
Systems

SY26-3859-0

File No. S370·30

OS/VS2 VIO Logic

VS2.03.807

The minor revision incorporates the OS!VS2 MVS Supervisor Performance #2 Selectable
Unit VS2.03.808.

First Edition (August 1976)

This is a reprint of SY26-3834-l incorporating changes released in the following Technical
Newsletters and Selectable Unit Newsletters:

SN26-0798 (dated July 28, 1975)
SN26-0838 (dated May 28, 1976)

This edition applies to Release 3.7 of OS!VS2 and to any subsequent releases of that ,system unless
otherwise indicated in new editions or technical newsletters.

Significant system changes are summarized under "Summary of Amendments" following the list
of illustrations.

Information in this publication is subject to significant change. Any such changes will be published
in new editions or technical newsletters. Before using the publication, consult the latest
IBM System/370 Bibliography. GC20-000l, and the technical newsletters that amend the bibliography,
to learn which editions and technical newsletters are applicable and current.

Requests for copies of IBM publications should be made to the IBM branch office that serves you.

Forms for readers' comments are provided at the back of the publication. If the forms have been
removed, comments may be addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California 95150. All comments and suggestions become the property of
IBM.

© Copyright International Business Machines Corporation 1976

PREFACE

L The information contained in this book is intended to enable programming
systems representatives and system programmers to acquire a general
understanding of VIO (virtual input/output) processing and to diagnose
logic-level problems by identifying segments of code that are executed under
given sets of circumstances. It is assumed that the audience is thoroughly
familiar with channel programming, paging I/O, and in general with the
OS/VS2 virtual storage environment.

This book is designed to be used in conjunction with assembled or compiled
VIO processor source code. Detailed logic, as represented by the code, is only
generally reflected in this book.

The manual is divided into six sections.

• The "Introduction" section describes, in general terms, VIO functions, the
SUbcomponents that comprise VIO, and the VIO operating environment.

• The "Method of Operation" section describes the operations (or process
steps) that combine to perform a VIO function.

Diagrams are used to relate input and output of each function to the
process steps. Notes to each diagram describe the processes in more detail
and provide a cross-reference to the segments of code associated with the
processes.

The diagrams are tutorial; they give you an overall view of VIO processing;
they are diagnostic aids only to the extent that they enable you to refresh
your understanding of the broader implications of a segment of VIO logic.

• The "Program Organization" section shows the interrelationships of
modules that combine to perform a VIO function.

The sequential flow charts in this section enable you to determine, at any
point in the processing of a function, which modules have been entered and
which modules will be entered.

A table is also provided to show all the callers of each VIO module and all
the modules called by each VIO module.

• The "Directory" section relates VIO modules, VIO external procedures,
non-VIO modules invoked by VIO, and non-VIO modules that invoke
VIO routines to diagrams within the book that refer to them. This section
also includes the "Macro Where-Issued Report" that lists the action and
mapping macros that are issued by individual VIO modules.

• The "Data Areas" section describes the fields and depicts the format of
each VIO data area. Each VIO data area has a table that shows you the
modules that modify fields in the individual blocks.

An overview chart shows you how non-VIO data areas relate to the VIO
data area structure.

• The "Diagnostic Aids" section describes the ABEND completion codes
issued by VIO modules, the information written by the VIO recovery
routines to the SYSl.DUMP data set, and information moved to the STAE
diagnostic work area (SDW A) for the recovery/termination manager
(R/TM) to write to the SYS 1.LOGREC data set. This and other
information in this section may assist you in isolating a module whose
processing detects an error condition.

Preface 3

VS2.03.807

Prerequisite Reading

Related Reading

4 OS/VS2 VIO Logic

For information about OS/VS2:

• OS/VS2 Planning Guide for Release 2, GC28-0667.

For information about job management, task management, real storage
management (RSM), virtual storage management (VSM), and recovery /
termination management (R/TM) and about their support of VIO processing:

• OS/VS2 System Logic Library, SY28-0713 (Volume 1), SY28-0714
(Volume 2), SY28-0715 (Volume 3), SY28-0716 (Volume 4), SY28-0717
(Volume 5), SY28-0718 (Volume 6), and SY28-0719 (Volume 7).

For information about I/O appendages:

• OS/VS2 System Programming Library: Data Management,
GC26-3830.

For information about the EXCP processor's interface with VIO:

• OS/VS2 I/O Supervisor Logic, SY26-3823.

For information about data management routines that interface with VIO:

• OS/VS2 DADSM Logic, SY26-3828.
• OS/VS2 Open/Close/EOV Logic, SY26-3827.
• OS/VS2 Checkpoint/Restart Logic, SY26-3820.

For information about access methods supported by VIO:

• OS/VS2 BDAM Logic, SY26-3831.
• OS/VS2 SAM Logic, SY26-3832.

For VIO performance estimates and information on how to optimize VIO
processing:

• OS/VS2 System Programming Library: Initialization and Tuning
Guide, GC28-0681.

For information about SMF:

• OS/VS2 System Programming Library: System Management Facilities
(SMF), GC28-0706.

For data area layouts of intercomponent control blocks:

• OS/VS2 Data Areas, SYB8-0606.

For information about the SYS I.DUMP data set:

• OS/VS2 System Programming Library: Service Aids, GC28-0674.

For information about the SYS I.LOGREC data set:

• OS/VS2 System Programming Library: SYS1.LOGREC Error
Recording, GC28-0677.

For extended descriptions of VIO error completion codes and programmer
responses:

• OS/VS Message Library: VS2 System Codes, GC38-1008.

For information about messages issued by VIO:
• OS/VS Message Library: VS2 System Messages, GC38-1002.

J

l
For information about channel commands and about sense-byte information
posted as a result of normal or abnormal termination of a channel program,
see the appropriate device manual for the device that is simulated by VIO in
external page storage.

Preface S

VS2.03.807

CONTENTS

Preface .. 3
Prerequisite Reading ... 4
Related Reading .. 4

mustrations .. 9
Figures .. 9
Diagrams ... 9

Summary of Amendments ... 10.1
OS/VS2 MVS Supervisor Performance #2 (VS2.03.807) 10.1
Release 3 .. 10.1

Introduction ... 11
The VIO Processor's Purpose ... 11
Prerequisites to VIO ... 12
Characteristics of VIO Data Sets .. 12

VIO Data Set Organization .. 12
Device Simulation in External Page Storage .. 13

I/O Operations in the VIO Environment ... 13
The VIO Data Buffer ... 13
Defining Types of I/O in the VIO Environment 14

Fundamentals of VIO Processing ... 15
Reclaiming Page Frames ... , 15
Accessing Virtual Pages in a VIO Data Set .. 16

Describing I/O Processing in Terms of VIO Subcomponents 17
VIO Interfaces with Other Components .. 18

VBP's Relationship to RSM ... 19
VBP's Relationship to ASM ... 20

VIO Operating Considerations ... 21
Optimizing VIO Performance ... 21

Virtual Storage Space Utilization ... 21
I/O Operations .. 21.2

Method of Operation ... 23
Hints on How to Read Method of Operation Diagrams 23

Program Organization .. 53
How to Read Compendiums ... 53
Module-Calls Directory (Forward and Backward Reference) 54
Program Organization Compendiums ... 57

Directory ... 69
Macro Where-Issued Report ... 70

Data Areas .. 73
VIO Control Block Relationships ... 73
Where-Modified Report for Non-VIO Data Areas 75
Where-Modified Report for VIO Data Areas ... 76
ACA-ASM (Auxilary Storage Management)
Control Area (VS2.03.807) ... 78.1
DSPCT -Data Set Page Correspondence Table .. 79
DSPCT Header (VS2.03.807) ... 79
DSPCT Extension (VS2.03.807) .. 82
DSPCTMAP-DSPCT Page-Map Entry ... 82
LGCB-Logical Group Control Block .. 83
JNLPARM-Journal Write Parameter List .. 83.1

Contents 7

VS2.03.807

VBPPL-VBP Parameter List .. 84
VCB--VIO Control Block ... 86
VDSCB--Virtual Data Set Control Block ... 87
VTRACK-VIO Buffer ... 88
WICB--EXCP Intercept Control Block .. 89

Diagnostic Aids .. 93
Error Completion Codes Issued by VIO .. 93
Processing Performed by VIO's Recovery Routines 95

General Notes on Recovery Processing ... 95
Establishing Addressability to Recovery Procedures 95
Methods of Recording Diagnostic Information 96

Analyzing Diagnostic Information Recorded by Recovery Routines 96
Analyzing SYS 1. DUMP Data Sets .. 96
Analyzing SYSl.LOGREC Data Set ... 96

Diagnostic Output for VIO Module IDA VBPC1 98
Diagnostic Output for VIO Module IDA VBPll 99
Diagnostic Output for VIO Module IDA VBP01 100
Diagnostic Output and Recovery Processing for VIO Module

IDA VBPPI .. 101
Diagnostic Output and Recovery Processing for VIO Module

IDAVBPSI .. 101
Diagnostic Output for VIO Module IDA VBPS2 102

FRR Processing for Module IDA VBPS2 ... 102
EST AE Routine Processing for Module IDA VBPS2 103

Diagnostic Output for VIO Modules IDDWIAPP, IDDWICPI, and
IDDWITRM .. 104

Diagnostic Output for VIO Module IDDWICLS 105
Diagnostic Output and Recovery Processing for VIO Module

IDDWIJRN .. 105
Locating Code Segments that Detect Channel Program Errors 107
Debugging VIO Errors .. 110
Messages Issued by VIO ... 111

Index ... 113

8 OS/VS2 VIO Logic

VS2.03.807

ILLUSTRATIONS

Figures
Figure 1. Moving Data in and out of the VIO Buffer 13.1
Figure 2. Handling I/O Requests in a VIO Environment 17
Figure 3. Overview of Component Relationships 18
Figure 3.1 VIO Virtual Buffer (VS2.03.807) .. 21.1
Figure 4. Graphic Symbols Used in Method of Operation Diagrams 24
Figure 5. Table of Contents for Program-Organization Figures 57
Figure 6. VIO Open Processing ... 58
Figure 7. Accessing a VIO Data Set and Simulating I/O 60
Figure 8. Saving a VIO Data Set for a Restart .. 62
Figure 9. VIO Close Processing .. 64
Figure 10. VIO Scratch Processing .. 66
Figure 11. VIO Abnormal Termination Processing 67
Figure 12. VIO Restart Processing .. 68
Figure 13. VIO Control Block Structure and

Related System Control Blocks .. 74
Figure 14. Routines that Detect CCW Errors

(Except for Unit Check) .. 107
Figure 15. Routines that Detect CCW Errors (for Unit Check) 109

Diagrams
Diagram 1. Method of Operation Contents (Tree-Structured) 25
Diagram 2. VIO's Response to a User's I/O Request 26
Diagram 3. Perform VIO Open Processing ... 28
Diagram 4. Analyze the Request and Communicate with

Appendage Routines .. 32
Diagram 5. Initiate Paging I/O ... 36
Diagram 6. Simulate Execution of a Channel Program 38
Diagram 7. Simulate a Read or Write ... 40
Diagram 8. Simulate a Search ... 42
Diagram 9. Simulate a Seek or Sense .. 44
Diagram 10. Save a VIO Data Set for a Restart ... 46
Diagram 11. Perform VIO Close Processing .. 50

Illustrations 9

VS2.03.807

SUMMARY OF AMENDMENTS

OS/VS2 MVS Supervisor Performance #2 (VS2.03.807)

Technical Changes

Release 3

• Module IDA VBPJ1 has been deleted.

• The DSPCT Extension has been added which contains the VCBs (VIO
Control Blocks).

• The LGCB (Logical Group Control Block) has been deleted.

• The ACA (ASM [Auxiliary Storage Management] Control Area) has been
added.

• The figure VIO Virtual Buffer has been added.

• The JNLPARM (Journal Write Parameter List) has been added.

Two new fields have been added to the DSPCT data area-VBPHDEL and
VBPHJRNP.

Summary of Amendments \0.1

VS2.03.807

INTRODUCTION

The VIO Processor's Purpose
The VIO (virtual input/output) processor enables system-named temporary
data sets to reside in external page storage (also referred to as system paging
space) and to be processed using paging I/O. Conventionally, in a non-VIO
environment, temporary data sets are processed using user-controlled I/O
blocking factors and user-defined auxiliary storage volumes. To support
paging I/O, VIO's blocking scheme is necessarily based on 4K-byte pages.
This is transparent to the user and does not affect the user's blocking scheme.

I/O requests issued against a VIO temporary data set by conventional access
methods (BSAM, QSAM, BDAM, BPAM) or by XDAP or EXCP macro
instructions are intercepted before they are executed. VIO interprets and
simulates the channel programs associated with the requests; the channel
programs are not translated and scheduled in a conventional fashion by the
EXCP processor. (See OS/VS2 I/O Supervisor Logic for details about the
EXCP processor, module IECVEXCP.)

VIO offers the following enhancements to conventional processing of
system-named temporary data sets:

• VIO data sets are processed using paging I/O, thus eliminating channel
program translation and page-fixing by the I/O supervisor for each EXCP
request.

• DASD space management is more efficient because ASM (auxiliary storage
management) dynamically allocates page-size physical blocks
(auxiliary-storage page slots) to a VIO data set as the blocks are needed.

• DADSM allocation and scratch I/O overhead is reduced because a VTOC
is not updated and because the format-l DSCB is maintained in virtual
storage in the VIO data set control block (VDSCB).

• Many I/O operations can be satisfied by moving data between the VIO
buffer and a user's buffer via move-character-long (MVCL) instructions;
this reduces the channel and device activity associated with normal
channel-program request processing when the user's buffer size is less than
the tracksize of the device being simulated.

• Because of the reclaim function (see "Reclaiming Page Frames" in this
section), paging I/O to access frequently referenced pages may be
substantially reduced. Because of the system's ability to reclaim pages, a
VIO data set being processed on a lightly-loaded system becomes
essentially an "in-core" data set.

Because of paging overhead, VIO processing may be less efficient than
conventional processing if large block sizes are used. Also, if the block sizes
used for the device being simulated are not optimized, the result may be a
waste of space on the auxiliary storage or may cause additional paging activity
(see "The VIO Data Buffer" in this section).

Introrluction 11

Prerequisites to VI 0
There are certain system generation and JCL prerequisites to VIO processing
that must be satisfied by the user as stated in OS/VS2 JCL, GC28-0692,
and OS/VS2 System Programming Library: System Generation Reference,
GC26-3792. Briefly, they are as follows:

• At system generation, a unitname must be defined via the UNITNAME
macro as eligible for VIO processing. The first eligible device in the group
of devices defined by the UNITNAME macro is simulated by VIO in
external page storage.

• The unitname defined during system generation must be coded in a user's
JCL statement that defines a system-named temporary data set.

• The user must be processing with either the BSAM, QSAM, BDAM, or
BPAM access method or with either XDAP or EXCP macro instructions.
Indexed access methods are not supported.

• A volume serial number for the VIO data set must not be specified on a
user's DD statement.

Note: If a volume serial number is specified, an attempt is made to mount a
real device. If the device is successfully mounted, normal (non-VIO)
processing occurs.

Note that the term "user" as used in this manual includes VIO-supported
access methods, user problem programs, and system programs, such as the
linkage editor or program fetch. A "user" is anyone who uses virtual I/O and
meets the previously listed requirements.

Characteristics of VI 0 Data Sets

VIO Data Set Organization

12 OS/VS2 VIO Logic

Because VIO data sets reside in external page storage, their physical
organization is unlike that of conventional temporary data sets.

VIO data sets are page-formatted data sets whose pages are scattered across
the volumes that comprise external page storage. ASM (auxiliary storage
management) dynamically allocates page-sized physical blocks to the VIO
data set as page-size blocks of user data are written to auxiliary storage. To
increase the efficiency of I/O operations, ASM tries to balance and redU(~e
channel activity among the devices assigned to external page storage by
grouping the I/O requests of the current users of the system. Even though all
the pages of each VIO buffer are grouped together, the pages in a VIO data
set, as a whole, are generally noncontiguous.

VIO data set pages are released by ASM when the VIO data set is deleted,
and the paging resources are thereby immediately available for other paging
needs.

VS2.03.807

Device Simulation in Extemal Page Storage

The characteristics of the first device in the list of devices associated with a
VIO unit name (see "Prerequisites to VIO") are used by VIO both in CCW
processing and in initializing control information in VIO data set tracks.
(Logically, a VIO track in auxiliary storage is a contiguous entity; however, as
described under "VIO Data Set Organization," the pages of a VIO track in
auxiliary storage are not necessarily physically contiguous; the pages in the
track are dynamically assigned to auxiliary-storage page slots.) The
characteristics of the first device defined by the VIO unit name are used, and
bear no relationship with the auxiliary storage devices assigned to external
page storage.

I/O Operations in the YIO Environment

The VIO Data Buffer

VIO interprets channel programs, initiates paging I/O to bring page-size
blocks into a VIO buffer to access desired data (as necessary), and simulates
execution of the channel program by moving and comparing data between the
user's buffer(s) and the VIO buffer.

VIO employs a data buffer, called a VIO buffer, whose size is based on the
track size of the simulated device rounded-up to a page boundary. For
example, if a 2314 (tracksize=7294 bytes) is being simulated, the size of the
VIO buffer is 8192 bytes, or 2 pages. I/O is simulated by moving data
between the VIO buffer and the user's buffer, as shown in Figure 1, and
actual I/O is performed by moving pages of data between the VIO buffer and
external page storage. Note that the size and position of user buffers are not
changed by VIO; VIO merely moves data into and out of the user buffers as
directed by channel programs.

The track format is shown in the "Data Areas" section under
"VTRACK-VIO Buffer." The amount of data that can be written on a
track of a real device and on the simulated device is the same. The interrecord
gaps are eliminated and the count. key, and data fields are packed to the left
after the control information. Hence, if the last few pages of the track do not
contain any data, then they are not paged in and out. If only a fraction of the
last few pages have data, then this will necessitate paging I/O for the pages
and will cause wasted space on auxiliary storage. See "Optimizing VIO
Performance" in this section.

Introduction 13

VS2.03.807

External Page Storage

CIo
~iliary Storage

Page Slots

Figure 1. Moving Data in and out of the VIO Buffer

Introduction 13.1

Defining Types of I/O in the VIO Environment

14 OS/VS2 VIO Logic

In response to a channel program associated with either an EXCP or XDAP ,\
request, VIO may request virtual or actual I/O, or may simulate I/O activity. ...,.,
The following descriptions will assist you in understanding the types of I/O
that occur in the VIO environment.

• Virtual I/O is performed by RSM (real storage management) in response
to requests by VIO's VBP (virtual block processor) subcomponent. It
involves the manipulation of entries in page tables that logically connect
page slots in auxiliary storage to virtual page frames.

• Actual I/O, that is, the physical transfer of data to and from auxiliary
storage, involves the building and actual execution of channel programs
with associated channel and device activity. Actual I/O is related to VIO
processing in the following ways:

Actual output (page-out) operations are initiated by a call to RSM by
VBP. VBP issues the request when the VIO buffer contains new or
modified data and the contents of the buffer cannot satisfy a CCW
operation being simulated by EIP (EXCP intercept processor), a VIO
subcomponent. Note that EIP requests VBP to write out only those pages
in the VIO buffer up to and including the page that contains the last byte
of data. This prevents empty (unused) pages at the end of the buffer from
being written to auxiliary storage during a write operation. When RSM
returns control to VBP, the virtual output operation is complete.

Actual input (page-in) operations occur when an attempt is made to
access data in a virtual page that was involved in a prior virtual input
operation. (For a description of "virtual input" operations, see the..,)
description of the assign function under "VBP's Relationship to RSM.")
The reference to the virtual page causes a page-fault interruption, and the
referenced page is paged into the VIO buffer. Note that when a request is
made by ElP to VBP to read a previously written virtual track, VBP
requests RSM to read only those pages in the virtual track that were
previously written.

• Simulated I/O is performed by EIP. It involves the moving of data
between the VIO buffer and the user's buffer via a move-character-Iong
(MVCL) instruction to satisfy the operation specified by a channel
program.

The situations in which these types of 1/ 0 operations occur are further
described in the "Method of Operation" section of this manual; however,
realizing the general distinctions between the types of 1/ 0 is important to an
understanding of VIO processing.

Fundamentals of VIO Processing

Reclaiming Page Frames

VIO relies heavily on the services of RSM (real storage management). RSM
initiates the I/O operations that are requested by VIO, and it maintains the
page tables for virtual, auxiliary, and real storage that make data accessible in
a virtual storage environment. RSM maintains the contents of the VIO buffer
based on requests issued by VIO. Disregarding RSM's support processing,
VIO processing can be generally described as follows:

Create Processing: When a VIO data set is being created, VIO interprets
channel programs and simulates I/O activity by moving records from the
user's buffer into the VIO buffer. When the VIO buffer is full, its contents
are paged-out to auxiliary storage in 4K-byte blocks, or pages. This process
repeats itself until create processing is completed.

Update/Retrieval Processing: When an existing record in a VIO data set is
being retrieved, VIO determines whether the desired record resides in its
buffer, and

• If the record is in the buffer, VIO interprets the channel program and
simulates any associated I/O activity by moving records between its buffer
and the user's buffer. In a non-VIO environment, channel and device
activity would be involved in this operation; whereas, with VIO, the
operation is performed in real storage via move-character-Iong (MYCL)
instructions .

• If the record is not in the VIO buffer, VBP releases the current page
frames associated with its buffer (for simple retrieval processing) and
causes the pages to be written to auxiliary storage (for update processing).
It then positions the VIO buffer to the virtual track in auxiliary storage that
contains the desired record. Subsequently, when EIP attempts to access the
VIO buffer, a page-fault interruption occurs and the appropriate page in
the auxiliary-storage page slots is paged into the real storage page frame
that comprises the accessed page of the VIO buffer.

An important consideration related to update/retrieval processing is VIO's
ability to reclaim page frames.

VIO maintains the RSNs (real storage numbers) of page frames that have
been paged out of the VIO buffer in DSPCT (data set page correspondence
table) page-map entries. When a request is made to read a previously written
page, the page's identifier and its RSN are passed to RSM. If the PFrE (page
frame table entry) corresponding to the RSN indicates that the page frame
has not been reused (that is, that it still contains the desired data), RSM
reconnects the page to the VIO buffer by modifying the PFTE. In this way, a
page fault and resultant I/O is avoided.

Introduction 15

Accessing Virlulli Pages in a VIO Data Set

16 OS/VS2 VIO Logic

The access method or user's problem program that issues either an EXCP or
XDAP request supplies a DASD seek address for the track on which I/O
processing is to start. VIO extracts an RBA (relative byte address) from the
seek address and then converts the RBA into an RPN (relative page number)
using the following equation:

RPN = RBA/4096 + number of pages of DSPCT page-map entries

An RPN is established for each page in the VIO buffer, the values are set in
VCBs (VIO control blocks), and the VCBs for a particular I/O operation are
then chained together. (Note that the first track of an extent reduces to an
RBA of zero and that VIO data sets with standard labels have one extent
whose size is calculated from the primary and secondary allocations specified
in the user's JCL. When user labels are specified, a VIO data set has two
extents: the first extent contains user labels and the second extent contains
the data set.)

VIO invokes RSM and passes a pointer to a chain of VCBs that contain
parameters used in perfomling the paging I/O.

Note: There is one VCB for each page in the VIO buffer that is to be paged
in or out, and RSM processes each VCB independently in the sequence in
which they are chained.

RSM uses the virtual storage address in the VCB (VCBVSA field) to access
the PGTEs and XPTEs for the pages involved in the I/O operation. It uses
the RSN in the VCB to access the PFTE. Using these tables, proper linkage
between real-storage page frames and auxiliary-storage page slots can be
obtained for a VIO read or write operation.

J

Describing I/O Processing in Terms of
VIO Subcomponents

VIO is divided into two subcomponents: EIP (EXCP intercept processor) and
VBP (virtual block processor). The I/O-related processing performed by the
subcomponents is depicted in Figure 2. The figure and the following text do
not describe processing that occurs when the user's first I/O request is issued
to a new or passed VIO data set. When this condition exists, VIO open
processing occurs (see Diagram 3 in the "Method of Operation" section for
details about VIO open processing).

When an I/O request is issued to a VIO data set, EIP receives control from
the EXCP processor, module IECVEXCP. (For information about the EXCP
processor, see OS/VS2 I/O Supervisor Logic.) EIP refers to addresses in
the lOB and interprets the channel program to determine whether the desired
record is in the pages assigned to the VIO buffer. If the contents of the buffer
satisfy the request, EIP simulates execution of the channel program by
moving or comparing data between the VIO buffer and the area specified by
the channel program.

When the data to be accessed by the EXCP request's channel program does
not reside in the pages in the VIO buffer, EIP calls VBP via the VREADWR
macro to either connect (input) or disconnect (output) a page or a sequence
of pages in a page-formatted data set to or from the VIO buffer. VBP handles
EIP's request by specifying either the assign or move-out functions, or a
combination of these functions, and then invoking RSM. When RSM's
operation is completed, VBP returns control to EIP so that it can interpret
and simulate execution of the channel programs. (When EIP attempts to
access these virtual pages, a page fault occurs and the virtual pages are paged
into real storage.)

lOS

Non-VIO

User Program
EXCP Processor
(lOS)

XD~PIEXCP 14-.... ~
-..:.......-- 1...--------1

VIO Processor

FXCP Intercept Processor (EIP) First-Levcl
Interrupt Handler

.. • Intcrpret Rcquest (FLIH - Supervisor)
.. _~~ • Interfucc with Uscr Appendages

EIP transfers control to VBP via the
VREADWR macro when the VIO

VIO ... • Simulate c'(ccution of Channcl Proi!rams - ~ I
causcs Page ('ault if Referenced Pagc is not 1+ ~

. Page-Fault
~ Interruption 1 In Real St()ra~c. r I

buffer is not positioned to the desired '>-----1----------....
virtual track (as indicated by the
seek address associated with the user's
I/O request).

Virtual Block Processor.
(VHP) ,

• Maintain DSPCT Page-Map Pagl's
• Manipulatc pagcs in thc VIO Buffer in

response to EIP Rcquests,

Figure 2. Handling I/O Requests in a VIO Environment

..
.... ...

Real Storage
Mana"cment
(RSM<"- Supervisor)

Move-Outl
Assi~n Requests

{

Introduction 17

VS2.03.807

VIO Interfaces with Other Components

EXCP
Processor

Open/Close/
EOV

Checkpoint I
Task Close

Recovery Task
Management

DADSM

SdleduIcr
Restart Modules

CallIDDWIAPP

Call IDDWICLS

Call IDDWIJRN

VIO is entered by or passes control to the OS/VS2 components shown in
Figure 3.

For a description of the conditions under which calls are made to VIO and the
subsequent processing that is performed by VIO, see the "Program
Organization" section of this book.

Interrelationships that are generated by VIO calls to RSM and ASM are
described under the headings that follow.

Call IEASMFEX
SMF Routine

Call (appendage-name) User-Specified
Appendages

VIO Processor

'--

UP

• t
Call IEFXB500 Scheduler

(Journal Routine)

BALR to VIO I·RR
VBP and LSTAF Routines

-
IODAVBPRI
and IDDWIFRR

Call ILRINTOO Auxiliary Storage
Management

(ASM)

CallIDDWICLSI
IDAVBPSI

Call IEAVAMSI (Move-Out/Assign Operations)

Real Storage
Management

BALR to VIO Control-
(RSM)

Block Merge Routines
(IDDWIMRG :Jnd
IDAVBPJ2l

Figure 3. Overview of Component Relationships

18 OS/VS2 VIO Logic

VBP's Relationship to RSM

VS2.03.807

The VIO-services function of RSM manipulates page table entries in the page
table and external page table in response to requests by VBP to connect
(input) or disconnect (output) VIO data set pages to or from the VIO buffer.
For detailed information about RSM, see OS/VS2 System Logic Library.

VBP requests the changes to the tables by passing VCBs (VIO co~trol
blocks) to RSM. VCBs are initialized during VIO open processing to support
the various types of requests that are issued to RSM. Multiple VCBs
representing different operations can be chained together. The VCBs are
passed to RSM, and RSM performs the operations in the sequence in which
the VCBs are chained. VCBs are pointed to by the DSPCT (data set page
correspondence table) and are built in the LSQA (local system queue area).
(See the description of the DSPCT in the "Data Areas" section of this book
for information about the types of VCBs.)

The following VBP requests to RSM are supported:

Assign: The assign (virtual read) operation connects a VIO data set page to
the VIO buffer. It causes page table entries to be manipulated so that when a
subsequent attempt is made to access data in the VIO buffer, a page fault
occurs and the page is paged into the VIO buffer in real storage.

Assign-null: Assign-null (virtual allocate) processing is requested by VBP
when a virtual page is needed either for the VIO buffer or for new DSPCT
page-map pages. The parameters passed are the same as those passed for the
assign operation except that the LPID (logical page identifier) field is set to
zero. To identify a virtual page as a page in a VIO data set, the assign-null
function sets a VIO flag in the XPTE (external page table entry) associated
with the virtual page.

Move-out: Move-out (write and disconnect) processing causes a page-out to
occur unless the page was stolen. RSM creates a PCB (page control block)
for the page-out operation and sets an indicator in the PFTE to indicate that a
paging operation is in progress. The page-out operation is performed
asynchronously to continued VIO processing. The pages in the VIO buffer
are disconnected from the virtual storage by invalidating page table entries
and setting them to zero. Then the RSNs (real storage numbers) for the page
frames are saved in their corresponding DSPCT page-map entries so that the
page frames may be reclaimed by a subsequent assign (read) operation
involving the disconnected page frames.

If a page is stolen by the operating system before a move-out request, a
page-out is not attempted. Instead, a "transfer page" operation is issued by
RSM. This operation instructs ASM to change its tables to indicate that the
previously stolen page in auxiliary storage belongs to the VIO data set.

Move-out-null: Move-out-null (disconnect) processing clears the VIO buffer
by disconnecting the pages in the VIO buffer from virtual storage. The pages
are disconnected by modifying the page table entries associated with the
pages in the VIO buffer. Then the RSNs for the page frames are saved in
their corresponding DSPCT page-map entries so that the page frames may be
reclaimed by a subsequent assign (read) operation.

Introduction 19

VS2.03.807

VBP's Relationship to ASM

20 OS/YS2 YIO Logic

VBP specifies one of the following functions in the ACA (ASM control area),\ "
and then calls ASM, module ILRINTOO. .."""

Assign-logical-group: During VIO open processing, which occurs after the
first EXCP is issued, VBP calls ASM to assign an LGN (logical group
number) to an individual VIO data set. The LGID is a location-independent
value which-together with an RPN (relative page number)-is used to
establish a relationship between a page frame in real storage and a page slot in
auxiliary storage.

VBP stores the LGID in fields in the DSPCT (data set page correspondence
table).

LGN

-------------'~--------------'\ r ...
Os

\..

\..

ASID

8
bytes

- 4
-------'/ - ----bytcs

'V
LGID

LGID RPN

-------------'/ 'v""
LPID

VIO does not modify the LGID; however, it does adjust the RPN values in
order to refer to specific pages within the data set.

Release-logical-group: If a VIO data set is being scratched, VBP calls ASM to
release all auxiliary storage and control information associated with the VIO
data set (or logical group). If the data set has been journaled, the
storage-locator symbol is used to release the logical group; otherwise, the
LGN is used. The release-logical-group function is also used at abnormal
system termination to release the logical group if it cannot be accessed after a
restart. (This situation occurs when the data set was not journaled by the
save-logical-group function.)

Save-logical-group: If VIO is creating journal entries for a VIO data set at
checkpoint or step termination, VBP calls ASM to journal the status of the
VIO data set and to generate a storage-locator symbol (or "S" symbol),
which is used by ASM to reactivate a VIO data set in a restart situation.

Note: ASM (Auxiliary Storage Manager), via an interface from scheduler at
job termination time, releases all logical groups that are not journaled.

VS2.03.807

Activate-logical-group: If processing of a VIO data set is resumed after an
automatic step or checkpoint restart, VBP passes the storage locator symbol
generated by the save-logical-group function to ASM. ASM uses the symbol
to regenerate control information and to regain access to the VIO data set in
auxiliary storage as it existed when the most recent journaling operation was
performed against the data set.

YIO Operating Considerations
VIO System Residence Requirements: The VIO load module, IDDWI (aliases
IDAVBPPI and IDAVBPS2), resides in the pageable link pack area.

Protection Key Status: VIO operates in the supervisor's key (key 0) except
when I/O simulation is performed by module IDDWICPI. During I/O
simulation, VIO operates in the protection key of the user.

Local Lock Retention: For processing associated with an EXCP request, the
local lock is acquired by the EXCP Processor (IECVEXCP) before it passes
control to VIO. This local lock is held throughout ensuing VIO processing.
(See the OS/VS2 System Logic Library for a discussion about locks.)

When VIO processing is invoked by either task close or checkpoint routines,
VIO modules set the local lock and then release it before returning to their
callers.

The local lock is also acquired in the journal merge routine IDA VBPJ2 while
obtaining storage for the DSPCT.

Data Set Size: The size of a VIO data set cannot exceed one volume of the
device that VIO simulates in system paging space. If a size parameter is
specified in JCL, the data set size is limited by the value specified-up to the
maximum size of one volume. The unit-count subparameter of the unit
parameter is ignored for VIO.

Optimizing VIO Performance
VIO performance can be improved in two main areas: virtual storage space
utilization and decreasing the amount of time required to access a given
number of records by VIO.

Virtual Storage Space Utilization

The VIO track size varies according to the associated virtual DASD device
you specify in the UNIT parameter of the JCL statement. If UNIT=SYSDA
is specified in the JCL statement, VIO will base its track size on the first
eligible device in the group of devices defined for SYSDA by the system
generation macro, UNITNAME.

The VIO buffer size equals the VIO track size, rounded up to a page
boundary. The amount of data on the VIO track is the same amount that can
be written on the real device being simulated. The data on the VIO track is
packed towards the beginning of the track, eliminating the interrecord gaps
that are required on a real device. Hence, the space between the end of data
and the end of the buffer is unused and is not written out to auxiliary storage
unless there is data on the page. The diagram that follows illustrates the
wasted and unused space in the VIO buffer.

Introduction 21

VS2.03.807

I: --VirtuaIBUffer_~"1
I-o·-... --------------Virtual Track ----------------I-li

I I
I Page 1 .. I. I

It -! Coo"" Key, D", F i,M, .1.
'-Track Descriptor (30 bytes)

Page 2 ---------I~

Unused Space - Wasted Space ---~

In this case both pages are read (written).

I~: --VirtuaIBuffer_~ .. 1

1-0. - ... ---------------Virtual Track ---------------I .. ~I

I I
I Page 1 I

Page 2

Count, Key, Data Fields

~ITrack Descriptor (30 bytes) ~ Wasted Space

Unused Space

In this case, one page is read (written).

Figure 3.1 VIO Virtual Buffer

Introduction 21.1

VS2.03.807

-
I/O Operations

Taking the preceding explanation into consideration when you specify a block
size for your VIO data set, you should select a block size which is optimum
for the device being simulated. Also for a given block size, you should select a
device which is optimum for the block size given. Small block sizes would
cause a greater number of EXCPs to be issued to transfer data between the
VIO buffer and the real device. Large block sizes would cause a lesser
number of EXCPs to be issued to transfer data between the VIO buffer and
the real device. Since no physical I/O is required if the EXCP request can be
satisfied by data movement between the VIO buffer and the access method
buffer, EXCPs for smaller block sizes would be faster than for larger block
sizes. However, a common overhead is involved for each EXCP issued since
the end of block modules, the EXCP, and the appendages will be executed.
Hence, the block sizes should not be extremely small.

You can specify the number of access method buffers through the BUFNO
parameter in the JCL statement or DCB macro. For optimum performance
while using VIO, specify BUFNO= 1 if possible.

21.2 OS!VS2 VIO Logic

METHOD OF OPERATION

An MO (method-of-operation) diagram describes a function performed by
segments of programming code. The individual logical steps that comprise a
function are enumerated in process statements in the main body of a diagram.
Control blocks that contain important information are shown as input or
output to the process steps.

Notes that are numerically keyed to the process steps are provided on the
page that faces the diagram. The notes provide detailed information about
processes and connect logic-level information to physical segments of code;
one or more module names precede the notes for each process step.
Sometimes, if a process statement on the diagram is self-explanatory,
corresponding notes are omitted, but the module that performs either the test
or process is usually named in the notes section. Also, when a process step
represents a transfer of control from one module to another, the calling and
called module names are provided at the head of the note for the process
statement. This provides immediate flow-of-control information for a
particular process; however, note that the "Program Organization" section of
the book is best used for determining an inclusive flow pattern for an entire
function.

Hints on How to Read Method of Operation Diagrams
When reading MO diagrams, don't be disturbed by the graphic details
presented in the input and output sections of the diagrams. Work into the
charts gradually by reading only the chart's process statements. Then, if the
logic is unclear to you or if you require more information, read the notes and
review the inputs and outputs that correspond to particular statements that
are unclear to you.

Compendiums, in the "Program Organization" section of the manual, show
the flow of control among modules in performing functional operations.
Referring back and forth between an MO diagram and a related compendium
can give you an integrated picture of both the logic and the program structure
that relate to a VIO function.

To understand the graphic symbols used in the diagrams, see Figure 4.

Method of Operation 23

Control flow Data flow

.. .. Entry point to diagram. The

or seco nd ty pe of arrow is used
I > Input to or output from a

when a diagram has more processing step
than one entry point.

I Flow of control ~ Modification of data

On-page connector; number

.8 represents number of ----~ Testing of, or reference to, data
processing step receiving
control

~
Off-page connector; the

~
On-page connector; used to

numbers of diagram and indicate input to or output
the step are shown where from a processing step
processing resumes

(AEA return)-. On-page/off-page return from
step 18 an appendage routine

Figure 4. Graphic Symbols Used in Method of Operation Diagrams

24 OS/VS2 VIO Logic

~
(l)

;.
o
Q.

o ...,
o
1l
~.
o
::I

N

'"

r r

Diagram 1. Method of Operation Contents (Tree-Structured)

via Processing

~ ~

Via's Response
Save a via Data to a User's I/O
Set for a Restart Request
(Diagram 10) (Diagram 2)

I
• ~

Analyze the Request
Perform via and Communicate
Open Processing with Appendage
(Diagram 3) Routines

(Diagram 4)

I
~ !

Initiate Paging I/O Simulate Execution

(Diagram 5) of a Channel Program
(Diagram 6)

~ ,
Simulate a Simulate a
Read or Write Search
(Diagram 7) (Diagram R)

('

!
Perform via
Close Processing
(Diagram 1 1)

!
Simulate a
Seek or Sense
(Diagram 9)

N
a--
o
Vl
<
Vl
N

<
23
r
o

I)I:l

(i'

Diagram 2. VIO's Response to a User's I/O Request
Non-VIO

I EXCP processor I J I/O
I (module IECVEXCP) I I supervisor

lOB DEB RQE

, VIO data set

c=Jc=J1 r -r I Perform VIO open processing if necessary,
(See Diagram 3,)

CPA I

ccw'{bd I
I

.J

D/'f~ I
VOSCB 2 Communicate with appendages and interpret

~
the request. (See Diagram 4.)

VDSCB WICB

Seek addr Seek addr
3 Perform virtual paging I/O to lo!,'.ically chan!,'.e

Paging space of track in of current I :> the contents of the VIO buffer if neCl'ssary.

~ b.ff"

request
(track y) (track z) (See Diagram 5.)

VIO buffer
track y VIO data set

I I track y

~
CPA VIO buffer

ccw,{bd I track z I I :>
4 Simulate processing of operations speci fied by

User buffer the channel program associa ted wi th the request.

I I (See Diagrams 6 - 9.)
records

~ l~

~

J..

I :>

~

WICB DSPCT header VCBs

c=J~~
VBPPL

CJ VIO buffer

I I
User Appendages

Page-fix PCI
end-of-extent channel-end
start-I/O ahnormal-end

VDSl'B

~
VIO data set Seek addr
(track y of track ill

i-!."3ck yT .; updated if huffer

~kZ
necessary) (track z)

V 10 huffer
~~A I track l I

lOB FCB

I
Sense

I Completion bytes
VIO huffer ('SW codes

I '- I DCB
':>Data moved

User buffer between huffers Permanent I I error flags

~

-<
VJ
tv
(:, ...,
00
o

3::
'" ;-
o
0-

S?,
o
'"0

'" ..,
~ o·
::I

tv
-..I

r

Notes for Diagram 2
Conditions at Entry to the Mainline VIO Processor

At step initiation, the scheduler determines that
prerequisites for VIO processing have been satisfied. (See
"prerequisites to VIO" in the "Introduction" for
information about prerequisites.) Recognizing that
processing is directed to a simulated device, the scheduler
does not attempt to perform space allocation on a real
device; it passes control to the DADSM allocate function
to construct a VDSCB for the VIO data set. The VDSCB
contains a UCB, format-l DSCB, and VIO work area.
Note that because the VDSCB is built in the scheduler
work area (SWA)-not in "low-core"-a 3-byte address
is necessary to access the UCR in the VDSCB.

When an EXCP or XDAP macro (SVC 0) is issued by a
user of VIO, control is passed to the EXCP processor,
module IECVEXCP. The EXCP processor constructs a
request queue element (RQE) and passes control to VIO.

r r

N
00

o
til
<
~
!5 o
b'

(JQ
(i'

Diagram 3. Perform VIO Open Processing

RQE (new request)

Protection
key

ICll (c

I EX(,P processor ~
(lECVEX(,P)

10-"'" I

0f -----....
urrent user)

"
,VDSCB ~ ,

./

~---~2 Prot
key

VBPPL!

Huffed

New or modified pages

[)CT

Device
charactt!ristics

I - --- --~ 3
I

4

/
5

,/-f 6
device @I

~7
Virtual

fJ
DSPCT header /

~ I~ Map /

~i~ (if I
• 8

, / 9

VBPHRST I /?f~
VBPHJCB (§f'"/

~

Open processin~ requireu'?

Yes No

J
If the protedion key associated with the new
reqUl'st differs from the current user's key, c;:::-
compkte thl' current user's pr()cessin~ and fret'
associated control hlocks (WICB amI VIO huffer>.

Acqulrl' and IJ1Itlalile a VBPPL (if necessary).
a WICB, and thl' vIa buffer.

Was the data set passed frolll a pn'cedin)! joh ste;"l')

No Yes -.® ,
For a new data Sl't. acqUtrl' and IJ1Itialile
a DSPCT and aSSI)!n a logIcal group numher
(LGN) to the vIa data Sl't.

For new and restarted data sets, acquire and
initialize a DSPCT extension. ~

In a restart situation, rl'at! (assi~n) the
DSPCT map pa~ds) from auxtlary stora)!e.

For a new data set. acquire (assiJ(n-null) a
page to contain DSI'CT map entires .

Acquire (asstgn-null) Virtual pages for thl' VIO huffl'r

I'reparl' VeBs to he uSl'd in processtng
suhsl'qul'nt virtual I/O requests. ~

B

Dia.4 1

l",

- Dia.4
1 Virtual device

'-... V N,w", V m,,';H,' pages

-- VDSCB

Buffer! r---
~ W1CB! f-r---.

VBPPL! f-

,.--- DSPCT!

.r VBPPL .L WICB

Device
characteristics

,I, V 10 nuffer

DSPCT header
~

DSPCTMAP LGN

iEr=
DSPCT ex tension

I~~ }ve •.

'--'

-<
Vl
IV

'" W

00
o

3:
('I)

g-
o
P-
o -.
o

"Cl
('I) .,
a o·
:3

~

r
Notes for Diagram 3
Entry Conditions Related to VIO Open Processing

VIO open processing is independent of common open
processing, which always precedes it, and occurs when a
user issues the first XDAP or EXCP macro against a VIO
data set under any of the following circumstances:

A new VIO data set is being created.

A restart operation is directed against an existing
VIO data set.

A VIO data set is being reopened after common and
VIO close processing have been done.

A user, other than the current user, attempts to
access an existing VIO data set. This situation is
detected when the protection keys of the users do not
match. For example, when a user-created PDS
(partitioned data set) contains both
problem-program data (such as user-defined tables)
and linkage-editor data, the key conflict occurs when
the data set is accessed by both the problem program
and program fetch.

The flow of control into and out of VIO open processing
is as follows:

The EXCP processor determines that the request
involves a VIO data set and passes control to the
VIO interface routine, module IDDWIAPP.

The interface routine determines that a condition
requiring VIO open processing exists and passes
control to the VIO open routines.

When open processing is completed, the VIO open
routines return control to the interface routine,
which then continues VIO processing related to the
EXCP request (see Diagram 4).

If an EXCP is issued against a scratched data set,
then IDDWIAPP issues a OE6 ABEND.

I. IDDWIAPP: (See the introductory comments to this
figure.)

2. IDDWIAPP: If VIO open processing is to occur
because of a key change, do the following clean-up
operations:

(a) IDDWIAPP calls IDDWITRM: If the VIO buffer
contains new or modified data, IDDWITRM
issues a VREADWR macro to cause the pages in
the buffer to be written to external page storage.
(For a description of processing associated with
the VREADWR macro, see Figure 6, steps 4-7, in

r

the "Program Organization" section of the
manuaL) Otherwise (that is, when the VIO buffer
doesn't contain new or modified data),
IDOWITRM simply returns to IDOWIAPP.

(b) IDDWIAPP: When the buffer contents are no
longer needed, free the buffer and its associated
WICB, and continue open processing in the
conventional fashion.

3. IDDWIAPP: Acquire a VBPPL if necessary. (A
VBPPL is acquired for a new job step, after a restart,
or for a new data set.)

4.

5.

Acquire a WICB and initialize it with the device
characteristics to be simulated in paging space. (For
specific information about the characteristics, see the
WICDVTAB field in the WICB, offset 70 (decimal),
in the "Data Areas" section.) Also acquire a VIO
buffer based on the track size, rounded-up to a page
boundary, of the device being simulated. Usually, the
VIO buffer, WICB, and VBPPL are acquired once .
per job step when the first EXCP or XDAP macro is
issued to a VIO data set.

IDDWIAPP.

IDDWIAPP calIs IDAVBPOI via VOPEN macro:
Acquire a DSPCT based on a fixed header size and a
4-byte entry for each potential DSPCT page-map
page in the data set. (Potential data set size is the
primary extent plus fifteen of the secondary extents
described in the user's DO statement-reduced, if
necessary, to the size of one full volume of the device
being simulated in external page storage.) Initialize
the header with control information.

IDAVBPOI calls ASM, module ILRINTOO: Assign an
LGN (logical group number) to the current logical
group, or data set. The LGN is an 8-byte field. ASM
(auxiliary storage management) returns an LGID
(logical group identifier) in the first word of the
LGN/LPID field. The returned LGN is stored in the
DSPCT. The LGID is used by VIO as the "LPID
generator," the LPID (logical page identifier) being
a combination of the LGID value assigned to the
logical group by ASM and the RPN (relative page
number) that is generated by VIO and resides in the
second word of the LGN field. The LPID

1 6.

7.

r

relates a page-sized portion of a VIO data set to an
auxiliary-storage page slot. If ASM is unable to
assign an LGN to the VIO data set, IDAVBPOI
issues an ABEND macro with a OE I completion
code.

~~

r ~~----------------------~

bytl!S

L(;I[)

[L(;1I1 I RPN

I rill

IDAVBPOl: Acquires storage for the VCBs in the
LSQA and chains it from the DSPCT header.

IDAVBPOI calls IDAVBPR2 (CHEKMPPG), which in
tum calls RSM, module lEA V AMSI: If there are no
records in the data set, do an assign-null (virtual
allocate) to acquire a single page for DSPCT
page-map entries. This operation identifies a virtual
page as a VIO page. Otherwise (that is, when records
exist in the data set for a restart situation), a read
(assign) is done on all the DSPCT page-map pages.
If an error occurs in assign or assign-null processing,
IOAVBPOI issues an ABEND macro instruction
with a OE I (create processing) or OE2 (restart
processing) completion code.

<:
til
a
w
00
o
-.I

3::
" :;-
0
p.
0 -.
0
"0

" ...
~ o·
::
....

r

Notes for Diagram 3 (Continued)

8. IDAVBPOl: Connect (assign-null) the buffer pages to
the VIO user's address space by making a call to
RSM, module IEAVAMSI, to perform an assign-null
operation on the pages associated with the VIO
buffer.

9. IDAVBPOI calls IDAVBPR2 (SETVCB): Initialize
read (assign), write and disconnect (move-out), and
disconnect (move-out-null) VCBs for subsequent
request processing. This processing occurs once
during VIO open processing.

r r

~.
.....
a
w
00
0

VJ
tv

o
VJ
'-<
VJ
tv

< o
r o

(JQ
(i.

Diagram 4. Analyze the Request and Communicate with Appendage Routines
DEB

DEBPGFX

Extent limits

---,
'---------=-=---~ I

---------; DCB I
I Permanent r- - -~ 2
: error flag ,,?f

I 01
l----------~3

If a page-fix appendage exists, invoke it. • I • I

If the current request is a related request
and a permanent error condition exists, set ~ IOBECBCC
an error flag and go to step 19 .•• ~~ •••••• __ ~~.~1
Is the seek address (against which the
simulated execution of the channel program
is to be performed) valid?

7f

..... J I(~ YI" j External page storage

V irtual device

/ 1.1 End-of-extent r_ ... J~ I 4 Invoke the end-of-extent appendage. . > ~ __ ~_,,~_~ t. ...

Return to IDOWIAPP
via BR to RI4 +
displacement

Oispl. Meaning
-nr- Abnormal end
+4 Post
+8 Retry

Return to IOOWIAPP
via BR to RI4 +
displacement rA"\ 5 Invoke the start-I/O appendage, unless

.p ERP retry (see step 21), then l • __ "'~I Oispl. Mean.ing
+0 ContInue _ • Related I

request flag +4 Skip post I ...
~(;-P A - - - - - - Starting

addr of CP
- Establish the address of t)1e CCW to be processed.

eews

WICB

Seek addr
to satisfy
current
req uest

esw

l,

voseB

Seek addr
of current
track in
buffer

,,
I

I 7
SIOA return " step 5 ,,"

"""" 91 8
" 10 v~

I R 1 5
I
I
I
I
I

J

I Return code ~ ~ 9

110
-~

When the desired track is not in the buffer,
acquire the appropria te track.

(See Diagram 5. Initiate Paging I/O)

Simulate execution of the channel program.
(See Diagram 6. Simulate Execution of
a Channel Program)

When an additional track is required to complete
the channel program, get an additional track. iii· --.. ------------IIIIII!
When a program-controlled-interruption is
requested, invoke the PCI appendage. I' ~~;endage -- II Did the channel program complete abnormally? No Yes ___________________ .. ~1

lOB

I PCI I Completion I
flag status • 12 If an expected error condition exists,- IOBIOERR

set the expected-error flag.-••••••••• _ • .!

l, "

3:
" [
a

f
g'
.., ..,

r

Notes for Diagram 4
When an EXCP request is issued against a VIO data set,
the EXCP processor, module IECVEXCP, detects this
condition and passes control to VIO, module
IDDWIAPP. For the first EXCP request, IDDWIAPP
initiates VIO open processing and initializes selected VIO
control blocks (see Diagram 3). Then, for the first and
each succeeding EXCP request, IDDWlAPP simulates
I/O activity in response to the channel programs
associated with the EXCP requests, and interfaces with
appendages (as normally performed by the EXCP
processor for non-VIO data sets). All returns from
appendages that are supported by conventional, non-VIO,
processing are supported by VIO. (See OS/VS2 System
Programming Library: Data Management for information
on appendage interfaces and processes.)

I. IDDWIAPP: Pass control to the user-supplied
page-fix appendage. A dummy list of areas to be
made nonpageable is passed to the appendage along
with an indicator that signifies that there are no
entries in the list. No page-fixing is performed even
if the appendage routine modifies the count of pages
to be fixed.

2. IDDWIAPP.

3. IDDWIAPP.

4. IDDWIAPP: When an invalid seek address exists in
the lOB, call the user-supplied end-of-extent
appendage.

The end-of-extent appendage indicates the action
that it wishes to be taken by returning to
IDDWIAPP with a branch to register 14 plus a
displacement. The displacements and their meanings
are as follows:

DIsp. Meaning and Action by IDDWIAPP

o Abnormal end-Set an extent-violation
completion code (X'42') in the lOB, set the
recovery-not-possible flag, and pass control
to the abnormal-end appendage (step 19).

+4 Post event-Set a complete-without-error
indicator (X'7F') in the lOB and return to
EXCP processor to post the ECB with the
completion code in the lOB and to free the
RQE.

+8 Retry-Return to EXCP processor to test
the validity of a new seek address that was
established by the end-of-extent appendage.

r

5. IDDWIAPP: Pass control to a SIO (start I/O)
appendage unless error-recovery processing (see step
21) is being performed.

Two returns from the SIO appendage are
supported-a return via a branch to register 14 with
a displacement of either +4 or O. If the displacement
factor is +4, VIO returns control to the EXCP
processor with a return code directing the EXCP
processor to free the current RQE and not to post its
ECB as complete. Otherwise (that is, when the
displacement factor is 0), processing continues at
step 6.

6. IDDWIAPP.

7. IDDWIAPP caDs IDDWITRM, and IDDWITRM caDs
IDA VBPPI via tbe VREADWR macro: Compare the
track address (MBBCCHHR) of the desired track
against the address of the track which is currently in
the buffer. If the addresses do not match, clear the
buffer (that is, perform a move-out or move-out-null)
and then perform a virtual read (assign). If the VIO
buffer is empty (that is, if a write operation was
previously performed on the pages in the buffer),
perform a virtual read (assign).

8. IDAVBPPI returns to IDDWITRM, whieb tben caDs
IDDWICPI.

9. IDDWICPI returns to IDDWITRM: If IDDWICPI sets
a return code that indicates that either a multitrack
operation, a seek operation, or an operation
involving track-overflow records could not be
completed on the existing track, acquire a new track
in order to complete the operation.

If IDDWICPI detects the PCI flag in the CCW it is
processing, it sets the PCI flag in the CSW associated
with the channel program (see note 10).

10. IDDWITRM returns to IDDWIAPP: IDDWIAPP
examines the CSW to determine whether
IDDWICPI has set the PCI flag and invokes the PCI
appendage if the flag is set. When the PCI
appendage returns control, IDDWIAPP links to the
SMF routine, module IEASMFEX, to record the PCI
interruption and then returns control to
IDDWITRM to complete the channel program.

r

II. IDDWIAPP: Examine status indicators in the CSW.
Abnormal error conditions are unit check, program
check, protection check, and channel-control check.

12. IDDWIAPP: Examine status indicators in the CSW.
Expected error conditions are incorrect length and
unit exception.

1M
.j>.

o
~
<:
IZl
N

<:
15

i.

Diagram 4. Analyze the Request and Communicate with Appendage Routines (Continued)

IOBIOERR

IOBERRTN t-

~

,,oJ

"

13 Invoke the channel-end appendage. I .1

14 Is the expected-error flag still set?

No

Displ. Meaning
~ Continue

------------_/ , +4 Skip post ---.. I--~I~
+8 ReEXCP ,kQ
+12
+16

Dia.4,
step 2 and
EOEA return
(step 4)

No • .,

lOB

IOBIOERR

17 Set an error flag in the lOB. tzzzzzzzzzzzzzzzqz.e>j IOBECBCC

~ ~I ossible flag and Dla.4 18 Set the recovery-p I d appendage.
11 • invoke the abnorma -en

/ . 19 Is re ./ ~ covery possible?

Yes
No Entry 2 , 31 .,

IOBERRTN

Abnormal·
end
appendage

Return to IDDWIAPP via
BR to R14 + displacement 0"/1

@ 20 Set up a restart channel program.
19 1 +0

.... Entry 1 ,

+4 Skip post

+8 ReEXCP-.@
I

+12 Bypass
21 Invoke SMF to record the retry attempt and

thenreEXCP +16 (Same as +8)

l, l,

~
(I>

s-
o
0..
o
o
"0
(I> ..
a o·
o
....
v.

r

Notes for Diagram 4 (Continued)
13. IDDWIAPP invokes the channel-end appendage. (See

step 18's description of abnormal-end appendage
returns. The returns supported for the channel-end
appendage are the same as those for the
abnormal-end appendage.

The actions taken by IDDWIAPP in response to the
returns are also the same--except for a return with a
o displacement. For a 0 displacement, IDDWIAPP
checks the expected-error flag. If it is not set,
IDDWIAPP tests the ECB to determine its wait
status. If it is being waited upon, the ECB is not
posted and control is returned to the EXCP
processor with a +4 displacement. If the ECB is not
being waited upon, it is posted and control is
returned to the EXCP processor with a 0
displacement. Otherwise (that is, when the
expected-error flag is set), IDDWIAPP continues
processing at step 17.)

14. IDDWIAPP: Examine the IOBIOERR flag set in step
12. If the channel-end appendage has reset the flag,
return to the EXCP processor, IECYEXCP, either in
step 15 or 16.

15. IDDWIAPP: If a permanent error condition doesn't
exist, test the ECB to determine its wait status. If the
ECB is being waited upon, return control to the
EXCP processor with a 0 displacement. If it is not
being waited upon, post the ECB and return control
to the EXCP processor with a +4 displacement.

16. IDDWIAPP.

17. IDDWIAPP.

18. IDDWIAPP: The abnormal-end appendage performs
its processing and selects one of the four options,
which are indicated by a return to IDDWIAPP via a
branch to register 14 plus a displacement. The
displacements and their meanings are as follows:

Disp. Meaning and Action by IDDWIAPP

o Post event-Following "entry I" to AEA:
Test the error-recovery-possible flag. If it is
set, continue at step 20; otherwise, reinvoke
the abnormal-end appendage (entry 2).

Following "entry 2" to AEA: If the ECB is
not being waited upon, post the ECB with
the completion code in the lOB and branch
to register 14 plus O. If the ECB is being
waited upon, don't post it and branch to
register 14 plus 4. The EXCP processor frees
the RQE.

r

Disp. Meaning and Action by IDDWIAPP

4 Skip posting-The ECB is not posted and
control is returned to EXCP processor via a
branch to register 14 plus 4. The EXCP
processor frees the RQE.

8 Initiate new channel program-Clear error
flags in the lOB and branch to SMF to
record the request. Then reinitiate
processing at step 3.

12 Bypass-The ECB is not posted and control
is returned to EXCP processor via a branch
to register 14 plus 8. The EXCP processor
does not free the RQE because it is assumed
that the RQE will be used subsequently to
schedule an asynchronous exit routine.

16 (Same as displacement "8.")

19. IDDWIAPP: Examine the error-routine flag
(IOBERRTN) to determine whether the error was
corrected. If the error condition still exists, set a flag
that indicates that the error recovery procedure
(ERP) was unable to correct the error and reinvoke
the abnormal-end appendage ("entry 2").
Otherwise, continue recovery processing.

20. IDDWIAPP: See the table below to adjust CCW and
track pointers.

Response

('

21. IDDWIAPP calls IEASMFEX.

Correctable Error Condition

File mask violation by seek
operation

Position to the next track and restart processing with the next sequential CCW, unless
the next CCW is a TIC; then restart processing with the CCW pointed to by the TIC
command.

File mask violation by a
multitrack search or read

Overflow incomplete

Position to the next track and restart the search or read.

Construct a 2-CCW prefix in the current CCW:
RD I WR, TIC (next sequential CCW)-unless the next sequential CCW is a TIC;
then TIC to the CCW specified by the TIC.

and restart on the next sequential CCW, where
byte count in the RD I WR CCW=CSW byte count (unless CSWCNT=O, then byte
count=1
command address=(address of failing CCW)+(length of failing CCW}-{residual
count from CSW). (If CSWCNT=O, command address points to a dummy field of
zeros.

'" c-
o
en
< en
N

<
<5
b

(JQ

n'

Diagram 5. Initiate Paging I/O

RI

I3UFct ~-
DSPCT header

r1

DSPCTMAP entriel

~ Entry

Entry

Entry

Entry

DSPCT extension

1
J

~

R5 (register)

Offset to
desired
map page

Work area

Offset to
desired entry
in map page

-1~
1/

1f
VCB(s)

®- _",,2

--lJ
&. I 4

'~ ---45
I....,

/'
./

,/

./

BUFC

Initialize the buffer control block to support
the necessary virtual I/O operations.' _

Request type
(read/write)

Input and/or
output RBA

Initialize VCBs with control information for the
pages of the VIO data set that are to be inserted
into or removed from t he V 10 buffer. I'iiCZi!!'!.:Zl"..ii!Z:iiZ~Zii!:-2:iiZ!:i~ii!'.:'~~07:!:i~i!::%ii!:~2!:i%~:?;ii!::--.2!:Oi%~%ii!:::e~~:>'1-------------"
If there is inadequate space in the existing page. I Move-out VCB(s)

map pages for entries for new data set pages
assigned to the VIO buffer, acquire (assign-null)
a new virtual page to contain map-page entries_ ~

Perform a virtual read or write operation based
on the VCBs constructed by step 2.
If pages have been removed from the
VIO buffer, update the DSPCT page-map
entries for the pages removed .

- ~

DSPCTMAP entries

Entry i

Entry

Entry

Entry

New ' }
entry(s) I

I I
L ____ -.l

Virtual device

pages

®.... VIO buffer

~ New virtual track

~.

New
map
page

l,

~
IV

'=>
00
o

~ .,.
;.
8-
o ...,
o

I o·
::I

~

r

Notes for Diagram S
I. IDDWITRM: If the VIO buffer has been modified

(note: IDDWICPI sets an indicator in the buffer's
header when it adds to or modifies the contents of
the buffer; IDDWITRM sets an indicator when it
initializes a new track), to initialize the BUFC
(buffer control block) to cause the pages in the buffer
to be written to external page storage. Then set-in
the BUFC-the read-required flag and the RBA of
the desired virtual track. This causes paging I/O,
consisting of successive write operations followed by
successive read operations, to be perlormed on the
buffer.

If the VIO buffer is empty or if the buffer does not
contain new or modified data, set-in the BUFC- a
read-required flag and the RBA of the desired virtual
track. Calculate the input RBA using the seek
address in the WICB, the virtual buffer size, and the
characteristics of the virtual device.

2. IDDWITRM calIs IDAVBPPI via VREADWR macro:
When a write (move-out) operation is specified
because the contents of the current track have been
modified (BUFCMW=ON), initialize the move-out
VCBs in the DSPCT header with the RPNs of the
pages in the VIO buffer up to and including the page
that contains the last byte of data. (The displacement
to the end of data in the VIO buffer is maintained by
IDDWICPI in the VIO buffer's header
(VTDATEND field).) If the prior request was a read
request and the number of pages read exceeds the
number currently in the buffer, base the number to
be written on the number previously read to account
for update and deletion processing.

If a read (assign) operation is specified
(BUFCRRD=ON) and the prior paging operation
was a read but the contents of the buffer were not
subsequently modified by simulated I/O activity,
initialize move-out VCBs for move-out-null and pass
the VCBs to RSM to disconnect the pages from the
VIO buffer. Otherwise (that is, when the buffer
contents were modified), initialize move-out VCBs
to cause the pages in the buffer to be written to
auxiliary storage. Then initialize assign VCBs for the
pages to be read, and chain the assign VCBs to the
move-out VCBs.

If a read (assign) operation is specified
(BUFCRRD=ON) and the prior operation was not a
read, initialize assign VCBs and pass control to RSM
to connect VIO data set pages to the VIO buffer. If
the pages are "reclaimable" (see the "Introduction"

r

for a discussion of reclaiming page frames), set real
storage numbers that are associated with the page
frames previously containing the pages in the assign
VCBs.

Note: If a read (assign) request is directed at a page
of data that does not exist in the data set,
IDAVBPPI sets an indicator in the BUFC. When
control is returned to IDDWITRM (either directly or
after processing a move-out or move-out-null
request) IDDWITRM initializes the new track with a
home address (HA) and a record 0 (RO) based on
values in the seek address and sets a flag that
indicates that the track has been modified. This
formatting process causes a page fault.

3. IDAVBPPI: When there is insufficient unused space
in the current DSPCT page-map page to contain new
DSPCT page-map entries and if a read operation is
being perlormed on a new track, a track that was not
previously written to auxiliary storage, perlorm the
following processing to acquire a DSPCT page-map
page:

IDAVBPPI calIs IDAVBPR2 (CHEKMPPG): Issue a
GETMAIN macro instruction to acquire a virtual
page frame for the DSPCT page-map page. Then call
RSM, module lEA V AMSI, to do an assign-null
operation against the new page in order to define the
page as a VIO page.

4. IDAVBPPI calls lEA V AMSI: RSM inserts or removes
VIO pages into or from the VIO buffer by
manipulating page table entries and page frame table
entries which correspond to the pages associated
with the VCBs initialized by step 2.

IDAVBPPI: If the return code from RSM indicates
that an error condition exists, IDA VBPPI issues an
ABEND macro with an X'OE3' completion code.
Otherwise, IDA VBPPI calls lEA VPSIB to free the
page containing the VCBs.

('

5. IDAVBPPI: For a move-out or move-out-null
request, save the RSNs (real storage numbers) of the
page frames containing the pages that were in the
VIO buffer. The RSNs are saved in the appropriate
DSPCT page-map entries to enable the page frames
to be reclaimed by subsequent read (assign) requests.

<
'" tv
Co
W

00
o

....
00

o
Vl
........
<:
Vl
N

<:
o
r

{JQ

n'

Diagram 6. Simulate Execution of a Channel Program
WICB

Starting
addr of
channel
program

-L CPA

c~.J
Op
code

~

f--.

User bUf.1 I addr. Flags Count

~
~ /'

/
/

/

/
/

/
/

/

1 If the CCW format or the operation cock is invalid.
set an error completion status and rdurn to the
caller.

2 Simulate CCW execution.
• For read or write operations. see Diagram 7.

• For a search operation, see Diagram 8.

• For a sense or seek operation, see Diagram 9.

• For NOP, RESTORE, or SET SECTOR commands,
continue processing at step S.

3 If a program-controlled-interrupt (pel) flag is
detected in a CCW by step 2 processing, return
to the caller.

4 I f an error condi tion is encoun tered in the
simulated execution of a CCW, set an abnormal
completion status and return to the caller.

5 If an additional CCW exists in the channel program,
repeat steps 1-5.

6 If all CCWs in the channel program have been
processed and no errors have been encountered,
set a normal completion status and return
to the calle r.

-- --

~

lOB

.. Status
flags

~

DiaA
8

'-'

~
(';

[
8-
o
'g

I· ...,
\C

r

Notes for Diagram 6
IDDWICPI simulates the execution of channel programs
directed to a VIO data set. It does this by using CPU
instructions to simulate the channel and device actions
taken for a particular CCW string.

When IDDWICPI receives control, all necessary control
information has been established, and the VIO buffer is
positioned, by a virtual read (assign) operation, to a track
containing pages that satisfy the seek address associated
with the current channel program.

If the desired virtual pages are in real storage because of a
page-in caused by a prior request, the pages are reclaimed
when IDDWICPI attempts to access the data in the
buffer. If the required pages are not in real storage, they
are subsequently paged into real storage as a result of a
page fault when IDDWICPI attempts to access the data in
the buffer.

IDDWICPI simulates execution of the channel program
by moving records between the VIO buffer and the area
in the user's buffer that is pointed to by the CCW being
processed.

Note: All notes pertaining to Diagram 6 involve module
IDDWICPI.

I. The format of a CCW must satisfy the following
requirements:

2.

• Doubleword alignment.

• Bits 37-39 are off (0).

• Nonzero count field, except for TICs.

• Nonzero address field.

Analyze the CCW's operation code to determine
which CCW interpretation routine is to be entered:

Bit Settings Type of Operation

0000 0100
xxxx 1000
00 **01
11 **01
**** **10
**** **11

Sense
Transfer in channel (TIC)
Write
Search
Read
Control

• Further define type of operation by providing count, key, and
data information.

x Ignored.

r

3. CPIOPEND (label) is the return point in IDDWICPI
mainline code that is branched to by the segments of
code that relate to the various CCW operations
reflected by step 2.

If a PCI flag is detected in any CCW associated with
the channel program, invoke the PCl appendage
before continuing execution of the channel program.

4. Check the IOBCSW, IOBSENSO, and IOBSENSI
fields for error indicators that may have been set
during simulated execution of the CCW. (See the
"Diagnostic Aids" section for a description of error
indicators in the lOB and for the labels of code
seqments in IDDWICPI that detect the error
conditions and set the error indicators.)

5. If an error has not occurred and the
command-chaining bit in the current CCW (bit 33) is
set, continue processing with the next CCW.

6. If there are no errors and the last operation is
completed, set channel-end and device-end
indicators in the CSW.

('

~
o
tn

< tn
N

<: o
t"'" o

(JQ ;::;.

Diagram 7. Simulate a Read or Write
WICB

ld Cornman
sequence
flags

File mask

\.,

~I ----------j+
--~

- - - - !,.:,' //////1,
...... --

/' -,. --CCW ... --

'- '- &-~ 3

-""'-......-...,.,...1

'::ia. 4

~ 5

6

For a write command, when prerequisites are not
satisfied or when the file mask disallows a write
operation, terminate CCW processing.

Error condition

For a read or write command, position to a count,
key, or data area in the specified record.

If an end-of-file condition is detected for a read or
write CCW, terminate CCW processing.

Error condition

If the "skip" flag is on in a read CCW, bypass data
movement.

Normal condition

Move a record to satisfy the read or write request.

User's buffer
If the size of the area to receive the transferred recor
exceeds or is less than the size of the transferred
record, terminate CCW processing.

Error condition

Otherwise, assume normal completion of the
read or write CCW. Normal condition

l, L

::::
(II

[
S
o
]

i·
:t

r

Notes for Diagram 7
In a non-VIO environment, a read or write CCW causes
data (count-key-and-data, key-and-data, or data) to be
copied to or from a particular area of a record on a real
device to or from a user's buffer.

In a VIO environment, VIO data sets are maintained on
virtual devices in external page storage, and I/O
associated with read and write CCWs is simulated using a
VIO buffer. VIO simulates execution of a read or write
CCW by moving records between the VIO buffer and the
user's buffer.

In either case (VIO or non-VIO), the data manipulation is
governed by the direction of the move (read or write), the
length specified in the CCW and the count field of the
record (which determine how much data is moved), the
file mask (which determines whether the movement can
take place), and the CCW flags (which indicate whether
data will be transferred and whether length errors will be
accepted).

Note: All notes pertaining to Diagram 7 involve module
IDDWICPI.

1. Only write CCWs have special requirements
concerning the types of commands that must precede
them. See the reference manual for the virtual device
being simulated in paging space for a description of
write command prerequisites. Note that the virtual
device type is indicated in the WICB.

2. The operation code determines which areas are to be
moved--either the count, key, or data area of the
current record or a combination of the count, key,
and data areas. Start positioning at the first of the
desired areas.

Operation Code Desired Record Area

***1 00**
***0 01**
***0 10**
***0 11**
***1 01**
***1 10**
***1 11**

Count
Data
Key
Key, data
RO
HA
Count, key, data

• specifies the type of operation.

r

3. For RCKD, RKD, RD, WD, or WKD commands,
when the data length of a record is zero, set a
unit-exception indicator in the CSW. (Note that a
record with a data length of zero is used as an
end-of-file mark by all VIO users.)

4. The CCW's "skip" bit (bit 35) is used to avoid
unwanted data. When the bit is on, do not perform
data transfer; however, for read requests, adjust
positioning as though data had been passed. For
write requests, ignore the "skip" bit.

('

~
o
~
<:
Vl
N

<:
o
l""
o

!)Q

O·

Diagram 8. Simulate a Search

CCW

Search
argument

VIO buffer

Position to the next area (count or key) in the VIO
buffer to be compared with the search argument.

;.,,2
-'?f

,,-""-,,;/

If the search is satisfied by a successful
compare operation, terminate the current
CCW processing. ~ Normal condition - '" ;-~.", .,./ , ",'"

."..,
."..

."..
."..

","'" '
."..

'" ~
--'-- I 4 If the search is not satisfied and the current operation

operation is not a repetitive search, terminate
the current CCW processing. II • I

3 If the search is not satisfied and when the current

~gS I I co~~1 Key 1 Data I -
is a repetitive search, position to the next record and
continue at step I.

~

___ 0,
-- ' ------~

5 If a single track search is specified and the end of the
current track is reached, reposition once to the start
of the track and continue the search at step I.

/

~6
Y'

WICB //

O'~~~ __ ~7 ~ 0---~

If the nex t track is required to continue the search
and the current operation is not a multitrack search
or if a multitrack search is specified and the file mask
disallows a track switch, terminate the curren t CCW
processing . .., Error condition I ,
If a multitrack search is allowed, construct the new
track address. Then perform a virtual read to
acquire the nex t track.

~

WICB

VIO buffer

Seek
addr

~

s:::
."
;.
8-
g,
o
~
~.
o
::3
.j;>.
~

r

Notes for Diagram 8
A search command compares a part of a record (count or
key) with an area that is pointed to by a CCW. When the
compare condition (EQ. HI. or HI I EQ) is satisfied, skip
the next sequential CCW; otherwise. process it. (Key and
data searches of the extended-file-scan feature are not
supported by VIO.)

Search commands are usually found in TIC loops where
the compare is repeated until the desired record is found;
for example.

Command Explanation

SID
TIC*-8

Find a particular count field.

RDCNT
SKEQ
TIC*-16

Find a record with a given key and
read the count of that record.

The logic of search processing reflected by Diagram 8 is
also illustrated in the table below:

Conditions

Search Satisfied

Multitrack Search

End-of -Track
Condition

Repetitive Search

File Mask Permissive

Index Point Passed
(Latch=on I off)

Actions

Position to Next
Track

Position to Next
Record

Reposition to Start
of Track

Search again

Search Completed
(normal)

Search Completed
(error)

T F F F F F F

X

T T F F

T T F T T

T T F T T T

T F

x

X

X

X

T F

x X

X

X X X

r

Note: All notes pertaining to Diagram 8 involve module
IDDWICPI.

2. When the compare is satisfied, skip the next CCW.

3. A repetitive search is a group of CCWs that are
handled as though they were one CCW. The following
groups are handled as one CCW:

SID
TIC*-8

SK
TIC*-8

RD CNT (single track)
SK (single track)
TIC*-16

When a group of CCWs is handled as one CCW, the
result to the user is transparent; however, it results in a
more efficient operation since the CCW loop doesn't
result in the overhead of repeatedly validating the
same CCWs.

5. If a single-track search is specified and there are no
more records on the current track, resume the search
by repositioning to the start of the current track unless
repositioning has already been performed once for this
operation. If the end of a track is reached by a
multitrack search operation, position to the next track
if the file mask allows multitrack searches.

6. If a CCW's multiple-track- search indicator (bit 0) is
off and if the end of a track has been reached a second
time, set a no-record-found indicator.

"' ('

t
o
en
"'< en
N

<
<5
r o

(JQ

(i'

Diagram 9. Sim ula te a Seek or Sense

VDSCB

Virtual
DASD
seek
addr

~.

User's buffer

__________ ~ 1 If the current operation is a sense operation,
I." clear the user's buffer and terminate the ~ User's buffer

, , current CCW processing. ~ Zeros

,
--> ' --... --."...; -- __ 1,2

Normal condition

If the current operation is a seek operation and a
seek operation is disallowed by the file mask or
when the seek address is invalid, terminate CCW

WICB

I",
/'1 11 / ,

/ I processing.
Error condition

/
-B

File
mask

Current
track's
DASD
addr

/ 'I . // r:-<
/ &~

/ 1,,3
;.-

////1""4
// .,.,.".. 1

/ "

If the current track satisfies the seek request,
terminate current CCW processing Normal condition WICB

If the current track does not satisfy the seek
command, construct the address of the next
track and attempt to acquire the track. pzzzzzzz::tzzzz~

Seek
addr of
desired
track

~ .. ~

r

Notes for Diagram 9
Sense Commands

The sense command is normally used after a unit check
by the I/O supervisor's error-recovery procedures (ERPs)
to check the status of a device for error-recovery
operations. Since hardware errors cannot occur on a
virtual device, when a sense command is issued against a
virtual device, zeros are returned as sense-status
information.

Seek Commands

The seek command is used to acquire a new track for a
channel program. The address of the BBCCHH of the
desired track is contained in the seek CCW. If the desired
track is not the track that is currently in the VIO buffer,
IDDWICPI returns control to IDDWITRM in order to
obtain the desired track. After the desired track has been
connected (assigned) to the virtual buffer, control is
returned to lDDWlCPI to process the command
following the seek command.

Note: All notes pertaining to Diagram 9 involve module
IDDWlCPI.

I. See comments above under "Sense Commands."

2. Test the file mask in the DEB to determine whether
a seek command is allowed. When a seek command
is disallowed by the file mask for the VIO data set's
extent, set a file-mask violation indicator in the lOB
to reflect the status of the channel program.

When the seek address is invalid, terminate the
channel program with a channel program error.

3. If the desired track is the track currently contained
by the VlO buffer, continue processing with the
simulated execution of the next CCW.

4. mOWlCPI returns to IDOWITRM: IDDWITRM
causes pages in a new track to be connected
(assigned) to the VlO buffer, and then returns
control to lDDWICPI in order to resume simulated

a:: execution of the channel program.

" S'
o
0-
o
o
~ a
c)"
1:1

~

r r

~
o
CIl
"<
CIl
tv

<
(5

~ ".

Diagram 1 O. Save a VIO Data Set for a Restart

VDSCB

Checkpoint
(1 GCON06C) or
Task close
(IFGOTCOA)

If the address of the completing or failing TCB
that is passed by task close matches the address of
the TCB used to acquire the VIO buffer and the
WICB, invoke VIO close. I • I

YIO buffer la

l >1 1 Data pages I ! >2 If the VIO buffer contains modified or new records, <, ___ - ~ write (move-out) the pages in the buffer to ex ternal
Track control- - - page storage before performing journal processing.
flags (This ensures that the DSPCT reflects the current

WICB (A) status of the data set before it is copied to the jo

DSPCT header 11 journal.) ,
I

/

Journaling· 8 ,....:"";.3
required ~ TCBt I I ~
flag 1\ I /,/

\ I .
, I /

\ / " --'----

If the data set has not been previously journaled or
if pages have been added to the data set since prior
journaling, write (move-Qut) the page-map pages

DSPCT rE" /
extension \V /'

to ex ternal page storage. (Note that the nondis
connect option is specified for this operation
order to retain the pages in virtual storage.)

move~ut I // Btla.ll 4 If the data set has not been previously journaled,
YCBs / / 3 or if it has been modified, save the logical group

YCBs via ASM and store the storage locator symbol in
1-------11 DSPCT header.

(E) : >5 Write the DSPCT and the VDSCB to the job

DSPCTMAP

Entries updated
by steps 1 and 3

\.,

journal (when the conditions described by step 4 I >I
are satisfied).

\."

DSPCTMAP
Ne;-~;Y---i

for map I
I page I

{I I RSNI

/ I RSN/

l#

<
'" N
o
W

00
o,

3:
" s:-o
0-
o ...,
o -g
a o·
;:l

ti

r

Notes for Diagram 10
During task-close processing, or when a checkpoint
routine encounters a UCB for a virtual device, the VIO
joumaling (checkpoint) function is invoked by a call to
IDDWIJRN via the WIJOURN macro to do the
following:

to ensure that all VIO data sets in external page
storage for the current job step are current (that all
pending output is completed).

to save the status of logical groups by causing ASM
to save a map of the data set, the ASPCT (address
space page correspondence table), in the
SYS I.STGINDEX data set. (This information is
retrievable at restart via the storage locator symbol
passed back by ASM and stored by VIO in the
journaled copy of the DSPCT.)

to write VIO data set control blocks (VDSCBs and
DSPCTs) to the job journal.

The journaled records are used by a VIO restart routine
to regain access to a VIO data set. The data set status is
saved only if it has never been done before, or if data has
been added or modified.

When IDDWIJRN is entered, it determines whether
journaling can be done. If the JSCB (job step control
block) indicates that errors exist in the job journal (for
example, an I/O error occurred when writing records to
the job journal) or that the job journal has not been
activated for the current job, VIO journaling is not
performed and control is returned to the caller, the
checkpoint or task close routine. Journaling is also not
performed when the ASCB indicates that the current job
is a time sharing job or when in step termination, the data
set is to be deleted.

To determine which data sets are to be journaled,
IDDWIJRN examines each UCB associated with the
current job step to determine whether the UCB identifies
a virtual device. The UCBs are located by nOT entries
which are pointed to by DSABs (data set association
blocks). Journal processing is performed on each virtual
UCB, and the processing continues until all UCBs
representing virtual devices have been journaled.

I.

2.

I 3.

r

This condition occurs only in a situation involving
program fetch. When a STEPLIB DD statement
specifies a VIO data set, the data set is opened and
closed under the initiator's TCB even though I/O
involving the data set is performed by program fetch
under a job step TCB. If-when the job step is
completed-task close invoked the VIO journaling
function (module IDDWIJRN), VIO close
processing must be invoked to free VIO data areas
and to zero-out the VIO-buffer pointer in the
VDSCB. (If this close processing was not performed,
when the initiator's close processing occurs, an
attempt would be made to write the nonexistent VIO
buffer pointed to by the VDSCB.)

IDDWIJRN calls IDDWITRM: If a status flag in the
VIO buffer indicates that the buffer contains new or
modified records, IDDWITRM issues a VREADWR
macro to write (move-out) the buffer contents. (For
a description of processing associated with the
VREADWR macro, see the notes for Figure 3 in the
"Program Organization" section of this manual.)

IDDWIJRN: If DSPCT page-map pages exist in
storage and if the data set was modified, then the
page-map pages are written to auxiliary storage.

IDDWIJRN caDs RSM, module IEAVAMSI: RSM
writes DSPCT page-map pages to the VIO data set in
auxiliary storage. With the nondisconnect option,
the page table entries governing the real storage page
frames that contain the DSPCT are not modified;
the page frames remain in real storage associated
with the VIO user's address space identifier (ASID).

r

<
V>

'" 6
00
o
-.I

J

J

~
(1)

;-
0
0-
0 ...,
0
."
(1)
a o·
::I

$

r

Notes for Diagram 10 (Continued)
4. IDDWIJRN calls ASM, module ILRINTOO: If the data

set has not been journaled or if pages have been
modified or added since the data set was last
journaled, control is passed to ASM so that it can
save its control records that reflect the current status
of the data set. ASM returns a storage locator
symbol ("S" symbol) which is used in recovering the
data set if either a system failure or job step failure
occurs. If ASM's attempt to create a storage locator
symbol is unsuccessful or if ASM returns a symbol
that differs from the symbol it returned previously
for the same data set, IDDWIJRN issues an ABEND
macro with a OE7 completion code. The "s" symbol
is saved in the DSPCT header.

6. IDDWIJRN calls to IEFXB500 (scheduler's
journal-write module): Write the DSPCT header (if it
exists) and VDSCB to the job journal.

Notes: A OE7 ABEND results in control being passed to
the EST AE routine which records the error on the
SYSI.LOGREC and SYSI.DUMP data sets. Control is
then passed to the mainline module which gives a
nonzero return code if called by the checkpoint module.
The checkpoint module then issues a message to the
operator and terminates the checkpoint. A zero return
code is always passed to task close.

During restart processing after all blocks are merged into
the SWA, the VDSCB and DSPCT are written to the job
journal by the scheduler.

r r

<:
'" N

'" w
00
0
-..I

VI
o
o
til
<:
til
N

~ o
b

(JQ
(s.

Diagram 11. Perform VIO Close Processing

~

VIO-WDWIJ RN
EOV-IFGOSS2X
DADSM-IGGOCLF2
CLOSE-IFG0202K

records

DSPCT extension

move-out

} ve ••
YCBs

VDSCB

/
WICBt

)1
/

VIO buffed

YBPPL t

/
/

/

External Page Storage

Virtual device If the VIO buffer contains modified or new records,
write (move-out) the pages in the buffer to external
page storage and update DSPCT map entries, as

",,,,,"y, fa< red,im p",pow. ~"{ i 1D U
:c:?.?.2:???.>: «.I': :>.?~ '---I

2 If step I is not executed, disconnect (move-out-null)
the pages in the virtual buffer and update DSPC'T
map entries, as necessary, for reclaim purposes.

3 Free VIO resources.

l"

EOV·IFGOSS2X
DADSM-IGGOCLF2
C LOSE-I FG0202 K

DSPCTMAP

~}UPdated
map entries

VDSCB

~
}WICBt

o } VIO huffed

o } VBPPLt

~

~
N

'=' W

00
o
-.J

3:: ro
ET
0
P.

So
0
"0 ro ..,
a s·
::s
VI

r

Notes for Diagram 11
Common close invokes VIO close processing, to allow
VIO to free its resources, whenever it closes the last active
DCB for a VDSCB. (Note that the VDSCB and DSPCT
are retained between job steps in the event that another
DCB is opened against the VDSCB. The DSPCT is
released when the data set is scratched. The VDSCB is
released when the current job is terminated.)

For a description of the conditions that exist when EOV
or DADSM invoke VIO close processing, see the notes to
Figure 9 in the "Program Organization" section.

1. IDDWICLS: Call IDDWITRM before freeing the
VIO buffer and perform the following processing:

IDDWITRM: Determine whether the VIO buffer has
been updated, that is, determine whether it contains
new or modified records. If so, set write-operation
parameters in the buffer control block and call
IDAVBPPI via the VREADWR macro. IDAVBPPI
performs the following processing:

Sets control information in the VCBs that
correspond to the pages to be written to external
page storage.

Calls RSM, module lEA V AMSI, to cause the
pages in the VIO buffer to be paged out.

Moves the RSNs in the VCBs into their
corresponding DSPCT page-map entries for
possible use in reclaiming the page frames to
satisfy a subsequent read (assign) request.

r'

2. IDDWICLS caDs IDAVBPCl via VCLOSE macro:
Determine whether close processing has been
invoked directly following a restart. If so, return
control to IDDWICLS.

If there is data in the window from a prior assign
operation, then disconnect the pages from the
window via the move-out-null function. The
following processing is performed to disconnect
the pages:

IDA VBPC I calls RSM, module lEA V AMSI: By
modifying page table entries, disconnect the
pages assigned to the VIO buffer from the VIO
user's address space.

3. IDDWICLS: Free the VIO buffer, WICB, and
VBPPL by issuing FREEMAIN macro instructions.

r

<:
ell
N

0
w
00
0

PROGRAM ORGANIZATION

The compendiums (or hierarchial tables) used in this section do not usually
show you all of the exits and entrances to a given module. A compendium
depicts the flow of control, among modules, that relates to a particular
function.

How to Read Compendiums
Each block in a compendium is associated with a module name. The blocks
are nested (indented) to show the sequence of calls. For example, in the
following diagram, module "A" at some point in its processing calls module
"B," and module "B" at some point in its processing calls module "C."
Unless otherwise indicated by an exit indicator, the called modules always
return control to the calling modules in the sequence in which they are called.

l. Module A

2. Module B

* 3. Module C

In many instances, a call to a module is conditional. In these cases, the
condition that must be met is shown in the block that represents the calling
module. Dotted lines delineate the calls that are affected by a given condition.
This is illustrated in the following example:

I. Module X

Invalid Address

I 2. Module Y I
r---- - -

I 3. Module Z I

Program Organization 53

VS2.03.807

In this example, module "Y" is called when an invalid address is detected, and
module "Z" is always called. In either case, module "Y" and "Z" always
return control to module "X."

Each module is numbered to key it to the extended descriptions on the page
that faces the diagram. The extended descriptions provide details about the
conditions that exist when a call is made and about the general processing that
is performed by the modules.

For a description of ABEND completion codes shown in the figures, see the
"Diagnostic Aids" section.

Module-Calls Directory (Forward and Backward
Reference)

The "module-calls directory" allows you to relate each VIO module and
external procedure to the modules that it is called by and to the modules that
it calls.

Module Name Title

IDA VBPC I VBP Close Module (entered
via call to VCLOSE)

IDA VBPJ2 VBP Restart Module
(activate/ journal-merge
function)

IDAVBPOI

IDAVBPPI

IDAVBPRI

IDAVBPR2

VBP Open Module (entered
via call to VOPEN)

VBP Record Management
Module (entered via call to
VREADWR)

VBP Functional Recovery

VBP Common Routines
Internal Procedures:

CHEKMPPG

MONWINDO

SETVCB

CaUing Modules

IDDWlCLS

lEFXB601 (scheduler)

IDDWIAPP

IDDWlTRM

Recovery /Termination
Manager

IDAVBPOI, IDAVBPPI

IDAVBPCI

IDAVBPOI

IDAVBPSI VBP Scratch (entered via call lGGOOO2l (DADSM
to VSCRATCH) scratch)

IDDWIAPP EXCP Intercept Appendage IECVEXCP
Simulator

IDDWICLS EXCP Intercept Close Function IFGOSS2X (EO V),
(entered via call to WICLOSE) lGGOCLF2 (DADSM),

lFG0202K (Close),
IDDWIJRN

"The name of the procedure called is enclosed in parentheses following the module name.

S4 OS/VS2 VIO Logic

Modules CaUed·

IDAVBPR2 (MONWINDO)

ACTIV A TE LG (ILRINTOO)

IDAVBPR2 (CHEKMPPG), lEAVAMSI
(CVTVSI), IDAVBPR2 (SETVCB), ASSIGN LG
(ILRINTOO)

IDAVBPR2 (CHEKMPPG), IEAVAMSI
(CVTVSl)

SDUMP (SVC branch entry)

lEAVAMSI (CVTVSI)

lEA V AMSI (CVTVSI)

RELEASE LG (ILRINTOO)

Appendages, IDA VB PO I (entered via call to
VOPEN), IEASMFEX, IDDWITRM

IDDWlTRM, IDA VB PC I (entered via call to
VCLOSE)

Module Name Title Calling Modules

IDDWICPI Channel Program Interpreter IDDWITRM

IDDWIFRR Functional Recovery Routines Recovery/Termination
Manager

IDDWIJRN EXCP Intercept Journaling IFGOTCOA (Task Close),
IGCON06C (Checkpoint)

IDDWIMRG EXCP Intercept Merge
Function

IDDWITRM EXCP Intercept Track
Manager

IEFXB601 (Scheduler)

IDDWIAPP, IDDWICLS,
IDDWIJRN

Non-VIO modules that either invoke or are invoked by VIO:

IEASMFEX SMF Routine IDDWIAPP

IEAVAMSI

IECVEXCP

IEFXBSOO

ILRINTOO

IEFXB601

IFGOTCOA

IFG0202K

IFGOSS2X

IGCON06C

IGCOOO2I

IGGOCLF2

ILRINTOO

RSM VIO Services Interface

EXCP Processor (lOS)

Scheduler

Auxiliary Storage Manager
(ASM)

Scheduler

Task Close

Common Close

End-of-Volume

Checkpoint

DADSM Scratch

DADSM

Auxiliary Storage Manager
(ASM)

IDAVBPOI, IDAVBPPI,
IDAVBPR2, IDDWIJRN

IDDWIJRN

6,8,10,11,12

IDDWIJRN
IDAVBPJ2
IDAVBPOI
IDAVBPSI

"The name of the procedure called is enclosed in parentheses following the module name.

VS2.03.807

Modules Called·

SDUMP (SVC and branch entry)

IDDWITRM, IEFXB500, IDDWICLS, IEAV AMSI
(CVTVSI), IEFXBSOO, SAVELG (ILRINTOO)

IDDWICPI, IDAVBPPI (entered via call to
VREADWR)

IDDWIAPP

3

IDAVBPJ2, IDDWIMRG

IDDWIJRN

IDDWICLS

IDDWICLS

IDDWIJRN

IDAVBPSI

IDDWICLS

Program Organization 55

Program Organization Compendiums

VIO Open
Processing

Figure 6

VIO Sera tch
Prol.'cssin!!

Figure 10

Accessill~ a VIO
Data Set"and
Simulating I/O

Figure 7

Programming
Organization
('jgurcs

I

Figure 5. Table of Contents for Program-Organization Figures

Saving a VIO
Da ta Se t for
a Restart

Figure 8

VIO Restart
Processing

Figure 11

VS2.03.807

VIO Close
Prm:essing

Figure 9

Program Organization 57

VS2.03.807

I EXCP Processor

(IECVEXCP)

2 IDDWlAPP
'- ---- -----

User key has
changed. Force
reopen of current
data set.

3 IDDWITRM --------
VIO buffer has new
or changed data.

4 IDAVBPPI

I 5 IEAVAMSI I

Move-Out Error K ABEND OE3

6 IDDWIAPP

EXCP issued
against scra tched
data set

t------II~\ ABEND OE6)

r.--------
First EXCP to a
new data set or
a passed data set
after a close or
restart

7 IDAVBPOI
1-------

Open processing
for new data set

8 ILRINTOO

Assign LGN

Assign Error I----~C ABEND OEI
r-------

9 Open processing
for a new data set
or a passed data
se t after a res tart

9 IDAVBPR2

(CHEKMPPG) I I
10lEAVAMSI

~ _____ E~r_r_or~~ABENDOEIIOE2

II Common open
processing for a
new data set or
a passed data set
after a close or
restart operation

Figure 6. VIO Open Processing

58 OS/VS2 VIO Logic

IDDWIAPP (cont.)

IDA VBPO 1 (cont.)

12 IEAVAMSI

Assign-null
VIO buffer

Error t--__ -I(ABEND OEI I OE2)

13 IDAVBPR2

(SETVCB)

14 IDDWIAPP

Continue
processing at
Figure 7, Step 2.

J

J

Notes for Figure 6

I. The EXCP processor builds RQEs. The RQE
consolidates control information that is provided by
the VIO user and needed by VIO to complete its
processing. (See OS/VS2 I/O Supervisor Logic for
details about the EXCP processor.)

Then. if the EXCP processor determines via a VIO
indicator in the UCB that the EXCP request is directed
against a VIO data set, it passes control to
IDDWIAPP.

2. IDDWIAPP ensures that the key of the new request
matches the current user's key and that VIO open
processing has been performed.

If either of these conditions is not satisfied,
IDDWIAPP performs the following processing:

• When a key conflict exists, IDDWIAPP calls
IDDWITRM to ensure that the current pages in the
VIO buffer are written to the VIO data set in
external page storage if the pages contain new or
modified records. (See the introductory notes to
Diagram 3 in "Method of Operation" for a
description of the situation in which a key conflict
can exist.)

Upon return from IDDWITRM, IDDWIAPP frees
the WICB and the VIO buffer and sets an indicator
to invoke VIO open processing.

• If VIO open processing has not been previously
performed for the new request string, IDDWIAPP
acquires a VBPPL, WICB, and VIO buffer. (Note
that when VIO open processing is invoked as a
result of a key change, only the WICB and the VIO
buffer are reacquired; the VBPPL is reused if it was
previously acquired.)

In either case, IDDWIAPP then initializes the WICB
with the characteristics of the virtual device and calls
IDA VBPOI via the VOPEN macro (see step 9).

3. When a key conflict exists, IDDWIAPP calls
IDDWITRM. IDDWITRM determines whether the
pages in the VIO buffer contain new or modified
records, and if so, calls IDA VBPPI via the
VREADWR macro to write the pages in the VIO
buffer to the VIO data set in external page storage.
Otherwise, if the VIO buffer contents have not been
modified, IDDWITRM simply returns to IDDWIAPP.

4. IDA VBPPI initializes write (move-out) VCBs to be
used by RSM in writing the pages in the buffer to the
VIO data set in auxiliary storage.

IDA VBPPI calls RSM, module IEAVAMSI, to cause
the pages in the buffer to be written to auxiliary storage.
If the write operation is successful, IDAVBPP 1 updates
the RSNs (real storage numbers) in the DSPCT page-map
entries for the pages written to auxiliary storage so that
their real storage page frames may be reclaimed by a
subsequent read (assign) operation.

VS2.03.807

6. IDDWITRM returns to IDDWIAPP, and before
continuing VIO open processing, IDDWIAPP frees the
WICB and the VIO buffer by issuing FREEMAIN
macro instructions and then reacquires them by issuing
GETMAIN macro instructions. A VBPPL is acquired
for a new or a passed data set.

IDDWIAPP invokes further VIO open processing by
calling IDAVBPOI via the VOPEN macro.

7-8. For a new data set, IDA VBPO I acquires a DSPCT
header, initializes it, and then issues a call to ASM,
module ILRINTOO, to assign an LGN (logical group
number) for the data set. IDAVBPOI stores the LGN,
which is returned by ASM, in the DSPCT header.

9-10. For new data sets and for passed data sets after a
restart, IDA VBPO 1 calls IDAVBPR2 (CHEKMPPG).
If the data set is new, CHEKMPPG connects (assign-null
function) a DSPCT page-map page to the VIO user's
address space. If the data set is being reactivated
(accessed after a restart), CHEKMPPG (assign function)
reads the page-map pages, which were written to
auxiliary storage by a prior journaling operation, into
the address space associated with DSPCT page-map pages.

11-12. For all VIO data sets, IDAVBPOI calls IEAVAMSI to
connect (assign-null) the buffer pages to the VIO user's
address space.

13. IDA VBPO I calls IDA VBPR2 (SETVCB) to initialize
the read (assign), write and disconnect (move-out), and
disconnect (move-out-null) VCBs for subsequent
request processing.

Program Organization 59

VS2.03.807

I EXCP Processor
OECVEXCP) IDDWIAPP (cont.)

2 IDDWIAPP Valid seek address

"-

For open processing,
see Figure 6. r-

r------- I IS IEASMFEX J 3 Page-fix
appendage
specified.

16 If PCI exit taken, Invoke it. fo-------- redo prior
4 Seek address processing due to

exceeds VIO potential changes
ex tent. Invoke in the chan nel
end-of-extent program by PCI
appendage. appendage.

5 Seek address fo-------
still invalid. 17 Serious error not
Invoke indicated. Invoke
abnormal-end channel-end
appendage and appendage and
return to then exit to caller,
IECVEXCP. IECVEXCP, unless

....... _----- expected error
6 Invoke SIO exists.

appendage. -------- 18 Serious error
7 IEASMFEX exists or expected

error still unresolved
after channel-end

8 lDDWITRM appendage process-------- ing. Invoke
Desired track abnormal-end
not in buffer appendage.

9 IDAVBPPI 19 Abnormal-end

------- appendage
indicates that

New DSPCf map recovery is
pages req uired possible.

10 IDAVBPR2
20 AEA return

indicates recovery
(CHEKMPPG) not possible.

Reinvoke AEA

I IIIEAVAMSI I and exit to caller
(IECVEXCP).

Error H ABENDOE3

f---------
Perform virtual
I/O

12 IEAVAMSI

-----_.-
Desired track
in buffer

I3 IDDWICPI

Simulate I/O, see
Method of Operation
Figures 6-9. ,

14 PCI flag detected.

Invoke PCI
appendage.

Figure 7. Accessing a VIO Data Set and Simulating I/O

60 OS/VS2 VIO Logic

Notes for Figure 7

I.

2.

The EXCP processor builds a request queue element
(RQE). The RQE consolidates control information
that is provided by the VIO user and needed by VIO to
complete its processing. (See OS/VS2 I/O Supervisor
Logic for details about the EXCP processor.)

After building the RQE, the EXCP processor passes
control to VIO when it determines that processing is
directed to a VIO data set on a virtual device.

IDDWIAPP controls VIO open processing (see Figure
6) and controls the simulated execution of a channel
program in conjunction with user-supplied page-fix,
end-of-extent, start-I/O, channel-end, abnormal-end,
and program-controlled-interrupt appendages (see
OS/VS2 System Programming Library: Data
Management for a description of appendage interfaces
and functions).

For details on the flow of control following returns
from the appendages, see Diagram 4 in "Method of
Operation. "

Conditions under which IDDWIAPP invokes
user-supplied appendages or other VIO modules are as
follows:

3. Inv.oke the page-fix appendage once per EXCP
request if the user provides the appendage. Pass an
empty list of pages; no page-fixing is performed.

4. Invoke the end-of-extent appendage when the
device address associated with the EXCP request
exceeds the address range of the VIO data set's
extent.

5. Invoke the abnormal-end appendage if an abnormal
error condition exists. Abnormal error conditions
are unit check, program check, protection check,
and channel control check.

6. Invoke the start-I/O appendage once per EXCP
unless an attempt is made to re-execute a channel
program following the correction of an error
condition. If the current processing represents an
effort to resume processing of an EXCP request
after a PCI exit has been taken, the SIO appendage
is not invoked.

7. IDDWIAPP links to IEASMFEX (MF/l EXCP
count routine) to record PCI and reEXCP requests.

8. Call IDDWITRM to determine whether the desired
track currently resides in the VIO buffer.
IDDWITRM calls IDAVBPPI to manipulate, if
necessary, the track in the VIO buffer to meet the
address requirements of the request. IDDWITRM
then invokes IDDWICPI to interpret and simulate
execution of the channel program.

9-11. If a new DSPCT page-map page is required to contain
entries for new data set pages, IDA VBPPI initializes a
VCB and then calls IDAVBPR2 (CHEKMPPG) to
acquire (assign-null) a new page of virtual storage to
contain DSPCT page-map entries.

V·S2.03.807

10-11. IDAVBPR2 (CHEKMPPG) issues a GETMAIN macro
instruction to acquire a DSPCT page-map page and
then calls lEA V AMSI to connect (assign-null) the page
to the VIO user's address space.

12. IDAVBPPI initializes VCBs that control the paging
I/O to be performed on the pages in the VIO buffer.
Then, IDAVBPPI calls IEAVAMSI to perform the
necessary write (move-out), or disconnect
(move-out-null), and read (assign) operations.

13. IDDWICPI interprets the channel program associated
with an EXCP request and simulates execution of the
channel program by moving and comparing data
between the VIO buffer and the VIO user's buffer(s).

14. IDDWIAPP calls the PCI appendage if IDDWICPI
(see step 19) encountered a PCI flag in a CCW it is
processing and set a corresponding flag in the CSW
associated with the channel program.

15. If the PCI appendage was invoked, IDDWIAPP calls
IEASMFEX to record the event and returns to step 19
to process the next CCW.

16.

17.

18.

19.

IDDWIAPP reinvokes IDDWITRM (go to step 8).

IDDWIAPP caIls the channel-end appendage unless a
serious error condition is indicated in the CSW.
Serious errors are unit check, program check,
protection check, or channel check.

Expected errors indicated in the CSW are unit
exception and incorrect length.

IDDWIAPP calls abnormal-end appendage when a
serious or expected error condition exists (see note 23).

When the return from the abnormal-end appendage
indicates that recovery is possible, IDDWIAPP
attempts to reexecute the CCW, starting with the test
to ensure validity of the seek address (go to step 4).

Program Organization 61

VS2.03.807

1 Task Close (IFGOTCOA)
or Checkpoint
(IGCON06C)

2 IDDWIJRN
,-,-""': - - -----

TCB address
passed by task
close matches
TCB address in
WICB

3 IDDWICLS

(See Figure 9)

Purge VIO buffer

4 IDDWITRM

Data set not
current

5 IDAVBPPI

Write the data
pages in the
VIO buffer to
the data set

6 IEAVAMSI

(Move-Out)

1---------1
7 IDAVBPJI -------

DSPCT modified.
(Data set pages
added since last
journal operation.)
Write (Movc.()ut)
map pages.

8 IEAVAMSI

I
I

Move.()ut Error ~ ABEND OE7

Data set never
journaled or
new pages added.

9 ILRINTOO

(Save· Logical
Group)

Error in ~
acquiring LGN. !\..

I

ABENDOE7)

Figure 8. Saving a VIO Data Set for a Restart

62 OS/VS2 VIO Logic

IDDWIJRN (eont.)

IDAVBPJ I (cont.)

Write DSPCT to
job journal.

I 10 IEFXBSOO

New pages or
never journaled.
Write VDSCB to
job journal.

II IEFXBSOO

12 Repeat process

for each VIO
data set associ·
ated with the
current job step.

I

Notes for Figure 8

I.

2.

During task-close processing (abnormal or normal job
step termination) and when the checkpoint routine
encounters a UCB for a virtual device, VIO journal
processing is invoked. Note that for abnormal
termination due to a task or system failure, task close
subsequently invokes VIO abnormal termination
processing (see Figure 11). VIO journal processing
ensures that all VIO data sets associated with the
current job step are current, saves the logical groups
via a call to ASM, and then writes the DSPCT(s) and
VDSCB(s) for the VIO data set(s) to the job journal
for recovery purposes if they have not been previously
journaled or if they have been altered since the last
journaling.

IDDWIJRN calls IDDWICLS (see Figure 9) if the TCB
address passed by task close matches the TCB address
in the WICB. If this condition does not exist,
IDDWIJRN calls IDDWITRM when the VDSCB
contains a pointer to the VIO buffer. IDDWITRM
ensures that all output to the VIO data set is completed
and that the DSPCT page-map is current before
journaling is performed.

3. This condition occurs only in a situation involving
program fetch. When a STEPLIB DD statement
specifies a VIO data set, the data set is opened and
closed under the initiator's TCB even though I/O
involving the data set is performed by program fetch
under a job step TCB. If-when the job step is
completed-task close invokes the VIO journaling
function (module IDDWIJRN), VIO close processing
must be invoked to free VIO data areas and to zero-out
the VIO-buffer pointer in the VDSCB. (If this close
processing was not performed, when the initiator's
close processing occurs, an attempt would be made to
write the nonexistent VIO buffer pointed to by the
VDSCB.)

4. IDDWITRM tests the status of the pages in the VIO
buffer to determine whether they contain new or
modified data. When the buffer contains new or
modified data, IDDWITRM issues a VREADWR
macro to write (move-out) the pages in the buffer to
the VIO data set in external page storage. Otherwise,
IDDWITRM returns control to IDDWIJRN.

5-6. IDAVBPPI initializes move-out VCBs for use by RSM,
module lEA V AMSI.

IDA VBPP I calls lEA V AMSI to cause the pages to be
written to the VIO data set in external page storage.

7-8. If any DSPCT page-map entries have been created or
updated since the last journaling operation or if
journaling has not been performed, IDDWIJRN calls
lEA V AMSI to write (move-out) the DSPCT page-map
to auxiliary storage.

9. If the data set has not been journaled or if pages have
been added or modified to the data set, IDDWIJRN
calls ASM, module ILRINTOO, to write ASM's control
records to the SYS 1.STGINDEX data set.

10.

I 11.

VS2.03.807

IDDWIJRN stores the storage-locator symbol returned
by ASM in the DSPCT header.

If the data set has not been previously journaled or if
new pages have been added since a prior journaling,
IDDWIJRN calls IEFXB500 to write the DSPCT
header to the job journal for recovery purposes.

If a write to the job journal is unsuccessful, a return
code is passed to the checkpoint routine IGCON06C if
originally called by checkpoint. Otherwise, job
journaling is bypassed if it was originally called by task
close.

When the conditions stated for step 10 exist, IDDWIJRN
calls IEFXB500 to write the VDSCB to the job journal.

Note: All abnormal terminations are intercepted in the
EST AE routine, IDDESTJR (IDDWIJRN), and, after
recording on the SYSI.LOGREC and SYSI.DUMP data sets,
control is returned to the mainline module (IDDWIJRN) to
pass a nonzero return code if the invoker is checkpoint. Task
close is always passed a zero return code.

Program Organization 63

VS2.03.807

1 EOV
DADSM
CLOSE
WIJRN

(lFG0552X)
(lGGOCLF2)
(IFG0202K)
(IDDWIJRN)

2 IDDWICLS

Free pages in
buffer

3 IDDWITRM

Write modified
or new records

4 IDAVBPPI

I-

5 IEAVAMSI

(Move-Out)

Move-Out
Error

6 IDAVBPCl
1---------

Clear VIO buffer

7 IDAVBPR2
(MONWINDO)

9 IDDWICLS

Free control
blocks

Figure 9. VIO Close Processing

64 OS!VS2 VIO Logic

H ABENDOE3

8 IEAVAMSI

(Move-Out-Null)

Notes for Figure 9

1. The following modules invoke VIO close processing
with a WICLOSE macro.

IDDWIJRN In a journaling situation, if the TCB
address passed by task close matches the
TCB address in the WICB, IDDWIJRN
invokes IDDWICLS. (See the notes to
Figure 8 for an extended description of
the conditions under which this situation
occurs.)

IFG0202K If common close determines that the
UCB associated with the DCB that it is
closing is for a virtual device and if the
data management count in the UCB is
zero, close invokes VIO close processing
to free VIO resources.

IGGOCLF2 If DADSM formats PDS (partitioned
data set) directories for a BPAM data
set, EXCPs are issued and processed by
VIO. When PDS formatting is
completed, DADSM invokes VIO close
processing to free VIO resources.

IFG0552X If EOV encounters concatenated VIO
data sets with like attributes and if the
data management count in the UCB is
zero, EOV invokes VIO close processing
to free resources associated with the
current data set. If the VIO data sets
have unlike attributes, IFG0552X gives
control to common close, module
IFG0202K. Close then calls VIO close
when the data management count in the
UCB is zero.

2. IDDWICLS calls IDDWITRM to ensure that new or
modified data in the VIO buffer is written to the VIO
data set.

IDDWICLS calls IDAVBPCI to disconnect the pages
in the VIO buffer from the VIO user's address space.

IDDWICLS frees the VIO buffer, WICB, and VBPPL
by issuing FREEMAIN macro instructions.

3. IDDWITRM determines whether pages in the current
VIO buffer contain new or modified data, a.nd if so,
calls IDAVBPPI via the VREADWR macro to cause
the buffer to be written to auxiliary storage and then
disconnected from the VIO user's address space.

4. VCBs are used by IDAVBPPI to pass control
information to RSM. Using the parameters that
IDAVBPPI establishes in the VCBs, RSM causes the
contents of the VIO buffer to be written to the VIO
data set in auxiliary storage.

5. IDA VBPPI calls RSM, module lEA V AMSI, to cause
the pages in the VIO buffer to be written to external
page storage.

VS2.03.807

6-8. IDA VB PC I determines whether the page table entries
associated with the pages in the VIO buffer need to be
cleared. If so, it calls IDAVBPR2 (MONWINDO),
which then calls RSM, module lEA V AMSI, to
disconnect (move-out-null) the pages in the VIO buffer
from the VIO user's address space.

9. IDA VBPC I returns to IDDWICLS, and IDDWICLS
issues FREEMAIN macro instructions to free the VIO
buffer, WICB, and VBPPL.

Note: The functional recovery modules are entered because
of errors which occurred while VIO close was executing. The
incident is then recorded on the SYSI.LOGREC and
SYS I.DUMP data sets and control is returned to the system
recovery manager for further recovery attempts.

Program Organization 65

VS2.03.807

I DADSM Scratch
(IGGOOO2l)

2 IDAVBPSI -
3 ILRINTOO

(Release-Logical
Group)

Error
encountered
during release
operation (ABENDOE4)

Figure 10. VIO Scratch Processing

Notes for Figure 10

1. When DADSM scratch processing is directed against a
VIO data set, IGCOOO2I invokes VIO scratch
processing to free auxiliary storage and control blocks
associated with the VIO data set.

2. IDA VBPS 1 calls ASM, module ILRINTOO, to release
the VIO data set's auxiliary storage. If the data set has
been journaled, a storage-locator symbol (or "s"
symbol) is passed to ASM. Otherwise, an LGN (logical
group number) is passed.

When ASM returns an error code to IDA VBPS I,
IDA VBPS 1 issues an ABEND macro instruction with
an X'OE4' completion code.

IDA VBPS 1 releases the DSPCT extension, the DSPCT
page-map pages, and the DSPCT header by issuing
FREEMAIN macro instructions.

The VDSCB is not released by scratch processing; it is
modified to indicate that the data set has been
scratched and that the DSPCT has been released.

Note: The OE4 ABEND is intercepted in the FRR routine
VBPSIFRR (IDAVBPRl) and, after the information is
recorded on the SYSI.LOGREC and SYSI.DUMP data sets,
control is returned to IDA VBPS 1. At the end of IDA VBPS 1
processing, a nonzero return code is passed to DADSM.

66 OS/VS2 VIO Logic

J

The information on this page has been deleted by OSjVS2 MVS Supervisor Performance #2.

Program Organization 67

I Scheduler (IEFXB60l)

2 IDAVBPJ2 4
....

3 ILRINTOO

(Activatc- Logical
Group)

Restart
Unsuccessful Error Message) \. IEC006I

Figure 12. VIO Restart Processing

Notes for Figure 12

1.

2.

3.

When a journaled VIO data set is being reopened in a
restart situation, the scheduler's journal-write routine
passes control to IDAVBPJ2 and IDDWIMRG to
reconstruct the VDSCB and DSPCT from copies in the
job journal.

IDAVBPJ2 issues a GETMAIN macro instruction to
acquire space for a DSPCT header and then copies the
journaled DSPCT into the area acquired. (Note: When
several journaled DSPCTs exist for a single VIO data
set as a result of several checkpoints having been
taken, successive calls to IDA VBPJ2 do not result in
another GETMAIN macro instruction being issued;
the most current DSPCT journal entry is copied into
the previously acquired area, overlaying a less current
DSPCT.)

IDAVBPJ2 calls ASM, module ILRINTOO, to
reactivate the data set being restarted. ASM
reconstructs its control information pertaining to the
data set. If ASM is unable to reactivate the data set, it
returns an error code, and IDAVBPJ2 issues an error
message (IECOO6I) and passes an error return code to
IEFXB60l; otherwise, IDAVBPJ2 places in the
DSPCT the activated data set's storage-locator symbol
that ASM returns.

Note: The DSPCT is also built for a scratched data set.
When ASM returns a code of 08 (data set not found),
and control returns to the scheduler, an indicator is left
in the DSPCT that is checked by module IDDWIAPP.
An OE6 ABEND is then issued to indicate that an
EXCP has been attempted on a scratched data set.

68 OS!VS2 VIO Logic

IDDWIMRG

4.

t-

IDDWIMRG issues a GETMAIN macro instruction to
acquire space for a VDSCB and then copies the
journaled copy into the area acquired. Because the
WICB, VIO buffer, and VBPPL were previously freed
by task close, IDDWIMRG clears the fields in the
VDSCB that point to them. (Note: When several
journaled VDSCBs exist for a single VIO data set as a
result of several checkpoints having been taken,
successive calls to IDDWIMRG do not result in
another GETMAIN macro instruction being issued;
the most current VDSCB journal entry is copied into
the previously acquired area, overlaying a less current
VDSCB.)

Note: Additional special restart processing is
performed by IDA VBPO I after the first EXCP is
issued against the restarted data set (see Figure 6).

J

DIRECTORY
VS2.03.807

This section contains a cross-reference list that connects module and external
procedure names to sections that refer to them within this manual. (For
details on the flow of control among the modules and procedures, see the
"Module-Calls Directory" in the "Program Organization" section.)

This section also contains a list of macro instructions and the names of VIO
modules that issue them.

Module Function Figure Number Diagram Number

VBP (Virtual Block Processor) Modules

IDAVBPCI VBP Close 9 II
IDAVBPJ2 VBP Restart 12

(journal merge)
IDAVBPOI VBP Open 6 3
IDAVBPPI VBP Read/Write 6,7,8,9 4,5
IDAVBPRI VBP Recovery
IDAVBPR2 VBP Common Routines 6,7,9 3,5
IDAVBPSI VBP Scratch 10

EIP (EXCP Intercept Processor) Modules

IDOWIAPP EIP Appendage 6,7 3,4
Interface

IDOWICLS EIP Close 9 II
IDOWICPI EIP Channel Program 7 4,6,7,8,9

Interpretation and
I/O Simulation

IDOWIFRR EIP Recovery
IDOWIJRN EIP Checkpoint 8 10

(journal write)
IDOWIMRG EIP Restart (journal 12

merge)
IDOWITRM EIP Track (buffer) 6,7,8,9 3,4,5,10, II

Management

External Procedures (Residing in Module IDAVBPR2)

CHEKMPPG Map-page-assign 6,7 3,5
MONWINOO Clear VIO Buffer 8,9 10
SETVCB Initialize VCBs 6 3

Non-VIO Modules Invoked by VIO

IEASMFEX MF/I EXCP Count 7 4
Processing

IEAVAMSI Paging I/O (RSM) 6,7,8,9 3,5,10, II
IEFXB500 Create Journal Entry 8 II

(scheduler's journal-
write routine)

ILRINTOO Auxiliary Storage 6,8,10, II, 12 3
Manager (ASM)

Directory 69

VS2.03.807

Module Function

Non-VIO Modules that Invoke VIO Routines

IECVEXCP EXCP Processor
IEFXB601 Restart (scheduler)
IFGOTCOA Task Close
IFG0202K Common Close
IFG0552X EOV
IGCOOO21 Scratch (DADSM)
IGGOCLF2 Create PDS (DADSM)
IGCON06C Checkpoint

Figure Number

6,7
12
8,11
9
9
IO
9
8

Diagram Number

2,3,4

IO
II
11

11
IO

Macro Where-Issued Report

70 OS/VS2 VIO Logic

Control Block Mapping Macros:

Macro Instruction

ACA

CVT

IDABUFC

IDAVBPH

IDAVBP1

IDAVBPM

IDAVOP1

IDDTRACK

IDDVBPPL

IDDVDSCB

IDDWICB

IECDRQE

IEFTIOTI

IEFUCBOB

IEFZB507

IEZDEB

Description and Issuing Module

Maps the ASM control area. Issued by: IDDWIJRN, IDA VBPJ2,
IDAVBPOI, IDAVBPSI

Maps the communications vector table. Issued by: IDA VBPC I,
IDAVBPJ2, IDAVBPOI, IDAVBPPI, IDAVBPRI, IDAVBPR2,
IDAVBPSI, IDDWIAPP, IDDWICLS, IDDWIFRR,
IDDWIJRN, IDDWIMRG, IDDWITRM

Maps the buffer control block that is appended to the VBPPL.
Issued by: IDAVBPPI, IDAVBPRI, IDDWIAPP, IDDWITRM

Maps the DSPCT header. Issued by: IDA VBPC I, IDA VBPJ2,
IDAVBPOI, IDAVBPPI, IDAVBPRI, IDAVBPR2, IDAVBPSI,
IDDWIAPP, IDDWICLS, IDDWIJRN, scheduler journal write
module

Maps entry points of VBP modules. Issued by: IDA VBPP I,
IDDWIAPP, IDDWICLS, IDDWIJRN, IDDWITRM, IGCOOO21

Maps a DSPCT page-map entry. Issued by: IDDWIJRN,
IDAVBPOl, IDAVBPPI, IDAVBPR2

Maps the VOPEN parameter list that is appended to the VBPPL.
Issued by: IDA VBPO I, IDA VBPR I, IDDWIAPP

Maps the VIO buffer. Issued by: IDDWIAPP, IDDWICPI,
IDDWITRM, IDDWIFRR

Maps the VBP parameter list. Issued by: IDDWIAPP,
IDDWICLS, IDDWICPI, IDDWITRM, IDDWIFRR

Maps the VIO data set control block. Issued by: IDDWIAPP,
IDDWICLS, IDDWICPI, IDDWIFRR, IDDWIJRN,
IDDWIMRG, IDDWITRM

Maps the EIP (EXCP intercept processor) control block. Issued
by: IDDWIAPP, IDDWICLS, IDDWICPI, IDDWIFRR,
IDDWIJRN, IDDWIMRG, scheduler journal write module,
close, EOV, DADSM, checkpoint

Maps the request queue element. Issued by: IDDWIAPP,
IDDWIFRR, IDDWITRM

Maps the task I/O table. Issued by: IDDWIJRN

Maps the unit control block. Issued by: IDDWIAPP

Maps the direct-journal-write parameter list. Issued by:
IDDWIJRN

Maps the data extent block. Issued by: IDDWIAPP, IDDWIFRR

,J

Macro Instruction

IEZJSCB

IHAASCB

IHADSAB

IHAFRRS

IHAPSA

IHAQDB

IHARMPL

IHASDWA

IHAVCB

IKJTCB

ILRACA

ILRASMVT

Action Macros:

Macro Instruction

ABEND

ESTAE

LINK

SDUMP (SVC and
branch entry)

SETFRR

SETLOCK

SGIDA400

VCLOSE

VREADWR

VOPEN

VSCRATCH

WICLOSE

WIJOURN

VS2.03.807

Description and Issuing Module

Maps the input/output block. Issued by: IDAVBPJ2. IDA VBPO 1,
IDAVBPR2, IDAVBPSl, IDDWIFRR, IODWIJRN
IDDWIMRG

Maps the address space control block. Issued by: IDAVBP12,
IDAVBPOl, IDAVBPRI, IDAVBPR2, IDAVBPSI.
IDDWIFRR, IDDWIJRN

Maps the data set association block. Issued by: IDDWIJRN

Maps the functional recovery routine stack. Issued by:
IDAVBPCl, IDAVBPOl, IDAVBPPI, IDAVBPRI, IDAVBPSI,
IDDWIAPP, IDDWICLS, IDDWIJRN

Maps the prefix save area in the fixed-real storage nucleus.
Issued by: IDAVBPCI, IDAVBPOI, IDAVBPPI, IDAVBPRl,
IDAVBPSI, IDDWIAPP, IDDWICLS, IDDWIJRN, IDAVBP12

Maps the queue descriptor block.
Issued by: IDDWIJRN

Maps the resource manager parameter list. Issued by:
IDAVBPRI

Maps the STAE diagnostic work area. Issued by: IDAVBPRl,
IDDWIFRR

Maps the VIO control block. Issued by:
IDAVBPOI. IDAVBPPI, IDAVBPR2, IDDWIJRN

Maps the task control block. Issued by: IDA VBP 12, IDA VBPO 1,
IDAVBPR2, IDAVBPSI, IDDWIAPP, IDDWICLS,
IDDWIFRR, IDDWIJRN IDDWIMRG

Maps the ASM control area (expands to ACA macro). Issued by:
IDAVBP12, IDAVBPOL IDAVBPSI, IDDWIJRN

Maps the ASM vector table. Issued by: IDA VBP12,
IDAVBPOI, IDAVBPSl, IDDWIJRN

Issuing Module

IDAVBPOI, IDAVBPPI, IDAVBPR2,
IDAVBPSI, IDDWIAPP, IDDWIJRN

IDA VBPS2, IDDWIJRN

IDDWIJRN

IDA VBPR I, IDDWIFRR

IDAVBPCI, IDAVBPOl, IDAVBPPI, IDAVBPRI,
IDAVBPSl, IDDWIAPP, IDDWICLS

IDDWIJRN, IDAVBP12

System generation link-edit macro

IDDWICLS

IDDWITRM

IDDWIAPP

IGCOO02I

IFG0552X, IGGOCLF2, IFG0202K, IDDWIJRN

IGCON06C, IFGOTCOA

Directory 71

DATA AREAS

This section describes each VIO data area and the purpose of all data fields
and flag bytes within each data area. "Where-Modified Reports" list
data-area field names and the VIO module(s) that at some time modify the
contents of the respective fields.

"Data Areas" also includes a graphic representation of the addressing
relationships between non-VIO data areas (that relate to a VIO environment)
and between VIO data areas.

YIO Control Block Relationships
Figure 13 shows the addressing relationships of VIO data areas and non-VIO
data areas. The offset (X'nn') to a data-area address field is placed on the line
that points to the data area associated with the address.

Data Areas 73

VS2.03.807

TCB

RQl:,
X'OO' -

X'04'

X'OS'
~ I'-

.--
X'12'
t--

-
lOB,

DEB

~'IS' X'20'
~ DCB

"-

JSCB JSCB (Active) ACA SDWA

W X'15C' X'140' DSAB D D n X'B4' Queue

JSC:BTCBP X'OO' r--

JSCBSWSP X'I50'

TIOT(s) X'I2'

I DSAB
CPA

X'IO'
f--

X'IO' X'II'

/"'.\

VIO DATA AREAS

WICB

VDSCB X'OS'
I-'--

UCB
X'34'
r-- X'3S'

X'3C VBPPL
X'40'

X'I4'
BUIT I--

DSCB VOPI

OSPCT hl:ader VTRAC'K (VIO Buffer)

COSPCT ex'tension

ACA
ASCB
BUFC
CPA
DCB
DEB
DSAB
DSCB
DSPCT

f)SPCT'fAP
lOB
JNLPARM

}VCB'
VBPHSPUL X'20S'

VBPHTCB X'20C'

ACRONYMS

ASM Control Area
Address Space Control Block
Buffer Control Bloek
Channel Pro!!ram Area
Data Control Block
Data Extent Block
Data Set Association Block
Data Set Control Block
Data Set Page Correspondence
Table
f)SPC'T Pa!ll!-Map rntry
Input/Output Blol:k
Journal Write Parameter List

JSCB
.RQE
SDWA
TCB
TIOT
UCB
VBPPL
VCB
VDSCB
VOPI
VTRACK
WICB

I

JNLPARM

D

DSPCTMAP(s)
(DSPCT Map Entries")

U

·Composed of 4-byte entries-
one per page in the data set.

Job Step Control Block
Request Queue Element
ST AI-: Diagnostic Work Area
Task Control Block
Task I/O Table
Unit Control Block
VBP Parameter List
VIO Control Block
VIO DSCB and VCB
VOPEN Parameter List
Virtual Track (VIO Buffer)
EIP Control Block

Figure 13. VIO Control Block Structure and Related System Control Blocks

74 OS/VS2 VIO Logic

J

VS2.03.807

Where-Modified Report for Non-VIO Data Areas

ASM Control Area (ACA)

I/O Block (lOB)

Request Queue Element (RQE)

This report lists the VIO modules that modify fields within non-VIO data
areas.

Symbol

ACAASID
ACAFLGI
ACALGN
ACAMAXPN
ACASYM

Symbol

IOBCSW
IOBCSWBC
IOBCSWCC
IOBCSWCE
IOBCSWDE
IOBCSWIL
IOBCSWPG
IOBCSWPI
IOBCSWSM
IOBCSWSO
IOBCSWSI
IOBCSWUC
IOBCSWUE
IOBECBCC
IOBERRTN
IOBIOERR
IOBSIOCC

Symbol

RQENRQE
RQESRB

Module(s)

IDAVBPJ2. IDAVBPOI. IDDWIJRN
IDAVBPOI, IDAVBPSI, IDAVBPJ2. IDDWIJRN
IDAVBPSI, IDDWIJRN
IDAVBPOI
IDAVBPJ2. IDAVBPSI

Module(s)

IDDWICPI
IDDWICPI
IDDWICPI
IDDWICPI
IDDWICPI
IDDWICPI
IDDWICPI
IDDWICPI
IDDWICPI
IDDWICPI
IDDWICPI
IDDWICPI
IDDWICPI
IDDWIAPP
IDDWIAPP
IDDWIAPP
IDDWICPI

Module(s)

IDDWIAPP
IDDWIAPP

STAE Diagnostic Work Area (SDWA)

Symbol

SDWACMPC
SDWAEBC
SDWAFLLK
SDWAFREE
SDWAFRMI
SDWAFRM2
SDWAFRM3
SDWAFRM4
SDWALSQA
SDWAREQ
SDWASR03
SDWASR06
SDWASR08
SDWASR09

Module(s)

IDAVBPRI
IDAVBPRI, IDDWIFRR
IDAVBPRI
IDAVBPRI
IDAVBPRI. IDDWIFRR
IDAVBPRI, IDDWIFRR
IDAVBPRI. IDDWIFRR
IDAVBPRI
IDDWIFRR
IDAVBPRl, IDDWIFRR
IDAVBPRI
IDAVBPRI
IDDWIFRR
IDAVBPRI

Data Areas 75

VS2.03.807

Symbol

SDWASRIO
SDWASRll
SDWASRl2
SDWASRl3

. SDWASWA
SDWATOI
SDWAT02
SDWAT03
SDWAT04
SDWAURAL

ModuJe(s)

IDAVBPRI, IDDWIFRR
IDAVBPRI
IDAVBPRI
IDAVBPRI, IDDWIFRR
IDAVBPRl, IDDWIFRR
IDAVBPRI, IDDWIFRR
IDAVBPRI, IDDWIFRR
IDAVBPRI, IDDWIFRR
IDAVBPRI
IDAVBPRl, IDDWIFRR

Where-Modified Report for VIO Data Areas
This report lists the VIO modules that modify fields within VIO data areas.

DSPCT (Data Set Page Correspondence Table)

Symbol

VBPECB
VBPHBUFC
VBPHCLO
VBPHDSG
VBPHDSSZ
VBPHFRAR
VBPHJOU
VBPHRST
VBPHJRN
VBPHJRNP
VB PH LEN
VBPHLGN
VBPHMMP
VBPHNMP
VBPHOPE
VBPHOPT
VBPHPADD
VB PH PAS
VBPHPGLD
VBPHPNP
VBPHPRL
VBPHRBN
VBPHRW
VBPHSAVO
VBPHSPUL
VBPHSTA
VBPHSYM
VBPHSYMI
VBPHSYM2
VBPHTCB
VBPHVOP
VBPHWAD
VBPHWSZ

DSPCT Page-Map Entry

76 OSjVS2 VIO Logic

Symbol

VBPMRLPG
VBPMRSN

ModuJe(s)

IDAVBPOI, IDAVBPPl, IDAVBPR2
IDAVBPPI
IDAVBPCI
IDAVBPJ2, IDAVBPOI
IDAVBPOI
IDAVBPCI, IDAVBPOl, IDAVBPPl, IDAVBPSI
IDDWIJRN
/DAVBPOl, IDDWIJRN
IDAVBPPl, IDDWIJRN
IDDWIJRN
IDAVBPOI
IDAVBPJ2, IDAVBPOI
IDAVBPOI
IDAVBPOl, IDAVBPR2
IDAVBPOI
IDAVBPOI
IDDWIJRN
IDAVBPOI, IDAVBPPl, IDAVBPR2
IDAVBPOI
IDAVBPOI, IDAVBPPl, IDAVBPR2
IDAVBPOI, IDAVBPPl, IDAVBPR2
IDAVBPJ2, /DAVBP01, IDDWIJRN
IDAVBPPI
IDAVBPCI, IDAVBPOl, IDAVBPPl, IDAVBPSI
IDAVBPOI, IDAVBPJ2
IDAVBPOI
IDDWIJRN
IDAVBPOI
IDAVBPOI
IDAVBPOl, IDAVBPJ2
IDAVBPOI
IDAVBPCI, IDAVBPOI
IDAVBPOI

ModuJe(s)

IDAVBPPl
IDAVBPPl, IDAVBPR2

VBPPL (VBP Parameter List)-Includes BUFC and VOPEN Parameter List

VCB (VIO Control Block)

Symbol

VBPOPPRM
VBPODSSZ
VBPRWPRM

BUFCBAD
BUFCDDDD
BUFCDSPC
BUFCMW
BUFCNLAS
BUFCORBA
BUFCRRD
BUFCWLEN

VBPOHPTR
VBPOLEN
VBPOWIA

Symbol

VCBCPFLG
VCBINSTG
VCBLINK
VCBLOAD
VCBOPFLG
VCBRSN
VCBVSA

VDSCB (VIO Data Set Control Block)

VTRACK (VIO Buffer)

Symbol

VDSDSPCT
VDSRBN
VDSVBPPL
VDSWICB
VDSWINDW
VDSWINSI

Symbol

VTDATEND
VTOVFL
VTRACK
VTRKBAL
VTST
VTUPDATE

Module(s)

IDDWIAPP
IDDWIAPP
IDDWIAPP

IDDWIAPP
IDDWITRM
IDDWIAPP
IDDWITRM
IDAVBPPI
IDDWITRM
IDDWITRM
IDDWITRM

IDAVBPOl, IDDWIAPP
IDDWIAPP
IDDWIAPP

Module(s)

IDAVBPOl, IDAVBPR2
IDAVBPR2
IDAVBPOl, IDAVBPPl, IDAVBPR2, IDDWIJRN
IDAVBPR2
IDAVBPOl, IDAVBPR2
IDAVBPOI ,IDAVBPPI
IDAVBPOI, IDAVBPR2, IDDWIJRN

Module(s)

IDDWIAPP
IDDWIJRN, IDDWIMRG
IDDWIAPP, IDDWICLS
IDDWIAPP, IDDWICLS
IDDWIAPP, IDDWICLS, IDDWIMRG
IDDWIAPP

Module(s)

IDDWICPI
IDDWICPI
IDDWITRM
IDDWICPI
IDDWICPI
IDDWICPI

VS2.03.807

Data Areas 77

WICB (EXCP Interrupt Control Block)

Symbol Module(s) Symbol Module(s) J WlCAFRO IDOWlCPl WlCLWCKO IDOWlCPl
WlCAUDIT IDOWlAPP, WICNOXPT IDOWICPI

IDOWlTRM WlCOFLGl IDOWlCPl
WlCAVXFR IDOWlCPl, WlCOFLG2 IDOWlCPl

IDOWlFRR WICOPlNT IDOWlCPl
WlCB IDOWlAPP WICOVFIP IDOWICPl
WICBFKEY IDOWlCPl WlCOVFOP IDOWICPI
WlCCAM IDOWlCPI WlCPCIRS !DOWICPI
WlCCCWER IDOWICPI WICPRT IDOWlAPP
WlCCPlNT IDOWlCPl WICRCSKT IDOWlCPl
WICCSWSV IDOWlCPI WlCRELTP IDOWlCPI
wlccUIWp IDOWlCPl WlCREQXF IDOWlCPl,
WlCOATAX IDOWlCPl IDOWIFRR
WlCOATNO IDOWlCPl WlCRESTA IDOWlCPI
WICOC IDOWlCPl WlCRGSVO IDOWICPI
WlCOEVTP IDOWIAPP WlCRGSVl IDOWlCPl
WlCOL IDOWICPl WICRSTRT IDOWlCPl
WlCERASE IDOWlCPI WlCSCHEQ IDOWlCPI
WICEROSP IDOWlCPl, WlCSCHTC IDOWlCPl

IDOWlFRR WlCSECT IDOWIAPP
WlCERPOV IDOWlAPP WlCSEKRS IDOWICPI
WlCERPSV IDOWlAPP WlCSENSE IDOWlCPl
WlCERPSW IDOWlCPI WlCSEQFG IDOWlCPl
WlCERPWR IDOWIAPP, WlCSID IDOWlCPl

IDOWlCPl WlCSKACC IDOWlCPI
WlCERROR IDOWlCPl, WlCSKAHH IDOWlCPl

IDOWIFRR WICSTART IDOWIAPP
WlCFMASK IDOWIAPP WlCTCB IDOWlAPP
WICFMTW IDOWlCPl WlCTICFG IDOWlCPl
WlCFSIDE IDOWlCPI WICTOL IDOWlAPP
WlCFSKE IDOWICPl WlCTRKRS IDOWlCPl
WIClGAP IDOWIAPP WICTRMSK IDOWlCPl
WIClGP IDOWlAPP WICWCKO IDOWICPl
WlClNTRP IDOWlCPl WlCWORK IDOWICPI
WlCKL IDOWlCPl WICWRTIP IDOWlCPl
WlCKYGP IDOWlAPP WICWSCKO IDOWlCPl
WlCLGAP IDOWlAPP WlCXFCOM IDOWICPI
WlCLGP IDOWlAPP WlCXOFLG IDOWlCPl
WICLSTOP IDOWICPl

78 OS/VS2 VlO Logic

VS2.03.807

ACA .. ASM (Auxiliary Storage Management) Control Area
Mapping Macro: ILRACA

Size: 24 bytes

Created by: IDAVBPOl, IDAVBPJ2, IDAVBPSl, IDDWIJRN

Purpose: Parameter block between VIO and ASM

Released by: IDAVBPSI (as part of DSPCT header), IDAVBPJ2

Field Description and Format:

Bytes and
Offset Bit Pattern Field Name Description

0(0) ACAOP Operation flag field
Transfer page=X'04'
Assign LGN=X'08'
Release LGN=X'OC'
Save LG/LGN=X'10'
Activate LG=X'14'

1(1) ACAFLGI Flag field
1... ACAFMEM Virtual memory logical group. If off VIO logical

group
.. I. ACAFFIX ASPCT must be fixed. If off ASPCT may be

paged
Note: bit always off for VIO

I... ACAFSYM Storage locator symbol being released. If off
logical group being released

2(2) 2 ACAASID ASID of memory associated with logical group

4(4) 4 ACAESV4 Reserved

8(8) 8 ACALGN Logical group number

8(8) 4 ACALGID Logical group identifier
12(C) 4 ACARPN Relative page number

16(10) 8 ACASYM Locator symbol of group
16(10) 8 ACATOLP Target LPID associated with target page
16(10) 4 ACATOLGI Logical group ID
16(10) 4 ACAMAXPN Largest relative page number to be allowed for

the group
20(14) 4 ACATORPN Relative page number

Data Areas 78.1

I DSPCT Header

VS2.03.807

Mapping Macro: IDA VBPH

Size: 216 bytes (plus a variable number of 4-byte fields pointing to DSPCT
page-map pages).

Created by: IDA VBP01 (open) or IDAVBPJ2 (restart). Located in the
scheduler work area (SWA), subpoo1236 or 237, protection key 1. The
subpool number and TCB for GETMAIN are determined by the JSCBSWSP
and JSCBTCBP fields in the active JSCB.

Purpose: The DSPCT contains the following:

• Data set identifiers.

• Indicators reflecting the type of VIO operation being performed.

• VIO control blocks (VCBs) that are used to control the paging operations
performed on the VIO buffer by RSM.

• Pointers to the DSPCT page-map pages, to the buffer control block
(BUFC) used in performing actual paging I/O on the VIO buffer, and to
the VOPEN parameter list (VOPl).

• Subpool number and TCB used by GETMAIN for DSPCT storage.

Referenced by: IDAVBPC1, IDDWIJRN, IDAVBPJ2, IDAVBPOl,
IDA VBPP 1, IDA VBPR 1, IDA VBPR2, IDA VBPS 1, IDDWIJRN.

Released by: IDA VBPS 1.

Field Description and Fonnat:

Bytes and
Offset Bit Pattern Field Name

0(0) 4 VBPHNAME

4(4) 4 VBPHLEN

8(8) 8 VBPHLGN

8(8) 4 VBPHLGID

16(10) 8 VBPHSYM

24(18) 2 VBPHPNP

26(1 A) 2 VBPHDSG

Description

Block identifier-DSPC.

Length of DSPCT header.

Logical group number (LGN) assigned to VIO
data set by ASM.

First word of the LGN is a logical group
identifier (LGID) that is used by ASM to access
page tables that connect page identifiers to
auxiliary storage slots.

Storage-locator symbol ("S" symbol) assigned
by ASM during a save operation. Passed to
ASM and used to regain access to a data set
during a restart or for scratching a saved data
set.

Number of pages (minus I) containing data that
were read into the VIO buffer by a prior
operation. Note that an assign operation is
done on only those pages of the virtual track
that were written to auxiliary storage
previously. Subsequent move-out operations are
done only on those pages-not the entire
track-unless module IDDWICPI has moved
data into pages that have not been previously
written.

Set at VIO open to the LGID value provided by
ASM and stored in VBPHLGID. Referred to as
"DSPAGEID generator" because when
combined with a relative page number (RPN)
value it enables RSM to access a specific data

Data Areas 79

VS2.03.807

Bytes and
Offset Bit Pattern Field Name Description

set page in real storage. (If LGID is greater J than 64K, YBPHDSG is set to 0 and reclaim is
not attempted.)

28(1 C) 4 YBPHDSSZ Size in pages of the YIO data set. The
calculation is based on the number of tracks in
the YIO extent times the track size rounded-up
to a page boundary divided by the page size
(4096 bytes) plus the number of pages required
for the DSPCT page-map. (1023 data set pages
require one map page.)

32(20) YBPHOPT Processing-option flags:

.. 1. YBPHRST Indicates that the DSPCT is a copy from the
job journal and is not initialized by IDAVBPOI.

... 1 VBPHPAS Indicates that the prior operation was an assign
(read) request.

1. .. YBPHDEL The logical group has been released. This was
detected during restart processing.

.1.. YBPHPADD Indicates that data set pages exist in auxiliary
storage.

.. 1. YBPHJRN Indicates that pages were added to or modified
in the data set (1) since the data set was created
if the YBPHJOU flag is off or (2) since the last
time it was journaled if the YBPHJOU flag is
on.

... 1 YBPHJOU Indicates that the DSPCT has been journaled
and the logical group saved.

33(21) YBPHSTA Routine-in-control indicators and data set status
flags: J l... YBPHOPE YIO open processing is in progress. Indicates
that IDA YPBOI is in control.

.1.. YBPHRW The YIO buffer is being filled (assign), emptied
(move-out), or cleared (move-out-null).
Indicates that IDA YBPPI (YREADWR
processing) is in control.

... 1 YBPHSCR The YIO data set is being scratched. Indicates
that IDAVBPS 1 is in control.

1. .. YBPHCLO YIO close processing is in progress. Indicates
that IDA YBPC I is in control.

34(22) 2 YBPHNMP Current number of DSPCT page-map pages.

36(24) 2 YBPHMMP Maximum number of DSPCT page-map pages
based on the maximum size of the data set with
one 4-byte DSPCT page-map entry per data set
page.

38(26) 2 YBPHWSZ Size in pages of the YIO buffer. The size of a
YIO buffer is based on the size of a virtual track
rounded-up to a page boundary.

40(28) 4 VBPHWAD Address of the YIO buffer. The YIO buffer
resides in subpool 229.

80 OS/VS2 VIO Logic

VS2.03.807

Bytes and
Offset Bit Pattern Field Name Description

44(2C) 4 VBPHPRL Relative page number (RPN) of the first page in
the current VIO buffer that was placed there by
an assign (read) request. This value is used
when initializing VCBs to move-out (write) or
move-out-null (disconnect) the pages in the VIO
buffer.

48(30) 4 VBPHRBN Relative block number (RBN) of a journaled
DSPCT header. A unique identifier used to
differentiate DSPCT headers of different VIO
data sets for a given job.

52(34) 4 VBPHBUFC Address of the buffer control block (BUFC)
used to control actual I/O.

52(34) 4 VBPHVOP Address of the VIO open parameter list
(VOPl).

56(38) 4 VBPHFRAR Address of the recovery work area established
by the SETFRR macro instruction.

60(3 C) 4 VBPHVCB Address of the DSPCT extension.

64(40) 72 VBPHSAVE VBP's first register save area.

136(88) 72 SECSAVE VBP's second register save area.

208(DO) VBPHSPUL SW A subpool number used by
GETMAIN/FREEMAIN for DSPCT header
and DSPCT page-map pages.

209(Dl) 3 VBPHJRNP Pointer to module IEFXB500 which is passed
from IDDWIJRN to IDDWIJRN.

Data Areas 8]

VS2.03.807

DSPCT Extension

212(D4) 4 VBPHTCB TCB under which GETMAIN/FREEMAIN is
done for DSPCT header and DSPCT page-map
pages.

216(D8) Multiple VBPHMAD Addresses of DSPCT page-map pages
4-byte (variable number: one address entry for
entries each DSPCT page-map page).

Note: The first 48 bytes of the DSPCT (through field VBPHRBN) are written to the job
journal.

Mapping Macro: IDA VBPH pointed to by DSPCT header.

Size: 36-byte fixed section plus a variable section (48 times the window size
in pages).

Created by: IDAVBPOI in LSQA (subpooI254).

Purpose: Used to map VCBs for move-out and assign requests.

Referenced by: IDA VBPO 1, IDA VBPP 1, IDA VBPR2.

Released by: IDA VBPS lorIDA VBPS2.

Field Description and Format:

Bytes and
Offset Bit Pattern Field Name Description

0(0) 36 VBPVFXD Fixed section.

0(0) 4 VBPVNAME Block ID-VCB

4(4) 4 VBPVLEN Length of block.

8(8) 24 VBPVMAP Used as a VCB for move-out of DSPCT
page-map pages.

8(8) 4 VCBSAVAD Address of first VCB to be passed to
RSM.

32(20) 4 VBPXAPTR Address of first assign VCB.

36(24) VBPVMOVE Move-out VCBs. The number of VCBs
here is equal to the window size in pages.
Each VCB is 24 bytes long.

VBPVASIN Assign VCBs. The number of VCBs here
is equal to the window size in pages. Each
VCB is 24 bytes long.

DSPCTMAP-DSPCT Page-Map Entry
Mapping Macro: IDA VBPM

82 OS!VS2 VIO Logic

Size: 4 bytes each. One page-map entry is created for each VIO data set page
and for each page of page-map entries. Assigned in multiples of 1024 (that is,
4096-byte pages).

Created by: DSPCT page-map pages are acquired by IDA VBPR2 and
individual entries are generated by IDAVBP01, IDAVBPP1, and
IDA VBPR2. Acquired in SW A, subpool 236 or 237, protection key 1. The
subpool number and TCB for this GETMAIN or FREEMAIN is determined
by fields VBPHSPUL and VBPHTCB in the DSPCT header.

Purpose: When a page in the VIO buffer is written to auxiliary storage, the
real storage number of its page frame is placed in its DSPCT page-map entry.

J .'

VS2.03.807

When an assign (read) request is made, the RSN in the DSPCT page-map
entry is passed to the paging supervisor. If the page-frame-table entry (PFTE)
for the RSN is still valid, the page frame is reclaimed, and no actual I/O is
performed.

Referenced by: IDAVBPOl, IDAVBPPl, IDAVBPR2.

Released by: IDA VBPSI.

Field Description and Format:

Offset

0(0)

1(1)

2(2)

Bytes and
Bit Pattern

1. ..

2

Field Name

VBPMFLG

VBPMRLPG

VBPMRSN

Description

Flag byte:

Indicates that the VIO data set page
associated with this DSPCT page-map
entry has been written to auxiliary
storage.

Not used.

Real storage number (RSN) of the real
storage page frame that last contained the
page associated with this DSPCT
page-map entry.

Data Areas 82.1

VS2.03.807

The information on this page has been deleted by OS!VS2 MVS Supervisor Performance #2.

Data Areas 83

. VS2.03.807

JNLP ARM-Joumal Write Parameter List
Mapping Macro: IEFZBS07

Size: variable. 8 bytes for the header plus 16 bytes for each entry.

Created by: IDDWIJRN. Located in subpool230, key O.

Purpose: Parameter list passed from VIO journaling routine to scheduler
journal write routine. List contains one entry for each VDSCB and each
DSPCT associated with each VIO data set to be journaled.

Referenced by: IEFXBSOO.

Released by: IDDWIJRN.

Offset

0(0)

1(1)

2(2)

4(4)

0(0)

4(4)

5(5)

8(8)

12(C)

Bytes and
Bit Pattern

... 1

1. ..
.1..

2

4

4

3

4

4

Field Name

JNLPCALL
JNLDRCT

JNLPRTCD
JNLERR
JNLABSNT

JNLPPTRX

JNLBLKAD

JNLPID

JNLPRLNG

JNLRBN

JNLNBLK

Description

Caller Flags
Direct Write to Journal

Return code field
Journal error return code
No journal return code

Reserved

Pointer to first entry

Address of block to be journaled

LD. (defines type of block as DSPCT or
VDSCB)

Block length

RBN or zero

Pointer to the next block

Data Areas 83.1

VBPPL-VBP Parameter List

84 OS!VS2 VIO Logic

Mapping Macros: IDDVBPPL, IDABUFC, IDA VOPI

Size:

• IDDVBPPL, 184 bytes.

• IDABUFC (VREADWR parameter list), 40 bytes.

• IDAVOPI (VOPEN parameter list), 24 bytes.

Created by: IDDWIAPP. Located in subpool 230, key 1.

Purpose: EIP (EXCP intercept processor) uses the VBPPL to pass control
information to VBP (virtual block processor). As a VOPEN parameter list, a
pointer to the VOPl (VOPEN interface block) is passed to VBP. As a
VREADWR parameter list, VOPl is overlaid with the BUFC (buffer control
block), and a pointer to the BUFC is passed to VBP.

Referenced by:

• IDDVBPPL-IDDWIAPP, IDDWICLS, IDDWICPI, IDDWITRM.
• IDABUFC-IDAVBPPl, IDAVBPRl, IDDWIAPP, IDDWITRM.
• IDAVOPI-IDAVBPOl, IDAVBPRl, IDDWIAPP.

Released by: IDDWICLS.

Field Description and Format:

Bytes and
Offset Bit Pattern Field Name Description

0(0) 72 VBPPLSAV First register save area.

72(48) 72 VBPPLSV2 Second register save area.

144(90) 40 VBPRWPRM VREADWR parameter list (lDABUFC).

144(90) 24 VBPOPPRM VOPEN parameter list (IDAVOPI).

VREADWR Parametel'll Set in the BUFC:·

Bytes and
Offset Bit Pattern FIeld Name Description

146(92) BUFCIOFL Control flags:

1. .. BUFCMW Indicates that the VIO buffer is to be
written to auxiliary storage.

.. 1. BUFCRRD Indicates that pages are to be read into
the VIO buffer from the VIO data set in
auxiliary storage.

147(93) BUFCFLG2 Status flags:

.1.. BUFCNLAS Indicates that the current channel
program command is attempting to access
a nonexistent track.

152(98) 4 BUFCDDDD RBA of the first page to be read into the
VIO buffer.

156(9C) 4 BUFCORBA RBA of the first page in the VIO buffer to
be written to auxiliary storage.

164(A4) 4 BUFCBAD Address of the VIO buffer.

*Note that only the fields used by VIO are listed here-the complete BUFe is not
shown.

Offset

I 172(AC)

176(BO)

Bytes and
Bit Pattern

2

4

Field Name

BUFCWLEN

BUFCDSPC

YOPEN Parameters Set in the YOP1:

144(90) 4 VPBOHPTR

148(94) 4 VBPOWIA

152(98) 4 VBPOLEN

156(9C) 4 VBPODSSZ

160(AO) 4 VBPOFLG

YS2.03.807

Description

Length of data in VIO buffer in bytes
(that is, the displacement from the
beginning of the VIO buffer to the end of
the last byte of data in the buffer).

Address of DSPCT.

Address of DSPCT.

Address of VIO buffer.

Length in pages of the VIO buffer.

Maximum data set size in bytes.

Option flags: not used.

Data Areas 85

VS2.03.807

VCB-VIO Control Block

86 OS/VS2 VIO Logic

Mapping Macro: IHA VCB

Size: 24 bytes.

Created by: IDA VBPO 1. Acquired in LSQA (subpool 254) as part of an
extension of the DSPCT header.

Purpose: Contains information that is passed to RSM to control paging.

Referenced by: IDA VBPOl, IDA VBPPl, IDAVBPR2, IDDWIJRN.

Released by: The system, when the job step terminates.

Field Description and Fonnat:

Offset

0(0)

4(4)

8(8)

16(10)

17(11)

18(12)

20(14)

Bytes and
Bit Pattern

4

4

8

1. ..
.. 1.

1...

1 ...

.1

.. I.

... 1

.... 1 ...

2

4

Field Name

VCBLINK

VCBVSA

VCBLPID

VCBOPFLG

VCBMVOUT
VCBASIGN
VCBNDISC

VCBCPFLG

VCBNOVAC

VCBINVSA

VCBELPID

VCBNOAUX

VCBEFIX

VCBRSN

VCBDSPID

Description

Address of next VCB to be processed or 0,
if last.

Virtual storage address of the page to be
read (assign function) or written
(move-out function) or disconnected
(move-out-null function).

Logical page identifier.

Operation flags:

Write (move-out) requested.
Read (assign) requested.
Nondisconnect option specified with a
write (move-out) request. Only used when
writing DSPCT page-map pages.

Completion flags:

Assign error. The page identified by the
VCBVSA field was previously read and
was not disconnected by a move-out or
move-out-null request before the current
read (assign) operation.
Invalid virtual storage address. A
GETMAIN macro instruction was not
issued for the page identified by the
VCBVSA field.
The page identified by the VCBVSA field
belongs to an LPID other than the LPID
in the VCBLPID field.
The page identified by the VCBVSA field
will not be written to the data set because
it was not brought into real storage by the
prior read request or because data in the
page has not been modified.
Write (move-out) error. the page
identified by the VCBVSA field is fixed in
real storage and cannot be written to the
data set in auxiliary storage.

RSN (real storage number) of the page
frame that last contained the page
associated with the VCBVSA.

DSPID (data set page id) that is used to
reclaim the page associated with the VCB.

VDSCB-Virtual Data Set Control Block
Mapping Macro: IDDvnSCB

Size: 205 bytes.

Created by: DADSM allocate, module IGG03251 (and, if during restart,
module IDDWIMRG) in the scheduler work area (SWA) with a protection
key of 1 (scheduler key). The subpool used is determined by the JSCBSWSP
field in the active JSCB.

Purpose: The virtual data set control block contains a format-l DSCB
describing the VIO data set and a UCB for the virtual device identified by the
UNIT keyword parameter in the user's DO statement. It also contains
pointers to various VIO control blocks.

Referenced by: IDDWIAPP, IDDWICLS, IDDWICPI, IDDWIFRR,
IDDWIJRN, IDDWIMRG, IDDWITRM.

Released by: Scheduler at job termination (along with other data areas
contained in the SWA).

Field Description and Format:

Bytes and
Offset Bit Pattern Field Name

0(0) 45 VDSUCB

0(0)

4(4) 2

13(D) 3

28(IC) 6

45(20) 7 VDSSEEKA

52(34) 4 VDSDSPCT

56(38) 4 VDSWICB

60(3C) 4 VDSVBPPL

64(40) 4 VDSWINDW

68(44) 2 VDSTRKSI

70(46) 2 VDSWINSI

72(48) 2 VDSABSTT

74(4A) 2 VDSNMTRK

76(4C) 4 VDSRBN

80(50) 125 VDSDSCB

Description

UCB for the virtual device being
simulated in external page storage.

VIO UCB identifier.

X'3FFF' channel and unit address.

"VIO"-UCBNAME.

X'404040404040' volume serial number.

DASD seek address of the current track
in the VIO buffer.

Address of DSPCT header.

Address of WICB.

Address of VBPPL.

Address of VIO buffer.

Maximum track size, in bytes, of the
virtual device.

Size, in pages, of the VIO'buffer. Equal to
the track size of the virtual device
rounded-up to a page boundary.

Absolute track number of the first track
of the extent for the VIO data set. Set to
X'FFFF', by module IGCOOO2I, when the
data set is scratched.

Number of tracks in the extent for the
VIO data set.

Relative block number (RBN). A unique
identifier for a data set's VDSCB created
by the scheduler's journal-write routine,
module IEFXB500, when a data set is
journaled for the first time. Used by the
scheduler to reaccess a particular data
set's VDSCB at restart time.

Format-l DSCB.

Data Areas 87

VTRACK-VIO Buffer.

88 OS/VS2 VIO Logic

Mapping Macro: IDDTRACK

Size: Varies according to the track size (rounded-up to a page boundary) of
the virtual DASD associated with the unit name provided by the user issuing
the EXCP request.

Created by: IDDWIAPP. Located in the LSQA, subpool229, in the
protection key of the user issuing the EXCP request.

Purpose: Used to simulate I/O operations associated with the EXCP request.
Records are moved between the VIO buffer and either the user or the access
method buffer. When necessary, actual paging I/O is performed; that is,
pages in the VIO buffer are paged to and from the VIO data set in external
page storage.

Referenced by: IDDWITRM, IDDWICPI.

Released by: IDDWICLS and IDDWIAPP via a FREEMAIN macro
instruction.

Field Description and Format:

Bytes and
Offset Bit Pattern Field Name Description

0(0) 4 VTDATEND Displacement from the beginning of the
track to the end of the last byte of data on
the track.

4(4) 4 VTRKBAL Current track balance.

8(8) VTST Track status flags:

l... VTINIT Indicates that the track has been
initialized.

.1.. VTOVFL Indicate that the last record in the track is
an overflow record.

.. I. VTUPDATE Indicates that the track contains new or
modified records.

9(9) 5 VTHA Home address.

9(9) VTHAFLAG Flag byte in home address.

10(A) 4 VTHACCHH Address portion of home address.

14(E) 16 VTRO RO (record zero).

14(E) 8 VTROCNT ROcount.

22(16) 8 VTRODATA RO data.

30(tE) VTR1 This field marks the beginning of the first
record in the track.

..J

('

r

r

WlCB-EXCP Intercept Control Block
Mapping Macro: IDDWICB

Size: 124 bytes.

Created by: IDDWIAPP. Located in subpool230 with the protection key of
the user that issued the EXCP request.

Purpose: Contains status and control information that is used in interpreting
and simulating execution of the channel program associated with the EXCP
request.

Referenced by: IDDWIAPP, IDDWICLS, IDDWICPI, IDDWIFRR,
IDDWIJRN, IDDWIMRG.

Released by: IDDWIAPP and IDDWICLS.

Field Description and Format:

Offset

0(0)

0(0)

I(I)

1 (1)

3(3)

3(3)

5(5)

7(7)

8(8)

12(C)

15(F)

16(10)

16(10)

24(18)

32(20)

33(21)

Bytes and
Bit Pattern

I ...

.1..

8

6

2

4

2

2

4

3

16

8

8

3

Field Name

WICSEEKA

WICSKAM

WICSKBCH

WICSKABB

WICSKACH

WICSKACC

WICSKAHH

WICSKAR

WICSTART

WICAUDIT

WICPRT

WICRSTCP

WICCCWI

WICCCW2

WICERPSW

WICERPOV

WICERPWR

WICERPSV

Description

Actual device address (DASD seek
address) of the track to be placed in the
VIO buffer.

Extent number. This number is used to
access a 16-byte extent description
segment in the DEB.

BBCCHH. Cell number (BB), cylinder
number (CC), and head number (HH) of
a track.

Two bytes of zeros as cell number (BB).

Cylinder head number (CCHH).

Cylinder number (CC).

Head number (HH).

Relative block number of a track, or
physical record (R).

Starting address of channel program.

Contains EBCDIC characters denoting
the EIP module in control: 'APP', 'CPI',
'TRM'.

Used in module IDDWIFRR's recovery
processing.

Protection key of the current user and of
the WICB and VIO buffer.

Channel program used by an error
recovery procedure (ERP) to restart
processing following the identification of
a recoverable error condition.

First restart CCW.

Second restart CCW.

ERP control flags:

Indicates an ERP restart following an
overflow-incomplete condition.
Indicates an ERP restart of a write CCW
with prerequisite checking having been
previously satisfied.

Address of the CCW that was restarted.

Data Areas 89

Bytes_
Off_ BIt Pattern FIeld NUDe Desaiption

36(24) 4 wiCCAM Address of the count field of the current ,
record.

40(28) 2 WICRELTP Position in current record: home address,
count, key, or data.

42(2A) 2 WICKL Key length of the current record.

44(2C) 4 WICDL Data length of the current record.

48(30) 4 WICAVXFR Number of record bytes available for a
read or unformatted write operation.

52(34) 4 WICREQXF Number of bytes moved for a CCW
operation.

56(38) WICOFLGI Current operation-code flags:

1 ... WICWCKD Write-count-key-data (WCKD).
.1 .. WICWSCKD Write-special-count-key-data (WSCKD).
.. 1. WICERASE Erase .
... 1 WICFMTW Format-write operation. Set for WCKD.

1 ... WICOVFOP Indicates that a RD, RKD, RCKD, WD,
or WKD operation qualifies for overflow
processing.

.1 .. WICSCHTC Indicates that the current operation
sequence is a SID, TIC *-8, SID.

.. 1. WICSID Indicates that the current operation is a
SID, TIC *8, SID.

57(39) WICOFLG2 Additional operation-code flags:

1. .. WICXFCOM Indicates that data transfer is completed
or not desired.

.1 •. WICDATAX Indicates that data transfer has been ,
initiated.

.. 1. WICINTRP Indicates that a condition exists that
warrants termination of
channel-program-interpretation
processing by module IDDWICPI.

... 1 WICERROR Indicates that an error was detected after
the current operation was initiated.

1. .. WICSCHEQ Indicates that the current operation is
either a SID or SK.

.1.. WICDC Indicates that data chaining has been
requested.

.. 1. WICWRTIP Indicates that a write operation is in
progress.

58(3A) WICSEQFG Sequence-checking flags:

1... WICLWCKD Indicates that the last operation was a
write-count-key-data (WCKD).

.1.. WICFSIDE Indicates that a search-ID-equal operation
has been satisfied.

.. 1. WICFSKE Indicates that a search-key-equal
operation has been satisfied.

.. 1. WICTICFG Indicates that a TIC command is being
processed.

59(3B) WICXOFLG Channel program flags;

1. .. WICNDXPT Indicates that the index point has been
passed.

.1 .. WICRCSKT Indicates that the current operation
sequence is: RC, SK, TIC *-16.

6O(3C) 4 WICWORK General work area. ,
90 OS/VS2 VIO Logic

Bytes and
Offset Bit Pattern Fleld Name Description

(' 64(40) 2 WICERDSP Displacement in the error table for the
CCW in error. The error table is used to
determine the particular sense
information that is set in the lOB.

66(42) WICLSTOP Operation code of the last CCW.

67(43) WICCUROP Operation code of the current CCW.

68(44) WICRESTA Restart flags:

1 ... WICPCIRS PCI restart.
.1 .. WICOVFIP Indicates that current processing is due to

the restart of an overflow-incomplete
operation.

.. I. WICSEKRS Seek routine invoked the track manager,
module IDDWITRM.

... 1 WICTRKRS Indicates that processing has been
interrupted to acquire a new track.

1 ... WICTRMSK Invalid seek address detected by the track
manager, module IDDWITRM.

... 1 WICRSTRT Indicates that a restart condition exists.
The specific type of restart is indicated by
the other bit settings in this byte.

69(45) WICFMASK File mask.

70(46) 16 WICDVTAB Device-characteristics-table information
for the device being simulated in paging
space:

70(46) 2 WICMAXCC Maximum cylinder number.

(' 72(48) 2 WICMAXHH Maximum head number.

74(4A) 2 WICTRKCP Track capacity.

76(4C) 2 WICIGAP Normal interrecord gap overhead.
(WICIGP)

78 (4E) 2 WICLGAP Interrecord gap overhead for last record.
(WICLGP)

80(50) 2 WICKEYGP Interrecord gap overhead for keyed
(WICKYGP) record processing.

82(52) 2 WICTOL Tolerance.

84(54) WICSECT Highest permissable sector value. If zero,
rotational position sensing (RPS) is not
supported.

85(55) WICDEVTP Device type.

86(56) 2 WICSENSE Save area for sense information.

88(58) 4 WICEXPTR Address of DEB extent.

92(5C) 28 WICREGSV Register save area.

116(74) 4 WICDATND Address of the end of the current track.

120(78) 4 WICTCB TCB used by GETMAIN when storage is
acquired for WICB, VBPPL, and
VTRACK.

('

Data Areas 91

r

r

r

DIAGNOSTIC AIDS

VS2.03.807

This section contains the following information:

• ABEND completion codes issued by VIO are listed with their reason
codes. The modules that set the ABEND codes are identified, and
explanations of the error conditions associated with the ABEND and
reason codes are provided. (See "Error Completion Codes Issued by
VIO.")

• Processing performed by VIO functional recovery routines for individual
VIO modules is described. Diagnostic information that is recorded by these
routines in system. data areas is also described. (See "Processing Performed
by VIO's Recovery Routines.")

• Tables (Figures 14 and 15) are provided that relate channel program error
conditions to the labels of VIO code segments that detect the conditions.
(See "Locating Code Segments that Detect Channel Program Errors.")

• A path is shown that can be followed in a system dump to isolate a VIO
module that detects an error condition. (See "Debugging VIO Errors.")

• The single VIO error message that can be issued by the VIO component is
described. (See "Messages Issued by VIO.")

Error Completion Codes Issued by VIO
The following completion codes are issued by VIO modules. (For an extended
description of the meanings of the codes and of the appropriate programmer
responses, refer to OS/VS Message Library: VS2 System Codes. Reason
codes are contained in register 15.

ABEND Reason
Code Code

OEI

2XX

3XX

OE2

2XX

Explanation

Issued by IDAVBPO I. Indicates that a VIO data set could not be
successfully opened.

An assign-null (virtual allocate) operation performed by RSM to
acquire a DSPCT page-map page or the VIO buffer resulted in
an error.

ASM processing is unable to assign a logical group number
(LON) to the VIO data set.

Issued by IDAVBPOI. Indicates that an error occurred while
processing the first EXCP request after a restart.

An assign-null (virtual allocate) operation on the VIO buffer or
an assign (read) operation on the DSPCT page-map pages
performed by RSM resulted in an error.

Diagnostic Aids 93

VS2.03.807

ABEND Reason
Code Code Explanation

OE3 Issued by IDA VBPPI. Indicates that an error occurred when ,
RSM attempted to perform paging operations against the VIO
buffer.

004 An invalid RBA was passed to VBP. Probable cause of error is a
DEB with extent descriptions which do not fall within the
allocated extents as described in the virtual data set control block
(VDSCB). Can also be caused if an EXCP is issued to read the
format-l DSCB on the volume.

2XX RSM is unable to move-out (write) or assign (read) pages in the
VIO buffer to or from the VIO data set.

OE4 Issued by IDA VBPS 1. Indicates that an error occurred while
ASM attempted to release (or scratch) the resources associated
with a VIO data set-release-logical-group function.

3XX ASM was unable to RELEASE the logical group for this record.

OE5 Issued by IDA VBPR 1. Indicates that VIO close processing
performed against the VIO buffer resulted in an error.

2XX RSM is unable to move-out-null (disconnect) the pages in the
VIO buffer from the VIO user's address space because of an
error condition.

OE6 Issued by ID D WIAPP. Indicates that restart processing is
attempting to access a scratched data set.

018 See the explanation for the OE6 ABEND code.

008 Scheduler module IEFXB500 returned an unsuccessful
completion code for a write request for the job journal.

OE7 Issued by IDDWIJRN. Indicates that an error occurred while
journaling the DSPCT header at either step termination or at a ,
checkpoint.

2XX RSM is unable to move-out (write and disconnect) the DSPCT
page-map page(s).

3XX An error occurred when ASM attempted to save the status of a
logical group-ASM's save-logical-group function.

~

94 OS!VS2 VIO Logic

r

('

r

VS2.03.807

Processing Performed by VIO's Recovery Routines
VIO modules IDDWIFRR and IDA VBPRI contain the recovery procedures
that perform recovery processing and cause diagnostic information to be
retained if the VIO user's address space is accessible. The diagnostic
information consists of volatile data areas and/or system work areas-the
scheduler work area (SW A) and the local system queue area (LSQA)-that
contain other VIO data areas and job-related system control blocks,
respectively.

General Notes on Recovery Process;ng

VIO source modules use the SETFRR and EST AE macro instructions to
establish addressability to recovery routines that relate to the individual
source modules. When invoked by R/TM (recovery/termination manager),
the recovery routines use SDUMP and SETRP macro instructions to cause
selected control blocks and/or system work areas to be written to system data
sets. Further iruormation about the effects of these macro instructions and
about the situations in which they are employed is provided under the
headings that follow.

Establishing Addressability to Recovery Procedures

The functional recovery environment for VIO processing is set by individual
VIO modules by issuing SETFRR or EST AE macros. The macro expansions
set the address of recovery routines for particular modules in a
last-in/first-out (LIFO) list that is used by R/TM (recovery/termination
manager) during error-recovery processing. The macro--ESTAE or
SETFRR--employed to establish address ability to VIO FRRs (functional
recovery routines) is selected based on the following considerations:

• If the local lock is held by the module setting the recovery environment
and if the recovery routine wants the local lock to be held when either it or
the retry routine is processing, the SETFRR macro is used. (Note that
routines established by the SETFRR macro receive control with the local
lock being held.)

• If the local lock is not held by the module setting the recovery environment
or if retry processing can operate without the local lock being held, the
ESTAE macro is used. (Note that if an ESTAE recovery routine is to be
entered, the local lock (if held) is released before entry.)

Diagnostic Aids 9S

Methods of Recording Diagnostic Information

Functional and EST AE recovery procedures can record the status of their
virtual storage environments in the following ways:

• By issuing an SDUMP macro, which causes the contents of the 4K-byte
SDUMP buffer in the SQA (when the buffer is available) and the specified
system work areas and user region to be written in a SYSl.DUMP data set.
(There are ten SYSl.DUMP data sets, SYS1.DUMPOO-09.) A
branch-entry form of the SDUMP macro is used when the local lock is
held; otherwise, an SVC form is used.

• By issuing a SETRP macro, specifying RECORD = YES, which directs
R/TM to write the SDWA (STAE diagnostic work area) to the
SYSl.LOGREC data set.

• By setting flags in the SDW A that cause R/TM to write specified system
work areas and VIO data areas to a user-specified dump data set
(SYSABEND or SYSUDUMP) when percolation through recovery
routines is completed. However, the VIO data areas specified by a given
VIO recovery procedure may not be written because subsequent recovery
routines may overlay the data area addresses with other addresses-the
data areas corresponding to the final four addresses listed in the SDW A are
written out when percolation is completed.

Note: The data areas are not written if the indicator in the SDW A
(SDW AREQ flag) is turned off by a succeeding FRR and remains so until
percolation is completed. Also, the system work areas (SW A and LSQA)
are not dumped if succeeding routines alter the indicators set by a recovery
routine in the SDWA (SDWASWA and SDWALSQA flags). Since the
dump is not taken by branch entry SDUMP until the local lock is released,
the header of the dump may be overlayed by other data.

Analyz.ing Diagnostic In/ormation Recorded by Recovery Routines

The information that is recorded on SYS1.LOGREC and SYSl.DUMP can
be retrieved by the IFCEREPO and AMDPRDMP service aids, respectively.

Analyzing SYS1.DUMP Data Sets

To get a dump of a SYS1.DUMP data set, use the AMDPRDMP service aid
as described in OS/VS2 System Programming Library: Service Aids. The
SDUMP macro allows VIO recovery routines to dynamically take limited
dumps containing volatile workareas before the areas are swapped-out or
modified. SDUMP macros are issued to cause dumps to be taken to record the
status of the current environment whether retry or percolation is performed.

Analyzing SYS1.LOGREC Data Set

96 OS!VS2 VIO Logic

Information written by recovery routines to the SYS1.LOGREC data set is
used primarily to monitor incidents-both when retry is attempted and when
percolation to the next recovery routine takes place. To get a dump of the
SYS1.LOGREC data set, use the IFCEREPO service aid as described in
OS/VS2 System Programming Library: SYSI.LOGREC Error Recording.
IFCEREPO will format the standard area-the first 404 bytes~f each
SDW A into a series of titles, each followed by pertinent data found in the
standard area. IFCEREPO will put the variable area-the last 1 08 byte~f
each SDW A in an alphanumeric or hexadecimal format, whichever is
specified. The VIO recovery modules, IDDWIFRR and IDA VBPRl, require

.,

,

,

('

('

r

VS2.03.807

the data in the variable area to be in alphanumeric format so that the
following messages can be constructed.

Module IDA VBPRI constructs a diagnostic message of the following format:

jobname,VIO,modname,addresses

where:

jobname An eight-byte job name from the nOT.

modname The VIO module in control or last in control when the error was
detected.

addresses This area contains a list of addresses of the pertinent control
blocks which existed at the time of the error. The list supplied
depends on the module in control at the time of error. The
format and list for each module are as follows:

Module Format and List

IDAVBPCl A(DSPC)=a
IDAVBPOl A(DSPC)=a,A(VOPl)=a
IDAVBPPl A(DSPC)=a,A(BUFC)=a
IDAVBPSl A(DSPC)=a

where:

a is the address of the control block.

DSPC locates the DSPCT header.

VOP 1 locates the VOPEN parameter list passed to module
IDAVBPOI.

BUFC locates the VREADWR parameter list passed to
module IDA VBPPI.

Diagnostic Aids 97

Module IDDWIFRR constructs a diagnostic message of the following format:

JOBNAME=jobname,VIOLMOD=IDDWI,function,addresses

~re: ,

jobname An eight-byte job name from the nOT.

function A code which indicates which VIO module was in control or last
in control when the error was detected. If the code is WIEXCP,
then module IDDWIAPP, IDDWICPI, or IDDWITRM was in
control. If the code is WICLOSE, then module IDDWICLS was
in control. If the code is WIJOURN, then module IDDWLIRN
was in control.

addresses This area contains a list of addresses of the pertinent control
blocks which existed at the time of the error. The list supplied
depends on the module in control at the time of error. The
format and list for each module are as follows:

Module Fonnat and List

IDDWIAPP A(IOB)=a,A(VDSCB)=a
IDDWICLS A(VDSCB)=a
IDDWICPI A(IOB)=a,A(VDSCB)=a
IDDWIJRN A(TCB)=a,A(VDSCB)=a
IDDWITRM A(IOB)=a,A(VDSCB)=a

where:

a is the address of the control block.

IOB locates the Input/Output Block.

TCB locates the Task Control Block.

VDSCB locates the Virtual Data Set Control Block.

The remaining topics in this section describe the output-the SDUMP buffer
records, the system work areas, and the SDW A variable areas---of VIO
recovery procedures for particular VIO modules.

Diagnostic Output lor VIO Module IDA VBPCl

98 OS/VS2 VIO Logic

Module IDAVBPRI is entered at its starting address to perform error
recovery processing for module IDA VBPCl. IDA VBPCl issues a SETFRR
macro to establish the entry point.

Control Information and Messages Established in the SDW A

If the user's address space is accessible, the recovery routine sets the starting
and ending addresses of the DSPCT header in the SDW A (SDW ADPSL
field).

A diagnostic message is then built in the variable recording area in the SDW A
(SDW A VRA field). See" Analyzing the SYS 1.LOGREC Data Set" for the
format of this message as constructed by module IDA VBPRI.

Output to the SYSl.DUMP Data Set

If the address space is not accessible or if a machine check interruption has
occurred, an SDUMP macro is not issued. If the SDUMP macro can be issued,

,

,

r

r

r

V52.03.807

I the user region and the data area (DSPCT header) listed in the SDWA
are written to SYSl.DUMP via the SDUMP macro (branch-entered form).

Output to the SYS1.LOGREC Data Set

Parameters are set in the SDW A via the SETRP macro to request R/TM to
write the SDWA to SYSl.LOGREC and to percolate to the next FRR in its
list.

Output to the User-Specified Dump Data Set

If the user's address space is accessible, indicators are set in the SDW A to
cause R/TM to also write the SW A and the DSPCT header to the dump data
set specified by the user's SYSABEND or SYSUDUMP DD statement.

Diagnostic Aids 99

VS2:03.807

Diagnostic Output lor no Module IDA VBPOI

100 OS/VS2 VIO Logic

Module IDAVBPRI is entered at its starting address to perform functional
recovery processing for module IDA VBPOI.

Control Information and Messages Established in the SDW A

If the user's address space is accessible, the recovery routine sets the
following information in the SDW A:

• The starting and ending addresses of the DSPCT header are set in the
SDWAFRMI and SDWATOI fields.

• The starting and ending addresses of the open parameter list (VOPI) are
set in the SDW AFRM2 and SDW A T02 fields.

A diagnostic message is then built in the variable recording area in the SDW A
(SDWA VRA field). See "Analyzing the SYSI.LOGREC Data Set" for the
format of this message as constructed by module IDAVBPRI.

Output to the SYSl.DUMP Data Set

If the address space is not accessible or if a machine check interruption has
occurred, an SDUMP macro is not issued. If the SDUMP macro can be

I issued, the message established in the SDW A VRA field and the user region
are written to the SYS I.DUMP data set via the SDUMP macro
(branch-entered form).

Output to the SYSl.LOGREC Data Set

Parameters are set in the SDW A via the SETRP macro to request R/TM to
write the SDWA to the SYSl.LOGREC data set and to percolate to the next
FRR in its list.

Output to the User-Specified Dump Data Set

If the user's address space is accessible, indicators are set in the SDW A to
cause R/TM to also write the SW A and the data areas listed in the SDW A to
the user-specified dump data set when percolation is completed.

;,

,

,

r

r

r

Diagnostic Output and Recovery Processing for
no Module IDA VBPPl

VS2.03.807

Module IDA VBPRI is entered at its starting address to perform error
recovery processing for module IDAVBPPI. IDA VBPPI issues a SETFRR
macro to establish the entry point.

Control Information and Messages Established in the SDW A

If the user's address space is accessible, the recovery routine sets the starting
and ending address of the DSPCT header and the BUFC in the SDW A
(SDWADPSL field).

A diagnostic message is then built in the variable recording area in the SDW A
(SDWAVRA field). See "Analyzing the SYSl.LOGREC Data Set" for the
format of this message as constructed by module IDA VBPRI.

Output to the SYSI.DUMP Data Set

If the address space is not accessible or if a machine check interruption has
occurred, an SDUMP macro is not issued. If the SDUMP macro can be

I issued, the user region and the message established earlier in the SDW A VRA
field are written to SYS 1.DUMP via the SDUMP macro (branch-entered
form).

Output to the SYS1.LOGREC Data Set

Parameters are set in the SDW A via the SETRP macro to request R/TM to
write the SDW A to SYS l.LOGREC and to percolate to the next FRR in its
list.

Output to the User-Specified Dump Data Set

If the user's address space is accessible, flags are set in the SDW A to cause
R/TM to write the data areas listed in the SDW ADPSA field to the
user-specified dump data set.

Diagnostic Output and Recovery Processing for
no Module IDA VBPSl

VBPSIFRR is the entry point in module IDA VBPRI for the error recovery
routine for module IDAVBPSI. IDA VBPSI issues a SETFRR macro to
establish the entry point in a LIFO list of recovery routine addresses
maintained by R/TM.

Control Information and Messages Established in the SDW A

If the user's address space is accessible, the recovery routine sets the
following information in the SDW A:

The starting and ending addresses of the DSPCT header are set in the
SDWAFRMI and SDWATOI fields.

Diagnostic Aids 10 1

VS2.03.807

102 OS/VS2 VIO Logic

A diagnostic message is then built in the variable recording area in the SDW A
(SDWAVRA field). See "Analyzing the SYS1.LOGREC Data Set" for the
format of this message as constructed by module IDA VBPR 1.

Output to the SYS1.0UMP Data Set

If the address space is not accessible or if a machine check interruption has
occurred, an SDUMP macro is not issued. If the SDUMP macro can be
issued, the message established in the SDW A VRA field and the user region
are written to the SYS I.DUMP data set via the SDUMP macro
(branch-entered form).

Output to the SYS1.LOGREC Data Set

After issuing the SDUMP macro, an attempt is made to reenter module
IDA VBPSI to continue scratch processing. If R/TM has set flags in the
SDW A that indicate that the caller's address space is accessible and that a
retry is possible, the SETRP macro is issued specifying the RECORD = YES
option and an address (FREEMAP, or FREEDSPC) for reentry into
IDA VBPS 1. Control is then returned to R/TM to write the SDW A to the
SYSl.LOGREC data set and to pass control to IDA VBPSI at the reentry
point specified by the SETRP macro.

Otherwise (that is, when a continuation of scratch processing in module
IDAVBPSI is not feasible), a SETRP macro is issued with only the
RECORD = YES option, and control is returned to R/TM to write the SDW A
to the SYS I.LOGREC data set and to then percolate to the next FRR
routine.

.,

.,

,

VS2.03.807

The information on this page has been deleted by OS/VS2 MVS Supervisor Performance #2.

r

r

r
Diagnostic Aids 103

VS2.03.807

Diagnostic Output for VIO Modules IDDWIAPP, IDDWICPI,
and IDDWITRM

104 OS/VS2 VIO Logic

Module IDDWIFRR is entered at its starting address to perform error
recovery processing for modules IDDWIAPP, IDDWICPI, and IDDWITRM.
Modules IDDWIAPP, IDDWICPI, and IDDWITRM issue a SETFRR macro
to establish the entry point.

Control Information and Messages Established in the SDW A

A diagnostic message is then built in the variable recording area in the SDW A
(SDW A VRA field). See" Analyzing the SYS 1.LOGREC Data Set" for the
format of this message as constructed by module IDDWIFRR.

If the user's address space is accessible, the recovery routine also sets in the
SDWA (SDW ADPSL field) the starting and ending addresses of the current
channel program, lOB, and DEB. Flags are also set in the SDW A to request a
dump of these control blocks and the SW A and LSQA when percolation
through the FRR routine is completed.

Output to the SYS1.DUMP Data Set

The messages established in the SDW A VRA field and the user region are
written to the SYS1.DUMP data set via the SDUMP macro (branch-entry
form).

Output to the SYS1.LOGREC Data Set

If recovery processing is for module IDDWICPI, special processing is
performed under the following conditions:

• R/TM allows IDDWICPI processing to be resumed.

• Current processing does not represent error recovery following a prior
attempt to resume IDDWICPI processing.

• Flags in the SDW A indicate that the error type is a protection check or
addressing exception.

Under these circumstances, a SETRP macro is issued with the
RECORD= YES option and with an address for reentry to module
IDDWICPI. Control is returned to R/TM to write the SDWA to the
SYS 1.LOGREC data set and to pass control to IDDWICPI at the reentry
point specified by the SETRP macro.

Note: When control is returned, IDDWICPI interprets the error condition as
a channel program error, and VIO processing continues on that basis.

In all other cases (that is, processing is for module IDDWIAPP or
IDDWITRM or that special processing conditions for module IDDWICPI do
not exist), a SETRP macro is issued with only the RECORD= YES option,
and control is returned to R/TM to write the SDWA to the SYS1.LOGREC
data set and to then percolate to the next FRR.

Output to the User-Specified Dump Data Set

Unless overlaid with addresses supplied by subsequent FRRs, when
percolation through FRRs and EST AE routines is completed, the data areas

,

,

"

('

('

('

whose address ranges are placed in the SDWA (as described earlier in this
section under "Control Information and Messages Established in the
SDW A") are dumped to the data set defined by the user's SYSABEND or
SYSUDUMP DD statement. The SW A and LSQA are also dumped unless
succeeding routines alter the flags set by this FRR in the SDW A
(SDW ASWA and SDW ALSQA flags). The dump will not be taken if
succeeding EST AE routines suppress the dump by specifying DUMP=NO.

Diagnostic Output for no Module IDDWICLS

IDDFRRCL is the entry point in module IDDWIFRR for error recovery
processing for module IDDWICLS. The entry point is established by
IDDWICLS via a SETFRR macro.

Control Information and Messages Established in the SOW A

A diagnostic message is then built in the variable recording area in the SDW A
(SDWA VRA field). See "Analyzing the SYSl.LOGREC Data Set" for the
format of this message as constructed by module IDDWIFRR.

Output to the SYSl.DUMP Data Set

The messages established in the SDW A VRA field and the user region are
written to the SYSl.DUMP data set via the SDUMP macro (branch-entry
form).

Output to the SYSl.LOGREC Data Set

A SETRP macro specifying the RECORD = YES option is issued, and control
is returned to R/TM to write the SDWA to the SYS1.LOGREC data set and
to then percolate to the next FRR.

Output to the User-Specified Dump Data Set

The SW A and LSQA are written to the dump data set unless succeeding
routines alter the flags set by this FRR in the SDW A (SDW ASW A and
SDW ALSQA flags). The dump will also not be taken if succeeding FRRs or
EST AE routines suppress the dump by specifying DUMP=NO.

Diagnostic Output and Recovery Processing for no Module
IDDWIJRN

IDDESTJR is the entry point in module IDDWIFRR for error recovery
processing for module IDDWIJRN. The entry point is established by
IDDWIJRN via an EST AE macro. If R/TM does not pass an SDW A pointer
when it passes control to IDDWIJRN's EST AE recovery routine, the recovery
routine immediately returns control to R/TM.

Control Information and Messages Established in the SOW A

A diagnostic message is then built in the variable recording area in the SDW A
(SDW A VRA field). See" Analyzing the SYS 1.LOGREC Data Set" for the
format of this message as constructed by module IDDWIFRR.

If the user's address space is accessible, the recovery routine also sets in the
SDW A (SDW ADPSL field) the starting and ending addresses of the TCB and
the JSCB. Flags are also set in the SDW A to request a dump of these control
blocks and the SW A and LSQA when percolation through the FRRs and
EST AE routines is completed.

Diagnostic Aids 105

106 OS!VS2 VlO Logic

Output to the SYSI.DUMP Data Set

The messages established in the SDW A VRA field and the user region are
written to the SYS1.DUMP data set via the SDUMP macro.

Output to the SYSI.LOGREC Data Set

If resumption of journal processing is not possible, the SETRP macro is issued
with the RECORD = YES option, and control is returned to R/TM to write
the SDWA to the SYS1.LOGREC data set and to then percolate to the next
EST AE routine.

Otherwise, if resumption of IDDWIJRN processing is possible, the SETRP
macro is issued with only an address for reentry to module IDDWIJRN.
Control is then returned to R/TM to exercise the option specified via the
SETRP macro.

Output to the User-Specified Dump Data Set

Unless overlaid with addresses supplied by subsequent EST AE routines, when
percolation through EST AE routines is completed, the data areas whose
address ranges are placed in the SDWA (as described earlier in this section
under "Control Information and Messages Established in the SDW A") are
dumped to the data set defined by the user's SYSABEND or SYSUDUMP
DD statement. The SW A and LSQA are also dumped unless succeeding
routines alter the flags set by this EST AE routine in the SDW A (SDW ASW A
and SDWALSQA flags). The dump will not be taken if succeeding ESTAE
routines suppress the dump by specifying DUMP=NO.

...,

,

,

r

r

(

r

Locating Code Segments that Detect Channel Program
Errors

Channel program ending status is presented in the following lOB fields:
IOBCSW (IOB+9), IOBSENSO (IOB+2), and IOBSENSl (IOB+3). The
posting of these fields is consistent with real device processing and is
transparent to the user of VIO. IOBSENSO and IOBSENSl are posted only
for unit-check conditions.

The following error or unusual conditions are posted in the IOBCSW +4:

Error or Unusual Condition Bit Settings

Program check X'OO20'

Unit exception X'OIOO'

Incorrect length X'OO4O'

Channel-control check X'OOO4'

Unit check X'0200'

Figure 14 provides a reference to labels of subroutines in module IDDWICPI
that set error flags for all conditions except the unit-check condition. (Unit
check is handled separately in Figure 15 due to the way unit-check and sense
bytes are posted.)

Note that more than one subroutine can set a program check status indicator
in the IOBCSW. To determine which subroutine detected the error condition,
use the address of the failing CCW (IOBCSW + 1) to examine the op-code of
the failing CCW. The correlation of this information with the information in
the "reason set" column should provide you with the label of the subroutine
that detected the error.

CSW Status Routine Wbere Set Prior Label Reason Set

Program Check Op code breakdown CPIIOSTC First CCW not on doubleword
boundary

CCW format check CPIPGMCK TIC to CCW not on
doubleword boundary

CCW format check CPIPGMCK TIC to a TIC

CCW format check CPIPGMCK Byte count zero·

CCW format check CPIPGMCK Bits 37-39 of CCW nonzero.

Unit Exception Read routine CPIRD Data length of zero for RD,
RKD, RCKD, WD, or WCKD

Incorrect Length Op code end routine CPIEND40 CCW byte count differed from
the actual byte count and the
SILl bit was not set

Channel Control Op code breakdown CPIDCERR A control, sense, or search
Check CCW specified data chaining

(VIO does not support data
chained CCWs for these
operation codes.)

Unit Check
(See Figure 15)

·TIC operations excluded

Figure 14. Routines that Detect CCW Errors (Except for Unit Check)

Diagnostic Aids 107

108 OS!VS2 VIO Logic

Figure 15 provides a reference to labels of routines that cause the unit-check
and sense bytes to be posted in the lOB. In order to determine which routine
caused the posting, do the following:

• Locate the WICERDSP field in the WICB (WICB + X'40'). If unit check
has been set, this field is used to move the appropriate sense information
into the lOB (see the footnote to Figure 15).

• Using the value in the WICERDSP field, locate the same value in the
"WICERDSP" column in Figure 15. Information in columns aligned with
the located value will indicate which routine in module IDDWICPI
detected the error.

• When the same value is set by several subroutines, use the failing CCW's
address (IOBCSW + 1) to determine the op-code, and then correlate the
op-code with information in the "routine where set" and "reason set"
columns in the table to identify the code segment where the error was
detected.

,

,

~

,

WICERDS'" Routine Wbere Set Prior Label Reason Set Sense Se_ Names of Bits Set
Bytes-2314 Bytes-RPS r Devices

2 Op code breakdown CPIOPERR Invalid op code X'8000' X'8000' Command reject
Op code breakdown CPIIOSFM Invalid file mask
Read routine CPIRSTER Read sector to non-RPS

device
NOP. Restore set CPISSTE2 Set sector to non-RPS
sector device or value exceeds

maximum

4 Op code breakdown CPIOPERR Op code cannot be X'801O' X'8000' Command reject
preceeded by and/or invalid
set-file-mask op code sequence

Write routine CPISEQOS Write prerequisites not
satisfied

6 Op code breakdown CPIIOSSK Invalid initial seek X'8001' X'8000' Command reject
and/or seek check

Seek routine CPISEKE2 Invalid seek argument

8 Write routine CPIFMER File mask prohibits a X'8004' X'8000' Command reject
write and/or overflow

incomplete

lO(A) Write routine CPIWRT40 Track overrun condition X'OO4O' X'OO4O' Track overrun
Write routine CPIWRT50 Track overrun condition

12(C) Positioning routine CPIPOS90 Single track with no X'OOO8' X'OOO8' No record found
record found

Search HA routine CPISHAER Single track with no
record found

Search 10 routine CPISIDER Single track with no
record found

Search key routine CPIKEYER Single track with no
record found

14(E) Seek command CPISEKEI File mask prohibits a X'OOO4' X'OOO4' File protect

(' routine seek

16(10) Track request routine CPITRK20 File mask prohibits a X '0004 , X'OOO4' File protect
head switch

18(12) Track request routine CPITRK20 File mask prohibits X'OOOS' X'OOOS' File protect and
head switch for overflow
overflow-record incomplete
processing

20(14) Track request routine CPITRK20 End of cylinder reached X'OO20' X'OO20' End of cylinder
while trying to switch
heads

22(16) Track request routine CPITRK20 End of cylinder reached
while trying to switch
heads when processing
an overflow record

• Bit settings for the lOB sense bytes are acquired from the error table based on a displacement value established in the WICB (WICERDSP field) by the
routine that detects an error.

Figure 15. Routines that Detect CCW Errors (for Unit Check)

('

Diagnostic Aids 109

Debugging VIO Errors

110 OS/VS2 VIO Logic

The following path can be followed in a system dump to isolate a VIO module
that detects an error condition.

1. Locate the DEB by examining the following chain of pointers and control
blocks:
Real Storage
Location X'IO'

X'OO'

DEB
VDSCB

UCB

DSCB

However, if it is an EXCP request, locate the EXCP debugging area from
offset X'CO' in the TCB. See OS/VS2 I/O Supervisor Logic for the
format of this area, which contains indications of where the error occurred,
the PSW when R/TM was entered, the registers when R/TM was entered,
and the RQE. The RQE has the addresses of the VDSCB, lOB, DEB,
TCB, etc.

2. If the UCB address in the DEB is greater than 64K, then you know it is a
VIO UCB because VIO UCBs have 3-byte address ability and do not reside
in "low-core."

3. Then locate the DSPCT by examining the following chain of pointers and
control blocks:

DEB VDSCB DSPCf
-..

UCB I

X'20' X'34' ,...-

DSCB

4. Using status information in the DSPCT header, you can determine which
VBP module was in control if the error was detected during VBP's
processing, and using addresses in the VDSCB, you can find other key VIO
control blocks--the VIO buffer, WICB, and VBPPL. From the WICB, you
can determine which EIP module was in control if the error was detected
during EIP's processing.

...,

...,

...,

Messages Issued by VIO

r

r

r

IEC006I-UNABLE TO ACTIVATE A VIO DATASET DURING
RESTART PROCESSING

Explanation: ASM (auxiliary storage management) was unable to reset its
control blocks for a VIO data set to the data set's status at the time it was
journaled. This message should be followed by message IEF086I.

System Action: Terminate restart processing.

Programmer Action: Rerun job. Also refer to message IEF0861.

Problem Determination: Refer to Table 1, items 1, 3, 4, and 29, in the
OS/VS Message Library: VS2 System Messages. Refer to message
IEF0861.

ASM Module that Detects the Error: ILRINTOO.

VIO Module that Issues Message: Module IDA VBPJ2 examines the return
code in register 15 that is returned by ASM, and if the return code is greater
than 8, IDA VBPJ2 issues the message.

Diagnostic Aids III

r

...

r

r

INDEX

For additional information about any subject listed in this
index, refer to the publications that are listed under the

same subject in OS/YS2 Master Index of Logic. GY28-0694.

A
ABEND codes 93-95
abnormal-end appendage. interface with V10 33-35
abnormal termination 63,67
ACA(ASM[Auxiliary Storage Management] Control Area).

description of (VSl.03.107) 78.1
access methods, supported by VIO 11,12
activate-logical-group function 21,68
actual I/O 13,14
address space identifier 20,31
AMDPRDMP (service aid), analyzing SYSl.DUMP data

sets 96
appendages, V10 interfaces with 32-lS,61
ASID 20,31
ASM

allocating page slots 11-14
interface with VBP

activate-logical-group 68
assign-Iogical-group 20,29,59
effect on I/O operations 11-12
grouping I/O requests 12
release-logical-group 20,66,67
save-logical-group 20,49,63

I/O operations 12
assign (virtual read) function

description 19
use of 36-37

assign-logical-group function 20
assign-null (virtual allocate) function 19
auxiliary storage management CJ« ASM)
auxiliary-storage page slots 11-14

B
blocking factor 11
BUFC, VIO-used fields 84-85
buffer CJ« VIO buffer)
buffer control block 84-85

c
CCW processing 38-41
channel-end appendage, interface with VIO 33-35
channel program interpretation

CCW processing 38-41
in I/O processing 17
interpretation and simulation, general 11.13

channel program status
CSW fields in lOB 107
routines that record status 39,107-109
sense bytes in lOB 109

checkpoint processing, VIO
description 47,63
method of operation diagram 46
program organization figure 62
save-logical-group function 20

VS2.03.807

close processing, V10
description 51.64
method of operation diagram 50
program organization figure 64
release-logical-group function; task close 20

component relationships, overview (figure) 18
control block merge routines 68
control blocks (.s« data areas)
create processing, general statement about 15
CSW status information (see channel program status)

D
DADSM

allocate support for VIO 27
closing PDS directories, for BPAM data set 65
scratch support for VIO 66

data areas
acronyms 74
descriptions of 79-91
modified-fields tables 75-78
overview of 74

data buffer (s« VIO buffer)
data set CJ« VIO data set)
data set control block, virtual 87
data set page correspondence table (DSPCT). description

of 79-81
device characteristics 12-13
device simulation 12-13
device support (see system generation)
diagnostics

channel program status 107-109
error (ABEND) codes 93-95
messages III
record of module detecting error 110
recovery routine 95-106

directory 54-55.69-71
DSPCT. description of 79-81
DSPCT header, description of (VSl.03.807) 79
DSPCT Extension, description of (VS1.03.807) 82
DSPCT page-map pages 19
DSPCTMAP-DSPCT page-map entry, description of 82

E
ECB, status posted in 34,35
EIP (EXCP intercept processor)

I/O simulation 14.17
relationship with VBP. for I/O requests 17

end-of-extent appendage, interface with VIO 32.34
end-of-volume 65
EOV, relationship with VIO 65
error conditions (.s« diagnostics)
EST AE macro instruction

as used by VIO modules 95-106
general statement about 95

EXCP intercept processor (see EIP)
EXCP macro instruction 11-12

(see also SVCO)
EXCP processor 11.27

Index 113

VS2.03.807

external page storage
auxiliary storage, as subcategory of 12-13
definition of 11
device simulation in 12,13

external page table (XPT) 16,19
external page table entry (XPTE) 19

F
FRRs (functional recovery routines) 95-\06

I
IDAVBPP1 21
IDAVBPS2 21
IDDWI 21
IECVEXCP, relationship to VIO 11,27
IFCEREPO (service aid), analyzing SYSl.LOGREC data

set 96
interfaces between VIO and other components 18
I/O

J

(see also paging I/O)
actual 13,14
blocking factor 11
effects of reclaim 11
requests 17
scheduling requests 11,12
simulation of 11-17,38-41
status of 39
types of 14
virtual 14,36-37
VIO response to I/O request 17,60-61

JCL prerequisites to VIO processing 12
JNLP ARM (see Journal Write Parameter List) (VS2.03.807)
Journal Write Parameter List, description of

(VS2.03.807) 83.1
journaling (see checkpoint processing, VIO)

K
key status 21

L
LGID (logical group identifier) 20,29
LON (logical group number)

assigning an LGN 20,29
use of 20,29

local lock 21
local system queue area (LSQA), diagnostic dumps of 95,96
lock 21
logical group (see VIO data set)
logical group identifier (LGID) 20,29
logical group number (see LGN)
logical page identifier (LPID) 19,20,29
LPID (logical page identifier) 19,20,29
LPID generator 29
LSQA (local system queue area), diagnostic dumps of 95,96

114 OS!VS2 VIO Logic

M
macro instructions, listing of 70-71
map entry, description of 82
merge routine

restart processing, VIO 68
messages III
module directory 54-55,69-70
move-character-Iong (MVCL) instruction 11,14-15
move-out (write and disconnect) function

definition of 19
during checkpoint 47,63
during close 51,65
use of 36-37

move-out-null function
definition of 19
during checkpoint 47,63
use of 37

moving data in and out of VIO buffer (figure) 13

o
open processing, VIO

assign-logical-group function 20
description 28-31,59
method of operation diagram 29
program organization figure 58

output, actual I/O 13,14

p
page fault, causes and effects of 14,37
page-fix appendage, interface with VIO 32,34
page-formatted data set (see VIO data set)
page frame

reclaiming 15
virtual 14

page frame table (PFT) 16,19
page-in operations 13-14
page-map entry, DSPCT 82
page slots, allocation of 11-14
page table (PGT) 16,19
page tables, modifying entries in 15,19
page, virtual

accessing in VIO data set 14
needed for VIO buffer or new DSPCT page-map

pages 19
paging I/O

as actual I/O 14
as requested by VBP 19,37
controlled by VCBs 16,19,37
effects of 11
initiated by VIO \3
page fault 14,15
virtual paging 36-37

PCB (page control block) (see move-out function)
PFT (page frame table) 15,19
prerequisites to VIO processing 12
protection key 21

,

..

,

,

r

('

r

R
RBA (relative byte address), use of 16
reading VIO records (see update/retrieval processing)
real storage management (see RSM)
real storage number (RSN), use of 37
reclaim 15
recovery processing 95- \06
recovery/termination manager (R/TM)

recovery processing 95- \06
relationship to VIO 95

relative byte address (RBA), use of 16
relative page number (see RPN)
release-logical-group function 20
request queue element (RQE), use of 59
restart processing, VIO 68
RPN (relative page number)

conversion to 16
use of 16,20

RQE (request queue element), use of 59
RSM (real storage management)

actual I/O processing 14,19
functions of

assign 19
assign-null 19
move-out 19
move-out-null 19

maintaining page tables 15,16
relationship with VBP 19
virtual I/O processing 14,16,19

RSN (real storage number) 37
R/TM (recovery/termination manager)

recovery processing 95-106
relationship to VIO 95

s
S symbol (see storage locator symbol)
save-logical-group function 20

(see also checkpoint processing, VIO)
scheduler interface

during VIO checkpoint 49,63
during VIO restart 68

scheduler work area (SW A), diagnostic dumps of 95-96
(see also data areas)

scratch (DADSM), support for VIO 66
SDUMP macro instruction

as used by VIO modules 95-\07
general statement about 95-96

SDWA (ST AE diagnostic work area)
as used by VIO modules 95-107
diagnostic control flags 96

search command (CCW) 43
seek command (CCW) 44-45
sense bytes (see channel program status 110)
sense command (CCW) 44-45
service aids

AMDPRDMP 96
IFCEREPO 96

SETFRR macro instruction
as used by VIO modules 95-\07
general statement about 95

SETRP macro instruction
as used by VIO modules 95-106
general statement about 95

simulate I/O 11-17,38-41
SMF 34,35

ST AE diagnostic work area (see SDW A)
start-I/O appendage, interface with VIO 32-34
status (see channel program status)
storage locator symbol

generated by ASM 20
use of 47

SVCO
relationship to VIO 27

SW A (scheduler work area), diagnostic dumps of 95-96
(see also data areas)

SYSGEN (see system generation)
system generation (SYSGEN)

prerequisites 12
unitname parameter 12

system paging space 11-13
system work areas (see SW A; LSQA)
SYSI.DUMP data set

accessing data on 98-99
as used by VIO modules 100-106
general statement about 96

SYS I. LOGREC data set
accessing data on 96

T

as used by VIO modules 96-\06
general statement about 96

task close (IFGOTCOA), relationship with
VIO 46-49,62-63,67

track format
device simulation 12-13
field descriptions 84

track manager (IDDWITRM)
module directory 54-55,69-70

u
update! retrieval processing

(see also I/O)

v

accessing a page 16
general description 15
reclaim 15

VBP (virtual block processor)
actual I/O requests by 14
relationship with ASM 20
relationship with EIP, for I/O requests 17
relationship with RSM 19

VBP parameter list (VBPPL), description 84-85
VCB (VIO control block)

description 86
initialization 31
use 37,81

VDSCB (virtual data set control block)
description 87
format-I DSCB maintained in II

Index 115

VS2.03.807

VIO
appendage interfaces 32-36
checkpoint ~ee checkpoint processing, VIOl
close (see close processing, VIOl
control block (see VCB)
data set control block (VDSCB) 11,87
environment, general description 11-15
intercomponent overview 18
I/O operations (VS2.03.807) 21.2
I/O request processing, overview 16,26
110 simulation 14,17
key status 21
load module and aliases 21
local lock 21
open (see open processing. VIOl
recovery processing 95-\06
restart processing 68
system residence requirements 21

VIO buffer
assigning virtual pages to 19
disconnecting pages from 19
description of format 88
general description about 12-17
illustration of (VS2.03.807) 21.1
read and write operations 19
virtual input to 19

VIO data set
accessing virtual pages in 16
characteristics 12-13
close processing (see close processing, VIOl
open processing (see open processing, VIOl
restart processing 46-47,62
S symbol for 20

virtual allocate (assign-null) 19
virtual block processor (see VBP)
virtual data set control block, VDSCB 11,87
virtual I/O 14,36-37
virtual read 19,36-37
virtual track (see VTRACK)
VOPEN

macro 29,59
parameter list (VBP) 84-85

VREADWR
macro

effects of 59
use of 17

parameter list, BUFC 84-85
VTRACK (virtual track), description of 88

(see also VIO buffer)

w
WICB, description of 89-91
window (see VIO buffer)
window intercept (see EIP (EXCP intercept processor»

x
XDAP macro instruction 11,12

(see also SVC 0)
XPT {external page table} 16,19
XPTE (external page table entry) 19

116 OS/VS2 VIO Logic

,

,

•

~

SY26-3859-0

~rn~
®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation

821 United Nations Plaza, New York, New York 10017

(I nternationall

o en
< en
I'.)

<
o
r
o

c.c
(')

,

~,
0" w,
00
o
-..J

.,
CD

Z
o
en w
-..J
o
W
o

'"IJ
::!.
::l
CD
c..
::l

C

*

en •
~
en
-<
I'.)

O'l
W
00
(j\
CD
6

,

r

(
,

...

r

,

t

r

OS!VS2 VIO Logic
SY26-3859-0

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications. Rather, direct such questions or
requests to your local IBM representative.

If you would like a reply, please provide your name and address
(including ZIP code).

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

Reader's
Comment
Form

SY26-3859-0

Fold and Staple

Business Reply Mail

No postage necessary if mailed in the U.S.A.

Postage will be paid by:

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

First Class Permit
Number 6090
San Jose, California

, .. .
Fold and Staple

nrnrill
®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(I nternationan

o en
< en
r-..l

<
o
r
o
to
C"l

< en
!'l
o
~
CXl o
.......

"T1

(1)

z
o
en w
.......
o

~
"'C
::!.
:::l ...
(1)

c.
:::l

C
en
):.

en
-<
r-..l
Ol
W
CXl
(]I
co
6

~

,
~

,;

,

r
1

~

