (UPDAT) in the OPEN macro 
instruction. To perform the update, you can use only the 
READ, WRITE, CHECK, NOTE, POINT, FIND, and BLDl macro 
instructions. 

• You cannot update concatenated partitioned data sets. 

• You cannot use chained scheduling. 

• You cannot delete any record or change its length; you 
cannot add new records. 

A record must be retrieved by a READ macro instruction before it 
can be updated by a WRITE macro instruction. Both macro 
instructions must be execute forms that refer to the same DECB; 
the DECB must be provided by a list form. (The execute and list 
fo~ms of the READ and WRITE macro instructions are described in 
OS/VS2 MVS Data Management Macro Instructions.) 

UPDATING WITH QSAM: You can update a member of a partitioned 
data set using the locate mode of QSAM (DCB specifies MACRF=PL) 
and using the PUTX macro instruction. The DD statement must 
specify the data set and member name in the DSNAME parameter. 
This method allows only the updating of the member specified in 
the DD statement. 

UPDATING WITH OVERLAPPED OPERATIONS: To overlap input/output and 
CPU activity, you can start several read or write operations 
before checking the first for completion. You cannot overlap 
read and write operations, however, as operations of one type 
must be checked for completion before operations of the other 
type are started or resumed. Note that each concurrent read or 
write operation requires a separate channel program and a 
separate DECB. If a single DECB were used for successive read 
operations, only the last record read could be updated. 

Part 2: Data Management Processing Procedures 101 



In Figure 50, overlap is achieved by having a read or write 
request outstanding while each record is being processed. Note 
the use of the execute and list forms of the READ~and WRITE 
macro instructions, identified by the operands MF=E and MF=l. 

//PDSDD DD 

UPDATDCB DCB 
READ 
READ 

DSNAME=MASTFIlE(MEMBERK),DISP=OlD,--

DSORG=PS,DDNAME=PDSDD,MACRF=(R,W),NCP=2,EODAD=FINISH 
DECBA,SF,UPDATDCB,AREAA,MF=L Define DECBA 
DECBB,SF,UPDATDCB,AREAB,MF=L Define DECBB 

Define buffers AREAA OS 
AREAB DS 

OPEN (UPDATDCB,UPDAT) 
LA 2,DECBA 
LA 3,DECBB 

Open for update 
Load DECB addresses 

READRECD READ (2),SF,MF=E Read a record 
NEXTRECD READ (3),SF,MF=E Read the next record 

CHECK (2) Check previous read operation 
(If update is required, branch to R2UPDATE) 

LR 4,3 If no update is required, 
lR 3,2 switch DECB addresses in 
LR 2,4 reg; sters 2 and 3 
B NEXTRECD and loop 

In the following statements, "R2" and "R3" refer to the records 
that were read using the DECBs whose addresses are in registers 2 and 3, 
respectively. Eith~r register may point to either DECBA or DECBB. 
R2UPDATE CALL UPDATE,«2» Call routine to update R2 

CHECK (3) Check read for next record 
WRITE (2),SF,MF=E (R3) Wri,te updated R2 

(If R3 requires an update, branch to R3UPDATE) 
CHECK (2) If R3 requires no update, 
B READRECD check write for R2 and loop 

R3UPDATE CAll UPDATE,«3» Call routine to update R3 
WRITE t3),SF,MF=E Write updated R3 
CHECK (2) Check write for R2 
CHECK (3) Check write for R3 
B READRECD Loop 

FINISH CLOSE (UPDATDCB) End-of-Data exit routine 

Figure 50. Updating a Member of a Partitioned Data Set 

Rewriting a Member 

There is no actual update option that can be used to add or 
extend records in a partitioned data set. If you want to extend 
or add a record within a member, you must rewrite the complete 
member in another area of the data set. Since space is allocated 
when the data set is created, there is no need to request 
additional space. Note, however, that a partitioned data set 
must be contained on one volume. If sufficient space has not 
been allocated, the data set must be reorganized by the IEBCOPY 
utility program. 

When you rewrite the member, you must provide two DCBs, one for 
input and one for output. Both DCB macro instructions can refer 
to the same data set, that is, only one DD statement is 
required. 

You can reflect the change in location of the member either 
automatically, by indicating a disposition of OLD, or by using 
the STOW macro instruction. Although the old member is, in 
effect, deleted, its space cannot be reused until the data set 
is reorganized. 

If an out-of-space condition occurs when updating a PDS member, 
the error recovery procedure will STOW the PDS member as 
'TEMPNAME'. The original member will remain intact. 

102 OS/VS2 Data ManClgemont Serv ices Gu 1 de 

-- -- .-.- .. _-_ .... _-_ .. _ .. __ .... _--------------- - ------

.. I 

c-~' 



( / 

c. 

PROCESSING A PARTITIONED DATA SET RESIDING ON MSS 

If OPTCD=H is specified in the DCB subparameter of a DD 
statement, it specifies that, if a Partitioned Data set is being 
opened for input and resides on an MSS device, then at OPEN time 
the data set is staged to EOF on the virtual DASD device. If the 
option is not spacified, only the directory is staged at OPEN 
time and cylinder faults occur during processing. This option 
might be used with the IEBCOPY utility program opening the POS 
to reorganize and compress the data space. This BPAM option, 
OPTCO=H, may only be coded on the DO statement. 

PROCESSING AN INDEXED SEQUENTIAL DATA SET 

The organization of an indexed sequential data set allows you a 
great deal of flexibility in the operations you can perform. The 
data set can be read or written sequentially, individual records 
can be processed in any order, records can be deleted, and new 
records can be added. The system automatically locates the 
proper position in the data set for new records and makes any 
necessary adjustments when records are deleted. 

The queued access technique must be used to create an indexed 
sequential data set. It can also be used to sequentially process 
or update the data set and to add records to the end of the data 
set. The basic access technique can be used to insert new 
records between records already in the data set and to update 
the data set directly. 

INDEXED SEQUENTIAL DATA SET ORGANIZATION 

The records in an indexed sequential data set are arranged 
according to collating sequence by a key field in each record. 
Each block of records is preceded by a key field that 
corresponds to the key of the last record in the block. 

An indexed sequential data set resides on direct-access storage 
devices and can occupy up to three different areas: 

• 

• 

• 

Prime AI"ea-This area, also called the prime data area, 
contains data records and related track indexes. It exists 
for all indexed sequential data sets. 

Overflow Area--This area contains records that overflow from 
the prime area when new data records are added. It is 
optional. 

Index Area-This area contains master and cylinder indexes 
associated with the data set. It exists for a data set that 
has a prime area occupying more than one cylinder. 

The indexes of an indexed sequential data set are analogous 
to the card catalog in a library. For example, if the 
library user knows the name of the book or the author, he 
can look in the card catalog and obtain a catalog number 
that will enable him to locate the book in the book files. 
He would then go to the shelves and proceed through rows 
until he found the shelf containing the book. Usually each 
row contains a sign to indicate the beginning and ending 
numbers of all books in that particular row. Thus, as he 
proceeded through the rows, he would compare the catalog 
number obtained from the index with the numbers posted on 
each row. Upon locating the proper row, he would then search 
that row for the shelf that contaihed the book. Then he 
would look at the individual book numbers on that shelf 
until he found the particular book. 

ISAM uses the indexes in much the same way to locate records 
in an indexed sequential data set. 

Part 2: Data Management Processing Procedures 103 



Prime Area 

--. 100 

Data 
10 

Data 
150 

As the records are written in the prime area of the data 
set, the system accounts for the records contained on each 
track in a track ~ndex area. Each entry in the track index 
identifies the key of the last record on each track. There 
is a track index for each cylinder in the data set. If more 
than one 6ylinder is used, the system develops a 
higher-level index called a cyiinder index. Each entry in 
the cylinder index identifi~s the key of the last record in 
the cylinder. To ihcrease the speed of searching the 
cylinder index, you can request that a master index be 
developed for a specified number of cylinders, as shown in 
Figure 51. 

Rather than reorganize the whole data set when records are 
added, you can request that space be allocated for 
additional records in an overflow area. 

Records are written in the prime area when the data set is 
created or updated. The last track of prime data is reserved for 
an end-of-file mark. The portion of Figure 51 labeled Cylinder 1 
illustrates the initial structure of the prime area. Although 
the prime area can extend across several noncontiguous areas of 
the volume, all the records are written in key sequence. Each 
record must contain a key; the system automatically writes the 
key of the highest record before each blo~k. 

Master Index 

I 450 I 900 2000j 

Cylinder Index 

200 300 375 450 ... 

500 600 700 900 ~ 

1000 1200 15~0 2000 ... 

Cylinder 1 ( Cylinder 11 Cylinder 12 

100 200 200 Track 
/1500 --. 

1
2000 

Index 
Data Data Data Prime 
20 40 100 Data 

Data Data Data Prime 
175 190 200 Data 

Overflow 

Figure 51. Indexed Sequential Data Set Organization 

104 OS/VS2 Data Management Serv ices Gu ide 

r"~ 
( 

\.. .. / 

,. I 

• 

c 



( 
". / 

Index Areas 

.. 

When the ABSTR option of the SPACE parameter of the DO statement 
is used to generate a multivolume prime area, the VTDC of the 
second volume and on all succeeding volumes must be contained 
within cylinder 0 of the volume. 

The operating system generates track and cylinder indexes 
automaticallY. Up to three levels of master indexes are created 
if requested. 

TRACK INDEX: This is the lowest level of index and is always 
present. There is one track index for each cylinder in the prime 
area; it is written on the first track(s) of the cylinder that 
it indexes. 

The index consists of a series of paired entries, that is, of a 
normal entry and an overflow entry for each prime track. For 
fixed-length records, each normal entry (and also DCBFIRSH) 
points to either record 0 or the first prime record on a shared 
track. For variable-length records, the normal entry contains 
the key of the highest record on the track and the address of 
the last record on the track. The overflow entry is originally 
the same as the normal entry. (This is why 100 appears twice on 
the track index for cylinder 1 in Figure 51 on page 104). The 
overflow entry is changed when records are added to the data 
set. Then the overflow entry contains the key of the highest 
overflow record and the address of the lowest overflow record 
logically associated with the track. Figure 52 on page 106 shows 
the format of a track index. 

If all the tracks allocated for the prime data area are not 
used, the index entries for the unused ones are flagged as 
inactive. The last entry of each track index is a dummy entry 
indicating the end of the index. When fixed-length record format 
has been specified, the remainder of the last track of each 
cylinder used for a track index contains prime data records if 
there is room for them. 

Each index entry has the same format. It is an unblocked, 
fixed-length record consisting of a count, a key, and a data 
area. The length of the key corresponds to the length of the key 
area in the record to which it points. The data area is always 
10 bytes long. It contains the full address of the track or 
record to which the index points, as well as the level of the 
index and the entry type. 

CYLINDER INDEX: For every track index created, the system 
generates a cylinder index entry. There is one cylinder index 
for a data set, each entry of which points to a track index. 
Since there is on~ track index per cylinder, there is one 
cylinder index entry for each cylinder in the prime data area, 
except in the case of a I-cylinder prime area. As with track 
indexes, inactive entries are created for any unused cylinders 
in the prime data area. 

MASTER INDEX: As an optional feature, the operating system 
creates, at your request, a master index. The presence of this 
index makes long, serial searches through a large, cylinder 
index unnecessary. 

Part 2: Data Management Processing Procedures 105 



Normal/Overflow Normal/Overflow 
Pair Pair 

f 
A 

" 
A , 

Normal Overflow Normal Overflow 
Entry Entry Entry Entry 

1 A 
\f 

A 
\f 

A \1 
A 

\ 

Key' Data2 Key3 Data4 Key' Data2 Key3 Data4 ~ 
, Normal key 

2Normal data 

key of the highest record on the prime data track 

address of the prime data track 

30verflow key = key of the highest overflow record logically associated with the prime data track 

40verflow data = address of the lowest overflow record logically associated with the prime data track 

Notes: 

• If there are no overflow records, overflow key and data entries are the same as normal key and data entries. 
• This figure is a logical representation only; that is, it makes no attempt to show the physical size of track index entries. 

Figure 52. Format of Track Index ~ntries 

Overflow Areas 

You can specify the conditions under which you want a master 
index created. For example, if you have specified NTM=3 and 
OPTCD=M in your DCB macro instruction, a master index is created 
when the cylinder index exceeds,3 tracks~ The master index 
consists of one entry for each track of cylinder index. If your 
data set is extremely large, a higher-level master index is 
created when the first-level master index exceeds three tracks. 
This higher-level m~ster index consists of one entry for each 
track of the first-level master index. This procedure can be 
repeated for as many as three levels of master index. 

As records are added to an indexed sequential data set, space is 
required to contain those records that will not fit on the prime 
data track on which they belong. You can request that a number 
of tracks be set aside as a cylinder overflow area to contain 
overflows from prime tracks in each cylinder. An advantage of 
using cylinder overflow areas is a reduction of search time 
required to locate overflow records. A disadvantage is that 
there will be unused space if the additions are unev~nly 
distributed throughout the data set. 

Instead of, or in addition to, cylinder overflow areas, you can 
request an independent overflow area. Overflow from anywhere in 
the prime data area is placed in a specified number of cylinders 
reserved solely for overflow records. An advantage of having an 
independent overflow area is a reduction in unused space 
reserved for overflow. A disadvantage is the increased search 
time required to locate overflow records in an independent area. 

If you request both cylinder overflow and independent overflow, 
the cylinder overflow area is used first. It is a good practice 
to request cylinder overflow areas large enough to contain a 
reasonable number of additional records and an independent 
overflow area to be used as the cylinder overflow areas are 
filled. 

106 OS/VS2 Data Management Serv ices Gu ide 

c: 

.. 

It 



ADDING RECORDS TO AN INDEXED SEQUENTIAL DATA SET 

Either the queued access technique or the basic access technique 
may be used to add records to an indexed sequential data set. A 
record to be inserted between records already in the data set 
must be inserted by the basic access method using WRITE KH (key 
new). Records added to the end of a data set, that is, records 
with successively higher keys, may be added to the prime data 
area or the overflow area by the basic access method using WRITE 
KH, or they may be added to the prime data area by the queued 
access technique using the PUT macro instruction. 

Inserting New Records into an Existing Indexed Sequential Data Set 

As you add records to an indexed sequential data set, the system 
inserts each record in its proper sequence according to the 
record key. The remaining records on the track are then moved up 
one position each. If the last record does not fit on the track, 
it is written \n the first available location in the overflow 
area. AID-byte link field is added to the record put in the 
overflow area to connect it logically to the correct track. The 
proper adjustments are made to the track index entries. This 
This procedure is illustrated in Figure 53 on page 108. 

Subsequent additions are written either on the prime track or as 
part of the overflow chain from that track. If the addition 
belongs after the last prime record on a track but before a 
previous overflow record from that track, it is written in the 
first available location in the overflow area. Its link field 
contains the address of the next record in the chain. 

Adding New Records to the End of an Indexed Sequential Data set 

Records added to the end of a data set, that is, records with 
successively higher keys, may be added by the basic access 
method using WRITE KH (key new), or by the queued access method 
using the PUT macro instruction (resume load). In either case 
records may be added to the prime data area. 

When you use the WRITE KH macro instruction, the record being 
added is placed in the prime data area only if there is room for 
it on the prime data track containing the record with the 
highest key currently in the data set. If there is not 
sufficient room on that track, the record is placed in the 
overflow area and linked to that prime track even though 
additional prime data tracks originally allocated have not been 
filled. 

When you use the PUT macro instruction (resume load), records 
are added to the prime data area until the space originally 
allocated is filled. Once this allocated prime area is filled, 
you can add records to the data set using WRITE KH, in which 
case they will be placed in the overflow area. Resume load is 
discussed in more detail later under "Creating an Indexed 
Sequential Data Set." 

Part 2: Data Management Processing Procedures 107 



Normal Entry Overflow Entry 

Initial Format 
Track 
Index 

10 20 40 100 
Prime 
Data 

150 175 190 200 

Overflow 

Add Records Track 
25 and 101 Index 

10 20 25 40 
Prime 
Data 

101 150 175 190 

100 
Track 

200 
Track 

Overflow 1 2 

Add Records Track 

26 and 199 Index 

10 20 25 26 
Prime 
Data 

101 150 175 190 

Track 
1 Overflow 

Figure 53. Adding Records to an Indexed Sequential Data Set 

In order to add records with successively higher keys using the 
PUT macro instruction (resume load): 

• The key of any record to be added must be higher than the 
highest key currently in the data set. 

• The DD statement must specify DISP=MOD or the EXTEND option 
is specified in the OPEN macro. 

• The data set must have been successfully closed when it was 
created or when records were previously added using the PUT 
macro instruction. 

108 OS/VS2 Data Management Services Guide 

(,---" 

"-- ,-

fit'-

~, 
\ 
\ 
"-. .. ,-

c 



( 

c 

You may continue to add fixed-length records in this manner 
until the original space allocated for prime data is exhausted. 

When you add records to an indexed sequential data set using the 
PUT macro instruction (resume load), new entries are also made 
in the indexes. During resume load on a data set with a 
partially filled track and/or a partially filled cylinder, the 
track index entry and/or the cylinder index entry is overlaid 
when the track or cylinder is filled. If resume load abnormally 
terminates after these index entries have been overlaid, a 
subsequent resume load will get a sequence check when adding a 
key that is higher than the highest key at the last successful 
CLOSE but lower than the key in the overlaid index entry. When 
the SYHAD exit is taken for a sequence check, register 0 
contains the address of the highest key of the data set. 

MAINTAINING AN INDEXED SEQUENTIAL DATA SET 

An indexed sequential data set must be reorganized occasionallY 
for two reasons: 

• The overflow area will eventually be filled. 

• Additions increase the time required to locate records 
directly. 

The frequency of reorganization depends on the activity of the 
data set and on your timing and storage requirements. There are 
tL.JO ways you can accompl ish reorgan i zat i o'n: 

• You can reorganize the data set in two .passes by writing it 
sequentially into another area of direct-access storage or 
magnetic tape and then recreating it in the original area. 

• You can reorganize the data set in one pass by writing it 
directly directly into another area of direct-access 
storage. In this case, the area occupied by the original 
data set cannot be used by the reorganized data set. 

The operating system maintains statistics that are pertinent to 
reorganization. The statistics, written on the direct-access 
volume and available in the DCB for checking, include the number 
of cylinder overflow areas, the number of unused tracks in the 
independent overflow area, and the number of references to 
overflow records other than the first. They appear in the RORG1, 
RORG2, and RORG3 fields of the DCB. 

If you indicate when creating or updating the data set that you 
want to be able to flag records for deletion during updating, 
you can set the delete code (the first byte of a fixed-length 
record or the fifth byte of a variable-length record) to X'FF'. 
If a flagged record is forced off its prime track during a 
subsequent update, it will not be rewritten in the overflow 
area, as shown in Figure 54 on page 110 unless it has the 
highest key on that cylinder. Similarly, when you process 
sequentially, flagged records are not retrieved for processing. 
During direct processing, flagged records are retrieved like any 
other records, and you should check them for the delete code. 

Hote that a WRITE KH (key new) to a data set containing 
variable-length records removes all of the deleted records from 
that prime data track. 

Note that to use the delete option, RKP must be greater than 0 
for fixed-length records and greater than 4 for variable-length 
records. 

Part 2: Data Management Proc~5sing Procedures 109 



Fixed Length 

Variable 
Length 

Initial Format 

Record 100 is 
marked for deletion 
and record 25 is 
added to the 
data set 

Key 

Key 

10 

150 

10 

150 

Data 

I 
Delete Code 

BOW ROW 
~ Data 

I LLOO I RJ.oo i X'FF' i 
t 

Delete Code 

20 40 

175 190 

20 25 

175 190 

Figure 54. Deleting Records From an Indexed Sequential Data Set 

110 OS/VS2 Data Management Serv ices Gu 1 de 

i 

100 

200 

40 

200 

C' 
,/ 



.. 

(/ 

(-'" 

I 
/ 

-" 

INDEXED SEQUENTIAL BUFFER AND WORK AREA REQUIREMENTS 

The Qnly case in which you will ever have to compute the buffer 
length (BUFL) requirements for your program is when you use the 
BUILD or GETPOOL macro instruction to construct the buffer area. 
If you are creating an indexed sequential data set (using the 
PUT macro instruction), each buffer must be 8 bytes longer than 
the blocksize to allow for the hardware count field, that is: 

Buffer length = 8 + Blocksize 

(8) Data 
(BLKSIZE) 

<-----------------------Buffer-------------------> 

One exception to this formula arises when you are dealing with 
an unblocked format-F record whose key field precedes the data 
field; its relative key position is 0 (RKP=O). In that case the 
key length must also be added, that is: 

Buffer length = 8 + Key length + Record length 

(8) I Key Data 
(KEYLEN) (LRECL) 

<-----------------------Buffer-------------------> 

The buffer requirements for using the queued access technique to 
read or update (using the GET or PUTX macro instruction) an 
indexed sequential data set are discussed below. 

For fixed-length unblocked records when both the key and data 
are to be read and for variable-length unblocked records, 
padding is added so that the data will be on a doubleword 
boundary, that is: 

Buffer length = Key length + Padding + 10 + Blocksize 

Key 
(KEYLEtn Padding 

link 
(10) 

Data 
(BLKSIZE) 

<-----------------------Buffer-------------------> 

For fixed-length unblocked records when only data is to be read: 

Buffer length = 16 + LRECL 

Padding I 
(6) 

link 
( 10) 

Data 
(LRECl) 

<-----------------------Buffer-------------------> 

For fixed-length blocked records: 

Buffer length = 16 + Blocksize 

Padding I 
(6) 

Link 
( 10) 

Data 
(BLKSIZE) 

<-----------------------Buffer-------------------> 

For Variable-length blocked records, padding is 2 if the buffer 
starts on a fullword boundary that is not also a doubleword 
boundary or 6 if the buffer starts on a doubleword boundary, 
that is: 

Buffer length = 12 or 16 + Blocksize 

~adding ; link 
( 10) 

Data 
(BlKSIZE) 

<-----------------------Buffer-------------------> 

Part 2: Data Management Processing Procedures 111 



If you are using the input data set with fixed-length, unblocked 
records as a basis for creating a new data set, a work area is 
required. 

The size of the work area is given by: 

Work area = Key length + Record length 

Key Data 
(lRECl) 

<---------------------Work Area------------------> 

If you are reading only the data portion of fixed-length 
unblocked records or variable-length records, the work area is 
the same size as the record, that is: 

Work area = Record length 

Data 
(lRECl) 

<---------------------Work Area------------------> 

When you use the basic access technique to update records in an 
indexed sequential data set, the key length field need not be 
considered in determining your buffer requirements. The area for 
fixed-length records must be: 

Buffer length = 
Padding I 

(6) _ 

16 + Blocksize 

Data 
(BLKSIZE) 

<-----------------------Buffer-------------------> 

For variable-length records, padding is 2 if the buffer starts 
on a fullword boundary that is not also a doubleword boundary or 
6 if a buffer starts on a doubleword bouridary. Thus, the area 
must be: 

Buffer length = 12 or 16 + Blocksize 

Padding I link 
(10) 

Data 
(BLKSIZE) 

<-----------------------Buffer-------------------> 

You can speed up the process of adding fixed-length or 
variable-length records to a data set by using the MSWA 
parameter of the DCB macro instruction to provide a special work 
area for the oper~ting system. The size of the work area (SMSW 
parameter in the DCB) must be large enough to contain a full 
track of data, the count fields of each block, and the work 
space for inserting the new record. 

The size of the work area needed varies according to the record 
format and the device type. You can calculate it during 
execution using device-dependent information obtained with the 
DEVTYPE macro instruction and data set information from the DSCB 
obtained with the OBTAIN macro instruction. The DEVTYPE and 
OBTAIN macro instructions are discussed in OS/VS2 System 
Programming library: Data Management. 

Note that you can use the DEVTYPE macro instruction only if the 
index and prime areas are on devices of the same type or if the 
index area is on a device with a larger track capacity than that 
of the device containing the prime area. If you are not trying 
to maintain device independence, you may precalculate the size 
of the work area needed and specify it in the SMSW field of the 
DCB macro instruction. The maximum value for SMSW is 65,535. 

112 OS/VS2 Data Management Servi ces Gui de 



For calculating the size of the work area, refer to the storage 
device capacities shown in Figure 62 on page 132 ~nder 
"Estimating Space Requirements" and the device overhead formulas 
given in the same section. 

For fixed-length blocked records, SMSW is calculated as follows: 

SMSW = DS2HIRPR(BLKSIZE+8)+LRECL+KEYLEN 

The formula for fixed-length unblocked records is 

SMSW = DS2HIRPR(KEYLEN+LRECL+8)+2 

The value for DS2HIRPR is in the index (format-2) DSCB. OS/VS2 
System Programminq library: Debugging Handkook shows theexact 
location of this field in the index DSCB. If you don't use the 
MSWA and SMSW parameters, the control program supplies a work 
area using the formula BlKSIZE + LRECL + KEYLEN. 

For variable-length records, SMSW may be calculated by one of 
two methods. The first method ~ay lead to faster processing 
although it may require more storage than the second method. 

The first method is as follows: 

SMSW = DS2HIRPR(BLKSIZE+8)+LRECL+KEYLEN+I0 

The second method is as follows! 

SMSW= 
(Trk Cap-Bn+l)(BlKSIZE)+8(DS2HIRPR)+lRECL+KEYLEN+10+(REM-N-KEYLEN) 

Bi 

In all of the above formulas, the terms BLKSIZE, LRECL, KEYLEN, 
and SMSW are the same as the parameters in the DCB macro 
instruction (Trk Cap=track capacity). REM is the remainder of 
the division operation in the formula and N is the first 
constant in the Bi formulas described in Figure 63 on page 133 
(REM-N-KEYLEN) is added only if it is positive. The second 
method yields a minimum value for SMSW. Therefore, the first 
method is valid only if its application results in a value 
higher than the value that would be derived from the second 
method. If neither MSWA nor SMSW is specified, the control 
program supplies the work area for variable-length records, 
using the second method to calculate the size. 

Another technique to increase the speed of processing is to 
provide space in virtual storage for the highest-level index. To' 
specify the address of this area, use the MSHI operand of the 
DCB. When the address of this area is specified, you must also 
specify its size, which you can do by using the SMSI operand of 
the DCB. The maximum value for SMSI is 65,535. If you do not use 
this technique, the index on the volume must be searched. If the 
high-level index is greater than 65,535 bytes in length, your 
request for the high-level index in storage is ignored. 

The size of the storage area (SMSI parameter) varies. To 
allocate that space during execution, you can find the size of 
the high-level index in the DCBNCRHI field of the DCB during 
your DCB exit routine or after the data set is open. Use the 
DCBD macro instruction to gain access to the DCBHCRHI field (see 
"Modifying the Data Control Block" in Part 1). You can also find 
the size of the high-level index in the DS2NOBYT field of the 
index (format 2) DSCB, but you must use the utility program 
IEHLIST to print the information in the DSeB. You can calculate 
the size of the storage area required for the high-level index 
by using the formula 

SMSI = (Number of Tracks ) (Number of Entries) 
in High-Level Index per Track 

(Key Length + 1~ 

The formula for calculating the number of tracks in the 
high-level index is in the section "Calculating Space 
Requirements for an Indexed Sequential Data Set" in Part 3. When 

Part 2: Data Management Processing Procedures 113 



a data set 1S shared and has the DCB integrity feature 
(DISP=SHR), the high-level index in storage is not updated when 
DCB fields are changed. 

CONTROLLING AN INDEXED SEQUENTIAL DATA SET DEVICE 

An indexed sequential data set is processed sequentially or 
directly. Direct processing is accomplished by the basic access 
technique. Because you provide the key for the record you want 
read or written, all device control is handled automatically by 
the system. If you are processing the data set sequentially, 
using the queued access technique, the device is automatically 
positioned at the beginning of the data set. 

In some cases, you may wish to process only a section or several 
separate sections of the data set. You do this by using the SETL 
macro instruction, which directs the system to begin sequential 
retrieval at the record having a specific key. The processing of 
succeeding records is the same as for normal sequential 
processing, except that you must recognize when the last desired 
record has been processed. At this point, issue the ESETL macro 
instruction to terminate sequential processing. You can then 
begin processing at another point in the data set. 

SETL--specify start of Sequential Retrieval 

The SETL macro instruction enables you to retrieve records 
starting at the beginning of an indexed sequential data set or 
at any point in the data set. Processing that is to start at a 
point other than the beginning can be requested in th~ form of a 
record key, a key class (key prefix), or an actual address of a 
prime data record. 

The key class concept is useful because you do not have to know 
the whole key of the first record to be processed. A key class 
comprises all of the keys that begin with identical characters. 
The key class is defined by specifying the desired characters of 
the key class at the address specified in the lower-limit 
operand of the SETL macro and setting the remaining characters 
to the right of the key class to binary zeros. 

To use actual addresses, you must keep an account of where the 
records were written when the data set was created. The device 
address of the block containing the record just processed by a 
PUT-move macro ;n~truction is available in the 8-byte data 
control block field DCBLPDA. For blocked records the address ;s 
the same for each record in the block. 

Normally, when a data set is created with the delete option 
specified, deleted records cannot be retrieved using the QISAM 
retrieval mode. When the delete option is not specified in the 
DCB, the SETL macro options function as follows: 

SETL B Start at first record in the data set 

SETL K Start with record having the specified key 

SETL KH Start with record whose key is equal to or higher than 
the specified key 

SETL KC Start with first record having a key that falls into 
the specified key class 

SETl I Start with the record found at the specified 
direct-access address in the prime area of the data set 

Because the DCBOPTCD field in the DCB can be changed after the 
data set is created (by respecifying the OPTCD in the DCB or DD 
card), it is possible to retrieve deleted records. In this case, 
SETl functions as noted above. 

114 OS/VS2 Data Management Serv ices Gu ide 

'l 



( 
" 

( 

c 

When the delete option is specified in the DCB, the SETL macro 
options function as follows: 

SETL B Start retrieval at first nondeleted record in the data 
set 

SETL K Start retrieval at record matching the specified key if 
that record is not deleted. If the record is deleted, 
an NRF (no record found) indication is set in the 
DCBEXCD field of the DCB, and SYNAD is given control 

SETl KH Start with first nondeleted record whose key is equal 
to or higher than the specified key 

SETl KC Start with first nondeleted record having a key that 
falls into the specified key class or follows the 
specified key class 

SETl I Start with first nondeleted record following the 
specified direct-access address 

With the delete option not specified, QISAM retrieves and 
handles records marked for deletion like nondeleted records. 

Note: Regardless of the SETL or delete option specified, the NRF 
condition will be posted in the DCBEXCD field of the DCB, and 
SYNAD is given control if the key or key class: 

• Is higher than any key or key class in the data set 

• Does not have a matching key or key class in the data se~ 

ESETL--End sequential Ret~ieval 

The ESETl macro instruction directs the system to stop 
retrieving records from an indexed sequential data set. A new 
scan limit can then be set, or processing terminated. An 
end-of-data-set indication automatically terminates retrieval. 
An ESETl macro instruction must be executed betore another SETl 
macro instruction (described above) using the same DCB is 
executed. 

Note: An ESETl macro instruction should be executed before 
another SETL macro instruction if the previous SEll macro 
instruction completed with an error. 

CREATING AN INDEXED SEQUENTIAL DATA SET 

You can create an indexed sequential data set in one step or in 
several steps. You can create the data set either by writing all 
re~ords in a single step or by writing one group of records in 
one step and writing additional groups of records in subsequent 
steps. Writing records in subsequent steps is resume loqding. 
When using either one step or several steps, you must present 
the records for writing in ascending order by key. 

To create an indexed sequential data set by the one-step method, 
you should proceed as follows: 

• Code DSORG=IS or DSORG=ISU and MACRF=PM or MACRF=PL in the 
DCB macro instruction. 

• Specify in the DD statement the DCB attributes DSORG=IS or 
DSORG=ISU, record length (LRECL), bl6cksize (BlKSIZE), 
record format (RECFM), key length (KEYLEN), relative key 
position (RKP), options required (OPTCD), cylinder overflow 
(CYLOFL), and the number of tracks for a master index (HIM). 
Specify space requirements with the SPACE parameter. To 
reuse previously allocated space, omit the SPACE parameter 
and code DISP=(OLD, KEEP). 

Part 2: Data Management Processing Procedures 115 



• Open the data set for output. 

• Use the PUT macro instruction to place all the records or 
blocks on the direct-access volume. 

• Close the data set. 

The records that compose a newly created data set must be 
presented for writing in ascending order by key. You can merge 
two or more input data sets. If you want a data set with no 
records (a null data set), you must write at least one record 
when you create the data set. You can subsequently delete this 
record to achieve the null data set. 

If the records are blocked, you should not write a record with a 
hexadecimal value of FF and a key of hexadecimal value FF t This 
value is used for padding. If it occurs as the last record of a 
block, the record cannot be retrieved. If the record is moved to 
the overflot--! area, it is lost. 

When creating an indexed sequential data set, a procedure called 
loa.ill.n.g, you can improve performance by using the . 
full-track-index-write option. You do this by specifying OPTCD=U 
in the DCB. This causes the operating system to accumulate 
track-index entries in virtual storage. Note that the 
full-track-index-t~rite option can be used only for fixed-length 
records. 

If you do not specify this option, the operating system writes 
each normal-overflow pair of entries for the track index after 
the associated prime data track has been written. If you specify 
this option, the operating system accumulates track-index 
entries in virtual storage until either there are enough entries 
to fill a track or end-of-data or end-of-cylinder is reached. 
Then the operating system writes these entries as a group, 
writing one group for each track of track index. This option 
requires allocation of more storage space (the space in which 
the track-index entries are gathered), but the number of I/O 
operations required to write the index can be significantly 
decreased. 

When you specify the full-track-index-write option, the track 
index entries are written as fixed-length unblocked records. If 
a large enough area of virtual storage is not available, the 
entries are written as they are created, that is, in 
normal-overflow pairs. 

Once an indexed sequential data set has been created, its 
characteristics cannot be changed. However, for added 
flexibility, the system allows you to retrieve records using 
either the queued access technique with simple buffering, or the 
basic access technique with dynamic buffering. 

TAPE-TO-DISK-INDEXED SEQUENTIAL DATA SET: The example in 
Figure 55·on page 117 shows the creation of an indexed 
sequential data set from an input tape containing 60-character 
records. The key by which the data setis organized is in 
positions 20-29. The output records will be an exact image of 
the input, except that the records will be blocked. One track 
per cylinder is to be reserved for cylinder overflow. Master 
indexes are to be built when the cylinder index exceeds six 
tracks. Reorganization information about the status of the 
cylinder overflow areas is to be maintained by the system. The 
delete option will be used during any future updating. 

116 OS/VS2 Data Management Services Guida 

._---.- .. _----_ •.... ----



( 

.,. 

IIINDEXDD DD 
II 

IIINPUTDD DD 

ISLOAD 

ISLOAD 

NEXTREC 

CHECKERR 

START 

DCBD 
CSECT 
OPEN 
GET 
LR 
PUT 
B 

L 
USING 
TM 
BO 
TM 
BO 
Tftl 
BO 

DSNAME=SLATE.DICT(PRIME),DCB=(BLKSIZE=240,CYLOFL=1, 
DSORG=rS,OPTCD=MYLR,RECFM=FB,LRECL=60,HTM=6,RKP=19, 
KEYLEH=lO),UHIT=3330,SPACE=(CYL,25"COHTIG),---

0 

DSORG=IS 

(IPDATA"ISDATA,(OUTPUT» 
IPDATA Locate mode 

C 
C 

0,1 Address of record in register 1 
ISDATA,(O) 
HEXTREC 

3,=ACISDATA) 
IHADCB,3 
DCBEXCDl,X'04' 
OPERR 
DCBEXCD1,X'20' 
NOSPACE 
DCBEXCD2,X'80' 
SEQCHK 

Move mode 

Initialize base for errors 

Uncorrectable error 

Space not found 

Record out of sequence 
Rest of error 
Error routine 

checking 

End of job routine (EODAD FOR IPDATA) 
IPDATA DCB 
ISDATA DCB DDNAME=INDEXDD,DSORG=IS,MACRF=(PM),SYNAD=CHECKERR 

Figure 55. Creating an Indexed Sequential Data Set 

To create an indexed sequential data set in more than one step, 
create the first group of records using the one step method 
described above. This first section must contain at least one 
data record. The remaining records can then be added to the end 
of the data set in subsequent steps using resume load. Each 
group to be added must contain records with successively higher 
keys. This method allows you to create the indexed sequential 
data set in several short time periods rather than in a single 
long one. 

This method also allows you to provjde limited recovery from 
uncorrectable output errors. When an uncorrectable output error 
is detected, do not attempt to continue processing or to close 
the data set. If you have provided a SYNAD routine, it should 
issue the ABEND macro instruction to terminate processing. If no 
SYHAD routine is provided, the control program will terminate 
your processing. If the error shows that space in which to add 
the record was not found, you must close the data set; issuing 
subsequent PUT macro instructions can cause unpredictable 
results. You should begin recovery at the record following the 
end of the data as of the last successful close. The rerun time 
is limited to that necessary to add the new records, rather than 
to that necessary to recreate the whole data set. 

When you extend an indexed sequential data set with resume load, 
the disposition parameter of the DD statement must specify MOD. 
To ensure that the necessary control information is in the DSCB 
before attempting to add records, you should at least open and 
close the data set successfully on a version of the system that 
includes resume load. This need be done only if the data set was 
created on a previous version of the system. Records may be 
added to the data set by resume load until the space allocated 
for prime data in the first step has been filled. 

During resume load on a data set with a partially filled track 
and/or a partially filled cylinder'l the track index entry and/or 
the cylinder index entry is overlaid when the track or cylinder 
is filled. Resume load for variable-length records begins at the 

Part 2: Data Management Processing Procedures 117 



next sequential track of the prime data set. If resume load 
abnormally terminates after these index entries have been 
overlaid, a subsequent resume load will result in a sequence 
check when it adds a key that is higher than the highest at the 
last successful CLOSE but lower than the key in the overlaid 
index entry. When the SYNAD exit is taken for a sequence check, 
register 0 contains the address of the high key of the data set. 
However, if the SYNAD exit is taken during CLOSE, register 0 
will contain the lOB address. 

RETRIEVING AND UPDATING AN INDEXED SEQUENTIAL DATA SET 

sequential Retrieval and Update 

To sequentiallY retrieve and update records in an indexed 
sequential data set: 

• Code DSORG=IS or DSORG=ISU to agree with what you specified 
when you created the data set, and MACRF=GL, MACRF=SK, 9r 
MACRF=PU in the DCB macro instruction. 

• Code a DD statement for retrieving the data set. The data 
set characteristics and options are as defined when the data 
set was created. 

• Open the data set. 

• Set the beginning of sequential retrieval (SETl). 

• Retrieve records and process as required, marking records 
for deletion as required. 

• Return records to the data set. 

• Use ESETl to end sequential retrieval as required and reset 
the starting point. 

• Close the data set to end all retrieval. 

SEQUENTIAL UPDATES--INDEXED SEQUENTIAL DATA SET: Assume that, 
using the data set created in the previous example, you are to 
retrieve all records beginning with 915. Those records with a 
date (positions 13-16) before today's date are to be deleted. 
The date is in the standard form as returned by the system in 
response to the TIME macro instruction, that is, packed decimal 
OOyyddds. Overflow records can be logically deleted even though 
they cannot be physically deleted from the data set. 

One way to solve this problem is shown in Figure 56 on page 119. 

118 Q?/VS2 Data Management Services Guide 

c 



( 
'-

c_, 

//INDEXDD 

ISRETR 

ISRETR 

NEXTREC 

TODAY 
KEYADDR 

LIMIT 

CHECKERR 

DD 

START 
DeBD 
CSECT 

USING 
LA 
OPEN 
SETL 
TIME 
ST 
GET 
CLC 
BNL 
CP 
BNL 
MVI 
PUTX 
B 
DS 
DC 
DC 
DC 
DC 

DSNAME=SLATE.DICT,--

o 
DSORG=IS 

IHADCB,3 
3,ISDATA 
(ISDATA) 
ISDATA,KC,KEYADDR 

1,TODAY 
ISDATA 
19(1O,1),LIMIT 
ENDJOB 
12(4,1),TODAY 
NEXTREC 
O(l),X'FF' 
ISDATA 
NEXTREC 
F 
C'915' 
Xl7'O' 
C'916' 
XL7'O' 

Set scan limit 
Today's date in register 1 

Locate mode 

Compare for old date 

Flag old record for deletion 
Return delete record 

Key prefix 
Key padding 

Test DCBEXCDI and DCBEXDE2 for error indication 
Errol'" Routines 

ENDJOB 

ISDATA 

CLOSE 

DCB 

(ISDATA) 

DDNAME=INDEXDD,D50RG=IS,MACRF=(GL,SK,PU), 

SYNAD=CHECKRR 

C 

Figure 56. Sequentially Updqting an Indexed Sequential Data Set 

Direct Retrieval and Update 

By using the basic indexed sequential access method (BISAM) to 
process an indexed sequential data set, you can make direct 
references to the records in the data set for the purpose of: 

• Direct retrieval of a record by its key 

• Direct update of a record 

• Direct insertion of new records 

Because the operations are direct, there can be no anticipatory 
buffering. However~, the system provides dynamic buffering each 
time a read request is made, if specified. 

To ensure that the requested record is in virtual storage before 
you start processing, you must issue a WAIT or CHECK mucro 
instruction. If you issue a WAIT macro instruction, you must 
test the exception code field of the DECB. If you issue a CHECK 
macro instruction, the system tests the exception code field in 
the DECB. If an error analysis routine has not been specified 
and a CHECK is issued, the program is abnormally terminated with 
a system completion code X'OOl'. In either case, if you wish to 
determine whether the record is an overflow record, you should 
test the exception code field of the DECB. 

After you test the exception code field of the DECB, you need 
not set it to O. If you have used a READ KU macro instruction 
and if you plan to use the same DECB again to rewrite the 
updated record using a WRITE K macro instruction, you should not 

Part 2: Data Management Processing Procedures 119 



set the field to O. If you do, your record may not be rewritten 
properly. 

To update existing records, you must use the READ KU and WRITE K 
combination. Because READ KU implies that the record will be 
rewritten in the data set, the system retains the DECB and the 
buffer used in the READ KU and uses them when the record is 
written. If you decide not to write the record, you should use 
the same DECB in another read or write macro instruction or 
issue a FREEDBUF macro instruction if dynamic buffering was 
used~ If you issue several READ KU or WRITE K macro instructions 
before checking the first one, you may destroy some of your 
updated records unless the records are from different blocks. 

If there is the possibility that your task and another task will 
be simultaneously accessing the same data set, or the same task 
has two or more DCBs opened for the same data set, you should 
use the DCB integrity feature. You specify the DCB integrity 
feature by coding DISP=SHR in your DD statement. In this way you 
ensure that the DCB fields are maintained for your program to 
process the data set correctly. If you do not use DISP=SHR and 
more than one DCB is open for updating the data set, the results 
are unpredicatable. 

If you specify DISP=SHR, you must also issue an ENQ for the data 
set before each input/output request and a DEQ upon completion 
of the request. All users of the data set must use the same 
gname and ~ operands for ENQ. For example, the users might 
use the data set name as the .9~ operand. For more information 
about using ENQ and DEQ, see OS/VS2 Supervisor Services and 
Macro Instructions. 

When you are using scan mode with QISAM and you want to issue 
PUTX, issue an ENQ on the data set before processing it and a 
DEQ after processing is complete. ENQ must be issued before the 
SETL macro instruction, and DEQ must be issued after the ESETL 
macro instruction. When you are using BISAM to update the data 
set, do not modify any DCB fields or issue a DEQ until you have 
issued CHECK or WAIT. 

SHARING A BISAH DCB BETWEEN RELATED TASKS: When a task using 
BISAM processes a data set whose DCB is defined and opened by a 
related task, the task must issue an ENQ on the DCB before an 
input/output request is issued and must issue a DEQ after the 
WAIT or CHECK for the input/output request is issued. If the 
task does not enqueue the DCB and any of its related tasks 
terminates abnormally, the task may enter a wait state or a 
program check may occur. See OS/VS2 Supervisor Services and 
Macro Instruction for more information on the ENQ and DEQ macro 
instructions and on multitasking. 

For subtasking, I/O requests should be issued by the task which 
owns the DCB or a task which will remain active as long as the 
DCB is open. If the task that issued the I/O request terminates, 
the storage used by its data areas (such as lOBs may be freed or 
queuing switches in the DCB work area may be left set on, 
causing another task issuing an I/O request to the DCB to 
program check or to enter the wait state. For example, if a 
subtask issues and completes a READ KU I/O request, the lOB 
which was created by the subtask is attached to the DCB update 
queue. If that subtask terminates, and subpool zero is not 
shared with the subtask owning the DCB, the lOB storage area is 
freed and' the i ntegri ty of the ISAM update queue is destroyed. A 
request from another subtask, attempting to use that queue, may 
cause unpredictable abends. As another example, if a WRITE KEY 
NEW is in process when the subtask terminates, 
"WRITE-KEY-NEW-IN-PROCESS" bit is left set on. if another I/O 
request is issued to the DCB, the request is queued but cannot 
proceeed. 

DIRECT UPDATE WITH EXCLUSIVE CONTROL--INDEXED SEQUENTIAL DATA 
SET: In ,the example shown in Figure 57 on page 121 the 
previously described data set is to be updated directly with 
transaction records on tape. The input tape records are 30 
characters long, the key is in positions 1-10, and the update 

120 OS/VS2 Data Management Serv ices Gu ide 

, '"'' -- ,.,.,----------,---,--,_ .. __ .... ----

c' 



C 

C"". " 

//INDEXDD 
//TAPEDD 

ISUPDATE 

NEXTREC 

RDCHECK 

* 

WKNAREA 
ISRECORD 

ISKEY 

ISUPDATE 

* 
TPRECORD 
KEY 
UPDATE 
RESOURCE 
ELEMENT 

ISDATA 

TPDATA 
INDEX 

information is in positions 11-30. The update information 
replaces data in positions 31-50 of the indexed sequQntial data 
record. 

DD 
DD 

START 

GET 
ENQ 
READ 

WAIT 
TM 
BM 
L 
MVC 

WRITE 
WAIT 
TM 
BM 
DEQ 
B 
TM 
BZ 
FREEDBUF 
MVC 
MVC 

WRITE 
WAIT 
TM 
BM 
DEQ 
B 
DS 
DS 
DS 
DS 
DS 
DS 

DSNAME=SLATE.DICT,DCB=(DSORG=IS,BUFNO=I, ..• ),---

o 
TPDATA,TPRECORD 
(RESOURCE,ELEMENT,E"SYSTEM) 
DECBRW,KU,,'S',MF=E Read into dynamically 

obtained buffer 
ECB=OECBRW 
DECBRl.J+24, X' FD' 
RDCHECK 
3,DECBRW+16 
ISUPDATE-ISRECORD 
(L'UPDATE,3),UPDATE 
DEC B R l~ 1 K , M F = E 
ECB=OECBRW 
DECBRW+24,X'FD' 
WRCHECK 
(RESOURCE,ELEMENT"SYSTEM) 
NEXTREC 
DECBRW+24,X'80' 
ERROR 
DECBRW,K,ISDATA 
ISKEY,KEY 
ISUPDATE,UPDATE 

DECBRW,KN"WKNAREA,'S',MF=E 
ECB=DECBRW 
DECBRW+24,X'FD' 
ERROR 
(RESOURCE,ELEMEHT"SYSTEM) 
NEXTREC 
4F 
OCL50 
CL19 
CLIO 
Cli 
Cl20 

Test for any condition 
but overfloL-.I 
Pick up pointer to record 
Update record 

Any errors? 

No record found 
If not, go to error routine 
Otherwise, free buffer 
Key placed in ISRECORD 
Updated information placed 
in ISRECORD 
Add record to data set 

Test for errors 

Release exclusive control 

BISAM WRITE KN work field 
50-byte record from ISDATA 
DCB First part of ISRECORD 
Key field of ISRECORD 
Part of ISRECORD 
Update area of ISRECORD 

ORG ISUPDATE. Overlay ISUPDATE with 
OS OCL30 TPRECORD 30-byte record from 
DS CLIO TPDATA DCB Key for locating 
DS CL20 ISDATA record Update 
DC Cl8'SlATE' information or new data 
DC C'DICT' 
READ DECBRW,KU,ISDATA,'S','S',KEY,MF=L 
DCB DDNAME=INDEXDD,DSORG=IS,MACRF=(RUS,WUA), C 

MSHI=IHDEX,SMSI=2000 
DCB 
DS 2000C 

Figure 57. Directly Updating an Indexed Sequential Data Set 

Exclusive control of the data set is requested since more than 
one task may be referring to the data set at the same time. 
Notice that exclusive control is released after each block is 
written to avoid tying up the data set until the update is 
completed. 

Note the use of the FREEDBUF macro instruction in Figure 57. 
Usually the FREEDBUF macro instruction has two functions: 

Part 2: Data Management Processing Procedures 121 



• 

• 

To indicate to the ISAM routines that a record that has been 
read for update will not be written back 

T~ free a dynamically obtained buffer 

In Figure 57 on page 121, since the read operation was 
unsuccessful, the FREEDBUF macro instruction frees only the 
dynamically obtained buffer. 

The first function of FREEDBUF allows you to read a record for 
update and then decide not to update it without performing a 
WRITE for update. You can use this function even when your READ 
macro instruction does not specify dynamic buffering, provided 
that you have included 5 (for dynamic buffering) in the MACRF 
field of your READ DCB. 

You can effect an automatic FREEDBUF simply by reusing the DECB, 
that is, by issuing another READ or a WRITE KN to the same DECB. 
You should use this feature whenever possible, since it is more 
efficient than FREEDBUF. For example, in Figure 57 on page 
121,the FREEDBUF macro instruction could be eliminated, since 
the WRITE KN addressed the same DECB as the READ KU. 

For an indexed sequential data set with variable-length records, 
you may make three types of updates by using the basic access 
technique. You may read a record and write it back with no 
change in its length, simply updating some part of the record. 
You do this with a READ KU followed by a WRITE K, the same way 
you update fixed-length records. Two other methods for updating 
variable-length records use the WRITE KN macro instruction and 
allow you to chunge the record length. 

In one method, a record read for update (by a READ KU) may be 
updated in a manner that will change the record length and then 
be written back with its new length by a WRITE KN. In the second 
method, you may replace a record with another record having the 
same key and possibly a different length using the WRITE KN 
macro instruction. To replace a record, it is not necessary to 
have first read the record. 

In either method, when changing the record length, you must 
place the new length in the DECBLGTH field of the DECB before 
issuing the WRITE KN macro instruction. If you use a WRITE KH 
macro instruction to update a variable-length record that has 
been marked for deletion, the first bit (no record found) of the 
exceptional condition code field (DECBEXC1) of the DECB is set 
on. If this condition is found, the record must be written using 
a WRITE KH with nothing specified in the DECBLGTH field. 

Do not try to use the DECBLGTH field to determine the length of 
a record read, because DECBLGTH is for use with writing records, 
not reading them. If you are reading fixed-length records, the 
le~gth of the record reud is in DCBLRECL, and if you are reading 
variable-length records, the length is in the record descriptor 
word (RDW). 

DIRECT UPDATE-INDEXED SEQUENTIAL DATA SET WITH VARIABLE-LENGTH 
RECORDS: In Figure 58, an indexed sequential data set with 
variable-length records is updated directly with transaction 
records on tape. The transaction records are of variable length 
and each contains a code identifying the type of transaction. 
Transaction code 1 indicates that an existing record is to be 
replaced by one with the same key; 2 indicates that the record 
is to be updated by appending additional information, thus 
changing the record length; 3 or greater indicates that the 
record is to be updated with no change to its length. For this 
example, the maximum record length of both data sets is 256 
bytes. The key is in positions 6-15 of the records in both data 
sets. The transaction code is in position 5 of records on the 
transaction tape. The work area (REPLAREA) size is equal to the 
maximum record length plus 16 bytes. 

122 OS/VS2 Data Management Serv ices Gu ide 

\ ............ ,./ 



( ,. -
//INDEXDD DD 
//TAPEDD DD 

ISUPDVlR START 

NEXTREC GET 
ClI 

* Bl 
READ 
CHECK 
ClI 
BH 

DSNAME=SlATE.DICT,DCB=(DSORG=IS,BUFNO=l, ... ),---

o 

TPDATA,TRANAREA 
TRANCODE,2 

REPLACE 
DECBRW,KU,,'S','S',MF=E 
DECBRW,DSORG=IS 
TRANCODE,2 
CHANGE 

Determine if replacement or 
other transaction 
Branch if replacement 
Read record for update 
Check exceptional conditions 
Determine if change or append 
Branch if change 

* CODE TO MOVE RECORD INTO REPlACEA+16 AND APPEND DATA FROM TRANSACTION 
* RECORD 

* 
* 
CHANGE 

* CODE 

* 
REPLACE 

* 
* * 

TO 

MVC DECBRW+6(2),REPlAREA+16 move new length from RDW 
into DECBLGTH (DECB+6) 

WRITE DECBRW,KN"REPlAREA,MF=E Rewrite record with 
changed length 

CHECK DECBRW,DSORG=IS 
B NEXTREC 

CHANGE FIELDS OR UPDATE FIELDS OF THE RECORD 

WRITE DECBRW,K,MF=E Rewrite record with no 
change of length 

CHECK 
B 
MVC 

WRITE 

DECBRW,DSORG=IS 
NEXTREC 
DECBRW+6(2),TRANAREA Move new length from RDW 

into DECBLGTH (DECB+6) 
DECBRW,KN"TRANAREA-16,MF=E Write transaction record 

as replacement for record 
with the same key 

CHECK DECBRW,DSORG=IS 
B NEXTREC 

CHECKERR SYNAD routine 

REPlAREA 
TRANAREA 
TRANCODE 
KEY 
TRANDATA 

ISDATA 
TPDATA 

DS 
DS 
DS 
DS 
DS 
READ 
DCB 
DCB 

Cl272 
CL4 
Cli 
CLIO 
CL241 
DECBRW,KU,ISDATA,'S','S',KEY,MF=L 
DDNAME=INDEXDD,DSORG=IS,MACRF=(RUSC,WUAC),SYNAD=CHECKERR 

Figure 58. Directly Updating an Indexed Sequential Data Set with 
Variable-Length Records 

PROCESSING A DIRECT DATA SET 

In a direct data set, there is a relationship between a control 
number or identification of each record and its location on the 
direct-access volume. This relationship allows you to gain 
access to a record without an index search. You determine the 
actual organization of the data set. If the data set has been 
carefully organized, location of a particular record takes less 
time than with an indexed sequential data set. 

The DSORG parameter of the DCB macro specifies the type of 
processing to be performed, while DSORG in the DD statement 
specifies the organization of the data set. 

Part 2: Data Management Processing Procedures 123 



Although you can process a direct data set sequentially using 
either the queued access technique or the basic access 
technique, you cannot read record keys using the queued access 
technique. When you use the basic access technique, each unit of 
data transmitted between virtual storage and an I/O device is 
regarded by the system as a record. If, in fact, it is a block, 
you must perform any blocking or deblocking required. For that 
reason, the LRECL field is not used when processing a direct 
data set. Only BLKSIZE must be specified when you add or update 
records on a direct data set. 

If dynamic buffering is specified for your direct data set, the 
system will provide a buffer for your records. If dynamic 
buffering is not specified, you must provide a buffer for the 
system to use. 

As indicated in the discussion of direct-access devices, record 
keys are optional. If they are specified, they must be used for 
every record and must be of a fixed length. 

ORGANIZING A DIRECT DATA SET 

In developing the organization of your data set, you can use 
direct addressing. When direct addresses are used, the location 
of each record in the data set is known. 

If format-F records with keys are being written, the key of each 
record can be used to identify the record. For example, a data 
set with keys ranging from 0 to 4999 should be allocated space 
for 5000 records. Each key relates directly to a location that 
you can refer to as a relative record number. Therefore, each 
record should be assigned a unique key. If identical keys are 
used it is possible, during periods of high CPU and channel 
activit~', to skip the desired record and retrieve the next 
record on the track. The main disadvantage of this type of 
organization is that records may not exist for many of the keys 
even though space has been reserved for them. 

Space could be allocated on the basis of the number of records 
in the data set rather than on the range of keys. This type of 
organization requires the use of a cross-reference table. When a 
record is written in the data set, you must note the physical 
location either as an actual address or as a relative track and 
record number. The addresses must then be stored in a table that 
is searched when a record is to be retrieved. Disadvantages are 
that cross-referencing can be used efficiently only with a small 
data set, storage is required for the table, and processing time 
is required for searching and updating the table. 

A more common, but somewhat complex, technique for organizing 
the data set involves the use of indirect addressing. In 
indirect addressing, the address of each record in the data set 
is determined by a mathematical manipUlation of the key. This 
manipulation is referred to as randomizing or conversion. Since 
a number of randomizing procedures could be used, no attempt is 
made here to describe or explain those that might be most 
appropriate for your data set. 

REFERRING TO A RECORD IN A DIRECT DATA SET 

Once you have determined how your data set is to be organized, 
you must consider how the individual records will be referred to 
when the data set is updated or new records are added. This is 
important for determining whether a return address will be 
required when the data is created and, if 50, in what form the 
return address will be used. The record identification can be 
represented in any of the following forms: 

124 OS/VS2 Data Management Serv ices Gu ide 

C-" 
./ 



c' 

RELATIVE BLOCK ADDRESS: You specify the relative location of the 
record (block) within the data set as a 3-byte binary number. 
This type of reference can be used only with format-F records. 
The system computes the actual track and record number. The 
relative block address of the first block is O. 

RELATIVE TRACK ADDRESS: You specify the relative track as a 
2-byte binary number and the actual record number on that track 
as a 1-byte binary number. The relative track address of the 
first track is O. 

RELATIVE TRACK OR BLOCK ADDRESS AND ACTUAL KEY: In addition to 
the relative track or block address, you specify the address of 
a virtual-storage location containing the record key. The system 
computes the actual track address and searches for the record 
with the correct key. 

ACTUAL ADDRESS: You supply the actual address in the standard 
8-byte forrn-MBBCCHHR. Remember that the use of an actual 
address may force you to indicate that the data set is 
unmovable. 

EXTENDED SEARCH: You request that the system begin its search 
with a specified starting location and continue for a certain 
number of records or tracks. This same option can be used to 
request a search for unused space in which a record can be 
added. 

To use the extended search option, you must indicate in the DCB 
the number of tracks (including the starting track) or records 
(including the starting record) that are to be searched. If you 
indicate a number of records, the system may actually examine 
more than this number. In searching a track, the system searches 
the whole track (starting with the first record); it therefore 
may examine records that precede the starting record or follow 
the ending record. 

If the DeB specifies a number equal to or greater than the 
number of tracks allocated to the data set or the number of 
records within the data set, the entire data set is searched in 
the attempt to satisfy your request. 

EXCLUSIVE CONTROL FOR UPDATING: When more than one task is 
referring to the same data set, exclusive control of the block 
being updated is required to prevent simultaneous reference to 
the same record. Rather than issuing an ENQ macro instruction 
each time you update a block, you can request exclusive control 
through the MACRF field of the DeB and the type operand of the 
READ macro. The coding example in Figure 61 on page 129 
illustrates the use of exclusive control. After the READ macro 
instruction is executed, your task has exclusive control of the 
block being u~dated. No other task in the system requesting 
access to the block is given access until the operation started 
by your WRITE macro is complete. If, however, the block is not 
to be written, you can release exclusive control using the RELEX 
macro instruction. 

FEEDBACK OPTION: This option specifies that the system provide 
the address of the record requested by a READ or WRITE macro 
instruction. This address may be in the same form that was 
presented to the system in the READ or WRITE macro instruction, 
or as an 8-byte actual address. This option can be specified in 
the OPTCD parameter of the DCB and in the READ or WRITE macro 
instruction. If this option is omitted from the DCB but is 
requested in a READ or WRITE macro instruction, an 8-byte actual 
address is returned to the user. 

The feedback option is automatically provided for a READ macro 
instruction requesting exclusive control for updating. This 
feedback will be in the form of an actual address (MBBCCHHR) 
unless feedback was specified in the OPTCD field of the DCB. In 
this case, feedback is returned in the format of the addressing 
scheme used in the problem program (an actual or a relative 
address). When a WRITE or RElEX macro instruction is issued 

Part 2: Data Management Processing Procedures 125 



(which releases the exclusive control that was gotten for the 
READ request), the system will assume th~t the addressing scheme 
used for the WRITE or RELEX macro instruction is in the same 
form~t as the addressing scheme used for feedback in the READ 
macro instruction. 

CREATING A DIRECT DATA SET 

Once the organization of a direct data set has been determined, 
the process of creating it is almost identical to that of 
creating a sequential data set. The BSAM DeB macro instruction 
should be used with the WRITE macro instruction (the form used 
to create a direct data set). The following parameters must be 
specified in the DCB macro instruction: 

• DSORG=PS or PSU 

• DEVD=DA or omitted 

• MACRF=WL 

The DD statement must indicate direct-access (DSORG=DA or DAU). 
If keys are used, a key length (KEYLEN) must also b~ sPp.cified. 
Record length (LRECL) need not be specified but may be used to 
provide compatibility with sequential access method processing 
of this data set. 

It is possible to create a direct data set using QSAM (no keys 
allowed) or BSAM (with or without keys and the DCB specifies 
MACRF=W). However, this method is not recommended because when 
you access this direct data set, you cannot request a function 
which requires the information in the capacity record (RO) data 
field. For example, the following restrictions would apply: 

• Variable-length, undefined-length, or variable-length 
spanned record processing is not allowed. 

• The WRITE add function with extended search for fixed-length 
records (with or without track overflow) is not allowed. 

If a VIa data set is opened for processing with the extended 
search option, the DEBEHDCC and DEBEHDHH fields of the DEB will 
reflect the real address of the last record written during the 
BDAM create step. This is necessary to prevent BDAM from 
searching unused tracks. The information needed to determine the 
data set size is written in the DSCB during the close of the DCB 
used in the create step. Therefore, if this data set is being 
created and processed by the same program, and the DCB used for 
creating the data set has not been closed before opening the DCB 
to be used for processing, the resultant beginning and ending 
CCHH will be equal. 

If a direct data set is created and updated or read within the 
same job step, and the OPTCD parameter is used in the cre.ation, 
updating, or reading of the data set, different DeBs and DD 
statements should be used. 

If you are using direct addressing with keys, you can reserve 
space for future format-F records by writing a dummy record. To 
reserve or truncate a track for format-U or format-V records, 
write a capacity record. The capacity record (RO) contains a 
7-byte data field (CCHHRLL) where CCHHR is the ID of the last 
record on the track, and LL is the number of unused bytes on the 
track. If a WRITE SZ macro is issued for a track with no 
records, R is zero and LL is the entire length of the track. 

Format-F records are written sequentially as they are presented. 
When a track is filled, the system automatically writes the 
cap~city record and advances to the next track. Because of the 
form in which relative track addresses are recorded, direct data 
sets whose records are to be identified by means other than 
actual address must be limited in size to no more than 65,536 
tracks for the entire data set. 

126 OS/VS2 Data Management Services Guide 



c 

TAPE-TO-DISK-DIRECT DATA SET: In the eXilmple problem in 
Figure 59, a tape containing 204-byte records arranged in key 
sequence is used to create a direct data set. A 4-byte binary 
key for each record ranges from 1000 to 8999, so space for 8000 
records is requested. 

IIDAOUTPUT DO DSNAME=SlATE.INDEX.WORDS,DCB=(DSORG=DA, C 
II BLKSIZE=200,KEYLEN=4,RECFM=F),SPACE=(204,8000),---
IITAPINPUT DO 

DIRECT 

NEXTREC 

COMPARE 

* 

DUMMY 

INPUTEND 

EHDJOB 

DUMAREA 
DALOAD 

TAPEDCB 

START 

L 
OPEN 
LA 
GET 
LR 
C 

BHE 
WRITE 
CHECK 
AH 
B 
C 
BH 
l.JRI T E 
CHECK 
AH 
BR 
LA 
BR 
CLOSE 

DS 
DCB 

DCB 

9,=F'1000' 
(DALOAD,(OUTPUT),TAPEDCB) 
10, COr-WARE 
TAPEDCB 
2,1 
9,0(2) Compare key of input against 

control number 
DU~'MY 
DECBl,SF,DALOAD,(2) 
DECBl 
9,=H'1' 
HEXTREC 

Write data record 

9,=F'8999' Have 8000 records been written? 
END"IOB 
DECB2,SD,DALOAD,DUMAREA 
DECB2 
9,=H'1' 
10 
10,DUMMY 
10 
(TAPEDCB"DALOAD) 

Write dummy 

SF 
DSORG=PS,MACRF=(Wl),DDHAME=DAOUTPUT, 
DEVD=DA,SYNAD=CHECKER,--
EODAD=INPUTEND,MACRF=(GL), 

C 

Figure 59. Creating a Direct Data Set 

ADDING OR UPDATING RECORDS ON A DIRECT DATA SET 

The techniques for adding records to a direct data set depend on 
the format of the records and the organization used. 

FORMAT-F WITH KEVS: Adding a record amounts to essentiallY an 
update by record identification. The reference to the record can 
be made by either a relative block address or a relative track 
address. 

If you attempt to add a record by relative block address, the 
system converts the address to a relative track address. That 
track is searched and the new record written in place of the 
first dummy record on the track. If there is no dummy record on 
the track, you are informed that the write operation did not 
take place. If you request the extended search option, the new 
record will be written in place of the first dummy record found 
within the search limits you specify. If none is found, you are 
notified that the write operation could could not take place. In 
the same way, a reference by relative track address causes the 
record to be written in place of the first dummy record found on 
that track or the first within the search limits, if requested. 
If extended search is used, the search begins with the first 
record on the track. Without extended search, the search may 
start at any record on the track. Therefore, records which were 
added to a track are not necessarily located on that track in 
the same sequence in which they were written. 

Part 2: Data Management Processing Procedures 127 



FORMAT-F WITHOUT KEYS: Here too, adding a record is really 
updating a dummy record already in the data set. The main 
difference is that dummy records cannot be written automatically 
when the data set is created. You will have to use your own 
method for flagging dummy records. The update form of the WRITE 
macro instruction (MACRF=W) must be used rather than the add 
form (MACRF=WA). 

You will have to retrieve the record first (using a READ macro 
instruction), test for a dummy record, update, and write. 

FORNAT-V OR FORMAT-U WITH KEYS: The technique used to add 
records in this case depends on whether records are located by 
indirect addressing or a cross-reference table. If indirect 
addressing is used, you must at least initialize each track 
(write a capacity record) even if no data is actually written. 
That way the capacity record indicates how much space is 
available on the track. If a cross-reference table is used, you 
should exhaust the input and then initialize enough succeeding 
tracks to contain any additions that might be r~quired. 

To add a new record, use a relative track address. The system 
examines the capacity record to see if there is room on the 
track. If there is, the new record is written. Under the 
extended search opticin, the record is written in the first 
available area within the search limit. 

FORMAT-V OR FORNAT-U WITHOUT KEYS: Because a record of this type 
does not have a key, you can refer to the record only by its 
relative track or actual address (direct addressing only). When 
you add a record to this data set, you must retain the relative 
track or actual address data (for example, by updating your 
cross-reference table). The extended search option is not 
allowed because this option requires keys. 

//DIRADD DD 
//TAPEDD DD 

DSNAME=SLATE.INDEX.WORDS,---

DIRECTAD START 

NEXTREC 
OPEN 
GET 
L 
SH 
ST 
WRITE 
WAIT 
ClC 
BE 

(DIRECT,(OUTPUT),TAPEIH) 
TAPEIN,KEY 
4,KEY Set up relative record number 
4,=H'1000' 
4,REF 
DECB,DA,DIRECT,DATA,'S',KEY,REF+l 
ECB=DECB 
DECB+l(2),=X'OOOO' Check for any errors 
NEXTREC 

Check error bits and take required action 

DIRECT 

TAPEIN 
KEY 
DATA 
REF 

DCB DDNAME=DIRADD,DSORG=DA,RECFM=F,KEYlEH=4,BLKSIZE=200, 

DCB 
DS 
DS 
DS 

MACRF=(WA) 

F 
CL200 
F 

C 

Figure 60. Adding Records to a Direct Data Set 

TAPE-TO-DISK ADD--DIRECT DATA SET: The example in Figure 60 
involves adding records to the data set created in the last 
example. Notice that the write operation adds the key and the 
data record to the data set. If the existing record ;s not a 
dummy record, an indication is returned in the exception code of 
the DECB. For that reason, itis better to use the WAIT mac~o 
instruction instead of the CHECK macro instruction to test for 
errors or exceptional conditions. 

128 OS/VS2 Data Management Services Guide 

c 



TAPE-lO-DISK UPDATE--DIRECT DATA SET: The example in Figure 61 
is similar to that in Figure 60 on page 128, but involves 
updating rather than adding. There is no check for dummy 
records. The existing direct data set contains 25,000 records 
whose 5-byte keys range from 00001 to 25000. Each data record is 
100 bytes long. The first 30 characters are to be updated. Each 
input tape record consists of a 5-byte key and a 30-byte data 
area. Notice that only data is brought into virtual storage for 
updating. 

When you are updating variable length records, you should use 
the same length to read and write a record. 

IIDIRECTDD DO 
IITAPINPUT DO 

DSNAME=SlATE.INDEX.WORDS,---

DIRUPDAT 

NEXTREC 

KEYFIELD 

KEY 
DATA 
REF 
DIRECT 

START 

OPEN 
GET 
PACK 
CVB 
SH 
ST 
READ 
CHECK 
L 
MVC 
ST 
WRITE 
CHECK 
B 

(DIRECT,(UPDAT),TAPEDCB) 
TAPEDCB,KEY 
KEY,KEY 
3,KEYFIElD 
3,=H'1' 
3,REF 
OECBRD,DIX,DIRECT,'S','S',0,REF+1 
DECBRO 
3,DECBRD+12 
O(30,3),DATA 
3,DECBWR+12 
DECBWR,DIX,DIRECT,'S','S',O,REF+l 
DECBWR 
NEXTREC 

DS OD 
DC XL3'0' 
DS Cl5 
DS CL30 
DS F 
DCB DSORG=DA,DDNAME=DIRECTDD,MACRF=(RISXC,WIC), 

OPTCD=RF,BUFNO=1,BUFL=100 
C 

TAPEDCB DCB 

Figure 61. Updating a Direct Data Set 

CONSIDERATION FOR USER LABELS: User labels, if desired, must be 
created when the data set is created. They may be updated, but 
no~ added or deleted, during processing of a direct data set. 
When creating a multivolume direct data set using BSAM, you 
should turn off the header exit entry after OPEN and turn on the 
trailer label exit entry just before issuing the CLOSE. This 
eliminates the end-of-volume exits. The first volume, containing 
the user label track, must be mounted when the data set is 
closed. If you have requested exclusive control, OPEN and CLOSE 
will ENQ and DEQ to prevent simultaneous reference to user 
labels. 

CONSIDERATION FOR USING THE 2305 FIXED HEAD STORAGE: When a data 
set on a 2305 device is to be used by several tasks 
simultaneously, or when overlapping I/O (successive WRITEs 
issued without an intervening CHECK or WAIT) is used, the 
following combination may produce overlaying of records: 

• WRITE-add processing 

• Fixed records with or without track overflow 

Part 2: Data Management Processing Procedures 129 



PART 3: DATA SET DISPOSITION AND SPACE ALLOCATION 

ALLOCATING SPACE ON DIRECT-ACCESS VOLUMES 

When direct-access storage space is required for a data set, you 
specify the amount of space needed and the device type, and the 
operating system selects the device and allocates the space 
accordingly. This arrangement provides for flexible and 
efficient use of devices and available storage spaCQ, and 
relieves you of considering the details involved in efficient 
space control. 

Before a direct-access volume can be used for data storage, it 
must be initialized by either of the utility programs IBCDASDI 
or IEHDASDR. The utilities' functions include in part: 

• Creating the standard 80-byte volume label and writing it on 
cylinder 0, track 0, of the volume. 

• Initializing the volume table of contents (VTOC). The 
location of the VTaC depends on the conventions your 
installation uses in initializing the volume. 

• Writing the home address (HA) and capacity record (RO) for 
each track. 

• Checking tracks and making alternate track assignments if 
necessary. 

When the data set is to be stored on a direct~access volume, you 
must supply, in the DD statement, control information 
designating the amount of space to be allocated and the manner 
in which it is to be allocated. 

Note: IEHDASDR and IBCDASOI cannot be used for an MSS 3330 
virtual volume. The Access Method Services utility, CREATEV, 
must be u5ed~ See OS/VS Mass Storage System (MSS) Services for 
Space Management for a description of the CREATEV command. 

SPECIFYING SPACE REQUIREMENTS 

The amount of space required can be specified in blocks, tracks, 
or cylinders. If you want to maintain device independence, 
specify your space requirements in blocks. If your request is in 
tracks or cylinders, you must be aware of such device 
considerations as cylinder and track capacity. 

Cylinder allocation allows faster input/output of sequential 
data sets than does track allocation. The exceptions are reading 
records in fixed standard format on a non-RPS device without 
using chained scheduling, and writing any records without using 
chained scheduling. Note that these two exceptions do not apply 
to 5740-AM3. 

ALLOCATION BY BLOCKS: When the amount of space required is 
expressed in blocks, you must specify the number and average 
length of the blocks within the data set, as in this example: 

// DO SPACE=(300,(5000,100», ... 

300 = average block length in bytes 
5000 = primary quantity (number of blocks) 

100 = secondary quantity, to be allocated if the primary 
quantity is not sufficient (in blocks) 

Note that when average block length and secondary space 
allocation are being used, the BLKSIZE parameter specified must 
be equal to the maximum block length. 

130 OS/VS2 Data Management Services Guide 

c 



c. 

From this information, the operating system estimates and 
allocates the number of tracks required. Space is always in 
whole tracks. You may also request that the space allocated for 
a specific number of blocks begin and end on cylinder 
boundaries. 

You must be certain that both the quantity and the increment are 
large enough to contain the largest block to be written. 
Otherwise, all of the space requested is allocated but erased as 
the system tries to find a space large enough for the record. 

ALLOCATION BY TRACKS OR CYLINDERS: The amount of space required 
can be expressed in tracks or cylinders, as in these examples: 

// DO SPACE=(TRK,(100,S», .. . 
// DO SPACE=(CYL,(3,1», .. . 

ALLOCATION BY ABSOLUTE ADDRESS: If the data set contains 
location-dependent information in the form of an absolute track 
address (MBBCCHHR), space should be requested with respect to 
the number of tracks and the beginning address, as in this 
example: 

// DO SPACE=(ABSTR,(SOO,20»,UNIT=2314, 

where 500 tracks are required, beginning at relative track 20, 
which is cylinder 1, track O. 

ALLOCATION OF MASS STORAGE SYSTEM (MSS) VIRTUAL VOLUMES: When 
the data set is to be stored on an MSS virtual volume, a volume 
group (MSVGP) parameter may be specified instead of using the 
SPACE parameter on the DO card. Before the MSVGP parameter can 
be used, the volume group must be identified to MSS by the 
utility program IDCAMS. 

Allocation of MSS virtual volume space should be in multiples of 
cylinders with secondary allocation a multiple of the primary to 
insure maximum space usage and minimum fragmentation. 

ADDITIONAL SPACE ALLOCATION OPTIONS: The DO statement provides 
you with a great deal of flexibility in specifying space 
requirements. These options are described in detail in OS/VS2 
JCL. 

ESTIMATING SPACE REQUIREMENTS 

To determine how much space your data set requires, you must 
consider these variables for the device type: 

• Track capacity 

• Tracks per cylinder 

• Cylinders per volume 

• Data length (blocksize) 

• Key length 

• Device overhead 

Figure 62 on page 132 lists the physical characteristics of a 
number of direct-access storage devices. 

Part 3: Data Set Disposition and Space Allocation 131 



Page of GC26-3875-1 as updated 3 April 1981 by TNl GN26-0996 

Device 
Volume 
Type 

2305-1 Drum 

2305-2 Drum 

2314/2319 Disk 

3330/3333 3 

(Model 1) Disk 

3330/3333 
(Model 11) Disk 

3340/3344 4 Disk 

3350 Disk 

3375 Disk 

3380 Disk 

Maximum 
Block size 
per Track1 

14136 

14660 

7294 

13030 

13030 

8368 

19069 

32760 5 

32760 5 

Tracks per 
cylinder 

Number 
of 
cylinders2 

8 48 

8 96 

20 200 

19 404 

19 808 

12 696 
(70 megabytes) 

348 
(35 megabytes) 

30 555 

12 959 

15 885 

Total 
capacityl,2 

5,428,224 

11,258,880 

29,176,000 

100,018,280 

200,036,560 

69,889,536 

34,944,768 
317,498,850 

409,868,928 

630,243,900 

1 Capacity indicated in bytes (when RO is used by the IBM programming system). 
2 Excluding alternate cylinders. 
3 The Mass Storage System (MSS) virtual volumes assume the characteristics of 

the 3330/3333, Model 1. 
4 The 3344 is functionally equivalent to the 3340 Model 70. 
5 The largest record that can be written on a track ;s 35,616 for the 3375 and 

47,476 for the 3380. However, for both devices, the largest block size 
supported by the standard access methods is 32,760. 

Figure 62. Direct-Access Storage Device Capacities 

The term device overhead refers to the space required on each 
track for hardware data, that is, address markers, count areas, 
gaps between records, record 0, etc. Device overhead varies with 
each device and depends also on whether the blocks are written 
with keys. To compute the actual space required for each block, 
including device overhead, you can use the formulas in 
Figure 63 on page 133. Note that any fraction of a byte must be 
ignored. For example, if the formula gives 15.644 bytes, you 
must allocate 15 bytes. 

132 OS/VS2 Data Management Serv ices Gu ide 



("_ ... 

c,_., 

c 

Page of GC26-3875-1 as updated 3 April 1981 by TNL GN26-0996 

Bytes Required by Each Data Block 
Track 

Device Cap Blocks with Keys Blocks without Keys 

2305-1 14568 1 634+Kl+Ol 432+0L 

2305-2 14858 1 289+KL+OL 198+DL 

2314/2319 7294 146+CKL+OL)534/512 2 101+(OL)S34/512 3 

3330/3333 4 

(Model 1 13165 191+Kl+DL 135+DL 
or 11) 

3340/3344 8535 1 242+KL+DL 167+0L 

3350 19254 1 267+KL+OL 185+DL 

3375 36000 224+«KL+191)/32)(32)+(CDL+191)/32)(32) 224+«OL+l91)/32)(32) 

3380 47968 256+«KL+267)/32)(32)+«DL+267)/32)C32) 256+CCDL+267)/32)(32) 

DL is data length. 
KL is key length. 

1 This value is different from the maximum block size per track because the 
formula for the last block on the track includes an overhead for this 
device. 

2 The formula for the last block on the track is 45+KL+DL. 
3 The formula for the last block on the track is OL. 
4 The Mass Storage System (MSS) virtual volumes assume the characteristics of 

the 3330/3333, Model 1. 

Figure 63. Direct-Access Device Overhead Formulas 

The formulas can be combined in the following way: 

If you intend to specify your space requirements in tracks (TRK) 
or cylinders (CYl), your estimate should be made as shown above. 
If you request absolute tracks (ABSTR), remember that you cannot 
allocate track 0, cylinder O. The amount of space required for 
the VTDC will reduce the space available on the rest of the 
volume. 

If you specify your space requirements in average block length, 
the system performs the computations for you. 

Because a sequential data set and a direct data set are created 
in the same way, the estimate and specification of space 
requirements are identical. If you use the WRITE SZ macro 
instruction, your secondary allocation for a direct data set 
should be at least 2 tracks. Space allocation for a partitioned 
data set requires that you also consider the space used for the 
directory. Similarly, allocation for an indexed sequential data 
set requires that you consider the space needed for the prime 
area, index areas, a~d overflow areas. 

ALLOCATING SPACE FOR A PARTITIONED DATA SET 

What is the averag~ size of the members to be stored on your 
direct-access volume? How many members will fit on the volume? 
Will you need directory entries for the member names only or 
will aliases be used? How many? Will members be added or 
replaced frequently? All of these questions must be answered if 
you are to estimate your space requirements accurately and use 
the space efficiently. Note, too, that a partitioned data set 
cannot extend beyond one volume. 

Part 3: Data Set Disposition and Space Allocation 133 



If your data set will be quite large, or you expect to do a lot 
of updating, it might be best to allocate a full volume. If it 
will be small or seldom subject to change, you should make your 
estimate as accurate as possible to avoid wasted space or wasted 
time used for recreating the data set. 

If the average member length is close to or less than the track 
length, the most efficient use of the direct-access storage 
space may be made with a block size of 1/3 or 1/2 the track 
length. For load modules, the linkage editor ignores the 
specified maximum block size and uses the maximum block size for 
the device. Program fetch always ignores BLKSIZE. It may be a 
good practice to indicate a block length equal to track 
capacity, for example, BLKSIZE=7294 for a 2314 disk. You might 
then ask for either 100 tracks, or 5 cylinders, thus allowing 
for 729,400 bytes of data. 

Assuming an average length of 70,000 bytes for each member, you 
need space for at least 10 directory entries. If each member 
also has an average of three aliases, space for an additional 30 
directory entries is required. 

Space for the directory is expressed in 256-byte blocks. Each 
block contains from 3 to 20 entries, depending on the length of 
the user data field. If you expect 40 directory entries, request 
at least 8 blocks. Any unused space on the last track of the 
directory is wasted unless there is' enough space left to contain 
a block of the first member. Therefore, the most advisable 
request in this case would be for 17 blocks. 

Either of the following space specifications would cause the 
same size allocation for a 2314 disk:' 

SPACE=(CYL,(S"lO» 

SPACE=(TRK,(100,,10» 

The following example would result in allocation of 100 tracks 
for data, plus 1 track for directory space: 

SPACE=(7294,(100"lO» 

Although a secondary allocation increment has been omitted in 
these examples, it could have been supplied to provide for 
extensi on of the member area. The di recto~ry si ze, however, 
cannot be extended. 

ALLOCATING SPACE FOR AN INDEXED SEQUENTIAL DATA SET 

An indexed sequential data set has three areas: prime, index, 
and overflow. Space for these areas can be subdivided and 
allocated as follows: 

• Prime area--If you request a prime area only, the system 
automaticallY uses a portion of that space for indexes, 
taking one cylinder at a time as needed. Any unused space in 
the last cylinder used for index will be allocated as an 
independent overflow area. More than one volume can be used 
in most cases, but all volumes must be for devices of the 
same device type. 

• Index area--You can request that a separate area be 
allocated to contain your cylinder and master indexes. The 
index area must be contained within one volume, but this 
volume can be on a device of a different type than the one 
that contains the prime area volume. If a separate index 
area is requested, you cannot catalog the data set with a DD 
statement. 

If the total space occupied by the prime area and index area 
does not exceed one volume, you can request that the 
separate index area be embedded in the prime area (to reduce 

134 ~OS/VS2 Data Management Services Guide 

('~ 

\.~- ... , 



----- _._---_._ .. _ .. __ . __ ._._-_._-----_.-

(--, 

c~ 

-.--.-------- .. ".--.-.-------~ .. ----

• 

access arm movement) by indicating an lndQx size in the 
SPACE parameter of the DD statement defining the prime area. 

If you request space for prime and index areas only, the 
system automatically uses any space remaining on the last 
cylinder used for master and cylinder indexes for overflow, 
provided the index area is on a device of the same type as 
the prime area. 

Overflow area--Although you can request an independent 
overflow area, it must be contained within one volume. If no 
specific request for index area is made, then it will be 
allocated from the specified independent ov~rflow area. 

To request that a designated number of tracks on each 
cylinder be used for cYlinder overflow records, you must use 
the CYlOFL parameter of the DCB macro instruction. The 
number of tracks that you can use on each cylinder equals 
the total number of tracks on the cylinder minus the number 
of tracks needed for track index and for prime data, that 
is: 

Usable tracks = total tracks - (track index tracks + prime 
data tracks) 

Note that when you create a 1-cylinder data set, ISAM reserves 1 
track on the last cylinder for the end-of-file filemark. 

When you request space for an indexed sequential data set, the 
DD statement must follow a number of conventions, as shown below 
and summarized in Figure 68 on page 156. 

• Space can be requested only in cylinders, SPACE=(CYl,( ... », 
or absolute tracks, SPACE=(ABSTR,( ... ». If the absolute 
track technique is used, the designated tracks must make up 
a whole number of cylinders. 

• Data set organization (DSORG) must be specified as indexed 
sequential (IS or ISU) in both the DCB macro instruction and 
the DCB parameter of the DD statement. 

• All required volumes must be mounted when the data set is 
opened; that is, volume mounting cannot be deferred. 

• If your prime area extends beyond one volume, you must 
indicate the number of units and volumes to be spanned, for 
example, UNIT=(2314,3),VOlUME=(",3). 

• You can catalog the data set using the DD statement 
parameter DISP=(,CATLG) only if the entire data set is 
defined by one DD statement; that is, if you did not request 
a separate index or independent overflow area. 

Part 3: Data Set Disposition and Space Allocation 135 



1.Number 
of DD 
statements 

3 

2 

2 

2 

1 

1 

criteria 

2.Types 
of DD 
statements 

INDEX 
PRINE 
OVFlOW 

INDEX 
PRIME 

PRIME 
OVFlOW 

PRIME 
OVFlOW 

PRIME 

PRIME 

3. Index 
Size 
Coded? 

No 

Yes 

No 

Yes 

Restrictions on 
Unit Types and 
Number of units 
Requested 

None 

None 

Resulting .. 
Arrangement 
of Areas 

Separate indext prime, 
and overflow areas. 

Separate index and prime 
areas. Any partially 
used index cylinder is 
used for independent 
overflow if the index 
and prime areas are on 
the same type of device. 

None Prime area and overflow 
area with an index at 
its end. 

The statement Prime area and embedded 
defining the index, and overflow 
prime area cannot area. 
request more than 
one unit. 

None Prime area with index at 
its end. Any partially 
used index cylinder 

Statement cannot 
request more than 
one unit. 

is used for independent 
overflo~o.J. 

Prime area with embedded 
index area; independent 
overflow in remainder of 
partially used index 
cylinder 

Figure 64. Requests for Indexed Sequential Data Sets 

As your data set is created, the operating system builds the 
track indexes in the prime data area. Unless you request a 
separate index area or an embedded index area, the cylinder and 
master indexes are built in the independent overflow area. If 
you did not request an independent overflow area, the cylinder 
and master indexes are built in the prime area. 

If an error is encountered during allocation of a multivolume 
data set, the IEHPROGM utility program should be used to scratch 
the DSCBs of the data sets that were successfully allocated. The 
IEHlIST utility program can be used to determine whether or not 
part of the data set has been allocated. The IEHlIST utility 
program is also useful to determine whether space is available 
or whether identically named data sets exist before space 
allocation is attempted for indexed sequential data sets. These 
utility programs are described in OS/VS Utilities. 

specifying a Prime Data Area 

To request that the system allocate space and subdivide it as 
required, you should code: 

//ddname DD DSNAME=dsname,DCB=DSORG=IS, 
// SPACE=(CYl,quantity"CONTIG),UNIT=unitname, 
// DISP=(,KEEP),---

136 OS/VS2 Data Management Serv i cas Gu ide 

c 



'. 

c 

You can accomplish the same type of allocation by qualifying 
your dsname with the element indication (PRIME). This element is 
assumed if omitted. It is required only if you request an 
independent index or overflow area: To request an embedded index 
area when an independent overflow area is specified, you must 
indicate DSNAME=dsname (PRIME). To indicate the size of the 
embedded index, you specify SPACE=(CYL,(quantity"index size». 

specifying a separate Index Area 

To request a separate index area, other than an embedded area as 
described above, you must use a separate DD statement. The 
element name is specified as (INDEX). The space and unit 
designations are as required. Notice that only the first DO 
statement can have a data definition name. The data set name 
(dsn~me) must be the same. 

//ddname 00 OSNAME=dsname(INDEX),--
// 00 DSNAME=dsnameCPRIME),---

Specifying an Independent Overflow Area 

A request for an independent overflow area is essentiallY the 
same as for a separate index area. Only the element name, 
OVFLOW, is changed. If you do not request a separate index area, 
only two OD statements are required. 

//ddname DO OSNAME=dsname(INOEX),---
// OOOSNAME=dsname(PRIME),---
// DD DSNAME=dsname(OVFLOW),---

calculating Space Requirements for an Indexed sequential Data set 

To determine the number of cylinders required for an indexed 
sequential data set, you must consider the number of blocks that 
will fit on a cylinder, the number of blocks that will be 
processed, and the amount of space required for indexes and 
overflow areas. When you make the computations, consider how 
much additional space is required for device overhead. Figure 62 
on page 132 and Figure 63 on page 133 show device capacities and 
overhead formulas. In the formulas that follow, the length of 
the last (or only) block, shown below as Bn, must include device 
overhead as given in Figure 63 on page 133. 

Blocks = 1 + (Track capacity - Length of the last block) 
(Length of other blocks) 

Bt = 1 + (CCt-Bn)/Bi) 

The following eight steps summarize calculation of space 
requirements for an indexed sequential data set. 

step 1 

Once you know how many records will fit on a track and the 
maximum number of records you expect to create, you can 
determine how many tracks you will need for your data. 

Number of tracks required = Maximum number of blocks 
Blocks per track + 1 

ISAM load mode reserves the last prime data track for the 
filemark. 

Example: Assume that a 200,000 record part-of-speech dictionary 
is stored on an IBM 3330 Disk Storage, using the 3336 disk pack, 
as an indexed sequential data set. Each record in the dictionary 
has a 12-byte key (the word itself) and an 8-byte data area 
containing a part-of-speech code and control information. Each 
block contains 50 records; lRECL=20 and BLKSIZE=1000. Using the 
formula from Figure 63 on page 133, we find that each track will 

Part 3: Data Set Disposition and Space Allocation 137 



contain 10 blocks or 500 records. A total of 401 tracks will ba 
required for the dictionary. 

Bt = 1 + 13,165-(191+12+1000) = 1 + L~~ = 1+9 = 10 
191+12+1000 1203 

Records per track = (10 blocks)(50 records per block) = 500 

Prime data tracks required (T) = 200,000 records +1 = 401 
500 records per track 

step 2 

You will want to anticipate the number of tracks required for 
cylinder overflow areas. The computation is the same as for 
prime data tracks, but you must remember that overflow records 
are unblocked and a 10-byte link field is added. Remember, if 
you exceed the space allocated for any cylinder overflow area, 
an independent overflow area is required. Those records are not 
placed in another cylinder overflow area. 

Overflow records=l+Track capacity-lenQth of last ov~rflow record 
per track (Ot) Length of other overflow records 

Ot = 1+«Ct-Rn)/Ri) 

Example: Approximately 5000 overflow records are expected for 
the data set described in step 1. Since 56 overflow records will 
fit on a track, 90 overflow tracks are required. This is 90 
overflow tracks for 401 prime data tracks, or approximately 1 
overflow track for every 4 prime data tracks. Since the 3336 
diSK pacK has 19 tracks per cylinder, it would probably be best 
to allocate 4 tracks per cylinder for overflow. 

at = 1 + 13,165-(191+12+20+10) = 1 + 12,932 = 1+55 = 56 
191+12+20+10 233 

Overflow tracKs required = 5000 records = 90 
56 records per track 

Overflow tracks per cylinder (Oc) = 4 

step 3 

You will have to set aside space in the prime area for track 
index entries. There will be two entries (normal and overflow) 
for each track on a cylinder that contains prime data records. 
The data field of each index entry is always 10 bytes long. The 
key length corresponds to the key length for the prime data 
records. How many index entries will fit on a track? 

Index entries = 
per track (It) 

1 + Track capacity - L~ngth of last index entry 
Length of other index entries 

It = 1 + «Ct-En)/Ei) 

Example: Again assuming use of a 3336 disk pack and records with 
12-byte keys, we find that 61 index entries will fit on a track. 

It = 1 + ~~5-(191+12+10) = 1 + ~,952 = 1+60 = 61 
191+(12+10) 213 

step 4 

The number of tracks required for track lndex entries will 
depend on the number of tracks per cylinder and the number of 
track index entries per track. Any unused space on the last 
track of the track index can be used for any prime data records 
that will fit. 

Number of 
trk index =2(Tracks per cylinder-overflow tracks per cylinder)+l 
trks per Index entries per track+2 
cylinder 
(Ic) 

138 OS/VS2 Data Management Services Guide 

" 



• 

Ie = (2(Tc-Oc)+1)/(It+2) 

Note that for variable-length records or when a prime data 
record will not fit on the last track of the track index, the 
last track of the track index is not shared with prime data 
records. In such a case, if the remainder of the division is 
less than or equal to 2, drop the remainder. In all other cases, 
round the quotient up to the next integer. 

Example: The 3336 disk pack has 19 tracks per cylinder. You can 
fit 61 track index entries per track. Therefore, you need less 
than 1 track for each cylinder: 

Ie = 2(19-4)+1 = 31 
-61+-2-- 63 

The space remaining on the track is (1-31/63) (13,165) = 6686 
bytes. 

This is enough for 6 blocks of prime data records. Since the 
normal number of blocks per track is 10, the blocks use 6/10 of 
the track, and the effective value of Ie is therefore 1-6/10 = 
2/5. 

Note that space is required on ~he last track of the track index 
for a dummy entry to indicate the end of the track index. The 
dummy entry consists of an 8-byte count field, a key field the 
same size as the key field in the preceding entries, and a 
10-byte data field. 

step 5 

Next you have to compute the number of tracks available on each 
cylinder for prime data records. You cannot include tracks set 
aside for cylinder overflow ~ecords~ 

Prime data 
tracks per = 
cylinder 

Tracks 
per cylinder 

Pc = Tc-Oc-Ic 

Overflow tracks 
per cylinder 

Index tracks 
per cylinder 

Example: If you set aside 4 cylinder overflow tracks, and you 
require 2/5 of a track for the track index, 14 3/5 tracks are 
available on each cylinder for prime data records. 

Pc = 19-4-2/5 = 143/5 

step 6 

The number of cylinders required to allocate prime space is 
determined by the number of prime data tracks required divided 
by the number of prime data tracks available on each cylinder. 
Thi s area includes space for the pr i me data' records, track 
indexes, and cylinder overflow records. 

Number of 
cylinders = 
required 

c = 

Prime data tracks required 
Prime data tracks,per cylinder 

T/Pc 

Example: You need 401 tracks for prime data records. You can use 
14-3/5 tracks per cylinder. Therefore, 28 cylinders are required 
for your prime area and cylinder overflow areas. 

C = (401)/(14 3/5) = 27+ (round up to 28) 

Part 3: Data Set Disposition and Space Allocation 139 



step 7 

You will need space for a cylinder index as well as track 
indexes. There is a cylinder index entry for each track index 
(for each cylinder allocated for the data set). The size of each 
entry is the same as the size of the track index entries; 
therefore, the number of entries that will fit on a track is the 
same as the number of track index entries. Unused space on a 
cylinder index track is not shared. 

Number of tracks 
required for = 
cylinder index 

Ci = (C+l)/It 

Example: You have 28 track indexes (from Step 6). Since 61 index 
entries fit on a track (from step 3), you need 1 track for your 
cylinder index. The remaining space on the last track is unused. 

Ci = (28+1)/61 = 29/61 = 0.475 < 1 

Note that every time a cylinder index crosses a cylinder 
boundary, ISAM writes a dummy index entry that lets ISAM chain 
the index levels together. The addition of dummy entries can 
increase the number of tracks required for a given index level. 
To determine how many dummy entries will be required, divide the 
total number of tracks required by the number of tracks on a 
cylinder. If the remainder is 0, subtract 1 from the quotient. 
If the corrected quotient is not 0, calculate the number of 
tracks these dummy entries rRquire. Also consider any additional 
cylinder boundaries crossed by the addition of these tracks and 
by any track indexQ5 starting and stopping within a cylinder. 

step 8 

If you have a data set large enough to require master indexes, 
you will want to calculate the space required according to the 
number of tracks for master indexes (HTM parameter) you 
specified in the DeB macro instruction or the DD statement. 

If the cylinder index exceeds the NTM specification, an entry is 
made in the master index for each track of the cylinder index. 
If the master index itself exceeds the NTM specification, a 
second-level master index is started. Up to three levels of 
master indexes are created if required. 

The space requirements for the master index are computed in the 
same way as those for the cylinder index. 

Number of tracks 
required for 
master indexes 

= Number of cylinder index tracks+l 
Index entries per track 

Ml = (Ci+l)/It when Ci~NTM 
M2 = (Ml+l)/It when Ml~NTM 
M3 = (M2+1)/It when M2~NTM 

Example: Assume that your cylinder index will require 22 tracks. 
Since large keys are used, only 10 entries will fit on a track. 
Assuming that NTM was specified as 2, 3 tracks will be required 
for a master index, and two levels of master index will be 
created. 

Ml = (22+1)/10 = 2.3 

Note that every time a master index crosses a cylinder boundary, 
ISAM writes a dummy index entry that lets ISAM chain the index 
levels together. The addition of dummy entries can increase the 
number of tracks required for a given index level. To determine 
how many dummy entries will be required, divide the total number 
of tracks required by the number of tracks on a cylinder. If the 
remainder is 0, subtract 1 from the quotient. If the corrected 
quotient is not 0, calculate the number of tracks these dummy 

140 OS/VS2 Data Management Servi ces Gui de 

, 

/'--.,., 

\,_ •.. / 

c 



y 

c· 

entries require. Also consider any additional cylinder 
boundaries crossed by the addition of these tracks and by any 
track indexes starting and stopping within a cylinder. 

summary: Indexed sequential Space Requirement calculations 

1. How many blocks will fit on a track? 

Bt = 1 + «Ct-Bn)/Bi) 

2. How many overflow records will fit on a track? 

Ot = 1 + «Ct-Rn)/Ri) 

3. How many index entries will fit on a track? 

It = 1 + «Ct-En)/Ei) 

4. How many track index tracks are needed per cylinder? 

Ic = (2(Tc-Oc)+1)/(It+2) 

5. How many tracks on each cylinder can be used for prime data 
records? 

Pc = Tc-Oc-Ic 

6. How many cylinders are needed for the prime data area? 

c = T/Pc 

7. How many tracks are required for the cylinder index? 

Ci = (C+1)/It 

8. How many tracks are required for master indexes? 

M = (Ci+l)/It 

CONTROL AND DISPOSITION OF DATA SETS 

You specify two kinds of status and disposition information for 
the data sets you use for your processing by coding 
DISP=(status,disposition) in the disposition field of the DD 
statement. The first kind deals with the status of the data set 
when you begin processing and the relationship of the data set 
to other job steps in your job or other jobs. The second deals 
with what is to be done with the data set when you have 
completed processing. In the latter case, you can take advantage 
of the catalog of the operating system. 

A data set that is being used for input has a status of OLD. If 
it can be used by more than one job, the status should be 
specified as SHR. If you are going to add to the input data set, 
specify MOD. The system automatically positions the access 
mechanism after the last record when the data set is opened. A 
new output data set should be indicated as NEW. 

Having identified the status of the data set at the beginning of 
your job step, you should specify how you want it disposed of at 
the end of processing. If the disposition is to be unchanged, 
you need not specify anything. The status of an existing data 
set remains unchanged; a new data set is deleted. The requested 
disposition is performed at the end of the job step. A data set 
to be used in a later job can be kept (KEEP) until a subsequent 
request is made to delete it. If the data set is to be used by 

"more than one job step in the same job, you can specify that it 
;s to be passed (PASS). 

Part 3: Data Set Disposition and Space Allocation 141 



If you specify the CATlG disposition, the data set name is 
recorded in the catalog by the system and its volume is noted. 
An old data set can subsequently be removed from the catalog if 
you specify UNCATlG. 

If you wish, you can specify one disposition to be performed if 
the job step terminates normally, and a different disposition to 
be performed if the job step terminates abnormally. For example, 
you can specify DISP=(OlD,DELETE,KEEP) if you wish to delete a 
data set under normal conditions, but wish to keep it if 
processing is abnormally terminated. For normal termination, you 
can specify any disposition-PASS, KEEP, DELETE, CATLG, or 
UNCATlG; for abnormal termination, you can specify any 
disposition except PASS. 

ROUTING DATA THROUGH THE SYSTEM INPUT AND OUTPUT STREAMS 

The job entry subsystem is a system facility that provides 
spooling and scheduling of input and output data streams. 

Spooling includes two basic functions: 

• Input streams are read from the input device and stored on 
an intermediate storage device in a format convenient for 
later processing by the system and by the user's program. 

• Output streams are similarly stored on an intermediate 
device until a convenient time for printing or punching. 

Scheduling provides the highest degree of system availability 
through the orderly use of system resources that are the objects 
of contention. 

With spooling, unit record devices are used at full rated speed 
if enough buffers are available, and they are used only for the 
time needed to read, print, or punch the data. Without spooling, 
the device is occupied for the entire time that a job is doing 
other processing. Also, because data is stored instead of being 
transmitted directly, output can be queued in any order and 
scheduled by class and by priority within each class. 

You enter data into the system input stream by preceding it with 
a DD * or DD DATA JCl statement. This is a SYSIN data set. 

Your output data can be printed or punched from a SYSOUT data 
set, which is called the output stream. You code the SYSOUT 
keyword parameter in your DD statement and designate the 
appropriate output class. For example, SYSOUT=A requests output 
class A. The class-device relationship is established for each 
installation, and a list of devices assigned to each output 
class will enable you to select the appropriate one. Refer to 
OS/VS2 JCL for further information on SYSIN and SYSOUT 
parameters. 

SYSIN and SYSOUT must be BSAM or QSAM data sets and you open and 
close them in the same manner as any other data set processed on 
a unit record device (except when multiple DCBs are used to 
write to the same output class, the records are not 
interspersed.) The DCB exit routine will be entered in the usual 
manner if you specify it in an exit list. 

When you use QSAM with fixed7length blocked records or BSAM, the 
DCB block size parameter does not have to be a multiple of 
logical record length (lRECL) if the block size is specified 
through the SYSOUT DD statement. Under these conditions, if 
block size is greater than LRECl but not a multiple of lRECl, 
block size is reduced to the nearest lower multiple of lRECl 
when the data set is opened. This feature allows a cataloged 
procedure to specify blocking for SYSOUT data sets, even though 
your lRECl is not known to the system until execution. 

142 OS/VS2 Data Management Serv ices Gu ide 

" 



C'\ 
./ 

Therefore, the SYSOUT DD statement of the go step of a 
compile-load-go procedure can specify block size without block 
size being a multiple of LRECL. For further information, refer 
to OS'/VS2 JCl. 

Because a SYSOUT data set is written on a direct-access device, 
you should omit the DEVD operand in the DCB macro instruction, 
or should code DEVD=DA. Because SYSIN and SYSOUT data sets are 
spooled on intermediate devices, you should also avoid using 
device dependent macro instructions (such as FEOV, CNTRL, PRTOV, 
BSP, or SETPRT) in processing these data sets. (See the 
sections, "Device Control" and "Device Independence.") With 3800 
Enhancements, you can use SETPRT when processing spooled data 
sets. For further information, refer to IBM 3800 Printing 
Subsystem Programmer's Guide. 

The job entry subsystem controls all blocking and deblocking of 
~our data to optimize system operation and ignores the number of 
channel programs (NCP) you specify. The block size (BLKSIZE) and 
number of buffers (BUFNO) specified in your program have no 
correlation with what is actually used by the job entry 
SUbsystem. Therefore, you can select the blocking factor that 
best fits your ap~lication program with no effect on the 
spooling efficiency of the system. For QSAM applications, move 
mode is as efficient as locate mode. 

All record formats are allowed, except that spanned records 
(RECFM=VS or VBS) cannot be specified for SYSIN. A record format 
of FIXED is supplied if it is not specified for SYSIN. 

SYSIN support for undefined records is not compatible. The 
entire 80-byte image is treated as a record. Therefore, a read 
of less than 80-bytes results in the transfer of the entire 
80-byte image to the record area specified in the READ macro. 

The logical record length value (JFCLRECL field in the JFCB) is 
filled in with the logical record length value of the input data 
set. This value is increased by four if the record format is 
variable (RECFM=V or VB). The logical record length may be a 
size other than the size of the input device, if the SYSIN input 
stream is supplied by an internal reader. The job entry 
subsystem will supply a value in the JFClRECl field of the JFCB 
if that field is found to be zero. 

The blocksize value (JFCBLKSI field in the JFCB) is filled in 
with the blocksize value of the input data set. This value is 
increased by four greater than the value calculated for the 
logical record value (that is, input data set logical record 
length +4) if the record format is variable (RECFM=V or VB). The 
job entry subsystem will supply a value in the JFCBLKSI field of 
the JFCB if that field is found to be zero. 

Your program is responsible for printing format, pagination, and 
header control. You can supply control characters for SYSOUT 
data sets in the normal manner by specifying ANSI or machine 
characters in the DCB. Standard controls are provided by default 
if they are not specified. The length of output records must not 
exceed the allowable maximum length for the ultimate device. 
Cards can be punched in EBCDIC mode only. 

Your SYNAD routine will be entered if an error occurs during 
data transmission to or from an intermediate storage device. 
Again, because the specific device is indeterminate, your SYNAD 
routine code should be device independent. 

Part 3: Data Set Disposition and Space Allocation 143 



CONCATENATING SEQUENTIAL AND PARTITIONED DATA SETS 

Two or more sequent~al or partitio~ed data sets can be 
automatically retrieved by the system and processed successively 
as a single data set. This reading technique is known as 
concatenation. The maximum number of data sets that can be 
concatenated \s governed by the limit of 255 extents (input data 
sets only). For examplet 255 single extent data sets can be 
concatenated t but 16 data sets each with 16 extents cannot be 
concatenated. 

To save time when process~ng two consecut~ve data sets on a 
single volume, YOU" specify LEAVE in your OPEN macro instruct~on. 
Concatenated data sets cannot be read backward. 

When data sets are concatenated, the system treats the group as 
a single data set and only one data extent block (DEB) is 
constructed. Thust it is important to consider the 
characteristics of the individual data sets being concatenated. 
Data sets with like characteristics are those that may be 
processed correctly using the same data control block (DCB), 
input/output block (lOB), and channel program. Any exception 
makes them unlike. Concatenated partitioned data sets are always 
treated as like and use the attributes of the first data set 
only. You must inform the system by modifying the DCBOFLGS f~eld 
of the DCB if unlike data sets are concatenated (this is not 
required for spool data sets, because EOV automatically treates 
them as unlike data sets). The indication must be made before 
the end of the current data set is reached. You must set bit 4 
to 1 by us~ng the instruction 01 DCBOFLGS,X'08' as descr~bed ~n 
"Modifying the Data Control Block." If bit 4 of the DCBOFLGS 
field ~s 1, end-of-volume processing for each data set will 
issue a CLOSE for the data set just read and an OPEN for the 
next concatenated data set. Th~s opening and closing procedure 
updates the fields in the DCB and, if necessary, builds a new 
lOB and a new channel program. If the buffer pool was obta~ned 
automat~cally by the open rout~ne, the procedure also frees the 
buffer pool and obtains a new one for the next concatenated data 
set. The procedure does not issue a FREEPOOL for the last 
concatenated data set. Unless you have some way of determining 
the characteristics of the next data set before ~t is opened, 
you should not ~eset the DCBOFLGS field to indicate l~ke 
characteristics during processing. When you concatenate data 
sets with unlike attributes, no EOV ex~ts are taken. 

When unl~ke data sets have been concatenated, you should not 
issue multiple input requests, that is, a series of READ or GET 
macro instructions, in your program. If you do, you will have to 
arrange some way to determine which requests have been completed 
and which must be reissued. In any case, the GET or READ macro 
.instruction that detected the end of data set will have to be 
reissued. Figure 65 illustrates a possible routine for 
determining when a GET or READ must be reissued. This 
restr~ction does not apply to like data sets since no open or 
close operation is necessary. between data sets. 

144 OS/VS2 Data Management Services Guide 

c 



Check 

On Set 
>-____ --;~ Reread Switch 

Off 

Process 

Set 
Reread Switch 

On 

Return to 
Check via Open * 

Yes 

DCBEXIT 

*Returns are to control 

program address in register 14 

Set First

Time-In 

Switch Off 

Set Bit 4 
of OFLGS 

to 1 

Figure 65. Reissuing a READ for Unlike Concatenated Data Sets 

When the change from one data set to another is made, label 
exits are taken as required; automatic volume switching is also 
performed for multiple-volume data sets unless they are 
partitioned. Your end-of-data-set (EODAD) routine is not entered 
until the last data set has been processed, except that for 
partitioned data sets, your EODAD routine receives control at 
the end of each member. At that time, you can process the next 
member or close the data set. 

You process a concatenation of partitioned data sets the same 
way you process a single partitioned data set with one 
exception. You must use the FIND macro instruction to begin 
processing a member; you cannot use the POINT (or NOTE) macro 
instruction until after the FIND macro instruction has been 
issued. Figure 49 on page 101 shows how to process a single 
partitioned data set using FIND. If two members of different 
data sets in the concatenation have the same name, the FIND 
macro instruction determines the address of the first one in the 
concatenation. You would not be able to process the second one 
in the concatenation. The BLOL macro instruction provides the 
concatenation number of the data set to which the member belongs 
in the K field of the build list. See the section 
"BLOL-Construct a Directory Entry List" in Part 2 of this book. 

If issuing an ROJFCB macro, see the RDJFCB macro instruction in 
the QS/VS2 System ProQramming library: Data Management. 

Part 3: Data Set Disposition and Space Allocation 145 



Rotational position sensing Considerations 

Direct-access storage devices with the rotational position 
sensing (RPS) feature (for example, the 3330) usually employ 
channel programs that are not compatible with direct-access 
storage devices that lack the RPS feature. Therefore, if you 
concatenate otherwise "like" data sets r~siding on devices both 
with and without the RPS feature, standard (non-RPS) channel 
programs will be used, with a resultant loss of the I/O overlap 
efficiency of rotational position sensing. Concatenated 
partitioned data sets are alwavs treated as "like" data sets, 
regardless of how the DCBOFLGS field is set in the DCB. Data 
sets with undefined length records and track overflow (RECFM=UT 
specified in the DCS) are not processed with the RPS feature. 

When you concatenate sequential data sets with "unlike" 
attributes, and the "unlike" attribute bit in the DeB is set 
prior to open, and no non-RPS direct-access devices are included 
in the concatenation, RPS channel programs are generated. If you 
include both RPS and non-RPS direct-access devices in the 
concatenation, non-RPS channel programs are generated in all 
cases. 

Further discussion and examples of concatenated data sets are 
contained in OS/VS2 JCL. 

CATALOGING DATA SETS 

The MVS operating system has a catalog structure consisting of a 
VSAM master catalog, VSAM user catalogs, and, 9ptionally, 
control volumes (CVOLS). Figure 66 shows the MVS catalog 
structure. 

Master Catalog 

USERID 

SYSCTLG.Vllllll' l-J--------~ 

UCAT 

Data Set A 

Data Set A 

User Catal09 

Data Set UCAT.B 

Data Set 
UCAT.B 

1111111 is the volume serial of the control volume. 

Figure·66. MVS Catalog structure 

Control Volume 

Data Set 
USERID.B 

There is one master catalog on each system. It is required and 
contains entries for system data sets. It is also the VSAM 
master catalog and does not have to be on the system residence 

146 OS/VS2 Data Management Servi ces Gui de 

, 

c 



( 

'---

volume. The master catalog contains a pointer to each user 
catalog. Both VSAM and non-VSAM data sets can be cataloged in a 
user catalog. 

Non-VSAM data sets can be cataloged on control volumes (SYSCTLG 
data sets). The master catalog contains a pointer to each 
control volume. Data sets can be cataloged, uncataloged, or 
recataloged. For more information on using CVOLs in an MVS 
system, see OS/VS2 MVS CVOl Processor. If a data set is not 
cataloged in the master catalog, the first name of a qualified 
data set name indicates the user catalog or control volume in 
which it is cataloged. A user catalog can also be connected to 
the VS2 system as a job catalog or a step catalog. 

Permanent Mass Storage System (MSS) data sets should be 
cataloged to allow efficient use of the Mass storage Volume 
Control (MSVC) functions. For information on MSVC, see OS/VS 
Mass storage System (MSS) Services: Gp-neral Informatio-n-.---

Entering a Data set Name in the catalog 

The data set name of a non-VSAM data set can be entered in a 
master or user catalog through (1) job control language (DISP 
parameter), (2) Access Method Services (DEFINE command), or (3) 
catalog management macro instructions (CATALOG and CAMLST). A 
non-VSAM data set name can be entered in a control volume 
through JCl or the catalog management macros. VSAM data sets can 
only be cataloged by using Access Method Services. 

Access Mefhod Services is also used to establish aliases for 
data set names and to connect user catalogs and control volumes 
to the master catalog. See OS/VS2 Access Method Services for 
information on how to use the Access Method Services commands. 
See OS/VS2 System Programming library: Data Management for 
information on how to use the catalog management macro 
instructions. 

GENERATION DATA GROUPS 

A generation data group is a group of related cataloged data 
sets. The manner in which these data sets are cataloged is what 
makes them a generation data group. Within a generation data 
group, the generations can have like or unlike DCB attributes 
and data set organizations. If the attributes and organizations 
of all generations in a group are identical, the generations can 
be retrieved together as a single data set. Each data set within 
a generation data group is called a generation data set. 
Generation data s~ts are sometimes called generations. 

There are advantages to grouping related data sets. Because the 
catalog management routines can refer to the information in a 
special index--called a generation index--in the catalog: 

• All of the data sets in the group can be referred to by a 
common name. 

• The operating system is able to keep the generations in 
chronological order. 

• Outdated or obsolete generations can be automatically 
deleted by the operating system. 

The management of a generation data group depends upon the fact 
that generation data sets have sequentially ordered 
names--absolute and relative names--that represent their age. 
The absolute generation name is the representation used by the 
catalog management routines in the catalog. Older data sets have 
smaller absolute numbers. The relative name is a signed integer 
used to refer to the latest (0), next to the latest (-1), etc. 

Part 3: Data Set Disposition and Space Allocation 147 



generation. The relative number can also be used to catalog a 
new generation (+1). 

In MVS, a generation data group base ;s created in a VSAM 
catalog before the generation data sets are cataloged. A 
generation data group is represented in the VSAM catalog by a 
generation data group base entry. The Access Method Services' 
DEFINE command is used to create the generation data group base. 
See OS/VS2 Access Method Services for information on how to 
define and/or catalog generation data sets. 

ABSOLUTE GENERATION AND VERSION NUMBERS 

An absolute generation and version number is used to identify a 
specific generation of a generation data group. The generation 
and version numbers are in the form GxxxxVyy, where xxxx is an 
unsigned four-digit decimal generation number (0001-9999) and yy 
is an unsigned two-digit decimal version number (00-99). For 
example: 

• A.B.C.G0001VOO is generation data set one, version zero, in 
generation data group A.B.C. 

• A.B.C.G0009VOl is generation data set nine, version one, in 
generation data group A.B.C. 

The number of generations and versions is limited by the number 
of digits in the absolute generation name, that ;5, 9999 for 
generations and 100 for versions. 

The generation number is automatically maintained by the system. 
The number of generations kept depends on the size of the 
generation index. For example, if the size of the generation 
index allows ten entries, the ten latest generations may be 
maintained in the generation data group. 

The version number allows you to perform normal data set 
operations without disrupting the management of the generation 
data group. For example, if you want to update the second 
generation in a three-generation group, replace generation two, 
version zero, with generation two, version one. Only one version 
is kept per generation. 

A generation can be cataloged using either absolute or relative 
numbers. When a generation is cataloged, a generation and 
version number is placed as a low level entry in the generation 
data group. In order to catalog a version number other than VOO, 
you must use an absolute generation and version number. 

A new version of a specific generation can be cataloged 
automaticallY by specifying the old generation number along with 
a new version number. For example, if generation A.B.C.G0005VOO 
is cataloged in the index and you now create and catalog 
A.B.C.G0005V01, the new entry is cataloged in the index location 
previously occupied by A.B.C.G0005VOO. This process removes the 
old entry from the catalog but does not scratch the old version. 
To scratch the old version and make its space available for 
reallocation, a 00 card, describing the data set to be deleted, 
with DISP=(OlD,DELETE) should be included at the time the data 
set is to be replaced by the new version. 

RELATIVE GENERATION NUMBER 

As an alternative to using absolute generation and version 
numbers when cataloging or referring to a generation, you can 
use a relative generation number. To specify a relative number, 
use the generation data group name followed by a negative 
integer, a positive integer, or a zero, enclosed in parentheses. 
For example, A.B.C(-l). A.B.C(+l), or A.B.C(O). 

The value of the specified integer tells the operating system 
what generation number to assign to a new generation, or it 

148 OS/VS2 Data Management Services Guide 

• 



C"" 
~ ........ / 

(~ 

• 

c:, 

tells the system the location (in the generation index) of an 
entry representing a previously cataloged generation. 

When you use a relative generation number to catalog a 
generation, the operating system assigns an absolute generation 
number and a version number of VOO to represent that generation. 
The absolute generation number assigned depends on the number 
last assigned and the value of the relative generation number 
that you are now specifying. For example if, in a previous job 
generation, A.B.C.G0005VOO was the last generation cataloged, 
and you specify A.B.C(+l), the generation now cataloged is 
assigned the number G0006VOO. Though any positive relative 
generation number can be used, a number greater than 1 may cause 
absolute generation numbers to be skipped. For example, if you 
have a single-step job, and the generation being cataloged is a 
+2, one generation number is skipped. However, in a 
multiple-step job, one step may have a +1 and a second step a 
+2, and no numbers are skipped in this case. 

Note: If you do not specify a volume in the JCl for a new 
generation data set, and the data set is not opened, that data 
set is not cataloged. 

Programming Considerations for Multiple-step Jobs 

One of the reasons for using generation data groups is to allow 
the system to maintain a given number of related cataloged data 
sets. If you attempt to delete or uncatalog any but the oldest 
of the data sets of a generation data group in a multiple-step 
job, catalog management can lose orientati~n within the data 
group. This can cause the deletion, uncata10ging, or retrieval 
of the wrong data set when referring to a specified generation. 
The rule is, if you delete a generation data set in a 
multiple-step job, do not refer to any older generation in 
subsequent job steps. 

Also, it is recommended that in a multiple-step job, you catalog 
or uncatalog data sets using JCl instead of IEHPROGM or a user 
program. Since AllOCATION/UNAlLOCATION monitors data sets during 
job execution and is not aware of the functions performed by 
these programs, data set orientation may be lost or conflicting 
functions may be performed in subsequent job steps. 

When you use a relative generation number to refer to a 
generation that was cataloged in a previous job, the relative 
number has the following meaning: 

• A.B.C(O) refers to the latest existing cataloged entry. 

• A.B.C(-l) refers to the next-to-the-latest entry, etc. 

When cataloging is requested via JCl, all actual cataloging 
occurs at step termination, but the relative generation number 
remains the same throughout the job. Because this is 50: 

• A relative number used in the JCl refers to the same 
generation throughout a job. 

• A job step that terminates abnormally may be deferred for a 
later step restart. If the step cataloged a generation data 
set via JCl, you must change all relati~e generation numbers 
in the succeeding steps via JCl before resubmitting the job. 

For example, if the ~ucceeding steps contained the relative 
generation numbers: 

• A.B.C(+l), which refers to the entry cataloged in the 
terminated job step. 

• A.B.CeO), which refers to the next to the latest entry. 

• A.B.C(-l), which refers to the latest entry, prior to 
A.B.C(O). 

Part 3: Data Set Disposition and Space Allocation 149 



You must change them as follows before the step can be 
restarted: A.B.C(O), A.B.C(-l), A.B.C(-2), etc. 

BUILDING A GENERATION INDEX IN A CVOL 

A generation data group is managed via the information found in 
a generation index. (Note that an alias name cannot be assigned 
to the highest level of a generation index.) The BLDG function 
builds the index. The BLDG function also indicates how older or 
obsolete generations are to be handled when the index is full. 
For example, when the index is full, you may wish to empty it, 
scratch existing generations, and begin cataloging a new series 
of generations. 

After the index is built, a generation can be cataloged by its 
generation data group name and either an absolute generation and 
version number or a relative generation number. 

Examples on how to build a generation-data-group index are found 
in OS/VS2 MVS Utilities. 

CREATING A NEW GENERATION 

To create a new generation data set you must first allocate 
space for the generation, then catalog the generation. 

Allocating a Generation 

2 

To take full advantage of the facilities of the syste~, the 
allocation can be patterned after a previously allocated 
generation in the same group. This is accomplished by the 
specification of DCB attributes for the new generation as 
descr i bed belol.J. 

If you are using absolute generation and version numbers, DCB 
attributes for a generation can be supplied directly in the DCB 
parameter of the DO statement defining the generation to be 
created and cataloged. 

If you are using relative generation numbers to'catalog 
generations, DCB attributes can be supplied either: (1) by 
creating a model DSCB on the volume o~ which the index resides 
(the volume containing the catalog) or (2) by referring to a 
cataloged data set for the use of its attributes. Attributes can 
be supplied before you catalog a generation, when you catalog 
it, or at both times, as follows: 

1. Create a model DSCB on the volume on which your index 
resides. You can provide initial DCB attributes when you 
create your model; however, you need not provide any 
attributes at this time. Since only the attributes in the 
data set label are used, the model data set should be 
allocated with SPACE=(TRK,O) to conserve direct-access 
space. Initial or overriding attributes can be supplied when 
you create and catalog a generation. 2 To create a model 
DSCB, include the following DO statement in the job step 
that builds the index or in any other job step that precedes 
the step in which you create and catalog your generation. 

/Iname DD DSNAME=datagrpname,DISP=(,KEEP),SPACE=(TRK,(O», 
II UNIT=yyyy,VOLUME=SER=xxxxxx, 
/1 DCB=(applicable subparameters) 

Only one model DSCB is necessary for any number of generations. If you plan 
to use only one model, do not supply DCB attributes when you create the 
model. When you subsequently create and catalog a generation, include 
necessary DCB attributes in the DO statement referring to the generation. 
In this manner, any number of generation data groups can refer to the same 
model. Note that the catalog and model data set label are always located on 
a direct-access volume, even for a magnetic tape generation data group. 

150 OS/VS2 Data Management Sarv i cas Gu ide 

• 

c 



It 

(~ 

,. 

C~, 

2. 

The DSHAME is the common name by which each generation is 
identified; xxxxxx is the serial number of the volume 
containing the catalog. If no DCB 5ubparameters are desired 
initially, you need not code the DCB parameter. 

You do not need to create a model D5CB if you can refer to a 
cataloged data set whose attributes are identical to those 
you desire or to an existing model DSCB for which you can 
supply overriding attributes. A cataloged data set r'eferred 
to in this manner must reside on the same volume as your 
index. To refer to a cataloged data set for the use of its 
attributes, specify DCB=(dsname) on the DD statement that 
creates and catalogs your generation. To refer to an 
existing model, specify DCB=(modeldscbname, your attributes) 
on the DD statement that creates and catalogs your 
generation. 

passing a Generation 

A new generation may be passed when created. That generation may 
then be cataloged in a succeeding job step or deleted at the end 
of the job as in normal disposition processing when DISP=(,PASS) 
is specified on the DD statement. 

However, once a generation has been created with DISP=(HEW,PASS) 
specified on the DO statement, another new generation for that 
data group must not be cataloged until the passed version has 
been deleted or cataloged. To do so would cause the wrong 
generation to be used when referencing the passed generation 
data set. If that data set was later cataloged, a bad generation 
would be cataloged and a good one lost. 

For example, if A.B.C(+!) was created with DISP=(HEW,PASS) 
specified on the DO statement, then A.B.C.(+2) must not be 
created with DISP=(NEW,CATLG) until A.B.C(+1) has been cataloged 
or deleted. 

By using the proper JCL, the advantages to this support are: 

• JCL will not have to be changed in order to rerun the job. 

• The lowest generation version will not be deleted from the 
index until a valid version is cataloged. 

creating an ISAM Data set as Part of a Generation Data Group 

To create an indexed-sequential data set as part of a generation 
data group, you must: (1) create the indexed-sequential data set 
separately from the generation group and (2) use IEHPROGM to put 
the indexed-sequential data set into the generation group. 

Use the RENAME function to rename the data set. Then use the 
CATLG function to catalog the data set. For instance, if MASTER 
is the name of the generation data group, and GggggVvv ;s the 
absolute generation name, you would code the following: 

RENAME DSNAME=ISAM,VOL=2314=SCRTCH,NEWNAME=MASTER.GggggVvV 
CATLG DSHAME=MASTER.GggggVvv,VOl=2314=SCRTCH 

RETRIEVING A GENERATION 

A generation may be retrieved through the use of job control 
language procedures. Any operation that can be applied to a 
non-generation data set can be applied to a generation. For 
example, a generation can be updated and reentered in the 
catalog, or it can be copied, printed, punched, or used in the 
creation of new generation or non-generation data sets. 

You can retrieve a generation by using either relative 
generation numbers or absolute generation and version numbers. 

Part 3: Data Set Disposition ~nd Sp~c~ Allocation 151 



Because two or more jobs can compete for the same resource, 
generation data groups should be updated with care, as follows: 

• No two jobs running concurrently should refer to the same 
generation data group. As a partial safeguard against this 
situation, use absolute generation and version numbers when 
cataloging or retrieving a generation in a multiprogramming 
environment. If you use relative numbers, a job running 
concurrently may update the generation data group index, 
perhaps cataloging a new generation which you will then 
retrieve in place of the one you wanted. 

• Even when using absolute generation and version numbers, a 
job running concurrently might catalog a new version of a 
generation or perhaps delete the generation you wished to 
ret~ieve. For this reason, some degree of control should be 
maintained over the execution of job steps referring to 
generation data groups. 

CONTROLLING CONFIDENTIAL DATA 

PASSWORD PROTECTION FOR NON-VSAM DATA SETS 

Password protection as described here applies to non-V SAM data 
sets only. For information on password protection for VSAM data 
sets, see OS/VS2 Access Method Services. 

In addition to the usual label protection that prevents opening 
of a data set without the correct data set name, the operating 
system provides data set security options that prevent 
unauthorized access to confidential data. Two levels of 
protection options are available. You specify these options in 
the LABEL field of a DO statement with the parameter PASSWORD or. 
NOPWREAD. 

• Password protection (specified by the PASSWORD parameter) 
makes a data set unavailable for all types of processing 
until a correct password is entered by the system operator, 
or for a TSO job on MVS, the TSO user. 

• No-password-read protection (specified by the NOPWREAD 
parameter) makes a data set available for input without a 
password, but requires that the password be entered for 
output or delete operations. 

If an incorrect password is entered t~Jice, the job is terminated 
by the system if it is being requested by the open or EOV 
routine. For a scratch or rename request, a return code is 
given. 

You can request password protection when you create the data set 
b~1 usi ng the LABEL' fi eld of the DD statement in your JCl. The 
system sets the data set security byte either in the standard 
header label 1 as shown in OS/VS Tape labels or in the 
identifier data set control block (DSCB) as shown in OS/VS2 
S~stem Programming Library: Deb.ll.9..9.in£L!::!.Qndbook. Once you have 
requested security protection for magnetic tapes, you cannot 
remove it with JCL unless you recreate the data set and scratch 
the protected data set. 

In addition to requesting password protection in your JCL, you 
must enter at least one record for each protected data set in a 
data set named PASSWORD that must be created on the 
system-residence volume. You should also request password 
protection for the PASSWORD data set itself to prevent both 
reading and writing without knowledge of the password. 

For a data set on a direct-access device, you can place the data 
set under protection at the same time that you enter its 
password in the PASSWORD data set. You ca~ use the PROTECT macro 
instruction or the IEHPROGM utility program to add, change, or 

152 OS/VS2 Data Management Serv; ces Gu ide 



( 
~ 

.'1 

C
-' 

" 

delete an entry in the PASSWORD data set; with either of these 
methods, the system updates the DSCB of the data set to reflect 
its protected status. This provision eliminates the need for you 
to use JCL whenever you add, change, or remove security 
protection for a data set on a direct-access device. OS/VS2 
System Programming Library: Data Manaaement describes how to 
maintain the PASSWORD data set, including the PROTECT macro 
instruction; OS/VS2 MVS Utilities describes the IEHPROGM utility 
program. 

RACF PROTECTION FOR NON-VSAH DASD DATA SETS AND TAPE VOLUMES 

RACF (Resource Access Control Facility) protection as described 
here applies· to non-VSAM data sets and tape volumes. For 
information on RACF protection for VSAM data sets, see OS/VS2 
MVS Resource Access Control Facility (RACF): General 
Information Manual. 

RACF is a program product that provides for access control by 
identifying and verifying users and authorizing access to DAsD 
data sets, and tape volumes with either standard or ANSI labels, 
which are defined to RACF. 

You may define a data set to RACF automatically or explicitly. 
The automatic definition occurs when space is allocated for the 
data set, if the user has the automatic data set protection 
attribute or if PROTECT=YES is coded on the DO statement. The 
explicit definition of a data set to RACF is by use of the RACF 
command language. 

A tape volume is defined to RACF explicitly by use of the RACF 
command language or automatically. This automatic definition 
occurs when the first data set on the first (or only) private 
volume is opened for OUTPUT or OUTIN and PROTECT=YES has been 
coded in the DO statement. RACF protection of tape data sets is 
provided on a volume basis and not on a data set basis. All data 
sets on a tape volume are RACF-protected if the volume is 
RACF-protected. 

There are five levels of access authority which you may have to 
a RACF-defined DASD data set or tape volume. 

ALTER 
You have total control over the data set. If you define the 
DASD data set or tape volume to RACF, you have ALTER access 
authority. With ALTER authority, you can read and write the 
data set or tape volume, rename the data set, and scratch 
the data set, and you may authorize other users access to 
the tape volume or data set. 

CONTROL 
For non-VSAM data sets, CONTROL authority is equivalent to 
UPDATE authority. 

UPDATE 

READ 

NONE 

You are authorized to open the data set or tape volume for 
OUTPUT and all other open options. 

You are authorized to open the data set or tape volume for 
INPUT only. 

You are not authorized to open the data set or tape volume. 

If a DASD data set is both defined to RACF and 
password-protected, access to the data set is authorized only 
through RACF authorization checking. If a tape volume is defined 
to RACF and the data setes) on the tape volume is 
password-protected, access to any of the data sets is authorized 

Part 3: Data Set Disposition and Space Allocation 153 



only through RACF authorization checking of the volume. Data set 
password protection is bypassed. 

To protect multivolume nonVSAM DASD and tape data sets, you must 
define each volume of the data set to RACF as part-of the same 
volume set. When a RACF-protected data set is opened for output 
and extended to a new volume, the new volume will be 
automatically defined to RACF as part of the same volume set. 
When a multivolume physical sequentially organized data set is 
opened for output and the first volume opened is RACF-protected, 
each subsequent volume must either be RACF-protected as part of 
the same volume set, or the data set must not yet exist on the 
volume. When a multivolume tape data set is opened for output 
and the first volume opened is RACF-protected, each subsequent 
volume must be either RACF-protected as part of the same volume 
set, or the tape volume must not yet be defined to RACF. If the 
first volume opened is not RACF-protected, no subsequent volume 
may be RACF-protected. If a multivolume data set is opened for 
input (or a nonphysical sequentially organized data set is 
opened for output), no such consistency check is performed when 
subsequent volumes are accessed. 

154 OS/VS2 Data Management Serv ices Gu ide 

',.. 

t 



C_. 

,1 

APPENDIX A. DIRECT-ACCESS LABELS 

Only standard label formats are used on direct-access volumes. 
Volume, data set, and optional user labels are used (see 
Figure 67). In the case of direct-access volumes, the data set 
label is the data set control block (DSCB). 

Tracks 

Cylinder 

All Remaining 
Tracks of Volume 

Figure 67. Direct-Access Labeling 

VOLUME-LABEL GROUP 

[ 

IPL Records 

Volume Label 

1\ Additional Labels 

(Optional.L 

- 1 

VTOC DSCB 

Free Space DSCB 

DSCB 

DSCB 

Unused Storage .' 
Area for Data Sets 

I 

VTOC 

The volume-label group immediately follows the first two initial 
program loading (rPL) records on track 0 of cylinder 0 of the 
volume. It consists of the initial volume label at record 3 plus 
a maximum of seven additional volume labels. The initial volume 
label identifies a volume and its owner, and is used to verify 
that the correct volume is mounted. It can also be used to 
prevent use of the volume by unauthorized programs. The 
additional labels can be processed by an installation routine 
that is incorporated into the system. 

The format of the direct-access volume label group is shown in 
Figure 68 on page 156. 

Appendix A. Direct-Access Labels 155 



Field 1 (3 ) 

2 (1) 

3 (6) 

4 ( 1 ) 

5 (5) 

6 (25) 

7 (10) 

8 (29) 

(Up to 7 Additional Volume Labels) 
80-Byte Physical Record 

Volume Label Identifier (VOL) 

Volume Label Number (1) 

Volume Serial Humber 

Volume Security 

VTOC Pointer 

Reserved for Manufacturers (Blank) 

Reserved (Blank) 

Owner Hame and Address Code 

Blank 

Figure 6S. Initial Volume Label 

INITIAL VOLUME LABEL FORHAT 

The SO-byte initial volume label is preceded by a four-byte key 
containing VOL1. 

VOLUME LABEL IDENTIFIER (VOL): Field 1 identifies a volume 
label. 

VOLUME LABEL NUMBER (1): Field 2 identifies the relative 
. position of the volume label in a volume label group. It must be 
written as X'C'l'. 

The operating system identifies an initial volume label when, in 
reading the initial record, it finds that the first 4 characters 
of the record are VOLle 

VOLUME SERIAL NUMBER: Field 3 contains a unique identification 
code assigned when the volume enters the system. You can place 
the code on the external surface of the voltime for visual 
identification. The code is normally numeric (000001-999999), 
but may be any 1 to 6 alphameric or national (I, $, ~) 
characters, or a hyphen (X'60'). If this field is less than 6 
characters, it ;s padded on the right with blanks. 

VOLUME SECURITY: Field 4 is reserved for use by installations 
that wish to provide security for volumes~ Make this field a 
C'O' unless you have your own security processing routines. 

VTOC POINTER: Field 5 of direct-access volume label 1 contains 
the address of the VTOC in the form of CCHHR. 

156 OS/VS2 Data Management Servi ces Gui de 

(~ 
\ . '-.. ./' 



1 

C: 

RESERVED: Field 6 is reserved for future developmental purposes. 
Leave it blank. 

OWNER NAME AND ADDRESS CODE: Field 7 contains a unique 
identification of the owner of the volume. 

All the bytes in Field 8 are left blank. 

DATA SET CONTROL BLOCK (DSeB) 

The system automatically constructs a DSCB when space is 
requested for a data set on a direct-access volume. Each data 
set on a direct-access volume has one or more DSCBs to describe 
its characteristics. The DSCB appears in the VTOC and contains 
operating-system data, device-dependent information, and data 
set characteristics, in addition to space allocation and other 
control information. There are seven kinds of DSCB5~ each with a 
different purpose and a different format number. For an 
explanation of the seven kinds of DSCBs, see OS/VS2 System 
Programming Library: Debugging Handbook. 

USER LABEL GROUPS 

User header and trailer label groups can be included with data 
sets of physically sequential or direct organization. The labels 
in each group have the format shown in Figure 69. 

80-Byte Physical R~cord (Maximum of 8) 
~----------------~ 

Field 1 

2 

3 

Figure 69. 

(3) Label Identifier (UHL if Header, UTL if Trailer) 

( 1 ) Label Number (1 - 8) 

(76) User-Specified 

User Header and Trailer Labels 

Each group can include up to eight labels, but the space 
required for both groups must not be more than 1 track on a 
direct-access device. The current minimum track size allows a 
maximum of eight labels, including both header and trailer 
labels. Consequently, a program becomes device-dependent (among 
direct-access devices) when it creates more than eight labels. 

If user labels are specified in the DD statement (LABEL=SUL), an 
additional "track is normally allocated wh~n the data set is 
created. No adcntional track is allocat~d when specific tracks 
are requested (SPACE=(ABSTR, ... », or when tracks allocated to 
another data set are requested (SUBALLOC= ... ). In either case, 
labels are written on the first track that is allocated. 

Appendix A. Direct-Access Labels 157 



User Header label Group: The operating system writes these 
labels as directed by the processing program recording the data 
set. The first 4 characters of the user header label must be 
UHll, ... , UHL8; you can specify the remaining 76 characters. 
When the data set is read, the operating system makes the user 
header labels available to the problem program for processing. 

User Trailer Label Group: These labels are recorded (and 
processed) as explained in the preceding text for user header 
labels, except that the first 4 characters must be UTL1, •... , 
UTL8. 

USER HEADER AND TRAILER LABEL FORMAT 

LABEL IDENTIFIER: Field 1 indicates the kind of user header 
label. UHL indicates a user header label; UTL indicates a user 
trailer label. 

LABEL NUMBER: Field 2 identifies the relative position (1-8) of 
the label within the user label group. 

USER-SPECIFIED: Field 3 (76 bytes). 

158 OS/VS2 Data Management Serv ices Gu i do 

\" ...... -

1 

c 



c._. 

( 

) 

c: 

APPENDIX B. CONTROL CHARACTERS 

MACHINE CODE 

As an optional feature, each logical record, in any record 
format, may include a control character. This control character 
is recognized and processed if a data set is being written to a 
printer or punch. 

For format-F and format-U records, this character is the first 
byte of the logical record. 

For format-V records, it must be the fifth byte of the logical 
record, immediately following the record descriptor word. 

Two options are available. If either option is specified in the 
DCB, the character must appear in every record and other line 
spacing or stacker selection options also specified in the DeB 
are ignored. 

You can specify in the DCB that the machine code control 
character has been placed in each logical record. If the record 
is to be written, the appropriate byte must contain the command 
code bit configuration specifying both the write and the desired 
carriage or stacker select operation. 

The machine code control characters for a printer are as 
follows: 

Appendix B. Control Characters 159 



Print and Then Act Act ImmediatelyCNo Printing) 

Code in 

Code in 

Hexadecimal Action Code in HexOldecimal 

01 

09 

11 

19 

89 

91 

99 

A1 

A9 

B1 

B9 

C1 

C9 

01 

09 

El 

Print only (no space) 

Space 1 line OB 

Space 2 lines 13 

Space 3 lines IB 

Skip to channel 1 8B 

Skip to channel 2 93 

Skip to channel 3 9B 

Skip to channel 4 A3 

Skip to channel 5 AB 

Skip to channel 6 B3 

Skip to channel 7 BB 

Skip to channel 8 C3 

Skip to channel 9 CB 

Skip to channel 10 03 

Skip to channel 11 DB 

Skip to channel 12 E3 

The machine code control characters for a card read punch device 
are as follows: 

Hexadecimal Action 

01 

41 

81 

Select stacker 1 

Select stacker 2 

Select stacker 3 

other command codes for specific devices are contained in 
pUblications describing the control units and devices. 

160 OS/VS2 Data Management gerv ices Gui de 

1 
"''''''' , •. J' 

! 



-~-------- ---- - ----~----.- ... --.-.-.--... ---.--.----

EXTENDED AMERICAN NATIONAL STANDARDS INSTITUTE CODE 

In place of machine code, you can specify control characters 
defined by the American National Standards Institute, Inc. 
(ANSI). Whenever IBM publications refer to ANSI code, they are 
as follows: 

Code Action Before printing a Line 

b Space one line (blank code) 

o Space two lines 

Space three lines 

+ Suppress space 

1 Skip to channel 1 

2 Skip to channel 2 

3 Skip to channel 3 

4 Skip to channel 4 

5 Skip to channel 5 

6 Skip to channel 6 

7 Skip to channel 7 

8 Skip to channel 8 

9 

A 

Skip to channel 9 

Skip to channel 10 

B Skip to channel 11 

C Skip to channel 12 

Code Action After punching a Card 

V Select punch pocket 1 

W Select punch pocket 2 

These control characters include those defined by ANSI FORTRAN. 
If any other character is specified, it is interpreted as 'b' or 
V, depending on whether it is for a printer or a punch; no error 
indication is returned. 

Appendix B. Control Characters 161 



GLOSSARY OF ACRONYMS AND ABBREVIATIONS 

The following terms are defined as 
they are used in this book. If you do 
not find the term you are looking for, 
refer to the index or to the IBM Data 
Processino Gloss~ry, GC20-1699. ----

A: ANSI control code (value of RECFM) 

ABE: abnormal end (value of EROPT) 

ABEND: abnormal end (macro 
instruction) 

ABSTR: absolute track (value of SPACE) 

ACC: accept erroneous block (value of 
EROPT) 

AFF: affinity (channel separation 
parameter of DO statement or unit 
affinity value of UNIT) 

AL: American National Standard Labels 

ANSI: American National Standards 
Institute 

ASCII: American National Standard Code 
for Information Interchange 

AUL: American National Standard User 
labels (value of LABEL) 

B: blocked records (value of RECFM) 

BCDIC: binary coded decimal 
interchange code 

BDAM: basic direct access method 

SDW: block descriptor word 

BFALN: buffer alignment (operand of 
DCB) 

BFTEK: buffer technique (operand of 
DCB) 

BISAM: basic indexed sequential access 
method 

BLDL: build list (macro instruction) 

BLKSIZE: blocksize (operand of DCB) 

SPAN: basic partitioned access method 

BPI: bits per inch 

BSAM: basic sequential access method 

BSM: backspace past tapemark and 
forward space over tapemark (operand 
of CNTRL) 

ESP: backspace one block (macro 
instruction) 

162 OS/VS2 Data Management Servi ces Gui de 

ESR: backspace over a specified number 
of block~ (records) (operand of CNTRL) 

BUFCB: buffer pool control block 
(operand of DCB) 

BUFL: buffer length (operand of DCB) 

BUFNO: buffer number (operand of DCB) 

BUFOFF: Buffer offset (length of ASCII 
block prefix by wh~ch the buffer is 
offset; operand of DCB) 

CCW: channel command word 

CONTIG: contiguous space allocation 
(value of SPACE) 

CNTRL: control (macro instruction) 

CPU: central processing unit 

CSW: channel status word 

CYLOFL: number of tracks for cylinder 
overflow records (operand of DCB) 

D: format-D (ASCII variable-length) 
records (value of RECFM) 

DA: direct-access (value of DEVO or 
DSORG) 

DAU: direct-access unmovable data set 
(value of OSORG) 

Dcn: data control block (control block 
name or macro instruction) 

DCED: data control block dummy section 
macro instruction 

DD: data definition 

DEB: data extent block 

DEcn: data event control block 

DEN: magnetic tape density (operand of 
DCB) 

DEVD: device-dependent (operand of 
DCB) 

DISP: data set disposition (parameter 
of DO statement) 

DSCB: data set control block 

DSORG: data set organization (operand 
of DCB) 

EBCDIC: extended binary coded decimal 
interchange code 

EODAD: end-of-data set exit routine 
address (operand of DCB) 

\ , 
'>....- ..•• 



---- .. ----- ..... _.- ... _ .. _------_., ... _--

( 
',,-

EOF: end-of-file 

EOV: end-of-volume 

EROPT: error options (operand of DCB) 

ESETL: end sequential retrieval (QISAM 
macro instruction) 

EXCP: execute channel program (macro 
instruction) 

EXLST: exit list (operand of DCB) 

F: fixed-length records (value of 
RECFM) 

FB: fixed-length, blocked records 
(value of RECFM) 

FBS: fixed-length, blocked, standard 
records (value of RECFM) 

FBT: fixed-length, blocked records 
with track overflow option (value of 
RECFM) 

FCB: forms control buffer 

FEOV: force end-of-volume (macro 
instruction) 

FS: fixed-length, standard records 
(value of RECFM) 

FSM: forward space past tapemark and 
backspace over tapemark (operand of 
CNTRL) 

FSR: forward space over a specified 
number of blocks (records) (operand of 
CNTRL) 

GCR: group coded recording 

GL: GET macro, locate mode (value of 
MACRF) 

GM: GET macro, move mode (value of 
MACRF) 

HA: home address 

I/O: input/output 

INOUT: input then output (operand of 
OPEN) 

lOB: input/output block 

IPL: initial program load 

IRG: interrecord gap 

IS: indexed sequential (value of 
DSORG) 

ISAM: index~d sequenti~l access method 

ISU: indexed sequential unmovable 
(value of DSORG) 

JCL: job control language 

JFCB: job file control block 

JFCBE: job file control block 
extension for 3800 printer 

KEYLEN: key length (operand of DCB) 

LPA: link pack area 

LPALIB: link pack area library 

LRECL: logical record length (operand 
of DCB) 

M:.machine control code (value of 
RECFM) 

MACRF: macro instruction form (operand 
of DCB) 

MOD: modify data set (value of DISP) 

MSHI: main storage for highest-level 
index (operand of DCB) 

MSS: Mass Storage System 

MSV,C: Mass Storage Volume Control 

MSWA: main storage for work area 
(operand of DCB) 

NCP: number of channel programs 
(operand of DCB) 

NOPWREAD: no password to read a data 
set (value of LABEL) 

NRZI: non-return-to-zero-inverted 
(tape recording mod~) 

NSL: nonstandard label (value of 
LABEL) 

NTM: number of tracks in cylinder 
index for each entry in lowest level 
of master index (operand of DCB) 

OMR: optical mark read 

OPTCD: optional services code (operand 
of DCB) 

OS/VS: operating system/virtual 
storage 

OUTIN: output then input (operand of 
OPEN) 

PCI: program-controlled interruption 

PDAB: parallel data access block 

PDS: partitioned data set 

PE: phase encoding (tape recording 
mode) 

PL: PUT macro, locate mode (value of 
MACRF) 

PM: PUT macro, move mode (value of 
MACRF) 

Glossary of Acronyms And Abbreviations 163 



PO: partitioned organization (value of 
DSORG) 

POU: partitioned organization 
unmovable (value of DSORG) 

PRECL: physical record length (field 
of DCB) 

PRTSP: printer line spacing (operand 
of DCB) 

PS: physical sequential (value of 
DSORG) 

PSU: physical sequential unmovable 
(value of DSORG) 

QISAM: queued indexed sequential 
access methods 

QSAM: queued sequential access method 

RCE: read column eliminate 

RDBACK: read backward (operand of 
OPEN) 

RDW: record descriptor word 

RECFM: record format (operand of DCB) 

RKP: relative key position (operand of 
DCB) 

RLSE: release unused space (DD 
statement) 

RPS: rotational position sensing 

s: standard format records (value of 
RECFM) 

SDW: segment descriptor word 

SEP: separation (channel separation 
parameter of DD statement or unit 
separation value of UNIT) 

SER: volume serial number (value of 
VOLUME) 

SETL: set lower limit of sequential 
retrieval (QISAM macro instruction) 

SF: sequential forward (operand of 
READ or WRITE) 

SK: skip to a printer channel (operand 
of CNTRL) 

SKP: skip erroneous block (value of 
EROPT) 

164 OS/VS2 Data Management Servi ces Gui de 

SL: IBM standard labels (value of 
LABEL) 

SMSI: size of main-storage area for 
highest-level index (operand of DCB) 

SMSW: size of main-storage work area 
(operand of DCB) 

SP: space lines on a printer (operand 
of CNTRL) 

SS: select stacker on card reader 
(operand of CNTRL) 

SUL: IBM standard and user labels 
(value of LABEL) 

SVC: supervisor call 

SVCLIB: supervisor call library 

SYNAD: synchronous error routine 
address (operand of DCB) 

SYSIN: system input stream 

SYSOUT: system output stream 

T~ track overflow option (value of 
RECFM) 

TIOT: task I/O table 

TRe: table reference character 

TRTCH: track recording technique 
(operand of DCB) 

U: undefined length records (value of 
RECFM) 

UCS: universal character set 

UHL: user header label 

UTL: user trailer label 

v: format-V (variable-length) records 
(value of RECFM) 

VB: variable-length, blocked records 
(value of RECFM) 

VBS: variable-length, blocked, spanned 
records (value of RECFM) 

VS: virtual storage or 
variable-length, spanned records 

VToe: volume table of contents 

........ 



l' . 
/ 

abbreviations 162-164 
.ABE error option 26 

ABEND exit 38-43 
abnormal termination during open, 
close, EOV processing 

ESTAE exit 47 
STAE exit 47 
STAI exit 47 

absolu~e actual address 18 
allocating space for data sets 

containing 131 
use with direct data sets 125 

aosolute generation name 147 
ACC error option 26 
access method 2 

basic 51-55 
queued 2,49-51 
selecting 57 

Access Method Services 
DEFINE command 147 
program use of 147 

access techniques 
basic 2,51-55 
queued 2,49-51 

acronyms 162-164 
actual track address 

(MBBCCHHR) 18 
allocating space for data sets 

containing 131 
use with direct data 
sets 125,126 

use with feedback option 125 
address, direct-access storage 

device 
absolute actual 18 

allocating space for data set 
containing 131 

use with direct data sets 125 
direct 124 
indirect 124 
relative 19 

in directories 94-95 
use with direct data sets 125 

AFF affinity, channel 23 
alias entry in directory 

effect of changing directory 
entry 98 

specifying 94 
alignment 

buffer 66 
data control block 43 

allocation 
(see space allocation) 
American National Standard Code 
for Information Interchange 
(see ASCII block prefix; ASCII 
format) 

American National Standard labels 5 
American National Standard Institute 
(see ANSI control character; 
American National Standard labels) 

ANSI control character 
described 161 
device-type considerations 77 
used with chained 
scheduling 85-86 

with format-D records 14 
with format-F ASCII tape 

records 8 
anticipatory buffering 

omitted with basic access 
technique 51 

with queued access technique 49 
ASCII block prefix 

restriction 7,8,14 
with format-D records 14 
with format-F records 7-8 
with format-U records 15 

ASCII format 
restriction for 7-track tape 77 
translating data 

from 1,6,49,86 
translating data to 1,6,49,54 

ASCII tape 
, buffer alignment 67 

fixed-length records 8 
undefined-length records 15 
variable-length records 14 

associated data set 
restriction with chained 
scheduling 85 

ATLAS macro 56 
automatic blocking/deblocking 

with queued 
access techniques 49 
automatic cataloging of data 
sets 4 

automatic error options (EROPT) 
operand of DCB macro 26 

automatic volume 
switching 49,64,65,145 

auxiliary storage (see data set 
storage; direct-access storage; 
magnetic tape volumes) 

backspace 
by BSP macro 82 
by CNTRL macro 80 

basic access technique 
(see also BDAM, BISAM, BPAM, 
and BSAM) 

blocking 52 
buffer acquisition and 
control 66-71 

deblocking 52 
definition of 51-55 
overlapped I/O 53 
using BDl·J 10 

BCDlC translation to EBCDIC 78 
BDAM (basic direct-access method) 
data set 

(see also 
basic access technique) 

access technique 124 
adding records 127-129 
CHECK macro 55 
creating 126 
dynamic buffering 70,124 
exclusive control for 

updating 125 
extended search option 125 

Index 165 



feedback option 125 
organization 124 
processing 123-129 
READ macro 53 
record format 127 
restriction with chained 
scheduling 85 

selecting an access method 57 
sharing data set 45,47 
spanned variable-length 
records 10-14 

SYNAD routine 26 
updating records 127-129 
user labels 28,129 
WAIT macro 55 
when sharing a data set 45,47 
L.JRI T E macro 54 

BDW (block descriptor word) 10 
BFTEK operand of DCB macro 

BFTEK=A 11,70 
BFTEK=R spanned records 53 

BISAM (basic indexed sequential 
access method) data set 

(see also indexed sequential 
dil ta set) 

dynamic buffering 70 
retrieving 118-122 
sharing a DCB 47,120 
updating 118-122 
whe~ sharing a data set 45,47 

BLOL macro instruction 
build list for~mat 97 
coding example 101 
description 96 
updating a partitioned data 
set 101 

BLKSIZE operand of DCB macro 
description 22 
effect of datil check on 6,77 
for writing a short block 91 
for card reader and punch 79 
for undefined-length records 

l.J i th QSAM 86 
including block prefix 15 
requirement for direct data 
set 124 

specifying 84,130 
when ignored 134,143 

block count exit routine 36-37 
block, data 6 
block descriptor word (BDW) 10 
block prefix (ASCII) records 

buffer alignment 67 
with format-D records 14-15 
with format-F records 7-9 
with format-U records 15 

block size field (see BLKSIZE field) 
blocking 

automatic 49 
defined 6 
with basic access technique 52 
with fixed-length records 6-9 
with spanned records 10-11 
with variable-length 

records 9-10 
with undefined-length records 15 

boundary alignment 
buffer 67 
data control block 43 

BPAM (basic partitioned access 
method) data set 

concatenation 144-146 
creating 98-100 
defined 2,92-93 

EODAD routine 24 
processing 92-103 
restriction LoJith 

chained scheduling 101 
DCB ABEND exit routine 38 
fixed-length records, 

standard format 7 
search direct operation 86 

retrieving member 100 
space allocation for 134 
updating member 101 
l.Jhcn shar i ng a data set 45,47 

BSAM (basic sequential access 
method) data set 

as SYSIN/SYSOUT data sets 142 
creating 87 
creating a BDAM data set 126 
determining the length of a 

record 90 
EODAD routine 24,25 
extending 90 
how EODAD routine is entered 24 
overlap of I/O 53,85 
retrieving 88 
to update the directory 97 
updating 89-90 
user labels 28 
user totaling 33-35 
when sharing a dataset 45,47 
writing a short block 91 

BSP macro instruction 
description 82 
restriction in EODAD routine 24 

BUFCB operand in DCB macro 67 
buffer 

(see also FREEBUFi FREEDBUF; 
GETBUFj RELSE) 

acquisiton and control 66-76 
alignment 67 
automatic for ISAM 70 

direct 66,70 
dynamic 66,70 

control 69-76 
for basic access technique 66,68 
length (BUFL operand of DCB 
macro) 67,111 

number (BUFNO operand of DCB 
macro) 67,68,85 

pool 67-69 (see also buffer pool) 
releasing 75 
segment 66,69 
truncating 75 

buffer pool (see also BUILD; 
GETPOOL; FREEPOOL) 

automatic construction 66,68 
building 67-68 
coding examples 69 
description 66-67 
explicit 66 
freeing 68 
getting 68 
getting a buffer from 76 
returning a buffer to 76 
returning a dynamic buffer to 76 
static 66 

buffering 58 
anticipatory 

for queued 
technique 

omitted for 
technique 

direct control 
dynamic 66 

access 
49 
basic access 
51 
of 70 

166 OS/VS2 Data Management Services Guide 

(~' 
\, •... / 



-_._._. __ ._ ... _- _ ... _..... . - •. _--_ .... _----_._ ...... __ .... _-_.-... _-•... 

exchange 66,74 
look-ahead 49 
simple 66,71-:-74 

BUFL operand in DCB macro 
for card punch 79 
for constructing a buffer 

pool 67 
for ISAr1 111 
for printer 80 

BUFNO operand in DCB macro 
affecting chained scheduling 85 
affecting performance 85 
when constructing a buffer 

pool 67,68 
when ignored 143 

BUFOFF operand of DCB macro 
with format-DB records 86 
with QSAM or BSAM 8 
with variable-length 

records 14-15 
build list format 96 

(see also BLD-L) 
BUILD macro instruction 

description 67 
with ISAM data set 111 

BUILDRCD macro instruction 
description 67 
restriction 12 
usage 11,12 

CAMLST macro, use of 147 
capacity for direct-access 

cylinder 5,133 
record 18,126,130 
track 133 

card punch, record format with 79 
card reader 

record format with· 79 
rel~tionship with CNTRLmacro 79 
restriction with CNTRL macro 79 

carriage control characters 
defined 16,159,161 
specification of in RECFM· 
field 77 

CATALOG macro, use of 147 
catalog, system 146 

control volumes 146 
entering a data set name 147 

cataloging data sets 
automatic 4 
defined 1 
for a generation data 

group 147-148 
CCW (see channel command word) 
chained scheduling 

description 76,85,86 
restriction with 

BDAM 85 
calculating record length' 90 
CNTRL macro 85 
DOS checkpoint records, 

embedded on tape 85 
format-D records 14 
paper-tape reader 85 
partitioned data set 101 
SKP option 26 
spooled data sets 85 
track overflow 85 
UPDAT operand 85 

updating a sequential data 
set 89 

3525 Card Punch 86 
changing an address in the data 
control block 43,44 

channel command word (CCW) 
creation by OPEN 58 
PCI flag in 85 
use in simple buffering 71 

channel program 
e~ecute (EXCP) ·2,57 
number of (HCP) 53,85,143 

channel separation and affinity 
field of DO statement 23 

character set,· changing 81 
CHECK macro instruction 

description 55 
to enter EODAD routine 24 
to updute a partitioned data 
set 101 

to update a sequential data 
set 89 

use with BDAM 47 
use with SYNAD routine 26,52 
using WAIT instead 

(see WAIT macro instruction) 
when sharing ~ data set 45,47 
with basic access technique 52 

check routine, examining DECB 55 
checkpoint/restart 

check of JFCBFLAG 36 
restriction for LPALIB 36 

CHKPT macro instruction 
use in end-of-volume exit 

routine 36 
CLOSE macro instruction 

description 61-63 
for multiple data sets 63 
for parallel input 
processing 50-51 

in EODAD routine 24 
restriction with SYNAD 26,61 
temporary close option 61-63 
TYPE=T 61-63 
volume positioning 59,61,62,63 
with partitioned data set 98-100 
with STOW macro 98 

closing a data set 61-63 
CNTRL macro instruction 

device depnndence 80 
restrictions 

with BSP macro instruction 82 
with chained scheduling 85 
with DOS checkpoint records 81 

concatenation 
defined 144 
of data sets on RPS devices 146 
of partitioned data sets 144-146 
of sequential data sets 144,146 
of unlike data sets 144,146 
restriction with partitioned data 
·sets 101 

control buffer 
(see forms control buffer) 
control character 

(see also CNTRL, PRTOV) 
ANSI 8,14,77,85 
carriage 6,10,16,159,161 
code 159,161 
explained 16 
format-D 14 
format-F 7 
format-U 15 
format-V 10 

Index 167 



machine 77,86,159,161 
specifying 77,159,161 
with fixed-length records 7 
with undefined-length records 15 
with variable-length records 10 

control section, dummy (OSECT) 43 
control volume 146 
count area 18 

count-data format 18 
count-key-data format 18 
in device overhea~ 132 
in ISAM index entry format 105 

CREATEV command, use of 130 
cross reference table with direct 
data sets 124 

CSECT statement, use of with DCBD 
macro 43 

cylinder 
allocation by 131 
capacity 4,132 
index 

calculating space requirements 
for 134-135 

definition 103,105 
overflow 

calculating space for 135,137 
defined 103,106 
specifying size 

via CYLOFL parameter 135 
CYLOFL (cylinder overflol.J) ,operand 

of DCB macro 
when allocating ISAM data 

set 135 
when creating ISAM data 

set 115 

D-format records 
(see format-D records) 
data access techniques 
(see access techniques) 
data check 

effect on BLKSIZE 6,77 
with SETPRT macro 82 

data control block (DCB) 
ABEND exit 

description 38-40 
when available 24 
where specified 24 

attributes of, 
determining 21-23,43 

changing an address in 43,44 
cre~tion by DCB macro 
instruction 3,19 

description 20-21 
dummy control section 43 
exit 

description 35 
~hen available 24 
when used by SYSIN/SYSOUT 142 
where specified 24 

fields 22-23 
initial setting of 44 
modifying 20,43-44 
operand of DD statement 23 
primary sources of 

information 20 
sequence of completion 22 
use 3 
when sharing a data set 44 

168 OS/VS2 Data Management Services Guide 

data definition name Cddname) field 
of OD statement 22 

data definition (OD) statement 
fields 23 
relationship to DCB 21 
relationship to JFCB 21 
use 3 

data errors 25-27 
(see also SYNAD routine) 

data event control block (DECB) 
description of 56 
use of 89 

data management, introduction 
to 1-46 

data mode processing 
relationship with buffers 70 

data set 
characteristics 1-16 
description 22-23 
disposition (DISP) operand 

cataloging 141 
description 23 
overridden by OPEN macro 64 

identification 3 
label (DSCB) 3,5,155-158 

(see also magnetic tape 
volumes; data set control 
block; labels, direct-access) 

label (LABEL) field of DD 
statement 23 . 

like characteristics 144 
name 3 
name (DSNAME) field 22 
organization 2 

(see also BDAM, BISAM, BPAM, 
BSAM, QISAM, and QSAM data 
sets) 

organization (DSORG) operand of 
DCB macro 22 

record formats 6-15 
routing through the input/output 

stream 142-143 
security 1,152 
sharing 
space allocation on direct-access 

volumes 130-141 
estimation 131-134 
for a direct data set 124 
for indexed sequential data 
sets 134-141 

for MSS volume 131 
for partitioned data sets 134 
specifying 130-131 

storage 45 
direct-access 4 
magnetic-tape 5 

SYSIN 142-143 
SYSOUT 142-143 
unlike characteristics 144 
unmovable 

direct organization 124 
resulting from use of 
~m B B C C H H R 1 9 

specification in DSORG 
operand of DCB 22 

(see also BDAM, BISAM, BPAM, BSAM, 
QISAM, and QSAM data sets) 

data set control block (see DSeB) 
DCB (see data control block) 
DCB ABEND exit 38-40 
DCB macro instruction 20-21 
(see also data control block) 
DCBBLKSI field in DCB 79,80,91 

.......... J 



( 

) 

c 

DcnD macro instruction 
restriction on use 43 
use 43,44 

DCBLPDA field of DCB 114 
DCBLRECL field of DCB 91 
DCBNCRHI field of DCB 113 
DCBPRECL field of DCB 10 
DCBSYNAD field of DCB 44 
DD statement fields 21-23 
DDNAME (see data definition name 
field) 

deblocking, automatic 49 
DECB (see data event control block) 
defer nonstandard input trailer 
label exit 37 

DEFINE command, use of 147 
defining an FCB image 37 
delete option 

restriction when updating a 
sequential data set 88 

restriction with RKP 109 
use with SETl 115 

deletion 
of indexed sequential data set 

records 109 
of member name using STOW 

macro 98 
DEN (tape density) 77-78 
density, tape 77-78 
DEQ macro, use of 45,47,120 
descriptor word (see block 
descriptor word; record descriptor 
word; segment descriptor word) 

determinate errors 59 
DEVD operand of DCB 

device-class independence 
considerations 84 

restriction with SYSOUT data 
sets 143 

specifying 77 
with BDAM 126 
with SYSOUT data sets 143 

device control for sequential 
data sets 80-82 

device-dependent macro 
instructions 80-82 

device independence 83-85 
device-type considerations for 
data format 

sequential organization 76-80 
DEVTYPE macro, use of 112 
direct-access device 
characteristics 17-19 

direct-access volume 4 
access mechanism 17 
device characteristics 17-19 
devices (see 2305 Fixed Head 
Storage; 2314 Direct Access 
Storage Facility; 2319 Disk 
Storagei 3330 Disk Drive; 3333 
Disk Storage; 3340 Disk Storage; 
3350 Disk Storage) 

labels 4 
record format 6-15,77,80 
track, defined 17 
track addressing 18 
track format 18 
track overflow 19 
write validity check 19 

direct addressing 124 
direct data set 
(see BuAM data set) 
direct organization 
(~ee BDAM data set) 

directory (see BPAM data set) 
disk drive (see 2305 Fixed Head 

Storage; 2314 Direct Access Storage 
Facility; 2319 Disk Storage; 3330 
Disk Drive; 3333 Disk Storage; 3340 
Disk Storage; 3350 Disk Storage) 

Disk Operating System (see DOS tapes 
with embedded checkpoint records) 

DISP operand 
description 23,64 
for extending sequential data 
set 90 

for indexed sequential data 
set 109 

for partitioned data set 98,99 
for tape 21,33 
specifying 141 
when DISP=SHR for sharing data 
sets 45,120 

when passing a generation 151 
when updating the directory 98 

DOS (Disk Operating System) tapes 
with embedded checkpoint records 

restriction with BSP 82 
restriction with chained 
scheduling 85 

restriction with CNTRL 81 
restriction with POINT 83 

drum storage (see 2305 Fixed Head 
storage) 

DSCB 
contents of 155-158 
data set label 155-158 
data set security byte 152 
described 4,5,157 
index (format-2) DS2HIRPR field 
of 113 

DSECT statement 43 
DSNAME operand of DD 
statement 22,98,101 

DSORG operand of DCB macro 
described 22 
for direct data set 126 
for sequential data set 87,88 
with CLOSE TYPE=T 62 
with indexed sequential data 
set 115 

with partitioned data 
set 9S,99,100 

dummy control section for DCB 43,44 
dummy data set, restriction with 
parallel input processing 50 

dummy record 
with direct data set 126,128 

dynamic buffering 
buffer control 67,124 
for direct data set 124 
for ISAM data set 116,119 
release of using FREEDBUF 76 

(see also READ; RELEXi WRITE) 
specifying 67 

EBCDIC (extended binary coded decimal 
interchange code) 

translation to and from 
ASCII 1,5,49,54,86 

for magnetic-tape volumes 5 
record-format 
dependencies 5-6 

embedded index area 134,136 
end-of-data indicator 64 

Index 169 



end-of-data routine (EODAD) 24-25 
changing address of in DCB 43-44 
register contents 25 
with basic access technique 52 
with BSP macro 82 
with concatenated data 
sets 144-146 

with GET macro 49 
with queued'access technique 49 

end-of-volume -
exit routine 36 
forcing 65 
processing 63-65 
routines, relationship with DCB 

ABEND exit 38,40 
when EODAD routine entered 24-25 

ENQ macro, use of 
when sharing a data 
set 45,47,120 

EODAD routine 24-25 
changing address of in DCB 43-44 
register contents 25 
with basic ~ccess technique 52 
with BSP macro 82 
with concatenated data 
sets 1(.4-146 

with GET macro 49 
with queued access technique 49 

EROPT operand of DCB macro 26 
error 

analysis ~outine (SYNAD) 25-27 
determinate 59 
handling 56 
indeterminate 59 
options, automatic 26 
uncorrectable 25 

error routine (see SYNAD routine) 
ESETL macro instruction 

description 115 
in EODAD routine 25 
when sharing a data set 47 

ESTAE exit, abnormal termination 47 
exceptional condition code (see 
condition, exceptional) 

exchange buffering 74 
exclusive control 

updating direct data sets 125 
when sharing direct data sets 47 

EXCP macro instruction 57 
execute channel program (EXCP) 2 
exit list 27-28 
exit routine 

block count 36 
conventions 28 
data control block (DCB) 35 
DCB ABEND 38-43 
defer nonstandard input trailer 
label' 37 

end-of-data 24-25 
end-of-volume 36 
FCB image 37 
JFCBE 35 
list 27-28 
QSAM parallel input 35 
register contents on entry 28 
standard user label 28-33 
synchronous erro~ (SYHAD) 25-27 
user totaling 33-35 

exit routines identified by DCB 24 
EXLST operand of DCB macro 27 
EXTEND option, OPEN macro 

device independence 84 
extending sequential data set 90 
indexed sequential data set 108,109 

QISA~1 use 60 
specifying 21 . 
use with SYSIN/SYSOUT 60 

extended bi~ary coded decimal 
interchange code (EBCDIC) 

translation to and from 
ASCII 1,5,49,54,86 

. for magnetic-tape volumes 5 
record-format 
dependencies 5-6 

extended American National Standards 
Institute (ANSI)' code 161 

(see also ANSI control character) 
extended search option for direct 
data sets 125 

F-format records (see format-F 
records) 

FCB image 
exit 37 
identification in JFCBE 35 
relationship with SETPRT 81 

feedback 
option 125 
with BDAM READ macro 54 
with BDAM WRITE macro 54 

FEOV macro instruction 
description 65 
ignored for SYSIN/SYSOUT data 
sets 65 

restriction with spanned 
records 11,65 

restriction with trailer label 
exit 33 

to enter EODAD routine 24 
file mark, restriction 82 
FIND macro instruction 

description 96-97 
in EODAD routine 25 
updating a partitioned data 
set 101 

when sharing a data set 47 
fixed-length records 6-9 

with parallel input processing 50 
force end-of-volume 
(see FEOV macro instruction) 65 
format-D records 14-15 

restriction with chained 
scheduling 14 

format-F records 6-9 
ASCII tapes 8-9 
standard format 7-8 
with card reader and punch 79 
with parallel input processing 50 

format-FBS records, restriction with 
search direct 86 

format-FBT records, restriction with 
search direct 86 

format-FS records, restriction with 
search direct 86 

format-U records 15 
calculating record length 90 
restriction with chained 
scheduling 85 

with card reader and punch 79 
with parallel input processing 50 

format-UT records, restricti6n with 
search direct 86 

format-V records 9-13 

170 OS/VS2 Data Management Services Guide 

( 
,/ 

\ .... 

(~' 

\ ..... 



l. 

I~ 

block descriptor word 10 
record descriptor word 10 
segment descriptor word 12 
segment control codes 12 
spanned 10-13 
with card punch 79 
with parallel input processing 50 
with user totaling 34 

forms control buffer 
image exit list 37 

FREE operand 63 
FREEBUF macro instruction 

description 76 
to control buffers 66 

FREEDBUF macro instruction 
description 76 
example 121 
for I S A t'l 1 2 0 
when sharing data sets 47 

FREEPOOL macro instruction 68 
when issued for card punch data 
set 79 

when issued for printer data 
set 80 

full track-index write option 116 

generation 
data set 147 
index 147 
numbers, relative 147-150 

generation data groups 
absolute generation name 147 
building an index 150 
creating a new 150 
defined 4,147 
entering in the catalog 147,148 
relative generation name 147 
retrieving 151 

GET macro instruction 
description 49 
in EODAD routine 24,25 
restriction with spanned records 
to enter EODAD routine 24 

updating a sequential data 
set 89 

when sharing a data set 45 
with format-U records 16 
with parallel input 
processing·50,51 

GETBUF macro instruction 
description 76 
to control buffers 66 

GETPOOL macro instruction 
description 68 
with ISAM data set 111 

glossary 162-164 
grouping related control blocks 52 

header label, user 28-33,157,158 

IBCDASDI utility program 
restriction 130 

IDCAMS, MSS utility program 
use of 131 

IEBCOPY utility program 
use of 102,103 

IEHATLAS utility program 
use of 56 

IEHDASDR utility program 
t'estriction 130 

IEHLIST utility program 
use of 113,136 

IEHMOVE utility program 
use of 94,95 

IEHPROGM utility program 
use of 136,151 

IHADCB macro instruction label 44 
independent overflow area 

description 106 
specifying 137 

indeterminate errors 59 
index 

area 103 
calculating space for 134-135 

catalog 4 
cylinder 105,117 

calculating space for 134,135 
master 104,105,106 

calculating space for 134,135 
track 104,105,117 

calculating space for 135 
indexed sequential data set (see 
also BISAM and QISAM) adding 
records 107-109 

inserting new records 107 
new records at the 

end 107,109 
areas 103-106 

allocating space 
for 111-114,134-141 

prime 104 
index 105-106 
overflow 106 

buffer requirements 111-114 
creation 116-118 
deleting records 109 
device control 114-115 
full track-index write 
option 116 

retrieving 118-120 
SYNAD routine 27 
updating 118-123 

indexes of the catalog 4 
indirect addressing 124 
INOUT option 

OPEN macro 60 
opening magnetic tape volume 21 
when using POINT macro 82 

INPUT option 
OPEN macro instruction 60 
opening magnetic tape volume 21 

input/output device generation 83 
input/output devices for use with 
sequential data sets 

card reader and punch 78 
direct access 80 
magnetic tape 77 
paper tape reader 78 
printer 79 

Index 171 



input/output errors, recovering 
from 57 

interrecord gaps (IRGs) 6 
lOB, relationship with SYNAD routine 
for BDAr1 26 

IRG (interrecord gap) 6 
ISAM (see indexed sequential data 
set; PISAM; QlSAM) 

JES (job entry subsystem) 142-143 
JFCB (job file control block) 21,59 
JFCBE (job file control block 
extension) exit 35 

JFCBFlAG 36 
job file control block (JFCB) 21,59 
job file control block extension 

(JFCBE) exit 35 

key 
class 114 
for direct-access devices 18 
for indexed sequential data 
sets 103-105 

relative key position (RKP) for 
indexed sequential data 
set 109,111,116 

use of when adding records to 
indexed sequential data 
set 107-109 

use of when maintaining an 
'indexed sequential data set 109 

use of when retrieving records 
from an indexed sequential data 
set 118-122 

KEYlEN operand of DCB macro 
description 22 
for direct-access device 80 
for direct data set 126 

KN (see WRITE KN) 
KU (see READ KU) 

label exits 28-33 
labels, data set 4,20,21,23 

(see also magnetic-tape volumes; 
labels, direct-access) 

labels, direct-access 
data set control block 155-158 
format 155-158 
user label groups 157,158 
volume label group 155-157 

LABEL parameter of DO statement 
description 23 
specifying password 
protection 152 

specifying standard labels 31 
LEAVE option 

for close processing 61,62 
for concatenated data sets 144 

for end-of-volume processing 64,65 
for forced end-of-volume 

processing 65 
length chccklng 6 
link field 111,112 
link pack area library, restriction 
for checkpoint 36 

load mode for QISAM 
in SYNAD routine 27 
when sharing a DCB 47 

load mode for BDAM when sharing 
data sets 47 

loading an indexed sequential data 
set 116 

locate mode processing 
defined for buffering 70 
example with simple 
buffering 72,73,74 

relationship with buffers 70 
to process records that exceed 

32,760 bytes 12 
to update a member with QSAM 101 
with GET macro instruction 

creating a sequential data 
set, coding example 89 

simple buffering 71-74,88,89 
with parallel input 

processing 50 
simple buffering 71-74,88,89 

look-ahead buffering 49 
LPALIB, restriction for 
checkpoint 36 

LRECL operand of DCB macro 
described 22 
device dependence 84 
restriction when calculating 

record length 91 
to process records that exceed 

32,760 bytes 12 
with BDAN 126 
loJ; th BSAM 91 
wi th ISA~1 

buffer requirements 113 
data set creation 115 

with PUT macro 49,50 
with SYSOUT data set 142 

machine code control 
character 77,86,159,161 

MACRF (macro instruction form) 
operand of DCB macro 

described 23 
device independence 84 
dynamic buffering 120 
for BDAM 126 
processing mode 70 
relationship with WAIT macro 55 
to update a member using QSAM 101 
when sharing a data set 45,47 

magnetic-tape volumes 
defined 5 
density 77-78 
labels 

American Hational 
Standard 5 

none 4 
nonstandard 4 
standard 4 
user 28-33 

organization 5 

172 OS/VS2 Data Management Services Guide 

.,' 

(' 
"-..-... 



( 

) 

positioning 5 
during close processing 61-63 
during end-of-volume 

processing 63,64,65 
record format 6-16,77 
serial number 5 
tapemarks 5 

master catalog 146 
master index 105 
MDBCCHHR (see actual address) 
modes, processing (see data mode; 

locate mode; move mode; 
substitute mode) 

modifying the data control 
block 20,43-44 

move mode processing 
relationship with buffers 70 
use instead of exchange 
buffering 75 

wit~ GET macro instruction 
creating a s~quential data 
set 87 

simple buffering 71-73,87 
with parallel input 

procQssing 50 
with PUT macro instruction 

creating a sequential data 
set 87 

simple buffering 71-74,87 
MSS staging 103 
MSVGP parameter on JCl 

statement 131 
MSWA operand of the DCB macro 113 
multiple data sets 

closing 58 
opening 58 
processing for QISAM 67 

multitasking mode, sharing data 
sets 47,58 

multivolume data set 
with NOTE macro 82 

names 
data set 3 
generation data group 4,147,148 

NCP (number of channel programs) 
operand of the DCB macro 53,85,143 

nonstandard tape labels 4,5 
note list 95 
NOTE macro instruction 

description 82 
restriction with 

BSP macro 82 
multivolume data sets 82 
search direct operation 87 

updating a sequential data 
set 89 

use with partitioned data set 
updating 101 

NT~' operand 106 
null segment 13 

offset reading 53 
OMR (see optical mark read) 

OPEN macro instruction 
considerations for 58 
description 60-61 
for parallel input 
processing 50-51 

for simultaneous opening of 
multiple data sets 58 

for updating a sequential data 
SQt 87 

functions 20,60-61 
restriction with search 
direct 87 

used for more than one data 
set 58 

volume positioning for EOV 64 
opening a data set 53-61 
OPTCD operand of the DCB macro 

device dependence 85 
with ASCII tapes (OPTCD=Q) 49 
wit h B D II M 126 
with ISAM 116 
request user totaling 

(OPTCD=T) 33 
OPTCD=H (embedded checkpoints, DOS 
tapes) 81 

~1 S Sst a gin g 1 0 3 
OPTCD=M (master index) 106 
OPTCD=T (user totaling) 33 
OPTCD=Z (search direct option) 86 
OUTIN option 

OPEN macro 60 
when opening data set 21 
when using POINT macro 83 

OUTIHX option, OPEN macro 21, 60, 84 
output mode 

defined 70 
OUTPUT option 

OPEN macro 60 
when opening data set 21 
when using POINT m~cro 83 

output stream 142-143 
overflow 

area 103,106 
chain 107 
cylinder (see cylinder overflow) 
independent area 106 
PROTV macro 81 
records 106 
track 

description 19 
effect on chained 

scheduling 85 
restriction on BSP macro 

instruction 82 
restriction with parallel 

input processing 50 
restriction with RPS 
feature 90 

overlap of input/output 
performance improvement 85 
with basic access technique 53 
with partitioned data sets 101 
with sequential data sets 90 
with queued access technique 49 

paging environment, related control 
block group 52 

paper-tape reader 
described 78 

Index 173 



effect on chained scheduling 85 
record format with 78 
with a SYNAD routine 27 

parallel 
data access block 

(PDAB) 35,50,51 
input processing 35,50-51 

parameter list 
contents of 39 
use of by DCB ABEND exit 

routine 38-40 
partitioned data set (see BPAM 
data set) 

PASSWORD data set 152 
password protection 152 
PC (card 'punch) record format 79 
PCI flag 85 
PDABD DSECT 51 
PDAB (parallel data access 
block) 35,50,51 

PDS (see BPAM data set) 
performance improvement 85 
POINT macro instruction 

description 82 
in EODAD routine 25 
res t ric t ion l'-l i t h 

BSP macro 83 
multivolume data sets 82 
search direct operation 87 

updating a partitioned data 
set 101 

updating a sequential data 
set 89 

prefix, block (see block prefix) 
prefix, key 114 
pro i me data a rea 

description 103,104 
space allocation for 134,136,137 

printer 
overflow (PRTOV macro) 81 
record format with 79 
restriction with chained 
scheduling 85 

program, describing the 
processing 23-43 

PRTOV macro instruction 
description 81 
device dependent 84 
when macro will not function 81 

PT (see paper-tape reader) 
PUT macro instruction 

description 49-50 
locate mode 70-74 
used to create a sequential 
data set, coding 

example 87,88 
with format-U records 15 
with indexed sequential data 

set 107-109 
with simple buffering 71-74 
with spanned records 12 

(see also data mode 
processing; locate mode 
processing; move mode 
processing; substitite mode 
processing) 

PUTX macro instruction 
description 50 
device independence 84 
UPDAT mode 74 
updating a sequential data 
set 89 

when sharing a data set 45 
with format-U records 15 

with simple buffering 71-74 
with spanned records 12 

(see also output mode; 
update mode) 

QISAM data set (see also indexed 
sequential data set) 

EODAD routine 25 
scan mode 120 
sharing 45,47 
SYNAD routine 25-27 
using common buffer pool 68 

QSAM (see also queued access 
technique) 

creating a BDAM data set 126 
parallel input processing 50-51 
performance improvement 85 
restriction with 

spanned records 11 
spanned variable-length 
records 10-12 

SYSIN/SYSOUT data sets 142 
to update a directory 98 
to update a member 101 
user labels 30 
user totaling 33-35 
when sharing a data set 45,47 
with card punch 79 
with printer 80 

queued access technique 
buffer control 66,69 
defined 49 
introduced 2 
processing modes (see data 

mode processing; locate mode 
processing; move mode processing; 
substitute mode processing) 

RACF protection 153 
RD (card reader) 79 
RDBACK option 33 

opening magnetic tape volume 21 
restriction for variable-length 
records 60 

restriction with SYSIN/SYSOUT 
data sets 60 

RDW (see record descriptor word) 
read backward (SB operand of READ 
macro) 53 

READ macro instruction 
description 53 
device independence 84 
in SYNAD routine 26 
restriction in EODAD routine 24 
supplying record length 90 
to enter EODAD routine 24 
to update exi5ting records 120 
updating a partitioned data 
set 101 

updating a sequential data 
set 89,90 

when sharing a data set 45,47 
with basic access technique 53 
with format-U records 16 

174 OS/VS2 Data Management Services Guide 



( 
0{ 

c' 

with KU (key, update) 
in coding example 121 

RECFM operand of DCB macro 
description 22 
for sequential data sets 77 
selecting 7 
with card punch 78 
with card reader 78 
with control charact~r 77 
with direct-access storage 

device SO 
with magnetic tape 77-78 
with paper tape reader 78 
with printer 79 
with sequential organization 77 

record blocking (see blocking) 
record descriptor word (RDW) 10 

data mode exception for 
spanned records 10 

variable-length records 
format-D 14,15 

when replaced by segment 
descriptor word 12 

record format 6-15 
fixed-length 6-9 
fixed-length for ASCII 8-9 
fixed-length standard 7 
spanned variable-length 10-13 
undefined-length 15 
variable-length 9-15 

record length (LRECL) operand 
of the DCB macro 22,84 

relative block address 
defined 19 
with direct data set 125 
with feedback option 125 

relative generation name 147~150 
relative key position operand 
of the DCB macro 109,111,115 

relative track address 
defined 19 
with direct access 125 
with feedback option 125 

releasing data sets and volumes 63 
RELEX macro instruction 

exclusive control 47 
whei1 shari ng data sets 47 

RElSE macro instruction 
defined 75 
to terminate buffer 
processing 66 

reorganization of indexed 
sequential data set 109 

REREAD option 64,65 
restart end-of-volume exit 
routine 36 

restrictions 
on ASCII records 

block prefix 8,9,14,15 
on 7-track tape 77 

on chained scheduling with 
BDAM 85 
calculating record length 90 
CNTRL macro 85 
DOS checkpoint records 85 
format-D records 14 
paper-tape reader 85 
partitioned data set 101 
SKP option 26 
spooled data sets 85 
track overflow 85,90 
UPDAT operand 85 
updating a sequential data 
set 89,90 

3525 Card Punch 86 
on CtHRL macro 

with BSP macro 82 
with chained scheduling 85 
with DOS checkpoint 

rscords 81 
on DCB usage 59-60 
on DCnD macro usage 43,44 
on DOS checkpoint 

records 81-82,85 
on format-D records with 
chained scheduling 14 

on high-level index in 
storage 114 

on NOTE macro with 
BSP macro 82 
multivolume data sets 82 
search direct operation 87 

on POINT macro with 
BSP macro 82 
multivolume data sets 82 
search direct operation 87 

on reading concatenated 
data sets backward 144 

on user label exit 
routines 29-33 

with s~arch direct 86 
resume load 109,115,117,118 
retrieving a generation 151 
return code 

with block count exit 37 
with user labels 32 

RETURN macro 
relationship in SYNAD 
routine 25 

RELHND opt ion 
for CLOSE macro 61 
for FEOV macro 65 

RKP (relative key 
position 109,111,115 

RLSE para~eter of DD 
statement 61 

RORG1, RORG2, RORG3 fields 
of the DCB 109 

routing data sets through the 
input/output stream 142-144 

RPS (rotational position sensing) 
featuf'e 

concatenating data sets on 
non-RPS devices 146 

restriction with track overflow 
records 

variable-length records 9 
when calculating record 

length 90 
RO record 18,126,130 

save area, user totaling 34 
scan mode for QISAM 

in SYNAD routine 27 
issuing PUTX 120 

scheduling of input/output 
streams 141 

SDW (see segment descriptor word) 
search direct for input 86 
search option, extended 125 
secondary storage (see data set 
storage; direct-access storage; 
magnetic-tape volumes) 

Index 175 



security, data set 1,152 
segment 

buffer 66,69 
control code 12 
descri ptor l>Jord 

for spanned records 12 
iildicat'ing a null segment 13 

null 13 
selecting an access method 57 
SEP (separation, channel) 23 
sequential data set (see also BPAM, 

BSAM, and QSAM data sets)' 
creation 87 
concatenation 144-146 
extending 90 
retrieving 88 
updating 89 

sequential organization 
defined 2 
device control 80-82 
device independence 83-85 

SETL macro instruction 114-115 
in EODAD routine 25 
when sharing a data set 47 

SETPRT macro instruction 81 
SETPRT routine 37 
sharing data sets 44-46 
sharing DASDs 
simple buffering 

description 71-74 
with parallel input 

processing 50,51 
SKP error option 26 
SMSI operand of the DCB macro 113 
SMSW operand of the DCB 

macro 113 
Sort/merge program 

record restriction 6 
space allocation 

estimating requirements 131-133 
for a direct data set 124 
for an indexed sequential 

data set 134-141 
for an MSS volume 131 
for a partitioned data set 133 
specifying 130-131 

SPACE parameter 23 
spanned records 

basic direct access method 13 
considerations for 11-12 
restriction with parallel input 
processing 50 

restriction with SYSIN data 
sets 12,143 

sequential access method 10 
variable-length 10 

spooling of SYSIH and SYSOUT data 
sets 142-143 

restriction 85 
stacke: select ion 

control characters 
for 6,16,160,161 

STACK operand 79 
using CNTRL macro 80 

STAE exit 47 
STAl exit 47 
standard format for fixed-length 
records 7 

standard labels 
direct-access volumes 4,155 
magnetic-tape volumes 4,5 

storage (see direct-access 
storage; magnetic-tape volumes) 

STOW macro instruction 
description 97 
restriction with DCB ABEND 
exit 38 

when sharing a data set 47 
subpool 0, when shared 47 
substitute mode processing 70 

defined for buffering 70 
switching, volume 

automatic 
with end-of-volume 63 
with FEOV macro 65 
with GET macro 49 
restriction with concatenated 
data sets 144 

initiated by CHECK 55 
SYNAD field 

programming consideration 85 
SYNAD routine 

changing address in DCB 44 
description 25-27 
macros used in 56 
programming consideration 85 
relationship with SETL 
option 115 

relationship with nECB 55 
relationship with SYSIN/SYSOUT 
data sets 143 

temporary close restriction 61 
when adding records to ISAM 

data set 109 
when sha~ing a data set 47 
with basic access technique 52 
with queued access technique 49 

SYNADAF macro instruction 
description 56 
examples 88,89 
use iM-SYNAD routine 26,27 

SYNADRLS macro instruction 
description 56 
examples 88,89 
use in SYNAD routine 27 

synchronous error routine exit 
(see SYNAD routine) 

SYSIN data"set 
FEOV macro ignored for 65 
restriction with 

chained scheduling 85 
parallel input processing 50 
spanned variable-length 

records 12 
user totaling 34 

routing data through input 
stream 142-143 

SYSOUT data set 
FEOV macro ignored for 65 
restriction with 

chained scheduling 85 
label exits 31 
~panned variable-length 
records 12 

user totaling 34 
routing data through output 
stream," 142-143 

system generation d~vice 
independence considerations 83 

system input stream 142-143. 
system output stream 142-143 
system output writer 142-143 
SYS1, lNAGELIB 

fetching images from 81 
search of 37 

SYS1.LPALIB and 
checkpoiht/restart 36 

176 OS/VS2 Data Management Services Guide 

""-- .~ 

\ 



c.· 

" 0
"-· 

table reference character 
(3800) 6,10,16 

tape (see magnetic-tape volumes; 
paper-tape reader) 

tapemark 5 
temporary close 61-62 
totaling ar~a, user totaling 
exit routine 33-35 

track 
addressing 18 
defined 17 
format 

count-data format 18 
count-key-data format 18 

index 103-105,117 
overflow option 

description 19 
effect on chained 

scheduling 85 
restriction of BSP macro 
instruction 82 

restriction with BDAM 129 
restriction with parallel 

input processing 50 
restriction with RPS 
feature 90 

re/str i ct i on wi th 
variable-length records 9 

trailer label, user 28-33 
TRC (see table reference character) 
TRTCH 78 
TRUNC macro instruction 

description 75 
to terminate buffer 
processing 66 

truncated blocks, format-F 
records 7 

truncated format-U record 16 
TTR (see address, direct-access 
storage device, relative) 

TYPE=T operand 61-63 

U-format records (see format-U 
records) 

UCS image 
relationship with SETPRT 81 

UHL (user header label) 28-33 
undefined length records (see 

format-U records) 
UNIT operand of the DD statement 23 
unlabeled magnetic tape 4-5 
UPDAT option (see also update mode) 

EODAD routine entered for 
BSAM 24 

for updating a sequential data 
set 89 

restriction with 
chained scheduling 85 
search direct operation 87 
SYSIN/SYSOUT data sets 60 

opening a data set 21 
updati~g a sequential data 
set 89 

with spanned records 11 
update mode (see also UPDAT option) 

with format-U records 16 
with PUTX 70 
with simple buffering 74 

user catalog 146,147 
user header label (UHl) 28-33 
user label exit routine 

description 28-33 
exit list entry 30 
restriction for data sets on 

volumes without standard 
labels 31 

restriction for SYSOUT data 
sets 31 

with read backward 31,33 
user totaling exit routine 

control totals 
description 33-35 
exit list entry 34 
how specified 34 
image area address 34 
relationship with 
end-of-volume exit 35,36 

restricted to BSAM, QSAM 33 
save area 34 
totaling area 33-35 
variable-length and spanned 

records 34 
user trailer label (UTl) 28-33 
utility programs, use of 

IBCDASDI 130 
IDCAMS 131 
IEBCOPY 103 
IEHATLAS 57 
IEHDASDR 130 
IEHLIST 113,136 
IEHMOVE 95,158 
IEHPROGM 136,151 
initializing direct-access 
volume 4,130 

UTL (user trailer label) 28-33 

variable-length record 
(format-V) 9-13 

segments 9,10,11 
spanned 10-14 

restrictions with SYSIN 
and SYSOUT data sets 12 

special considerations, with user 
totaling 34 

with parallel input 
processing 50 

variable-length record 
(format-D) 14-15 

version increment of generation 
data group 148 

VIO (virtual I/O) 57 
virtual I/O (VIO) 57 
V-format records (see format-V 
records) 

volume 
control 146 
defined 4 
direct-access 4 

(see also direct-access volume) 
disposition (see DISP operand) 
identification operand of 

DO statement 23 
index (see index) 
initializing 4 

Index 177 



Page of GC26-3875-1 as ~pdated 3 April 1981 by THL GH26-0996 

labels (see labels, direct access) 
magnetic-tape (see magnetic tape 

volumes) 
positioning 61-65 
serial number 23 
switching 49,64,65,144 
table of contents (see VTOC) 

VSAM catalog 
for VS2 146,147 
generation data group base 
created in 148 

·VS2 systems 
abnormal termination during open, 
close, 'or EOV processi ng 59 

action of DIS? option 64 
cataloging data sets 146-147 
generation data group base 147 
restriction with 2540 79 
use of VIO (virtual I/O) 57 

VTOC (volume table of 
contents) 4,5 

DSCB 155 
for ISAM data set 105 
initializing 130 
pointer 156 

WAIT macro instruction 
description 55 
example 121 
when sharing a data set 47 
with basic access 

technique 55 
BISAM 55,120 
BDAM 47,55,129 

with QSAM parallel input 
processing 50 

WRITE macro instruction 
add form 126,129 
description 54 
for format-U records 15 
in EODAD routine 24 
in SYNAD routine 26 
programming consideration 84 
supplying record length 91 
update form 128 
updating a partitioned 
data set 101 

updating a sequential data 
set 87,88 

used with BDAM 125,126 
used with note list 95 
when sharing a data set 45,47 
with basic access technique 51,52 
with K (key) 120,122 
with KH (key, 

new) 107,109,122 
writing a short block 91 

178 OS/VS2 Data Management Serv ices Gu ide 

write validity check option 19 

123 

1403 Printer 
SETPRT macro for 81 

1600 BPI 78 
2305 Fixed Head Storage 

capacity 132 
overhead formula 133 
programming 
considerations 129 

2314 Direct Access 
Storage Facility 

capacity 132 
overhead formula 133 

2319 Disk Storage 
capacity 132 
overhead formula 133 

2400 Magnetic Tape Units 
recording density 78 

2540 Card Read Punch 
chained scheduling 
restriction 86 

punch error correction 79 
3203 Printer SETPRT macro for 81 
3211 Printer 

SETPRT macro for 81 
3330 Disk Drive 

capacity 132 
overhead formula 133 

3333 Disk Storage 
capacity 132 
overhead' formula 133 

3340 Disk Storage 
capacity 132 
overhead formula 133 

3350 Disk Storage 
capacity 132 
overhead formula 133 

3375 Disk Storage 
capacity 132 
overhead formula 133 

3380 Disk Storage 
capacity 132 
overhead formula 133 

3400 Magnetic Tape Units 
recording density 78 

3525 Card Punch 
chained scheduling ignored 85 
record format 77 

3800 Printer 
JFCBE exit for 35 
SETPRT macro for 81 
table reference 
character 6,10,16 

7-track tapes 77 
800 BPI 78 
9-track tapes 77 

\, 



(-
'-.-' 

C
~', " 



GC26-3875-1 

,-..... 

0 en ....... 
< en 
I\J 

~ 
< en 
0 
Cl .... 
Cl 

~ 
Cl 
::l 
Cl 
co 
(t) 

3 
(t) 

::l .... 
en 
(t) .., 
< 
C;'~~ 
t 
I c)· __ ·-
c: 
a: 
(t) 

"T1 
Ci) 

Z 
P 
en 
w 
-...J 
0 
W 
.9 
"'C .., 
s· .... 
(t) 
c.. 
s· 
c 
en 
~ 
G') >\ (") 
I\J 
en 
W -- - - co 
-...J --- - Cf1 - -- - -- - -- -- - ---- -------- ---- - y -~ 
(" 
\... .. , 



Q) 

o z 

----------------------

OS/VS2 MVS Data Management Services Guide 
GC26-3875-1 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of 
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the 
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in 
your own language; use of English is not required. 

IBM may use or distribute any of the information you supply in any way it believes appropriate without 
incurring any obligation whatever. You may, of course, continue to use the information you supply. 
Note: Copies of IBM publications are /lot stocked at the location to which this form is addressed. Please direct 
any requests for copies of publications, or for assistallce ill using your IBM system, to your IBM representative 
or to the IBM branch office sen1ing your locality. 

List TNLs here: 

If you have applied any technical newsletters (TNLs) to this book, please list them here: 

ustTNL __________________ _ 

Previous TNL _________ _ 

Previous TNL _________ _ 

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere, 
any IBM representative will be happy to forward your comments.) Thank you for your 
cooperation. 



(,j(;26-3875-1 

Reader's Comment Form 

Fold and tape Please do not staple Fold and tape 

....................................................... " ••••.•••••••••••••••••••• e: •••••••••••••••••••••••••••••••••••••••• : 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID. BY ADDRESSEE 

IBM. Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

IIIII1 NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

. 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • e" ••••• ',_ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• . 

Fold and tape Please do not staple Fold and tape 

--- ------ - ---- ---- - ---- - - -----------.,-
® 

,; 

o 
en 
< en 
/I.J 

s:: 
< en 
C 
Q) 
r+ 
Q) 

s:: 
Q) 

:::I 
Q) 

(Q 
(1) 

3 
(1) 

:::I 
r+ 

en 
(1) .., 
< 
g',-.", 
II 

t. c: ,-. __ .' 

c: 
(1) 


