Systems

SY26-3823-5
File No. S370-30

0OS/VS2 1/0 Supervisor Logic

Includes Selectable Units:

Supervisor Performance #1 VS2.03.805
Supervisor Performance #2 VS2.03.807
MSS Enhancements 5752-824
3838 Vector Processing Subsystem Support 5752-829
3895 Device Support 5752-830
MVS Processor Support 5752-851
Hardware Recovery Enhancements 5752-855
Processor Support 2 5752-864

Page of SY26-3823-5
As Updated October 25, 1979
By TNL SN28-4683

Sixth Edition (December, 1978)

This is a major revision of and obsoletes SY26-3823-4. See the Summary of Amendments
following the Contents for a summary of the changes that have been made to this manual.
A vertical line to the left of the text or illustration indicates a technical change made in
this edition; revision bars are not used, however, to indicate changes made in previous
editions, technical newsletters, or supplements.

This edition with Technical Newsletter SN28-4683 applies to release 3.8 of OS/VS2 and to
all subsequent releases of OS/VS2 until otherwise indicated in new editions or Technical
Newsletters. Changes are continually made to the information herein; before using this
publication in connection with the operation of IBM systems, consult the latest IBM
System/370 Bibliography, GC20-0001, for the editions that are applicable and current.

It is possible that this material may-contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your country.
Such references or information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Publications are not stocked at the address given below; requests for IBM publications should
be made to your IBM representative or to the IBM branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Publications Development,
Department D58, Building 706-2, PO Box 390, Poughkeepsie, N.Y. 12602. IBM may use or
distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you
supply.

© Copyright International Business Machines Corporation 1975, 1976, 1977, 1978

The Tutorial Path

The Diagnostic Path

Preface

The purpose of this manualis to help you troubleshoot the I/O supervisor, the VS2
component responsible for communicating with the system’s I/O devices. To accom-
plish this purpose, the manual contains two paths to the microfiche listings: a tutorial
path, to make the listings meaningful to the reader lacking a basic understanding of
the I/O supervisor’s function and design;and a diagnostic path, to get the knowledge-
able reader (detecting an error in a dump, message, or error code) to the source

of error as quickly as possible.

The tutorial path comprises this sequence of chapters:

1. I/O Supervisor Introduction: Classifies the callers of the I/O supervisor into
groups, according to the common services they request. Names the callers that
belong to each group and explains how they communicate service requests to the
1/0 supervisor. Introduces the terminology of input/output processing.

2. EXCP Processor Introduction: Describes the function of EXCP as an interface
between the I/O supervisor and certain access methods and system services. Lists
the programs that qualify as “access methods”. Describes the access method
interface. Defines “‘related requests”.

3. EXCP Processor Method of Operation: Divides the EXCP processor into services
and detailed text how processing occurs in the EXCP modules.

4. EXCP Processor Program Organization: Shows through overview flow diagrams
and detailed text how the processing occurs in the EXCP modules.

5. I/O Supervisor Method of Operation: Divides the I/O supervisor into groups of
services, each corresponding to a group of callers, and describes the processing
that performs the services.

6. 1/0 Supervisor Program Organization: Shows through overview flow diagrams and
detailed text how processing occurs in the I/O supervisor modules.

7. Data Areas: Shows the connections between the principal data areas used by the

I/0 supervisor. Indicates in table which data areas are created, used by, and:
modified by the I/O supervisor and by EXCP.

The diagnostic path comprises this sequence of chapters:

1. “Diagnostic Aids”: Associates diagnostic output — a dump, a message, or an
error code — with the symbolic name of the procedure (module part) that
provides it. Diagnostic aids are described for EXCP and for IOS.

2. “Directory”: Lists the symbolic names of all the procedures in the EXCP
processor and the I/O supervisor, and for each procedure, gives the name of the
microfiche cards that contain its code.

If this short route fails to isolate a problem, you can extend the search in these ways:

Find the section in “Program Organization’’ that describes the procedure
identified in “Diagnostic Aids,” and, using the flow-of-control information there,
investigate the procedures that might have had control earlier.

Preface iii

Directory Usage

EXCP Processor Logic

Refer to the data activity table in “Data Areas.” It shows, for each data area J
that IOS and EXCP uses, which module creates it and which modules refer to it

and modify it. The table can be used to find the data dependencies that exist

between modules.

For both the tutorial and diagnostic paths you should make use of the directory
which cross references the I0S and EXCP method of operation functions with the
actual modules and procedures that perform the functions. Frequent use of the
directory can make it easier to reference information between the two sections.

The key to cross referencing in the book is the name of the procedure. With that
name you can move from ABEND codes to Directory to MO/PO, for example.

The EXCP processor communicates requests for I/O operations from some IBM
access methods to the I/O supervisor. Its logic is similar to a part of the VS2,
Release 1, I/O supervisor called the EXCP supervisor. The EXCP processor, however,
is an independent component of VS2, as it shares interfaces to the I/O supervisor
with many VS2 components.

Overview of Error Recovery Processing

Data Area Conventions

iv OS/VS2 1/0 Supervisor Logic

When the I/0O supervisor is notified of an I/O error, it communicates with an ERP
(error recovery procedure). Which ERP — there are many — depends on which
device was used.

The appendix explains in general the processing done by ERPs, tells how they

differ as to residence and organization, and gives in a table the modules in each ERP
and the I/O device that is supported. Additionally, the appendix contains descriptions
of the ERP service modules — modules that interpret errors, update statistics, write
messages, and act as go-betweens for ERPs.

Labels inside data areas name fields if they appear in bold letters:

UCB

UCBFLD1
UCBFLD2
UCBFLD3 .

Labels name bits within fields if they appear in italics: r

UCB

UCBFLD1
UCBBITI
UCBBIT2

UCBBIT3 '

The order in which labels appear in a data area does not necessarily correspond to
the actual order of fields or bits.

L How to Read Decision Tables

This manual uses decision tables to relate the tests a program makes to the actions
that result from those tests. How a decision table relates tests to actions is shown
in this example:

a Does Condition A exist? Yes Yes No No
7]
E Does Condition B exist? Yes No No Yes
Take Action 1. X
2}
% Take Action 2. X X
E
3 Take Action 3. X X
Take Action 4. X

The decision table represents a hypothetical program that tests for Conditions A

and B. It shows these relationships:

e If Conditions A and B both exist, the program takes Actions 1 and 3.

e If only Condition A exists, the program takes Action 3.

e If neither Condition A nor Condition B exists, the program takes Actions 2 and 4.

e If only Condition B exists, the program takes Action 2.
Related Publications

Most of the VS2 components and routines that communicate with the I/O super-
visor or EXCP processor—enumerated in the I/O supervisor “Introduction” and

in “Appendix A” under “Introduction”—are documented in logic manuals bearing
their names. Those that don’t fall into this category are listed below (with their
references sources):

e ABP, the actual block processor: OS/VS2 Virtual Storage Access Method
(VSAM) Logic, SY26-3825

o ACR, alternate CPU recovery: OS/VS2 System Logic Library,
SY28-0713 through SY28-0719

e the checkpoint SVC routine: OS/VS2 Checkpoint/Restart Logic, SY26-3820

e MIH, the missing interrupt handler: OS/VS2 System Logic Library,
SY28-0713 through SY28-0719

e program fetch: OS/VS2 System Logic Library,
SY28-0713 through SY28-0719

e the region control task: OS/VS2 System Logic Library,
SY28-0713 through SY28-0719

® RMF, the resource measurement facility: OS/VS2 Resource Measurement
Facility, 1.Y28-0923-1

Preface v

vi 0S/VS2 I/O Supervisor Logic

the task-close routine: OS/VS2 Open/Close/EOV Logic, SY26-3827

MSSC, the 3850 mass storage system communicator: OS/VS2 Mass Storage
System Communicator (MSSC) Logic, SY35-0013

VTAM, virtual telecommunications access method: OS/VS2 VTAM Logic,
SY28-0621

0S/VS2 JES3 Program Logic, SY28-0612-0
OS/VS2 OLTEP Logic, SY?28-0676-1

9

Contents

Summary of Amendments . xiv
Introduction . 1
Basic 10S Deﬁnmons 1
What Is an I/O Operatlon” 1
What Is a Channel Set? (5752- 864) 1

The Concept of Logical Channels 2
What Is an 1/O Event? o 3

The Concept of Asynchronous Processmg 3
What Is a Purge Operation? 5
What Is a Restore Operation? . 5

1/O Supervisor Introduction 7
Group 1 Callers and Their lnterfaces 7
How the SRB Is Used .

How the IOSBIsUsed 9
Group 2 Callers and Their Interfaces 10
Group 3 Callers and Their Interfaces 11
Group 4 Callers and Their Interfaces 11
Group 5 Callers and Their Interfaces 12
EXCP Processor Introduction . . P
What Programs Qualify as Access Methods" e
What Is the Access-Method Inierface? 13
What Are Related Requests? 14
EXCP Processor Method of Operation 17
Preparingto goto10S e 4
Validating the Access-Method lnterface N
Making a Record of the Request . . . P £}
Determining If a VIO Data Set Was Allowted S -
Consolidating InformationinanSRB/IOSB 19
Going to the PGFX, EOE, and SIO Appendages. 20
Copying and Translating the Channel Program 21
Givingan I/O Request to I0S. |
Going to the PCI, CHE, and ABE Appendages) |
Transferring Status Information to Appendages. 22
Executing Appendage Options 22
Entering the DIE Procedure 23
Purging and Restoring1/O Requests 23
Freeing Data Areas KnowntolOS 23
Comparing RQEs to the Search Argument 24
Restoring I/O Requests 25
Purging Dependent I/O Requests 26
Telling the Access Method What Happened 27
Reusing the Access-Method Interface 28
Halting a Teleprocessing Operation 28
EXCP Processor Program Organization 29
Basic EXCP Module (IECVEXCP) . . . N ¥

1. The Validity-Check Procedure (XCPOOO) e 32

2. The Get-RQE Procedure (XCPRQE) 32

3. The VIO Interface Procedure (XCPVAM). 33

4. The Get-SRB Procedure (XCPOS0) 33

5. The PGFX Interface Procedure (XCPPFA) 33

Contents vii

viii

0S/VS2 1/0 Supervisor Logic

6. The EOE Interface Procedure (IECVEXTC)
7. The SIO Interface Procedure (XCP110) .
8. The Translator Interface Procedure (XCP115) .
9. The STARTIO Procedure (XCP145) .
10. The DIE Procedure (XCPDIE) .
11. The PCI Interface Procedure (XCPPCI) , .
12. The CHE/ABE Interface Procedure (XCPCHE XCPABE) .
13. The Termination Procedure (XCPTERM)
14. The Exit Procedure (XCPEXIT)
15. The IOSB-to-IOB Mapping Procedure (XCPMAP)
16. The Related-Request Purge Procedure (XCPPUR)
17. The SVC 3 Interface Procedure (IECVX025) .
Miscellaneous Module (IECVEXPR)
1. The Purge Procedure (IECVXPUR)
2. The Restore Chain Procedure IECVRCHN)
3. The Restore Procedure (IECVXRES)
4. The Halt-I/O Interface Procedure (SVC33) .
5. The Functional Recovery Procedure (XCPFRR) .

1/O Supervisor Method of Operation
Starting an I/O Operation .
Testing the “Startability” of an I/O Operatlon .
Finding a Path for the I/O Operation
Adding a Prefix to the Channel Program .
Starting I/O Activity
Responding to the Condition Code Settmg
Responding to an I/O Event
Handling SIOF Deferred Condition Code Interruptlons
Handling PCI Interruptions. e e e e e
Handling Channel Errors
Handling Attention Interruptions
Handling Unit-Check Interruptions .
Going to the Driver’s DIE Procedure
Using Channels That Are Free
Doing Asynchronous Processing with IOS Created IOSBs .
Verifying That the Correct Direct-Access Volume Is Mounted .
Doing Asynchronous Processing with Driver-Created IOSBs .
Reusing the STARTIO Interface . .
Restoring the Availability of I/O Resources .
Restoring the Availability of I/O Resources for an ACR
Condition (5752-864) .
Recovering from Lost or Unusable Channels (5752 864)
Restoring the Availability of I/O Resources after a Hot I/O
Condition (5752-864) . .
Recovery from a Missing Interruptlon COndlthIl (5752-864) .
Services Used in Restoring the Availability of I/O Resources (5752-864)
Purging and Restoring I/O Requests. . e e e
Comparing SRB/IOSBs to the Search Argument
Communicating with the Driver’s Purge Procedures
Pointing Drivers to Their Restore Addresses . .
Halting a Teleprocessing or Channel-to-Channel (CTC) Operatlon .
Overview of Channel Reconfiguration (CRH) Support. .
Using the Channel Reconfiguration Hardware
Activating the CRH Program .

34
34
34
35
35
35
35
36
37
37
37
38
39
39
39
39
40
40

41
43
43
45
46
47
48
51
51
52
53
53
54
55
55
55
57
57
59
59

60
60

61
61
62

. 63

63

. 64
. 64
. 65
. 65
. 65
. 66

Passing Control to CRH on a Start I/O Request .

Passing Control to CRH on an I/O Event .

Preventing Line Drops on TP Lines .

Recovering from Errors .

Deactivating CRH . .o .
Overview of Channel Set Switching (CHS) Support (5752-864).

Using Channel Set Switching (5752-864) . .

Activating CHS (5752-864)

Passing Control to CHS on a Start I/O Request (5752 864) .

Passing Control to CHS on an I/O Event (5752-864) .

Preventing Line Drops on TP Lines (5752-864) .

Recovering from Errors (5752-864).

Deactivating CHS (5752-864).

Connect Channel Set Procedure (5752-864)

1/O Supervisor Program Organization
Basic I0S Module (IECIOSCN) .

The Channel Scheduler Procedure (IECHNSCH)

The Test-Channel Procedure (ETCH1)

The SIO Procedure (ESIO1) (5752-864).

The Post-SIO Procedure (EPOSTIO1)

The Enqueue Procedure (EQUEE1) .

The Dequeue Procedure (EQUED1) . . .

The SRB-Scheduling Procedure (ESCHDIO1) . .
The Unsolicited Device-End Procedure (EDEVENDI1) .
The Interruption-Handling Procedure (IECINT) .

The Initial-Status Procedure (ESTATUSI1) .

. The DIE Interface Procedure (EDIEINT1) .

. The PCI DIE Interface Procedure (EDIEINT2) . . .
. The Channel-Restart Procedure (ERSTART1 and ERSTARTZ) .
. The Sense Procedure (ESENSE1) . ..

. The Attention-Handling Procedure (EATTENTl)
. The Functional Recovery Procedure (IECFRR) .

. The Unconditional Reserve Scheduling Procedure

(EDETECT1) (5752-864) .

Build Reserve Table Module (IECVBRSV) (5752—864)

1. The Set Up Procedure (5752-864) . . .

2. The Build Reserve Table Routine (5752-864) .

3. The Functional Recovery Routine (BRSVFRR) (5752 864)
CCW Translator Module IECVTCCW) . .

VENO LR W

10.

The Routing Procedure (IECVTCCW)

. The CCW Translation Procedure (TCCWI100) .

The Page-Fix Procedure (TCCWMO000)

. The Main TIC Procedure (TCCWM100) .

The TIC Insertion Procedure (TCCWM300). .
The TIC Resolution Procedure (TCCWM200) .
The IDAL Procedure (TCCWM400) .

. The Single-Address Translation Procedure (TCCWXOOO)

The Address Retranslation Procedure (TCCWRO000) .
The Unfix-and-Free Procedure (TCCWUO0Q0) .

CRH/CHS Module, Basic (IECVCINT) (5752-864)

1.
2.

3.

CRH/CHS Activation Procedure (IECVCRHA) (5752-864)
CRH/CHS Deactivation Procedure (IECVCRHD) (5752-864) .
CRH/CHS STIDC Procedure (IECVCRHV) (5752-864).

66
66
67
67
67
68
68
68
69
69
69
69
70
70

71
87
87
87
88
89
90
90
90
90
91
91
92
92
93
93
94
95

96
97
97
97
97
98
98
98
99
99
100
100
100
100
101
101
102
102
103
103

Contents ix

4. CRH/CHS Timer Pop Procedure (IECVCRHT) (5752-864). . . . 103
5. CRH/CHS Schedule SRB Procedure (IECVCRHS) (5752-864) . . 104
6. CRH Second Level Interrupt Handler (IECVCINT) 104
7. CHS Second Level Interruption Handler (IECVCSSI) (5752-864) . 105
8. CRH/CHS Activation FRR Procedure (IECCRHAF) (5752-864). . 105

9. CRH/CHS Deactivation FRR Procedure (IECCRHDF) (5752-864) . 106

10. CRH/CHS SLIH FRR Procedure (IECCINTF) (5752-864) 106
11. Backout Procedure (BACKOUT) (5752-864) 106
12. Connect Channel Set Procedure (IECCONCS) (5752-864) ... 107
CRH Hook Module IECVCRHH) 107
1. The Test Channel Hook Procedure (IECVCRHI) L. ... 107
2. The SIO Hook Procedure IECVCRH2) 108
3. The Sense Hook Procedure IECVCRH3). 108
DAVV Module (IECVDAVV). 109
1. The Volume Verification Procedure (IECVDAVV) 109
2. The Interruption-Handling Procedure (DAVINT) 110
3. The Error-Handling Procedure (DAVERR) 110
4. The ESTAE Recovery Procedure (DAVESTA) 111
5. The FRR Recovery Procedure (DAVFRR) 112
Hot I/O Detection Module (IECVHDET) (5752-864) 112
1. The Check Interruption Procedure (5752-864) 112
2. The Reset Procedure (§5752-864). 113
3. The Schedule Recovery Procedure (5752-864) B
Hot I/O Recovery Module (IECVHREC) (5752-864) 113
1. The Set Up Procedure (5752-864)
2. The Hot Device Recovery Routine (5752-864) R . . 113

3. The Hot Channel, Hot Control Unit, and Hot DASD Recovery
Routine (5752-864) B 1)
4. The Clean Up Procedure (5752- 864) A 115
5. The Clear Channel Subroutine (CLRCH) (5752- 864) A O
6. The Functional Recovery Routine (HRECFRR) (5752-864). . . . 115
I/O-Restart Modules (IECVRSTI and IECVIRST) (5752-864) 116
Introduction to I/O Restart Modules, IECVRSTI and IECVIRST . . . 116
1. The Set-Up Procedure IECVRSTD). 117
2. The ACR-Call Procedure (ACRPROC).17
3. The CCH-Call Procedure (CCHPROC) for Channel Checks 118
4. The MIH-Call Procedure (MIHPROC) 119
5. The Clear-Device Procedure (CLEARDEV) 119
6. The Message Procedure (RECORDIT) 120
7. The CCH-Call Procedure (LOSTCHAN) for Lost Channels ... 120
8. The Device Procedure (UCBACT) 120
I/O-Restart Module (IECVIRST). 121
1. The Set-Up Procedure 4|
2. The Build Reserve Table Routlne S V3 |
3. The Operator Communication Routine 121
4. The Recover Unusable Channel Routine 122
5. The Wait for Channels to Recover Routine 122
6. The Recover Hung Interface Routine 123
7. The Re-Reserve Device Routine 123
8. The Restart Active /O Routine 123
9. The FRR Routine . . T
Nonresident Halt-I/O Module (IGC0003C) P 2
1. The Main Halt Procedure (IGC0003C). 124
2. CTC Halt Procedure (HALT3000) . . . B A
3. The Functional Recovery Procedure (HALT0900) 126

x 0S/VS21/0 Supervisor Logic

October 25, 1979

Nonresident Purge Module (IGC0001F)
L 1. The Entrance/Exit Procedure (IGC016) .
The SIRB-Purge Procedure (SIRBPURG)
The LCH-Purge Procedure (LCHPURG) .
The UCB-Purge Procedure (UCBPURG) .
The DDR-Purge Procedure (DDRPURG)
The SPL-Purge Procedure (SPLPURG)
The IPIB-Purge Procedure (IPIBPURG) .
The Driver Interface Procedure (DVRPURG) .
9. The Applicability-Check Procedure (PURAPLSR)
10. The Basic Purge Procedure (BASICPRG)
11. The Functional Recovery Procedure (PURGEFRR)
12. The ESTAE Recovery Procedure (PRGESTAE)
13. Compress Interface (PRGCOMPOQ).
Post-Status Module (IECVPST) .
1. The Exit Interface Procedure (lECVPST)
The 10S I0SB-Handling Procedure (PSTIOSB) .
The SVC 15 Procedure (IGCO15)
The Functional Recovery Procedure (PSTFRRTY)
ERP Interface Procedure (PSTEFF)
Restartable Wait Procedure (PSTWAIT)
7. The Unconditional Reserve Procedure (PSTUR) (5752 864)
Redrlve I/O Service Module (IECVRDIO) (5752-864) .
. The Redrive I/O Service Procedure (5752-864).
2 The Path Check Procedure (5752-864)
3. The Restart I/O Procedure (5752-864)
4. The Functional Recovery Routine (5752-864) .
\' Re-reserve Module (IECVRRSV) (5752-864).
1. The Set Up Procedure (5752-864) .
The Do Reserve Procedure (5752-864).
The Check Reserve Procedure (5752-864)
The Show Reserve Procedure (5752-864).
The Box Devices Procedure (5752-864)
. The Functional Recovery Routine (5752-864) .
Re31dent Halt-1/O Module (IECIHIO) .
. The Main Procedure (IECIHIO) . . .
2. The Shoulder-Tap Procedure (HIOIPCI)
3. The Channel-Logout Procedure (HIOLOP)
4. The Channel Error Procedure (HIOCCH) .
5. The Functional Recovery Procedure (HIOFRR)
Re51dent Purge Module (IECVPURG) .
. The Decrement-Count Procedure (IECVQCNT)
2 The SIRB Clean-Up Procedure (IECVPRCU).
. 3. The Chain-SRB Procedure (IECVPRDQ) .
Restore Module (IGC0001G) .
1. The Restore Procedure (IGC017)
The SIO Module for DASD Devices (IECVXDAS) (5752-864)
The SIO Module for the 2305 Device (IECVXDRS) (5752-864)
The SIO Module for the 2314 Device (IECVXSKS) (5752-864)
The S10 Module for the 3330V Device (IECVXVRS) (5752-864) .

AN B W

wv AW N

=

The SIO Module for the 2400 Tape Device (IECVXT2S) (5752-864) .
The SIO Module for the 3400 Tape Device (IECVXT3S) (5752-864) .
" The SIO Module for Unit Record Devices IECVXURS) (5752-864) .

Contents

126
126
129
129
130
130
131
131
131
132
132
132
133
133
134
134
135
135
136
137
137
138
138
138
138
139
139
139
139
139
140
140
140
140
141
141
141
142
142
142
144
144
144
144
145
145
146
147
148
149
150
150
150

xi

Page of SY26-3823-5
As Updated October 25, 1979

By TNL SN28-4683
Special SIO Module (IECVESIO) (5752864) 151
. The Entrance/Exit Procedure (5752-864). 151
2 The SIO Procedure (SIORTN) (5752-864) . . . R V)
3. The SIGP Entry Procedure (IECVESIG) (5752- 864) oL 152
4. The Functional Recovery Routine (ESIOFRR) (5752-864) 152
Storage Manager Module (IECVSMGR) . . . B X
1. The Get-Small-Block Procedure (GETBLKO) N K
2. The Free-Small-Block Procedure (FRBLKO) 154
3. The Get-Medium-Block Procedure (GETBLK4) 154
4. The Free-Medium-Block Procedure (FRBLK4) 156
5. The Get-Large-Block Procedure (GETBLK). 157
6. The Free-Large-Block Procedure (FREEBLK) 159
7. The Get-Storage Procedure (GETCORE) 159
8. The Purge-Free Procedure (PRGFREE) 159
9. The Pool Initialization Procedure (IECVCPRM) 160
10. Compress Procedure (IECYSCOM) . . . B [10)
11. The Functional Recovery Procedure (IECVSMFR) lel
12. The Block Verification Procedure (SMGFREVR). el
Un(.ondltlonal Reserve Decision Module (IECVDURP) (5752-864) .. . 163
. The Main Procedure (5752 864) 163
2 The Device Validation Routine (IECVDVAL) (5752 864) 163
Um.ondmonal Reserve Detection Module (IECVURDT) (5752-864) . . . 164
. The Main Procedure (IECVURDT) (5752-864) le4
2 The Condition Code One Procedure (CCIRTN) (5752- 864) ... 164
Unconditional Reserve Service Module (IECVURSV) (5752-864) 165
Directory ... 1e7
Data Areas . . . R A
CCW Translation Operdt1on Table (5752 864) N ¢
Device Descriptor Table (DDT) (5752-864) 177
Connections between Principal IOS Data Areas 178
Data Area Usage Table 181
Diagnostic Aids . 185

xii OS/VS2 1/0 Supervisor Logic

Page of SY26-3823-5
As Updated October 25, 1979
By TNL SN28-4683

Appendix: Overview of 1/0O Error Recovery Processing .
The Function and Characteristics of ERPs
Table of ERP Modules .
ERP Service Modules
The ERP Loader (IECVERPL)
The Routing Procedure .
The Module Location Procedure .
The Error Notification Procedure .
ERP Loader Module (IECVERPL) Detailed Proeessmg
The ERP Loader (IECVERPL)
The Error Interpreter (IECVITRP) .
The ERP Message Writer (IGE0025C) .
The Error Statistics Recorder (IGE0025D)

Glossary of Terms and Acronyms

Index

Figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure S.

Figure 6.

Figure 7.
Figure 8.

Figure 9.

Figure 10.

Figure 11.
Figure 12.

Figure 13.

Flow of Control in the Basic EXCP Module (IECVEXCP)
Starting I/O in the Basic I0S Module (IECIOSCN) .
Responding to an I/O Event in the Basic I0S Module
(IECIOSCN)

Responding to an I/O Event in the Post Status Module
(IECVPST) and DAVV Module (IECVDAVV)

Restoring the Availability of I/O Resources in the I/O
Restart Module (IECVRSTI) . .

Restoring the Availability of I/O Resources in the l/O
Restart Module (IECVIRST) .

Hot 1/0 Detection (5752-864) .

Recovering from Hot 1/O Event in Module

[ECVHREC (5752-864) .

Purging 1/O Requests in the Nonre51dent Purge

Module (IGCO001F). .

Halting an 1/O Operation in the Nonremdent Hdlt I/O
Module (IGCO003C) and Resident Halt-I/O Module
(IECIHIO) . .

Channel Reconﬁguratlon Hdrdware (CRH) Hook Module
Interface and CHS Interface with I0S Mainline .
The Processing of Interruptions When Channel Reconﬁguratlon
Hardware (CRH) is Active

The Processing of Interruptions When Channel Set Sw1tch1ng
(CHS) is Active (5752-864)

Contents

201
202
203
204
204
204
205
206
206
206
207
208
210

211
I-1

30
73

74

75

76

77
79

80

81

82

83

85

86

xiii

Page of §Y26-3823-5
As Updated October 25, 1979
By TNL SN28-4683

o Changes have been made throughout this publication in support of the 3033
attached processor.

e Diagnostic aids information has been deleted from this publication. It can
now be found in the following books: OS/VS2 System Programming
Library: MVS Diagnostic Techniques, OS/VS Message Library: VS2 System
Messages, and OS/VS Message Library: VS2 System Codes.

e A considerably expanded index has been included.

e Minor technical and editorial corrections and additions have been made.

Changes have been made throughout this publication to support Processor
Support 2 (SU64).

Notes:
o The date for this publication is December 29, 1978. Only supplements
and TNLs with dates later than December 29, 1978 apply to this publication.

® SY26-3823-5 is a major revision of the OS/VS2 MVS 1/O Supervisor Logic
manual. This major revision obsoletes SY26-3823-4.

Changes have been made throughout this publication to reflect service updates
and the following SUs:

Supervisor Performance # 1 (SUS)

Supervisor Performance # 2 (SU7)

MSS Enhancements (SU24)

3838 Vector Processing Subsystem Support (SU29)
3895 Device Support (SU30)

MVS Processor Support (SU51)

Hardware Recovery Enhancements (SU55)

Note: SY26-3823-4 is a major revision of the OS/VS2 MVS I/O Supervisor Logic
manual with all outstanding SU TNLs and system library supplements
incorporated. This major revision obsoletes SY26-3823-3 and SY28-0757-0.

Summary of Amendments xiv

Summary of Amendments
for SY26-3823-5

As Updated by SN28-4683
0S/VS2 Release 3.8

Summary of Amendments
for SY26-3823-5

Summary of Amendments
for SY26-3823-4

-9

Contents Directory

I/O Supervisor Introduction >
EXCP Processor Introduction -
EXCP Processor Method of Operation >
EXCP Processor Program Organization —>

Basic EXCP Module (IECVEXCP)

Miscellaneous Module (IECVEXPR)
I/O Supervisor Method of Operation '
I/O Supervisor Program Organization —_—

Basic 10S Module (IECIOSCN) 1/0 Restart (IECVRSTI) Res Halt 1/O (IECIHIO)

CCW Translator (IECVTCCW) Non-res Halt 1/0 (1GC0003C) Res Purge (IECVPURG)

CRH Module (IECVCINT) Non-res Purge (IGC0O001F) Restore (IGC0001G)

CRH Hook Module (IECVCRHH) Post-Status (IECVPST) Storage Manager (IECVSMGR)

NAVV Module (IECVDAVV)
Directory —
Data Areas —
Diagnostic Aids —>

EXCP ABEND Codes Messages

EXCP Debugging Area Wait-state Codes

10S Recovery Procedures Return Codes

|0SB Fields
Error Recovery Processing —>»
Glossary of Terms and Acronyms 3
Index —

Contents Directory xv

10S
Intro

EXCP
Intro

10S

Direc-
tory

Data
Areas

Aids

Glos-
sary

o - =
«@ ow o

xvi 0S/VS2 I/O Supervisor Logic

L Introduction

Basic I0S Definitions

What Is an I/O Operation?

What is a Channel Set?

This section describes the general functional operation of the 1/O Supervisor (I0S).
Callers of IOS are highlighted, and an overview of the interrelationship between
I0S and any one of its callers is presented.

Specific terminology is used to discuss the operation of I0S. The following
discussion of this terminology is presented to provide a basis for understanding
I0S.

I/0 operation is a broad way of referring to any of the following system activities:

e The transfer of data from real storage across a channel to a control unit and 1/O
device (commonly known as a write operation).

e The transfer of data from an I/O device and control unit across a channel to real
storage (commonly known as a read operation).

e The positioning of read/write mechanisms or mounted volumes (commonly
known as a control operation). Examples of control operations are spacing or
skipping lines on a printer, backspacing a tape volume, or seeking on a direct-
access device.

e The manipulation of an I/O device without the transfer of data or control
information (commonly known as an immediate operation). Examples of
immediate operations are rewinding a tape volume or recalibrating an access
arm (fully retracting it).

To start an I/O operation, three elements are needed: a start-I/O instruction; a
channel program, made up of one or more CCWs (channel command words); the
address of the first CCW. IOS stores the address of the first CCW in a location
called the CAW (channel address word) and issues a start-I/O instruction that
specifies the channel, control unit, and device to be used. When the channel
receives this information, it finds the address of the channel program in the CAW
and begins executing it, one CCW at a time (assuming that the channel, control
unit, and device are fully operational and are not busy).

A channel set is a collection of up to 16 channels which may be accessed by a
processor. In multiprocessor configurations which have Channel Set Switching or
CRH, the channel set(s) in the configuration may be switched through special
hardware, between the processors (such as when one processor has failed); in these
cases, the channel sets have IDs which are independent of the processor address to
which the channel set is currently attached.

I0S always assumes that channel sets exist even on processors which do not have

the hardware switching feature; in these cases, the channel sets have IDs which are
equal to the processor address.

Introduction

The Concept of Logical Channels

9

A logical channel is a set of physical channels which provide a path to a device or
group of devices. For example, in this configuration —

Channel 0
Channel . . Card
Processor Set Printer Punch Reader

the set of channels is only one channel, channel O; therefore, the configuration
shows one logical channel for one physical channel. But in this configuration—

Channel 1

Chg:tnel Tape Tape Tape)
Channel 2 * } *

two physical channels, 1 and 2, are in the set; they comprise one logical channel
(since they serve the same group of devices). A third relationship is shown in this

Processor

configuration:
Channel 2
Processor Chg::lel Disk A Disk B Disk C
Channel 3 + |

Disk D Disk E

2 0S/VS21/O Supervisor Logic

There are.two logical channels here: one composed of channels 2 and 3, by which
‘ disks D and E can be reached; the other consisting of channel 2, by which disks A,
B, and C can be reached.

10S maintains a queue, called a logical channel queue, for each logical channel in
the system’s device configuration. Should IOS be unable to start an I/O operation
because a device, channel, or control unit is temporarily busy, it puts a record of
the request in the appropriate queue. Waiting 1/O requests are organized in this way
so that they can be quickly located when an I/O operation ends or a device be-
comes “ready.” (The operator makes a device ready by pressing a START button,

. throwing a switch to START, or—in the case of direct-access devices—inserting an
address plug.)

For more information about the structure and use of logical channel queues, see
“Starting an 1/O Operation” in the chapter “Method of Operation.”

What Is an I/O Event?

An /0 event is any incident in the system’s I/O resources—channels, control units,
devices—that causes status information to be stored in the CSW (channel status
word). Examples of 1/O events are:

e The completion of a read, write, or control operation. These 1/O events, in
addition to storing status information, cause an I/O interruption, which tempo-
rarily stops whatever processing is in progress so that IOS can look at the status

(information.
e The execution of a CCW with the PCI (program-controlled interruption) bit on.
This 1/O event also causes an 1/O interruption.

e The completion of an immediate operation. In this case, status information is
stored without an 1/0 interruption. (I0S makes tests following the start of an
1/0 operation to determine whether status information is stored.)

The above are known as solicited 1/O events: they result from I/O requests. There is
also a class of 1/0 events called unsolicited, all of which cause 1/0 interruptions.
Examples of unsolicited 1/O events are:

o A terminal user pressing the ATTN key

e The operator pressing the request key on his console

e The operator readying a device

o The device or channel detecting a hardware malfunction not associated with a
specific 1/0 request

If an I/O event occurs that calls for an 1/O interruption on a processor presently
unable to receive I/O interruptions, the channel *“holds” the interruption and status
information until the processor is able to receive them.

The Concept of Asynchronous Processing
(If a program—call it program A—causes another program—program B—to be dis-

patched, then program B is said to be running asychronously to program A. (To
put it another way, programs A and B would be running concurrently.)

Introduction 3

The converse of asynchronous processing is synchronous processing. Program A in
this case relinquishes control to program B and cannot reacquire it until program B
is through. Diagramatically, synchronous processing looks like this:

Program A (branches) Program B (branches) Program A
And asynchronous processing looks like this:
Program A causes Program A
(dispatching !

Program B

-

The concept of asynchronous processing becomes important in understanding how
10S is designed to handle I/O requests. Specifically, when 108 receives an I/O re-
quest, an 10S procedure finds out whether the device allocated for the /O opera-
tion can be used. If the device can’t be used (for some reason other than its being
busy), the procedure causes other procedures to be dispatched, which in turn cause
still other procedures to be dispatched. The result is three “levels” of asynchronous
processing:

Level 1: Device found to be unusable
causes
< dispatching) -
Level 2:

o Abnormal-end appendage may be executed
e DASD ERP may be executed

causes
(dispatching> >
Level 3:
e DASD volume label may be verified

e Non-DASD ERP may be executed
e Messages may be sent to the operator

—P

The same design is used in processing I/O events:

Level 1: Initial I/O-event processing
causes
(dispatching) -
Level 2:

e More I/O-event processing

e Driver’s appendages executed
[
[

Attention routine may be executed
DASD ERP may be executed

causes >
(dispatching)
Level 3:
e Non-DASD ERP may be executed
e Dynamic device reconfiguration may be

executed
o Messages may be sent to the operator

4 0S/VS21/0 Supervisor Logic

C

What Is a Purge Operation?

What Is a Restore Operation?

For more information about how IOS handles I/O requests and I/O events, see
“Starting an I/O Operation” and “Responding to an I/O Event,” respectively, in the
“Method of Operation” chapter. Also, see “How the SRB Is Used,” in this chapter
under “Group 1 Callers and Their Interfaces,” to learn how IOS causes
asynchronous processing to be dispatched.

When a caller requests a purge operation, it asks 10S to perform one of two
mutually exclusive functions, as specified in a parameter list:

e Halt the processing of I/O requests associated with one or more data sets, a TCB,
or an address space, and notify the drivers that sent those requests to destroy
records of similar 1/O requests that they are preparing to send.

o Finish processing I/O requests associated with one or more data sets, a TCB, or
an address space, and notify the drivers that sent those requests not to send
similar 1/O requests but to keep track of them (in a record or chain of records)
and return the address of the record or chain.

The first alternative is called a halt operation; the second, a quiesce operation. The
abnormal termination of a job is an instance that requires a halt operation; the swap
out of an address space is an instance that requires a quiesce operation.

A restore operation is the process of returning to each driver the address of the
record or chain of records it gave to IOS during a quiesce operation. With the
address, each driver can reconstruct and submit 1/O requests that it previously
withheld from 10S.

Introduction 5

6 0S/VS21/0 Supervisor Logic

Group 1 Callers and Their Interfaces

C

10S
Intro

I/O Supervisor Introduction

The input/output supervisor, called JOS for short, is the VS2 component responsible

for communicating with the system’s [/O devices.

10S serves five groups of callers, each of which requests one of five basic services:

Group 1: Callers that want IOS to start an I/O operation. They are known as
drivers of 108S.

Group 2: Callers that want 10S to respond to an I/O event.

Group 3: Callers that want IOS to restore the availability of 1/O resources (chan-
nels, control units, devices).

Group 4: Callers that want 10S to do a purge or restore operation.

Group 5: Callers that want 1OS to halt a teleprocessing operation.

Group 1 callers, the drivers of I0S, ask IOS to start I/O operations. Belonging to

this group are the following VS2 components.

SAM, BDAM, ISAM,
BTAM, TCAM, VTAM,

\GAM, JES3, JES2, etc

N J
SVC 0 (EXCP) or
SVC 114 (EXCPVR)
Actual EXCP " Pro- MSCC VPSS
ASM l§1°°k Proces- | | OLTEP | | JES3| | gram | | (See (See vraM| | 108
roces- sor Fetch Note Note
] sor 1) 2)
(See . ERP
l l l figure 1)1 l l l requests
\ \j | 1/O retry Py
-

Note 1: MSSC means Mass Storage
Subsystem Communicator

Note 2: VPSS means Vector
Processing Subsystem

Issue STARTIO macro

Basic 10S Module
IECIOSCN
(See figure 2)

How the I/O Supervisor Is Invoked by Its Callers

1/O Supervisor Introduction 7

ASM (the auxiliary storage manager). It calls IOS to satisfy I/O requests it receives
from RSM or VBP.

ABP (the acutal block processor). It calls IOS to satisfy I/O requests it receives
from VSAM.

EXCP processor. It calls I0S to satisfy I/O requests from some IBM access
methods: SAM, BDAM, ISAM, BTAM, TCAM, VTAM, and GAM, PAM, etc., plus
JES2 and JES3.

OLTEP (the online test executive program). It reqiests I/O operations to determine
the usability of devices.

JES3. It calls IOS to perform spool I/O.

Program fetch. It requests I/O operations to read programs from a partitioned data
set into virtual storage.

MSSC (mass storage system communicator). It calls IOS to satisfy I/O requests for
the 3850 Mass Storage System.

VPSS (Vector Processing Subsystem). It calls IOS to perform I/O operations with
the 3838 array processor.

VTAM (virtual telecommunications access method). It calls IOS to perform the
1/0 operations between VTAM and the VTAM telecommunications network.

I0S itself. I0S acts as its own driver when (a) it wants a previous I/O operation to
be retried or (b) the label of a direct-access volume must be read and verified.

Drivers request the starting of an I/O operation by branching to IOS with register 1
initialized as illustrated in figure below. This interface to IOS consists of a data
area, called an SRB (service request block) and a data area, called an IOSB (I/O
supervisor block) — pointed to by the SRB. In this manual, the SRB and IOSB are
often referred to collectively as the SRB/IOSB.

Register 1

SRB
SRB PARM
10SB
10S SRB

The driver executing the STARTIO macro must supply an SRB/IOSB in fixed
global storage. Furthermore, the driver as well as the control blocks, CCWs, etc.
must be fixed in storage until the driver has been notified that the operation was
completed.

8 0S/VS21/O Supervisor Logic

L How the SRB Is Used

C

How the IOSB Is Used

I10S causes the dispatching of asynchronous processing by using SRBs in two ways:

Method 1: Scheduling Asynchronous Processing. For every interruption that is a
completion of an I/O request, IOS chains an SRB to a queue called an SPL (service
priority list) by issuing a SCHEDULE macro. When the dispatcher checks the SPL,
it gives control to the procedure addressed in the top SRB on the queue.

Method 2: Using Exit Effectors. For writing messages to the operator, writing
records to SYS1.LOGREC, and calling error recovery procedures (ERPs), IOS calls
a system routine, the stage 2 exit effector to chain an SRB to an asynchronous exit
queue. Another routine, the stage 3 exit effector, on locating the queued SRB,
finds the TCB and ASCB (address space control block) associated with it and marks
the ASCB to show that the address space contains a “dispatchable” TCB. The
dispatcher subsequently “‘dispatches” the TCB by giving control to the procedure
addressed in the top request block on the TCB’s request-block chain.

Both of these methods are used in processing I/O events, causing up to three levels
of synchronous code to process I/O events concurrently. See ‘“Responding to an
I/O Event” in the chapter “Method of Operation” to understand how an I/O event
is processed and where in the processing these methods are used.

The 0SB contains all the information needed to start an 1/O operation. In it I0S
finds:

e The address of the channel program to be used.
o The address of a UCB (unit control block), which contains information about
the device that has been selected for the I/O operation.

o Fields referenced in building the CCWs that prefix the driver’s channel program.
(These CCWs can activate hardware options on tape devices; they position the
access arm and set the file mask on direct-access devices.)

The IOSB also contains information used by I0S in the course of processing a
solicited I/O event, such as:

o The address of the driver’s DIE procedure.

o Entries in the driver through which channel-end, abnormal-end, and PCI append-
ages receive control.

o The address of the driver’s termination procedure. (10S gives control to this pro-
cedure after it has done all the I/O-event processing that follows the completion
of the driver’s channel program.)

I/O Supervisor Introduction 9

10S and presented to the driver when its DIE procedure, appendages, or termina-

Not all the information in the [OSB is put there by the driver; some is filled in by ’
tion procedure receive control. For example:

e A completion code, giving the status of the requested 1/O operation
e The CSW that was stored as the result of an 1/O event
¢ Sense information (data about the status of the device on which the operation

was attempted), if the unit-check bit is set in the CSW

This is only a selection of the information in an IOSB. The “Method of Operation”
chapters for both the EXCP Processor and I0S describe in more detail the names of
fields and bits in the IOSB and how this information is used.

Group 2 Callers and Their Interfaces

10 0S/VS2 1/0 Supervisor Logic

Group 2 callers branch to the part of IOS that processes 1/O events. Belonging to
this group are the following VS2 components:

1/0 FLIH (the input/output first-level interrupt handler). I/O FLIH branches to

I0S when an 1/0 interruption occurs. The path of control into and out of I/O
FLIH looks like this:

I/O interruption (generated by the channel)

Processor J

1. Stores the old 1/O PSW. I/O FLIH
2. Loads the new I/O PSW. 1. Saves registers.
Address of the | 2. Records the interruption
1/0 FLIH in a trace table. to I0S
L

108 itself. 10S is its own caller when:

o Tests show that an immediate operation completed. (Immediate operations
don’t cause the channel to generate an [/O interruption, but they do cause the
channel to store status information—as does any 1/O event—in the CSW.)

e It receives control from MIH (the missing interrupt handler). Although no 1/O
event occurred, IOS acts as though one has. This “simulation” permits the
reallocation of I/O resources previously allocated to an uncompleted I/O
operation. Status information that IOS stores in the CSW controls how I0S
processes this “‘simulated” I/O event.

For more information about callers within I0S, see “Responding to the Condition
Code Setting” and “Simulating an I/O Event” in the IOS “Method of Operation”
chapter.

(’ Group 3 Callers and Their Interfaces

Group 3 callers branch to the part of IOS that attempts to restore the availability
of I/O resources (i.e., channels, control units, devices). Belonging to this group are
the following VS2 components:

ACR (alternate CPU recovery). It branches to IOS if a processor becomes unusable.

CCH (the channel check handler). It branches to IOS if a channel error can’t be
corrected for lack of data about the last operation on the channel. 10S tries the
requests again or terminates them for the failing channel. CCH can also schedule
IOS as an SRB if a channel encounters a hung interface condition or if the channel
becomes permanently or temporarily unusable.

CCH operates in two modes: mainline CCH and CCH MCH exit. Mainline CCH
branch-enters IOS when a stored CSW indicates errors. The MCH branch-enters the
CCH MCH exit if the machine check interruption code indicates that external
damage has occurred. The CCH MCH exit determines if the external damage
machine check occurred on a processor that is signalling a channel(s) that has
become unusable.

MIH (the missing interrupt handler). It branches to 10S if the completion of an
1/O operation is overdue.

Each of these callers uses register 1 as a parameter register. In it, IOS finds a code

identifying the caller, MIH, and the address of the UCB (unit control block) for the

device being used. If the caller is ACR, a code identifying the unusable processor is
(V passed. If the caller is CCH, the code identifies the function 1OS is to perform.

The processing performed by I0S for these callers is described under “Restoring the
Availability of 1/0 Resources” in the I0S Method-of-Operation chapter.

Group 4 Callers and Their Interfaces

Group 4 caliers ask 10S to purge I/O requests. Two callers, marked with an asterisk
(*) in the following list, ask for a quiesce operation and subsequently ask IOS to
restore the 1/O requests.

The callers in Group 4 are:

The checkpoint SVC routine (SVC 63).* It asks I0S to quiesce I/O requests so
that it can write records showing the status of a job step.

RTM (the recovery termination manager). It requests a halt operation for one of
two reasons: (a) a system or user routine wants a halt operation to be done before
recovery processing begins or (b) a job, task, or address space is terminating ab-
normally, and its resources are being returned to the system.

1/0 Supervisor Introduction 11

The region control task.* It requests a quiesce operation to prevent 1/O requests, '
about to be passed to 10S, from being processed when the requestor’s address
space is being swapped out.

The task-close routine (a resource manager). It asks [0S to halt [/O requests associ-
ated with a data set that has been closed.

The I/0 and path mask update routine (IECVIOPM). It requests a halt operation
associated with a *“‘data set identifier”. This is done after a fixed interval during
which no response was received from the path verification I/O request. *

To request a purge operation, these callers issue a PURGE macro, which expands
into an SVC 16 instruction. This causes IOS to receive control via the SVC inter- -
rupt handler.

On receiving control, 10S expects to find the address of a PPL (purge parameter list)
in register 1. In the PPL the caller must have supplied:

s An indicator telling I0S to halt or quiesce I/O requests.

e Anindicator telling IOS which requests to purge—those associated with a specific
data set, those for a specific task, or those in a specific address space.

e Either a “data set identifier” (the address of a data area that identifies a data
set) or a TCB address or an address space identifier. One of these is the search
argument, the field that will be used in comparison tests to find I/O requests to

be purged.

e The address of a fullword into which 10S stores the address of the PIRL (purged J
1/0 restore list). (The PIRL is created during a quiesce operation and initialized
with pointers to the interrupted work of each 10S driver.)

A restore operation is requested when a RESTORE macro is issued, resulting in an
SVC 17 instruction. In this case, register 1 provides I0S with the address of the
PIRL area containing the pointers to the driver’s interrupted work.

Group 5 Callers and Their Interfaces

BTAM or TCAM calls IOS when it wants to halt a currently running channel
program. The call is made with an IOHALT macro, which contains SVC 33
instruction in its expansion.

Depending on the contents of register 1, IOS either halts the channel program with
an HDV (halt-device) instruction or branches to the EXCP processor, which modi- .
fies a CCW to halt the channel program. Register 1 also tells IOS where it can find
the UCB for the teleprocessing device; register O points to the CCW to be modified,
if that’s how the caller wants the channel program to be halted. -

12 0S/VS21/0 Supervisor Logic

EXCP Processor Introduction

The EXCP processor, called EXCP for short, is a VS2 component. It resides EXCP |
on the SYS1.NUCLEUS data set and executes in the resident area of real
storage.

EXCP communicates information between the IBM access methods (plus VTAM,
JES2, and JES3) and IOS (the input/output supervisor). Its role as a communica-
tion function includes these responsibilities:

e Communicating an access-method request for an I/O operation to I0S by
(a) gathering information from the “access-method interface” (defined below),
(b) consolidating the information into a single block, and (c) passing the address
of the control block to IOS.

e Communicating the status of an I/O operation to channel-end, abnormal-end,
and PCI appendages by (a) gaining control at the IOS exits of each of them and
(b) moving 10S-collected information to access-method control blocks.

o Telling the access method what the final disposition of its I/O request is, by
causing a code to be put in its ECB (event control block).

As one of the drivers (Group 1 callers) of 10S, EXCP takes part in purging and re-
storing I/O requests. Its role is complementary to the I/O supervisor’s: if I0S halts
certain EXCP-initiated requests (all those initiated from a certain address space, for
instance), EXCP deletes the control information it has kept for them; if [0S quies-
ces certain EXCP-initiated requests, EXCP saves a block of control information for
each such request not yet sent to 10S, chains the blocks together, and gives [0S the
address of the chain. When a restore operation is subsequently requested, IOS re-
turns the address of the chain to EXCP, and EXCP resumes the processing of those
requests.

The processing done by EXCP in purge and restore operations is explained in more
detail in the EXCP Method of Operation chapter.

What Programs Qualify as Access Methods?

The term ‘‘access method,” means any program that builds channel programs

and passes them to EXCP for execution. This definition includes some of the

IBM access methods — SAM, BDAM, ISAM, BTAM, TCAM, VTAM, GAM, PAM,
JES2, and JES3, and any user program, utility program, or SVC routine that builds
a channel program and gives it to EXCP for execution (even though building a
channel program may not be its main purpose).

What Is the Access-Method Interface?

To give control to EXCP, an access method issues an EXCP or EXCPVR macro in-
struction, which expands into an SVC 0 or SVC 114 instruction, respectively. The
SVC interrupt handler then gives control to EXCP.

EXCP Processor Introduction 13

On acquiring control, EXCP finds:

register 1 register 4
L» IOB (input/output block) “#TCB (task control block)
Partial contents: Partial contents: address of the
e DCB address. request block representing the
o channel program address. access method.
o seek address, if using a direct-
access device.
- request block
- DCB (data control block) Partial contents: address of the
instruction following SVC 0 or
Partial contents: SVC 114,

o DEB address.
o format of records.
e appendage addresses. —» UCB (unit control block)
e selection of access-method
options.

Control information about the

1/0O resources allocated to the
\——» DEB (data extent block) 1/O request.

Partial contents:

e DCB address.

o UCB address.

e data set extents, if on a direct-
access device.

These control blocks, taken together, constitute the access-method interface. It
contains everything EXCP needs to build:

e An interface that I0S will use to start the I/O operation

o An internal record, called an RQE (request queue element), that represents the

access-method request for an 1/O operation

See “Preparing to Go to I0S” in the EXCP Method of Operation chapter to learn
more about the uses of the access-method interface.

What Are Related Requests?

14 OS/VS2 1/0 Supervisor Logic

Related requests are 1/0 requests with these characteristics:

e They are directed to the same data set and share the same DEB.

o They are processed by EXCP in the order received, but with some overlap; that
is, request n in a group of related requests needn’t be completely processed be-
fore some processing, short of channel-program execution, can be done on
request n+1.

o If a related request returns from I0S with an I/O error, none of the related
requests remaining to be sent can be successful. The subsequent requests depend
on the success of the earlier request.

By examining the IOB, EXCP can tell if the access method has given it a related
request and, if the access method has, what type of related request it is—type de-
noting the amount of overlap permissible between a given related request, n, and
n+1. Three types currently exist:

Type 1. The 1/O operation for this type must complete, and the channel-end ap-
pendage must look at the status of the operation, before the next related request
can be handled by the SIQ appendage.

Type 2. The 1/O operation for this type must complete, and the channel-end ap-
pendage must look at the status of the operation, before the next related request
can be sent to 10S.

Type 3. The 1/O operation for this type must complete before the next related
request can be sent to 10S. (If the CSW for the 1/O operation shows anything other
than a device-end or channel-end indication, the next related request cannot be sent
to 10S until the channel-end or abnormal-end appendage has executed.)

Refer to “Making a Record of the Request” in the EXCP Method of Operation
chapter to learn how EXCP keeps track of the order and progress of related
requests.

EXCP Processor Introduction 15

© Al niraan e K e

16 0S/VS2 1/0 Supervisor Logic

C

Preparing to go to IOS

EXCP Processor Method of Operation

This chapter contains a simplification of EXCP code, divided into sections that
correspond to basic EXCP operations. Basic EXCP operations consist of:

e Preparing to go to I0S (with an 1/O request)
¢ Giving an I/O request to 10S
e Going to the PCI, CHE, and ABE appendages

o Purging and restoring /O requests

o Telling the access method what happened (to its 1/O request)
e Reusing the access-method interface

e Halting a teleprocessing operation

Each section is divided into topics that deal with functionally distinct parts of an
operation.

The flow of control between labeled parts of EXCP is not stated in these sections.
Rather, an order of events is implied by the order of topics within a section. If you
want flow-of-control information, look at Figure 1 and the descriptions of the

basic EXCP module and miscellaneous module in the “EXCP Program Organization”
chapter.

Preparing to go to 10S with an 1/O request requires up to seven steps:

1. EXCP examines the access-method interface for irregularities that might cause
1/0 errors or jeopardize the security of the system.

2

. EXCP makes a record of the request and puts it in a queue if it is a related request.

3. EXCP finds out if a VIO (virtual input/output) data set will be used and, if it will,
does not go to I0S with the request but to the VIO component instead.

4. EXCP Puts into an SRB (service request block) and IOSB (I/O supervisor block) all
the information IOS needs to process the request.

5. If tests justify it, EXCP calls the access method’s PGFX (page-fix) and EOE (end-
of-extent) appendages.

6. EXCP calls the access method’s SIO (start-1/O) appendage.

7. If the access method uses virtual storage addresses, EXCP calls a system routine
that fixes buffers, copies the channel program in fixed storage, and substitutes
real storage addresses for virtual ones.

Validating the Access-Method Interface

Module: IECVEXCP
Procedure: XCP0OO

EXCP checks the control blocks it has been given for irregularities that might cause
1/0 errors or jeopardize the security of the system. Some of the irregularities
checked for are:

e Conflicting DCB pointers.
e An invalid UCB.

EXCP Processor Method of Operation 17

e An invalid DEB. ,
e An IOB, ECB, or DCB that is not in the protection key of the caller.

The last two checks are only done if the caller has a “user” protection key. (User
protection keys range from 8 to 15.)

Making a Record of the Request

Module: IECVEXCP
Procedure: XCPRQE

EXCP fills a record, called an RQE (request queue element), with information, such
as the addresses of the TCB, UCB, IOB, and DEB, that are needed for later pro-
cessing. (The address of the SRB is also put in the RQE. See “Consolidating Infor-
mation in an SRB/IOSB” in this chapter to learn more about this data area.)

If the IOB shows that the 1/O request is a related request (the IOBUNREL bit is
off), EXCP marks the RQETYPE field, using the IOBFLAG? field as input, to
show what type of related request it is. The RQETYPE field is later used with

the RQEFLAG field—it shows the progress of the request—to overlap the processing
of this related request with the next related request, if there is one. (See “What
Are Related Requests?” for an explanation of related request types.)

Each time EXCP builds an RQE for a related request, it puts the RQE at the end of

this pointer structure:]

DEB

DEBRRQ: points to a queue of related requests.

‘> RRQ (related request queue) J> RQE (for the last-received request)

First word Second word RQENRQE: contains X‘FFFFFFFF’

-RQE (for the first-received request)

RQENRQE: points to the RQE for the next-received request.

By these means, EXCP keeps track of the order in which related requests are
received.

Determining If a VIO Data Set Was Allocated

Module: IECVEXCP
Procedure: XCPVAM

EXCP examines the UCB to find out if the object of the request is a VIO data set:

UCB ’

UCBJBNR (UCBURDEY flag): on if a VIO data set was allocated.

18 0S/VS21/O Supervisor Logic

Page of §Y26-3823-5
As Updated October 25, 1979
By TNL SN28-4683

If a VIO data set was allocated, EXCP goes to the VIO component, using the
L WIEXCP macro. (The VIO component either simulates the transfer of data or uses
| another driver of 10S, the auxiliary storage manager, to read or write data. See
OS/VS2 VIO Logic for more information about VIO processing.)

Consolidating Information in an SRB/IOSB

Module: IECVEXCP
Procedure: XCP050

EXCP obtains a data area for an SRB and an IOSB, in which it puts all the informa-
tion that 10S needs to start an I/O operation. They are referred to collectively as
SRB/IOSB.

In the table below, the lefthand column lists information that EXCP puts in the
SRB/IOSB; the middle column shows where the information comes from, and the
righthand column shows where it goes:

TCB address RQETCB SRBPTCB
UCB address RQEUCB I0SUCB
channel program address I0BST IOSRST*
seek address IOBSEEK IOSEEKA
access-method options IOBFLAG! IOSFLA
| DCBIFLG I0SOPT
file mask DEBDVMOD IOSFMSK
DEB address RQEDEB I0SDSID

* The address of a copy of the channel program is stored in IOSRST.
See “‘Copying and Translating a Channel Program” in this chapter
for more information.

In addition, EXCP initializes the IOSB with information not found elsewhere:

I0SB

IOSDRVID: contains X‘02’, identifying EXCP as the driver that created the [OSB.

IOSNRM: points to EXCP code that moves data from the IOSB to the IOB and calls
the access method’s channel-end appendage.

IOSABN: points to EXCP code that moves data from the IOSB to the IOB and calls
the access method’s abnormal-end appendage.

IOSPCI: points to EXCP code that moves data from the IOSB to the IOB and calls
the access method’s PCI appendage.

IOSDIE: points to EXCP’s DIE procedure.

IOSPGAD: points to the EXCP code that’s entered when I10S is finished processing
an [/O event.

EXCP Processor Method of Operation 19

October 25,1979

Going to the PGFX, EOE, and SI0 Appendages

Module: IECVEXCP
Procedures: IECVEXTC
XCP110

EXCP finds out if the access method has a PGFX appendage by examining the DEB:

DEB

DEBSIOAB: the high order bit “on” in the high order byte (DEBPGFX) means
a PGFX appendage exists.

EXCP gives a PGFX appendage control if the RQE shows the access method either
issued an EXCPVR macro or uses virtual storage addresses:

RQE

RQETYPE
RQEI14: on if EXCP was entercd with an EXCPVR macro.
RQEVIRT: on if the caller uses virtual storage addresscs.

Pages in the list returned by the PGFX appendage are fixed if EXCP was entered
by an EXCPVR macro. They are not fixed if the caller uses virtual storage ad-
dresses. (The buffers used by such callers are subsequently fixed by the process-
ing described under “Copying and Translating the Channel Program.”™)

For requests from a V=R address space, EXCP checks whether the DEB has
been fixed. If not, EXCP does a pagefix, using the TCB address in the DEB. (Note:
This is a TCB-associated pagefix.)

EXCP enters the EOE appendage if a direct-access device was allocated and the
seek address in the IOB does not fall within the extent boundaries recorded in the
DEB. Otherwise, the EOE Appendage is not entered.

IOB DEB

IOBSEEK: first byte is an index to
the data set extent entry in the DEB.
Remaining bytes contain the seek
address: the cylinder and track to
which the direct-access volume will

DEBDVMOD: the beginning of an
area containing a 14-by te entry for
each extent in the data set. Each
entry gives the bounds in which the
seek address must fall.

be positioned.

Upon return from the EOE appendage, EXCP performs one of the following
functions as indicated by the appendage.

e Tells the access method about an ‘““out-of-extent” error (by putting X‘42’ in the
IOBECBCC field of the IOB) and calls the abnormal-end appendage.

o Turns on the RQEPURGE bit to indicate RQE is to be purged without further
appendage processing.

e Rechecks the seek address, and if it still doesn’t fall within the extent boundar-
ies, reenters the EQOE appendage.

20 OS/VS821/0 Supervisor Logic

October 25,1979

EXCP also goes to the EOE appendage if, after IOS tries to start an I/O opera-
tion, the direct-access ERP alters the seek address (to cause a track or cylinder
switch) and wants the new seek address to be verified.

EXCP enters the SIO Appendage unconditionally. Using different return addresses,
the appendage can tell EXCP to continue processing the request or terminate it.

Copying and Translating the Channel Program

Module: [ECVEXCP
Procedure: XCP115

If the access method uses V=R storage addresses, or if it enters EXCP with an
EXCPVR macro, the channel program is ready to be executed: the channel
program and the buffers reside in fixed storage, and the buffer addresses in the
channel program’s CCWs are real addresses.

EXCP can, in this case, convert the contents of the IOBST field to a V=R storage
address and use that address to initialize the IOSRST field. (IOS assumes that the
IOSRST field contains the V=R storage address of the channel program.)

The channel programs of other callers must be copied in a fixed area, the buffers
must be fixed, and virtual storage addresses must be translated into real ones. This

is all done by the I0S CCW translator module, IECVTCCW. On receiving control,
the CCW translator module finds:

register 1 ITCCW (translation control block)
4 Tcew

TCCWTCB: the TCB address.
TCCWUCB: the UCB address.

TCCWFVC: points to the untranslated channel program.

The CCW translator module returns the starting address of a fixed, translated copy
of the channel program; EXCP stores the starting address in the IOSRST field.

Giving an I/O Request to I0S

Module: IECVEXCP
Procedure: XCP145

EXCP gives an 1/O request to [0S by calling the IOS code that starts [/O operations.
The call is made by issuing a STARTIO macro or by a direct branch from EXCP’s DIE
procedure. (I0S enters the DIE procedure of its driver after a solicited I/O event
occurs.) In both cases, 10S gets control with the address of the SRB in register 1.

Going to the PCI, CHE, and ABE Appendages

After receiving an I/O request from EXCP, IOS calls EXCP one or more times to
communicate with a:

e PCI (program-controlled interruption) appendage
e CHE (channel-end) appendage
e ABE (abnormal-end) appendage

EXCP Processor Method of Operation 21

Page of SY26-3823-5
As Updated October 25,1979
By TNL SN28-4683

Before EXCP invokes one of these appendages, it transfers information from the
IOSB to the 0B so that the appendage can examine the 10B and know the
status of the [/O request.

If the appendage is a CHE or ABE appendage, EXCP executes options for it (such
as moving data or setting flags) before returning to I0S. Otherwise no options are
executed and control returns to 10S.

| Entering the Disabled Interrupt Exit (DIE) Procedure

Module: IECVEXCP
Procedures: XCPDIE

XCPMAP

Normally, disabled procedures are kept to a minimum since the system cannot
respond to other interrupts while disabled. However, under certain conditions,
EXCP uses the disabled interrupt exit (DIE) procedure to enter an appendage
itself, rather than wait for 10OS to branch to the exit. The 108 code that gives
control to the DIE procedure executes (synchronously) before the I0S code that
branches to the exit addresses in the IOSB (which executes asynchronously).

For the normal V=V address space, the DIE procedure is not entered. It is entered
only under the following two conditions:

1.

If the access method is running in a V=R address space, or if it called EXCP
with an EXCPVR macro, the DIE procedure branches to the PCI appendage,
first setting up the IOB as described under “Transferring Status Information to
Appendages” in this chapter. (EXCP assumes that fixed callers — TCAM, for
instance — require better performance and want the chance to modify an active
channel program as soon after a PCI interruption as possible.)

. If the access method has given EXCP a type 3 related request, the DIE procedure

checks to see if the next request element can be started. If so, the DIE
initializes the IOSB with information from the request queue element (RQE)
about the next request to be started. Then the DIE passes the [OSB/SRB to [0S.

Transferring Status Information to Appendages

22 0S/VS2 1/0 Supervisor Logic

Module: IECVEXCP
Procedures: XCPPC]

XCPCHE
XCPABE
XCPMAP

When 10S branches to one of the appendage addresses in an IOSB created by EXCP,
EXCP is entered instead of the appendage. At each of these entrances, EXCP prepares
to go to the appropriate appendage by transferring information about the status of
the 1/O event from the IOSB to the [OB.

In the table below, the lefthand column shows status information in the IOSB, the
middle column shows where it is located, and the righthand column shows where
EXCP puts it in the IOB.

-
-~

2,

9

Page of SY26-3823-5

As Updated October 25, 1979

By TNL SN28-4683

sense information IOSSNS IOBSENSO
IOBSENS1

completion code 10SCOD IOBECBCC

channel status word I0SCSW IOBCSW

Additionally, if the “exceptional-condition” bit, IOSEX, is on, EXCP turns on an
error bit in the IOBFLAG1 and DCBIFLGS fields.

Executing Appendage Options

Module: IECVEXCP
Procedures: XCPCHE
XCPMAP

The CHE and ABE appendages return to EXCP at any of several addresses;

each return causes EXCP to execute a different set of appendage options before

returning to 10S. Depending on where it is entered, EXCP takes one or both of

the following actions:

e Transfers the status information, whether altered by the appendage or not,
back to the IOSB.

e Sets bits in the RQEFLAG field controlling the EXCP code that IOS enters

when it finishes processing the 1/0 event.

EXCP Processor Method of Operation

221

October 25,1979

22.2 0S/VS2 1/O Supervisor Logic

October 25,1979

(' Purging and Restoring 1/0 Requests

Purging I/O requests consists of these steps:
1. If a halt operation was requested, EXCP frees the SRB/IOSBs that 10S passes
and frees associated data areas that EXCP created.

2. Regardless of the type of purge operation, EXCP frees RQEs that match a
search argument 10S passes.

3. If a quiesce operation was requested, EXCP saves the IOBs for requests that
haven’t been given to [0S and chains the IOBs together. (The chain is needed
if a restore operation is subsequently requested.)

To restore 1/O requests, EXCP issues an SVC instruction—-SVC 0, 92, or 114—for

each I0B (I1/0 request) in the IOB chain. The SVC instruction causes the [/O
request to be reprocessed by the EXCP code that gives I/O requests to 10S.

Freeing Data Areas Known to 108

Module: IECVEXPR
Procedure: IECVXPUR

Module: IECVEXCP
Procedure: XCPTERM

EXCP Processor Method of Operation 23

October 25, 1979

On receiving control from the 10S nonresident purge module, EXCP checks the
IPIB to determine if the issuer of the PURGE macro asked for a halt or quiesce
operation.

register 1 —[—> [PIB
IPIBOPT

IPIBHALT: if on, a halt operation was requested; if off, a
quiesce operation. The choice was given to 1OS in the purge
parameter list and marked in the IPIB by the 10S non-
resident purge module.

If a halt operation was specified, EXCP finds in the IPIBSRB field the address of
the first SRB/IOSB in a chain of SRB/IOSBs that IOS collected for EXCP’s disposal.
Using the following pointers, EXCP frees each SRB/IOSB and the associated RQEs
and translation control blocks:

SRB/IOSB

| SRBLINK: points to the next
SRB/IOSB in the chain.

I0SUSE: points to the RQE.

RQE TCCW (translation control block)
RQETCCW: points to the Used to pass information to the

translation control block. 10S CCW translation module.

Comparing RQEs to the Search Argument

24 0S/VS2 I/0O Supervisor Logic

Module: IECVEXPR
Procedures: IECVXPUR
[ECVRCHN

Module: IECVEXCP
Procedure: XCPTERM

There are some I/O requests for which IOS has no internal records (no SRB/IOSBs),
as is the case if (a) EXCP hasn’t given the I/O request to I0S yet or (b) IOS has
finished processing the request, and EXCP has freed the SRB/IOSB. If I0S has no
SRB/IOSB for an [/O request, it has no way to identify the RQE, should the RQE
be associated with the purge operation. EXCP finds such RQEs by comparing the
search argument in the IPIB to the designated field of every RQE that still exists.

IPIB RQE
IPIBARG: the search argument. RQEDEB: points to the DEB.
IPIBOPT: bit settings tell EXCP RQETCB: points to the TCB.

whether to compare the argument to
the RQEDESB field or to the RQETCB
field—or to neither, in which case the
search argument is an address space
identifier. The RQEs associated with
an address space are found by using a
network of pointers.

<9

C

Restroring I/O Requests

RQEs that match the search argument, and any translation control blocks they
point to, are freed if a halt operation was requested. (ex: if the RQE points to a
SRB/IOSB and TCCW blocks, the SRB/IOSB and TCCW blocks are freed before
the RQE.) If a quiesce operation was requested, matching RQEs are also freed,
providing they represent I/O requests that haven’t been sent to IOS, and the
associated IOBs are put in a chain.

IPIB _J—-VIOB
IPIBIO: points to the first IOB in IOBR: points to the next IOB in the

the chain. The IOS nonresident chain.
purge module moves this pointer into
the PIRL at PIRRSTR, a field EXCP
refers to when it restores its 1/O
requests.

A count of all the other matching RQEs is added to the IPIBCNT field, which
shows the total of I/O requests that have reached I0S but haven’t been completely
processed. (When the system eventually passes these RQEs to EXCP for disposal,
EXCP finds them marked with an IPIB address and decreases the IPIBCNT count.
The quiesce operation is only complete when an IOS driver, not necessarily EXCP,
decreases the count to zero.)

Module: IECVEXPR
Procedure: IECVXRES

On receiving control from the 10S restore module, EXCP finds:

register 1 PIRL
Points to PIRRSTR. PIRRSTR: points to the first in a chain of 10Bs,
each representing an 1/O request to be restored.

Restoring an 1/0 request means resubmitting an 1/0O request. To resubmit an 1/O
request, EXCP must recreate the access-method interface by:

o Putting the address of the IOB in register 1.

o Issuing an SVC 0 or an SVC 114 instruction, which causes EXCP’s entry code to
get control with the address of the restore TCB (the one the issuer or the RE-
STORE macro is running under) in register 4.

EXCP performs these steps for each IOB in the chain, varying the procedure in

only one case: if the issuer of the PURGE macro requested that the I/O request be

reprocessed under a rarget TCB (a TCB other than the restore TCB), EXCP puts the

address of the target TCB in register O and issues an SVC 92 instruction, again giving
control to its entry code.

EXCP Processor Method of Operation 25

A data area called the EPCB (EXCP purge control block), built when EXCP’s 1/0
requests were quiesced, gives EXCP the information it needs to reprocess each of
the IOBs (I/O requests) on the I0B chain:

EPCB entry (one per IOB)

EPCBIOB: contains the address of an IOB on the IOB chain.

EPCBTCB: contains X‘F4’ if EXCP is to issue an SVC 114 instruction to reprocess the
10B addressed in the EPCBIOB field.

EPCBTCB+1: contains zeros if the IOB addressed in the EPCBIOB field is to be re-
processed under the restore TCB. Otherwise, contains the address of the target TCB
under which the IOB is to be reprocessed.

Purging Dependent 1/0 Requests

26 0S/VS21/O Supervisor Logic

Module: [ECVEXCP
Procedures: XCPTERM
XCPPUR

If 10S returns to EXCP a related request whose I0SB is marked with an error indi-
cation, EXCP purges all the I/O requests that depend on the successful completion
of the related request; that is, all the I/O requests that follow it on the related re-
quest queue are purged. (See ‘“Making a Record of the Request” in this chapter
for how the queue is located and structured.)

DCB

DCBIFLGS: if the first two bits are on, an uncorrectable I/O error was encountered.

The purge of dependent /O requests is a limited version of what EXCP does to
complement an 10S purge operation. It includes these steps:

o Freeing the SRB/IOSBs, RQEs, and the translation control blocks belonging to
related requests.
¢ Chaining the IOBs of dependent requests together.

e Telling the access method what happened by putting an X‘48’ in each ECB.

EXCP lets the access method decide whether to resubmit the 1/O requests.

J

L Telling the Access Method What Happened

Module: IECVEXCP
Procedure: XCPTERM

The process of telling the access method what happened to its [/O request is called
posting. A one-byte completion code is put (posted) in the ECB for the access
method’s inspection when:

e The EOE appendage returns to EXCP with an “out-of-extent” error.

e The EOE appendage directs EXCP to ignore the I/O request and return to the
access method.

o The I/O request is purged, unless the IPIB shows that the purged request should
not be posted.

IPIB

IPIBOPT
IPIBPOST: if off, the request is not posted. (Set by the IOS nonresident purge
module (IGC0001F) in accordance with options in the purge parameter list.)

e IOS finishes processing the request, unless the RQE shows that the request
should not be posted.

RQE

RQEFLAG
RQENOPST: if on, the request is not posted. (Set by EXCP at the direction of
an appendage.) if on, the request is posted.

The system routine that does the posting also finds the TCB under which the access

method is running, decreases the ‘“‘wait” count, and if the count becomes zero,
marks the TCB “dispatchable.” The access method, waiting to learn about the status
of its I/O request, can then get control and examine the ECB.

When EXCP gives control to the posting routine, it passes the completion code and
the ECB address in registers 10 and 11, respectively.

IOB

IOBECBCC: the completion code is taken from this field. If the I/O request was pro-
cessed by 10S, the code was moved here from the [OSCOD field of the [OSB. To learn
what the codes are and what they mean, see ‘““The IOSCOD Field” in the IOS

- *“Diagnostic Aids” chapter.

IOBECBPT: points to the ECB.

EXCP Processor Method of Operation 27

Reusing the Access-Method Interface

Module: IECVEXCP
Procedure: XCPTERM

After IOS finishes processing an I/O request, EXCP frees the RQE, unless the
RQE shows that re-EXCP processing is requested:

RQE

RQEFLAG
RQERETRY: the “re-EXCP” bit; if on, it tells EXCP to reuse the access method inter-
face. (EXCP would have turned it on earlier if directed to by the CHE or ABE appendage.)

An appendage requests “re-EXCP” processing as a quick way of executing the same
channel program or a new one—quick because EXCP doesn’t have to revalidate the
access-method interface or create a new RQE. (If an appendage wants a new chan-
nel program to be executed, it must additionally change the channel-program pointer
in the OB or modify the original channel program.)

EXCP initiates the processing of the “new” I/O request by returning to the code
that compares the seek address to the limits of the data set extent.

Halting a Teleprocessing Operation

28 0S/VS2 1/O Supervisor Logic

Module: IECVEXPR
Procedure: SVC33

EXCP gets control from a teleprocessing access method by this route:

1. A teleprocessing access method issues an IOHALT macro, which generates an
SVC 33 instruction directing IOS and EXCP to halt a teleprocessing operation.

2. The SVC interrupt handler goes to the I0S halt-I/O code.

3. 108, finding that EXCP was chosen to halt the operation (by examining register
1), branches to EXCP’s halt-1/Q code.

On receiving control, EXCP finds a pointer to an untranslated CCW in register 0
and:

e Stores a “no-op” operation code, X‘03’, into the translated CCW that corresponds
to the untranslated channel program.

o Turns off the command-chaining bit in the translated CCW.

These actions cause the channel program to end.

October 25, 1979

EXCP Processor Program Organization

This chapter is organized by object module name and by procedure name within
each object module.

The following reference features are provided to help you move quickly within and
between the chapter sections.

e The sections appear in the alphabetical order of their titles. (The titles are the
names of the modules.)

e Procedure subtitles are assigned numbers within each module.

When a procedure name and number is referenced, simply locate the numbered
procedure within the module.

When a module name and number is referenced, first locate the module, then
locate the numbered procedure within that module.

e Place markers, printed at the top of each page, give the name of the module and
the numbers of the procedures described on the page. To find the description of
a given module or procedure, you can scan the place markers.

EXCP is made up of the basic EXCP module (IECVEXCP) and the miscellaneous
module (IECVEXPR). Both are link-edited at system generation into the nucleus
load module, IEANUCxx.

The object modules are the program units that perform the operations described in
the “Method of Operation” chapter. This table shows which of these modules
perform which services:

Operation Module

Preparing to go to I0S Basic EXCP Module

Giving an I/O request to I0S Basic EXCP Module

Going to the PCI, CHE, and ABE appendages Basic EXCP Module

Purging 1/0 requests Miscellaneous Module (but the Basic EXCP

Module does the purging described under
“Purging Dependent /O Requests™)

Restoring 1/0 requests Miscellaneous Module
Telling the access method what happened Basic EXCP Module
Reusing the access method interface Basic EXCP Module
Halting a teleprocessing operation Miscellaneous Module

This part is divided into two sections, ‘“Basic EXCP Module (IECVEXCP)” and
“Miscellaneous Module (IECVEXPR).”” Each section tells what the module does by
describing the module’s procedures. Each shows the flow of control into, out of, and
within the module by identifying the calls made by the module’s procedures, and the
entrances to and exits from them.

The basic EXCP module, the larger and functionally more important module, is also
represented in flow-of-control diagrams, Figure 1. The diagram shows a simplifica-
tion of the module’s processing and control flow. The number next to each block
corresponds to the procedure number assigned to the procedure descriptions that
follow the diagrams. Use the place markers at the top of each page to reference

the desired procedure description.

EXCP Processor Method of Operation 29

1)

Q)

Page of SY26-3823-5
As Updated October 25, 1979
By TNL SN28-4683

From an access method
that wants an 1/O operation
to be started

Issues an SVC 0

|

Validity-Check Procedure (XCP000)

Examines the access-method inter-
face for irregularities that might
cause I/0 errors or jeopardize the
system’s security.

!

Get-RQE Procedure (XCPRQE)

e Gets and initializes an RQE.
e (Calls the VIO interface procedure. —
e Determines whether processing

must be held up because of a

dependency on a related request. _

'

4)

Get-SRB Procedure (XCP050)

e Gets and initializes an SRB/IOSB
and TCCW.
® [f needed, gets a BEB and Fix list.

{

)

PGFX Interface Procedure (XCPPFA)

e Ifappropriate, calls the PGFX
appendage, or

® Determines whether a DASD was
allocated for the I/O operation.

—©

o

SIO Interface Procedure (XCP110)

Calls the SIO appendage and exits

®)

as the appendage directs.
If the request

is not to be

Y sent to I0S

Translator Interface Procedure
(XCP115)

If appropriate, calls the I0S CCW
translator module, which makes a
fixed, translated copy of the
channel program.

Figure 1. Flow of Control in the Basic EXCP Module (IECVEXCP) (Part 1 of 2)

30 0S/VS2 1/0 Supervisor Logic

or SVC 114 instruction

~©

)

VIO Interface Procedure (XCPVAM)

Ifa VIO
data set exists

From VIO

e Tests for the existence of a VIO
data set.

e Returns to caller.

e Ensures that the ECB is posted
and/or the RQE is freed if VIO
directs.

‘—{ To VIO '

B

If processing
is held up

G

©)

EOE Interface Procedure (IECVEXTC)

If a DASD
was allocated

Finds out if the seek address falls
within the specified extent, and
based on that determination, either:
e Exits to the SIO interface

procedure.
or
o Maps IOSB to IOB, then calls
the EOE appendage.
If the latter, exits as the EOE
appendage directs.

To enter the @‘—
ABE appendage é

)

7

To post
the ECB

STARTIO Procedure (XCP145)

From IOS

e Puts the address of the channel
program in the IOSB.
e Issues a STARTIO macro.

—— To 10S

e Exits.

Page of SY26-3823-5

As Updated October 25, 1979

By TNL SN28-4683

After an [/O
From 10S event soli-
cited by EXCP

DIE Procedure (XCPDIE)

(10

e IfaPClinterruption occurred for a
V=R user, or a user who issued
EXCPVR, maps the IOSB to IOB,
then calls the PCI appendage.

e Returns to I0S, with a related re-
quest if the I/O event makes pos-
sible the submission of the request.

Y

During 1/O-event
processing, if a
C From [0S) PCl interruption
* occurred

PCI Interface Procedure (XCPPCI)

an

Maps the IOSB to IOB, then
calls the PCI appendage.

C To its caller >
() During 1/0O-
? From 108 event processing

CHE/ABE Interface Procedure
. (XCPCHE, XCPABE)

(12)

e Transfers data on the status of
the I/O operation from the IOSB
to the IOB.

e Depending on where it was
entered, calls either the CHE or
ABE appendage.

e At the direction of the appendage,
sets RQE bits that ensure that
the RQE is freed or not freed,
that the ECB is posted or not
posted, that the access-method
interface is reused or discarded.

T
If abnormal *

condition,
not perma-
nent error ‘ Return to caller)

After 1/O-event
From 10S processing is
completed

Termination Procedure (XCPTERM)

o If the access-method interface is
to be reused, exits.
e Unfixes the pages that other

procedures caused to be fixed.

13)

14) L

Exit Procedure (XCPEXIT)

e Freesall SRB/IOSB, TCCW, BEB,
and FIX blocks on the large block
free chain.

o I[f the processing of a request was
held up, determines if the proces-
sing can resume and exits
accordingly.

If suspended .
processing To the sSvVC
can resume interrupt handler

If normal condition or
permanent error

Figure 1. Flow of Control in the Basic EXCP Module (IECVEXCP) (Part 2 of 2)

EXCP Processor Method of Operation 31

Basic EXCP Module Page of SY26-3823-5

Procs. 1,2 As Updated October 25,1979
By TNL SN28-4683
Basic EXCP Module (IECVEXCP) J

1. The Validity-Check Procedure (XCP000)

e Entered by the SVCinterruption handler, which was entered by acaller issuing an
SVC0,8VC 92, or SVC 114 instruction. (EXCP is actually entered at IGC000,
1GC092, or IGC 114, depending on the SVC instruction, where it does some
preliminary processing.)

e If entered via an SVC 92 instruction, determines if the caller is in supervisor
state. If not, issues an ABEND macro with X‘15C’ code.

e Ifentered via an SVC 114 instruction, determines whether the caller is in
supervisor state, or is authorized by the authorized program facility, or has a
system protection key (O through 7). If none of these is true of the caller,
issues an ABEND macro with a X172’ code.

e Compares the pointers to the DCB in the IOBDCB and DEBDCB fields. If they
aren’t identical, issues an ABEND macro with a X400’ code.

o If the caller’s protection key is greater than 7 (as are all user protection keys),
does these things:

(a) Verifies that the IOB, ECB, and DCB are in the caller’s key. If a program
check occurs, module IECVEXPR issues system completion code X200’

(b) Calls the system’s DEB validity-checking routine, IFGDEBCK. If
notified that the DEB is invalid, issues an ABEND macro with a
X300’ code.

e Compares the number of extents the IOB says a direct data set has to the num- ’
ber the DEB says it has. If the [OB’s number is greater, issues an ABEND macro
with a X300’ code.

e If the DCB pointers in the IOB and the DEB do not match, issues an ABEND

macro with a X‘400’ code.

® Checks for a valid UCB. (The DEBUCBAD field in the DEB must point to an
area whose third byte is X‘FF’—a UCB). If it finds an invalid UCB, issues an
ABEND macro with a X500’ code.

e If the DEB has multiple extents (such as ISAM), the DEBEXSCL field in the
DEB is multiplied by the IOBM field in the I0B to get the correct extent. Then
the UCB is checked as described above.

o Exits to the get-RQF procedure (2).

2. The Get-RQE Procedure (XCPRQE)

e Entered by the validity-check procedure (1).

e Calls the 10S storage manager module to get storage for an RQE. Initializes the
RQE and chains it to a related request queue if the IOBUNREL bit is off.

e Exits to the VIO interface procedure (3) to find out if a VIO data set was allo-
cated (if none was, control is returned); to the get-SRB procedure (4) if process-
ing needn’t be held up by a dependency on a related request; to the exit proce- J
dure (14) if processing must be held up.

32 0S/VS21/0 Supervisor Logic

C

Basic EXCP Module
Procs. 34,5

3. The VIO Interface Procedure (XCPVAM)

Entered by the get-RQEF procedure (2).

Tests the UCBIJBNR bit for the existence of a VIO data set and, if it’s on, enters
the system’s VIO component with a WIEXCP macro. If it’s off, returns to the
get-RQE procedure (2).

Does the processing associated with the address the VIO component returns to.
These are the possible return addresses and the associated processing:

(a) register 14+0: Calls the termination procedure (13) to post the ECB and
free the RQE.

(b) register 14+4: Calls the termination procedure (13) to free the RQE.
(c) register 14+8: Makes no call.

Exits to the exit procedure (14).

4. The Get-SRB Procedure (XCP050)

Entered by the exit procedure (14) when that procedure finds that a previously-
delayed related request can proceed. Entered by the get-RQE procedure (2) if:

(a) It’s processing an unrelated request.

(b) It’s processing a type-2 or type-3 related request and three or less
other such requests are ahead of it in the related request queue.

Calls the IOS storage manager module (IECVSMGR) to get storage for an SRB/
IOSB and a TCCW (translation control block). Also, for a virtual request, calls
IECVSMGR for a BEB (beginning-end block, which contains the translated
channel program) and a fix list. Initializes the SRB/IOSB.

Determines whether the request is a type-3 related request or whether it is asso-
ciated with a PCI appendage, which handles V=R requests for EXCPVR. If it is,
puts the address of the DIE procedure (10) in the IOSDIE field. Otherwise,
puts zeros there.

Exits to the PGFX interface procedure (5).

5. The PGFX Interface Procedure (XCPPFA)

Entered by the get-SRB procedure (4).

If the EXCP was issued from a V=R address space, this procedure does
not enter the page-fix appendage. (Page fixing is not needed, since buffers, CCWs,
etc. are already in real storage.)

Checks for the presence of a page-fix appendage and branches to it if the access
method issued an EXCPVR macro or uses virtual storage addresses.

If the access method issued an EXCPVR macro, calls the system’s page-fixing
routine to fix the pages in the appendage’s 1ix list.

Issues an ABEND macro with an X‘800° code if the page-fixing routine returns
with an error indication; otherwise, exits to the FOE interface procedure (6), if
the 1/O request is for a direct-access device, or to the SIO interface procedure (7).

Fixes the DEB if it is not already fixed for V=R requests.
Exits to the FOE interface procedure (6).

EXCP Processor Program Organization 33

Basic EXCP Module
Procs. 6,7,8

6. The EOE Interface Procedure (IECVEXTC)

o Entered by the PGFX interface procedure (5) at ECPEXT if the 1/O request is
for a direct-access device; and by the direct-access ERP if the ERP altered the
seek address and wants the new one to be verified. For other devices, calls the
SIO interface procedure (7).

e Finds out if the seek address falls within the specified extent. If not, goes to the
EOE appendage, and when the appendage returns, does the processing associated
with the address it returns to. These are the possible return addresses and the
associated processing:

(a) register 14+0; Puts X‘42’ in the IOBECBCC field and exits to the CHE/ABE
interface procedure (12) so that the ABE appendage will be entered.

(b) register 14+4: Exits to the termination procedure (13) so that the ECB will
be posted and processing of the request terminated.

(c) register 14+8: Branches to itself to recompare the seek address with the
specified extent.

o Exits to the SIO interface procedure (7).

7. The SIO Interface Procedure (XCP110)

e Entered by the EQE interface procedure (6) and the PGFX interface procedure
(5)

e Goes to the SIO appendage, and when the appendage returns, does the process-
ing associated with the address it returns to. These are the possible return ad-
dresses and the associated processing:

(a) register 14+0: Exits to the translator interface procedure (8) to continue
processing the request.

(b) register 14+4: Exits to the termination procedure (13) to prevent the re-
quest from reaching I10S.

(c) register 14+8: Same as the register 14+0 return.

&. The Translator Interface Procedure (XCP115)

o Entered by the SIO interface procedure (7).

If the access method is not running in a V=R address space or did not issue an
EXCPVR macro, this procedure goes to the IOS CCW translator module
(IECVTCCW), which makes a fixed, translated copy of the untranslated channel
program.

e Issues an ABEND macro with a X‘800’ code if the CCW-translator module re-
turns an error code in register 15. Otherwise, exits to the STARTIO procedtre

(9)

34 0S/VS21/O Supervisor Logic

9

Basic EXCP Module
Procs.9,10,11,12

L 9. The STARTIO Procedure (XCP145)

o Entered by the translator interface procedure (8).
e Puts the address of the channel program to be executed in the IOSB.

o Branches to the exit procedure (14) if the request must be held up by a related
request. Otherwise, issues a STARTIO macro, giving the request to 10S.

o Exits to the exit procedure (14) when the 10S returns.

10. The DIE Procedure (XCPDIE)

e Entered by the basic I0S module (IECIOSCN).

o Goes to the PCI appendage only if the access method uses real storage addresses
(i.e., execution is in a V=R address space) or if EXCP was entered with an
EXCPVR macro. (First calls the /OSB-to-IOB mapping procedure (15) so that
the PCI appendage can find information on the status of the I/O event in the 10B.)

e If a type-3 related request just completed without error, gives the request depen-
dent on that completion, if any, to the basic IOS module to be started.

o Exits to the basic I0S module (IECIOSCN).

11. The PCI Interface Procedure (XCPPCI)

‘ o Entered by the I0S post-status module (IECVPST).

o Calls the IOSB-to-IOB mapping procedure (15) to move information on the status
of the I/O event from the IOSB to the IOB. Goes to the PCI appendage.

e Exits to IECVPST.

12. The CHE/ABE Interface Procedure (XCPCHE ,XCPABE)

e Entered by IECVPST at XCPCHE under either of these conditions:

(a) The IOSCSW field contains no status information other than a PCI, channel-
end, device-end, attention, unit-exception, or wrong-length-record indication.

(b) An ERP turned off IOSEX, the “‘exceptional-condition” bit, and IOSERR,
the “retry” bit, in the IOSB it was processing.

Entered by the I0S post-status module at XCPABE under either of these condi-
tions:

(a) The IOSCSW field contains a unit-check, channel-data-check, channel-
control-check, or interface-control-check indication.

(b) An ERP turned off the IOSERR bit, but left the IOSEX bit on.
Entered by the EOE interface procedure (6) if so directed by an EOE appendage.

e Calls the JOSB-t0-10B mapping procedure (15) so that information on the status
[of the I/0 event will be transferred from the IOSB to IOB.

EXCP Processor Program Organization 35

Basic EXCP Module
Proc. 13

e Depending on where it’s entered, goes to the CHE or ABE appendage and does
the processing associated with the address the appendage returns to. These are
the possible return addresses and the associated processing:

(a) register 14+0: Moves the IOB fields back to the IOSB.

(b) register 14+4: Turns off the IOSEX bit and turns on the RQENOPST bit,
telling the termination procedure (13) not to post the ECB.

(c) register 14+8: Turns off the IOSEX bit and turns on the RQERETRY bit,
telling the termination procedure (13) to ensure that the access-method
interface is reused.

(d) register 14+12: Turns off the IOSEX bit and turns on the RQENOPST and
RQENOFRE bits, telling the termination procedure (13) not to post the
ECB or free the RQE. (CHE and ABE appendages use this return if they
called the exit effectors to schedule an asynchronous access-method routine.
The RQE cannot be freed here because it must be available to the asynchro-
nous routine when the routine is dispatched. The RQE is subsequently freed
by the SVC 3 interface procedure (17).)

¢ Exits to the IOS post-status module if an exceptional condition (IOSEX flag on)
and permanent error are not indicated.

e Exits to the termination procedure (13) if IOSEX is off, or a permanent error is
indicated.

13. The Termination Procedure (XCPTERM)

o Entered by the following procedures:

(1) The CHE/ABE interface procedure (12) if the request is ready for
termination (i.e., the IOSEX flag is off, or the IOSEX flag is on and a
permanent error is indicated).

(2) The EOE interface procedure (6) to post the ECB with X‘7F’ if the EOE
appendage disregarded an extent error.

(3) The SIO interface procedure (7) is the SIO appendage wants to pervent the
request from reaching IOS.

(4) The miscellaneous module (IECVEXPR) purge procedure (1) so that data
areas associated with a purged request will be freed.

(5) The post status module after an error occurs during IOS processing resulting
in an IOSCOD of X‘45°.
¢ For tape devices, updates the block count in the DCB so that the system’s close
and EOV routines can use the block count in writing trailer labels for output
data sets.

e If the access-method interface is to be reused, exits to the EOF interface proce-
dure (6) without posting the ECB or freeing the RQE. (Exception: If the RQE
represents a request that’s being quiesced, calls the miscellaneous module
(IECVEXPR) restore chain procedure (2) instead of exiting to the EQE interface
procedure (6).)

o Ensures that the ECB is posted (unless the RQENOPST bit is on). If the sys-
tem’s posting routine returns with an error indication, issues an ABEND macro

with an X‘700’° code.

36 OS/VS21/0 Supervisor Logic

October 25,1979 Basic EXCP Module
Procs. 14,15,16

e Frees the RQE (unless the RQENOFRE bit is on).
o Calls the exit procedure (14) to free the SRB/IOSB, TCCW, BEB, and FIX list.

e Calls the system’s page-fixing routine, IEAVPSIB, to unfix pages.

o Enters RTM with a CALLRTM macro, if the completion code in the IOSCOD
field is X‘45°, so that the access method can try to recover from an error that
occurred while I0S was processing the 1/O request. The completion code is
obtained from the XDBA. If no XDBA exists then the completion code
X‘E00’ is used.

o Exits to the exit procedure (14) if the access-method interface will not be
reused, or to the EOQF interface procedure (6) if it will; exits to the related-
request purge procedure (16) if a related request resulted in an unsuccessful
1/O operation.

14. The Exit Procedure (XCPEXIT)

e Entered by the termination procedure (13) if the access-method interface is
not reused; by the get-RQF procedure (2) if the request is held up by a type-1
related request; by the VIO interface procedure (3), following a return from the
VIO component; by the STARTIO procedure (9).

e Determines if the processing of a request dependent on a related request can
proceed.

e Calls the I0S storage manager module to free the SRB/IOSB, TCCW, BEB,
and FIX list.

o Exits to the get-SRB procedure (4) if a dependent request can continue to be
processed; to the related-request purge procedure (16) if the DCBIFLGS field
shows that a related request was marked in error; to the SVC interrupt handler
(or to the dispatcher if entered by the termination procedure (13)) if no more
requests can be passed to the get-SRB procedure (4).

15. The IOSB-to-IOB Mapping Procedure (XCPMAP)

e Entered by the DIE procedure (10) and the PCI interface procedure (11) before
they branch to the PCI appendage; by the CHE/ABE interface procedure (12)
before it branches to the CHE or ABE appendage.

e Moves information about the status of the I/O event from the IOSB to the IOB
for examination by a PCI, CHE, or ABE appendage.

e Exits to the return address in register 14.

16. The Related-Request Purge Procedure (XCPPUR)

o Entered by the termination procedure (13) if the DCB indicates that a related
request failed. Also entered by ABE interface (12) if a related request failed.

e Looks at the related-request queue for requests that depend on the successful
completion of the current one.

EXCP Processor Method of Operation 37

Basic EXCP Module Page of §Y26-3823-5
P 17 As Updated October 25,1979
roc. By TNL SN28-4683

o Calls the termination procedure (13), which ensures that ECBs are posted with
X'48’.

e Exits to the exit procedure (14) when there are no dependent requests or after all
dependent requests are quiesced.

17. The SVC 3 Interface Procedure (IECVX025)

e Entered by the system’s SVC 3 routine, which gains control when an asyn-
chronous access method routine issues an SVC 3 instruction.

e Since the appendage requested that the RQE not be freed at termination
time, this procedure now frees the RQE that was passed as a parameter in
scheduling the asynchronous routine.

e Returnsto the SVC 3 routine.

38 0S/VS2 1/0 Supervisor Logic

Miscellaneous Module
Procs. 1,2,3

L Miscellaneous Module (IECVEXPR)

1. The Purge Procedure (IECVXPUR)

o Entered by the [0S nonresident purge module to process a request for either
halt or quiesce.

o If a halt operation was specified, calls the basic EXCP module (IECVEXCP)
termination procedure (13), which ensures that SRB/IOSBs, RQEs, TCCWs,
BEBs, and FIX lists are freed, that fixed pages are unfixed, and that the ECBs
of the purged requests are posted with X‘48’.

e If a quiesce operation was specified, does the following:
(a) Maintains a count of requests that haven’t been completely processed.

(b) Calls the restore chain procedure (2) each time it finds an /O request to be
quiesced (that is, each time it finds an RQE that matches the search argu-
ment in the IPIB).

e Exits to the IOS nonresident purge module.

2. The Restore Chain Procedure (IECVRCHN)

e Entered by the purge procedure (1) to extend a chain of IOBs that represent
p quiesced I/O requests. Entered by the basic EXCP module (IECVEXCP)
L termination procedure (13) or an ABE appendage if either wants an IOB to be
added to a chain of [OBs.

e Creates a PIRL if none exists.
e Creates an EPCB if none exists.

e If the IOB, pointed to by the RQE, passed to it is the first, this procedure chains
the IOB to the IPIB. Otherwise, chains the IOB to the end of the existing
chain.

e Puts the address of the IOB in the EPCB, along with the IOB’s protection key
and information indicating under which TCB the request is to be restored. If the

EPCB contains no free space, creates another EPCB and chains it to the last-
created EPCB.

e Exits to the return address in register 14.

3. The Restore Procedure (IECVXRES)

e Entered by the 10S restore module, which was entered via a RESTORE macro.

e Examines the EPCB to find out (a) how each request was originally submitted
to EXCP (whether with an EXCP or EXCPVR macro), (b) whether a request
should be restored under the restore TCB or under a target TCB, and (c) under
which key to restore a request. Based on this information, sets the appropri-
ate key in the PSW and issues an SVC 0, 92, or 114 instruction for each IOB

(in the chain.

e Exits to the IOS restore module.

EXCP Processor Program Organization 39

Miscellaneous Module
Procs. 4,5

4. The Halt-1/0 Interface Procedure (SVC33)

Entered by the IOS nonresident halt-I/O module, which is entered when an
IOHALT macro is issued.

Confirms that the access method did not issue an EXCPVR macro and does not
use real storage addresses by testing the RQETYPE field.

Calls the IOS CCW translator module to get the address of the translated CCW
corresponding to the untranslated CCW whose location was passed. If the

CCW translator module returns an error code in register 15, exits to the IOS non-
resident halt-1/O module with a return code of X‘18’ in register 15.

Changes the command code of the translated CCW to a “no-op” and turns off
its command-chaining bit.

Exits to the I0OS nonresident halt-I/O module.

5. The Functional Recovery Procedure (XCPFRR)

40 O0S/VS21/0 Supervisor Logic

Entered by RTM if another EXCP procedure issued an ABEND macro, an ap-
pendage took a program check, or another EXCP procedure took a program
check.

Gets storage for a debugging area (XDBA) and puts diagnostic data in it. If the
system is disabled on entry, this storage is not obtained.

If this is not the first recovery procedure to be called by RTM, puts an ABEND
code of X700’ in the SDWA. Otherwise, puts one of the following codes in the
SDWA:

(a) X'400’, if an appendage took a program check.

(b) X200’, if the basic EXCP module (IECVEXCP) validity-check procedure (1)
took a protection check in determining whether an IOB, ECB, and DCB
were in the caller’s key.

{c) X‘B00’, if another EXCP procedure took an indeterminate program check.
Sets bits in the SDWA directing RTM to free the local lock and issue a user
dump (a SYSUDUMP, SYSMDUMP, or SYSABEND dump).

Directs RTM to record the X‘700’, X‘800°, X‘A00’, and X‘B0O’ abends or to
record all abends (when the XDBA is absent).

Uses the variable recording area of the SDWA to store diagnostic data.
Exits to RTM.

Note: The format and contents of the debugging areas (XDBA and SDWA variable
recording area) are described in the “Diagnostic Aids” chapter.

9

Page of SY26-3823-5
As Updated October 25, 1979
By TNL SN28-4683

I/0 Supervisor Method of Operation

This “Method of Operation” chapter contains a simplification of 10S code, divided
into sections that correspond to basic 10S services:

e Starting an I/O operation

e Responding to an I/O event

e Restoring the availability of I/O resources
o Purging and restoring I/O requests

e Halting a teleprocessing operation

o Channel reconfiguration/channel set switching support

Each section is divided into topics that deal with functionally distinct parts of a

service.

The flow of control between labeled parts of 10S is not stated in these sections.
Rather, an order of events is implied by the order of topics within a section. If
you want flow-of-control information, look at Figures 2-13 in the “Program

Organization” chapter.

This table shows, for each IOS service, which object module performs the service
and which figure shows the flow of control in the module:

Service

Starting an I/O Operation
([Figure 2 in the “‘Program
Organization” chapter)

Responding to an I/O event
(Figures 3, 4 in the “Program
Organization” chapter)

Module

Basic I0S Module (IECIOSCN)
Device Dependent SIO Modules
Unit record IECVXURS)

2305 (IECVXDRS)

2314 (IECVXSKS)

3330V (IECVXVRS)

DASD (IECVXDAS)

2400 Tape (IECVXT2S)

3400 Tape (IECVXT3S)

Basic 10S Module (IECIOSCN)
DAVYV Module (IECVDAVYV)
Device Dependent Trap Modules
DASD (IECVXDAT)
2305 (IECVXDRT)
Graphics IECVXGRT)
Tape IECVXTAT)
Teleprocessing (IECVXTPT)
Unit record (IECVXURT)
3330V (IECVXVRT)
Device Dependent Sense Modules
3851/3838 MSS (IECVXMGN)
2314 (IECVXSKN)
Device Dependent End of Sense Modules
3211/3800 EOS (IECVXPRE)
2314 (IECVXSKE)
Device Dependent Unsolicited Interruption Modules
DASD (IECVXDAU)
3330V (IECVXVRU)
Post Status Module (IECVPST)

1/0 Supervisor Method of Operation 41

How to Use This Chapter

42 0S/VS2 I/O Supervisor Logic

Page of SY26-3823-§
As Updated October 25,1979
By TNL SN28-4683

Service

Restoring the availability of I/O
resources

(Figures 5-8 in the “Program
Organization™ chapter)

Purging /O requests
(Figure 9 in the “Program
Organization™ chapter)

Restoring [/O requests

Halting a teleprocessing operation
(Figure 10 in the ‘“Program
Organization™ chapter)

Channel reconfiguration/Channel
Set Switching support

(Figures 11-13 in the “Program
Organization” chapter)

Module

I/O-Restart Modules (IECVRSTI)
(IECVIRST)
Build Reserve Table Module (IECVBRSV)
Hot I/O Detection Module (IECVHDET)
Hot I/O Recovery Module (IECVHREC)
Re-drive I/O Module (IECVRDIO)
Re-Reserve Devices Module (IECVRRSV)
Special SIO Module (IECVESIO)

Nonresident Purge Module (IGC0001F)

Restore Module (IGC0001G)

Nonresident Halt-1/O Module (IGC0003C)
Resident Halt-1/O Module (IECIHIO)

CRH/CHS Module (IECVCINT)

Before using this chapter for the first time, you should know:

e The conventions for representing data areas (see the preface).

e How to read decision tables (see the preface).

e The conventions for associating labeled pieces of I0S code with a particular

service.

Each descriptive functional heading is followed by a list of the modules and
procedures that perform the function. For example, this notation

Module: [ECIOSCN
Procedure: ETCHI

under the heading “Finding a Path for the I/O Operation” indicates that the proce-
dure beginning at ETCH1 in module IECIOSCN finds a path for I/O operations.

9

Starting an I/O Operation

Starting an 1/O operation is a five-step process:

1.

10S first tests the status of the allocated device and contro! unit to determine if
an I/O operation can be started.

. If the I/O operation can be started, IOS then finds a path for the operation; that
is, it determines what channel set and channel to use.

. If the device is a tape or direct-access device, the device-dependent SIO module

next prefixes CCWs to the driver’s channel program. These CCWs activate hard-
ware features or position I/O-device parts.

. 10S then attempts to start 1/O activity with a start-I/O instruction.

. Last, IOS examines the condition code set by the start-I/O instruction and

routes control based on the setting.

Testing the “Startability”’ of an 1/0 Operation

Module: IECIOSCN
Procedure: IECHNSCH

IOS tests the status of the device and control unit, as shown in the UCB, to find
out whether to go ahead with the I/O operation or postpone it:

|: IOSUCB: points to the UCB for the device that has been allocated.

I0SB

UCB

UCBFLA

UCBBSY : if on, the device is busy.

UCBNRY: if on, the device is not ready.

UCBPST: if on, IOS has associated the device with an earlier I/O request and
hasn’t yet disassociated it.

UCBPSNS: if on, a sense operation must be done to the device before it can be
reused.

UCBCUB: if on, the control unit is busy.

UCBSAP: if on, the access arm of the device is being positioned for

another I/O request.

UCBACTV: if on, a channel program is active on the device.

UCBQISCE: if on, use of the device is temporarily restricted. (I0S turns the bit
on so that no driver can use the device until 10S determines that the correct
direct-access volume is mounted.)

UCBJBNR
UCBURINP: if on, use of the device is restricted while unconditional
reserve recovery is attempted.

I/O Supervisor Method of Operation 43

If any status bit is on, [0S puts a record of the request, called an [0Q (input/out-
put queue element), on the appropriate LCH (logical channel queue):

UCB

UCBLCI: an index that [OS uses to find the appropriate entry in the [.CH, or
logical channel queue table.

LCH 10Q; (first 10Q in the queue)

First ent
! il IOQLNK: points to the next

10Q in the LCH.

Each entry is the head of a

| logical channel queue; that is, _|]
[each contains a pointer to the T
first and last I0Q on a LCH.

(i

:

10Q, (last 10Q in the queue)

Last entry IOQLNK: contains 1’s.

The other status bits tested are:

UCB

UCBFLB
UCBIORST: if on, and UCBBOX in field UCBJBNR ijs also ¢ the device has been
“boxed”. This means that the device is unavailable for use, so the I/O request must
be marked in error. This condition can be due to physical considerations, such as no
paths to the device, or logical considerations, such as the possible loss of a device
reservation.

If UCBBOX is off, and CRH is active, the last path to this device was from an
inoperative processor.

UCBFLC

UCBITF: if on, a device notified 10S of a hardware error related to an 1/O operation
that 10S no longer knows about (because it returned the SRB/IOSB to the driver). I0S
must use the SRB/IOSB of this request to process the error.

UCBUDE: if on, an unsolicited I/O event occurred for the device, probably because it
was just readied by the operator. If it’s a direct-access device, the volume label of a
mounted volume must be read and verified before the device can be used. I0S creates an
SRB/IOSB for the read operation.

If any of these is on, I0S schedules asynchronous processing, first setting up the
IOSB to direct the subsequent flow of control. (The asynchronous processing that
results from the UCBIORST or UCBITF bit being on is described under *“‘Doing
Asynchronous Processing with Driver-Created IOSBs.” The asynchronous pro-
cessing that results from the UCBUDE bit being on is described under “Doing
Asynchronous Processing with I0S-Created IOSBs.””)

44 0S/VS2 1/0 Supervisor Logic

Finding a Path for the I/O Operation

C

Module:

IECIOSCN

Procedure: ETCHI1

If there is nothing about the status of the device to warrant a postponement of

| the I/O operation, IOS looks for a path—that is, a processor (with channel set) to

channel to control unit to device route—on which to start the I/O operation. It

may find that the driver requires a specific path, as shown below:

IOSB

I0SPATH
IOSGDP: if on, the driver is requesting [OS to use a specific path, called a guaranteed
device path. The device address is in the IOSPATH field; the channel set that is used
] | tostart the 1/O operation is identified in the IOSAFF field.

If 10S is not given a path, it finds one using this chain of pointers:

UCB

UCBLCI: anindex to the
appropriate LCH entry.

LCH |

First entry

_>

—~——r——

-

Each entry, in addition to |

being the head of a LCH,
contains a pointer to the
path table.

——

Last entry

r—® Path table

Contains channel numbers
that index the CAT (channel
availability table).

CAT (one per channel set)

Contains an entry for each
channel contained in the
channel set. The entry
describes the usability of the
channel.

Having obtained a path, IOS tests its availability with a TCH (test-channel} instruc-
tion. This instruction causes the condition code to be set according to the status of
the channel. The following table explains what each condition code setting means
and what action is taken:

Code

Meaning

Action

CC=0

The channel is available.

A start-I/O instruction is issued.

CC=1

The processor is unable to receive
1/0 interruptions; as soon as it’s
enabled, the channel tested will
generate an interruption.

To prevent the interruption
from being delayed, this is
treated the same as CC=2.

CC=2

The channel is busy.

Alternate paths are tested; if they
are busy, or if there are none, the
10Q is chained to the appropriate
LCH to wait until the channel is
not busy.

CC=3

The channel is not operational.

A start-I/O instruction is issued
nevertheless.

1/O Supervisor Method of Operation

45

Adding a Prefix to the Channel Program

Module: IECVXDRS (2305 SIO Module)
IECVXSKS (2314 SIO Module)
IECVXVRS (3330V SIO Module)
IECVXDAS (DASD SIO Module)
IECVXT2S (2400 Tape SIO Module)
IECVXT3S (3400 Tape SIO Module)

Before it issues a start-I/O instruction, [OS prefixes a CCW with a set-mode com-
mand—unique for each combination of density, parity (odd or even), data conver-
sion (on or off), and EBCDIC/BCD translation (on or off)—to tape channel pro-
grams. This CCW activates hardware features that will be used in the I/O operation.
Following this CCW is a transfer-in-channel CCW directed to the driver’s program.

Three CCWs are prefixed to direct-access channel programs: a seek CCW, which
positions the access mechanism to the specified cylinder and head; a set-file-mask
CCW, which directs the device to accept or reject specified channel commands; and
a transfer-in-channel CCW to the driver’s channel program.

If the device is a 3330V, five CCWs are prefixed to the channel programs: a seek
CCW; a transfer-in-channel CCW to the fourth CCW;a NOP CCW to handle cylinder
faults; a set-file-mask CCW; and another transfer-in-channel CCW to the driver’s
channel program.

If the device is a 2314, a “stand-alone” seek CCW precedes the three-CCW prefix.
The “stand-alone” seek CCW is not actually part of the prefix; it’s a separate, one-
CCW channel program. The fact that it “stands alone” from the prefix allows the
control unit to disconnect from the channel when it receives the CCW, which lets
the channel do other work while the access arm is positioned.

10S can tell what kind of prefix to build and what to put in it by checking the

UCB and IOSB:

UCB IOSB
UCBFLS IOSFMSK: contains the set-mode
UCBSASK: if on, I0S builds a command or file mask.

“stand-alone” seek CCW.

IOSEEKA: contains the seek address.

IOSRST: contains the real storage
address of the channel program.

A prefix to a direct-access channel program can contain additional CCWs, depend-
ing on whether the device is shared by both processors, whether it is currently
reserved to one of them, and whether a system or user program has asked to reserve
it. This information is found in the UCB:

46 O0S/VS2 1/O Supervisor Logic

Starting I/0O Activity

UCB

UCBTBYT2
UCBRR: if on, the device is shared by loosely-coupled processors.

UCBFLB
UCBRESVH: if on, the device is currently reserved to a processor in this system.

UCBCRHRYV: if on, this device is reserved to the inoperative processor.

UCBFL4
UCBRRP: if on, a reserve or release is pending.

UCBRESVP: has meaning only if UCBRRP is on; if on, a reserve pending; if off, a
release is pending.

UCBSQC: the count of requests to reserve the device.

If the device is a 2314, shared, and not reserved, a reserve CCW is put in front of the
“stand-alone” seek CCW. This ensures that the other processor, in handling another
I/0 request, does not reposition the access arm in the interval between the end of
the seek and the start of the driver’s channel program. Additionally, if the count
of requests to reserve the device is zero, a release CCW is put in front of the driver’s
channel program.

For direct access devices (not 2314 or 2305), the SIO Module puts a reserve CCW
at the beginning of the prefix if the device is not reserved (UCBRESVH=0 , or
UCBRESVH=1 with UCBRRP=1 and UCBRESVP=1) but the UCBSQC field shows
that some program wants it to be reserved. If the SIO module finds the opposite
indication in the UCB (UCBRESVH=1 and UCBSQC=0), it puts a release CCW at
the beginning of the prefix.

Note: Some devices and device features cause I0S to build as “‘stand-alone” CCWs
certain CCWs that are usually prefixed to a driver’s channel program. For instance,
a set-mode CCW for some tape devices is executed separately from the driver’s
channel program, as is a reserve or release CCW for a 2305 device. These “stand-
alone”” CCWs allow the channel to disconnect itself.

Module: IECIOSCN
Procedure: ESIOI1

I10S issues one of two start-I/O instructions: SIO or SIOF (start-I/O fast release).
SIOF is issued unless:

| ® The I/O request is for a shared, not reserved, direct-access device.

or
® The channel program is a “stand-alone” seek, reserve, or release CCW.

1/0 Supervisor Method of Operation 47

The following table explains what the condition codes set by SIO and SIOF mean:

Code SIO Meaning SIOF Meaning

CC=0 The I/O operation started. The channel accepted the instruction
and released the processor to do other
processing. (If the channel can’t start
the [/O operation, it notifies [0S by
setting the deferred-condition-code in
the CSW to 01 and generating an I/O
interruption.)

CC=1 Either an immediate operation Some condition on the path to the
completed or the channel has control unit, excluding ‘‘channel
status information to present or busy,” prevented the channel from
the device or control unit is busy. accepting the request. (For example,

the channel may have status informa-
tion to present or may have found
that the control unit is busy.)

CC=2 The channel is busy. The channel is busy.
CC=3 The channel or device is not The channel or device is not opera-
operational. tional.

Responding to the Condition Code Setting

Marking I/O Resources “Busy”

Module: IECIOSCN
Procedure: EPOSTIO|1

If the condition code is 0, IOS turns on these UCB bits:

UCB

UCBFLA

UCBBSY: turned on to show the device is busy.

UCBPST: turned on to show the device is associated with an 1/O request.
UCBACTYV: turned on to show a channel program is active on the device.

Additionally, the channe! is marked busy in the CAT only if it is a selector channel.

48 OS/VS2 I/0O Supervisor Logic

(Examining Status Information

Module: IECIOSCN
Procedure: EPOSTIO1

If the condition code is 1, IOS makes the tests and takes the actions shown in this
table:

Is the channel holding error data and unable to store | Yes [No | No | No | No | No
it until the processor is enabled for interruptions?
(Is the channel-logout-pending bit on in the CSW?)

Is the busy bit on in the CSW? N/A | Yes | No |Yes | Yes | Yes
Is the status-modifier bit on in the CSW? N/A | No [N/A|Yes |No |N/A

Does the CSW contain status information other N/A | Yes | Yes IN/A | No | Yes
than a busy, status-modifier, or channel-logout-
pending indication?

TESTS

Tries to start the I/O request on another path. X

Puts the I/O request on a logical channel queue X
and branches to the code that processes 1/O
events. (The processing of I/O events is described
under “Responding to I/O Events.”)

Branches to the code that processes 1/0O events. X X
(An immediate operation ended.)

ACTIONS

Tests for the existence of an alternate control X
unit. If there is one, tries to start the I/O request
on a path that includes the control unit. Other-

wise, puts the I/O request on a logical channel

queue.

Puts the 1/O request on a logical channel queue. X

I/O Supervisor Method of Operation 49

Trying to Start on Another Path

Module: IECIOSCN
Procedure: ETCH1

IOS tries to start an I/O operation on another path if:

o The condition code is 1 because of a pending channel! logout.

e The condition code is 1 because of a busy control unit, but an alternate control
unit exists.

o The condition code is 2 (channel is busy) or 3 (channel is not operational).

To see whether there is another online path from the same processor to the device,
I0S examines the UCB:

UCB

UCBCHM: contains a subfield, four bits long, representing up to four paths to the device
(two from each channel set). Each zero-bit stands for an available online path.

If the I/O operation can’t be started on another online path from the same processor,
10S examines the CAT that belongs to the other channel set. If the CAT shows that
the other channel set has a free channel to the device, I0S puts the I/O request on a
logical channel queue and issues an RPSGNL macro, asking the other processor to

try the I/O operation. (This transfer to the other processor is called a shoulder tap.)

If the condition code is 3, in addition to looking for another path, I0S checks the
UCB to find out if the operator was told that the path is inoperative:

UCB

UCBPMSK: contains four bits, corresponding to the bits in UCBCHM. A one-bit means
a message (IEAOO1I) was sent to the operator, telling him the path is inoperative.

If the operator hasn’t been informed, IOS creates an SRB/IOSB and schedules the
asynchronous processing that causes message IEA0O1I to be issued. (The asyn-
chronous processing is described under ‘“Doing Asynchronous Processing with
10S-Created I0SBs.””) 10S also invokes procedure EDETECT]1 in IECIOSCN to
determine whether unconditional reserve recovery is needed.

50 OS/VS21/0 Supervisor Logic

L Handling Channel Errors

Module: IECIOSCN
Procedure: ESTATUSI1

If IOS finds an indication of a channel error in the CSW, it creates an ERP work
area and gives control to CCH, which examines the error and puts its findings in the
ERPIB field of the ERP work area. These CSW bits indicate a channel error
occurred.

o The channel-data-check bit.
o The channel-control-check bit.
e The interface-control-check bit.

108 also invokes procedure EDETECT1 in module IECIOSCN to determine
whether unconditional reserve recovery is needed.

Handling Attention Interruptions

Module: IECIOSCN
Procedures: ESTATUS1
EATTENT1

If the attention bit is on in the CSW, IOS ensures that attention processing exists
by examining the UCB:

UCB

UCBATI: if nonzero, an index to the entry in the attention table exists for the
interrupting device. Zero means there is no entry for the device; that is, there is
no provision for attention processing.

If the device is not represented in the attention table, IOS does no further atten-
tion processing. Otherwise, IOS makes the tests and takes the actions shown in
this table:

Was an [/O operation started on the device? (Is the Yes | Yes | No
UCBPST bit on?)

Does the attention routine owner choose to do attention pro- Yes | No | N/A
cessing in a channel-end or abnormal-end appendage rather than
in a separate attention routine? The flag tested is in the attention
table entry.

TESTS

Does no further attention processing. X

Creates an SRB/IOSB and uses the SRB to schedule the X X
asynchronous processing that gives control to the appropri-
ate attention routine. (The asynchronous processing is
described under *‘Doing Asynchronous Processing with
I0S-Created IOSBs.”)

ACTIONS

I/O Supervisor Method of Operation 53

Note: Some devices cause the device-end bit in the CSW to be turned on when they
require attention processing. Thus, if [OS receives a device-end indication and
knows the device was doing no work (the UCBBSY bit is off), it handles the indica-
tion as it would an attention interruption, with this addition: the UCBUDE bit is
turned on to signify that device-dependent processing might be required when an
[/O request is next received for the device.

For the 3330V device, module IECVXVRU (the 3330V unsolicited interruption
module) gets control when the attention occurs for device dependent processing in
order to detect the resolution of a cylinder fault.

Handling Unit-Check Interruptions

54 0S/VS2 I/O Supervisor Logic

Module: IECIOSCN
Procedures: ESTATUSI
ESENSE1

A unit-check indication in the CSW signifies a hardware-detected error. If IOS finds
this indication, it makes the tests and takes the actions shown in this table:

Did the error occur while a channel program was Yes | No | No
being executed? (Is the UCBPST bit on?)

TESTS

Is the error related to a solicited 1/O event that has N/A | Yes | No
already been processed?* (Is the UCBBSY bit on?)

Gets an ERP work area and reads sense information into it. X X X

Discards the ERP work area after sense information has X
been read into it.**

Chains the ERP work area to the IOSB and uses the SRB to X
schedule asynchronous processing. (The asynchronous pro-
cessing is described under “Doing Asynchronous Processing
with Driver-Created 10SBs.”)

Chains the ERP work area to the UCB and turns on the X
UCBITF bit to indicate that asynchronous processing must
be scheduled when an 1/O request (SRB/IOSB) is next
received for the device.

ACTIONS

* The answer is “‘yes” in both these circumstances: (a) a driver requested an I/O operation for
which two I/O events occurred, the first showing a channel-end indication, the second (the
current one) showing device-end and unit check indications; and (b) the driver’s SRB/IOSB no

longer exists, having been used to process the first I/O event.
** The object in obtaining sense information, in this case, is not to provide data for an ERP,

but merely to break the contingent connection—a connection between the control unit
and device that prevents access to any other device attached to the control unit.

Note: Certain devices require device dependent processing before and/or after the
sense operation.

e The 2314 has two modules: IECVXSKN, which gets control before the sense,
and IECVXSKE, which gets control after the sense operation.

e The 3851 and 3838 use module IECVXMGN to do device-dependent processing
before the sense operation.

e The 3211 and 3800 use module IECVXPRE for device-dependent processing
after the sense operation.

I

9

‘ Going to the Driver’s DIE Procedure
Module: IECIOSCN
Procedures: ESTATUSI
EDIEINT1
10S examines the UCB to find out if the I/O event is solicited:

UCB

UCBPST: if on, shows that an I/O operation was started for a driver—the 1/O event is
solicited. If off, indicates an unsolicited 1/O event.

Having decided that a driver’s 1/O request is responsible for the I/O event, I0S
branches to the appropriate trap module (IECVXxxT), which is pointed to by the
device descriptor table (DDT) for this UCB. The trap module does device-
dependent processing and returns. Then 10S branches to the driver’s DIE pro-
cedure. The DIE procedure may return to I0S with a new I/O request (a new
SRB/IOSB).

Using Channels That Are Free

Module: IECIOSCN
Procedure: ERSTART!

L I0S, by examining the “channel mask” field of the IRT, IRTCHMSK, determines
which channels are free to be used in 1/O operations. The channel that last present-
ed a channel-end indication to I0S is represented as free in the channel mask,
as well as any channel found to be busy from one processor, during a test of avail-
able paths from that processor, but found to be free from the other processor.

10S locates the queues of waiting 1/O requests associated with the free channels. It
then enters the code that finds paths for 1/O operations, with the purpose of starting
1/O operations for requests on those queues. The requests are handled in this order:

1. Requests for “stand-alone” seek operations.

2. Requests for sense operations. (The 10Qs for these are on physical
channel queues—one for each channel in the system—rather than logical
channel queues.)

3. Requests for data-transfer operations.

Doing Asynchronous Processing with IOS-Created IOSBs

IOS examines the IOSB pointed to by register 1. If the IOSIOSB bit is on, I0S
knows (a) that the IOSB was created by another part of I0S code and (b) that pro-
cessing can continue on one of four paths—to a PCI appendage, to an attention
routine, to the stage 2 exit effector, or to unconditional reserve recovery. The path
taken is governed by the contents of an IOSB field, IOSPROC.

I/O Supervisor Method of Operation 55

Going to the PCI Exit

Going to an Attention Routine

Going to the Stage 2 Exit Effector

56 0OS/VS21/0 Supervisor Logic

Module: IECVPST
Procedure: PSTIOSB

If the IOSPROC field contains [OSAPCI (X‘04"), 10S enters the driver’s PCI
exit as many times as it finds IOS-created IOSBs in this chain:

register 1_|—> IOSB; (first in the chain)
IOSPCHN: points to the driver-created IOSB.

f—- IOSIPIB: points to the next IOSB in the chain.

L IOSB,, (last in the chain)

IOSPCHN: points to the driver-created IOSB.
IOSIPIB: contains zeros.

Module: IECVPST
Procedure: PSTIOSB

If I0S is processing an 10S-created IOSB like the following one, it branches to an
attention routine:

IOSB

IOSPROC: contains IOSATTN (X‘08’), directing IOS to enter an
attention routine.

IOSPGAD: contains the address of the attention routine.

Module: IECVPST
Procedure: PSTIOSB

Values of IOSADAVYV (X‘10”) and IOSAWTO (X‘14’) in the IOSPROC field
direct IOS to enter these respective parts of the system:

e Another part of 10S code—one that ensures that the correct direct-access volume
is mounted on a device. (See “Verifying That the Correct Direct-Access Volume

Is Mounted” below for more information.)

o The ERP message writer, to inform the operator that an I/O path, assumed to be

online from UCB indicators, was found to be offline.

10S cannot communicate with these parts directly, but a system routine called the
ERP loader (IECVERPL) can. IOS ensures that the ERP loader is dispatched by

branching to the stage 2 exit effector (IEAOEF00). The stage 2 exit effector begins

the process of getting the ERP loader dispatched by putting the SRB on an asyn-
chronous exit queue; then it returns to I0S. Later, the stage 3 exit effector will
requeue the SRB to an SIRB (supervisor interruption request block) and cause the
dispatcher to give control to the ERP loader.

Going to Unconditional Reserve Recovery

Module: IECVPST
Procedure: PSTIOSB

If the IOSPROC field contains IOSUR (X20°) and detection has not been done
(IOSUSE is 0), I0S enters the unconditional reserve detection routine IECVURDT.
If IECVURDT indicates that recovery is not to continue, the device is released and
queued requests are redriven. If recovery is to continue, IOS enters the
unconditional reserve decision routine IECVDURP.

Verifying That the Correct Direct-Access Volume Is Mounted

Module: IECVDAVV
Procedure: IECVDAVV

108, if entered via the exit effectors and ERP loader, checks the UCB for the label
of the volume that was mounted when the device was last used:

UCB

UCBVOLID: if a volume label is here, the system expects that the volume is
being used.

IOS builds a channel program to read the label of the volume currently mounted,
and issues an SVC 15 instruction—causing another part of I0S code to issue a
STARTIO macro for the channel program.

ERP work area

EWDSAVS: the current volume label is read here.

If the contents of UCBVOLID and EWDSAVS don’t match, or if the current vol-
ume serial number can’t be read because of a hardware problem, IOS asks the oper-
ator to demount the EWDSAVS volume and mount the UCBVOLID volume.
Should the device lose its ready status before the read operation takes place, [0S
asks the operator to restore the ready status with an “intervention required”
message.

Doing Asynchronous Processing with Driver-Created I0SBs

If the IOSB pointed to by register 1 was created by a driver, IOS routes control to
one or more of three driver exits and, if necessary, to an ERP. The path taken is
governed by the contents of the CSW (stored in the IOSCSW field) and by the
IOSEX and IOSERR settings in the IOSB.

I/O Supervisor Method of Operation 57

Calling the PCI, NRM, and ABN Exits

Going to an ERP

58 OS/VS21/O Supervisor Logic

Module: IECVPST
Procedure: [ECVPST

The following table shows how IOS decides which of the driver’s exits to call:

Does the IOSB indicate a requested I/O operation Yes [No | No | No | No
was never started? (Does the IOSCOD field con-
tain IOSMIHCA (X‘51°) or IOSFINTC (X‘7E")*
a Is the PCI bit on in the IOSCSW field? N/A| Yes | No | Yes | No
5]
= | Does the IOSCSW field contain any status in- N/A| Yes | Yes | No | No
formation other than a PCI, channel-end,
device-end, attention, unit-exception, or
wrong-length-record indication?
f£ Calls the PCI exit. X X
8 Calls the NRM (channel-end) exit. X X
Q
< Calls the ABN (abnormal-end) exit. X X X

* If the code that tests the startability of an I/O operation finds the UCBIORST or UCBITF
bit on, it considers the operation unstartable and puts X‘51° or X‘7E’, respectively, in the
10SCOD field.

Module: IECVPST
Procedure: IECVPST

10S goes to an ERP if (a) the NRM or ABN exit uses the return address given it
in register 14 and (b) the IOSB looks like this:

IOSB

IOSFLA
TOSEX: on, signifying that IOS or an exit detected an “‘exceptional condition”
(a possible error condition).

I0SOPT
TOSNERP: off, signifying that I0S has the driver’s permission to route control to an
ERP.

I0OSCOD: contains some value other than IOSMIHCA (X‘S17). (Since X‘51” indicates
that the device is inaccessible, there is no point in doing ERP processing.)

If no ERP work area exists—the case if the CSW showed no indication of a unit
check or channel error—IOS creates one before going to the ERP.

If the I/O operation was done on a direct-access device, the ERP for direct-access
devices is entered directly, with a branch instruction. All other ERPs are entered
indirectly: I10S branches to the stage 2 exit effector (IEAOEF00), which ensures
that the appropriate nondirect-access ERP is given control asynchronously via the
ERP loader (IECVERPL).

‘ Going to the NRM or ABN Exit after ERP Processing

Module: IECVPST
Procedure: IGCO15

If an ERP returns to 10S with IOSERR, the “retry”’ bit, off, it is telling IOS that it
either corrected an error (ex: intervention required) or found a permanent error
(ex: data check-parity error). To determine which of these happened, IOS tests the
“exceptional-condition” bit, IOSEX. If the bit is off, the ERP corrected an error;
I0S branches to the driver’s NRM exit. If the bit is on, the ERP found a permanent
error; [0S branches to the driver’s ABN exit. '

Reusing the STARTIO Interface

Module: IECVPST
Procedure: IGCO15

I10S issues a STARTIO macro, requesting that an [/O operation be started, under
any of these conditions:

o The NRM exit, ABN exit, or direct-access ERP returned with an indication

that it wants IOS to retry or present a new I/O operation. (Register O points to
the SRB that I0S is to use.)

® A nondirect-access ERP turned on IOSERR, the “retry” bit, in the IOSB it was
processing and entered I0S with an SVC 15 instruction. (The IOSSRB field
‘ points to the SRB that I0S is to use.)

® Another part of 10S code (described under “Verifying That the Correct Direct-
Access Volume Is Mounted”) issued an SVC 15 instruction in order to read a
direct-access volume label. (IOS uses the SRB it created when it found the
UCBUDE bit on while testing the startability of an I/O operation.)

Restoring the Availability of I/O Resources
The availability of I/O resources is restored for the following conditions:

1. An ACR condition occurs for which CRH or CHS is not available or cannot be
activated.

2. A channel or several channels become lost or unusable to the system.

3. A Hot I/O condition (continuous I/O interruptions from a device, control unit
or channel) occurs due to a hardware malfunction.

4. A missing interruption condition occurs.

The recovery actions required for these conditions involve some common functions
which are provided by generalized service routines as follows:

Identifying devices reserved to a particular path.
Re-reserving devices for which reserves have been reset.

Redriving I/O requests.

~

Calling the special SIO routine to perform synchronous I/O to devices without
normal I10S services.

1/O Supervisor Method of Operation 59

Restoring the Availability of I/O Resources for an ACR Condition

Module: IECVRSTI
Procedure: ACRPROC

A SIGP instruction with the “initial program reset” option is issued to stop
on-going communication between the failing processor and all devices connected
to it.

Then a table is built of all devices reserved on channels that are no longer available.

The re-reserve device service routine is used to reserve devices using available
channels if possible, or to box them (force them offline). Devices which have lost
their last path are boxed. All I/O which was active on the failing processor’s
channels is redriven causing alternate paths to be used, if available, or the request
to be terminated as a permanent error.

Recovering from Lost or Unusable Channels

60 OS/VS21/O Supervisor Logic

Module: IECVRSTI (for lost channel with reset)
Procedure: LOSTCHAN

Module: IECVIRST (for lost channel without reset)
Procedure:

When a channel suffers an error which makes it unavailable to the system, the error
is reported as an external damage machine check or as a channel check with an
indicator in the channel logout. These conditions are detected by the channel
check handler (CCH) which will schedule the appropriate IOS recovery routine.

When a channel is lost, the recovery action is based on whether a system reset to
the channel has been performed by the hardware prior to reporting the error. A
system reset on the channel causes the loss of reserves which are active on that
channel.

o Lost channel with reset — Devices which have lost their last path are forced
offline. Devices which were forced offline cannot be used by the system unless
varied online by the operator. 1/O which was active on the failing channel is
redriven causing alternate paths to be used, if available, or the request to be
terminated as a permanent error.

o Lost channel without reset — The build reserve table service routine is invoked
to find all devices reserved on the failing channel(s). 10S issues the clear channel
instruction (CLRCH) to reset the channel. If the channel(s) is usable after the
reset, it is marked available in the channel availability table (CAT).

The re-reserve device service routine (IECVRRSV) is invoked to reserve devices
that were identified by the build reserve table service routine (IECVBRSV).
I/O that had been active on the failing channel(s) is redriven by invoking the
redrive I/O service routine (IECVRDIO).

Restoring the Availability of I/0 Resources after A Hot I/O Condition

Module: IECVHREC
Procedure:

Hot I/O conditions are detected by an IOS detection routine IECVHDET) which
checks for the occurrence of continuous I/O interruptions and determines that
recovery is required based on threshold values for channels, control units, and
devices. It will schedule Hot I/O Recovery (IECVHREC) indicating the probable
source of the hot interruptions.

Hot I/O Recovery consists of:

o Identifying devices which are reserved on the channel involved in the hot I/O
condition, by calling the build reserve table service routine (IECVBRSV).

e Communicating with the operator to inform him that hot I/O recovery is in
progress. The operator may be required to remove a device, control unit, or
channel from the I/O configuration in order to allow the system to recover.
In this case the operator must respond indicating the action taken.

e Boxing the affected devices and terminating in error I/O to those devices if a
non-DASD device was the source of the hot interruptions and if the operator
indicates that recovery coasists of removing the device or the control unit.

e Performing recovery on a channel basis if the channel or a DASD device was
the source of the hot interruptions or if the operator indicates a hot device or
control unit is to be recovered by removing the channel. If the channel can be
reset (via the CLRCH instruction or the operator), devices that were reserved
are re-reserved by invoking the re-reserve devices service routine (IECVRRSV).
I/O is then redriven by invoking the redrive I/O service routine (IECVRDIO).
The channel is then re-enabled if it is the first occurrence of hot I/O on that
channel and the channel was reset.

Recovery from Missing Interruption Condition

Module: IECVRSTI
Procedure: MIHPROC

When entered by MIH, 10S stops any on-going communication between a channel
and device by issuing HDV (halt-device) and CLRIO (clear I/O) instructions. Field
UCBCHAN identifies the channel used in the last I/O operation to the device. This
is the channel to which the HDV and CLRIO instructions are issued.

I/O Supervisor Method of Operation 61

IOS sets bits in the CSW and branches to the code that processes 1/O events,
thereby simulating an I/O event. The unit check bit is set in the CSW if a sense
operation was the last to be started to the device. The device end bit is set in the
CSW if a sense operation is planned but not started to the device. Turning the
device-end bit on insures the execution of the IOS code that starts a planned sense
operation to the device. Turning on the unit-check bit as well insures the execution
of the IOS code that builds a sense CCW and starts the sense operation. This is,

in effect, a retry of the sense operation for which there was no 1/O interruption,
but with one difference: 10S does not try to read the sense data; it only tries to
satisfy the hardware requirement that a sense operation be completed.

I0S sets the channel control check bit and the interface control check bit if neither
the unit check bit or device end bit were set. The channel control check bit and the
interface control check bit in the CSW direct the IOS code that processes I/O events
to move the temporary work area to the ERPIB.

Services Used in Restoring the Availability of I/O Resources

Modules: IECVBRSV
IECVRRSV
IECVRDIO
IECVESIO

Build Reserve Table Routine (IECVBRSV) — This routine builds a reserve table
RESVTARB containing all the devices which are reserved on a given channel.

Re-reserve Device Routine (IECVRRSV) — This routine attempts to box or reserve,
based on the input parameter, all devices that are in the reserve table. If reserve is
requested, devices that cannot be re-reserved are boxed. The re-reserve device
routine uses the Special SIO Routine (IECVESIO) to issue the I/O to reserve the
devices.

Redrive 1/O Routine (IECVRDIO) — This routine scans all the UCBs on a given
channel and simulates an interruption to re-drive those devices which are marked
as active on the specified channel. Devices which no longer have an online path are
boxed so that I/O requests will be posted in error.

The Special SIO Routine (IECVESIO) — This routine performs a synchronous I/0
operation to a device without using normal system services. It will, however, use

the RISGNL macro, if necessary, to initiate the I/O on a processor with a path to
the device.

62 0OS/VS2 I/O Supervisor Logic

C

Purging and Restoring I/O Requests

Purging 1/O requests is a two-step process:

1. 1I0S first locates the SRB/IOSBs representing requests the caller wants purged

and then:

e Puts the SRB/IOSBs into queues—one for each driver—if the caller requests

a halt operation.

or

e Counts and marks the SRB/IOSBs if the caller requests a quiesce operation.

2. 108 then communicates with each of its drivers. (Each driver disposes of the
SRB/IOSBs that I0S collected for it—the case when a halt operation is requested—
or passes to IOS an address needed to restore I/O requests.)

To restore I/O requests, [0S points each driver to the address that it passed during

the purge operation.

Comparing SRB/IOSBs to the Search Argument

Module: IGCO001F

Procedures: IGC016 SPLPURG
SIRBPURG IPIBPURG
LCHPURG PURAPLSR
UCBPURG BASICPRG
DDRPURG

10S determines what kind of purge operation the caller wants by looking in the

PPL (purge parameter list):

register 1 l-»PPL
PPLOPT1 and PPLOPT2: bit settings tell IOS (a) whethertodoa

halt or quiesce operation and (b) whether the operation applies to
one data set, a group of data sets, a task, or an address space.

PPLDSIDA: a data-area address or the first in a chain of
data area addresses if the operation applies to one data set or
a group of data sets. The address or chain is used as the
search argument.

PPLTCB: the address of a TCB if the operation applies to a
task. The address is used as the search argument.

PPLASID: the identifier of an address space if the operation
applies to an address space. The identifier is used as the
search argument.

I0S looks at all the system data areas that SRB/IOSBs might be chained to and, on
finding an SRB/IOSB, compares the search argument (or arguments) to one of three

fields:

SRB/IOSB

SRBPTCB: to this field if the search argument is a TCB address.
I0SDSID: to this field if the search argument is a data-area address.

I0OSASID: to this field if the search argument is an address space identifier.

I/O Supervisor Method of Operation 63

SRB/IOSBs that match the search argument are called applicable SRB/IOSBs. 10S J
unchains these and organizes them into queues, one for each driver, if the PPL

indicates a halt operation. If the PPL indicates a quiesce operation, IOS leaves the

applicable SRB/IOSBs where they are, but increases a counter in the IPIB (I/O

supervisor purge interface block) by the total of applicable SRB/IOSBs and puts the

address of the IPIB in each one.

(Leaving applicable SRB/IOSBs where they are chained allows IOS and [0S-related
code—ERPs and attention routines, for example—to continue processing the 1/O
requests they represent. When the processing of such an I/O request ends, the

driver’s termination procedure sees the IPIB address in the IOSB and decreases the
counter in the IPIB. When the counter reaches zero, the quiesce operation is finished;
the requestor of the quiesce operation can continue its processing with no risk of -
interfering with I/O operations.)

Communicating with the Drivers’ Purge Procedures

Module: IGCO001F
Procedures: IGCO16
DVRPURG

If a halt operation is specified, IOS stores the address of one of the SRB/IOSB
chains in the IPIB and branches to the purge procedure of the driver that created

the SRB/IOSB:s.

IPIB 10SB J
IPIBSRB: address of the SRB/IOSB chain IOSDVRID: identifies the driver that
stored here. created it. IOS uses it as an index in-

to the VOID (vector of 10S drivers)
table, where the addresses of the
drivers’ purge procedures are stored.

If a quiesce operation is specified, IOS still branches to the drivers, each of which
is responsible for returning to I0S an address—called a restore address—that the
driver needs later to restore purged I/O requests.

IPIB PIRL (purged I/O restore list)
IPIBIO: drivers return a restore address PIRRSTR: I0S moves the restore ad-
here. dresses into the PIRL, beginning here.

Pointing Drivers to Their Restore Addresses

Module: IGC0001G
Procedure: 1GCO17

When a RESTORE macro is issued, IOS gives to each driver a pointer to the part of
the PIRRSTR field that contains its restore address.

64 0OS/VS2 1/0 Supervisor Logic

L Halting a Teleprocessing or Channel-to-Channel Operation (CTC)

Module: IGC0003C
Procedure: 1GC0003C

10S examines the high-order byte of register 1 to determine whether the caller wants
I10S or the EXCP processor to terminate the channel program. If the former, it
issues an HDV (halt-device) instruction to the channel. If the latter, it branches to
the EXCP processor.

register 1 —|—>UCB
UCBCHAN: identifies the channel used in the last I/O opera-

tion to the device —the channel to which the HDV instruction
is issued.

In the case of a CTC device, the HDV instruction is issued regardless of whether
an operation is active for the specified device.

Overview of Channel Reconfiguration (CRH) Support

(Note: For detailed logic information, refer to the descriptions of the individual
CRH procedures, via the procedure names in the index.)

The Channel Reconfiguration Hardware (CRH) is a hardware feature of the

L System/370 168MP which, under system control, enables the operative processor
to access the channels of the inoperative processor. These channels are accessed
through the interface for channel 6 on the operative processor.

Using the Channel Reconfiguration Hardware

The CRH software issues a Diagnose instruction to connect the channel-6 interface
to a specified channel of the inoperative processor. If, for example, IOS issues an
SIO to address 672 after a Diagnose instruction for channel 2, the device at address
272 on the inoperative processor is started. When the hardware connection is
broken, an SIO to address 672 accesses device 672 on the operative processor.

A CRH event (interruption) is solicited (a channel of the inoperative processor is
“polled’”) through this sequence of events:

e Issuance of the Diagnose instruction to make the CRH hardware connection to
the desired channel.

e Setting up of control register 2 so that interruptions are allowed only through
the channel-6 interface on the operative processor.

e Enabling for I/O interruptions.

If channel 2 on the inoperative processor is polled, an interruption address of 672

(in the previous example) is stored in low storage at location FLCIOAA (X‘BY’

of the PSA). Procedure IECVCINT (the CRH interruption handler) changes this

address to 272 because of bit settings that indicate that the CRH connection has
L been made to channel 2.

1/0 Supervisor Method of Operation 65

Activating the CRH Program

The CRH program is activated when one of the following conditions occurs:

® A hardware failure on one processor causes the alternate CPU recovery (ACR)
facility to take the failing processor offline.

e The operator issues the first VARY channel online command for a channel
attached to an offline processor.

o The operator issues a VARY processor offline with the KEEPCHAN option.

When one of these conditions occurs, IECVCRHA, the CRH activation procedure,
is called. IECVCRHA indicates that CRH is active by setting a CVT pointer
(CVTCRCA) to the CRH communication area (CRCA). IECVCRHA also activates
the hooks in mainline IOS and sets a pointer that causes the CRH SLIH
(IECVCINT) to execute after the I/O FLIH and before the 1/0O SLIH.

Passing Control to CRH on a Start I/O Request
(See Figure 11 in “Program Organization.”)

When I0S prepares to start an I/O operation that needs a channel of the inoperative
processor, the CRH hook module (IECVCRHH) receives control through hooks in
the IOS mainline (IECIOSCN). The hooks are set up by IECVCRHA when CRH is
activated. The CRH hook module gets control from three locations in IOS mainline:

o InETCHI Procedure: When no path is available from the operative processor, the
test channel procedure can’t shoulder tap to the other processor. Instead, the
test channel hook procedure (IECVCRH]1) is called to find a path.

e In ESIO] Procedure: As soon as the SIO or SIOF instruction is issued,
the SIO hook procedure (IECVCRH2) is called to determine whether the start
1/0 was issued through CRH. If so, IECVCRH2 does some additional CRH
processing. (For details, see the “IECVCRH2 Procedure” in the Program
Organization section.)

o In ESENSE! Procedure: Just before the SIO for the sense operation is issued,
the sense hook procedure (IECVCRH3) is called to determine whether the
sense operation is to be done through CRH. The sense hook procedure issues the
sense SIO, using the CRH connection if needed.

Passing -Control to CRH on an I/O Event
(See Figure 12 in “1/O Supervisor Program Organization.”)

66 0S/VS2 I/O Supervisor Logic

When CRH is active and an I/O interruption occurs, the I/O FLIH calls the CRH
SLIH (IECVCINT). The CRH SLIH processes the I/O event and then branches to

the I/O SLIH (IECINT) for further processing of the I/O interruption. When IECINT
returns control, the CRH SLIH polls (solicits pending interruptions from) the enabled
channels of the inoperative processor, one at a time, and passes each interruption to
IECINT. The CRH SLIH polls by enabling, and allowing a possible I/O interruption
to be fielded by the I/O FLIH, the CRH SLIH, and the SIO SLIH. The process is
repeated until all channels of the inoperative processor have been checked for
pending interruptions.

C

C

October 25, 1979

Preventing Line Drops on TP Lines

Recovering from Errors

Deactivating CRH

The CRH facility includes a timer pop procedure to force the CRH SLIH to poll

the channels of the inoperative processor often enough to prevent TP line drops.
This ensurance is necessary because the CRH SLIH normally gets control only when
an I/O interruption is taken on the operative processor. In a worst-case situation,
when the inoperative processor’s channels are handling most of the I/0, they would
be polled infrequently. In this situation TP line drops would be possible. The CRH
timer pop procedure solves the problem by causing an interruption to be taken on
the operative processor at least once every two seconds. This frequency is sufficient
to prevent a TP line drop.

The CRH activation and deactivation procedures (IECVCRHA and IECVCRHD) use
the FRRs that try to deactivate CRH. If deactivation is not possible, the FRR causes
the RTM to percolate the error to the next FRR in the system.

The CRH SLIH (IECVCINT) uses an FRR to route control to the IOS mainline FRR
(IECFRR) to post the [0S driver with a post code of X*45°. This post code indicates

that the I/O request terminated abnormally in IOS because of a program check, or
machine check.

The hook procedures use the 10S mainline FRR.

CRH is deactivated in either of two cases:

1. The operator varies offline the last channel of the inoperative processor, or

2. The operator varies online the offline processor.

In either case the VARY processor (IEEVCPU) calls the CRH deactivation
procedure (IECVCRHD). This procedure clears the CRH pointer in the CVT
(CVTCRCA). CRH is then no longer active, since the CRH SLIH, the CRH hook
procedures, and the CRH timer pop procedure check whether CVTCRCA is zero.
If the field is zero, no CRH processing is done. The CRH deactivation procedure
calls the BACKOUT subroutine in module IECVCINT, to remove the setup done by
the CRH activation procedure.

1/0 Supervisor Method of Operation 67

Overview of Channel

Using Channel Set Switching

Activating CHS

68 0OS/VS2 I/O Supervisor Logic

Page of SY26-3823-5
As Updated October 25,1979
By TNL SN28-4683

Set Switching (CHS) Support

(Note: For detailed logic information, refer to the descriptions of the individual
CHS procedures, via the procedure names in the index.)

Channel Set Switching (CHS) is a feature under system control which allows the
operative processor to access the channels of the inoperative processor. These
channels are accessed through their normal interface, but on the operative
processor.

IOS issues a connect channel set instruction to connect the complete set of
channels from any processor. If, for example, IOS issues an SIO to address 272
after a connect channel set instruction for the inoperative processor’s channel set,
the device at address 272 on the inoperative processor is started. When this channel
set is disconnected and the operative processor’s channel set is connected, an SIO
to address 272 will access device 272 on the operative processor, if the device is
symmetrically attached. Otherwise, the condition code from the SIO is 3 (not
operational).

Channel polling as performed by CRH is not necessary with CHS. If the channel set

is connected with the system enabled, interruptions are processed in the normal non-

CHS way. On each interruption, however, the other channel set is connected prior
to re-enabling.

CHS is activated when one of the following conditions occurs:

e A hardware failure on one processor causes the Alternate CPU Recovery (ACR)
facility to take the failing processor offline.

e The operator issues the first VARY channel online command for a channel
attached to an offline processor.

o The operator issues VARY processor offline with KEEPCHAN parameter.

When one of these conditions occurs, IECVCRHA, the CRH/CHS activation pro-
cedure, is called. IECVCRHA indicates that CHS is active by setting a CVT pointer
(CVTCRCA) to the CRH communication area (CRCA). A bit in the CRCA
(CRCACSSA) indicates that CHS is active, rather than CRH. IECVCRHA also
activates the hooks in mainline IOS and sets a pointer that will cause the CHS SLIH
(IECVCSSI) to be executed after the I/O FLIH and before the I/O SLIH.

On an AP system, or on an MP with all channels in one channel set offline, CHS is
not actually activated. Rather, the single channel set is connected to the operational
processor. The operational processor then executes all /O with no additional
overhead.

J

Passing Control to CHS on a Start I/O Request
(See Figure 11 in “Program Organization”.)

When IOS prepares to start an I/O operation that needs a channel of the inoperative
processor, the following procedures are used in IOS mainline:

o In the ETCH1 Procedure: When no path is available from the operative
processor, the test channel procedure can not shoulder tap the other processor.
Instead, it connects the necessary channel set and then re-executes ETCH1.

o In the ESENSE] Procedure: The sense procedure issues the sense SIO after
connecting the necessary channel set.

Passing Control to CHS On an I/O Event
(See Figure 13 in “I/O Supervisor Program Organization.”)

When CHS is active and an I/O interruption occurs, the I/O FLIH calls the CHS
SLIH (IECVCSSI) instead of the I/O SLIH (IECINT). The CHS SLIH branches to
IECINT for processing of the I/O interruption. When IECINT returns control, the
CHS SLIH connects the other channel set. It then enables and passes the interrup-
tion to IECINT. The process is repeated until all channel sets have been cleared of
pending interruptions.

Preventing Line Drops on TP Lines

CHS includes a timer pop procedure to force the CHS SLIH to connect the dis-
connected channel set at least every 2 seconds to prevent TP line drops. This is
necessary because the CHS SLIH normally gets control only when an I/O interrup-
tion is active. The disconnected channel set could be connected infrequently and
TP line drops would be possible.

Recovering from Errors

The CRH/CHS activation and deactivation procedures (IECVCRHA and
IECVCRHD) use the FRRs that try to deactivate CHS. If deactivation is not
possible, the FRR causes the RTM to percolate the error to the next FRR in the
system.

The CHS SLIH (IECVCSSI) uses an FRR to route control to the IOS mainline FRR
(IECFRR) to post the IOS driver with a post code of X‘45°. This post code
indicates that the I/O request terminated abnormally in IOS because of a program
check or machine check.

1/0 Supervisor Method of Operation 69

Deactivating CHS

CHS is deactivated in either of two cases:
1. The operator varies offline the last channel of either channel set, or
2. The operator varies online the offline processor.

In either case the VARY processor (IEEVCPU) calls the CRH/CHS deactivation
procedure (IECVCRHD). This procedure clears the CRH pointer in the CVT
(CVTCRCA). CHS is then no longer active, since the CHS SLIH and the CRH/CHS
timer pop procedure check whether CVTCRCA is zero. If the field is zero, no CHS
processing is done. The CRH/CHS deactivation procedure calls the BACKOUT
subroutine to remove the setup done by the CRH/CHS activation procedure.

Connect Channel Set Procedure

70 0S/VS2 1/O Supervisor Logic

The connect channel set procedure (IECCONCS) issues the connect channel set
instruction which causes the requested channel set to be connected to the issuing
processor. This procedure is used by all system components which require the
connecting of channel sets.

/O Supervisor Program Organization

This chapter is organized by object module name and by procedure name within
each object module.

This chapter has the following reference features to help you find information
quickly.

o Each module is a section. The sections are arranged in alphabetical order, by
module name.

e Each module (section) contains numbered procedures. Within any procedure,
two types of cross-references are made: module and procedure. The type of
cross reference is indicated by the word module or procedure within the
procedure you are reading.

When a procedure name and number is referenced, simply locate the numbered
procedure within the module you are currently reading.

When a module name and number is referenced, first locate the module, then
locate the numbered procedure within that module.

o Place markers, printed at the top of each page, give the name of the module and
the numbers of the procedures described on the page. To find the description of
a given module or procedure, you can scan the place markers.

I0S is made up of 33 object modules. Three of these — those beginning with the
characters IGC — are also load modules and execute from the link pack area. The
other modules are link-edited at system generation into the nucleus, load module
IEANUCxx.

The object modules are the program units that perform the services described in the
“Method of Operation” chapter. This table shows which modules perform which
services:

Service Module*

Starting an I/O Operation Basic 10S Module (IECIOSCN)

(Figure 2) Device Dependent SIO Modules
Unit record (IECVXURS)

2305 (IECVXDRS)
2314 (IECVXSKS)
3330V (IECVXVRS)
DASD (IECVXDAS)
2400 Tape (IECVXT2S)
3400 Tape (IECVXT3S)

*Two modules, the CCW translator module (IECVTCCW) and the storage manager module
(IECVSMCR), perform supporting operations.

I/O Supervisor Program Organization 71

Responding to an I/O event . Basic 10S Module (IECIOSCN)
(Figures 3, 4) DAVYV Module (IECVDAVYV)

Device Dependent Trap Modules
DASD (IECVXDAT)
2305 (IECVXDRT)
Graphics (IECVXGRT)
Tape (IECVXTAT)
Teleprocessing (IECVXTPT)
Unit record (IECVXURT)
3330V (IECVXVRT)

Device Dependent Sense Modules
3851/3838 MSS (IECVXMGN)
2314 (IECVXSKN)

Device Dependent End of Sense Modules
3211/3800 EOS (IECVXPRE)
2314 (IECVXSKE)

Device Dependent Unsolicited Interruption Modules
DASD (IECVXDAU)
3330V (IECVXVRU)

Post Status Module (IECVPST)

Restoring the availability of I/O-Restart Modules (IECVRSTI and IECVIRST)
1/0O resources Build Reserve Table Module (IECVBRSV)
(Figures 5-8) Hot I/O Detection Module (IECVHDET)

Hot 1/O Recovery Module (IECVHREC)
Re-drive I/O Module (IECVRDIO)
Re-Reserve Devices Module (IECVRRSV)
Special SIO Module (IECVESIO)

Purging I/O requests Nonresident Purge Module (IGC0001F)
(Figure 9)

Restoring I/O requests Restore Module (IGC0001G)

Halting a teleprocessing Nonresident Halt-1/O Module (1IGC0003C)
operation Resident Halt-1/O Module (IECIHIO)
(Figure 10)

Channel reconfiguration/ CRH/CHS Module (IECVCINT)

Channel Set Switching

support

(Figures 11-13)

This part of “Program Organization” is divided into sections, each bearing the

name of a module. Each section tells what the module does by describing the
module’s functional pieces, or procedures. Each shows the flow of control into, out
of, and within the module by identifying the calls made by the module’s procedures,
and the entrances to and exits from them. (The microfiche listings call the parts of
modules routines or subroutines. Procedure is used here to avoid an unnecessary
distinction.)

Some modules — those that are large and functionally the most important — are
also represented in flow-of-control diagrams (see Figures 2-13). The diagrams don’t
have the detailed information that the individual chapter sections have. Rather,
they show a simplification of processing and flow of control.

72 0S/VS2 /O Supervisor Logic

L From the From a driver that wants
SVC 15 an 1/O operation
procedure to start

Returns when an I/O
operation started, an
1/O request queued,
or asynchronous
processing scheduled

STARTIO
macro

Channel scheduler procedure
(IECHNSCH)

e Obtains an 10Q.
e Based on startability tests, either puts
the I0Q on a logical channel queue,

schedules asynchronous processing, . From the
or continues. e Before returning interruption-
to the caller handling
Returns when an I/O procedure

If con- olpgatlon sttarted, aC:\ o o
tinuing /O request queued, e
or asynchronous
processing scheduled

Channel-restart procedure
Test-channel procedure (ETCH1) (ERSTARTI) P
Calls ;)
e Finds channels that are free and
e Selects a path for the 1/O r the logical channel queues they
operation. . belong to.
e Based on further startability e Tries to start I/O operations for
tests, puts the I0Q on a logical queues 1/0 requests
chann};el queue, schedules > e If I/O interruption processing is in
asynchronous processing, or R progress, causes it to be continued
continues. eturns when an 1/O bling f R
operation started, an py enabling for additional I/O
1/O request queued, interruptions.
or asynchronous,

If continuing, exits processing scheduled
to a device procedure

Unit record SIO module (IECVXURS)
2305 SIO module (IECVXDRS) Calls ESIO2 SIO procedure (ESIO1)
2314 S10 module IECVXSKS) or exits to ESIO1
3330V SIO module (IECVXVRS)
DASD SIO module (IECVXDAS)

2400 tape SIO module (JECVXT2S) Starts “stand-alone”_ and driver
3400 tape SIO module (IECVXT3S) - channel programs with an SIO
; Ret if entered i ion.
e Builds “stand-alone” CCWs or a channel ateEllsr;lcizl :rnafre or SIOF instruction
program prefix if needed. Does reserve/ ESIO100
release processing for shareable devices. Otherwise
Fixed-head disk From the
and DASD pro- interruption-
- cedures exit handling
procedure

Post-SIO procedure (EPOSTIO1)

Based oh condition code tests, may
put an IOQ on a logical channel
queue, remove it, or schedule
asynchronous processing.

. If the condition
‘ code is 1

Figure 2. Starting I/O in the Basic I0S Module (IECIOSCN)

If the condition
codeis 0,2,0r 3

If the deferred-condition-
code bits in the CSW are 01

1/O Supervisor Program Organization 73

From I/O FLIH,
following an
1/0 event

From the
ACR-call
procedure

N%

From the
MIH-call
procedure

%

Interruption-handling procedure (IECINT)

o Locates the UCB associated with the I/O event.

o Checks for a deferred condition code.

If a deferred condition
code occurred

[A
Not a
When the

deferred
initial-status

condition
code
procedure returns

From the
post-SIO
procedure

N

Y

Return from the
channel-restart
procedure

Exits to
the caller

(To I/O FLIH 3

Initial-status procedure (ESTATUSI)

e Calls CCH if the CSW shows that a channel error occurred.
e Routes control based on CSW and UCB settings.

If the [/O event is
unsolicited or if
attention processing
is necessary

3330V Unsolicited Interruption Module
(IECVXVRU)

DASD Unsolicited Interruption Module
(IECVXDAU)

o For 3330V if attention in status,
marks cylinder fault resolution.
e For DASD checks for unsolicited

device end.

Attention procedure (EATTENT1)

If attention ‘
processing is

necessary and
no unit check

e Determines if an attention routine
should be entered, and if so,
schedules asynchronous processing.

Hot I/0O detection (IECVHDET)

If I/O event
is unsolicited

o Determines if the current condition
is a repeat of a previous one for this
channel. If so, increments the count
in SCD and checks if threshold has
been exceeded. If so, schedules

recovery. (IEVHREC)
o If not a repeat, makes this condi-
tion the current one in the SCD.

D

If an I/O
event is
solicited
and no unit
check and
not the
completion
of a sense
operation.

If a unit check
occurred ora
sense operation
ended

Sense procedure (ESENSE1)

o For unit check, builds a sense
command; gives control to
IECVXSKN for 2314 or to
IECVXMGN for 3851 or 3838;
starts a sense operation.

e For completion of a sense operation,
gives control to IECVXSKE for 2314
or IECVXPRE for 3211 or 3800;
calls the DIE interface and attention
procedures if entry to them was
postponed because of a unit check.

3

DIE interface procedure (EDIEINT1)

e Calls the driver’s DIE procedure.

Y

Device Dependent Trap Module

(IECVXxxT)

e Does reserve/release processing for

shareable devices.

Figure 3. Responding to an I/O Event in the Basic I0S Module (IECIOSCN)

74 0S/VS21/O Supervisor Logic

~

Belongs to the
DAVYV module

4

From the
dispatcher

If asynchronous
processing was
scheduled

Appendage interface procedure
(IECVPST)

o Tests the IOSB to determine if
it was created by 10S or by a
driver.

e Based on tests of the CSW, may
call the PCI exit and the
NRM or ABN exit

e Exits as the NRM or ABN
exit directs.

To the exit effectors
if an ERP is to be
entered

If the IOSB
A) was created

To the driver’s
termination procedure

Ifan I/O
operation is
to start

10SB-handling procedure (PSTIOSB)

()
\l i

Based on the contents of the
IOSPROC field, does one of the
following:

o Calls the PCI exit or an attention

routine and exits to the dispatcher.

e Calls the unconditional reserve
recovery routine and exits as it
directs.

e Exits to the exit effectors,
which cause the dispatching of the
volume verification procedure.

SVC 15 procedure (IGC015)

Based on bit settings in the IOSB,

does one of the following:

o Issues a STARTIO macro.

e Calls the NRM or ABN exit and
returns as the exit directs.

Volume verification procedure
(IECVDAVYV)

If the volume label must be read:

e Builds a channel program to
read it.

e Issues an SVC 15 instruction.

If the volume label has been read:

o Verifies that the label is the one
recorded in the UCB.

o Ensures that I/O requests for
the device are processed.

e Exits to the dispatcher.

Figure 4. Responding to an I/O Event in the Post-Status Module (IECVPST) and DAVYV Module (IECYDAVY)

1/0 Supervisor Program Organization

75

If a processor
becomes
unusable

‘ From MIH ’

Y

From ACR

Y

From CCH
via SRB

If an 1/0 event
is overdue

If a channel
becomes
unusable

J

If the data
From CCH about a channel
C > error is insufficient

Set-up procedure (IECVRSTI)

Based on a code passed in register 1, exits to one of four procedures.

Y

CCH-call procedure (CCHPROC)

e Issues HDV and CLRIO instruc-
tions to stop on-going.channel/
device communications.

o If communication wasn’t stopped,
specifies in the ERP work area

\

MIH-call procedure (MIHPROC)

Issues HDV and CLRIO instruc-
tions to stop on-going channel/
device communication.
Simulates an I/O event which
causes the I/O operation that

To the
interruption-
handling
procedure

1/0 operation.

that the ERP is not to retry the

was in progress to be retried.
o When control returns, exits.

B

To CCH

ACR-call procedure (ACRPROC)

| If CRH/CHS is available, activates

CRH/CHS and returns. Otherwise:

e Stops on-going I/O operations on
the nonoperational processor

o Invokes UCBACT procedure for
each device in the system.

the nonoperational processor,
tries to reserve it for the operational
processor. If successful, exits.

To MIH

i

CCH via SRB called procedure
(LOSTCHAN)

For each device that was reserved by

| | Otherwise, forces the devices offline.

To ACR

Y

Y

Device procedure (UCBACT)

Determine device accessibility:

® Marks it if inaccessible

o Flags device if reserved

Simulates an I/O interrupt if the
device was active

e on failing processor, if ACR

e on failing channel, if lost channel
If device is accessible via an alternate
path, then retries the I/O operation.
Otherwise, marks it as a permanent
error.

Scans the CAT for failing channels.
If CRH/CHS is active, scans the other
channel set’s CAT for offline
channels.

For each failing channel, calls the
UCBACT procedure for each
device on the channel.

If there are any reserved devices,
forces the devices offline, as reserves
have already been released by hard-
ware. Otherwise, exits to SRB
dispatcher.

SRB
dispatcher

Figure 5. Restoring the Availability of I/O Resources in the I/O-Restart Module (IECVRSTI)

76 0OS/VS2 1/O Supervisor Logic

From
IECVRSTI
procedure
ACRPROC

From
CCH
mainline
via SRB

From
CCH MCH
exit via
SRB

If channel(s)
become unusable (lost)

If channel encounters
hung interface condition

Set up procedure (IECVIRST)

Build reserve table routine

® Scan devices for reserve status on channels that encounter an error.

e Invoke IECVBRSYV to build a table that indicates which devices on the
failing channel(s) were reserved.

Communicate with operator

@ If the failing channel(s) are detected by the CCH MCH exit or a hung
interface condition is encountered and the channels have reserved
devices, communicate with operator by invoking IEEVLDWT.

e Ifentry is from CCH MCH exit, the operator may pass back an action
code indicating either that the channels are to be reused or forced
offline (not reused).

Recover unusable channels Recover hung interface
o Issue CLRCH to all channels ® Issue CLRCH to channels
that respond CC=3 to a TCH encountering a hung interface.
instruction.
® Determine success of recovery
e Determine channel usage from by issuing a TCH and TI0.
the operator supplied action
code.
Reuse the Do not To
channel(s) reuse the recover
channel(s) reserved
devices
l 6A I I 6B I l 6C I
To Part 2 To Part 2 ToPart 2

Figure 6. Restoring the Availability of I/0 Resources in the I/O Restart Module (IECVIRST) (Part 1 of 2)

1/0 Supervisor Program Organization

77

From Part 1 From Part 1 From Part 1

9 @ G

Reuse Do not From hung interface
channel(s) reuse recovery
channel(s)

Wait for channels to recover

| | ® call SETDIE; wait 60 seconds.

e Determine success
of channel recovery via the
TCH instruction.

Recover reserved devices

e Invoke IECVRRSV to process each device in the reserve table as follows:
— Determine device accessibility.
— Attempt to re-reserve each device in the reserve table.

— If the device cannot be re-reserved, vary the device offline and issue
message |EA0261.

Restart active |/O

o Invoke IECVRDIO to do the
following for every device on
the failing channell(s).

— Determine device access-
ibility. Mark offline if
there are no online paths,
and issue message |EAQQ4].

— Simulate 1/O interrupt if
a device is active.

Exit
to
SRB
dispatcher

Figure 6. Restoring the Availability of I/O Resources in the I/O Restart Module (IECVIRST) (Part 2 of 2)

78 0S/VS2 1/0 Supervisor Logic

From 10S
via BALR

Hot 1/0 detection point

Any successful SIO on channel ?

Yes

No

Determines if this

a repeat of previous potential

condition.

condition is

No

Yes

Reset Processing

Repeat Processing

o Updates the SCD to reflect the

current condition.

o Resets counters.

o Determines

® Increments the repeat count.

o |f the timeout interval is exceeded,
increments the timeout count.

if the appropriate

threshold in HIDT has been
exceeded.
Not Exceeded
exceeded
SCHEDREC

o Disables the channel.

® Obtains and schedules an SRB
for hot 1/O recovery (IECVHREC)

Figure 7. Hot I/O Detection

Returns to 10S

I/O Supervisor Program Organization

79

From
IECVHDET

via SRB

If hot 1/O has been detected

Set up procedure (I ECVHREC)

Hot device recovery routine

o Call IECVBRSV to build a
reserve table.

e Call IEEVLDWT to
communicate with the operator.

o Call the clear channel subroutine
if the operator requested that
the channel be removed.

Issue message IEAQ71E or
IEAQ70A.

or
e Call IECVRRSYV to box those
devices removed from the

configuration by the operator.

o Simulate an interruption to
redrive the channel.

Hot channel, hot control unit,
and hot DASD recovery routine

Clear channel subroutine

Issue the CLRCH instruction
if supported by the processor.

If CLRCH fails or the operator
did not reset the channel, issue
message |EAQ70A and box the
devices which lost last path.

If CLRCH is not supported and
the operator reset the channel,
issue the HDV, CLRIO
instruction sequence to each
device on the channel.

If the channel has been reset

(by the operator or the CLRCH

instruction):

— Call IECVRRSV to
re-reserve devices

— Tell operator to start
stopped processors, if
necessary

— Call IECVRDIO to redrive
1/0 on the channel.

Call IECVBRSV to build reserve
table.

If CLRCH instruction is
supported and there are no
reserves, issue message |EA072I.

If there are reserved devices or
CLRCH is not supported, com-
municate with the operator to
stop the sharing processors if
necessary, and to allow him to
reset the channel.

Call the clear channel subroutine.

Enable the channel if the clear
channel subroutine was
successful and this was the first
occurrence on this channel.

Leave the channel disabled if
this is not the first occurrence on
this channel and the clear
channel subroutine was
successful. Issue message
IEAOQ71E.

Cleanup procedure

Figure 8. Recovering from a Hot 1/O Event in Module IECYHREC

80 0OS/VS2 1/0 Supervisor Logic

L (From a caller that wants)

I/O requests to be purged

Issues an
SVC 16

instruction If the PPL

contains an
invalid request

Exit/entrance procedure (IGC0001F)

Validates the PPL. To caller
Calls procedures that look for SRB/IOSBs.
Sees to it that each driver is called to do a complementary purge operation.
Issues a WAIT macro and waits until the count of partially-processed 1/O requests is
zero; then returns to the caller.

i

S
;

SIRB-purge procedure (SIRBPURG)

For each SRB/IOSB found on an asynchronous exit queue, calls two procedures.

Y)

LCH-purge procedure (LCHPURG)
For each SRB/IOSB chained to an IOQ on a logical channel queue, calls two procedures.

Y 4

UCB-purge procedure (UCBPURG)
For each SRB/IOSB chained to a UCB (by a linking [0Q), calls the basic purge procedure.

(DDR-purge procedure (DDRPURG)

o For each SRB/IOSB chained to a DDR element on a DDR queue, calls the applicability-
check procedure.
e If a halt operation was requested, chains applicable SRB/IOSBs to the PIRL.

{ I

For each SRB/IOSB chained to the SPL, calls the basic purge procedure.

i I

IPIB-purge procedure (IPIBPURG)
Chains each SRB/IOSB queued to the IPIB to the appropriate PIRL entry.

SPL-purge procedure (SPLPURG)

bbb

Applicability-check procedure
Driver interface procedure (DVRPURG) (PURAPLSR)

e Compares a field in the SRB/IOSB to
the search argument.
e Returns to one address if the search

argument matches, to another if the
argument doesn’t match.——
Basic purge procedure- (BASICPRG)

If a quiesce operation was requested, increases the count of partially-processed I/O requests.
If a halt operation was requested:

e Sees to it that the I/O operation is halted if the channel program is being executed.

: e Removes the I0Q from the logical channel queue if the I/O operation hasn't started.

Calls each driver’s purge procedure,

e Chains the SRB/IOSB to the PIRL. To the calling

procedure

Figure 9. Purging I/O Requests in the Nonresident Purge Module IGC0001F)

I/O Supervisor Program Organization 81

From a caller that wants
an I/O operation to be halted

Issues an
SVC 33
instruction

Main halt procedure (IGC0003C)

Routes control based on the code found in register 1.

y

A

If the
code is
X’00’

Main procedure (IECIHIO)

Determines if it is executing on
the processor that started the I/O
operation.

Issues an HDV instruction.

If the I/O operation was not
halted because a channel logout
is pending, enables the channel
to interrupt processing and
present its information.

If the I/O operation was not
halted because of a channel
error, calls CCH to process the
error.

To the
EXCP processor

Belongs to the
» nonresident
halt-1/O module

p

See the description of the halt-I/O
interface procedure (4) of the miscellaneous
module in the EXCP part of this chapter.

Shoulder-tap procedure (HIOIPCI)

If it
isn’t

Causes itself to receive control on
the other processor.

Figure 10. Halting an I/O Operation in the Nonresident Halt-1/O Module IGC0003C) and Resident Halt-I/O Module (IECIHIO)

82 0S/VS21/0 Supervisor Logic

10S Mainline (IECIOSCN)

CRH hook module (IECYCRHH)

TARTIO macro

of M

10S returns to driver

Channel scheduler (ECHSCHD1)

Channel restart (ERSTART?2)

©

-
®

|Gs
Post SIO procedure (EPOSTIOL, 2, 3)
‘P Inspect condition code from SIO. If error,
call ESTATUSI.
‘ > Return to device-dependent subroutine.

SIO subroutine (ESIO1)

Issue SIO.

Get 10Q that represents I/O request. Call Get a queued I/O request. Call ETCH1 to

ETCH] to start request.(®Call ERSTART2 start the request. If more queued requests,

to start queued requests.| ——————————— repeat.

Return. If none, return.

} @<
CHS Test Test channel hook
Test channel procedure (ETCH1) Channel (IECVCRH1)
Find path from operative processor. If . Connect ——— P Find path to inoperative
path found, call device-dependent sub- @ - other : processor. If path found,
routine. If no path found, try shoulder . channel set] call device-dependent
tap to the other processor. ¢« o o o oo o o | subroutine.
(Hook gives control to IECVCRH].) - -4 ————— ——— — — —— - -A Return to ETCH1.
Return to channel sched. (ECHSCHD1). T @
P 5
| Device-dependent SIO Modules
(AECVX__ S) ’
Set up CCW. -
g Call SIO subroutine.
@ Return to ETCH1 or IECVCRHL1. @ -
J SIO hook procedure
(IECVCRH2)

e | SIO in UCB. If CC=1

Update path in UCB. If
CC=0, indicate CRH

and unit check, indicate

Go to post SIO procedure. -

Y

UCB status (ESTATUS1)

Sense procedure (ESENSE1)

Ret

Inspect errot. If unit check, call
ESENSEL.

Q,
Ik

urn.

-

Set up sense CCW. (Hook goes to
IECVCRH3.) Issue sense SIO. <
Return.

CRH sense needed.
Return.

Sense hook (IECVCRH3)

If CRH sense required,
| issue sense SIO thru
CRH path. If not,
issue sense SIO thru

normal path.
Return,

(An SIO is being issued to a device accessible only through the

C

| Figure 11.

channel reconfiguration hardware. See keyed statements that follow.)

Legend:
@ = sequence no. and description
———® = normal IOS flow

— — —-» = Branch via CRH hooks to procedures in

(Part 1 of 2). Channel Reconfiguration Hardware (CRH) Hook
Module Interface and CHS Interface with I0S Mainline

CRH module IECVCRHH)

I s o o o =RBranch via CHS hooks to procedures in

I0S Mainline (IECIOSCN)

I1/O Supervisor Program Organization 83

IOS mainline is called for an SIO request by an IOS driver.

Channel scheduler calls ETCHI to find a path to a device.

ETCHI1 cannot find a path on the operative processor, nor can it shoulder tap to the other processor.
Instead, a CRH hook branches to IECVCRH1.

ETCHI1 cannot find a path from the connected channel set. Instead, the other channel set is connected
and control returns to the beginning of ETCHI.

If IECVCRHI finds a path to the device on the inoperative processor through CRH, it calls an IOS mainline
device-dependent subroutine. (Note: IECVCRH1 has connected the channel-6 interface on the operative
processor to the desired channel on the inoperative processor.)

The I0S mainline device-dependent subroutine calls ESIO1 to issue SIO, using the path found by IECVCRHI.

After ESIOI has issued SIO, a CRH hook branches to IECVCRH2. (Note: The SIO was issued to address
6xx. IECVCRH2 stores the actual address of the device'in the UCBCHAN field.)

IECVCRH2 returns to ESIO1 at the next instruction after the hook. (No such hook exists for CHS.)

ESIO1 calls EPOSTIOL, 2, or 3, depending upon the condition code from the SIO, to determine if the SIO
was successful.

If there was a channel error, unit check, or attention, EPOSTIO!1 calls ESTATUSI to process the error.
If there was a unit check, ESATUSI calls ESENSEI to issue SIO for a sense operation.

Before the SIO for sense is issued in ESENSE1, a CRH hook branches to IECVCRH3 which will issue SIO
for the sense operation.

IECVCRHS3 returns to ESENSE1, bypassing the sense SIO ESENSE1.

ESENSE]1 returns to ESTATUSI.

ESTATUSI returns to EPOSTIOI1, 2, or 3.

EPOSTIO1, 2, or 3 returns to the device dependent subroutine which called ESIO1.
Device dependent subroutine returns to IECVCRHI.

IECVCRHI returns to ETCH1. (Note: IECVCRHI has broken the CRH connection.)
ETCH1 returns to the channel scheduler (ECHSCHD1).

ECHSCHDI calls channel restart (ERSTART?2). Channel restart finds a queued I/O request and calls ETCHI
to find a path. Steps@through @ are repeated. ETCHI1 returns to channel restart (ERSTART2).

After trying to start all the queued I/O requests, ERSTART? returns to ECHSCHD1.
ECHSCHDI! returns to the I0S driver.

* <

OO PEGORRE OO PG O O ® OO

*Note: Steps 10 - 15 occur only if there are SIO errors.

Figure 11. (Part 2 of 2). Channel Reconfiguration Hardware (CRH) Hook
Module Interface and CHS Interface with IOS Mainline

84 0S/VS21/0 Supervisor Logic

C

Step 1

1/0 interruption handlers deal
with a non-CRH interruption.

Step 2

I/O SLIH enables for
interruptions. If an interruption
occurs, the flow is:

Step 3

1/O SLIH enables for interruptions.
If no interruption occurs,
the flow is:

Step 4

CRH SLIH enables (polls) for
CRH interruption. If an
interruption occurs, the flow is:

Step §

I/O SLIH enables for another
interruption. (If an interruption
occurs, Steps 2-4 are repeatel.)

Step 6

CRH SLIH enables for CRH
interruption. If no interruption
occurs, the flow is:

—=

I/0 interruption

(A—»

IEAVEIO IECVCINT IECINT
passes passes
interruption interruption -
I/0 CRH I1/0
FLIH ' SLIH ! SLIH
,I/ 0 . passes
I/0 interruption | /0 interruption | cRH
SLIH ™2 g FLiH ™ sLH
enables
” ®
SLIH returns CRH
enables, P SLIH
then
disables
I/0 passes
CRH interruption 1/0 interruption CRH
SLIH M7 gl py | suH
enables
SLIH CRH
enab]es, 4’ SLIH
then
disables
CRH I/0
SLIH returns FLIH
enables, —pp- loads
then I/0
disables old PSW

Figure 12. The Processing of Interruptions When Channel Reconfiguration Hardware (CRH) is Active

1/0 Supervisor Program Organization 85

Step 1

I/0 interruption handlers
presented an interruption.

=

I/0 interruption

Step 2

I/O SLIH enables for
interruptions. If an interruption
occurs, the flow is:

Step 3
I/O SLIH enables for interruptions.

If no interruption occurs,
the flow is:

Step 4

CHS SLIH connects the
other channel set, then
enables. If an interruption
occurs, the flow is:

Step §

I/O SLIH enables for another
interruption. (If an interruption
occurs, Steps 2-4 are repeated.)

Step 6

CHS SLIH connects the

other channel set, then enables.
If no interruption occurs,

the flow is:

(A—»

IEAVEIO IECVCSSI IECINT
passes passes
interruption interruption
1/0 CHS 1/0
FLIH » SLIH : SLIH
F/ Y . passes
I/0 interruption |, /0 interruption | cHs
SLIH < FLUH ™ SLH
enables
1/0
SLIH returns CHS
enables, ————pp» SLIH
then
disables
I/0 passes
CHS interruption 1/0 interruption CHS
SLIH [Z g FLH | SLH
enables
” (®
SLIH
HS
enables, ——P»~ (S:LIH
then
disables
CHS I/0
SLIH returns FLIH
enables, ——————pp loads
then 1/0
disables old PSW

Figure 13. The Processing of Interruptions When Channel Set Switching (CHS) is Active

86 OS/VS2 1/0 Supervisor Logic

Basic I0S Module
Procs. 1,2

(Basic 10S Module (IECIOSCN)
1. The Channel Scheduler Procedure (IECHNSCH)

e Entered, via a STARTIO macro, by a driver and the post-status module (3).
(The module is actually entered at label IECVSTIO, where it does some
preliminary processing: the TCB address is put in the SRB, and the address of
the SRB and IOSB are put in registers 0 and 1, respectively. This procedure is
then given control.)

o Disables to prevent the processor from receiving I/O and external interruptions
while in control.

® Gets the UCB lock for the device in question.

o Calls the storage manager module (1) to get an I0Q. Initializes the I0Q and
chains it to the IOSB.

e If UCB flags show that the device is not currently startable, calls thc enqueue
procedure (5) to put the I0Q on a logical channel queue and exits to the
issuer of the STARTIO macro.

o Calls the SRB scheduling procedure (7) to schedule the post status module
(1) if the UCBFLA flag shows “not ready” or “quiesced,” and I/O is for a
duplexed paging request.

o Calls the test-channel procedure (2) to (a) select a path to the device and (b)
start an I/O operation or put it on a logical channel queue.

o Calls the channel-restart procedure (13) to find out if any waiting I/O requests
‘ can be started.

e Exits to the issuer of the STARTIO macro.

2. The Test-Channel Procedure (ETCH1)

o Entered by the channel scheduler procedure (1) and the channel-restart
procedure (13) to select a path to the device and start an I/O operation.

o If the device is reserved, ensures that the I/O operation starts from the processor
reserving the device.

o Combines the channel mask, UCBCHM, with IOSAPMSK, a mask created by
the post-status module (3), to ensure that a path that had an error is not
reselected for an I/O request being retried.

o Calls the SRB-scheduling procedure (7) to schedule the post-status module (1)
| if (a) the UCBFLB and UCBJBNR fields indicate that the device is currently
inaccessible or (b) a guaranteed device path is unavailable.

I/O Supervisor Program Organization 87

Basic I0S Module
Proc. 3

3. The SIO Procedure (ESIO1)

88 0S/VS2 I/O Supervisor Logic

Selects a path from the LCH and uses a TCH instruction to test the availability
of the channel. If none of the paths in the LCH is available, does the following:

(a) Calls the enqueue procedure (5) to put the I0Q on a logical channel queue.

(b) Determines whether to shoulder tap the other processor or to use
CRH/CHS, if it is active. (For shoulder tapping to be expedient, there must
be an available path from the other processor, and IOS must not be running
in the other processor.) If shoulder tapping is expedient, turns on the bit in
the IRT “channel mask” that represents the available path and shoulder taps
the other processor with an RPSGNL macro. Otherwise, exits to the
channel scheduler procedure (1).

When CHS is active, the other channel set is connected and control returns to
the beginning of this procedure to try this newly connected channel set.

According to the type of device allocated, puts the number of the selected path
(channel) in register 6 and calls the appropriate device dependent SIO Module:
IEDVXDRS for 2305; IECVXSKS for 2314; IECVXVRS for 3330V;
IECVXDAS for DASD; IECVXT2S for 2400 Tape; IECVXT3S for 3400 Tape;
IECVXURS for unit record, teleprocessing and graphics.

Exits to the channel scheduler procedure (1) via register 4; to the channel-
restart procedure (13) via tegister 4 or register 4+4. (The former exit means
there is an available path for another I/O request on the same logical channel
queue; the latter means there is not.)

Entered by the device-dependent SIO modules to start an I/O operation.
Puts the address of the channel program and its protection key in the CAW.

Issues an SIO or an SIOF instruction as requested by the device-dependent SIO
module.

If system trace is active and the system is being initialized, branches to the
tracing routine pointed to by the CVTTRACE field. At other times, issues a
HOOK macro which calls GTF to trace the results of the SIO or SIOF
instruction.

Places the condition code set by the start-I/O instruction in the IOSCC field.

Stores the number of the channel and channel set that were used in starting the
1/0 operation in the UCBCHAN and UCBCPU fields, respectively.

Updates the MF/1 or RMF counts of UCB and channel usage.
Exits to the address in register 14. (Register 14 will contain either a return

address or the address of the post-SIO procedures (4); the caller selects one by
using the appropriate entry point.)

J

Basic IOS Module
Proc. 4

L{ 4. The Post-SIO Procedure (EPOSTIO!)

| ® Entered by a device-dependent SIO module and the SIO procedure (3) to act
on the results of the start-I/O instruction issued by the SIO procedure (3).

o If the condition code is O, does the following things:
(a) Marks the channel busy in the CAT if a selector channel is in use.

(b) Marks the UCBFLA field, showing that an I/O operation has started on the
device.

(c) Calls the dequeue procedure (6), to dequeue the I0Q if the I0Q is on
a LCH.

o If the condition code is 1, does one of these things:

(a) Calls the initial-status procedure (10) if the CSW indicates something other
than a busy device or control unit (such as the completion of an immediate
operation or a pending channel logout).

(b) Calls the enqueue procedure (5) to put the I0Q on a logical channel queue.
e If the condition code is 2, does these things:
(a) Marks the channel busy in the CAT.

(b) Turns on the UCBCUB bit, which prevents requests for the device from
processing if they haven’t first been queued. (The bit is turned off
when the test-channel procedure (2), entered by the channel-restart

L procedure (13), finds a path to the device that isn’t busy.)

® If the condition code is 3, checks the UCBPMSK field to see if a message has
been sent about the unavailability of the device. If a message hasn’t been sent,
does these things:

(a) Calls the storage manager module (5) to get storage for an SRB/IOSB.
Initializes the SRB/IOSB, indicating to the post-status module (IECVPST)
(1) that a message must be sent to the operator.

(b) Calls the SRB-scheduling procedure (7) to schedule the post-status
module (IECVPST) (1)

(c) IfSIO was for guaranteed device path (GDP), sets a completion code of
X‘4D’, to indicate an inoperative channel or device on the guaranteed
device path, and schedules the post status module (IECVPST).

(d) If SIO was for duplexed paging 1/0, sets completion code of X‘43’, to
indicate a quiesced or not-ready device on which a permanent error had
occurred previously, and schedules the post status module (IECVPST).

(e) If SIO was not for guaranteed device path (GDP), call the unconditional
reserve scheduling procedure (17).

® Exits to the test-channel procedure (2}, using an offset from the address in the
IRTDDSYV field to tell that procedure what to do. These are the offsets and the
associated actions:

(a) X‘00’: Return to the procedure that called without doing other processing.
((b) X04°’: See to it that the I0Q is put on a logical channel queue.
(c) X08’: Try to start the I/O operation on another path.

I/O Supervisor Program Organization 89

Basic I0S Module
Procs. 5,6,7,8

5. The Enqueue Procedure (EQUEE])

e Entered by the channel scheduler procedure (1), the test-channel procedure (2),

the post-SIO procedure (4), the DIFE interface procedure (11), and the sense
procedure (14).

e Chains the IOQ to a LCH in FIFO order.

e Exits to the return address in register 4.

6. The Dequeue Procedure (EQUEDI1)

e Entered by the SIO procedure (3), the SRB-scheduling procedure (7), the

channel-restart procedure (13), and the sense procedure (14).

e Removes the I0Q from its logical channel queue.

o Exits to the return address in register 4.

7. The SRB-Scheduling Procedure (ESCHDIO1)

Entered by the channel scheduler procedure (1), the test-channel procedure
(2), the post-SIO procedure (4), the unsolicited device-end procedure (8), the
DIE interface procedure (11), the channel-restart procedure (13), the sense
procedure (14), the attention-handling procedure (15), the SIO module for
2305, the SIO module for 2314, and the SIO DASD module.

Calls the dequeue procedure (6) to remove the I0Q from its logical channel
queue and, unless entered by the channel-restart procedure (13), calls the
storage manager module (2) to free the 10Q.

Initializes the SRB in preparation for a scheduling operation.

Issues a SCHEDULE macro, causing the post-status module (1) to be dispatched
asynchronously.

Exits to the return address in register 4.

8. The Unsolicited Device-End Procedure (EDEVENDI)

90 0S/VS21/0 Supervisor Logic

e Entered by the SIO module for 2314, the SIO module for DASD, and the

SI0 module for 3400 tape device if they find that the device is ready (the
UCBUDE bit will be on).

If the device is a 3400 tape drive, turns on the error bits in the IOSFLA field
and calls the SRB-scheduling procedure (7), which schedules the post-status
module (IECVPST)(1). The ERP then gets control and informs the operator
that the tape volume mounted before the device-end interruption must still be
mounted.)

If the device is a demountable DASD, calls the storage manager module (5) to
get storage for an SRB/IOSB, sets bits in it to direct the way it will be used,
and calls the SRB-scheduling procedure (7), to schedule the post-status
module. (The DAVV module (1) then gets control and finds out if the volume
mounted before the device-end interruption is still mounted.)

Basic I0S Module
Procs. 9,10

If the DAVV module is to get control, turns on the UCBQISCE bit, to prevent
the device from being used for a driver’s I/O request before the DA VV module
executes.

Exits to the test-channel procedure (2), using the address in register 4, or, if it’s
necessary to queue the 10Q, the address in register 4+4.

9. The Interruption-Handling Procedure (IECINT)

Entered by the I/O FLIH, the I/O-restart module (2, 3, and 4), the resident
halt-I/O module (3), the redrive I/O module (IECVRDIO), the re-reserve module
(IECVRRSYV), the special SIO module (IECVESIO), the unconditional reserve
detection module (IECVURDT), and the CRH and CHS interruption handlers.

(Note: This procedure is frequently referred to as the I/O SLIH.)

Finds the address of the UCB associated with the interrupting device and puts
the address in register 7 for use by the procedures it calls.

Calls CCH to process channel errors associated with an invalid device address.
(Exception: If entered by the I/O-restart module (4), CCH is bypassed.)

If entered by the I/O FLIH because of an SIOF deferred condition code

interruption, puts a return address in the IRTDDSV field and calls the post-SIO
procedure (4). When control returns, exits to the I/O FLIH.

Calls the initial-status procedure (10) to analyze the interruption’s status and
route control appropriately.

Calls the channel-restart procedure (13) to start 1/O operations for requests
queued on the logical channel queue associated with the interrupting device.
(Exception: If entered by the I/O-restart module (4), the resident halt-I/O
module (3), the redrive I/O module, the re-reserve module, the special SIO
module, the unconditional reserve detection module (IECVURDT), or if the
channel-restart procedure (13) is bypassed.)

Exits to the return address in register 4.

10. The Initial-Status Procedure (ESTATUS1)

Entered by the interruption-handling procedure (9) and the post-SIO
procedure (4).

If the CSW shows that a channel error occurred, calls the storage manager
module (5) to get storage for an ERP work area. Initializes the ERP work area
and calls CCH. Then calls the unconditional reserve scheduling procedure (17).

If PCI alone is indicated, invokes the PCI DIE interface (12).

If the “active-sense’ bit, UCBASNS, is on, calls the sense procedure (14), to
process the completed sense operation.

If the I/O event is unsolicited or if attention processing is necessary, for 3330V
or DASD, calls the appropriate unsolicited interruption module to do device-
dependent processing. (For 3330V — IECVXVRU, for DASD — IECVXDAU).

If the CSW shows that an attention interruption occurred, calls the attention-
handling procedure (15).

1/O Supervisor Program Organization 91

Basic I0S Module
Procs. 11,12

If the CSW contains a unit-check indication, calls the storage manager module
(IECVSMGR) (5) to get storage for an ERP work area. Initializes the ERP
work area and calls the sense procedure (14) to obtain sense information. If
the I/O event is unsolicited, calls the storage manager module (IECVSMGR) (6)
to free the ERP work area.

If the I/O event is solicited and no error occurred, ESTATUSI1 calls the
appropriate trap module (IECVXxxT) for any device dependent interrupt
processing. (For 3330V devices, this routine checks the CSW CCW address to
determine if a cylinder fault occurred. If it did, the IOQ is enqueued on the
LCH to be held until the cylinder fault is resolved).

If the I/O event is solicited, calls the DIE interface procedure (11).
Using a HOOK macro, calls GTF to trace the I/O event.

Exits to the return address in register 4.

11. The DIE Interface Procedure (EDIEINT)

Entered by the initial-status procedure (10) and the sense procedure (14).

Calls the driver’s DIE procedure (with the IOSB as input,) first issuing a TRAS
macro to establish addressability to the address space the driver specified in the
IOSASID field. (Following an I/O interruption, IOS doesn’t necessarily receive
control in the address space the DIE procedure wants to use.) When the DIE
procedure returns, issues another TRAS macro to restore addressability to the
address space that was being used.

If the driver’s DIE procedure submitted a new I/O request, puts an I0Q for the
new request on a logical channel queue, unless requests of the kind submitted
are being purged. If so, chains the SRB/IOSB for the request to the IPIB.

Calls the storage manager module (5) to get storage for an SRB/IOSB if a
solicited PCI interruption occurred without other status information. Calls the
SRB-scheduling procedure (7) to schedule the post-status module (1), which
enters the PCI exit. (If a channel program generates PCI interruptions faster

than the PCI exit can process them, the SRB/IOSBs are chained to the one being

processed; the post-status module is not rescheduled.)

Calls the SRB-scheduling procedure (7) to schedule the post-status module
(IECVPST)(1).

Exits to the return address in register 4.

12. The PCI DIE Interface Procedure (EDIEINTZ2)

92 0S/VS2 I/O Supervisor Logic

Entered by the initial-status procedure (10).

Checks the IOSDIE field of the IOSB for the address of a driver disabled
interrupt exit (DIE) (address # 0).

If there’s no DIE routine address, schedules the PCI SRB to cause asynchronous

execution of the driver’s PCI exit routine.

If there is a DIE routine address, branches to it to handle a PCI condition in the
driver’s code.

J

Basic I0S Module
Procs. 13, 14

‘ ® Schedules the PCI SRB (as described above), if requested by the DIE routine.

e Enqueues the new SRB, if requested by the DIE routine. The SRB/IOSB is
queued directly on the LCH with an I0Q. The DIE can schedule new work in
108 via a return vector. This is a performance path, since the DIE doesn’t have
to issue a STARTIO macro.

e Exits to the return address in register 4.

. 13. The Channel-Restart Procedure (ERSTARTI and ERSTART2)

o Entered by the channel scheduler procedure (1) and the interruption-handling
. procedure (9).

® Calls the test-channel procedure (2) to start I/O operations for queued I/O
requests associated with (2) the channel that generated an interruption
(giving notice that it’s free to do more work) and (b) channels identified in the
IRTCHMSK field.

e If entered for processing associated with an I/O interruption, changes the system
mask to allow the I/O FLIH to receive another I/O interruption. If no interrup-
tion occurs, restores the system mask to its former setting.

e Exits to the return address in register 4.

14. The Sense Procedure (ESENSE1)

L o Entered by the initial-status procedure (10) if it finds a unit check in the CSW
or an indication that the I/O event resulted from a sense operation (the
UCBASNS bit will be on).

o If entered because of a unit check, does these things:

(a) Calls the storage manager module (IECVSMGR) (5) to get storage for an
ERP work area, unless one has already been obtained.

(b) If CRH is active, calls the CRH sense hook routine (IECVCRH3) to issue
the diagnose instruction and do the sense SIO. If CHS is active and the
specified channel set is not connected, exits to the initial status procedure
{10). In this case the sense is issued on the next entry when the specified
channel set is connected.

(c) Builds a sense command. For 2314, calls IECVXSKN to build the read-
home-address CCW, the read record zero CCW, and possibly the release

CCW. For 3851 or 3838, calls IECVXMGN to mark the UCB and IOSB
so no 1/0 is done to the device between the sense operation and the ERP

retry.

(d) Starts a sense operation to break the contingent connection and read sense
information that an ERP will use in attempting error recovery.

(e) If a unit check repeatedly prevents the sense information from being read,
starts a sense operation to suppress data transfer and a wrong-length-
record indication, trying, at a minimum, to break the contingent connection.

1/O Supervisor Program Organization 93

Basic I0S Module
Proc. 15

®

(®
(h)
@

If the channel or device is busy when the sense operation starts, calls the
enqueue procedure (5) to put the I0Q on the physical channel queue used
for sense requests. Should there be no I0Q (the unit-check indication was
unsolicited), calls the storage manager module (1 and 5) to get storage for
an I0Q and SRB/IOSB, chains the SRB/IOSB to the IOQ, and then calls
the enqueue procedure (5).

If a channel error or condition code 3 (non-operational) occurs on sense
instruction, calls the unconditional reserve scheduling procedure (17).

If no device-end indication accompanied the unit check, calls the DIE
interface procedure (11).

Ifentered by /O restart (IECVRST1, 4b) because of a pseudo unit check that

it sets in the CSW to get control, clears the pending sense flag and the active
sense flag (UCBPSNS and UCBASNS). This is done to indicate that another

sense operation need not be started.
If entered because a sense operation completed, does these things:

(a) Turns off the “active-sense” bit, UCBASNS, and the “pending-sense” bit,
UCBPSNS.
(b) Calls the DIE interface procedure (11).

(c) Calls CCH if the status information in the CSW shows a channel error.
Then calls the unconditional reserve scheduling procedure (17).

(d) If an attention indication or an unsolicited device end accompanied the
unit check, calls the attention-handling procedure (15).

(e) For 2314, calls IECVXSKE to check for successful completion of a release
initiated by IECVXSKN. For 3211 and 3800, calls IECVXPRE to handle

the cancel key.
Exits to the initial-status procedure (10).

15. The Attention-Handling Procedure (EATTENTI1)

94 OS/VS2 1/0O Supervisor Logic

Entered by the sense procedure (14) and the initial-status procedure (10) if
(a) the CSW shows an attention interruption or (b) the CSW shows a device-end
interruption and the device wasn’t busy (the UCBBSY bit is off).

If the attention table index (UCBATI) is non-zero, calls the storage manager
module (IECVSMGR)(5) to get storage for an SRB/IOSB. Puts the address of
the appropriate attention routine in the IOSPGAD field and X‘08’ in the
IOSPROC field, which tells the post-status module (IECVPST) (2) what to do
when it gets control. Calls the SRB-scheduling procedure (7) to schedule the
post-status module (IECVPST) (1). (Note: This processing isn’t done if (a) the
attention interruption occurred as part of a solicited I/O event and (b) the
attention table shows that the attention routine owner wants to do attention
processing in its NRM or ABN exit.)

Calls the SRB-scheduling procedure (7) to schedule the post-status module (1)}
if it determines that the DA V'V module (1), which gets control via the post-
status module, is waiting to process the I/O event (the UCBWDAYV bit will be
on).

o Exits to the return address in register 4.

C

Basic I0S Module
Proc. 16

16. The Functional Recovery Procedure (IECFRR)

Entered by RTM if any of the procedures of the basic IOS module took a
program check.

Turns on the bits in the IRT channel mask (IRTCHMSK), for all system-
generated channels, which will cause the channel-restart procedure (13) to try to
start I/O operations on the channels represented by those bits.

Checks if it was entered before, and if so, does these things:

(a) Frees any locks held and any storage areas obtained for the I/O
request being processed (if in fact an I/O request was processing
at the time of the error).

(b) Sets bits in the SDWA (via the SETRP macro) that direct RTM to write the
SDWA in the SYS1.LOGREC data set and continue with termination
processing.

Ensures that the IECFRR code is operating in the right address space. (Necessary
because the error might have occurred in the driver’s DIE procedure, in which
case the DIE interface procedure (11) wouldn’t have had a chance to restore
addressability to the address space used to process the I/O event.)

Issues a SETFRR macro that gives RTM the address of this procedure, thereby
enabling itself to be reentered if the same or another error occurs during
recovery processing.

If it can acquire the SDUMP buffer, puts diagnostic data in the buffer and issues
an SDUMP macro to write the contents of the buffer in the SYS1.DUMP data
set.

If the storage manager module was in control when the error occurred (shown
in the IRT), does these things:

(2) Issues a SETFRR macro to delete the address of this procedure from
RTM’s stack of functional recovery procedures.

(b) Exits to the storage manager module (10).

If a UCB lock is held and a channel program is active on the device, issues an
HDYV instruction to halt the channel program and turns off the status bits in

the UCB that indicate an I/O operation is in progress. Releases the UCB lock
if no I/O operation is in progress.

If an I/O request was being processed when the error occurred (shown in the
IRT), does these things:

(a) Puts X‘45’ in the IOSCOD field and calls the SRB-scheduling procedure (7)
to schedule the post-status module (1).

(b) Returns the I0Q to the storage manager module (2).

If CRH is active and a CRH connection is outstanding, issues a diagnose
instruction to break the CRH connection.

If the error occurred in a sense module (IECVXSKN for 2314 or [IECVXMGN
for 3851 and 3838), in an end of sense module (IECVXSKE for 2314 or
IECVXPRE for 3211 and 3800), or in an unsolicited interruption module
(IECVXDAU for 2314 and DASD or IECVXVRU for 3330V), IECFRR sets up
to retry at the instruction following the call of the module. For abends in sense
modules the sense channel program is also rebuilt.

I/O Supervisor Program Organization 95

Basic 10S
Module
Proc. 17

o If the error occurred in the channel scheduler procedure (1) in a different
address space (due to ACR or the RESTART key being pressed) and the [0Q
and IOSB haven’t been initialized, does these things:

(a) Frees any locks held and any storage areas obtained for the
I/0 request being processed.

(b) Issues a SETRP macro that causes RTM to write the SDWA in the
SYS1.LOGREC data set and continue with termination processing.

In other cases, sets bits in the SDWA (via the SETRP macro) that direct RTM
to write the SDWA to the SYS1.LOGREC data set and gives control to the IOS
procedure that last had control (shown in the IRT).

e Exits to RTM.

Note: This procedure puts diagnostic data in the SDUMP buffer and in the
variable area of the SDWA. The data is described in the “Diagnostic Aids” chapter
under “Output of the Basic I0S Module (IECIOSCN).”

17. The Unconditional Reserve Scheduling Procedure (EDETECT1)

o Entered by the initial status procedure (10) if (a) a condition code 3 occurred
on SIO and a message was not previously issued, (b) channel errors occurred on
SIO, or (c) channel errors occurred on an interruption.

o Entered by the sense procedure (14) if (a) a condition code 3 occurred on sense
SIO, (b) channel errors occurred on sense SIO, or (c) channel errors occurred
at the end of sense.

e If not a direct access device, returns to caller.
o If channel recovery is in progress, returns to caller.

e If the error occurred on non-sense SIO to a device which is not reserved, returns
to caller.

e Calls the device validation routine (IECVDVAL) to determine whether the
device type can support unconditional reserve. If it cannot, returns to caller.

o Calls the storage manager module (IECVSMGR) (5) to obtain an IOSB/SRB, an
ERP workarea, a workarea and a savearea for unconditional reserve recovery.

o Schedules the post status module (IECVPST) with the IOSPROC value set to the
value for unconditional reserve recovery.

e Retumns to caller to continue normal handling of the error.

9 0S/VS2 1/0 Supervisor Logic

Build Reserve
Table Module
Procs. 1,2,3

Build Reserve Table Module (IECVBRSYV)
1. The Set Up Procedure

e Entered by I/O Restart Module IECVIRST and the hot I/O recovery module
IECVHREC.

o Establishes a functional recovery routine.
o Issues the GETMAIN macro to obtain storage for a work area.

2. The Build Reserve Table Routine

Entered at the completion of the set up procedure (1).
Scans the input reserve table chain to point to the last reserve table segment.

Scans all devices on the specified path for reserve status.

Builds a segmented table that contains an entry for each reserved device on the
specified path.

e Returns to caller.

3. The Functional Recovery Routine

o RTM enters the FRR routine when an error is encountered in IECVBRSV.
o Returns resources to the system.

e Returns to RTM and percolates.

1/O Supervisor Program Organization 97

CCW Translator
Module
Procs. 1,2

CCW Translator Module (IECVTCCW) J

1. The Routing Procedure (IECVTCCW)

e Entered by I0S drivers and other system components that require one of the
following:

(a) A copy of a channel program in fixed storage, the fixing of buffers to which
the channel program points, and the substitution of real storage addresses in
the copied CCWs for virtual storage addresses. (This service is known as
channel-program translation.)

(b) The address of a translated CCW (one containing a real storage address) that
corresponds to a specified untranslated CCW (one containing a virtual
storage address).

(c) The address of an untranslated CCW that corresponds to a specified
translated CCW.

(d) The unfixing of pages that were fixed in translating a channel program.

® Exits, as directed by the TCCWOPTN field of the TCCW (translation control
block), to another procedure, where the appropriate processing is done. These
are the possible values in the TCCWOPTN field and the associated exits:

(a) X00’: Goes to the CCW translation procedure (2).
(b) X04’: Goes to the address retranslation procedure (9).
(c) X08’: Goes to the unfix-and-free procedure (10). J

(d) X‘0C’: Means that the caller entered before, without giving this module
enough storage to work with, and is reentering with supplementary storage.
Goes to the address in the TCCWSAVE field, the address at which the lack
of storage was detected.

(e) X‘10°: Goes to the single-address translation procedure (8).

2. The CCW Translation Procedure (TCCWI100)

® Entered by the routing procedure (1) to translate a channel program.

® For each CCW in the channel program, does one of the following:

(a) Obtains the pointer to the CCW operation table from the DDT (device
descriptor table) associated with the device.

(b) Calls the main TIC procedure (4) if the command code indicates the CCW -
is a TIC (transfer-in-channel CCW).

(c) If the CCW contains a virtual storage address, calls the page-fix procedure
{3) to fix the page (or pages) containing this address for a length specified
in the CCW count field. Copies the CCW into the BEB (beginning-end block).
a block of fixed storage supplied by the caller of the routing procedure (1)
and pointed to by the TCCWBERB field. If the CCW contains a virtual
storage address, puts the corresponding real storage address in the copy.

e Calls the IDAL procedure (7) if a buffer crosses a page boundary. J

e Calls the TIC insertion procedure (5) if the BEB is one CCW short of being full
and more than one CCW remains to be translated.

98 0S8/VS2 1/0 Supervisor Logic

CCW Translator
Module
Procs. 3.4

‘ o Calls the unfix and free procedure (10) if there is an error in the channel
program being copied.

o Exits to the TIC resolution procedure (6) when the last CCW has been
processed, allowing that procedure to resolve addresses that it wasn’t able to
resolve during previous calls from the main TIC procedure (4).

3. The Page-Fix Procedure (TCCWM000)

e Entered by the CCW translation procedure (2) to fix the page (or pages) con-
taining a buffer.

e Examines a list—called a fix list—of pages previously fixed. If the buffer is within
one or more of those, returns to the CCW translation procedure (2). Otherwise,
does the following:

(a) Adds the virtual storage address of the page (or pages) to be fixed to the
list.

(b) Calls the system’s page-fix routine to do the page fixing.

o If a new entry can’t be added to the fix list for lack of space, exits to the caller
of the routing procedure (1) with a return code of X‘0OC’ in register 15, request-
ing additional storage.

e If the system’s page-fix routine indicates that it could not fix a page, calls the
unfix-and-free procedure (10).

‘ o Exits to the CCW translation procedure (2).

4. The Main TIC Procedure (TCCWM100)

o Entered by the CCW translation procedure (2) each time it encounters a TIC in
the channel program it’s translating.

e Copies the TIC from the original channel program into the BEB.

o Exits to the TIC insertion procedure (5) if (a) the TIC is a “no-op” (it points to
the CCW that follows it in the channel program) and (b) there is room for one
more CCW in the BEB but more than one to be copied.

e Exits to the caller of the routing procedure (1) with a return code of X‘0C’ in
register 15, requesting another BEB, if (a) the TIC is preceded by a status-
modifier CCW (one that may cause the channel to skip the TIC and execute the
next CCW) and (b) there is room for two more CCWs in the BEB but more than
two to be copied.

e If the TIC is either a “no-op” or “resolvable” (one that points to an already-
copied CCW), does the following:

(a) Changes the pointer in the TIC to point to the real storage address of the
copy.

(b) Calls the TIC resolution procedure (6), which determines whether any
CCWs have been copied since it was last entered that would allow
[“unresolved” TICs to be resolved.

e Otherwise, builds an “unresolved TIC list,” if one doesn’t already exist, and
enters in it the address of the TIC.

o Exits to the CCW translation procedure (2).

1/O Supervisor Program Osrganization 99

CCW Translator
Module
Procs. 5,6,7.8

5. The TIC Insertion Procedure (TCCWM300)

o Entered by the CCW translation procedure (2) and the main TIC procedure (4)
if they find that the BEB is one CCW short of being full and more than one CCW
remains to be translated.

¢ Exits to the caller of the routing procedure (1) with a return code of X‘0C’ in
register 15, requesting another BEB. When control returns (from the routing
procedure (1), does one of the following:

(a) Fills the last CCW-space with a TIC that points to the BEB, if the caller
was the CCW translation procedure (2).

(b) Overlays the last TIC in the old BEB with one that points to the new BEB,
if the caller was the main TIC procedure (4).

e Exits to the CCW translation procedure (2).

6. The TIC Resolution Procedure (TCCWM200)

e Entered by the CCW translation procedure {2) and the main TIC procedure (4).

o Scans the list of “unresolved” TICs—those that still point to CCWs that had not
yet been copied when this procedure was last entered. Determines which, if any,
of the unresolved TICs can now point to CCWs in the BEB, and changes pointers
accordingly.

o Exits to the main TIC procedure (4) if that is its caller, or to the caller of the
routing procedure (1). In the latter case, channel program translation is assumed
to be complete.

7. The IDAL Procedure (TCCWM400)

e Entered by the CCW translation procedure (2) if it finds that a buffer crosses
a page boundary.

e Puts into the IDAL (“indirect-address” list) an entry containing the real storage
addresses of the buffer and the pages it crosses.

o Replaces the buffer address in the CCW with the address of the IDAL entry and
turns on the “indirect” bit in the CCW, indicating that the CCW points to an
IDAL entry.

e When it’s necessary to get storage for an IDAL—the first entry is being created
or storage allocated to the IDAL has been used up—exits to the caller of the
routing procedure (1) with a return code of X‘0C’ in register 15, requesting
more storage.

e Exits to the CCW translation procedure (2).

8. The Single-Address Translation Procedure (TCCWX000)

o Entered by the routing procedure (1) to obtain for its caller the virtual storage
address of a translated CCW. (The virtual storage address of the corresponding
untranslated CCW is provided in register 0.)

o Searches the BEBs that contain the translated channel program for a CCW that
corresponds to the untranslated CCW.

100 OS/VS2 I/O Supervisor Logic

October 25, 1979 CCW Translator
Module
Procs. 9,10

o Exits to the caller of the routing procedure (1) with a return code of X'04’ in
register 15 if the BEBs contain no corresponding CCW, or with a return code of
0 in register 15 if the CCW was found. In the latter case, the virtual storage
address of the translated CCW is returned in register O.

9. The Address Retranslation Procedure (TCCWR000)

® Entered by the routing procedure (1) to obtain for its caller the virtual storage
address of an untranslated CCW. (The virtual storage address of the correspond-
ing translated CCW is provided in register 0.)

e Determines whether register O actually points to a translated CCW in a BEB. If
it does, calculates the virtual storage address of the corresponding untranslated
CCW, puts the address in register 0, and puts a return code of X‘00’ in register
15. Otherwise, puts a return code of X‘04’ in register 15.

o Exits to the caller of the routing procedure (1).

10. The Unfix-and-Free Procedure (TCCWU000)

e Entered by the routing procedure (1) and the page-fix procedure (3).

® C(alls the system’s page-fix routine to unfix pages that were fixed in
translating a channel program.

® Chains the BEBs, FIX lists, and IDALs together and stores the address of the
chain in register 0.

e Puts one of these return codes in register 15:

(a) X‘'04’, if entered by the page-fix procedure (3), indicating that an error
occurred during page fixing.

(b) X'08’, if entered by the routing procedure (1).

® Exits to the caller of the routing procedure (1).

I/O Supervisor Method of Operation 101

CRH/CHS Module, Basic
Proc. 1

Page of SY26-3823-5
As Updated October 25, 1979
By TNL SN28-4683

CRH/CHS Module, Basic (IECVCINT)

Note: For overviews of CRH/CHS flow, refer to the CRH diagrams, figures 11,
12,and 13.

1. CRH/CHS Activation Procedure (IECVCRHA)

102 0S/VS2 1/0O Supervisor Logic

Entered from the ACR-call procedure (ACRPROC) in the I/O restart module
(IECVRSTI) on alternate CPU recovery, or from the VARY processor
(IEEVCPU) when the operator issues the first VARY channel online command
for a channel attached to an offline processor. Runs disabled.

If system is not a 168 MP or a processor which supports CHS, clears the pointer
to the CRH/CHS activation procedure in the IOCOM extension. Returns to the
caller with an indication that the system does not support CRH or CHS.

If CRH or CHS is already active, returns to the caller with an indication that
CRH or CHS is already active (RC = 04).

For CHS only, issues a disconnect channel set instruction in order to force the
channel set attached to the inoperative processor into the disconnected state.
The channel set is then connected to the operative processor.

For CHS only, if only one channel set contains online channels, issues message
TEA9191 (“CHANNEL SET x SWITCHED TO PROCESSOR y”), then returns to
the caller with a normal return code (RC=0).

Initializes the CVTCRCA field of the CVT to point to the CRH communication
area (CRCA) and initializes the CRH communication area. (See ‘“‘Connections
Between Principal Data Areas’ in the “Data Areas” chapter.)

Initializes a field in the TIMER SLIH to point to [IECVCRHS.

Changes the pointer in the I/O FLIH to point to the CRH SLIH procedure (6)
(IECVCINT) or the CHS SLIH procedure (IECVCSSI) instead of to the 1/O
SLIH (IECINT), so that the CRH or CHS interruption handler will get control
before the I0S interruption handler.

For CRH only, activates hooks in mainline 10S so that the CRH hook
procedures get control when IOS starts an I/O operation to a channel of the
inoperative processor.

For CRH only, processes all UCBs that indicate that their devices were last
started for the inoperative processor. Sets the UCBCPU field to the operative
processor ID, sets the UCBIORST flag to indicate that the last path started to
the device was through the inoperative processor, indicates that the device is
reserved to the inoperative processor if the device was reserved to that processor,
and sets the ‘‘sense command needed” flag (UCBCRHSN) in the UCB if the UCB
has an 10Q on the sense logical channel queue for the inoperative processor.

Schedules an SRB which causes the CRH/CHS timer pop procedure (4) to be
dispatched. This is done so that the CRH interruption handler (IECVCINT) is
forced to periodically poll (solicit interruptions from) the inoperative processor’s
channels for pending interruptions, or so that the CHS interruption handler
(IECVCSSI) is forced to periodically connect the disconnected channel set.

Issues message IEA9701 CHANNEL RECONFIGURATION HARDWARE
ACTIVATED.

Returns to the caller (ACRPROC or the VARY processor) with a normal return
code (RC =0).

9

CRH/CHS Module, Basic
Procs. 2,34

L | 2. CRH/CHS Deactivation Procedure (IECVCRHD)

Entered by the VARY processor (IEEVCPU) when the operator is varying
offline the last channel of the inoperative processor while CRH is active, varying
offline the last channel of any channel set when CHS is active, or varying online
the inoperative processor while CRH or CHS is active. This procedure runs
disabled.

Cleans up by clearing the pointer (CVTCRCA) to the CRH communication

area, takes the CRH hooks out of mainline I0S, restores the I/O FLIH pointer

to point to the I/O SLIH (IECINT), and for CRH clears three UCB flags
associated with devices whose channels belonged to the inoperative processor.
Also, for CRH, updates the UCBCPU field to reflect the processor through which
the last path I/O was started. (The flags previously indicated that the devices’
last path was started to the inoperative processor, that the devices were reserved
to the inoperative processor, and that a sense operation was needed or issued for
devices or channels connected to the inoperative processor.)

Issues message [EA9721 CHANNEL RECONFIGURATION HARDWARE
DEACTIVATED.

Returns to the caller with a normal (zero) return code.

| 3. CRH/CHS STIDC Procedure (IECVCRHYV)

C |

Entered by the VARY processor when the operator issues a VARY CHANNEL
command to place online a channel formerly connected to the inoperative
processor. The procedure uses the CRH or CHS feature to access the channel
and store the channel ID and condition code from the STIDC (store channel ID)
instruction, so that the VARY processor can determine whether the channel can
be brought online. Procedure runs disabled.

For CRH issues the diagnose instruction to access the channel whose address
VARY passed in register 1. For CHS issues the connect channel set instruction.

Issues the STIDC instruction and puts the condition code in the high-order byte
of register 1 for use by the VARY processor.

For CRH, again issues the diagnose instruction, this time to break the CRH con-
nection to the channel. For CHS issues the connect channel set instruction to
reconnect the original channel set.

Exits to the VARY processor to complete the processing of the VARY channel
online command.

| 4. CRH/CHS Timer Pop Procedure (IECVCRHT)

Is dispatched under an SRB scheduled by CRH/CHS activation or by
IECVCRHS.

For CRH, if an I/O interruption has not occurred in the last 2 seconds, issues an
IOSINTRP macro for unit 600 to simulate an I/O interruption. Then the CRH
SLIH polls for pending interruptions on the inoperative processor at least once
every two seconds. The interruption is simulated on an arbitrary address (600)
with zero status in the CSW. Then calls the TIMER SLIH procedure
(IEAQTEOQO) to queue a TQE, causing a timer interrupt in 2 seconds.

1/0 Supervisor Program Organization 103

CRH/CHS Module, Basic
Procs. 5,6

Simulates interruptions at timed intervals if an interrupt hasn’t occurred in that
interval, to force the CRH interruption handler (IECVCINT) (6) to poll each
channel of the inoperative processor, one at a time, for a pending I/O interruption.
The operative processor processes each I/O interruption as it is taken.

| @ For CHS, if an I/O interruption has not occurred in the last 2 seconds, CHS

connects the disconnected channel set. On exit from the timer pop procedure,
the system will be enabled, allowing outstanding interruptions to be presented.

e If an I/O interruption has occurred in the last 2 seconds, calls IEAQTEOQO to

queue a TQE that causes an interruption 2 seconds after the time of the last
1/0 interruption.

o Exits to the dispatcher, since the procedure was executed asynchronously.

| 5. CRH/CHS Schedule SRB Procedure (IECVCRHS)

Entered by TIMER SLIH, IEAOTIO0, when a timer interruption occurs for the
TQE queued by IECVCRHT.

Schedules an SRB to dispatch IECVCRHT.
Returns to IEAOTIOO0.

6. CRH Second Level Interruption Handler (IECVCINT)

104 0S/VS2 1/0 Supervisor Logic

Entered by the I/O FLIH on an I/O interruption or by IECIHIO on a channel
logout pending condition.

Stores the current time in the CRH communication area (CRCA), in order to
record the time of the latest interruption so that the CRH/CHS timer pop
procedure (4) can determine whether to simulate another interuption (See the
foregoing description of the CRH/CHS timer pop procedure (4).)

If the current interruption occurred from a channel connected through CRH
(ie., a channel belonging to the inoperative processor), updates location
FLCIOAA in low storage so that it contains the actual device address. (The
actual interruption, if received through the CRH, will appear to have come from
channel 6.)

If the interruption is for the operative processor, saves control register 2, prior to
altering its contents.

Verifies that the device address is valid.

If entry was from [ECIHIO, indicates that the last I/O operation for the device
was through the CRH hardware connection, breaks the hardware connection,
corrects the channel address at location FLCIOAA (as stated above), and calls
the Halt I/O entry point of IECINT. IECINT returns control to the caller of
IECIHIO.

I

October 25,1979 CRH/CHS Modaule, Basic

Procs. 7,8

e [f the device address is invalid and the interruption was caused by a channel
connected through CRH, breaks the hardware connection via the diagnose
instruction, indicates that the interruption is from an invalidly addressed device
and was received through the hardware connection, indicates that the
connection has been broken, restores control register 2 with its saved value, and
goes to the I/O SLIH to handle the invalid-address condition.

® If the interruption occurred on a path other than the expected path (condition is
called a “channel burp”), indicates this condition in the CRH communication
table (flag CRCACCH is turned on), clears the CSW to prevent further processing
of this interruption by the I/O SLIH, and branches to the I/O SLIH to restart any
possible queued [/O requests.

e Issues the Diagnose instruction to break the CRH hardware connection,
indicates that the connection is not outstanding, restores control register 2 if it
was altered to accept an interruption through CRH, and branches to the I/O SLIH
(IECINT) to process the interruption.

® On return from IECINT, alters control register 2 to allow interruptions only from
the channel-6 interface.

® Issues the diagnose instruction to each enabled channel connected to the in-
operative processor and enables in order to accept any pending interruptions
from those channels.

e Restores control register 2, issues the diagnose instruction to break the CRH
hardware connection, and returns to the 1/O FLIH.

7. CHS Second Level Interruption Handler (IECVCSSI)

e Entered by the I/O FLIH on an I/O interruption or by IECIHIO on a channel-
logout-pending condition.

e Stores the current time in the CRH communication area (CRCA), in order to
record the time of the latest interruption so that the CRH/CHS timer pop
procedure (4) can determine whether to simulate another interruption. (See
the foregoing description of the CRH/CHS timer pop procedure (4)).

o On return from IECINT, connects the disconnected channel set and enables
in order to accept any pending interruptions from these channels.

e If no interruptions occur, disables and returns to the I/O FLIH.

8. CRH/CHS Activation FRR Procedure (IECCRHAF)

e Called by the RTM if an error occurred while the CRH/CHS activation
procedure (IECVCRHA) was running.

o Immediately on entry, deactivates CRH function by zeroing the CVT pointer to
the CRH communication area (CVTCRCA).

® If thisis a reentry from an error in the FRR itself, or the retry to the entry point
in IECVCRHA failed, clears the pointer to IECVCRHA (IOXCRHA) in the
1IOCOM extension, thus making CRH unavailable until the next IPL. Returns to
RTM requesting FRR percolation.

® Otherwise, issues message IEA9711: “Unable to activate channel reconfiguration
hardware.”

I/O Supervisor Method of Operation 105

CRH/CHS Module, Basic
Procs. 9,10,11

Page of SY26-3823-5
As Updated October 25,1979
By TNL SN28-4683

Calls backout procedure (11) which attempts to undo whatever IECVCRHA did
before the error occurred.

Returns to RTM with request to retry at entry point CRHARTRY in
IECVCRHA.

At entry point CRHARTRY sets up a return code “unable to activate CRH”
(RC = 8) and returns to the caller of IECVCRHA.

9. CRH/CHS Deactivation FRR Procedure (IECCRHDF)

Called by RTM if an error occurs while IECVCRHD is running.
Immediately on entry, deactivates CRH/CHS function by zeroing the pointer
(CVTCRCA) to the CRH communications area (CRCA).

If this is a reentry from an error in the FRR itself, or if retry at CRHDEXIT
failed, returns to RTM with a request for FRR percolation.

Otherwise, calls the backout procedure (11) to try to complete deactivation of
CRH.

Returns to RTM with request to retry at retry entry point CRHDEXIT in
IECVCRHD.

10. CRH/CHS SLIH FRR Procedure (IECCINTF)

Is called by RTM if an error occurs while IECVCINT or IECVCSSI is running.

Calls the IOS mainline FRR (IECFRR) to post the user with an I/O completion
code of X45’,

I0S mainline FRR returns to RTM with retry request to IOS channel scheduler
to start queued I/O requests.

11. Backout Procedure (BACKOUT)

106 OS/VS21/0 Supervisor Logic

e Called as a subroutine by the CRH/CHS deactivation procedure (IECVCRHD)

or by recovery (either IECCRHAF or [IECCRHDF) to deactivate CRH/CHS.

If pointer to I/O SLIH in I/O FLIH points to CRH SLIH (IECVCINT) or CHS
SLIH (IECVCSSI), restores pointer to the I/O SLIH (IECINT).

If hooks have been activated in IOS mainline (IECIOSCN), removes hooks.
For CHS only:

1. Reconnects the appropriate channel set to the operational processor
(processor x).

2. Processor x issues an RISGNL macro which causes processor x to stop ex-
ecuting and the other processor (processor y) to try to execute. If processor
y has been varied online, it will now connect its own channel set.

3. RISGNL sends back a return code to processor x to indicate whether or not
processor y is operational.

For CRH only, scans UCBs to turn off CRH flags and update processor address
field (UCBCPU) to reflect the processor through which the last-path I/O was
started.

Returns to caller.

9

9

J

CRH/CHS Module, Basic
Proc. 12

CRH Hook Module
Proc. 1

12. Connect Channel Set Procedure (IECCONCS)

Entered when a channel set should be connected and CHS is active, by way of
pointer IOCCONCS in the IOS communications table (IOCOM).

If CHS is not active or the requested channel set is not valid, control returns
to the user with a non-zero return code.

The currently connected channel set ID is saved, and control register 2 is loaded
with the value specified in the CST for the requested channel set.

The connect channel set instruction is issued for the requested channel set. If
the condition code is zero, control returns to the user with a zero return code.

If the requested channel set cannot be connected, the original channel set is
reconnected and its control register 2 value is reloaded. Control returns to the
user with a non-zero return code. If for some reason no channel set can be
reconnected, the system is placed in a X‘06B’ wait state.

| CRH Hook Module (IECVCRHH)

Note: Not used by CHS.
1. The Test Channel Hook Procedure (IECVCRHI)

Entered when the test channel procedure (ETCH1) in IECIOSCN cannot find a
path to start, and attempts to shoulder tap to the inoperative processor. The
hook gives control to IECVCRHI instead.

If the I/O request was a guaranteed device path (GDP) request, tries to use the
requested path. If GDP is unavailable or the channel is not enabled, calls the
SRB scheduling procedure ESCHDIO1 (7 in the basic IOS module) to terminate
the I/O request.

If the device to be started is reserved, ensures that the I/O operation starts on
the same channel as that for the last path started for that device.

Ensures that the channel is available for the path chosen.
Ensures that the path chosen is online.

When IECVCRHI finds an available path from the inoperative processor, issues
a diagnose instruction to make the CRH connection to the desired channel.
Issues a TCH instruction to test the availability of the path.

If no path is available, issues a diagnose instruction to break the CRH connection
and returns to IECIOSCN. IECIOSCN will attempt to start another 1/O request.

If a path is available, calls the required device-dependent SIO procedure to start
the device.

Issues a Diagnose instruction to break the CRH connection, and returns to
IECIOSCN.

1/O Supervisor Program Organization 107

CRH Hook Module
Procs. 2,3

2. The SIO Hook Procedure (IECVCRH?2)

e Entered via a hook after an SIO or SIOF instruction in the basic IOS module
(IECIOSCN) SIO procedure (3).

o If the SIO was not issued across a CRH connection (indicated by CRCADIAG
off), returns to IECIOSCN.

o If the CSW was stored (condition code is ““1”), turns on UCBCRHSN flag in the
device’s UCB to indicate that if a sense command is needed, it must be issued
across the CRH connection.

® If the SIO is successful (condition code is “0”’), turns on UCBIORST in the
device’s UCB to indicate that the last path started was through the CRH
connection.

e Updates UCBCHAN field to indicate the actual device address (not the address
that reflects the channel 6 interface used by CRH).

® Returns to IECIOSCN.

3. The Sense Hook Procedure (IECVCRH3)

e Entered from IECIOSCN, just before the basic I0S module (IECIOSCN/ sense
procedure (14) issues the sense SIO instruction.

® [f the sense operation must be started across a CRH connection (UCBCRHSN
on), and if there is no outstanding CRH connection (CRCADIAG off), issues a
diagnose instruction to make the CRH connection to the required channel.

® Starts the sense operation (in place of the SIO issued by the basic IOS module
(IECIOSCN | sense procedure (14) and saves the SIO condition code.

e If the SIO is successful (condition code is ““0”"), turns off UCBCRHSN to indicate a
CRH sense operation is no longer required. Turns on UCBIORST to indicate that
the last path started to the device was through a CRH connection.

e If a CRH connection is outstanding (CRCADIAG on), issues a diagnose
instruction to break the CRH connection.

o Restores the sense SIO condition code and returns to IECIOSCN.

108 0S/VS2 1/0 Supervisor Logic

C

C

DAVY Module

DAVYV Module (IECVDAVYV)

1. The Volume Verification Procedure (IECVDAVY)

Proc. 1
Entered on one of these paths:
Path A Path B
Basic 10S Basic 10S
module (7, 8) module (20, 12)

'

Post-status

Entry ¢

module (1,2)

Y

Exit
effectors

Y

ERP
loader

Entry 1 *

This procedure (if post-status finds X‘10’ This procedure (if the ERP loader finds
in the I0S PROC field and UCBPGFL is on X*‘10’ in the IOSPROC field)

Path A is taken if the operator readies a direct-access device and a driver sub-
sequently submits an [/O request for that device. Path B is taken if an I/O
interruption is received that resulted from an I/O request made during an earlier
execution of this module on Path A—or if an I/O interruption is received because
this module asked the operator to switch volumes, and in doing so, he readied
the device again. Entry 2 is used if the unsolicited device end is from a page
pack and runs in SRB mode. Entry 1 is the normal non-SRB mode entry.

If e<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>