
Systems 

· -. 

SY26-3823-5 

File No_ S370-30 

OS/VS2 I/O Supervisor Logic 

Includes Selectable Units: 

Supervisor Performance # 1 
Supervisor Performance #2 
MSS Enhancements 
3838 Vector Processing Subsystem Support 
3895 Device Support 
MVS Processor Support 
Hardware Recovery Enhancements 
Processor Support 2 

-~- ------ - ---- ---- -. ---- - - ---
---~-_____ .<!l_ 

VS2.03.805 
VS2.03.807 
5752-824 
5752-829 
5752-830 
5752-851 
5752-855 
5752-864 



Sixth Edition (December, 1978) 

Page of SY26-3823-5 
As Updated October 25, 1979 
By TNL SN28-4683 

This is a major revision of and obsoletes SY26-3823-4. Sec the Summary of Amendments 
following the Contents for a summary of the changes that have been made to this manual. 
A vertical line to the left of the text or illustration indicates a technical change made in 
this edition; revision bars arc not used, however, to indicate changes made in previous 
editions, technical newsletters, or supplements. 

This edition with Technical Newsletter SN28-4683 applies to release 3.8 of OS/VS2 and to 
all subsequent releases of OS/VS2 until otherwise indicated in new editions or Technical 
Newsletters. Changes are continually made to the information herein; before using this 
publication in connection with the operation of IBM systems, consult the latest IBM 
System/370 Bibliography, GC20-0001, for the editions that are applicable and current_ 

It is possible that this material may·contain reference to, or information about, IBM products 
(machines and programs), programming, or services that are not announced in your country. 
Such references or information must not be construed to mean that IBM intends to announce 
such IBM products, programming, or services in your country. 

Publications are not stocked at the address given below; requests for IBM publications should 
be made to your IBM representative or to the IBM branch office serving your locality. 

A form for reader's comments is provided at the back of this publication. If the form has 
been removed, comments may be addressed to IBM Corporation, Publications Development, 
Department D58, Building 706-2, PO Box 390, Poughkeepsie, N. Y. 12602. IBM may use or 
distribute any of the information you supply in any way it believes appropriate without 
incurring any obligation whatever. You may, of course, continue to use the information you 
supply. 

© Copyright International Business Machines Corporation 1975, 1976, 1977, 1978 



L 

• 

The Tutorial Path 

The Diagnostic Path 

• 

\ , 

Preface 

The purpose of this manualis to help you troubleshoot the I/O supervisor, the VS2 
component responsible for communicating with the system's I/O devices. To accom­
plish this purpose, the manual contains two paths to the microfiche listings: a tutorial 
path, to make the listings meaningful to the reader lacking a basic understanding of 
the I/O supervisor's function and design; and a diagnostic path, to get the knowledge­
able reader (detecting an error in a dump, message, or error code) to the source 
of error as quickly as possible . 

The tutorial path comprises this sequence of chapters: 

1. I/O Supervisor Introduction: Classifies the callers of the I/O supervisor into 
groups, according to the common services they request. Names the callers that 
belong to each group and explains how they communicate service requests to the 
I/O supervisor. Introduces the terminology of input/output processing. 

2. EXCP Processor Introduction: Describes the function of EXCP as an interface 
between the I/O supervisor and certain access methods and system services. Lists 
the programs that qualify as "access methods". Describes the access method 
in terface. Defines "related requests". 

3. EXCP Processor Method 0/ Operation: Divides the EXCP processor into services 
and detailed text how processing occurs in the EXCP modules. 

4. EXCP Processor Program Organization: Shows through overview flow diagrams 
and detailed text how the processing occurs in the EXCP modules. 

5. I/O Supervisor Method o/Operation: Divides the I/O supervisor into groups of 
services, each corresponding to a group of callers, and describes the processing 
that performs the services. 

6. I/O Supervisor Program Organization: Shows through overview flow diagrams and 
detailed text how processing occurs in the I/O supervisor modules. 

7. Data Areas: Shows the connections between the principal data areas used by the 
I/O supervisor. Indicates in table which data areas are created, used by, andl 
modified by the I/O supervisor and by EXCP. 

The diagnostic path comprises this sequence of chapters: 

1. "Diagnostic Aids": Associates diagnostic output - a dump, a message, or an 
error code - with the symbolic name of the procedure (module part) that 
provides it. Diagnostic aids are described for EXCP and for lOS. 

2. "Directory": Lists the symbolic names of all the procedures in the EXCP 
processor and the I/O superVisor, and for each procedure, gives the name of the 
microfiche cards that contain its code. 

If this short route fails to isolate a problem, you can extend the search in these ways: 

Find the section in "Program Organization" that describes the procedure 
identified in "Diagnostic Aids," and, using the flow-of-control information there, 
investigate the procedures that might have had control earlier. 

Preface iii 



Directory Usage 

EX CP Processor Logic 

Refer to the data activity table in "Data Areas." It shows, for each data area 
that lOS and EXCP uses, which module creates it and which modules refer to it 
and modify it. The table can be used to find the data dependencies that exist 
between modules. 

For both the tutorial and diagnostic paths you should make use of the directory 
which cross references the lOS and EXCP method of operation functions with the 
actual modules and procedures that perform the functions. Frequent use of the 
directory can make it easier to reference information between the two sections. 

The key to cross referencing in the book is the name of the procedure. With that 
name you can move from ABEND codes to Directory to MO/PO, for example. 

The EXCP processor communicates requests for I/O operations from some IBM 
access methods to the I/O su pervisor. Its logic is similar to a part of the VS2, 
Release 1, I/O supervisor called the EXCP supervisor. The EXCP processor, however, 
is an independent component of VS2, as it shares interfaces to the I/O supervisor 
with many VS2 components. 

Overview of Error Recovery Processing 

Data Area Conventions 

iv OS!VS2 I/O Supervisor Logic 

When the I/O supervisor is notified of an I/O error, it communicates with an ERP 
(error recovery procedure). Which ERP - there are many - depends on which 
device was used. 

The appendix explains in general the processing done by ERPs, tells how they 
differ as to residence and organization, and gives in a table the modules in each ERP 
and the I/O device that is su pported. Additionally, the appendix contains descriptions 
of the ERP service modules - modules that interpret errors, update statistics, write 
messages, and act as go-betweens for ERPs. 

Labels inside data areas name fields if they appear in bold letters: 

UCB 

UCBFLDI 
UCBFLD2 
UCBFLD3 

Labels name bits within fields if they appear in italics: 

UCB 

UCBFLDI 
UCBBITJ 
UCBBIT2 
UCBBIT3 

The order in which labels appear in a data area does not necessarily correspond to 
the actual order of fields or bits. 

• 

r 

4 



L How to Read Decision Tables 

Related Publications 

This manual uses decision tables to relate the tests a program makes to the actions 
that result from those tests. How a decision table relates tests to actions is shown 
in this example: 

~ 
Does Condition A exist? Yes Yes No No 

v.I 
\.;j 

Does Condition B exist? Yes No No Yes !-< 

Take Action l. X 

v.I 
Z Take Action 2. 
0 

X X 

!: 
~ Take Action 3. X X 

Take Action 4. X 

The decision table represents a hypothetical program that tests for Conditions A 
and B. It shows these relationships: 

• If Conditions A and B both exist, the program takes Actions 1 and 3. 

• If only Condition A exists, the program takes Action 3. 

• If neither Condition A nor Condition B exists, the program takes Actions 2 and 4. 

• If only Condition B exists, the program takes Action 2. 

Most of the VS2 components and routines that communicate with the I/O super­
visor or EXCP processor-enumerated in the I/O supervisor "Introduction" and 
in "Appendix A" under "Introduction"-are documented in logic manuals bearing 
their names. Those that don't fall into this category are listed below (with their 
references sources): 

• ABP, the actual block processor: OS/VS2 Virtual Storage Access Method 
(VSAM) Logic, SY26-3825 

• ACR, alternate CPU recovery: OS/VS2 System Logic Library, 
SY28-0713 through SY28-0719 

• the checkpoint SVC routine: OS/VS2 Checkpoint/Restart Logic, SY26-3820 

• MIH, the missing interrupt handler: OS/VS2 System Logic Library, 
SY28-0713 through SY28-0719 

• program fetch: OSjVS2 System Logic Library, 
SY28-0713 through SY28-0719 

• the region control task: OS/VS2 System Logic Library, 
SY28-0713 through SY28-0719 

• RMF, the resource measurement facility: OS/VS2 Resource Measurement 
Facility, L Y28-0923-1 

Preface v 



vi OS/VS2 I/O Supervisor Logic 

• the task-close routine: OS/VS2 Open/Close/EO V Logic, SY26-3827 

• MSSC, the 3850 mass storage system communicator: OS/VS2 Mass Storage 
System Communicator (MSSC) Logic, SY35-0013 

• VTAM, virtual telecommunications access method: OS/VS2 VTAM Logic, 
SY28-062I 

• OS/VS2 JES3 Program Logic, SY28-0612-0 

• OS/VS2 OLTEP Logic, SY28-0676-1 

• 



• 

· • 

Summary of Amendments . 
Introduction . . . . . 

Basic lOS Definitions 

What Is an I/O Operation? . 
What Is a Channel Set? (5752-864) . 

The Concept of Logical Channels 
Wha t Is an I/O Event? . 
the Concept of Asynchronous Processing 
What Is a Purge Operation? 
What Is a Restore Operation? . 

I/O Supervisor Introduction . . . . 
Group 1 Callers and Their Interfaces 

How t,he SRB Is Used . , . . 
How the 10SB Is Used, , . . 

Group 2 Callers and Their Interfaces 
Group 3 Callers and Their Interfaces 
Group 4 Callers and Their Interfaces 
Group 5 Callers and Their Interfaces 

EXCP Processor Introduction 
What Programs Qualify as Access Methods? 
What Is the Access-Method Interface? 
What Are Related Requests? , . 

EXCP Processor Method of Operation , 
Preparing to go to lOS . . . . , 

Validating the Access-Method Interface 
Making a Record of the Request, , , 
Determining If a VIO Data Set Was Allocated 
Consolidating Information in an SRB/IOSB . 
Going to the PGFX, EOE, and SIO Appendages. 
Copying and Translating the Channel Program 

Giving an I/O Request to lOS, . . . . . . . 
Going to the PCI, CHE, and ABE Appendages . . 

Transferring Status Information to Appendages. 
Executing Appendage Options . 
Entering the DIE Procedure . 

Purging and Restoring I/O Requests 
Freeing Data Areas Known to lOS 
Comparing RQEs to the Search Argument 
Restoring I/O Requests . . . . . 
Purging Dependent I/O Requests 

Telling the Access Method What Happened 
Reusing the Access-Method Interface 
Halting a Teleprocessing Operation , 

EXCP Processor Program Organization 
Basic EXCP Module (IECVEXCP) . 

1. The Validity-Check Procedure (XCPOOO) , 
2. The Get-RQE Procedure (XCPRQE) 
3. The VIO Interface Procedure (XCPV AM) . 
4. The Get-SRB Procedure (XCP050). , 
5. The PGFX Interface Procedure (XCPPFA) 

Contents 

xiv 

2 
3 
3 
5 
5 
7 
7 
9 
9 

10 
11 
11 
12 

13 
13 
13 
14 

17 
17 
17 
18 
18 
19 
20 
21 
21 
21 
22 
22 
23 
23 
23 
24 
25 
26 
27 
28 
28 

29 
32 
32 
32 
33 
33 
33 

Contents vii 



viii OS/VS2 I/O Supervisor Logic 

6. The EOE Interface Procedure (IECVEXTC) 
7. The SIO Interface Procedure (XCPI1O). . 
8. The Translator Interface Procedure (XCPI15) . 
9. The STARTIO Procedure (XCPI45) . 

10. The DIE Procedure (XCPDIE). . . . . . 
11. The PCI Interface Procedure (XCPPCI) , . . 
12. The CHE/ABE Interface Procedure (XCPCHE, XCPABE) 
13. The Termination Procedure (XCPTERM) . . . 
14. The Exit Procedure (XCPEXIT) . . . . . . 
15. The 10SB-to-IOB Mapping Procedure (XCPMAP) 
16. The Related-Request Purge Procedure (XCPPUR) 
17. The SVC 3 Interface Procedure (IECVX025) 

Miscellaneous Module (IECVEXPR) . . . . . 
1. The Purge Procedure (IECVXPUR) . . . 
2. The Restore Chain Procedure (IECVRCHN) 
3. The Restore Procedure (lECVXRES) 
4. The Halt-I/O Interface Procedure (SVC33) . 
5. The Functional Recovery Procedure (XCPFRR) 

34 
34 
34 
35 
35 
35 
35 
36 
37 
37 
37 
38 
39 
39 
39 
39 
40 
40 

I/O Supervisor Method of Operation . . . . . 41 
Starting an I/O Operation 43 

Testing the "Startability" of an I/O Operation 43 
Finding a Path for the I/O Operation . 45 
Adding a PrefIx to the Channel Program . 46 
Starting I/O Activity . . . . . . . 47 
Responding to the Condition Code Setting 48 

Responding to an I/O Event . . . . . . 51 
Handling SIOF Deferred Condition Code Interruptions 51 
Handling PCI Interruptions. . . 52 
Handling Channel Errors . . . . 53 
Handling Attention Interruptions 53 
Handling Unit-Check Interruptions. 54 
Going to the Driver's DIE Procedure 55 
Using Channels That Are Free 55 
Doing Asynchronous Processing with lOS-Created 10SBs. 55 
Verifying That the Correct Direct-Access Volume Is Mounted 57 
Doing Asynchronous Processing with Driver-Created 10SBs . 57 
Reusing the STARTIO Interface. . . . . . . . . 59 

Restoring the Availability of I/O Resources . . . . . . 59 
RestOring the Availability of I/O Resources for an ACR 

Condition (5752-864). . . . . . . . . . . . 60 
Recovering from Lost or Unusable Channels (5752-864) . 60 
Restoring the Availability of I/O Resources after a Hot I/O 
Condition (5752-864). . . . . . . . . . . . . 61 

Recovery from a Missing Interruption Condition (5752-864) 61 
Services Used in RestOring the Availability of I/O Resources (5752-864). 62 

Purging and Restoring I/O Requests. . . . . . . 63 
Comparing SRB/IOSBs to the Search Argument. . 63 
Communicating with the Driver's Purge Procedures 64 
Pointing Drivers to Their Restore Addresses. . . 64 

Halting a Teleprocessing or Channel-to-Channel (CTC) Operation. 65 
Overview of Channel Reconfiguration (CRH) Support. 65 

Using the Channel Reconfiguration Hardware 65 
Activating the CRH Program. . . . . . . . 66 



Passing Control to CRH on a Start I/O Request . 66 
Passing Control to CRH on an I/O Event 66 
Preventing Line Drops on TP tines. 67 
Recovering from Errors. . . . . . 67 
Deactivating CRH . . . . . . . 67 

Overview of Channel Set Switching (CHS) Support (5752-864). 68 
Using Channel Set Switching (5752-864). . . . . . . 68 
Activating CHS (5752-864) . . . . . . . . . . . 68 
Passing Control to CHS on a Start I/O Request (5752-864) . 69 
Passing Control to CHS on an I/O Event (5752-864) 69 
Preventing tine Drops on TP tines (5752-864) . 69 
Recovering from Errors (5752-864). . . . 69 
Deactivating CHS (5752-864). . . . . . 70 
Connect Channel Set Procedure (5752-864) . 70 

I/O Supervisor Program Organization . . . . . 71 
Basic lOS Module (IECIOSCN) . . . . . . 87 

1. The Channel Scheduler Procedure (IECHNSCH) 87 
2. The Test-Channel Procedure (ETCHl) . 87 
3. The SIO Procedure (ESIOl) (5752-864). 88 
4. The Post-SIO Procedure (EPOSTIOl) 89 
5. The Enqueue Procedure (EQUEEl) . . 90 
6. The Dequeue Procedure (EQUED1) . . 90 
7. The SRB-Scheduling Procedure (ESCHDIOl) 90 
8. The Unsolicited Device-End Procedure (EDEVEND1) 90 
9. The Interruption-Handling Procedure (IECINT) 91 

10. The Initial-Status Procedure (ESTATUSl). . . . 91 
11. The DIE Interface Procedure (EDIEINTl). . . . 92 
12. The PCI DIE Interface Procedure (EDIEINT2) . . 92 
13. The Channel-Restart Procedure (ERSTARTl and ERSTART2) 93 
14. The Sense Procedure (ESENSEl). _ . . . . 93 
15. The Attention-Handling Procedure (EATTENTl). 94 
16. The Functional Recovery Procedure (IECFRR) . 95 
17. The Unconditional Reserve Scheduling Procedure 

(EDETECTl) (5752-864). . . . . . . 96 
Build Reserve Table Module (IECVBRSV) (5752-864) 97 

1. The Set Up Procedure (5752-864) . . . . . 97 
2. The Build Reserve Table Routine (5752-864) . 97 
3. The Functional Recovery Routine (BRSVFRR) (5752-864) 97 

CCW Translator Module (IECYTCCW). . . . . . 98 
1. The Routing Procedure (IECVTCCW) . . . 98 
2. The CCW Translation Procedure (TCCWIl 00) . 98 
3. The Page-Fix Procedure (TCCWMOOO) . . 99 
4. The Main TIC Procedure (TCCWMI00). . . 99 
5. The TIC Insertion Procedure (TCCWM300). . 100 
6. The TIC Resolution Procedure (TCCWM200) . 100 
7. The IDAL Procedure (TCCWM400) . . . . 100 
8. The Single-Address Translation Procedure (TCCwx.OOO) 100 
9. The Address Retranslation Procedure (TCCWROOO) . 101 

10. The Unfix-and-Free Procedure (TCCWUOOO) . . . . 101 
CRH/CHS Module, Basic (IECYCINT) (5752-864) . . . . . 102 

1. CRH/CHS Activation Procedure (IECVCRHA) (5752-864) 102 
2. CRH/CHS Deactivation Procedure (IECYCRHD) (5752-864) . 103 
3. CRH/CHS STIDC Procedure (IECVCRHV) (5752-864). .. 103 

Contents ix 



x OS/VS2 I/O Supervisor Logic 

4. CRH/CHS Timer Pop Procedure (IECYCRHT) (5752-864).. 103 
5. CRH/CHS Schedule SRB Procedure (IECYCRHS) (5752-864) 104 
6. CRH Second Level Interrupt Handler (IECYCINT) . . .. 104 
7. CHS Second Level Interruption Handler (IECYCSSI) (5752-864) 105 
8. CRH/CHS Activation FRR Procedure (IECCRHAF) (5752-864) . 105 
9. CRH/CHS Deactivation FRR Procedure (IECCRHDF) (5752-864). 106 

10. CRH/CHS SLIH FRR Procedure (IECCINTF) (5752-864) . 106 
11. Backout Procedure (BACKOUT) (5752-864) . . . . . 106 
12. Connect Channel Set Procedure (IECCONCS) (5752-864) . 107 

CRH Hook Module (IECYCRHH) . . . . . . . 107 
1. The Test Channel Hook Procedure (IECYCRHl) 107 
2. The SIO Hook Procedure (IECYCRH2) . 108 
3. The Sense Hook Procedure (IECYCRH3). . . 108 

DA W Module (IECYDA W). . . . . . . . . 109 
1. The Volume Verification Procedure (IECYDAW). 109 
2. The Interruption-Handling Procedure (DAYINT) 110 
3. The Error-Handling Procedure (DAYERR) . 110 
4. The ESTAE Recovery Procedure (DAYESTA) . III 
5. The FRR Recovery Procedure (DAYFRR) . . 112 

Hot I/O Detection Module (IECYHDET) (5752-864) . 112 
1. The Check Interruption Procedure (5752-864) . 112 
2. The Reset Procedure (5752-864). . . . . 113 
3. The Schedule Recovery Procedure (5752-864) 113 

Hot I/O Recovery Module (IECVHREC) (5752-864) 113 
1. The Set Up Procedure (5752-864) . . . . 113 
2. The Hot Device Recovery Routine (5752-864) . 113 
3. The Hot Channel, Hot Control Unit, and Hot DASD Recovery 

Routine (5752-864) . . . . . . . . . . . 114 
4. The Clean Up Procedure (5752-864) . . . . . . . . 115 
5. The Clear Channel Subroutine (CLRCH) (5752-864). . . 115 
6. The Functional Recovery Routine (HRECFRR)(5752-864). 115 

I/O-Restart Modules (IECVRSTI and IECVIRST) (5752-864). . 116 
Introduction to I/O Restart Modules, IECVRSTI and IECYIRST 116 
1. The Set-Up Procedure (IECYRSTI) . . . . . . . . 117 
2. The ACR-Call Procedure (ACRPROC). . . . . . . 117 
3. The CCH-Call Procedure (CCHPROC) for Channel Checks 118 
4. The MIH-Call Procedure (MIHPROC). . 119 
5. The Clear-Device Procedure (CLEARDEY) . . . . . 119 
6. The Message Procedure (RECORDIT). . . . . . . 120 
7. The CCH-Call Procedure (LOSTCHAN) for Lost Channels 120 
8. The Device Procedure (UCBACT) 120 

I/O-Restart Module (IECVIRST). . . 121 
1. The Set-Up Procedure . . . . 121 
2. The Build Reserve Table Routine 121 
3. The Operator Communication Routine 
4. The Recover Unusable Channel Routine 
5. The Wait for Channels to Recover Routine 
6. The Recover Hung Interface Routine 
7. The Re-Reserve Device Routine. 
8. The Restart Active I/O Routine. . 
9. The FRR Routine . . . . . . 

Nonresident Halt-I/O Module (IGC0003C) 
1. The Main Halt Procedure (IGC0003C) . 
2. CTC Halt Procedure (HALT3000) . . 
3. The Functional Recovery Procedure (HALT0900) . 

121 
122 
122 
123 
123 
123 
123 
124 
124 
125 
126 

• 



October 25, 1979 

Nonresident Purge Module (IGCOOOI F) . . . 126 
1. The Entrance/Exit Procedure (IGCO 16) . 126 
2. The SIRB-Purge Procedure (SIRBPURG) 129 
3. The LCH-Purge Procedure (LCHPURG) . 129 
4. The UCB-Purge Procedure (UCBPURG) . 130 
5. The DDR-Purge Procedure (DDRPURG) 130 
6. The SPL-Purge Procedure (SPLPURG) . 131 
7. The IPIB-Purge Procedure (IPIBPURG) . 131 
8. The Driver Interface Procedure (DVRPURG) 131 
9. The Applicability-Check Procedure (PURAPLSR) 132 

10. The Basic Purge Procedure (BASICPRG) 132 
11. The Functional Recovery Procedure (PURGEFRR) . 132 
12. The ESTAE Recovery Procedure (pRGESTAE) 133 
13. Compress In terface (PRGCOMPO) . . . 133 

Post-Status Module (IECVPST) . . . . . . . 134 
1. The Exit Interface Procedure (IECVPST). . 134 
2. The lOS 10SB-Handling Procedure (PSTIOSB) 135 
3. The SVC 15 Procedure (IGCOI5) . . . . 135 
4. The Functional Recovery Procedure (PSTFRRTY) 136 
5. ERP Interface Procedure (PSTEFF) . . . . . 137 
6. Restartable Wait Procedure (PSTWAIT) . . . . 137 
7. The Unconditional Reserve Procedure (PSTUR) (5752-864) 138 

Redrive I/O Service Module (IECVRDIO) (5752-864). 138 
1. The Redrive I/O Service Procedure (5752-864). 138 
2. The Path Check Procedure (5752-864) . . 138 
3. The Restart I/O Procedure (5752-864) 139 
4. The Functional Recovery Routine (5752-864) 139 

Re-reserve Module (IECVRRSV)(5752-864). 139 
1. The Set Up Procedure (5752-864). . . 139 
2. The Do Reserve Procedure (5752-864). . 139 
3. The Check Reserve Procedure (5752-864) 140 
4. The Show Reserve Procedure (5752-864). 140 
5. The Box Devices Procedure (5752-864) . 140 
6. The Functional Recovery Routine (5752-864) 140 

Resident Halt-I/O Module (IECIHIO) . . . 141 
1. The Main Procedure (IECIHIO). . . . 141 
2. The Shoulder-Tap Procedure (HIOIPCI) . 141 
3. The Channel-Logout Procedure (HIOLOP) 142 
4. The Channel Error Procedure (HIOCCH) . 142 
5. The Functional Recovery Procedure (HIOFRR) 142 

Resident Purge Module (IECVPURG). . . . . . 144 
1. The Decrement-Count Procedure (IECVQCNT). 144 
2. The SIRB Clean-Up Procedure (IECVPRCU). 144 
3. The Chain-SRB Procedure (IECVPRDQ) 144 

Restore Module (IGCOOOIG). . . . . . . . 145 
1. The Restore Procedure (ICCO 17). . . . 145 

The SIO Module for DASD Devices (IECYXDAS) (5752-864) . 146 
The SIO Module for the 2305 Device (IECYXDRS) (5752-864) 147 
The SIO Module for the 2314 Device (IECVXSKS) (5752-864) 148 
The SIO Module for the 3330V Device (IECVXYRS) (5752-864) . 149 
The SIO Module for the 2400 Tape Device (IECVXT2S) (5752-864) . 150 
The SIO Module for the 3400 Tape Device (IECYXT3S) (5752-864) . 150 
The SIO Module for Unit Record Devices (IECYXURS) (5752-864) . 150 

Contents xi 



xii OS/VS2 I/O Supervisor Logic 

Page of SY26-3823-5 
As Updated October 25, 1979 
By TNL SN28-4683 

Special S10 Module (IECYESIO) (5752-864) 
1_ The Entrance/Exit Procedure (5752-864). 
2. The SIO Procedure (SIORTN) (5752-864) 
3. The SIGP Entry Procedure (IECYESIG) (5752-864) 
4. The Functional Recovery Routine (ESIOFRR) (5752-864) . 

Storage Manager Module (lECYSMGR) . . . . 
1. The Get-Small-Block Procedure (GETBLKO) . 
2. The Free-Small-Block Procedure (FRBLKO) . 
3. The Get-Medium-Block Procedure (GETBLK4) 
4. The Free-Medium-Block Procedure (FRBLK4) 
5. The Get-Large-Block Procedure (GETBLK). . 
6. The Free-Large-Block Procedure (FREEBLK) . 
7. The Get-Storage Procedure (GETCORE) 
8. The Purge-Free Procedure (PRGFREE). . . 
9. The Pool Initialization Procedure (IECYCPRM) 

10. Compress' Procedure (IECYSCOM) . . . . 
11. The Functional Recovery Procedure (IECYSMFR) 
12. The Block Verification Procedure (SMGFREYR). 

Unconditional Reserve Decis,lon Module (IECYDURP) (5752-864) 
1. The Main Procedure (5752·864). . . . . . . . . . 
2. The Device Validation Routine (IECYDYAL) (5752-864) . 

Unconditional Reserve Detection Module (IECYURDT) (5752-864) . 
I. The Main Procedure (IECYURDT) (5752-864). . . . . 
2. The Condition Code One Procedure (CCI RTN) (5752-864) . 

Unconditional Reserve Service Module (IECYURSY) (5752-864) . 

Directory . 

Data Areas. 
CCW Translation Operation Table (5752-864) 
Device Descriptor Table (DDT) (5752-864) . 
Connections between Principal IOS Data Areas. 
Data Area Usage Table 

Diagnostic Aids . . . 

151 .~ 151 
152 
152 
152 
153 
153 
154 
154 
156 
157 
159 
159 
159 
160 
160 
161 
161 
163 
163 
163 
164 
164 
164 
165 

167 

175 
176 
177 
178 
181 

185 



T 

L 

Page of SY26-3823-5 
As Updated October 25, 1979 
By TNL SN28-4683 

Appendix: Overview of I/O Error Recovery Processing 
The Function and Characteristics of ERPs 
Table of ERP Modules . . . . 
ERP Service Modules . . . . 

The ERP Loader (IECVERPL) 
The Routing Procedure. . 
The Module Location Procedure. 
The Error Notification Procedure 

ERP Loader Module (IECVERPL) Detailed Processing 
The ERP Loader (IECVERPL) . 

The Error Interpreter (IECVITRP). . . 
The ERP Message Writer (IGE0025C) . . 
The Error Statistics Recorder (IGE0025D) 

Glossary of Terms and Acronyms 
Index 

Figures 

Figure 1. Flow of Control in the Basic EXCP Module (IECVEXCP) 
Figure 2. Starting I/O in the Basic lOS Module (IECIOSCN) . 
Figure 3. Responding to an I/O Event in the Basic lOS Module 

(IECIOSCN) 
Figure 4. Responding to an I/O Event in the Post-Status Module 

(IECVPST) and DA VV Module (IECVDAVV) 
Figure 5. Restoring the Availability of I/O Resources in the I/O 

Restart Module (IECVRSTI) . 
Figure 6. Restoring the Availability of I/O Resources in the I/O 

Restart Module (IECVIRST) . 
Figure 7. Hot I/O Detection (5752-864) 
Figure 8. Recovering from Hot I/O Event in Module 

IECVHREC (5752-864) 
Figure 9. Purging I/O Requests in the Nonresident Purge 

Module (IGCOOOIF). 
Figure 10. Halting an I/O Operation in the Nonresident Halt-I/O 

Module (IGC0003C) and Resident Halt-I/O Module 
(IECIHIO) . 

Figure 11. Channel Reconfiguration Hardware (CRH) Hook Module 
Interface and CHS Interface with lOS Mainline 

Figure 12. The Processing or Interruptions When Channel Reconfiguration 
Hardware (CRH) is Active 

Figure 13. The Processing of Interruptions When Channel Set Switching 
(CHS) is Active (5752-864) 

201 
202 
203 
204 
204 
204 
205 
206 
206 
206 
207 
208 
210 

211 

I-I 

30 
73 

74 

75 

76 

77 
79 

80 

81 

82 

83 

85 

86 

Contents xiii 



Page of SY26-3823-5 
As Updated October 25, 1979 
By TNL SN28-4683 

• Changes have been made throughout this publication in support of the 3033 
attached processor. 

• Diagnostic aids information has been deleted from this publication. It can 
now be found in the following books: OS/VS7 System Programming 
Library: MVS Diagnostic Techniques, OS/VS Message Library: VS2 System 
Messages, and OS/VS Message Library: VS2 System Codes. 

• A considerably expanded index has been included. 
• Minor technical and editorial corrections and additions have been made. 

Changes have been made throughout this publication to support Processor 
Support 2 (SU64). 

Notes: 
• The date for this publication is December 29, 1978. Only supplements 

and TNLs with dates later than December 29, 1978 apply to this publication. 

• SY26-3823-5 is a major revision of the OS/VS2 MVS I/O Supervisor Logic 
manual. This major revision obsoletes SY26-3823-4. 

Changes have been made throughout this publication to ref1ect service updates 
and the following SUs: 

• Supervisor Performance # 1 (SUS) 
• Supervisor Performance # 2 (SU7) 
• MSS Enhancements (SU24) 
• 3838 Vector Processing Subsystem Support (SU29) 
• 3895 Device Support (SU30) 
• MVS Processor Support (SU51) 
• Hardware Recovery Enhancements (SUSS) 

Note: SY26-3823-4 is a major revision of the OS/VS2 MVS I/O Supervisor Logic 
manual with all outstanding SU TNLs and system library supplements 
incorporated. This major revision obsoletes SY26-3823-3 and SY28-0757-0. 

Summary of Amendments xiv 

Summary of Amendments 
for SY26-3823-5 
As Updated by SN28-4683 
OSjVS2 Release 3.8 

Summary of Amendments 
for SY26-3823-S 

Summary of Amendments 
for SY26-3823-4 



Contents Directory 

I/O Supervisor Introduction 

EXCP Processor Introduction 

EXCP Processor Method of Operation ---------------------~~ 

EXCP Processor Program Organization -----------------------1~~ 
Basic EXCP Module (lECVEXCP) 
Miscellaneous Module (lECVEXPR) 

I/O Supervisor Method of Operation 

I/O Supervisor Program Organization 
Basic lOS Module (lECIOSCN) 
CCW Translator (I ECVTCCW) 
CRH Module (lECVCINT) 
CRH Hook Module (lECVCRHH) 
nAVV Module (IECVDAVV) 

I/O Restart (lECVRSTIl 
Non-res Halt I/O (lGCOOO3C) 
Non-res Purge (I GC0001 F) 
Post-Status (I ECVPST) 

Res Halt I/O (lECIHIO) 
Res Purge (lECVPURG) 
Restore (lGC0001G) 
Storage Manager (lECVSMGR) 

Directory ---------------------------------I .. ~ 

Data Areas 

Diagnostic Aids 
EXCP ABEND Codes 
EXCP Debugging Area 
105 Recovery Procedures 
10SB Fields 

Error Recovery Processing 

Messages 
Wait-state Codes 
Return Codes 

Glossary of Terms and Acronyms -------------------------I~~ 

Index-------------------------------~ .. .-

Contents Directory xv 

lOS 
Intro 

EXCP 
Intro 

EXCP 
M 0 

EXCP 
P 0 

lOS 
M 0 

lOS 
P 0 

Direc­
tory 

Data 
Areas 

Diag 
Aids 

Glos­
sary 

Index 



xvi ,OS/VS2 I/O Supervisor Logic 



C Introduction 

Basic lOS Definitions 

What Is an I/O Operation? 

What is a Channel Set? 

This section describes the general functional operation of the I/O Supervisor (lOS). 
Callers of lOS are highlighted, and an overview of the interrelationship between 
lOS and anyone of its callers is presented. 

Specific terminology is used to discuss the operation of lOS. The following 
discussion of this terminology is presented to provide a basis for understanding 
lOS. 

1/0 operation is a broad way of referring to any of the following system activities: 

• The transfer of data from real storage across a channel to a control unit and I/O 
device (commonly known as a write operation). 

• The transfer of data from an I/O device and control unit across a channel to real 
storage (commonly known as a read operation). 

• The positioning of read/write mechanisms or mounted volumes (commonly 
known as a control operation). Examples of control operations are spacing or 
skipping lines on a printer, backspacing a tape volume, or seeking on a direct­
access device. 

• The manipulation of an I/O device without the transfer of data or control 
information (commonly known as an immediate operation). Examples of 
immediate operations are rewinding a tape volume or recalibrating an access 
arm (fully retracting it). 

To start an I/O operation, three elements are needed: a start-I/O instruction; a 
channel program, made up of one or more CCWs (channel command words); the 
address of the first CCW. lOS stores the address of the first CCW in a location 
called the CAW (channel address word) and issues a start-I/O instruction that 
specifies the channel, control unit, and device to be used. When the channel 
receives this information, it finds the address of the channel program in the CAW 
and begins executing it, one CCW at a time (assuming that the channel, control 
unit, and device are fully operational and are not busy). 

A channel set is a collection of up to 16 channels which may be accessed by a 
processor. In multiprocessor configurations which have Channel Set Switching or 
CRH, the channel set(s) in the configuration may be switched through special 
hardware, between the processors (such as when one processor has failed); in these 
cases, the channel sets have IDs which are independent of the processor address to 
which the channel set is currently attached. 

lOS always assumes that channel sets exist even on processors which do not have 
the hardware switching feature; in these cases, the channel sets have IDs which are 
equal to the processor address. 

Introduction 



The Concept of Logical Channels 

2 OS/VS2 I/O Supervisor Logic 

A logical channel is a set of physical channels which provide a path to a device or 
group of devices. For example, in this configuration -

Channel 0 , 
+ + 

Processor 
Channel 

Printer Punch Card 
Set Reader 

the set of channels is only one channel, channel 0; therefore, the configuration 
shows one logical channel for one physical channel. But in this configuration-

Processor 
Channel 

Set 

Channell 

Channel 2 

Tape Tape Tape 

two physical channels, 1 and 2, are in the set; they comprise one logical channel 
(since they serve the same group of devices). A third relationship is shown in this 
configuration: 

Channel 2 

• 
Processor 

Channel 
Disk A Disk B DiskC 

Set 

Channel 3 

Disk D Disk E 

j~ • 



L 

What Is all I/O Event? 

There are,two logical channels here: one composed of channels 2 and 3, by which 
disks D and E can be reached; the other consisting of channel 2, by which disks A, 
B, and C can be reached. 

lOS maintains a queue, called a logical channel queue, for each logical channel in 
the system's device configuration. Should lOS be unable to start an I/O operation 
because a device, channel, or control unit is temporarily busy, it puts a record of 
the request in the appropriate queue. Waiting I/O requests are organized in this way 
so that they can be quickly located when an I/O operation ends or a device be­
comes "ready." (The operator makes a device ready by pressing a START button, 
throwing a switch to START, or-in the case of direct-access devices-inserting an 
address plug.) 

For more information about the structure and use of logical channel queues, see 
"Starting an I/O Operation" in the chapter "Method of Operation." 

An I/O event is any incident in the system's I/O resources-channels, control units, 
devices-that causes status information to be stored in the CSW (channel status 
word). Examples of I/O events are: 

• The completion of a read, write, or control operation. These I/O events, in 
addition to storing status information, cause an I/O interruption, which tempo­
rarily stops whatever processing is in progress so that lOS can look at the status 
information. 

• The execution of a CCW with the PCI (program-controlled interruption) bit on. 
This I/O event also causes an I/O interruption. 

• The completion of an immediate operation. In this case, status information is 
stored without an I/O interruption. (lOS makes tests following the start of an 
I/O operation to determine whether status information is stored.) 

The above are known as solicited I/O events: they result from I/O requests. There is 
also a class of I/O events called unsolicited, all of which cause I/O interruptions. 
Examples of unsolicited I/O events are: 

• A terminal user pressing the ATTN key 

• The operator pressing the request key on his console 

• The operator readying a device 

• The device or channel detecting a hardware malfunction not associated with a 
specific I/O request 

If an I/O event occurs that calls for an I/O interruption on a processor presently 
unable to receive I/O interruptions, the channel "holds" the interruption and status 
information until the processor is able to receive them. 

The Concept of Asynchronous Processing 

If a program-call it program A-causes another program-program B-to be dis­
patched, then program B is said to be runningasychronous/y to program A. (To 
put it another way, programs A and B would be running concurrently.) 

Introduction 3 



4 OS!VS2 I/O Supervisor Logic 

The converse of asynchronous processing is synchronous processing. Program A in 
this case relinquishes control to program B and cannot reacquire it until program B 
is through. Diagramatically, synchronous processing looks like this: 

Program A Program B Program A 
--""---- (branches) ---=-...;;..- (branches) -~-=;;;';';'~---1"~ 

And asynchronous processing looks like this: 

Program A ( causes ) Program A 
dispatching ----------------i .. ~ 

Program B 

The concept of asynchronous processing becomes important in understanding how 
lOS is designed to handle I/O requests. Specifically, when lOS receives an I/O re­
quest, an lOS procedure finds out whether the device allocated for the I/O opera­
tion can be used. If the device can't be used (for some reason other than its being 
busy), the procedure causes other procedures to be dispatched, which in turn cause 
still other procedures to be dispatched. The result is three "levels" of asynchronous 
processing: 

Levell: Device found to be unusable 

---- ( dis~:~~~ng ) -----------------I .. ~ 
Level 2: 
• Abnormal-end appendage may be executed 
• DASD ERP may be executed 

---- ( diS~:~~~~ng ) ----------I~ ... 
Level 3: 
• DASD volume label may be verified 
• Non-DASD ERP may be executed 
• Messages may be sent to the operator .. 

The same design is used in processing I/O events: 

Levell: lnitiall/O-event processing 

---- ( dis;:~~~ing ) -----------------I.~ 
Level 2: 
• More l/O-event processing 
• Driver's appendages executed 
• Attention routine may be executed 
• DASD ERP may be executed 

---- ( di~;~:~~ing ) ----------i.~ 
Level 3: 
• Non-DASD ERP may be executed 
• Dynamic device reconfiguration may be 

executed 
• Messages may be sent to the operator 



What Is a Purge Operation? 

What Is a Restore Operation? 

l 

For more information about how lOS handles I/O requests and I/O events, see 
"Starting an I/O Operation" and "Responding to an I/O Event," respectively, in the 
"Method of Operation" chapter. Also, see "How the SRB Is Used," in this chapter 
under "Group 1 Callers and Their Interfaces," to learn how lOS causes 
asynchronous processing to be dispatched. 

When a caller requests a purge operation, it asks lOS to perform one of two 
mutually exclusive functions, as specified in a parameter list: 

• Halt the processing of I/O requests associated with one or more data sets, a TCB, 
or an address space, and notify the drivers that sent those requests to destroy 
records of similar I/O requests that they are preparing to send. 

• Finish processing I/O requests associated with one or more data sets, a TCB, or 
an address space, and notify the drivers that sent those requests not to send 
similar I/O requests but to keep track of them (in a record or chain of records) 
and return the address of the record or chain. 

The first alternative is called a halt operation; the second, a quiesce operation. The 
abnormal termination of a job is an instance that requires a halt operation; the swap 
out of an address space is an instance that requires a quiesce operation. 

A restore operation is the process of returning to each driver the address of the 
record or chain of records it gave to lOS during a quiesce operation. With the 
address, each driver can reconstruct and submit I/O requests that it previously 
withheld from lOS. 

Introduction S 



6 OS!VS2 I/O Supervisor Logic 



I/O Supervisor Introduction 

The input/output supervisor, called lOS for short, is the VS2 component responsible 
for communicating with the system's I/O devices. 

lOS serves five groups of callers, each of which requests one of five basic services: 

Group 1: Callers that want lOS to start an I/O operation. They are known as 
drivers of lOS. 

Group 2: Callers that want lOS to respond to an I/O event. 

Group 3: Callers that want lOS to restore the availability of I/O resources (chan­
nels, control units, devices). 

Group 4: Callers that want lOS to do a purge or restore operation. 

Group 5: Callers that want lOS to halt a teleprocessing operation. 

Group 1 Callers and Their Interfaces 

~ 

ASM 

-r--

\. 

Group 1 callers, the drivers of lOS, ask lOS to start I/O operations. Belonging to 
this group are the following VS2 components. 

SAM, BDAM, ISAM, 
BTAM, TCAM, VTAM, 

\ GAM, JES,3, JES2, etc; 

"" SVC 0 (EXCP) or 
SVC 114 (EXCPVR) 

---- r---
Actual EXCP 
Block Proces- OLTEP JES3 
Proces- sor 
sor 

(See --~ 

figure 1) 

Pro­
gram 
Fetch 

MSCC 
(See 
Note 
1) 

VPSS 
(See 
Note 
2) 

VTAM lOS 

ERP 
requests 
I/O retry I 

~~--------------------------------~ 

Note 1: MSSC means Mass Storage 
Subsystem Communicator 

Note 2: VPSS means Vector 
Processing Subsystem 

Issue ST ARTIO macro 

t 
Basic lOS Module 
IECIOSCN 
(See figure 2) 

How the I/O Supervisor Is Invoked by Its Callers 

I/O Supervisor Introduction 7 

lOS 
Intra 



8 OS!VS2 I/O Supervisor Logic 

ASM (the auxiliary storage manager). It calls lOS to satisfy I/O requests it receives . '" 
from RSM or VBP. ..." 

ABP (the acutal block processor). It calls lOS to satisfy I/O reCI,uests it receives 
from VSAM. 

EXCP processor. It calls lOS to satisfy I/O requests from some IBM access 
methods: SAM, BDAM, ISAM, BTAM, TCAM, VTAM, and GAM, PAM, etc., plus 
JES2 and JES3. 

OLTEP (the online test executive program). It reqiests I/O operations to determine 
the usability of devices. 

JES3. It calls lOS to perform spool I/O. 

Program fetch. It requests I/O operations to read programs from a partitioned data 
set into virtual storage. 

MSSC (mass storage system communicator). It calls lOS to satisfy I/O requests for 
the 3850 Mass Storage System. 

VPSS (Vector Processing Subsystem). It calls lOS to perform I/O operations with 
the 3838 array processor. 

VTAM (virtual telecommunications access method). It calls lOS to perform the 
I/O operations between VT AM and the VT AM telecommunications network. 

lOS itself. lOS acts as its own driver when (a) it wants a previous I/O operation to 
be retried or (b) the label of a direct-access volume must be read and verified. 

Drivers request the starting of an I/O operation by branching to lOS with register 1 

initialized as illustrated in figure below. This interface to lOS consists of a data 

area, called an SRB (service request block) and a data area, called an 10SB (I/O 
supervisor block) - pointed to by the SRB. In this manual, the SRB and 10SB are 
often referred to collectively as the SRB/IOSB. 

Register 1 

IOSB 

lOS SRB 

The driver executing the STARTIO macro must supply an SRB/IOSB in fixed 
global storage. Furthermore, the driver as well as the control blocks, CCWs, etc. 

must be fixed in storage until the driver has been notified that the operation was 

completed. 



l.. How the SRB Is Used 

How the IOSB Is Used 

lOS causes the dispatching of asynchronous processing by using SRBs in two ways: 

Method 1: Scheduling Asynchronous Processing. For every interruption that is a 
completion of an I/O request, lOS chains an SRB to a queue called an SPL (service 
priority list) by issuing a SCHEDULE macro. When the dispatcher checks the SPL, 
it gives control to the procedure addressed in the top SRB on the queue. 

Method 2: Using Exit Effectors. For writing messages to the operator, writing 
records to SYSl.LOGREC, and calling error recovery procedures (ERPs), lOS calls 
a system routine, the stage 2 exit effector to chain an SRB to an asynchronous exit 
queue. Another routine, the stage 3 exit effector, on locating the queued SRB, 
finds the TCB and ASCB (address space control block) associated with it and marks 
the ASCB to show that the address space contains a "dispatchable" TCB. The 
dispatcher subsequently "dispatches" the TCB by giving control to the procedure 
addressed in the top request block on the TCB's request-block chain. 

Both of these methods are used in processing I/O events, causing up to three levels 
of synchronous code to process I/O events concurrently. See "Responding to an 
I/O Event" in the chapter "Method of Operation" to understand how an I/O event 
is processed and where in the processing these methods are used. 

The IOSB contains all the information needed to start an I/O operation. In it lOS 
finds: 

• The address of the channel program to be used. 

• The address of a UCB (unit control block), which contains information about 
the device that has been selected for the I/O operation. 

• Fields referenced in building the CCWs that prefix the driver's channel program. 
(These CCWs can activate hardware options on tape devices; they position the 
access arm and set the file mask on direct-access devices.) 

The IOSB also contains information used by lOS in the course of processing a 
solicited I/O event, such as: 

• The address of the driver's DIE procedure. 

• Entries in the driver through which channel-end, abnormal-end, and PCI append­
ages receive control. 

• The address of the driver's termination procedure. (lOS gives control to this pro­
cedure after it has done all the I/O-event processing that follows the completion 
of the driver's channel program.) 

I/O Supervisor Introduction 9 



Not all the information in the 10SB is put there by the driver; some is filled in by .. ~ 
lOS and presented to the driver when its DIE procedure, appendages, or termina- ..", 
tion procedure receive control. For example: 

• A completion code, giving the status of the requested I/O operation 

• The CSW that was stored as the result of an I/O event 

• Sense information (data about the status of the device on which the operation 
was attempted), if the unit-check bit is set in the CSW 

This is only a selection of the information in an 10SB. The "Method of Operation" 
chapters for both the EXCP Processor and lOS describe in more detail the names of 
fields and bits in the 10SB and how this information is used. 

Group 2 Callers and Their Interfaces 

10 OS/VS2 I/O Supervisor Logic 

Group 2 callers branch to the part of lOS that processes 1/0 events. Belonging to 
this group are the following VS2 components: 

I/O FUH (the input/output first-level interrupt handler). I/O FLIH branches to 
ros when an I/O interruption occurs. The path of control into and out of I/O 
FLIH looks like this: 

I/O interruption (generated by the channel) 

Processor r 
l. Stores the old I/O PSW. I/O FLIH 

2. Loads the new I/O PSW. r l. Saves registers. 

I I Address of the I 2. Records the in terruption 
I/O FLIH I in a trace table. to lOS -

lOS itself. lOS is its own caller when: 

• Tests show that an immediate operation completed. (Immediate operations 
don't cause the channel to generate an I/O interruption, but they do cause the 
channel to store status information-as does any I/O event-in the CSW.) 

• It receives control from MIH (the missing interrupt handler). Although no I/O 
event occurred, lOS acts as though one has. This "simulation" permits the 
reallocation of I/O resources previously allocated to an uncompleted I/O 
operation. Status information that lOS stores in the CSW controls how lOS 
processes this "simulated" I/O event. 

For more information about callers within lOS, see "Responding to the Condition 
Code Setting" and "Simulating an I/O Event" in the lOS "Method of Operation" 
chapter. 



.' 

Group 3 Callers and Their Interfaces 

Group 3 callers branch to the part of lOS that attempts to restore the availability 
of I/O resources (Le., channels, control units, devices). Belonging to this group are 
the following VS2 components: 

ACR (alternate CPU recovery). It branches to lOS if a processor becomes unusable. 

CCH (the channel check handler). It branches to lOS if a channel error can't be 
corrected for lack of data about the last operation on the channel. lOS tries the 
requests again or terminates them for the failing channel. CCH can also schedule 
lOS as an SRB if a channel encounters a hung interface condition or if the channel 
becomes permanently or temporarily unusable. 

CCR operates in two modes: mainline CCR and CCR MCR exit. Mainline CCR 
branch-enters lOS when a stored CSW indicates errors. The MCR branch-enters the 
CCR MCR exit if the machine check interruption code indicates that external 
damage has occurred. The CCR MCR exit determines if the external damage 
machine check occurred on a processor that is signalling a channel(s) that has 
become unusable. 

MIH (the missing interrupt handler). It branches to lOS if the completion of an 
I/O operation is overdue. 

Each of these callers uses register 1 as a parameter register. In it, lOS finds a code 
identifying the caller, MIH, and the address of the UCB (unit control block) for the 
device being used. If the caller is ACR, a code identifying the unusable processor is 
passed. If the caller is CCH, the code identifies the function lOS is to perform. 

The processing performed by lOS for these callers is described under "Restoring the 
Availability of I/O Resources" in the lOS Method-of-Operation chapter. 

Group 4 Callers and Their Interfaces 

Group 4 callers ask lOS to purge I/O requests. Two callers, marked with an asterisk 
(*) in the following list, ask for a quiesce operation and subsequently ask lOS to 
restore the I/O requests. 

The callers in Group 4 are: 

The checkpoint SVC routine (SVC 63).* It asks lOS to quiesce I/O requests so 
that it can write records showing the status of a job step. 

RTM (the recovery termination manager). It requests a halt operation for one of 
two reasons: (a) a system or user routine wants a halt operation to be done before 
recovery processing begins or (b) a job, task, or address space is terminating ab­
normally, and its resources are being returned to the system. 

I/O Supervisor Introduction 11 



The region control task. * It requests a quiesce operation to prevent I/O requests, 
about to be passed to lOS, from being processed when the requestor's address 
space is being swapped out. 

The task-close routine (a resource manager). It asks lOS to halt I/O requests associ· 
ated with a data set that has been closed. 

The I/O and path mask update routine (IECYIOPM). It requests a halt operation 
associated with a "data set identifier". This is done after a fixed interval during 
which no response was received from the path verification I/O request. 

To request a purge operation, these callers issue a PURGE macro, which expands 
into an sve 16 instruction. This causes lOS to receive control via the SVC inter· 
rupt handler. 

On receiving control, lOS expects to find the address of a PPL (purge parameter list) 
in register 1. In the PPL the caIler must have supplied: 

• An indicator telling lOS to halt or quiesce I/O requests. 

• An indicator telling lOS which requests to purge-those associated with a specific 
data set, those for a specific task, or those in a specific address space. 

• Either a "data set identifier" (the address of a data area that identifies a data 
set) or a TeB address or an address space identifier. One of these is the search 
argument, the field that will be used in comparison tests to find I/O requests to 
be purged. 

• The address of a fullword into which lOS stores the address of the PIRL (purged 
I/O restore list). (The PIRL is created during a quiesce operation and initialized 
with pointers to the interrupted work of each lOS driver.) 

A restore operation is requested when a RESTORE macro is issued, resulting in an 
SVC 17 instruction. In this case, register I provides lOS with the address of the 
PIRL area containing the pointers to the driver's interrupted work. 

Group 5 Callers and Their Interfaces 

12 OS/VS2 I/O Supervisor Logic 

BT AM or TeAM calls IOS when it wants to halt a currently running channel 
program. The call is made with an IOHALT macro, which contains sve 33 
instruction in its expansion. 

Depending on the contents of register I, lOS ei ther halts the channel program with 
an HDV (halt-device) instruction or branches to the EXep processor, which modi­
fies a eew to halt the channel program. Register I also tells lOS where it can find 
the UeB for the teleprocessing device; register 0 points to the eew to be modified, 
if that's how the caller wants the channel program to be halted. 



----------------------

EXCP Processor Introduction 

The EXCP processor, called EXCP for short, is a VS2 component. It resides 
on the SYSI.NUCLEUS data set and executes in the resident area of real 
storage. 

EXCP communicates information between the IBM access methods (plus VTAM, 
JES2, and JES3) and lOS (the input/output supervisor). Its role as a communica­
tion function includes these responsibilities: 

• Communicating an access-method request for an I/O operation to lOS by 
(a) gathering information from the "access-method interface" (defined below), 
(b) consolidating the information into a single block, and (c) passing the address 
of the control block to lOS. 

• Communicating the status of an I/O operation to channel-end, abnormal-end, 
and PCI appendages by (a) gaining control at the lOS exits of each of them and 
(b) moving lOS-collected information to access-method control blocks. 

• Telling the access method what the final disposition of its I/O request is, by 
causing a code to be put in its ECB (event control block). 

As one of the drivers (Group I callers) of lOS, EXCP takes part in purging and re­
storing I/O requests. Its role is complementary to the I/O supervisor's: if lOS halts 
certain EXCP-initiated requests (all those initiated from a certain address space, for 
instance), EXCP deletes the control information it has kept for them; if lOS quies­
ces certain EXCP-initiated requests, EXCP saves a block of control information for 
each such request not yet sent to lOS, chains the blocks together, and gives lOS the 
address of the chain. When a restore operation is subsequently requested, lOS re­
turns the address of the chain to EXCP, and EXCP resumes the processing of those 
requests. 

The processing done by EXCP in purge and restore operations is explained in more 
detail in the EXCP Method of Operation chapter. 

What Programs Qualify as Access Methods? 

The term "access method," means any program that builds channel programs 
and passes them to EXCP for execution. This definition includes some of the 
IBM access methods - SAM, BDAM, ISAM, BTAM, TCAM, VTAM, GAM, PAM, 
JES2, and 1ES3, and any user program, utility program, or SVC routine that builds 
a channel program and gives it to EXCP for execution (even though building a 
channel program may not be its main purpose). 

What Is the Access-Method Interface? 

To give control to EXCP, an access method issues an EXCP or EXCPVR macro in­
struction, which expands into an SVC 0 or SVC 114 instruction, respectively. The 
SVC interrupt handler then gives control to EXCP. 

EXCP Processor Introduction 13 



On acquiring control, EXCP finds: 

register I 

CIon (input/output blook) 

Partial contents: 
r-- • DCB address. 

• channel program address. 
• seek address, if using a direct­

access device. 

• DCB (data control block) 

Partial contents: 
,..-__ ---1 • DEB address. 

• format of records. 
• appendage addresses. 
• selection of access-method 

options. 

DEB (data extent block) 

Partial contents: 
• DCB address. 
• UCB address. 
• data set extents, if on a direct-

access device. 

-

register 4 

eTCH (t"k contwl block) 

;-- Partial contents: address of the 
request block representing the 
access method. 

~ request block 

~ 

Partial contents: address of the 
instruction following SVC 0 or 
SVC 114. 

UCB (unit control block) 

Control information about the 
I/O resources allocated to the 
I/O request. 

These control blocks, taken together, constitute the access-method interface. It 
contains everything EXCP needs to build: 

• An interface that IDS will use to start the I/O operation 

• An internal record, called an ROE (request queue element), that represents the 
access-method request for an I/O operation 

See "Preparing to Go to IDS" in the EXCP Method of Operation chapter to learn 
more about the uses of the access-method interface_ 

What Are Related Requests? 

14 OS/VS2 I/O Supervisor Logic 

Related requests are I/O requests with these characteristics: 

• They are directed to the same data set and share the same DEB. 

• . They are processed by EXCP in the order received, but with some overlap; that 
is, request n in a group of related requests needn't be completely processed be­
fore some processing, short of channel-program execution, can be done on 
request n+l. 

• If a related request returns from IDS with an I/O error, none of the related 
requests remaining to be sent can be successful. The subsequent requests depend 
on the success of the earlier request. 



By examining the lOB, EXCP can teU if the access method has given it a related 
request and, if the access method has, what type of related request it is-type de­
noting the amount of overlap permissible between a given related request, n, and 
n+l. Three types currently exist: 

Type 1. The I/O operation for this type must complete, and the channel-end ap­
pendage must look at the status of the operation, before the next related request 
can be handled by the SIO appendage. 

Type 2. The I/O operation for this type must complete, and the channel-end ap­
pendage must look at the status of the operation, before the next related request 
can be sent to lOS. 

Type 3. The I/O operation for this type must complete before the next related 
request can be sent to lOS. (If the CSW for the I/O operation shows anything other 
than a device-end or channel-end indication, the next related request cannot be sent 
to lOS until the channel-end or abnormal-end appendage has executed.) 

Refer to "Making a Record of the Request" in the EXCP Method of Operation 
chapter to learn how EXCP keeps track of the order and progress of related 
requests. 

EXCP Processor Introduction IS 



16 OS/VS2 I/O Supervisor Logic 



Preparing to go to lOS 

EXCP Processor Method of Operation 

This chapter contains a simplification of EXCP code, divided into sections that 
correspond to basic EXCP operations. Basic EXCP operations consist of: 

• Preparing to go to lOS (with an I/O request) 

• Giving an I/O request to lOS 

• Going to the PCI, CHE, and ABE appendages 

• Purging and restoring I/O requests 

• Telling the access method what happened (to its I/O request) 

• Reusing the access-method interface 

• Halting a teleprocessing operation 

Each section is divided into topics that deal with functionally distinct parts of an 
operation. 

The flow of control between labeled parts of EXCP is not stated in these sections. 
Rather, an order of events is implied by the order of topics within a section. If you 
want flow-of-control information, look at Figure I and the descriptions of the 
basic EXCP module and miscellaneous module in the "EXCP Program Organization" 
chapter. 

Preparing to go to lOS with an I/O request requires up to seven steps: 

1. EXCP examines the access-method interface for irregularities that might cause 
I/O errors or jeopardize the security of the system. 

2. EXCP makes a record of the request and puts it in a queue if it is a related request. 

3. EXCP finds out if a VIO (virtual input/output) data set will be used and, if it will, 
does not go to lOS with the request but to the VIO component instead. 

4. EXCP Puts into an SRB (service request block) and 10SB (I/O supervisor block) all 
the information lOS needs to process the request. 

5. If tests justify it, EXCP calls the access method's PGFX (page-fix) and EOE (end­
of-extent) appendages. 

6. EXCP calls the access method's SIO (start-I/O) appendage. 

7. If the access method uses virtual storage addresses, EXCP calls a system routine 
that fixes buffers, copies the channel program in fixed storage, and substitutes 
real storage addresses for virtual ones. 

Validating the Access-Method Interface 

Module: IECVEXCP 
Procedure: XCPOOO 

EXCP checks the control blocks it has been given for irregularities that might cause 
I/O errors or jeopardize the security of the system. Some of the irregularities 
checked for are: 

• Conflicting DCB pointers. 

• An invalid UCB. 

EXCP Processor Method of Operation 17 

EXCP 
M 0 



• An invalid DEB. 

• An lOB, ECB, or OCB that is not in the protection key of the caller. 

The last two checks are only done if the caller has a "user" protection key. (User 
protection keys range from 8 to 15.) 

Making a Record of the Request 

Module: IECVEXCP 
Procedure: XCPRQE 

EXCP fills a record, called an RQE (request queue element), with information, such 
as the addresses of the TCB, UCB, lOB, and DEB, that are needed for later pro­
cessing. (The address of the SRB is also put in the RQE. See "Consolidating Infor­
mation in an SRB/IOSB" in this chapter to learn more about this data area.) 

If the lOB shows that the I/O request is a related request (the IOBUNREL bit is 
off), EXCP marks the RQETYPE field, using the IOBFLAG2 field as input, to 
show what type of related request it is. The RQETYPE field is later used with 
the RQEFLAG field-it shows the progress of the request-to overlap the processing 
of this related request with the next related request, if there is one. (See "What 
Are Related Requests?" for an explanation of related request types.) 

Each time EXCP builds an RQE for a related request, it puts the RQE at the end of 
this pointer structure: 

DEB 

DEBRRQ: points to a queue of related requests. 

RRQ (related request queue) RQE (for the last-received request) 

First word Second word RQENRQE: contains X'FFFFFFFF' 

RQE (for the first-received request) 

RQENRQE: points to the RQE for the next-received request. 

By these means, EXCP keeps track of the order in which related requests are 
received. 

Determining If a VIO Data Set Was Allocated 

Module: IECVEXCP 
Procedure: XCPV AM 

EXCP examines the UCB to find out if the object of the request is a VIO data set: 

UCB 

UCBJBNR (UCBURDEV !lag): on if a VIO data set was allocated. 

18 OS/VS21/0 Supervisor Logic 



Page of SY26-3823-5 
As Updated October 25,1979 
By TNL SN28-4683 

If a VIO data set was allocated, EXCP goes to the VlO component, using the 
WIEXCP macro. (The VIO component either simulates the transfer of data or uses 
another driver of lOS, the auxiliary storage manager, to read or write data. See 
OSjVS2 VIO Logic for more information about VIO processing.) 

Consolidatillg Informatioll in all SRBjlOSB 

Module: I ECVEXCP 
Procedure: XCP050 

EXCP obtains a data area for an SRB and an IOSB, in which it puts all the informa­
tion that lOS needs to start an I/O operation. They are referred to collectively as 
SRBjIOSB. 

In the table helow, the lefthand column lists information that EXCP puts in the 
SRB/IOSB; the middle column shows where the information comes from, and the 
righthand column shows where it goes: 

TCB address RQETCB SRBPTCB 

UCB address RQEUCB 10SUCB 

channel program address IOBST IOSRST* 

seek address IOBSEEK IOSEEKA 

access-method options lOBI· LAG I IOSFLA 

DCBIFLG 10SOPT 

file mask DEBDVMOD IOSFMSK 

DEB address RQEDEB IOSDSID 

* The address of a copy of the channel program is stored in 10SRST. 
See "Copying and Translating a Channel Program" in this chapter 
for more information. 

In addition, EXCP initializes the 10SB with information not found elsewhere: 

IOSB 

10SDRVID: contains X'02', identifying EXCP as the driver that created the 10SB. 

10SNRM: points to EXCP code that moves data from the 10SB to the lOB and calls 
the access method's channel-end appendage. 

10SABN: points to EXCP code that moves data from the laSH to the lOB and calls 
the access method's abnormal-end appendage. 

10SPCI: points to EXCP code that moves data from the 10SB to the lOB and calls 
the access method's PCI appendage. 

10SOIE: points to EXCP's DIE procedure. 

10SPGAD: points to the EXCP code that's entered when lOS is finished processing 
an I/O event. 

EXCP Processor Method of Operation 19 



October 25, 1979 

Going to the PGFX, £0£, and SIO Appendages 

20 OS!VS2 I/O Supervisor Logic 

Module: IECVEXCP 
Procedures: IECVEXTC 

XCPIIO 

EXCP finds out if the access method has a PGFX appendage by examining the DEB: 

DEB 

DEBSIOAB: the high order bit "on" in the high order byte (DEHPGFX) means 
a PGi"X appendage exists. 

EXCP gives a PGFX appendage control if the ROE shows the access method either 
issued an EXCPVR macro or uses virtual storage addresses: 

ROE 

RQETVPE 
RQEl14: on if EXCP was entered with an EXCPVR macro. 
RQEVIRT: on if the ca'ler uses virtual storage addresses. 

Pages in the list returned by the PGFX appendage are fixed if EXCP was entered 
by an EXCPVR macro. They are not fixed if the caller uses virtual storage ad­
dresses. (The buffers used by such callers are subsequently fixed by the process­
ing described under "Copying and Translating the Channel Program.") 

For requests from a V=R address space, EXCP checks whether the DEB has 
been fixed. If not, EXCP does a pagefix, using the TeB address ill the DEB. (Note: 
This is a TCB-associated pagefix.) 

EXCP enters the EOE appendage if a direct-access device was allocated and the 
seek address in the lOB does not fall within the extent boundaries recorded in the 
DEB. Otherwise, the EOE Appendage is not entered. 

lOB 

IOBSEEK: first byte is an index to 
the data set extent entry in the DEB. 
Remaining bytes contain the seek 
address: the cylinder and track to 
which the direct-access volume will 
be positioned. 

DEB 

DEBDVMOD: the beginning of an 
area containing a 14-byte entry for 
each extent in the data set. Each 
en try gives the bounds in which the 
seek address must fall. 

Upon return from the EOE appendage, EXCP performs one of the following 
functions as indicated by the appendage. 

• Tells the access method about an "out-of-extent" error (by putting X'42' in tllC 
IOBECBCC field of the lOB) and calls the abnormal-end appendage . 

• Turns on the RQEPURGE bit to indicate RQE is to be purged without further 
appendage processing. 

• Rechecks the seek address, and if it still doesn't fall within the extent boundar­
ies, reenters the EOE appendage. 



October 25,1979 

EXCP also goes to the EOE appendage if, after lOS tries to start an I/O opera­
tion, the direct·access ERP alters the seek address (to cause a track or cylinder 
switch) and wants the new seek address to be verified. 

EXCP enters the SIO Appendage unconditionally. Using different return addresses, 
the appendage can tell EXCP to continue processing the request or terminate it. 

Copying and Translating the Channel Program 

Module: IECVEXCP 
Procedure: XCP 115 

If the access method uses V=R storage addresses, or if it enters EXCP with an 
EXCPVR macro, the channel program is ready to be executed: the channel 
program and the buffers reside in fixed storage, and the buffer addresses in the 
channel program's CCWs are real addresses. 

EXCP can, in this case, convert the contents of the 10BST field to a V=R storage 
address and use that address to initialize the 10SRST field. (lOS assumes that the 
10SRST field contains the V=R storage address of the channel program.) 

The channel programs of other callers must be copied in a fixed area, the buffers 
must be fixed, and virtual storage addresses must be translated into real ones. This 
is all done by the lOS CCW translator module, IECVTCCW. On receiving control, 
the CCW translator module finds: 

TCCW (translation control block) 

TCCWTCB: the TeB address. 

TCCWUCB: the VCB address. 

TCCWFVC: points to the un translated channel program. 

The CCW translator module returns the starting address of a fixed, translated copy 
of the channel program; EXCP stores the starting address in the IOSRST field. 

Giving an I/O Request to lOS 

Module: [ECVEXCP 
Procedure: XCPI45 

EXCP gives an I/O request to [OS by calling the lOS code that starts I/O operations. 
The call is made by issuing a ST ARTIO macro or by a direct branch from EXCP's DIE 
procedure. (lOS enters the DIE procedure of its driver after a solicited I/O event 
occurs.) In both cases, lOS gets control with the address of the SRB in register I. 

Going to the PCI, CHE, and ABE Appendages 

After receiving an I/O request from EXCP, lOS calls EXCP one or more times to 
communicate with a: 

• PCI (program-controlled interruption) appendage 

• CHE (channel-end) appendage 

• ABE (abnormal-end) appendage 

EXCP Processor Method of Operation 21 



Page of SY26-3823-5 
As Updated October 25, 1979 
By TNL SN28-4683 

Before EXCP invokes one of these appendages, it transfers information from the 
10SB to the lOB so that the appendage can examine the lOB and know the 
status of the I/O request. 

If the appendage is a CHE or ABE appendage, EXCP executes options for it (such 
as moving data or setting flags) before returning to lOS. Otherwise no options are 
executed and control returns to lOS. 

Entering the Disabled Interrupt Exit (DIE) Procedure 

Module: IECYEXCP 
Procedures: XCPDlE 

XCPMAP 

Normally, disabled procedures are kept to a minimum since the system cannot 
respond to other interrupts while disabled. However, under certain conditions, 
EXCP uses the disabled interrupt exit (DIE) procedure to enter an appendage 
itself, rather than wait for lOS to branch to the exit. The lOS code that gives 
control to the DIE procedure executes (synchronously) before the lOS code that 
branches to the exit addresses in the 10SB (which executes asynchronously). 

For the normal Y=Y address space, the DIE procedure is not entered. It is entered 
only under the following two conditions: 

I. If the access method is running in a Y=R address space, or if it called EXCP 
with an EXCPYR macro, the DIE procedure branches to the PCI appendage, 
first setting up the lOB as described under "Transferring Status Information to 
Appendages" in this chapter. (EXCP assumes that fixed callers - TCAM, for 
instance - require better performance and want the chance to modify an active 
channel program as soon after a PCI interruption as possible.) 

2. If the access method has given EXCP a type 3 related request, the DIE procedure 
checks to see if the next request element can be started. If so, the DIE 
initializes the 10SB with information from the request queue element (RQE) 
about the next request to be started. Then the DIE passes the IOSB/SRB to lOS. 

Transferring Status Information to Appendages 

22 OS/VS2 I/O Supervisor Logic 

Module: IECYEXCP 
Procedures: XCPPCI 

XCPCHE 
XCPABE 
XCPMAP 

When lOS branches to one of the appendage addresses i 11 an 10SB created by EXC'P, 
EXCP is entered instead of the appendage. At each of these ent rances, EXCP prepares 
to go to the appropriate appendage by transferring information about the status of 
the I/O event from the 10SB to the lOB. 

In the table below, the lefthand column shows status information in the 10SB, the 
middle column shows where it is located, and the righthand column shows where 
EXCP puts it in the lOB. 

.:~ 



Page of SY26-3823-5 
As Updated October 25, 1979 
By TNL SN28-4683 

Executing Appendage Options 

sense information IOSSNS IOBSENSO 
IOBSENSI 

completion code IOSCOD IOBECBCC 

channel status word IOSCSW IOBCSW 

Additionally, if the "exceptional-condition" bit, IOSEX, is on, EXCP turns on an 
error bit in the IOBFLAGI and DCBIFLGS fields. 

Module: IECVEXCP 
Procedures: XCPCHE 

XCPMAP 

The CHE and ABE appendages return to EXCP at any of several addresses; 
each return causes EXCP to execute a different set of appendage options before 
returning to lOS. Depending on where it is entered, EXCP takes one or both of 
the following actions: 

• Transfers the sta tus information, whether altered by the appendage or not, 
back to the IOSB. 

• Sets bits in the RQEFLAG field controlling the EXCP code that lOS enters 
when it finishes processing the I/O event. 

EXCP Processor Method of Operation 22.1 



October 25, 1979 

22.2 OSjVS2 I/O Supervisor Logic 



October 25, 1979 

C Purging and Restoring I/O Requests 

Purging I/O requests consists of these steps: 

1. If a halt operation was requested, EXCP frees the SRB/IOSBs that lOS passes 
and frees associated data areas that EXCP created. 

2. Regardless of the type of purge operation, EXCP frees RQEs that match a 
search argument lOS passes. 

3. If a quiesce operation was requested, EXCP saves the lOBs for requests that 
haven't been given to lOS and chains the lOBs together. (The chain is needed 
jf a restore operation is subsequently requested.) 

To restore I/O requests, EXCP issues an SVC instruction-SVC 0, 92, or 114-for 
each lOB (I/O request) in the lOB chain. The SVC instruction causes the I/O 
request to be reprocessed by the EXCP code that gives I/O requests to lOS. 

Freeing Data Areas Known to lOS 

Module: IECVEXPR 
Procedure: IECVXPUR 

Module: IECVEXCP 
Procedure: XCPTERM 

EXCP Processor Method of Operation 23 



October 25, 1979 

On receiving control from the lOS nonresident purge module, EXCP checks the 
IPIB to determine if the issuer of the PURGE macro asked for a halt or quiesce 
operation. 

register 1 

IPlBOPT 
~

IPIB 

'--__ ...... IPIBHALT: if on, a halt operation was requested; if off, a 
quiesce operation. The choice was given to lOS in the purge 
parameter list and marked in the IPIB by the lOS non-
resident purge module. 

If a halt operation was specified, EXCP finds in the lPIBSRB field the address of 
the first SRB/IOSB in a chain of SRB/IOSBs that lOS collected for EXCP's disposal. 
Using the following pointers, EXCP frees each SRB/IOSB and the associated RQEs 
and translation control blocks: 

SRB/IOSB 

SRBLINK: points to the next 
SRB/IOSB in the chain. 

- 10SUSE: points to the RQE. 

-"RQE 

RQETCCW: points to the 
translation control block. 

TCCW (translation control block) 

Used to pass information to the 
lOS CCW translation module. 

Comparing RQEs to the Search Argument 

24 OS/VS2 I/O Supervisor Logic 

Module: IECVEXPR 
Procedures: IECVXPUR 

IECVRCHN 

Module: IECVEXCP 
Procedure: XCPTERM 

There are some I/O requests for which lOS has no internal records (no SRB/IOSBs), 
as is the case if (a) EXCP hasn't given the I/O request to lOS yet or (b) lOS has 
finished processing the request, and EXCP has freed the SRB/IOSB. If lOS has no 
SRB/IOSB for an I/O request, it has no way to identify the RQE, should the RQE 
be associated with the purge operation. EXCP finds such RQEs by comparing the 
search argument in the IPIB to the designated field of every RQE that still exists. 

IPIB 

IPIBARG: the search argument. 

IPIBOPT: bit settings tell EXCP 
whether to compare the argument to 
the RQEDEB field or to the RQETCB 
field-or to neither, in which case the 
search argument is an address space 
identifier. The RQEs associated with 
an address space are found by using a 
network of pointers. 

RQE 

RQEDEB: points to the DEB. 

RQETCB: points to the TCB. 



• 

Restoring I/O Requests 

RQEs that match the search argument, and any translation control blocks they 
point to, are freed if a halt operation was requested. (ex: if the RQE points to a 
SRB/IOSB and TCCW blocks, the SRB/IOSB and TCCW blocks are freed before 
the RQE.) If a quiesce operation was requested, matching RQEs are also freed, 
providing they represent I/O requests that haven't been sent to lOS, and the 
associated lOBs are put in a chain. 

IPIB 

IPIBIO: points to the first lOB in 
the chain. The lOS nonresident 
purge module moves this pointer into 
the PIRL at PIRRSTR, a field EXCP 
refers to when it restores its I/O 
requests. 

lOB 

IOBR: points to the next lOB in the 
chain. 

A count of all the other matching RQEs is added to the IPIBCNT field, which 
shows the total of I/O requests that have reached lOS but haven't been completely 
processed. (When the system eventually passes these RQEs to EXCP for disposal, 
EXCP finds them marked with an IPIB address and decreases the IPIBCNT count. 
The quiesce operation is only complete when an lOS driver, not necessarily EXCP, 
decreases the count to zero.) 

Module: IECVEXPR 
Procedure: IECVXRES 

On receiving control from the lOS restore module, EXCP finds: 

register 1 PIRL 

I Points to PIRRSTR. j....----I:: ..... PIRRSTR: points to the first in a chain of lOBs, 
each representing an I/O request to be restored. 

Restoring an I/O request means resubmitting an I/O request. To resubmit an I/O 
request, EXCP must recreate the access·method interface by: 

• Putting the address of the lOB in register 1 . 

• Issuing an SVC 0 or an SVC 114 instruction, which causes EXCP's entry code to 
get control with the address of the restore TCB (the one the issuer or the RE­
STORE macro is running under) in register 4. 

EXCP performs these steps for each lOB in the chain, varying the procedure in 
only one case: if the issuer of the PURGE macro requested that the I/O request be 
reprocessed under a target TCB (a TCB other than the restore TCB), EXCP puts the 
address of the target TCB in register 0 and issues an SVC 92 instruction, again giving 
control to its entry code. 

EXCP Processor Method of Operation 25 



A data area called the EPCB (EXCP purge control block), built when EXCP's I/O 
requests were quiesced, gives EXCP the information it needs to reprocess each of 
the lOBs (I/O requests) on the lOB chain: 

EPCB entry (one per lOB) 

EPCBlOB: contains the address of an lOB on the lOB chain. 

EPCBTCB: contains X'F4' if EXCP is to issue an SVC 114 instruction to reprocess the 
lOB addressed in the EPCBlOB field. 

EPCBTCB+1: contains zeros if the lOB addressed in the EPCBlOB field is to be re­
processed under the restore TCB. Otherwise, contains the address of the target TCB 
under which the lOB is to be reprocessed. 

Purging Dependent I/O Requests 

26 OS/VS2 I/O Supervisor Logic 

Module: IECVEXCP 
Procedures: XCPTERM 

XCPPUR 

If lOS returns to EXCP a related request whose 10SB is marked with an error indi­
cation, EXCP purges all the I/O requests that depend on the successful completion 
of the related request; that is, all the I/O requests that follow it on the related re­
quest queue are purged. (See "Making a Record of the Request" in this chapter 
for how the queue is located and structured.) 

DCB 

DCBIFLGS: if the first two bits are on, an uncorrectable I/O error was encountered. 

The purge of dependent I/O requests is a limited version of what EXCP does to 
complement an lOS purge operation. It includes these steps: 

• Freeing the SRB/IOSBs, RQEs, and the translation control blocks belonging to 
related requests. 

• Chaining the lOBs of dependent requests together. 

• Telling the access method what happened by putting an X'48' in each ECB. 

EXCP lets the access method decide whether to resubmit the I/O requests. 



L 

Telling the Access Method What Happened 

Module: IECVEXCP 
Procedure: XCPTERM 

The process of telling the access method what happened to its I/O request is called 
posting. A one-byte completion code is put (posted) in the ECB for the access 
method's inspection when: 

• The EOE appendage returns to EXCP with an "out-of-extent" error. 

• The EOE appendage directs EXCP to ignore the I/O request and return to the 
access method. 

• The I/O request is purged, unless the IPIB shows that the purged request should 
not be posted. 

IPIB 

IPIBOPT 
IPIBPOST: if off, the request is not posted. (Set by the lOS nonresident purge 
module (lGCOOO 1 F) in accordance with options in the purge parameter list.) 

• lOS finishes processing the request, unless the RQE shows that the request 
should not be posted. 

RQE 

RQEFLAG 
RQENOPST: if on, the request is not posted. (Set by EXCP at the direction of 
an appendage.) if on, the request is posted. 

The system routine that does the posting also finds the TCB under which the access 

method is running, decreases the "wait" count, and if the count becomes zero, 
marks the TCB "dispatchable." The access method, waiting to learn about the status 
of its I/O request, can then get control and examine the ECB. 

When EXCP gives control to the posting routine,it passes the completion code and 
the ECB address in registers 10 and 11, respectively. 

lOB 

IOBECBCC: the completion code is taken from this field. If the I/O request was pro­
cessed by lOS, the code was moved here from the 10SCOD field of the IOSB. To learn 
what the codes are and what they mean, see "The IOSCOD Field" in the lOS 
"Diagnostic Aids" chapter. 

10BECBPT: points to the ECB. 

EXCP Processor Method of Operation 27 



Reusing the Access-Method Interface 

Module: lECVEXCP 
Procedure: XCPTERM 

After lOS finishes processing an I/O request, EXCP frees the RQE, unless the 
RQE shows that re-EXCP processing is requested: 

RQE 

RQEFLAG 
RQERETR Y: the "re-EXCP" bit; if on, it tells EXCP to reuse the access method inter­
face. (EXCP would have turned it on earlier if directed to by the CHE or ABE appendage.) 

An appendage requests "re·EXCP" processing as a quick way of executing the same 
channel program or a new one-quick because EXCP doesn't have to revalidate the 
access-method interface or create a new ROE. (If an appendage wants a new chan­
nel program to be executed, it must additionally change the channel-program pointer 
in the lOB or modify the original channel program.) 

EXCP initiates the processing of the "new" I/O request by returning to the code 
that compares the seek address to the limits of the data set extent. 

Halting a Teleprocessing Operation 

28 OS/VS2 I/O Supervisor Logic 

Module: IECVEXPR 
Procedure: SVC33 

EXCP gets control from a teleprocessing access method by this route: 

1. A teleprocessing access method issues an 10HALT macro, which generates an 
SVC 33 instruction directing lOS and EXCP to halt a teleprocessing operation. 

2. The SVC interrupt handler goes to the lOS halt-I/O code. 

3. lOS, finding that EXCP was chosen to halt the operation (by examining register 
I), branches to EXCP's halt-I/O code. 

On receiving control, EXCP finds a pointer to an untranslated CCW in register 0 
and: 

• Stores a "no-op" operation code, X'03', into the translated CCW that corresponds 
to the untranslated channel program. 

• Turns off the command-chaining bit in the translated CCW. 

These actions cause the channel program to end. 



l 

L 

October 25, 1979 

EXCP Processor Program Organization 

This chapter is organized by object module name and by procedure name within 
each object module. 

The following reference features are provided to help you move quickly within and 
between the chapter sections. 

• The sections appear in the alphabetical order of their titles. (The titles are the 
names of the modules.) 

• Procedure subtitles are assigned numbers within each module. 

When a procedure name and number is referenced, simply locate the numbered 
procedure within the module. 

When a module name and number is referenced, first locate the module, then 
locate the numbered procedure within that module. 

• Place markers, printed at the top of each page, give the name of the module and 
the numbers of the procedures described on the page. To find the description of 
a given module or procedure, you can scan the place markers. 

EXCP is made up of the basic EXCP module (IECVEXCP) and the miscellaneous 
module (IECVEXPR). Both are link-edited at system generation into the nucleus 
load module, IEANUCxx. 

The object modules are the program units that perform the operations described in 
the "Method of Operation" chapter. This table shows which of these modules 
perform which services: 

Operation 

Preparing to go to lOS 

Giving an I/O request to lOS 

Going to the PCI, CHE, and ABE appendages 

Purging I/O requests 

Restoring I/O requests 

Telling the access method what happened 

Reusing the access method interface 

Halting a teleprocessing operation 

Module 

Basic EXCP Module 

Basic EXCP Module 

Basic EXCP Module 

Miscellaneous Module (but the Basic EXCP 
Module does the purging described under 
"Purging Dependent I/O Requests") 

Miscellaneous Module 

Basic EXCP Module 

Basic EXCP Module 

Miscellaneous Module 

This part is divided into two sections, "Basic EXCP Module ( IECVEXCP)" and 
"Miscellaneous Module (IECVEXPR)_" Each section tells what the module does by 
describing the module's procedures. Each shows the flow of control into, out of, and 
within the module by identifying the calls made by the module's procedures, and the 
entrances to and exits from them. 

The basic EXCP module, thelarger and functionally more important module, is also 
represented in flow-of-control diagrams, Figure 1. The diagram shows a simplifica­
tion of the module's processing and control flow. The number next to each block 
corresponds to the procedure number assigned to the procedure descriptions that 
follow the diagrams. Use the place markers at the top of each page to reference 
the desired procedure description. 

EXCP Processor Method of Operation 29 



Page of SY26-3823-5 
As Updated October 25, 1979 
By TNL SN28-4683 

From an access method 
that wants an I/O operation 
to be started 

Issues an SVC 0 
or SVC 114 instruction 

(1) .--____ --1 _____ ---, 

Validity-Check Procedure (XCPOOO) 
(3)r---------L-----------~ 

Ifa VIO 
data set exists 

VIO Interface Procedure (XCPV AM) 

• Tests for the existence of a VIO Examines the access-method inter­
face for irregularities that might 
cause I/O errors or jeopardize the 
system's security. 

data set. ----------t-t~ 

(2) .---------''---------, 
Get-RQE Procedure (XCPRQE) 

• Gets and initializes an RQE. 
• Calls the VIO interface procedure. 
• Determines whether processing 

must be held up because of a 
dependency on a related request. 

(4) .------------''--------; 
Get-SRB Procedure (XCPOSO) 

• Gets and initializes an SRB/IOSB 
and TCCW. 

• If needed, gets a BEB and Fix list. 

(5) .-------'----------, 
PGFX Interface Procedure (XCPPF A) 

• If appropriate, calls the PGFX 
appendage, or 

• Determines whether a DASD was 

If processing 
is held up 

• Returns to caller. -------t, 
• Ensures tha t the ECB is posted 

and/or the RQE is freed if VIO 
directs. 

(6) .--____ ----''--___ .L---, 

EOE Interface Procedure (lECVEXTC) 

Finds ou t if the seek address falls 
within the specified extent, and 
based on that determination, either: 
• Exits to the SIO interface 

procedure. ---------t-I~ D 
or 

allocated for the I/O operation' __ H~ C If a DJ'.SD 
• Maps IOSB to lOB, then calls 

the EOE appendage. 
If the latter, exits as the EOE 
appendage directs. 

(7) ,----------''----------, 
SIO Interface Procedure (XCPIIO) 

Calls the SIO appendage and exits 
as the appendage directs. 

If the request 
is not to be 
sent to lOS 

(8) r-:::----;--:---:-'-::---;-------, 
Translator Interface Procedure 
(XCPIIS) 
If appropriate, calls the lOS CCW 
translator module, which makes a 
fixed, translated copy of the 
channel program. 

was allocated 

To enter the 
ABE appendage 

C 

To post 
the ECB 

(9) ,--____ ---L _____ ---, 

STARTIO Procedure (XCP145) 

• Puts the address of the channel 
program in the 10SB. 

• Issues a STARTIO macro. -----11-11.-( 

• Exits. 

Figure l. Flow of Control in the Basic EXCP Module (IECVEXCP) (Part 1 of 2) 

30 OS/VS2 I/O Supervisor Logic 



Page of SY26-3823-5 
As Updated October 25, 1979 
By TNL SN28-4683 

From lOS 
After an I/O 
event soli­
cited by EXCP 

(10) ,....-_____ ---1. ______ --, 

DIE Procedure (XCPDIE) 

• If a PCI interruption occurred for a 
V=R user, or a user who issued 
EXCPVR, maps the 10SB to lOB, 
then calls the PCI appendage_ 

• Returns to lOS, with a related re­
quest if the I/O event makes pos­
sible the submission of the request. 

From lOS 

During I/O·event 
processing, if a 
PCI interruption 
occurred 

(11) .--------'-----------, 

PCI Interface Procedure (XCPPCI) 

Maps the 10SB to lOB, then 
calls the PCI appendage. 

To its caller 

From lOS During I/O· 
event processing 

(12) ,....--'--------1.--------, 
CHEf ABE Interface Procedure 
(XCPCHE, XCP ABE) 

• Transfers data on the status of 
the I/O operation from the IOSB 
to the lOB. 

• Depending on where it was 
entered, calls either the CHE or 
ABE appendage. 

• At the direction of the appendage, 
sets RQE bits that ensure that 
the RQE is freed or not freed, 
that the ECB is posted or not 
posted, that the access-method 
interface is reused or discarded. 

From lOS 
After I/O-event 
pro cessing is 
completed 

(13) r--'---------''----------, 

Termination Procedure (XCPTERM) 

• If the access-method in terf ace is 
to be reused, exits. ---------1---1~ 

• Unfixes the pages that other 
procedures caused to be fixed. 

(14) ,....---'---------'---------, 

Exit Procedure (XCPEXIT) 

• Frees all SRB/IOSB, TCCW, BEB, 
and FIX blocks on the large block 
free chain. 

• If the processing of a request was 
held up, determines if the proces­
sing can resume and exits 
accordingly. 

If suspended 
processing 
can resume 

To the SVC 
interrupt handler 

'---------l=========~-.,( A If normal condition or 
If abnormal 
condition, 
not perma­
nent error Return to caller 

permanent error 

Figure 1. Flow of Control in the Basic EXCP Module (IECVEXCP) (Part 2 of 2) 

EXCP Processor Method of Operation 31 



Basic EXCP Module 
Procs. 1,2 

Page of SY26-3823-5 
As Updated October 25,1979 
By TNL SN284683 

Basic EXCP Module (IECVEXCP) 

J. The Validity-Check Procedure (XCPOOO) 

• Entered by the SVC interruption handler, which was entered by a'caller issuing an 
SVC 0, SVC 92, or SVC 114 instruction. (EXCP is actually entered at IGCOOO, 
IGC092, or IGC 114, depending on the SVC instruction, where it does some 
preliminary processing.) 

• If entered via an SVC 92 instruction, determines if the caller is in supervisor 
state. If not, issues an ABEND macro with X'15C' code. 

• I f entered via an SVC 1 14 instruction, determines whether the caller is in 
supervisor state, or is authorized by the authorized program facility, or has a 
system protection key (0 through 7). If none of these is true of the caller, 
issues an ABEl\D macro with a X' 172' code. 

• Compares the pointers to the DCB in the IOBDCB and DEBDCB fields. If they 
aren't identical, issues an ABEND macro with a X'400' code. 

• If the caller's protection key is greater than 7 (as are all user protection keys), 
does these things: 

(a) Verifies that the IOB, ECB, and DCB are in the caller's key. If a program 
check occurs, module IECVEXPR issues system completion code X'200'. 

(b) Calls the system's DEB validity-checking routine, IFGDEBCK. If 
notified that the DEB is invalid, issues an ABEND macro with a 
X'300' code. 

• Compares the number of extents the lOB says a direct data set has to the num­
ber the DEB says it has. If the lOB's number is greater, issues an ABEND macro 
with a X'300' code. 

If the DCB pointers in the lOB and the DEB do not match, issues an ABEND 
macro with a X'400' code. 

• Checks for a valid UCB. (The DEBUCBAD field in the DEB must point to an 
area whose third byte is X'FF' -a UCB). If it finds an invalid UCB, issues an 
ABEND macro with a X'500' code. 

• If the DEB has multiple extents (such as ISAM), the DEBEXSCL field in the 
DEB is multiplied by the IOBM field in the lOB to get the correct extent. Then 
the UCB is checked as described above. 

• Exits to the get-RQE procedure (2). 

2. The Get-RQE Procedure (XCPRQE) 

32 OS/VS2 I/O Supervisor Logic 

• Entered by the validity-check procedure (1). 

• Calls the lOS storage manager module to get storage for an RQE. Initializes the 
RQE and chains it to a related request queue if the IOBUNREL bit is off. 

• Exits to the VIO interface procedure (3) to find out if a VIO data set was allo­
cated (if none was, control is returned); to the get-SRB procedure (4) if process­
ing needn't be held up by a dependency on a related request; to the exit proce­
dure (14) if processing must be held up. 



3. The VIO Interface Procedure (XCPVAM) 

• Entered by the get-RQE procedure (2). 

Basic EXCP Module 
Proes. 3,4,5 

• Tests the UCBJBNR bit for the existence of a VIO data set and, if it's on, enters 
the system's VIO component with a WIEXCP macro. If it's off, returns to the 
get-RQE procedure (2). 

• Does the processing associated with the address the VIO component returns to. 
These are the possible return addresses and the associated processing: 

(a) register 14+0: Calls the termination procedure (13) to post the ECB and 
free the RQE. 

(b) register 14+4: Calls the termination procedure (13) to free the RQE. 

(c) register 14+8: Makes no call. 

• Exits to the exit procedure (14). 

4. The Get-SRB Procedure (XCP050) 

• Entered by the exit procedure (14) when that procedure finds that a previously­
delayed related request can proceed. Entered by the get-RQE procedure (2) if: 

(a) It's processing an unrelated request. 

(b) It's processing a type-2 or type-3 related request and three or less 
other such requests are ahead of it in the related request queue. 

• Calls the lOS storage manager module (IECVSMGR) to get storage for an SRB/ 
IOSB and a TCCW (translation control block). Also, for a virtual request, calls 
IECVSMGR for a BEB (beginning-end block, which contains the translated 
channel program) and a fix list. Initializes the SRB/IOSB. 

• Determines whether the request is a type-3 related request or whether it is asso­
ciated with a PCI appendage, which handles V=R requests for EXCPVR. If it is, 
puts the address of the DIE procedure (10) in the 10SDIE field. Otherwise, 
puts zeros there. 

• Exits to the PGFX interface procedure (5). 

5. The PGFX Interface Procedure (XCPPFA) 

• Entered by the get-SRB procedure (4). 

• If the EXCP was issued from a V=R address space, this procedure does 
not enter the page-fix appendage. (Page fixing is not needed, since buffers, CCWs, 
etc. are already in real storage.) 

• Checks for the presence of a page-fix appendage and branches to it if the access 
method issued an EXCPVR macro or uses virtual storage addresses. 

• If the access method issued an EXCPVR macro, calls the system's page-fixing 
routine to fix the pages in the appendage's tix list. 

• Issues an ABEND macro with an X'800' code if the page-fIXing routine returns 
with an error indication; otherwise, exits to the EOE interface procedure (6), if 
the I/O request is for a direct-access device, or to the SIO interface procedure (7). 

• Fixes the DEB if it is not already fIXed for V= R requests. 

• Exits to the EOE interface procedure (6). 

EXCP Processor Program Organization 33 



Basic EXCP Module 
Procs. 6,7,8 

6. The EOE Interface Procedure (IECVEXTC) 

• Entered by the PGFX interface procedure (5) at ECPEXT if the I/O request is 
for a direct-access device; and by the direct-access ERP if the ERP altered the 
seek address and wants the new one to be verified. For other devices, calls the 
SIO interface procedure (7). 

• i<inds out if the seek address falls within the specified extent. If not, goes to the 
EOE appendage, and when the appendage returns, does the processing associated 
with the address it returns to. These are the possible return addresses and the 
associated processing: 

(a) register 14+0: Puts X'42' in the 10BECBCC field and exits to the CHE/ABE 
interface procedure (12) so that the ABE appendage will be entered. 

(b) register 14+4: Exits to the termination procedure (13) so that the ECB will 
be posted and processing of the request terminated. 

(c) register 14+8: Branches to itself to recompare the seek address with the 
specified extent. 

• Exits to the SIO interface procedure (7). 

7. The SIO Interface Procedure (XC PI 10) 

• Entered by the EOE interface procedure (6) and the PGFX interface procedure 
(5). 

• Goes to the SIO appendage, and when the appendage returns, does the process­
ing associated with the address it returns to. These are the possible return ad­
dresses and the associated processing: 

(a) register 14+0: Exits to the translator interface procedure (8) to continue 
processing the request. 

(b) register 14+4: Exits to the termination procedure (13) to prevent the re­
quest from reaching lOS. 

(c) register 14+8: Same as the register 14+0 return. 

l5. The Translator Interface Procedure (XCPl15) 

34 OS!VS2 I/O Supervisor Logic 

• Entered by the SIO interface procedure (7). 

I f the access method is not running in a V=R address space or did not issue an 
EXCpyR ."acro, this procedure goes to the lOS CCW translator module 
(I ECYTCCW ), which makes a fixed, translated copy of the untranslated channel 
program. 

• Issues an ABEND macro with a X'800' code if the cew-mmslator module re­
turns an error code in register 15. Otherwise, exits to the STARTIU prC5Cetltne 
(9 ). 



9. The STARTIO Procedure (XCP145) 

• Entered by the translator interface procedure (8). 

Basic EXCP Module 
Procs.9,10,11,12 

• Puts the address of the channel program to be executed in the IOSB. 

• Branches to the exit procedure (14) if the request must be held up by a related 
request. ~therwise, issues a ST ARTIO macro, giving the request to lOS. 

• Exits to the exit procedure ( 14) when the lOS returns. 

10. The DIE Procedure (XCPDIE) 

• Entered by the basic lOS module (IECIOSCN). 

• Goes to the PCI appendage only if the access method uses real storage addresses 
(i.e., execution is in a V=R address space) or if EXCP was entered with an I 
EXCPVR macro. (First calls the IOSB-to-fOB mapping procedure (15) so that 
the PCI appendage can find information on the status of the I/O event in the lOB.) 

• If a type-3 related request just completed without error, gives the request depen­
dent on that completion, if any, to the basic lOS module to be started. 

• Exits to the basic lOS module (IECIOSCN). 

11. The PCI Interface Procedure (X CPPCI) 

• Entered by the lOS post-status module (lECVPST). 

• Calls the IOSB-to-10B mapping procedure (15) to move information on the status 
of the I/O event from the 10SB to the lOB. Goes to the PCl appendage. 

• Exits to IECVPST. 

12. The CHE/ABE Interface Procedure (XCPCHE,XCPABE) 

• Entered by IECVPST at XCPCHE under either of these conditions: 

(a) The 10SCSW field contains no status information other than a PCl, channel­
end, .device-end, attention, unit-exception, or wrong-length-record indication. 

(b) An ERP turned offlOSEX, the "exceptional-condition" bit, and 10SERR, 
the "retry" bit, in the 10SB it was processing. 

Entered by the lOS post-status module at XCPABE under either of these condi­
tions: 

(a) The IOSCSW field contains a unit-check, channel-data-check, channel­
control-check, or interface-control-check indication. 

(b) An ERP turned off the IOSERR bit, but left the 10SEX bit on. 

Entered by the EOE interface procedure (6) if so directed by an EOE appendage. 

• Calls the IOSB-to-10B mapping procedure (15) so that information on the status 
of the I/O event will be transferred from the 10SB to lOB. 

EXCP Processor Program Organization 35 



Basic EXCP Module 
Proc. 13 

• Depending on where it's entered, goes to the CHE or ABE appendage and does 
the processing associated with the address the appendage returns to. These are 
the possible return addresses and the associated processing: 

(a) register 14+0: Moves the lOB fields back to the 10SB. 

(b) register 14+4: Turns off the IOSEX bit and turns on the RQENOPST bit, 
telling the termination procedure (13) not to post the ECB. 

(c) register 14+8: Turns off the IOSEX bit and turns on the RQERETRY bit, 
telling the termination procedure (13) to ensure that the access-method 
interface is reused. 

(c\) register 14+12: Turns off the IOSEX bit and turns on the RQENOPST and 
RQENOFRE bits, telling the termination procedure (13) not to post the 
ECB or free the RQE. (CHE and ABE appendages use this return if they 
called the exit effectors to schedule an asynchronous access-method routine. 
The RQE cannot be freed here because it must be available to the asynchro­
nous routine when the routine is dispatched. The RQE is subsequently freed 
by the S VC 3 in terface procedure (17).) 

• Exits to the lOS post-status module if an exceptional condition (IOSEX flag on) 
and permanent error are not indicated. 

• Exits to the termination procedure (13) if 10SEX is off, or a permanent error is 
indicated. 

13. The Termination Procedure (XCPTERM) 

36 OS/VS2 I/O Supervisor Logic 

• Entered by the following procedures: 

(1) The CHE/ABE interface procedure (12) if the request is ready for 
termination (Le., the IOSEX flag is off, or the IOSEX flag is on and a 
permanent error is indicated). 

(2) The EOE interface procedure (6) to post the ECB with X'7F' if the EOE 
appendage disregarded an extent error. 

(3) TheSIO interface procedure (7) is the SIO appendage wants to pervent the 
request from reaching lOS. 

(4) The miscellaneous module (IECVEXPR) purge procedure (1) so that data 
areas associated with a purged request will be freed. 

(5) The post status module after an error occurs during lOS processing resulting 
in an 10SCOD of X'45'. 

• For tape devices, updates the block count in the DCB so that the system's close 
and EOV routines can use the block count in writing trailer labels for output 
data sets. 

• If the access-method interface is to be reused, exits to the EOE interface proce­
dure (6) without posting the ECB or freeing the RQE. (Exception: If the RQE 
represents a request that's being quiesced, calls the miscellaneous module 
(IECVEXPR) restore chain procedure (2) instead of exiting to the EOE interface 
procedure (6).) 

• Ensures that the ECB is posted (unless the RQENOPST bit is on). Ifthe sys­
tem's posting routine returns with an error indication, issues an ABEND macro 
with an X'700' code. 



October 25, 1979 

• Frees the RQE (unless the RQENOFRE bit is on). 

Basic EXCP Module 
Procs. 14,15,16 

• Calls the exit procedure (14) to free the SRB/IOSB, TCCW, BEB, and FIX list. 

• Calls the system's page-fixing routine, IEAVPSIB, to unfix pages. 

• Enters RTM with a CALLRTM macro, if the completion code in the 10SCOD 
field is X'45', so that the access method can try to recover from an error that 
occurred while lOS was processing the I/O request. The completion code is 
obtained from the XDBA. If no XDBA exists then the completion code 
X'EOO' is used. 

• Exits to the exit procedure ( 14) if the access-method interface will not be 
reused, or to the EOE interface procedure (6) if it will; exits to the related­
request purge procedure (16) if a related request resulted in an unsuccessful 
I/O operation. 

14. The Exit Procedure (XCPEXIT) 

• Entered by the termination procedure (13) if the access-method interface is 
not reused; by the get-RQE procedure (2) if the request is held up by a type-I 
related request; by the VIO interface procedure (3), fbllowing a return from the 
VIO component; by the STARTIO procedure (9). 

• Determines if the processing of a request dependent on a related request can 
proceed. 

• Calls the lOS storage manager module to free the SRB/IOSB, TCCW, BEB, 
and FIX list. 

• Exits to the get-SRB procedure (4) if a dependent request can continue to be 
processed; to the related-request purge procedure (16) if the DCBIFLGS field 
shows that a related request was marked in error; to the SVC interrupt handler 
(or to the dispatcher if entered by the termination procedure (13)) if no more 
requests can be passed to the get-SRB procedure (4). 

15. The IOSB-to-IOB Mapping Procedure (XCPMAP) 

.. Entered by the DIE procedure (10) and the PCI interface procedure (11) before 
they branch to the PCI appendage; by the CHEjABE interface procedure (J 2) 
before it branches to the CHE or ABE appendage. 

• Moves information about the status of the I/O event from the 10SB to the lOB 
for examination by a PCI, CHE, or ABE appendage. 

• Exits to the return address in register 14. 

16. The Related-Request Purge Procedure (XCPPUR) 

• Entered by the termination procedure (13) if the DCB indicates that a related 
request failed. Also entered by ABE interface (12) if a related request failed. 

• Looks at the related-request queue for requests that depend on the successful 
completion of the current one. 

EXCP Processor Method of Operation 37 



Basic EXCP Module 
Proc. 17 

Page of SY26-3823-5 
As Updated October 25,1979 
By TNL SN28-4683 

• Calls the termination procedure (13), which ensures that ECBs are posted with 
X'48'. 

• Exits to the exit procedure (14) when there are no dependent requests or after all 
dependent requests are quiesced. 

J 7. The SVC 3 Interface Procedure (IECVX025) 

38 OS!VS2 I/O Supervisor Logic 

• Entered by the system's SVC 3 routine, which gains control when an asyn­
chronous access method routine issues an SVC 3 instruction. 

• Since the appendage requested that the RQE not be freed at tennination 
time, this procedure now frees the RQE that was passed as a parameter in 
scheduling the asynchronous routine. 

• Returns to the SVC 3 routine. 



(..,. Miscellaneous Module (IECVEXPR) 

1. The Purge Procedure (lECVXPUR) 

Miscellaneous Module 
Procs. 1,2,3 

• Entered by the lOS nonresident purge module to process a request for either 
halt or quiesce. 

• If a halt operation was specified, calls the basic EXCP module (IECVEXCP) 
termination procedure (13), which ensures that SRB/IOSBs, RQEs, TCCWs, 
BEBs, and FIX lists are freed, that fixed pages are unfixed, and that the ECBs 
of the purged requests are posted with X'48'. 

• If a quiesce operation was specified, does the following: 

(a) Maintains a count of requests that haven't been completely processed. 

(b) Calls the restore chain procedure (2) each time it finds an I/O request to be 
quiesced (that is, each time it finds an RQE that matches the search argu­
ment in the IPIB). 

• Exits to the lOS nonresident purge module. 

2. The Restore Chain Procedure (IECVRCHN) 

• Entered by the purge procedure (1) to extend a chain of lOBs that represent 
quiesced I/O requests. Entered by the basic EXCP module (IECVEXCP) 
termination procedure (13) or an ABE appendage if either wants an lOB to be 
added to a chain of lOBs. 

• Creates a PIRL if none exists. 

• Creates an EPCB if none exists. 

• If the lOB, pointed to by the RQE, passed to it is the first, this procedure chains 
the lOB to the IPIB. Otherwise, chains the lOB to the end of the existing 
chain. 

• Puts the address of the lOB in the EPCB, along with the lOB's protection key 
and information indicating under which TCB the request is to be restored. If the 
EPCB contains no free space, creates another EPCB and chains it to the last­
created EPCB. 

• Exits to the return address in register 14. 

3. The Restore Procedure (IECVXRES) 

• Entered by the lOS restore module, which was entered via a RESTORE macro. 

• Examines the EPCB to find out (a) how each request was originally submitted 
to EXCP (whether with an EXCP or EXCPVR macro), (b) whether a request 
should be restored under the restore TCB or under a target TCB, and (c) under 
which key to restore a request. Based on this information, sets the appropri· 
ate key in the PSW and issues an SVC 0, 92, or 114 instruction for each lOB 
in the chain. 

• Exits to the lOS restore module. 

EXCP Processor Program Organization 39 



Miscellaneous Module 
Procs.4,5 

4. The Halt-I/O Interface Procedure (SVC33) 

• Entered by the lOS nonresident halt-I/O module, which is entered when an 
IOHALT macro is issued. 

• Confirms that the access method did not issue an EXCPVR macro and does not 
use real storage addresses by testing the RQETYPE field. 

• Calls the lOS CCW translator module to get the address of the translated CCW 
corresponding to the untranslated CCW whose location was passed. If the 
CCW translator module returns an error code in register 15, exits to the lOS non­
resident halt-I/O module with a return code of X'18' in register 15. 

• Changes the command code of the translated CCW to a "no-op" and turns off 
its command-chaining bit. 

• Exits to the lOS nonresident halt-I/O module. 

5. The Functional Recovery Procedure (XCPFRR) 

40 OS/VS2 I/O Supervisor Logic 

• Entered by RTM if another EXCP procedure issued an ABEND macro, an ap­
pendage took a program check, or another EXCP procedure took a program 
check. 

• Gets storage for a debugging area (XDBA) and puts diagnostic data in it. If the 
system is disabled on entry, this storage is not obtained. 

• If this is not the first recovery procedure to be called by RTM, puts an ABEND 
code of X'700' in the SDWA. Otherwise, puts one of the following codes in the 
SDWA: 

(a) X'AOO', if an appendage took a program check. 

(b) X'200: if the basic EXCP module (IECVEXCP) validity-check procedure (l) 
took a protection check in determining whether an lOB, ECB, and OCB 
were in the caller's key. 

(c) X'BOO', if another EXCP procedure took an indeterminate program check. 

• Sets bits in the SDWA directing RTM to free the local lock and issue a user 
dump (a SYSUDUMP, SYSMDUMP, or SYSABEND dump). 

• Directs RTM to record the X'700', X'800', X'AOO', and X'BOO' abends or to 
record all abends (when the XDBA is absent). 

• Uses the variable recording area of the SDWA to store diagnostic data. 

• Exits to RTM. 

Note: The format and contents of the debugging areas (XDBA and SDWA variable 
recording area) are described in the "Diagnostic Aids" chapter. 



" .. 
Page of SY26-3823-5 
As Updated October 25, 1979 
By TNL SN28-4683 

I/O Supervisor Method of Operation 

This "Method of Operation" chapter contains a simplification of lOS code, divided 
into sections that correspond to basic lOS services: 

• Starting an I/O operation 

• Responding to an I/O event 

• Restoring the availability of I/O resources 

• Purging and restoring I/O requests 

• Halting a teleprocessing operation 

• Channel reconfiguration/channel set switching support 

Each section is divided into topics that deal with functionally distinct parts of a 
service. 

The flow of control between labeled parts of lOS is not stated in these sections. 
Rather, an order of events is implied by the order of topics within a section. If 
you want flow-of·control information, look at Figures 2·13 in the "Program 
Organization" chapter. 

This table shows, for each lOS service, which object module performs the service 
and which figure shows the flow of control in the module: 

Service 

Starting an I/O Operation 
(Figure 2 in the "Program 
Organization" chapter) 

Responding to an I/O event 
(Figures 3,4 in the "Program 
Organization" chapter) 

Module 

Basic lOS Module (lECIOSCN) 
Device Dependent SIO Modules 
Unit record (lECVXURS) 

2305 (lECVXDRS) 
2314 (lECVXSKS) 
3330V (lECVXVRS) 
DASD (lECVXDAS) 
2400 Tape (lECVXT2S) 
3400 Tape (lECVXT3S) 

Basic lOS Module (lECIOSCN) 
DA VV Module (lECVDAVV) 
Device Dependent Trap Modules 

DASD (lECVXDAT) 
2305 (IECVXDRT) 
Graphics (lECVXGRT) 
Tape (lECVXT A T) 
Teleprocessing (lECVXTPT) 
Unit record (lECVXURT) 
3330V (lECVXVRT) 

Device Dependent Sense Modules 
3851/3838 MSS (lECVXMGN) 
2314 (lECVXSKN) 

Device Dependent End of Sense Modules 
3211/3800 EOS (lECVXPRE) 
2314 (IECVXSKE) 

Device Dependent Unsolicited Interruption Modules 
DASD (lECVXDAU) 
3330V (lECVXVRU) 

Post Status Module (lECVPST) 

I/O Supervisor Method of Operation 41 



How to Use This Chapter 

42 OS/VS2 I/O Supervisor Logic 

Page of SY26-3823-5 
As Updated October 25,1979 
By TNL SN28-4683 

Service 

Restoring the availability of I/O 
resources 
(Figures 5-8 in the "Program 
Organization" chapter) 

Purging I/O requests 
(Figure 9 in the "Program 
Organization" chapter) 

Restoring I/O requests 

Halting a teleprocessing operation 
(Figure lOin the "Program 
Organization" chapter) 

Channel reconfiguration/Channel 
Set Switching support 
(Figures 11-13 in the "Program 
Organization" chapter) 

Module 

I/O-Restart Modules (lECYRSTI) 
(IECVIRST) 

Build Reserve Table Module (lECYBRSV) 
Hot I/O Detection Module (IECYHDET) 
Hot I/O Recovery Module (IECYHREC) 
Re-drive I/O Module (lECVRDIO) 
Re-Reserve Devices Module (IECVRRSY) 
Special SID Module (lECVESIO) 

Nonresident Purge Module (IGCOOOIF) 

Restore Module (lGCOOOIG) 

Nonresident Halt-I/O Module (IGC0003C) 
Resident Halt-I/O Module (lECIHIO) 

CRH/CHS Module (IECYCINT) 

Before using this chapter for the first time, you should know: 

• The conventions for representing data areas (see the preface). 

• How to read decision tables (see the preface). 

• The conventions for associating labeled pieces of lOS code with a particular 
service. 

Each descriptive functional heading is followed by a list of the modules and 
procedures that perform the function. For example, this notation 

Module: IECIOSCN 
Procedure: ETCH 1 

under the heading "Finding a Path for the I/O Operation" indicates that the proce­
dure beginning at ETCHl in module IECIOSCN finds a path for I/O operations. 



Starting an I/O Operation 

Starting an I/O operation is a five-step process: 

I. lOS first tests the status of the allocated device and control unit to determine if 
an I/O operation can be started. 

2. If the I/O operation can be started, lOS then finds a path for the operation; that 
is, it determines what channel set and channel to use. 

I 3. If the device is a tape or direct-access device, the device-dependent SIO module 
next prefixes CCWs to the driver's channel program. These CCWs activate hard­
ware features or position I/O-device parts. 

4. lOS then attempts to start I/O activity with a start-I/O instruction. 

S. Last, lOS examines the condition code set by the start-I/O instruction and 
routes control based on the setting. 

Testing the "Startability" of an I/O Operation 

Module: I ECIOSCN 
Procedure: IECHNSCH 

lOS tests the status of the device and control unit, as shown in the VCB, to find 
out whether to go ahead with the I/O operation or postpone it: 

10SB 

10SUCB: points to the UCB for the device that has been allocated. 

UCBFLA 
UCBBSY: if on, the device is busy. 
UCBN R Y: if on, the device is not ready. 
UCBPST: if on, lOS has associated the device with an earlier I/O request and 
hasn't yet disassociated it. 
UCBPSNS: if on, a sense operation must be done to the device before it can be 
reused. 
UCBCUB: if on, the control unit is busy. 
UCBSAP: if on, the access arm of the device is being positioned for 
another I/O request. 
UCBACTV: if on, a channel program is active on the device. 
UCBQISCE: if on, use of the device is temporarily restricted. (lOS turns the bit 
on so that no driver can use the device until lOS determines that the correct 
direct-access volume is mounted.) 

UCBJBNR 
UCBURINP: if on, use of the device is restricted While unconditional 
reserve recovery is attempted. 

I/O Supervisor Method of Operation 43 



44 OS!VS2 I/O Supervisor Logic 

If any status bit is on, lOS puts a record of the request, called an 10Q (input/out­
put queue element), on the appropriate LCH (logical channel queue): 

UCB 

.--- UCBLCI: an index that lOS uses to find the appropriate entry in the LCH, or 
logical channel queue table. 

LCH .. 10QI (first 10Q in the queue) 

First entry r--
10QLNK: points to the next 

~ Each entry is the.head of a r- 10Q in the LCH. 

:: 
~ logical channel queue; that is, ::-

f~ ~ each contains a pointer to the -
first and last 10Q on a LCH. - 10Qn (last 10Q in the queue) 

Last entry I 10QLNK: contains l's. 

The other status bits tested are: 

UCB 

UCBFLB 
UCBIORST: if on, and UCBBOX in field UCBJBNR is also ( the device has been 
"boxed". This means that the device is unavailable for use, so the I/O request must 
be marked in error. This condition can be due to physical considerations, such as no 
paths to the device, or logical considerations, such as the po~sible lo~s of a device 
reserva tion. 

If UCBBOX is off, and CRH is active, the last path to this device was from an 
inoperative processor. 

UCBFLC 
UCBITF: if on, a device notified lOS of a hardware error related to an I/O operation 
that lOS no longer knows about (because it returned the SRB/IOSB to the driver). lOS 
must use the SRB/IOSB of this request to process the error. 
UCBUDE: if on, an unsolicited I/O event occurred for the device, probably because it 
was just readied by the operator. If it's a direct-access device, the volume label of a 
mounted volume must be read and verified before the device can be used. lOS creates an 
SRB/IOSB for the read operation. 

I 

If any of these is on, lOS schedules asynchronous processing, first setting up the 
10SB to direct the subsequent flow of control. (The asynchronous processing that 
results from the UCBIORST or UCBITF bit being on is described under "Doing 
Asynchronous Processing with Driver-Created 10SBs." The asynchronous pro­
cessing that results from the UCBUDE bit being on is described under "Doing 
Asynchronous Processing with lOS-Created 10SBs.") 



• 

Finding a Path for the I/O Operation 

Module: IECIOSCN 
Procedure: ETCH! 

If there is nothing about the status of the device to warrant a postponement of 
the I/O operation, lOS looks for a path-that is, a processor (with channel set) to 
channel to control unit to device route-on which to start the I/O operation. It 
may find that the driver requires a specific path, as shown below: 

10SB 

IOSPATH 
IOSGDP: if on, the driver is requesting lOS to use a specific path, called a guaranteed 
device path. The device address is in the IOSPATH field; the channel set that is used 
to start the I/O operation is identified in the IOSAFF field. 

If lOS is not given a path, it finds one using this chain of pointers: 

VCB _--a~ Path table 

ueBLCI: an index to the 
appropriate LCH entry. 

LCH 

First entry 

Each entry, in addition to 
being the head of a LCH, 
contains a pointer to the 
path table. 

Last entry 

Contains channel numbers 
that index the CAT (channel 
availability table). 

CAT (one per channel set) 

Contains an entry for each 
channel contained in the 
channel set. The entry 
describes the usability of the 
channel. 

Having obtained a path, lOS tests its availability with a TCH (test. channel) instruc­
tion. This instruction causes the condition code to be set according to the status of 
the channel. The following table explains what each condition code setting means 
and what action is taken: 

Code Meaning Action 

CC;=O The channel is available. A start-I/O instruction is issued . 

CC=1 The processor is unable to receive To prevent the interruption 
I/O interruptions; as soon as it's from being delaved. this is 
enabled, the channel tested will treated the same as CC:2. 
generate an interruption. 

CC=2 The channel is busy. Alternate paths are tested; if they 
are busy, or if there are none, the 
10Q is chained to the appropriate 
LCH to wait until the channel is 
not busy. 

CC=3 The channel is not operational. A start-I/O instruction is issued 
nevertheless. 

I/O Supervisor Method of Operation 45 



Adding a Prefix to the Channel Program ..J 

46 OS/VS2 I/O SupeIVisor Logic 

Module: IECVXDRS (2305 SIO Module) 
IECVXSKS (2314 SIO Module) 
IECVXVRS (3330V SIO Module) 
IECVXDAS (DASD SIO Module) 
IECVXT2S (2400 Tape SIO Module) 
IECVXT3S (3400 Tape SIO Module) 

Before it issues a start-I/O instruction, lOS prefixes a CCW with a set-mode com­
mand-unique for each combination of density, parity (odd or even), data conver­
sion (on or off), and EBCDIC/BCD translation (on or off)-to tape channel pro­
grams. This CCW activates hardware features that will be used in the I/O operation. 
Following this CCW is a transfer-in-channel CCW directed to the driver's program. 

Three CCWs are prefixed to direct-access channel programs: a seek CCW, which 
positions the access mechanism to the specified cylinder and head; a set-file-mask 
CCW, which directs the device to accept or reject specified channel commands; and 
a transfer-in-channel CCW to the driver's channel program. 

If the device is a 3330V, five CCWs are prefixed to the channel programs: a seek 
CCW; a transfer-in-channel CCW to the fourth CCW; a NOP CCW to handle cylinder 
faults; a set-file-mask CCW; and another transfer-in-channel CCW to the driver's 
channel program. 

If the device is a 2314, a "stand-alone" seek CCW precedes the three-CCW prefix. 
The "stand-alone" seek CCW is not actually part of the prefix; it's a separate, one­
CCW channel program. The fact that it "stands alone" from the prefix allows the 
control unit to disconnect from the channel when it receives the CCW, which lets 
the channel do other work while the access arm is positioned. 

lOS can tell what kind of prefLx to build and what to put in it by checlcing the 
VCB and 10SB: 

VCB 

UCBFLS 
UCBSASK: if on, lOS builds a 
"stand-alone" seek CCW. 

10SB 

IOSFMSK: contains the set-mode 
command or file mask. 

10SEEKA: contains the seek address. 

IOSRST: contains the real storage 
address of the channel program. 

A prefix to a direct-access channel program can contain additional CCWs, depend­
ing on whether the device is shared by both processors, whether it is currently 
reserved to one of them, and whether a system or user program has asked to reserve 
it. This information is found in the VCB: • 



Starting I/O Activity 

UCB 

UCBTBYT2 
UCBRR: if on, the device is shaIed by loosely-coupled processors. 

UCBFLB 
UCBRESVH: if on, the device is currently reserved to a processor in this system. 

UCBCRHR V: if on, this device is reserved to the inoperative processor. 

UCBFL4 
UCBRRP: if on, a reserve or release is pending. 

UCBRESVP: has meaning only if UCBRRP is on; if on, a reserve pending; if off, a 
release is pending. 

UCBSQC: the count of requests to reserve the device. 

If the device is a 2314, shared, and not reserved, a reserve CCW is put in front of the 
"stand-alone" seek CCW. This ensures that the other processor, in handling another 
I/O request, does not reposition the access arm in the interval between the end of 
the seek and the start of the driver's channel program. Additionally, if the count 
of requests to reserve the device is zero, a release CCW is put in front of the driver's 
channel program. 

For direct access devices (not 2314 or 2305), the SIO Module puts a reserve CCW 
at the beginning of the prefIx if the device is not reserved (UCBRESVH=O, or 
UCBRESVH=l with UCBRRP=l and UCBRESVP=l) but the UCBSQC field shows 
that some program wants it to be reserved. If the SIO module finds the opposite 
indication in the UCB (UCBRESVH=l and UCBSQC=O), it puts a release CCW at 
the beginning of the prefix. 

Note: Some devices and device features cause lOS to build as "stand-alone" CCWs 
certain CCWs that are usually prefixed to a driver's channel program. For instance, 
a set-mode CCW for some tape devices is executed separately from the driver's 
channel program, as is a reserve or release CCW for a 2305 device. These "stand­
alone" CCWs allow the channel to disconnect itself. 

Module: IECIOSCN 
Procedure: ESIO 1 

lOS issues one of two start-I/O instructions: SIO or SIOF (start-I/O fast release). 
SIOF is issued unless: 

• The I/O request is for a shared, not reserved, direct-access device. 
or 
• The channel program is a "stand-alone" seek, reserve, or release CCW. 

I/O Supervisor Method of Operation 47 



The following table explains what the condition codes set by SIO and SIOF mean: 

Code SIO Meaning SIOF Meaning 

CC=O The I/O operation started. The channel accepted the instruction 
and released the processor to do other 
processing. (If the channel can't start 
the I/O operation, it notifies lOS by 
setting the deferred-condition-code in 
the CSW to 01 and generating an I/O 
in terruption.) 

CC=1 Either an immediate operation Some condition on the path to the 
completed or the channel has control unit, excluding "channel 
status information to present or busy," prevented the channel from 
the device or control unit is busy. accepting the request. (For example, 

the channel may have status informa-
tion to present or may have found 
that the control unit is busy.) 

CC=2 The channel is busy. The channel is busy. 

CC=3 The channel or device is not The channel or device is not opera-
operational. tiona!. 

Responding to the Condition Code Setting 

Marking I/O Resources "Busy" 

48 OS!VS2 I/O Supervisor Logic 

Module: IECIOSCN 
Procedure: EPOSTIOI 

If the condition code is 0, lOS turns on these UCB bits: 

UCB 

UCBFLA 
UCBBSY: turned on to show the device is busy. 
UCBPST: turned on to show the device is associated with an 1/0 request. 
UCBACTV: turned on to show a channel program is active on the device. 

Additionally, the channel is marked busy in the CAT only if it is a selector channel. 



~ Examining Status Infonnation 

• 

L 

Module: IECIOSCN 
Procedure: EPOSTIOI 

If the condition code is 1, lOS makes the tests and takes the actions shown in this 
table: 

Is the channel holding error data and unable to store Yes No No No No No 
it until the processor is enabled for interruptions? 
(Is the channel-logout-pending bit on in the CSW?) 

!:I) 
Is the busy bit on in the CSW? N/A Yes No Yes Yes Yes 

""' !:I) 

'"" Is the status-modifier bit on in the CSW? N/A No N/A Yes No N/A 
""' 

Does the CSW contain status information other N/A Yes Yes N/A No Yes 
than a busy, status-modifier, or channel-Iogout-
pending indication? 

Tries to start the I/O request on another path. X 

Puts the I/O request on a logical channel queue X 
and branches to the code that processes I/O 
even ts. (The processing of I/O even ts is described 
under "Responding to I/O Events.") 

!:I) 

Z Branches to the code that processes I/O events. X X 
0 (An immediate operation ended.) r::: u 
< Tests for the existence of an alternate control X 

unit. If there is one, tries to start the I/O request 
on a path that includes the control unit. Other-
wise, puts the I/O request on a logical channel 
queue. 

Puts the I/O request on a logical channel queue. X 

I/O Supervisor Method of Operation 49 



Trying to Start on Another Path 

50 OS/VS2 I/O Supervisor Logic 

Module: IECIOSCN 
Procedure: ETCHl 

lOS tries to start an I/O operation on another path if: 

• The condition code is 1 because of a pending channel logout. 

• The condition code is 1 because of a busy control unit, but an alternate control 
unit exists. 

• The condition code is 2 (channel is busy) or 3 (channel is not operational). 

To see whether there is another online path from the same processor to the device, 
lOS examines the UCB: 

UCB 

UCBCHM: contains a subfield, four bits long, representing up to four paths to the device 
(two from each channel set). Each zero-bit stands for an available online path. 

If the I/O operation can't be started on another online path from the same processor, 
lOS examines the CAT that belongs to the other channel set. If the CAT shows that 
the other channel set has a free channel to the device, lOS puts the I/O request on a 
logical channel queue and issues an RPSGNL macro, asking the other processor to 
try the I/O operation. (This transfer to the other processor is called a shoulder tap.) 

If the condition code is 3, in addition to looking for another path, lOS checks the 
UCB to find out if the operator was told that the path is inoperative: 

UCB 

UCBPMSK: contains four bits, corresponding to the bits in UCBCHM. A one-bit means 
a message (IEAOOIl) was sent to the operator, telling him the path is inoperative. 

If the operator hasn't been informed, lOS creates an SRB/IOSB and schedules the 
asynchronous processing that causes message IEAOOlI to be issued. (The asyn­
chronous processing is described under "Doing Asynchronous Processing with 
lOS-Created 10SBs.") lOS also invokes procedure EDETECTl in IECIOSCN to 
determine whether unconditional reserve recovery is needed. 

.. 

.. 



Handling Channel Errors 

Module: IECIOSCN 
Procedure: EST A TUS I 

If lOS finds an indication of a channel error in the CSW, it creates an ERP work 
area and gives control to eCH, which examines the error and puts its fmdings in the 
ERPIB field of the ERP work area. These CSW bits indicate a channel error 
occurred. 

• The channel-data· check bit. 

• The channel-control-check bit. 

• The interface-control-check bit. 

lOS also invokes procedure EDETECT 1 in module IECIOSCN to determine 
whether unconditional reserve recovery is needed. 

Handling Attention Interruptions 

Module: IECIOSCN 
Procedures: EST A TUS 1 

EATTENTI 

If the attention bit is on in the CSW, lOS ensures that attention processing exists 
by examining the UCB: 

UCB 

UCBATI: if nonzero, an index to the entry in the attention table exists for the 
interrupting device. Zero means there is no entry for the device; that is, there is 
no provision for attention processing. 

If the device is not represented in the attention table, lOS does no further atten­
tion processing. Otherwise, lOS makes the tests and takes the actions shown in 
this table: 

Was an liO operation started on the device? (Is the Yes Yes No 

CI.l UCBPST bit on?) 
£-0 
CI.l Does the attention routine owner choose to do attention pro· Yes No N/A 
I=l cessing in a channel~nd or abnormal-end appendage rather than 

in a separate attention routine? The flag tested is in the attention 
table entry. 

Does no further attention processing. X 

CI.l Creates an SRB/IOSB and uses the SRB to schedule the X X 
Z 
0 asynchronous processing that gives control to the appropri-
!= ate attention routine. (The asynchronous processing is 
~ described under "Doing Asynchronous Processing with 

10S-Created IOSBs.") 

I/O Supervisor Method of Operation 5 3 



Note: Some devices cause the device-end bit in the CSW to be turned on when they 
require attention processing. Thus, if lOS receives a device-end indication and 
knows the device was doing no work (the UCBBSY bit is off), it handles the indica­
tion as it would an attention interruption, with this addition: the UCBUDE bit is 
turned on to signify that device-dependent processing might be required when an 
I/O request is next received for the device. 

For the 3330V device, module IECVXVRU (the 3330V unsolicited interruption 
module) gets control when the attention occurs for device dependent processing in 
order to detect the resolution of a cylinder fault. 

Handling Unit-Check Interruptions 

54 OS/VS2 I/O Supervisor Logic 

Module: IECIOSCN 
Procedures: EST ATUS I 

ESENSEI 

A unit-check indication in the CSW signifies a hardware-detected error. IfIOS finds 
this indication, it makes the tests and takes the actions shown in this table: 

Did the error occur while a channel program was Yes No No 
Vl being executed? (Is the UCBPST bit on?) .... 
Vl 
~ Is the error related to a solicited I/O event that has N/A Yes No .... 

already been processed?· (Is the UCBBSY bit on?) 

Gets an ERP work area and reads sense information into it. X X X 

Discards the ERP work area after sense information has X 
been read in to it. * * 

Vl Chains the ERP work area to the 10SB and uses the SRB to X 
Z schedule asynchronous processing. (The asynchronous pro-0 
1= cessing is described under "Doing Asynchronous Processing 
~ with Driver-Created 10SBs. ") 

Chains the ERP work area to the UCB and turns on the X 
UCBITF bit to indicate that asynchronous processing must 
be scheduled when an I/O request (SRB/IOSB) is next 
received for the device. 

* The answer is "yes" in both these circumstances: (a) a driver requested an I/O operation for 
which two I/O events occurred, the first showing a channel-end indication, the second (the 
current one) showing device-end and unit check indications; and (b) the driver's SRB/IOSB no 
longer exists, having been used to process the first I/O event. 

** The object in obtaining sense information, in this case, is not to provide data for an ERP, 
but merely to break the contingent connection-a connection between the control unit 
and device that prevents access to any other device attached to the control unit. 

Note: Certain devices require device dependent processing before and/or after the 
sense operation. 

• The 2314 has two modules: IECVXSKN, which gets control before the sense, 
and IECVXSKE, which gets control after the sense operation. 

• The 3851 and 3838 use module IECVXMGN to do device-dependent processing 
before the sense operation. 

• The 3211 and 3800 use module IECVXPRE for device-dependent processing 
after the sense operation. 



" 

Going to the Driver's DIE Procedure 

Using Channels That Are Free 

Module: IECIOSCN 
Procedures: EST A TUS 1 

EDIEINTI 

lOS examines the UCB to find out if the I/O event is solicited: 

UCB 

UCBPST: if on, shows that an I/O operation was started for a driver-the I/O event is 
solicited. If off. indicates an unsolicited I/O event. 

Having decided that a driver's I/O request is responsible for the I/O event, lOS 
branches to the appropriate trap module (IECVXxxT), which is pointed to by the 
device descriptor table (DDT) for this UCB. The trap module does device­
dependent processing and returns. Then lOS branches to the driver's DIE pro­
cedure. The DIE procedure may return to lOS with a new I/O request (a new 
SRB/IOSB). 

Module: IECIOSCN 
Procedure: ERST ARTl 

lOS, by examining the "channel mask" field of the IRT, IRTCHMSK, determines 
which channels are free to be used in I/O operations. The channel that last present­
ed a channel-end indication to lOS is represented as free in the channel mask, 
as well as any channel found to be busy from one processor, during a test of avail­
able paths from that processor, but found to be free from the other processor. 

lOS locates the queues of waiting I/O requests associated with the free channels. It 
then enters the code that finds paths for I/O operations, with the purpose of starting 
I/O operations for requests on those queues. The requests are handled in this order: 

1. Requests for "stand-alone" seek operations. 

2. Requests for sense operations. (The 10Qs for these are on physical 
channel queues-one for each channel in the system-rather than logical 
channel queues.) 

3. Requests for data-transfer operations. 

Doing Asynchronous Processing with lOS-Created IOSBs 

lOS examines the 10SB pointed to by register 1. If the 10SIOSB bit is on, lOS 
knows (a) that the 10SB was created by another part of lOS code and (b) that pro­
cessing can continue on one of four paths-to a PCI appendage, to an attention 
routine, to the stage 2 exit effector, or to unconditional reserve recovery. The path 
taken is governed by the contents of an 10SB field, 10SPROC. 

I/O Supervisor Method of Operation SS 



Going to the Pel Exit 

Going to an Attention Routine 

Going to the Stage 2 Exit Effector 

S6 OS/VS2 I/O Supervisor Logic 

Module: lECYPST 
Procedure: PSTIOSB 

If the IOSPROC field contains 10SAPCI (X'04'),IOS enters the driver's PCl 
exit as many times as it finds lOS-created 10SBs in this chain: r 10SBI (first in the chain) 

t---' IOSPCHN: points to the driver-created IOSB. 

register 1 

1 
IOSIPIB: points to the next IOSB in the chain. 

L 10SBn (last in the chain) 

Module: IECVPST 
Procedure: PST10SB 

IOSPCHN: points to the driver-created IOSB. 

IOSIPIB: contains zeros. 

If lOS is processing an lOS-created 10SB like the following one, it branches to an 
attention routine: 

IOSB 

IOSPROC: contains IOSATTN (X'08'), directing lOS to enter an 
attention routine. 

IOSPGAD: contains the address of the attention routine. 

Module: lECVPST 
Procedure: PSTIOSB 

Values of 10SADAVV (X'lO') and IOSAWTO (X'14') in the 10SPROC field 
direct lOS to enter these respective parts of the system: 

• Another part of lOS code-one that ensures that the correct direct-access volume 
is mounted on a device. (See "Verifying That the Correct Direct-Access Volume 
Is Mounted" below for more information.) 

• The ERP message writer, to inform the operator that an I/O path, assumed to be 
online from VCB indicators, was found to be offline. 

lOS cannot communicate with these parts directly, but a system routine called the 
ERP loader (IECVERPL) can. lOS ensures that the ERP loader is dispatched by 
branching to the stage 2 exit effector (IEAOEFOO). The stage 2 exit effector begins 
the process of getting the ERP loader dispatched by putting the SRB on an asyn­
chronous exit queue; then it returns to lOS. Later, the stage 3 exit effector will 
requeue the SRB to an SIRB (supervisor interruption request block) and cause the 
dispatcher to give control to the ERP loader. 

,. 



Going to Unconditional Reserve Recovery 

Module: IECVPST 
Procedure: PSTIOSB 

If the 10SPROC field contains 10SUR (X'20') and detection has not been done 
(lOSUSE is 0), lOS enters the unconditional reserve detection routine IECVURDT. 
If IECVURDT indicates that recovery is not to continue, the device is released and 
queued requests are redriven. If recovery is to continue, lOS enters the 
unconditional reserve decision routine IECVDURP. 

Verifying That the Correct Direct-Access Volume Is Mounted 

Module: IECVDA VV 
Procedure: IECVDA W 

lOS, if entered via the exit effectors and ERP loader, checks the UeB for the label 
of the volume that was mounted when the device was last used: 

UCB 

UCBVOLID: if a volume label is here, the system expects that the volume is 
being used. 

lOS builds a channel program to read the label of the volume currently mounted, 
and issues an SVC 15 instruction-causing another part of lOS code to issue a 
ST ARTIO macro for the channel program. 

ERP work area 

EWDSAVS: the current volume label is read here. 

If the contents of UCBVOLID and EWDSA VS don't match, or if the current vol­
ume serial number can't be read because of a hardware problem, lOS asks the oper· 
ator to demount the EWDSA VS volume and mount the UCBVOLID volume. 
Should the device lose its ready status before the read operation takes place, lOS 
asks the operator to restore the ready status with an "intervention required" 
message. 

Doing Asynchronous Processing with Driver-Created IOSBs 

If the 10SB pointed to by register 1 was created by a driver, lOS routes con trol to 
one or more of three driver exits and, if necessary, to an ERP. The path taken is 
governed by the contents of the CSW (stored in the 10SCSW field) and by the 
10SEX and 10SERR settings in the 10SB. 

I/O Supervisor Method of Operation 57 



Calling the PCI, NRM, and ABN Exits 

Going to an ERP 

58 OS/VS2 I/O Supervisor Logic 

Module: I ECVPST 
Procedure: IECVPST 

The following table shows how lOS decides which of the driver's exits to call: 

Does the 10SB indicate a requested I/O operation Yes No No No 
was never started? (Does the 10SCOD field con-
tain 10SMIHCA (X'S1 ') or 10SFINTC (X'7E')* 

r: Is the PCI bit on in the 10SCSW field? N/A Yes No Yes 
Cfl 
"-l 
!-< Does the 10SCSW field contain any status in- N/A Yes Yes No 

formation other than a PCl, channel-end, 
device-end, attention, unit-exception, or 
wrong-length-record indication? 

Cfl Calls the PCI exit. X X z 
0 

Calls the NRM (channel-end) exit. X E= u 
< Calls the ABN (abnormal-end) exit. X X X 

No 

No 

No 

X 

* If the code that tests the startability of an I/O operation finds the UCBIORST or UCBITF 
bit on, it considers the operation unstartable and puts X'S1' or X'7E', respectively, in the 
10SCOD field. 

Module: JECVPST 
Procedure: IECVPST 

lOS goes to an ERP if (a) the NRM or ABN exit uses the return address given it 
in register 14 and (b) the 10SB looks like this: 

10SB 

10SFLA 
IOSEX: on, signifying that lOS or an exit detected an "exceptional condition" 
(a possible error condition). 

IOS0PT 
IOSNERP: off, signifying that lOS has the driver's permission to route control to an 
ERP. 

10SOOO: contains some value other than IOSMIHCA (X'SI '). (Since X'SI' indicates 
that the device is inaccessible, there is no point in doing ERP processing.) 

If no ERP work area exists-the case if the CSW showed no indication of a unit 
check or channel error-lOS creates one before going to the ERP. 

Jf the I/O operation was done on a direct-access device, the ERP for direct-access 
devices is entered directly, with a branch instruction. All other ERPs are entered 
indirectly: lOS branches to the stage 2 exit effector (IEAOEFOO), which ensures 
that the appropriate nondirect-access ERP is given control asynchronously via the 
ERP loader (IECVERPL). 



Going to the NRM or ABN Exit after ERP Processing 

Module: I ECVPST 
Procedure: ICCDIS 

If an ERP returns to lOS with 10SERR, the "retry" bit, off, it is telling lOS that it 
either corrected an error (ex: intervention required) or found a permanent error 
(ex: data check-parity error). To determine which of these happened, lOS tests the 
"exceptional-condition" bit, lOS EX. If the bit is off, the ERP corrected an error; 
lOS branches to the driver's NRM exit. If the bit is on, the ERP found a permanent 
error; lOS branches to the driver's ABN exit. 

Reusing the STARTIO Interface 

Module: IECVPST 
Procedure: ICCDIS 

lOS issues a STARTIO macro, requesting that an I/O operation be started, under 
any of these conditions: 

• The NRM exit, ABN exit, or direct-access ERP returned with an indication 
that it wants lOS to retry or present a new I/O operation. (Register 0 points to 
the SRB that lOS is to use.) 

• A nondirect-access ERP turned on 10SERR, the "retry" bit, in the 10SB it was 
processing and entered lOS with an SVC 15 instruction. (The 10SSRB field 
points to the SRB that lOS is to use.) 

• Another part ofIOS code (described under "Verifying That the Correct Direct­
Access Volume Is Mounted") issued an SVC 15 instruction in order to read a 
direct-access volume label. (lOS uses the SRB it created when it found the 
UCBUDE bit on while testing the startability of an I/O operation.) 

Restoring the Availability of I/O Resources 

The availability of I/O resources is restored for the following conditions: 

1. An ACR condition occurs for which CRH or CHS is not available or cannot be 
activated. 

2. A channel or several channels become lost or unusable to the system. 

3_ A Hot I/O condition (continuollS I/O interruptions from a device, control unit 
or channel) occurs due to a hardware malfunction. 

4. A missing interruption condition occurs. 

The recovery actions required for these conditions involve some common functions 
which are provided by generalized service routines as follows: 

• Identifying devices reserved to a particular path. 

• Re-reserving devices for which reserves have been reset. 

• Redriving I/O requests. 

• Calling the special SIO routine to perform synchronous I/O to devices without 
normal lOS services_ 

I/O Supervisor Method of Operation S9 



Restoring the Availability of I/O Resources for an ACR Condition 

Module: IECVRSTI 
Procedure: ACRPROC 

A SIGP instruction with the "initial program reset" option is issued to stop 
on-going communication between the failing processor and all devices connected 
to it. 

Then a table is built of all devices reserved on channels that are no longer available. 

The re-reserve device service routine is used to reserve devices using available 
channels if possible, or to box them (force them offline). Devices which have lost 
their last path are boxed. All I/O which was active on the failing processor's 
channels is redriven causing alternate paths to be used, if available, or the request 
to be terminated as a permanent error. 

Recovering from Lost or Unusable Channels 

60 OS/VS2 I/O Supervisor Logic 

Module: IECVRSTI (for lost channel with reset) 
Procedure: LOSTCHAN 

Module: IECVIRST (for lost channel without reset) 
Procedure: 

When a channel suffers an error which makes it unavailable to the system, the error 
is reported as an external damage machine check or as a channel check with an 
indicator in the channel logout. These conditions are detected by the channel 
check handler (CCH) which will schedule the appropriate lOS recovery routine. 

When a channel is lost, the recovery action is based on whether a system reset to 
the channel has been performed by the hardware prior to reporting the error. A 
system reset on the channel causes the loss of reserves which are active on that 
channel. 

• Lost channel with reset - Devices which have lost their last path are forced 
offline. Devices which were forced offline cannot be used by the system unless 
varied online by the operator. I/O which was active on the failing channel is 
redriven causing alternate paths to be used, if available, or the request to be 
terminated as a permanent error . 

• Lost channel without reset - The build reserve table service routine is invoked 
to find all devices reserved on the failing channel(s). lOS issues the clear channel 
instruction (CLRCH) to reset the channel. If the channel(s) is usable after the 
reset, it is marked available in the channel availability table (CAT). 

The re-reserve device service routine (IECVRRSV) is invoked to reserve devices 
that were identified by the build reserve table service routine (IECVBRSV). 
I/O that had been active on the failing channel(s) is redriven by invoking the 
red rive I/O service routine (IECVRDIO). 



Restoring the Availability of I/O Resources after A Hot I/O Condition 

Module: IECVHREC 
Procedure: 

Hot I/O conditions are detected by an lOS detection routine (IECVHDET) which 
checks for the occurrence of continuous I/O interruptions and detennines that 
recovery is required based on threshold values for channels, control units, and 
devices. It will schedule Hot I/O Recovery (IECVHREC) indicating the probable 
source of the hot interruptions. 

Hot I/O Recovery consists of: 

• Identifying devices which are reserved on the channel involved in the hot I/O 
condition, by calling the build reserve table service routine (IECVBRSV). 

• Communicating with the operator to inform him that hot I/O recovery is in 
progress. The operator may be required to remove a device, control unit, or 
channel from the I/O configuration in order to allow the system to recover. 
In this case the operator must respond indicating the action taken. 

• Boxing the affected devices and terminating in error I/O to those devices if a 
non-DASD device was the source of the hot interruptions and if the operator 
indicates that recovery consists of removing the device or the control unit. 

• Perfonning recovery on a channel basis if the channel or a DASD device was 
the source of the hot interruptions or if the operator indicates a hot device o.r 
control unit is to be recovered by removing the channel. If the channel can be 
reset (via the CLRCH instruction or the operator), devices that were reserved 
are re-reserved by invoking the re-reserve devices service routine (IECVRRSV). 
I/O is then redriven by invoking the redrive I/O service routine (IECVRDIO). 
The channel is then re-enabled if it is the first occurrence of hot I/O on that 
channel and the channel was reset. 

Recovery from Missing Interruption Condition 

Module: IECVRSTI 
Procedure: MIHPROC 

When entered by MIH, lOS stops anyon-going communication between a channel 
and device by issuing HDV (halt-device) and CLRIO (clear I/O) instructions. Field 
UCBCHAN identifies the channel used in the last I/O operation to the device. This 
is the channel to which the HDV and CLRIO instructions are issued. 

I/O Supervisor Method of Operation 61 



lOS sets bits in the CSW and branches to the code that processes I/O events, 
thereby simulating an I/O event. The unit check bit is set in the CSW if a sense 
operation was the last to be started to the device. The device end bit is set in the 
CSW if a sense operation is planned but not started to the device. Turning the 
device-end bit on insures the execution of the lOS code that starts a planned sense 
operation to the device. Turning on the unit-check bit as well insures the execution 
of the lOS code that builds a sense CCW and starts the sense operation. This is, 
in effect, a retry of the sense operation for which there was no I/O interruption, 
but with one difference: lOS does not try to read the sense data; it only tries to 
satisfy the hardware requirement that a sense operation be completed. 

lOS sets the channel control check bit and the interface control check bit if neither 
the unit check bit or device end bit were set. The channel control check bit and the 
interface control check bit in the CSW direct the lOS code that processes I/O events 
to move the temporary work area to the ERPIB. 

Services Used in Restoring the Availability of I/O Resources 

62 OS/VS2 I/O Supervisor Logic 

Modules: IECVBRSV 
IECVRRSV 
IECVRDIO 
IECVESIO 

Build Reserve Table Routine (IECVBRSV) - This routine builds a reserve table 
RESVTAB containing all the devices which are reserved on a given channel. 

Re-reserve Device Routine (IECVRRSV) - This routine attempts to box or reserve, 
based on the input parameter, all devices that are in the reserve table. If reserve is 
requested, devices that cannot be re-reserved are boxed. The re-reserve device 
routine uses the Special SIO Routine (lECVESIO) to issue the I/O to reserve the 
devices. 

Redrive I/O Routine (lECVRDIO) - This routine scans all the UCBs on a given 
channel and simulates an interruption to re-drive those devices which are marked 
as active on the specified channel. Devices which no longer have an online path are 
boxed so that I/O requests will be posted in error. 

The Special SIO Routine (IECVESIO) - This routine performs a synchronous I/O 
operation to a device without using normal system services. It will, however, use 
the RISGNL macro, if necessary, to initiate the I/O on a processor with a path to 
the device. 



Purging and Restoring I/O Requests 
Purging I/O requests is a two-step process: 

1. lOS first locates the SRB/IOSBs representing requests the caller wants purged 
and then: 

• Puts the SRB/IOSBs into queues-one for each driver-if the caller requests 
a halt operation. 

or 

• Counts and marks the SRB/IOSBs if the caller requests a quiesce operation. 

2. lOS then communicates with each of its drivers. (Each driver disposes of the 
SRB/IOSBs that lOS collected for it-the case when a halt operation is requested­
or passes to lOS an address needed to restore I/O requests.) 

To restore I/O requests, lOS points each driver to the address that it passed during 
the purge operation. 

Comparing SRB/IOSBs to the Search Argument 

Module: IGCOOOIF 
Procedures: IGC016 

SIRBPURG 
LCHPURG 
UCBPURG 
DDRPURG 

SPLPURG 
IPIBPURG 
PURAPLSR 
BASICPRG 

lOS determines what kind of purge operation the caller wants by looking in the 
PPL (purge parameter list): 

register 1 ~~PP_L ________________________________ ~ 

1-----' PPLOPrl and PPLOPr2: bit settings tell IDS (a) whether to do a 
---~ halt or quiesce operation and (b) whether the operation applies to 

one data set, a group of data sets, a task, or an address space. 

PPLDSIDA: a data-area address or the first in a chain of 
data area addresses if the operation applies to one data set or 
a group of data sets. The address or chain is used as the 
search argumen t. 

PPLTCB: the address of a TCB if the operation applies to a 
task. The address is used as the search argument. 

PPLASID: the identifier of an address space if the operation 
applies to an address space. The identifier is used as the 
search argumen t. 

lOS looks at all the system data areas that SRB/lOSBs might be chained to and, on 
finding an SRB/IOSB, compares the search argument (or arguments) to one of three 
fields: 

SRB/IOSB 

SRBPTCB: to this field if the search argument is a TCB address. 

IOSDSID: to this field if the search argument is a data-area address. 

IOSASID: to this field if the search argument is an address space identifier. 

I/O Supervisor Method of Operation 63 



SRB/IOSBs that match the search argument are called applicable SRB/IOSBs. lOS 
unchains these and organizes them into queues, one for each driver, if the PPL 
indicates a halt operation. If the PPL indicates a quiesce operation, lOS leaves the 
applicable SRB/IOSBs where they are, but increases a counter in the IPIB (I/O 
supervisor purge interface block) by the total of applicable SRB/IOSBs and puts the 
address of the IPIB in each one. 

(Leaving applicable SRB/IOSBs where they are chained allows lOS and lOS-related 
code-ERPs and attention routines, for example-to continue processing the I/O 
requests they represent. When the processing of such an I/O request ends, the 
driver's termination procedure sees the IPIB address in the IOSB and decreases the 
counter in the IPIB. When the counter reaches zero, the quiesce operation is finished; 
the requestor of the quiesce operation can continue its processing with no risk of 
interfering with I/O operations.) 

Communicating with the Drivers' Purge Procedures 

Module: IGCOOOI F 
Procedures: IGC016 

DVRPURG 

If a halt operation is specified, lOS stores the address of one of the SRB/IOSB 
chains in the IPIB and branches to the purge procedure of the driver that created 
the SRB/IOSBs. 

IPIB 

IPIBSRB: address of the SRB/IOSB chain 
stored here. 

10SB 

IOSDVRID: identifies the driver that 
created it. lOS uses it as an index in­
to the VOID (vector of lOS drivers) 
table, where the addresses of the 
drivers' purge procedures are stored. 

If a quiesce operation is specified, lOS still branches to the drivers, each of which 
is responsible for returning to lOS an address-called a restore address-tha't the 
driver needs later to restore purged I/O requests. 

IPIB 

IPIBIO: drivers return a restore address 
here. 

PIRL (purged I/O restore list) 

PIRRSTR: lOS moves the restore ad­
dresses into the PIRL, beginning here. 

Pointing Drivers to Their Restore Addresses 

64 OS!VS2 I/O Supervisor Logic 

Module: IGCOOOIG 
Procedure: IGC017 

When a RESTORE macro is issued, lOS gives to each driver a pointer to the part of 
the PIRRSTR field that contains its restore address. 



(" Halting a Teleprocessing or Channel-to-Channel Operation (CTC) 

Module: IGC0003C 
Procedure: IGC0003C 

lOS examines the high-order byte of register I to determine whether the caller wants 
lOS or the EXCP processor to terminate the channel program. If the former, it 
issues an HDV (halt-device) instruction to the channel. If the latter, it branches to 
the EXCP processor. 

register I r
U~C_B ______________________________ ~ 

1-----' UCBCHAN: identifies the channel used in the last I/O opera-
tion to the device-the channel to which the HDV instruction 
is issued. 

In the case of a CTC device, the HDV instruction is issued regardless of whether 
an operation is active for the specified device. 

Overview of Channel Reconfiguration (CRH) Support 

(Note: For detailed logic information, refer to the descriptions of the individual 
CRH procedures, via the procedure names in the index.) 

The Channel Reconfiguration Hardware «(,RH) is a hardware feature of the 
System/370 168MP which, under system control, enables the operative processor 
to access the channels of the inoperative processor. These channels are accessed 
through the interface for channel 6 on the operative processor. 

Using the Channel Reconfiguration Hardware 

The CRH software issues a Diagnose instruction to connect the channel-6 interface 
to a specified channel of the inoperative processor. If, for example, lOS issues an 
SIO to address 672 after a Diagnose instruction for channel 2, the device at address 
272 on the inoperative processor is started. When the hardware connection is 
broken, an SIO to address 672 accesses device 672 on the operative processor. 

A CRH event (interruption) is solicited (a channel of the inoperative processor is 
"polled") through this sequence of events: 

• Issuance of the Diagnose instruction to make the C'RH hardware connection to 
the desired channel. 

• Setting up of control register 2 so that interruptions are allowed only through 
the channel-6 interface on the operative processor. 

• Enabling for I/O interruptions. 

If channel 2 on the inoperative processor is polled, an interruption address of 672 
(in the previous example) is stored in low storage at location FLCIOAA (X'B9' 
of the PSA). Procedure IECVCINT (the CRH interruption handler) changes this 
address to 272 because of bit settings that indicate that the CRH connection has 
been made to channel 2. 

I/O S~pervisor Method of Operation 65 



Activating the CRR Program 

The CRH program is activated when one of the following conditions occurs: 

• A hardware failure on one processor causes the alternate CPU recovery (ACR) 
facility to take the failing processor offline. 

• The operator issues the first VARY channel online command for a channel 
attached to an offline processor. 

I • The operator issues a VARY processor offline with the KEEPCHAN option. 

When one of these conditions occurs, IECVCRHA, the CRH activation procedure, 
is called. IECVCRHA indicates that CRH is active by setting a CVT pointer 
(CVTCRCA) to the CRH communication area (CRCA). IECVCRHA also activates 
the hooks in mainline lOS and sets a pointer that causes the CRH SLIH 
(IECVCINT) to execute after the I/O FLIH and before the I/O SLIH. 

Passing Control to CRH on a Start I/O Request 
(See Figure 11 in "Program Organization.") 

When lOS prepares to start an I/O operation that needs a channel of the inoperative 
processor, the CRH hook module (IECVCRHH) receives control through hooks in 
the lOS mainline (IECIOSCN). The hooks are set up by IECYCRHA when CRH is 
activated. The CRH hook module gets control from three locations in lOS mainline: 

• InETCHI Procedure: When no path is available from the operative processor, the 
test channel procedure can't shoulder tap to the other processor. Instead, the 
test channel hook procedure (IECVCRHl) is called to find a path. 

• Tn ESIO J Procedure: As soon as the SIO or SIOF instruction is issued, 
the SIO hook procedure (IECYCRH2) is called to determine whether the start 
I/O was issued through CRH. If so, IE.CVCRH2 does some additional CRH 
processing. (For details, see the "IECYCRH2 Procedure" in the Program 
Organization section.) 

• In ESENSEI Procedure: Just before the SIO for the sense operation is issued, 
the sense hook procedure (IECYCRH3) is called to determine whether the 
sense operation is to be done through CRH. The sense hook procedure issues the 
sense SIO, using the CRH connection if needed. 

Passing'Control to CRH on an I/O Event 
(See Figure 12 in "I/O Supervisor Program Organization.") 

66 OS{yS2 I/O Supervisor Logic 

When CRH is active and an I/O interruption occurs, the I/O FLIH calls the CRH 
SLIH (IECYCINT). The CRH SLIH processes the I/O event and then branches to 
the I/O SLIH (IECINT) for further processing of the I/O interruption. When IECINT 
returns control, the CRH SLIH polls (solicits pending interruptions from) the enabled 
channels of the inoperative processor, one at a time, and passes each interruption to 
IECINT. The CRH SLIH polls by enabling, and allowing a possible I/O interruption 
to be fielded by the I/O FLIH, the CRH SLIH, and the SIO SLIH. The process is 
repeated until all channels of the inoperative processor have been checked for 
pending interruptions. 



L 

October 25, 1979 

Preventing Line Drops on TP Lines 

Recovering from Errors 

Deactivating CRH 

The CRH facility includes a timer pop procedure to force the CRH SLIH to poll 
the channels of the inoperative processor often enough to prevent TP line drops. 
This ensurance is necessary because the CRH SLIH normally gets control only when 
an I/O interruption is taken on the operative processor. In a worst-case situation, 
when the inoperative processor's channels are handling most of the I/O, they would 
be polled infrequently. In this situation TP line drops would be possible. The CRH 
timer pop procedure solves the problem by causing an interruption to be taken on 
the operative processor at least once every two seconds. This frequency is sufficient 

to prevent a TP line drop. 

The CRH activation and deactivation procedures (IECVCRHA and IECVCRHD) use 
the FRRs that try to deactivate CRH. If deactivation is not possible, the FRR causes 
the RTM to percolate the error to the next FRR in the system. 

The CRH SLIH (lECVCINT) uses an FRR to route control to the [OS mainline FRR 
(IECFRR) to post the [OS driver with a post code of X'4S'. This post code indicates 

that the I/O request terminated abnormally in lOS because of a program check, or 
machine check. 

The hook procedures use the lOS mainline FRR. 

CRH is deactivated in either of two cases: 

I. The operator varies offline the last channel of the inoperative processor, or 

2. The operator varies online the offline processor. 

In either case the VARY processor (IEEVCPU) calls the CRH deactivation 
procedure (IECVCRHD). This procedure clears the CRH pointer in the CVT 
(CVTCRCA). CRH is then no longer active, since the CRH SLlH, the CRH hook 
procedures, and the CRH timer pop procedure check whether CVTCRCA is zero. 
If the field is zero, no CRH processing is done. The CRH deactivation procedure 
calls the BACKOUT subroutine in module IECVCINT, to remove the setup done by 

the CRH activation procedure. 

I/O Supervisor Method of Operation 67 

"' 



Page of SY26-3823-5 
As Updated October 25,1979 
By TNL SN28-4683 

Overview of Channel Set Switching (CHS) Support 

Using Channel Set Switching 

Activating CBS 

68 OS/VS2 I/O Supervisor Logic 

(Note: For detailed logic information, refer to the descriptions of the individual 
CHS procedures, via the procedure names in the index.) 

Channel Set Switching (CHS) is a feature under system control which allows the 
operative processor to access the channels of the inoperative processor. These 
channels are accessed through their normal interface, but on the operative 
processor. 

lOS issues a connect channel set instruction to connect the complete set of 
channels from any processor. If, for example, lOS issues an SIO to address 272 
after a connect channel set instruction for the inoperative processor's channel set, 
the device at address 272 on the inoperative processor is started. When this channel 
set is disconnected and the operative processor's channel set is connected, an SIO 
to address 272 will access device 272 on the operative processor, if the device is 
symmetrically attached. Otherwise, the condition code from the SIO is 3 (not 
operational). 

Channel polling as performed by CRH is not necessary with CHS. If the channel set 
is connected with the system enabled, interruptions are processed in the normal non· 
CHS way. On each interruption, however, the other channel set is connected prior 
to re-enabling. 

CHS is activated when one of the following conditions occurs: 

• A hardware failure on one processor causes the Alternate CPU Recovery (ACR) 
facility to take the failing processor offline. 

• The operator issues the first VARY channel online command for a channel 
attached to an offline processor. 

• The operator issues VARY processor offline with KEEPCHAN parameter. 

When one of these conditions occurs, IECVCRHA, the CRH/CHS activation pro­
cedure, is called. IECVCRHA indicates that CHS is active by setting a CVT pointer 
(CVTCRCA) to the CRH communication area (CRCA). A bit in the CRCA 
(CRCACSSA) indicates that CHS is active, rather than CRH. IECVCRHA also 
activates the hooks in mainline lOS and sets a pointer that will cause the CHS SLIH 
(IECVCSSI) to be executed after the I/O FLIH and before the I/O SLIH. 

On an AP system, or on an MP with all channels in one channel set offline, CHS is 
not actually activated. Rather, the single channel set is connected to the operational 
processor. The operational processor then executes all I/O with no additional 
overhead. 

..... 



Passing Control to CBS on a Start I/O Request 
(See Figure II in "Program Organization".) 

When lOS prepares to start an I/O operation that needs a channel of the inoperative 
processor, the following procedures are used in lOS mainline: 

• In the ETCHI Procedure: When no path is available from the operative 
processor, the test channel procedure can not shoulder tap the other processor. 
Instead, it connects the necessary channel set and then re-executes ETCH 1 . 

• In the ESENSEI Procedure: The sense procedure issues the sense SIO after 
connecting the necessary channel set. 

Passing Control to CBS On an I/O Event 
(See Figure 13 in "I/O Supervisor Program Organization.") 

When CHS is active and an I/O interruption occurs, the I/O FLIH calls the CHS 
SLIH (IECYCSSI) instead of the I/O SLIH (IECINT). The CHS SLIH branches to 
IECINT for processing of the I/O interruption. When IECINT returns control, the 
CHS SLIH connects the other channel set. It then enables and passes the interrup­
tion to IECINT. The process is repeated until all channel sets have been cleared of 
pending interruptions. 

Preventing Line Drops on TP Lines 

Recovering from Errors 

CHS includes a timer pop procedure to force the CHS SLIH to connect the dis­
connected channel set at least every 2 seconds to prevent TP line drops. This is 
necessary because the CHS SLIH normally gets control only when an I/O interrup­
tion is active. The disconnected channel set could be connected infrequently and 
TP line drops would be possible. 

The CRH/CHS activation and deactivation procedures (IECYCRHA and 
IECYCRHD) use the FRRs that try to deactivate CHS. If deactivation is not 
possible, the FRR causes the RTM to percolate the error to the next FRR in the 
system. 

The CHS SLIH (IECYCSSI) uses an FRR to route control to the lOS mainline FRR 
(IECFRR) to post the lOS driver with a post code of X'45'. This post code 
indicates that the I/O request terminated abnormally in lOS because of a program 
check or machine check. 

I/O Supervisor Method of Operation 69 



Deactivating CBS 

CHS is deactivated in either of two cases: 

1. The operator varies offline the last channel of either channel set, or 

2. The operator varies online the offline processor. 

In either case the VARY processor (IEEVCPU) calls the CRH/CHS deactivation 
procedure (IECVCRHD). This procedure clears the CRH pointer in the CVT 
(CVTCRCA). CHS is then no longer active, since the CHS SLIH and the CRH/CHS 
timer pop procedure check whether CVTCRCA is zero. If the field is zero, no CHS 
processing is done. The CRH/CHS deactivation procedure calls the BACKOUT 
subroutine to remove the setup done by the CRH/CHS activation procedure. 

Connect Channel Set Procedure 

70 OS!VS2 I/O Supervisor Logic 

The connect channel set procedure (IECCONCS) issues the connect channel set 
instruction which causes the requested channel set to be connected to the issuing 
processor. This procedure is used by all system components which require the 
connecting of channel sets. 



I/O Supervisor Program Organization 

This chapter is organized by object module name and by procedure name within 
each object module. 

This chapter has the following reference features to help you find information 
quickly. 

• Each module is a section. The sections are arranged in alphabetical order, by 
module name. 

• Each module (section) contains numbered procedures. Within any procedure, 
two types of cross-references are made: module and procedure. The type of 
cross reference is indicated by the word module or procedure within the 
procedure you are reading. 

When a procedure name and number is referenced, simply locate the numbered 
procedure within the module you are currently reading. 

When a module name and number is referenced, first locate the module, then 
locate the numbered procedure within that module. 

• Place markers, printed at the top of each page, give the name of the module and 
the numbers of the procedures described on the page. To find the description of 
a given module or procedure, you can scan the place markers. 

lOS is made up of 33 object modules. Three of these - those beginning with the 
characters IGC - are also load modules and execute from the link pack area. The 
other modules are link-edited at system generation into the nucleus, load module 
IEANUCxx. 

The object modules are the program units that perform the services described in the 
"Method of Operation" chapter. This table shows which modules perform which 
services: 

Service 

Starting an I/O Operation 
(Figure 2) 

Module· 

Basic lOS Module (lECIOSCN) 
Device Dependent SIO Modules 

Unit record (lECVXURS) 
2305 (lECVXDRS) 
2314 (lECVXSKS) 
3330V (lECVXVRS) 
DASD (IECVXDAS) 
2400 Tape (lECVXT2S) 
3400 Tape (lECVXT3S) 

-Two modules, the CCW translator module (lECVTCCW) and the storage manager module 
(lECVSMCR), perform supporting operations. 

I/O Supervisor Program Organization 71 

lOS 
P 0 



72 OS!VS2 I/O Supervisor Logic 

Responding to an I/O event, 
(Figures 3. 4) 

Restoring the availability of 
I/O resources 
(Figures 5-8) 

Purging I/O requests 
(Figure 9) 

Restoring I/O requests 

Halting a teleprocessing 
operation 
(Figure 10) 

Channel reconfiguration/ 
Channel Set Switching 
support 
(Figures 11-13) 

Basic lOS Module (lECIOSCN) 
DAVV Module (IECVDAVV) 
Device Dependent Trap Modules 

DASD (IECVXDAT) 
2305 (lECVXDRT) 
Graphics (IECVXGRT) 
Tape (IECVXTAT) 
Teleprocessing (IECVXTPT) 
Unit record (IECVXURT) 
3330V (lECVXVRT) 

Device Dependent Sense Modules 
3851/3838 MSS (IECVXMGN) 
2314 (lECVXSKN) 

Device Dependent End of Sense Modules 
3211/3800 EOS (IECVXPRE) 
2314 (IECVXSKE) 

Device Dependent Unsolicited Interruption Modules 
DASD (IECVXDAU) 
3330V (lECVXVRU) 

Post Status Module (IECVPST) 

I/O-Restart Modules (IECVRSTI and IECVIRST) 
Build Reserve Table Module (IECVBRSV) 
Hot I/O Detection Module (lECVHDET) 
Hot I/O Recovery Module (lECVHREC) 
Re-drive I/O Module (IECVRDIO) 
Re-Reserve Devices Module (IECVRRSV) 
Special SIO Module (IECVESIO) 

Nonresident Purge Module (lGCOOO 1 F) 

Restore Module (IGCOOOIG) 

Nonresident Halt-I/O Module (IGC0003C) 
Resident Halt-I/O Module (IECIHIO) 

CRH/CHS Module (IECVCINT) 

This part of "Program Organization" is divided into sections, each bearing the 
name of a module. Each section tells what the module does by describing the 
module's functional pieces, or procedures. Each shows the flow of control into, out 
of, and within the module by identifying the calls made by the module's procedures, 
and the entrances to and exits from them. (The microfiche listings call the parts of 
modules routines or subroutines. Procedure is used here to avoid an unnecessary 
distinction.) 

Some modules - those that are large and functionally the most important - are 
also represented in flow-of-control diagrams (see Figures 2-13). The diagrams don't 
have the detailed information that the individual chapter sections have. Rather, 
they show a simplification of processing and flow of control. 



From the 
SVC 15 
procedure 

STARTIO 
macro 

From a driver that wants 
an I/O operation 
to start 

Returns when an I/O 
operation started, an 
I/O request queued, 

or asynchronous 
processing scheduled 

Channel scheduler procedure 
(IECHNSCH) 

• Obtains an IOQ. 
• Based on start ability tests, either puts 

the IOQ on a logical channel queue, 
schedul~s asynchronous processing, 
or contmues. --------------4---1~ B Before returning 

If con­
tinuing 

Returns when an I/O 
operation started, an 
I/O request queued, 

or asynchronous 
processing scheduled 

Test-channel procedure (ETCH 1 ) 

• Selects a path for the I/O 
operation. 

• Based on further startability 
tests, pu ts the 10Q on a logical 
channel queue, schedules 
asynchronous processing, or 
continues. 

If continuing, exits 
to a device procedure 

Unit record SIO module (IECVXURS) 
2305 SIO module (lECVXDRS) 
2314 SIO module (IECVXSKS) 
3330V SIO module (IECVXVRS) 
DASD SIO module (lECVXDAS) 
2400 tape SIO module (lECVXT2S) 
3400 tape SIO module (IECVXT3S) 

• Builds "stand-alone" CCWs or a channel 
program prefix if needed. Does reserve/ 
release processing for shareable devices. 

to the caller 

Calls 

Returns when an I/O 
operation started, an 
I/O request queued, 
or asynchronous, 
processing scheduled 

Calls ESI02 
or exits to ESIOI 

Returns if entered 
at ESI02 or at 
ESIOlOO 
Otherwise 

Fixed-head disk 
and DASD pro­
cedures exit 

From the 
interruption· 
handling ...------1 
procedure 

Post-SIO procedure (EPOSTIO I) 

Based on condition code tests, may 
put an IOQ on a logical channel 
queue, remove it, or schedule 
asynchronous processing. 

If the condition 
code is 1 

.... -.-+-.. ..1 A If the condition 
code is 0, 2, or 3 

Figure 2. Starting I/O in the Basic lOS Module (IECIOSCN) 

Channel-restart procedure 
(ERSTARTl) 

From the 
interruption­
handling 
procedure 

• Finds channels that are free and 
the logical channel queues they 
belong to. 

• Tries to start I/O operations for 
queues I/O requests. 

• If I/O interruption processing is in 
progress, causes it to be continued 
by enabling for additional I/O 
interruptions. 

SIO procedure (ESIOI) 

Starts "stand-alone" and driver 
channel programs with an SIO 
or SIOF instruction. 

I/O Supervisor Program Organization 73 



From I/O FLlH, From the From the 

following an ACR-call MIH-call 

I/O event procedure procedure 

, \( C)J 
Interruption-handling procedure (IECINT) 

• Locates the UCB associated with the I/O event. 
If a deferred condition • Checks for a deferred condition code. .. 2C code occurred 

Not l , 

4 ~ deferred Exits to 
condition the caller 
code 

When the Return from the 
initial-status channel-restart 
procedure returns procedure SA .. .. 5B ... po 

r 
From the 
post-SIO 

To I/O FLIH procedure 

, cy 
Initial-status procedure (EST ATUS I) 

• Calls CCH if the CSW shows that a channel error occurred. ... • Routes control based on CSW and UCB settings. 

If the I/O event is ,~ If a tten tion , I' 
If a unit check 

unsolicited or if processing is occurred or a 
attention processing necessary and sense operation 

r is necessary no unit check r ended 

3330V Unsolicited Interruption Module 
If an I/O 

Sense procedure (ESENSEI) 
(lECVXVRU) 

DASD Unsolicited Interruption Module event is • For unit check, builds a sense 
(lECVXDAU) solicited command; gives control to 

and no unit IECVXSKN for 2314 or to 
• For 3330V if attention in status, check and IECVXMGN for 3851 or 3838; 

marks cylinder fault resolution. not the starts a sense operation. 
• For DASD checks for unsolicited 

completion • F or completion of a sense operation, 
device end. gives control to IECVXSKE for 2314 of a sense 

operation. 
or IECVXPRE for 3211 or 3800; 

t 
calls the DIE interface and attention 
procedures if entry to them was 
postponed because of a unit check. 

Attention procedure (EATTENTl) 

• Determines if an attention routine 

I should be entered, and if so, y schedules asynchronous processing_ 

If I/O event 
DIE interface procedure (EDIEINTl) 

Hot I/O detection (IECVHDET) is unsolicited • Calls the driver's DIE procedure . 

• Determines if the current condition 
is a repeat of a previous one for this r--

channel. If so, increments the count 
in SeD and checks if threshold has Device Dependent Trap Module 
been exceeded. If so, schedules (IECVXxxT) 
recovery. (lEVHREC) 8 

• If not a repeat, makes this condi- • Does reserve/release processing for 
tion the current one in the SCD. shareable devices. 

r-

Figure 3. Responding to an I/O EveT\t in the Basic lOS Module (IECIOSCN) 

74 OS/VS2 I/O Supervisor Logic 



Belongs to the 
DAVV module 

From the 
dispatcher 

If asynchronous 
processing was 
scheduled 

Appendage interface procedure 
(IECVPST) 

• Tests the IOSB to determine if 
it was created by lOS or by a If the IOSB 

driver. ------------+-.... ~ A was created 
• Based on tests of the CSW, may by lOS 

call the PCI exit and the 
NRM or ABN exit 

• Exits as the NRM or ABN 
exit directs. 

To the exit effectors 
if an ERP is to be 
entered 

To the driver's 
termination procedure 
otherwise 

If an I/O 
operation is 
to start 

IOSB-handling procedure (pSTIOSB) 

Based on the contents of the 
10SPROC field, does one of the 
following: 
• Calls the PCI exit or an attention 

routine and exits to the dispatcher. 
• Calls the unconditional reserve 

recovery routine and exits as it 
directs. 

• Exits to the exit effectors, 
which cause the dispatching of the 
volume verification procedure. 

r-,~ ____________ ~ __________ ~ 

Volume verification procedure 
(IECVDAVV) 

If the volume label must be read: 
• Builds a channel program to 

read it. 
• Issues an SVC 15 instruction. 
If the volume label has been read: 
• Verifies that the label is the one 

recorded in the UCB. 
• Ensures that I/O requests for 

the device are processed. 
• Exits to the dispatcher. 

'-'~----------------------------~ 

.. 

From an ERP 

SVC IS procedure (IGCOIS) 

Based on bit settings in the IOSB, 
does one of the following: 
• Issues a STARTIO macro. 
• Calls the NRM or ABN exit and 

returns as the exit directs. 

Figure 4. Responding to an I/O Event in the Post-Status Module (IECVPST) and DA VV Module (IECVDA VV) 

I/O Supervisor Program Organization 75 



( From ACR 
If a processor 
becomes 
unusable 

From CCH 
via SRB 

If a channel 
becomes 
unusable 

From MIH 

Set-up procedure (lECVRSTI) 

If an I/O event 
is overdue 

Based on a code passed in register I, exits to one of four procedures. 

) 
If the data 

From CCH about a channel 
'-__ ....... _-/ error is insufficient 

1 

CCH-call procedure (CCHPROC) MIH-call procedure (MIHPROC) 

• Issues HDV and CLRIO instruc­
tions to stop on-going. channel/ 
device communications. 

• Issues HDV and CLRIO instruc­
tions to stop on-going channel/ 
device communication. 

To the 
interruption -
handling 
procedure • If communication wasn't stopped, 

specifies in the ERP work a1ea 
that the ERP is not to retry the 
I/O operation. 

• Simulates an I/O event which 

~ causes the I/O operation that 
5B was in progress to be retried.--+-~ 

• When control returns, exits. 
3B 

( To CCH 

ACR-call procedure (ACRPROC) 

If CRH/CHS is available, activates 
CRH/CHS and returns. Otherwise: 
• Stops on-going I/O operations on 

the non operational processor 
• Invokes UCBACT procedure for 

each device in the system. 
For each device that was reserved by 
the nonoperational processor, 
tries to reserve it for the operational 
processor. If successful, exits. 
Otherwise, forces the devices offline. 

ToACR 

To MIH 

Device procedure (UCBACT) 

Determine device accessibility: 

• Marks it if inaccessible 
• Flags device if reserved 
Simulates an I/O interrupt if the 
device was active 
• on failing processor, if ACR 
• on failing channel, iflost channel 
If device is accessible via an alternate 
path, then retries the I/O operation. 
Otherwise, marks it as a permanent 
error. 

CCH via SRB called procedure 
(LOSTCHAN) 

Scans the CAT for failing channels. 
If CRH/CHS is active, scans the other 
channel set's CAT for offline 
channels. 

For each failing channel, calls the 
UCBACT procedure for each 
device on the channel. 

If there are any reserved devices, 
forces the devices offline, as reserves 
have already been released by hard­
ware. Otherwise, exits to SRB 
dispatcher. 

( SRB 
dispatcher 

'---=------/ 

Figure S. Restoring the Availability of I/O Resources in the I/O-Restart Module (lECVRSTI) 

76 OS/VS2 I/O Supervisor Logic 



If channel(s) 
become unusable (lost) 

I f channel encounters 
hung interface condition 

Set up procedure (I ECVIRST) 

Build reserve table routine 

• Scan devices for reserve status on channels that encounter an error. 

• Invoke IECVBRSV to build a table that indicates which devices on the 
failing channel(s) were reserved. 

Communicate with operator 

• If the failing channel(s) are detected by the CCH MCH exit or a hung 
interface condition is encountered and the channels have reserved 
devices, communicate with operator by invoking I EEVLDWT. 

• If entry is from CCH MCH exit, the operator may pass back an action 
code indicating either that the channels are to be reused or forced 
offline (not reused). 

Recover unusable channels 

• Issue CLRCH to all channels 
that respond CC=3 to a TCH 
instruction. 

• Determine channel usage from 
the operator supplied action 
code. 

Reuse the 
channel(s) 

6A 

Do not 
reuse the 
channel(s) 

66 

To Part 2 To Part 2 

Recover hung interface 

• Issue CLRCH to channels 
encountering a hung interface. 

• Determine success of recovery 
by issuing a TCH and TIO. 

6C 

To 
recover 
reserved 
devices 

To Part 2 

Figure 6. Restoring the Availability of I/O Resources in the I/O Restart Module (IECYIRST) (Part 1 of 2) 

1(0 Supervisor Program Organization 77 



From Part 1 

6A 

Reuse 
channel(s) 

Wait for channels to recover 

• Call SETDIE; wait 60 seconds. 

• Determine success 
of channel recovery via the 
TCH instruction. 

From Part 1 

6B 

Do not 
reuse 
channel(s) 

Recover reserved devices 

From Part 1 

6C 

From hung interfac 
recovery 

• I nvoke I ECVRRSV to process each device in the reserve table as follows: 

- Determine device accessibility. 

- Attempt to re·reserve each device in the reserve table. 

- If the device cannot be re-reserved. vary the device offline and issue 
message IEA0261. 

Restart active I/O 

• Invoke IECVRDIO to do the 
following for every device on 
the failing channel(s). 

- Determine device access­
ibility. Mark offline if 
there 'are no online paths. 
and issue message I EA0041. 

- Simulate I/O interrupt if 
a device is active. 

Exit 
to 

SRB 
dispatcher 

e 

Figure 6. Restoring the Availability of I/O Resources in the I/O Restart Module (IECVIRST) (part 2 of 2) 

78 OS/VS2 I/O Supervisor Logic 



( 
-

From 105 ) 
via BALA 

--
Hot 1/0 detection point , 

I Any successful 510 on channel? 

Yes 

No 

Reset Processing 

• Updates the SCD to reflect the 
current condition. 

• Aesets counters. 

Figure 7. Hot I/O Detection 

No 

Determines if this condition is 
a repeat of previous potential 
condition. 

Yes 

Repeat Processing 

• Increments the repeat count. 

• If the timeout interval is exceeded, 
increments the timeout count. 

• Determines if the appropriate 
threshold in HIDT has been 
exceeded. 

Not 
exceeded 

Exceeded 

SCHEDREC 

• Disables the channel . 

• Obtains and schedules an SAB 
for hot 1/0 recovery II ECVHAEC) 

( Aeturns to 105 

I/O Supervisor Program Organization 79 



I 

Hot device recovery routine 

• Call I ECVBRSV to build a 
reserve table. 

• Call IEEVLDWT to 
communicate with the operator. 

• Call the clear channel subroutine 
if the operator requested that 
the channel be removed. 

or 

Issue message IEA071E or 
IEA070A. 

• Call1ECVRRSV to box those 
devices removed from the 
configuration by the operator. 

• Simulate an interruption to 
redrive the channel. 

I 

From 
IECVHDET 

via SRB 

If hot I/O has been detected 

Set up procedure (lECVHREC) 

Clear channel subroutine 

• Issue the CLRCH instruction 
if supported by the processor. 

~ • If CLRCH fails or the operator 
did not reset the channel, issue 
message I EA070A and box the 
devices which lost last path. 

• If CLRCH is not supported and 
the operator reset the channel, 
issue the HDV, CLRIO 
instruction sequence to each 
device on the channel. 

• If the channel has been reset 
(by the operator or the CLRCH 
instruction) : 
- Call IECVRRSV to 

re-reserve devices 

- Tell operator to start 
stopped processors, if 
necessary 

Call1ECVRDIO to red rive 
I/O on the channel. 

Cleanup procedure 

I 

Hot channel, hot control unit, 
and hot DASD recovery routine 

• Call I ECVBRSV to build reserve 
table. 

• If CLRCH instruction is 
supported and there are no 
reserves, issue message I EA0721. 

• If there are reserved devices or 
CLRCH is not supported, com­
municate with the operator to 
stop the sharing processors if 
necessary, and to allow him to 
reset the channel. 

~ • Call the clear channel subroutine. 

• Enable 'the channel if the clear 
channel subroutine was 
successful and this was the first 
occurrence on this channel. 

• Leave the channel disabled if 
this is not the first occurrence on 
this channel and the clear 
channel subroutine was 
successful. I ssue message 
IEA071E. 

I 
Figure 8. Recovering from a Hot I/O Event in Module IECVHREC 

80 OS/VS2 I/O Supervisor Logic 



From a caller that wants 
I/O requests to be purged 

Exit/entrance procedure OGCOOOlF) 

• Validates the PPL. 

Issues an 
SVC16 
instruction 

• Calls procedures that look for SRB/IOSBs.-------------------t-....... 
• Sees to it that each driver is called to do a complementary purge operation. ------1-, 
• Issues aWAIT macro and waits until the count of partially-processed I/O requests is 

zero; then returns to the caller. 

~ f 
SIRB-purge procedure (SIRBPURG) 

For each SRB/IOSB found on an asynchronous exit queue, calls two procedures. 

+ + 
LCH-purge procedure (LCHPURG) 

. 

If the PPL 
contains an 
invalid request 

F 

D 

E 

For each SRB/IOSB chained to an IOQ on a logical channel queue, calls two procedures. 

~ + + 
UCB-purge procedure (UCBPURG) 

For each SRB/IOSB chained to a VCB (by a linking 10Q). calls the basic purge procedure. 

+ + 
DDR-purge procedure (DDRPURG) 

• For each SRB/IOSB chained to a DDR element on a DDR queue, calls the applicability-
check procedure. 

• If a halt operation was requested, chains applicable SRB/IOSBs to the PlRL. 

t • SPL-purge procedure (SPLPURG) 

For each SRB/IOSB chained to the SPL, calls the basic purge procedure. , • IPIB-purge procedure (IPIBPURG) 

Chains each SRB/IOSB queued to the IPIB to the appropriate PlRL entry. 

Driver interface procedure (DVRPURG) 

Calls each driver's purge procedure. 

Basic purge procedure'(BASICPRG) 

Applicability-check procedure 
(pURAPLSR) 
• Compares a field in the SRB/IOSB to 

the search argument. 
• Returns to one address if the search 

argument matches, to another if the 
argument doesn't match. 

If a quiesce operation was requested, increases the count of partially-processed I/O requests. 
If a halt operation was requested: 
• Sees to it that the I/O operation is halted if the channel program is being executed. 
• Removes the IOQ from the logical channel queue if the I/O operation hasn't started. 
• Chains the SRB/IOSB to the PIRL. 

Figure 9. Purging I/O Requests in the Nonresident Purge Module OGCOOOIF) 

-

-. 

E 

E 

E 

To the callill~ 
procedure 

To Ihe calling 
pr()cedure 

I/O Supervisor Program Organization 81 



I 

From a caller that wan ts 
an I/O operation to be halted 

Issues an 
SVC 33 
instruction 

Main halt procedure (IGC0003C) 

Routes control based on the code found in register 1. 

If the 
code is 
X'OO' 

Main procedure (IECIHIO) 

• Determines if it is executing on 
the processor that started the I/O 
operation. 

• Issues an HDV instruction. 
• If the I/O operation was not 

halted because a channel logout 
is pending, enables the channel 
to interrupt processing and 
present its information. 

• If the I/O operation was not 
halted because of a channel 
error, calls CCH to process the 
error. 

If the 
code is 
X'80' 

To the 
EXCP processor 

If it 
isn't 

Belongs to the 
nonresident 
halt-I/O module 

See the description of the halt-I/O 
interface procedure (4) of the miscellaneous 
module in the EXCP part of this chapter. 

Shoulder-tap procedure (HIOIPCI) 

Causes itself to receive control on 
the other processor. 

Figure 10. Halting an I/O Operation in the Nonresident Halt-I/O Module (IGC0003C) and Resident Halt-I/O Module (IECIHIO) 

82 OS!VS2 I/O Supervisor Logic 



lOS Mainline (lECIOSCN) 

~TARTIO ma':.rb \.0. 1it..\!-2J lOS returns to driver __ r---------------------------~ 

Channel scheduler (ECHSCHDl) Channel restart (ERSTART2) 

Get IOQ that represents I/O request. Call riI­
ETCHl to start request.(~all ERSTART2

1 
J 

to start queued requests. @) 
Return. 20 

Get a queued I/O request. Call ETCHl to 
start the request. If more queued requests, 
repeat. 
If none, return. 

~----~------------------~ 

~ iGv ~ I ry-
'-,=--1.... _ CHS Test 
f2\ - 1-___ T_e_st_c_h_a_n_n_el_p_r_o_c_ed_U_r_e_(_E_T_C_H_l) __ :--1----1 Channel 

CRH hook module (IECVCRHH) 

Test channel hook 
(IECVCRHl) 

V · ..... 01-==:..:;;..-1 
Find path from operative processor. If (;'\ • Connect ,- __ I- ... 

path found, call device-dependent sub- ~ • other I 

Find path to inoperative 
processor. If path found, 
call device-dependent routine. If no path found, try shoulder • channel set I 

tap to the other processor. • • • • • • • • 1f3\ 
(Hook gives control to IECVCRHl.) - - - - - - - - - - - - - _J\V 
Return to channel sched. (ECHSCHDl). 

subroutine. ----­
... Return to ETCH!. 

1 f~ _____ ----4--I-I--I18 
CD 

Device-dependent SIO Modules 
(IECVX __ S) 

Set upCCW. --
Call SIO subroutine. I~ 
Return to ETCHl or IECVCRHl. __ + ____ :-_-----------I-J 

:: 
SIO subroutine (ESIOl) 

Issue SIO. -Go to post SIO procedure. 
~------------_---_--I 

CD 

... 

Post SIO procedure (EPOSTIOl, 2, 3) 

Inspect condition code from SIO. If error, 
call ESTATUSI. 
Return to device-dependent subroutine . -~--------------------------~ 

@ , 
'r---~~-----------~ 

@ 

VCB status (ESTATUSl) Sense procedure (ESENSEl) 

I 

@ 
I I~ I-~--------------------~ ~r---------------------~ 

Inspect errot. If unit check, call ...:. 
, 

Set up sense CCW. (Hook goes to 1----
ESENSEl. -----_----+-'1 ~ 
Return. _ ~ 

~------------~~ 

IECVCRH3.) Issue sense SIO ...... --1-1-___ .... 
Return. - @LI-I-

Legend: 

SIO hook procedure 
(IECVCRH2) 

Update path in UCB. If 
CC=O, indicate CRH 
SIO in UCB. If CC=l 
and unit check, indicate 
CRH sense needed. 
Return 

Sense hook (IECVCRH3) 

If CRH sense required, 
issue sense SIO thru 
CRH pa tho If not, 
issue sense SIO thru 
normal path. 
Return. 

~-------------~ 

(An SIO is being issued to a device accessible only through the 
channel reconfiguration hardware. See keyed statements that follow.) 

G = sequence no. and description 

---.... = normal lOS flow 

Figure 11. (part 1 of 2). Channel Reconfiguration Hardware (CRH) Hook 
Module Interface and CHS Interface with lOS Mainline 

- - - ... = Branch via CRH hooks to procedures in 
CRH module (IECVCRHH) 

• •• •• = Branch via CHS hooks to procedUres in 
lOS Mainline (IECIOSCN) 

I/O Supervisor Program Organization 83 



Q) 
(3) 
0) 

0 
CD 

@ 
CD 
® 
® 
@ 
@ 
@ 

* 
@ 
@ 
@ 
@ 
@ 
@ 
@ 
® 
@ 
@ 

lOS mainline is called for an SIO request by an lOS driver. 

Channel scheduler calls ETCHI to find a path to a device. 

ETCHl cannot find a path on the operative processor, nor can it shoulder tap to the other processor. 
Instead, a CRH hook branches to IECVCRH1. 

ETCHl cannot find a path from the connected channel set. Instead, the other channel set is connected 
and control returns to the beginning of ETCHl. 

If IECVCRHl finds a path to the device on the inoperative processor through CRH, it calls an lOS mainline 
device-dependent subroutine. (Note: IECVCRH1 has connected the channel-6 interface on the operative 
processor to the desired channel on the inoperative processor.) 

The lOS mainline device-dependent subroutine calls ESIO 1 to issue SIO, using the path found by IECVCRH1. 

After ESIOl has issued SIO, a CRH hook branches to IECVCRH2. (Note: The SIO was issued to address 
6xx. IECVCRH2 stores the actual address of the device in the UCBCHAN field.) 

IECVCRH2 returns to ESIOl at the next instruction after the hook. (No such hook exists for CHS.) 

ESI01 calls EPOSTI01, 2, or 3, depending upon the condition code from the SIO, to determine if the SIO 
was successful. 

If there was a channel error, unit check, or attention, EPOSTI01 calls ESTATUSl to process the error. 

If there was a unit check, ESATUS1 calls ESENSE1 to issue SIO for a sense operation. 

Before the SIO for sense is issued in ESENSEl, a CRH hook branches to IECVCRH3 which will issue SIO 
for the sense operation. 

IECVCRH3 returns to ESENSE l, bypassing the sense SIO ESENSE 1. 

ESENSEl returns to ESTATUSI. 

ESTATUSl returns to EPOSTIOl, 2, or 3. 

EPOSTIOl, 2, or 3 returns to the device dependent subroutine which called ESIOl. 

Device dependent subroutine returns to IECVCRHl. 

IECVCRHl returns to ETCHl. (Note: IECVCRHl has broken the CRH connection.) 

ETCHl returns to the channel scheduler (ECHSCHDl). 

ECHSCHDl calls channel restart ~RSTART2). Channel restart finds a queued I/O request and calls ETCHl 
to find a path. Steps0)through ® are repeated. ETCH1 returns to channel restart (ERSTART2). 

After trying to start all the queued I/O requests, ERSTART2 returns to ECHSCHDl. 

ECHSCHDl returns to the lOS driver. 

*Note: Steps 10 - 15 occur only if there are SIO errors. 

Figure 11. (part 2 of 2). Channel Reconfiguration Hardware (eRH) Hook 
Module Interface and CHS Interface with lOS Mainline 

84 OS!VS2 I/O Supervisor Logic 



Step 1 

I/O interruption handlers deal 
with a non-CRR interruption. ./ . .. 

I/O interruption 

Step 2 

I/O SLIR enables for 
interruptions. If an interruption 
occurs, the flow is: 

Step 3 

I/O SLIR enables for interruptions 
If no interruption occurs, 
the flow is: 

Step 4 

CRR SLIR enables (polls) for 
CRR interruption. If an 
interruption occurs, the flow is: 

Step S 

I/O SLIR enables for another 
interruption. (If an interruption 
occurs, Steps 2-4 are repeateJ.) 

Step 6 

CRR SLIR enables for CRR 
interruption. If no interruption 
occurs, the flow is: 

A --'" .-

IEAVEIO 

I/O 
FLIR 

I/O 
SLIH 
enables 

I/O 
SLIH 
enables, 
then 
disables 

CRH 
StJH 
enables 

I/O 
SLIH 

passes 
interruption --

I/O 
interruption 

.L' --.. 

returns .. .. 

I/O 
interruption 

" .. .. 

enables, 1----., 
then 
disables 

CRH 
SLIH returns 
enables, ...... -then 
disables 

IECVCINT 

CRR 
SLIH 

I/O 
FLIH 

CRH 
SLIH 

I/O 
FLIH 

CRR 
SLIH 

I/O 
FLIH 
loads 
I/O 
oldPSW 

IECINT 

passes 
interruption 

I/O --po 

SLIH 

passes 
interruption CRH --- SLIH 

+ o 

passes 
interruption CRH .. - SLIH 

,~ 

B 

Figure 12. The Processing of Interruptions When Channel Reconfiguration Hardware (CRH) is Active 

I/O Supervisor Program Organization 85 



Step 1 

I/O interruption handlers 
presented an interruption. 

Step 2 

I/O 

I/O SLIH enables for 
interruptions. If an interruption 
occurs, the flow is: 

Step 3 

.- -
interruption 

I/O SLIH enables for interruptions. 
If no interruption occurs, A l---1~ 
the flow is: 

Step 4 

CHS SLIH connects the 
other channel set, then 
enables. If an interruption 
occurs, the flow is: 

Step 5 

I/O SLIH enables for another 
interruption. (If an interruption 
occurs, Steps 2-4 are repeated.) 

Step 6 

CHS SLIH connects the 
other channel set, then enables. 
If no interruption occurs, 
the flow is: 

B l--_~ 

IEAVEIO 

I/O 
FLIH 

I/O 
SLIH 
enables 

I/O 
SLIH 

passes 
interruption .. -

I/O 
interruption 

:7 .. -

returns 
enables, I----~ 
then 
disables 

CHS 
SLIH 
enables 

I/O 
SLIH 

I/O 
interruption 

./' --"" -

enables, I----~ 
then 
disables 

CHS 
SLIH returns 
enables, -then 
disables 

IECVCSSI 

CHS 
SLIH 

I/O 
FLIH 

CHS 
SLIH 

I/O 
FLIH 

CHS 
SLIH 

I/O 
FLIH 
loads 
I/O 
oldPSW 

Figure 13. The Processing of Interruptions When Channel Set Switching (eHS) is Active 

86 OS/VS2 I/O Supervisor Logic 

IECINT 

passes 
interruption 

I/O -.. SLIH 

passes 
interruption CHS -.. SLIH 

,~ 

A 

passes 
interruption CHS --- SLIH 

,~ 

B 



(., Basic lOS Module (IECIOSCN) 

1. The Channel Scheduler Procedure (IECHNSCH) 

Basic (OS Module 
Procs.l,2 

• Entered, via a STARTIO macro, by a driver and the post-status module (3). 
(The module is actually entered at label IECVSTIO, where it does some 
preliminary processing: the TCB address is put in the SRB, and the address of 
the SRB and IOSB are put in registers 0 and I, respectively. This procedure is 
then given control.) 

• Disables to prevent the processor from receiving I/O and external interruptions 
while in control. 

• Gets the UCB lock for the device in question. 

• Calls the storage manager module (1) to get an IOQ. Initializes the 10Q and 
chains it to the IOSB. 

• If UCB flags show that the device is not currently startable, calls the enqueue 
procedure (5) to put the IOQ on a logical channel queue and exits to the 
issuer of the STARTIO macro. 

• Calls the SRB scheduling procedure (7) to schedule the post status module 
(1) if the UCBFLA flag shows "not ready" or "quiesced," and I/O is for a 
duplexed paging request. 

• Calls the test-channel procedure (2) to (a) select a path to the device and (b) 
start an I/O operation or put it on a logical channel queue. 

• Calls the channel-restart procedure (13) to find out if any waiting I/O requests 
can be started. 

• Exits to the issuer of the STARTIO macro. 

2. The Test-Channel Procedure (ETCH1) 

• Entered by the channel scheduler procedure ( 1) and the channel-restart 
procedure (13) to select a path to the device and start an I/O operation. 

• If the device is reserved, ensures that the I/O operation starts from the processor 
reserving the device. 

• Combines the channel mask, UCBCHM, with IOSAPMSK, a mask created by 
the post-status module (3), to ensure that a path that had an error is not 
reselected for an I/O request being retried. 

• Calls the SRB-scheduling procedure (7) to schedule the post-status module (1) 
if (a) the UCBFLB and UCBJBNR fields indicate that the device is currently 
inaccessible or (b) a guaranteed device path is unavailable. 

I/O Supervisor Program Organization 87 



Basic lOS Module 
Proc.3 

• Selects a path from the LCH and uses a TCH instruction to test the availability 
of the channel. If none of the paths in the LCH is available, does the following: 

(a) Calls the enqueue procedure (5) to put the IOQ on a logical channel queue. 

(b) Determines whether to shoulder tap the other processor or to use 
CRH/CHS, if it is active. (For shoulder tapping to be expedient, there must 
be an available path from the other proc~ssor, and lOS must not be running 
in the other processor.) If shoulder tapping is expedient, turns on the bit in 
the IRT "channel mask" that represents the available path and shoulder taps 
the other processor with an RPSGNL macro. Otherwise, exits to the 
channel scheduler procedure ( 1). 

When CHS is active, the other channel set is connected and control returns to 
the beginning of this procedure to try this newly connected channel set. 

• According to the type of device allocated, puts the number of the selected path 
(channel) in register 6 and calls the appropriate device dependent SIO Module: 
IEDVXDRS for 2305; IECVXSKS for 2314; IECVXVRS for 3330V; 
IECVXDAS for DASD; IECVXT2S for 2400 Tape; IECVXT3S for 3400 Tape; 
IECVXURS for unit record, teleprocessing and graphics. 

• Exits to the channel scheduler procedure (1) via register 4; to the channel­
restart procedure (13) via register 4 or register 4+4. (The former exit means 
there is an available path for another I/O request on the same logical channel 
queue; the latter means there is not.) 

3. The SIO Procedure (ESIOJ) 

88 OS/VS2 I/O SupeJVisor Logic 

Entered by the device-dependent SIO modules to start an I/O operation. 

• Puts the address of the channel program and its protection key in the CAW. 

Issues an SIO or an SIOF instruction as requested by the device-dependent SIO 
module. 

• If system trace is active and the system is being initialized, branches to the 
tracing routine pOinted to by the CVTTRACE field. At other times, issues a 
HOOK macro which calls GTF to trace the results of the SIO or SIOF 
instruction. 

• Places the condition code set by the start-I/O instruction in the IOSCC field. 

I • Stores the number of the channel and channel set that were used in starting the 
I/O operation in the UCBCHAN and UCBCPU fields, respectively. 

• Updates the MF/l or RMF counts ofUCB and channel usage. 

• Exits to the address in register 14. (Register 14 will contain either a return 
address or the address of the post-SIO procedures (4); the caller selects one by 
using the appropriate entry point.) 



l,. 4. The Post-SIO Procedure (EPOSTIOJ) 

Basic lOS Module 
Proc.4 

I. Entered by a device·dependent SIO module and the SIO procedure (3) to act 
on the results of the start·I/O instruction issued by the SIO procedure (3). 

• If the condition code is 0, does the following things: 

(a) Marks the channel busy in the CAT if a selector channel is in use. 

(b) Marks the UCBFLA field, showing that an I/O operation has started on the 
device. 

(c) Calls the dequeue procedure (6), to dequeue the IOQ if the IOQ is on 
a LCH. 

• If the condition code is 1, does one of these things: 

(a) Calls the initial-status procedure (10) if the CSW indicates something other 
than a busy device or control unit (such as the completion of an immediate 
operation or a pending channel logout). 

(b) Calls the enqueue procedure (5) to put the IOQ on a logical channel queue. 

• If the condition code is 2, does these things: 

(a) Marks the channel busy in the CAT. 

(b) Turns on the UCBCUB bit, which prevents requests for the device from 
processing if they haven't first been queued. (The bit is turned off 
when the test-channel procedure (2), entered by the channel-restart 
procedure (13), finds a path to the device that isn't busy.) 

• If the condition code is 3, checks the UCBPMSK field to see if a message has 
been sent about the unavailability of the device. If a message hasn't been sent, 
does these things: 

(a) Calls the storage manager module (5) to get storage for an SRB/IOSB. 
Initializes the SRB/IOSB, indicating to the post-status module (IECVPST) 
(1) that a message must be sent to the operator. 

(b) Calls the SRB-scheduling procedure (7) to schedule the post-status 
module (IECVPST) ( 1). 

(c) If SIO was for guaranteed device path (GDP), sets a completion code of 
X'4D', to indicate an inoperative channel or device on the guaranteed 
device path, and schedules the post status module (IECVPST). 

(d) IfSIO was for duplexed paging I/O, sets completion code of X'43', to 
indicate a quiesced or not-ready device on which a permanent error had 
occurred previously, and schedules the post status module (IECVPST). 

(e) If SIO was not for guaranteed device path (GDP), call the unconditional 
reserve scheduling procedure (17). 

• Exits to the test·channel procedure (2), using an offset from the address in the 
IRTDDSV field to tell that procedure what to do. These are the offsets and the 
associated actions: 

(a) X'OO': Return to the procedure that called without doing other processing. 

(b) X'04': See to it that the IOQ is put on a logical channel qu.eue. 

(c) X'08': Try to start the I/O operation on another path. 

I/O Supervisor Program Organization 89 



Basic lOS Module 
Procs. S, 6, 7,8 

5. The Enqueue Procedure (EQUEE1) 

• Entered by the channel scheduler procedure (1), the test-channel procedure (2), 
the post-SIO procedure (4), the DIE interface procedure (11), and the sense 
procedure (14). 

• Chains the IOQ to a LCH in FIFO order. 

• Exits to the return address in register 4. 

6. The Dequeue Procedure (EQUED1) 

• Entered by the SIO procedure (3), the SRB-scheduling procedure (7), the 
channel-restart procedure (13), and the sense procedure (14). 

• Removes the IOQ from its logical channel queue. 

• Exits to the return address in register 4. 

7. The SRB-Scheduling Procedure (ESCHDI01) 

• Entered by the channel scheduler procedure (1), the test-channel procedure 
(2), the post-SIO procedure (4), the unsolicited device-end procedure (8), the 
DIE interface procedure (11), the channel-restart procedure (13), the sense 
procedure (14), the attention-handling procedure (15), the SIO module for 
2305, the SIO module for 2314, and the SIO DASD module. 

• Calls the dequeue procedure (6) to remove the IOQ from its logical channel 
queue and, unless entered by the channel-restart procedure (13), calls the 
storage manager module (2) to free the IOQ. 

• Initializes the SRB in preparation for a scheduling operation. 

• Issues a SCHEDULE macro, causing the post-status module (1) to be dispatched 
asynchronously. 

• Exits to the return address in register 4. 

8. The Unsolicited Device-End Procedure (EDEVEND1) 

90 OS/VS2 I/O Supervisor Logic 

Entered by the SIO module for 2314, the SIO module for DASD, and the 
SIO module for 3400 tape device if they find that the device is ready (the 
UCBUDE bit will be on). 

• If the device is a 3400 tape drive, turns on the error bits in the IOSFLA field 
and calls the SRB-scheduling procedure (7), which schedules the post-status 
module (IECVPST) (1). The ERP then gets control and informs the operator 
that the tape volume mounted before the device-end interruption must still be 
mounted.) 

• If the device is a demountable DASD, calls the storage manager module (5) to 
get storage for an SRB/IOSB, sets bits in it to direct the way it will be used, 
and calls the SRB-scheduling procedure (7), to schedule the post-status 
module. (The DA VV module ( 1) then gets control and finds out if the volume .~ 
mounted before the device-end interruption is still mounted.) """" 



Basic lOS Module 
Procs. 9, 10 

• If the DA VV module is to get control, turns on the UCBQISCE bit, to prevent 
the device from being used for a driver's I/O request before the DA VV module 
executes. 

• Exits to the test-channel procedure (2), using the address in register 4, or, if it's 
necessary to queue the 10Q, the address in register 4+4. 

9. The Interruption-Handling Procedure (IEGINT) 

• Entered by the I/O FLIH, the I/O-restart module (2,3, and 4), the resident 
halt-I/O module (3), the redrive I/O module (IECVRDIO), the re-reserve module 
(IECVRRSV), the special SIO module (IECVESIO), the unconditional reserve 
detection module (IECVURDT), and the CRH and CHS interruption handlers. 

(Note: This procedure is frequently referred to as the I/O SLIH.) 

• Finds the address of the UCB associated with the interrupting device and puts 
the address in register 7 for use by the procedures it calls. 

• Calls CCH to process channel errors associated with an invalid device address. 
(Exception: If entered by the I/O-restart module (4), CCH is bypassed.) 

• If entered by the I/O FLIH because of an SIOF deferred condition code 
interruption, puts a return address in the IRTDDSV field and calls the post-SIO 
procedure (4). When control returns, exits to the I/O FLIH. 

• Calls the initial-status procedure (10) to analyze the interruption's status and 
route control appropriately. 

• Calls the channel-restart procedure (13) to start I/O operations for requests 
queued on the logical channel queue associated with the interrupting device. 
(Exception: If entered by the I/O-restart module (4), the resident halt-I/O 
module (3), the redrive I/O module, the re-reserve module, the special SIO 
module, the unconditional reserve detection module (IECVURDT), or if the 
channel-restart procedure (13) is bypassed.) 

• Exits to the return address in register 4. 

10. The Initial-Status Procedure (ESTATUS1) 

• Entered by the interrnption-handling procedure (9) and the post-SIO 
procedure (4). 

• If the CSW shows that a channel error occurred, calls the storage manager 
module (5) to get storage for an ERP work area. Initializes the ERP work area 
and calls CCH. Then calls the unconditional reserve scheduling procedure (17). 

• IfPCI alone is indicated, invokes the PCI DIE interface (12). 

• If the "active-sense" bit, UCBASNS, is on, calls the sense procedure (14), to 
process the completed sense operation. 

• If the I/O event is unsolicited or if attention processing is necessary, for 3330V 
or DASD, calls the appropriate unsolicited interruption module to do device­
dependent processing. (For 3330V - IECVXVRU, for DASD - IECVXDAU). 

• If the CSW shows that an attention interruption occurred, calls the attention­
handling procedure ( 15 ). 

I/O Supervisor Program Organization 91 



Basic lOS Module 
Procs. 11, 12 

• If the CSW contains a unit-check indication, calls the storage manager module ...J 
(IECVSMGR) (5) to get storage for an ERP work area. Initializes the ERP 
work area and calls the sense procedure (14) to obtain sense information. If 
the I/O event is unsolicited, calls the storage manager module (IECVSMGR) (6) 
to free the ERP work area. 

• If the I/O event is solicited and no error occurred, ESTATUSI calls the 
appropriate trap module (IECVXxxT) for any device dependent interrupt 
processing. (For 3330V devices, this routine checks the CSW CCW address to 
determine if a cylinder fault occurred. If it did, the IOQ is enqueued on the 
LCH to be held until the cylinder fault is resolved). 

• If the I/O event is solicited, calls the DIE interface procedure (11). 

• Using a HOOK macro, calls GTF to trace the I/O event. 

• Exits to the return address in register 4. 

11. The DIE Interface Procedure (EDIEINTI) 

• Entered by the initial-status procedure (10) and the sense procedure (14). 

• Calls the driver's DIE procedure (with the 10SB as input,) first issuing a TRAS 
macro to establish addressability to the address space the driver specified in the 
IOSASID field. (Following an I/O interruption, lOS doesn't necessarily receive 
control in the address space the DIE procedure wants to use.) When the DIE 
procedure returns, issues another TRAS macro to restore addressability to the 
address space that was being used. 

• If the driver's DIE procedure submitted a new I/O request, puts an 10Q for the 
new request on a logical channel queue, unless requests of the kind submitted 
are being purged. If so, chains the SRB/IOSB for the request to the IPIB. 

• Calls the storage manager module (5) to get storage for an SRB/IOSB if a 
solicited PCI interruption occurred without other status information. Calls the 
SRB-scheduling procedure (7) to schedule the post-status module (1). which 
enters the PCI exit. (If a channel program generates PCI interruptions faster 
than the PCI exit can process them, the SRB/IOSBs are chained to the one being 
processed; the post-status module is not rescheduled.) 

• Calls the SRB-scheduling procedure (7) to schedule the post-status module 
(IECVPST) (1). 

• Exits to the return address in register 4. 

12. The PCI DIE Interface Procedure (EDIEINT2) 

92 OS/VS2 I/O Supervisor Logic 

• Entered by the initial-status procedure ( 10). 

• Checks the IOSDIE field of the IOSB for the address of a driver disabled 
interrupt exit (DIE) (address + 0). 

• If there's no DIE routine address, schedules the PCI SRB to cause asynchronous 
execution of the driver's PCI exit routine. 

• If there is a DIE routine address, branches to it to handle a PCI condition in the 
driver's code. 



Basic lOS Module 
Procs. 13, 14 

• Schedules the PCI SRB (as described above), if requested by the DIE routine. 

• Enqueues the new SRB, if requested by the DIE routine. The SRB/IOSB is 
queued directly on the LCH with an 10Q. The DIE can schedule new work in 
lOS via a return vector. This is a performance path, since the DIE doesn't have 
to issue a STARTIO macro. 

• Exits to the return address in register 4. 

13. The Channel-Restart Procedure (ERSTART1 and ERSTART2) 

• Entered by the channel scheduler procedure (1) and the interruption-handling 
procedure (9). 

• Calls the test-channel procedure (2) to start I/O operations for queued I/O 
requests associated with (a) the channel that generated an interruption 
(giving notice that it's free to do more work) and (b) channels identified in the 
IRTCHMSK field. 

• If entered for processing associated with an I/O interruption, changes the system 
mask to allow the I/O FLIH to receive another I/O interruption. If no interrup­
tion occurs, restores the system mask to its former setting. 

• Exits to the return address in register 4. 

14. The Sense Procedure (ESENSE1) 

• Entered by the initial-status procedure (10) if it finds a unit check in the CSW 
or an indication that the I/O event resulted from a sense operation (the 
UCBASNS bit will be on). 

• If entered because of a unit check, does these things; 

(a) Calls the storage manager module (IECVSMGR) (5) to get storage for an 
ERP work area, unless one has already been obtained. 

(b) IfCRH is active, calls the CRH sense hook routine (IECVCRH3) to issue 
the diagnose instruction and do the sense SIO. If CHS is active and the 
specified channel set is not connected, exits to the initial status procedure 
(10). In this case the sense is issued on the next entry when the specified 
channel set is connected. 

(c) Builds a sense command. For 2314, calls IECVXSKN to build the read­
home-address CCW, the read record zero CCW, and possibly the release 
CCW. For 3851 or 3838, calls IECVXMGN to mark the UCB and IOSB 
so no I/O is done to the device between the sense operation and the ERP 
retry. 

(d) Starts a sense operation to break the contingent connection and read sense 
information that an ERP will use in attempting error recovery. 

(e) If a unit check repeatedly prevents the sense information from being read, 
starts a sense operation to suppress data transfer and a wrong-length-
record indication, trying, at a minimum, to break the contingent connection. 

I/O Supervisor Program Organization 93 



Basic lOS Module 
Proc.IS 

(f) If the channel or device is busy when the sense operation starts, calls the 
enqueue procedure (5) to put the IOQ on the physical channel queue used 
for sense requests. Should there be no IOQ (the unit-check indication was 
unsolicited), calls the storage manager module (1 and 5) to get storage for 
an IOQ and SRB/IOSB, chains the SRB/IOSB to the IOQ, and then calls 
the enqueue procedure (5). 

(g) If a channel error or condition code 3 (non-operational) occurs on sense 
instruction, calls the unconditional reserve scheduling procedure (17). 

(h) If no device-end indication accompanied the unit check, calls the DIE 
interface procedure (11). 

(i) If entered by I/O restart (IECVRSTl, 4b) because of a pseudo unit check that 
it sets in the CSW to get control, clears the pending sense flag and the active 
sense flag (UCBPSNS and UCBASNS). This is done to indicate that another 
sense operation need not be started. 

• If entered because a sense operation completed, does these things: 

(a) Turns off the "active-sense" bit, UCBASNS, and the "pending-sense" bit; 
UCBPSNS. 

(b) Calls the DIE interface procedure (11). 

(c) Calls CCH if the status information in the CSW shows a channel error. 
Then calls the unconditional reserve scheduling procedure (17). 

(d) If an attention indication or an unsolicited device end accompanied the 
unit check, calls the attention-handling procedure (15). 

(e) For 2314, calls IECVXSKE to check for successful completion of a release 
initiated by IECVXSKN. For 3211 and 3800, calls IECVXPRE to handle 
the cancel key. 

• Exits to the initial-status procedure (10). 

15. The Attention-Handling Procedure (EATTENT1) 

94 OS{VS2 I/O Supervisor Logic 

• Entered by the sense procedure (14) and the initial-status procedure (10) if 
(a) the CSW shows an attention interruption or (b) the CSW shows a device-end 
interruption and the device wasn't busy (the UCBBSY bit is off). 

• If the attention table index (UCBATI) is non-zero, calls the storage manager 
module (IECVSMGR) (5) to get storage for an SRB/IOSB. Puts the address of 
the appropriate attention routine in the IOSPGAD field and X'08' in the 
IOSPROC field, which tells the post-status module (IECVPST) (2) what to do 
when it gets control. Calls the SRB-scheduling procedure (7) to schedule the 
post-status module (IECVPST) (1). (Note: This processing isn't done if (a) the 
attention interruption occurred as part of a solicited I/O event and (b) the 
attention table shows that the attention routine owner wants to do attention 
processing in its NRM or ABN exit.) 

• Calls the SRB-scheduling procedure (7) to schedule the post-status module (1) 
if it determines that the DA VV module (1), which gets control via the post­
status module, is waiting to process the I/O event (the UCBWDAV bit will be 
on). 

• Exits to the return address in register 4. 



.. 

16. The Functional Recovery Procedure (IECFRR) 

Basic lOS Module 
Proc. 16 

• Entered by R TM if any of the procedures of the basic lOS module took a 
program check. 

• Turns on the bits in the IRT channel mask (IRTCHMSK), for all system­
generated channels, which will cause the channel-restart procedure (13) to try to 
start I/O operations on the channels represented by those bits. 

• Checks if it was entered before, and if so, does these things: 

(a) Frees any locks held and any storage areas obtained for the I/O 
request being processed (if in fact an I/O request was processing 
at the time of the error). 

(b) Sets bits in the SDWA (via the SETRP macro) that direct RTM to write the 
SDWA in the SYSl.LOGREC data set and continue with termination 
processing. 

• Ensures that the IECFRR code is operating in the right address space. (Necessary 
because the error might have occurred in the driver's DIE procedure, in which 
case the DIE interface procedure (11) wouldn't have had a chance to restore 
addressability to the address space used to process the I/O event.) 

• Issues a SETFRR macro that gives RTM the address of this procedure, thereby 
enabling itself to be reentered if the same or another error occurs during 
recovery processing. 

• If it can acquire the SDUMP buffer, puts diagnostic data in the buffer and issues 
an SDUMP macro to write the contents of the buffer in the SYS I.DUMP data 
set. 

• If the storage manager module was in control when the error occurred (shown 
in the IRT), does these things: 

(a) Issues a SETFRR macro to delete the address of this procedure from 
RTM's stack of functional recovery procedures. 

(b) Exits to the storage manager module (10). 

• If a UCB lock is held and a channel program is active on the deVice, issues an 
HDV instruction to halt the channel program and turns off the status bits in 
the UCB that indicate an I/O operation is in progress. Releases the UCB lock 
if no I/O operation is in progress. 

• If an I/O request was being processed when the error occurred (shown in the 
IRT), does these things: 

(a) Puts X'45' in the IOSCOD field and calls the SRB-scheduling procedure (7) 
to schedule the post-status module (1). 

(b) Returns the IOQ to the storage manager module (2). 

• If CRH is active and a CRH connection is outstanding, issues a diagnose 
instruction to break the CRH connection. 

• If the error occurred in a sense module (IECVXSKN for 2314 or IECVXMGN 
for 3851 and 3838), in an end of sense module (IECVXSKE for 2314 or 
IECVXPRE for 3211 and 3800), or in an unsolicited interruption module 
(IECVXDAU for 2314 and DASD or IECVXVRU for 3330V), IECFRR sets up 
to retry at the instruction following the call of the module. For abends in sense 
modules the sense channel program is also rebuilt. 

I/O SupelVisor Program Organization 95 



Basic lOS 
Module 
Proc.17 

• If the error occurred in the channel scheduler procedure (1) in a different 
address space (due to ACR or the RESTART key being pressed) and the 10Q 
and 10SB haven't been initialized, does these things: 

(a) Frees any locks held and any storage areas obtained for the 
I/O request being processed. 

(b) Issues a SETRP macro that causes RTM to write the SDWA in the 
SYSI.LOGREC data set and continue with termination processing. 

In other cases, sets bits in the SDWA (via the SETRP macro) that direct RTM 
to write the SDW A to the SYS I.LOG REC data set and gives control to the lOS 
procedure that last had control (shown in the IRT). 

• Exits to RTM. 

Note: This procedure puts diagnostic data in the SDUMP buffer and in the 
variable area of the SDWA. The data is described in the "Diagnostic Aids" chapter 
under "Output of the Basic lOS Module (IECIOSCN)." 

17. The Unconditional Reserve Scheduling Procedure (EDETECT 1 ) 

96 OS/VS2 I/O Supervisor LoSic 

• Entered by the initial status procedure (10) if (a) a condition code 3 occurred 
on SIO and a message was not previously issued, (b) channel errors occurred on 
SIO, or (c) channel errors occurred on an interruption. 

• Entered by the sense procedure (14) if (a) a condition code 3 occurred on sense 
SIO, (b) channel errors occurred on sense SIO, or (c) channel errors occurred, -~ 
at the end of sense. -.", 

• If not a direct access device, returns to caller. 

• If channel recovery is in progress, returns to caller. 

• If the error occurred on non-sense SIO to a device which is not reserved, returns 
to caller. 

• Calls the device validation routine (IECVDV AL) to determine whether the 
device type can support unconditional reserve. If it cannot, returns to caller. 

• Calls the storage manager module (IECVSMGR) (5) to obtain an IOSB/SRB, an 
ERP workarea, a workarea and a savearea for unconditional reserve recovery. 

• Schedules the post status module (IECVPST) with the IOSPROC value set to the 
value for unconditional reserve recovery. 

• Returns to caller to continue normal handling of the error. 



BuDd Reserve 
Table Module 
Procs. 1,2,3 

Build Reserve Table Module (lECVBRSV) 

1. The Set Up Procedure 

• Entered by I/O Restart Module IECVIRST and the hot I/O recovery module 
IECVHREC. 

• Establishes a functional recovery routine. 

• Issues the GETMAIN macro to obtain storage for a work area. 

2. The Build Reserve Table Routine 

• Entered at the completion of the set up procedure (1). 

• Scans the input reserve table chain to point to the last reserve table segment. 

• Scans all devices on the specified path for reserve status. 

• Builds a segmented table that contains an entry for each reserved device on the 
specified path. 

• Returns to caller. 

3. The Functional Recovery Routine 

• RTM enters the FRR routine when an error is encountered in IECVBRSV. 

• Returns resources to the system. 

• Returns to RTM and percolates. 

I/O Supervisor Program Organization 97 



CCW Translator 
Module 
Procs.l,2 

CCW Translator Module (IECVTCCW) 

1. The Routing Procedure (IECVTCCW) 

• Entered by lOS drivers and other system components that require one of the 
following: 

(a) A copy of a channel program in fixed storage, the fixing of buffers to which 
the channel program points, and the substitution of real storage addresses in 
the copied CCWs for virtual storage addresses. (This service is known as 
channel-program translation.) 

(b) The address of a translated CCW (one containing a real storage address) that 
corresponds to a specified untranslated CCW (one containing a virtual 
storage address). 

(c) The address of an untranslated CCW that corresponds to a specified 
translated CCW. 

(d) The unfixing of pages that were fixed in translating a channel program. 

• EXits, as directed by the TCCWOPTN field of the TCCW (translation control 
block), to another procedure, where the appropriate processing is done. These 
are the possible values in the TCCWOPTN field and the associated exits: 

(a) X'OO ': Goes to the CCW translation procedure (2). 

(b) X'04 ': Goes to the address retranslation procedure (9). 

(c) X'08 ': Goes to the unfix-and-free procedure ( I 0). 

(d) X'OC': Means that the caller entered before, without giving this module 
enough storage to work with, and is reentering with supplementary storage. 
Goes to the address in the TCCWSA VE field, the address at which the lack 
of storage was detected. 

(e) X'IO ': Goes to the single-address translation procedure (8). 

2. The CCW Translation Procedure (TCCWIl 00) 

98 OS/VS2 I/O Supervisor Logic 

• Entered by the routing procedure (I) to translate a channel program. 

• For each CCW in the channel program, does one of the following: 

(a) Obtains the pointer to the CCW operation table from the DDT (device 
descriptor table) associated with the device. 

(b) Calls the main TIC procedure (4) if the command code indicates the CCW 
is a TIC (transfer-in-channel CCW). 

(c) If the CCW contains a virtual storage address, calls the page-[lX procedure 
(3) to fix the page (or pages) containing this address for a length specified 
in the CCW count field. Copies the CCW into the BEB (beginning-end block). 
a block of fIXed storage supplied by the caller of the routing procedure (I) 
and pointed to by the TCCWBEB field. If the CCW contains a virtual 
storage address, puts the corresponding real storage address in the copy. 

• Calls the IDAL procedure (7) if a buffer crosses a page boundary. 

• Calls the TIC insertion procedure (5) if the BEB is one CCW short of being full 
and more than one CCW remains to be translated. 

.. 



CCW Translator 
Module 
Procs.3,4 

• Calls the unfix and free procedure (10) if there is an error in the channel 
program being copied. 

• Exits to the TIC resolution procedure (6) when the last CCW has been 
processed, allowing that procedure to resolve addresses that it wasn't able to 
resolve during previous calls from the main TIC procedure (4). 

3. The Page-Fix Procedure (TCCWMOOO) 

• Entered by the CCW translation procedure (2) to fix the page (or pages) con­
taining a buffer. 

• Examines a list-called a fix list-of pages previously fixed. If the buffer is within 
one or more of those, returns to the CCW translation procedure (2). Otherwise, 
does the following: 

(a) Adds the virtual storage address of the page (or pages) to be fixed to the 
list. 

(b) Calls the system's page-fix routine to do the page fixing. 

• If a new entry can't be added to the fix list for lack of space, exits to the caller 
of the routing procedure (1) with a return code of X'OC' in register 15, request­
ing additional storage. 

• If the system's page-fix routine indicates that it could not fix a page, calls the 
unfix-and-free procedure (10). 

• Exits to the CCW translation procedure (2). 

4. The Main TIC Procedure (TCCWMIOO) 

• Entered by the CCW translation procedure (2) each time it encounters a TIC in 
the channel program it's translating. 

• Copies the TIC from the original channel program into the BEB. 

• Exits to the TIC insertion procedure (5) if (a) the TIC is a "no-op" (it points to 
the CCW that follows it in the channel program) and (b) there is room for one 
more CCW in the BEB but more than one to be copied. 

• Exits to the caller of the routing procedure (1) with a return code of X'OC' in 
register 15, requesting another BEB, if (a) the TIC is preceded by a status­
modifier CCW (one that may cause the channel to skip the TIC and execute the 
next CCW) and (b) there is room for two more CCWs in the BEB but more than 
two to be copied. 

• If the TIC is either a "no-op" or "resolvable" (one that points to an already­
copied CCW), does the following: 

(a) Changes the pointer in the TIC to point to the real storage address of the 
copy. 

(b) Calls the TIC resolution procedure (6), which determines whether any 
CCWs have been copied since it was last entered that would allow 
"unresolved" TICs to be resolved. 

• Otherwise, builds an "unresolved TIC list," if one doesn't already exist, and 
enters in it the address of the TIC. 

• Exits to the CCW translation procedure (2). 

I/O Supervisor Program Organization 99 



ccw Translator 
Module 
Procs. 5,6,7,8 

5. The TIC Insertion Procedure (TCCWM 300 ) 

• Entered by the CCW translation procedure (2) and the main TIC procedure (4) 
if they find that the BEB is one CCW short of being full and more than one CCW 
remains to be translated. 

• Exits to the caller of the routing procedure (1) with a return code of X'OC' in 
register 15, requesting another BEB. When control returns (from the routing 
procedure (1), does one of the following: 

(a) Fills the last CCW-space with a TIC that points to the BEB, if the caller 
was the CCW translation procedure (2). 

(b) Overlays the last TIC in the old BEB with one that points to the new BEB, 
if the caller was the main TIC procedure (4). 

• Exits to the CCW translation procedure (2). 

6. The TIC Resolution Procedure (TCCWM200) 

• Entered by the CCW translation procedure (2) and the main TIC procedure (4). 

• Scans the list of "unresolved" TICs-those that still point to CCWs that had not 
yet been copied when this procedure was last entered. Determines which, if any, 
of the unresolved TICs can now point to CCWs in the BEB, and changes pointers 
accordingly. 

• Exits to the main TIC procedure (4) if that is its caller, or to the caller of the . .~ 
routing procedure ( 1). In the latter case, channel program translation is assumed ""'" 
to be complete. 

7. The IDAL Procedure (TCCWM400) 

• Entered by the CCW translation procedure (2) if it finds that a buffer crosses 
a page boundary. 

• Puts into the IDAL ("indirect-address" list) an entry containing the real storage 
addresses of the buffer and the pages it crosses. 

• Replaces the buffer address in the CCW with the address of the IDAL entry and 
turns on the "indirect" bit in the CCW, indicating that the CCW points to an 
IDAL entry. 

• When it's necessary to get storage for an IDAL-the first entry is being created 
or storage allocated to the IDAL has been used up-exits to the caller of the 
routing procedure (1) with a return code of X'OC' in register 15, requesting 
more storage. 

• Exits to the CCW translation procedure (2). 

8. The Single-Address Translation Procedure (TCCWXOOO) 

100 OS!VS2 I/O Supervisor Logic 

• Entered by the routing procedure (1) to obtain for its caller the virtual storage 
address of a translated CCW. (The virtual storage address of the corresponding 
untranslated CCW is provided in register 0.) 

• Searches the BEBs that contain the translated channel program for a CCW that 
corresponds to the untranslated CCW. 



-
October 25, 1979 CCW Translator 

Module 
Procs.9,10 

• Exits to the caller of the routing procedure (1) with a return code of X'04' in 
register 15 if the BEBs con tain no corresponding CCW, or with a return code of 
o in register 15 if the CCW was found. In the latter case, the virtual storage 
address of the translated CCW is returned in register O. 

9. The Address Retranslation Procedure rTCCWROOO) 

• Entered by the routing procedure ( 1) to obtain for its caller the virtual storage 
address of an un translated CCW. (The virtual storage address of the correspond­
ing translated CCW is provided in register 0.) 

• Determines whether register 0 actually points to a translated CCW in a BEB. If 
it does, calculates the virtual storage address of the corresponding untranslated 
CCW, puts the address in register 0, and puts a return code of X'OO' in register 
15. Otherwise, puts a return code of X'04' in register 15. 

• Exits to the caller of the routing procedure (1). 

10. The Unfix-and-Free Procedure rTCCWUOOO) 

• Entered by the routing procedure (1) and the page-fix procedure (3). 

• Calls the system's page-fix routine to unfix pages that were fixed in 
translating a channel program. 

• Chains the BEBs, FIX lists, and IDALs together and stores the address of the 
chain in register O. 

• Puts one of these return codes in register 15: 

(a) X'04', if entered by the page-fix procedure (3), indicating that an error 
occurred during page fixing. 

(b) X'08', if entered by the routing procedure (1). 

• Exits to the caller of the routing procedure (1). 

I/O Supervisor Method of Operation 101 



CRH/CHS Module, Basic 
Proc. 1 

Page of SY26-3823-5 
As Updated October 25,1979 
By TNL SN28-4683 

CRH/CHS Module, Basic (IECYCINT) 

Note: For overviews of CRH/CHS flow, refer to the CRH diagrams, figures 11, 
12, and 13. 

1. CRH/CHS Activation Procedure (IECVCRHA) 

102 OS!VS2 I/O Supervisor Logic 

• Entered from the ACR-call procedure (ACRPROC) in the I/O restart module 
(IECVRSTI) on alternate CPU recovery, or from the VARY processor 
(IEEVCPU) when the operator issues the first VARY channel online command 
for a channel attached to an offline processor. Runs disabled. 

• If system is not a 168 MP or a processor which supports CHS, clears the pointer 
to the CRH/CHS activation procedure in the 10COM extension. Returns to the 
caller with an indication that the system does not support CRH or CHS. 

• If CRH or CHS is already active, returns to the caller with an indication that 
CRH or CHS is already active (RC = 04). 

• For CHS only, issues a disconnect channel set instruction in order to force the 
channel set attached to the inoperative processor into the disconnected state. 
The channel set is then connected to the operative processor. 

• For CHS only, if only one channel set contains online channels, issues message 
IEA919I ("CHANNEL SET x SWITCHED TO PROCESSOR y"), then returns to 
the caller with a normal return code (RC=O). 

• Initializes the CVTCRCA field of the CVT to point to the CRH communication 
area (CRCA) and initializes the CRH communication area. (See "Connections 
Between Principal Data Areas" in the "Data Areas" chapter.) 

• Initializes a field in the TIMER SLIH to point to IECVCRHS. 

• Changes the pointer in the I/O FLIH to point to the CRH SLIH procedure (6) 
(IECVCINT) or the CHS SLIH procedure (lECVCSSI) instead of to the I/O 
SLIH (IECINT), so that the CRH or CHS interruption handler will get control 
before the lOS interruption handler. 

• For CRH only, activates hooks in mainline lOS so that the CRH hook 
procedures get control when lOS starts an I/O operation to a channel of the 
inoperative processor. 

• For CRH only, processes all UCBs that indicate that their devices were last 
started for the inoperative processor. Sets the UCBCPU field to the operative 
processor ID, sets the UCBIORST flag to indicate that the last path started to 
the device was through the inoperative processor, indicates that the device is 
reserved to the inoperative processor if the device was reserved to that processor, 
and sets the "sense command needed" flag (UCBCRHSN) in the UCB if the VCB 
has an 10Q on the sense logical channel queue for the inoperative processor. 

• Schedules an SRB which causes the CRH/CHS timer pop procedure (4) to be 
dispatched. This is done so that the CRH interruption handler (IECVCINT) is 
forced to periodically poll (solicit interruptions from) the inoperative processor's 
channels for pending interruptions, or so that the CHS interruption handler 
(IECVCSSI) is forced to periodically connect the disconnected channel set. 

• Issues message IEA970I CHANNEL RECONFIGURA TION HARDWARE 
ACTIVATED. 

• Returns to the caller (ACRPROC or the VARY processor) with a normal return 
code (RC = 0). 



CRH/CHS Module, Basic 
Proes.2,3,4 

I 2. CRH/CHS Deactivation Procedure (IECVCRHD j 

• Entered by the VARY processor (IEEVCPU) when the operator is varying 
offline the last channel of the inoperative processor while CRH is active, varying 
offline the last channel of any channel set when CHS is active, or varying online 
the inoperative processor while CRH or CHS is active. This procedure runs 
disabled. 

• Cleans up by clearing the pointer (CVTCRCA) to the CRH communication 
area, takes the CRH hooks out of mainline lOS, restores the I/O FLIH pointer 
to point to the I/O SLIH (IECINT), and for CRH clears three UCB flags 
associated with devices whose channels belonged to the inoperative processor. 
Also, for CRH, updates the UCBCPU field to reflect the processor through which 
the last path I/O was started. (The flags previously indicated that the devices' 
last path was started to the inoperative processor, that the devices were reserved 
to the inoperative processor, and that a sense operation was needed or issued for 
devices or channels connected to the inoperative processor.) 

• Issues message IEA9721 CHANNEL RECONFIGURATION HARDWARE 
DEACTN ATED. 

• Returns to the caller with a normal (zero) return code. 

, 3. CRH/CHS STIDC Procedure (IECVCRHVj 

• Entered by the V ARY processor when the operator issues a VARY CHANNEL 
command to place online a channel formerly connected to the inoperative 
processor. The procedure uses the CRH or CHS feature to access the channel 
and store the channel ID and condition code from the STIDC (store channel ID) 
instruction, so that the VARY processor can determine whether the channel can 
be brought online. Procedure runs disabled. 

For CRH issues the diagnose instruction to access the channel whose address 
VARY passed in register 1. For CHS issues the connect channel set instruction. 

• Issues the STIDC instruction and puts the condition code in the high·order byte 
of register 1 for use by the VARY processor. 

• For CRH, again issues the diagnose instruction, this time to break the CRH con­
nection to the channel. For CHS issues the connect channel set instruction to 
reconnect the original channel set. 

• Exits to the VARY processor to complete the processing of the VARY channel 
online command. 

I 4. CRH/CHS Timer Pop Procedure (IECVCRHTj 

I • 

Is dIspatched under an SRB scheduled by CRH/CHS activation or by 
IECVCRHS. 

For CRH, if an I/O interruption has not occurred in the last 2 seconds, issues an 
10SINTRP macro for unit 600 to simulate an I/O interruption. Then the CRH 
SLIH polls for pending interruptions on the inoperative processor at least once 
every two seconds. The interruption is simulated on an arbitrary address (600) 
with zero status in the CSW. Then calls the TIMER SLIH procedure 
(IEAQTEOO) to queue a TQE, causing a timer interrupt in 2 seconds. 

I/O Supervisor Program Organization 103 



CRH/CBS Module, Basic 
Procs.5,6 

Simulates interruptions at timed intervals if an interrupt hasn't occurred in that 
interval, to force the CRH interrnption handler (IECVCINT) (6) to poll each 
channel of the inoperative processor, one at a time, for a pending I/O interruption. 
The operative processor processes each I/O interruption as it is taken. 

I · For CHS, if an I/O interruption has not occurred in the last 2 seconds, CHS 
connects the disconnected channel set. On exit from the timer pop procedure, 
the system will be enabled, allowing outstanding interruptions to be presented. 

• If an I/O interruption has occurred in the last 2 seconds, calls IEAQTEOO to 
queue a TQE that causes an interruption 2 seconds after the time of the last 
I/O interruption. 

• Exits to the dispatcher, since the procedure was executed asynchronously. 

I 5. CRH/CHS Schedule SRB Procedure (lECVCRHS) 

• Entered by TIMER SLIH, IEAOTIOO, when a timer interruption occurs for the 
TQE queued by IECVCRHT. 

• Schedules an SRB to dispatch IECVCRHT. 

• Returns to IEAOTIOO. 

6. CRH Second Level Interruption Handler (IECVCINT) 

104 OS/VS21/0 Supervisor Logic 

• Entered by the I/O FLIH on an I/O interruption or by IECIHIO on a channel 
logout pending condition. 

• Stores the current time in the CRH communication area (CRCA), in order to 
record the time of the latest interruption so that the CRH/CHS timer pop 
procedure (4) can determine whether to simulate another interuption (See the 
foregoing description of the CRH/CHS timer pop procedure (4).) 

• If the current interruption occurred from a channel connected through CRH 
(Le., a channel belonging to the inoperative processor), updates location 
FLCIOAA in low storage so that it contains the actual device address. (The 
actual interruption, if received through the CRH, will appear to have come from 
channel 6.) 

• If the interruption is for the operative processor, saves control register 2, prior to 
altering its contents. 

• Verifies that the device address is valid. 

• If entry was from IECIHIO, indicates that the last I/O operation for the device 
was through the CRH hardware connection, breaks the hardware connection, 
corrects the channel address at location FLCIOAA (as stated above), and calls 
the Halt I/O entry point of IECINT. IECINT returns control to the caller of 
IECIHIO. 



October 25, 1979 CRH/CHS Module, Basic 
Procs. 7,8 

• If the device address is invalid and the interruption was caused by a channel 
connected through CRH, breaks the hardware connection via the diagnose 
instruction, indicates that the interruption is from an invalidly addressed device 
and was received through the hardware connection, indicates that the 
connection has been broken, restores control register 2 with its saved value, and 
goes to the I/O SLIH to handle the invalid-address condition. 

• If the interruption occurred on a path other than the expected path (condition is 
called a "channel burp"), indicates this condition in the CRH communication 
table (flag CRCACCH is turned on), clears the CSW to prevent further processing 
of this interruption by the I/O SLIH, and branches to the I/O SLIH to restart any 
possible queued I/O requests. 

• Issues the Diagnose instruction to break the CRH hardware connection, 
indicates that the connection is not outstanding, restores control register 2 if it 
was altered to accept an interruption through CRH, and branches to the I/O SLIH 
(IECINT) to process the interruption. 

• On return from IECINT, alters control register 2 to allow interruptions only from 
the channel-6 interface. 

• Issues the diagnose instruction to each enabled channel connected to the in­
operative processor and enables in order to accept any pending interruptions 
from those channels. 

• Restores control register 2, issues the diagnose instruction to break the CRH 
hardware connection, and returns to the [/0 FLIH. 

7. CHS Second Level Interruption Handler (lECVCSSI) 

• Entered by the I/O FLIH on an 1/0 interruption or by IECIHIO on a channel­
logout-pending condition. 

• Stores the current time in the CRH communication area (CRCA), in order to 
record the time of the latest interruption so that the CRH/CHS timer pop 
procedure (4) can determine whether to simulate another interruption. (See 
the foregoing description of the CRH/CHS timer pop procedure (4)). 

• On return from IECINT, connects the disconnected channel set and enables 
in order to accept any pending interruptions from these channels. 

• If no interruptions occur, disables and returns to the 1/0 FLIH. 

8. CRH/CHS Activation FRR Procedure (IECCRHAF) 

• Called by the RTM if an error occurred while the CRH/CHS activation 
procedure (IECYCRHA) was running. 

• Immediately on entry, deactivates CRH function by zeroing the CYT poillter to 
the CRH communication area (CVTeRCA). 

• If this is a reentry from an error in the fRR itself, or the retry to the entry point 
in [ECYCRHA failed, clears the pointer to IECYCRHA (IOXCRHA) in the 
[OCOM extension, thus making CRH unavailable until the next IPL. Returns to 
RTM requesting FRR percolation. 

• Otherwise, issues message IEA971 I: "Unable to activate channel reconfiguration 
hardware. " 

I/O Supervisor Method of Operation 105 



CRH/CHS Module, Basic 
Procs.9,10,11 

Page of SY26-3823-5 
As Updated October 25,1979 
By TNL SN28-4683 

• Calls backout procedure (I 1) which attempts to undo whatever IECYCRHA did 
before the error occurred. 

• Returns to RIM with request to retry at entry point CRHARIRY in 
IECYCRHA. 

• At entry point CRHARIRY sets up a return code "unable to activate CRH" 
(RC = 8) and returns to the caller of IECYCRHA. 

9. CRH/CHS Deactivation FRR Procedure (IECCRHDF) 

• Called by RIM if an error occurs while IECYCRHD is running. 

• Immediately on entry, deactivates CRH/CHS function by zeroing the pointer 
(CYICRCA) to the CRH communications area (CRCA). 

• If this is a reentry from an error in the FRR itself, or if retry at CRHDEXII 
failed, returns to RIM with a request for FRR percolation. 

• Otherwise, calls the backout procedure (11) to try to complete deactivation of 
CRH. 

• Returns to RIM with request to retry at retry entry point CRHDEXII in 
IECYCRHD. 

10. CRH/CHS SLIH FRR Procedure (IECCINTF) 

• Is called by RIM if an error occurs while IECYCINI or IECYCSSI is running. 

• Calls the lOS mainline FRR (IECFRR) to post the user with an I/O completion 
code of X'45'. 

• lOS mainline FRR returns to RIM with retry request to lOS channel scheduler 
to start queued I/O requests. 

11. Backout Procedure (BACKOUT) 

106 OS/VS2 I/O Supervisor Logic 

• Called as a subroutine by the CRH/CHS deactivation procedure (IECYCRHD) 
or by recovery (either IECCRHAF or IECCRHDF) to deactivate CRH/CHS. 

• If pointer to I/O SLIH in I/O FLIH points to CRH SLIH (IECYCINI) or CHS 
SLIH (IECYCSSI), restores pointer to the I/O SLIH (IECINI). 

• If hooks have been activated in lOS mainline (IECIOSCN), removes hooks. 

• For CHS only: 

I. Reconnects the appropriate channel set to the operational processor 
(processor x). 

2. Processor x issues an RISGNL macro which causes processor x to stop ex· 
ecuting and the other processor (processor y) to try to execute. If processor 
y has been varied online, it will now connect its own channel set. 

3. RISGNL sends back a return code to processor x to indicate whether or not 
processor y is operational. 

• For CRH only, scans UCBs to turn off CRH flags and update processor address 
field (UCBCPU) to reflect the processor through which the last-path I/O was 
started. 

• Returns to caller. 



12. Connect Channel Set Procedure (lECCONCS) 

CRR/CRS Module, Basic 
Proc.12 
CRR Rook Module 
Proc. 1 

• Entered when a channel set should be connected and CHS is active, by way of 
pointer IOCCONCS in the lOS communications table (IOCOM). 

• If CHS is not active or the requested channel set is not valid, control returns 
to the user with a non-zero return code. 

• The currently connected channel set ID is saved, and control register 2 is loaded 
with the value specified in the CST for the requested channel set. 

• The connect channel set instruction is issued for the requested channel set. If 
the condition code is zero, control returns to the user with a zero return code. 

• If the requested channel set cannot be connected, the original channel set is 
reconnected and its control register 2 value is reloaded. Control returns to the 
user with a non-zero return code. If for some reason no channel set can be 
reconnected, the system is placed in a X'06B' wait state. 

I CRH Hook Module (lECVCRHH) 
Note: Not used by CHS. 

1. The Test Channel Hook Procedure (IECVCRHl) 

• Entered when the test channel procedure (ETCH]) in IECIOSCN cannot find a 
path to start, and attempts to shoulder tap to the inoperative processor. The 
hook gives control to IECVCRHI instead. 

• If the I/O request was a guaranteed device path (GDP) request, tries to use the 
requested path. If GDP is unavailable or the channel is not enabled, calls the 
SRB scheduling procedure ESCHDIOI (7 in the basic lOS module) to terminate 
the I/O request. 

• If the device to be started is reserved, ensures that the I/O operation starts on 
the same channel as that for the last path started for that device. 

• Ensures that the channel is available for the path chosen. 

• Ensures that the path chosen is online. 

• When IECVCRHI finds an available path from the inoperative processor, issues 
a diagnose instruction to make the CRH connection to the desired channel. 
Issues a TCH instruction to test the availability of the path. 

• If no path is available, issues a diagnose instruction to break the CRH connection 
and returns to lECIOSCN. lECIOSCN will attempt to start another 1/0 request. 

• If a path is available, calls the required device-dependent SIO procedure to start 
the device. 

• Issues a Diagnose instruction to break the CRH connection, and returns to 
IECIOSCN. 

I/O Supervisor Program Organization 107 



CRH Hook Module 
Procs.2,3 

2. The SIO Hook Procedure (IECYCRH2) 

• Entered via a hook after an SIO or SIOF instruction in the basic lOS module 
(IECIOSCN) SIO procedure (3). 

• If the SIO was not issued across a CRH connection (indicated by CRCADIAG 
off), returns to lECIOSCN. 

• If the CSW was stored (condition code is "1 "), turns on UCBCRHSN flag in the 
device's UCB to indicate that if a sense command is needed, it must be issued 
across the CRH connection. 

• If the SIO is successful (condition code is "0"), turns on UCBIORST in the 
device's UCB to indicate that the last path started was through the CRH 
connection. 

• Updates UCBCHAN field to indicate the actual device address (not the address 
that reflects the channel 6 interface used by CRH). 

• Returns to lECIOSCN. 

3. The Sense Hook Procedure (IECYCRH3) 

108 OS!VS2 I/O Supervisor Logic 

• Entered from IECIOSCN,just before the basic lOS module (IECIOSCN) sense 
procedure (14) issues the sense SIO instruction. 

• If the sense operation must be started across a CRH connection (UCBCRHSN 
on), and if there is no outstanding CRH connection (CRCADIAG off), issues a 
diagnose instruction to make the CRH connection to the required channel. 

• Starts the sense operation (in place of the SIO issued by the basic lOS module 
(IECIOSCN) sense procedure (14) and saves the SIO condition code. 

• If the SIO is successful (condition code is "0"), turns offUCBCRHSN to indicate a 
CRH sense operation is no longer required. Turns on UCBIORST to indicate that 
the last path started to the device was through a CRH connection. 

• If a CRH connection is outstanding (CRCADIAG on), issues a diagnose 
instruction to break the CRH connection. 

• Restores the sense SIO condition code and returns to lECIOSCN. 



DAVVModule 
Proc.l 

D A VV Module (IECVD A VV) 

1. The Volume Verification Procedure (IECVDAVV) 

Entry 

• Entered on one of these paths: 

Path A 

Basic lOS 
module (7, 8) 

I 

Entry I 

+ 
Post-status 

module (1,2) 

• 
Exit 

effectors 

• ERP 
loader 

t 

Path B 

Basic lOS 
module (20, 12) 

I 

This procedure (if post-status fmds X'I 0' 
in the lOS PROC field and UCBPGFL is on 

This procedure (if the ERP loader finds 
X'IO' in the 10SPROC field) 

Path A is taken if the operator readies a direct-access device and a driver sub­
sequently submits an I/O request for that device. Path B is taken if an I/O 
interruption is received that resulted from an I/O request made during an earlier 
execution of this module on Path A-or if an I/O interruption is received because 
this module asked the operator to switch volumes, and in doing so, he readied 
the device again. Entry 2 is used if the unsolicited device end is from a page 
pack and runs in SRB mode. Entry 1 is the normal non-SRB mode entry. 

• If entry 1, issues an ESTAE macro that gives RTM the address of the 
EST AE recovery procedure (4 J. 

• If entry 2, issues a SETFRR macro that gives RTM the address of the FRR 
recovery procedure (5). 

For both entry 1 and entry 2 -

• Determines whether it was entered on Path A or B. If the latter, branches to 
the interruption-handling procedure (2). 

• Builds a channel program to read the volume label on the device that was 
readied. 

I/O Supervisor Program Organization 109 



DAVV Module 
Procs. 2,3 

• Turns on the IOSERR bit and, if entry 1, issues an SVC 15 instruction. The 
SVC interrupt handler gives control to the post-status module (3), 
which issues a ST ARTIO macro for the channel program. If entry 2, 
returns directly to post-status module (3) that issues a STARTIO macro 
for the channel program, then exits to the dispatcher (IEAVEDSO). 

• Exits to the dispatcher when the SVC interruption handler returns. 

2. The Interruption-Handling Procedure (DA VINT) 

• Entered by the volume verification procedure (1). 

• If the error-handling procedure (3), during an earlier execution of this module 
issued messages to switch volumes, this procedure issues an SVC 87 to delete 
those messages from display devices and returns to the volume verification 
procedure (1) to build another channel program. 

• Determines whether the volume label was read successfully. If it was, compares 
it to the label in the VCBVOLID field (the label of the volume the system 
expects to be mounted). If it wasn't read successfully, branches to the error­
handling procedure (3). 

• If the labels match, does the follOWing: 

(a) Gets the VCB lock and turns off the VCBQISCE and VCBDA VV bits. Turns 
on a bit in the IRTCHMSK field that shows a channel is available to the 
device. (These actions cause the basic lOS module (13) to start driver­
requested I/O operations to the device again.) 

(b) Turns off the IOSERR bit and for entry 1, issues an SVC 15 instruction. 
The SVC interrupt handler gives control to the post-status module (3), 
which frees the IOS-created SRB/IOSB and the ERP work area. If entry 2, 
returns directly to post-status module (3) that frees the IOS-created 
SRB/IOSB and ERP work area, then exits to the dispatcher (lEA VEDSO). 

(c) Exits to the dispatcher when the SVC interruption handler returns. 

• If the labels don't match, exits to the error-handling procedure (3). 

3. The Error-Handling Procedure (DAVERR) 

110 OS!VS2 I/O Supervisor Logic 

• Entered by the interruption-handling procedure (2). 

• If entered because the volume labels don't match, does the following: 

For entry 1 -

(a) Issues messages using WTO macros, asking the operator to demount the 
currently-mounted volume and mount the volume identified in the VCB. 

(b) Acquires the VCB lock and puts the address of the SRB/IOSB in the 
VCBIOQ field. Turns on the VCBWDAV bit, which directs the basic lOS 
module (15) to route control to this module, using the SRB/IOSB pointed 
to by VCHIOQ, when the device presents the expected I/O interruption. 

(c) Exits to the dispatcher. 



For entry 2-

DAVVModule 
Proc.4 

(a) Acquires the UCB lock and puts the address of the SRB/IOSB in the 
UCBIOQ field. Turns on the UCBWADV bit, which directs the basic 
lOS module (15) to route control to this module, using the SRB/IOSB 
pointed to by UCBIOQ, when the device presents the expected I/O 
interruption. 

(b) Returns to post-status module (6)to load a restartable wait state, then 
exits to the dispatcher (IEAVEDSO). 

• If entered because the volume label wasn't read successfully, does the following: 

(a) Finds out if the error can be corrected with the operator's intervention. If 
so, and if entry 1, branches to a procedure of the ERP loader, which 
locates and enters the ERP message writer, IGE0025C. This module writes 
the "intervention-required" message to the operator. For entry 2, returns 
to post-status module (6) to load a restart able wait state, then exits to 
the dispatcher (IEAVEDSO). 

(b) For entry 1, if the I/O operation can be retried, requests it retry with an 
SVC 15 instruction. If the volume label isn't read after ten such requests, 
issues two messages with WTO macros: one informs the operator of an 
uncorrectable I/O error; the other tells him to mount the volume identified 
in the UCB. 

For entry 2, if the I/O operation can be retried, returns to post-status 
procedure (3). If the volume label is not read after ten such requests, 
returns to post-status module (6) to load a restartable wait state, then 
exits to the dispatcher (lEA VEDSO) after the restart occurs. 

(c) Exits to the dispatcher. 

4. The EST AE Recovery Procedure (DA VESTA) 

• Entered by RIM if any of the procedures of the DA VV module took a 
program check. 

• If the error-handling procedure (3) issued any messages, issues an SVC 87 
instruction to delete them from display devices. 

• If an uncorrectable page-fault error occurred, prevents the processor it's running 
on from receiving interruptions and puts the system into an X'022' wait state. 

• For restart of the processor if the SDUMP buffer is available, issues an SDUMP 
macro to write the contents of the buffer in the SYSl.DUMP data set. 

• Sets bits in the SDWA (via the SETRP macro) that direct RTM to (a) record 
the contents of the SDWA in the SYSl.LOGREC data set and (b) return 
control to this procedure to avoid a continuation of termination processing. 

• Branches to RIM, and when RTM returns, issues an SVC 15 instruction. 

• Exits to the dispatcher with an SVC 3 instruction when the SVC interruption 
handler returns. 

Note: This procedure puts diagnostic data in the SDUMP buffer and in the variable 
area of the SDW A. The data is described in the "Diagnostic Aids" chapter under 
"Output of the DA VV Module (IECVDA VV)." 

I/O Supervisor Program Organization 111 



DAVVModule 
Proc.S 
Hot I/O Detection Module 
Proc.l 

5. The FRR Recovery Procedure (DAVFRR) 

• Entered by RTM if any of the procedures of the DA VV module took a program 
check on entry 2. 

• If the SDUMP buffer is available, issues an SDUMP macro to write the contents 
of the buffer in the SYSl.DUMP data set. 

• Sets bits in the SDWA (via the SETRP macro) that direct RTM to (a) record the 
contents of the SDWA in the SYSl.LOGREC data set and (b) retry by returning 
to post-status module (3). 

• Branches to RTM. 

Note: This procedure puts diagnostic data in the SDUMP buffer and in the 
variable area of the SDWA. The data is described in the "Diagnostic Aids" chapter 
under "Output of the DA VV Module (IECVDA VV). 

The Hot I/O Detection Module (lECVHDET) 

1. The Check Interruption Procedure 

112 OS!VS2 I/O Supervisor Logic 

• Entered from various points within the interruption handling procedure (9) of 
the basic lOS module. These points are called detection points and are loca­
tions where a p.lrticular interruption has been determined to be a type that may 
indicate a hot I/O condition. These types of interruptions may be as follows: 

availability interruptions (control unit end, control unit busy, channel 
available) 

interruptions without channel errors on non-SYSGENed devices 

interruptions of unsolicited status without channel errors on SYSGENed 
devices 

interruptions for channel data check, channel control check, and/or interface 
control check. 

• Determines if an I/O operation has been successfully started on this channel 
since the last time hot I/O detection was entered for this channel. If so, the 
reset procedure (2) is entered. This is done to minimize false detections; as long 
as the channel is still usable and the system can progress, there has been no 
impact from the device. 

• If no operation has been successfully initiated, check if the current interruption 
is a repeat of the previous entry for this channel. This requires that the interrup­
tion types (cha.mel, control unit, or device) be the same, and that the device 
addresses are the same for device-type interruptions. If not a repeat, the reset 
procedure (2) i~ called. 

• For repeated status, the repeat count is increased. If the time interval between 
this entry and the previous one for this channel exceeds the value specified in 
the hot I/O threshold table (HIDT), the timeout repeat count is also increased. 

• The repeat count and the timeout repeat count are compared with the 
appropriate threshold values in the HIDT. If a threshold has been exceeded, the 
schedule recovery procedure (3) is entered. Otherwise control is returned to 
lOS. 



2. The Reset Procedure 

Hot I/O Detection Module 
Procs.2,3 
Hot 1/0 Recovery Module 
Procs.l,2 

• Entered when the interruption is not a repeat or following a successful SIO on 
the channel. 

• The status collection data area (SCD) entry for this channel is reset to reflect the 
new condition and the counts are set to zero. 

• Control returns to basic lOS module (IEClOSCN). 

3. The Schedule Recovery Procedure 

• Entered when a value in the HIDT table exceeds the threshold value. 

• Disables interruptions from the affected channel in the CST, CAT, and control 
register 2. 

• Obtains an SRB from SQA and schedules the hot I/O recovery module 
IECVHREC. 

• Returns to the basic lOS module (IEClOSCN). 

Hot I/O Recovery Module (lECYHREC) 

1. The Set Up Procedure 

• Hot I/O detection module (IECVHDET) schedules IECVHREC as an SRB. 

• Establishes an FRR. 

• Obtains a workarea using the GETMAIN macro and initializes this workarea. 

• Disables and sets the lOS 'super' bit to indicate disabled without a lock. 

2. The Hot Device Recovery Routine 

• Entered at the completion of the set up routine (1) if the status collection data 
area (SCD) indicates that the condition detected was a hot device and that the 
device was sysgened and not a direct access (DASD) device. 

• Calls module IECVBRSV to build a table of all the reserved devices on the same 
channel as the hot device. 

• Calls internal procedure SETUPBUF to set up the LOGREC buffer for 
recording. 

• Initializes the disabled console communication block (OCCB) and the message 
buffers for message IEA066A (restartable wait state X'066') if there are no 
reserves on the same channel, or message IEA067A (restartable wait state 
X'067') if there are reserves on the same channel. 

• Calls module IEEVLDWT to issue a message to the operator if the console is 
available or else load a restartable wait. 

I/O SupeJVisor Program Organization 113 



Hot I/O Recovery Module 
Proc.3 

• Examines the operator response to the message or restartable wait state as 
follows: 

(a) Operator response indicates that nothing was removed from the 
configuration. 

• No action is required. 

(b) Operator response indicates that a device was removed from the 
configuration. 

• Device is boxed by calling module IECVRRSV. 

(c) Operator response indicates that a control unit was removed from the 
configuration. 

• All devices removed by the operator are boxed by calling module 
IECVRRSV. 

(d) Operator response indicates that the channel is to be removed from the 
con figura tion. 

Sets indicator that the channel is not to be enabled. 

Calls subroutine CLRCH (5) to re-reserve devices and re-drive I/O as 
required. 

If CLRCH routine was successful (channel was reset and the I/O 
redriven) issues message IEA07lE using the RECORD macro to indicate 
that the channel was forced offline and disabled. 

• If the operator response was other than to remove the channel, then the channel 
is enabled for interruptions. 

• A channel available interruption is simulated by using the 10SINTRP macro to 
redrive I/O for the device. 

• The lOS 'super' bit is turned off since 10SINTRP will cause the enabled state. 

3. The Hot Channel, Hot Control Unit, and Hot DASD Recovery Routine 

114 OS/VS2 I/O Supervisor Logic 

• Entered at the completion of the set up routine (1) if the status collection data 
area (SCD) indicates a hot channel, a hot DASD, or a device which was not 
SYSGENed. 

• If the channel was not SYSGENed, issues IEA071E message indicating that the 
channel is disabled and offline and exits to the clean up procedure (4). 

• If this is the first recovery attempt for this channel, sets an indicator that the 
channel can be enabled after recovery; otherwise indicates that the channel 
cannot be enabled after recovery. 

• Calls module IECVBRSV to build the reserve table. 

• If processor supports the CLRCH instruction and there are no reserved devices 
on the channel, issues message IEA0721 to inform the operator that recovery 
is in progress. 

• If there are reserved devices or if the processor does not support the CLRCH 
instruction, calls module IEEVLDWT to issue a message. 

If there are reserves, message IEA069A is issued or wait state X'069' is loaded. 
If there are no reserves, message IEA068A is issued or wait state X'068' is 
loaded. 



4. The Clean Up Procedure 

Hot I/O Recovery Module 
Procs.4,5,6 

• Saves operator response indicating whether or not a channel was reset. 

• Invokes subroutine CLRCH (5) to attempt recovery of the failing channel 
and the active I/O requests. 

• If the CLRCH routine indicates that channel reset was not successful, clears the 
reason codes and counts in the SCD. 

• If channel reset was successful, does the following: 

(a) If this is the first detection for the channel, enables the channel and reduces 
the threshold counts so a recurrence can be detected sooner. 

(b) If not the first detection for this channel, leaves the channel disabled and 
issues message IEA071E. 

• FREEMAINs the work areas. 

• Enables and then turns off the lOS 'super' bit. 

• Deletes the FRR and returns to the dispatcher. 

5. The Clear Channel Subroutine (CLRCH) 

• Called by the hot device recovery procedure (2) and the hot channel and hot 
DASD recovery procedure (3). 

• Issues the clear channel instruction (CLRCH) if it is supported by the processor. 
When the CLRCH is not supported, checks to see if the operator has reset the 
channel and if so issues a HDV, CLRIO instruction sequence to each device on 
the channel. 

If either the CLRCH was successful or the operator reset the channel, calls 
IECVRRSV to re-reserve devices and issues message IEA421E, if necessary; 
also calls IECVRDIO to redrive active I/O. 

• If the CLRCH fails or if the operator did not reset the channel (the processor 
does not support the CLRCH instruction), issues message IEA070A or loads 
restartable wait state X'06A'. Then devices which lost their last path are boxed. 

6. The Functional Recovery Routine (HRECFRR) 

• RTM enters the FRR whan an error is encountered in IECVHREC. 

• Sets an indicator for RTM to request recording. 

• Requests RTM to free SALLOC ifheld. 

• If this is first entry to the FRR, does the following: 

(a) Establishes an FRR. 

(b) Cleans up counts in the SCD. 

(c) Calls module IECVRRSV to re-reserve devices if required. 

(d) Enables channel if required. 

(e) Takes an SDUMP. 

I/O Supervisor Program Organization lIS 



I/O-Restart Modules 
Introduction 

• If this is a recursive entry to the FRR and the channel has been reset but re­
reserves and boxing are not complete, the FRR calls module IEEVLDWT to 
issue IEA151W and to load non-restartable wait state X'04E'. 

• Issues a 'start stopped processors' message if required. 

• FREEMAINs work areas. 

• Deletes FRR if this is first entry to FRR. 

• Turns off the lOS 'super' bit and returns to RTM. 

I/O - Restart Modules (IECVRSTI and IECVIRST) 

Introduction to I/O Restart Modules, IECVRSTI and IECVIRST 

116 OS!VS2 I/O Supervisor Logic 

The I/O restart function is composed of two modules: IECVRSTI and IECVIRST. 
ACR, mainline CCH, CCH MCH exit, and MIH enter IECVRSTI. CCH MCH exit or 
mainline CCH schedules IECVIRST as an SRB. 

IECVRSTI is entered from CCH in one of two ways. Mainline CCH branch enters 
IECVRSTI when any of the following occurs: 

• The channel fails to log the failure. 

• The channel's CAT entry is invalid. 

• NIP failed to load a required channel-dependent module. 

• Mainline CCH's FRR is entered due to an error. 

If the external-damage-reason-code-validity flag is zero (in the MCIC) or if the flag 
is one and the channel control failure flag (bit 4 in the external damage reason 
code) is one, the second CCH entry, CCH MCH Exit, schedules IECVRSTI as an 
SRB. 

Mainline CCH schedules this module as an SRB if the hung interface indicator is 
on in the LCL (limited channel logout). 

CCH MCH exit schedules the SRB if the external-damage-reason-code·validity flag 
(in the MCIC) is one and the channel control failure flag (bit 4 in the reason code) 
is zero. DUring ACR, if the CCH MCH exit used to schedule IECVIRST iitdicates 
(in the channel recovery work area) that IECVIRST has been scheduled but not 
dispatched, IECVRSTI branches to IECVIRST. 

Note: 

Assumptions made by CCH-IOS: 

1. If the hung interface flag is set in the LCL or the external-damage-reason-code­
validity flag is set in the MCIC, the hardware supports the clear channel 
instruction (CLRCH). 

2. The hardware does not reset reserves on devices unless the external damage 
reason code validity flag in the MCIe is zero or the validity flag is one and 
the channel control failure flag is one. The hardware has already released 
reserved devices in these cases. 



1. The Set-Up Procedure (IECVRSTI) 

• Entered by ACR, mainline CCH, and MIH. 

• Scheduled as an SRB by CCH MCH exit. 

I/O-Restart Modules 
Procs.l,2 

• Issues GETMAIN macro to obtain storage for a work area then calls the 
storage manager module (IECVSMGR) get-large-block procedure (5) to get a 
160-byte block to be used as a message buffer. 

• Exits based on the contents of register 1. The possible values in the high-order 
byte and the corresponding exits are: 

(a) X'OO': Exits to the ACR-call procedure (2). 

(b) X'20': Exits to the MlH-call procedure (4). 

(c) X'30': Exits to the CCH-call procedure (7) for lost channels. 

(d) X'40': Exits to the CCH-call procedure (3) for channel checks. 

2. The ACR-Call Procedure (ACRPROC) 

• Entered by the set-up procedure (1). 

I • If CRH or CHS is generated in the system, make sure the inoperative processor 
is stopped. Calls CRH/CHS activation (IECVCRHA) routine to activate channel 
reconfiguration hardware or channel set switching. If successful, and IECVIRST 
was scheduled to run on the failing processor, branches to IECVIRST. It then 
returns to ACR. 

If CRH/CHS activation was not successful, it calls the storage manager module 
(IECVSMGR) get-large-block procedure (5) to get storage for a "reserve" table, a 
table that will show the status of all devices reserved by the nonoperational 
processor. 

• Issues a SIGP instruction to stop on-going I/O operations. 

• For each device on the system it calls the device procedure (8). 

• If none of the devices were reserved by the non operational processor, it does 
the following: 

(a) Calls the storage manager module (IECVSMGR) free-large-block procedure 
(6) to free the 160-byte blocks it acquired. 

(b) Exits to ACR. 

I • Using the 10SMAP macro, ACRPROC gets a table containing information about 
the accessibility of each device from the operational processor and does the 
following: 

(a) Issues a SIGP instruction to stop on-going I/O operations. 

(b) For each active device, sets up an ERPIB (ERP interface block), which the 
basic lOS module (IEClOSCN) initial status procedure (10) moves into the 
ERP work area. This work area directs the ERP to retry the I/O opera­
tion, provided that an alternate path to the device is available. If no path 
is available to the device, no retry is indicated. Puts X'08' in register 11, 
turns on the channel-control-check and interface-control-check bits in the 
CSW, and branches to the basic lOS module (IEClOSCN) interruption 
handling procedure (9). The codes tell the basic lOS module 
(IEClOSCN) to bypass calling CCH, bypass enabling the system to receive 
I/O interruptions, and bypass starting I/O requests that are waiting on 
queues. 

I/O Supervisor Program Organization 117 



I/O-Restart Modules 
Proc.3 

(c) For each inaccessible device, marks the UCBSTAT field to show that the ,..,) 
device is offline and inaccessible to the system. Marks the UCBFLB field 
to identify itself as the module that set the device offline. (These fields 
are examined by the basic lOS module (IECIOSCN) test channel 
procedure (2) to ensure that an I/O operation can be started to the 
device.) Calls the message procedure (6), each time it has processed eight 
UCBs, to issue message IEA0041, which identifies the inaccessible devices. 

(d) If none of the inaccessible devices are reserved by the non-operational 
processor, ACRPROC calls the storage manager module (IECVSMGR) 
free-large-block procedure (6) to free the 160-byte blocks it acquired 
prior to returning to ACR. 

(e) Exits to ACR. 

• If any device is reserved by the nonoperational processor, does these things: 

(a) Puts an entry in the reserve table for each device reserved to the nonopera­
tional processor. Indicates in each entry whether there is an online path 
from the operational processor to the device. 

(b) Issues message IEA440A or puts the system in a 041 wait state until the 
operator signals that no other system is sharing a reserved device, and then 
issues a SIGP instruction to release all reserved devices. 

(c) Calls IECVRRSV to reserve to the operational processor or force offline the 
devices in the reserve table that are online to that processor. 

(d) Calls the storage manager module (IECVSMGR) free-large block procedure 
(6) to free the 160-byte blocks it acquired, and exits to ACR. ....J 

3. The CCH Call Procedure (CCHPROC) for Channel Checks 

118 OS!VS2 I/O Supervisor Logic 

• Entered by the set-up procedure (1). 

• Calls the clear-device procedure (5) to stop anyon-going communication 
between the channel and device. 

• Tests the 10RFLAGS field of the I/O-restart work area to see if the device was 
successfully "cleared." If it wasn't does the following: 

(a) Sets up a field in the ERP work area that subsequently directs the ERP not 
to retry the I/O operation. 

(b) Turns on the channel-control-check and interface-control-check bits in the 
CSW-one, but not both, may already be on. These bit settings are used as a 
diagnostic aid, showing this module was entered. 

• Exits to the basic lOS module (IECIOSCN) interruption handling procedure (9), 
where I/O-event processing is resumed. 



4. The MIH-Call Procedure (MIHPROC) 

• Entered by the set-up procedure (1). 

I/O-Restart Modules 
Procs.4,5 

• Calls the clear-device procedure (5) to stop anyon-going communication 
between the channel and device. 

• Tests the "pending-sense" (UCBPSNS) and "active-sense" (UCBASNS) bits, and 
based on their settings, alters the CSW as follows: 

(a) If a sense operation is needed but has not yet been started (UCBPSNS on, 
UCBASNS off): turns on the device-end bit, allowing the basic lOS 
module (9), when it subsequently gets control, to reuse the device. 

(b) If a sense operation was started (UCBPSNS on, UCBASNS on): turns on the 
unit-check bit, causing the basic lOS module (IECIOSCN) interruption 
handling procedure (9), when it subsequently gets control, to reissue the 
sense operation. 

(c) If the last I/O started to this device was not a sense operation (UCBPSNS 
off, UCBASNS off): turns on the channel-control-check and interface­
control-check bits as a signal to the basic lOS module (IECIOSCN) 
interruption handling procedure (9) that control must be routed to an 
ERP. 

• Tests the 10RFLAGS field of the I/O-restart work area to see if the device was 
successfully "cleared." If it wasn't, sets up a field in the ERP work area that 
subsequently directs the ERP not to retry the I/O operation. 

• Puts X'08' in register 11, telling the basic lOS module (IECIOSCN) interruption 
handling procedure (9) not to go to CCH or allow the system to receive I/O 
interruptions, and branches to the basic lOS module. This establishes a path to 
the appropriate ERP. 

• When control returns from the basic lOS module (IECIOSCN) interruption 
handling procedure (9), exits to MIH. 

5. The Clear-Device Procedure (CLEARDEV) 

• Entered by the CCH-cal/ procedure (3) and the MIH-call procedure (4). 

• Gets from the UCBCHAN field the device address last used in starting an I/O 
operation. Uses it in HDV and CLRIO instructions to "clear" the device (stop 
anyon-going communication between the device and channel). 

• If the condition code setting for either instruction shows that the device didn't 
clear, calls the message procedure (6) to issue message IEA003!. Marks the 
IORFLAGS field of the I/O-restart work area to show the device 
didn't clear. 

• Exits to the return address in register 14. 

I/O Supervisor Program Organization 119 



I/O-Restart Modules 
Proes. 6,7,8 

6. The Message Procedure (RECORDIT) 

I - Entered by the ACR-call procedure (2) to issue message IEA0041 by the clear­
device procedure (5) to issue message IEA0031; by the device procedure (8) 
to issue message IEA004I, by the CCH-call procedure (7) for lost channel to 
issue messages IEA0041 and IEA410E. 

• Puts the message it's passed into the list form of a WTO macro, and using the 
RECORD macro, passes the address of the WTO macro to the system's 
asynchronous recording facility. (The message is written when the message­
writing procedure in the asynchronous recording facility is dispatched.) 

- Exits to the return address in register 14. 

7. The CCH-Cal/ Procedure (LOSTCHAN) for Lost Channels 

_ Entered by the set up procedure (1). 

- Calls the storage manager module (IECVSMGR) get-large-block procedure (5) 
to get 160-byte blocks for message buffers and reserve tables. 

I_ Scans the specified channel set's CAT for lost channels. If CRH is active, 
scans the other channel set's CAT for lost channels. 

I - Calls the message procedure (6) to issue message IEA410E which informs the 
operator of the lost channel(s). 

_ For each device on each lost channel, it calls the device procedure (8). 

I_ If there are reserved devices on the lost channel(s), it calls IECVRSSV to force 
offline each such device. It calls the storage manager module (IECVSMGR) 
get-large-block procedure (5) to free all acquired 160-byte storage blocks and 
then exits to the SRB dispatcher. 

8. The Device Procedure (UCBA CT) 

120 OS!VS2 I/O Supervisor Logic 

• Called by the ACR-call procedure (2) or the CCH·cal/ procedure (7) for 
lost channels. 

I • Using the 10SMAP macro, deternlines if an alternate path to the device exists from 
either the operational processor, if called by the ACR-call procedure (2); or from 
any alternate paths, if called by the CCH-call procedure (7) for lost channels. 

• When no alternate paths are available, it marks the UCBSTAT field for each 
device to show that it is offline and inaccessible to the system. It marks 
the UCBFLB field to inform lOS that any I/O requests for that device are 
to be marked in permanent error. These fields are examined by the basic 
lOS module (IECIOSCN) test channel procedure (2) to ensure that an I/O opera­
tion can be started to the device. It calls the message procedure (6) to issue 
message IEA0041 which identifies the inaccessible devices after they have been 
processed. 



,----

I/O-Restart Module 
Procs. 1,2,3 

• If the device is reserved on the nonoperational processor (ACR) or on the 
lost channel (LOSTCHAN), add the device to the reserve table. 

• If the device is active on the nonoperational processor (ACRPROC) or on 
the lost channel (LOSTCHAN), set up an ERPIB (ERP interface block) 
which the basic lOS module (IECIOSCN) initial status procedure (10) will move 
into the ERP work area. Tre ERPIB directs the ERP to retry the I/O operation 
if an alternate path to the device exists or to set no retry if no alternate path 
exists. It puts X'OA' in register 11, turns on the channel control check and the 
interface control check bits in the CSW and branches to the basic lOS module 
(IECIOSCN) interruption handling procedure (9). The codes tell the basic lOS 
module to bypass calling CCH, bypass enabling the system to receive I/O 
interruptions, and bypass starting I/O requests that are waiting in queues. 

• Exits to caller. 

I/O Restart Module - IECVIRST 

1. The Set Up Procedure: 

• CCH schedules IECVIRST as an SRB (see "Introduction to I/O Restart Modules 
IECVRSTI and IECVIRST). 

• Disables for I/O and external interruptions; sets the lOS 'super flag'; establishes 
an FRR. 

• Obtains a storage work area by issuing the GETMAIN macro. 

2. The Build Reserve Table Routine: 

I• Entered at the completion of the set up routine (1) or from the restart active 
I/O routine (8) . 

• Scans the CAT to determine which channel(s) have errors (CCH sets flags in the 
CAT to indicate the entry type and channel(s) in error). 

I • Calls build reserve table module (IECVBRSV). 

3. The Operator Communication Routine: 

• Entered at the completion of the build reserve table routine (2). 

Communicates with the operator by calling IEEVLDWT which issues messages 
and loads re-startable wait state codes. 

If IECVIRST is scheduled from mainline CCH and no reserved devices are found 
and the error was a hung interface, this routine is bypassed. If reserved devices 
are found, the table is passed to the operator as a parameter when the wait state 
is loaded. 

I/O Supervisor Program Organization 121 



I/O-Restart Module 
Procs.4,5 

• The operator elects to re-IPL the system or restart the system (perform the 
restart function). If the system is restarted and CCH MCH exit scheduled 
IECVIRST, the operator responds with an action code indicating whether the 
installation wishes to reuse the failing channel(s) (attempt recovery) or not to 
reuse the failing channel(s) (they are forced offline). If scheduled by the 
CCH MCH exit, the failing channel(s) may be recovered by performing a 
re-IPL. 

• If supplied, the action code is saved for later use. 

• Enters the recover unusable channel routine (4) if scheduled by CCH MCH 
exit. Otherwise, it enters the recover hung interface routine (6) scheduled by 
mainline CCH. 

4. The Recover Unusable Channel Routine: 

• The operator communication routine (3) enters this routine when the CCH MCH 
exit schedules IECVIRST. 

• Issues the CLRCH instruction to all channels that respond CC=3 to,a TCH 
instruction. The channels that support the 'external damage reason code' are 
gathered into 'groups.' If the channel error is group-related, it is necessary to 
issue a CLRCH to every channel in the group to initiate a possible recovery. 
(Every channel in the group responded CC=3 to a TCH instruction). 

• The action code the operator supplies in the operator communication ...J 
routine (3) is examined. If the installation does not wish to reuse the failing 
channels, they are forced offline and the re-reserve device routine (7) is entered. 
If an attempt is made to reuse the failing channels, the wait-for-channel-to-
recover routine (5) is entered. 

5. The Wait For Channels to Recover Routine: 

122 OS/VS2 I/O Supervisor Logic 

• The recover unusable channel routine (4) enters this routine when the 
installation elects to reuse the failing channels. 

• Calls SETDIE to establish a DIE exit to get control in 60 seconds. Exits to the 
SRB dispatcher if SETDIE is able to establish the DIE. The DIE routine re­
schedules IECVIRST to continue processing. The 60 second wait allows the 
channel group to re-initialize. 

• Issues a TCH instruction to each failing channel to determine whether recovery 
was successful (failing channels are flagged in the CAT by CCH MCH exit). 
Channels failing to recover are forced offline. 

• This routine enters the re-reserve device routine (7) when the build reserve 
table routine (2) finds any reserved devices. Otherwise, processing continues 
with the restart active I/O routine (8). 



6. The Recover Hung Interface Routine: 

I/O-Restart Module 
Procs.6,7,8:J 

• The operator communication routine (3) enters this routine when mainline 
CCH schedules IECVIRST. 

• Issues a CLRCH instruction to a channel encountering a hung interface 
condition (mainline CCH flags failing channels in the CAT). 

• Issues TCH and TIO instructions to determine success of recovery action. 
A channel recovers if the CLRCH and TCH instructions return a CC=O and the 
TIO does not result in another hung interface condition. If the channel does 
not recover, it is forced offline and not reused. 

• Enters the re-reserve device routine (7) if reserved devices are found in the 
build reserve table. Otherwise, it enters the restart active I/O routine (8). 

I • Issues message IEA410E if the channel does not recover from the hung interface 
condition. 

7. The Re-Reserve Device Routine: 

• Entered from the recover unusable channel(s) routine (4), the wait-for-channels­
to-recover routine (5), or the recover hung interface routine (6) if reserved 
devices are found by the build reserve table routine (2). If no reserved devices 
are found, this routine is bypassed and processing continues with the restart 
active I/O routine (8). 

I • Invokes IECVRRSV to re-reserve each device. 

• After all re-reserves are completed, issues message IEA421E. 

8. The Restart Active I/O Routine: 

Invokes IECVRDIO to restart I/O to each device attached to the failing 
channels. 

If another group error occurs while IECVIRST is recovering a group error, 
IECVIRST will return to build reserve table routine (2). 

• Returns resources to the system, and exits to the SRB dispatcher. 

9. The Functional Recovery Routine: 

• RTM enters the FRR routine when an error is encountered in IECVIRST. 

• Causes a disabled wait state to be loaded when reserved devices are found but 
not re-reserved, and if the CLE.CH instruction has been issued to the unusable 
channel(s). 

Resets the SRB to cause IECVRSTI to re-enter IECVIRST if the FRR was 
entered by ACR. 

I/O Supervisor Program Organization 123 



Nonresident Halt I/O Module 
Proc. 1 

• Otherwise, invokes SVC DUMP to dump work areas. 

• Returns resources to the system. 

• Returns to RTM indicating that recording of the error and percolation should 
take place. 

Nonresident Halt - I/O Module (IGC0003C) 

1. The Main Halt Procedure (IGC0003C) 

124 OS/VS2 I/O SupeIVisoI Logic 

• Entered if a user or system program running under a TCB issues an SVC 33 
instruction (or an IOHALT macro, which expands into an SVC 33 instruction). 
JES3, BT AM and TCAM are the system callers. 

• Issues a GETMAIN macro for a register save area. 

• Acquires the lock for the DCB pointed to by register 1, first issuing a PGFIX 
macro to prevent itself from being paged out. 

• Issues a SETFRR macro that gives RTM the address of the functional recovery 
procedure (3). 

• Determines if invoker is authori~ed to halt device. 

• If halt is for an inactive channel-to-channel device or a selector channel, goes 
to CTC halt procedure (2). 

• Tests the second byte of register 1 and_takes the associated action: 

(a) ffit's X'OO': Calls the resident halt-flO module (1) to halt a channel 
program with an HDV (halt device) instruction. 

(b) ffit's X'80': Calls the EXCP miscellaneous module to halt a channel 
program on a teleprocessing device by modifying a CCW. (Register 0 con­
tains the offset from the lOB to an untranslated CCW. Its translated 
counterpart is the CCW to be modified.) 

• Frees the DCB lock and issues a SETFRR macro that deletes the address of the 
functional recovery procedure (3) from RTM's stack of such procedures. 

• Makes pageable all fixed pages and frees save area. 

• Puts one of these return codes in register 15: 

(a) X'OO': The channel program was halted using the method specified in 
register 1. 

(b) X'04': No channel program was active on the device. 



r 

Nonresident Halt-I/O 
Module 
Proc.2 

(c) X'08'; The device is not a teleprocessing device or graphics device. 

(d) X'OC': An invalid UCB address was passed or an I/O error was 
encountered in trying to halt the device. 

(e) X'lO': The EXCP processor was called to halt the channel program but the 
original EXCP request did not need CCW translation. 

(£) X'I4': The EXCP processor was called to halt the channel program. It 
found that the CCW pointed to by register 0 was not yet translated. 

(g) X'I8'; The EXCP processor was called to halt the channel program. It 
found that the CCW pointed to by register 0 was not part of the original 
channel program. 

(h) X'Ie'; The EXCP processor was called to halt the channel program, but it 
wasn't the driver submitting the original I/O request. 

• Exits to the return address in register 14. 

2. eTe Halt Procedure (HALT3000) 

• Entered by main halt procedure ( 1) to halt channel-to-channel (CTC) devices on 
a selector channel if the UCB is not active, to avoid halting the wrong device. 

• Schedules an SRB to cause entry to a routine under control of the desired pro­
cessor. When dispatched, the SRB-controlled routine does the follOwing steps. 

• Issues test channel instruction to clear the selector channel. 

• Gets the UCB lock to prevent the other processor (in a multiprocessor) from 
issuing I/O from or to the device. 

• Issues another test channel instruction to ensure that the channel is still clear. 

• Calls the main procedure (IEClHIO) in the resident halt I/O module (IEClHIO) 
to halt a channel program by means of a halt device (HDV) instruction. 

• Frees the UCB lock and returns to the main halt procedure ( 1) in the 
nonresident halt-I/O module (IGC0003C) by posting its ECB. 

I/O Supervisor Program Organization 125 



NonreSident Halt-I/O 
Module - Proc. 3 
Nonresident Purge 
Module - Proc. 1 

3. The Functional Recovery Procedure (HALT0900) 

• Entered by RIM if the main halt procedure (1) took a program check. 

• Releases the UCB lock. 

• Directs RTM to continue termination processing. If it is the first recovery 
procedure to be entered by RTM, sets bits in the SDWA (via the SETRP macro) 
that direct RTM to write the SDWA in the SYSl.LOGREC data set and issue 
a user dump (a SYSUDUMP, SYSMDUMP, or SYSABEND dump). 

• Exits to the return address in register 14. 

Note: This procedure puts diagnostic data in the variable area of the SDWA. The 
data is described in the "Diagnostic Aids" chapter under "Output of the Non· 
resident Halt-I/O Module (IGC0003C)." 

Nonresident Purge Module (IGCOOOIF) 

1. The Entrance/Exit Procedure (IGCOI6) 

126 OS/VS2I/O Supervisor Logic 

• Entered with an SVC 16 instruction by a user or system program running under 
a TCB. The checkpoint SVC routine, RTM, the region control task, and the 
task-close routine are among the system callers. 

Note: Also entered by problem-state drivers wanting lOS to decrease the 
count in the IPIB of partially-processed I/O requests. (The drivers differentiate 
themselves from other callers by passing the complement of the IPIB address in 
register 1.) This procedure calls the resident purge module ( 1) to decrease the 
count and returns to the driver. 

• Gets local subpool 0 storage for a PIRL and global storage for a PWA (purge 
work area). Copies the PPL into the PWA. 

• Issues an ESTAE macro that gives RIM the address of the ESTAE recovery 
procedure (12). 

• Issues a PGFIX macro to prevent this module and the PIRL from being paged 
out (a precondition for acquiring the UCB lock in the VeE-purge procedure 
(4)). 



I 

• Exits to the caller if any of these incompatibilities is found: 

Nonresident Pul'le 
Module 
Proc. 1 (cont'd.) 

(a) The caller is not in supervisor state but requested that I/O requests 
associated with a given address space be purged. 

(b) The caller asked that just the I/O requests to a given data set be purged, but 
the field that identifies the data set contains zeros. 

(c) The caller is not in supervisor state and asked that I/O requests associated 
with a given TCB be purged, but that TCB does not point to the job-step 
TCB. 

Incompatibilities (a) and (b) are denoted by a return code of X'08' in register 
15. Incompatibility (c) is denoted by a return code of X'04' in register 15. 

• Ignores a request to purge asynchronous processing associated with I/O requests 
being quiesced if the purge operation applies to the caller's own TCB. 

• Initializes the IPIB. 

• If a quiesce operation was requested, issues an ENQ macro to prevent this 
module from handling another quiesce request in the same address space until 
it has processed the current request. (The major and minor enqueuing names 
are SYSZEC16 and PURGE, respectively.) 

• If the system's ENQ routine returns with a nonzero return code and 
the quiesce operation does not apply to an address space, returns to the caller 
with a code of X' 14' in register 15. 

• Issues a STATUS macro, stopping all processing in the address space that runs 
under a TCB or under a "quiesceable" SRB (one that represents processing that 
may be stopped). 

• Indicates that a purge operation is active in the address space by (a) storing the 
IPIB address in the ASCBIOSP field of the ASCB and (b) increasing the 
count of active purge operations in the IOCPGCT field of the IOCM (lOS 
communications table). 

• Acquires the local lock and issues a SETFRR macro that gives RTM the address 
of the functional recovery procedure (11). 

(Note: The caller must have turned on bit 7 of byte 0 in the PPL to receive 
return codes.) 

I/O Supervisor Program Organization 127 



Nonresident Purge 
Module 
Proc. 1 (cont'd) 

128 OS/VS2 I/O Supervisor Logic 

• Perfonns DEB validity check, if validity checking is required, or if the caller is 
not in supervisor state (for dataset identifier (DSID) purge), by going to the 
system DEB validity check routine. 

• Calls the SIRB-purge procedure (2), which disposes of applicable SRB/IOSBs 
chained to the SIRB or to the asynchronous exit queue. 

• Calls the LCH-purge procedure (3), which disposes of applicable SRB/IOSBs 
belonging to I/O requests on logical channel queues. 

• Calls the UCB-purge procedure (4), which disposes of SRB/IOSBs belonging 
to active I/O requests. 

• Calls the DDR-purge procedure (5), which disposes of SRB/IOSBs belonging 
to I/O requests waiting to be assigned to another device by DDR. 

• Releases the local lock and issues another SETFRR macro to delete the address 
of the functional recovery procedure (11) from RIM's stack of such procedures. 

• Calls the SPL-purge procedure (6), which disposes of applicable SRB/IOSBs 
waiting on the service priority list to be dispatched. 

• Calls the IPIB-purge procedure (7), which disposes of applicable SRB/IOSBs 
given to the basic lOS Module (11) by the drivers' DIE procedures. 

• Calls the driver interface procedure (8), which enters the drivers' purge 
procedures. 

• Calls the storage manager module-purge-free procedure (8) to free lOS storage 
allocated to the address space if the caller requested that all I/O requests in the 
address space be halted. 

• Decreases the count of active purge operations in the IOCPGCT field. 

• Issues another STATUS macro so that processing in the address space can resume. 

• If a quiesce operation was requested, tests the count of the partially-processed 
I/O requests in the IPIBCNT field. If the count is not zero, does the follOWing: 

(a) Issues a WAIT macro, putting the module in a wait state until the count 
becomes zero. 

(b) When the wait ends, repeats the calls to the other procedures of this 
module. 

(c) Tests the count again. 

Loops on steps (a, b, and c) until the count is found to be zero at step (c). 

• Calls PRGCOMPO routine to schedule the IECVSCOM (10) routine in 
IECVSMGR to compress the storage manager's free queue. 

• If an ENQ macro was previously issued, issues a DEQ macro to allow another 
quiesce operation in the address space. 



Nonresident Purge 
Module 
Proes.2,3 

• Performs DEB validity check for non-supervisor callers to check additional DEBs, 
by use of the system DEB validity check routine 

• Issues another EST AE macro to delete the address of the EST AE recovery 
procedure (12) from RTM's stack of such procedures. 

• Uses a PGFREE macro to unfix the storage previously fixed. 

• Frees the PWA, and the PIRL, unless the PIRL shows that there are I/O requests 
to be restored. 

• Exits to the return address in register 14. 

2. The SIRB-Purge Procedure (SIRBPURG) 

• Entered by the entrance/exit procedure (1). 

• For each SRB/IOSB chained to an asynchronous exit queue, calls the 
applicability-check procedure (9) to find out if the SRB/IOSB matches the 
search argument. 

• Removes each applicable SRB/IOSB from the asynchronous exit queue. Calls 
the basic purge procedure (10) to dispose of them. 

• Calls the basic purge procedure (10) to dispose of the SRB chained to the SIRB 
if it matches the search argument. If reentered at register 14+4 (a match was 
found), replaces the SRB address with the address of the ERP work area, marks 
the SIRB "purged," and alters the resume PSW in the SIRB to point to the 
resident purge module (2). 

• Exits to the return address in register 14. 

3_ The LCB-Purge Procedure (LCBPURG) 

• Entered by the entrance/exit procedure (1). 

• Does the following for each logical channel queue that contains an I/O queue 
element (IOQ): 

(a) Acquires an LCH lock. 

(b) Calls the applicability-check procedure (9) for each I/O request found on 
the LCH. 

(c) If a halt operation was specified, gets the lock for the UCB associated with 
applicable SRB/IOSBs. Calls the basic purge procedure (10) to dispose of 
applicable SRB/IOSBs that aren't associated with a reserve, release, or 
pending sense operation. Chains those that are to the appropriate PIRL 
entry and changes the IOQs to point to replacement SRB/IOSBs, allowing 
the processing of reserve, release, and pending sense operations to com­
plete. Releases the UCB lock. 

(d) If a quiesce operation was specified, increases the count of partially­
processed I/O requests in the IPIBCNT field and stores the IPIB address 
in the IOSB. 

(e) Releases the LCH lock. 

• Exits to the return address in register 14. 

I/O Supervisor Program Organization 129 



Nonresident Purge 
Module 
Procs.4,5 

4. The UCB-Purge Procedure (UCBPURG) 

• Entered by the entrance/exit procedure (1). 

• Scans UCBs for indications of active I/O operations on associated devices. Does 
the following for each such UCB it finds: 

(a) Gets the UCB lock. 

(b) Calls the basic purge procedure (10), if a quiesce operation was requested, 
to dispose of an applicable SRB/IOSB. 

(c) If a halt operation was requested, calls the basic purge procedure (10) to 
dispose of an applicable SRB/IOSB that isn't associated with a pending 
sense operation. If an applicable SRB/IOSB is associated with a pending 
sense operation, chains it to the appropriate PIRL entry and changes the 
10Q to point to a replacement SRBjIOSB, allowing the sense operation to 
start. 

(d) Releases the UCB lock. 

• Exits to the return address in register 14. 

5. The DDR-Purge Procedure (DDRPURG) 

130 OS/VS2 I/O Supervisor Logic 

• Entered by the entrance/exit procedure (1). 

• For each DDR element on the DDR queue (pointed to by the ASXBDDR field 
of the ASCB extension), calls the applicability-check procedure (9). ...) 

• If a quiesce operation was requested, does the following for each DDR element 
that matches the search argument: 

(a) Increases the count of partially-processed I/O requests in the IPIBCNT 
field. 

(b) Stores the IPIB address in the associated 10SB. 

• If a halt operation was requested, does the following for each DDR element 
that matches the search argument: 

(a) Chains the associated SRB/IOSB to the appropriate PIRL entry. 

(b) Marks the DDR element "purged." 

• Gets the CMS lock. 

• Processes the DDR queue in the master scheduler's address space as it did the 
previous DDR queue. 

• Releases the CMS lock. 

• Exits to the return address in register 14. 



6. The SPL.Purge Procedure (SPLPURG) 

• Entered by the entrance/exit procedure (1). 

Nonresident Purge 
Module 
Procs. 6,7,8 

• For each SRB on the SPL (service priority list), does the following: 

(a) Using the PURGEDQ macro, calls the system's SPL purge module, which 
dequeues the SRB, if it's applicable, and gives it to the procedure whose 
address is in the SRBRMTR field-in this case the resident purge module 
(3). (The resident purge module (3) chains the SRB/IOSB to the IPIB.) 

(b) Calls the basic purge procedure ( 10), if a halt operation was requested, to 
dispose of any applicable SRB/IOSB it finds chained to the IPIB. 

(c) If a quiesce operation was requested or an SRB/IOSB, and after further check­
ing, is not really applicable, removes the SRB/IOSB from the IPIB and puts 
the SRB back on the SPL with a SCHEDULE macro. 

• Exits to the return address in register 14. 

7. The IPIB.Purge Procedure (IPIBPURG) 

• Entered by the entrance/exit procedure ( 1) to dispose of SRB/IOSBs that are 
chained to an IPIB. (An SRB/IOSB is chained to the IPIB by the basic /OS 
module ( 10) if a driver's DIE procedure submits the SRB/IOSB while lOS, 
in the other processor, is halting I/O requests with such SRB/IOSBs.) 

• Gets the 10SYNCH lock. 

• Zeros out the IPIB pointer in the ASCBIOSP field of the ASCB. 

• Chains each SRB/IOSB queued to the IPIB to the appropriate PIRL entry. 

• Releases the IOSYNCH lock. 

• Exits to the return address in register 14. 

8. The Driver Interface Procedure (DVRPURG) 

• Entered by the entrance/exit procedure (1). 

• Finds the addresses of the driver's purge procedures in the VOID (vector of lOS 
drivers) table. Puts the IPIB address in register 1 and the address of the PIRL 
entry to which SRB/IOSBs are chained in the IPIBSRB field. Calls the drivers' 
purge procedures. 

• When a driver's purge procedure returns, moves the IPIBIO and IPIBDVRU 
fields to the PIRRSTR and PIRDVRU fields, respectively. The PIRL fields will 
be used by the driver's re:l.tore procedure to restore I/O requests. 

• Exits to the return address in register 14. 

I/O Supervisor Program Organization 131 



Nonresident Purge 
Module 
Procs.9,10,11 

9. The Applicability-Check Procedure (PURAPLSR) 

• Entered by the SIRE-purge procedure (2), the LCH-purge procedure (3), the 
DDR-purge procedure (5), and the basic purge procedure (10). 

• Compares a field in the SRB/IOSB or DDR element to the search argument in 
the PPL to find out if the purge request applies to the I/O request they 
represent. 

• Exits to the return address in register 14 if it finds a match; to register 14+4 if 
it doesn't. 

10. The Basic Purge Procedure (BASICPRG) 

• Entered by the SIRE-purge procedure (2), the LCH-purge procedure (3), the 
UCE-purge procedure (4), and the SPL-purge procedure (6). 

• Calls the applicability-check procedure (9) to find out if the SRB/IOSB matches 
the search argument. If it doesn't, exits to the return address in register 14+4. 

• If a quiesce operation was requested, increases the count of partially-processed 
I/O requests in the IPIBCNT field, stores the IPIB address in the 10SB, and 
exits to the return address in register 14. 

• If a halt operation was requested, does the following: 

(a) If the caller is the UCE-purge procedure (4), calls the resident halt-I/O 
module (IECIHIO) main procedure (1) to halt the I/O operation and turns 
off the "busy" bits in the UCBFLA field. 

(b) Removes the 10Q from its logical channel queue if the caller is the LCH­
purge procedure ( 3 ). 

(c) Chains the SRB/IOSB to the appropriate PIRL entry. 

(d) Calls the storage manager module (IECVSMGRj free-small-block and 
free-large-block procedures (2 and 6) to free the IOQ, and the ERP work 
area if one exists. 

(e) Issues an 10SGEN REST ART macro to reset the IRT "ch.annel mask" to 
show that the channel is free. (When the basic lOS module (IECIOSCN) 
channel-restart procedure ( 13) executes again, it will examine the channel 
mask and try to start I/O requests on logical channel queues associated 
with the channel.) 

(f) Exits to the return address in register 14+8. 

11. The Functional Recovery Procedure (PURGEFRR) 

132 OS/VS2 I/O Supervisor Logic 

• Entered by RTM if any of the procedures of the nonresident purge module 
(IGC0001F) took a program check while the local lock was held. 

• Sets bits in the SDWA (via the SETRP macro) which direct RTM to write the 
SDWA in the SYS1.LOGREC data set, release any locks held, and continue 
with termination processing. 

• Exits to RTM. 

• 



Nonresident Purge 
Module 
Proc. 12, 13 

Note: This procedure puts diagnostic data in the variable area of the SDW A, and 
in the SDUMP buffer if it's available for use. The diagnostic data is described in 
the "Diagnostic Aids" chapter under "Output of the Nonresident Purge Module 
(IGC0001F)." 

12. The ESTAE Recovery Procedure (PRGESTAE) 

• Entered by RTM if any of the procedures of the nonresident purge module 
took a program check. 

• Decreases the count of active purge operations in the IOCPGCT field of the 
lOS communications table. 

• Zeros out the IPIB pointer in the ASCBIOSP field of the ASCB. 

• Issues a STATUS macro, allowing processing in the address space that runs 
under a TCB or SRB to be dispatched. 

• Issues a DEQ macro to allow another purge operation in the address space. 

• Issues an SDUMP macro, if the SDUMP buffer was acquired by the functional 
recovery procedure (11), to write the contents of the buffer to the 
SYS1.DUMP data set. 

• Sets bits in the SDWA (via the SETRP macro) that direct RTM to write the 
SDWA in the SYSl.LOGREC data set and continue termination processing. 

• Exits to RTM. 

Note: This procedure puts diagnostic data in the variable area of the SDWA. The 
data is described in the "Diagnostic Aids" chapter under "Output of the 
Nonresident Purge Module (lGC0001F)." 

13. Compress Interface (PRGCOMPO) 

• Tests for a quiesce. If there is not a purge quiesce, returns to the 
entrance/exit procedure (1). 

• Tests for a minimum number of free blocks (COMPMIN) on IECVSMGR's free 
queue of l60-byte blocks. If not at least the minimum number (97), returns to 
the entrance/exit procedure (1) via register 14. 

• Obtains the local lock and issues a SETFRR macro to call storage manager 
module (IECVSMGR) get-Iarge-block-procedure (5). 

• Calls the storage manager module (IECVSMGR) get-large-block procedure (5) 
for a 160-byte block to schedule storage manager module (IECVSMGR) 
compress procedure (10). 

• Deletes the FRR and frees the local lock. 

• Initializes the block to an SRB. 

• Schedules storage manager module (IECVSMGR) compress procedure (10) via 
the SRB on the global queue. 

• Returns to the entrance/exit procedure (1). 

I/O Supervisor Program Organization 133 



Post-Status Module 
Proc.l 

Post-Status Module (IECVPST) 

11. The Exit Interface Procedure (IECVPST) 

134 OS/VS2 I/O Supervisor Logic 

• Entered by the dispatcher if it finds an SRB that addresses this procedure on an 
SPL. (Both the basic lOS module (IECIOSCN) SRB scheduling procedure (7) 
and the lOS IOSB-handling procedure (2) put such SRBs on an SPL with a 
SCHEDULE macro.) 

• Issues a SETFRR macro that gives RTM the address of the functional recovery 
procedure (4). 

• Calls the system's real-to-virtual translation module to get the virtual storage 
address of the CCW pointed to by the CSW. Puts this address in the IOSCSW 
field, where the CSW has been saved for the inspection of exits. 

• If the IOSPSLL bit is off in the IOSOPT field (meaning the driver wants the local 
lock to be held when an exit is entered), acquires the local lock. 

• Tests the 10SB to find out if it was created by lOS. If so (the IOSIOSB bit will 
be on), exits to the IOSB-handling procedure (2). 

• Calls the PCI, NRM. or ABN exit, based on settings in the CSW, or enters 
an ERP - via the ERP interface (5), exit effector, and ERP loader for nondirect­
access ERPs - if the lOS ERR bit is on (indicating an ERP is waiting to find out 
what happened to a retried I/O operation). 

If the NRM or ABN exit was called, does the processing associated with the 
address returned to. 

Note: If the driver indicated in the IOSOPT field that its termination procedure 
does not need the local lock, the local lock is released before exiting to the 
driver's termination procedure. 

These are the possible return addresses and the associated processing: 

(a) register 14+0: Tests the IOSEX bit, and if it's on, uses ERP interface (5) to 
branch to the direct-access ERP or goes to a nondirect-access ERP via the 
ERP interface (5), exit effectors, and ERP loader. Otherwise, exits to the 
driver by branching to its termination procedure. 

(b) register 14+4: Calls the storage manager module (6) to free the ERP work 
area, if one exists. Returns to the exit by branching to the address returned 
in register 15. When the exit comes back, control is given to the dispatcher. 

(c) register 14+8: Issues a STARTIO macro to retry the I/O operation or to 
start a new I/O operation. 

(d) register 14+12: Goes to DDR via the exit effectors and ERP loader. This 
return address is used only for a paging I/O request. 

(e) register 14+16: Bypasses branch to driver's termination routine. (Note: 
This return address is restricted and is for EXCP drivers only.) 



L 2. The IDS IOSB-HandlingProcedure (PSTIOSB) 

Post-Status Module 
Procs.2,3 

• Entered by the exit interface procedure (1) if it determines that the IOSB 
was created by lOS. 

• Determines whether I/O processing should be terminated-the case when the 
IOSCOD field is X'45'. If so, calls the storage manager module (IECVSMGR) 
free-large-block procedure (6) to free the SRB/IOSB and the EW A, then exits 
to the dispatcher. 

• Does the proecssing indexed by the value in the 10SPROC field. these are the 
possible values and the associated processing: 

(a) X'OO: Enters the exit interface procedure (1) to handle as a non-IOS­
generated 10SB. 

(b) X'04 ': Enters the PCI exit, and reenters it as many times as there are 
lOS-created 10SBs chained to the original lOS-created 10SB. Calls the 
storage manager module (IECVSMGR) free-large-block procedure (6) to 
free the lOS-created 10SBs. If it finds the driver-created 10SB at the 
chain's end, issues a SCHEDULE macro, scheduling the exit interface 
procedure (1) to enter the PCI exit again. Exits to the dispatcher. 

(c) X'08': Gets the address of the attention routine from the 10SPGAD field 
and calls it. When the attention routine returns, these are the possible 
return addresses and the associated processing: register 14+0 exits to the 
dispatcher. Register 14+4 reschedules IECVPST to a new address space 
(indicated in IOSASID) so that the attention routine is reentered. 

(d) X'OC': Calls the storage manager module (IECVSMGR) free-large-block 
procedure (6) to free the SRB/IOSB, and the ERP work area if one exists. 
(Used by the nonresident purge module (IGC0001 F) LCH-purge 
procedure (3) to free lOS-created IOSBs.) Exits to the dispatcher. 

(e) X'10 ': Goes to the DA VV module (IECVDA VV) volume verification 
procedure (1) via the exit effectors and ERP loader if the unsolicited device 
end is not from a page pack. If UCBPGFL is on for the UCB whose address 
is in IOSUCB, DAW module (1) is called directly. (The processing done by 
the ERP loader is described in "Appendix B" under "ERP Service Modules.") 

(f) X'14': Goes to the ERP message writer via the exit effectors and ERP 
loader. (The processing done by the ERP message writer is described in 
"Appendix B" under "ERP Service Modules.") If intervention is required 
on a page pack, PSTIOSB passes control to the restart able wait procedure (6). 

(g) X'20': Goes to the unconditional reserve recovery procedure (7). 

3. The SVC 15 Procedure (IGCOI5) 

• Entered by nondirect-access ERPs with an SVC 15 instruction and by the 
direct-access ERP with a branch instruction through ERP interface (pSTEFF, 5). 

I/O Supervisor Program Organization 135 



Post-Status Module 
Proc.4 

• Based on the setting of two bits in the IOSFLA field, does one of the following: 

(a) IOSERR on, IOSEX any setting: Issues a STARTIO macro to retry the 
I/O operation, first testing the 10STSB field to see if a channel error 
occurred during the original operation. If so, sets bits in the 10SAPMSK 
field that will prevent the basic lOS module (IEClOSCN) test-channel 
procedure (2) from reselecting the path for the retry operation unless 
the path is the only one available. 

(b) IOSERR off, IOSEX on: Changes the completion code in the IOSCOD 
field and branches to the ABN exit. The codes and their meanings are 
as follows: 

IOSCOD on entry: on exit Meaning 

7F;41 ERP can't correct error. 

7E;44 I/O operation was never started; 
current SRB/lOSB is used to 
process the error. 

74;51 I/O operation was never started; 
device is inaccessible from the 
only operational processor. 

Not 7F, 7E, or 74; left as is See the explanations of lOSCOD 
codes in the "Diagnostic Aids" 
chapter under "Informative 
IOSB Fields." 

When the ABN exit routine returns, does the processing associated with the 
return address, as described in the exit interface procedure ( 1). One 
exception: if the register 14+0 return is used, doesn't go to an ERP, regardless 
of the IOSEX setting. 

(c) IOSERR off, IOSEX oft" Puts X'7F' in the 10SCOD field, showing a 
corrected error, and branches to the NRM exit. When the exit routine 
returns, does the processing associated with the return address, as described 
in the exit interface procedure (1). 

4. The Functional Recovery Procedure (PSTFRRTN) 

136 OS!VS2 I/O Supervisor Logic 

• Entered by RTM if any of the procedures of the post-status module took a 
program check. 

• If the caller is RTM, turns off VCB settings that direct control to the DA VV 
module, puts X'45' in the 10SCOD field, and, if the SDVMP buffer is available, 
issues an SDUMP macro to write the contents of the buffer in the SYS I.DUMP 
data set. 

• Sets bits in the SDWA (via the SETRP macro) that direct RTM to (a) record 
the contents of the SDWA in the SYS I.LOGREC data set and (b) return 
control to this procedure to avoid a continuation of termination processing. 

• Branches to RTM for retry. When control returns to IECVPST, frees any locks 
and storage that lOS acquired and exits to the dispatcher. 

Note: This procedure puts diagnostic data in the SDVMP buffer and in the variable 
area of the SDWA. The data is described in the "Diagnostic Aids" chapter under 
"Output of the Post-Status Module (IECVPST)." 



Post-Status Module 
Proc.5 

5. ERP Interface Procedure (PSTEFF) 

• Entered by the exit interface procedure (1) to cause entry to an ERP. 

• If request is for a non-IBM ERP, goes to the SVC 15 procedure (3) to post the 
driver with an error code. 

• If request is for an IBM-supplied ERP, gets ERP work area, if one does not 
already exist. 

• Branches to DASD ERP, or goes to non-DASD ERP via the exit effectors and the 
ERP loader (IECVERPL). 

• Return from a non-DASD ERP is via SVC 15. Processing is described under the 
SVC 15 procedure (3). 

• On return from a DASD ERP, processes according to the return address, as 
follows: 

(a) register 14+0: Goes to SVC 15 procedure (3) to: 

(1) Do a retry on the same path if a guaranteed device path was specified. 

(2) Do a retry on an alternate path if a guaranteed device path was not 
specified, provided there is an alternate path. Marks the failing path in 
the 10SB. 

(b) register 14+4: If the driver is program fetch and a data check occurred 
(IOSCOD = X'71 '), goes to the channel end exit belonging to PCI 
fetch. 

Otherwise, goes to the SVC 15 procedure (3) to check the IOSEX flag and 
process accordingly: 

(1) If the IOSEX flag is on, the error is considered permanent. In this case, 
sets a permanent error condition and branches to the driver's abnormal 
end exit. 

(2) If the IOSEX flag is off, the error has been corrected. Sets post code 
for normal completion (X'7F') and goes to the driver's channel end exit 
via the exit interface procedure (1). 

(c) register 14+8: Uses the exit effectors and the ERP loader to schedule the 
ERP message writer, IGE0025C. 

(d) register 14+12: Goes to abnormal end exit interface in SVC 15 
procedure (3). 

6. Restartable Wait Procedure (PSTWAIT) 

• Entered by the DA VV module (IECVDA VV) error handling procedure (3) 
and lOS lOSE handling procedure (2). 

• 
• 

Builds message IEA073A to explain why the page data set is unavailable. 

Calls IEEVLDWT to issue message IEA073A to the console; if the message can­
not be sent to the console, IEEVLDWT loads restartable wait state code 2F. 

• When control returns after the operator has pushed the RESTART key, if DAVV 
is waiting for a device end interruption, the routine exits to return control to the 
dispatcher. IfDAVV is not waiting, exit is to the SVC 15 procedure (3) to retry 
the I/O. 

1/0 Supervisor Program Organization 137 



Post-Status Module 
Proe. 7 
Redrive I/O Service Module 
Proes. 1,2 

7. The Unconditional Reserve Procedure (PSTUR) 

• Entered by the lOS 10SH-handling procedure (2). 

• If this is the first entry, calls the unconditional reserve detection module 
(IECVURDT) to determine whether the error is permanent. If it is not, 
branches to free storage, redrive queued I/O, and exit. 

• If this is not the first entry or if the error is permanent, calls the unconditional 
reserve decision module (IECVDURP) to communicate with the operator, if 
necessary. IECVDURP performs unconditional reserve recovery by calling the 
unconditional reserve service module (IECVURSV). There are three possible 
returns: 

(a) register 14+0 with IOSLOG off - branch to free storage and exit. 

(b) register 14+0 with 10SLOG on - go to the ERP logging routine via the 
exit effectors and the ERP loader. 

(c) register 14+4 - exit immediately. This routine will be re-entered to 
complete processing. 

Redrive I/O Service Module (lECVRDIO) 

1. The Redrive I/O Service Procedure 

2. The Path Check Procedure 

138 OS/VS2 I/O Supervisor Logic 

• Entered by the hot I/O recovery module (IECVHREC) and I/O restart module 
IECVIRST. 

• Does the following for each device on the requested channel: 

- Indicates that volume verification is necessary if the device was inactive or 
was active on the requested path, i.e. channel and channel set. 

- Calls the path check procedure (2) to determine path availability. 

- If the box-only function was not requested, calls the restart I/O procedure (3) 
to clean up active I/O operations. 

• Calls I/O SLIH to request it to redrive all channels on the next I/O interrupt or 
I/O request. 

• Entered by the redrive I/O service procedure (1). 

• Uses 10SMAP macro to determine online paths. 

• If no online paths exist, the device is boxed for hierarchy reasons, and the device 
address is added to message IEA0041. 

• Returns to caller. 



3. The Restart I/O Procedure 

• Entered by the redrive I/O service procedure (1). 

Redrive I/O Service Module 
Procs.3,4 
Re-reserve Module 
Procs.l,2 

• If an operation was active on the requested path, calls I/O SLIH, simulating 
status with interface-control check and channel-control check. This will clean 
up the UCB and send the active request back to the issuer. 

• Returns to caller. 

4. The Functional Recovery Routine 

• Entered from RTM on error during IECYRDIO. 

• Prepares diagnostic data. 

• Indicates those locks that are held and should be freed. 

• Attempts an SDUMP. 

• Frees the general work area. 

• Returns to RTM and percolates. 

Re-reserve Module (IECVRRSV) 

1. The Set Up Procedure 

2. The Do Reserve Procedure 

• Entered from the I/O restart modules IECYRSTI and IECYIRST, the hot I/O 
recovery module IECYHREC, and the unconditional reserve recovery module 
IECYURSY. 

• Obtains the storage for a work area. 

• If box-only function is not requested, processes each device in the reserve table 
(RESYTAB) as follows: 

calls check reserve procedure (3) to determine if the device should still be 
reserved. If not, marks the entry complete. 

uses 10SMAP to determine all online paths to the device. 

calls the special SIO module (IECVESIO) to perform reserve, unconditional 
reserve, or unconditional reserve/release on each online path until successful. 

calls the show reserve procedure (4) if the operation was successful. 

• Calls the box device procedure (5) to handle any unsuccessful operations or to 
perform the box-only function. 

• Frees the work area. 

• Returns to caller with an X'OO' return code if the requested function was 
successfully completed. A X'04' return code is returned if the function was not 
successfully completed. 

I/O Supervisor Program Organization 139 



Re-reserve Module 
Procs.3,4,5,6 

3. The Check Reserve Procedure 

• Entered by the do-reserve procedure (2). 

• Determines if the device should still be reserved to this system. 

• If not, gets the DCB lock and resets all reservation indicators. 

• Returns to caller. 

4. The Show Reserve Procedure 

5. The Box Devices Procedure 

• Entered by the do-reserve procedure (2). 

• Obtains the UCB lock. 

• If release was performed, resets all the DCB reservation indicators. 

• Otherwise, indicates on which path the device was reserved, and resets any 
pending indicators. 

• Returns to caller. 

• Entered by the do-reserve procedure (2) or the FRR procedure (6). 

• Processes each device in the reserve table if boxing is allowed. 

If not marked complete or boxed, gets the DCB lock, boxes the device, 
and resets the DCB reservation indicators. 

If the caller specified that messages be issued, this procedure places the 
device address in message IEA026I and issues it. 

• Returns to caller. 

6. The Functional Recovery Routine 

140 OS/VS2 I/O Supervisor Logic 

• Entered from RTM on an error in IECVRRSV. 

• Obtains diagnostic data. 

• If all devices were not fully processed, calls the box devices procedure (5). 

• If this is a recursive entry and boxing could not be completed, issues message 
IEA151W and loads wait state X'04E'. 

• Frees work area. 

• Returns to RTM requesting percolation. 



Resident Halt - I/O Module (IECIHIO) 

1. The Main Procedure (IECIHID) 

Resident Halt-I/O Module 
Procs.l,2 

• Entered by the nonresident purge module ( IGC0001 F) basic purge procedure 
(10) and the nonresident halt-I/O module (IGC0003C) main halt procedure (1), 
with the UCB lock of the associated device held, to halt a channel program 
currently active on the device. 

• Issues a SETFRR macro that gives RTM the address of the functional recovery 
procedure (5). 

• Calls the shoulder-tap procedure (2) ifnot entered on the processor that started 
the I/O operation. 

• Issues an HDV instruction to halt the I/O operation in progress. Calls the 
channel-logout procedure (3) if the HDV instruction is not accepted because of 
a pending channel logout (the condition code is set to 1, and the logout­
pending bit and channel-control-check bit are "on" in the CSW). Calls the 
channel e"or procedure (4) if the HDV instruction is not accepted because of a 
channel error (the condition code is set to 1, and a channel error is indicated in 
the CSW). 

• Issues a SETFRR macro that deletes the address of the functional recovery 
procedure (5) from RTM's stack of such procedures. 

• Puts one of these return codes in register 15: 

(a) X'OO': The I/O operation was halted. 

(b) X'08': The other processor was asked to halt the I/O operation but could not. 

• Exits to the return address in register 14. 

2. The Shoulder.Tap Procedure (HIDIPCI) 

• Entered by the main procedure (1) if that procedure was. not entered in the 
processor that started the I/O operation. 

• Issues an RISGNL macro, which gives control to a system routine, the RISGNL 
routine, that shoulder taps the other processor with a SIGP instruction. This 
procedure then continues in the other processor and branches to the main 
procedure (1) at a point (HIOCPUCK) just before the HDV instruction is issued. 
When the main procedure (1) exits in the shoulder-tapped processor, it does not 
return to the module's caller, but to the RISGNL routine. The RISGNL routine 
returns to this procedure with a return code that tells whether the shoulder­
tapped processor was able to halt the I/O operation. 

• Reissues the RISGNL macro up to 512 times if the RISGNL routine indicates 
(with a return code of 8) that the shoulder·tapped processor was unable to halt 
the I/O operation. 

• Issues an ABEND macro with an X'COD' completion code if an error occurred 
while processing in the shoulder-tapped processor. 

• Exits to the main procedure (1), passing on the RISGNL routine's return code 
in register 15. 

I/O Supervisor Program Organization 141 



Resident Halt·I/O Module 
Procs.3,4,5 

3. The Channel.Logout Procedure (HIOLOP) 

• Entered by the main procedure (1) if the HDV instruction results in a condition 
code of 1 and a logout-pending indication in the CSW. 

• Alters the I/O new PSW to point to the part of this procedure (IECHK5) that 
will process the logout interruption (the interruption generated by the channel 
when it is allowed to present its logout information to the processor). 

• Loops on an instruction (STOSM) that enables the "logout-pending" channel 
to interrupt processing and present its information. 

• Gets control at IECHK5 when the interruption occurs, prevents the "logout­
pending" channel from presenting other interruptions, and resets the I/O new PSW. 

• Releases the UCB lock. 

• Calls the basic module (IECIOSCN) interruption-handling procedure (9) to 
continue processing the interruption. Calls the CRH module (IECVCINT) if 
CRH support is active. 

• Reacquires the UCB lock. 

• Exits to the main procedure (1) at HIOHIO; or to the RPSGNL routine with a 
return code of X'08' in register 15, without executing any of the previous steps, 
if entered in a shoulder-tapped processor. 

4. The Channel Error Procedure (HIOCCH) 

• Entered by the main procedure (1) if a channel error, excluding a logout-pending 
indication, results from the HDV instruction. 

• Calls CCH to process the channel error. 

• Exits to HI 0 RTY in the main procedure (1) to re try the HDV instruction if 
CCH returns with a return code of X'OO' in register 15. (The HDV instruction is 
only retried once.) Otherwise, exits to the caller of this module with a return 
code of X'04'; or to the RISGNL routine, with a return code of X'08', if the 
HDV instruction was issued from the shoulder-tapped processor. 

5. The Functional Recovery Procedure (HIOFRR) 

142 OS/VS2 I/O Supervisor Logic 

• Entered by RTM if: 

(a) Any of the procedures of the resident halt-I/O mudule took a program 
check. 

(b) The shoulder-tap procedure (2) issued an ABEND macro with a X'COD' 
code. 

• Acquires the UCB lock to protect the processing environment of this module's 
caller Gust in case the error occurred between the time the channel-logout 
procedure (3) released and reacquired the UCB lock.) 

• If the channel-logout procedure (3) was entered, restores the I/O new PSW that 
it altered and ensures that no channel can present an interruption. 

• If the SDUMP buffer is available, issues an SDUMP macro to write the contents 
of the buffer in the SYS I.DUMP data set. 



Resident Halt-I/O Module 
Proc. 5 (cont'd.) 

• If the error didn't occur in a shoulder·tapped processor, issues a SETRP macro, 
directing RTM to record the contents of the SDWA in the SYS1.LOGREC 
data set and do one of the following: 

(a) Continue termination processing if the error didn't occur in the basic lOS 
module (9) or in CCH. 

(b) Retry the HDV instruction if the error occurred in the basic lOS module 
(IEClOSCN) in terrnption-handling procedure (9) or in CCH. 

• If the error occurred in a shoulder-tapped processor, puts the ABEND code and a 
return code of X'OC' in the FRR work area and branches to the return address 
in register 14. (The shoulder-tap procedure (2) will eventually get control in 
the calling processor, find the return code, and issue an ABEND macro with a 
X'COD' code, causing this procedure to again get control.) When control 
returns in the calling processor, overlays the X'COD' code in the SDW A with the 
original ABEND code and sets bits in the SDWA (via the SETRP macro) that 
direct RTM to record the contents of the SDWA in the SYS1.LOGREC data 
set and continue termination processing. 

• Exits to the return address in register 14. 

Note: This procedure puts diagnostic data in the SDUMP buffer and in the variable 
area of the SDWA. The data is described in the "Diagnostic Aids" chapter under 
"Output of the Resident Halt-I/O Module (IECIHIO)." 

I/O Supervisor Program Organization 143 



Resident Purge Module 
Procs. 1,2.3 

Resident Purge Module (IECVPURG) 

1. The Decrement-Count Procedure (IECVQCNT) 

• Entered by a driver's termination procedure if, during a quiesce operation, lOS 
finished processing an I/O request submitted by that driver. (When an I/O 
request has been completely processed, the post-status module (IECVPST) exit 
interface and SVC 15 procedures (1 and 3) branches to the driver's termination 
procedure, or gives it control with a SCHEDULE macro if the request was 
processed by a nondirect-access ERP.) 

Note: Also entered by the nonresident purge module (IGCOOOIF) entrance/exit 
procedure (1) on behalf of a problem-state driver that can't enter directly. 

• Decreases the count of partially-processed I/O requests in the IPIBCNT field 
of the IPIB (lOS purge interface block). If the count becomes zero, acquires the 
local lock, if not already held, and calls the system j post routine to post the 
ECB created by the nonresident purge module (IGCOOOIF) entrance/exit 
procedure (1), bringing that module out of a wait state. 

• If it acquired the local lock, releases it. 

• Exits to the return address in register 14. 

2. The SIRB Clean. Up Procedure (IECVPRCU) 

• Entered by the dispatcher, if an applicable SRBjlOSB was dequeued from an 
SIRB, after the nonresident purge module (IGCOOOIF) entrance/exit procedure 
(1) restarts TCB processing with a STATUS macro. (The dispatcher loads the 
resume PSW in the SIRB, which was modified to point to this procedure by the 
nonresident purge module (IGCOOOIF) SIRE-purge procedure (2).) 

• Acquires the local lock and calls the storage manager module (IECVSMGR) 
free·large-block procedure (6) to free the ERP work area addressed in the SIRB. 

• Exits with an SVC 3 instruction. 

3. The Cha;n·SRB Procedure (IECVPRDQ) 

144 OS/VS2 I/O Supervisor Logic 

• Entered by the system's SPL purge module, which was entered by the non· 
resident purge module (IGCOOOIF) SPL-purge procedure (6) to remove an SRB 
from the SPL. 

Issues an ABEND with an X'COD' code if IPIB pointer, ASCBIOSP, is zero. (The 
'COD' code means that a QUIESCE macro was issued without a work area.) 

• Puts the SRB/IOSB pointed to by register 1 on the queue of SRBjIOSBs 
chained from the IPIB (lOS purge interface block). 

• Exits to the return address in register 14. 



'--' Restore Module (IGCOOO 1 G) 

1. The Restore Procedure (IGC017) 

Restore Module 
Proc.l 

• Entered with an SVC 17 instruction by a user or system program running under 
a TCB. (A purge operation, not necessarily initiated by the same program, must 
precede entry to this module.) 

• Issues a GETMAIN macro for a save area to be used by the called drivers. 

• Calls in turn the restore procedures of each driver, passing to each in register 1, 
the address of the field, if nonzero, in the PIRL (PIRRSTR) that points to data 
saved during the purge operation. (The PIRL purged I/O restore list is 
created during a quiesee operation and is initialized with pointers to the 
interrupted work of each driver.) 

• Puts one of these return codes in register IS: 

(a) X'OO'; All the drivers were able to restore their I/O requests. 

(b) X'04'; One or more drivers returned a code that indicated an error in 
restoring I/O requests. 

• Frees the PIRL and the save area via a FREEMAIN macro. 

• Exits to the return address in register 14. 

I/O Supervisor Program Organization 145 



SIO Module for DASD 
Proc. 1 

The SIO Module for DASD Devices (IECYXDAS) 
1. DASD SIO Procedure 

146 OS/VS2 I/O Supervisor Logic 

Note: Descriptions of the SIO module for the 2305, 2314 and 3330V devices are 
presented separately on the following pages. All other DASDs are handled by this 
procedure. 

• Entered by the basic lOS module (IEClOSCN) test channel procedure (2). 

• If the UCBUDE (unsolicited device end) bit is on, issues the IOSCKVOL macro 
for volume verification. 

• Builds a channel-program prefix containing seek, set-fIle-mask, and TIC CCWs. 
If tests justify it, adds a reserve or release CCW to the beginning of the prefix 
and issues the 10SSCP macro specifying that (a) the driver's channel program, 
with prefix, starts with a SIO instruction and (b) control returns here. 

• If the device is not shared, or if it is shared and reserved, issues the IOSSCP 
macro specifying that (a) the driver's channel program, with prefix, starts with 
a SIOF instruction and (b) control is given to the basic lOS module (IEClOSCN) 
post-SIO procedure (4). 

• If the device is shared and not reserved, issues a IOSSCP macro specifying that 
(a) the driver's channel program, with prefix, is started with a S10 instruction 
and (b) control is given to the basic lOS module (IECIOSCN) post-SIO 
procedure (4). 

• Exits to the basic lOS module (IECIOSCN) post-SIO procedure (4). 



The SIO Module for the 2305 Device (IECYXDRS) 
1. 2305 SIO Procedure 

SIO Module for 2305 
Proc.l 

• Entered by the basic lOS module (IECIOSCN) test channel procedure (2). 

• If tests of bits in the UCB justify it, builds a stand·alone reserve or release CCW. 
Issues the 10SSCP macro specifying that (a) the CCW executes with a SIO 
instruction and (b) control returns here. 

• Builds a channel-program prefIX containing seek, set-fIle-mask, and TIC CCWs. 

• Selects an exposure (a device number - a 2305 can be addressed by eight device 
numbers) to use in starting the I/O operation, unless the driver indicated that it 
wants to use a specific exposure. 

• If the device is not shared, or if it is shared and reserved, issues IOSSCP macro 
specifying that (a) the driver's channel program, with prefix, starts with a SIOF 
instruction and (b) control returns here. 

• If the device is shared and not reserved, issues the IOSSCP macro specifying that 
(a) the driver's channel program, with prefIX, starts with a SIO instruction and 
(b) control returns here. 

• Exits to the basic lOS module (IECIOSCN) post-SIO procedure (4). 

Note: lOS selects the base exposure (the lowest device number of the eight 
possible exposures) for stand-alone reserve and CCWs only. The other seven 
exposures are selected for normal data transfer operations. 

I/O Supervisor Program Organization 147 



SIO Module for 2314 
Proc.l 

The SIO Module for the 2314 Device (IECVXSKS) 
1. 2314 SIO Procedure 

148 OS/VS2 I/O Supervisor Logic 

• Entered by the basic lOS module (IECIOSCN) test channel procedure (2). 

• If the UCBUDE (unsolicited device end) bit is on, issues the IOSCKVOL macro 
for volume verification. 

• Builds a stand-alone seek CCW. Issues the IOSSCP macro specifying that (a) the 
channel program starts with a SIO instruction and (b) control returns here. 
When control returns, exits to the basic lOS module (IECIOSCN) post-SIO 
procedure (4) if the condition code is nonzero; otherwise, does the following: 

(a) Turns on the UCBSAP bit, indicating a seek operation is in progress. 

(b) Issues a TIO instruction up to 256 times, testing for a condition code of 
1, which indicates that status information is stored in the CSW. Starts the 
driver's channel program if, during the execution of this loop, status 
information is stored that contains a channel-end and device-end 
indication. Otherwise, returns to the basic lOS module (IEClOSCN) test 
channel procedure (2) with a request to put the IOQ on a logical channel 
queue. 

• Builds a channel-program prefix containing seek set-fIle-mask and TIC CCWs. 
If tests justify it, adds a reserve or release CCW to the prefix and issues the 
IOSSCP macro specifying that (a) the driver's channel program, with prefix, 
starts with a SIO instruction and (b) control returns here. 

• If the device is not shared, or if it is shared and reserved, issues the IOSSCP 
macro specifying that (a) the driver's channel program, with prefix, starts with 
a SIOF instruction and (b) control is given to the basic lOS module (IECIOSCN) 
post-SIO procedure (4). 

• If the device is shared and not reserved, issues a IOSSCP macro specifying that 
(a) the driver's channel program, with prefix, is started with a SIO instruction 
and (b) control is given to the basic lOS module (IECIOSCN) post-SIO 
procedure (4). 

• Exits to the basic lOS module (IECIOSCN) post-SIO procedure (4). 



(' 

SIO Module for 3330V 
Proc.l 

The SIO Module for the 3330V Device (IECVXVRS) 

1. 3330 V SIO Procedure 

• Entered by the basic lOS module (IECIOSCN) test-channel procedure (2). 

• If the request has been held because of a pending cylinder fault resolution, and 
no cylinder fault was resolved for the device, the IECVXVRS exits to the basic 
lOS module (IECIOSCN) test-channel procedure (2) at offset X'04' to cause the 
IOQ to remain queued. 

• If the request has been held because of a pending cylinder fault resolution and a 
cylinder fault was resolved for the device, this request and all similar requests are 
released. This request then processes normally. 

• Builds a channel-program prefIx containing seek, TIC, NOOP, set-file-mask, and 
TIC CCWs_ If tests justify it, adds a reserve or release CCW to the beginning 
of the prefIx and issues the IOSSCP macro specifying that (a) the driver's 
channel program, with prefIx, starts with a SIO instruction and (b) control 
returns here. 

• If the device is not shared, or if it is shared and reserved, issues the IOSSCP 
macro specifying that (a) the driver's channel program, with prefIx, starts with a 
SIOF instruction and (b) control is given to basic lOS module (IECIOSCN) 
post-SIO procedure (4). 

• If the device is shared and not reserved, issues a IOSSCP macro specifying that 
(a) the driver's channel program, with prefIx, is started with a SIO instruction 
and (b) control is given to the basic lOS module (IECIOSCN) post-SIO 
procedure (4). 

• Exits to the basic lOS module (IECIOSCN) post-SIO procedure (4). 

I/O Supervisor Program Organization 149 



SID Module for 2400 Tape, Proc. 1 

SIO Module for 3400 Tape, Proc. 1 

SIO Module for Unit Record. Proc. 1 

The SIO Module for the 2400 Tape Device (IECYXT2S) 

1. 2400 SIO Procedure 

• Entered by the basic lOS module (IECIOSCN) test-channel procedure (2). 

• If the control unit can handle simultaneous read and write operations to two 
tape devices, builds a stand-alone set-mode CCW. Issues the IOSSCP macro 
specifying that (a) the set-mode starts with a SIO instruction and (b) control 
returns here. 

• Builds a channel program prefIx consisting of a set-mode CCW and a TIC. 
If the I/O request is one that the tape ERP wants retried, adds error correction 
CCWs to the prefIx as the ERP directs. 

• Issues the IOSSCP macro specifying that (a) the driver's channel program, with 
prefix, is started with a SIOF instruction and (b) after the SIOF instruction, 
control passes to the basic lOS module (IECIOSCN) post-SIO procedure (4). 

The SIO Module for the 3400 Tape Device (lECYXT3S) 

1. 3400 SIO Procedure 

• Entered by the basic lOS module (IECIOSCN) test-channel procedure (2). 

• If the UCBUDE (unsolicited device end) bit is on, issues the IOSCKVOL macro 
for volume verification. 

• Builds a channel program prefIx consisting of a set-mode CCW and a TIC. If 
the I/O request is one that the tape ERP wants retried, adds error correction 
CCWs to the prefIx as the ERP directs. 

• Issues the IOSSCP macro specifying that (a) the driver's channel program, with 
prefIx, is started with a SIOF instruction and (b) after the SIOF instruction 
control passes to the basic lOS module (IECIOSCN) post-SIO procedure (4). 

The SIO Module for Unit Record Devices (lECYXURS) 

1. Unit Record SIO Procedure 

150 OS/VS2 I/O Supervisor Logic 

• Used for unit record, graphic, TP, 3851, 3838, 3211 and 3800 devices. 

• Entered by the basic lOS module (IECIOSCN) test-channel procedure (2). 

• Issues the IOSSCP macro specifying that (a) the driver's channel program is 
started with a SIOF instruction and (b) after the SIOF instruction, control 
passes to the basic lOS module post-SIO procedure (41. 



Special SIO Module 
Proc.l 

Special SIO Module (IECYESIO) 
1. The Entrance/Exit Procedure 

• Entered by a system program which requires an I/O operation to be performed 
"synchronously," without using normal system services. 

• If the requested channel set is connected, calls the SIO procedure (2). Other­
wise, if CRH or CHS is active, obtains access to the required channel, then calls 
the SIO procedure (2). 

• If the required channel is connected to the other processor, and the caller allows, 
IECVESIO issues an RISGNL macro to obtain control on the other processor 
in the SIGP entry procedure (3). 

• Returns to the caller with I/O complete, if possible, and a return code. 

The return code in register 15 will be one of the following: 

(a) X'OO': the channel program completed successfully. 

(b) X'04': a unit check occurred; no sense data was returned. 

(c) 

(d) 

(e) 

(1) 

(g) 

(h) 

(i) 

G) 

(k) 

(1) 

(m) 

(n) 

(0) 

(p) 

X'08': 

X'OC': 

X'lO': 

X'14': 

X'18': 

X'IC': 

X'20': 

X'24': 

X'2B': 

X'2C': 

X'30': 

X'34': 

X'38': 

X'3C': 

a unit check occurred; sense data was returned. 

channel error occurred on SIO instruction. 

condition code of 3 occurred on a SIO instruction. 

condition code of 0 occurred on a TIO instruction, while 
waiting for device end. 

maximum SIO count was exceeded. 

maximum TIO count was exceeded. 

channel program completed with a unit exception, PCI, incorrect 
length, channel program check, protection check, or chaining 
check. 

requested channel set not available. 

enablement required. 

maximum enablement count exceeded. 

channel error on TIO. 

condition code of 3 occurred on TIO instruction. 

attention present in CSW. 

other error. 

I/O Supervisor Program Organization 151 



Special SIO Module 
Procs.2,3,4 

2. The SIO Procedure (SIORTN) 

• If requested by the caller, enters a TIO loop waiting for an attention from the 
required device. 

• Issues the SIO instruction to the required device with the caller's channel 
program. Then enters a TIO loop waiting for the device end interruption. 

• If a unit check occurs, a sense is issued. If the device is busy and the caller 
allows, the processor is enabled for all I/O interruptions which are then 
processed by the lOS SLIH. If the caller does not allow the processor to be 
enabled, the I/O request is not performed. 

3. The SIGP Entry Procedure (lECVESIG) 

• Receives control on the other processor when it is connected to the requested 
channel set. Then IECVESIG calls the SIO procedure (2) and control returns 
to !PC. 

4. The Functional Recovery Routine (ESIOFRR) 

• RTM enters the FRR routine when an error is encountered in IECVESIO. 

• Puts the FRR parameters into the variable field of the SDW A. 

• Returns to RTM. 

152 OS/VS2 I/O Supervisor Logic 



Storage Manager 
Module 
Proes.l 

L Storage Manager Module (IECVSMGR) 

1. The Get-Small-Block Procedure (GETBLKO) 

• Entered by procedures of the basic lOS module (IECIOSCN) that want a 
12·byte block for use as an IOQ . 

• Checks the I2·byte block free queue for a pointer to a free block. The 
free queue header has the following format: 

Free Queue Header: 

o 2 4 8 

Synchronous number of Pointer to first 
count for free blocks free block 
CS (free count) 

Pool Header: 

o 2 4 8 A c 

#of #of 
%tof 

Pointer 
blocks Block 

Reserved 
segments 

segments 
to the 

per length initially 
in pool 

first 
segment allocated segment 

Pool Segment: 

o 4 8 A c 
X'80' 

it of 
Temporary Temporary if initial Pointer 
number of pointer to segment, blocks 

to next 
free blocks first block X'40' per 

segment 
if last segment 

) 
Segment 
header 

Pointer to 

} Free 
next block 
free block 

-- --T T 

• If there are no free blocks, acquires the global SALLOC (space allocation) lock, 
issues a GETMAIN for a 2,048·byte segment, formats the new segment, and uses 
compare and swap (CS) logic to add the new chain of blocks to the free queue. 
(The new segment is also added to the chain of segments in a last·in, first·out 
manner). 

• To synchronize the queue manipulation, increases the "synchronous count", 
decreases the free count, uses CS (compare and swap) logic to remove the first 
free block, and puts the address of the de queued block in register 11. 

• Exits to the retu.rn address in register 14. 

I/O Supervisor Program Organization 153 



Storage Manager 
Module 
Procs.2,3 

2. The Free-Small-Block Procedure (FRBLKO) 

• Entered by procedures of the basic lOS module (IECIOSCN) and by the non­
resident purge module (IGC0001F) basic purge procedure (10) to return an IOQ 
to the "small block" pool. The IOQ address is passed in register 1. 

• Tests the IOQ for the IOQALOC bit (turned on by basic lOS module 
(IEClOSCN) channel scheduler procedure (1), basic lOS module (IEClOSCN) 
the DIE interface procedure (11), basic lOS module (IEClOSCN) the PCI DIE 
interface procedure (12), or basic lOS module (IECIOSCN) the sense procedure 
(14) when the 12-byte block is acquired). If the bit is not on, issues a 'COD' 
abend code because the block is invalid or is about to be freed twice. The abend 
causes the functional recovery procedure (11) to check the queues, restructure 
if necessary, and return to the caller of the free-small-block procedure (2) 
without putting the block on the free queue. 

• If the block is valid, uses CS logic to increase the free count and the synchronous 
count and put the block back on the free queue in a push-down (last-in, 
first-out) manner. 

• Exits to the return address in register 14. 

3. The Get-Medium-Block Procedure (GETBLK4) 

154 OS/VS2I!O Supervisor Logic 

• Entered by the EXCP processor to get a 40-byte block for use as an RQE 
(request queue element). 

• Looks at the 40-byte block free queue header for a pointer to a free block. The 
header has the same format as the l2-byte block free queue header. 

• If no blocks are on the free queue: 

a) Acquires the global SALLOC lock. 

b) Issues a GETMAIN for 4K of subpool 245. 

c) Formats the page into 40-byte blocks. 

d) Updates the pool header of 4K pages and chains the new set of 40-byte 
blocks to the free queue. 

e) Frees the global SALLOC lock. 

• If blocks are on the free queue, dequeues one block using CS logic. The CS 
logic increases the synchronous count and decreases the free count. 

• Tests the block prefix to ensure that the block is marked free. 

a) If not free, issues a 'COD' abend to cause the storage manager module 
(IECVSMGR) functional recovery procedure (11) to record the error. The 
FRR issues an SDUMP if the SDUMP buffer is available, validity checks the 
other storage manager queues, and zeros the 40-byte block free queue. A 
retry causes a GETMAIN to be issued for a new 4K page. 

b) If a free or valid block, puts the ASID (address-space identifier) in the prefix 
of the de'queued block, turns on the 'allocated' flag in the prefix, and passes 
the address of the block in register 11. 



Pool Header: 

temporary temporary 
count pointer 

8 

X'80' if initial page 
X'40' ifJast page 

A 

number of blocks 
per page 

C 

Pointer to 
the first page 

pointer to the 
next page 

Storage Manager 
Module 
Procs.3 

} 
page header 

I---____ ...I-______ ---L _______ ..I..-______ ....L ______ -I (32,X'20' bytes) 

'40 BYTE lOS SMGR' (16-byte EBCDIC identifier) 

r------,-----~--------------------------~ 
8-byte prefIX pointer to 

next block 

t-----------.......I ~ :~tes 

Displacemen t 
from prefix 0 
from block -8 

ASID of 
block 

8-byte prefix 

2 
-6 

I 

pointer to 
next block 

3 4 
-5 -4 1 :a:cated' I 

Note: The free queue 
header points to the 
first available free 
block. Only free blocks 
are chained in this 
queue. 

8-byte prefIX 

\ 

pointer to 
next block 

Pointer to page header of 
page that block comes from 

-1..0 

I/O Supervisor Program Organization 155 



Storage Manager 
Module 
Procs.4 

• If more than one block is needed, the previous steps are repeated for each block, 
and the blocks are chained together. 

• Exits to the return address in register 14. 

4. The Free-Medium-Block Procedure (FRBLK4) 

156 OS/VS2 I/O Supervisor Logic 

• Entered by the EXCP processor to return 40-byte blocks to the "medium 
block" pool. Also entered by the purge-free procedure (8) to return a block 
belonging to a terminating job. Register 1 contains the size and address of a 
single block to be returned or the size and address of the first block in a chain 
of blocks to be returned. 

• Checks the block prefix to ensure that it is marked "allocated." 

a) If not allocated, issues a 'COD' abend to cause the storage manager module 
(IECVSMGR) functional recovery procedure (11) to record the error. This 
functional recovery procedure receives control from the EXCP processor 
functional recovery procedure in module, IECVEXPR. The FRR issues an 
SDUMP if the SDUMP buffer is available, validity checks the other storage 
manager queues, and retries by returning to the caller of free-medium-block 
procedure (4) without placing the invalid blocks on the free queue. 

b) If allocated and valid, zeros the address-space identifier in the block's prefix, 
sets the 'allocated' flag to indicate free, increases the free count and the 
synchronous count, and uses CS logic to put the block on the 40-byte block 
free queue in a last-in, first-out manner. 

• Exits to the return address in register 14. 



5. The Get-Large-B1ock Procedure (GETBLK) 

Storage Manager 
Module 
Procs.5 

• Entered by the basic lOS Module (IECIOSCN), the post-status module 
(IECVPST), the I/O-restart module (IECVRSTI), the nonresident purge module 
(IGC0001F), the direct-access ERP (IECVDERP), and a module (IECVIOPM) 
that's used by the VARY processor to identify online paths to a device. Each 
enters to get a 160-byte block for use as an SRB/IOSB or as an ERP work area. 
Also entered by the EXCP processor to get a 160-byte block for use as an 
SRB/IOSB, a TCCW, BEB, FIX list, or IDAL. Register 11 specifies the number 
of blocks needed and the ASID (address-space identifier) of the address space 
that will acquire them. 

• Looks at the 160-byte block free queue header for a pointer to a free block. 
If no free blocks are available: 

a) Acquires the IOSYNCH lock conditionally to serialize against the compress 
routine (10) and the purge-free procedure (8). 

b) If the IOSYNCH lock is already held, a compressing of the subpools (by the 
compress interface (13) ) of the storage manager's free queue may be in 
progress - again checks to see if any blocks are on the free queue - if not, 
repeats (a). 

c) Once the IOSYNCH lock is acquired, calls the get-storage procedure (7) to 
get a new 4K page of storage formatted into 160-byte blocks. 

d) Takes the new chain of 160-byte blocks and uses CS logic to update the 
free count and synchronous count and put the new blocks on the free queue. 

e) Releases the IOSYNCH lock. 

• When blocks are available: 

a) Uses CS logic to dequeue an available block and update the free count and 
synchronous count. Checks the prefix of the block to ensure that it is marked 
"free". Ifnot, issues a 'COD' abend which causes the FRR to record the 
error and zero the free queue pointer. (Retry proceeds as if no free blocks 
were available upon entry.) 

b) Puts the ASID it received into the prefix of the dequeued block and marks 
the prefix "allocated". Puts the address of the block in register 11. 

I/O Supervisor Program Organization 157 



Storage Manager 
Module 
Procs. S (cont'd.) 

Pool header: 

o 4 

{-r l60-byte block" 

o 4 

8 

8 

A C 

pointer to 

D the next page 

A C 
temporary temporary 
count of po inter to flrst X'80' if initial page 
free blocks free block X'40' iflast page 
for compress (compress) 

number of blocks pointer to the 
per page next page 

> 
page header 
(32,X'20' bytes) 

'160 BYTE lOS SMGR' (16·byte EBCDIC identifler) 1\ 
a-byte preflx 1 

pointer to 
next block 

158 OS/VS2 I/O Supervisor Logic 

~ 
Note: The free queue header 
points to the first available 
free block. Only free blocks 
are chained in this queue. 

/ 
8-b yte preflx 

pointer to 
next block 

8-byte preflx pointer to 
next block 

Free queue header points to the chain of all free blocks (Without regard to the 
page the block comes from). This page structure used mainly by compress (10) 
and purge free (8). 

• If more than one block is needed, repeats the previous steps for each block and 
chains the blocks together. 

• Exits to the return address in register 14. 



6. The Free-Large-Block Procedure (FREEBLK) 

Storage Manager 
Module 
Procs. 6,7,8 

• Entered by the modules, listed under the get-large-block procedure (5), that want 
to return 160-byte blocks to the "large block" pool. Also entered by the purge­
free procedure (8) to return a block belonging to a terminating job. Register 1 
contains the size and address of a single block to be returned or the size and ad­
dress of the first block in a chain of blocks to be returned. 

• Issues a SETFRR macro that gives RTM the address of the functional recovery 
procedure (11). 

• Checks the block to ensure that it is valid and marked allocated. 

a) If not allocated, issues a 'COD' abend to cause the storage manager module 
(IECVSMGR) functional recovery procedure (11) to record the error. The 
FRR validity checks the storage manager's queues and retries by returning to 
the caller of free-large-block procedure (6) without placing the invalid blocks 
on the free queue. 

b) If a valid and allocated block, zeros the ASID in the prefix and marks the 
block "free", uses CS logic to update the free count and synchronous count, 
and puts the block or chain of blocks back on the free queue. 

• Exits to the return address in register 14. 

7. The Get-Storage Procedure (GETCORE) 

• Entered by the pool initialization procedure (9) at IPL time to obtain a 
2048-byte 'segment' of initial small blocks, and 4096-byte pages for 40-byte 
blocks and 160-byte blocks; and by the get-large-block procedure (5) to obtain 
additional4K pages of 160-byte blocks as needed. 

• Acquires the SALLOC lock and issues a GETMAIN to get either a 4096-byte 
page, or a 2048-byte 'segment' of small blocks. Then frees the SALLOC lock. 

• Formats the segment by initializing its header and chaining the blocks within 
the segment together. 

• Updates the pool header to show the addition of a segment to the pool. 

• Exits to the return address in register 9. 

8. The Purge-Free Procedure (PRGFREE) 

• If an address space is terminating, entered by the nonresident purge module 
(IGCOOOI F) entrance/exit procedure (1). to return all the 40-byte and 160-
byte blocks that this module previously allocated to the address space. 

• Searches all the blocks in the medium-block pool for each block belonging to 
the address space of the terminating job, then calls the free medium-block 
procedure (4). 

• Acquires the IOSYNCH lock. Searches all the blocks in the large-block pool. 
For each block matching the ASID of the terminatingjob, calls the free-large 
block procedure (6). Frees the IOSYNCH lock to open a "lock window," gets 
the lock again and starts the scan from the beginning of the large-block pool. 

I/O Supervisor Program Organization 159 



Storage Manager 
Module 
Procs.9,IO 

• Exits to the return address in register 14 after the search is completed. 

9. The Pool Initialization Procedure (IECVCPRM) 

• Entered by module IEAVNIPO when the nucleus is initialized to ensure that 
storage for the "small block," "medium block," and "large block" pools is 
obtained and formatted. 

• Calls the get-storage procedure (7), which gets storage for the pools and formats 
the headers and segments. 

• Exits to the return address in register 14. 

10. Compress Procedure (IECVSCOM) 

160 OS/VS2 I/O Supervisor Logic 

A separate entry point in IECVSMGR. Scheduled as an SRB by non-resident purge 
module (1) when purge detects a large number (one greater than COMPMIN) of 
160-byte blocks on the free queue. This routine attempts to free the 4K pages of 
160-byte blocks no longer being used. (Note: There is also a branch entry point in 
IECVBSCOM to this routine.) 

• If scheduled as an SRB, returns the SRB block to the free queue of 160-byte 
blocks. 

• Checks for a minimum number of free blocks (CMIN160) and a minimum 
number of total pages (MINPGES) in the large-block pool. Only proceeds if 
both minimums are satisfied. 

• If another compress is in progress, exits to caller or dispatcher (IEAVEDSO). If 
not, turns on 'compress-in-progress' word flag. 

• Issues a SETFRR and acquires the IOSYNCH lock to serialize against the 
get-large-block procedure (5) and the purge-free procedure (8). 

• Dequeues the entire free queue of 160-byte blocks and uses the pointer in each 
block prefix to sort the block back to the page it came from. If the block came 
from an initial page (obtained at NIP time), it is put back on the free queue. If 
not from a NIP page, the block is chained temporarily to a header in the page 
that the block did come from. When all free blocks are thus sorted, those free 
blocks from pages that have allocated blocks still outstanding are put back on 
the free queue. 

• The IOSYNCH lock is freed. If any pages contain only free blocks, acquires 
the global SALLOC lock and frees the 4K pages that contain only free blocks. 
The SALLOC lock is freed. 

• Turns off the 'compress-in-progress' indicator and 

a) If entered in SRB mode through IECVSCOM, returns to the dispatcher 
(lEA VEDSO). 

b) If branch entered, sets register 15 to four if no pages are freed and to zero 
if at least one page is freed. Returns to the caller via register 14. 



11. The Functional Recovery Procedure (IECVSMFR) 

Storage Manager 
Module 
Procs. 11,12 

• Entered by RTM If any of the procedures of the storage manager module took 
a program check. 

• If the SDUMP buffer is available, issues an SDUMP macro to write the contents 
of the buffer in the SYS I.DUMP data set. 

• As a back-up measure, issues a SETFRR macro that again gives RTM the address 
of this procedure. 

• Releases the SALLOC lock if it is held and acquires the IOSYNCH lock if it is 
not already held. 

• Looks for invalid data in the pool header that was being processed when the 
error occurred. If it finds invalid data, calls the get-storage procedure (7) to get 
a new, formatted pool. 

• Calls the system's queue verification routine (lEA VEQVO; to examine the 
2048- or 4096-byte 'segments' in the pool that was being processed when the 
error occurred. 

• If the error occurred during a get-small, -medium, or -large block request, the 
appropriate free queue is zeroed because the whole free queue is in doubt. 

• If the error occurred during a free-small, -medium, or -large block request, the 
invalid blocks are discarded, that is, not returned to the free queue. 

• Sets bits in the SDWA (via the SETRP macro) that direct RTM to: 

(a) Record the contents of the SDWA in the SYSl.LOGREC data set. 

(b) Continue termination processing if the error occurred during ACR proces­
sing, following a restart of the system by the operator, or as a result of 
invalid page tables. 

c) For a get-small, -medium, or -large block request, retry is to the point where the 
get routine checks for a zero free queue. 

d) Retry for a free-small, -medium, or -large block request is to restore registers, 
delete the FRR if any, and return to the caller of the free routine without 
putting the invalid blocks on the free queue. 

• Exits to RTM. 

Note: This procedure puts diagnostic data in the SDUMP buffer; the data is 
described in the "Diagnostic Aids" chapter under "Output of the Storage Manager 
Module (IECVSMGR)." Instead of writing in the variable area of the SDWA, it 
passes the area to the queue verification routine for use as a QVOD (queue verifica­
tion output data area). The format and contents of the QVOD are described in 
the microfiche document OSjVS2 Data Areas, SYB8-0606. 

12. The Block Verification Procedure (SMGFREVR) 

• Entered by the system's queue verification routine (IEAVEQVO) to examine 
a block allocated from the "small block," "medium block," or "large block" 
pool. 

I/O Supervisor Program Organization 161 



Storage Manager 
Module 
Procs. 12 (cont'd.) 

162 OS!VS2 I/O Supervisor Logic 

• Tries to address the block. If it can't, exits to the return address in register 14 
with a return code of X'OS' in register 15. 

• If a machine check occurred, finds out whether the block resides in defective 
storage. If so, exits to the return address in register 14 with a return code of 
X'OS' in register 15. 

• If the block is an IOQ, finds out whether the block resides in the "small block" 
pool. Exits to the return address in register 14 with a return code of X'OO' in 
register 15 if the block resides in the pool; with a return code of X'OS' if it 
doesn't. 

• Validates the segment and chain that the block belongs to by checking for 
invalid data in the "header" field of the segment. 

• If no errors are found, puts a return code ofX'OO' in register 15. Otherwise, 
uses a return code of X'O~'. Exits to the return address in register 14. 



Unconditional Reserve 
Decision Module 
Procs. 1,2 

The Unconditional Reserve Decision Module (IECVD URP) 
1. The Main Procedure 

• Entered by the post-status module (IECVPST) unconditional reserve 
procedure (7 j. 

• If this is the first entry to the module and if the ownership of the device is 
established, calls the unconditional reserve service module (IECVURSVj to 
attempt path recovery. 

• If this is the first entry to the module and if the ownership of the device is in 
question, schedules the asynchronous exit routine to issue message IEA427 A. 
This message presents the operator with the recovery options. 

• If the error was on a paging device, calls the restartable wait state service routine 
(IEEVDLWT) to issue message IEA427 A or to load restartable wait state 
X'06F'. 

• If this is not the first entry (the response from the operator has been received), 
IECVDURP checks the response to determine what options are passed to the 
unconditional reserve service module. 

If the operator response was YES, recovery is requested, IECVDURP calls the 
unconditional reserve service module to issue the unconditional reserve 
instruction. 

If the operator response was NO, no recovery requested, IECVDURP calls the 
unconditional reserve service module with indication to force the device 
offline because volume integrity may be lost. 

If the operator response was NOOP, fECVDURP calls the unconditional 
reserve service module with indication to redrive I/O without any other 
processing. 

• If unconditional reserve recovery is successful, IECVDURP issues message 
IEA4281. 

• If unconditional reserve recovery IS not successful, IECVDURP issues message 
IEA429I. 

• Returns to caller. 

2. The Device Validation Routine (IECVDVAL) 

• Entered by the basic lOS module (IECIOSCN) unconditional reserve scheduling 
procedure (17 j. 

• Verifies that the device on which a path failure occurred supports the 
unconditional reserve DASD command. 

• Returns to caller at register 14+0 if unconditional reserve supported; at register 
14+4 if unconditional reserve not supported. 

I/O Supervisor Program Organization 163 



Unconditional Reserve 
Detection Module 
Proc.l,2 

The Unconditional Reserve Detection Module (IECVURDT) 
1. The Main Procedure (lECVURDT) 

• Entered by the post-status module (IECVPST) unconditional reserve 
procedure (7). 

• Issues the TCH (test channel) instruction. If the condition code is 3 (channel 
not operational). returns to caller with indication to continue unconditional 
reserve recovery. 

• Issues the HOY (halt-device) instruction. 

- If the condition code is 1 (CSW stored), calls the condition code one 
procedure (2). 

• Issues the CLRIO (clear I/O) instruction. 

If the condition code is 3 (not operational), returns to caller with indication 
to continue unconditional reserve recovery. 

If the condition code is 1 (CSW stored), calls the condition code one 
procedure (2). 

• Issues the HOY (halt-device) instruction. 

If the condition code is 3 (not operational), returns to caller with indication 
to continue unconditional reserve recovery. 

If the condition code is 1 (CSW stored), calls the condition code one 
procedure (2). 

If the condition code is 0 (sub channel busy with another device or interrup­
tion pending) or condition code 2 (channel working), returns to the caller 
with indication that no recovery is to be done. 

• If condition code one procedure (2) did not indicate that detection was to 
continue, returns to the caller with indication that no recovery is to be done 
(the error was transient). 

2. The Condition Code One Procedure (CC1RTN) 

164 OS/VS2 I/O Supervisor Logic 

• Entered by the main procedure (1) when a condition code 1 is received on HOY 
or CLRIO instruction. 

• If logout-pending is indicated in the CSW, enables that channel for an I/O 
interruption. If the interruption is received, calls the lOS SLIH to handle the 
interruption and branches to the main procedure (1). 

• If a channel check is indicated in the CSW and 
1. this is the first channel check: calls the channel check handler (CCH) and 

returns to the beginning of the main procedure. 
2. this is the second channel check: returns to the beginning of the main 

procedure. 
3. this is the third channel check: assumes that there is a permanent error. 

Returns to the post-status module (IECVPST) with an indication that 
unconditional reserve recovery is to be continued. 

• If a unit check is indicated in the CSW, calls the lOS SLIH and returns to the 
post-status module (IECVPST) indicating no further recovery is to be done. 



;-----------------------------

Unconditional Reserve 
Service Module 
Proc.l 

The Unconditional Reserve Service Module (IECVURSV) 

1. Unconditional Reserve Procedure 

• Entered by the unconditional reserve decision module (IECVDURPj to 
perform required cleanup for a device. 

• If the request is to perform unconditional reserve recovery, calls the re-reserve 
module (IECVRRSVj indicating that unconditional reserve is to be tried and 
the device is to be forced offline if recovery fails. 

• If the request is to force the device offline, calls the re-reserve module 
(IECVRRSVj indicating box-only function. 

• In all cases, issues the IOSINTRP macro to redrive any queued requests. 

• Returns to the caller. 

I/O Supervisor Program Organization 165 



166 OS/VS2 I/O Supervisor Logic 



! 

Directory 

Note: This directory is common to both lOS and EXCP procedures and modules. 
For a more complete directory listing for the MVS system, refer to the OS/VS2 
Directory (Microfiche), SYB8-0743. 

The table below lists, in alphanumeric order, the symbolic name of each lOS or 
EXCP procedure, names the microfiche cards that contain its code, and tells which 
pages in this manual refer to it. 

The column headings and their meanings are: 

Procedure Name: the symbolic name of the procedure. 

Descriptive Name: the name given to the procedure in the "Program Organization" 
chapter. 

Module Name: the name of the object module to which the procedure belongs. 

Microfiche Name: the name of the microfiche cards that contain the object module's 
code. 

MO Page: the pages in the "Method of Operation" chapter that refer to the proce­
dure. 

po Page: the page in the "Program Organization" chapter where the description of 
the procedure begins. 

Procedure Descriptive Module Microfiche MO PO 
Name Name Name Name Page Page 

ACRPROC ACR-Call IECVRSTI IECVRSTI 60 117 
Procedure 

BACKOUT CRH Backout IECVCINT IECVCINT 106 

Procedure 

BASICPRG Basic Purge IGCOO01F IGCOO01F 63-64 132 
Procedure 

CCHPROC CCH-Call IECVRSTI IECVRSTI 60 118 
Procedure 

CC1RTN Condition Code IECVURDT IECVURDT 164 
1 Procedure 

CLEARDEV Clear-Device IECVRSTI IECVRSTI 119 

Procedure 

DAVERR Error-Handling IECVDAVV IECVDAVV 110 
Procedure 

DAVESTA* EST AE Recovery IECVDAVV IECVDAVV 111 
Procedure 

DAVFRR FRR Recovery IECVDAVV IECVDAVV 112 
Procedure 

* An entry point in the module. 

Directory 167 

Direc­
tory 



Procedure Descriptive Module Microfiche MO PO 
Name Name Name Name Page Page 

DAVINT Interruption- IECVDAVV IECVDAW 110 
Handling 
Procedure 

DDRPURG DDR-Purge IGCOOOIF IGCOOOIF 63 130 
Procedure 

DVRPURG Driver In terface IGCOOOIF IGCOOOIF 64 131 
Procedure 

EATTENTl Attention- IECIOSCN IECIOSAM 53 94 
Handling 
Procedure 

EDETECTl Unconditional IECIOSCN IECIOSAM 96 
Reserve 
Scheduling 
Procedure 

EDEVENDI Unsolici ted IECIOSCN IECIOSAM 90 
Device-End 
Procedure 

EDlEINTI DIE In terface IECIOSCN IECIOSAM 55 92 
Procedure 

EDlEINTl PCl DIE Interface IECIOSCN IECIOSAM 92 

EPOSTlOI Post-SIO IECIOSCN IECIOSAM 48,49 89 
Procedure 

EQUEDI Dequeue IECIOSCN IECIOSAM 90 
Procedure 

EQUEEI Enqueue IECIOSCN lECIOSAM 90 ;) Procedure 

~ ERSTARTl Channel-Res tart IECIOSCN IECIOSAM 55 93 
ERSTART2 Procedure 93 

ESCHDIOI SRB-Scheduling IECIOSCN IECIOSAM 90 
Procedure 

ESENSEI Sense Procedure IECIOSCN IECIOSAM 54 93 

ESIOI SIO Procedure IECIOSCN IECIOSAM 47 88 

ESTATUSI Ini tial-S ta tus IECIOSCN IECIOSAM 52-55 91 
Procedure 

ETCHI Test-Channel IECIOSCN IECIOSAM 42,45, 87 
Procedure 50 

FRBLKO Free-Small-Block IECVSMGR IECVSMGR 153 
Procedure 

FRBLK4 Free-Medium- IECVSMGR IECVSMGR 156 
Block Procedure 

FREEBLK Free-Large-Block IECVSMGR IECVSMGR 159 
Procedure 

GETBLK Get-Large-Block IECVSMGR IECVSMGR 157 
Procedure 

GETBLKO Get-Small-Block IECVSMGR IECVSMGR 153 
Procedure 

GETBLK4 Get-Medium- IECVSMGR IECVSMGR 154 
Block Procedure 

GETCORE Ge t -S tor age IECVSMGR IECVSMGR 159 
Procedure 

168 OS!VS2 I/O Supervisor Logic 



Procedure Descriptive Module Microfiche MO PO 
Name Name Name Name Page Page 

HALT0900* Functional Re- IGCOO03C IGCOO03C 126 
covery Procedure 

HALT3000 CTC Halt IGCOOO3C IGCOOO3C 125 
Procedure 

HIOCCH Channel Error I£CIHIO IEClHIO 142 
Procedure 

HIOFRR* Functional Re- IECIHIO IECIHIO 142 
covery Procedure 

HIOIPCI* Shoulder-Tap IECIHIO IECIHIO 141 
Procedure 

HIOLOP Channel-Logout IECIHIO IECIHIO 142 
Procedure 

IECCINTF CRH SLIH FRR IECVCINT IECVCINT 106 
Procedure 

IECCONCS Connect Channel IECVCINT IECVCINT 107 
Set Procedure 

IECCRHAF CRH Activation IECVCINT IECVCINT 105 
FRR Procedure 

IECCRHDF CRH Deactivation IECVCINT IECVCINT 106 
FRR Procedure 

IECFRR* Functional Re- IECIOSCN IECIOSAM 95 
covery Procedure 

lECHNSCH* Channel Scheduler IECIOSCN lECIOSAM 43 87 
Procedure 

IECIHIO* Main Procedure IECIHIO IEClHIO 141 

IECINT* lnterru pt-Handling IECIOSCN IECIOSAM 51 91 
Procedure 

IECLMSGC Message Exit - lECLMSGC IECLMSGC 208 
Communications 
(TP) 

IECLMSGD Message Exit - lECLMSGD IECLMSGD 208 
DASD 

IECLMSGG Message Exit - IECLMSGG IECLMSGG 208 
Graphics 

IECLMSGM Message Exit - lECLMSGM IECLMSGM 208 
3851 

IECLMSGT Message Exit - IECLMSGT IECLMSGT 208 
Tape 

IECLMSGU Message Exit - IECLMSGU IECLMSGU 208 
Unit Record 

IECVBRSV Build Reserve IECVBRSV IECVBRSV 62 
Table Module 

IECYCINT CRH Interrupt lECYCINT lECYCINT 66,81 104 
Handler 

IECYCPRM* Pool Initialization lECYSMGR LECVSMGR 160 
Procedure 

lECYCRHA CRH Activation IECYClNT lECYCINT 65 102 
Procedure 

IECVCRHD CRH Deactivation lECVCINT lECVCINT 67 103 
Procedure 

IECVCRHS CRH Schedule IECVCINT IECVCINT 104 
SRB Procedure 

* An entry point in the module. 

Directory 169 



Procedure Descriptive Module Microfiche MO PO 
Name Name Name Name Page Page 

IECVCRHT CRH Timer Pop IECVCINT IECVCINT 66 103 
Procedure 

IECVCRHV CRHSTIDC IECVCINT IECVCINT 10el . 
Procedure 

IECVCRHl TCH Hook IECVCRHH mCVCRHH 66 107 
Pro<.:edure 

IECVCRH2 SIO/SIOF Hook lECVCRHH lECVCRHH 66 108 
Procedure 

IECVCRH3 SENSE SIO Hook IECVCRHH IECVeRHH 66 108 
Procedure 

IECVDAVV· Volume Verifica- IECVDAVV IECVDAVV 55 109 
tion Procedure 

IECVDDTO DDTs Load Module IECVDDTO IECVDDTO 175 
IECVDDT2 DDT Table - IECVDDTO IECVDDTO 177 

Teleprocessing 

IECVDDT3 DDT Table - IECVDDTO IECVDDTO 177 
2305 Model 2 

IECVDDT4 DDT Table - IECVDDTO IECVDDTO 177 
Graphics 

IECVDDT5 DDT Table- IECVDDTO IECVDDTO 177 
Unit Record 

IECVDDT6 DDT Table- IECVDDTO IECVDDTO 177 
2955 Comm 

IECVDDT7 DDT Table- IECVDDTO IECVDDTO 177 
3704/3705 Comm 

IECVDDT8 DDT Table - IECVDDTO I ECVDDTO 177 
3211 Printer 

IECVDDT9 DDT Table- IECVDDTO IECVDDTO 177 
3800 Printer 

IECVDDTA DDT Table - IECVDDTO IECVDDTO 177 
3890 Micr 

lECVDDTB DDT Table- IECVDDTO IECVDDTO 177 
3886 OCR 

IECVDDTC DDT Table- IECVDDTO IECVDDTO 177 
3895 Printer 

lECVDDTD DDT Table- IECVDDTO lECVDDTO 177 
1287/1288 OCR 

IECVDDTE DDT Table- IECVDDTO IECVDDTO 177 
3851 MSS 

IECVDDTF DDT Table- IECVDDTO IECVDDTO 177 
3540 Diskette 

IECVDDTG DDT Table - IECVDDTO IECVDDTO 177 
3400 Tape 

IECVDDTH DDT Table- IECVDDTO IECVDDTO 177 
2305 Modell 

IECVDDTJ DDT Table- IECVDDTO IECVDDTO 177 
2314 

IECVDDTK DDT Table - IECVDDTO IECVDDTO 177 
3330 Virtual 

IECVDDTL DDT Table - IECVDDTO IECVDDTO 177 
3330 

IECVDDTM DDT Table - IECVDDTO IECVDDTO 177 
3340 

IECVDDTN DDT Table- IECVDDTO IECVDDTO 177 
3350 

IECVDDTO DDT Table- IECVDDTO IECVDDTO 177 
3838 

IECVDDTQ DDT Table - I ECVDDTO IECVDDTO 177 ~ 2400 Tape 

... An entry point in the module. 

170 OS/VS2 I/O Supervisor Logic 



Procedure Descriptive Module Microfiche MO PO 
Name Name Name Name Page Page 

IECVDURP Unconditional IECVDURP IECVDURP 163 
Reserve Decision 
Module 

IECVERPL ERP Loader IECVERPL IECVERPL 204 206 
IECVESIG SIGP Entry IECVESIO IECVESIO 152 

Procedure 

IECVESIO Special SIO Module IECVESIO IECVESIO 62 151 

IECVEXTC· EOE Interface IECVEXCP IECVEXCP 20 34 
Procedure 

IECVHDET Hot I/O Detection IECVHDET IECVHDET 112 
Module 

IECVHREC Hot I/O Recovery IECVHREC IECVHREC 113 
Module 

IECVIRST I/O Restart IECVIRST IECVIRST 121 
Module 

IECVOPTA TCCWOper IECVOTBL IECVOTBL 176 
Table - 2955 

IECVOPTB TCCWOper IECVOTBL IECVOTBL 176 
Table -
3704/3705 Comm 

IECVOPTC TCCWOper IECVOTBL IECVOTBL 176 
Table -
Teleprocessing 

IECVOPTD TCCWOper IECVOTBL IECVOTBL 176 
Table - DASD 

IECVOPTE TCCW Oper IECVOTBL IECVOTBL 176 
Table - 3211 
Printer 

IECVOPTF TCCW Oper IECVOTBL IECVOTBL 176 
Table - 3800 
Printer 

IECVOPTG TCCWOper IECVOTBL IECVOTBL 176 
Table - Graphics 

IECVOPTH TCCW Oper IECVOTBL IECVOTBL 176 
Table - 3890 
MICR 

IECVOPTI TCCW Oper IECVOTBL IECVOTBL 176 
Table - 3886 
OCR 

IECVOPTJ TCCWOper IECVOTBL IECVOTBL 176 
Table - 3895 
Printer 

IECVOPTK TCCW Oper IECVOTBL IECVOTBL 176 
Table -
1287/1288 OCR 

IECVOPTL TCCWOper IECVOTBL IECVOTBL 176 
Table -
3851 MSS 

IECVOPTM TCCW Oper IECVOTBL IECVOTBL 176 
Table -
3540 Diskette 

IECVOPTN TCCWOper IECVOTBL IECVOTBL 176 
Table -
3838 VPSS 

IECVOPTT TCCW Oper IECVOTBL IECVOTBL 176 
Table - Tape 

IECVOPTU TCCW Oper 
Table - Unit 

IECVOTBL IECVOTBL 176 

Record 

IECVOTBL TCCW Operation IECVOTBL IECVOTBL 176 
Table - Load 
Modules 

IECVPRCU· SIRB Clean-Up IECVPURG IECVPURG 144 
Procedure 

* An entry point in the module. 

Directory 171 



Procedure Descriptive Module Microfiche MO PO 
Name Name Name Name Page Page 

IECVPRDQ* Chain-SRB IECVPURG IECVPURG 144 
Procedure 

IECVPST* Appendage Inter- IECVPST IECVPST 58 134 
face Procedure 

IECVQCNT* Decrement-Count IECVPURG IECVPURG 144 
Procedure 

IECVRCHN* Restore Chain IECVEXPR IECVEXPR 24,26 39 
Procedure 

IECVRDIO Redrive I/O IECVRDIO IECVRDIO 62 138 
Module 

IECVRRSV Re-reserve Module IECVRRSV IECVRRSV 62 139 

IECVRSTI* Set-Up Procedure IECVRSTI IECVRSTI 117 

IECVSCOM Compress IECVSMGR IECVSMGR 160 
Procedure 

IECVSMFR* Functional IECVSMGR IECVSMGR 161 
Recovery 
Procedure 

IECVTCCW* Routing Procedure IECVTCCW IECVTCCW 98 

IECVURDT Unconditional IECVURDT IECVURDT 164 
Reserve Detection 
Module 

IECVURSV Unconditional IECVURSV IECVURSV 165 
Reserve Service 
Module 

IECVXDAS DASD SIO Module IECVXDAS IECVXDAS 146 

IECVXDAT DASDTrap IECVXDAT IECVXDAT 
Module 

IECVXDAU DASD Unsolicited IECVXDAU IECVXDAU 
Module, 

~ IECVXDRS 2305 SIO Module IECVXDRS IECVXDRS 147 

IECVXDRT 2305 Trap Module IECVXDRT IECVXDRT 

IECVXGRT Graphics Trap IECVXGRT IECVXGRT 
Module 

IECVXMGN 3851 MSS Sense IECVXMGN IECVXMGN 
Module 

IECVXPRE 3211/3800 EOS IECVXPRE IECVXPRE 
Module 

IECVXPUR* Purge Procedure IECVEXPR IECVEXPR 23,24 39 

IECVXRES* Restore Procedure IECVEXPR IECVEXPR 25 39 

IECVXSKE 2314 EOS Module IECVXSKE IECVXSKE 

IECVXSKN 2314 Sense IECVXSKN IECVXSKN 
Module 

IECVXSKS 2314 SIO Module IECVXSKS IECVXSKS 148 

IECVXTAT Tape Trap Module I ECVXTAT IECVXTAT 

IECVXTPT TP Trap Module IECVXTPT IECVXTPT 

IECVXT2S 2400 SIO Module IECVXT2S IECVXT2S 150 

IECVXT3S 3400 SIO Module IECVXT3S IECVXT3S 150 

IECVXURS UR SIO Module IECVXURS IECVXURS 150 

IECVXURT UR Trap Module IECVXURT IECVXURT 

IECVXVRS 3330V SIO IECVXVRS IECVXVRS 149 
Module 

IECVXVRT 3330V Trap IECVXVRT IECVXVRT 
Module 

IECVXVRU 3330V Unsolicited IECVXVRU IECVXVRU-
Module 

IECVX02S* SVC 3 Interface IECVEXCP IECVEXCP 38 
Procedure 

IECXTLER* XCTL Procedure IECVERPL IECVERPL 205 207 
in ERP Loader 

* An entry point in the module. 

172 OS!VS2 I/O Supervisor Logic 



Procedure Descrip tive Module Microfiche MO PO 
Name Name Name Name Page Palle 
IGCOO03C'" Main Halt ICGOO03C IGCOO03C 65 124 

Procedure 

IGCOI5* SVC 15 Procedure IECVPST IECVPST 59 135 

IGCOI6'" Entrance/Exit IGCOOOIF IGCOOOIF 63,64 126 
Procedure 

IGCOI7* Restore Procedure IGCOOOIG IGCOOOIG 64 145 

IGE0025C ERP Message IGEOO25C IGE0025C 208 
Writer 

IPIBPURG IPIB-Purge IGCOOOIF IGCOOOIF 131 
Procedure 

LCHPURG LCH Purge IGCOOOIF IGCOOOIF 63 129 
Procedure 

LOSTCHAN CCH-CaU IECVRSTI IECVRSTI 60 120 
Procedure 
for a Lost Channel 

MIHPROC MIH-Call IECVRSTI IECVRSTI 61 119 
Procedure 

PRGCOMPO Compres Interface IGCOOOIF IGCOOOIF 133 

PRGESTAE* EST AE Recovery IGCOOOIF IGCOOOIF 133 
Procedure 

PRGFREE Purge-Free IECVSMGR IECVSMGR 159 
Procedure 

PSTEFF ERP Interface IECVPST IECVPST 137 

PSTFRRTN Functional Recov- lECVPST IECVPST 136 
ery Procedure 

PSTlOSB IOSB-Handling IECVPST IECVPST 56,57 135 
Procedure 

PSTUR Unconditional IECVPST lECVPST 138 
Reserve Procedure 

PSTWAIT Restartable Wait IECVPST IECVPST 137 
Procedure 

PURAPLSR Applicability- IGCOOOIF IGCOOOIF 63 132 
Check Procedure 

PURGEFRR* Functional Recov- IGCOOOIF IGCOOOIF 132 
ery Procedure 

RECORDIT Message Procedure IECVRSTI IECVRSTI 120 

SIORTN SIO Procedure IECVESIO IECVESIO 152 

SIRBPURG SIRB-Purge IGCOOOIF IGCOOOIF 63 129 
Procedure 

SMGFREVR* Block Verifica- IECVSMGR IECVSMGR 161 
tion Procedure 

SPLPURG SPL-Purge IGCOOOIF IGCOOOIF 63 131 
Procedure 

SVCO (see XCPOOO) 

SVC15 (see IGCOI5) 

SVC16 (see IGCOI6) 

SVC17 (seeIGCOI7) 

SVC33 Halt-I/O Interface IECVEXPR IECVEXPR 28 40 
Procedure 

SVC92 (see XCPOOO) 

SVC1l4 (see XCPOOO) 

TCCWIlOO CCW Translation IECVTCCW IECVTCCW 98 
Procedure 

TCCWMOOO Page-Fix Procedure I ECVTCCW IECVTCCW 99 

'" An entry point in the module. 

Directory 173 



Procedure Descriptive Module Microfiche MO PO 
Name Name Name Name Page Page 

TCCWMlOO Main TIC IEcvrccw lEcvrccw 99 
Procedure 

TCCWM200 TIC Resolution IECVTCCW IECVTCCW 100 
Procedure 

TCCWM300 TIC Insertion IECvrCCW IECVTCCW 100 
Procedure 

TCCWM400 IDAL Procedure IECVTCCW IECVTCCW 100 

TCCWROOO Address Retrans- IECVTCCW IECVTCCW 101 
lation. Procedure 

TCCWUOOO Unfix-and-Free IECVTCCW IECVTCCW 101 
Procedure 

TCCWXOOO Single-Address IECVTCCW IECVTCCW 100 
Translation 
Procedure 

UCBACT Device IECVRSTI IECVRSTI 59 120 
Procedure 

UCBPURG UCB-Purge IGCOOOIF IGCOO01F 63 130 
Procedure 

XCPABE CHE/ABE Inter- IECVEXCP lECVEXCP 22 35 
face Procedure 

XCPCHE CHE/ ABE In ter- IECVEXCP IECVEXCP 22 35 
face Procedure 

XCPDIE DIE Procedure IECVEXCP lECVEXCP 23 35 

XCPEXIT Exit Procedure lECVEXCP IECVEXCP 37 ..J 
XCPFRR* Functional Recov- IECVEXPR IECVEXPR 40 

ery Procedure 

XCPMAP IOSB-to-IOS IECVEXCP IECVEXCP 22,23 37 

Mapping 
Procedure 

XCPPCl PCI Interface IECVEXCP IECVEXCP 23 35 
Procedure 

XCPPFA PGFX Interface· IECVEXCP IECVEXCP 20 33 
Procedure 

XCPPUR Related-Request IECVEXCP IECVEXCP 26 37 
Procedure 

XCPRQE Get-RQE IECVEXCP IECVEXCP 18 32 
Procedure 

XCPTERM Termination lECVEXCP lECVEXCP 23,24 36 
Procedure 26-28 

XCPVAM VIO Interface IECVEXCP lECVEXCP 18 33 
Procedure 

XCPOOO Validi ty-Check IECVEXCP IECVEXCP 17 32 
Procedure 

XCP050 Get-SRB IECVEXCP IEXVEXCP 19 33 
Procedure 

XCPIIO SIO Interface IECVEXCP IECVEXCP 20 34 
Procedure 

XCPl15 Translator Inter- IECVEXCP IECVEXCP 21 34 
face Procedure 

j XCP145 STARTIO IECVEXCP IECVEXCP 21 3S 
Procedure 

* An entry point in the module. 

174 OS/VS2 I/O Supervisor Logic 



,~-----------------------------

Data Areas 

The table below lists the data areas that lOS and EXCP use. It gives the acronym 
and mapping macro for each data area and the identifier that is used as a prefix for 
field and bit labels. 

Data Area Acronym Mapping Macro Identifier 

"'Beginning-end block BEB IECDBEB BEB 

"'Channel availability table CAT IECDCAT CAT 

"'Channel set table CST IECDCST CST 

Channel set channel recovery work CSCRWA IECDCSWK CSCR 
area 

"'Communications vector table CVT CVT CVT 

CRH communications area CRCA IECDCRCA CRCA 

"'Data control block DCB DCBD DCB 

"'Data extent block DEB IEZDEB DEB 

Device descriptor table DDT IECDDT DDT 

"'ERP work area (common segment) EWA EWAMAP EWA 

ERP work area (DASD segment) EWD EWDMAP EWD 

"'EXCP debugging area XDBA IECDXDBA XDBA 

Fix list FIX IECDFIX FIX 

Hot I/O detection thresholds HIDT IECDHIDT HIDT 

Indirect address list IDAL IECDIDAL IDAL 

"'Input/output block lOB IEZIOB lOB 

"'I/O queue element 10Q IECDlOQ 10Q 

*1/0 recovery table IRT IECDIRT IRT 

"'I/O supervisor block 10SB IECDIOSB lOS 

*1/0 supervisor purge interface block IPIB IECDIPIB IPIB 

"'Logical channel queue table LCH IECDLCH LCH 

Purge parameter list PPL IECDPPL PPL 

Purged I/O restore list PIRL IECDPIRL PIR 

"'Request queue element RQE IECDRQE RQE 

Reserve table RESVTAB IECDRESV RESVTAB 

*Service request block SRB IHASRB SRB 

"'Status collection data area SCD IECDSCD SCD 

"'Task control block TCB IKJTCB TCB 

"'Translation control block TCCW IECDTCCW TCCW 

*Unit control block UCB IEFUCBOB UCB 

Vector of lOS drivers VOID IECDVOID VOID 

The format and contents of these data areas are described in the microfiche 
document OS/VS2 Data Areas, SYBS-0606. 

*Those data areas that are preceded by an asterisk are also described in the 
OS/VS2 System Programming Library: Debugging Handbook, GC2S-0632. 

Data Areas 175 



CCW Translation Operation Table 

176 OS/VS2 I/O Supervisor Logic 

The CCW translation operation table communicates to IECVTCCW, the CCW 
translator, information about how each CCW should be handled for a given device. 
IECVTCCW obtains the pointer to the appropriate CCW operation table from the 
device descriptor table (DDT) associated with the device. 

A CCW translation operation table is 256 bytes in length, one byte per possible 
channel command. Normal handling consists of IECVTCCW treating a CCW as a 
data transfer command, translating the data address from a virtual address to a 
real address, and fixing the data area. 

The following bits are defined in each byte of the CCW translation operation table 
to indicate that special handling is needed by IECVTCCW: 

X'80' Bit 0 The channel command can cause the next CCW in the 
channel program to be skipped. 

X'40' Bit 1 The channel command is a non-data transfer command. 

The following is a list of device classes and specific devices with their corresponding 
CCW translation operation table CSECT names. These CSECTs are contained in 
module IECVOTBL. 

Tape 
Teleprocessing 
Direct Access 
Display Graphics 
Unit Record 

2955 Communication 
3704/3705 Communication 
3211 Printer 
3800 Printer 
3890 Document Processor 
3886 Optical Character Reader 
3895 Printer 
1287/1288 Optical Character Reader 
3851 Mass Storage Controller 
3540 Diskette I/O Unit 
3838 Array Processor 

IECVOPTT 
IECVOPTC 
IECVOPTD 
I ECVOPTG 
IECVOPTU 

IECVOPTA 
IECVOPTB 
IECVOPTE 
IECVOPTF 
IECVOPTH 
IECVOPTI 
IECVOPTJ 
IECVOPTK 
IECVOPTL 
IECVOPTM 
IECVOPTN 



l, Device Descriptor Table (DDT) 

The device descriptor table (DDT) is a variable length list of four-byte fields 
pointed to by UCBDDT. These fields contain pointers to device dependent lOS 
exits, tables, and other device dependent data. A DDT will be pointed to by 
every UCB representing the same kind of device. Macro IECDDT describes the 
DDT. 

The following is a list of devices with their corresponding DDT CSECT names. 
These CSECTs are contained in module IECVDDTO. 

Device 

Teleprocessing 
2305-2 Fixed Head Storage 
Graphics 
Unit Record 
2955 Communications 
3704/3705 Communications Controller 
3211 Printer 
3800 Printer 
3890 Document Processor 
3886 Optical Character Reader 
3895 Document/Inscriber 
1287/1288 Optical Reader 
3851 Mass Storage Controller 
3540 Diskette I/O Unit 
3400 Series Magnetic Tape Units 
2305-1 Fixed Head Storage 
2314 Direct Access Storage Facility 
3330-V Disk Storage 
3330 Disk Storage 
3340 Direct Access Storage Facility 
3350 Direct Access Storage Facility 
3838 Array Processor 

. 2400 Series Magnetic Tape Units 

DDTCSECT 

IECVDDT2 
IECVDDT3 
IECVDDT4 
IECVDDT5 
IECVDDT6 
IECVDDT7 
IECVDDT8 
IECVDDT9 
IECVDDTA 
IECVDDTB 
IECVDDTC 
IECVDDTD 
IECVDDTE 
IECVDDTF 
IECVDDTG 
IECVDDTH 
IECVDDTJ 
IECVDDTK 
IECVDDTL 
IECVDDTM 
IECVDDTN 
IECVDDTO 
IECVDDTQ 

Data Areas 177 



Connections between Principal lOS Data Areas 

178 OS/VS2 I/O Supervisor Logic 

The diagram below shows the connections between data areas used by IOS in 
starting an I/O operation, in responding to an I/O event, and in purging and 
restoring I/O requests. The diagram contains a selection of data-area fields. No 
data area is shown in its entirety. 

CVT 

CVTILKI 

CVTILK2 

CVTSTB 

~ CVTlXAVL 

r+-- CVTCRCA: 
This field is 
non zero 
onlyifCRH 
is active. 

lOS 
communica-
tions table .. IOCATTBL 

IOCIOSCP 

r- IOCCTBL 

IOCVOID 

,r , 
See next page 

.... First UCB look-up table 

Channel and unit numbers 
are used as indexes to an 
entry that indexes the 
second DCB look-up table. 

Device-dependen t 
extension 

Contains data used by 
the ERP. (This exten­
sion only exists for non­
direct-access devices.) 

-.. Second UCB look-up tablJ 

Entry indexed by the first 
DCB look-up table points 
to the appropriate DCB. .: Statistics table 

Each entry contains fields 
in which a count of device 
errors is maintained. 

Attention table r l 

Each entry contains the 
address of an attention 
routine. 

.,1 CCW pool 

Pool in which lOS builds: 
• Sense CCWs. 
• Set-mode CCWs for tape 

devices. 
• Seek, set-file mask, and 

TIC CCWs for direct­
access devices. 

CRCA 

CRCAMCW: double 
word maintenance 
control word used to 
issue a Diagnose instruc-
tion to make the CRH 
hardware connection. 

CRCAPCCA: address 
of PCCA for inoperative 
processor. 

CRCACAT: address 
of CAT for inoperative 
processor. 

~-+-~UCB 

Poin ter to a device de­
pendent extension. 
(Field name varies with 
the device type.) 

DCBCMEXT 

Common extension 

DCBSTI: an index into 
the statistics table. 

'---~ VCBATI: an index into 
the attention table. 

.-----1 VCBCCWOF: an index 
into the CCW pool. 

VCBLCI: an index into 
the LCH. 

VCBDDT: pointer 
to the DDT 

See next page 



IOCCTBL 

[Chmn,j t,bl, 

Contains an entry for each 
channel. In each entry is: 
• A code that tells whether 

the channel is a byte multi-
plexor, high-speed byte mul-
tiplexor, selector" or block 
multiplexor channel. 

• A mask that is used to set 
the IRTCHMSK field. 

r--- • A pointer to the associated 
en try in the channel search 
table. 

Channel search table 

lOS refers to an entry in this 
table if the IRTCHMSK field 
shows that a channel is free. 

~ Each en try con tains: 
• One or more indexes to a 

logical channel queue head 
in the LCH. 

• Accompanying each index, 
a code that tells which of 
three kinds of I/O requests-
sense, data-transfer, or 
"stand-alone" seek requests-
is queued from the queue 
head. 

[
IOCVOID 

VOID 

One set of entries for each 
lOS driver. 
• Driver purge subroutine 

called by IGCOOOIF. 
• Driver restore subroutine 

called by IGCOOOI6. 
• Driver-extent check sub­

rou tine called by 
IECVDERP. 

-

UCBLC I 

LCH (logic channel queue table) 

Each en try con tains : 
• A queue head from which 

I/O requests (I0Qs) are 
chained. 

• An indication of whether 
a lock is held on the entry. -. A pointer to the associated 
entry in the path table. 

• Various flags and counters. 

Path table 

Entries are made up of one or 
more halfwords. Each half-.. word contains: 
• The number of a channel 

that belongs to the logical 
channel queue. (This num-
ber is used to index the 
CA T, or channel availability 
table.) 

• A mask that is used to test 
the UCBCHM field. (The 
test discloses whether a 
path is online or offline.) 

--UCBDDT 

Contains the following device­
dependent pointers. 
• SIO module address 
• Trap module address 
• CCW translation operation 

table address 
• ERP message module 

address 

May contain the following 
device-dependent pointers. 
• Unsolicited interruption 

module address 
• Sense module address 
• End-of-sense module 

address 
• MIH table index 

J e 
xt 
ge 

De 

pa 

Data Areas 179 



180 OS/VS2 I/O Supervisor Logic 

Queue head in an LCH entry 

LCHFST: points to the first 10Q in the queue. 

r--+--t LCHLST: points to the last 10Q in the queue. 

o IOQLNK: chain field. 

IOQLNK: contains zeros. 

r------t 10QIOSB 

t--......... IOSB 

IOSUCB 

r-----II'" UCB 

UCBIOQ: points to an 10Q 
for which an I/O operation 
was started. 

IOQ 

IIOQLNK: contains zeros. 

10SERP: if nonzero, points t-----..... ~EWA 
to an ERP work area. r-----------......., 
10SSRB 

IOSIPIB: Points to an IPIB 
if lOS found this to be an 
applicable IOSB during a 
quiesce operation. 

SRB 

L...----t SRBPARM 

register 1 

Loaded by purge requestor. 

PPL 

Contains the arguments and 
options required by IDS to 
process a purge request. 

EWAEXT: if nonzero, points 
to another ERP work area that 
was obtained by an ERP or 
ERP service module. 

J---___ ... IPIB 

Used by lOS and driver purge 
procedures for passing 
information. 

register 1 

.....----1: Loaded by lOS for drivers. 

register 8 

r-1 Loaded by lOS for its own use. 

.PIRL 

'---....... PIRRSTR: points to the 
data-area chain that a driver 
needs to restore quiesced 
I/O requests. 



L Data Area Usage Table 
The data area usage table is across reference between the data area names and the 
lOS module names. It has two parts. 

1. The first part lists data areas in alphabetical order. Across from each 
data area are all the modules which use that data area. 

2. The second part lists modules in alphameric order. Across from each 
module are all the data areas which that module uses. 

The Access column of the table contains the following symbols: 

C: if the module creates the data area 
R: if the module refers to the data area 
M: if the module modifies the data area 

Data Area Name Usage Access Usage Access Usage Access 
CAT IECIOSCN (RM) IECVCINT (R) IECVCRHH (R) 

IECVHDET (RM) IECVHREC (RM) IECVIRST (RM) 
IECVMAP (R) IECVRSTI (RM) IECVURDT (R) 

CRCA IECIHIO (RM) IECIOSCN (RM) IECVBRSV (R) 
IECVCINT (RM) IECVCRHH (CRM) IECVERPL (R) 
IECVESIO (RM) IECVGENA (R) IECVIRST (R) 
IECVRDIO (R) IECVRSTI (R) IECVURDT (RM) 

CSCR IECVIRST (RM) IECVRSTI (RM) 

L CST IECIHIO (R) IECIOSCN (R) IECVCINT (R) 

IECVESIO (R) IECVGENA (R) IECVHDET (RM) 
IECVHREC (R) IECVIRST (R) IECVMAP (R) 

IECVRSTI (RM) IGCOOO3C (R) 

CVT IECIHIO (R) IECIOSCN (R) IECVBRSV (R) 
IECVCINT (RM) IECVDAVV (R) IECVERPL (R) 

IECVESIO (R) IECVEXCP (R) IECVEXPR (R) 

IECVGENA (R) IECVHDET (R) IECVIRST (R) 
IECVMAP (R) IECVPST (R) IECVPURG (R) 

IECVRDIO (R) IECVRRSV (R) IECVRSTI (R) 

IECVSMGR (R) IECVTCCW (R) IECVURDT (R) 

IECVURSV (R) IGCOOOIF (R) IGCOOOIG (R) 

IGCOOO3C (R) IGEOO25C (R) IGEOO25D (R) 

DDT IECIOSCN (R) IECVTCCW (R) IGEOO25C (R) 

EWA/EWD IECIOSCN (CM) IECVDURP (RM) IECVPST (C) 

IECVURDT (RM) IGEOO25C (RM) IGEOO25D (RM) 

HIDT IECVHDET (R) IECVHIDT (C) IECVHREC (R) 

IOQ IECIOSCN (CRM) IECVCINT (R) IECVGENA (RM) 

IECVRSTI (R) IGCOOOIF (RM) IGCOOO3C (R) 

IOSB IECIOSCN (CRM) IECVCRHH (R) IECVDAVV (RM) 

IECVDURP (R) IECVERPL (RM) IECVEXCP (C) 

IECVEXPR (RM) IECVGENA (R) IECVRSTI (R) 

IECVURDT (R) IECVURSV (R) IECVXDAS (RM) 

IECVXDRS (RM) IECVXSKS (RM) IECVXT2S (R) 

IECVXT3S (R) IECVXURS (R) IECVXVRS (RM) 

IGCOOOIF (RM) IGCOOO3C (R) IGEOO25C (RM) 

L 
IGEOO25D (R) 

Data Areas 181 



Data Area Name Usage Access Usage Access Usage Access 

IPIB IECIOSCN (RM) IECVCINT (R) IECVEXPR (RM) 
IECVPURG (RM) IECVCRHH (R) IGCOOOIF (CRM) 

IRT IECIOSCN (RM) IECVCRHH (R) IECVGENA (R) 
IECVHDET (RM) IECVRSTI (R) IECVSMGR (RM) 

LCH IECIOSCN (RM) IECVCRHH (R) IECVGENA (RM) 

IECVMAP (R) IGCOOOIF (RM) 

PIRL IECVEXPR (CM) IGCOOOIF (CM) IGCOOOlG (M) 

PPL IGCOOOIF (R) 

RESVTAB IECVBRSV (CRM) IECVHREC (CRM) IECVIRST (CRM) 
IECVRRSV (RM) IECVRSTI (CRM) IECVURSV (CRM) 

SCD IECVHDET (RM) IECVHREC (RM) 

SRB IECIOSCN (CM) IECVCINT (RM) IECVEXCP (CM) 
IECVEXPR (R) IECVPST (RM) IGCOOOIF (R) 

IGEOO25C (R) 

UCB IECIHlO (RM) IECIOSCN (RM) IECVBRSV (R) 

IECVCINT (RM) IECVCRHH (RM) IECVDAVV (RM) 

IECVDURP (R) IECVERPL (R) IECVEXCP (R) 

IECVGENA (RM) IECVHREC (R) IECVIRST (R) 

IECVPST (RM) IECVRDIO (RM) IECVRRSV (RM) 

IECVRSTI (RM) IECVTCCW (R) IECVURDT (RM) 

IECVURSV (RM) IECVXDAS (RM) IECVXDRS (RM) 

IECVXSKS (RM) IECVXT2S (R) IECVXT3S (R) 

IECVXURS (R) IECVXVRS (RM) IGCOOOIF (R) 

IGCOOOIG (R) IGCOOO3C (RM) IGEOO25C (R) 

IGEOO25D (R) 

VOID IGCOOOIF (R) IGCOOOIG (R) 

Module Name Usage Access Usage Access Usage Access 

IECIHIO CRCA (RM) CST (R) CVT (R) 

UCB (RM) 

IECIOSCN CAT (RM) CRCA (RM) CST (R) 

CVT (R) DDT (R) EWA/EWD (CM) 

IOQ (CRM) 10SB (CRM) IPIB (RM) 

IRT (RM) LCH (RM) SRB (CM) 

UCB (RM) 

IECVBRSV CRCA (R) CVT (R) RESVTAB (CRM) 

UCB (R) 

IECVCINT CAT (R) CRCA (RM) CST (R) 

CVT (R) 10Q (R) IPIB (R) 

SRB (RM) UCB (RM) 

IECVCRHH CAT (R) CRCA (CRM) 10SB (R) 

IPIB (R) IRT (R) LCH (R) 

UCB (RM) 

IECVDAVV CVT (R) 10SB (RM) UCB (RM) 

IECVDURP EWA/EWD (RM) 10SB (R) UCB (R) 

IECVERPL CRCA (R) CVT (R) 10SB (RM) 

UCB (R) 

IECVESIO CRCA (RM) CST (R) CVT (R) 

~ UCB (RM) 

182 OS!VS2I!O SupelVisor Logic 



L Module Name Usage Access Usage Access Usage Access 
IECVEXCP CVT (R) 10SB (C) SRB (CM) 

VCB (R) 

IECVEXPR CVT (R) 10SB (R) IPIB (RM) 
PIRL (CM) SRB (R) 

IECVGENA CRCA (R) CST (R) CVT (R) 
10Q (RM) 10SB (R) IRT (R) 
LCH (RM) VCB (RM) 

IECVHDET CAT (RM) CST (RM) CVT (R) 
HIDT (R) IRT (RM) SCD (RM) 

IECVHIDT HIDT (C) 

IECVHREC CAT (RM) CST (R) HIDT (R) 
RESVTAB (CRM) SCD (RM) VCB (R) 

IECVIRST CAT (RM) CRCA (R) CSCR (RM) 
CST (R) CVT (R) RESVTAB (CRM) 
VCB (RM) 

IECVMAP CAT (R) CST (R) CVT (R) 
LCH (R) VCB (R) 

IECVPST CVT (R) EWA/EWD (C) 10SB (RM) 
SRB (RM) VCB (RM) 

IECVPVRG CVT (R) IPlB (RM) 

IECVRDIO CRCA (R) CVT (R) VCB (RM) 

IECVRRSV CVT (R) RESVTAB (RM) VCB (RM) 

IECVRSTI CAT (R) CRCA (R) CSCR (RM) 

L 
CST (RM) 10Q (R) 10SB (R) 
IRT (R) RESVTAB (CRM) VCB (RM) 

IECVSMGR CVT (R) IRT (RM) 

IECVTCCW CVT (R) DDT (R) VCB (R) 

IECVVRDT CAT (R) CRCA (RM) CVT (R) 
EWA/EWD (RM) 10SB (R) VCB (RM) 

IECVURSV CVT (R) 10SB (R) RESVTAB (CRM) 
VCB (RM) 

IECVXDAS 10SB (RM) VCB (RM) 

IECVXDRS 10SB (RM) VCB (RM) 

IECVXSKS IOSB (RM) VCB (RM) 

IECVXT2S 10SB (R) VCB (R) 

IECVXT3S IOSB (R) VCB (R) 

IECVXVRS 10SB (R) VCB (R) 

IECVXVRS IOSB (RM) VCB (RM) 

IGCOOOIF CVT (R) 10Q (RM) 10SB (RM) 
lPIB (CRM) LCH (RM) PIRL (CM) 

PPL (R) SRB (R) VCB (R) 
VOID (R) 

IGCOOOlG CVT (R) PRIL (M) VCB (R) 
VOID (R) 

IGCOOO3C CST (R) CVT (R) IOQ (R) 
IOSB (R) VCB (RM) 

IGEOO2SC CVT (R) DDT (R) EWA/EWD (RM) 
10SB (RM) SRB (R) VCB (R) 

IGEOO2SD CVT (R) EWA/EWD (RM) 10SB (R) 
VCB (R) 

Data Areas 183 



184 OS/VS2 I/O Supervisor Logic 



L 

Page of SY26-3823-5 
As Updated October 25, 1979 
By TNL SN284683 

Diagnostic Aids 

Diagnostic aids information, formerly found in this section, can now be found in 
the following books: 

OS/VS2 System Programming Library: MVS Diagnostic Techniques. This book 
contains the entire contents of the Diagnostic Aids section: the table of EXCP 
ABEND codes, the EXCP debugging area, the output of lOS recovery procedures, 
informative IOSB fields, wait-state codes, the table of messages, and the table of 
lOS return codes. 

OS/VS Message Library: VS2 System Codes. Thispook contains information from 
wait-state codes, the table of EXCP ABEND codes, and the table of lOS return 
codes. / 

OS/VS Message Library: VS2 System Messages. This book contains information 
from the table of messages. 

Diagnostic Aids 185 thru 199 

.. .. 
• • 



October 25, 1979 

200 OS/VS2 I/O Supervisor Logic 



L Diagnostic Aids 

Note: Both EXCP and lOS diagnostic aids are described in this chapter under 
separate headings. 

Table of EXCP ABEND Codes 

The table below rna tches ABEND codes with the symbolic names of the EXCP 
procedures that issue them. To find out what processing conditions cause a particu­
lar ABEND code to be issued, refer to the description of the procedure that issues it. 
(Use the procedure's symbolic name to find a page reference to its description in 
this appendix's "Directory.") 

Note: For the meanings of lOS ABEND codes, refer to the identified procedures. 
All procedures except XCPFRR are in module IECVEXCP. Procedure XCPFRR is 
in module IECVEXPR. 

Code 

X'15C' 

X'I72' 

X'200' 

X'300' 

X'400' 

X'500' 

X'700' 

X'800' 

X'AOO' 

X'BOO' 

X'EOO' 

The EXCP Debugging Area 

Procedure 

XC PO 00 

XCPOOO 

XCPFRR 

XCPOOO 

XCPOOO 

XCPOOO 

XCPFRR,XCPTERM 

XCPPFA,XCPTERM,XCPlI5 

XCPFRR, XCPTERM 

XCPFRR 

XCPTERM 

EXCP's functional recovery procedure, XCPFRR, does not put diagnostic data in 
the SDUMP buffer. Instead, it gets storage for its own debugging area and puts 
diagnostic data there. Also, the variable recording area of the SDWA is used to 
contain diagnostic data. 

To locate the debugging area (XDBA) in a SYSABEND or SYSUDUMP dump, you 
must: 

1. Get the address of the CVT from location X'4C' in the dump. 

2. Get the address of the TCB from the first word of the CVT. 

3. Look X'CQ' bytes into the TCB and get the address of the debugging area. 

4. If the address of the debugging area is zero then no debugging area is available. 

Data Areas 185 

Diag 
Aids 



186 OS!VS2 I/O Supervisor Logic 

The format and contents of the EXCP debugging area (XDBA) are as follows: 

Byte 

o 
2 

3 

4 

C 

E 

10 

50 

54 

Contents 

The ABEND code that EXCP issued. 

A byte that shows where the error occurred. These are the possible bit 
settings and their meanings: 

X'80 ': The error occurred while EXCP was preparing to send an 
I/O request to lOS. 

X'40': The error occurred while EXCP was processing an I/O 
request that (OS was finished with. 

X'21 ': The error occurred in a PCI appendage. 

X'11 ': The error occurred in a CHE appendage. 

X'09': The error occurred in an ABE appendage. 

X'05 ': The error occurred in an EOE appendage. 

X'03': The error occurred in a PGFX appendage. 

X'01 ': The error occurred in an SIO appendage. 

Reserved 

The PSW before RTM was entered. (RTM is entered when a program check 
occurs or when an ABEND macro is issued.) 

Reserved 

ABEND code at entry to the FRR. 

The register contents before RTM was entered. If there is an RQE, and 
byte 25, bit 5 (RQEDIE) is 'on', the error occurred in the PCI appendage 
during the disabled interruption exit (DIE) processing. (EXCP PCI appendages 
execute as part of the DIE processing for V"'R and EXCPVR requests.) The 
LOGREC entry and the SVC dump record initiated by IECIOSCN contains 
the register contents and PSW at the time of the original error. 

Translation exception address. 

The RQE for the I/O request that was being processed. 

The remainder of the debugging area contains up to twelve 160 byte blocks involved 
with the EXCP request. If these blocks are present, they appear in the following 
sequence: 

EWA 
SRB/IOSB 
TCCW 
IDAL 
FIX list 
BEB 

The first 160 bytes following the last block are zero. The SRB and TCCW are valid 
only if the address of the RQE within these blocks is valid. 

The format and contents of the SDWA variable recording area are as follows: 

Byte 
(offset in 
SDWA) 

194 

196 

198 

Contents 

original ABEND code 

adjusted ABEND code set by XCPFRR 

highest lock held word from the PSA 



L 19C contents of the 6 word FRR parameter area 

lB4 contents of the active RQE 

10C TCCW option byte 

10D TCCW translation flag 

10E IOSB completion code 

lDF reserved 

lEO ASID of the EXCP request 

The Output of lOS Recovery Procedures 

Functional (FRR) and ESTAE recovery procedures can record their virtual storage 
environments by two means: 

• By issuing an SDUMP macro, which causes the contents of the 4K SDUMP buffer 
to be written in a SYSl.DUMP data set. (There are ten SYSl.DUMP data sets, 
SYSI.DUMPOO-09.) 

• By issuing a SETRP macro, specifying RECORD=YES, which directs RTM to 
write the SDWA in the SYSl.LOGREC data set. 

Some Facts about SYSl.DUMP Dumps 

To format a dump for a SYSI.DUMP data set, use the AMDPRDMP service aid 
(OS/VS2 Service Aids, GC28-0633, tells how). If the dump contains an SDUMP 
buffer record that was put in the SYSI.DUMP data set by an lOS recovery pro­
cedure, each page will be titled "lOS-module name ERROR," where module 
name identifies the module to which the recovery procedure belongs. 

To locate the SDUMP buffer record, you must: 

I. Get the address of the CVT from location X'4C' in the dump. 

2. Look X'24C' bytes into the CVT and get the address of the SDUMP buffer 
record. 

The third halfword of the SDUMP buffer record tells you how much of the 4K 
bytes contains meaningful data; six bytes of zeros mark the end of the meaningful 
data. 

Some Facts about SYSl.LOGREC Dumps 

To get a dump of the SYSI.LOGREC data set, use the IFCEREPI service aid 
(OS/VS2 System Programming Library: SYSl.LOGREC Error Recording, GC28-
0677, tells how). IFCEREPI formats the standard area-the first 404 bytes-of 
each SDWA into a series of titles, each followed by pertinent data found in the 
standard area. (For example, under the title Component/Module Name/ID, you 
would find the module name IECIOSCN if the functional recovery procedure of the 
basic lOS module wrote in the SDWA.) IFCEREPI puts the variable area-the 
last 108 bytes-of each SDWA in a decimal or hexadecimal format, whichever 
you request. 

Data Areas 187 



The remaining topics in this section describe the output-the SDUMP buffer 
records and SDWA variable areas-of lOS recovery procedures. Before looking at 
the descriptions for the first time, note these facts: 

• Offsets into SDUMP buffer records and SDWA variable areas are given in 
hexadecimal numbers. 

• The formats of data areas listed as part of an SDUMP buffer record or SDWA 
variable area are shown in the microfiche document OS/VS2 Data Areas, SYB8-
0606, unless stated otherwise. 

Output of the Basic lOS Module (IECIOSCN) 

188 OS/VS2 I/O Supervisor Logic 

The module's functional recovery procedure, IECFRR, puts one or more of these 
settings in byte 6 of the SDUMP buffer record: 

X'SO', indicating that an IRT is in the record, beginning at byte 8. 

X'40', if a UCB is in the record. 

X'20', if an IOQ is in the record. 

X'10', if an 10SB is in the record. 

X'OS', if a logical channel queue, the header of the "small block" pool, and 
the first 2048-byte segment of the pool are in the record. (The format 
of the header and segment is shown in the "Program Organization" 
chapter under "Storage Manager Module (IECVSMGR).") 

If a UCB lock was held when IECFRR was entered, the UCB associated with that 
lock appears in the record. If an LCH lock was held when IECFRR was entered, 
the LCH associated with that lock, the header of the "small block" pool, and the 
pool's first 2,048-byte segment is included. If an I/O request was being processed, 
its 10Q and 10SB appears. These data areas appear in this order: UCB, 
IOQ, IOSB, logical channel queue, "small block" pool header, first "small block" 
pool segment. 

Other 4K records and the output of IECFRR follow the SDUMP buffer record in 
the dump. These records contain the SQA (system queue area), the system's trace 
tables, and the nucleus. 

IECFRR puts the following data in the variable recording area of the SDWA: 

At byte 0: X'80', if an 10Q is in the SDWA. 
X'40', if a UCB is in the SDWA. 

At byte 1,' the code that was returned when IECFRR issued an SDUMP 
macro to write in the SYSl.DUMP data set. (X'FF'means 
nothing was written.) 

At byte 4: an 10Q, if an I/O request was being processed when IECFRR 
was entered. 

At byte 10: a UCB (prefix segment included), if a UCB lock was held when 
IECFRR was entered. 



L Output of the Build Reserve Table Module (lECVBRSVj 

The functional recovery routine (BRSVFRR) of IECVBRSV issues an SDUMP 
macro requesting an SQA, nucleus, all PSAs and a summary. 

BRSVFRR puts the 24-byte FRR parameter area into the SDWA variable recording 
area. 

Output of the DA VV Module (IECVDA VV) 

The module's ESTAE recovery procedure, DAWESTA, puts the following data in 
the SDUMP buffer record: 

At byte 6: the SRB being processed when it was entered. 

At byte 32: the IOSB being processed when it was entered. 

At byte 9E: the ERP work area used by DA VV. (The work area includes the 
common segment, EWA, and the direct-access segment, EWD.) 

At byte 13E: the VCB (prefix segment included) used in the processing that 
preceded the error. 

DA WEST A puts the following data in the variable area of the SDWA: 

At byte 0: the IOSB being processed when it was entered. 

At byte 6C: X'Q4', a code indicating that DAWESTA asked RTM to return 
control instead of continuing termination processing. 

Output of the Hot I/O Recovery Module (IECVHRECj 

This module's functional recovery procedure (HRECFRR) takes an SDUMP but 
puts no data in the SDUMP buffer. 

HRECFRR puts the following data into the variable area of the SDWA: 

At byte 0: A copy of the SCD. 

At byte 32: A copy of the FRR work area, which contains the following: 

word 0: first base register 
word 1 : second base register 
word 2: SRB pointer 
word 3: work area pointer 
word 4: SCD pointer 
word 5, byte 0: Flags 

X'OI' reserved 
X'02' reserved 
X'04' FRR recursion indicator 
X'08' address of work area is valid 
X'lO' reserved devices found, message IEA421E 

not yet issued 
X'20' channel can be enabled 
X'40' channel was reset, re-reserves not complete 
X'80' SALLOC lock held 

word 5, bytes 1-3: reserved 

Data Areas 189 



Output of the I/O Restart Module (lECVIRST) 

190 OSNS2 I/O Supervisor Logic 

The functional recovery procedures, (IRSTFRR), of this module issues an SDUMP 
macro requesting SQA, the nucleus. and the 4K buffer to be dumped. The work 
area (storage area retrieved via GETMAIN that holds the compiler's automatic 
data) is copied to the 4K buffer along with each reserve table segment. 

IRSTFRR puts the following data in the variable area of the SDWA: 

At byte 0: The 24 byte FRR parameter area returned by the SETFRR 
macro. 

At byte 24: Halfword channel mask. Each bit in the halfword channel mask 
corresponds to a given channel. 

(Bit I corresponds to channell 

• 
• 
• 

Bit 16 corresponds to channel 16.) 

Ifa bit is on, the corresponding channel encountered an error. 

IECVIRST loads one or more wait states. For each loaded wait state, a system 
termination record is written to the SYSI.LOGREC data set. Note: this record 
may not appear in the data set since the system may not be able to perform I/O 
operations before the wait state is loaded. It appears in the SYSI.LOGREC buffer 
located in the SQA in storage. The mapping macro, IHALRB, maps the system 
termination record. The variable area within the system termination record 
contains: 

At byte 0: Current registers (0·15) 

At byte 64: The 24 byte FRR parameter area returned by the SETFRR 
macro. 

At byte 84: Halfword channel mask. Each bit in the halfword channel mask 
corresponds to a given channel. 

(Bit I corresponds to channell 

• 
• 
• 

Bit 16 corresponds to channel 16.) 

If a bit is on, the corresponding channel encountered an error. 

At byte 86: Halfword channel set id. 



-. 

Output of the Nonresident Halt-I/O Module (IGC0003C) 

The module's functional recovery procedure, HALT0900, writes no SDUMP buffer 
record. If HALT0900 is the first recovery procedure entered by RTM, it writes 
the following data in the variable area of the SDWA: 

At byte 0: the contents of register 0 and I when the module was entered 
to halt a teleprocessing operation. 

At byte 8: the IOQ for the teleprocessing operation. 

At byte 14: the UCB (prefix segment included) for the teleprocessing device. 

Additionally, HALT0900 directs RTM to put trace data, task·related data areas, 
and all the IECIHIO code in a user dump (SYSABEND, SYSMDUMP, or 
SYSUDUMP), if such a dump was requested. 

Output of the Nonresident Purge Module (IGCOOOIF) 

The module's functional recovery procedure, PURGEFRR, puts data in the SDUMP 
buffer, but the module's ESTAE recovery procedure, PRGESTAE, writes the con­
tents of the buffer into the SYSl.DUMP data set. PURGEFRR puts the following 
information into the SDUMP buffer: 

At byte 6: the PPL. 

At byte 16: the IPIB. 

At byte 3A: a work area whose contents include a variable number of saved 
registers, a list of pages to be fixed, and the list forms of macros 
used by the module. 

At byte 106: if the module holds a UCB lock, the UCB (prefix and common 
segments only) associated with that lock. 

At byte 126: if the module holds an LCH lock, the logical channel queue 
associated with that lock and all the IOQs on the logical channel 
queue. 

PURGEFRR puts the following data into the variable area of the SDWA: 

At byte 0: 

At byte 8: 

IGCOOOIF (the module name). 

IGCOl6 (the module's entry point). 

At byte 16: PURGEFRR (the recovery procedure's name and entry point). 

PRGESTAE puts the same data in its SDWA, except at byte 16, where it writes 
its own name. 

Data Areas 191 



Output of the Post-Status Module (IECVPST) 

The module's functional recovery procedure, PSTFRRTY, puts at byte 6 of the 
SDUMP buffer record the IOSB that was being processed when the error occurred. 

PSTFRRTY puts the following data in the variable area of the SDWA: 

At byte 0: the IOSB that was being processed when the error occurred. 

At byte 6C: IECVPST (the module name). 

At byte 73: X'04', a code indicating that PSTFRRTY asked RTM to return 
control instead of continuing termination processing. 

At byte 74: the address of the IOSB. 

At byte 78: the address of the FRR work area. 

At byte 7C: the contents of the base register. 

Output of the Redrive I/O Service Routine (lECVRDIO) 

The module's functional recovery procedure, RDIOFRR, puts at byte 6 of the 
SDUMP buffer record the general work area used for automatic data. 

The following is placed in the variable area of the SDWA: 

At byte 0: a copy of the 24-byte FRR work area pointed to by 
SDWAPARM. 

Output of the Re-Reserve Service Routine (IECVRRSV) 

192 OS/VS2 I/O Supervisor Logic 

The module's functional recovery procedure, RRSVFRR, writes no SDUMP buffer 
record. The following is placed in the variable area of the SDWA: 

At byte 0: a copy of the 24-byte FRR work area pointed to by 
SDWAPARM. 



Output of the Resident Halt-I/O Module (IECIHIO) 

The module's functional recovery procedure, HIOFRR, puts at byte 6 of the SDUMP 
buffer record the UCB (prefix segment included) for the device on which a channel 
program was to be halted. Following the SDUMP buffer record in the dump are 
other 4K records written by HIOFRR. These contain all the IECIHIO code, the 
PSA or prefixed save area (the first 4K bytes of low storage), and the system's trace 
tables. 

HIOFRR puts the following data in the variable area of the SDWA: 

At byte 0: 

At byte 1: 

X'OC', if the error occurred in the shoulder-tapped processor; 
otherwise, the code that was returned when HIOFRR issued an 
SDUMP macro to write in the SYSI.DUMP data set. (X'FF' 
means nothing was written to the SYSl.DUMP data set.) 

the UCB (prefix included) for the device on which a channel 
program halted. 

Output of the Special SIO Module (IECVESIO) 

This module's functional recovery procedure, ESIOFRR, does not use the SDUMP 
buffer. However, the following is placed in the variable area of the SDWA. 

At byte 0: The 24-byte FRR parameters. 

Output of the Storage Manager Module (IECVSMGR) 

This module's functional recovery procedure, IECVSMFR, puts at byte 6 of the 
SDUMP buffer record the pool headers for the "small block," "medium block," and 
"large block" pools. (The section "Storage Manager Module (IECVSMGR)" in the 
"Program Organization" chapter shows the format of the header for the "small, 
medium, and large block" pools.) 

Following the SDUMP buffer record in the dump are other 4K records written by 
IECVSMFR. These contain the SQA (system queue area), the system's trace 
tables, and the code in the IECVSMGR module. 

The output of the system's queue verification routine is in the variable area of the 
SDWA. IECVSMFR passes the variable area to that routine for use as a QVOD 
(queue verification output data area). The free queue for small, medium, and large 
blocks is moved to SDWA. 

Data Areas 193 



Output of the Unconditional Reserve Detection Module (IECVURDT) 

This module's functional recovery procedure does not use the SDUMP buffer. 
However, the following is placed in the variable area of the SDWA. 

At byte 0: The 24-byte FRR parameters. 

Output of the Unconditional Reserve Service Module (IECVURSV) 

This module's functional recovery procedure does not use the SDUMP buffer. 
However, the following is placed in the variable area of the SDWA. 

At byte 0: The 24-byte FRR parameters. 

Informative IOSB Fields 

The IOSDR VID Field 

194 OS/VS2 I/O Supervisor Logic 

An examination of three 10SB fields, 10SDRVID, IOSPROC, and IOSCOD, 
answers these questions: 

I. Did lOS create the 10SB, or did one of its drivers create it? If one of the 
drivers, which one? 

2. If lOS created the 10SB, why did it? 

3. If a driver created the 10SB, what does the 10SB show about the status of the 
I/O request it represents? 

The 10SDRVID field answers (I), the IOSPROC field answers (2), and the 10SCOD 
field answers (3). 

10SDRVID is a one-byte field at an offset of four bytes into the IOSB. The 
possible contents and their meanings are: 

Contents 

X'OO' 

X'OI' 

X'02' 

X'03' 

X'04' 

X'OS' 

X'06' 

X'07' 

Meaning 

lOS created the 10SB. 

The driver wants to be anonymous to lOS because it doesn't want to take 
part in certain kinds of I/O processing. (For example, the driver might 
not want to be called to dispose of the 10SB during a purge operation.) 

EXCP is the driver. 

ASP (VSAM) is the driver. 

VT AM is the driver. 

TeAM is the driver. 

OLTEP is the driver. 

Program fetch is the driver. 



The IOSPROC Field 

L 

X'OS' 

X'09' 

X'OA' 

X'OB' 

JES3 is the driver. 

MSC is the driver. 

IECVIOPM is the driver. 

VPSS is the driver. 

IOSPROC is a one-byte field at an offset of three bytes into the IOSB. The field is 
used as an index to a branch table in the post status module (IECVPST). The 
possible contents and what they tell about the IOSB are: 

Contents What They Tell about the 10SB·· 

X'OO' 

X'04' 

X'OS' 

X'OC' 

I X'IO' 

X'14' 

X'20' 

** 

*** 

Indicates "normal" non-lOS generated 10SB. 

The 10SB was created by EDIEINTl when a Pel interruption occurred 
without other status information. It was marked X'04' to direct PSTlOSB to 
enter the driver's PCI appendage. 

The 10SB was created by EATTENTI when tests of the CSW, UCB, and 
attention table indicated that control should be routed to an attention 
routine. The 10SB was marked X'OS' to direct PSTlOSB to branch to the 
attention routine for the device. 

The 10SB was created by LCHPURG to replace a purged 10SB for an I/O 
operation that must be completed-a sense, reserve, or release operation. 
After the I/O operation is completed, PSTlOSB sees the X'OC' and enters 
FREEBLK, which frees the 10SB. 

The 10SB was created by EDEVENDI when called by IECVXDAS because a 
direct-access device was readied. It was marked X'IO' to direct PSTlOSB to 
enter I ECVDA VV via the exit effectors and ERP loader. 

The 10SB was created by EPOSTIOI when it determined that a message 
must be sent to the operator about the availability of the device. The 
10SB was marked X'14' to direct PSTlOSB to enter, via the exit effectors 
and ERP loader, the ERP message writer (lGE0025C). *** 

The 10SB was created by EDETECTI when it determined that uncondi­
tional reserve recovery was needed. It was marked X'20' to direct PSTIOSB 
to enter IECVURDT and IECVDURP. 

To learn more about a procedure associated with a given 10SPROC value, refer to the 
description of the procedure in the "Program Organization" chapter. (Use the procedure's 
symbolic name to find a page reference to its description in the "Directory.") 

The ERP loader and ERP message writer are described in "Appendix" under "ERP 
Service Modules." 

Data Areas 195 



The IOSCOD Field 

196 OS/VS2 I/O Supervisor Logic 

IOSCOD is a one-byte field at an offset of five bytes into the IOSB. The possible 
contents, with explanations of what they mean are: 

Contents 

X'41' 

X'42' 

X'43' 

X'44' 

X'4S' 

X'4S' 

X'4B' 

X'4C' 

X'4D' 

Explanation· 

An ERP, the ABE appendage, or the CHE appendage detected an I/O error 
and determined that it was uncorrectable. (An ERP does not put X'41' in 
10SCOD. IGC01S does it if, on receiving control from the ERP, it finds 
the "exceptional-condition" bit (IOSEX) on, the "retry" bit (I0SERR) off, 
and X'7F' in 10SCOD.) 

The EOE appendage detected an extent error and directed the driver to put 
X'42' in 10SCOD. 

A paging I/O operation couldn't be started immediately, and the 10SB 
specified that I/O-request processing be terminated in such a case. ETCHI 
complied by putting X'43' in 10SCOD and scheduling IECVPST. (ABP, on 
finding X'43', submits a new I/O request to read a duplicate page on an­
other device.) 

ETCHI stopped processing the I/O request because its SRB and 10SB were 
needed to process a hardware error on the device allocated to the request. 
(ETCH 1 does not put X'44' in 10SCOD. IGC01S does it if, on receiving 
control from the ERP, it finds the "exceptional-condition" bit (I0SEX) 
on, the "retry" bit (IOSERR) off, and X'7E' in 10SCOD.) 

I/O-request processing was terminated abnormally. Reasons for the 
termination are: 

• The IECIOSCN or IECVPST module took a program check. 

• The operator pressed the RESTART key while an I/O request was 
being processed. 

• A program check occurred while a nonresident ERP or ERP service 
module was in control. 

• A program check occurred in the NRM/ ABN exit processing of module, 
IECVEXCP. 

IECFRR, PSTFRRTY, or the ERP loader's ESTAE procedure (ERPLESTA) 
was entered by RTM. 

The I/O request was purged. The driver's purge procedure put X'4S' in 
10SCOD. 

An I/O error occurred when the tape ERP requested that a volume be re­
positioned. The ERP put X'4B' in 10SCOD. 

In asking for an I/O operation on a specific 2305 exposure, the driver 
specified an invalid exposure number in the 10SB. IECVXDRS puts X'4C' 
in 10SCOD and scheduled IECVPST. 

The driver guaranteed the availability of a path to the device, but when the 
start-I/O instruction was issued, the condition code was set to 3 (channel 
or device not operational). EPOSTIOI put X'4D' in 10SCOD and scheduled 
IECVPST. 

* To learn more about a procedure associated with a given IOSCOD value, refer to the 
description of the procedure in the "Program Organization" chapter. (Use a procedure's 
symbolic name to find a page reference to its description in the "Directory.") 



Contents 

X'4E' 

X'4F' 

X'SI' 

X'71' 

X'74' 

X'7E' 

X'7F' 

Explanation· 

One of the following occurred: 

• The driver guaranteed the availability of a path to the device, but the 
device was reserved to another path. 

• The driver asked lOS to release a device, and in trying, lOS found that at 
least one other user of the device wanted it to be reserved. 

A device dependent SIO module (IECVXDAS, IECVXDRS, IECVXSKS, or 
IECVXVRS), put X'4E' in IOSCOD and scheduled IECVPST. 

The driver guaranteed the availability of a path to the device, but ETCHI 
found that the channel set on that path was not configured. ETCHI puts 
X'4F' in IOSCOD and schedules IECVPST. 

ETCHI determined that the device has been boxed and placed offline, and 
scheduled IECVPST. (ETCH 1 does not put X'SI' in IOSCOD if the driver is 
EXCP. The ERP is eventually given control, and if it enters IGC01S with the 
"exceptional-condition" bit (IOSEX) on, the "retry" bit (IOSERR) off, and 
X'74' in IOSCOD, IGC01S overlays X'74' with X'SI'.) 

Set by the direct·access ERP when the sense bytes show a data check and 
the IOSDRVID field shows that the driver is program fetch. 

Set by ETCHI when it determined that a device was boxed and placed 
offline, and the request was from EXCP. (X'74' may be altered by IGC01S. 
See the explanation for X'SI'.) 

Set by ETCHI when it determined that the SRB and IOSB for the request 
were needed to process a hardware error on the device allocated to the re­
quest. (X'7E' may be altered by IGC01S. See the explanation for X'44'.) 

Set the IECHNSCH before the I/O operation was started. If the IOSB has 
been returned to the driver's termination procedure, X'7F' signifies that 
the I/O operation completed successfully. 

* To learn more about a procedure associated with a given IOSCOD value, refer to the 
description of the procedure in the "Program Organization" chapter. (Use a procedure's 
symbolic name to find a page reference to its description in the "Directory.") 

Data Areas 197 



Table of Messages 

198 OS/VS2 I/O Supervisor Logic 

The table below gives the numbers of lOS and ERP messages, identifies the lOS 
procedures that detect a need for the message, and indicates the non-lOS module 
that issues it. To understand what an lOS procedure detects, refer to its descrip­
tion in the "Program Organization" chapter. (Use the procedure's symbolic name 
to find a page reference to its description in the "Directory.") 

Message Issued by Procedure Detecting Need for Message 

IEAOOOA IGEOO25C* EPOSTIOI DAVERR or an ERP** 
IEAOOOI IGEOO25C anERP 
IEAOOlI IGEOO25C EPOSTIOI 
IEAOO31 IEAVTRET CLEARDEV*** 
IEAOO41 IEAVTRET ACRPROC*** 
IEAOO41 IEAVTRET UCBACT*** 
IEAOO41 IEAVTRET LOSTCHAN*** 
IEAOO41 IEAVTRET IECVRDIO 
IEA0261 IEAVTRET IECVRRSV 
IEA066A IEEVLDWT IECVHREC 
IEA067 A IEEVLDWT IECVHREC 
IEA068A IEEVLDWT IECVHREC 
IEA069A IEEVLDWT IECVHREC 
IEA070A IEEVLDWT IECVHREC 
IEA071E IEEVLDWT IECVHREC 

IEA0721 IEEVLDWT IECVHREC 
IEA073A IEEVLDWT IECVPST 
IEA151W IGFPTERM IECVRRSV 
IEA151W IEEVLDWT IECVRSTI 
IEA151W IEEVLDWT IECVHREC 
IEA410E IEAVTRET LOSTCHAN*** 
IEA410E IEAVTRET IECVIRST 
IEA421E IEAVTRET IECVIRST 
IEA427A IECVDURP IECVDURP 
IEA4281 IECVDURP IECVDURP 
IEA4291 IECVDURP IECVDURP 
IEA438A IEEVLDWT IECVIRST 
IEA439D IEEVLDWT IECVIRST 
IEA440A IEEVLDWT IECVRSTI 
IEA604A IECVDAVV DAVINT 
IEA605A IECVDAVV DAVINT 
IEA6061 IECVDAVV DAVINT 
IEA9701 IEAVTRET IECVCRHA 
IEA971I IEAVTRET IECVCRHA 
IEA9721 IEAVTRET IECVCRHD 
IEA9891 IEAVTRET IECVCRHA 

* This is the ERP message writer; it's described in "Appendix B" under "ERP Service 
Modules." 

** 

*** 

IEAOOOA is issued only if an ERP module finds the "intervention-required" bit on in the 
sense bytes. ERP modules and the devices they support are listed in "Appendix B" under 
"Table of ERP Modules." 

The message is formatted by another lOS procedure, RECORD IT. It gives control to 
lEA VTRER, which schedules lEA VTRET to write the message asynchronously. 

..) 



l,. Wait-State Codes 

(See the Directory for the page number of the PO description of each procedure.) 

Code 

X'022' 
X'02F' 

X'041' 
X'04C' 

X'04D' 
X'04E' 
X'066' 
X'067' 
X'06S' 
X'069' 

X'06A' 

X'06B' 
X'06F' 

Issuing Procedure 

DA VEST A (EST AE Recovery) 

PSTWAIT 
ACRPROC (ACR Call Procedure) 

IECVIRST 

IECVIRST 
IECVIRST,IECVHREC, IECVRRSV, IECVRSTI 

IECVHREC 
IECVHREC 
IECVHREC 
IECVHREC 

IECVHREC 

IECVCINT 
IECVDURP 

Table of lOS Return Codes 

The table below ma tches a return code with the symbolic names of lOS procedures 
that exit with the code in register 15. To find out what a return code means when 
used by a given procedure, refer to the description of that procedure in the "Pro­
gram Organization" chapter. (Use the procedure's symbolic name to find a page 
reference to its description in the "Directory.") 

Return Code 

X'OO' 

X'04' 

Procedure Name 

HloceH 
IECIHIO 
IGCOOOIG 
IGC0003C 
IGCOl6 
SMGFREVR 
TCCWROOO 
IECVCINT 
IECCONCS 
IECVESIO 
IECVRRSV 
IECVURSV 

HlOCCH 
IGCOOOIG 
IGC0003C 
IGCOl6 
SMGFREVR 
TCCWROOO 
TCCWUOOO 
TCCWXOOO 
IECVCINT 
IECCONCS 
IECVESIO 
IECVRRSV 
IECVURSV 

Return Code 

X'OS' 

X'OC' 

X'IO' 

X'14' 

X'IS' 

X'20' 

Procedure Name 

H10CCH 
HIOLOP 
IECIHIO 
IGC0003C 
IGCOl6 
SMGFREVR 
TCCWROOO 
IECVCINT 
IECVESIO 

IGC0003C 
TCCWMOOO 
TCCWMIOO 
TCCWM300 
TCCWM400 
IECVESIO 

IGC0003C 
IECVESIO 

IGC0003C 
IGC016 
IECVESIO 

IGC0003C 
IECVESIO 

IGC0003C 
IECVESIO 

Data Areas 199 



Return Code Procedure Name 

X'24' IECVESIO 

X'2B' IECVESIO 

X'2C' IECVESIO 

X'30' IECVESIO 

X'34' IECVESIO 

X'3B' IECVESIO 

X'3C' IECVESIO 

200 OS/VS2 I/O Supervisor Logic 



Appendix: Overview of I/O Error Recovery Processing 

Data Areas 201 



The Function and Characteristics of ERPs 

202 OS/VS2 I/O Supervisor Logic 

An ERP (error recovery procedure) is a program that evaluates sense data, CSW 
status bits, and data in the ERP work area, and takes appropriate actions. It can 
be specialized to process the sense information of only one type of device, as is the 
ERP for the 2540 Card Read Punch, or it can be able to process the sense data of 
a "family" of devices, as can the ERP for tape devices or the ERP for direct-access 
devices. 

Only one ERP, the direct-access ERP, resides in the nucleus; it is contained in one 
load module. Non-direct-access ERPs are paged in and ou t of the link pack area, and 
some of these are contained in two or more load modules. The first load is given 
control by the ERP loader (IECYERPL) and may, based on feedback from the error 
interpreter (IECYITRP), give control to another load. (The ERP loader and error 
interpreter are described under "ERP Service Modules.") 

Most ERPs write messages to the operator's console by calling the ERP message 
writer (IGE0025C) via a procedure in the ERP loader. All ERPs write records in 
the SYSI.LOGREC data set by calling OBR, the outboard record routine 
(IGE0025F). All but the tape and direct-access ERPs update an error statistics table 
by calling the error statistics recorder (IGE0025D), this too via the ERP loader. 
(The ERP message writer and error statistics recorder are described under "ERP 
Service Modules." OBR is described in OS/VS2 SYS1.LOGREC Error Recording 
Logic, SY28-0678.) 



Table of ERP Modules 

The following table matches the module or pair of modules that makes up an ERP 
with the device or devices the ERP supports: 

Modules 

IECVDERP 

IGEOOOOD 

IGEOOOOG (first load) 

IGEOOOOH 

IGEOOOOl (first load) 
IGEOIOOI (second load) 

IGEOOOIA 

IGEOOOIC (first load) 

IGEOOOIF (first load) 
IGEOI01 F (second load) 

IGEOOOIG 

IGE0001H 

IGE0002A 

IGE0002B 

IGE0002C 

IGE0002E 

IGE0003C 

IGE0004 } 

IGEOOIOA 

IGEOOIOB 

IGEOOI0D 

IGEOOIOE 

IGEOOIIA 

IGEOOllC 

IGEOOllD 

IGEOOIIE 

Devices 

2305 Fixed Head Storage 
2314 Direct-Acces.~ Storage Facility 
2319 Disk Storage 
3330 Disk Storage 
3330-1 Disk Storage 
3340 Direct Access Storage Facility 
3350 Direct Access Storage Facility 

1052 Printer 
3210 Console Typewriter 
3215 Console Typewriter 

3211 Printer, 1403 Printer 

3851 Mass Storage System Data Staging Manager (DSM) 

2400 Series Magnetic Tape Units 
3400 Series Magnetic Tape Units 

3505 Card Reader 
3525 Card Punch 

1442 Card Read Punch 
2501 Card Reader 
2520 Card Read Punch 
2540 Card Read Punch 

3886 Optical Character Reader 

3890 Document Processor 

3851 Mass Storage Controller (MSC) 

2671 Paper Tape Reader 

3895 Document/Inscriber 

3540 Diskette Input/Output Unit 

Channel-to-Channel Adapter 

3838 Array Processor 

3704 and 3705 Communications Controllers 

2250 Display Unit 

1053 Printer 
2260 Display Station 

3066 Display Console 

3270 Information Display System 

2459 Tape Cartridge Reader 

1287 Optical Reader 

1288 Optical Page Reader 

1275 Optical Reader Sorter 
1419 Magnetic Character Reader 

Data Areas 203 



ERP Service Modules 

The ERP Loader (lECVERPL) 

The Routing Procedure 

204 OS!VS2 I/O Supervisor Logic 

The ERP loader consists of three parts: 

• A routing procedure, which is dispatched as the result of processing requested by 
the lOS post-status module (IECVPST) and carried out by the stage 2 and stage 
3 exit effectors. In causing the routing procedure to be dispatched, lOS ensures 
that either a nondirect-access ERP, the lOS DAW module, the ERP message 
writer, or DDR-whichever the processing environment calls for-eventually gets 
control. 

• A module location procedure, which is used by nondirect-access ERPs and ERP 
service modules to get to other modules. 

• An error notification procedure, which calls the lOS post-status module if the 
routing or module location procedure detects an error. 

The following topics describe how the procedures are called, what they do, and 
how they return to their caller. 

When dispatched, the routing procedure locates the IOSB at the end of this 
chain: 

TCB 

- TCBRBP: points to the top 
request block on the request­
block chain-in this instance 
an SIRB. 

-'SIRB 

RBIQE: pointer to the SRB. 

SRBPARM: pointer to an 
IOSB. 

IOSB 

Contains data needed by this 
procedure, non direct-access 
ERPs, and other ERP service 
modules. 



The Module Location Procedure 

The routing procedure puts the address of the IOSB in register 1, where nondirect­
access ERPs and ERP service modules except it, and examines IOSPROC, the 
IOSB field that determines the remainder of the routing procedure's processing. 
Listed in the following table are the possible contents of the IOSPROC field and 
the corresponding actions taken by the routing procedure: 

IOSPROC Contents Actions 

X'OO' Loads register 13 with the contents of the UCBETI field and 
exits to the module location procedure at ERPL3ENT. 

X'IQ' Exits to the lOS DA VV module. 

X'14' Puts the characters/GE0025C, the name of the ERP message 
writer, into the SIRB and exits to the module location pro-
cedure at a point following ERPL3ENT. 

X'IB' Puts the characters IGE0660A, the name of the DDR mod-
ule, into the SIRB and exits to the module location procedure 
at a point following ERPL3ENT. 

Anything else Exits to the error notification procedure. 

The module location procedure is entered, with register 13 containing the hex a- . 
decimal identifier of the module to be located. Possible modules are: 

• Load modules of non direct-access ERPs wanting to give control to otherload 
modules or to ERP service modules. 

• ERP service modules wanting to give control to other ERP service modules. 

• The ERP loader's routing procedure, which enters on behalf of lOS to ensure 
that a non direct-access ERP is given control. 

ERP and ERP service modules enter at IECXTLER. The routing procedure enters 
at ERPL3ENT. 

The identifier in register 13 is converted to four characters, the prefIX IGEO is added 
to them, and the 8-character module named thus formed is stored in the SIRB. (The 
routing procedure enters at this point instead of at ERPL3ENT if lOS wants 
IGE0025C, the ERP message writer, or IGE0660A, the DDR module, to be entered. 
The routing procedure will have already put the appropriate module name in the 
SIRB.) 

Control is passed to routines that search the system's contents directory entries and 
link pack directory entries for the address of the module named in the SIRB. If the 
module can be located, it is entered. If not, the error notification procedure is 
entered. 

Data Areas 20S 



The Error Notification Procedure 

The error notification procedure is entered at ERPLT2 by: 

• The routing procedure if the 10SPROC field contains an invalid value. 

• The module location procedure if the module it was asked to locate can't be 
found in the system's directory entries. 

The error notification procedure tells lOS about the error by turning on the 
"exceptional·condition" bit, IOSEX, turning off the "retry" bit, IOSERR, and 
calling the lOS post-status module (IECVPST) with an SVC IS instruction. (To 
learn what the post·status module does when it gets control, see the description 
of the SVC 15 procedure in "Post-Status Module (IECVPST).") 

The error notification procedure exits to the dispatcher with an SVC 3 instruction 
when control returns. 

ERP Loader Module (IECVERPL) Detailed Processing 

The ERP Loader (IECVERPL) 

206 OS/VS2 I/O Supervisor Logic 

Invoked by the dispatcher at entry point IECVERPL, or by an ERP by means of 
an XCTL macro at entry point IECXTLER. 

(a) IECVERPL: Dispatcher entry 

• Specifies an EST AE exit. 

• Checks the IOSPROC field in the 10SB (which was set by the driver), to 
determine which routine is to get control, as follows: 

(1) If IOSPROC = 00 (driver created the 10SB), uses the error index 
table (UCBETI) in the UCB extension to find the desired routine. 

(2) If IOSPROC = IOSDA W (X' 1 0'), goes to module IECVDA W to 
verify the volume. 

(3) If IOSPROC = 10SAWTO (X'14'), goes to the ERP XCTL entry of 
the ERP loader OECXTLER) to cause entry to the ERP message 
writer (IGE0025C). 

(4) If 10SPROC = 10SADDR (X' 18'), goes to DDR routine to evaluate 
the results of an 1/0 retry. 

(5) If none of these IOSPROC conditions is indicated, exits to the 
post status module (IECVPST) SVC 15 procedure (3) because 
this entry is for an unauthorized request. The SVC 15 procedure 
terminates the associated 1/0 request, then issues an SVC 3. 



(b) IECXTLER: ERP XCTL entry 

• Entered by an ERP to give control to another ERP load module or to use 
a service routine, such as the ERP message writer or the error statistics 
recorder. 

• Uses the number in register 13 to build an lG EO-prefixed name to use in a 
search of the CDE queues and the link pack directory queues (LPDEs) to 
find the entry point name of the desired load module. 

• Gets the local and CMS locks to prevent alteration of the queues during 
the search. 

• Searches the CDE queues for the entry point name. If the name is not 
found, frees the local and CMS locks and searches the link pack directory 
for the entry point name, since the module may be in the PLPA. 

• If the return code is 4, the entry point name does not exist. In this case, exits 
to the post status module (IECVPST) SVC 15 procedure (3) to terminate the 
I/O request (post, indicating "IOSB in error"). 

• If the entry point name is found in the CDEs, frees the locks and branches 
to the entry point. 

• If the entry point name is found in the link pack directory, branches to 
the entry point. 

(c) IECVERPL: EST AE procedure entry 

The Error Interpreter (IECVITRP) 

• Invokes SVC dump. 

• Branches to the RTM, specifying retry in module (IECVPST) SVC 15 procedure 
(3). The SVC 15 procedure terminates the I/O request with an "IOSB in error" 
condition. 

The error interpreter is entered by both the direct·access ERP and the first load of 
nondirect-access ERPs to direct the course of error recovery processing. It receives 
this input: 

register 1 

IOSSNS: contains 16 sense 
bits. 

IOSTATUS: contains 16 
CSW status bits. 

register 14 

~bYI' ,nld« 1 X'Ox' or X'lx' 

T X'2F' 

Displacement 1 
Displacement T 

If the first byte in a table entry is X'Ox', one of the sixteen sense bits is tested. 
The specific bit tested depends on the low·order value of the byte. If the first 
byte is X'lx', one of the sixteen CSW status bits is tested. Should IECVITRP 
find a sense or CSW status bit on, it adds the displacement in the second byte of 

Data Areas 207 



the appropriate entry to register 14 and branches to that address. If IECVITRP 
reaches the end of the table-indicated by X'2F' in the first byte of an entry­
it uses the displacement in that entry. 

The error interpreter, having found an error, is not reentered by the ERP to finish 
testing sense and CSW bits. Thus, ERPs only deal with one error per iteration of 
an I/O operation. 

The ERP Message Writer (IGE0025C) 

208 OS!VS2 I/O Supervisor Logic 

The ERP message writer actually consists of IGE0025C, and a message exit. 
IGE0025C does message determination and builds the general part of the message. 
The device-dependent message exits are called to build any device dependent 
sections of the message, e.g. sense. If an exit is not available, IGE0025C issues the 
general message that it has built. Otherwise, the exit issues the WTO for the com­
plete message, then returns to the message writer for cleanup and exit. 

There are six message exits. They receive control from IGE0025C with pointers to 
the IOSB and a message buffer. Device-dependent information is formatted and 
put into the buffer and the WTO is issued. Control is then returned to IGE0025C. 
The message exits are: 

IECLMSGD 
IECLMSGC 
IECLMSGG 
IECLMSGM 
IECLMSGT 
IECLMSGU 

the exit for DASD devices 
the exit for communication devices 
the exit for graphics devices 

- the exit for the 3851 device 
the exit for tape devices 

- the exit for unit record devices 

The following table shows what the ERP message writer might find and what 
message it writes: 

Findings 

A start-I/O instruction set the condition 
code to 3, and there is no other path to 
the device. 

A start-I/O instruction set the condition 
code to 3, but there is another path to the 
device. 

A unit check was received with an 
"intervention-required" indication in the 
sense bytes. 

A unit check was received for a 3851 
with an "intervention-required" indication 
in the sense bytes, and sense byte 3, bit 1 
was on. 

The ERP determined that an uncorrectable 
I/O error occurred. 

Message Issued 

IEAOOOA, "intervention required" 

IEAOOll, "path inoperative" 

IEAOOOA, "intervention required," unless the 
message has already been sent (the UCBIVRS 
bit will be on) 

IEAOOOI, "intervention required," unless the 
message has already been sent (the UCBIVRS 
bit will be on). 

IEAOOOl, "permanent I/O error" 



Differences in the handling of IOSBs are shown in this table: 

~ 
Is the IOSB a deferred IOSB? Yes Yes No No 

til Does the ERP want data recorded in the Yes No Yes No 
~ ,... SYSl.LOGREC data set? (Is the IOSLOG bit on?) 

Puts the IOSB on a queue that OBR looks at. X 

Calls the lOS storage manager module X 
(lECVSMGR) to free the IOSB. 

til Returns to the ERP loader's module location pro- X Z 
0 cedure, first storing in register 13 a value that will 
1= 
U cause the procedure to enter either the error 
< statistics recorder or OBR. * 

Issues an SVC 15 instruction, calling the lOS post- X 
status module, and when control returns, exits to 
the dispatcher with an SVC 3 instruction. ** 

* The value stored in register 13 is governed by the contents of EWASTUP, the "statistics­
update" field of the ERP work area. 

** To learn what the post-status module does when it's called, see the description of the 
SVC 15 procedure in "Post-Status Module (IECVPST)." 

Note: The ERP message writer does not issue messages if the nucleus is being 
initialized, but it performs the processing that is directed by the setting of the 
IOSLOG bit. 

Data Areas 209 



214 OS/VS2 I/O SupeJVisor Logic 



L. 
A 
ABE (abnormal end) appendage, entered by EXCP, MO 

21 
ABE interface procedure (XCP ABE) 35 

in EXCP module flow 31 
ABEND codes 185 
ABN (abnormal) exit 

called by lOS 
MO 58 
PO (IECVPST) 134 

IOS-entered after ERP processing 
MO 59 
PO (IGCOI5) 135 

abnormal end (see ABE) 
abnormal exit (see ABN exit) 
ABP (actual block processor) 

interface with lOS 7 
access method 

definition 13 
posting request status 

MO 27 
PO (XCPTERM) 36 

access-method interface 
control blocks 14 
definition 13 
reusing 

MO 28 
PO (XCPTERM) 36 

validating 
MO 17 
PO (XCPOOO) 32 

with EXCP 13 
ACR (alternate CPU recovery) 

interface with lOS II 
ACR-call procedure (ACRPROC) 76,117 
actual block processor (see ABP) 
adding prefix to channel program, MO 46 
address retranslation procedure (TCCWROOO) lOi 
address space control block (see ASCB) 
alternate CPU recovery (see ACR) 
appendage interface procedure (IECVPST) 75,134 
appenqage options 

executing 
MO 22 
PO (XCPCHE) 35 
PO (XCPMAP) 37 

applicability-check procedure (PURAPLSR) 81,132 
ASCB (address space control block) 

use by exit effector 9 
ASM (auxiliary storage manager) 

interface with lOS 7 
asynchronous processing 

definition 3 
with driver-created IOSBs 

MO 57 
PO (IECVPST) 134 
PO (lGCOI5) 135 

with lOS-created IOSBs 
MO 55 
PO (PSTIOSB) 135 

Page of SY26-3823-5 
As Updated October 25,1979 
By TNL SN28-4683 

attention interruption handling 
MO 53 
PO (EATTENTl) 94 
PO (ESTATUSI) 91 

attention procedure (EATTENTI) 74 
attention routine 

entered by lOS 
MO 56 
PO (PSTIOSB) 135 

attention-handling procedure (EA TTENT 1) 94 
auxiliary storage manager (see ASM) 

B 
backout procedure (BACKOUT) 67, lO6 
basic EXCP module (lECVEXCP) 

MO 17 
PO 32· 

basic lOS module (IECIOSCN) 
MO 43 
PO 87 

basic purge procedure (BASICPRG) 81,132 

Index 

basic telecommunications access method (see BT AM) 
BEB (beginning-end block) 

location in EXCP debugging area 186 
use 98 

beginning-end block (see BEB) 
block verification procedure (SMGFREVR) 161 
BOXDEVS, box devices procedure 140 (5752-864) 
BRSVFRR, IECVBRSV functional recovery routine 

PO 97 
BT AM (basic telecommunications access method) 

interface with lOS 12 
build reserve table module (lECVBRSV) (5752-864) 

MO 62 
PO 97 

build reserve table routine 

C 

for IECVBRSV 97 (5752-864) 
for IECVIRST 121 

callers of lOS 
group I (drivers) 7 
group 2 10 
group 3 II 
group 4 II 
group 5 12 

CAT (channel availability table) 
connections with other areas 178 
role in finding paths 45 

CCH (channel check handler) 
interface with lOS II 
via SRB called procedure (LOSTCHAN) 76 

CCH-call procedure 
for channel checks (CCHPROC) 76,118 
for lost channels (LOSTCHAN) 120 

Index 1-1 



CCIRTN, IECVURDT condition code one procedure 
PO 164 

CCW (channel command word) translation procedure 
(TCCWIIOO) 98 

CCW translation operation table 176 (5752-864) 
CCW translator module (IECVTCCW), PO 98 
chain-SRB procedure (IECVPRDQ) 144 
channel availability table (see CAT) 
channel check handler (see CCH) 
channel command word (see CCW) 
channel end (see CHE) 
channel error handling 

MO 53 
PO (ESTATUSJ) 91 

channel error procedure (HlOCCH) 142 
channel path table 45 
channel program 

adding a prefix, MO 46 
copying and translating 

MO 21 
PO (XCPI15) 34 

channel reconfiguration hardware (see CRH) 
channel scheduler procedure (IECHNSCH) 73,87 
channel set, definition I (5752-864) 
channel set switching (see CHS) (5752-864) 
channel-logout procedure (HIOLOP) 142 
channel-restart procedure 

(ERSTARTI, ERSTART2) 93 
(ERSTARTJ) 73 

channels 
using free 

MO 55 
PO (ERSTARTJ) 93 

channel-to-channel adapter (see CTC) 
CHE (channel end) appendage, entered by EXCP, MO 21 
CHE interface procedure (XCPCHE) 35 

in EXCP module flow 31 
check interruption procedure 112 (5752-864) 
check reserve procedure 140 (5752-864) 
checkpoint SVC routine (SVC 63), interface with lOS II 
CHKRESV, lECVRRSV check reserve procedure 

PO 140 
CHS second level interruption handler (IECVCSSI) 105 

(5752-864) 
CHS (channel set switching) (5752-864) 

activation 68 (5752-864) 
deactivation 70 (5752-864) 
error recovery 69 (5752-864) 
overview 68 (5752-864) 
passing control to 69 (5752-864) 
preventing line drops on TP lines 69 (5752-864) 

clean up procedure for IECVHREC 115 (5752-864) 
clear channel subroutine 80,115 (5752-864) 
clear-device procedure (CLEARDEV) 119 
CLRCH, IECVHREC clear channel subroutine 

MO 60 
PO 115 

codes 
ABEND 185 
lOS return 199 
wait-state 199 

communicating with drivers' purge procedures 
MO 64 

1-2 OS/VS2 I/O Supervisor Logic 

Page of SY26-3823-5 
As Updated October 25, 1979 
By TNL SN28-4683 

PO (DVRPURG) 131 
PO (IGCOI6) 126 

communications vector table (see CVT) 
comparing RQEs to search argument 

MO 24 
PO (IECVRCHN) 39 
PO (IECVXPUR) 39 
PO (XCPTERM) 36 

comparing SRB/lOSBs to search argument 
MO 63 
PO (IGCOI6 and others) 126 

compress interface (PRGCOMPO) 133 
compress procedure (lECVSCO M) 160 
condition code one procedure (CCIRTN) 164 (5752-864) 
condition code setting, responding to, MO 48 
connect channel set procedure (IECCONCS) 107 

(5752-864) 
consolidating SRB/IOSB information 

MO 19 
PO (XCP050) 33 

copying channel program 
MO 21 
PO (XCPI15) 34 

CRCA (CRH communications area) 
connections with other areas 178 

CRH (channel reconfiguration hardware) 
deactivation 67 
hook module (IECVCRHH) 

MO 66 
PO 107 

hook module interface and CHS interface with lOS 
mainline 83 (5752-864) 

interrupt processing 85 
overview 65 
passing control to 66 
preventing line drops on TP lines 67 
program activation 66 
recovery from errors 67 
second level interruption handler 

(IECVCINT) 104 
(VCINT2) 104 (5740-XEl) 

CRH communications area (see CRCA) 
CRH/CHS (5752-864) 

activation FRR procedure (IECCRHAF) 105 
(5752-864) 

activation procedure (IECVCRHA) 102 (5752-864) 
deactivation FRR procedure (IECCRHDF) 106 

(5752-864) 
deactivation procedure (IECVCRHD) 103 (5752-864) 
module, basic (IECVCINT) 

MO 65 
PO 102 

schedule SRB procedure (IECVCRHS) 104 (5752-864) 
SLIH FRR procedure (IECCINTF) 106 (5752-864) 
STIDC procedure (IECVCRHV) 103 (5752-864) 
timer pop procedure (IECYCRHT) 103 (5752-864) 

CTC (channel-to-channel adapter) halt procedure 
(HAL T3000) 125 

CYT (communications vector table) 
connections with other areas 178 
use in EXCP debugging 185 
use in lOS debugging 187 



D 
DASD SIO procedure 
data area usage table 

146 (5752-864) 
181 (5752-864) 

data areas 175 
freeing lOS-known 

MO 23 
PO (TECVXPUR) 
PO (XCPTERM) 

39 
36 

relationship to lOS modules 181 (5752-864) 
DA VV module (IECVDA VV) 

DA VERR, error-handling procedure 
PO 110 

DA VEST A, EST AE recovery procedure 
PO III 

DA VFRR, FRR recovery procedure 
PO 112 

DA VI NT, interruption-handling procedure 
PO 110 

MO 57 
PO 109 

DDR-purge (dynamic device reconfiguration-purge) 
procedure (DDRPURG) 81,130 

decrement-count procedure (IECVQCNT) 144 
dequeue procedure (EQUEDI) 90 
determining VIO data set allocation 

MO 18 
PO (XCPVAM) 33 

device dependent trap module (IECVXxxT) 74 (5752-864) 
device descriptor table 177 (5752-864) 
device procedure (UCBACT) 76,120 
device validation routine (IECVDV AU 163 (5752-864) 
diagnostic aids 185 
DIE (disabled interrupt exit) interface procedure 

(EDIEINTI) 74,92 
DIE procedure (XCPDIE) 

in EXCP module flow 
direct-access storage device 
direct-access volume mount 

verification 
MO 57 
PO (IECVDA VV) 

directing ERP processing 
PO (MIHPROC) 119 
PO (UCBACT) 120 

Directo~y 167 

35 
31 

(see DASD) 

109 

disabled interrupt exit (see DIE) 
do reserve procedure 139 (5752-864) 
driver's DIE procedure 

entered by lOS 
MO 55 
PO (EDIEINTI) 92 
PO (ESTATUSJ) 91 

driver interface procedure (DVRPURG) 81,131 
dynamic device reconfiguration (see DDR) 

E 
EATTENT I, IECI OSCN attention-handling procedure 

MO 53 
PO 94 

EDETECT1, IECIOSCN unconditional reserve scheduling 
procedure 

PO 96 

Page of SY26-3823-5 
As Updated October 25, 1979 
By TNL SN28-4683 

EDEVENDI, IECIOSCN unsolicited device end procedure 
PO 90 

EDIEINTI, IECIOSCN DIE interface procedure 
MO 55 
PO 92 

EDIEINT2, IECIOSCN PCI DIE interface procedure 
PO 92 

end of extent (see EO E) 
enqueue procedure (EQUEEI) 90 
entrance/exit procedure (IGCOI6) 126 
entrance/exit procedure for IECVESIO 151 (5752-864) 
EOE (end of extent) appendage 

entered by EXCP 
MO 20 
PO (IECVEXTC) 34 

EOE interface procedure (IECVEXTC) 34 
in EXCP module flow 30 

EPOSTIOI, IECIOSCN post-SIO procedure 
MO 48 
PO 89 

EQEDl, IECIOSCN dequeue procedure 
PO 90 

EQEE I, IECIOSCN enqueue procedure 
PO 90 

ERP (error recovery procedure) 
directing processing 

PO (MIHPROC) 119 
PO (UCBACT) 120 

entered by lOS 
MO 58 
PO (IECVPST) 134 

ERP interface procedure (PSTEFF) 137 
ERP work area (common segment) (see EWA) 
ERP work area (DASD segment) (see EWD) 
ERPs (see also I/O error recovery processing) 

interface with lOS 59 
error recovery procedure (see ERP) 
error-handling procedure (DA VERR) 110 
ERSTARTI, IECIOSCN channel-restart procedure 

MO 55 
PO 93 

ERST ART2, IECIOSCN channel-restart procedure 
PO 93 

ESCHDIOI, IECIOSCN SRB-scheduling procedure 
PO 90 

ESENSEI, IECIOSCN sense procedure 
MO 54 
PO 93 

ESIO 1, IECIOSCN SIO procedure 
MO 47 
PO 88 

ESIOFRR, IECVESIO functional recovery routine 
PO 152 

EST AE recovery procedure 
(DA VEST A) III 
(PRGESTAE) 133 

ESTATUSI, IECIOSCN initial status procedure 
MO 52 
PO 91 

ETCH J, IECIOSCN test channel procedure 
MO 45 
PO 87 

EWA (ERP work area (common segment)) 
connections with other areas 180 
location in SDUMP buffer record 188 

Index 1-3 



EWD (ERP work area (DASD segment» 
examining status information 

MO 49 
PO (EPOSTIO I) 89 

EXCP 
functions 

communicating with PCI, CHE, ABE appendages 
21 

giving I/O requests to lOS 21 
halting a teleprocessing operation 28 
preparing to go to lOS 17 
purging and restoring I/O requests 23 
reusing access-method interface 28 
telling access method what happened 27 

IECYEXCP 
flow of control 30 
MO 17 
PO 32 

IECYEXPR 
MO 23 
PO 39 

interface with lOS 
during purge operation 23 
to request I/O operation 21 

interface with VIO 18 
EXCP debugging area 185 
executing appendage options 

MO 22 
PO (XCPCHE) 35 
PO (XCPMAP) 37 

exit effector 
stage 2 

MO 56 
PO (PSTIOSB) 135 

exit procedure (XCPEXIT) 37 
in EXCP module flow 31 

exit! entrance procedure (I GCOOO I F) 81 

F 
finding path for I/O operation 

MO 45 
PO (ETCHI) 87 

flow of control in EXCP 30 
free channel use 

MO 55 
PO (ERSTARTI) 93 

freeing data areas known to lOS 
MO 23 
PO (lECVXPUR) 39 
PO (XCPTERM) 36 

free-large-block procedure (FREEBLK) 159 
free-medium-block procedure (FRBLK4) 156 
free-small-block procedure (FRBLKO) 154 
FRR (functional recovery routine) 

for HRECFRR 115 (5752-864) 
for IECYBRSV 97 (5752-864) 
for IECVESIO 152 (5752-864) 
for IECVIRST 123 
for IECVRDIO 139 (5752-864) 
for IECVRRSY 140 (5752-864) 
recovery procedure (DA VFRR) 112 

1-4 OS/VS2 I/O Supervisor Logic 

Page of SY26-3823-5 
As Updated October 25, 1979 
By TNL SN28-4683 

functional recovery procedure 
in EXCP (XCPFRR) 40 
in lOS 

HALT0900 126 
HlOFRR 142 
lECFRR 95 
lECYSMFR 161 
PSTFRRTY 136 
PURGEFRR 132 

functional recovery routine (see FRR) 

G 
get-large-block procedure (GETBLK) 157 
get-medium-block procedure (G ETBLK4) 154 
get-RQE procedure (XCPRQE) 

in EXCP module flow 30 
MO 18 
PO 32 

get-small-block procedure (GETBLKO) 153 
get-SRB procedure (XCP050) 

in EXCP module flow 30 
MO 19 
PO 33 

get-storage procedure (GETCORE) 159 
giving I/O requests to lOS 

MO 21 
PO (XCPI45) 35 

H 
HALT3000, IGCOO03C CTC halt procedure 

PO 125 
HALT0900, IGC0003C functional recovery procedure 

PO 126 
halting an I/O operation 

in nonresident halt-I/O module (IGCOOO3C) 82 
in resident halt-I/O module (IECIHIO) 82 

halting teleprocessing or CTC operation 
MO 28,65 
PO (IGC0003C) 124 
PO (SVC33) 40 

halt-I/O interface procedure (SYC33) 40 
handling 

attention interruptions 
MO 53 
PO (EATTENTJ) 94 
PO (ESTATUSJ) 91 

channel errors 
MO 53 
PO (ESTATUSI) 91 

PCI interruptions 
MO 52 
PO (ESTATUS1) 91 

SIOF interruptions 
MO 51 
PO (lECINT) 91 

unit-check interruptions 
MO 54 
PO (ESENSEJ) 93 
PO (ESTATUSI) 91 



HIOCCH, IECIHIO channel error procedure 
PO 142 

HIOFRR, IECIHIO functional recovery procedure 
PO 142 

HIOIPCI, IECIHIO shoulder-tap procedure 
PO 141 

HIOLOP, IECIHIO channel logout procedure 
PO 142 

hook module interface and CHS interface with lOS 
mainline S3 (5752-864) 

hot channel, hot control unit, hot DASD recovery routine 
SO, 114 (5752-864) 

hot device recovery routine SO, 113 (5752-864) 
hot I/O (5752-864) 

detection 
PO (IECVHDET) 112 
procedure 74,79 

recovery 
MO 61 
PO (IECVHREC) 113 
procedure SO 

HRECFRR, IECVHDET functional recovery routine 
PO 115 

I 
IDAL (indirect data address list) procedure (TCCWM400) 

100 
IECCINTF, CRH/CHS SLIH FRR procedure, PO 106 
IECCONCS, CRH/CHS connect channel set procedure 

MO 70 
PO 107 

IECCRHAF, CRH/CHS activation FRR procedure 
MO 69 
PO 105 

IECCRHDF, CRH/CHS deactivation FRR procedure 
MO 69 
PO 106 

IECFRR, IECIOSCN functional recovery procedure 
PO 95 

IECIHIO, resident halt I/O module, PO 141 
IECINT, IECIOSCN interruption handling procedure 

MO 51 
PO 91 

IECIOSCN, basic lOS module 
MO 43 
PO 'S7 
responding to an I/O event, MO 51 
starting an I/O operation, MO 43 

IECVBRSV, build reserve table module 
MO 62 
PO 97 

IECVCINT, basic CRH/CHS module 
CRH second level interruption handler, PO 104 
MO 65 
PO 102 (5752-864) 

IECVCPRM, storage manager pool initialization procedure, 
PO 160 

IECVCRHA, CRH/CHS activation procedure 
MO 66 
PO 102 

IECVCRHD, CRH/CHS deactivation procedure 
MO 67 
PO 103 

IECVCRHH, CRH hook module 
MO 66 

Page of SY26·3823·5 
As Updated October 25,1979 
By TNL SN28-4683 

PO 107 
IECVCRHI, CRH test channel hook procedure 

MO 66 
PO 107 

IECVCRH2, CRH SIO hook procedure 
MO 66 
PO lOS 

IECVCRH3, CRH sense hook procedure 
MO 66 
PO lOS 

IECVCRHS, CRH/CHS schedule SRB procedure, PO 104 
IECVCRHT, CRH/CHS timer pop procedure, PO \03 
IECVCRHV, CRH/CHS STIDC procedure, PO \03 
IECVCSSI, CHS second level interruption handler 

MO 69 
PO \05 

IECVDAVV, DAVV module 
MO 57 
PO 109 
responding to an I/O event, MO 57 
volume verification procedure, PO \09 

IECVDURP, unconditional reserve detection module 
MO 57 
PO 163 

IECVDV AL, IECVDURP device validation routine 
PO 163 

IECVESIG, special SIO module SIGP entry procedure 
PO 152 

IECVESIO, special SIO module 
MO 62 
PO 151 

IECVEXCP, basic EXCP module. 
going to PCI, CHE, ABE appendages 21 
MO 17 
passing I/O request to lOS 21 
PO 32 
posting to access method 27 
preparing to go to lOS 17 
purging dependent I/O requests 26 
reusing access method interface 2S 

IECVEXPR, miscellaneous module 
halting teleprocessing information 2S 
MO 23 
PO 39 
purging I/O requests 23 
restoring I/O requests 23 

IECVEXTC, EXCP EOE interface procedure 
MO 20 
PO 34 

IECVHDET, hot I/O detection module 
MO 61 
PO 112 

IECVHREC, hot I/O recovery module 
MO 61 
PO 113 

IECVIRST, I/O restart module 
MO 60 
PO 116 

IECVPRCU, IECVPURG SIRB cleanup procedure 
PO 144 

IECVPRDQ, IECVPURG chain-SRB procedure, PO 144 
IECVPST, post status module 

exit interface procedure, 134 
MO 56 
PO 134 
responding to an I/O event, 56 

Index 1-5 



IECVPURG, resident purge module, PO 144 
IECVQCNT, IECVPURG decrement count procedure 

PO 144 
IECVRDIO, redrive I/O service module 

MO 62 
PO 138 

IECVRRSV, re-reserve module 
MO 62 
PO 139 

IECVRSTI, I/O restart module 
MO 60 (5752-864) 
PO 116 
set up procedure, PO 117 

IECVSCOM, IECVSMGR compress procedure, PO 160 
IECVSMFR, IECVSMGR functional recovery procedure, 

PO 161 
IECVSMGR, storage manager module, PO 153 
IECVTCCW, CCW translator module, PO 98 

routing procedure 98 
IECVURDT, unconditional reserve detection module 

MO 57 
PO 164 

IECVURSV, unconditional reserve service module 
PO 165 

IECVXDAS, SIO module for DASD devices 
MO 46 
PO 146 

IECVXDRS, SIO module for 2305 devices 
MO 46 
PO 147 

IECVXSKS, SIO module for the 2314 device 
MO 46 
PO 148 

IECVXT2S, SIO module for the 2400 tape device 
MO 46 
PO 150 

IECVXT3S, SIO module for the 3400 tape device 
MO 46 
PO 150 

IECVXURS, SIO module for unit record devices 
PO 150 

IECVXVRS, SIO module for the 3330V device 
MO 46 
PO 149 

IECVX025, EXCP SVC 3 interface procedure, PO 38 
IGCOOO3C, nonresident halt I/O module 

MO 65 
PO 124 

IGCOOOIF, nonresident purge module 
MO 63 
PO 126 

IGCOOOIG, restore module 
MO 64 
PO 145 

IGCOI5, IECVPST SVC 15 procedure 
MO 59 
PO 135 

IGCOI6, nonresident purge entrance/exit procedure 
MO 63 
PO 126 

IGCOI7, restore procedure 
MO 64 
PO 145 

indirect data address list (see IDAL) 
initial-status procedure of IECIOSCN (ESTATUSl) 74,91 
interfaces 

1-6 OS!VS2 I/O Supervisor Logic 

Page of SY26-3823-5 
As Updated October 25,1979 
By TNL SN28-4683 

ABP with lOS 7 
access-method with EXCP 13 
ACR with lOS 11 
ASM with lOS 7 
BT AM with lOS 12 
CCH with lOS 11 
checkpoint SVC routine (SVC 63) with lOS 11 
ERPs with lOS 59 
EXCP with lOS 

during purge operation 23 
to request I/O operation 21 

EXCP with VIO 18 
I/O and path mask update routine with lOS 12 
I/O FUH with lOS 10 
lOS with appendages 55,58,59 
lOS with EXCP 

at end of I/O processing 36 
during halt processing 40 
during purge processing 39 
during restore processing 39 

JES2 with lOS 7 (5752-864) 
JES3 with lOS 7 
MIH with lOS 11 
MSCC with lOS 7 
OL TEP with lOS 7 
program fetch with lOS 7 
purge requestors with lOS 11 
region control task with lOS II 
RTM with lOS 11 
task-close routine with lOS 11 
TCAM with EXCP 7 
TCAM with lOS 12 
VPSS with lOS 7 
VT AM with lOS 7 

interruption-handling procedure 
(IECINT) 74,91 
(IECINT2) 91 (5740-XEl) 

interruption-handling procedure (DA VINT) 110 
interruptions 

handling attention 
MO 53 
PO (EATTENTI) 94 
PO (ESTATUSI) 91 

handling PCI 
MO 52 
PO (ESTATUSI) 91 

handling SIOF 
MO 51 
PO (IECINT) 91 

handling unit-check 
MO 54 
PO (ESENSE I) 93 
PO (ESTATUSl) 91 

I/O activity 
starting 

MO 47 
PO (ESIO I) 88 

I/O and path mask update routine, interface with lOS 12 
I/O communications 

stop on-going 
PO (ACRPROC) 117 
PO (CCHPROC) 118 
PO (MIHPROC) 119 

I/O error recovery processing 
ERP loader (IECVERPL) 206 
error interpretation 207 



error statistics recording 210 
general description 202 
message writing 208 
modules 203 

I/O event 
definition 3 
responding to, MO 51 
simulation 

PO (MIHPROC) 119 
PO (UCBACT) 120 

I/O FLIH, interface with lOS 10 
I/O operation 

alternate path 
MO 50 
PO (ETCHl) 87 

definition 1 
path search 

MO 45 
PO (ETCHl) 87 

testing start ability 
MO 43 
PO (IECHNSCH) 87 

I/O queue element (see IOQ) 
I/O recovery table (see IRT) 
I/O requests 

passed from EXCP to lOS 
MO 21 
PO (XCPI45) 35 

purge of dependent 
MO 26 
PO (IECVRCHN) 39 
PO (XCPPUR) 37 
PO (XCPTERM) 36 

purging and restoring 
MO 23,63 

I/O resources 
marking busy 

MO 48 
PO (EPOSTIOl) 89 

I/O restart modules (see lOS, IECVIRST and 
IECVRSTI) 

I/O SLIH (IECINT) 66 (5740-XEl) 
I/O supervisor (see lOS) 
I/O supervisor block (see IOSB) 
I/O supervisor purge interface block (see IPIB) 
IOQ (I/O queue element) 

connections with other areas 180 
location in SDWA 188 
locations in SDUMP buffer records 188 
use in queuing requests 44 

lOS (I/O supervisor) 
callers (general) 7 
functions 

halting a teleprocessing operation 65 
purging I/O requests 63 
responding to I/O event 51 
restoring I/O requests 63 
restoring I/O resources availability, ACR condition 

60 (5752-864) 
starting an I/O operation 43 

IECIHIO, PO 141 
IECIOSCN 

MO 43 
PO 87 

IECVBRSV, build reserve table module (5752-864) 
MO 62 

Page of SY26-3823-5 
As Updated October 25, 1979 
By TNL SN28·4683 

PO 97 
IECVCINT, basic CRH/CHS module (5752-864) 

MO 65 
PO 102 

IECVCRHH, CRH hook module (5752-864) 
MO 66 
PO 107 

IECVDAVV 
MO 57 
PO 109 

IECVDURP, unconditional reserve decision module 
(5752-864) 

MO 57 
PO 163 

IECVERPL 204 
IECVESIO, special SIO module 

MO 62 
PO 151 

IECVHDET, hot I/O detection module (5752·864) 
MO 61 
PO 112 

IECVHREC, hot I/O recovery module (5752-864) 
MO 61 
PO 113 

IECVIRST 
MO 60 
PO 116,121 

IECVITRP 207 
IECVPST 

MO 56 
PO 134 

IECVPURG, PO 144 
IECVRDIO (5752-864) 

MO 62 
PO 138 

IECVRRSV, PO 139 (5752-864) 
IECVRSTI 

MO 60 
PO 116 

IECVSMGR, PO 153 
IECVTCCW, PO 98 
IECVURDT, PO 164 (5752-864) 
IECVURSV, PO 165 (5752-864) 
IECVXDAS, DASD SlO module 

MO 46 
PO 146 

IECVXDRS, 2305 SIO module 
MO 46 
PO 147 

IECVXSKS, 2314 SlO module 
MO 46 
PO 148 

IECVXT2S, 2400 tape SlO module 
MO 46 
PO 150 

IECVXT3S, 3400 tape SlO module 
MO 46 
PO 150 

IECVXURS, SIO module for unit record devices 
PO 150 

IECVXVRS, 3330V SIO module 
MO 46 
PO 149 

IGCOOOIF 
MO 64 
PO 126 

Index 1-7 



I GCOOO 1 G 
MO 64 
PO 145 

IGCOOO3C 
MO 65 
PO 124 

interface with appendages 55,58,59 
interface with EXCP 

at end of I/O processing 36 
during halt processing 40 
during purge processing 39 
during restore processing 39 

interfaces (general) 7 
recovery procedures, output 187 
return codes 199 

lOS data areas 178 
lOS modules, relationship to data areas 181 (5752-864) 
10SB (I/O supervisor block) 

connections with other areas 180 
general use and contents 9 
informative fields 

10SCOD 196 
IOSDRVID 194 
10SPROC 195 

locations in SDUMP buffer records 188,192 
locations in SDWA 189,192 

10SB-handling procedure (PSTIOSB) 75,135 
IOSB-to-IOB mapping procedure (XCPMAP) 37 
IPIB (I/O supervisor purge interface block) 

connections with other areas 180 
EXCP use 23 
location in SDUMP buffer 191 
use in communicating with drivers 64 

IPIB-purge procedure (IPIBPURG) 81,131 
IRSTFRR, IECVIRST functional recovery routine 

MO 60 
PO 123 

IRT (I/O recovery table) 

J 

location in SDUMP buffer record 188 
relationship to channel table 179 
use in restarting channels 55 

JES2, interface with lOS 
JES3, interface with lOS 

7 (5752-864) 
7 

L 
LCH (logical channel queue table) 

connections with other areas 179 
use in finding paths 45 
use in queuing requests 44 

LCH-purge procedure (LCHPURG) 81,129 
logical channel', definition 2 
logical channel queue table (see LCH) 
LOSTCHAN, CCH call procedure for lost channels 

MO 60 
PO 120 

lost or unusable channel recovery, MO 60 (5752-864) 

M 
main halt procedure (IGCOOO3C) 82,124 
main procedure (IECIHIO) 82,141 
main procedure (IECVDURP) 163 (5752-864) 

1-8 OS/VS2 I/O Supervisor Logic 

Page of SY26-3823-5 
As Updated October 25,1979 
By TNL SN28-4683 

main procedure (lECVURDT) 164 (5752-864) 
main TIC procedure (TCCWMl00) 99 
marking I/O resources busy 

MO 48 
PO (EPOSTIO 1) 89 

mass storage system communicator (see MSCC) 
message procedure (RECORDIT) 120 
message table 198 
MIH (missing interruption handler) 

interface with lOS 11 
MIH-call procedure (MIHPROC) 76,119 
missing interruption condition recovery, MO 61 

(5752-864) 
missing interruption handler (see MIH) 
modules (see also Directory) 

EXCP 
basic (lECVEXCP) 32 
miscellaneous (IECVEXPR) 39 
relationship to data areas 181 (5752-864) 

lOS 
basic (IECIOSCN) 87 
basic CRH/CHS (lECVCINT) 102 (5752-864) 
CCW translator (lECVTCCW) 98 
CRH hook (IECVCRHH) 107 
DAVV (lECVDAVV) 109 
hot I/O detection (lECVHDET) 112 (5752-864) 
hot I/O recovery (lECVHREC) 113 (5752-864) 
I/O restart (IECVRSTI, IECVIRST) 116 
nonresident halt-I/O (IGCOOO3C) 124 
nonresident purge (lGCOOOIF) 126 
post-status (IECVPST) 134 
red rive I/O service (IECVRDIO) 138 (5752-864) 
relationship to data areas 181 (5752-864) 
re-reserve (IECVRRSV) 139 (5752-864) 
resident halt-I/O (lECIHIO) 141 
resident purge (IECVPURG) 144 
restore (lGCOOOI G) 145 
special SIO module (lECVESIO) 151 (5752-864) 
start I/O for DASD devices (IECVSDAS) 146 

(5752-864) 
start I/O for unit record devices (lECVXURS) 150 

(5752-864) 
start I/O for 2305 device (IECVXDRS) 147 

(5752-864) 
start I/O for 2314 device (IECVXSKS) 148 

(5752-864) 
start I/O for 2400 tape device (IECVXT2S) 150 

(5752-864) 
start I/O for 3330V device (IECVXVRS) 149 

(5752-864) 
start I/O for 3400 tape device (lECVXT3S) 150 

(5752-864) 
storage manager (IECVSMGR) 153 
unconditional reserve decision (IECVDURP) 163 

(5752-864) 
unconditional reserve detection (IECVURDT) 164 

(5752-864) 
unconditional reserve service (IECVURSV) 165 

(5752-864) 
relationship to data areas 181 (5752-864) 

MSCC (mass storage system communicator) 
interface with lOS 7 

N 
nonresident halt I/O module (lGCOOO3C) 



MO 65 
PO 124 

nonresident purge module (IGCOOOIF) 
MO 63 
PO 126 

normal exit (see NRM exit) 
NRM (normal) exit 

o 

called by lOS 
MO 58 
PO (IECVPST) 134 

lOS-entered after ERP processing 
MO 59 
PO (IGCOI5) 135 

OLTEP (online test executive program) 
interface with lOS 7 

online test executive program (see OL TEP) 
operator communication routine 121 

P 
page fix (see PGFX) 
page-fix procedure (TCCWMOOO) 99 
path check procedure 138 (5752-864) 
PCI (program-controlled interruption) appendage 

called by lOS 
MO 58 
PO (IECVPST) 134 

early entry 
MO 23 
PO (XCPDIE) 35 
PO (XCPMAP) 37 

entered by EXCP, MO 21 
entered by lOS 

MO 55 
PO (PSTIOSB) 135 

PCI DIE interface procedure (EDIEINT2) 92 
PCI interface procedure (XCPPCI) 35 

in EXCP module flow 31 
PCI interruption handling 

MO 52 
PO (ESTATUSJ) 91 

PGFX (page fix) appendage 
entered by EXCP 

MO 20 
PO (XCPPFA) 33 

PGFX interface procedure (XCPPFA) 33 
in EXCP module flow 30 

PIRL (purged I/O restore list) 
use in restoring I/O requests 25,64 

pointing drivers to their restore addresses 
MO 64 
PO (IGCOI7) 145 

pool initialization .procedure (IECVCPRM) 160 
posting 

access method 
MO 27 
PO (XCPTERM) 36 

post-SIO procedure (EPOSTIOl) 73,89 
post-status module (IECVPST) 

MO 56 
PO 134 

PPL (purge parameter list) 
location in SDUMP buffer 191 

Page of SY26-3823-5 
As Updated October 25,1979 
By TNL SN28-4683 

partial contents 63 
preparing to go to lOS 17 
PRGCOMPO, nonresident purge compress interface 

PO 133 
PRGESTAE, nonresident purge ESTAE recovery procedure 

PO 133 
PRGFREE, storage manager purge-free procedure 

PO 159 
procedures (see Directory) 
program fetch, interface with lOS 7 
program-controlled interruption (see PCl) 
PSTEFF, post status ERP interface procedure 

PO \37 
PSTFRRTN, post status functional recovery procedure 

PO \36 
PSTIOSB, post status lOS 10SB-handling procedure 

MO 56 
PO 135 

PSTUR, post status unconditional reserve procedure 
PO 138 

PSTWAIT, post status restartable wait procedure 
PO 137 

PURAPLSR, nonresident purge applicability-check 
procedure 

PO 132 
purge operation, definition 5 
purge parameter list (see ppL) 
purge procedure (IECVXPUR) 39 
purge requestors, interface with lOS 11 
purged I/O restore list (see PIRL) 
purge-free procedure (PRGFREE) 159 
PURGEFRR, nonresident purge " functional recovery 

procedure 
PO 132 

purging dependent I/O requests 
MO 26 
PO (IECVRCHN) 39 
PO (XCPPUR) 37 
PO (XCPTERM) 36 

purging I/O requests 
in nonresident purge module (IGCOOOIF) 81 
MO 23,63 

R 
RDIOFRR, IECVRDIO functional recovery routine 

PO 139 
RECORDIT, I/O restart message procedure 

PO 120 
recover hung interface routine 123 
recover unusable channel routine 122 
recovery 

from hot I/O event in module IECVHREC 80 
(5752-864) 

from lost or unusable channels 
MO 60 (5752-864) 
PO (LOSTCHAN) 120 

from missing interruption condition 
MO 61 (5752-864) 
PO (MIHPROC) 119 

recovery termination manager (see RTM) 
redrive I/O service module (IECVRDIO) 138 (5752-864) 
redrive I/O service procedure 138 (5752-864) 
region control task, interface with lOS II 
related request 

definition 14 

Index 1-9 



types 15 
related-request purge procedure (XCPPUR) 37 
repeat processing 79 (5752-864) 
request queue element (see RQE) 
request recording 

MO 18 
PO (XCPRQE) 32 

re-reserve device routine 123 
re-reserve module (IECVRRSV) 139 (5752-864) 
reset procedure 113 (5752-864) 
reset processing 79 (5752-864) 
resident halt- I/O module (IECIHIO) 

PO 141 
resident purge module (IECVPURG) 

PO 144 
responding to an I/O event 

in basic lOS module (IECIOSCN) 74 
in DA VV module (IECVDA VV) 75 
in post-status module (IECVPST) 75 
MO 51 

responding to condition code setting 
MO 48 
PO (EPOSTIOI) 89 

restart active I/O routine 123 
restart I/O procedure 139 (5752-864) 
restartable wait procedure (PSTW AIT) 13 7 
restore chain procedure (IECVRCHN) 39 
restore module (IGCOOOI G) 

MO 64 
PO 145 

restore operation, definition 5 
restore procedure 

in EXCP (IECVXRES) 39 
in lOS (IGCOI7) 145 

restoring I/O requests 
MO 23,25,63 
PO (IECVXRES) 39 

restoring I/O resources availability 
59 

after hot I/O condition, MO 61 (5752-864) 
for ACR condition 

MO 60 (5752-864) 
PO (ACRPROC) 117 

in I/O restart module (IECVRSTI) 76 
in I/O-restart module (IECVIRST) 77 
services used (5752-864) 

IECVBRSV 62 (5752-864) 
IECVESIO 62 (5752-864) 
IECVRDlO 62 (5752-864) 
IECVRRSV 62 (5752-864) 

reusing 
access-method interface 

MO 28 
PO (XCPTERM) 36 

STARTIO interface 
MO 59 
PO (IGCOI5) 135 

routing procedure (IECVTCCW) 98 
RQE (request queue element) 

comparing to search argument 
MO 24 
PO (IECVRCHN) 39 
PO (IECVXPUR) 39 
PO (XCPTERM) 36 

general use and contents 18 
location in EXCP debugging area 186 

1-10 OS/VS2 I/O Supervisor Logic 

Page of SY26-3823-5 
As Updated October 25, 1979 
By TNL SN28-4683 

role in purge operation 24 
role in re-EXCP processing 28 

RSVFRR, IECVRRSV functional recovery routine 
PO 140 

RTM (recovery termination manager) 
interface with lOS II 

S 
SCHEDREC 79 (5752-864) 
schedule recovery procedure 113 (5752-864) 
sense hook procedure (IECVCRH3) 108 
sense procedure (ESENSEI) 74,93 
service request block (see SRB) 
set up procedure 

for IECVBRSV 97 (5752-864) 
for IECVHREC 113 (5752-864) 
for IECVIRST 121 
for IECVRRSV 139 (5752-864) 
for IECVRSTI 76,117 

shoulder-tap procedure (HIOIPCI) 82,141 
show reserve procedure 140 (5752-864) 
SHOWRESV, IECVRRSV show reserve procedure 

PO 140 
SIGP entry procedure (IECVESIG) 152 (5752-864) 
simulating an I/O event 

PO (MIHPROC) 119 
PO (UCBACT) 120 

single-address translation procedure (TCCWXOOO) 100 
SIO (start I/O) appendage 

entered by EXCP 
MO 20 
PO (XCPIIO) 34 

SIO hook procedure (IECVCRH2) 108 
SIO interface procedure (XCPIIO) 34 

in EXCP module flow 30 
SIO module (5752-864) 

for DASD device (IECVXDAS) (5752-864) 
PO 146 

for unit record device (IECVXURS) (5752-864) 
PO 150 

for 2305 device (IECVXDRS) PO 147 (5752-864) 
for 2314 device (IECVXSKS) (5752-864) 

PO 148 
for 2400 tape device (IECVXT2S) (5752-864) 

PO ISO 
for 3330V device (IECVXVRS) (5752-864) 

PO 149 
for 3400 tape device (IECVXT3S) (5752-864) 

PO 150 
SIO procedure (ESIOI) 73,88 
SIO procedure (SIORTN) 152 (5752-864) 
SIOF (start I/O fast release) interruption handling 

MO 51 
PO (IECINT) 91 

SIORTN, IECVESIO SIO procedure 
PO 152 

SIRB (supervisor interruption request block) clean-up 
procedure (IECVPRCU) 144 

SIRB-purge procedure (SIRBPURG) 81,129 
SMGFREVR, IECVSMGR block verification procedure 

PO 161 
special SIO module (IECVESIO) (5752-864) 

PO lSI 
SPL-purge (service priority list-purge) procedure 

(SPLPURG) PO 81,131 



SRB (service request block) 
connections with other areas 180 
general use 9 
location in SDUMP buffer record 188 

SRB/IOSB information 
consolidating 

MO 19 
PO (XCP050) 33 

SRB/IOSBs compared to search argument 
MO 63 
PO (IGCOI6 and others) 126 

SRB-scheduling procedure (ESCHDIO!) 90 
start I/O (see SIO) 
start I/O fast release (see SIOF) 
starting an I/O operation 

in basic lOS module (IECIOSCN) 73 
MO 43 

starting I/O activity 
MO 47 
PO (ESIOI) 88 

ST ARTIO interface 
reusing 

MO 59 
PO (IGCOI5) 135 

STARTIO procedure (XCPI45) 35 
in EXCP module flow 30 

status information 
examining 

MO 49 
PO (EPOSTIOI) 89 

transfer to appendages 
MO 22 
PO (XCPABE) 35 
PO (XCPCHE) 35 
PO (XCPMAP) 37 
PO (XCPPCI) 35 

stopping on-going I/O communications 
PO (ACRPROC) 117 
PO (CCHPROC) 118 
PO (MIHPROC) 119 

storage manager module (IECVSMGR) 
PO 153 

supervisor interruption request block (see SIRB) 
SVC 15 procedure (IGCOI5) 75,135 
SVC 33 40 
SVC 63 1 interface with lOS II 
SYSI.DUMP data set in debugging 187 
SYSI.LOGREC data set in debugging 187 

T 
task control block (see TCB) 
task-close routine, interface with lOS 11 
TCAM (telecommunications access method) 

interface with EXCP 7 
interface with lOS 12 

TCB (task control block) 
role in dispatching ERPs 204 
role in posting ECB 27 
role in scheduling processing 9 

TCCW (translation control block) 
EXCP use 21 
lOS use 98 

TCCWIlOO, IECVTCCW CCW translation procedure 
PO 98 

TCCWMOOO, IECVTCCW page-fix procedure 

Page of SY26-3823-5 
As Updated October 25,1979 
By TNL SN28-4683 

PO 99 
TCCWMlOO, IECVTCCW main TIC procedure 

PO 99 
TCCWM200, IECVTCCW TIC resolution procedure 

PO 100 
TCCWM300, IECVTCCW TIC insertion procedure 

PO 100 
TCCWM400, IECVTCCW IDAL procedure 

PO 100 
TCCWROOO, IECVTCCW address retranslation procedure 

PO 101 
TCCWUOOO, IECVTCCW unfix-and-free procedure 

PO 101 
TCCWXOOO, IECVTCCW single-address translation 

procedure 
PO 100 

telecommunications access method (see TCAM) 
teleprocessing operation 

halting 
MO 28,65 
PO (IGCOOO3C) 124 
PO (SVC33) 40 

telling access method what happened 
MO 27 
PO (XCPTERM) 36 

termination procedure (XCPTERM) 36 
in EXCP module flow 31 

test channel hook procedure (IECVCRHI) 107 
test-channel procedure (ETCH!) 73,87 
testing I/O operation startability 

MO 43 
PO (IECHNSCH) 87 

TIC (transfer-in control) insertion procedure (TCCWM300) 
100 

TIC procedure, main (TCCWMlOO) 99 
TIC resolution procedure (TCCWM200) 100 
transfer-in control (see TIC) 
transferring status information to appendages 

MO 22 
PO (XCPABE) 35 
PO (XCPCHE) 35 
PO (XCPMAP) 37 
PO (XCPPCI) 35 

translating channel program 
MO 21 
PO (XCPI15) 34 

translation control block (see TCCW) 
translator interface procedure (XCPI15) 34 

in EXCP module flow 30 
trying to start on another path 

MO 50 
PO (ETCH!) 87 

U 
UCB (unit control block) 

connections with other areas 178 
locations in SDUMP buffer records 188,189,193 
locations in SDWAs 188,193 
role in starting I/O operations 43 

UCBACT, I/O restart device procedure 
PO 120 

UCB-purge procedure (UCBPURG) 81,130 
unconditional reserve 

decision module (IECVDURP) (5752-864) 
PO 163 

Index 1-11 



detection module (IECVURDT) (5752-864) 
PO 164 

service module (IECVURSV) (5752-864) 
PO 165 

unconditional reserve procedure (5752-864) 
for IECVPST 138 
for IECVURSV 165 

unconditional reserve recovery, MO 57 (5752-864) 
unconditional reserve scheduling procedure (EDETECTl) 

96 (5752-864) 
unfix-and-free procedure (TCCWUOOO) 101 
unit control block (see UCB) 
unit record SIO procedure 150 (5752-864) 
unit-check interruption handling 

MO 54 
PO (ESENSE1) 93 
PO (ESTATUS1) 91 

unsolicited device-end procedure (EDEVEND 1) 90 
unusable channel recovery, MO 60 (5752-864) 
using free channels 

MO 55 
PO (ERSTARTl) 93 

V 
validating the access-method interface 

MO 17 
PO (XCPOOO) 32 

validity-check procedure (XCPOOO) 32 
in EXCP module flow 30 

vector processing subsystem (see VPSS) 
verifying correct direct-access volume mounting 

MO 57 
PO (IECVDA VV) 109 

VIO (virtual I/O) data set 
determining allocation 

MO 18 
PO (XCPV AM) 33 

VIO interface procedure (XCPVAM) 33 
in EXCP module flow 30 

virtual I/O (see VIO) 
virtual telecommunications access method (see VT AM) 
volume verification procedure (IECVDAVV) 75,109 
VPSS (vector processing subsystem) 

interface with lOS 7 
VT AM (virtual telecommunications access method) 

interface with lOS 7 

W 
wait for channels to recover routine 122 
wait-state codes 199 

X 
XDBA (EXCP debugging area) contents 185 

1-12 OS!VS2 I/O Supervisor Logic 

Page of SY26-3823-5 
As Updated October 25, 1979 
By TNL SN28-4683 

XCPABE, EXCP ABE interface procedure 
MO 22 
PO 35 

XCPCHE, EXCP CHE interface procedure 
MO 22 
PO 35 

XCPDIE, EXCP DIE procedure 
MO 23 
PO 35 

XCPEXIT, EXCP exit procedure 
PO 37 

XCPMAP, EXCP IOSB-to-IOB mapping procedure 
MO 22 
PO 37 

XCPPCI, EXCP PCI interface procedure 
MO 22 
PO 35 

XCPPFA, EXCP PGFX interface procedure 
PO 33 

XCPPUR, EXCP related-request purge procedure 
MO 26 
PO 37 

XCPRQE, EXCP get-RQE procedure 
MO 18 
PO 32 

XCPTERM, EXCP termination procedure 
MO 24 
PO 36 

XCPVAM, EXCP VIO interface procedure 
MO 18 
PO 33 

XCP050, EXCP get-SRB procedure 
MO 19 
PO 33 

XCPIIO, EXCP SIO interface procedure 
MO 20 
PO 34 

XCPI15, EXCP translator interface procedure 
MO 21 
PO 34 

XCPI45, EXCP STARTIO procedure 
MO 21 
PO 35 

2 
2305 SIO procedure 
2314 SIO procedure 
2400 SIO procedure 

3 
3330V SIO procedure 
3400 SIO procedure 

147 (5752-864) 
148 (5752-864) 
150 (5752-864) 

149 (5752-864) 
150 (5752-864) 



L 

• 

l!l o 
Z 

OS/VS2 I/O Supervisor Logic 
SY26-3823-5 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, 
and operators of IBM systems. This form may be used to communicate your views about this 
publication. They will be sent to the author's department for whatever review and action, if any, 
is deemed appropriate. 

IBM may use or distribute any of the information you supply in any way it believes appropriate 
without incurring any obligation whatever. You may, of course, continue to use the information 
you supply. 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, 
to your IBM representative or to the IBM branch office serving your locality. 

Possible topics for comments are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If comments apply to a Selectable Unit, please provide the name of the Selectable Unit ___ _ 

If you wish a reply, give your name and mailing address: 

Please circle the description that most closely describes your occupation. 

(Q) (U) (X) (Y) 

Customer Install System System System 
Mgr. Consult. Analyst Prog. 

(Z) (F) 

Applica. System 
Prog. Oper. 

(I) 

I/O 
Oper. 

(L) 

Term. 
o per. 

n 
L:J 

(S) (P) (A) (8) (C) (D) (R) (G) (J) (E) (N) (T) 

IBM System Prog. System System Applica. Dev. Compo System I/O Ed. Cust. Tech. 
Eng. Sys. Analyst Prog. Prog. Prog. Prog. Oper. Oper. Dev. Eng. Staff 

Rep. Rep. Rep. 

Number of latest Newsletter associated with this publication: _____________ _ 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, 
an IBM office or representative will be happy to forward your comments.) 



-~- ------------ - - -~---------- _ .. -
International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, N.Y. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.s.A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601 

• 

.. 

• 



• 

OS/VS2 I/O Supervisor Logic 
SY26-3823-5 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, 
and operators of IBM systems. This form may be used to communicate your views about this 
publication. They will be sent to the author's department for whatever review and action, if any, 
is deemed appropriate. 

IBM may use or distribute any of the information you supply in any way it believes appropriate 
without incurring any obligation whatever. You may, of course, continue to use the information 
you supply. 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of pUblications, or for assistance in using your IBM system, 
to your IBM representative or to the IBM branch office serving your locality. 

Possible topics for comments are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If comments apply to a Selectable Unit, please provide the name of the Selectable Unit ___ _ 

If you wish a reply, give your name and mailing address: 

Please circle the description that most closely describes your occupation. 

(Q) (U) (X) (Y) 

Customer Install System System System 
Mgr. Consult. Analyst Prog. 

(Z) (F) 

Applica. System 
Prog. Oper. 

(I) 

I/O 
Oper. 

(L) 

Term. 
Oper. 

n 
L:J 

(S) (P) (A) (B) (C) (D) (R) (G) (J) (E) (N) (T) 

IBM System Prog. System System Applica. Dev. Compo System I/O Ed. Cust. Tech. 
Eng. Sys. Analyst Prog. Prog. Prog. Prog. Oper. Oper. Dev. Eng. Staff 

Rep. Rep. Rep. 

Number of latest Newsletter associated with this publication: _____________ _ 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, 
an IBM office or representative will be happy to forward your comments.) 



SY26·3823·5 

Reader's Comment Form 

Fold and tape Please Do Not Staple 

I II II I 

Business Reply Mail 
No postage stamp necessary if mailed in the U.S.A. 

FOld and tape 

------- ---.--- -----.. ----- - - -------~--~-.-

International Business Machines Corporation 
Data Processing Division 

Postage will be paid by: 

International Business Machines Corporation 
Department 058, Building 706·2 
PO Box 390 
Poughkeepsie, New York 12602 

Please Do Not Staple 

1133 Westchester Avenue, White Plains, N.Y. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.s.A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains, N.Y., U.s.A. 10601 

Fold and tape 

First Class 
Permit 40 
Armonk 
New York 

Fold and tape 

o 
S. 
g 
." o 
c: 
» 
'0 
::I 

"" C 
::I 
CD 

1 

--I 
I 
I 
I 
I 
I 
1 

I 
I 
I 
1 
I 
I 

... 

0 
(/) 
........ 
< 
(/) 
f\) 

........ 
0 

. ..) (/) 
c: 
i ... 
< v;. 
0 ... 
r-
0 

<0 c:;. 

en w 
-..J 

9 w 
.9 
""C 
:::!. 
::J .... 
C1) 

Co 

::J 

C 
en 
~ 
(/) 

-< 
f\) 
m 
W 
00 
f\) 
w 
c.'n 



--- ------ - ---- ---- - ---- - - ----------_.- Technical Newsletter 
This Newsletter No. SN28-4683 

Date October 25, 1979 
Supplement No. 

OS/VS2 I/O Supervisor Logic 

© Copyright IBM Corp. 1979 

Base Publication No. SY26-3823-5 

File No. S370-30 

Prerequisite Newslettersl None 
Supplements 

This newsletter contains replacement pages for OS/VS2 I/O Supervisor Logic. 

Before inserting any of the attached pages into OS/VS2 I/O Supervisor Logic, read 
carefully the instructions on this cover. They indicate when and how you should 
insert the pages. 

Pages to Attached Pages 
be Removed to be Inserted* 

Cover - Edition Notice Cover - Edition Notice 
xi - xiv xi - xiv 
19 - 24 19 - 24 
29 - 32 29 - 32 
37 - 38 37 - 38 
41 - 42 41 - 42 
67 - 68 67 - 68 
101 - 102 101 - 102 
105 - 106 105 - 106 
185-200 185-200 
[-1 - 1-9 1-1-1-12 

*If you are inserting pages from different Newsletters/Supplements and identical 
page numbers are involved, always use the page with the latest date (shown in the 
slug at the top of the page). The page with the latest date contains the most complete 
information. 

A change to the text or to an illustration is indicated by a vertical line to the left of 
the change. 

IBM Corporation, Publications Development, Department D58, Building 706-2, 
PO Box 390, Poughkeepsie, New York 12602 

Printed in U.S.A. 



Summary of Amendments 

• Changes have been made throughout this publication in support of the 3033 
attached processor. 

• Diagnostic aids information has been deleted from this publication. It can now be 
found in the following books: OS/VS2 System Programming Library: MVS 
Diagnostic Techniques, OS/VS Message Library: VS2 System Messages, and OS/VS 
Message Library: VS2 System Codes. 

• A considerably expanded index has been included. 
• Minor technical and editorial corrections and additions have been made. 

Note: Please file this cover letter at the back of the base publication to provide a record 
of changes. 


