
Program Product

SY28-1133-2
File No. S370-37

MVS Diagnostic
Techniques

MVS/System Product
J ES3 5740-XYN

MVS/System Product
J ES2 5740-XYS

--..- ------ --------- -. ---- -- ------------ - ." -

TNL SN28-5095 (December'27, 1985) to SY28-1133-2

Third Edition (July, 1985)

This is a major revision of, and obsoletes, SY28-1133-1 and Technical Newsletter
SN28-0875. See the Summary of Amendments following the Contents for a summary of
the changes made to this manual. Technical changes or additions to the text and
illustrations are indicated by a vertical line to the left of the change.

This edition with Technical Newsletter SN28-5095 applies to Version 1 Release 3.6 of
MVS/System Product 5740-XYN or 5740-XYS and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters. Changes are made
periodically to the information herein; before using this publication in connection with
the operation of IBM systems, consult the latest IBM Systemj370 Bibliography,
GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that
IB.M intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM's program product may be used. Any functionally equivalent program
may be used instead.

Publications are not stocked at the address given below; requests for IBM publications
should be made to your IBM representative or the IBM branch office serving your
locality.

A form for reader's comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Information
Development, Department D58, Building 921-2, PO Box 390, Poughkeepsie, NY 12602.
IBM may use or distribute wh~tever information you supply in any way it believes
appropriate without incurring any obligation to jou.

© Copyright International Business Machines Corporation 1981, 1985

Guide for Using This Publication

The following is a list of guidelines for using this publication.

• This publication contains information from OS/VS2 System Programming
Library: MVS Diagnostic Techniques, GC28-0725-2. It also includes all
information from the Newsletters and Supplements issued for GC28-0725-2
through September 15, 1981.

• This publication contains information for OSjVS2 MVS Release 3.8 plus the
following:

OSjVS2 MVS Processor Support 2
OSjVS2 MVS/System Product Release I
OSjVS2 .MVS/System Product Release I Enhancements

- OSjVS2 MVS/System Product Release 2
- OSjVS2 MVS/System Product Release 3

OSjVS2 MVS/System Product Release 3.2 (TNL, SN28-5014)
OSjVS2 MVS/System Product Release 3.3
OSjVS2 MVS/System Product Release 3.4 (TNL,SN28-0875)
OSjVS2 MVS/System Product Release 3.5

• Do not use this publication unless you have installed MVS/System Product
Version I Release 3.5.

• The implied date of this publication, for the purpose of inserting new
Newsletters and Supplements, is July 1, 1985. When you are adding pages
from different Newsletters and Supplements, always use the page with the
latest date (shown at the top of the page).

Guide for Using This Publication iii

IV MVS Diagnostic Techniques

Preface

This publication describes diagnostic techniques and guidelines for isolating.
problems on MVS systems. It is intended for the use of system programmers and
analysts who understand MVS intemallogic and who are involved in resolving
MVS system problems.

This publication is intended for use only in debugging. None of the information
contained herein should be construed as defining a programming interface.

Note:· For JES3 diagnostic information, refer to JES3 SPL: Diagnosis.

Organization and Contents

This publication stresses a three-step debugging approach:

1. Identifying the external symptom of the problem.

2. Gathering relevant data from system data areas in order to isolate the
problem to the component level.

3. Analyzing the component to determine the cause of the problem.

In support of this approach, the publication has been reorganized into three basic
parts consisting of five sections and three appendixes as follows:

Part 1

"Section 1. General Introduction" describes the debugging approach that is used
and defines the external symptoms that are used to identify a system problem.

"Section 2. Important Considerations Unique to MVS" describes concepts and
functions that should be understood prior to undertaking system diagnosis.
Inchlded are: global system analysis, system execution modes and status saving,
locking, use of recovery work areas, effects of MP, trace analysis, debugging
hints, and general data gathering techniques.

"Section 3. Diagnostic Materials Approach" provides guidelines for obtaining and
analyzing storage dumps of data areas affected by the problem.

Preface V

Part 2

"Section 4. Symptom Analysis Approach" describes how to identify an external
symptom (loop, wait state, TP problem, performance degradation, or incorrect
output), and provides an analysis procedure for what kind of problem is causing
the symptom.

"Section 5. Component Analysis" describes the operating characteristics and
recovery procedures of selected system components and provides debugging
techniques for determining the cause of a problem that has been isolated to a
particular component.

Part 3

Appendixes

A - describes the flow of various MVS processes.

B - provides a step-by-step approach to analyzing a stand-alone dump.

C - provides diagnostic information for SVC dump titles.

D - contains definitions of abbreviations used throughout the publication.

Referenced Publications

The following publications either are referenced in this pUblication or provide
related reading:

System/370 Principles of Operation
Synchronous Data Link Control General Information
MVS Interactive Problem Control System (IPCS)

User's Guide and Reference
Environmental Record Editing and Printing (EREP) Program

User's Guide and Reference
OS/VS2 System Programming Library:

Initialization and Tuning Guide
Supervisor
Job Management
Service Aids
SYS1.LOGREC Error Recording
Debugging Handbook (5 volumes) LC28-1385 through

JES3 System Programming Library: Diagnosis
OS/VS2 TCAM System Programmer's Guide, TCAM Level 10
OS/VS2 TCAM Debugging Guide, TCAM Level 10
OS/ VS2 MVS VT AM Debugging Guide
ACF/VTAM Diagnosis Guide
ACF/VTAM Diagnosis Reference
Operator's Library:

OS/VS2 MVS System Commands
OS/VS2 MVS JES2 Commands
VT AM Network Operating Procedures
A CF/ VT AM Operation
OS/VS TCAM Level 10

JES/3 Operator's Library

VI MVS Diagnostic Techniques

GA22-7000
GA27-3093

GC28-1183

GC28-1378

GC28-I029
GC28-I046
GC28-1303
GC28-0674
GC28-0677
LC28-1389
SC23-0043
GC30-205I
GC30-3040
GC27-OO23
SC27-0615
SC27,.()621

GC28-I031
SC23-0048
GC27-6997
SC27-0612
GC30-3037
SC23-0045

TNL SN28-5095 (December 27, 1985) to SY28-1133-2

MVS/370 Message Library:
JES2 Messages
System Messages (2 volumes) GC38-1374,
System Codes

OS/VS2 System Logic Library (11 volumes) - Volume 1
OS/VS2 I/O Supervisor Logic
OS/VS2 System Initialization Logic
OS/VS2 MVS Service Aids Logic
OS/VS2 MVS Global Resource Serialization Logic
JES2 Logic
OS/VS2 MVS JES3 Logic
Resource Access Control Facility (RACF): Program Logic Manual
OS/VS2 MVS Programmed Cryptographic Facility: Program Logic Manual
OS/VS2 MVS Resource Measurement Facility (RMF)

Version 2 Program Logic Manual
MVS Input/Output Configuration Program Logic
OS/VS2 VTAM Data Areas
ACF/VTAM Data Areas
OS/VS2 VTAM Logic
A CF/ VT AM Logic
OS/VS2 VSAM Logic
OS/VS2 Catalog Management Logic
OS/VS2 Access Method Services Logic
OS/VS2 MVS Mass Storage System Communication (MSSC) Logic
OS/VS2 SAM Logic
OS/VS2 BDAM Logic
OS/VS2 MVS VTIOC and TCAS Logic
OS/VS2 TSO Command Processor Logic, Volume IV
OS/VS2 Open/ClosejEOV Logic
OS/VS2 CVOL Processor Logic
OS/ VS2 VIO Logic
OS/VS2 TCAM Level 10 Logic
IBM 3704 and 3705 Communications Controllers NCP/VS Logic
3704/3705 Communications Controllers Principles of Operation
IBM 3704/3705 Communications Controllers Emulation Program

Generation and Utilities Guide and Reference Manual
IBM 3704/3705 Communications Controller NCP/VS

Generation and Utilities Guide and Reference Manual

GC28-1354
GC28-1375
GC38-1008
SY28-0713
SY26-3823
LY28-1050
SY28-0643
LY2S-1059
LY24-6006
LY24-6005
LY28-0730
LY28-0958

LY2S-0923
LY2S-1033
SY27-7267
LY38-3054
SY2S-0621
LY27-S034
SY26-3825
SY26-3826
SY35-0010
SY35-0013
SY26-3832
SY26-3831
SY27-7269
SY2S-0652
SY26-3827
SY35-0011
SY26-3834
SY30-3032
SY30-3013
GC30-3004

GC30-300S

GC30-3007

Preface Vll

December 27, 1985

viii MVS Diagnostic Techniques

Contents

Section 1. General Introduction 1-1
Basic MVS Problem Analysis Techniques 1-1
IPCS - Interactive Problem Control System 1-4

Section 2. Important Considerations Unique to MVS 2-1
Global System Analysis 2-2

Global Indicators that Determine the Current System State 2-2
Work Queues, TCBs and Address Space Analysis 2-5

TCB Summary 2-5
SRB Dispatching Queues 2-5
Address Space Analysis 2-6
Task Analysis 2-7
Summary 2-9

System Execution Modes and Status Saving 2-10
System Execution Modes 2-10

Task Mode 2-10
SRB Mode 2-11
Physically Disabled Mode 2-12
Locked Mode 2-13

Determining Execution Mode From a Stand-alone Dump 2-13
LCCA Indicators 2-13
PSA Indicators 2-13
ASCB Indicators 2-14

Locating Status Information in a Storage Dump 2-15
Task and SRB Mode Interruptions 2-15
Locally Locked Task Suspension 2-17
SRB Suspension 2-17
SMF Suspension 2-19

Locking 2-21
Categories of Locks 2-21
Types of Locks 2-22
Locking Hierarchy 2-23
Determining Which Locks Are Held On a Processor 2-24
Content of Lockwords 2-25

Global Spin Lockword 2-25
Global Suspend Lockword (Cross Memory Services Locks) 2-25
Local Suspend Lockword (Local Lock) 2-25

How To Find Lockwords 2-26
Results of Requests For Unavailable Locks 2-26

Global Spin Locks 2-26
Local Locks 2-27
Cross Memory, Services Locks 2-28

Intersect 2-31

Contents IX

Determining if Intersects are Held on a 'Processor 2-31
Requesting the Intersect 2-32

Use of Recovery Work Areas For Problem Analysis 2-33
SYSl.LOGREC Analysis 2-34

Listing the SYS1.LOGREC Data Set 2-34
SDWAVRA Key-Length-Data Format 2-35
Important Considerations About SYSl.LOGREC Records 2-36

SYSl.LOGREC Recording Control Buffer 2-38
Formatting the LOGREC Buffer 2-38
Finding the LOG REC Recording Control Buffer 2-38
Format of the LOGREC Recording Control Buffer 2-38

FRR Stacks 2-40
Extended Error Descriptor (EED) 2-41
RTM2 Work Area (RTM2WA) 2-41

Formatted RTM Control Blocks 2-42
System Diagnostic Work Area (SDWA) Use in RTM2

Effects of Multiprocessing On Problem Analysis 2-43
Features of an MP Environment 2-43
MP Dump Analysis 2-45

Data Areas Associated With the MP Environment
Parallelism 2-46
General Hints For MP Dump Analysis 2-48

Inter-Processor Communication 2-49
Direct Services 2-50
Remote Pendable Services 2-51
Remote Immediate Services

MP Debugging Hints 2-58
MVS Trace Analysis 2-61

Trace Entries 2-61

2-52

Trace Entry for Service Processor Call SVC 2-64
Trace Examples 2-64
Notes For Traces 2-66

Tracing Procedure 2-66
Bypassing GTF Lost Events 2-68

Cautionary Notes 2-69
Master Trace 2-71

Master Trace Table 2-72
The Message Processing Facility Table (MPFT) 2-74

Miscellaneous Debugging Hints 2-75

2-42

2-45

Alternate CPU Recovery (ACR) Problem Analysis 2-75
Pattern Recognition 2-77

Low Storage Overlays 2-78
Common Bad Addresses 2-80

OPEN/CLOSE/EOV ABENDs 2-80
Debugging Machine Checks 2-81
Debugging Problem Program Abend Dumps 2-86
Debugging From Summary SVC Dumps 2-89

SUMDUMP Output For SVC-Entry SDUMP 2-90
SUMDUMP Output For Branch-Entry SDUMP 2-91

Started Task Control ABEND and Reason Codes 2-93
SW A Manager Reason Codes 2-94

Additional Data Gathering Techniques 2-95
Using the CHNGDUMP, DISPLAY DUMP and DUMP Operator

Commands 2-95

X MVS Diagnostic Techniques

How to Print Dumps 2-97
How to Automatically Establish System Options For SVC Dump 2-99
How to Copy PRDMP Tapes 2-99
How to Rebuild SYSl.UADS 2-100
How to Print SYSl.DUMPxx 2-101
How to Clear SYSl.DUMPxx Without Printing 2-102
How to Print the SYSl.COMWRITE Data Set 2-103
How to Print an LMOD Map of a Module 2-103
How to Re-Create SYS1.STGINDEX· 2-103
Software LOGREC Recording 2-104
Using the PSA as a Patch Area 2-104
Using the SLIP Command 2-105

SLIP Event Qualifier Keywords 2-105
Using the ACTION Keyword 2-112
Dump Tailoring 2-117
Examples of Using the SLIP Command 2-118
Example of SLIP Command From TSO Terminal 2-124

Designing an Effective SLIP Trap 2-125
Controlling SLIP Traps 2-125
Placement of PER Traps 2-127

SLIP Command Keyword Summary 2-129
System Stop Routine 2-133
How to Expand the Trace Table 2-133

Section 3. Diagnostic Materials Approach 3-1
Stand-alone Dumps 3-2
SVC Dumps 3-4

How to Change the Contents of an SVC Dump Issued by an Individual
Recovery Routine 3-5

SDUMP Parameter List 3-5
SYSABENDs, SYSMDUMPs, and SYSUDUMPs 3-7

Software-Detected Errors 3-7
Hardware-Detected Errors 3-8

Section 4. Symptom Analysis Approach 4-1
Waits 4-2

Characteristics of Disabled Waits 4-2
Analysis Approach For Disabled Waits 4-3
Characteristics of Enabled Waits 4-4
Analysis Approach For Enabled Waits 4-5

Stage 1: Preliminary Global System Analysis 4-6
Stage 2: Key Subsystem Analysis 4-8
Stage 3: System Analysis 4-14

Loops 4~15

Common Loop Situations 4-15
Analysis Procedure' 4-16

TP Problems 4-20:
Message Flow Through the System 4-20
Types of Traces 4-21

GTF Traces 4-21
ACF /VTAM Traces 4~22

ACF/TCAM Traces 4-22
NCP and EP Traces 4-22

Performance Degradation 4-23

Contents Xl

Operator Commands 4-23
Dump Analysis Areas 4-24

Incorrect Output 4-29
Initial Analysis Steps 4-29
Isolating the Component 4-29
Analyzing System Functions 4-30
Summary 4-31

Section S. Component Analysis 5-1
Supervisor Control 5 .. 2

Dispatcher 5-2
Important Dispatcher Entry Points 5-2
Dispatchable Units and Sequence of Dispatching 5-4
Dispatchability Tests 5-13
Miscellaneous Notes About the Dispatcher 5-14
Dispatcher Recovery Considerations 5-15
Dispatcher Error Conditions 5-16

SRB/SSRB Pool Manager 5-17
SRB/SSRB Pool Manager Entry Points 5-17
SRB/SSRB P()ol Manager Recovery Considerations 5-18
SRB/SSRB Pool Manager Error Conditions 5-19

Stop/Reset Services 5-19
Stop/Reset Entry Points 5-19
Stop/Reset Recovery Considerations 5-20
Stop/Reset Error Conditions 5-21

SUSPEND/RESUME/TCTL Services 5-22
SUSPEND/RESUME/TCTL Entry Points 5-22
RESUME/TCTL Recovery Considerations 5-23
SUSPEND/RESUME/TCTL Error Conditions 5-24

lOS 5-25
Front-End Processing
Back-End Processing
lOS Problem Analysis

5-25
5-25
5-25
5-28 lOS ABEND Codes

Loops 5-28
lOS WAIT States 5-29

General Hints For lOS Problem Analysis 5-30
lOS Diagnostic Aids 5-32

Table of EXCP Abend Codes 5-32
EXCP Debugging Area (XDBA) 5-33
SDWA Variable Recording Area 5-34
Output of lOS Recovery Procedures 5-34
Informative IOSB Fields 5-43
Table of lOS Messages 5-46
lOS Wait State Codes 5-47
Table of lOS Return Codes 5.;.47

Error Recovery Procedures (ERPs) 5-48
lOS and ERP Processing 5-48
Identifying ERP Module Names 5-49
How ERP Transfers Control 5-49
Abnormal End Appendages 5-49
Retry/Restart the Channel Program 5-50
Error Interpreter 5-50
ERP Messages and Logging 5-51

XU MVS Diagnostic Techniques

Intercept Conditions 5-51
Unit Check on Sense Command
Compound Errors 5-52.
Diagnostic Approach 5-52

Program Manager 5-55
Functional Description 5-55

Program Manager Organization
Program Manager Control Blocks
Program Manager Queues 5-55
Queue Validation 5-58
System Initialization 5-58

Basic Functional Flow 5-60
LINK 5-60
ATTACH 5-61
XCTL 5-61
LOAD 5-64
DELETE 5-64
Exit Resource Manager 5-64
SYNCH 5-65
IDENTIFY 5-65

5-52

5-55
5-55

ABEND Resource Manager 5-66
806 Abend 5-66
APF Authorization 5-70

Module Subpools 5-71
FETCH/Program Manager Work Area (FETWK) 5-72
RB Extended Save Ar~a (RBEXSA VE) 5-72
CDE Pool Control 5-72

Virtual Fetch 5-74
Functional Description 5-74
Module Organization 5-74
Functional Flow 5-75
Control Blocks 5-78
Recovery Processing 5-79

Error During Initialization Processing 5-79
Errors During Build, Find, and Get Processing 5-79

Debugging Hints 5-80
VSM 5-82

Address Space Initialization 5-84
Step Initialization/Termination (lEA VPRTO -

GETPART /FREEPART) 5-86
Virtual Storage Allocation (GETMAIN/FREEMAIN) 5-87
GETMAIN's Functional Recovery Routine - lEA VGFRR 5-90
VSM Cell Pool Management 5-92
Miscellaneous Debugging Hints 5-92

Real Storage Manager (RSM) 5-97
Major RSM Control Blocks 5-97

PCB (page Control Block) 5-99
SPCT (Swap Control Table) 5-100
PFTE (page Frame Table Entry) 5-101

Page Stealing 5-101
Reclaim 5-102
Relate 5-103
RSM Recovery 5-104

Real Storage Management ABEND Reason Codes 5-105

Contents XUl

RSM Debugging Tips 5-107
Converting a Virtual Address to a Real Address 5-108

Example: Converting a Virtual Address to a Real Address 5-110
PCB Trace Facility 5-111

Auxiliary Storage Manager (ASM) 5-112
Component Functional Flow 5-113

Saving an LG 5-113
Requesting I/O 5-114
Requesting Swap I/O 5-115

Component Operating Characteristics 5-117
System Mode 5-117
Address Space, Task, and SRB Structure 5-117
Storage Considerations 5-117
Interfaces With Other Components 5-118
Register Conventions 5-118
Footprints and Traces 5-118

General Debugging Approach 5-119
Paging Interlocks 5-119
Incorrect Pages 5-120
Unusable Paging Data Sets 5-125
Page/Swap Data Set Errors 5-127
Error Analysis Suggestions 5-127
Validity Checking 5-128
ASM Serialization 5-129

Recovery Considerations 5-131
Recovery Traces 5-132
Recovery Structure 5-132
Recovery As a Debugging Tool 5-133
Recovery Footprints 5-133

ASM Diagnostic Aids 5-134
COD ABEND Meanings for ASM 5-134
ASM Recovery Control Blocks 5-135
Additional ASM Data Areas 5-139

System Resources Manager (SRM) 5-141
SRM Objectives 5-141
Address Space States 5-142
SRM Indicators 5-143

System Indicators 5-143
Individual User Indicators 5-147
Other Indicators 5-148

SRM Error Recovery 5-148
SRM SDWA Data 5-149

Module Entry Point Summaries 5-149
VTAM 5-150

Note to Readers 5-150
VSAM 5-151

Record Management 5-151
RPL 5-151
PLH 5-152
BUFC 5-152

Record Management Debugging Aids 5-153
Open/Close/End-Of-Volume 5-155
O/C/EOV Debugging Aids 5-155
I/O Manager 5-157

xiv MVS Diagnostic Techniques

I/O Manager Debugging 5-157
Catalog Management 5-158

Major Registers and Control Blocks 5-158
How to Find Registers 5-158
Major Registers 5-159
Major Control Blocks 5-159

Module Structure 5-164
VSAM Catalog Recovery Logic 5-165

Establishing/Releasing a Recovery Environment 5-165
Maintaining a Pushdown List End Mark 5-166
Tracking GETMAIN/FREEMAIN Activity 5-166
CMS Function Gate 5-167

Recovery Routine Functions 5-167
Diagnostic Output (Function 4) 5-167
Backout (Function 7) 5-168
Drop Catalog Orientation (Function 9) 5-168
Storage Freeup (Function 10) 5-168
DEFINE/DELETE Backout (Function 12) 5-169

Debugging Aids 5-170
Allocation/Unallocation 5-172

Functional Description 5-172
Allocation 5-172
Unallocation 5-173
Batch Initialization and Control 5-173
Dynamic Initialization and Control 5-173
JFCB Housekeeping 5-174
Common Allocation 5-174
Common Unallocation 5-175
Volume Mount .and Verify 5-176

General Debugging Aids 5-176
Allocation Module Naming Conventions 5-176
Registers and Save Areas 5-177
Common Allocation Control Block Processing 5-177
EST AE Processing 5-180

Unit Allocation Status Recording 5-180
ALLOCAS Recovery Considerations 5-183
ALLOCAS Debugging Hints 5-183

Debugging Hints 5-192
Allocation Serialization 5-192
Subsystem Allocation Serialization 5-193
Device Selection Problems (Non-Abend) 5-193
Address Space Termination 5-194
OBO Abend 5-194
OC4 Abend in IEFAB4FC 5-195
Volume Mount and Verify (VM&V) Waiting Mechanism 5-195

Allocation/Unallocation Reason Codes 5-197
Common and Batch Allocation and JFCB Housekeeping Reason

Codes 5-197
Common and Batch Unallocation Reason Codes 5-200
Dynamic Allocation Reason Codes 5-200

JES2 5-201
Note to Readers 5-201

Subsystem Interface (SSI) 5-202
System Initialization Processing 5-202

Contents XV

Subsystem Interface Major Control Blocks 5-203
Requesting Subsystem Services 5-206

Invoking the Subsystem Interface 5-206
Logic' Flow Examples 5-208

Notifying a Single Subsystem 5-208
Notifying All Active Subsystems 5-210

Debugging Hints 5-211
Event Notification Facility (ENF) 5-212

Requests for ENF Services 5-212
Listen and Signal Exit Routines 5-214
ENF Control Blocks 5-215
ENF Initialization 5-216
ENF Processing 5-217

ENF Return Codes 5-217
ENF Logic Flow Examples 5-217
ENF Recovery Routines 5-220

Recovery Teinrination Manager (RTM) 5-221
Functional Description 5-221

Work Areas 5-221
Major RTM Modules 5-221

Process Flow 5-222
Hardware Error Processing 5-222
Normal Task Termination 5-224
Abnormal Task Termination 5-225
Retry 5-226
Cancel 5-227
Address-Space Termination 5-229
PER Activation/Deactivation 5-230
Error ID 5-232

SVC Dump Debugging Aids 5-233
Important SVC Dump Entry Points 5-233
SVC Dump Error Conditions 5-234
SYS1.LOGREC Entries Produced for SVC Dump Errors 5-234
Control Blocks Used to Debug SVC Dump Errors 5-237
Resource Cleanup for SVC Dump 5-238

SLIP Processor Debugging Aids 5-238
SLIP Command Processor Recovery 5-239
SLIP Processor Recovery 5-239
PER Activation/Deactivation Recovery 5-240
Control Blocks Used by SLIP 5-242

Communications Task 5-244
Functional Description 5-244
Communications Task Control Blocks 5-246
Debugging Hints 5-248

XVI MVS Diagnostic Techniques

Console Not Responding to Attention 5-248
Enabled Wait State 5;.248
Disabled Wait State 5-249
Messages or Replies Lost 5-249
No Messages on One Console 5-250
Messages Routed to Wrong Console 5-250
Truncated Messages 5-250
Console Switching 5-251
Action Message Retention Facility Debugging Aids 5-251
DIDOCS Trace Table 5-252

DIDOCS-In-Operation Inaicator 5-252
DIDOCS Locking 5-252
K Q Command Debugging Aids 5-253
Master Trace Debugging Aids 5-254

Recovery Management Support (RMS) 5-256
MCH Diagnostic Aids 5-256

MCH Return Codes 5-256
Processor Work Area (PWA) 5-257

PWF Diagnostic Aids 5-257
PWF Return Codes 5-257
PWF pata Areas 5-257
Dump Footprint Table 5-265
Appendage (lCFBDFOO) Footprint Table 5-265
LOGREC Recording 5-266

CCH Diagnostic Aids 5-266
Message IGF002I 5-266
PCCA Fields Showing CCH Footprints 5-267

DDR Diagnostic Aids 5-268
DDR Tasks 5-268
DDR Communication Table (DDRCOM) 5-268
DDR Error Recovery Parameter List (DERPLIST) 5-269
DDR Return Codes 5-272
Software Recording 5-272
DDR Storage Dumps 5-272

MIH Diagnostic Aids 5-273
MIll Process 5-273
MIll Work Area 5-273
Software Recording 5-276
MIll Storage Dumps 5-276

Service Processor Call SVC and MSSFCALL DIAGNOSE Instruction 5-277
Service Processor Call SVC (SVC 122) Used With the MSSF 5-277

MSSFCALL Data Block 5-278
SVC Abend and Return Codes With the MSSF 5-279

SVC Processing and Control Blocks With the MSSF 5-279
SVC Control Blocks Used with the MSSF 5-280

MSSFCALL DIAGNOSE Instruction 5-281
MSSFCALL DIAGNOSE Instruction Condition Codes 5-282

Service Processor Call SVC and SERVICE CALL Instruction 5-283
Service Processor Call SVC (SVC 122) Used With theService Processor

Architecture 5-283
Service Call Control Block (SCCB) 5-284
SVC Abend and Return Codes With the Service Processor

Architecture 5-284
SVC. Processing Withthe Service Processor Architecture 5-285
SVC Control Blocks Used With the Service Processor Architecture 5-286

SERVICE CALL Instruction 5-287
SERVICE CALL Instruction Condition Codes 5-287

Cross Memory Services 5-288
PC/AUTH Services 5-288

Module Structure 5-289
Process Flow 5-290
Control Block Structure 5-291
Control Block Formats 5-293
Recovery Considerations 5-296

Contents XVll

Debugging Hints 5-299
SLIP Traps 5-301

PCLINK Services 5-302
STKE Control Block 5-302
Module Structure 5-304
Debugging Hints 5-304

Global Resource Serialization 5-305
Functional Overview 5-306

Ring Processing 5-306
Command Processing 5-306
Dump Support 5-307
Resource Request Processing (Mainline and Fast Path) 5-307
CTC Processing 5-307
WTO/WTOR Message Processing 5-307
Initialization 5-307
Queue Scanning Services 5-308
Storage Management 5-308

Control Blocks 5-308
Control Block Overviews 5-310

Module Flow Diagrams 5-320
Diagnostic Aids 5-343

Check on Enabled Wait During IPL 5-343
System Indicators 5-343
Probe Points 5-344
CTC Processing Debugging Hints 5-344
Ring Processing Debugging Hints 5-345
ENQ/DEQ/RESERVE Processing Debugging Hints 5-345
Storage Management Debugging Hints 5-348
Serialization 5-350
Recovery Routines 5-351
SYSl.LOGREC Recording 5-351

Appendix A. Process Flows A-I
RSM Processing for Page Faults A-2

lEA VPIX Tests A-2
lEA VGFA Tests A-2
lEA VPIOP Tests A-3
lEA VIOCP Tests A-6

Swapping A-7
Swap-In Process A-7
Swap-Out Process A-9

EXCP/IOS A-I2
GETMAIN/FREEMAIN A-I5

GETMAIN Processing A-I5
FREEMAIN Processing A-I6

VT AM Process A -18
TSO A-2I

Time Sharing Initialization A-2I
LOGON Processing A-24

LOGON Scheduling Diagnostic Aids A-32
TSO Line Drop Processing A-34
TMP and Command Processor Interface A-37
TSO Command Processor Recovery A-4I
TSO Terminal I/O Overview A-42

XVlll MVS Diagnostic Techniques

Terminal Output Flow A-43
Terminal Input Flow A-44

TSO/TIOC Terminal I/O Diagnostic Techniques A-45
TSO Attention Processing A-46

Appendix B. Stand-Alone Dump Analysis B-1
Overview B-1
Analysis Procedure B-6

Appendix C. SVC DUMP Title Directory C-l
System-Defined SVC Dump Titles C-2
Operator- and Caller-Defined SVC Dump Titles C-82
SVC Dumps Without Titles C-83
Module to SVC Dump Title Cross-Reference C-85

Appendix D. Abbreviations D-l

Index X-I

Contents XIX

XX MVS Diagnostic Techniques

Figures

2-l. Definition and Hierarchy of MVS Locks 2-22
2-2. Bit Map to Show Locks Held on a Processor 2-24
2-3. Classification and Location of Locks 2-26
2-4. Cross Memory Services Lock Suspend Queues 2-30
2-5. Example of SDWAVRA in Key-Length-Data Format 2-35
2-6. Format of the LOGREC Recording Control Buffer 2-39
2-7. Format of Records Within the LOGREC Recording Control

Buffer 2-39
2-8. SIGP Return Codes 2-50
2-9. External Call (XC) Process Flow 2-54

2-10. Emergency Signal (EMS) Process Flow 2-56
2-11. How to Locate the Trace Table 2-62
2-12. Types of Trace Entries 2-63
2-13. MVS Trace of a Page Fault Without I/O (Formatted by SNAP in

SYSUDUMP/SYSABEND) 2-65
2-14. MVS Trace of a Page Fault With I/O (Unformatted) 2-65
2-15. GTF Trace of a Page Fault Without I/O 2-66
2-16. GTF Trace of a Page Fault With I/O 2-66
2-17. SLIP Command Summary 2-130
4-1. JES2 Commands for Status Information 4-24
4-2. System Use of Hardware Components 4-26
5-1. SRB Queue Structure and Control Block Relationships 5-6
5-2. Local SRB Queue Structure and Control Block Relationships 5-7
5-3. Dispatcher Processing Overview 5-10
5-4. I/O Processing Overview 5-26
5-5. Major lOS and EXCP Control Block Relationships 5-27
5-6. Program Manager Modules 5-56
5-7. Program Manager Control Blocks and Work Areas 5-57
5-8. Program Manager Queues 5-57
5-9. lEA VNP05 Initialization 5-59

5-10. New PRB Initialization - LINK 5-61
5-11. New RB Initialization - XCTL 5-62
5-12. XCTL RB Manipulation 5-63
5-13. CDE Initialization by IDENTIFY 5-66
5-14. Module Search Sequence for LINK, ATTACH, XCTL and

LOAD 5-68
5 .. 15. Module Search Sequence of Private Libraries 5-69
5-16. CDE Allocation 5-70
5-17. Virtual Fetch Modules 5-75
5-18. Virtual Fetch Control Blocks 5-78
5-19. Virtual Storage Management's View of MVS Storage 5-83
5-20. Virtual Storage Management's Control Block Usage 5-85
5-21. Virtual Storage Management's Global Data Area (GOA) ?-89
5-22. SOW AVRA Error Indicators 5-91

Figures XXI

5-23.
5-24.
5-25.
5-26.
5-27.
5-28.
5-29.
5-30.
5-31.
5-32.
5-33.

VSM Cell Pool Management 5-93
Major RSM Control Blocks and Their Functions 5-97
Relationship of Critical RSM Control Blocks 5-98
Page Stealing Process Flow 5-102
Converting Virtual Addresses to Real Addresses 5-109
Relationship of Important ASM Control Blocks 5-116
Locating An LSID From An LPID 5-122
Relating the Virtual Address to the PART and PAT 5-124
Page/Swap Data Set Error Action Matrix 5-127
SRM Control Block Overview 5-145
Relationship of the Six Major Functions of
Allocation/Unallocation 5-172
Common Allocation Input 5-178 5-34.

5-35. Common Allocation Control Blocks After Construction of Volunit Table
and EDLs 5-179
ALLOCAS Control Block Structure 5-182
ALLOCAS Dump 5-187
VM&V Control Block Structure 5-196
Subsystem Interface Control Block Usage 5-205
Control Block Usage With Synonyms 5-206

5-36.
5-37.
5-38.
5-39.
5-40.
5-41.
5-42.
5-43.
5-44.
5-45.
5-46.
5-47.
5-48.
5-49.
5-50.

Control Block Structure for Invoking Subsystem Interface
Finding the SSIB for a Job When SSOB Pointer is Zero

5-207
5-208

ENF Event Parameter List (ENFPM) 5-213
ENF Control Block Summary 5-215
ENF Control Block Structure 5-216
Sequence of Communications Task Processing
Communications Task Control Block Structure
Typical DDRCOM Chains 5-269
DDR Error Recovery Parameter List 5-270
MIH Work Area 5-275

5-245
5-247

5-51. Overview of SVC Processing With the MSSF 5-280
5-52. SVC Control Block Structure With the MSSF 5-281
5-53. Overview of SVC Processing With the Service Processor

Architecture 5-286
5-54. SVC Control Block Structure With the Service Processor

Architecture 5-287
5-55. PCI A UTH Control Block Structure 5-292
5-56. PC/AUTH Recovery Areas 5-297
5-57. PCLINK Control Block Structure 5-303
5-58.
5-59.
5-60.
5-61.
5-62.

5-63.

5-64.

5-65.

5-66.
5-67.
5-68.

XXll MVS Diagnostic Techniques

TCBs in the Global Resource Serialization Address Space
CTC Processing - Control Block Overview 5-312
Ring Processing - Control Block Overview 5-313
Command Processing - Control Block Overview 5-314
ENQjDEQ Processing - Local Resources - Control Block
Overview 5-314
ENQjDEQ Processing - Global Resources - Control Block
Overview 5-315
Queue Scanning Services - Local Resources - Control Block
Overview 5-316
Queue Scanning Services - Global Resources - Control Block
Overview 5-317
Storage Management - Control Block Overview 5-318
WTOjWTOR Message Processing - Control Block Overview
Module Flow Overview and Directory 5-321

5-311

5-319

5-69. Module Flow for CTC Processing - Handle Arrival of
Immediate-CCW 5-322

5-70. Module Flow for CTC Processing - Handle Arrival of RSA or
RSAIRCD 5-322

5-71. Module Flow for CTC Processing - Send a RSA or RSAIRCD 5-323
5-72. Module Flow for Ring Processing - Send/Receive a RSA 5-324
5-73. Module Flow for Ring Processing - Send a RSAIRCD or

Immediate-CCW (Requested by ISGBCI) 5-325
5-74. Module Flow for Ring Processing - Send a RSAIRCD (Requested by

ISGBTC) 5-326
5-75. Module Flow for Ring Processing - Handle Arrival of RSAIRCD (Not

Requested by This System) 5-327
5-76. Module Flow for Ring Processing - SNAPSHOT Function 5-328
5-77. Module Flow for Ring Processing - SENDCMD (RSCRADDS)

Function 5-329
5-78. Module Flow for Ring Processing - SENDCMD (RSCRSNAD)

Function 5-330
5-79. Module Flow for Command Initialization and Cleanup 5-331
5-80. Module Flow for DISPLAY GRS 5-332
5-81. Module Flow for VARY GRS(x), PURGE 5-332
5-82. Module Flow for VARY GRS(x), QUIESCE to Another System 5-333
5-83. Module Flow for VARY GRS(x), QUIESCE by a System to Quiesce

Itself 5-334
5-84. Module Flow for VARY GRS(x), RESTART to Restart Another

System 5-335
5-85. Module Flow for VARY GRS(ALL), REST ART to Restart All

Systems 5-336
5-86. Module Flow for VARY GRS(x), RESTART by a System Not in the

Main Ring 5-337
5-87. Module Flow for Join Processing at Initialization Time 5-338
5-88. Module Flow for ENQ/DEQ Mainline - Local Resource

Request 5-339
5-89. Module Flow for ENQ/DEQ Mainline - Global Resource

Request 5-340
5-90. Module Flow for the Termination Resource Manager 5-341
5-91. Module Flow for Queue Scanning Services 5-342
5-92. Module Flow for Dump Support - SVC Dump 5-342
A-I. Page Fault Process Flow A-4
A-2. Swap-In Process Flow A-8
A-3. Swap-out Process Flow A-IO
A-4. IOSjEXCP Process Flow A-13
A-5. VTAM SEND Process Flow A-19
A-6. Overview of Logon Processing A-22
A-7. TCAM Organization After a TSO Logon A-26
A-8. Logon Work Area A-28
A-9. LOGON Work Area Bits That Indicate the Currently Executing

Module A-32
A-IO. LOGON Scheduling Post Codes A-33
A-II. Overview of TSO Line Drop Process A-35
A-I2. Summary of Command Processor Recovery Activity A-42
A-I3. TSO Attention Flow A-47

B-1. Stand-alone Dump A:nalysis Flowchart B-5

Figures XXlll

XXIV MVS Diagnostic Techniques

TNL SN28-5095 (December 27, 1985) to SY28-1133-2

Summary of Amendments

Summary of Amendments
for SY28-1133-2
as Updated December 27, 1985
by Technical Newsletter SN28-5095

This Technical Newsletter, which supports Version 1 Release 3.6 of MVS/System
Product, includes HASPRAS as the issuing module of a $SDUMP macro
instruction for JES2.

Additionally, several technical corrections were made.

Summary of Amendments
for SY28-1133-2
MVS/System Product Version 1 Release 3.5

This major revision consists of maintenance changes and changes to support
MVS/System Product 1.3.5.

The changes include:

• The Service Processor Call SVC (SVC 122), which provides MVS support for:

Processor complexes with the Service Processor Architecture. For these
processors, MVS issues the SERVICE CALL instruction to communicate
wi th the service processor.

Processor complexes with the monitoring and system support facility
(MSSF). (The Service Processor Call SVC was formerly called the
MSSFCALL SVC.) For these processors, MVS issues the MSSFCALL
DIAGNOSE instruction to communicate with the MSSF.

• Bit 19 in the machine check interruption code (MCIC).

• SVC dump titles for the scheduler, master scheduler, and TSO.

• Minor technical and editorial changes throughout.

Summary of Amendments XXV

TNL SN28-5095 (December 27, 1985) to SY28':'1133-2

• Information in "Section 5. Component Analysis" for the following
components is deleted from this book because the information is obsolete or
duplicated in other books.

JES2 - see the JES2 Logic book for diagnostic information.

VTAM - see the ACFjVTAM Diagnosis Guide and ACFjVTAM Diagnosis
Reference for diagnostic information.

Summary of Amendments
for SY28-1133-1
as Updated December 30, 1983
by Technical Newsletter SN28-0875

This Technical Newsletter, which supports Version 1 Release 3.4 of MVSjSystem
Product, contains information for the functional subsystem interface (FSI).

Also, changes have been made throughout this publication to reflect maintenance
changes.

XXVI MVS Diagnostic Techniques

Section 1. General Introduction

This section introduces basic MVS problem analysis and provides an overview of
the interactive problem control system (IpeS).

Basic MVS Problem Analysis Techniques

Problem isolation and determination are significantly more complex in MVS than
in previous operating systems because of:

• Enabled System Design which has made the internal and environmental
status-saving functions more extensive than those of previous systems.

• Multiprocessing (MP) which potentially allows the execution of code in
sequences not encountered in a uniprocessing (UP) environment. MP can.
also cause contention for serially reusable resources. (In this manual, MP
refers to mUltiprocessing on both multiprocessors and attached processors.)

• Locking Mechanism which facilitates enabled system design and
multiprocessing functions and maintains data integrity.

• Subsystems which are responsible for processing work requested from the
system. They maintain their own work queues, control block structures and
dispatching mechanisms - all of which must be understood in order to
effectively pursue problems in the MVS operating system.

• Software Recovery which attempts to keep the system available despite errors.

• The number of components which provide new functions and whose internal
logic must be understood for effective problem determination.

As a result of this complexity, MVS problem solvers have made two adjustments
in their diagnostic outlook:

• Rather than learning the system logic at an instruction or module level, they
have learned the system in terms of component interactions at the interface
level.

• They have learned that the most effective problem ·analysis at a system level is
obtained from a disciplined, almost formal, diagnostic approach.

Section 1. General Introduction 1-1

This publication contains those debugging techniques and guidelines that have
proven the most useful to problem solvers with several years experience in
analyzing MVS system problems. These techniques are presented in terms of a
debugging "approach" that can be summarized in three steps:

1. Identifying the external symptom of the problem.

2. Gathering relevant data from system data areas in order to isolate the
problem to a component.

3. Analyzing the component to determine the cause of the problem.

The most important step in this approach is often the first - correctly identifying
the external symptom of a problem. To do this, it is best to get a description of
the problem as it was perceived by an eyewitness. You will want a description
that provides a context from which to start, such as:

"System is looping; can't get in from console."
"Job abended with 213."
"I/O error on 251."
"Console locked out."
"Terminal hung, keyboard locked."
"System in wait, nothing running."
"Bad output."
"Job won't cancel."
"System degrading. Very slow."
"System died."
"OC4 in component abc."

The list is endless, of course. Your objective is to fit one (or more) of these
descriptions to one of the following external symptoms.

• Enabled wait - The system is not executing any work and when it takes
interrupts, nothing happens. Something appears to be stuck.

• Disabled wait - The system freezes with a disabled PSW that has the wait bit
on. This can be either an explicit and intentional disabled wait or a situation
that occurs because the PSW area has been overlaid.

• Disabled Loop - This is normally a small (fewer than 50 instructions) loop in
disabled code.

• Enabled loop - This is normally a large loop in enabled code (and may include
disabled portions - loops as a result of interrupts).

• Program check - The program is automatically cancelled by the system,
usually because of improper specification or incorrect use of instructions or
data in the program. If a SYSABEND, SYSMDUMP, orSYSUDUMP DD
statement was included in the JCL for the job, a dump of the problem
program will be taken.

• ABEND - The system issues an SVC 13 with a specific code from 1 to 4095 to
indicate an abnormal situation.

1-2 MVS Diagnostic Techniques

• Incorrect output - The system is not producing expected output. Incorrect
output can be categorized as: missing records, duplicate records or invalid
data that has sequence errors, incorrect values, format errors. or meaningless
data. If a program has apparently executed successfully, incorrect results will
not be detected until the data is used at some future time.

• Performance degradation - A bottleneck or system failure (hardware or
software) has severely degraded job execution and throughput.

• TP problem - A problem, usually detected by the operator or terminal user,
that indicates malfunctions are affecting one or more terminals, lines, etc.

The chapters in Section 4 (Symptom Analysis Approach) will help you identify
these symptoms. The main rule at this stage of your analysis is to proceed
carefully. When first screening a problem, do not assume too much. Don't even
assume that the original eye witness description was correct. Keep all initial
information about the problem as a reference for your later analysis.

In the course of identifying the correct external symptom, you will begin gathering
data that will lead you to other sections of the pUblication. Specific data
gathering techniques are contained in Sections 2 and 3. Section 2 describes the
major MVS debugging areas such as LOGREC records and recovery work areas.
Section 3 describes how to use a storage dump effectively as your main source of
diagnostic material.

Eventually you should have gathered enough data to isolate the problem to a
particular component or process. Section 5 and Appendix A provide techniques
for analyzing system components and processes so that you can determine the
cause of the problem. Appendix B contains a step-by-step procedure that can be
used as a guide for analyzing a stand-alone dump.

Note: Before you begin using this publication for problem analysis, scan through
it to find out where the various types of information are located. Depending on
your current debugging sk.illievel, various sections will be more important than
others.

Always keep in mind that trouble-shooting a system of the internal complexity of
MVS is not always an "If A, then B" procedure. The guidelines and techniques
presented in this publication define "generally" what the analyst will discover.
The nature of the debugging process is such that the problem solver does not
perform ,the same analysis for every problem.

Section 1. General Introduction 1-3

IPCS - Interactive Problem Control System

The Interactive Problem Control System (IPCS) provides MVS installations with
expanded capabilities for diagnosing software failures and facilities for managing
problem information and status.

IPCS includes facilities for:

• Online examination of storage dumps.

• Analysis of key MVS system components and control blocks.

• Online management of a directory of software problems that have occurred in
the user's system.

• Online management of a directory of problem-related data, such as dumps or
the output of service aids.

IPCS runs as a command processor under TSO, allowing the user to make use of
existing TSO facilities from IPCS, including the ability to create and execute
command procedures (CLISTs) containing the IPCS command and its
subcommands.

IPCS supports three forms of MVS storage dumps:

• High-speed stand-alone dumps produced by AMDSADMP.

• Virtual dumps produced by MVS SDUMP on SYSl.DUMP data sets.

• Virtual dumps produced by MVS SDUMP on data sets specified by the
SYSMDUMP DD statement.

Dumps on data sets specified by the SYSABEND or SYSUDUMP DD
statements cannot be analyzed using the IPCS facilities.

For information about IPCS, refer to the MVS Interactive Problem Control
System (IPCS) User's Guide and Reference.

1-4 MVS Diagnostic Techniques

Section 2. Important Considerations Unique to MVS

This section describes concepts and functions that are unique to the MVS
environment and useful to problem analysis. It also contains miscellaneous
debugging hints and general data gathering techniques.

The chapters in this section are:

• Global System Analysis
• System Execution Modes and Status Saving
• Locking
• Use of Recovery Work Areas in Problem Analysis
• Effects of Multiprocessing on Problem Analysis
• MVS Trace Analysis
• Miscellaneous Debugging Hints
• Additional Data Gathering Techniques

Section 2. Important Considerations Unique to MVS 2-1

Global System Analysis

In trying to isolate a problem to an internal symptom, a global system analysis
often uncovers enough data to provide a starting point for the actual problem
isolation and debugging. This chapter discusses the main considerations the
analyst should be aware of when analyzing a stand-alone dump, including:

• The system areas that should be inspected to understand the current system
state at the time of a dump

• The system areas that should be examined to understand the current state of
the work in the system and the current disposition of storage and tasks

Global Indicators that Determine the Current System State

The following areas should be examined to help determine the current state of the
system:

1. PSA - occupies the first 4K bytes of real storage for each processor. Note
that absolute 0 is not used during normal system operation on a 'machine with
the MP feature - this is true whether the system is operating in MP or UP.
(The one exception is a control program that is system generated with
ACRCODE = NO.) During NIP processing the PSA(s) for the processor(s)
are initialized and the prefix register(s) are initialized to point to them.

Special Notes About Stand-alone Dumps:

• If you IPL the stand-alone dump program from the system control (SC)
frame on the 3033 or the CC012 frame of the 3081, it is not necessary to
perform the STORE STATUS operation as noted in the following
paragraphs. Status is automatically stored when stand-alone dump is
invoked from either of these frames and automatic store status is on.

• Before taking a stand-alone dump, it is necessary to perform a STORE
STATUS operation. This hardware facility does not use prefixing; instead
it stores values such as the current PSW, registers, CPU timer, and clock
comparator in the unprefixed PSA (the one used before NIP initialized
the prefix register) at absolute address 100. The dump program
subsequently saves these values and, in an MP environment, issues a
SIGP instruction to other processors requesting a STORE STATUS
operation. As a result, these values in the unprefixed PSA are overlaid by
another processor's values.

Therefore, in an MP environment the status in the unprefixed PSA is
always that of a non-IPLed processor, not the one on which the
stand-alone dump was IPLed.

• In a machine not equipped with the MP feature and therefore without
prefixing, the IPLing of the stand-alone dump program causes low
storage (0-X'18') to be overlaid with CCWs. You should be aware of this
and not consider it as a low storage overlay.

2-2 MVS Diagnostic Techniques

• In an MP environment, the STORE STATUS operation must be
performed only from the processor to be IPLed for the stand-alone dump
program.

• IPLing the stand-alone dump program twice causes the storage dump to
contain a dump of the dump program itself because it was read in for the
first IPL. This causes the dump program to overlay a certain portion of
the nucleus (generally starting at X'7000') and the general purpose
registers to contain values associated with the stand-alone dump program
and not MVS.

• If the operator does not issue the STORE STATUS instruction before
IPLing a stand-alone dump, the message "ONLY GENERAL PURPOSE
REGS VALID" might appear on the formatted dump. The PSW, control
registers, etc., are not included. This greatly hampers the debugger's task.

2. Registers and PSW - The print dump program formats the current PSW and
the general, floating point, and control registers associated with each
processor. From these, you can determine the program executing on each
processor.

If the current PSW is 070EOOOO 00000000 and the GPRs are all 0, you are in
the no-work wait condition, which indicates no ready work is available for
this processor to execute.

If there is or should be work remaining, an invalid wait condition results.
(Refer to the chapter on "Waits" in Section 4.)

If the registers are not equal to zero and the PSW does not contain the wait
bit (X'OO02'), there is an active program. If the wait task is dispatched, the
system is in the no-work wait condition.

3. ILC/CC - location X'S4' for external interrupts; location X'S8' for SVC
interrupts; location X'SC' for program interrupts. These fields indicate the
last type of interrupt associated with each interrupt class for each processor.
The work active when each interrupt occurs is represented by the old PSWs at
locations: X'lS' (external); X'20' (SVC); X'2S' (program). Common contents
of these fields are:

X'84' 00001004 clock comparator
00001005 CPU timer
OOOxl201 SIGP-emergency signal
000x1202 SIGP-external call
Where x indicates the processor issuing the SIGP instruction.

X'8S' 000200xx where xx is the SVC number. This field should be inspected for unusual SVCs
such as:

1 - WAIT:
D-ABEND:
F-ERREXCP:
10 - PURGE:
38 - ENQ:
4F - STATUS:

can indicate an enabled wait situation
can indicate program error processing
can indicate a problem in I/O error processing
can indicate a problem in the swap process
can indicate a resource contention problem
can indicate a non-dispatchability problem

X'8C' OOOXOOll indicates a page fault interrupt. Anything other than a code of 11 is highly
suspect and must be inspected further. Also with a code of 11, the program check old
PSW (location X'2S') must be enabled (mask = X'07') because disabled page faults are
not allowed in MVS and it is an error if one occurs.

Section 2. Important Considerations Unique to MVS 2-3

4. PSA + X'204' (CPU ID)

5. PSA + X'20S' (address of PCCA - 1 per processor) - The PCCA contains
information about the physical facilities of each processor.

6. PSA + X'210' (address of LCCA - 1 per processor) - The LCCA contains many
of the status-saving areas that were located in low storage in previous
systems. It is used for software environment saving and indications. The
registers associated with each of the interrupts you find in the PSA are saved
in this area. In addition, the system mode indicators for each processor are
maintained in the LCCA.

7. PSA +X'224' (PSAAOLD) - This is the address of the ASCB of the work last
dispatched on each processor. This field indicates the address space that is
currently executing.

8. PSA + X'21C' (PSATOLD) - This is the address of the TCB of the work last
dispatched on each processor. This field in conjunction with PSAAOLD
isolates to a task within an address space. Note: PSATOLD=O when SRBs
are dispatched.

9. PSA + X'22S' (PSASUPER) - This is a field of bits that represent various
supervisory functions in the system. If a loop is suspected, these bits should
be checked in an attempt to isolate the looping process.

Note: Because of SRM timer processing in MVS, the external first level
interrupt handler bit (X'20') or the dispatcher bit (X'04') may be set in this
field even in the enabled wait situation.

10. PSA + X'2FS' (PSACLHS) - This field indicates the current locks held on
each processor. Knowing which locks are held helps isolate the problem,
especially in a loop situation. By determining the lock holders you can isolate
the current process. (See the chapter on "Locking" later in this section.)

11. PSA + X'3S0' (PSACSTK) - This is the address of the active recovery stack
which contains the address of the recovery routines to be routed control in
case of an error. If the address is other than X'COO' (normal stack), the type
of stack (for example, program check FLIH or restart FLIH) is meaningful,
especially in the loop situation.

By searching the normal stack (X'COO') and associating the recovery routine
to active mainline routines you may get an idea of the current process. This
is true only if the pointer to the current entry is not X'CEO,' which would
indicate an empty recovery stack.

Note: If a loop is suspected, the first word following each routine address in
the current stack should be scanned. A X'80' indicates that routine is in
control. A X'40' indicates that routine is in control and that it is a nested
recovery routine.

If X'28' into the stack is non-zero, also check for an SDWA address at X'5C'
into the active stack. This block is mapped by the SDW A DSECT and is
described in the Debugging Handbook (RTCA and SDWA are different names
for the same control block). If an SDW A address is present, an error has

2-4 MVS Diagnostic Techniques

occurred and it can be related to the problem you are analyzing. If trapping
via RTM's SLIP facility, the registers at entry to RTM are contained in this
area.

12. PSA + X'414' (PSACSID) - This is the ID of the channel set that is currently
connected to this processor.

Work Queues, TCBs and Address Space Analysis

TCB Summary

SRB Dispatching Queues

Examine the following areas to help determine the current state of work in the
system.

The TCB summary report, produced by AMDPRDMP (print dump program),
contains a summary of the address spaces and their associated tasks. A quick
scan of the completion (CMP) field for each task reveals any abnormal
terminations that have occurred. Discovery of an error completion code warrants
further investigation as to the cause. Remember, however, that these codes are
residual and the job or task might have recovered from the problem.

Also investigate multiple abnormal completion codes which all relate to the same
area of the system, or many tasks that all have the same completion code. These
completion codes can all relate to one area of the system and perhaps to the
problem you are investigating. Again, LOGREC should provide further
documentation in an error situation such as this.

The print dump program formats the SRB dispatching queues. Elements on any
of these queues should be investigated, especially in cases where no work appears
to be progressing through the system.

Elements on the global, SVT, or address space local services management queues
(SVTGSMQ, SVTLSMQ, or ASCBLSMQ) can indicate that the dispatcher has
not received control since these SRBs were scheduled. This is an unusual
condition that should be investigated to determine why the SRBs have not been
dispatched.

Elements on the global/local service priority lists (GSPLs/LSPLs) should be
explained. It is possible the dump was taken before the SRB routines were able
to execute. But it more likely indicates some other system problem such as an
enabled wait or disabled loop. If there are SRBs on an LSMQ/LSPL, you should
determine if the associated address space is swapped into storage and if it is not,
why not. (possible causes are real frame shortage or a problem in the
paging/swapping mechanism.) Again this is an indication of a potential system
problem. The chapter on "Waits" in Section 4 and the chapter on "Dispatcher"
in Section 5 contain additional information on the dispatching queues.

If, at this point, you can isolate the problem to a component, refer to the
"Component Analysis" for that component in Section 5. The chapter on "Waits"
in Section 4 should prove helpful if you have isolated to a problem in the system.

Section 2. Important Considerations Unique to MVS 2-5

Address Space Analysis

If you have isolated the error to a given address space or want to determine the
state of a given address space, analyze the ASCB.

Important indicators in the ASCB are:

• ASCBLOCK (ASCB + X'80') - to determine the specific state of the local
lock. If it contains 7FFFFFFF, FFFFFFFF, or 4FFFFFFF (the lock
suspendjinterruptjready-to-run IDs), refer to the chapter on "Locking" later
in this section for an explanation.

Note: When holding a suspend lock, a routine can only be suspended
because it attempts to obtain an unavailable cross memory services lock or
because of a page fault, synchronous page fix, or if the SMF buffers are full
when SMF is entered, or the routine specifies SUSPEND = YES on the
SDUMP macro. To find the reason for the suspension, refer to the discussion
of Task Analysis later in this chapter and to the chapter on "'Locking" later in
this section.

• ASCBEWST (ASCB + X'48') - to determine the TOD clock value when the
address space last executed. This field helps you determine how long an
address space has been swapped-out. By subtracting this field (bytes 3-6
which repeat approximately every 15 minutes) from the last timer value in the
MVS trace table and converting to seconds, you can discover the approximate
swap-out time. (See the chapter "MVS Trace Analysis" later in this section.)

• ASCBTNEW (ASCB + X'lC') - identifies highest-priority TCB that is
dispatchable. Explicit wait sets a non-dispatchability flag
(TCBFLGS4 = X'04').

• ASCBCPUS (ASCB + X'20') - number of processors running tasks in this
address space.

• ASCBSEQN (ASCB + X'26') - indicates the address space's position on the
dispatching queue. If its value is X'7FFF' the ASCB is not on the
dispatching queue.

• ASCBRCTF (ASCB + X'66'), ASCBFLG 1 (ASCB + X'67') - current status of
the address space.

• ASCBASXB (ASCB + X'6C') - pointer to the ASXB that anchors the TCBs.

• ASCBDSPI (ASCB + X'72') - address space non-dispatching flags.

• ASCBSRBS (ASCB + X'76') - number of SRBs currently suspended in the
address space.

• ASCBOUCB (ASCB + X'90') - pointer to the OUCB, which is helpful when
determining why an address space is swapped-out.

• ASCBFMCT (ASCB + X'98') - number of real frames currently occupied by
the address space.

2-6 MVS Diagnostic Techniques

Task Analysis

• ASCBTCBS (ASCB + X'D8') - number of ready TCBs not requiring the local
lock.

• ASCBTCBL (ASCB + X'DC') - number of ready TCBs requiring the local
loc~.

• ASCBLOCI (ASCB + X'E8') - contains either the ASCB address of the
address space holding this ASCB's local lock as a CML lock, or zero.

• ASCBCMLH (ASCB + X'EC') - contains either the address of the suspended
TCB or SSRB holding this ASCB's local lock, or zero. The high-order bit on
in field ASCBCMLH indicates an SSRB.

Once you understand the ASCB you should analyze the associated task structure.
Once again, scan the TCBs associated with your address space and look for an
abnormal completion field. While doing so, check the RB structure for each task.
Remember that the region control task, dump task, and STC/LOGON are
represented by the first three TCBs. "Normally" they will be waiting during task
execution. If one of them is not, you should determine why.

Assuming the first three TCBs are not obvious problem areas, continue inspecting
the remaining TCBs. You are trying to explain each RB. Starting with the last
RB created (the first RB, pointed to by the TCB + 0), determine what work is
represented. If work is waiting, find out why.

Note: The master scheduler address space has system task TCBs that differ from
other address spaces. Refer to the diagrams for Master Scheduler Initialization,
Start Initiator, and Job Execution in the topic "General System Flow" in the
Debugging Handbook, Volume I for details of the TCB structures.

The RBOPSW indicates the issuer of an explicit WAIT. TCBFLGS4 indicates an
explicit WAIT. If it is not an explicit WAIT, consider the following suspension
possibilities and their associated key indicators:

1. If ASCBLOCK = X'7FFFFFFF', X'FFFFFFFF', or X'4FFFFFFF', the
status (registers and PSW) of the suspended, interrupted, or ready-to-run task
is saved in the IHSA of the locally locked address space (ASCB + X'6C'
points to ASXB; ASXB + X'20' points to IHSA). The IHSA is serialized by
the address space's local lock. The reason for suspension is important. If it is
for a lock, find out what address space or task owns that lock and what the
o/wners' state is. (The chapter on "Locking" later in this section shows how
to determine lock owners.) If it is for a page fault or synchronous page fix,
determine the state of that page fault or synchronous page fix. If it is for an
SMF suspension, the field at SMCA + X'8C' points to an SMF suspend block
(SSB). (For additional information on SMF suspension, see the topic "SMF
Suspension" later in this section.) Note also that while the RBTRANS field
points to the page fault causing address, the RBWCF is O.

Note: If a task owned the local lock at the time of the suspension or
interruption, TCBACTIV is left on. If no TCB in the task structure has an
active indicator set, you can assume an SRB owned the lock. If no SRBs are

Section 2. Important Considerations Unique to MVS 2-7

on either of the cross memory services lock suspend queue, the suspension is
probably the result of a page fault or a synchronous page fix.

An SRB can be suspended requesting an unavailable suspend lock (local or
cross memory services), or because of a page fault or a page fix. Once an
executing SRB is suspended for any of the above reasons, an SSRB (see the
Debugging Handbook) is constructed. Also, anSRB can be delayed by the
dispatcher if the local lock is unavailable and the SRB is to receive control
with the local lock held. No status is saved for a delayed SRB; instead the
SRB is placed on the local lock suspend queue. If suspended for page fault
processing, the SSRB is pointed to by the corresponding PCB + X'IC'
(PCBSRB). PCBs are generally chained together and anchored in two
locations: (1) the RSMHDR for local address space page faults; (2) the PVT
for page faults caused by referencing commonly addressable storage. Note
that if real frames were not available when the page fault occurred, even local
page faults are queued from the PVT on the defer queue (PVTGFADF,
PVT + X'7S4').

For a cross memory services lock request, the SSRB is on the requested cross
memory services lock's suspend queue. See the chapter on "Waits" in Section
4 for details on how to locate the SSRB. For Local lock suspensions, the
·SRBs and SSRBs are chained together onaqueue anchored in the ASCB
field ASCBLSQH (ASCB + X'84').

A locked TCB can be suspended for the same reasons as an SRB. The save
area is the IHSA of the locally locked address space (described in the
Debugging Handbook). The IHSA is valid during a page fault if the
corresponding PCB -+ X'08' flag is on, indicating t1;te lock was held at the time
of the page fault. Also, the TCBLLH (TCB + X'1l4') is set to X'OI' if tlte
task was locally locked at the time of the page fault.

The IHSA is valid for a cross memory services lock suspension if the ASCB is
on the cross memory services lock's suspend queue. The CMSSMF lock
suspend queue header is at label CMSFRSQH, the ENQ/DEQ cross memory
services lock suspend queue is at label CMSEDLK + X'4', and the general
cross memory services lock suspend queue is at label CMSSQH in CSECT
lEA VESLA. If there is a page fault, the TCB could be suspended while
holding both the local lock and at least one cross memory services lock. An·
indication of this is that the flag for cross memory services locks
(ASCB + X'2A') is turned on, and the ASCB address is in at least one of the
cross memory services locks. The cross memory services lockword contains
the ASCB address of the locally locked address space. The requester of the
cross memory services lock can own a cross memory 10cal(CML) lock.

Note: The local and cross memory services lock bits in ASCBHLHI are set
at suspend and are never reset.

2. If ASCBLOCK == X'OOOOOOOO' and the memory jtask is waiting, the status is
saved in the RBjTCB. (See the chapter on "System Execution Modes and
Status Saving" later in this section.)

A task can issue the SUSPEND macro to cause the wait count of an· RB to
be non-zero. The RBOPSW indicates the issuer ora SUSPEND
RB = CURRENT request. However, an RB can also issue SUSPEND

2-8 MVS Diagnostic Techniques

Summary

RB = PREVIOUS. In this case, the only clue to the issuer is the interrupt
code in the RB. If the interrupt code indicates a type 2, 3, or 4 SVC, then
this SVC routine could have issued the suspend for this RB; but it is also
possible that some IRB had executed on behalf of the task and issued a
suspend for its previous RB.

If the RBOPSW does not indicate the issuer of a WAIT or SUSPEND, and
the RB is not in either page fault wait or page fix wait, then a SUSPEND
RB = PREVIOUS might have been issued.

Note: The explicit wait flag in the TCB (in TCBFLGS4) will not be on for a
suspended RB.

3. Suspended SRBs can cause bottlenecks. The chapter on "System Execution
Modes and Status Saving" can aid in locating any suspended SRBs that relate
to the address space. Note: Do not spend time looking for them unless other
facts about the problem indicate a potential problem in this area.

By far the most important consideration in task analysis is the RB structure of
each task. Generally if you have isolated the problem to an address space, RB
analysis shows a potential problem in the way of:

• Long RB chains
• Contention caused by an ENQ (SVC 38) request
• SMF suspension
• Page fault or synchronous page fix waits
• I/O waits
• Abnormal termination processing, that is, SVC D RB

Once you have analyzed the RB structure you might want to go back and further
analyze the TCBs. Following are additional important fields in the TCB:

1. TCBFLGS (TCB + X'lD') - indicators of how the system currently considers
this task.

2. TCBGRS (TCB + X'30') - general purpose registers (0-15) saved when a
TYPE 1 SVC is issued or for an interruption for a non-locked task.

3. TCBSCNDY (TCB + X'AC') - additional system indicators for this task that
help to determine why this task is not executing.

4. TCBRTWA (TCB + X'EO') - pointer to the RTM2 work area (mapped in the
Debugging Handbook) which contains information similar to the SDWA but
also data for RTM processing.

This chapter contains major considerations you must be aware of when analyzing
a stand-alone dump in MVS. A disciplined approach is important; resist the
tendency to go off on tangents upon finding the first unexplainable condition.
After gathering all the facts, try to resolve the "cause and effect" situations you
are bound to uncover. Generally, at this point you will have isolated the error
and can start a detailed component/process analysis.

Section 2. Important Considerations Unique to MVS 2-9

System Execution Modes and Status Saving

MVS differs significantly from previous operating systems by having multiple
executjon modes. Status is saved and restored from many different locations
depending upon the execution mode at the time control was lost. This chapter
explains those modes and how they affect problem· analysis.

System Execution Modes

Task Mode

MVS has four executiori modes:

• Task mode
• SRB mode
• Physically disabled mode
• Locked mode

Code always executes in one of these modes or, in certain cases, in a combination
of modes. For instance, code running in task or SRB mode can also be either
locally locked or physically disabled.

In general, the supervisor dispatches units of work according to the following
priority: SRB, locked, and task mode. Because a unit of work that is disabled is
already executing, disabled mode work is not dispatched as such.

When a unit of work is running, the locally locked ASCD is found through
PSALOCAL or PSAAOLD. IfPSALOCAL=O and PSACLHS indicates that a
local lock is held, then PSAAOLD points to the locked ASeD. If PSALOCAL"O
then PSALOCAL points to the CML locked address space.

In conjunction with the four execution modes, a unit of work can execute in cross
memory mode. Cross memory mode is defined by control registers 3 and 4 and
the PSW S-bit. The S-bit (bit 16 of the PSW) indicates whether current
addressability is to the primary address space (S-bit = 0) or the secondary address
space (S~bit= 1). The primary and secondary address spaces are defined by the
ASIDs in control registers 3 and 4. The home address space is the address space
in which the unit of work resides (indicated by PSAAOLD) when that unit of
work is executing. When primary and secondary addressability is to the home
address space and the S-bit = 0, then the unit of work is not in cross memory
mode.

Task mode describes code that is executing in the s.ystem because the dispatcher
selected work from the task control block (TCD) chain or from the interrupt
handler save area (if the interrupted TCD held a local lock). To start execution,
the dispatcher sets up the environment (registers, PSW, cross memory state,
PCLINK stack, and FRR stack)· and then passes control to the code to be
executed.

2-10 MVS Diagnostic Techniques

SRB Mode

1. Information for an unlocked task dispatch environment is found as follows:

TCB + X'30' (TCBGRS)
TCB + X'O' (TCBRBP)
RB + X'lO' (RBOPSW)
RB-X'20' (RBXSB)
XSB + X'S' (XSBXMCRS)
XSB+X'lS' (XSBSTKE)
TCB + X'E4' (TCBNSSP)
NSSA + X'C' (NSSAFRRS)

- General purpose registers.
- Address of the RB.
- Old PSW.
- Address of the XSB.
- Cross memory status.
- PCLINK stack header.
- Address of the NSSA.
- FRR stack for an enabled unlocked task mode FRR.

2. Information for a locally locked or a CML locked task dispatch environment
is found in the locally locked address space as follows:

• From the ASCB of the locally locked address space:

ASCB + X'ES' (ASCBLOCI) Contains either the address of the ASCB holding this
ASCB's local lock as a CML lock, or zero if this ASCB's
local lock is held as a LOCAL lock.

ASCB + X'EC' (ASCBCMLH) Address of the TCB holding this ASCB's local lock.

• From the task holding a local lock:

TCB + X'ES' (TCBXLAS) Contains either the address of the ASCB of the locally
locked address space, or zero if holding the LOCAL lock.

ASCB + X'6C' (ASCBASXB) Address of the ASXB.

ASXB + X'20' (ASXBIHSA) Address of the IHSA.

IHSA + X'3S' (IHSAGPRS) General purpose registers.

IHSA + X'10' (IHSACPSW) PSW for the redispatched task.

IHSA + X'SO' (IHSAXSB) Address of the XSB.

XSB + X'g' (XSBXMCRS) Cross memory status.

XSB + X' IS' (XSBSTKE) PCLINK stack header.

IHSA + X'SC' (lHSAFRRS) FRR stack.

Task mode is probably the most common execution mode. All programs given
control via ATTACH, LINK, and XCTL operate in this mode.

SRB (service request block) mode describes code that is executing in the system
because the dispatcher found an SRB on one of the SRB queues. SRB set-up is
started by the SCHEDULE macro. SCHEDULE is a macro that places the
requestor-furnished SRB directly on the queue or, alternatively, calls a routine to
do so. SRBs are generally placed on the service management queue (SMQ),
unless both the SMQ and the service priority list (SPL) are empty, in which case
the SRB is placed on the SPL. The global services management queue (GSMQ) is
located at SVTGSMQ (SVT + X'20'). It is also pointed to by CVTGSMQ
(CVT+ X'264'). The global service priority list(GSPL) is located at SVTGSPL
(SVT + X'24') and can also be found from CVTGSPL (CVT+ X'26C'). The SVT
local service management queue (LSMQ) is located at SVTLSMQ (SVT + X'28'),
and can be found from CVTLSMQ (CVT + X'268'). Finally, there is one local

Section 2. Important Considerations Unique to MVS 2-11

Physically Disabled Mode

SMQ and one local SPL per address space. ASCBLSMQ is located at
ASCB + X'DO', and ASCBLSPL is located at ASCB + X'D4'. An SRB scheduled
globally for a swapped-out address space is moved to one of the local queues.

SRBs are selected from the SPLs by the dispatcher in order to start execution.
The dispatcher loads registers 0, 1, 14, and 15 from information in the SRB and
builds the PSW. The PSW key and address are the responsibility of the scheduler
of the SRB and are specified in the SRB. SRB mode has the characteristics of
being enabled, supervisor state, key requested and non-preemptable.
Non-preemptable means that the interrupt handler should return control to the
interrupted service routine (code running under SRB mode). However, service
routines can be suspended because of a page fault or because a lock (cross
memory services or local) is unavailable.

SRB is interrupted. SRBs are non-preemptable. The registers, PSW, and cross
memory status are saved in the PSA during interrupt processing. When the
system has handled the interrupt, the SLIHs return to the FLIHs, the status is
restored from the PSA, and control is returned to the interrupted SRB routine.

SRB is suspended. SRBs that are suspended must have their status saved in a
unique area. The process that suspends an SRB is responsible for obtaining an
SSRB (suspended. SRB) and XSB (extended status block), which will contain the
interrupted status used to reschedule the service routine once the reason for
suspension has been resolved. See "Locating Status Information in a Storage
Dump" later in this chapter for a detailed description of how to find these SSRBs
and XSBs.

Disabled mode is reserved for high-priority system code whose function is the
manipulation of critical system queues and data areas. It is usually combined
with supervisor state and key 0 in the PSW, and assures that the routine running
disabled is able to complete its function before losing control. It is restricted to
just a few modules in MVS (for example, interrupt handlers, the dispatcher, and
programs holding a global spin lock).

Physically disabled mode is used for one of two reasons:

1. To assure that data remains static while the code is referencing or updating
the data.

2. To assure that non-reentrant code does not lose control while performing
critical system functions. For example, lOS must run disabled while
enqueueing and de queueing requests to UCBs and while updating UCBs at
the start and end of I/O operations.

In the MVS system, physical disablement on a system basis because of MP must
be accompanied by locking in order to guarantee serialization. MVS disabled
code is usually accompanied by either a global spin lock or code executing under
a "super bit." The "super bits" are located in each processor's PSA (X'228').
They are used primarily for recovery reasons - they allow RTM to recognize that
a disabled supervisory function was in control at the time of error even though
global locks were not held. This indicates that FRR recovery processing should
be initiated by RTM.

2-12 MVS Diagnostic Techniques

Locked Mode

Note that type 1 SVCs do not execute disabled in MVS. Instead they are entered
with the local lock. Thus they are considered to be task mode physically enabled,
holding the local lock.

Type 6 SVCs execute disabled. They are considered to be logical extensions of
the SVC FLIH and execute with all the restrictions (that is, cannot page fault,
etc.) of a disabled function.

Locked mode describes code executing in the system while owning a lock. (See
the chapter on "Locking" later in this section.) A lock can be requested during
any execution mode (SRB, TCB, physically disabled).

Status saving while in a locked mode requires unique considerations from the
system. An example is a program that invokes a type 1 SVC, such as EXCP or
WAIT, that executes in locked mode. When a type 1 SVC is enabled, it can be
interrupted. However, if the SVC is interrupted, the registers cannot be saved in
the TCB because it is being used to save registers active at the time of the SVC
request for return to the requestor. Therefore, status must be saved elsewhere.

Status saving while in locked mode is described under the previous topics "Task
Mode" and "SRB Mode."

Determining Execution Mode From a Stand-alone Dump

LCCA Indicators

PSA Indicators

Knowing the system's execution mode at the time a stand-alone dump was taken
is important in analyzing a disabled coded wait state or a loop. The following
areas may help determine the mode of execution:

There is an important dispatcher flag byte at LCCA + X'21D'. For a global SRB,
the LCCAGSRB and LCCASRBM flags are set on. F or a local SRB, only the
LCCASRBM flag is set on.

• Super Bits - Flags in the supervisor control field located at PSA + X'228'
(pSASUPER) indicate whether the dump was taken while in one of the
interrupt handlers or dispatcher. The dispatcher's super bit is left on when
the wait task is dispatched.

• PSAMODE - PSA + X'49F' indicates the mode of the system:

X'OO' - Task mode
X'04' - SRB mode
X'OS' - Wait mode
X'OC' - I/O recursion mode
X' 10' - Dispatcher mode
X'20' - Non-preemptive bit (can be on with any of the above bits)

• Recovery Stack - If the first two words of the RTM stack vector table
(pSA + X'380') are not equal, then control is in one of the interrupt handlers
or the dispatcher. The dispatcher stack is current when the wait task is

Section 2. Important Considerations Unique to MVS 2-13

ASCB Indicators

dispatched. Compare the address at PSA + X'380' with each entry in the
FRR stack vector table starting at PSA + X'384' to determine the owner of
the active stack. (See the chapter on "Use of Recovery Work Areas for
Problem Analysis" later in this section for stack vector table analysis.)

• Current Work - PSA + X'218' contains the addresses of the new TCB, old
TCB, new ASCB and old ASCB consecutively in a four-word area. If the
system is in SRB mode, the address of the old TCB equals O. If the addresses
of the new and old ASCBs are not equal, then the stand-alone dump was
taken between the time that an address space switch was requested and the
time that the dispatcher dispatched an address space, a global SRB, or the
wait task. In all cases, the old TCB and ASCB indicate the current work.

• Locks - The PSA also contains the lock indicators. (See the chapter on
"Locking" later in this section for a description of how to determine the lock
mode.)

The following ASCB locations help determine execution mode:

X'26' Set to X'7FFF' indicates that the address space is not on the dispatching queue.

X'66-67' RCT flags.

X'72-73' Non-dispatchability flags.

X'76' Count of SRBs suspended in this address space.

X'80' Local lock (see "Locking" later in this section for how to interpret this field when "0).

X'84' Address of the SRB suspend queue for local lock requestors.

X'DO' Local service management queue (contains SRBs that have not been staged). When the
high-order bit of this field is I, it indicates that a "user-ready" SYSEVENT is required to
swap in the address space.

X'D4' Local service priority list (contains SRBs that have been staged).

X'D8' Number of ready TCBs that do not require the local lock.

X'DC' Number of ready TCBs that require the local lock.

X'E8' Contains either the ASCB address of the address space holding this ASCB's local lock as a
CML lock, or zero. If nonzero, then the lock is owned by a unit of work in the address
space pointed to by this field. If zero, then the lock is not owned or is owned by a unit of
work within this address space.

X'EC' Contains either the address of the suspended TCB or SSRB that is holding this ASCB's
local lock, or zero. The high-order bit (bit 0) on indicates an SSRB.

Keep in mind that mixed modes frequently occur. For example, a local SRB can
obtain a lock, be interrupted, and the stand-alone dump taken while disabled in
the I/O supervisor. Depending on the system mode at the time of the interrupt, a
task's status (registers, PSW, etc.) can be saved in one of several places.

2-14 MVS Diagnostic Techniques

Locating Status Information in a Storage Dump

Status information is located in a storage dump depending on the conditions
under which it was saved.

Task and SRB Mode Interruptions

Status saving is required whenever the code gives up control, whether voluntarily
or involuntarily. Initial status is saved by the first level interrupt handler (FLIH)
as follows:

SVC FLIH - Initially:

• Registers 7-9 saved at PSA + X'22C' (PSAGPREG)
• If an error condition is found, registers saved at LCCA + X'380'

(LCCASGPR).

Then for all SVCs, status is saved in the TCB and the requestor's RB and XSB:

• Registers 0-15 saved at TCB + X'30' (TCBGRS)
• PSW saved at requestor's RB+X'IO' (RBOPSW)
• Cross memory status saved at XSB + X'8' (XSBXMCRS)
• PCLINK stack header saved at XSB + X' 18' (XSBSTKE).

Then for Type 2,3, and 4 SVCs:

• Registers 0-15 saved at SVRB + X'20' (RBGRSAVE).

110 FLIH - Initially:

• Register 1 saved at PSA + X'22C' (PSAGPREG).

Then for unlocked tasks, status is saved in the TCB, RB, and XSB:

• Registers 0-15 saved in TCB + X'30' (TCBGRS)
• PSW saved at RB+X'10' (RBOPSW)
• Cross memory status saved at XSB + X'8' (XSBXMCRS).

For locally locked tasks, status is saved in the IHSA and XSB of the locked
address space:

• Registers 0-15 saved at IHSA + X'38' (IHSAGPRS)
• PSW saved at IHSA + X'10' (IHSACPSW)
• Cross memory status saved at XSB + X'8' (XSBXMCRS).

For SRBs and non-preemptive TCBs:

• Register 0-15 saved at PSA + X'678' (PSAGGRSV)
• PSW saved at PSA + X'300' (PSASVPSW)
• Cross memory status saved at PSA + X'5A8' (PGSAGXMSV).

ExternalFLIH - Initially:

• Registers 14 and 15 saved at PSA + X'230' (PSAGPREG).

Section 2. Important Considerations Unique to MVS 2-15

Then for locally locked tasks, status is saved in the IHSA and XSB of the locked
address space:

• Registers 0-15 saved at IHSA + X'3S' (IHSAGPRS)
• PSW saved at IHSA + X'10' (IHSACPSW).
• Cross memory status saved at XSB + X'S' (XSBXMCRS).

For unlocked tasks, status is saved in the TCB, RB, and XSB:

• Registers 0-15 saved at TCB+ X'30' (TCBGRS)
• PSW saved at RB+X'10' (RBOPSW)
• Cross memory status saved at XSB + X'S' (XSBXMCRS).

For SRBs and non-preemptive TCBs:

• Registers 0-15 saved at PSA + X'67S' (pSAGGRSV)
• PSW saved at PSA + X'240' (pSAEXPS1)
• Cross memory status saved at PSA + X'5AS' (PSAGXMSV).

If first recursion:

• Registers 0-15 saved at LCCA + X'EO' (LCCAXGR2)
• PSW saved at PSA + X'24S' (pSAEXPS2).

If second recursion:

• Registers 0-15 saved at LCCA + X'120' (LCCAXGR3)
• PSW remains at PSA + X'lS' (FLCEOPSW).

Progrllm check - 'Initially:

• Registers saved at LCCA + X'OS' (LCCAPGR1) for recursive program
interruptions.

• Registers saved at LCCA + X'4S' (LCCAPGR2) for nonrecursive program
interruptions.

• Registers saved at LCCA + X'AO' (LCCAPGR3) for monitor call interrupts
that occur while processing a page fault

• PSW saved at PSA + X'400' (PSAPCPSW).

For page faults that require I/O the following occurs:

.' Unlocked tasks:

- Registers moved to TCB
PSW moved to RB

2-16 MVS Diagnostic Techniques

• Locked tasks:

Registers moved to IHSA
PSW moved to IHSA

• SRBs:

Are suspended: see "SRB Suspension" later in this chapter.

Locally Locked Task Suspension

SRB Suspension

Status saving is the same as for locked task interruptions (described earlier under
"I/O FLIH") except that IHSA of the locally locked address space also contains
the floating point registers, the FRR stacks, and the PSW. The ASCBLOCK
field is updated to contain X'7FFFFFFF'. The XSB contains cross memory
status, which includes control registers 3 and 4.

An SRB can be suspended in four cases. If a service routine encounters a page
fault and a page-in is required, then the SRB routine must give up control. In
that event, an SSRB (suspended SRB) must be obtained and the status saved in
that control block. Then the SSRB is queued from the page control block (PCB)
in the real storage manager. When the paging I/O completes, the SSRB is
scheduled to the local service priority list (LSPL) where it is found later by the
dispatcher. The SSRB must be obtained because the original SRB was not
retained after the dispatch. Status saved in an SSRB must include the current,
FRR stack.

In the second case, a service routine requests a page fix and a page-in is required.
This suspension is handled asin case one, except that the SSRB is queued from
the page control block root (PCRB).

The third case of SRB suspension is an unconditional request for- an unavailable
lock. Status saving for SRB suspension for a lock differs from the page fault
where the SSRB is queued and where control returns after the redispatch of the
SSRB. For a request for the LOCAL lock when it is unavailable, the SSRB is
queued from the ASCB. For a request for an unavailable CML lock, the SSRB is
queued from the ASCB whose lock is requested. For a request for an unavailable
cross memory services lock, the SSRB is queued on that cross memory service
lock's suspend queue. (For more detail see the chapter on "Locking" later in this
section.) In the cross memory services case of SRB suspension, resumption is at
the appropriate entry in the lock manager to try to acquire the lock. Upon
release of the cross memory services lock by the holder, any SSRBs are
rescheduled. Up6n release of the local lock by the holder, and if all suspended
elements are for LOCAL lock requests rather than CML lock requests, then the
first SSRB that was suspended is. given the local lock and rescheduled. The SRB
is given control at the next sequential instruction following the lock manager call.
If anyone of the elements on the local lock suspend queue is suspended as a
result of a CML lock request, then all queue elements are dequeued and
rescheduled to retry the lock request.

The fourth case of SRB suspension is SMF suspension. See the topic "SMF
Suspension" later in-this chapter for details of SMF suspension.

Section 2. Important Considerations Unique to MVS 2-17

Suspend SRB queues can be summarized:

Page Faults

• PCB is chained from PVTCIOQF (at PVT + X'75C') for a common area page
and from RSMLIOQ (at RSMHD + X' 1 C') for a private area page.

• PCB + X' 1 C' points to SSRB.

Page Fix

• PCB is chained as for page fault.
• PCB + X'09' points to PCBR.
• PCBR + X' 18' points to SSRB.

Local Lock Requests

• SSRB is queued from ASCBLSQH(ASCB + X'84').

CM L Lock Requests

• SSRB is queued from ASCBLSQH of the ASCB whose lock is requested.

Cross Memory Services Lock Requests

• The SSRB is queued from a cross memory services lock's suspend queue in
lEA VESLA as shown:

2-18 MVS Diagnostic Techniques

SMF Suspension

PSALITA (PSA+x'2
+0

I EAVES LA

+180

+0
DISP LOCK

~ LIT <lock interface table) C'DISP'

1
t DISP LOCK SALLOC LOCK

~
--

C'SALC'

t SALLOC LOCK SRM LOCK

I I
C'SRM'

t SRM LOCK
+18 -- SMF CMS LOCK -
+1C SMF CMS

+1EO

SUSPEND QUEUE t GENERAL +20
eMS LOCK \

HIGHEST PRIORITY
ASC8 SUSPENDED

-.-----
~ ~ +24

C'CSMF'

+210

t ENQ/DEQ +28
ENQ/DEQ CMS LOCK - CMS LOCK

+264

:'::" ~ +2C
ENQ/DEQ CMS

.---/
SUSPEND QUEUE t SMF CMS +30

--~.~ ..

LOCK HIGHEST PRIORITY

+2AC

_l,..
_ ASCB SUSPENDED

+34
C'CEDQ'

~
--

GENERAL
CMS LOCK

+3C
GENERAL CMS
SUSPEND QUEUE

+40 HIGHEST PRIORITY
ASCB SUSPENDED

+44
C'CMS'

A task or SRB can be suspended if it tries to write a record to SMF (via sve 83,
or branch entry to the sve routine) and there are no SMF buffers available.
Normally, when tasks and SRBs pass records to SMF, SMF places them into
buffers located in eSA. When a buffer is full, SMF schedules an SRB to the
master scheduler address space which writes the buffers to the SMF data set.

If records are passed to SMF faster than they can be written to the SMF data set,
the buffers will fill up. When this happens, the next unit of work which tries to
write a record is suspended by SMF until a buffer is available. Other units of
work which attempt to write SMF records will be suspended when they attempt to
obtain the eMSSMF lock. Note that the master scheduler address space is not
suspended by SMF. If the master scheduler address space attempts to write a
record when the buffers are full, SMF queues the records in a different chain.

When SMF suspends a unit of work, SMF creates an SSB (SMF suspend block).
The SSB contains information needed to reset the unit of work when buffers are
available.

-Section 2. Important Considerations Unique to MVS 2-19

Field CVTSMCA (CVT + X'C4') points to the SMCA. Field SMCASSB
(SMCA + X'BC') points to the SSB. The field at SSB + X'8C' points to the SSRB
created for the suspended task or SRB. The field at SSB + X'90' points to the
associated RB if a TCB was suspended. (This field is zero if an SRB was
suspended.) The field at SSB + X'98' points to the ASCB for the suspended work.

Normally, work is suspended only for a short time. If the address space holding
the CMSSMF lock is suspended (indicated by ASCBLOCK = X'7FFFFFFF', and
SMCASSB is not X'OOOOOOOO'), other address spaces might get backed up on the
CMSSMF lock.

2-20 MVS Diagnostic Techniques

Locking

Categories of Locks

Serialization of resources to provide data integrity and protection is a necessary
function of operating systems. In pre-MVS systems, resource serialization was
accomplished by physical disablement and by the ENQjDEQ component.
Physical disablement controls only one processor and thus, in MP systems, does
not guarantee serialization.

To achieve these requirements the locking facility provides:

• Serialization in a tightly-coupled MP system
• Serialization across address spaces for common resources
• Serialization within address spaces

A lock manager function acquires and maintains all locks. Use of the lock
manager is restricted to key 0 programs running in supervisor state, which
prevents unauthorized problem programs from interfering with the serialization
process. The lock manager is located in the nucleus in CSECT lEA VELK.

MVS locks are divided into two categories:

• Global Locks, which protect serially reusable resources related to more than
one address space. These resources provide system-wide services or use
control information in the common area. Examples of resources protected by
global locks are UCBs and RSM control blocks.

• Local Locks, which protect serially reusable resources assigned to a particular
address space. When a task or SRB holds a local lock, the queues and
control blocks serialized by that lock can be used only by the task or SRB
holding the lock.

Figure 2-1 defines the MVS locks. All MVS locks, except the LOCAL and CML
locks, are global locks.

Section 2. Important Considerations Unique to MVS 2-21

Types of Locks

Name

DISP

ASM

SALLOC

10SYNCH

10SCAT

10SVCB

10SLCH

SRM

CMSSMF

CMSEQDQ

CMS

CML

LOCAL

Description

Global dispatcher lock - serializes functions on a global level.

Auxiliary storage management lock - serializes the auxiliary storage resources.

Space allocation lock - serializes real storage management (RSM) resources, virtual
storage management (VSM) global resources, and some auxiliary storage
management (ASM) resources.

I/O supervisor synchronization lock - serializes the lOS purge function and other
lOS resources.

lOS channel availability table lock - serializes the lOS processor-related save area.

lOS unit control block lock - serializes access and updates to the unit control
blocks. There is one lock per VCB.

lOS logical channel queue lock - serializes access and updates to the lOS logical
cha~neI queues. There is one lock per channel queue.

System resources manager lock - serializes use of the SRM control blocks and
associated data.

SMF cross memory services lock - serialize SMF functions and use of SMF control
blocks.

ENQ/DEQ cross memory services lock - serializes ENQ/DEQ functions and use of
ENQ/DEQ control blocks.

Cross memory services lock - serializes on more than one address space where this
serialization is. not provided by one or more of the other global locks. Provides
global serialization when enablenient is required.

Local storage lock - serializes functions and storage within an address space other
than the home address space. There is one cross memory local (CML) lock per
address space.

Local storage lock - serializes functions and storage within a local address space.
There is one LOCAL lock per address space.

Note: Locks are listed in hierarchical order, with DlSP being the highest lock in the hierarchy. An
exception is the cross-memory services locks (CMSSMF, CMSEQDQ, and CMS) which are equal to
each other in the hierarchy. Also, the LOCAL and CML locks are equal to each other in the
hierarchy.

Figure 2-1. Definition and Hierarchy of MVS Locks

Two types of locks exist. The type determines what happens when a processor
makes an unconditional request for a lock that is unavailable. The types are:

• Spin locks - prevent the requesting processor from doing any work until the
lock is released by the owning processor. The requesting processor enters a
loop in the lock manager (lEA VELK) that keeps testing the lock until the
owning processor releases it. As soon as the resource is free, the spinning
processor can obtain the resource and continue processing.

• Suspend locks - prevent the requesting unit of work from doing work until the
lock is available, but allow the processor to continue doing other work. The
request is queued by suspending the requesting task or SRB, and the
requesting processor is dispatched to do other work. Upon release of the

2-22 MVS Diagnostic Techniques

Locking Hierarchy

lock, all of the queued requesters are made dispatchable to retry the lock
request, except in the case of the local lock. Upon release of the local lock,
the first SSRB will be given the lock and rescheduled; unless there are CML
lock requesters on the suspend queue, in which case, all requesters are
rescheduled to retry the lock request.

Combining categories and types of locks provide the following:

Global Spin Lock, which is used primarily to provide serialization in MP systems.
While code is executing under a global spin lock, it is physically disabled for I/O
and external interruptions. An unconditional request for an unavailable lock will
cause the processor to spin in the lock manager. Upon release of the global spin
lock, the looping processor acquires ownership and returns control to the
requestor.

The global spin locks supported by MVS are: DISP, SALLOC, ASM, 10SYNCH,
IOSCAT, IOSUCB, IOSLCH, and SRM.

Local Suspend Lock, which is used to serialize resources within an address space.
There is one local suspend lock per address space and it is located in the ASCB.
An unconditional request for the LOCAL or CML lock when it is not available
causes the suspension of the requesting task or SRB until the lock is released.

Global Suspend Lock, which is used to serialize resources that are commonly
addressable from any address space. The requestor remains physically enabled
while owning the lock. The general cross memory services lock (CMS), the
ENQ/DEQ cross memory services lock (CMSEQDQ), and the SMF cross memory
services lock (CMSSMF) are the only supported global suspend locks. A local
lock must be held in order to obtain a cross memory services lock. An
unconditional request for any cross memory services lock when it is unavailable
causes suspension of the requesting task or SRB.

To prevent a deadlock between processors, MVS locks are arranged in a
hierarchy, and a processor may unconditionally request only locks higher in the
hierarchy than locks that it currently holds. The locking hierarchy is the order in
which the locks are listed in Figure 2-1 with DISP being the highest lock in the
hierarchy.

Some locks are single system locks (for example, DISP), and some locks are
multiple locks in which there is more than one lock within the lock level (for
example,IOSUCB). For those global lock levels that have more than one lock, a
processor may only hold one lock of each level. For example, if a processor holds
an IOSUCB lock, it may not request a different IOSUCB lock.

A unit of work can hold only one local lock at a time. A unit of work cannot
hold both its own LOCAL lock and CML lock of another address space. Note
that the CML lock of an address space, obtained from another address space, is
the same as the LOCAL lock of the address space.

A local lock must be held by the caller when requesting any cross memory
services lock. Also, a local lock cannot be released while holding any cross
memory services lock.

Section 2. Important Considerations Unique to MVS 2-23

It is not necessary to obtain all locks in the hierarchy up to the highest lock
needed. Only the needed locks have to be obtained, but in hierarchical sequence.

The caller may obtain the three cross memory services locks (CMSSMF,
CMSEQDQ, and CMS) only by requesting all of them in a single lock manager
request. If a caller holds anyone and requests another, an abend will result.

Determining Which Locks Are Held On a Processor

To diagnose certain MVS problems, such as wait states and performance
degradation, it is necessary to determine the lock status of the system as well as
the back-up of work caused by lock contention.

Locks held by a particular processor are indicated in the processors PSA (prefixed
save area). There is a bit map in the PSA which the lock manager checks when a
request is made for a lock. This map is called PSACLHS (PSA current locks held
string). Each bit corresponds to a particular lock in the hierarchy. The bits are
in the same order as the hierarchy so that the low-order bit corresponds to the
lowest lock in the lock hierarchy. When a bit is on, it means that lock is held by
the current unit of work executing on the corresponding processor. Figure 2-2
shows the bit assignments.

When the local lock bit is on in the PSACLHS, either the LOCAL lock or a
CML lock is held. To determine which lock is held by the current unit of work,
check the contents of PSALOCAL. If PSALOCAL is zero, then the LOCAL lock
of the home address space (pointed to by PSAAOLD) is held. If PSALOCAL is
nonzero, the local lock of the address space pointed to by PSALOCAL is held as
a CML lock.

(Note: When a holder of the local lock or a cross memory services lock is
suspended, the corresponding bit in the PSACLHS field is copied to the
ASCBHLHI and the PSACLHS is set to 0 even though the lock is still held.)

PSACLHS (location X'2P8' in PSA)

2F8 2F9 2FA 2FB

00 00 10 00 DISP
00 00 08 00 ASM
00 00 04 00 SALLOC
00 00 02 00 IOSYNCH
00 00 01 00 IOSCAT
00 00 00 80 IOSUCB
00 00 00 40 IOSLCH
00 00 00 20 Reserved
00 00 00 10 Reserved
00 00 00 08 Reserved
00 00 00 04 SRM
00 00 00 02 CMS/CMSEQDQ/

CMSSMF
00 00 00 01 LOCAL/CML

Figure 2-2. Bit Map to Show Locks Held on a Processor

2-24 MYSDiagnostic Techniques

Content of Lockwords

Global Spin Lockword

Each lock is represented by a lockword that defines the availability and status of
the lock. The contents of lockwords differ according to the category and type of
lock they describe:

• X'OOOOOOOO' - Lock is available.
• X'0000004n' - Lock is held on processor n.

Global Suspend Lockword (Cross Memory Services Locks)

• X'OOOOOOOO' - Lock is available.

• X'OOxxxxxx' - ASCB address of the locally locked address space. If an
address space holds a cross memory services lock but is interrupted or
suspended, ASCBHLHI of the locally locked address space will be set and the
cross memory services lock-held bit in PSACLHS is turned off until the
address space is redispatched. The ASCB address remains in the cross
memory services lock until the lock is released.

Local Suspend Lockword (Local Lock)

• X'OOOOOOOO' _. Lock is available.

• X'0000004n' - Lock is held on processor n.

• X'4FFFFFFF' - Task holding a CML lock is now dispatchable or an SSRB
holding either the LOCAL or a CML lock is now dispatchable.

• X'7FFFFFFF' - Task or SRB suspended while llolding the lock. The reason
for suspension is:

A page fault.

Waiting for a synchronous page fix to complete.

An unconditional request for a cross memory services lock while it was
unavailable.

SMF suspension.

SUSPEND = YES was specified on the SDUMP macro.

• X'FFFFFFFF' - Task holding the LOCAL lock was suspended or interrupted
but is now dispatchable. The reasons for this state are:

A page fault or page fix has been resolved for a locked task.
The cross memory services lock, at one time unavailable, is now available.
A task holding the LOCAL lock has been preempted.

Section 2. Important Considerations Unique to MVS 2-25

How To Find Lockwords

Lockwords for single system locks are located in a system lock area called
lEA VESLA. PSA + X'2FC', PSALIT A, points to the lock interface table (LIT);
LIT + 0 points to lEA VESLA. Lockwords for single system locks can also be
located at the label IEAVESLA in a NUCMAP.

Lockwords for multiple system locks are supplied by the requestor of the lock.
The addresses of these are placed in the PSA for each processor at locations
X'284' to X'298'.

The locations of lockwords are shown in Figure 2-3. Note that alliockwords
must reside in fixed common storage.

Location of
Address of Lock

Lock Name Category Type Number of Locks Location of Lock (when actually held)

DISP Global Spin 1 IEAVESLA+O

ASM Global Spin 1 per ASID ASMHD + X'14' PSA+X'284'

SALLOC Global Spin 1 IEAVESLA+S

IOSYNCH Global Spin 1 IOCOM + X'3S' PSA+ X'28C'

IOSCAT Global Spin 1 IOCOM + X'30' PSA+X'290'

IOSUCB Global Spin 1 per UCB UCB-S PSA+ X'294'

IOSLCH Global Spin 1 per LCH LCH+8 PSA+X'29S'

SRM Global Spin 1 IEAVESLA + X'lO'

CMSSMF Global Suspend I IEAVESLA + X'IS'

CMSEQDQ Global Suspend 1 lEA VESLA + X'2S'

CMS Global Suspend 1 lEA VESLA + X'3S'

CML Local Suspend 1 per address ASCB+X'SO' PSA+'2EC'
space

LOCAL Local Suspend 1 per address ASCB+X'SO'
space

*PSA + X'2FC' points to the lock interface table; the lock interfacetable + 0 points to lEAVES LA.

Figure 2-3. Classification and Location of Locks

Results of Requests For Unavailable Locks

Global Spin Locks

The results of requests for unavailable locks are described in the following topics.

An unconditional request for an unavailable global spin lock results in a disabled
loop in the lock manager (lEAVELK). While in the disabled spin loop, the lock
manager will periodically enable for EMS or MFA interrupts. The lock manager
spins until the global lock is released by the owning processor. In this case,
register 11 contains the address of the requested lock and PSALKR14 contains
the address of the requestor.

If the lock manager spins for an excessive period of time, then message IEE331 A
is issued to the operator when the lock manager invokes the excessive spin
notification routine, IEEVEXSN. If the operator does not initiate an ACR ~
condition, the lock manager continues to spin until the lock becomes available.

2-26 MVS Diagnostic Techniques

Local Locks

Tasks requesting an unavailable LOCAL lock are suspended. In each case, the
request block old PSW (RBOPSW) is set to re-enter the lock manager, and the
registers are saved in the TCB. A flag is set in the TCB (TCBLLREQ) to indicate
to the dispatcher that the task should not be dispatched until the LOCAL lock is
available.

SRBs requesting an unavailable LOCAL lock are suspended. In each case, the
lock manager calls the STOP/RESET service (lEAVESRT) to have an SSRB
obtained and status saved. The lock manager then queues the SS~B on the
LOCAL lock suspend queue.

If the SRB was scheduled with the LOCAL lock option, the LOCAL lock will be
obtained for the SRB by the dispatcher. The SRB will get control with the
LOCAL lock held. If the LOCAL lock is unavailable, the dispatcher will delay
the SRB, that is, the SRB will be queued to the LOCAL lock suspend queue and
will not be dispatched until the LOCAL lock is available.

Tasks that request an unavailable CML lock are stopped via a call by the lock
manager to the STOP/RESET service (IEAVESRT). The registers, PSW, and
cross memory status are saved by IEAVESRT in the TCB, RB, and XSB. The
lock manager obtains an SRB, initializes it to run in the requester's address space,
and queues.it to the local lock suspend queue header (ASCBLSQH) of the address
space whose CML lock was requested. This SRB has the SRBCMLRQ bit set on
to indicate that a CML request was made for thisASCB's local lock.

SRBs that request an unavailable CML lock are suspended. The lock manager
calls the STOP/RESET service (lEAVESRT) to have an SSRB .obtained and
status saved. The registers, PSW, and cross memory status are saved in this
SSRB and its XSB. The lock manager then queues the SSRB to the CML address
space's local lock suspend queue header (ASCBLSQH). This SSRB has the
SRBCMLRQ bit set on to indicate that this address space's lock was requested as
a CML lock.

Notes:

1. The FRR stack can be used to help recreate the process leading up to the point
of suspension by interpreting the recovery routines that are currently active.
SSRBs for local lock suspensions can be found by inspecting the local lock
suspend queue anchored in the ASCB from field ASCBLSQH (ASCB + X '84').
SSRBs are obtained from SQA (SP 245). SSRBs and delayed SRBs on the
local lock suspend queue are chained together at SRB+ X'04'.

2. When interrogating a given address space, if the ASCBLOCKjield is not
X10OOOOOOO', check the ASCBLSQH to determine the SRB work being delayed
in this address space because of lock contention.

3. If the ASCBLOCKfield is not X10OOOOOOO', check the ASCBLOCI field
(ASCB+ X 'E8'). If ASCBLOCI is X100000000', then the address space's lock
is held as a LOCAL lock and not a CML lock.

Section 2. Important Considerations Unique to MVS 2-27

4. If the ASCBLOCKfield is not X'OOOOOOOO' and not a processor ID, then the
ASCBCM LH field (ASCB + X'EC') contains the address of the unit of work
that was suspended while holding the address space's local lock.

Cross Memory Services Locks

For a unit of work that is suspended and holds the address space's local lock as
a CML lock, the ASCBLOCI field (ASCB+ X'E8') points to the ASCB where
the lock owner resides, and the ASCBCMLH field (ASCB+ X'EC') points to
the owning unit of work. When the high-order bit of ASCBCMLH is on, the
unit of work is an SSRB.

When the local lock is released, the suspend queue is scanned until the first
suspended (oldest) element is found or until an element representing a CML
lock request is found. If no requesters for a CML lock exist on the suspend
queue, the first suspended (oldest) element is dequeued, the ready-to-run ID is
placed in the lockword (ASCBLOCK=X'4FFFFFFF'), the SRB/SSRB is given
the lock by turning on the SRB local lock held flag (SRBLLHLD), and the
SRB is scheduled locally. If a requester for the CM L lock exists on the suspend
queue, then all suspended elements (SRBs and SSRBs) are dequeued and
rescheduled so that the obtain request is retried. The SRBs on the suspend
queue that represent the CML lock requester cause the task to be resumed so
that the lock request is retried.

Tasks unconditionally requesting a cross memory services lock when it is
unavailable are suspended. For each task:

• GPRs are saved in the IHSA which is pointed to from ASXB + X'20' of the
locally locked address space.

• The resume PSW in the IHSA is set to re-enter the lock manager.

• The cross memory status is saved in the XSB pointed to by IHSA + X'80'.

• The locally locked ASCB is queued on that cross memory services lock's
suspend queue. The suspend queue header for the SMF cross memory
services lock follows the lockword in CSECT lEA VESLA at offset X' 1 C', the
suspend queue header for the ENQ/DEQ cross memory services lock follows
the lockword at offset X'2C', and the suspend queue header for the general
cross memory services lock follows the lockword at offset X'3C'. Note: When
a NUCMAP is not available, locate the lEA VESLA through PSA + X'2FC'
which contains the address of the lock interface table, the lock interface
table + X'O' contains the address of lEA VESLA.

The tasks suspended on a cross memory services lock suspend queue are"
represented by the ASCBs whose local locks they own. For"example, if taskAin
address space A owned the CML lock of address space B and was suspended on
the cross memory services lock suspend queue, then the croSs memory services
suspend queue header would contain the ASCB address of address space B. The
ASCBLOCI field of address "space B would point to address space A and the
ASCBCMLH field of address space B would point to task A. The ASCBs are
chained together at field ASCBCMSF (forward pointer).

2-28 MVS Diagnostic Techniques

Note: When an ASCB is on the cross memory services lock suspend queue, the
local lock (ASCBLOCK) contains X'7FFFFFFF'.

When the cross memory services lock is released, the ASCBLOCK field of the
locally locked address spaces on the suspend queue is changed to one of the
following values:

• X'FFFFFFFF' - the LOCAL lock was held by a task that is now ready to
run.

• X'4FFFFFFF' - the lock was held by either (1) a task holding the lock as a
CML lock and the task is now ready to run, or (2) an SSRB holding a CML
or LOCAL lock and the SSRB is now ready to run.

SRBs unconditionally requesting a cross memory services lock when it is
unavailable, are suspended. For each SRB, the lock manager calls the
STOP/RESET service (IEAVESRT) which:

• Obtains an SSRB from SQA
• Saves GPRs and the FRR stack in the SSRB
• Sets the local lock (ASCBLOCK) to X'7FFFFFFF'
• Saves cross memory status in the XSB of the SSRB.

Then the lock manager chains the SSRB on that cross memory services
lock-suspend queue located in IEAVESLA.

The offsets for the cross memory services lock suspend queues are:

• CMSSMF - IEAVESLA+X'lC'
• CMSEQDQ - lEA VESLA + X'2C'
• general - lEA VESLA + X'3C'

There is one suspend queue per cross memory services lock and the requestor is
chained on the queue associated with the unavailable lock.

The SSRBs and ASCBs are chained on the respective suspend queues using either
ASCBCMSF (ASCB + X'C') or SRBFLNK (SSRB + X'4'). There are no
backward pointers. ,Thus the cross memory services lock suspend queues could
appear as shown in Figure 2-4.

Section 2. Important Considerations Unique to MVS 2-29

LIT (lock interface table)

t DISP LOCK

t SAL LaC LOCK

t SRM LOCK

t GENERAL
CMS LOCK

t ENQ/DEQ
CMS LOCK

t SMF CMS
LOCK

I EAVES LA

DISP LOCK

'DISP'

SALLOC LOCK

'SALC'

SRM LOCK

'SRM'

SMF
CMS LOCK

SMF CMS
SUSPEND QUEUE

'CSMF'

ENQ/DEQ
CMS LOCK

ENQ/DEQ CMS
SUSPEND QUEUE

'CEDQ'

GENERAL
CMS LOCK

GENERAL CMS
SUSPEND QUEUE

'CMS'

CD

0

0)

CD

®

®

ASCB SSRB

(+cl V +:1
I

--"" SSRB _ SSRB _ ASCB

J V~ lJ+4 +4

+C

lI+~~J~~CB Vl~CB

When the cross memory services lock is released,
all the SRBs suspended on this lock are
rescheduled locally.

Figure 2-4. Cross Memory Services Lock Suspend Queues

2-30 MVS Diagnostic Techniques

I

Intersect

Locking serializes resources between routines. The intersect function is used in
conjunction with locking to serialize dispatcher control blocks between specific
routines and the dispatcher.

There are two levels of intersection:

1. Global intersect, which serializes the ASCB dispatching queue and address
space dispatchability flags, first requires that the dispatcher lock be held (the
lock serializes between routines, the intersect serializes only with the
dispatcher).

2. Local intersect, which serializes the TCB dispatching queue and TCB
dispatchability flags, first requires that the local lock of the target address
space be held.

Note: The lock associated with each intersect must be obtained before the
intersect is requested and the intersect must be reset before releasing the lock to
ensure proper serialization.

Determining if Intersects are Held on a Processor

Intersect contention can exist just like locking contention. To check for this
condition it is necessary to know where the intersect words are and what they
should look like. The global intersect word is in the SVT. PSA + X'B4C'
(PSASVT) contains the address of the SVT. If any bits are on in the SVTDSREQ
word (SVT + X' 1 C'), then the global intersect is held. Refer to the SVT mapping
in the Debugging Handbook to determine who holds the intersect.

A local intersect word exists at X'B4' into each ASCB. Bits in this word are
defined in the same way as the global intersect. Refer to the ASCB mapping in
the Debugging Handbook to determine who holds the local intersect.

The dispatcher has a four-word field of its own which it sets when processing.
The dispatcher active field (SVTDACTV) is at offset X'6C' into the SVT. The
first byte of the field corresponds to CPUO, the second to CPUl, and so forth.
Each byte should have one of the following settings:

• X'OO' - Dispatcher not active on the corresponding processor

• Logical CPUID with high order bit off - Dispatcher is executing on this
processor

• Logical CPUID with high order bit on - Dispatcher is in recursion mode on
this processor.

Section 2. Important Considerations Unique to MVS 2-31

Requesting the Intersect

A routine requests the intersect via the INTSECT macro. The macro turns on the
requestor's intersect bit, then, if the dispatcher active field is not zero, the macro
passes control to the intersect service. routine (lEA VEINT) which spins, waiting
for all dispatcher active bytes to go to zero.

This intersect spin can be detected by examining the registers:

• Rl5 - address of lEA VEINT
• RI - address of SVT
• R2 - physical CPU ID of processor on which 'dispatcher is active
• R3 - contents of dispatcher active byte
• R14 - return address of caller

Ensure that the contents of R3 are valid (that is, that SVTDACTV has not been
overlaid). If the caller was disabled, then intersect would set LCCASPNI with its
spin bit (X'02').

2-32 MVS Diagnostic Techniques

Use of Recovery Work Areas For Problem Analysis

Recovery processing enhances the reliability of the MVS operating system. When
an error occurs, "active recovery" is given control, one routine at a time, in an
attempt to isolate the error to a unit of work. Recovery terminates that work
instead of the entire operating system and then continues normal system
operation. This process occurs whether the error is in the system or an
application.

Because system operation is not halted at the point of error, the resulting storage
dumps represent system status sometime after the original error(s). Often the
system can encounter numerous errors, fully recover, and continue. At other
times it can be a recovery failure that causes the system to cease operations. In
either case, the obvious problem and its associated tracks have been covered over.
This makes the back-tracking process extreme~y difficult.

However, experience has shown that although recovery causes this difficulty, it
can very often provide valuable clues for the problem analyst. This chapter
points out important recovery areas and explains how they can be used in the
de bugging process.

CAUTION: Recovery is not designed to aid the problem solver; it is designed as a
means by which the system can prevent total loss. Because recovery maintains
system status information, its work areas often provide the same information to
the analyst. However, once recovery is invoked, the system is in a tenuous
position; it is attempting to maintain operation despite an error. It is possible
that the recovery process itself can encounter the same error or bad data. Most
often this is not the case; the system does recover and continues normal operation.
But the possibility of recursive errors in the recovery process does exist, in which
case the new error becomes of prime consideration. If you are dependent on
internal recovery control blocks and queues, be aware of this possibility. Don't
get caught following a chain of blocks for some subsequent or unrelated problem
that will hinder your own error-finding efforts. This danger is most prevalent
when you use recovery work areas without following the normal work-related
debugging techniques. Do not immediately use the RTM2 work area without
analyzing the TaskjRB structure and associated inqica:tors.

The following work areas should be used carefully and only after traditional
techniques have failed. The exceptions to this rule are:

• When the dump is taken as a result of a trap (for example, SLIP) and the
analyst understands that the current status at the time of error can only be
found by using the recovery save areas.

• When there are problems in the recovery process itself.

In other instances, be aware of the total environment so that what you discover in
these areas bears some relationship to the problem you are analyzing. These
areas are of great importance if used with understanding.

Section 2. Important Considerations Unique to MVS 2-33

SYSl.LOGREC Analysis

For effective problem analysis, use the information in SYSI.LOGREC to
understand the error history of the system. Because of recovery processing, MVS
does not halt operation when an error occurs. Dump analysis must be performed
using a snapshot of storage as it appears sometime after the error and recovery
have occurred; therefore, some type of recording mechanism is needed in order to
trace the error.

The entries in SYSI.LOGREC provide information about a potential problem.
This is the most informative data about the error that you receive. The
SYSl.LOGREC entries serve as a diagnostic trace of the problem encountered by
the operating system; they usually provide a history of events leading up to a .
system incident. Use this information to understand system problems, the
recovery actions that are taken as a result of these problems, and the outcome of
the recovery attempt. The entries in SYSl.LOGREC are described in SPL:
SYSl.LOGREC Error Recording.

Often more than one record exists for the same software incident. You must be
able to relate these records in the proper sequence and understand the progress of
recovery the various records indicate. Knowing the errors that have occurred
since the last IPL helps you understand the system behavior and explains your
findings at dump analysis time.

In stand-alone dump analysis you should always inspect the in-storage LOG REC
buffer for entries that recovery routines have'ma4e but which were not written to
the SYSl.LOGREC data set because of a system problem. Very often it is these
records that are the key to the problem solution. (There is a discussion of
LOGREC buffer analysis later in this chapter.)

Information that is written by recovery routines to the SYSl.LOGREC data set is
used primarily to monitor incidents both when retry is attempted and when
percolation to the next recovery routine takes place.

Generally, functional recovery routines (FRRs) will write a SYSI.LOGREC
record (via RECORD = YES on the SETRP macro) when they are entered as the
first recovery routine for the abend. The default for EST AE routines, however, is
to not write a record. This means that unless the EST AE routine specifically
requests recording, no SYSl.LOGREC record will be built.

Listing the SYSl.LOGREC Data Set

To get a listing of the SYSl.LOGREC data set, use EREP as described in
Environment Record Editing and Printing (ER£P) User's Guide. (The JCL
required to print the SYSl.LOGREC data set is contained in the chapter
"Additional Data Gathering" later in this section. It is important to obtain both
an event history and a full report. The event history (EVENT = Y parameter on .
the EXEC statement) prints an abstract for all records in chronological order.
This allows the analyst to recreate the sequence of events.) EREP formats the
standard area, the first X'194' bytes of each SDW A, into a series of titles, each
followed by pertinent data found in the standard area. EREP will put the
variable area, the last X'FF' bytes of each SDWA, after the standard area. This
variable recording area (SDW A VRA) is used by the recovery routines to construct
messages and to provide. data that often contains valuable debugging information.

2-34 MVS Diagnostic Techniques

SDW A VRA Key-Length-Data Format

The SDW A variable recording area (SDW A VRA) can optionally be mapped in a
key-length-data format. Some MVS recovery routines use this format to provide
standardized diagnostic information for software incidents. This formatted
information allows you to more easily screen duplicate errors.

Constants for the key field have been defined to describe data such as:
component ID, subcomponent name, module ID, assembly date, return and/or
reason codes, parameter lists, registers, and control block information. For
example, a key of X' I 0' indicates a recovery routine parameter area. The
SDW A VRAM bit (in the fixed portion of the SDW A) indicates that the
SDW A VRA has been mapped in the key-length-data format as described by the
IHA VRA mapping macro. (SDW A VRAM is the third bit in field SDW ADPV A
at X'192'.) Refer to the Debugging Handbook, for the format of the SDWA,
which includes the SDWAVRA, and the format of the VRAMAP, which includes
a list of key values.

Some MVS components have assigned specific meanings to key fields for use by
their recovery routines. Refer to the module listings of the individual recovery
routines that use the key-length-data format for detailed information. "Section 5:
Component Analysis" also has details about key fields for some components.

Figure 2-5 shows an example of the SDW A VRA formatted in the key-length-data
format. The example starts at offset X'190' in a hexadecimal dump of the
SDWA.

I

a b c d e i g
r"'-o. r"'-o. ________ r"'-o.

r"'-o. r r"'-o.

0190 006C2021 0105E2C3 F1C2F603

<
j k I

"'
r"'-o.r"'-o.r

C1AO F1F1F2F6 220AC606 06E30709

m n 0
r"'-o.r"'-o.,.---------...,

0180 2303EOOO 00000000 00000000

a - length of variable recording area (108 bytes)
b - X' 20' indicates VRA is formatted in key-length-data
c - length of user data in the VRA (33 bytes)
d - key (X' 01 ' - component 10> l
e - length (5 bytes)
f - data (SC 186)
g - key (X' 03' - product level)
h - length (7 bytes) I
i-data (J881126) \. SOWAVRA in
j - key (X' 22' - header) J key-length-data
k - length (10 bytes) format
I - data (FOOTPRINTS)
m - key (X' 23' - footprint bytes)
n - length (3 bytes)
o - data (EOOOOo)

Figure 2-5. Example of SDW A VRA in Key-Length-Data Format

h i

0701C2C2 ~

'\
C905E3E2

00000000

Section 2. Important Considerations Unique to MVS 2-35

Important Considerations About SYS1.LOGREC Records

The LOGREC records are mostly SDW As the system supplies, plus variable user
data areas the individual recovery routines supply.

Following are some special considerations pertaining to specific portions of
LOGREC entries:

• Compare the time stamp at the top of the incident records with those in
adjacent records. If the system is percolating through FRRs, these times are
either identical or just a fraction of a second apart.

• Abend Reason Code - If this field is zero, check System Codes to see if a
register contains a reason code for the system abend code.

• Jobname - If the jobname is "NONE-FRR," this indicates that the record is
generated by an SRB's FRR (Functional Recovery Routine) or the current
ASCB was invalid.

• Comp ID Involved - If the component ID is not formatted, you can
determine the ID of the failing component by using the name of the module
involved in the error and checking the "Module Summary" topic in the
Debugging Handbook.

• "EC PS\V from EST AE RB (0 for EST AI)" - This field has the following
possible meanings:

- If the EST AE is associated with an RB level other than the one
encountering the error, this is the PSW at the time that the RB level
associated with the ESTAE last gave up control. Note: If this is the case,
the "RB of ESTAE Not in Control" flag should also be set.

If the ESTAE is associated with the RB level in error, the PSW is equal
to the "EC PSW at Time of ABEND" because the last time the RB level
gave up control was when the error occurred.

If the error occurred locked, disabled, or in SRB mode and is covered by
an ESTAE, the two PSWs might not match even for the top RB. "At
Abend" is the locked PSW, and "EST AE RB" is the PSW for the last
unlocked interruption.

- If the record was generated by an FRR, this is the PSW used to pass
control to the FRR and is therefore the address of the FRR.

- If the record was generated by an FRR (that is, a locked/disabled routine
is in control, or the system is in SRB mode), and the "EC PSW at Time
of ABEND" is equal to the EC PSW from EST AE RB, this is a
system -generated record.

• "Regs of RB Level of EST AE Exit or Zero for EST AI":

2-36 MVS Diagno~tic Techniques

If the ESTAE exit is associated with the RB level that encountered the
error, these registers are the same as "Regs at Time of Error."

If the EST AE is associated with an RB level other than the one
encountering the error, then these are the registers at the time that RB
last gave up control.

If.this is an FRR-generated record, the two sets of registers are identical.
However, if the FRR or ESTAE has updated the registers for retry, these
registers are the new, updated registers.

• "SVC by Locked or SRB Routine" - This indicator can be misleading. A
forced SVC 13, which is often the way FRR-protected code passes control to
recovery, also causes this flag to be set if the SVC occurred in locked,
disabled, or SRB mode. Although the flag is set, this situation is not a key
error indication in itself. The analyst must investigate why the issuing routine
invoked SVC 13.

• Error Identifier - This field, as described in recovery termination management
(Section 5), contains pertinent information regarding the error described by
this SYSl.LOGREC entry, and provides a correlation to other
SYS1.LOGREC entries. Related software and MCH records have the same
sequence (SEQ) number that allows the correlation of records written in a
particular recovery path (that is, FRR and/or EST AE percolation, or MCR
and subsequent software entries). For locked, disabled, or SRB routines, the
processor identifier (CPU) indicates the processor on which the routine was
running when it encountered an error. A zero processor identifier indicates
that the record was written by an ESTAE routine (that is, the processor
identifier is not uniquely identifiable). ASID indicates the current ASID at
the time of the error. TIME indicates the time that the ERROR ID was
generated. It is normally very close to the time that the record was written,
as indicated in the first line of the record. TIME can be used to
chronologically order related SYSl.LOGREC entries that contain the same
SEQ number. This ordering is useful in reconstructing the environment as it
was at the time of the error. Note that TIME changes only during recursion;
percolation does not change TIME.

If an SVC dump is taken, the ERROR ID as it appears in the
SYSl.LOGREC record, will also appear in the SVC dump output and
associated IEA9111 message. Do not be concerned if the ERROR ID
sequence numbers seem to have an increment of more than one. Although
the RTM adds one to the sequence number of each unique entry (not
percolation or recursion), there may be no associated recording of the error,
thus, the sequence number is updated internally but is not always externally
written. In particular, SDUMP and SNAP might get many expected program
checks (which are not recorded) when determining which storage areas can be
dumped.

As shown above, the SYS1.LOGREC data set is a vital tool in debugging. At
times, the information in the LOGREC printout can be used to describe the entire
problem situation. A search of the APAR data base on Retain for the CSECT,
recovery routine, and abend code will often identify the problem as a known one.

Section 2. Important Considerations Unique to MVS 2-37

SYSl.LOGREC Recording Control Buffer

This is one of the most important areas to be used when analyzing problems in
MVS. The previous discussion of LOGREC records analysis generally applies to
the in-storage LOGREC buffer as well.

This buffer serves as the intermediate storage location for data that the recovery
process uses after it has completed but before the data reaches SYS1.LOGREC.
The physical I/O is done from this buffer. Its real significance is in the error
history it displays. Also, any records in the buffer that have not reached
SYSl.LOGREC are almost certainly related to the problem you are trying to
solve.

Formatting the LOGREC Buffer

The in-storage LOGREC buffer can be formatted by specifying the LOGDATA
verb under AMDPRDMP. This verb causes the entries still in the buffer to be
formatted in the same manner as those printed from SYS1.LOGREC. For
detailed information on how to invoke the AMDPRDMP service aid, see OS/VS2
SP L: Service Aids.

Finding the LOGREC Recording Control Buffer

There are two 4K recording buffers in the SQA - one for LOGREC messages, and
one for WTO messages.

The CVT + X'23C' (CVTRTMCT) points to the RTCT (recovery termination
control table); and RTCT + X'20' (RTCTRCB) points to theRTMRCB
(LOGREC recording control buffer). The LOGREC recording control buffer
resides in fetch-protected SQA on a page boundary and is 4K bytes in length. On
the next page boundary is the 4K buffer that contains WTO messages. By adding
X'lOOO' to the address in RTCT+ X'20', you can obtain the address of the WTO
message buffer. The WTO message buffer also uses the RCB mapping format.

Format of the LOGREC Recording Control Buffer

The LOGREC recording control buffer is a "wrap-table" similar to the MVS
trace table. The entries are variable in size. The latest entries are the most
significant especially if they have not yet been written to SYS1.LOGREC.
Knowing the areas of the system that have encountered errors and the actions of
their associated recovery routines, information obtained from SYS1.LOGREC
and the LOGREC recording control buffer, helps provide an overall
understanding of the environment you are about to investigate. Figure 2-6 shows
the format of the buffer and Figure 2-7 shows the format of individual records
within the buffer.

2-38 MVS Diagnostic Techniques

o 4 8 C E 10

RCBBUFB RCBBUFE RCBFREE RCBFLNG RCBDUM SRB used to post (

number t start of t end of t next Dummy Recording Task in Master)
record record available of bytes Displace- Address Space in order to~
area area space available ment write record to

SYS 1 . LOGREC

X'40' X'50'

Missing Record Header - This
record shows the number of times
space was requested but was not
available.

Processor serial number

LCNT
Missing
record
count

X'59'

FLGS
SRB in use
flag

X'5E'

RCBTLNG
Total buffer length

If the record contains a counter or is present in SYS1 . LOGREC, you have a good
indication of a recovery loop.

X' 60' ,. first possible record header

Figure 2-6. Format of the LOGREC Recording Control Buffer

Record Header
o 2 3 4 6 8 C

Length Record Options ASID ECB Reserved
of Types for
Record POST

10

Actual
Record

Record Type - X' 80' - This record wraps around from the end of the buffer space
back through the beginning.

Options

X' 40' - This record is to go to SYS1 . LOGREC.

X' 20' - This record is a WTO.

- X' 08' - Record not buffered; the address of the record exists at X' 10' .

X' 04' - The recording requestor is to be posted when the record is written.

X' 01' - Record is ready to be written. If not set, the record is still being
constructed.

Note: The beginning of the actual record + X' 20' is the start of the SDWA for software
records. The SDWA contains software diagnostic information at the time of the
error and is mapped in the Debugging Handbook.

Figure 2-7. Format of Records Within the LOGREC Recording Control Buffer

J
)-

)
\

Section 2. Important Considerations Unique to MVS 2-39

FRR Stacks

The FRR (functional recovery routines) stacks are often useful for understanding
the latest processes on the processors. Entries are added and deleted dynamically
as processing occurs. The PSA + X~380' contains the pointer to the current stack.
The format is described in Data Areas section of the Debugging Handbook under
FRRS. Experience has shown that the normal stack (located at X'COO' in each
PSA) is perhaps the most useful, although all stacks have been beneficial on
occasion.

The FRR stack + X'C' (FRRSCURR) points to the current recovery stack entry.
(Unless the FRRSCURR matches FRR stack +0 (FRRSEMP), in which case no
recovery is present on the stack.) This entry + 0 (FRRSFRRA poin~ed to by
FRRSCURR) points to the recovery routine that is to gain control in case of
error. The entry + 4 (FRRSFLGS) contains flags used for RTM processing; a
X'80' indicates this FRR is currently in control, a X~40' indicates a nested FRR is
currently in control. The next 24 bytes (FRRSP ARM) serve as a work area for
the mainline function associated with the FRR pointed to by this entry. This
parameter area may contain footprints useful to your debugging efforts. The
previous entry in the stack (X'20' bytes in front of the current) represents the next
most current recovery routine. Only the current and previous entries are valid.
The stacks do contain residual information associated with recovery that was
previously active but is no longer valid. You should not rely on any information
beyond the current entry.

Also consider the case where:

A gains control and establishes recovery;
A passes control to B;
B establishes recovery, performs its function, deletes recovery, and passes control to C;
C establishes recovery and subsequently encounters an error.

The FRR stack will contain entries for module A's and C's recovery routines.
There is no indication from the FRR stack that B was ever involved in the
process although it might have contributed to or even caused the error. The
debugger gains an insight into the process but is not presented with the exact
flow. Although you can get an idea of the general process or flow, do not make
assumptions based solely on the FRR stack contents.

If you have trapped a specific problem, the stacks often contain valuable
information. The same is true or-a stand-alone dump taken because of a
suspected loop~ If RTI W + 0 (RTI TLPN) at FRR stack + X'28' is not zero, the
FRR stack contains current, valid data. Following are some of the more valuable
fields in the FRR stacks from a debugging viewpoint:

1. FRR stack+X'28' (FRRSRTMW) - RTM 1 work area (RTIW)

In the case of an error, the RTI \V + 2 (RTI TENPT) field indicates the error
type as follows:
X'Ol' - program check
X'02' - restart key
X'03' - SVC error (SVC was issued while in locked, disabled, or SRB mode)
X'04' - DAT error
X'OS' - machine check
X'OA' - paging 1/0 error
X'OB' - abnormal termination
X'OC' - branch entry to abnormal termination (compatibility interface)

2-40 MVS Diagnostic Techniques

X'OD' - cross memory abnormal termination reentry
X'OE' - abnormal termination of current TCB
X'OF' - memory termination
X'lO' - cross memory abnormal termination
X'14' - MCH (machine check handler)

2. RTIW + X'34' (RTIWRTCA) - address of system diagnostic work area
(SDWA)

If no pointers can be found, the global SDW A for the super stacks is located
at the respective super stack + X'410'. For the normal stack, the global
SDWA immediately follows the RESTART super stack SDWA at + X'3FO'.
(PSA + X'3BS' points to the restart stack.)

3. RTIW+X'40' (RTIWMODE) - mode at entry to RTMI
X'80' - supervisor control mode (PSASUPER"O)
X'40' - physically disabled mode
X'20' - global spin lock held
X'tO' - global suspend lock held
X'08' - local lock held
X'04' - Type 1 SVC mode
X'02' - SRB mode
X'O l' - unlocked task mode

This is the system mode at the time of entry to R TM I. The mode may
change as processing continues through recovery; the current mode is at
RTIW+X'41' (FRR stack+X'69').

Extended Error Descriptor (EED)

The extended error descriptor (EED) passes error information between RTM 1
and RTM2 and also ?etween successive schedules of RTMI. The EED address is
found at RTIW+X'3C' (RTIWEED), at TCBRTM12 (TCB+X'104'). or in the
RTM2 SVRB at X'7C'. The EED, pointed to by RTM's SVRB. is generally not
valid because RTM2 releases it early in its processing. The EED is described in
the Debugging Handbook. Important EED fields are:

EED+O (EEDFWRDP)

EED+4 (EEDID)

For a software EED:

EED + X'C' (EEDREGS)

EED + X'4C' (EEDPSW)

EED + X'5C' (EEDXM)

RTM2 Work Area (RTM2W A)

pointer to the next EED on the chain. or zero

description of contents of the rest of the EED

BYTE 0 = 1 - software EED
= 2 - dump parameters
= 3 - hardware EED
= 4 - errorid EED

registers 0-15 at the time of the error

PSW/lnstruction Length Code (ILC)/TransJation Exception Address
(TEA) at time of error

control registers 3 and 4 at the time of the error

This is the work area used by RTM2 to control abend processing. Registers,
PSW, abend code, etc. at the time of the error are recorded in the RTM2WA.
This area is often useful for debugging purposes and is described in the Debugging
Handbook by RTM2WA. This work area can be found through TCB+ X'EO'
(TCBRTWA), or RTM2 SVRB+X'SO'.

Section 2. Important Considerations Unique to MVS 2-41

Formatted RTM Control Blocks

RTM control blocks are formatted either by AMDPRDMP as a TCB exit with
the FORMAT, PRINT CURRENT, and PRINT JOBNAMES control
statements, or with the ERR option under SNAP/ABEND. With the exception of
the RTCT, the formatted control blocks are all TCB-related, and are formatted
only when they are associated with the TCB. The formatted control blocks are:

• RTCT (recovery termination control table) - formatted with the first TCB of
the current address space on the processor on which the dump was initiated.
(This control block is formatted only by AMDPRDMP.)

• FRRS (functional recovery routine stack) - has the RTI W embedded within it
and is formatted with the current TCB if the local lock is held. (This control
block is formatted only by AMDPRDMP and it is mutually exclusive of the
IHSA).

• IHSA (interrupt handler save area) - has the normal FRR stack saved within
it and is formatted with the TCB pointed to by the IHSA, if the address space
was interrupted or suspended while the TCB was holding the local lock.
(This control block is formatted only by AMDPRDMP and it is mutually
exclusive of the FRRS.)

• RTM2WA (RTM2 work area) - formatted if the TCB pointer to it is not
zero.

• ESA (extended save area of the SVRB) bit summary - formatted only if the
RTM2W A formatted successfully and the related SVRB could be located.

• SDWA (system diagnostic work area) - formats the registers at the time of
error only if the ESA formatted successfully and theSDWA could be located.

• EED (extended error descriptor block) - formatted if the TCB or RTI W
pointer to it is not zero.

• SCB (STAE control block) - formatted under AMDPRDMP for abend tasks
only. It is formatted under SNAP/ABEND whenever the TCB pointer to it is
not zero.

System Diagnostic Work Area (SDWA) Use in RTM2

This work area is used to pass information to ESTAE recovery routines. It is
found by: SVRB + X'80' points to RTM2WA; RTM2WA + X'D4' points to
SDWA. Also, register 1 contains the address of the SDWA when the recovery
routines are entered.

2-42 MVS Diagnostic Techniques

Effects of Multiprocessing On Problem Analysis

The multiprocessing (MP) capability of MVS allows multiple processors to share
real storage using one control program. (MP refers to multiprocessing on both
multiprocessors and attached processors.) MVS also functions on a uniprocessor
configura~ion, which may be only one processor configured out of what is
otherwise an MP system. In MP mode, each processor has addressa bili ty to all of
main storage and executes under the control of one set of supervisor routines.

Because various queue structures must be processed in a serial fashion,
interlocking facilities are implemented in both the hardware and software to allow
serialization of portions of the control program where conflicts may arise. Queue
structures that don't require serialization are processed in parallel, that is, without
regard to other processors.

Features of an MP Environment

The main features of a multiprocessing configuration are:

PSA - Each processor has a unique real storage frame, called a prefixed save area
(PSA), referenced with addresses from 0 to 4K. Its location in real storage is in
the processor's prefix register.

Inter-Processor Communication - Malfunction alerts (MFA) are automatically
generated by failing processors before entering the check-stop state. Other
inter-processor signaling is accomplished with the SIGP instruction. (This feature
is discussed in detail later in this chapter.)

VARY Command - Performs three functions: (1) dynamically add or remove a
processor from the configuration; (2) dynamically increase or decrease the amount
of useable real storage; (3) control the availability of channels and devices.

QUIESCE Command - Quiesces the system so that I/O pools or two channel
switches or both can be reconfigured.

Locking - Access to various supervisory services is serialized by means of a
software locking structure.

Dispatching - Assures that highest-priority ready work is processed by available
processors.

PTLB (purge translation lookaside buffer) - When an entry is to be invalidated in
a page or segment table, the translation lookaside buffer (TLB) on every
processor must be purged before permitting subsequent references to the
corresponding virtual address.

Timing - The TOD clocks must be synchronized among the configured processors.

RMS - When components of the hardware operating system fail, it becomes the
responsibility of the recovery management support (RMS) to help define the
extent of the damage.

Section 2. Important Considerations Unique to MVS 2-43

FFFFFF

FFFOOO

B

A

1000

0

Processor 0

Compare and Swap - Two instructions assure interlocked update operations. They
are Compare and Swap (CS) and Compare Double and Swap (CDS). References
to storage for these instructions are interlocked the same way as the Test and Set
(TS) instruction.

lOS - has the ability to initiate I/O activity to a device from whichever processor
has an available path.

ACR - When one processor fails in an MP configuration, the alternate CPU
recovery (ACR) function takes the failing processor offline and attempts to release
the global system resources held on that processor so that system operation can
continue with the remaining processors. (See Miscellaneous Debugging Hints.)

CPU Affinity - The ability to force a job step to execute on a particular processor
is a feature of MVS. (For example, because an emulator feature is generally
installed on only one of the processors in an MP environment, processor affinity
will force the execution of programs that require this feature to the proper
processor.)

MP Storage Usage - The following diagram shows storage relationships.

Processor 1
Vi rtua I Storage Virtual Store e

DUPLEX PSA
FFFFFF DUPLEX PSA
FFFOOO

Absolute Main
Store e

ABSOLUTE PSA FOR
LOW STORAGE PSA FOR PROCESSOR 0

.... ..'IfI' ,;- PROCESSOR 1

PSA FOR ABSOLUTE
PROCESSOR 1 LOW STORAGE

A
PSA FOR
PROCESSOR 0

1000
PSA FOR ABSOLUTE LOW PSA FOR
PROCESSOR 0 STORAGE PROCESSOR 1

0 0

Note that a processor's virtual PSA and the duplex PSA map to the same real
address (0). A processor can access the other processor's PSA by using the virtual
address of the other processor's PSA. A processor can access absolute low
storage by using the virtual address of its own PSA. The duplex PSA is used only
by lOS.

2-44 MVS Diagnostic Techniques

MP ·Dump Analysis

Experience with MVS has shown that there are comparatively few bugs unique to
MP. Usually, problems encountered in an MP environment could also be
discovered in a UP environment. The increased interaction (parallelism) between
software components in an MP environmen.t tends to increase the probability of
hitting bugs that are not unique to MP. Thus, the odds are that the dump you
are trying to debug could also occur on a UP configuration.

The first step of MP dump analysis is to determine conclusively that it is an MP
dump. To do this, you must find the common system data area (CSO). The
CSO address is located at offset X'294' in the CVT. The halfword CSOCPUOL,
at offset X'A' in the CSO, gives the number of processors currently active. If this
number is more than one, you are looking at an MP dump. For the rest of this
discussion, we will assume that CSDCPUOL=2.

Several other fields in the CSO are informative. For example, the byte CSOACR
at offset X'16', indicates whether or not ACR is in progress. ACR in progress
(X'FF' in CSDACR) indicates that one of the processors in the configuration is
becoming inactive. If this is the case, the problem may be the result of a failure
during ACR processing, and the MP dump will probably present at least two
problems:

1. A failure causing ACR to be invoked.

2. A failure during ACR processing. (See the discussion on ACR processing in
the "Miscellaneous Debugging Hints" chapter later in this section.)

Data Areas Associated With the MP Environment

There are several processor-related areas with which you should be familiar:

1. The PCCA (physical configuration communication area)
2. The LCCA (logical configuration communication area)
3. The PSA (prefixed save area)

There is a set of these control blocks for each processor located as follows:

CVT + X'2FC' points to the PCCAVT (contains the address of a PCCA for
each processor)

CVT + X'300' points to the LCCA VT (contains the address of an LCCA for
each processor)

PCCA + X'IS' is the virtual address of the PSA for that processor

PCCA + X'IC' is the real address of the PSA for that processor

PSA + X'20S' is the virtual address of the PCCA for that processor

PSA + X'20C' is the real address of the PCCA for that processor

PSA + X'210' is the virtual address of the LCCA for that processor

PSA + X'214' is the real address of the LCCA for that processor

The PSA is the "low storage area" (first 4K bytes of storage) and it contains,
among other things, the hardware-assigned storage locations. Systemj370
Principles of Operation details the prefixing mechanism the hardware uses to

Section 2. Important Considerations Unique to MVS 2-45

Parallelism

reassign a block of real storage for each processor to a different block in absolute
main storage. Prefixing permits processors to share main storage and operate
concurrently.

The PCCA contains information about the physical facilities associated with its
processor, the LCCA contains save areas for use by the first level interrupt
handlers (FLIHs). The need for processor unique areas arises, for example,
because external interrupts could occur simultaneously on each processor, and
therefore a processor-related area must exist for status saving by the external
FLIH. Such areas are in the processor's PSA and LCCA. After locating these
control blocks, you can determine several things about the status of each
processor.

• The PSWs at the time of the last program, I/O, SVC, external, and machine
check interrupts for each processor (PSA)

• The general purpose registers at each program check and machine check
interrupt (LCCA)

• The mode (SRB or task) of each processor (LCCA or PSA)

• The address of the device causing the last I/O interrupt on each processor
(PSA)

In addition, a work/save area vector table (WSAVTC) pointed to at
LCCA + X'218' is associated with each processor. This vector table contains
pointers to processor-related work/save areas. For example, there is a large save
area for use by ACR, which is pointed to in the processor's WSAVTC. It is
important to be aware of the existence of these processor-related areas because
GTF, SRM, ACR, lOS, etc., use them; but you must narrow your problem to one
of these processes (such as GTF, SRM, etc.) before the information in the
associated work/save areas become helpful.

The most important characteristic of the MVS MP capability is parallelism. In
looking at MP dumps, you must always remember that several processes might
run in parallel and reference the same main storage locations. As a result, queue
structures and common data areas are vulnerable. In order to preserve their
integrity, the system must insure that they are accessed serially. The resources
that must be serialized in order to guarantee their integrity are called serially
reusable resources (SRRs). The use of shared resources is the key item to pe kept
in mind in debugging an MP dump. There are various mechanisms available for
serializing SRRs:

• ENQ/DEQ
• WAIT/POST
• Disablement
• 'Locking
• Compare and Swap (CS) instructions (CS and CDS)
• Nondispatchability
• Test and Set (TS) instruction
• RESERVE/RELEASE
• Intersect

2-46 MVS Diagnostic Techniques

Obviously all users of a particular SRR must use the same serialization
mechanism. The integrity of an SRR is reduced if one user uses locking and
another uses ENQ/DEQ. You need to understand the processes going on in all
processors at the time of the failure. The processor on which the failure occurred
might not be the one that caused the problem.

Use of the work/save areas pointed to from the ASXB is a good example. These
areas are serialized with the local lock. The following diagram shows what could
happen if the same address space is running on two processors and one of the
processes involved fails to serialize properly.

PROCESSOR 0

• • • • Branch enters validity check routine

• •

PROCESSOR 1

• • • Gets local lock
Branch enters validity check routine

Releases local lock

• •
In this example, assume that the process executing on processor 0 fails to get the
local lock before it branch enters the system validity check routine. The validity
check routine uses the local lock to serialize one of the save areas mentioned
above in order to save the caller's registers. The registers saved by the validity
check routine on processor 1 can be overlaid by the registers saved by the validity
check routine on processor O. Thus, the failure would be encountered on
processor 1, but the processor 0 process would be the one that caused the failure.

OI/NI (OR Immediate and AND Immediate) instructions also illustrate this
phenomenon. These instructions take more than one machine cycle to complete
(that is, the operand is fetched, altered, and then stored). In previous operating
systems, physical disablement and UP environments were enough to insure the
completion of one instruction before another was executed. In MVS, with
multiple processors, this is no longer true.

F or example, suppose processor 0 issues 01 and the operand has been fetched.
Before processor 0 stores the changed byte, processor 1 executes the fetch cycle of
an NI instruction to change a different bit in the same byte. Now, processor 0
stores the original status plus the 01 change; subsequently the NI instruction
completes, which erases the effect of the 01 on the same byte. In MVS, locking is
used to solve some of the problems arising from such multi-cycle instructions.
When locking is not an appropriate solution, the Compare and Swap instructions
could be the appropriate solution. CS serializes the word containing the byte
against other processors. CDS serializes a doubleword. The point is that in
debugging an MP dump, all processors must be considered because interaction
between processes and shared resources is generally the key to solving the
problem.

When a program serializes a resource incorrectly, other programs can alter the
resource before the first program completes its update. The other programs may
be running on other processors, or they may have received control on the same
processor because the first program was preempted (for example, SRB suspension
because of a page fault) before completing its update. Proving that a problem

Section 2. Important Considerations Unique to MVS 2-47

resulted from incorrect serialization is accomplished by finding both the "other"
program and the interval in which a program opens a serialization exposure.

The system trace table can sometimes be used to find potential "other" programs.
If the occurrence of the error has not been overlaid in the trace table, it may be
possible to reconstruct the series of events leading up to the failure by:

1. Listing all events on that processor, in order, using the logical processor
address field in each event's trace entry

2. Making a similar list of all of the events on the other processor(s)

3. Comparing the lists to see if the processes executing in parallel on the
processors are altering a common re~ource

Try to relate these processes that are executing in parallel to the serialization
problem that caused the dump.

General Hints For MP Dump Analysis

The following is a list of general hints to help you analyze an MP dump.

1. The use of PRIORITY and DPRTY parameters no longer ensures the order
in which tasks are dispatched. First, the SRM, when attempting to handle
resources, can allow a task or job with a lower DPRTY to run prior to a job
with a higher priority. Second, as the dispatcher dispatches tasks on other
processors, tasks of different priority may be executing on multiple processors
simultaneously.

2. The CHAP (change priority) SVC does not ensure that tasks are dispatched in
the expected order when dispatching on other processors.

3. Attached tasks can execute at the same time as the mother task on different
processors. Therefore, if both tasks reference the same data, serialization of
the data is required.

4. Any references made to system control blocks that change dynamically after
IPL must be serialized to preserve the integrity of the data. The serialization
technique for the data item must match that employed by the system.

5. Tasks can be redispatched on a different processor from the one on which
they were previously operating. Therefore, do not use the LCCA, PCCA,
WSA, or PSA when enabled for interrupts, because redispatch on a different
processor results in different data being referenced.

6. If subpools are shared between tasks, users must serialize the use of any data
in the subpools common to the two tasks.

7. SRBs can be dispatched on any processor unless they are scheduled with
affinity for a particular processor.

8. Asynchronous appendages on one processor can operate simultaneously with
the task on another processor.

2-48 MVS Diagnostic Techniques

9. Enabled recovery routines can run on any processor, not necessarily the one
on which the error was detected.

10. STATUS STOP SRB request does not prevent SRBs from being added to the
local queue; it merely quiesces the address space after any currently executing
or suspended SRBs have completed.

11. When access methods allow sharing of data sets between tasks in the same
address space, access to the data sets must be serialized between the tasks.

Inter-Processor Communication

MVS uses the inter-processor communication (IPC) function in doing its
inter-processor related work. The IPC function uses the SIGP (Signal Processor)
instruction to provide the necessary hardware interface between the
MP-configured processors. This instruction provides twelve distinct functions.
Two of these functions are augmented by the control program to request services
of the other processor; external call (XC) and emergency signal (EMS) which are
SIGP codes 02 and 03, respectively. Thus, there are two classes of IPC services:

1. Direct - These services are defined for those control program functions that
require the modification or sensing of the physical state of one of the
processors. Ten of the twelve SIGP functions are defined as IPC direct
services:

Function

sense
start
stop
restart
initial program reset
program reset
stop and store status
initial microprogram load
initial processor reset
processor reset

Function Code

01
04
05
06
07
08
09
OA
OB
OC

Note: Codes OA, DB, and OC are not valid on a Model 158.

2. Remote - These services are defined for those control program functions that
require the execution of a software function on one of the processors. The
two remaining SIGP functions, external call (XC) and emergency signal
(EMS), provide the hardware interface and interruption mechanism to initiate
the desired program on the proper processor. The remote service function is
provided in two categories:

• Pendable service - use the XC function of SIGP
• Immediate service - use the EMS function of SIGP

When processor A issues a SIGP (XC or EMS) instruction to processor B, a
request for an interrupt becomes pending in processor B for the external class.
If external interrupts are disabled in the current PSW for processor B, the
interrupt is not taken. If the PSW for processor B is enabled. then separate
mask bits for XC and EMS are interrogated in control register O. Interrupts
are taken one at a time for those requests enabled in the control register. If

Section 2. Important Considerations Unique to MVS 2-49

Direct Services

processor B is disabled, processor B keeps pending at most one XC and one
EMS request. XC requests can pend simultaneously. Each specific XC
request is encoded in a physical configuration communication area (PCCA)
buffer associated with the receiving processor.

Both the direct and remote services may be used to initiate the desired
function on any of the processors physically attached via the MP feature,
including the processor the request is initiated on.

The direct service function consists of a macro instruction (DSGNL) and a SIGP
issuing routine (IEAVEDR). The DSGNL macro generates an in-line sequence of
instructions that:

1. Loads general register 0 with one of the ten SIGP function codes used to
perform the desired hardware action

2. Loads general register 1 with the address of the specified processor's physical
configuration communication area (PCCA)

3. Loads general register 15 with the address of IEAVEDR

4. BALRs 14, 15

Upon return from IEAVEDR, register 15 contains a return code indicating the
status of the request. If the return code is 8, register 0 contains sense information
about the receiving processor as shown in Figure 2-8.

Return Code of 8:

The other return codes are:

Register 0
Bit

o
1-23
24
25
26
27
28
29
30
31

Meaning

Equipment check
Reserved
External call pending
Stopped
Operator intervening
Check stop
Not ready
Reserved
Invalid order
Receiver check

o - SIGP instruction successfully initiated. The function is not necessarily completed upon
return to the caller.

4 - SIGP function not completed because path to the addressed processor was busy or the
addressed processor was in a state where it could not accept and respond to the function
code.

12 - Not operational, that is, the specified processor is either not installed or is not configured
into the system or is powered off.

16 - SIGP unsuccessful. Processor is a uniprocessor and does not have SIGP sending and
receiving capabilities.

Figure 2-8. SIGP Return Codes

2-50 MVS Diagnostic Techniques

Remote Pendable Services

The remote pendable services function (external call) consists of a macro
instruction (RPSGNL) and a routine (IEAVERP) which are used to invoke the
execution of a specified program on a specific processor. This service is used by
supervisor state, zero protection key functions that are not dependent upon the
completion of the specified service in order to continue their processing. The
RPSGNL macro generates an in-line instruction sequence that:

1. Loads register 0 with a code identifying one of the services to be initiated

2. Loads register 1 with the address of the PCCA of the processor on which the
service is to be initiated

3. Loads register 15 with the address of lEA VERP

4. BALRs 14, 15

Upon return, register 15 contains a return code. If the return code is 8, register 0
contains sense information (see Figure 2-8). There are currently six functions that
can be initiated via external call:

1. Switch specifies that the task execution on the other processor is to be
preempted.

2. SIO - specifies that the lOS start I/O routine (IECIPC) is to be executed on
the specified processor.

3. RQCHECK - specifies that the timer supervisor TQE check service routine
(lEAPRQCK) is to be executed. This routine ensures that the top TQE on
the real-time queue is being timed.

4. GTFCRM - specifies the GTF service routine (AHLSTCLS) that modifies the
Monitor Call (Me) control registers is to be executed.

5. MODE - specifies the recovery management services (RMS) service routine
(IGFPEXI2) that modifies the RMS oriented control registers is to be
executed.

6. MEMSWT - specifies that the memory switch service routine (lEA VEMS3) is
to be executed, either to force the signaled processor to master's address
space, or to initiate work on a waiting processor.

The rem.ote pendable services routine (IEAVERP) sets the appropriate code in the
external call buffer of the receiving processor's PCCA (offset X'84') as follows:

SWITCH X'SO'
SIO X'40'
RQCHECK X'20'
GTFCRM X'tO'
MODE X'04'
MEMSWT X'Ol'

Then IEAVERP sets the external call (XC) function code (X'Ol') in regi",ter 0 and
uses the DSGNL service routine instruction to cause the SIGP instruction to be
issued. If a busy condition is indicated by the DSGNL ~ervice routine, IEAVERP

Section 2 Important Considerations Onique to MVS 2-51

Remote Immediate Services

calls the excessive spin notification routine (IEEVEXSN) which issues message
IEE331A. The receiving processor will take an external interrupt when it becomes
enabled for such interrupts. The external FLIH determines that the interrupt was
an XC and passes control to the XC SLIH. The XC SLIH locates the XC buffer
(X'84') in his PCCA, determines the function requested, and branches (BAL) to
the appropriate routine. Refer to Figure 2-9 for the XC process flow.

The remote immediate services function consists of a macro instruction, RISGNL,
and a routine, lEA VERI, which are used, like the remote pendable services, to
cause the execution of a specified program on any of the online MP-configured
processors. However, the immediate service differs from the pendable service in
two important ways:

• The processors in an MP configuration are enabled for the emergency signal
(EMS) interrupt at times when the processors are not enabled for the external
call interrupt. In particular, EMS interrupts are enabled when the processor
is in the "window spin" state in which all other asynchronous interrupts
(except machine check and malfunction alerts) are disabled. This "window
spin" state is entered by a routine, such as the lock manager, when a point is
reached in its processing that requires an action on the other processor in
order for processing to continue. The "window spin" state specifically allows
either the malfunction alert or EMS interrupts that are used to trigger the
alternate CPU recovery (ACR) function to be accepted and processed.

• An immediate service routine can be requested to execute serially or in
parallel with the function requesting the service. That is, IEAVERI will spin
while waiting for the designated processor to signal either that the receiving
routine has completed execution (serial) or that the receiving routine has been
given control (parallel).

Some of the functions that can be initiated via EMS are:

• HIO - A Halt I/O command is issued to the designated device by the
receiving processor.

• ACR Function - The receiving processor helps the sending processor from a
failure by alternate CPU recovery procedures.

• Clock Synchronization - TOD clocks are adjusted so the same value is in each
clock.

• PTLB - The receiving processor purges its translation-Iookaside buffer (TLB).

The remote immediate services macro, RISGNL, generates an in-line sequence of
instructions that:

l. Loads register 0 with the PARALLEL/SERIAL indication

2. Loads register 1 with the address of the PCCA of the processor on which the
service is to be executed

2-52 MVS Diagnostic Techniques

3. Loads register 11 with the address of a parameter list to be passed to the
service routine

4. Loads register 12 with the entry point address of the service routine to be
executed

5. Loads register 15 with the address of IEAVERI

6. BALRs 14, 15

As for direct and remote pendable services, upon return register 15 contains a
return code. Register 0 contains sense information in case the return code was
eight. (See Figure 2-8.)

lEA VERI builds the emergency signal buffer in the sending processor's own
PCCA at offset X'88', sets the EMS function code X'03' in register 0, and uses the
DSGNL service routine to cause the SIGP to be issued. The receiving processor
will take an external interrupt when it becomes enabled. The external FLIH
determines that the interrupt is an EMS and routes control to the EMS SLIH.
The SLIH locates the EMS buffer of the sender and, for a parallel request, the
SLIH turns off the parallel bit and calls the receiving routine. For a serial
request, the receiving routine is given control, and, upon completion, the serial bit
is turned off. During this interrupt handling process, the sending processor was in
the window spin state until the serial or parallel bit was turned off. Figure 2-10
shows the EMS process flow.

If the receiving routine does not acknowledge the serial request within a certain
period of time, the EMS SIGP is reissued. If the spinning processor does not
receive acknowledgement of the serial or parallel request after a certain time
period, the excessive spin notification routine (IEEVEXSN) is called to issue
message IEE331A.

Section 2. Important Considerations Unique to MVS 2-53

RO

R1

R14

R15

SENDING PROCESSOR
Invoked via Macro
(See Below) IEAVERP .. 1 . Disables (STNSM)

External and 10 Interrupt
Input Registers Set up (see Note 1 .)

I > Function Code 2. Is Receiving Proceesor
Online?
Yes No RC=4 Receiving : £. Processor's PCCA

3. Turns on External Call's
Return Address Sub-Function Code in
IEAVERP EP External Call's Buffer in

Receiving Processor's
PCCA. (Compare and
Swap On)

4. Sets Externa I Ca II
Function Code, X' 02' in
Reg 0

15. BALRs to IEAVEDR.

6. Checks return codes:
• If RC=8 and status is

an external call
pending, set return®
code=8 ... 9

• If RC .. 4 or 8 (not an
external call pending) -...

7. Call IEEVEXSN with the
appropriate MSGID for
message IEE331 A
(See Note 5.)

8. Is ACR active? .. @ Yes (RC=4) No ...

External Call Buffer (In
Receiving Processor's PCCA)

~I Code I I
Code: SWITCH X'80'

SIO X'40'
RQCHECK X'20'

~0 GTFCRM X' 10'
MODE X'04'
MEMSWT X'01 '

IEAVEDR

~ ..
1. Disables (STNSM) --,.

External and I/O interrupts
Set up - see Note 1 .

~
2. Establishes SIGP Registers

a. Physcial Processor Address

I- R2 = PCCACPUA baseed on R 1
b. Establishes Parameter Register

R1 = 0
c. Establishes Function Code (To Part 2)

R3 .. RO
SIG R1, R2, 0 (R3) ~

3 . Checks Condition Code
CC2 - Busy - Retry (See Note 2)
CC1 - Eq. Chk, Operator

Intervention
Receiver Check - Retry
Within Limits

CC 1 - All Others - R. C. 8
CC3 - R. C. 1'2 (See Note 3.)
CCO - R. C. 0

4. Restores Caller's Status and
Returns to Caller

9. Restores ca Iler' s status
and returns to caller. ~ Returns to

IEAVERP li I

I Return Registers
Return Registers ~ ~ I Status Bits' RO

RO Status Bits
R14 Return Address

R14 Return Address
R15 Return Code R15 Return Code

Note: R. C. 8 means
Input Registers l::::::> status bits are set in

Register 0
RO Function Code

-=)('02'

R1 Receiving
Processor's PCCA IEAVERP Invoked via RPSGNL Macro Expansion:

R14 Return Address
SWITCH "I R15 IAVEDR EP
SIO Entry Point
RQCHECK

>- ,PROCESSOR.. {PCCA E~y? Addr RPSGNL -< GTFCRM
MODE

ess}

MEMSWT
(0)

-"

Figure 2-9 (Part 1 of 2). External Call (XC) Process Flow

2-54 MVS Diagnostic Techniques

RECEIVING PROCESSOR

F (rom
A

P art 1)
External FLIH

Determine If
Interrupt Is An
External Call

I

Input Registers , External Call SLIH

R2
FLIH Return 1 . Turns On Active Bit
Address

Ext. Call SLIH 2. Locates External Call Buffer
R10

Entry Address PSA --.. PCCA

3. If Buffer Equals 0,
Retu rns to FLIH

4. Determines Subfunction
Requested, Compare and Swap
Bit Off, BAL 14 to Appropriate
Routine.

X ' 80' SWITCH (Note 4)
X'40' SIO IECIPC
X' 20' RQCHECK IEAPRQCK
X'10' GTFCRM AHLSTCLS
X'04'MODE IGFPEX12
X' 01' MEMSWT IEAVEMS3

5. Turns Off Active Indicator and

Notes:

1 . Turns on active indicator
Saves callers registers
Establishes addressability

Returns Control to the Address
Established by the External
FLIH (BR2)

2. Retry for a period of time because the processor
is temporarily busy.

3. If CC = 3 and yet the processor is logically online, a SIGP
hardware failure may exist. A "Soft ACR" option is
available to the system operator to reconfigure to a
UP system.

4. Returns to the dispatcher forcing the interrupted task to
be preempted.

5. MSGIDs are determined by the status bits in register 0 if
RC .. 9 is indicated.

Figure 2-9 (Part 2 of 2). External Can (XC) Process Flow

Appropriate
Routine

..

~

Section 2. Important Considerations Unique to MVS 2-55

SENDING PROCESSOR
See Macro Below

L.
Input Registers

Parallel/Serial RO

R 1 Receiving

R1
R1

R1

R1

Processor's PCCA
1 Parameter Address
2 Receiving Routine

EP
4 Return Address

5 lEAVERI. EP

IEAVERI

1 . Disables (STNSM)
External and 10 Interrupts
Sets up (see Note 1 .)

2. Is Receiving Processor online~
Yes No RC-4 7 • --3. Builds Emergency Signal Buffer
in Own PCCA.

a) Turn On Parallel or Serial
Indicator

b) Place Receiving
1) Routines's EP
2) Routine's Parameter Address
3) Processor's Address

In The Buffer

4. Sets Emergency Signal Function
Code. X' 03' in Reg 0 .
BALRs to IEAVEDR.

5. Checks Return Codes:
Unsuccessfu I ~ <V
Successful

6. Spin until the Request is
Answered (See Note 4)

Serial Bits Off Parallel Bit Off
(See Note 6)

7. RC=4 or RC=8?
Y!S No"'@
.....

8. &11 IEEVEXSN with the
appropriate MSGID for
message IEE331 A .
(See Note 5.)

9. Is ACR active?
Yes (RC=r)

10.

Return Registers

RO X • 03 • I Stqtus Bits

R14 Return Address

R15 Return Code

Input Registers

RO Function Code =
X'03'

R1 Receiving
Processor' s PCCA

R14 Return Address

R15 IEAVEDR

Figure 2-10 (Part 1 of 2). Emergency Signal (EMS) Process Flow

2-56 MVS Diagnostic Techniques

Emergency Signal Buffer
(In Sending Processor's PCCA)

___ /I Bit O-Parallel (To Part 2)
Bit 1-Serial
Bit 31-RMS indicator
Receiving Routine' s
Parameter Address

Receiving Routine's
Ent Point
Receiving Processor's
Physical Processor ID

IEAVEDR

1 . Disables (STNSM)
External and I/O
Interrupts Sets up
(See Note 1 .)

2. Establishes SIGP
Registers

a. Physical Processor
Address R2-PCCACPUA
based on R1

b. Establ ishes Parameter
Register
R1=0

c. Establishes Function
Code ITo. Port 2)
R3=RO
SIGP R1. R2. 0 (R3)

3. Checks Condition Code
CC2 - Busy - Retry
(See Note 2)
CC1 - Eq. Chk. Operator

Intervention Receiver
Check - Retries
Within Limits

CC1 - All others - R.C.8
CC3 - R.C. 12

(See Note 3)
CCO - R.C.O

Return Registers

RO Status Bits

R14 Return Address
R15 Return Code

Note: RC 8 Means
Status Bits Are
Set in Reg 0

RECEIVING PROCESSOR

(From Part 1)

A

B

R2

R10

Input Registers

FLIH Return
Address

EMS SLIH
Entry Address

(From Part 1)

Input Registers

R1 Parameter Address
R 14 Return Address

R15 Receiving Routine's
Entry Address

Externa I FLIH

Determines
Interrupt
Is An
Emergency
Signal

Emergency Signal SLIH

11 . Turns On Active Bit

2. Locates EMS Buffer of Sender
CVf +PCCAVf (Processor ID)+PCCA

13. If RMS Indicator On, Calls ACR

4. If Receiving Processor 10 Equals
This Processor 10, Returns to FLIH.

5. Determines If This Is

Serial or Parallel:

Clears Serial Turns Off Parallel Bit.
Pending Bit
and Calls
Receiving
Routine.
Turns Off Calls Receiving
Serio I Bit. Routine.

16. Turns Off Active Indicator

17. Returns to FLIH

ACR

Receiving Routine

R15 Receiving Routine I s
Entry Address

IEAVERI Invoked via RISGNL Macro Expansion: Output Register

RISGNL {par?lIel} ,CPU _ {PCCA Entry Addressl
Senal (1) J

R21FLlH Return Address I
EP = {Address} [PARM _ {Address}]

(12)' (11)

Notes:

1 . Turns on active indicator
Saves Callers registers
Establishes addressability .

2. Retry for a period of time because the processor is temporarily busy.
3. If CC=3 and yet the processor is logically online, a SIGP hardware

failure may exist. A "Soft ACF" option is available to the system
operator to reconfigure to a UP system.

4. Disables/Enables Spin
1 . Turns on SPIN indiator
2. Enables for MFA and emergency signal iriterrupts
3. Disables
4. Turns off SPIN indicator

5. MSGIDs are determined by the status bits in register 0 if RC-B is indicated.
6. If the serial request is not acknowledged within a certain time period, reissue the SIGP.

Figure 2-10 (Part 2 of 2). Emergency Signal (EMS) Process Flow

Section 2. Important Considerations Unique to MVS 2-57

MP Debugging Hints

1. Apparent disabled loop in lEA VERI on processor A

This is probably caused when processor A sends an EMS to processor B, but
the receiving routine on processor B has not yet turned off the serial or
parallel bit in processor A's PCCA. Thus, processor A is in the "window
spin" state in IEAVERI.

To find what processor A wanted processor B to do, locate processor A's'
PCCA using one of the following:

• Field PSAPCCAV (PSA + X'208') in processor A's PSA contains the
virtual address of the PCCA for processor A.

• Field CVTPCCAT (CVT + X'2FC') points to the PCCA VT. The virtual
address of the PCCA for processor A is found by indexing into the
PCCA VT using four times the CPUID in PSACPUPA (PSA + X'204').

PROCESSOR A's PCCA

RISP I EMS2 I X'88'

X'8C'

X'90'

X'94'

Receiving Routine PARM address

Receiving Routine EP address

Receiving Processor's PCCA address

RISP field

X'80' - Parallel Request
X'40' - Serial Request

EMS2fieid

X'80' - Serial Pending

By locating the proper PCCA (in this case processor A's), you can determine
whether the EMS request was parallel or serial, the entry point, and therefore,
the name of the receiving routine. The serial pending bit indicates whether or
not the receiving processor has taken the external interrupt. If the serial
pending bit is on (PCCAEMS2 = X'80'), the interrupt has not been received.
Although this information tells quite a bit about the current process on
processor A, the real problem, however, is most likely on processor B.

The following are possible situations that can cause a disabled loop:

• Processor B, if disabled for EMS interrupts, would never take the EMS
interrupt; therefore the receiving routine would never get control and the
parallel or serial bit would never get turned off.

• There could be a hardware problem with the SIGP circuitry. For
example, if lEA VERI got condition code 0 as a result of issuing the SIGP

2-58 MVS Diagnostic Techniques

instruction on processor A, but the SlOP was never received on processor
B, there would be a loop in lEA VERI.

• If the receiving routine loops or hangs for a serial request, IEAVERI will
also loop with the serial bit on and the serial pending bit off.

2. Locate External Call buffers

The external call buffer is located at offset X'84' in the PCCA. Normally, the
buffer is clear, but it is worthwhile to check to make sure that there is no
external call work to process, as indicated by the request codes below:

Request Code (PCCA + X'84'):

X'80' - SWITCH
X'40' - SIO
X'20' - RQCHECK
X'lO' - GTFCRM
X'04' - MODE
X'Ol' - MEMSWT

The code is set in the receiving processor's PCCA so that a bit on in processor
B's PCCA, for example, means that another processor initiated the request.
(Note that multiple bits can be on at the same time.)

Note: If the external call or EMS events are available in the trace table,
those table entries contain event-related information (for example, the
external call buffer). For details see TTE in the Debugging Handbook.

3. Determining Which Processor Has I/O Capability

The processor attribute bits, PCCAATTR, are located at offset X'178' in the
PCCA. If bit I (PCCAIO) is 1, then this processor has I/O capability, which
means that this processor has at least one channel logically online.

Bit 1 is set to 0 by:

IEAVNIPO: For each processor that has no channels physically online. (Note:
For Model 158 and Model 168 AP systems, PCCAIO=O for the attached
processing unit.)

IEEVCPRL: When the last channel of a processor is varied offline.

Bit 1 is set to 1 by:

IEAVNIPO: For each processor that has channels physically online.

IEEVWKUP: When a processor is varied online and it has channels
physically online, or when the first channel of a processor is varied online.

Bit 1 is referenced by:

IOFPTERM: When searching for a live processor, if that processor has I/O
capability (PCCAIO = 1), a SlOP EMS is issued to that processor.

Section 2. Important Considerations Unique to MVS 2-59

IGFPTSIG: When processing an EMS received from a failing processor.
When invoked during system termination, if executing on a processor with
I/O capability, IGFPTSIG writes to LOGREC and the console.

IGFPXMFA: When processing an MFA received from a failing processor. If
executing on a processor that has I/O capability, IGFPXMFA invokes ACR.

lEA VT ACR: If PCCAIO = 1 for the failing processor, IEAVT ACR invokes
I/O restart to handle outstanding I/O.

2-60 MVS Diagnostic Techniques

MV,S Trace Analysis

Trace Entries

This chapter reviews the MVS trace, GTF trace, and master trace functions. The
MVS trace (similar to the as trace) and the GTF trace are available in both
system-initiated dumps (SNAP) and in stand-alone dumps. There are formatting
routines for most combinations. The trace table entry format can be found in the
"Data Area" section (see TTE-Trace Entry) and the "Dump and Trace Formats"
section of the Debugging Handbook.

The information in this chapter is provided to assist you in reviewing the various
formats as you will see them in a storage dump. The page fault path is used as
the vehicle for describing the MVS trace and GTF trace formats in the following
examples and descriptions.

The master trace function and the,message processing facility table (MPFT) are
described later in this chapter.

To have these entries formatted in a SYSUDUMP/SYSABEND/SYSMDUMP,
the installation must specify SDATA=(TRT) in the SYSl.PARMLIB members or
use the CHNGDMP command.

Note: SYSMDUMP produces a machine-readable dump; AMDPRDMP must be
used to print it. AMDPRDMP does not format the system trace table.

For unformatted trace table entries, the system queue area (SQA) must have been
printed. Use location X'54' as shown in Figure 2-11 to locate the trace table.
Remember that 'TRACE ON' was required at IPL time. (Note that if GTF is
active, the systeln trace is turned off.)

Section 2. Important Considerations Unique to MVS 2-61

Loc X'54' Current First Last

F09DCO ~~~ F5003240
FD9DEO
FD9EOO
FD9E20
FD9E40
F09E60
FD9E80
FD9EAO
FD9ECO
FD9EEO
FD9FOO
FD9F20
FD9F40
FD9F60
FD9F80
FD9FAO
F09FCO
FD9FEO

~
a

00000000 00000000 00000000 00000000 •• ,." •••••
070C2048 00E9FA6E 00E9F8FO 00000001 00031E08 40000001 00013F50 66FD5FCO •••••• Z.>.Z
070C200A 00D70742 00D707E8 E7000060 00B2B8D8 40000001 00013F50 66FE22CO •••••• P ••• P
070C800A 00070742 00000000 00B2BC38 00B28808 40000001 00013F50 66FE4E50 •••••• p ••••
070C8048 00E9FA6E 000707E8 0082BC38 00B2B8D8 40000001 00013F50 66FE6510 •••••• Z. >.p
070C2024 00EAOOC8 00000000 FA000082 00091F78 40000001 00013F50 66FF2930 •••••••• H ••
070C200A 00DED84E 40DED82A OOOOOOEE 80DF084C 40000001 00013F50 66FF5030 ••••••• 0+ ••
070C800A 000ED84E 00000000 OOOOOOEE 00092F10 40000001 00013F50 66FF7EOO •••••• ;0+ ••
070C203C 00DED9CO 00000000 00000000 00092F98 60000001 00013F50 66FFOF90 •• , •••• R •••
070C803C 000ED9CO ooooqooo 00000000 00092F98 60000001 00013F50 66FFF830 ••••••• R •••
070C2077 000EOE84 00000000 00000000 OOOBOOOO 60000001 00013F50 67001 BEO •••••••••••
070C8077 000EDE84 00000000 00000000 80000000 60000001 00013F50 6700COOO •••••••••••
070C203C OOOEOACE 00000000 00000084 00815890 50000001 00013F50 6700F4BO •••••••••••
070C803C OOOEDACE 00000000 00000084 00B15890 50000001 00013F50 67010000 •••••••••••
070C200A 000E0944 00000000 OOOOOOEE 00092F10 40000001 00013F50 670130AO ••••••• R •••
070C800A 00DED944 00000000 00093000 00092F10 40000001 00013F50 6701F880 ••••••• R •••
070C8024 00EAOOC8 00000000 00093000 00092F10 40000001 00013F50 67020EAO H ••
070C2001 00EA0320 00000000 00000001 FFFCE088 50000001 00013F50 67032A60 •••••••••••
070E7000 00000000 00000000 00000000 00000000 00000000 00014248 ~6F30 •••••••••••

, T ' \.'------..,-------"...., ~ '-y----J

b c d ef g h i
N 1 second

where:
a - address column in SQA
b - PSW or device address/CAW if an SIO operation
c - variable, see TTE in Debugging Handbook
d - I LC/CC/PM from the PSW
e - Channel set 10 for an SIO or I/O interrupt entry. (This field is zero for I/O interrupt

entries when channel set switching is not installed.)
f - CPU 10: 0 for processor 0; 1 for processor 1
g - ASIO: 0001 is master scheduler; 0002 is usually JES;

0000 is dummy task or N/A
h - TCB address
i -Timer value

Figure 2-11. How to Locate the Trace Table

If low address storage is overlaid and the trace table pointer (X'S4') is lost, you
can locate the trace table (which is in the SQA) by searching through the high
address range of common storage. Each trace entry is X'20' bytes in length and
begins in the extreme left-hand column ofa storage dump. Once you locate a
pattern of X'07' and X'04' combinations, you have found the trace table.

If location X'S4' has not been overlaid, then it will point to· the control
information for the trace; this information is directly in front of the actual table.

The trace routine places an entry (record) type indicator in the fifth position of
the PSW and moves the interrupt code in to make the PSW appear as Be mode,
Figure 2-12 explains each of the trace entry types.

2-62 MVS Diagnostic Tec~niques

Position 5

G}-0000l101 00009F08 00000000 00000000 00FOABD8 00010001 00000000 AB57A140 * J Q Q

07807000 0009C1A2 00000000 00000001 0017C2BE 60010011 007C40D8 AB57AA30 AS B Q

@-07802012 00096CEO 00095288 000955E8 00096F80 40010011 007C4008 AB58A680 H Y Q

070C203C 0001EBD8 00095288 ~OOOOOOO 007FD69C 60010011 007C40D8 AB58AA40 Q H 0 Q

®-070C803C 0001EBD8 00000000 00000000 007F069C 60010011 007C4008 AB58B190 Q 0 Q
078C2078 0001EC94 OOOOE500 00000178 00000000 40010011 007C40D8 AB58B3DO * M V Q

~ 078C8078 0001EC94 00000000 00000178 007A2E88 40010011 007C40D8 AB58C350 * M H Q
018C3011 0001ECB8 00000000 007A2FFO 007A2E8D C00100ll 007C40D8 AB58C610 * 0 Q

(D--070C6000 0004AFFO 00000011 00FEC760 00FEC78C 00010011 007C4008 AB5D8130 * Q G G Q

~g~:g~g~~ ggg~~~~: 00000000 31000163 40000005 00010000 000115A8 AB58D800 * Y
00000000 31000163 40000005 40010011 007C40D8 AB5A1BEO * Q

QD--078C51Dl 0001EE18 0007D740 OCOOOOOl 00000000 00010011 007C40D8 AB5A1EOO * J P Q

060C5582 00018424 8000B1A8 OCOOOOOl 00000000 30010011 007C40D8 AB5A3DOO * B D Y Q

060C5950 00018424 0007E6B8 OCOOOOOl 00000000 30010011 007C40D8 AB5A4300 * D W Q
®-070C4000 0004AF98 00000012 00FA3F40 00FA3F60 00010012 007CDEB8 AB5A5A30 * Q

c¥g~:~~g~~ gg;~~ ~~~ ggggggg~ gg~g~g~~ 00105F71 4001003B 007FA930 ABSA6220 * 5
00106F71 8001003B 007FA930 ABSAC540 5

070C7003 0001F360 0001F360 00000001 00FA3F40 40010012 007FE080 ABSAFB70 3

where:

Fifth digit = O. This is an SIO entry. The CAW address is '9FD8'. The 10SB address is X'FDABD8.' The
channel set id is O.

@

@-

@-

0-

@-

@-

Fifth digit = 1. This is an external type. The interrupt code is X'1 004' generated by a clock compara
tor interrupt.

Fifth digit = 2. This is an SVC interrupt. An SVC '12' was issued from iocation X'96CEO' (minus the

I LC). Variable fields are registers 15,0, and 1.

Fifth digit = 3. This is a program interrupt. Interrupt code X'11' is a page exception. Word 4 is the
referenced translation exception address (TEA).

Fifth digit = 4. This is an SRB dispatch. The address in the PSW (X'4AF98') is the entry point address.
Offset X'16' contains the ASID to be dispatched. Word 3 isthe purge ASI 0 and word 7 the purge TCB.

Fifth digit = 5. This is an I/O interrupt. The device address has been moved into the PSW. Words 3 and
4 are the CSW with channel end/device end.

Fifth digit = 6. This is an SRB redispatch. SRBs can be suspended because of lock contention or a page
fault. The address in the PSW is the lock manager return address or the instruction that caused the
page fault.

Fifth digit = 7. This is a task dispatch. The interrupt code is from the last task interrupt. If the inter
rupt code is 0, it could be the first dispatch of this request block (RB) forthe task.

Fifth digit = 8. This is an SVC return. The interrupt code is from the last SVC interrupt for the RB.

Note: Additional trace entry types are:

Fifth digit = 9. This is a Program Call (PC) instruction. Word 3 contains the new PASI 0 (offset X '8') and
the new SASID (offset X'A').

Fifth digit = A. This is a Program Transfer (PT) instruction. Word 3 contains the new PASID (offset
X'8'). Word 4 contains the old PASID (offset X'C').

Fifth digit = B. This is a set secondary ASID (SSAR) instruction. Word 3 contains the new SASID (off
set X'A'). Word 4 contains the old SASID (offset X'E').

Figure 2-12. Types of Trace Entries

w *

*
C *
F *
A *
Q *

E *

Note: In previous systems, the program check trace entries had registers 15, 0, 1
in words 3, 4, and 5. Also, the fourth word was the TEA for page fault entries.
This is changed in MVS; the fourth word for any type of program check is now
the TEA.

Section 2. Important Considerations Unique to MVS 2-63

Trace Entry for Service Processor Call SVC

Trace Examples

The trace entry for the Service Processor Call SVC interruption is represented by
a type 2 entry (SVC interruption), with a 122 (X'7 A') SVC number, and an ESR
code of 6 in register 15.

The trace entry for the MSSFCALL DIAGNOSE or SERVICE CALL instruction
external (service signal) interruption (interruption code X'2401') is represented by
X'1401' in the trace table.

Both entries contain the following in the register 0 and 1 fields:

• Register 0 field - contains the service processor command word (four bytes).

• Register 1 field - contains the two-byte response that the service processor
puts in bytes 6 and 7 of the service processor data block; the one-byte caller
flags that the caller put in byte 2 of the data block; and one byte of zeros
(reserved).

This information helps you trace Service Processor Call SVC processing. For
additional information, refer to the topic "Service Processor Call SVC and
MSSFCALL DIAGNOSE Instruction" for processors with an MSSF, or the topic
"Service Processor Call SVC and SERVICE CALL Instruction" for processors
with the Service Processor Architecture.

Figure 2-13 through Figure 2-16 illustrate different kinds of MVS and GTF
traces, as follows:

Figure 2-13. MVS Trace of a Page Fault Without I/O
Figure 2-14. MVS Trace of a Page Fault With I/O
Figure 2-15. GTF Trace of a Page Fault Without I/O
Figure 2-16. GTF Trace of a Page Fault With I/O

While trace tables do not include all system activity, they can be very helpful in
establishing a pattern. Remember that many MVS system services are branch
entered and therefore do not appear in any trace type entry.

2-64 MVS Diagnostic Techniques

Figure 2-13 illustrates a page fault that did not require I/O for completion. Note
that field IDS contains the information described in notes d, e, f, and g in
Figure 2-11.

PGM OLD PSW L071C3011 00E44072
SVC OLD PSW 070C2013 00BA6B98
PGM OLD PSW 075C3011 00DDA3F6
SVC OLD PSW 075C203C 00DOA972
RET NEW PSW 075C803C 00DDA972

R15/RO 00000000 009F2F50
R15/RO 00000000 00000198
R15/RO 00000000 009F1F20
R15/RO 009F1F2Q 00000000
Rl S/RO 00000000 00000000

R1 009F2F50
Rl 009F4C78
Rl OOOOOOEO
Rl 809F1F08
Rl 809F1F08

IDS 90000003
IDS 60000003
IDS 70000003
IDS 50000003
IDS 50000003

@ Fifth digit = 3 and the interrupt code is X'11 ' .. The faulting instruction is at

TCB 00AOC318
TCB 00AOC318
TCB 00AOC318
TCB 00AOC318
TCB 00AOC318

X'E44072' and is referencing X'9F2F50'. Because the next entry for this ASID and TeB
is not a redispatch of the same location, it can be assumed that the page exception was
satisfied by reclamation or the first time reference after a GETMAI N. No I/O was
required.

TME F09679CO
TME F096D6CO
TME F09728AO
TME F097EE70
TME F0980A 70

Figure 2-13. MVS Trace of a Page Fault Without I/O (Formatted by SNAP in SYSUDUMP/SYSABEND)

Figure 2-14 illustrates another possible format of a page fault.

CD-- 078C3011 OOF68SD8 OOF68008 007COOOO 007CI'.000 40010015 007C7958 AB5FB280 * 6EQ 6
000001D2 00009FFO 0007D740 OCOOOOOl OOFDABD8 00010001 00000000 AB5FE470 * K 0 P Q ®F Q78D7000 0009D3F'0 00 3F5 2FO FF17E980 0011E1B4 5E010010 007CFCFO AB5FEOAO * 1.0 0 Z
078D5951 0009D3FO 103BC8F8 OCOOOOOO 00000000 lE010010 007CFCFO AB5FFOOO * LO H8
070C4000 0004AF98 00000002 00FEC178 00FEC1A4 00010002 007FC588 AB5FF870 * Q A AU

U *
0 *
0 o *

EH 8 *
078D7000 0009D3FO 003F52FO FF17E980 0011E184 5E010010 007CFCFO AB613350 * 1,0 0 z 0

@--n78D51D2 001l8FOO 0007D740 OCOOOO01 00000000 OE010010 007CFCFO AB614600 * K P

~078C7000 001'685D8 001'68008 007DE7CO 007CAOOO 40010015 007C7958 AB616840 * 6EQ 6 x
0

where:

CD The page exception.

@ The SIO by lOS after a branch entry from ASM.

@ The I/O interrupt with channel end/device end.

@ Redispatch at page faulting location.

Figure 2-14. MVS Trace of a Page Fault With I/O (Unformatted)

Note that the sequence illustrated for the page fault path is not a mandatory one.
Frequently ASM finds more than one request for paging on the queue and can
satisfy them with one I/O. Also, if RSM queues a request and notes that a
request already exists, it does not interface with ASM. The ASM SRB has been
scheduled previously.

The next two examples are of GTF traces with the following options in effect:

FORMAT=SYS
SVC=ALL
SIO=ALL
PI=ALL
IO=ALL
EXT = YES
RR=YES

USR=YES
GTF=NO
DSP=YES
PCI=YES
RNIO=NO
SRM=YES
USERTIME=YES

Note: The fields in GTF trace records are described in Debugging Handbook.
Volume 1.

Section 2. Important Considerations Unique to MVS 2-65

Figure 2-15 illustrates one of two situations:

1. A first reference to a page after a GETMAIN was issued for it.

2. A reclaim; that is, a fault on a page which was stolen but whose real frame
had not yet been reused.

I'GM 017 ASCB OOFD5858 CPU 0000 JOBN USRT085 OLD PSW 075C0011 00D853F6 TCB 008B8EB8 MOON SVC-RES VPA 00885F5F
RC 00885FtiO III ooooalAO R2 00000050 R3 0050F602 R'I 000000E6 R5 00D85000 R6 AOD85220 R7 C00000050
R8 0008B120 R9 UUOU0001 Rl0 00055020 Rll 008BE740 R12 000001AO R13 00000000 R14 008B5E60 R15 00000000
TIME 44413.312955

~Figure 2-15. GTF Trace of a Page Fault Without 1/0

Figure 2-16 shows the steps taken to acquire a new page following a page fault.

PGM 017 ASCB 00F05858 CPU 0000 j"OBN USR1085 OLD PSW 075COOll 00C6BOOO TCB 00888FB8 MODN SVC-RES
RO 0000005B Rl 0000005B R2 8F8B5B78 R3 40C69002 R4 008B58F8 R5 01885F2C R6 008B5EE4 R7
R8 008B5F04 R9 00000000 Rl0 00000008 Rll 008B5A04 R12 00000000 R13 0000005B R14 008B8EB8 R15
TIME 44413.3111696

SRB* ASCB 000167)"0 CPU 0000 JOBN *MASTER* SRB PSW 070COOOO 00061A40 SRB 00FE7400
TIME '14413.343055

SIO 0353 ASCB 00016780 CPU 0000 JOBN *MASTER* R/V CPA 00078740 00078470 CAW OOOOEFBO
FLGS 00000010 8801 STAT 0000 SY. AOOR 00000000 OEOO0803 CC 0
TIME 44413.344333

OSP ASCB 00017058 CPU 0000 JOBN NIl'. OSP PSW 070EOOOO 00000000 TCB 00017158
TIME 411413.3115269

10 0353 ASCB 00016780 CPU 0000 JOBN *MASTER* OLO PSW 070EOOOO 00000000 TCB NIl'.

OSP

PGM 017

SRB

SIO 353

DSP

10353

DSP

CSW 00078498 ocoaOO01 SNS NIl'. R/V CPA 00078470 00078470 FLG C0108801
TIME 44413.372394
ASCB 00F05858 CPU 0000 JOBN USRT085 OSP PSW 075COOOO 00C6BOOO TCB 008B8EB8
TIME 114413.375033

The page fault. VPA;:;address of fault.

.- The dispatch of ASM's part monitor routine in master's address space.

The Start I/O to page-in the requested page.

The dispatch of any ready work while the page-in I/O is in progress.
In this case, there is 110 ready work, so the wait task is dispatched.

The I/O interrupt from the paging device. ASM's disable interrupt exit
(DIE) routine gets control.

The faulter resumed where he left off.

.. Note: This entry appears when ASM is unable to start the I/O in the page faulter's
address space because ASM resources are unavailable.

Figurt: 2-16. GTF Trace of a Page Fault With 1/0

Notes J1'or Traces

PARM 00000000

OSID 00000000

MOON NIl'.

USID 00000000
A2000353 00

MOON SVC-RES

VPA 00C68000
018B5F20
00C6BOOO

TYPE GLOBAL

The trace provides a history of some of the events that lead to a storage dump.
Trace interpretation is one of the most important aspects of debugging.

Tracing Procedure

When attempting to recreate the process that was occurring on the processor(s)
when the dump was taken, start at the current entry in the trace table (identified
either by the trace header or by the highest clock value in the last column) and
scan upwards. While scanning, look for unexpected events. These include:

• Unit check, unit exceptions on I/O devices

• Non-CC =0 on SIOs

2-66 MVS Diagnostic Techniques

• Non-type 11 program checks

• SVC D, SVC 33, SVC errors - (see number 6 under "Cautionary Notes" later
in this chapter)

• Malfunction alerts (X'1200' external interrupt)

• Entries that show both processors executing the same code as indicated by the
ICs (instruction counter) in the entries

• Large time gaps in the TOD clock value

• MP environment and only one processor doing anything

These entries indicate a potential for errors. Do not be distracted if you discover
an entry of this type. Record the incident for future use. Then continue scanning
back through the trace and try to determine what was happening in the system
that might have caused the failure. Remember to conduct the scan by unique
processor. Separate the processes that occur on each processor and watch for any
obvious interactions in the processes.

You can further subdivide the activity by address space (as depicted by ASID) or
by task (TCB address; remember to stay under the same ASID). As you recreate
the situation, remember that you are relating individual entries to real events that
must occur in order to accomplish work. Do not be distracted. For example, do
not look for an I/O interrupt just because you see an SIO. The two events should
be associated, but you should also determine the following:

• Why the I/O is occurring;

• If the I/O is related to the process, address space, task, page fault, etc. that
you are concerned with;

• If the I/O completion should trigger another event. This is the way work is
accomplished in MVS, that is, events triggering more events. As you become
familiar with trace coding you learn to expect this "event causing" sequence.
Certain sequences occur very frequently; you learn to recognize these and to
look for less familiar sequences.

As you are searching trace entries, watch for repeating patterns, which can
indicate a loop in the system. These patterns can appear as constantly repeating
ICs (generally the case in a tight enabled loop), or as a repeating sequence of
entries (often the case in a process loop, such as an ERP constantly retrying an
I/O operation). Note that in the latter case, other entries from other processes
can intervene periodically in the trace table, especially in an MP environment.

If you reach a point in the trace analysis where you are somewhat comfortable
with the processes you are uncovering and recreating, and you feel you have a fair
understanding of the activity in the system, pause. Try to understand what you
have found. Is there any way you can relate your findings to the reason you have
taken the dump in the first place? Do the unexpected events have anything to do
with the problem, or are they unrelated to the problem? It can happen that the
events you have discovered are unrelated to the problem causing the dump and
you have exhausted the scope of the trace. In this case, you probably have to go

Section 2. Important Considerations Unique to MVS 2-67

Bypassing GTF Lost Events

into the system and study the address space and task structures, queues, and
global data areas in order to zero in on the problem.

However, if the events you have discovered are related to the problem causing the
dump, you must then attempt to isolate the erroneous process. Try to understand
how the unexpected events relate to the process. Look on both sides of the event:
did the event trigger the bad process, or is it a result of the bad process?

It is also necessary in trace analysis in MVS to understand whether you are
looking at the primary error or at some secondary problem. Is this a mainline
failure or a failure because of a problem in the recovery? Also, you must decide if
the problem is caused by a previous error from which the system has recovered.
Always be sure that it was not something several pages earlier in the trace that
caused recovery to be activated and eventually led to the current problem. If this
is the case you must now decide which error to pursue. The original error is
probably more important; however, much of the required information might be
lost because of recovery and the subsequent recovery failure. Also keep in mind
that if you must attack the secondary error condition, your search of the dump
and the recovery areas can often uncover information about the first error.

The trace is one of the most useful tools available for back-tracking through a
problem sequence. You must use it in conjunction with system control blocks and
indicators in order to recreate the error sequence. This is still true in MVS d~spite
the fact that the trace contains less information than in previous systems. In
MVS, the SVC calls have been greatly reduced because of branch entry logic for
both transfer of control and supervisor services. This means that trace entries are
not provided as in previous operating systems. Also, many significant events,
such as lock acquisition and release, SRB scheduling, and SlOP issuance, are not
traced. Because of these MVS considerations, you must be able to understand the
processes and interpret the trace table rather than just read it.

The following superzap is useful when you need to trace a large number of events
(such as identifying a performance problem during teleprocessing operations). It
increases the number of OTFBLOKs from 4 to 32.

NAME
VER 0194
VER OlBC
VER 01D2
VER 0954
VER 147C
VER 148A
VER 1674
REP 0194
REP 01BC
REP 01D2
REP 0954
REP 147C
REP 148A
REP 1674

AHLCWRIT
50AE,CC03
58AA,CC03
5899,CC03
509A,CC03
587A,CC03
509A,CC03
0000,0004
50AE,CCF3
58AA,CCF3
5899,CCF3
509A,CCF3
587A,CCF3
509AJCCF3
0000,0020

Caution: Extreme care must be used when considering a system alteration in order
to gather additional data about a problem. No superzaps should be applied
before the system programmer has verified the logic being zapped and the trap

2-68 MVS Diagnostic Techniques

Cautionary Notes

logic itself. Remember, if anyone location or offset within the module or trap
changes, all offsets and base registers must be verified.

Listed below are some items the problem solver should understand when
analyzing an MVS trace table.

1. I/O Processing:

• Much I/O is accomplished in MVS by the branch entry interface to lOS
and without the use of SVC 0 (EXCP). Therefore, you often find I/O
entries (SIO/I/O interrupt) that are not accompanied by SVC o.

• Back-end I/O processing can result in an SRB schedule of IECVPST.
This trace entry should appear soon after an I/O interrupt. The register 1
slot will contain the 10SB address. The 10SB is the key to tracking the
I/O request.

2. Timer Value:

The last field of each trace entry contains bytes 3-6 of the eight-byte TOO
clock at the time the entry was made. The second digit (from the left)
represents the value to be increased approximately every second.

The following steps show how to determine the elapsed time between two
trace entries (such as from a SIO to the I/O interruption).

a. Find the difference between the two hexadecimal timer values.
b. Convert the difference to a decimal value.
c. Divide the decimal value by 16 (result is microseconds).
d. Divide by 1,000,000 (result is seconds).

3. Enabled Wait State:

Because of recovery, the end symptom of many problems is an enabled wait
state. For tracing, the wait state presents particular problems in MVS. SRM
maintains a timer interval that periodically causes a clock comparator
interrupt (code X'1004'). These external interrupts are recorded in the trace
table. Also, an SRB is dispatched periodically in the master scheduler's
address space to run a section of SRM code which updates the page frame
tables unreferenced interval counts (UICs). In addition, in an MP/AP
environment there are external calls (code X'1202') issued between the two
processors requesting that the receiver look for ready work. These calls will
be followed by a re-dispatch of the no-work wait on the receiving processor.
In short, the wait state is a combination of dispatches of the no-work wait
task, clock comparator interrupts, and SIGP external calls. The IC
(instruction counter) will always be o.

All this extraneous activity can cause the trace to wrap around and overlay
the important trace entries of the events that led up to the enabled wait state.

Section 2. Important Considerations Unique to MVS 2-69

4. MP/AP Activity:

The communication between the two processors in the MP/AP environment is
traced as the external interrupts are accepted by the receiving processor. An
external interrupt code of X' 1201' is an emergency signal; and an external
interrupt code of X'1202' is an external cail. (The previous chapter, "Effects
of MP on Problem Analysis," explains this communication process.)

5. Trace Currency:

Various processes that occur in MVS turn off the MVS trace. The most
prominent of these are GTF and SVC dump. Determine if the trace was
running when the dump occUrred: if you are unaware that the trace was not
running when the dump was taken, you might go off on a fruitless chase and
lose considerable time. The trace was still active when the dump occurred if
the CVT+ X'190' value =X'07FA'.

Note: When SVC dump turns off the MVS trace, it sets bit 0 on in the ASID
identifier (offset X'16') in the current trace table entry.

6. . SVC D Entries:

SVC D is the means by which termination is invoked. In previous operating
systems, SVC D meant abnormal termination. This is not always true in
MVS. RTM2 is the mechanism for normal end~of-task processing as well as
for abnormal termination; RTM2 is invoked via SVC D. Consequently, SVC
D for normal termination is a valid situation and is traced. You can
determine whether SVC D implies normal or abnormal termination by
inspecting the register 1 slot associated with the SVC D entry. If the first
byte contains a X'08', RTM2 is being invoked for normal termination and
this is not an error situation.

MVS does not allow SVC routines to be invoked from code in one of the
following states: cross memory mode, non-task mode, any lock held, disabled
for I/O or external interruptions, or with any enabled unlocked task mode
FRR established. However, SVC D issued in one of these states is a common
means to enter RTMI to invoke recovery. RTM indicators show the SVC
error, and the system trace entries for the SVC and SVC error show the
issuer's state, but the real problem is why SVC D was issued.

7. Important events not traced:

Since the enabled nowork wait task dispatch entry is now made while
enabled, the CS to obtain a slot in the trace table may be executed, but the
MVC that moves the entry from PSA WTENT to that slot may never occur.
This results in residual trace entries occurring among the "current" trace
entries which can be of any type.

8. Unit exception I/O interrupt on a 3705 communications controller:

The presence of unit exception conditions from the 3705 is a common
occurrence while running VT AM. This is a normal situation and should not
be considered erroneo.~s. The host processor· has issued a set of read
commands to the 3705, and the channel progr~.Jll has been terminated before

2-70 MVS Diagnostic Techniques

Master Trace

all the reads have completed because the NCP did not have enough data to
satisfy each read CCW.

9. GETMAIN, FREEMAIN - SVC X'A', SVC X78':

For SVC X'A', inspect the register 1 slot of the associated trace entry. A
value of X'SO' in the high-order byte indicates GETMAIN; a value of X'OO'
indicates FREEMAIN. SVC X'7S' uses a code in register 15 (see the
Debugging Handbook.) If a GETMAIN is indicated, the register 1 slot of the
associated re-dispatch of the SVC issuing code can be used to locate the
storage allocated by the GETMAIN process.

10. A GETMAIN for X'4D4' bytes is often seen soon after an SVC D is issued:

This is RTM2's request for storage for an RTM2WA and an SDWA for
RTM2. By locating the re-dispatch of RTM2 and inspecting the register 1
slot, you can locate the RTM2W A.

Master trace is useful for debugging problems when you need to know the content
of recently issued messages. Master trace maintains a wraparound table of the
messages that are routed to the hardcopy log. When a message becomes eligible
for the hardcopy log; it is entered into the master trace table by the
communications task queuing routines. The trace table resides in pageable virtual
storage in the master scheduler's private area.

The size of the master trace table is specified by the MT operand of the TRACE
command and by the MT= entries in the COMMNDxx member of
SYS1.PARMLIB. If a size is not specified, the default size is 24K bytes. The
master trace table is created during master scheduler initialization. After system
initialization, master trace may be activated and deactivated by using the TRACE
command.

The master trace table is included in SVC dumps as a part of the SDATA=TRT
option. The default size of 24K bytes accommodates approximately 336 messages
(wit~ an average length of 40 characters).

To locate the master trace table: field CVTMSER (at CVT + X'94') points to
IEEBASEA (master scheduler resident data area) and field BAMTTBL at offset
X'SC' in the IEEBASEA points to the master trace table.

When submitting an APAR, the SVC dump may be submitted for the hardcopy
log if the master trace table contains the required messages. For example:

• The master trace table has wrapped at 9:00.
• A message related to a problem was issued at 9:20.
• An SVC dump is taken at 9:30.

In the example, the required messages are in the dump because the prot)lem
occurred between the time that the master trace table was wrapped and the dump
was taken.

Section 2. Important Considerations Unique to MVS 2-71

Master Trace Table

Master trace data is maintained in a wraparound table that is anchored in the
master scheduler resident data area. The format of the master trace table and
entries is described in the Debugging Handbook.

The table contains the following header and data areas:

TABLE 10 I @CURRENT I @START I @END

SP I LENGTH I WRAP TIME

@WRAP I PROCFLAG 1 DATA LEN I reserved

WRKMBB08

RESERVED

1-""

>

.,J

HEADER
AREA

DATA
AREA

I CURRENT ENTRY I CURRENT ENTRY-1 1

Where:

TABLE 10

@CURRENT

@START

@END

SP

LENGTH

WRAP TIME

@WRAP

A fullword field with a constant of'MTT' to identify the beginning of the master
trace table.

Address of the first byte of the current (most recently stored) entry.

Address of the first byte of the data area.

Address of the first byte beyond the end of the data area.

Subpool in which this table resides.

Length of the header and data areas combined - the size specified on the TRACE
command.

Either the time that the table was initialized or the time at which the last table wrap
occurred. The form is:

xx - where IT indicates initialize time ,and WT wrap time
HH - hours
MM - minutes
SS - seconds
T - tenths of a second

Address of the first byte of the last entry stored before the most recent table wrap.
It is initialized to zero and remains so until the first table wrap.

2-72 MVS Diagnostic Techniques

PROCFLAG

DATA LEN

reserved

WRKMB808

RESERVED

Processing flags used by IEEMB808.

Fullword field containing the size of the data area of the table.

Reserved fullword.

Sixteen word work area for IEEMB808 and IEEMB809 -- serialized by CMS and
local locks.

Reserved four word area.

Master Trace Table Entry

The master trace table entries (located in the data area of the master trace table)
contain the following fields:

HEADER
----------------~----------------(\

I FLAGS TAG IMMEDIATE DATA LENGTH I MESSAGE DATA

Where:

FLAGS Halfword containing the flags set by the caller in the parameter list passed to
IEETRACE.

TAG Halfword value indicating the identity of the caller. Values are defined in
macro IEZMTPRM, which maps the parameter list.

IMMEDIATE DATA Fullword containing 32 bits that are defined by the caller. This area is stored
in the table without validity checking by the trace service routine.

LENGTH Halfword containing the length of the message data.

MESSAGE DATA Variable length field containing message data provided by the caller. The
maximum size is the length of the data area less 10 bytes, or 65,535 bytes,
whichever is less.

The table entries are of variable length. If the length of the data is specified as
zero by the caller, only the 10 byte header is entered in the table and used to store
immediate data .. The significance of the immediate data is defined by the caller.

Entries are placed into the table from back to front in the data area. Thus the
current entry immediately precedes the entry stored on the previous call to
IEETRACE.

Section 2. Important Considerations Unique to MVS 2-73

The Message Processing Facility Table (MPFT)

By using the SET MPF (message processing facility) system command, you can
suppress messages from being displayed on the operator's console.

The message processing facility builds the message processing facility table
(MPFT, mapped by macro IEEZB809), which contains an entry for each message
ID to be suppressed. The table includes the following:

• Table header:

Subpool number (where the table resides)
Size of the table (in number of bytes)
Number of entries in the table following the header
PARMLIB suffix from which the table was built
Address of the first entry in the table
Length of each entry

• Table entry (one IO-byte entry for each message to be suppressed):

Message ID
Length of the message
Flag byte

The MPFT is located in the common service area (CSA) and is pointed to by field
UCMFMPFP in the UCM (from the fixed extension base).

2-74 MVS Diagnostic Techniques

Miscellaneous Debugging Hints

This chapter is a collection of miscellaneous debugging hints to aid the problem
solver in specific situations not covered elsewhere in this book. It includes the
following topics:

• Alternate CPU Recovery Problem Analysis
• Pattern Recognition
• OPEN/CLOSE/EOV ABENDs
• Debugging Machine Checks
• Debugging Problem Program ABEND Dumps
• Debugging From Summary SVC Dumps
• Started Task Control ABEND and Reason Codes
• SW A Manager Reason Codes

Alternate CPU Recovery (ACR) Problem Analysis

Alternate CPU recovery (ACR) is the process by which MVS dynamically adjusts
to the unexpected failure of a processor in a multiprocessing (MP) configuration.
ACR is initiated by the failing processor. If the, failing processor's hardware
detects the failure, it issues a malfunction alert (MFA) external signal to another
processor. If the failing processor generates the severe machine check interrupt
(recursive or invalid logout) type, the machine check interrupt handler will initiate
ACR via the SIGP instruction with the emergency signal (EMS) order code,
which generates an external interrupt on the receiving processor.

When a running processor detects that a failing processor is requesting ACR, it
places X'FF' in the CSDACR byte (CSD + X'16') in the CSD control block. The
byte will be restored to X'OO' after ACR is complete.

ACR works in three phases: pre-processing, intermediate, and post-processing
phase. Pre-processing is the initialization phase: the running processor copies the
PSA and normal functional recovery routine (FRR) stacks of both processor's
and places them in the area pointed to from their respective LCCA's WSACACR
pointer. The WSACACR pointer is located at X' 1 0' beyond the area pointed to
by LCCACPUS. Additionally, LCCAs are marked so that in both processor's
LCCAs, LCCADCPU points to the LCCA of the failing processor and
LCCARCPU points to the LCCA of the running processor. By means of the
LCCACPUA field in the LCCA, you can determine which processor has failed
and which are still running.

Note that in a storage dump, the physical PSA of the failed processor is the same
as it was when the processor decided that ACR should be initiated. The normal
FRR stack, pointers to other FRR stacks, locks, PSASUPER bits etc. all reflect
the state of the processor at the time it failed. This will be useful for solving
problems in the recovery initiated for the process on the failed processor.

The ACR intermediate phase gets control from the MVS dispatcher, or lock
manager global spin lock routine. In this phase, ACR switches from the process
on one logical processor to the process on the other logical processor. This
switching continues until the RTMI recovery (routing to FRRs) completes on
behalf of the process on the failed processor. At this point, the ACR
post-processing phase is entered.

Section 2. Important Considerations Unique to MVS 2-75

ACR post-processing invokes I/O restart (IECVRSTI) to initialize the channel
reconfiguration hardware (CRH) function on a Model 168, or the channel set
switching function on a processor that supports this function, or to mark
outstanding I/O from the failed processor with a permanent error which then
initiates error recovery processing via error recovery procedures (ERPs). Console
switch is invoked via POST and the system resources manager (SRM) is notified
of the loss of the processor. On a system with an MSSF, post-processing invokes
the Service Processor Call SVC (lEA VMSF) to physically vary the processor
offiine. Finally, ACR issues message IEA858E 'ACR - COMPLETE', and resets
the CSDACR flag to X'OO'.

Note: The I/O error processing invoked during the ACR process has caused
many of the problems discovered to date. Of significant importance is EXCP I/O
error processing. The following flow describes the non-CRR situation for an
MVS 158 MP system.

1. I/O restart (IECVRSTI) determines all devices that have outstanding requests
at the time of a machine check.

2. IECVRSTI simulates an I/O interrupt for each device that was active on a
failing channel and sets the channel control check and interface control check
(X'OOOOOOOO 00060000') bits in the CSW and the pseudo interrupt bit in the
IRT (IRTPINT bit at X'02' in IRTENVR). This prevents lOS from
interfacing with the channel check handler (CCH).

3. IECVRSTI passes control to lOS.

4. lOS sets the 10SCOD field in 10SP to X'74' and schedules IECVPST.

5. IECVPST routes control to the abnormal exit routine.

6. For an EXCP, the EXCP compatibility interface routine receives control.

7. EXCP converts the X'74' to X'7F' in the lOB.

8. EXCP branches to abnormal end appendage.

9. Abnormal end appendage returns to EXCP, which returns to IECVPST.

10. IECVPST invokes normal ERP processing.

11. If no path remains to a device, subsequent I/O requests (either ERP retry or
normal new requests) are intercepted by lOS and flagged with
IOSCOD = X' 51' and IECVPST is scheduled.

12. IECVPST routes control to the abnormal exit routine.

13. For EXCP requests, the abnormal exit is again the EXCP compatibility
interface routine.

14. EXCP converts the X'51' to a X'41' (permanent error) in the lOB and enters
the abnormal end appendage.

2-7 6 MVS Diagnostic Techniques

Pattern Recognition

15. The abnormal end appendage returns to EXCP; EXCP returns to IECVPST~
which enters the termination routine.

The important point in the preceding discussion is that EXCP changes the ACR
completion codes to conventional error post codes.

The most frequent I/O problems have been:

• ERP's abnormal end appendages not coded for a 0 CCW address in CSW.

• ERP's abnormal end appendages not recognizing that the last path to a
device has been lost (as with asymmetric I/O) and thus going into an I/O retry
loop.

When analyzing a dump you should always be aware of the possibility of a
storage overlay. System incidents in MVS are often caused by storage overlays
that destroy data~ control blocks, or executable code. The results of such an
overlay vary. For example:

• The system detects the problem and issues an abnormal completion code~ yet
the error can be isolated to an address space.

• Referencing the data or instructions can cause an immediate error such as ,a
specification or op-code exception.

• The bad data can be used to reference a second location, which then causes
an evident error.

When you recognize that the contents of a storage location are invalid and
subsequently recognize the bit pattern as a certain control block or piece of data,
you generally can identify the erroneous process/component and start a detailed
analysis. This section discusses pattern recognition and potential causes of
storage over1ays~ and points out common patterns that aid the debugger.

Once you recognize an overlay ~ analyze the bit pattern. If you do not recognize
the pattern at all~ try to determine the extent of the damaged area. Look at the
data on both,sides of the obviously bad areas. ,See if the length is familiar; that
is~ can you relate the length to a known control block length, data size~ MVC
length~ etc.? If so~ check various offsets to determine their contents and, if you
recognize some, try to determine the exact control block/data. Even if you do not
recognize the pattern~ take one more step. Can you determine the offset from
some base (X) that would have to be used in order to create the bit pattern? If
so~ the fact that there is a certain bit pattern at a certain offset (Y) can be helpful.
For example, a BALR register value (X'40D21C58') at an offset X'C' can indicate
that a program is using this storage for a register save area (perhaps caused by a
bad register 13). Another field in the same overlaid area might trigger
recognition.

Look at the overlaid area and scan for familiar addresses such as device
addresses, UeB addresses, and BAL/BALR register values (full word with
high-order byte containing some "l"bits). If you find any of these, try to

Section 2. Important Considerations Unique to MVS 2-77

Low Storage Overlays

determine what components or modules are involved or what control blocks
contain these addresses.

Repetition of a pattern can indicate a bad process. If you can recognize the bad
data you might be able to relate that data to the component or module that is
causing the error. This provides a starting point for further analysis.

Low storage overlays are generally very difficult problems to solve, primarily
because the error is not detected until some time after the error occurs. In order
to reduce the number of these incidents, a low address protection feature exists.
The feature can be enabled or disabled. When the feature is enabled, any attempt
to store into virtual locations 0 through X'lFF' (even with PSW key=O) results in
a protection exception. Any routine using a zero pointer as a control block
address will be caught when it attempts to store into the control block (assuming
the control clock is less than X'200' in size).

Several fields are used to control low address protection. Examine the following
fields.

control register 0, bit 3
CVTPRON
PSACROCB
PSACROSV bit 3

Hardware uses control register 0 bit 3 to determine if the feature is enabled or
disabled. At IPL time, if CVTPRON = B' I' (default value), control register 0 bit
3 is set to B' l' and PSACROCB is set to X'O l' The control register is then saved
in PSACROSV. If CVTPRON = B'O', the corresponding fields are set to O.
PSACROCB is used as a mask byte by the PROTSPA macro when enabling low
address protection. The macro enables low address protection (when the
byte = X'OI ') by altering the value in PSACROSV and loading control register 0
from that field.

The low address protection feature operates on a logical address (that is: prior to
translation and prefixing being performed). Therefore, if a program uses a virtual
address that translates to an address between 0 and X' IFF', a protection
exception may not occur. However, the PSW key must be zero in this case. This
method is used by lOS module IECIOSAM to store the channel address word
(CA W) prior to issuing the SIO instruction. IECIOSAM is the only module that
uses the duplex PSA. It is always at location X'FFFOOO'.

2-78 MVS Diagnostic Techniques

FFFFFF

DUPLEX PSA

X' FFFOOO' 1---------1

same real storage location
as viewed from anyone processor

X'1000'

PSA
o 1.--____ --'

Note: The page at X'FFFOOO' is not backed by real storage but translates to real
location O.

The following is critical data in low storage and may be overlaid only when
protection is disabled:

• Location X'IO' (CVT pointer) should contain a nucleus address. This
location is refreshed by the program check first level interrupt handler and so
is often valid when adjacent locations are bad.

• Locations X~18' through X'3F' (old PSWs) should always contain valid
PSWs.

• Location X'4C' should be equal to location X'IO'.

• Locations X'58' through X'7F' (new PSWs) should contain valid PSWs.

If any of the above statements is not true, consider a low storage overlay.
Further analysis is required to determine what the cause may be. Also consider
that, on a non-prefixed machine, the low storage locations described above can be
overlaid by CCWs for the stand-alone dump program, starting at location X'IO'.
Do not consider this an error situation.

Two common low storage problems are:

• A register save area starting at location X'30'. This can happen when an area
of the system saves register status in a TCB at location O. Or it can be caused
by a routine using PSATOLD for a TCB address when the system is in SRB
mode; this is indicated by PSATOLD=O.

• An SRB/IOSB combination starting at location X')'. This can be caused by a
problem in the lOS storage manager. The contents vary depending upon how
many control blocks the code has initialized. Points to consider are:

1. The two blocks might point to each other (X'IC' into each).
2. An ASCB address might be at location 8.
3. Addresses of IECVEXCP routines might be at X'68' and/or X'6C'.

Section 2. Important Considerations Unique to MVS 2-79

Common Bad Addresses

Common bad addresses are:

• X'COOOO', and this address plus some offset. These are generally the result of
some code using 0 as the base register for a control block and subsequently
loading a pointer from 0 plus an offset, thereby picking up the first half of a
PSW in the PSA.

Look for storage overlays in code pointed to by an old PSW. These overlays
result when 0 plus an offset cause the second half (IC) of a PSW to be used as
a pointer.

• X'COO', X'CEO', X'DOO', X'D08', X'D20', and other pointers to fields in the
normal FRR stack. Routines often lose the contents of a register during a
SETFRR macro expansion and illegally use the address of the 24-byte work
area returned from the expansion.

• Register save areas. Storage might be overlaid by code doing an STM (Store
Multiple) instruction with a bad register save area address. In this case, the
registers saved are often useful in determining the component or module at
fault.

OPEN/CLOSE/EOV ABENDs

When a dump shows an abend issued from O/C/EOV, the key area to start your
diagnosis in is the RTM2 work area. The failing TCB has a pointer (at
TCB + X'EO') to this area. This work area contains information current at the
time of the abend, the most important being the register contents. Register 4
points to the current O/C/EOV work area. This work area is built by IFGORROA
during problem determination and contains key information about the problem:
the JFCB, lOB, DEB and other pertinent fields are all saved in the work area for
use later by the recovery routines. The O/C/EOV work area is documented on
microfiche in each O/C/EOV module.

The module in control at the time of the abend can be determined from the
"Where To Go" (WTG) table, which is pointed to by register 6 in the RTM2
work area. The WTG table is contained within another work area called the O.C.
work area. IFGORROA saves a copy of the current DCB in this work area. If
multiple DCBs are involved, the prefix to the DeB work area points to another
DCB work area. These DeB areas are laid out precisely like a DeB. All these
work areas and their prefixes are documented at the end of every O/e/EOV
module in the microfiche.

In an MVS environment, O/e/EOV must build these work areas rather than rely
on what is in real storage at the time of the dump. The main task is to find these
areas and interpret their fields using microfiche. A quick way to find these work
areas is to find subpool 230 in the dump. All O/e/EOV data is in this subpool.

Assuming you have all the pertinent information about the failure, the problem
becomes the same as an O/C/EOV problem in OS. One more point: built into the
code is message IEC999I. This message indicates that there is a problem in the

2-80 MVS Diagnostic Techniques

O/C/EOV code that cannot be determined. While you may be able to circumvent
this problem, you should also submit an APAR for it.

Debugging Machine Checks

The machine check interruption is the hardware's method of informing the MVS
control program that it has detected a hardware malfunction. Machine checks
vary considerably in their impact on software processing. Some machine checks
notify software that the processor detected and corrected a hardware problem that
required no software recovery action (software calls these errors soft errors).
Hard errors are hardware problems detected by a processor but that require
software-initiated action for damage repair. Hard errors also require software
recovery to verify the integrity of the process that experienced the failure.
Obviously, if there are software problems after a machine check, it is more likely
that the machine check was a hard error. It is important to get a feeling for
which software components are affected by particular hardware failures.

The machine check interrupt code (MCIC), located in the PSA (at X'E8'),
describes the error causing the interrupt. (Refer to Principles of Operation for a
complete description of the MCIC.) The following discussion shows how to find
MCICs and how to interpret them for subsequent software processing. Machine
checks can be found in a LOGREC buffer (LRB), the SYSl.LOGREC data set,
or in the storage area used as a buffer prior to writing records to SYSl.LOGREC
(see the discussion of SYSl.LOGREC analysis in the "Recovery Work Areas"
chapter earlier in this section). Also, a pointer to the LRB that describes the last
machine check that occurred on a processor can be found in that processor's
PCCA at
PCCALRBV (PCCA + X' AO'). The LRB contains the machine check interrupt
code (MCIC), except when:

• The machine check old PSW is zero. The MCIC is also zero. The
LRBMTCKS bit (field LRBTERM at LRB + X'20') is turned on by software.

• MCIC is zero and the machine check old PSW is non-zero. The LRBMTINV
bit (field LRBTERM at LRB + X'20') is turned on by software.

The MCIC is the principal driver of software processing after a machine check. It
must be examined to determine the actions that MVS should take. The MCIC
contains bits describing the conditions that caused the interrupt. Note that more
than one failing condition can be described by a machine check at one time.
Software performs repair processing for each condition found; software recovery
processing is initiated if any hard error conditions are found (except in the cases
described on the following pages).

Because hard errors require FRR and EST AE processing, identifying a hard error
is important. Important MCIC bits follow with a description of their hardware
significance and impact on software. A handy MCIC reference matrix, containing
additional machine check and ensuing action-taken information appears at the
back of this section.

Bit 0 (System damage) - The processor is still useable, but damage occurred while
the processor was in the process of changing PSWs or otherwise changing system
control, and thus has lost th:e associated process or interrupt. Software recovery
routines (FRRs) are entered for this hard error.

Section 2. Important Considerations Unique to MVS 2-81

Bit 1 (Instruction processing damage) -'The processor is still useable, but an
instruction has failed to operate as intended. Software recovery is initiated for
this hard error, unless the backed-up bit is on with storage error or key error
uncorrected on refreshable storage (see Bit 16 description).

Bit 2 (System recol'ery) - The processor detected and corrected a potential
hardware problem. The interrupted process is completely restored by software for
this soft error; no repair is performed and no recovery routines are entered.

Bit 3 (Timer damage) - The interval timer at PSA location X'50' has failed.
Because MVS does not use this timer, this failure is ignored (indicated as a soft
error).

Bit 1/ (Timing facility damage) - Damage has occurred to the CPU timer, clock
comparator, or time-of-day clock. The particular clock facility that is damaged is
described by MCIC bits 46 and 47. A first failure to a facility results in an
attempt to reuse it. Subsequent failures result in taking the facility offline
(described in the PCCA fields PCCATODE, PCCACCE, or PCCAINTE). Ifno
clock of a particular type remains in the system, any task which requests timing
using that type of clock is sent through software recovery. This is treated as a
soft error for the process current on the processor at the time of the interrupt.

Bit 5 (External damage) - Damage has occurred to a unit external to the
processor. MVS expects more information in a channel check I/O interrupt. This
is treated as a soft error.

Bit 7 (Degradation) - The system has detected that elements of the high-speed
buffer (cache) or translation look-aside buffer have had bit (parity) errors. The
bad elements are automatically reconfigured out of the buffer~ Once a predefined
threshold of degradation machine checks is reached, the buffer and the translation
look-aside buffer are reset, thus making the entire buffer available again. This
threshold has a default value of 3 which can be changed by the operator via the
MODE command. Until then, the system might perform at a reduced rate
because of increased storage access time (cache element deletion) or increased time
to translate virtual addresses (because of translation look-aside buffer element
deletion). However, because no damage has been done to any software process or
data, this soft error is merely recorded in SYS1.LOGREC. The system state at
the time of the error is re-established, ignoring the occurrence of the buffer bit
error. It is treated as a soft error and no software recovery is initiated.

Bit 8 (Warning) - Damage is imminent; there is a cooling loss or a power drop,
etc. Software determines if the error is transient or permanent. If it is transient,
the warning interrupt is treated as a soft error. If permanent, an attempt is made
to invoke the power warning feature -software, to record the system state at the
time of this hard error.

Bit 16 (Storage error uncorrected) - There is a block in storage with a double bit
error that is located at the real, prefixed address stored in PSA location X'FS'. If
the frame's page is refreshable, that is, unchanged, pageable, and in the current
address space, it is marked invalid so a future reference will cause a fresh copy to
be paged into a new frame. (Note: More than one error can occur before the
page goes offiine.) In all cases, an attempt is made to take the damaged frame
offiine (unless the frame is in the nucleus). For unchanged nucleus frames, the
page is refreshed from a copy paged-out at NIP time. When a storage error

2-82 MVS Diagnostic Techniques

uncorrected condition occurs in conjunction with a system recovery or external
damage error, it is treated as a soft error and no recovery routines are entered. If
the storage error occurs in conjunction with instruction processing damage when
the backed-up bit (bit 14) and storage logical validity bit (bit, 31) are on, and the
frame's page is refreshable, the error is treated as soft and no recovery routines
are entered.

Any other occurrences of storage error uncorrected are treated as hard errors and
software recovery is initiated for the error.

Bit 17 (Storage error corrected) - A single-bit storage error was detected and
successfully corrected by hardware. Software treats this error as a soft error.
This error sometimes appears in conjunction with system recovery (bit 2). For a
double bit storage error, see bits 16 and 19.

Bit 18 (Storage key error uncorrected) - Hardware has detected a bit error in a
storage key. Software attempts to reset the storage key to its original value. If
the key is successfully reset, and the storage key error occurs in conjunction with
instruction processing damage when the backed-up bit (bit 14) and the storage
logical validity bit (bit 31) are on, the error is treated as soft and no recovery
routines are entered. When the storage key error occurs in conjunction with a
system recovery or external damage error, it is 'also treated as a soft error and no
recovery routines are entered. Change bits are set to one in case the frames have
been altered. Any other occurrences of storage key error are treated as hard
errors and software recovery is initiated for the error.

Bit 19 (Double J,it storage error) - If the storage error corrected bit (bit 17) is also
on, bit 19 indicates that a double bit storage error was detected and successfully
corrected by hardware. If the page containing the data can be paged, software
obtains a new frame, moves the data from the frame that has the indicated double
bit error correction into the new frame, and then marks the frame that had the '
double bit error offiine. If the page containing the data cannot be paged,
software marks the associated frame as intercepted to go offline, which causes the
frame to be taken offline when the page is freed.

In addition to these error description bits there are other MCIC fields that
describe the time-of-occurrence of the machine check interrupt, or the validity of
the registers, PSW, and other data logged out during the machine check
interruption process.

The two time-of-occurrence bits are bits 14 and 15. The backed-up bit (bit 14),
when set to 1, indicates that the machine check occurred before actual damage
occurred. The delayed bit (bit 15) is set to 1 when the processor has been
disabled for one or more of the interrupt conditions described in the MCIC. The
processor had been processing after damage was detected.

Validity bits describe the validity of the associated field logged out during the
machine check interrupt. If a validity bit is 0, the associated data logged out is
incorrect. Validity bits are:

• Bit 20 (PSW EMWP mask validity)
• Bit 21 (masks and key validity)
• Bit 22 (program mask and condition code validity)
• Bit 23 (instruction address of machine check old PSW validity)

Section 2. Important Considerations Unique to MVS 2-83

• Bit 24 (failing storage address validity)
• Bit 25 (region code validity)
• Bit 27 (floating point register validity)
• Bit 28 (general purpose register validity)
• Bit 29 (control register validity)
• Bit 30 (processor model-dependent logout validity)
• Bit 46 (CPU-timer validity)
• Bit 47 (clock comparator validity)

Additionally, the storage logical validity bit (bit 31 set to 1) indicates that all store
operations (that were to occur before the machine check interrupt) have
completed.

The following chart attempts to show the action taken for each error condition.
For example: In column 6 the condition involves recursive machine checks, or, a
check stop, or, invalid logout. The condition originated on either a Model 158 or
a Model 168 attached processor system, and did not involve the APU. The action
taken resulted in a disabled wait. Where multiple errors do exist, appropriate
repair action is taken for all errors, and recovery action is taken for the most
severe error.

With the exception of I/O reserve outstanding, the status of each of the conditions
can be determined from examination of MCH SYSl.LOGREC records.

2-84 MVS Diagnostic Techniques

CONDITION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Recursion X X X X I(x [(xl
Check Stop II X X X Ifx ITx
Invalid Logout Ilx X X X Ilx lex
Subclass (MCIC) System Damage X

Inst. Proc'g. Damage X X X X
System Recovery X
Timer Damage X
Clock Damage X X X X X X
External Damage X
Degradation X
Warning X

Time Backed Up X X 0
Delayed 0 0

Type Stor Err Uncorr X X X X X X X
Stor Err Corr X
Key Error X X X

Key Err Unresetable X X

Validity PSW (WP, MS, PM, IA) X X 0
-

Failing Stor Addr X X 0
Registers (FP. GR, CR) X X 0
Logout

Storage Logical X X
CPU Timer 0 0 X X X X
Clock Comparator X X 0 0 X X

Location Pageable X X X X X X X)

Nucleus X X X X

LSQA, SOA X X X X)

Fixed X X X

V"R X X
--I

Outside Curro Memory 0 0 0 X

Storage State Changed X

Unchanged X X X X

System UP X

MP X X X

AP X X

Processor 158 X X I(x X

168 X reX X
--r--

APU X 0
1/0 Reserve Outstanding X

Occurrence 1st X X X

2nd X X X

ACTION TAKEN

Reset timing component X X X

Mark CPU Timer perm. damaged X
I--

Mark Clock Camp perm. damaged X X

Mark TOO Clock perm. damaged X

. Invoke PWF if available X

Activate CRH X

Take frame offline immed. X X

Take frame offline when avail. X X X X X

Invalidate Page Table Entry X X

Repair SP F Key X X

Disabled Wait X X X

Restartable Wait X

Enter RTM for Recov. X X X X X X X X X X X X X X X X X

Record X

Take Processor offline X X X X

Resume at MCOPSW X X X X X)(X X X X

Refresh the nucleus page X

·Possible loss of Job.
Notes:

• Key. X = Condition must be present

o = Condition must not be present ©= The action is the same no matter which condition represents the situation

Section 2. Important Considerations Unique to MVS 2-85

Debugging Problem Program Abend Dumps

The following steps may provide some initial assistance in this debugging process:

1. Locate the RTM2 work area (RTM2WA), which is pointed to by the
TCBRTWA field in the TCB and the ESART2WA field in the abend SVRB.
It provides a summary of the abend as follows:

Name Offset

RTM2CC ID

RTM2ABNM 8C

RTM2ABEP 94

RTM2EREG 3C

RTM2APSW 7C

RTM2ILCI 85

RTM2ERAS 36C

RTM2TRCU 37C

RTM2TRFS 380

RTM2TRLS 384

RTM2ERRA B4

Notes:

Explanation

Abend completion code.

Abending program name. This is the name of a load module or an
external entry point (ALIAS) in the load module.

Abending program address (the beginning of the load module or
an ALIAS in the load module).

Registers at time of error.

EC PSW at time of error.

Instruction length code for PSW at time of error.

Error ASID.

Address of current trace entry for saved system trace table.

Address of first trace entry for saved system trace table.

Address of last trace entry for saved system trace table.

Error type.

a. The RTM2ABNM and RTM2ABEP fields do not contain information
'about the abending program if an SVC has abended.

b. In a recursive abend (an abend occurring while the original abend is being
processed by an EST AE or other recovery routine), more than one
RTM2WA may be created, and the RTM2PREVor RTM2PRWAfield
points to other RTM2WAs associated with the problem. The system
diagnostic work area (SD W A) is pointed to by the RTM2RTCA field
during recovery routine processing, and has register contents at time of
error stored in the SD WAG RSV field. These register contents may differ
from those in the RTM2W A after a recursive abend.

2. To find the abend code and its explanation, look at the completion code at
the top of the abend dump. A user completion code is printed as a 4-digit
decimal number and a system completion code is printed as a 3-digit
hexadecimal number.

If the user code is non-zero, a user program has specified the completion code
in an abend macro instruction. Looking up the name of the abending
program in the RTM2WA, and investigating why the program would issue
this completion code, should lead directly to the cause of the error in the user
program.

2-86 MVS Diagnostic Techniques

Usually the system code is non-zero. This indicates that a system routine
issued the abend but a problem program might indirectly have caused the
abnormal termination. For example, a problem program might have
branched to an invalid storage address, specified an invalid parameter on a
macro instruction, or requested too much storage space.

Often the explanation of the system code 'gives enough information to
determine the cause of the termination. The explanations of system
completion codes, along with a short description of the action for the
programmer to take to correct the error, are contained in Message Library:
System Codes.

3. To find the name of the abending program look in the RTM2 work area.
System routines usually start with the letters A or I; and module prefixes for
system routines are listed in the Debugging Handbook Volume 1.

Note: If the RTM2 work area is not available, or if the name of the
abending program is not given in the RTM2 work area, the routine name can
be obtained from the contents directory entry (CDE) queued to the program
request block (PRB). If the ABEND dump was taken to a data set (or to
SYSOUT) specified with a SYSABEND, SYSMDUMP, or SYSUDUMP DD
statement, the last two RBs are SVRBs for the SNAP and SYNCH SVCs
used to take the dump. The SVC numbers can be checked by obtaining the
hexadecimal SVC number from the interruption code of the WC-L-IC field in
the RB. The Debugging Handbook contains a list of SVC numbers. The
SNAP SVC is hexadecimal '33', and the SYNCH SVC is hexadecimal 'OC'.
The RB for the program that caused the abend is immediately before these
two RBs.

CSECTs within load modules in the private area of an address space can be
located using a linkedit map produced by the AMBLIST service aid.
CSECTs in load modules in the nucleus, FLP A, or PLP A can be located
using a nucleus or link pack area map, also produced by AMBLIST.

4. To find the instruction that caused a program interrupt (program check)
completion code (OCx) in a problem program, examine the PSW at the time
of error. It is at the top of the abend dump, in the RTM2 work area, and in
the RB for the program that caused the abend. The instruction address field
in the PSW contains the address of the next instruction to be executed.

The length of the abend-causing instruction is printed following the
instruction length code's title 'ILC' at the top of some abend dumps. It is
also located in the RTM2ILCI field (see the RTM2 work area), and is
formatted in the third and fourth digits (OOxxOOOO) of the WC-L-IC field in
the PRB. The address of the instruction that caused the termination can be
found by subtracting the instruction length from the address in the PSW.

Subtract the program address found in the RTM2W A (and in the last PRB)
from the instruction address. The resulting offset can be used to find the
matching instruction in the abending program's assembler listing for this
CSECT.

Section 2. Important Considerations Unique to MVS 2-87

5. To find the cause of a program interrupt, check the explanation of the system
completion code and the instruction that caused the interrupt. Also check the
registers from the time of error which are saved in the RTM2WA and in the
SVRB following the RB for the program that caused the abend. The
formatted save area trace can be used to check the input to the failing
CSECT.

6. To find the cause of an abend code from an SVC or from a system I/O
routine, check the explanation of the system completion code, then find the
last instruction executed in the failing program and examine the related SVC
and I/O entries in the trace table or GTF trace records.

The last PRB in the formatted RBs has a PSW field ·containing the address of
the instruction following the instruction that issued the SVC. For I/O
requests, check the entry point address ('EPA') field in the last PRB. The
formatted save area trace gives the address of the I/O routine branched to,
and the return address in that save area is the address of the last instruction
executed in the failing program.

The trace information can be checked for SVC entries that match the
formatted SVRBs, or for I/O entries issued from addresses in the failing
program. The trace information is formatted in the dump if the installation
has specified it as a dump option. If the system trace table is not formatted,
look in the RTM2 work area for pointers to the copy of the system trace
table that was saved from the time of the error. Location X'54', which is the
FLCTRACE field in the prefixed save area (PSA), points to the system trace
table header. The system trace table is frequently overlaid with entries for
other system activity by the time the dump is produced.

If the dump contains trace records, begin at the most recent entry and
proceed backwards to locate the most recent SVC entry indicating the
problem state. From this entry, proceed forward in the table. Examine each
entry for an error that could have terminated the SVC or I/O system routine.
The format of system trace table entries is described in the Debugging
/-landbook under the heading 'TTE Trace Table Entry.' The format of GTF
trace records is also described in the Debugging Handbook.

7. In a cross memory environment, many services are requested by use of the
Program Call (PC) instruction rather than by SVCs or SRBs. When an abend
is issued by the PC routine, it can be confusing trying to identify the caller
and exactly where the PC instruction was issued. This is because the RB old
PSW contains the instruction address of the PC routine issuing the abend and
the abend SVRB contains the registers of the PC routine.

To determine if a program is in cross memory mode, examine the SASID and
P ASID fields in the XSB control block. If they are not equal, the program is
executing in cross memory mode. To locate the XSB:

• In a formatted dump, the XSB is printed following the RB with which it
is associated.

• In storage, field RBXSB (RB-X'20') points to the XSB.

2-88 MVS Diagnostic Techniques

In cross memory mode, you can determine the caller of a PC routine by
examining the PC LINK stack. To locate the PCLINK stack element
(STKE):

• In a formatted dump, the STKEs are printed following all of the RBs. If
there is more than one STKE, the pointer to the one you want is
contained in field XSBSTKE (XSB + X'18') of the XSB associated with
your RB.

• In storage, field RBXSB (RB-X'20') points to the XSB and field XSBSEL
(XSB + X' I C') points to the current STKE.

Important fields in the STKE are:

• STKERET (STKE + X' 18') - contains the return address of the caller of
the PCLINK service.

• STKEPR15 (STKE+ X'lC') - contains parameter register 15 passed to
the PC routine.

• STKEPRMO (STKE + X'20') - contains parameter register 0 passed to the
PC routine.

• STKEPRM 1 (STKE + X'24') - contains parameter register 1 passed to the
PC routine.

• STKESA (STKE+X'14') - contains the address of the previous save area
passed by the caller of the PC service.

Debugging From Summary SVC Dumps

The summary dump area formatted by the SUMDUMP option of SDUMP
should contain the most current data relevant to the problem present in the dump.
It is strongly recommended that the SUMDUMP output be reviewed prior to
investigating the usual portions of the dump. The SUMDUMP option provides
different output for SVC and branch entries. For example, branch entries
generally dump PSA, LCCA, and PCCA control blocks, and SVC entries
generally dump R TM2W A control"blocks. Each output type is indicated by the
header ,,----tttt--~- RECORD ID X'nnnn'," where tttt is the title for the type of
SUM DUMP output, and nnnn is the hexadecimal record identifier assigned to the
type. The record id values are described in the table below. They are also
described by the IHASMDLR mapping macro in the Debugging Handbook.

Section 2. Important Considerations Unique to MVS 2-89

SUMDUMP Output For SVC-Entry SDUMP

The following table summarizes the SUMDUMP output types for an SVC entry
to SDUMP:

SVC-ENTRY TABLE

Record ID Mapping Fields used to Dump
Dec Hex Title Macro PSW or Register Areas

4 4 TRACE TABLE TTE
46 2E SUMLIST RANGE
48 30 REGISTER AREA
49 31 PSW AREA
53 35 NORMAL DATA END
57 39 RTM 2 WORK AREA IHARTM2A RTM2NXTl

RTM2EREG
58 3A RTM2WA TRACE TAB TTE
60 3C ASID INFO

For an SVC entry to SDUMP, the SUM DUMP output can contain information
that is not available in the remainder of the SVC dump if options such as region,
LSQA, nucleus, and LP A were not specified in the dump parameters.

For each address space that is dumped, the SUM DUMP output is preceded by a
header with the ASID, plus the jobname and stepname for the last task created in
the address space. The SUMDUMP output contains RTM2 work areas for tasks
in address spaces that are dumped. Many of the fields in the RTM2WA provide
valuable debugging information. (See "Debugging Problem Program ABEND
Dumps" for more details.)

Each RTM2WA is followed by 'RTM2WA TRACE TAB' output (record id
X'3A'), if there is a copy of the system trace table associated with the RTM2W A
(RTM2TRCU, RTM2TRFS, and RTM2TRLS fields are non-zero). The current
entry in the trace table copy is pointed to by RTM2TCRU (offset 37C) in the
associated RTM2 work af(~a. System trace table entries are mapped by the TIE
(Trace Table Entry) section in the Debugging Handbook.

Each RTM2WA is also followed by 'PSW AREA' output (record id X'31'). A
PSW area, consisting of the instruction pointed to by the RTM2NXTI field in the
EC PSW saved in the RTM2WA, and the preceding instruction with length from
the RTM2ILCl field, is dumped if the instructions can be accessed.

After information for all RTM2W As associated with a task is dumped, 'PSW
AREA' (record id X'31') and 'REGISTER AREA' (record id X'30') output
appears. This consists of 2K of storage before and after each valid unique
address pointed to by the PSW and the registers from the time of the error
(RTM2NXTl and RTM2EREG fields) from all the RTM2 work areas. Up to 32
unique addresses can be dumped for each task. Register addresses less than 2K
are not dumped because they are considered to be counters. If the storage that is
2K before and after an address cannot be accessed, a length of 300 bytes is tried.
If that amount of storage cannot be accessed, the address' record entry appears
with a zero length.

'TRACE TABLE' output (record id X'04') appears if the first address space
dumped has no trace table saved in an RTM2 work area and the system trace was

2-90 MVS Diagnostic Techniques

~

active. The output includes the header (pointers to the current, first, and last
entries) and the entries in the system trace table. System trace table entries are
mapped by the trace table entry (TTE) described in the Debugging Handbook.

'SUMLIST RANGE' output (record id X'2E') appears at the beginning of the
SUM DUMP output if the SUMLIST keyword was specified in the SDUMP
macro instruction.

SUMDUMP Output For Branch-Entry SDUMP

The following table summarizes the SUMDUMP output types from a branch
entry to SDUMP:

BRANCH-ENTRY TABLE

Record ID Mapping Fields used to Dump
Dec Hex Title Macro PSW or Register Areas:

1 1 PCCA IHAPCCA
2 2 LCCA IHALCCA
3 3 PSA IHAPSA FLCIOPSW, FLCPOPSW

FLCEOPSW, FLCROPSW
4 4 TRACE TABLE TIE
5 5 FRR STACK IHAYSTAK
6 6 GWSA PAGE 10 ERR
7 7 GWSA GET/FREEMAIN -
8 8 GWSARSM
9 9 GWSA RSM SUSPEND
10 A GWSA MEM SWITCH
11 B GWSA STATUS
12 C GWSASRM
13 D GWSA MEM TERM
14 E GWSA ENQ/DEQ
15 F GWSA STOP/RESTRT
16 10 GWSA IEAVESCO
17 11 CWSA LOW-LVL CMN
18 12 CWSAGTF
19 13 CWSASRM
20 14 CWSA TIMER
21 15 CWSAACR
22 16 CWSA RTM/MACHK
23 17 CWSA lOS FLIH
24 18 CWSA DISPATCHER
25 19 CWSAMFI
26 IA CWSAABTERM
27 IB CWSA I/O RESTART
28 lC CWSASTATUS
29 ID CWSA SUPR REPAIR
30 IE CWSA RTM-CCH
31 IF LWSA LOW@LVL CMN -
32 20 LWSA VALID'Y CHK
33 21 LWSARTM
34 22 LWSASDUMP
35 23 LWSAABTERM
36 24 LWSA CIRB
37 25 LWSA STG2 EXT EF
38 26 LWSA EXIT (SVC3)
39 27 LWSAPOST
40 28 LWSA WAIT
41 29 LWSASTATUS
42 2A LWSA STAE
43 2B LWSA EVENTS
44 2C LWSARSM
45 2D LWSA ASCB CHAP
46 2E SUMLIST RANGE

Section 2. Important Considerations Unique to MVS 2-91

BRANCH-ENTRY T ABLE (ContiDued)~

Record ID Mapping Fields used to Dump
Dec Hex Title Macro PSW or Register Areas:

47 2F INT HANDLER SA IHAIHSA IHSAGPRS
48 30 REGISTER AREA
49 31 PSWAREA
50 32 GBL WSA VEC TABL IHAWSAVT

(WSAVTG)
51 33 CPU WSA VEC TABL IHAWSAVT

(WSAVTC)
52 34 LCL WSA VEC TABL IHAWSAVT

(WSAVTL)
53 35 NORMAL DATA END
54 36 CWSAASM DIE
55 37 CWSA ASM SRB@I/O
56 38 SDWA IHASDWA SDWAGRSV
60 3C ASID INFO

The SUMDUMP output for a branch entry to SDUMP might not match the data
that is at the same addresses in the remainder of the dump. The reason for this is
that the SUMDUMP is taken at the entry to SDUMP, and while the processor is
disabled for interrupts. The system data in the remainder of the dump is often
changed because other system activity occurs before the dump is complete. The
SUMDUMP output is preceded by a header with the ASID for the failing address
space.

From a branch entry into SDUMP, the SUM LIST range and trace table output is
handled similarly to that from an SVC entry. However, SUM LIST addresses
must point to areas that are paged-in or they cannot be dumped.

The PSA, LCCA, and PCCA are dumped for each alive processor (record ids
X'03', X'02', and X'OI' respectively).

The interrupt handler save area (IHSA - record id X'2F') is dumped for the
current address space. This save area includes the current FRR stack for
suspended address spaces.

The system diagnostic work area (SDWA - record id X'38') is dumped for the
current error if the RTMI work area is currently valid and being used.

Unique register contents are obtained from the IHSA and the current SDW A.
Each unique register value is used as an address and storage is dumped from 2K
plus and minus this address for a total of 4K each. These 'Register Areas' are
printed with record id X'30'.

The Super FRR Stack (record id X'05'), includIng RTMI work areas are dumped.

The global, local, and processor work save area vector tables (record id ,X'32',
X'34', and X'33' respectively) are dumped. The save areas pointed to by these
save area vector tables are also dumped. The branch-entry table at the beginning
of this description lists the record ids for each work save area.

2K of storage on either side of the address portion of the 1/0 old PSW, the
program check old PSW, the external old PSW, and the restart old PSW saved in

2-92 MVS Diagnostic Techniques

the PSA for all processors, is dumped. These 'PSW Areas' are printed with
record id X'31'.

Note: The SUMDUMP output from a branch entry to SDUMP only contains
areas that were already paged-in when the SUM DUMP was. taken.

Started Task Control ABEND and Reason Codes

In case of an irreparable error, the started task control (STC) routines issue these
ABEND codes:

OB8 - An error occurred while STC routines were processing a START, MOUNT, or LOGON
command.

In each case, the command task is terminated; for a START or MOUNT command, the STC
routines issue message IEE8241.

The following error codes can appear in register 15 at the time of the ABEND:

04 - Module IEEPRWI2 or IEFJSWT detected an invalid command code in the CSCB; the
command code was incorrect for a START, MOUNT, or LOGON command.

08 - Module IEESB605 invoked IEF AB4FC (an Allocation routine) to build a TIOT for
the START, MOUNT, or LOGON task; IEFAB4FC returned control to IEESB605
with a return code indicating failure.

12 - Module IEESB605 invoked IEFJSWT (an STC routine) to write the internal JCL text
for the START, MOUNT, or LOGON command into system data set; IEFJSWT
returned control to IEESB605 with a return code indicating that it failed in its attempt
to open the data set.

16 - Module IEEPRWl2 received an undefined return code from the system address space
initialization routine. The defined codes are 0 and 4.

20 - Module IEEPRWl2 requested a SYSEVENT TRANSWAP (via the POST macro)
and received a nonzero completion code in the ECB. This indicates that the address
space cannot be made nonswappable.

OB9 - Module IEESB605 invoked the master subsystem via the subsystem interface to determine
whether a START command was issued to start a subsystem; an error occurred during
master subsystem processing.

The command task is terminated; for a START or MOUNT command, IEESB605 issued
message IEE8241.

OBA - Module IEESB605 invoked the master subsystem via the subsystem interface to determine
whether a START command was issued to start a subsystem; an error occurred during
subsystem interface processing.

The command task is terminated; for a START or MOUNT command, IEESB605 issues
message IEE824I.

Section 2. Important Considerations Unique to MVS 2-93

SW A Manager Reason Codes

In case of an irreparable error, the SW A manager routines issue a OBO ABEND.
Before abending, both object modules IEFQB550 and IEFQB555 place a code in
register 15 indicating the exact cause of the error.

These are the error codes that can appear in register 15.

04 - The routine that called SW A manager requested an invalid function.

08 - The routine that called SW A manager passed an invalid SW A virtual address (SV A). Either the
SV A does not point to the beginning of a SW A prefix or the SW A prefix has been destroyed.

oc - A SW A manager routine has attempted to read a record not yet written into SW A.

10 - Either IEFQB550 (move mode module) has attempted to read or write a block which is not 176
bytes or IEFQB555 (locate mode module) has attempted to assign a block with a specified length
of 0 or a negative number.

14 - The routine that called SWA manager has specified an invalid count field. For move mode, an
invalid count is 0 for a READ, WRITE, or ASSIGN function; an invalid count for
WRITE/ASSIGN is 00.

18 ,. The routine that called SWA manager by issuing the QMNGRIO macro instruction specified
both or 'neither of the READ or WRITE options.

1 C - The routine that called SW A manager was attempting to write into a SW A block for the first
time; it either passed a nonexistent ID or failed to pass one at all.

20 - IEFQB555 has attempted to write a block using an invalid pointer to the block.

2-94 MVS Diagnostic Techniques

Additional Data Gathering Techniques

This chapter describes additional techniques for gathering data and circumventing
certain system problems. The superzaps should be checked out before they are
applied to your system. Displacements vary according to release level and PTF
activity.

The examples were deliberately kept simple and are designed to illustrate a
technique rather than to be practical in themselves.

CAUTION: Extreme care must be used when you are considering a system
alternation in order to gather additional data about a problem. None of the
Superzaps described in this chapter should be applied before the system
programmer has verified the logic being zapped and the trap logic itself.
Remember if anyone location or offset within the module or trap changes, all
offsets and base registers must be verified.

This chapter contains the following topics:

• Using the CHNGDUMP, DISPLAY DUMP, and DUMP Comrilands
• How to Print Dumps
• How to Automatically Establish System Options for SVC Dump
• How to Copy PRDMP Tapes
• How to Rebuild SYSl.UADS
• How to Print SYSl.DUMPxx
• How to Clear SYSl.DUMPxx Without Printing
• How to Print the SYSl.COMWRITE Data Set
• How to Print an LMOD Map of a Module
• How to Re-create SYSl.STGINDEX
• Software LOG REC Recording
• Using the PSA as a Patch Area
• Using the SLIP Command
• System Stop Routine
• How to Expand the Trace Table

Using the CHNGDUMP, DISPLAY DUMP and DUMP Operator Commands

A dump obtained from MVS contains those storage areas specified in the dump
request and those defined as system defaults in SYSl.PARMLIB for
SYSABEND, SYSMDUMP, and SYSUDUMP. Normal system defaults are:

SYSABEND: CB, ENQ, TRT, ALLPA, SPLS, LSQA, PSW, REGS, SA, DM, 10, and ERR

SYSMDUMP: LSQA, NUC, RGN, SQA, SWA, and TRT

SYSUDUMP: CB, ENQ, TRT, ALLPA, SPLS, PSW, REGS, SA, DM, 10, and ERR

For an SVC dump, the normal system defaults are SQA, ALLPSA, and
SUMDUMP.

Section 2. Important Considerations Unique to MVS 2-95

The CHNGDUMP command is used to dynamically alter the options specified
originally by SYS1.PARMLIB or by previous CHNGDUMP commands. Dump
mode may be set to ADD, OVER, or NODUMP. System action for each setting
is:

ADD - merges the options specified on the dump request with the options in the system dump
options list.

OVER - ignores the options specified in the dump request and uses only the options in the
dump options list.

NODUMP - ignores the request and does not dump.

To determine the current system dump options, use the DISPLAY DUMP,
OPTIONS command. If an error is made while specifying the CHNGDUMP
command, the system rejects the command and issues an error message.

The topic "How to Automatically Establish System Options For SVC Dump,"
which appears later in this chapter, describes how to·issue the CHNGDUMP
command during IPL. See Operator's Library: System Commands for the format
of the CHNGDUMP command.

The DISPLAY DUMP command is used for the following:

• To display the effects of the CHNGDUMP command or to determine the
current system dump options. (DISPLAY DUMP, OPTIONS)

• To determine which dump data sets are full and which are available.
(DISPLAY DUMP,STATUS)

See Operator's Library: System Commands for the format of the DISPLA Y
DUMP command.

The DUMP command must be used carefully if the desired dump is to be
obtained. For instance, the following typical error can occur when requesting a
dump. The operator enters DUMP COMM = (title). The system responds with
message IEE094 requesting the dump parameters. If the operator replies 'U' to
this message, the system dumps the current address space which is the master
scheduler address space. The operator must reply with ASID, Jobname, or
TSOname. See Operator's Library: System Commands for the format of the
DUMP command.

2-96 MVS Diagnostic Techniques

How to Print Dumps

The PRDMP control statements can be used to minimize the size of the output
produced from a stand-alone dump and still keep the number of reruns to a
minimum. This section discusses the DD statements and selected control
statements used in the following example:

IIASIDDMP JOB MSGLEVEL=l
II EXEC PGM=AMDPRDMP
IIPRINTER DD SYSOUT=A
IISYSPRINT DD SYSOUT=A
IITAPE DD UNIT=TAPE,LABEL=(l,NL) ,VOL=SER=ABCTPE,DISP=OLD
IISYSUTl DD UNIT=251,SPACE=(CYL,(20,1)),DISP=NEW
11* PRINT STORAGE=ASID(X)=(X,X,X,X,X,X) IS PROPER FORMAT

CVTMAP
CPUDATA
SUMMARY
QCBTRACE
SUMDUMP
LPAMAP
FORMAT
EDIT
PRINT CURRENT,SQA
PRINT STORAGE=ASID(X) = (xxxx,xxxx,xxxx,xxxx)
PRINT JOBNAME=(jobnarnes)
PRINT REAL=(xxxx,xxxx)
ASMDATA
END

See SP L: Service Aids for a complete description of PRDMP DD and control
statements.

The PRINTER DD statement defines the output data set for the dump itself. It
should be directed to a SYSOUT class as shown.

The SYSPRINT DD statement defines the data set for PRDMP messages, etc.

The TAPE DD statement defines the input data set to PRDMP. It can define
one of the SYS1.DUMPxx data sets, a stand-alone dump tape, or a GTF output
data set on either tape or DASD.

The SYSUT1 DD statement defines work space to PRDMP. It can be used to
define the input data set. It is not required if the input data set is defined by the
TAPE DD statement. It does, however, significantly enhance the performance of
PRDMP when it is used in conjunction with the TAPE DD statement and when
the input is a tape data set.

The SPACE parameter is determined by the size of the dump. Generally 5
cylinders or 95 tracks or 285 4104 records should be specified for each megabyte
of real storage dumped by SADMP.

Control Statements

The placement of the control statements determines the sequence in which the
dump is printed. Refer to the "Dump and Trace Formats" section of the
Debugging Handbook for examples of how these statements format a dump.

Section 2. Important Considerations Unique to MVS 2-97

Note: To reduce the volume of output, select only those PRDMP control
statements that provide the desired control blocks and output.

The following statements can be specified with PRDMP:

CVTMAP - formats the CVT and can be an aid in finding other significant
control blocks in the system.

CPUDATA - formats the CSD, PSA, PCCA and LCCA for each active
processor.

SUMMARY - defines and prints the dump ranges of the dump, active processor,
active tasks, etc.

QCBTRACE or GRSTRACE - formats the ENQ/DEQ control blocks in use at
the time the dump was taken.

SUMDUMP -locates and prints the summary dump data provided by SVC
dump. It should be used on all SVC dumps.

LP AMAP - provides a listing of the modules on the link pack area list. It
identifies the entry point address of those modules and their length. It does not
identify SVC modules since they are found by the SVC table.

The FORMAT statement can produce voluminous data depending on the number
of address spaces defined at the time the dump is taken., It produces the.
formatted TCB summary showing the abend completion codes for each TCB in
the system and the global and local SPLs.

The EDIT statement formats and prints the GTF buffers (that is, all internal trace
buffers or those external trace buffers that have not been written to the TRACE
data set) if GTF is active at the time the dump is taken. If GTF is not active,
only an error message is printed.

The PRINT statement can be used several ways:

• PRINT CURRENT,SQA - should be included in the initial run of PRDMP.
It formats and prints the address space and task-related control blocks of the
address space active at the time the dump is taken. SQA should be printed
for the valuable data it contains such as trace table, and LOGREC buffers.
PRINT CURRENT prints only the current address space of the processor
from which the SADMP program was IPLed;except in cross memory mode,
PRINT CURRENT also includes the home, secondary, primary, and CML
address spaces.

• PRINT NUC,CSA - should not be included in the initial run of PRDMP
because of the volume of data it produces. Once a problem is suspected in
this area, the PRDMP program should be rerun specifying only these
parameters.

• PRINT STORAGE = ASID(x) = (xxxx,xxxx) - should not be included in the
initial run of PRDMP. Once a problem is isolated to an address space or a
range of storage addresses, rerun PRDMP specifying only these parameters. i~

Several ASIDs and several address ranges can be requested with one run of ~

2-98 MVS Diagnostic Techniques

PRDMP. PRDMP does not duplicate address ranges for every ASID but
prints all storage dumped (NUC, CSA, SWA, LPA in storage) if only ASIDs
are specified without address ranges. PRINT STORAGE is useful for
printing SVC dumps. See the discussion "How to Print SYS1.DUMPxx"
later in this chapter.

• PRINT JOBNAME = Gobnames) - produces output equivalent to PRINT
CURRENT except it prints the private address space of job(s) requested. It
should not be used for the initial run of PRDMP unless the jobname is
known from another source, such as the system log.

• PRINT REAL = (xxxx,xxxx) - prints real storage in specified address range
pairs. Use this option only when the system cannot find adequate data to
format the dump.

ASMDAT A - formats and prints all ASM control blocks. It produces
voluminous data and should not be run until an ASM failure is suspected.

How to Automatically Establish System Options For SVC Dump

A potential problem is that the SVC dumps written to the SYSl.DUMPxx
contains only those address ranges that the FRR or EST AE routine passes to
SDUMP. When these dumps are subsequently printed by PRDMP, the PRDMP
formatting program might not find sufficient data to format the dump properly.
This can make it difficult to find data in an SVC dump and it can provide
erroneous indicators to the problem solver.

The CHNGDUMP command can be used to alter the SVC dump system options
and provide a complete dump. The following job updates the COMMNDOO
member of SYSI.P ARMLIB to issue the CHNGDUMP command automatically
at IPL time. The CHNGDUMP command can also be entered by the operator.
(See Operator's Library: System Commands for a description of the CHNGDUMP
command.)

IIUPDAT JOB ("S,S),MSGLEVEL=l,REGION=lOOK
II EXEC PGM=IEBUPDTE
IISYSPRINT DD SYSOUT=A
IISYSUTl DD UNIT=SYSDA,VOL=SER=SYSRES,DISP=OLD,
II DSN=SYS1.PARMLIB
IISYSUT2 DD UNIT=SYSDA,VOL=SER=SYSRES,DISP=OLD,
II DSN=SYS1.PARMLIB
IISYSIN DD DATA
.1 REPL NAME=COMMNDOO,LIST=ALL
.1 NUMBER NEW1=lO,INCR=20
COM=/TRACE ON'
COM='CD SET,SDUMP=(PSA,NUC,SQA,LSQA,RGN,TRT),Q=YES,ADD'
.1 ENDUP

How to Copy PRDMP Tapes

It is sometimes necessary to copy dump tapes to supply another location with a
copy of the dump while retaining your own. It is particularly useful to be able to
supply a dump tape ~ith; an 'APAR.

Section 2. Important Considerations Unique to MVS 2-99

A simple way to do this is to use PRDMP as a copy program. Define the input
tape with the TAPE DD statement and the output tape with.the SYSUT2 DD
statement. It is also possible to put several dumps on oile tape or take one dump

. from a multiple dump tape by manipulating the file number parameters in the
label parameter. The following example shows how this is done:

IIASIDDMP JOB MSGLEVEL=l
II EXEC PGM=AMDPRDMP
IIPRINTER DD SYSOUT=A
IISYSPRINT DD SYSOUT=A
IITAPE DD UNIT=TAPE,LABEL=(2,NL) ,VOL=SER=DMPIN,DISP=OLD
IISYSUT2 DD UNIT=TAPE,LABEL=(,NL),VOL=SER=DMPOUT,
II DISP=(NEW,KEEP)
IISYSIN DD *

END
1*

After copying a PRDMP tape, a quick run through PRDMP to verify that the
CVT can be formatted and printed. will prove that the copy was successful.

IIADMP JOB MSGLEVEL=l
II EXEC PGM=AMDPRDMP
IIPRINTER DD SYSOUT=A
IISYSPRINT DD SYSOUT=A
IITAPE DD UNIT=TAPE,LABEL=(l,NL),VOL=SER=DMPTPE,DISP=OLD
/ISYSUTl DD UNIT=SYSDA,SPACE=(TRK,(400,20»,DISP=NEW
IISYSIN DD *

CVTMAP
END

1*

Another, and faster way to copy PRDMP tapes is to use the IEBGENER utility
program. The following example shows how this is done:

IICOPYDMP JOB MSGLEVEL=l
II EXEC PGM=IEBGENER
//SYSIN DD DUMMY
IISYSPRINT DD SYSOUT=A
IISYSUTl DD UNIT=TAPE,LABEL=(2,NL),VOL=SER=DMPIN,
II DCB=(RECFM=FB,LRECL=4104,BLKSIZE=4104) .
/ISYSUT2 DD UNIT=TAPE,LABEL=(l,NL),VOL=SER=DMPOUT,
II DCB=(RECFM=FB,LRECL=4104,BLKSIZE=4104)
1*

How to Rebuild SYSl.UADS

The loss of the SYSl.UADS data set can significantly impact a TSO environment.
However, it is possible to run the TMP as a batch job and recreate SYS1.UADS
in the background. The following is an example of a job that has been run
successfully to scratch and recreate a SYS1.UADS data set.

2-100 MVS Diagnostic Techniques

IIBLDUADS JOB MSGLEVEL=l
II EXEC PGM=IEFBR14
IIDD2 DD VOL=SER=SYSRES,DISP=(OLD,DELETE),UNIT=3330,
II DSN=SYSl.UADS
II EXEC PGM=IKJEFTOI
IISYSPRINT DD SYSOUT=A
IISYSUADS DD DSN=SYSl.UADS,DISP=(NEW,KEEP),
II SPACE=(800,(20,9,30» ,UNIT=3330,
II VOL=SER=SYSRES,DCB=(RECFM=FB,
II DSORG=PO,LRECL=80,BLKSIZE=800)
IISYSLBC DD DSN=SYSl.BRODCAST,DISP=SHR
IISYSIN DD *
ACCOUNT
SYNC
ADD (USEROI TSOTEOI * IKJACCOl)
ADD (USER02 TSOTE02 * IKJACC02)
ADD (USER03 TSOTE03 * IKJACC03)
ADD (USER04 TSOTE04 * IKJACC04)
ADD (USEROS TSOTEOS * IKJACCOS)
ADD (USER06 TSOTE06 * IKJACC06)
ADD (USER07 TSOTE07 * IKJACC07)
ADD (USER08 TSOTE08 * IKJACC08)
ADD (USER09 TSOTE09 * IKJACC09)
ADD (USEROA TSOTEOA * IKJACCOA)
ADD (USEROB TSOTEOB * IKJACCOB)
ADD (USEROC TSOTEOC * IKJACCOC)
LIST (*)
END
1*

How to Print SYSl.DUMPxx

UNIT(SYSDA)
UNIT(SYSDA)
UNIT(SYSDA)
UNIT(SYSDA)
UNIT(SYSDA)
UNIT(SYSDA)
UNIT(SYSDA)
UNIT(SYSDA)
UNIT(SYSDA)
UNIT(SYSDA)
UNIT(SYSDA)
UNIT (SYSDA)

ACCT OPER JCL MOUNT
OPER JCL MOUNT
JCL MOUNT
JCL MOUNT
JCL MOUNT
JCL MOUNT
JCL
JCL
OPER

See the discussion under "How to Print Dumps" earlier in this chapter to define
the control statements required. The same rules apply except in this case the
T APE DO statement points to one of the SYSl.DUMPxx data sets. These are
cataloged data sets and require no further definition.

Be aware that the dump data sets contain only those address ranges passed to
SVC dump by the dump requestor and might not contain sufficient data for
PRDMP to properly format all requested control blocks.

Because SVC dumps usually contain a limited number of address ranges, printing
the entire SYS1.DUMPxx data set is feasible and assures that all the information
about the problem will be available.

See the next topic "How to Clear SYS1.DUMPxx Without Printing" for a
description of how to clear the dump data sets for reuse. Note: Printing the dump
data sets does not clear them as it did on previous systems.

Section 2. Important Considerations Unique to MVS 2-101

The following example shows how to print SYS1.DUMPOO:

IIASIDDMP JOB MSGLEVEL=l
II EXEC PGM=AMDPRDMP
IIPRINTER DD SYSOUT=A
IISYSPRINT DD SYSOUT=A
IITAPE DD DSN=SYSl.DUMPOO,DISP=OLD
IISYSUTI DD UNIT=SYSDA,DISP=NEW,SPACE=(CYL,{lO,S»
IISYSIN DD *

1*

SUMMARY
CVTMAP
CPUDATA
SUMDUMP
LPAMAP
PRINT STORAGE

How to Clear SYSl.DUMPxx Without Printing

In previous systems, printing the dump data set also cleared it and made it
available for reuse. In MVS this is no longer true .. The dump data sets can be
cleared at 'SPECIFY SYSTEM PARAMETERS' time during IPL. They can also
be cleared and made available for reuse by using PRDMP to copy the data set to
tape with the SYSUT2 DD statement pointing to the output data set. This must
be a separate job step from printing the dump. If it has been determined that the
SYSI.DUMPxx data set need not be saved, it can be cleared and made available
for reuse by running PRDMP with the SYSUT2 DD statement defined as
DUMMY. The following example shows how to clear SYS1.DUMPOO. See the
example in the discussion "How to Copy PRDMP Tapes" earlier in this chapter
for how to define the SYSUT2 DD statement to unload the SYSI.DUMPxx data
sets.

IIASIDDMP JOB MSGLEVEL=l
II EXEC PGM=AMDPRDMP
IIPRINTER DD SYSOUT=A
IISYSPRINT DD SYSOUT=A
IITAPE DD DSN=SYSl.DUMPOO,DISP=OLD
IISYSUT2 DD DUMMY
IISYSIN DD *

END

Another, and faster way to clear a SYSI.DUMPxx data set without printing is to
use the IEBGENER utility program. The following example shows how to clear
SYSI.DUMPOO:

IICLEARDMP JOB MSGLEVEL=l
II EXEC PGM=IEBGENER
IISYSIN DD DUMMY
IISYSPRINT DD SYSOUT=A
IISYSUTI DD DUMMY,DCB=SYSl.DUMPOO
IISYSUT2 DD DSN=SYSl.DUMPOO,DISP=OLD,DCB=SYSl.DUMPOO
1*

2-102 MVS Diagnostic Techniques

How to Print the SYSl.COMWRITE Data Set

The following job will format and print the TCAM SYSl.COMWRITE data set.
Note that the PARM fields in the EXEC statement define the traces to be
formatted and printed. See OS/VS TeAM Debugging Guide Level 10 for more
information on the use of the SYSl.COMWRITE data set.

IICOMWRITE JOB MSGLEVEL=l
IISTEPl EXEC PGM=IEDQXB,PARM='STCB,IOTR,BUFF'
IISYSPRINT DDSYSOUT=A
IISYSUTl DD DSN=SYS1.COMWRITE,DISP=SHR
1*

How to Print an LMOD Map of.a Module

The following job produces a module cross-reference of the nucleus, module
IEFW2ISD, and a link pack area map. In addition, AMBLIST produces an IDR
listing or a complete hexadecimal dump of an object module. If you include the
RELOC parameter, the cross-reference listing is based at the address the module
is loaded in LP A.

Note that the JCL must contain a DD statement for every data set containing a
module you referenced in the control card section.

For more information about AMBLIST, see SPL: Service Aids.

IIAMBLIST JOB MSGLEVEL=l
II EXEC PGM=AMBLIST
IISYSLIB DD DSN=SYS1.LPALIB,DISP=OLD
IILOADLIB DD DSN=SYS1.NUCLEUS,DISP=OLD
IISYSPRINT DD SYSOUT=A
IISYSIN DD *

1*

LISTLOAD OUTPUT=XREF,MEMBER=IEANUC01,DDN=LOADLIB
LISTLPA
LISTLOAD OUTPUT=XREF,MEMBER=IEFW21SD

How to Re-Create SYSl.STGINDEX

It is possible for the SYSl.STGINDEX data set to be destroyed because of system
failure or operator intervention during an IPL with the cold start (CLPA,CVIO)
option. Loss of this data set prevents warmstarting the system or restarting jobs
using VIO data sets.

Section 2. Important Considerations Unique to MVS 2-103

The following job can recreate this data set. Remember to change the VOLUME
and CYLINDERS parameters to apply to your system.

IISTGINDEX JOB MSGLEVEL=l
II EXEC PGM=IDCAMS
IISYSPRINT DD SYSOUT=A
IIVOL DD DISP=OLD,UNIT=3330,VOL=SER=SYSRES
IISYSIN DD *

DEFINE SPACE(VOL(SYSRES)FILE(VOL)CYL(7»
DEFINE CLUSTER.,.
(NAME(SYS1.STGINDEX)-
VOLUME(SYSRES)-
CYLINDERS(7)-
KEYS(128)-
BUFFERSPACE(5120)-
RECORDSIZE(2041 2041)-
REUSE)-
DATA-
(CONTROLINTERVALSIZE(2048»-
INDEX-
(CONTROLINTERVALSIZE(1024»

Software LOGREC Recording

The following JCL defines a two-step job. The first step prints an event history
report for all SYSl.LOGREC records. The second step formats each software,
IPL, and EOD record individually. The event history report is printed as a result
of the EVENT = Y parameter on the EXEC statement of the first step. . It can be
a very useful tool to the problem solver because it prints the records in the same
sequence they were recorded and therefore shows an interaction between hardware
error records and software error records.

IIEREP JOB MSGLEVEL=l
IIEREPA EXEC PGM=IFCEREP1,PARM=/EVENT=Y,ACC=N',
II REGION=128K
IISERLOG DD DSN=SYS1.LOGREC,DISP=SHR
IITOURIST DD SYSOUT=A
IIEREPPT DD SYSOUT=A,DCB=BL~SIZE=133
IIEREPB,EXEC PGM=IFCEREP1,PARM=/TYPE=SIE,PRINT=PS,ACC=N',
II REGION=128K
IISERLOG DD DSN=SYS1.LOGREC,DISP=SHR
IITOURIST DD SYSOUT=A
IIEREPPT DD SYSOUT=A,DCB=BLKSIZE=133
1*

See the discussion on LOGREC analysis in the "Use of Recovery Work Areas"
chapter earlier in this section for an explanation of its use and for examples of the
output produced.

Using the PSA as a Patch Area

There are areas in the PSA reserved for future expansion. They can be used for
quick implementation of a trap without having to consider base registers. Check
the mapping of the PSA (lHAPSA) for possible areas to be used. Once an area is
chosen, verify that the value of this storage is zero.

CAUTION: Use extreme. care when you use this method. Patches should be made
only to disabled code unless the patch is completely reentrant. Saving registers

2-104 MVS Diagnostic Techniques

and data in the PSA while the system is enabled could produce unpredictable
results, especially in an MP environment where more than one PSA exists and the
code could be interrupted and subsequently redispatched on the other processor.
Extreme care must be used when considering a system alteration in order to
gather additional data about a problem. No superzaps should be applied before
the system programmer has verified the logic being zapped and the trap logic
itself. Remember, if anyone location or offset within the module or trap changes,
all offsets and base registers .must be verified.

Using the SLIP Command

SLIP (serviceability level indication processing) provides a way of getting
information concerning an error prior to EST AE or FRR recovery processing.
This is in addition to the information ordinarily supplied by dumping services
during abnormal termination. The SLIP command is also used to establish PER
monitoring for instruction fetch, storage alteration, and successful branch PER
events within a range of virtual addresses. When the requested PER event occurs,
a PER interrupt causes control to be given to the SLIP processor. The purpose of
the SLIP command is to establish SLIP traps that describe the system conditions
which must exist at the time of the error or interrupt so that an action will be
taken.

The SLIP command is usually entered by a system programmer, either at the
console or via the input stream. It can also reside in the COMMNOxx
PARMLIB member. The SLIP command can also be entered as a subcommand
of the OPERATOR command from a TSO terminal or TSO CLIST. Information
about SLIP traps can be displayed by using the DISPLAY operator command.

As long as enough system queue area storage is available, SLIP traps may be
established at any time. The recovery termination manager (R TM) compares the
SLIP trap event qualifiers with the dynamic system conditions at the time of the
error or interrupt. If RTM detects a match, the requested action is taken.

SLIP Event Qualifier Keywords

When specified on a trap, an event qualifier keyword is checked against current
system conditions to determine a match or no match condition. The following
keywords are described in this topic.

ADDRESS
ASID
ASIDSA
COMP
DATA
ERRTYP
JOBNAME

JSPGM
LPAMOD
MODE
PVTMOD
RANGE
RBLEVEL

Because the RTMjSLIP processor runs in one of four environments, the checking
done for each event qualifier keyword is described in terms of the applicable
environment. The four environments are:

RTS an error has occurred that will cause routing to FRRs.

R T2 an error has occurred while in enabled unlocked task mode which will cause routing to
ESTAEs but not FRRs.

Section 2. Important Considerations Unique to MVS 2-105

RTM an abnormal address space termination has occurred.

PER a PER interrupt has occurred.

Note: The names of these four environments are taken from the names of the
modules that call the RTMjSLIP processor; namely IEAVTRTS, IEAVTRT2,
lEA VTRTM, and IEAVTPER.

ADDRESS Event Qualifier Keyword

The checking done for the ADDRESS keyword is:

RTS the address from the PSW at the time of the error (SDWANXTI) is used in the comparison.

RT2 the RBLEVEL keyword determines which RB is used to get the address (RBPSWNXT) used
in the comparison.

RTM the address of the instruction that branched to RTM is used in the comparison.

PER the address of the instruction that caused the PER interrupt (LCCAPERA) is used in the
comparison.

ASID Event Qualifier Keyword

The checking done for the ASID keyword is:

RTS The PASID of the failing address space (field SDWAPRIM) is used in the comparison.

RT2 ThePASID in the XSB of the RB located from the RBLEVEL keyword -(field XSBPASID) is
used in the comparison.

RTM The PASID of the address space being terminated is used in the comparison.

PER The PASID at the time of the interruption is used in the comparison.

ASIDSA Event Qualifier Keyword

The ASIDSA keyword associates an address space with a storage alteration (SA).
ASIDSA is only valid when it is specified with SA on the SLIP command. The
PASID, SASID, HASID, and the S-bit at the time of the interruption are used to
determine the address space where the storage alteration occurred.

COMP Event Qualifier Keyword

The checking done for the COMP keyword is:

RTS field SDWACMPC is used in the comparison.

RT2 field RTM2CC is used in the comparison.

RTM the completion code for the address space being terminated (ASCBMCC) is used in the
comparison.

Because many recovery routines change the abend completion code to make it
more specific, the value supplied on the COMP keyword must be the original
value b~fore a recovery routine changes the code. This is because RTMjSLIP
checking is done before processing by the recovery routines.

For example, a SLIP trap will not match if any of the following completion codes
are specified: l1A, 12E, 15D, 15F (reason codes 12 and 16), 200, 212, 25F, 279,

2-106 MVS Diagnostic Techniques

282, 402, 42A, 57D, 6FC, 700, 72A, AOO, BOO, and EOO. Most of these codes
were -originally a program check (OC4) that has been converted to a more specific
value. If you want to specify a program check, use COMP = OC4 or
ERRTYP=PROG. To avoid having the SLIP action occur for all program
checks, you should also specify some other event qualifier such as program name
or module name.

Similarly, specification of 13E or 33E might prevent a trap from matching if these
completion codes occur for any active subtasks associated with a task that is
abending. These secondary abends occur for the purpose of clean-up and
therefore the SLIP processor is not called when they occur.

Note: The SDUMP and ABDUMP dumping programs might cause many OC4
program checks while taking a dump. Therefore, when you specify COMP = OC4
on a trap, you should avoid these unwanted matches by also specifying another
event qualifier, such as MATCHLIM.

DATA Event Qualifier Keyword

The DATA keyword checks data in the system at the time of the error or
interrupt against the data conditions specified in the SLIP trap_ Addressing is
established to the address space specified with the address. Indirect addresses are
resolved by using the registers at the time of the error or interrupt.

For some errors, register contents at the time of error are not valid. In such a
case, if registers are used, the data is considered unavailable and the trap does not
match. Other conditions that can cause the data unavailable situation are: the
address space specified with the address does not exist; data is paged out; or a
pointer. required for an indirect address is paged out.

When data is unavailable, a counter associated with the trap is incremented and
message IEA4131 is sent to the SLIP user. For a PER trap, message IEA4l3I is
issued only the first time that the data unavailable situation occurs~ However, the
counter is made available by displaying the trap. The data unavailable counter is
also part of the SLIP standard, SLIP standard/user, and SLIP DEBUG GTF
trace records.

The SLIP command processor does not perform any reasonability checking on the
data tests requested. For example, the SLIP command processor would allow the
following DATA keyword specification even though its specification prevents the
trap from ever matching.

DATA = (H.CD300,EQ,00,HASID.CD300,NE,00)

The DATA keyword may be used as a validity check for RANGE addresses or
LPAMOD offsets when used on an IF (instruction fetch) or SB (successful
branch) PER trap. For example, if RANGE = (CD300,CD303) is used to
establish the range of addresses for an IF trap, you can ensure that the expected
instruction is being monitored by specifying DATA = (CD300,EQ,47FOB020)
where 47FOB020 is the expected instruction. If the wrong instruction is being
monitored (for example, due to a typing error ora change in the system), the trap
would not match because the DATA keyword does not match. This technique
can be especially useful on traps that take potentially disruptive actions (for

Section 2. Important Considerations Unique t~ MVS 2-107

example, WAIT or RECOVERY actions) in order to ensure the action is taken
only when desired.

ERRTYP Event Qualifier Keyword

. The checking done for the ERRTYP keyword is:

RTS the RTITENPT field is used in the comparison. The value field RTITENPT of the RTMI
work area indicates the reason for entry into RTMI:

l=PROG
2=REST

3=SVCERR
4=DAT

5=MACH
lO=PGIO

The SLIP processor recognizes an SVC error for SVC 13 as either an ABEND or SVCERR
error and allows a match for the ERRTYP keyword if either is specified.

RT2 the RTM2ERRA field is used in the comparison. The reason for entry into RTM2 is indicated
by flags in the RTM2 work area as follows:

RTM2MCHK = MACH RTM2ABTM = ABEND
RTM2PCHK=PROG RTM2TEXC=DAT
RTM2RKEY=RESTART RTM2PGIO=PGIO
RTM2SVCD = ABEND

R TM an abnormal address space termination (MEMTERM) causes a match.

JOBNAME Event Qualifier Keyword

The checking done for the JOBNAME keyword is:

RTS if the failing address space has been identified by RTM (field SDWAFMID), both the failing
and current address space job names are tested for a match. The job names pointed to by
fields ASCBJBNI and ASCBJBNS are tested and either job name may match the job name
specified in the trap.

if the failing address space has not been identified, then only the current address space is tested
for a job name match.

RT2 if the failing address space has been identified by RTM (field RTM2FMID), both the failing
and current address space job names are tested for a match. The job names pointed to by
fields ASCBJBNI and ASCBJBNS are tested and either job name may match the job name
specified in the trap.

if the failing address space has not been identified, then only the current address space is tested
for a job name match.

RTM the job names for the address space being terminated are used in the comparison.

PER the job names for the current address space are used in the comparison.

Note: The job, logon, or started task named by JOBNAME need not be active
when the trap is set.

JSPGM Event Qualifier Keyword

The checking done for the JSPGM keyword is:

RTS if a job step program name is available (field JSCBPGMN), it is compared to the job step
program name specified in the trap.

if a job step program name is not available (PSA TOLD or TCBJSCBB = 0), the trap will not
match.

if the reason for entry is a DAT error, the trap wi1l not match.

2-108 MVS Diagnostic Techniques

RT2 if a job step program name is available (field JSCBPGMN), it is compared to the job step
program name specified in the trap.

if a job step program name is not available (PSA TOLD or TCBJSCBB = 0), the trap will not
match.

RTM the trap will not match because the job step program name in the address space being
terminated is not available.

PER if a job step program name is available (field JSCBPGMN), it is compared to the job step
program name specified in the trap.

if a job step program name is not available (pSATOLD or TCBJSCBB = 0), the trap will not
match.

LP AMOD Event Qualifier Keyword

The checking done for the LPAMOD keyword is:

RTS the address from the PSW at the time of error (field SDWANXT1) is used in the comparison.

RT2 the RBLEVEL keyword determines which RB is used to get the address (field RBPSWNXT)
to be used in the comparison.

RTM the address of the instruction that branched to RTM is used in the comparison.

PER the address of the instruction that caused the PER interrupt (field LCCAPERA) is used in the
comparison. (For additional information, refer to the note under the description of the
RANGE keyword.)

Note: If the name specified on the LPAMOD keyword is an alias of a load
module name, all monitoring is done by SLIP as though the load module name
was specified.

MODE Event Qualifier Keyword

The system mode at the time of error is indicated in the MODE BYTE as follows:

1.
.1.
.. 1.
... 1
.... 1 .. .
..... 1..
...... 1.
....... 1

MODESUPR
MODEDIS
MODEGSPN
MODEGSUS
MODELOC
MODETYPI
MODESRB
MODETCB

Supervisor control
Physically disabled
Global spin lock held
Global suspend lock held
Locally locked
Type I SVC
SRB mode
Task mode (unlocked)

The checking done for the MODE keyword is:

RTS as a part of error processing, RTM determines the mode of the system (MODEBYTE value in
field RTIWMODE). Also, the PSW at the time of the error (field SDWAECl) is examined to
determine key and state. The SDW AST AF bit indicates if the error occurred while a recovery
routine was in control. The PASID at the time of the error (SDW APRIM) is compared to the
HASID. If they are equal, the instruction executed in home mode.

RT2 the system mode, as determined by RTM, is obtained from the ABEND SVRB extended save
area (MODEBYTE value in field ESAMODE). Also, the PSW (field RBOPSW) in the RB (as
determined byRBLEVEL processing) is examined for key and state. The RTM2RECR and
RTM2XIP bits indicate if a recovery routine was in control at the time of error. The PASID
at the time of the error (obtained by the RBLEVEL keyword, field XSBPASID) is compared
to the HASID. If they are equal, the instruction executed in home mode.

Section 2. Important Considerations Unique to MVS 2-109

RTM because RTM has not determined the system mode for an address space termination, various
fields are tested by the R TM/SLIP processor to determine the system mode at the time of the
MEMTERM request. (The mode will always indicate supervisor state and system key because
these are requirements for issuing a MEMTERM request.)

PER various fields are tested to determine the system mode at the time of the interrupt. In the
SLIP trace record (system mode indicators), all bits are filled in. However, no attempt is made
to determine if a recovery routine was in control when the interrupt occurred. Therefore, the
recovery-routine-in-control bit will always be zero for a PER interrupt. Because of this,
MODE = RECV is invalid for a PER trap and if MODE = ALL is specified for a PER trap,
ALL does not include RECV (recovery-routine-in- control). If the PASID and HASID are
equal at the time of the interruption, the home mode indicator is set.

PVTMOD Event Qualifier Keyword

The checking done for the PVTMOD keyword is:

RTS if RTM has identified a failing address space (field SDWAFMID) and it is not current, the
trap will not match.

to check for a private area module, the local lock must be obtained. If it cannot be obtained,
the trap will not match. If the local lock is already held, the chain that is to be searched for a
private area module may be in the process of being changed. The search is performed, but the
results may not be valid. The address obtained from the PSW at the time of error (field
SDWANXTI) is used in the comparison.

RT2 the RBLEVEL keyword determines which RB is used to get the address (field RBPSWNXT)
used in the comparison.

RTM this keyword test will not match because the private area chain in the failing address space is
not available for searching.

PER the trap will not match for the PVTMOD keyword test if the interrupt occurs in the nucleus or
FLPA because these areas cannot contain private area modules.

to check for a private area module, the local lock must be obtained. If it cannot be obtained,
the trap will not match. If the local lock is already held, the chain that is to be searched for a
private area module may be in the process of being changed. The search is performed, but the
results may not be valid. The address of the instruction that caused the PER interrupt (field
LCCAPERA) is used in the comparison.

If offsets are specified on the PVTMOD keyword, the RTMjSLIP processor does
not check to make sure that the offsets define an area wholly within the private
area module.

RANGE Event Qualifier Keyword

The checking done for the RANGE keyword is:

PER the address of the instruction that caused the PER interrupt (field LCCAPERA) is used in the
comparison. Note that if the first address specified is greater than the second, the monitored
range wraps storage addresses.

Note: For successful branch monitoring, hardware PER processing does not
check the address range specified on the RANGE and LPAMOD keywords. This
means that a branch taken by an instruction anywhere in the system would cause
a successful branch PER interrupt. However, to simulate an address range for
successful branch monitoring, SLIP initially sets up instruction fetch monitoring
for the desired address range. Then when instruction processing enters the
requested range (indicated by an instruction fetch PER interrupt), PER
monitoring is automatically switched to successful branch mode. You should be
aware that the first PER event that occurs when instruction processing enters the

2-110 MVS Diagnostic Techniques

requested range may not be a successful branch event. This "extra" event
(instruction fetch) may affect values supplied for other keywords such as
MATCHLIM. When instruction processing leaves the requested range, PER
monitoring returns to instruction fetch monitoring on the requested range to
avoid unnecessary PER interrupts. If the instructions being monitored are
enabled for I/O and/or external interrupts, control may leave and then re-enter
the monitored range due to normal interrupt processing.

The previous note applies to processing on behalf of a non-IGNORE successful
branch PER trap. Mode switching does not occur for successful branch PER
traps with ACTION = IGNORE specified. This means that if the initial entry into
a monitored area matches an IGNORE trap, the mode remains instruction fetch
and the "extra" event is delayed. Also, output that appears to be a contiguous
successful branch trace may not actually be contiguous if an IGNORE trap
matches intermittently.

For successful branch monitoring, if an EXECUTE instruction has a successful
branch target, the location of the EXECUTE instruction is used to determine
whether or not the branch was within the monitored area without regard to the
location of the executed branch.

RBLEVEL Event Qualifier Keyword

The RBLEVEL keyword applies only to enabled unlocked task mode errors. It is
used to direct the SLIP processor to the registers and PSW of interest for a
particular error. The SLIP processor will use the PSW identified by the
RBLEVEL keyword when processing the LPAMOD, PVTMOD, ADDRESS, and
MODE keywords. The SLIP processor will use the registers identified by the
RBLEVEL keyword when processing the DATA, TRDATA, LIST, and
SUM LIST keywords.

The following diagram shows which RBs are chosen by the three RBLEVEL
keyword options for an example RB chain.

PREVIOUS

SVRB
--------~~--------~ r ,

TeB

- ... v---
PSW PSW

REGS

The RBLEVEL keyword can be used in an error situation where several nested
services are involved. For example, program A calls service B which calls service
C. If an error occurs in service C, the default RBLEVEL = ERROR can be used
to qualify the error or obtain information concerning the error. However, if the
error in service C is the result of incorrect input supplied by service B or program
A, the RBLEYEL=PREVIOUS or RBLEVEL=NOTSVRB can be used to

Section 2. Important Considerations Unique to MVS 2-111

qualify the error or obtain information concerning the input supplied by service B
or program A respectively.

Using the ACTION Keyword

The ACTION keyword is used to specify the action to be taken when a SLIP trap
matches the specified system conditions. The following ACTION options are
described in this topic:

ACTION = SVCD
ACTION = WAIT
ACTION = TRACE
ACTION =TRDUMP
ACTION = NODUMP
ACTION = IGNORE
ACTION Keyword

• schedule an SVC dump.
• put the system in a wait state.
• write a GTF trace record.
• write a GTF trace record and then schedule an SVC dump.
• suppress dump requests.
• take the IGNORE action.
• with RECOVERY option (PER traps only), initiate recovery processing.

ACTION = SVCD Option

ACTION = SVCD indicates that an SVC dump will be scheduled for the failing or
home ASID. This is the default option if ACTION is not specified. If the SVC
dump cannot be taken, message IEA412I is issued and SLIP processing continues.
No attempt is made to reschedule the SVC dump.

One of the advantages of the SVC dump over one taken by a recovery routine is
that nothing has been done to correct the error situation. Although the bulk of
the SVC dump is not taken until later, the summary dump portion preserves as
much volatile data as possible. An SVC dump also contains more data (for
example, more than one address space can be dumped) than a SYSABEND or
SYSUDUMP, and because it is machine readable, it can, if necessary, be copied
onto a tape to accompany an APAR, or used with interactive dump display
programs. SYSMDUMP also provides a machine readable dump. The biggest
advantage is in situations where no dump was occurring.

When ACTION = SVCD is specified or defaulted, the default SDAT A parameters
are: SQA, RGN, TRT, LPA, CSA, NUC, ALLPSA, and SUM. These default
SDATA parameters are affected by the current CHNGDUMP command settings
which may add to or override the requested dump options. The SDATA
parameters can be changed by the SLIP user. Refer to "Dump Tailoring" later in
this section.

If an SVC dump is already in progress, another dump cannot be taken and
message IEA412I is issued. When an SVC dump is scheduled on behalf of a SLIP
trap by the SLIP processor, debugging information is placed in the SDUMP 4K

2-112 MVS Diagnostic Techniques

buffer (if the buffer is available). This buffer is pointed to by field CVTSDBF
and contains:

Offset

0(0)
4(4)

8(8)
12(C)
16(10)
20(14)
84(54)
88(58)
96(60)
100(64)
102(66)
106(6A)
108(6C)

Length Content

4 The characters 'TYPE' to identify the following field.
4 RTM/SLIP processor environment indicator:

X'OOOOOOOI' - RTS
X'0000OO02' - RT2
X'00000003' - RTM
X'00000004' - PER

4 The characters 'CPU' to identify the following field.
4 Logical CPUID.
4 The characters 'REGS' to identify the following field.
64 Registers at the time of error or interrupt. (RO-RI5)
4 The characters 'PSW' to identify the following field.
8 The PSW at the time of error or interrupt.
4 The characters 'PASD' to identify the following field.
2 The primary ASID at time of error or interruption.
4 The characters 'SASD' to identify the following field.
2 The secondary ASID at time of error or interruption.
variable The SDWA if offset 4 is 1 (RTS).

The RTM2WA if offset 4 is 2 (RT2).
The ASCB if offset 4 is 3 (RTM).
The PER interrupt code if offset 4 is 4 (PER).

When a summary dump is requested, the storage on either side of the addresses in
the registers used are from the SDUMP 4K buffer. You can use the SUMLIST
keyword in the form: OR 0/0-800, + 1000,1R 0/0-800, + 1000,2R %-800, + 1000, ... to
dump 2K bytes of information on either side of the addresses in the registers at
the time of the error or interrupt.

If ASIDLST is not specified with the SLIP trap, the following information
describes which address space will be dumped depending on the environment of
the RTM/SLIP processor.

RTS the failing address space (field SDWAFMID) or the home address space is dumped.

RT2 the failing address space (field RTM2FMID) or the home address space is dumped.

RTM the master address space is dumped because the address space that is terminating cannot be
used to take the dump. The summary dump information is collected in the home address
space (of the issuer of the CALLRTM TYPE=MEMTERM macro), and the asynchronous
dump runs later in the master address space.

PER the home address space is dumped.

If a dump request for a failing address space fails (such as SDUMP returning a
bad return code), then a second attempt is made to schedule a dump in the home
address space. In the second attempt, no information is put in the SDUMP 4K
buffer. If the second attempt fails, the message IEA412I is issued.

If a summary dump is requested, it may be suppressed under certain conditions.
Refer to the topic "Placement of PER Traps" later in this section.

The entire dump may be suppressed if the operator has chosen the CHNGDUMP
NODUMP option.

ACTION = WAIT Option

ACTION = WAIT indicates that the system will be placed in an 01B wait state.

Section 2. Important Considerations Unique to MVS 2-113

If a PER.trap is used to put the system into the wait state, the time spent in the
wait state is attributed to the PER interrupt that caused the wait state. This
makes it look as though a lot of time has been spent processing PER interrupts.
Therefore, if the trap is intended to be used so that the system is restarted and the
trap is to remain enabled, you may want to use PRCNTLIM = 99 on the trap.
Otherwise, the trap .may be disabled after the system has been restarted. Use
PRCNTLIM = 99 with caution because limit checking is not performed while
waiting for the trap to match.

Once in the wait state, you can use the debugging work area provided by SLIP to
begin debugging a problem. This area is pointed to by PSA + X'40C' and
contains:

Offset Length Content

0(0) R TM/SLIP processor environment indicator:
X'Ol' - RTS
X'02' - RT2
X'03' - RTM
X'04' - PER

1(1) 2 Logical CPUID.
3(3) 1 System mask (if offset 0 is 2).

4(4) 4 Pointer to registers at the time of error or interrupt. (RO-RIS)

8(8) 4 Pointer to PSW at the time of error or interrupt.
12(C) 4 Pointer to SDWA if offset 0 is 1.

Pointer to RTM2WA if offset 0 is 2.
Pointer to ASCB being terminated if offset 0 is 3.
Pointer to PER code if offset 0 is 4.

16(10) 4 Pointer to cross memory information (control registers 3 and 4) at the time of
the error or interruption.

ACTION = TRACE Option

ACTION = TRACE indicates that a GTF SLIP trace record is written each time
that the SLIP trap matches. GTF must be active and the GTF SLIP option
specified in order for the record to be built and recorded. (Use the TRDATA
keyword if you want to tailor the GTF trace records.)

The TRACE option is designed for those situations where a relatively small
amount of data is required each time that a matching event occurs. Such a
situation might occur when you are trying to determine the path through a
module. But the TRACE option can handle a relatively large amount of data
when required. Refer to the TRDATA keyword.

The registers at the time of the error or interrupt are used to resolve indirect
addresses specified for the trace record fields. Under some circumstances,
registers at the time of error may not be available. If this is the case, indirect
addresses that contain a register value cannot be resolved and related fields
cannot be collected. A zero length field is -used in the user portion of a SLIP
standard/user or SLIP user record to indicate that the requested field was not
available. Also, a field is not available if it is paged out or if one of the pointers
to it is paged out. When using indirect addresses, use the REGS keyword to get
the contents of the registers used to resolve indirect addresses.

2-114 MVS Diagnostic Techniques

Checking for too much data is done at the time that the GTF SLIP trace record
is built, not at the time the trap is entered. Therefore, you may want to exceed
the trace record size when setting a trap if you expect that some of the data will
not be available. If data is unavailable, trap information takes up only one byte
in the record rather than the amount of space it would take if data were available.
When using this technique, prioritize the fields so that the most important fields
are earliest in the record so that they are collected. If all the data is available,
and the maximum size of the trace record is exceeded, the record is truncated.

Another technique that is useful when using long indirect addresses is to request
the same field twice if there is more than one path to the field. In this way, if a
P9inter is bad or is paged out in one path to the data, it may be-available via the
other path.

GTF Considerations: When using ACTION = TRACE, be aware that starting
GTF will suppress the system trace (if it is active). Therefore, you may want to
choose other GTF trace options in addition to SLIP to obtain other valuable
diagnostic data that is available in a trace of system events. GTF options SYS or
SYSM can be used to have GTF collect information similar to that collected by
the normal system trace. Note that using the internal GTF trace instead of the
external trace helps to reduce system overhead. Be sure to stop GTF after the
traps which require the TRACE option are disabled or deleted.

ACTION = TRDUMP Option

ACTION = TRDUMP is a combination of the SVCD and TRACE options.
While the trap remains enabled, a GTF SLIP trace record is written when the
trap matches. When the trap is disabled (automatically by MATCHLIM or
PRCNTLIM or via the SLIP MOD operand) or deleted (via the SLIP DEL
operand), a dump is scheduled. When you use the SLIP MOD or DEL operand
to disable or delete a trap that has the TRDUMP option specified, the dump does
not contain diagnostic data in the SDUMP 4K buffer.

The default SDATA parameters are TRT, NOSQA, NOALLPSA, and NOSUM.
These default are affected by the current CHNGDUMP command settings which
may add to or override the requested dump options. The SDA T A parameters can,
be changed by the SLIP user. Refer to "Dump Tailoring" later in this section.

When u~ed in conjunction with the MA TCHLIM keyword, the TRDUMP option
can be useful in getting an idea of what events lead up to an error. For example~
a problem is narrowed to a particular module. You could use a successful branch
PER trap and the TRDUMP option. The trace records that are written could
trace the fields that are critical to the operation of the module. An estimate of
the number of successful branches that would enable you to determine the path
through the module could be specified on the MA TCHLIM keyword in order to
automatically disable the trap and initiate the dump.

The TRDUMP option can also be used to obtain GTF SLIP trace records
without tracing to an external data set (and then using PRDMP to print the data
set). When starting GTF, specify the number of 4K GTF trace buffers (on the
BUF parameter) to be saved for a dump. When the dump is taken, the trace
records are passed to the SVC dump routine and become a part of the dump.

Section 2. Important Considerations Unique to MVS 2:-115

ACTION = NODUMP Option

ACTION = NODUMP indicates that SLIP is to set a flag in the RTM work area
which is checked by the dump programs ABEND and SVC dump. If the bit is
on, all dtmlP requests are ignored. Because the bit is in the RTM work area, only
dumps requested during processing of this error by RTM (requested by an FRR
and/or an EST AE) are suppressed. Should the error involve recursive entry into
RTM, the bit setting is propagated to the next RTM work area.
ACTION = NODUMP applies only to non-PER traps for errors in the RTS and
RT2 environments.

This action is useful for preventing dumps that may not be needed (for example,
X37, etc.) because accompanying messages provide sufficient information. It can
also be used to prevent duplicate dumps for known problems which have already
been documented.

ACTION = IGNORE Option

ACTION = IGNORE indicates that the SLIP processor is to take the IGNORE
action. The IGNORE action does not result in any specific action being taken
but a match is indicated for the trap and other processing for the trap occurs
normally (such as messages being issued, and processing for the MATCHLIM,
PRCNTLIM, RECOVERY, and DEBUG options).

This option is generally used on a trap to prevent a different, and more general
trap, from matching. (Note that for any event, the SLIP processor stops
examining SLIP traps for a match condition when a matching trap is found.)
Because SLIP traps are tested in last-in-first-out order, IGNORE traps used in
this way must be entered after the more general non-IGNORE trap. Also, the
traps should be specified in the disabled state to prevent the non-IGNORE trap
from matching while the IGNORE traps are being specified. After the
non-IGNORE and all related IGNORE traps have been set, they can be enabled
in a last-in-first-out order by using the MOD operand of the SLIP command.

For PER traps, the IGNORE trap must be of the same type (IF, SA, or SB) as
the non-IGNORE trap or it will not be tested. For IF and SB PER traps,
IGNORE traps can be used to simulate multiple ranges for monitoring as shown
in Example 14 in the following topic "Examples of Using the SLIP Command."
This technique cannot be used for SA PER traps. The use of the IGNORE trap
with a more general IF or SB PER trap does not prevent PER interrupts from
occurring in the range specified on the IGNORE trap. You should consider this
when you are selecting a percent limit value.

In general, there is no limit to the number of IGNORE traps that can be set to
work in conjunction with a non-IGNORE trap. You should be aware that
IGNORE traps are considered as independent traps, and the SLIP command
processor does not know when IGNORE traps are being used in conjunction with
a non-IGNORE trap. For example, at the time a trap is being set, no checking is
done between traps to ensure that the range to be ignored falls within the range
specified on the non-IGNORE PER trap. Such checking is the responsibility of
the user.

2-116 MVS Diagnostic Techniques

Dump Tailoring

ACTION Keyword With RECOVERY Option (PER Traps Only)

Normal processing of a PER interrupt causes control to be returned to the next
sequential instruction after the PER interrupt is processed. The RECOVERY
keyword can be used to force recovery processing to be initiated after the PER
interrupt has been processed.

The RECOVERY keyword is used to initiate recovery processing in those
situations when an error is occurring, but the error is not being detected by the
system or it is being detected too late for recovery routines to adequately handle
the error situation. By initiating recovery processing via a SLIP trap, you have a
way to use the error correction function that is built into MVS recovery routines.

To avoid unexpected results when using the RECOVERY keyword, you should be
thoroughly familiar with the MVS recovery concepts and ensure that:

• Recovery is initiated at an appropriate point in the program.

• The recovery routine is designed to handle the error situation that exists at
that point.

The RECOVERY action initially causes an 06F abend code to be generated.

When ACTION = SVCD or ACTION = TRDUMP is specified on a SLIP trap,
the ASIDLST, SDAT A, SUM LIST, and LIST keywords can be used to tailor the
dump to the particular problem that is being trapped.

ASIDLST Keyword

The ASIDLST keyword is used to specify the address spaces that are to be
dumped. Note that a specification of zero indicates the home address space
(pointed to by PSAAOLD).

SDATA Keyword

The SDAT A keyword is used to specify the system data areas that are to be
dumped. If the default SDAT A specification is used, the current system
CHNGDUMP setting can affect (add to or override) the areas requested. The
system CHNGDUMP settings do not affect (add to or override) the areas
specified on SDATA except when CHNGDUMP has been set with the
NODUMP option. In t~is case, the SLIP trap does not produce a dump when
the trap matches.

When SDATA is specified, the areas specified to be dumped completely replace
the default specification on the dump request. For example, on an
ACTION = SVCD dump, if SDATA = (NOSQA) is specified, the NOSQA
completely replaces the default SDATA specification of SQA, RGN, TRT, LPA,
CSA, NUC, ALLPSA, and SUM. The dump request of NOSQA is presented to
SDUMP which merges it with its own defaults (SQA, SUM, and ALLPSA) and,
in this case, produces a dump that contains only a summary dump and ALLPSAs.

Section 2. Important Considerations Unique to MVS 2-117

Also, the SLIP command processor does not make any reasonability checks on
the SDATA options specified. For example, SDATA=(SQA,NOSQA) is allowed
even though the SQA and NOSQA options are contradictory. In this case, SQA
would not be part of the dump produced.

SUMLIST and LIST Keywords

The SUMLIST and LIST keywords are used to dump user-defined areas of
storage. The storage areas are defined by specifying address space qualifiers
followed by address pairs that specify the beginning and ending addresses of
storage to be dumped. Address space qualifiers can be either explicit or symbolic.
They specify the address space to which the address pairs refer to. If a qualifier is
not specified, the previous qualifier is used as the default. If the first address pair
does not have a qualifier, CURRENT is used as the default. The beginning
address must be less than or equal to the ending address. If the beginning address
is greater, then the characters *AI > A2* are dumped instead of the requested
area. Direct or indirect addresses can be used to specify the address pairs and can
be mixed. Indirect addresses are resolved using the registers at the time of error
or interrupt. If for any reason an indirect address cannot be resolved, the
characters *RC = 4* are dumped rather than the requested area.

The difference between SUMLIST and LIST is the point in time when the
requested information is collected. SUMLIST collects information as a part of
SDUMP summary dump processing. This is close to the time of error or PER
interrupt and the information that is collected will probably be unchanged since
the time of error or interrupt. (Note that storage areas must be paged in; and if
not paged in, they are ignored by SDUMP.) LIST collects information when the
scheduled dump is processed. (Note that storage areas are paged in if necessary.)
This is some time after the error or interrupt and the information that is collected
may have been changed since the time of error or interrupt.

Examples of Using the SLIP Command

The following examples briefly describe a system problem and show the SLIP
command that can be used to match on a system event. The resulting dump or
GTF SLIP record can then be used by the debugger to obtain diagnostic
information in order to solve the problem.

Example 1: Match on Storage Alteration

Problem: An unknown program is incorrectly modifying location CD30 lOin the
LPA.

Action: The debugger sets the following SLIP trap:

SLIP SET,SA,ENABLE,ACTION=SVCD,
RANGE=(CD3010),END

Result: When location CD3010 is altered, a SLIP match occurs and an SVC
dump is scheduled. For this PER trap, MATCHLIM defaults to 1 which
prevents a dump from being taken each time that location CD3010 is altered.

2-118 MVS Diagnostic Techniques

Example 2: Match on Storage Alteration

Problem: Same as Example 1 exceptlocation CD3010 is normally modified by
JES2 (ASID = 3) but should not be modified by any other program (in ASIDs 1,
2, 4, 5, 6, 7, 8, and 9).

Action: The debugger sets the following SLIP trap:

SLIP SET,SA,ENABLE,ACTION=SVCD,
RANGE=(CD3010),ASID=(1,2,4,5,6,7,8,9),END

Result: When any program in an address space specified on ASID = alters
location CD3010, a SLIP match occurs and an SVC dump is scheduled.

Example 3: Match on Storage Alteration

Problem: Same as Example 2 except there is an unknown number of address
spaces (in addition to JES2 in ASID 3).

Action: An IGNORE trap is used in conjunction with the non-IGNORE PER
trap. The debugger sets the following SLIP traps:

SLIP SET,SA,ID=TRPl,DISABLE,ACTION=SVCD,
RANGE=(CD3010),END

SLIP SET,SA,ID=TRP2,DISABLE,ACTION=IGNORE,
ASID=(3) ,END

Then issues the following SLIP commands:

SLIP MOD,ENABLE,ID=TRP2
SLIP MOD,ENABLE,ID=TRPI

Result: Any alterations to location CD3010 by JES2 (ASID = 3) are ignored.
Alterations to location CD3010 by programs in any other address space result in
a SLIP match, and an SVC dump is scheduled. Note that the SLIP traps are
inspected in a last-in-first-out (LIFO) order.

Example 4: Match on Storage Alteration

Problem: Location CD30 1 0 contains an address that is normally modified by
many programs. Intermittently, it is set to zero and causes an error.

Action: The debugger sets the following trap:

SLIP SET,SA,ENABLE,ACTION=SVCD,
RANGE=(CD3010),DATA=(CD3010,EQ,OOOOOOOO),END

Result: When location CD3010 is set to zero, a SLIP match occurs and an SVC
dump is scheduled.

Section 2. Important Considerations Unique to MVS 2-119

Example 5: Match on Instruction Fetch

Problem: An LP A routine is consistently abending and the debugger does not
know if the routine is in error or it is being passed bad parameters. The LPA
routine entry point is CD3IOO.

Action: The debugger sets the following SLIP trap:

SLIP SET,IF,ENABLE,ACTION=SVCD,
RANGE=(CD3100) ,END

Result: The routine still abends. However, when entry is made to the routine at
location CD3IOO, a SLIP match occurs and an SVC dump is scheduled.
Information in the SVC dump allows the debugger to determine the validity of
the parameter data.

Example 6: Match on Successful Branch

Problem: The debugger needs a "branch trace" of the ~nstruction path taken
through module MODOI starting at offset X'I08' through X'4FC' during the
execution of the JOBX.

Action: GTF must be active with the GTF trace option SLIP and MODE = EXT
specified in order to collect the GTF SLIP trace records in an external data set.
The debugger sets the following SLIP trap:

SLIP SET,SB,ENABLE,ID=PERl,ACTION=TRACE,
LPAMOD=(MODOl,108,4FC),JOBNAME=JOBX,
MATCHLIM=20,END

Result: When 20 successful branch events have occurred during the execution of
MODal when JOBX is in control, the trap is automatically disabled because
MATCHLIM = 20. T)1e collected GTF SLIP standard trace records may be
printed by the debugger via the EDIT function of the AMDPRDMP service aid.

Example 7: Match on Successful Branch

Problem: For Example 6, if the debugger wants to collect the GTF SLIP
standard trace records in GTF's address space and obtain these records as a part
of an SVC dump, then GTF must be active with GTF trace option SLIP and
MODE = INT specified.

Action: The debugger sets the following SLIP trap:

SLIP SET,SB,ENABLE,ACTION=TRDUMP,
LPAMOD=(MODOl,108,4FC),JOBNAME=JOBX,
MATCHLIM=20,END

Result: When 20 successful branch events have occurred in the range of addresses
from 108 to 4FC in MODO! while JOBX is in control, an SVC dump is
scheduled. The dump contains the GTF trace buffers (assuming the SDUMP
TRT trace option is in effect). The number of GTF buffers dumped is determined
by the BUF parameter on the GTF START command. Note that if the
CHNGDUMP command has been invoked, then the latest areas defined by
CHNGDUMP are dumped.

2-120 MVS Diagnostic Techniques

Example 8: Match on Instruction Fetch

Problem: The debugger needs to collect specific data (as a part of a summary
dump) when the instruction at offset X'200' in MOD02 is executed in ASID 27.

Action: The debugger sets the following trap:

SLIP SET,IF,ENABLE,ACTION=SVCD,
LPAMOD=(MOD02,200) ,ASID=(27),
SUMLIST=(2R%%,2R%%+DCF,4R%%+28,4R%%+lC9) ,
SDATA=SUMDUMP,MATCHLIM=l,END

Result: When the instruction at offset X'200' in module MOD02 is executed in
ASID 27, the selected data (specified on SUM LIST) is gathered. Control will
resume at the next sequential instruction after the point of interrupt.
Additionally, the trap is disabled after a single match occurs because
MATCH LIM = 1.

Note: To obtain the same data, the SUMLIST keyword could have been
specified as:

SUMLIST=(2R%%,+DCF,4R%%+28,+lC9),

Example 9: Match on Program Check

Problem: The debugger wishes to take a dump of the current private region when
an OC7 program check occurs during task mode processing in module MOD03.

Action: The debugger sets the following SLIP trap:

SLIP SET,ENABLE,ERRTYP=PROG,ACTION=SVCD,
COMP=OC7,PVTMOD=MOD03,MODE=TCB,
SDATA=RGN,END

Result: When the OC7 program check occurs in TCB mode, the trap matches and
an SVC dump is scheduled. Normal recovery processing then takes place.

Example 10: Match on Completion Code

Problem: The debugger wishes to take an SVC dump when a 806 completion
code occurs for a job TEST99 when program PGM5 is in control.

Action: The debugger sets the following trap:

SLIP SET,ENABLE,COMP=806,ACTION=SVCD,
JOBNAME=TEST99,JSPGM=PGM5,END

Result: When the job step that executes program PGM5 of job TEST99 is
abended with a completion code of 806, the trap matches and an SVC dump is
scheduled.

Section 2. Important Considerations Unique to MVS 2-121

Example 11: Match on SVC Error

Problem: The debugger wishes to f'>rce the system into a wait state when an SVC
error occurs in job TEST98 to take a stand-alone dump.

Action: The debugger sets the following trap:

SLIP SET,ENABLE,ERRTYP=SVCERR,ACTION=WAIT,
JOBNAME='l'EST98 , END

Result: When job TEST98 encounters an SVC error, all processors in the system
are put into the wait state. The operator may then initiate a Stand-alone dump
(SADMP).

Example 12: Mat~h on Data

Problem: The debugger wishes to force entry into recovery processing for LPA
module MODX when MODX is processing a specified input (X'0105').

Action: The debugger sets the following SLIP trap but does not start GTF:

SLIP SET,IF,ENABLE,ACTION=(TRACE,RECOVERY),
LPAMOD=(MODX,16) ,DATA=(lR%,EQ,OlOS),
MATCHLIM=l,END

Result: When the input parameter pointed to by general purpose register 1 is
equal to X'0105', the trap matches and the SLIP processor forces the recovery
path to be taken. Because GTF is not active, no trace record is written. The trap
is then disabled because MATCH LIM = 1.

Example 13: Match on Storage Alteration

Problem: The ·debugger wants to monitor a common storage location in a
production system for alteration to X'FIF2F3F4'.

Action: To keep the trap overhead to a minimum, the debugger specifies the
JOBNAME and ASID keywords. Also, because the trap is being set on a
production system, the PRCNTLIM keyword is specified to prevent the
trap from using more than 200/0 of the available system processing time. The
debugger sets the following trap:

SLIP SET,SA,ENABLE,ACTION=SVCD,
ASID=(7,9),JOBNAME=JOBX,
RANGE=(CD3100,CD3103),
DATA=(CD3100,EQ,FIF2F3F4),
PRCNTLIM=20,END

Result: When the specified area is altered by JOBX in ASID 7 or 9 and the
pattern of data is X'FIF2F3F4', then the trap matches and an SVC dump is
scheduled. The processing time used by the PER interrupts is being monitored
and if the time exceeds 20%) of the available system time, the trap is disabled and
the debugger is notified.

2-122 MVS Diagnostic Techniques

Example 14: Match on Instruction Fetch

Problem: The debugger wants to monitor a range of instruction addresses in LPA
module MODX but ignore instructions that form an iterative loop within a subset
of this range.

Action: The debugger sets the following traps:

SLIP SET,IF,DISABLE,ID=TRP1,ACTION=TRACE,
LPAMOD=(MODX,110,lFB),JOBNAME=JOB1,
TRDATA=(STD,REGS),MATCHLIM=500,END

SLIP SET,IF,DISABLED,ID=TRP2,ACTION=IGNORE,
LPAMOD=(MODX,lC4,lD7),END

Then the debugger issues the following SLIP commands:

SLIP MOD,ENABLE,ID=TRP2
SLIP MOD,ENABLE,ID=TRPl

Result: PER interrupts are taken for each instruction that is executed within the
range specified on trap TRPl, but those interrupts that fall within the range
specified. on trap TRP2 are ignored. Therefore, tracing occurs in MODX for
those instructions that fall in the ranges of X'llO' to X'IC3' and X'ID8' to
X' 1 FB'. Note that the IGNORE trap must be defined after the non-IGNORE
trap because the traps are processed for match tests in last-in-first-out order.

Note: The use of IGNORE traps with non-IGNORE PER traps effectively
allows you to discard selected events that occur in one or more subsets of the
monitored range. Be aware that PER interrupts occur within the ignored ranges
and cause system degradation.

Example 15: Match on Instruction Fetch

Problem: The debugger wants to force the system into a wait state when JOBI
executes in address space 5, 7, or 10 within a given address range.

Action: The debugger sets the following trap:

SLIP SET, IF,ENABLE, ID=PNKl,ACTION=WAIT,MODE= (HOME) ,
JOBNAME=JOB1,ASID=(5,7,lO),RANGE=(E300,EOOO),END

Result: When job JOBI starts in address space 5, 7, or 10, and an instruction is
fetched within the specified address range, then the trap matches and the system is
put in a wait state.

Note: Because MODE = HOME was specified, if job JOBI starts in address
space 5, issues a program call to address space 7, and then an instruction is
fetched within the specified address range, the trap will not match.

Section 2. Important Considerations Unique to MVS 2-123

Example of SLIP Command From TSO Terminal

The following example shows the use of the SLIP command from a TSO terminal
and the prompting that can occur.

Problem: A debugger suspects that a module is being passed an improper
parameter list that causes the module ISTAPCll to abend during job APPLEI.
By the time the abend occurs, all evidence of the cause has been eliminated by
recovery processing. A history of the caller's parameter list can be obtained by
using the SLIP IF PER function with ACTION = TRDUMP.

Action: The debugger issues the following commands:

tso user:

system:

tso user:

system:

tso user:

system:

tso user:

system:

tso user:

system:

system:

system:

tso user:

OPERATOR

OPERATOR

slip set,if,enable,id =perl,action = trdump,
jobname = apple I ,lpamod = (sstapc 11,16),
trdata = (std,regs, lr%, Ir% + 32),
matchlim = 5,end

IEE736D SLIP ID=PERI,SSTAPCll IS NOT IN THE LPA.
ENTER KEYWORD, NULL LINE, OR 'CANCEL'

lpamod = (istapcll,16)

IEE727I SLIP TRAP ID = PERI SET BUT GTF IS NOT ACTIVE

send 'please start gtf with mode = int and trace = slip and notify me when done'

OPER GTF IS ACTIVE

send 'please start apple 1 '

IEA992I SLIP TRAP ID = PER 1 MATCHED

IEA4111 SLIP TRAP ID=PERI DISABLED FOR MATCH LIM

IEA911A COMPLETE DUMP ON SYS1.DUMPOI TSO USE RID (DI0XYZl)

send 'please stop gtr

Result: The dump has been taken. The debugger may now want to copy the
dump to another data set, clear the SYS1.DUMPOl data set, and obtain a
hardcopy of the dump. This additional processing can be accomplished from the
TSO terminal by using TSO commands to execute the print dump
(AMDPRDMP) program.

Note: You may want to establish a cataloged procedure to invoke GTF. This
procedure could specify all of the desired GTF options and keywords for using
GTF with the SLIP command. Using such a procedure would allow you (when
working from a TSO terminal) to pass only the name of the procedure to be
started to the operator instead of the GTF parameters as shown in the example.
This reduces the burden on the operator and is more effective when
communicating with the operator.

2-124 MVS Diagnostic Techniques

Designing an Effective SLIP Trap

Controlling SLIP Traps

The design of a SLIP trap requires knowledge of the error conditions and what
makes the error unique. An effective trap should catch only the intended error.
To do this, the description should be as specific as possible.

Note that SLIP does not detect any events that occur while running in
TRASMODE mode. (Control register I points to the segment table origin for an
address space other than the current address space.)

The best way to design a trap is from a dump of the error. In the case of the
NODUMP action, a dump should be available. In other cases, an approximate
dump (one taken near the time of the error) or one without sufficient information
to debug might be available.

It should be understood that for error events (non-PER traps), SLIP operates as a
subroutine within the RTM. SLIP is called from either RTMI or RTM2,
depending on whether the error environment allowed FRR or only EST AE
recovery respectively. The level of RTM in control affects the data areas
available. The calls to SLIP are prior to calls to any error recovery routine,
therefore it is possible that the data areas contained in a dump may have been
changed since SLIP examined them. This is especially true of the COMP
keyword value. Many recovery routines change the abend completion code to
make it more specific. For example, a system service that receives a bad address
from a user parameter list will get an OC4 which it converts to its own completion
code meaning a bad parameter list.

This topic describes how the MA TCHLIM and PRCNTLIM keywords are used
to limit the system resources that a SLIP trap is allowed to use. Also, for PER
traps, it includes some performance hints.

MA TCHLIM Keyword

The MATCHLIM (match limit) keyword provides a way to set an upper limit on
the number of times that a trap is allowed to match. This keyword can be
specified to ensure that resources are not used unnecessarily (for example, using
dump data sets when ACTION = SVCD is chosen) or to remove the overhead
associated with a PER trap as soon as possible.

The MATCHLIM keyword should always be specified for enabled traps that are
unattended in order to avoid undesirable results, such as filling several dump data
sets for multiple occurrences of the same error.

If MATCHLIM is not specified on a trap, there is no limit to the number of
times the trap can match. However, if MATCHLIM is not specified on a PER
trap with ACTION = SVCD, the trap is disabled after one match.

If a MATCHLIM value has been specified for a trap, you can tell if the trap is
matching and approaching the limit set by displaying the trap via the DISPLAY
command.

Section 2. Important Considerations Unique to MVS 2-125

When the MATCHLIM keyword is used on an IGNORE type trap, it can
provide the effect of ignoring a specified number of events before an action is
taken by the associated non-IGNORE trap.

PRCNTLIM Keyword

The PRCNTLIM (percent limit) keyword provides a way to set a limit on the
amount of system time that is committed to processing on behalf of a PER trap.
The percentage of time that is computed is based on the amount of time spent
processing PER interrupts and space switch interrupts (as compared to the
amount of time elapsed since the first PER interrupt for the trap). The
percentage that is computed is related only to software processing and does not
include any PER hardware processing. The percentage is computed each time
that a PER interrupt is processed and is compared to the percent limit specified
on the PRCNTLIMkeyword.

Percent limit checking is not performed for the first 33 seconds (approximately)
after the first interrupt is taken for the trap. This avoids a high initial percentage
which might disable the trap immediately.

The accuracy of the percent limit calculation is affected by the instructions that
are executed on behalf of the PER interrupt and space switch interrupt but are
not included in the calculation. These instructions include:

• instructions that are executed before the first timestamp is taken. (For
example, instructions in the program check first level interrupt handler.)

• instructions'that are executed after the last timestamp is taken. (For example,
the percent limit calculation itself.)

• instructions that are indirectly related to the PER interrupt. (For example,
instructions used for PER trap messages.)

Because these instructions are not accounted for in the percent limit calculation,
the accuracy of the calculation may vary between different traps. For example, if
there are many very explicit traps to be checked and one of them takes an action,
the large number of instructions executed between the timestamps taken will result
in a fairly accurate percentage calculation even though some instructions were not
accounted for in the calculation. Conversely, if there is one very simple trap that
does not match, the instructions that are not accounted for in the calculation
represent a large portion of the instructions executed and their exclusion makes
the percentage calculation more inaccurate.

Also, the percentage calculation is affected because the calculated percentage is
truncated to an integer.

If you have any' doubt as to whether or not a PER trap will work properly in a
system, a conservative value (such as the default PRCNTLIM = 10) should be
chosen. Thus, if the trap should consume large amounts of processing, it will be
quickly disabled. After approximately 33 seconds, you can display the PER trap
(via the DISPLAY command) and obtain the current system percent utilization by
the trap.

2-126 MVS Diagnostic Techniques

Placement of PER Traps

Specifying PRCNTLIM = 99 indicates that percent limit checking is not to be
performed. It is intended for non-critical environments (such as testing) and
certain special situations (see the ACTION = WAIT option). In general, all
non-IGNORE PER traps should have a reasonable value specified for percent
limit.

Performance Hints For PER Traps

For PER traps, you can minimize system performance degradation by:

• Choosing values for the RANGE and LPAMOD keywords which will reduce
the range of storage that is monitored by the PER hardware. This will avoid
unnecessary PER interrupt processing.

• Specifying the ASID and/or JOBNAME event qualifier keywords to avoid
having PER active in all address spaces in the system. When ASID and/or
JOBNAME is specified, PER monitoring is set up in only the requested
address spaces. Performance degradation due to PER monitoring occurs only
when the requested address spaces are in control. Also, when
MODE = HOME is specified, PER monitoring is set up only when the unit of
work is executing in the home address space.

The PER support provided by SLIP is designed to be non-disruptive at the
possible expense of not collecting data or performing a user requested action.
Several aspects of this non-disruptive characteristic are discussed in this topic:

Certain parts of the system cannot tolerate PER interrupts. For those parts, the
PSW PER bit is set off to prevent interrupts. Most notably, the PER bit is set off
in the program check, machine check and restart new PSW s. PER remains off in
such critical paths until processing reaches a point where a PER interrupt is
considered "safe." For example, if a SLIP IF PER trap is set on for the first
instruction in the program check FLIH, no PER interrupts would occur and the
trap would not match. Note, however, that you are not prevented from setting
such a trap.

Some PER interrupts that occur are not always processed by the SLIP processor.
The SLIP processor ignores (that is, does not process) PER interrupts if the
interrupt:

• occurred while DAT was off (PER support for SLIP applies only to virtual
addresses).

• is redundant. (Refer to 8/370 Principles of Operation for a description of
redundant PER interrupts.)

• occurred while an enabled non-IGNORE PER trap does not exist. Note that
this implies that PER interrupts caused by a non-SLIP tool which has set up
the PER control registers is ignored by SLIP and the PER bit is turned off by
SLIP in the resume PSW before returning to the program check FLIH.

Section 2. Important Considerations Unique to MVS 2-127

Because the SLIP processor uses certain system services, SLIP is sensitive to the
recursive use of those services where a recursive entry could cause an error.
Recursive calls to a function may occur in one of two ways; either directly or
indirectly. A direct recursion is the result of placing a PER trap in a function and
then causing SLIP to use that function. For example, suppose a SLIP trap is
placed in GTF entry code· and the action specified is TRACE. If the trap
matched and SLIP tried to take the action, a GTF trace record would not be
written because of the recursive checks within GTF. A similar situation exists
with other tracing actions, dump actions, and wait. In general, direct recursions
result in the action not being taken. Such direct recursions can be avoided by the
appropriate choice of another SLIP action. Note that you are not prevented from
setting a trap that can cause a direct recursion.

Indirect recursions are a result of a PER interrupt occurring in a system service
that is called by a service that SLIP uses. For example, suppose a PER interrupt
occurred in the lock manager, the non-IGNORE PER trap matched and the
action was SVCD with a summary dump requested. To produce a summary
dump, SVC dump calls the lock manager to obtain certain locks. If the recursive
call to the lock manager is allowed, an error could result due to information being
overlaid because of the recursive call. In this case, SLIP suppresses the summary
portion of the SVC dump to avoid the recursive call to the lock manager. A
similar situation can occur if a PER interrupt occurred in code where the
SALLOC lock is held (for example, in an RSM module) and a summary dump is
requested (thus causing RSM to be recursively entered). In this situation also, the
summary dump is suppressed. For both of these situations, the debugging
information in the SDUMP 4K buffer and the asynchronous portion of the dump
are available for debugging.

PER Monitoring and Checkpoint/Restart

For PER monitoring, specific PER support is not included in the
checkpoint/restart function. Therefore, two possibilities exist for a checkpointed
program.

Case 1. A program is running in an address space that has not been selected for PER monitoring and
the program is checkpointed.

Case 2. A program is running in an address space that has been selected for PER monitoring and the
program is checkpointed.

These two cases could result in one of three conditions when the checkpointed
program is restarted.

• In Case 1, if the program is restarted in an address space that has been
selected for PER monitoring, the restarted program is not monitored.

• In Case 2, if the program is restarted in an address space that has not been
selected for PER monitoring, but other address spaces are being monitored,
unwanted PER interrupts may occur (depending on the PER control register
settings). If unwanted PER interrupts occur in the restarted program, the
PSW PER bit is turned off in the restarted program. This may eventually
remove all possible degradation due to the unwanted PER interrupts from the
restarted program.

2-128 MVS Diagnostic Techniques

• In Case 2, if the program is restarted and PER monitoring is not active in the
system (that is, control register nine is zero), the system may suffer some
degradation due to the PSW PER bit being on in the restarted program as the
restarted program is running.

SLIP Command Keyword Summary

Figure 2-17 is a summary of the SLIP command keywords. The keywords are
shown across the top of the figure and are grouped by the function that they
perform.. For each keyword, a brief description is given for the use of the
keyword, the valid options, required and default options, restrictions, comments
and other information.

Section 2. Important Considerations Unique to MVS 2-129

tv ~ "",r I (JQ SLIP Control Keywords Trap Type Keywords Trap Control Keywords Specialized Keywords - = w ...
SET DEL MOD IF SB SA ENABLE DISABLE 10 END DEBUG

0 f'D

• PER I Sui • PE~ trap Oele18 one or more PER E nabl, or disable one or Set an I nSlrU(;tlon fetch Set a successful branch Set a storage alte,atlon Enable 8 PER trap Disable I PER trap. Provide an idlntifier for Indicate, the trap C the GTF SLIP
N trapl. : nor. PE R traps PER trap. PER trap PER trap • PEA trap. definition i, compl •••. DEBUG retord to be

~
I I i wriuen when the trap ,....

ilchecked.

<:: ~-+---
.- i ~'on'-P<R I S.t a no,,·PER "III> O .. ,te one or more Enable or disable one or Eanble a non-PEA Di,able • non-PER Provide an identifi" for I odicltlS the "ap C tho GTF SLIP

til -C non·PER trap •. more non-PER traps, trap • non-PEA trap. definition il complet •. DEBUG record to be

t:l = writt.n when the trap ... il checked .

j;.)' -0Cl /Valid ",CTION JSPGM ALL ALL ACTION MODE Samea.IF. ACTION MATCH LIM Four-character identifier. - --

=
,....

Options ADDRESS LIST 10 DISABLE ASID PRCNTLIM ADDRESS MODE

0 e ASID LPAMOD ENABLE ASIDLST RANGE ASID PRCNTLIM

VJ I ASIDLST MATCHLIM 10 DATA SDATA ASIDLST PVTMOD ~

I
ASIDSA MODE DEBUG SUMLIST ASIDSA RANGE (S.

~ COMP PRCNTLIM DISABLE TRDATA DATA SDATA

~ DATA PVTMOD ENABLE OEBUG SUMLIST

~ DEBUG RANGE END DISABLE TRDATA
(1) DISABLE RBLeVEL 10 ENABLE
0 rJJ ENABLE SA JOBNAME END
t:r'

~
ENO se JSPGM 10 e. ERRTYP SDATA LIST JOBNAME ... SUMLIST LPAMOD ..0 -C IF., JSPGM

s:: 10.
TRDATA MATCH LIM LIST

f'D ~ JOBNAME LPAMOD
VJ e

Required END 10 orALL ID or ALL, and RANGE or LPAMOO RANGE or LPAMOD RANGE (unla .. a ENABLE Or DISABLE ACTION-IGNORE i. a specified)

= O.fluh ENABLE, I --- I System ..,ppliod. :I
c::>. A':TlON' SVCD, and

RBLEVEI."EQROR
rJJ
= Restric- MUll follow SLIP 1 Must follow SLIP. 1 Must follOW SLIP 1 Must follow SET, I MUll follow SET. I Must f"now SET.

1 1- - - 1- -- J Specify at end of the

a lion I command

a t:=-. 1- -- 1 --- 1 Qualify IN'';' ASIO. and/or I Sama •• IF I Same as IF. I Only one non· IGNORE ./- _. - I Supplied by .ystam if not / UN with SET. GTF must be activl

= MenU I JOB~kME (0 minimize PEA trap may be enabled specified on SET. end with the SLIP ... performance degradation. option ChOM"
~

'I Mifliml:m
Value

Maximum
Value

Spec i.' ALL .ndicI ... all SLIP ALL indicales all SLIP
\',Iue trIP' Irapl.

r--- - f---
1 --- 1- -- 1 - --Abbr ia- EN 10

tio.,

example SLIP SET, I SLIP DEL, SLIP MOD, I SLiPSET,IF, I SLIP SET, SB,. I SLIP SET. SA ... SLIP ,EN, . I SLIP .. , D, I ID-TRPI I SLIP SET, . , . ,END I DeeUG

:!1 IJQ.
I:
t2 ~

" Trap Event Qualifier Keywords
,
" ADDRESS ASID ASIDSA COMP DATA ERRTYP JOBNAME JSPGM LPAMOD MODE PVTMOD ~

w
I

1-1
-..l

PER forSA,lfPKi'inth. SpKi'in the ASIO, Specifies the ASIO$ SpKifies condition of Specifi.s the lob $pecifiH the lob For IF and SI. definel.he Specihn IV""" mode ::!~. t=~:t::,-:..l Co edck ... ' oflhe
C_ ... _ .. llobo (addr,,, spaces) in which I1or.or,qi.te" to be monito,Nt "IP program " .. n. range 10 be monitored

instruction that mull monitored. the storage being altered tha' mUlt be In conuol For SA. JPKlfin the LPA 1101 ' •• ion.
ceu .. ,he 1t00agi resides. module tha. must cauSf the
"'.ntion. lIor te'ltton

I" -~ Non-PER ISpeciliesl"'_,_ Specilies, ... ASID, if ... u., or system Specifies conditton of Speci.'" IYltem·detKted Speci' ... th. lob thlt mull SpecI'Wi thl lob step Speciliesl'" LPA Specifi.s system mode Specifies prN-lt. modul. I"
Ih .. must be in contrliJl C_ ... _I,hllmu" compIltion code. Itorlllor rqi,ter •. error type. be in conlrol wh.n the Pfotr.-n Mme that mUI' modul. th" must be in thM mutt be in control
when lhe error OCCUR. be in control when the be In control when the cont,oI when the ."01 when the errOl occun

::l
w

I"

~,~, I::':.:' 1- -- 1- -- I~,; .. '::= I 0 .. , IIddr.I R_lter ABEND Any Vllid iem name, Any veltd job step N_ ALL TCI N_ I'
Indi ... I_ ... OAT TSO 10. or Itlrted ,.k p'oeremneme Stilt dilPlKement DIS TYP' Stondi c_'

e
""" 1M
~

MACH EnddiipllCement GLOC Encldilpl_,
Oporllor - EO. NE. LT. MEMTERM GLDCSD Witll
GT.NG.Nl. PGIO GLOCSP ANY or

PROG HOME
EVERY

REST
SVCERR LLOC

LOCK
PKEY

00
~

=a

pp

RECV
SKEY
SRB
SUPER

i .,
SUPA 11

Requited N_ N l~
011 ... 11 Ent.,. module. ANY IiI EVERY II nol Eotl,._10 I'

apecitied wi. en option). .11
1:1 =- R.luit for PER tr_. SA only Mooi....,.. 0116 ASlD, ... RECV C8nnot be .. itild fo<PERtr_.SAonIy:I'

lionl
St ... __ muIlbo_

be_iliad 10< • PER tr If ALL is

VJ
I

g -0'

than or equ .. to end specified for • PEA trap.

11 -... RECV i, not indudod. I
Com· ISpecify .irtuol_,_ Limitl PER monitori", $pteify u .. , code .. Logictli "or" if mor. th.,. Limi'l PER monito,ing to Specify d~lCement in HOME i. nOI included I Specify di .. I_, in I'

inhe .. decimel. to "'" ASIDI _iliad. four ~imel dilih. one e"or " IPKified. th. ASIO of the job hexedec.mel when ALL il specified. If h •• edlCimli.
SpKily",,,- .. HOME il specifitd, the
.......... MIocimal_ ... unit of work mUll be

eJCKUting in HOME even
.f ANY '1 8110 specified.

Minimum 0
Valu.

= !'-l
Mpimum OOffffff Instel •• ,ton·drlfined Muimum of 16 ASIOs UWfto, Fff.
Voluo IASVTMAXUI. can be specified.

Special • meent don', cere. ALL - indic:atnIII ¥llid EVERY -IoIiCII -~
0 ...

Valu. optionl. ANY -I or ..
All-III_

Abbrevia· AD AS ASA DA ER .IS
'ion

; E..-. AD· 1200.3001 AS·C 12AI ASA-15.S.3.HASIDI C,_ OA·C2R.EO.OOI ER-IOATI J'MYJOB .IS·lfOXOO L-MYMOD2 M-IGlOCI '-MYMOOI

= -(')
0
~ g:
fa -0'
= fIJ

c:
= .E'
R
0
t:
<
VJ

N
I

"'""" W

"'"""

N
~_continucd)
..

""
Action Trace I ,
Keyword Dump Tailoring Keywords Tailoring Automatic Control Keywords ~

W "\
ACTION ASIDLST LIST SDATA SUMLIST TRDATA MATCH LIM PRCNTLIM

~ N RANGE RBlEVEL

" $pKlh .. the rlnee of
PER Specifies the actiun to be Spoc:ifi .. the ASIO, Specifl .. I 1111 of 1I0,ago Speci'i .. the IVnlm Specifie. I lilla' 110'. Specifi" thl IVPllnd Specj'i .. the m'Jumum Speclfi .. Ihl ml.lmum

'lak~n when the trap laddre .. ",acesl,~ b. 'Ingel to be included inform.tion to be rlngel to be included conlin, of 'hi GTF numbir of tim •• thll IMounl of IYIIIM ,Iml edeI,."" to be J11onltorld. matches dumped. in the dump. included in the dump. in the lummary dump. ,.cordi to be collected. 'hi trIP 'In match. Ihlt PER p,oc",lng

~ IlIlIowed.

< ~
r-

Non·PER Specifi81 the Ittion to be Spacifie, 'hi ASIO, Spaclfl .. 1 1111 of 110'l1li Spacifl .. Ihl Iyllom Spaclfl" I lill of 110'l1li Specifi .. 'hI typo and Speci'i .. thl ml)timum
~ ~

Sp.cifi" thl tourc. RS
llk,n when thl trap ladd,"" ","III 10 be ,.ngll to be included inform •• lon to be ,.nges to b. included In cont,nl of the GTF number at times thlt

~ for th. ree.u.n and
matches. dumped. in Ihldump. Included in 'hI dump. thl summlry dump, teco,ds to be c:olltcted, thl trIP Cln mltch

PSW at Ihl tim. of ."0'.
Vllid IGNORE H .. adlCimoi ASID Vllul, 10IClmollnlllll" S' l.

Di'"Clldd""PI"S, ALLPSA OI'ICI add,"" Pli", Di,IC' add,", pII", Oacimll inlllll"
Option. NOOUMP Indl,acl add, ... pII". eSA Indl,ac' Idd" .. PII". Indl,ec, add,"" pli", (JQ

.. 5,"n add,," ~RROR RECOVERY GR5D ::s End add,t •• NOTSYRB SVCO LPA REGS
0 PREVIOUS TRACE LSQA STD
C/.I TROUMP NOALLPSA/NOALL 0", WAIT
(') NOSDA

~
NOSUMOUMP/NOSUM
NUC

~ PSA
RGN

[SDA
SUMOUMP/SUM

.0 SWA

c:: TRT

G ---C/.I ,,' Requi,ed -
~ Stan add, ... O,faul, SVCO Fo, ACTlON·SVCO, 1- -- I STa II -for PER trIPS with 110

.. SOATA-IALLPSA. CSA. ACTION-IIVCO specitiad
ERROR LPA. NUC. RON. SOA. 0' detlUlted. , SUMaUMP. TRll.

.. For SA PER trlPl. canno'
Fo, ACTION-TROUMP.
SDATA-TIIT.

bI IPfClfild wit"

"I
ACTION-IGNORE. RUbie WAIT - not Ivailabla to 5pacify I maximum of SIII1 110'. rongo add,"" ACTION-SVCO 0' SlIn 110'l1li rongo add,,,, I ACTtON-TIIACE or I --- I Appll" 10 non-IG,NORE

tions TSOuII'. 16 AStO,. mu.t bllllI than or equll ACTION-TIIOUMP mUI' mul' be I han Of _"I ACTtON-TRaUMP mUI' PEIlIt .. oniV.

'- I Spec~ry Ytnual add,tlH. Applift to unlocked talk
RECOVERY .. PER ''''PI ACTlCN·'SVCD Of 10 Ind 110"111 "ngo be opacifiad 0' def..,llld, 10 Ind 110'l1li "nlll be opaclflad.
only. ACTION'· TRDUMP mull addr add,,,,,

in h._edlcimal, Stan mode ,,,or. only.
bo ifiad 0' defaultad. ACTION-SVCO 0' SUMOUMP/SUM mull too MId, ... M.V be orWIf

"'In thalt. Or ,qual ACTION-TROUMP mUI' opacified 0' defaul,ad.

to end add, ... be opaclfiad or def..,illd, 4CTtON'SVCO Of

ACTION-TRDUMP mull .,.
be _ifiad 0' dofaullld.

.. 0

~ Com· ChOOIl only one oPlion - CHNGOUMP 1I"lnlllltl

'""-""'''.
.. OOFFFFFF .'COP' RECOVERY which ovlrrlddln whln SOA T A m .. imum. STO UIII 120

mUll be _if led wilh on. il",aclflad I .. cop, fo, byl", REGS UN' e.

"- o' th. other optionl, NOOUMP opllon). byl ... GTF mUll be

" ICllve willi 'hI SLIP
op.ion.

~ . -;;;;;;;;;;;;-
.. RA R. VelUIt

"\ -;;:;;;;;; - _. - Inllolllllon·definad Tew. Til ; RA-I800.7001 RI·NOTSYR. Voluo IASVTMAXUI,

" $paclol 0- indicatn the curtlnt STO - IIlnd1td 'ICOrd I --- I"·· nocllecklngl.
VoIUI ASIO. Information. pe,fo,mod

Figure 2-17 (part 2 of 3). SLIP Command Summary IIEGI - '1fIiI11".

Abb,ovi. A AL LS SO SL TO
TML l'L lion

hornpil ACTION-CTRACEI ASIDLSY-IO.I.LLOC.P) LIST-IH.200.300. SOATA·IIOA.NUC) SUMLISY-IS.<IOO,IOO. TROATA-CSTO.AEGS. 1 MATCHLIM-40 1 PRCNTLIM-2O
2""".+20) 2""".+201 2O.30,2fI".+401

Figure 2-17 (Part 3 of 3)_ SLIP Command Swiunuy

System Stop Routine

On occasion it is necessary to stop the system and take a stand-alone dump to
fully document a problem. Loading a wait state PSW is sufficient on a
uniprocessor. Stopping only one processor on an MP system is not adequate.
This routine will stop an MVS MP or UP system. The caller must be supervisor
state and key zero. The wait state code you wish displayed is placed at location
X'762'. This trap also moves the wait state PSW to storage location zero and
loads the· PSW from there to prevent inadvertent restarts when the trap is hit.

NAME
VER
REP
REP
REP
REP
REP
REP
REP
REP
REP
REP
REP
REP
REP
REP
REP
REP
REP
REP
REP
REP
REP
REP
REP
REP

IEANUCOl
0700
0700
0704
0708
070C
0710
0714
0718
071C
0720
0724
0728
072C
0730
0732
0736
073A
073E
0744
0748
074C
0750
0756
07SC
0764

IEAVFXOO
41F'00'
ACFC075A
B6000764
94EF0764
B7000764
9OOF0764
58FOOOI0
58EOF294
91COE008
47E00750
41200000
41300001
48400204
1244
47700748
AE030009
47600736
D2070000075C
82000000
AE020009
47600748
D2070000075C
82000000,0000
OOOEOOOO,OOOODEAD
OOOOOOOO

DISABLE
STORECRO
TURN OFF PSA PROTECT
RELOADCRO
SAVE REGISTERS
GET CVT POINTER
GET CSD POINTER
TESTIFMP
NO JUST LOAD WAIT PSW
SET REG 2 TO CPU 0
SET REG 3 TO CPU 1
GET CPU ADDRESS
TEST FOR CPU 0
NO, STOP CPU 0 FIRST
YES, STOP CPU 1 FIRST
SPIN TIL CC = 0
MOVE THE WAIT PSW TO ZERO
LOAD WAIT STATE ON CPU 0
SIGP STOP CPU 0
SPIN TIL CC = 0
MOVE THE WAIT PSW TO ZERO
LOAD WAIT STATE ON CPU 1
WAITPSW
SAVE AREA

Note: Extreme care must be used when considering a system alteration in order
to gather additional data about a problem. No superzaps should be applied
before the system programmer has verified the logic being zapped and the trap
logic itself. Remember if anyone location or offset within the module or trap
changes, all offsets and base registers must be verified.

How to Expand tbe Trace Table

To increase the size of the trace table, you may zap module lEA VNIPO at label
NVTTRACE to a greater value. It defaults to X'190' (400 decimal). Do not
exceed a value of X'400' for the size of the trace table; 806-4 and OC4 abends can
occur when the link pack area directory is accessed.

NAME
VER
REP

IEANUCOI IEAVNlPO
3BBO 0190
3BBO XXXX WHERE X IS THE NEW VALUE DESIRED.

Note: Extreme care must be used when considering a system alteration in order
to gather additional data about a problem. No superzaps should be applied
before the system programmer has verified the logic being zapped and the trap
logic itself. Remember if anyone location or offset within the module or trap
changes, all offsets and base registers must be verified.

Section 2. Important Considerations Unique to MVS 2-133

2-134 MVS Diagnostic Techniques

Section 3. Diagnostic Materials Approach

This section provides guidelines for analyzing storage dumps to find which data
areas were affected by the error and to isolate internal symptoms of the problem.

The three chapters in this section are:

• Stand-alone Dumps
• SVC Dumps
• SYSABENDs, SYSMDUMPs, and SYSUDUMPs

Section 3. Diagnostic Materials Approach 3-1

Stand-alone Dumps

The stand..;alone dump provides the problem solver with a larger quantity of data
than system-initiated dumps because it contains areas that belong to the entire
operating system rather than just a single address space or component. One of
the major problems for the analyst is finding the important data fot his problem
and then isolating the problem area. Once this isolation is achieved, the debugger
uses unique system/component techniques to gain further insight into the exact
cause of the problem.

This chapter points out where to look in a stand-alone dump to determine various
problem symptoms. The general approach is to analyze a stand-alone d~p to
find out what the system is doing (or not doing). Important areas will be
described and possible reasons for their current state/contents will be explained.
The analysis starts at the global system level and, by gathering data and gaining
an 'understanding of the environment, works down to the address space and task
level.

The experienced problem solver realizes that under certain conditions it may be
necessary or advantagepus to omit interpreting vanous areas. For example, if
during system operation you observe that a given segment of the segment (such as
VT AM) is not functioning (other areas appear okay - jobs are executing,
SYSIN/SYSOUT is appearing, etc.), you may decide to take a stand-alone dump.
In this case, the current state of the system is probably not important. You
would not be inter~sted in current PSW, registers, etc.; you would be interested
only in the address spaces that are using VT AM and the state of the TP network.
The dump is riot taken for a problem that is "active" ,DOW, but to give you data
with which to determine a problem that appears to have originated some time
ago. The point is that knowing why the dump was' taken will often govern which,
if any, of the stand-alone dump areas are of significance for a' given problem.

Information contained in the chapter on "Waits" in Section 4 can be used as a
supplement to the following discussions. (Also; a step-by-step approach to
analyzing a stand-alone dump is contained in Appendix B of this manual.)

To analyze a stand-alone dump, you should always ask the following questions:

1. Why was the dump taken?

Console sheets/logs are very important in stand-alone dump analysis. They
are often the key to solving "enabled wait" situations and may present
valuable information about system activity prior to taking the dump.
Messages concerning I/O errors, condition code = 3, SVC dumps, abnormal
job terminations, device mounts, etc. should be thoroughly investigated to
determine if they could possibly contribute to the problem you are tracking.

The dump title gives an indication of the problem's external signs or, possibly,
a specific situation that must be investigated, such as "VTAM NOT
FUNCTIONING. "

3-2 MVS Diagnostic Techniques

2. What is the current state 0/ the system?

Examine the available global data areas to determine what the system. is
currently doing. The ~'Global System Analysis" chapter in Section 4 aids in
this process. Remember that at this point, you are gathering information and
trying. to understand the system environment in order to isolate the· internal
symptom; you are not ready yet to debug.

3. Has your global analysis isolated the problem to an internal ~mptom?

If so, refer to the discussion of that symptom in Section 4 of this manual.

4. What previous errors have occurred within the system; could they possibly have
any affect on your current problem?

The interpretation of SYSl.LOGREC and the in-storage LOGREC buffers
are most important in determining error history. See the chapter on ~~Use of
Recovery Work Areas" in Section 2.

5. What is the recent system activity?

The chapter on "MVS Trace Analysis" in Section 2 aids in trace table
interpretation.

6. What is the work status within the system?

Your objective is to determine if the system has for some reason not
completed all scheduled work. Determining what that work is and why it is
not progressing can provide insight into the problem as well as answer some
questions that may have arisen during an earlier analysis. Understanding the
major control block structure and work queue status should aid in
determining the possible source of the error. Refer to the discussion of
~'Work Queues and Address Space Status" in the "Global System Analysis"
chapter of Section 2.

At this point, you should have gathered enough data to have a definition of the
internal problem symptom. You should also have considerable information about
the system's state, error history, and job status. You should refer to the
appropriate chapter in Section 4 '~Symptom Analysis Approach" or, if you have
isolated the error to a component or process, Section 5 or Appendix A,
respectively.

Section 3. Diagnostic Materials Approach 3-3

SVCDmnps

.SVC dumps (invoked by the SDUMP macro) are usually taken as a result of an
entry into a functional recovery routine (FRR) or EST AE routine. The
component recovery routine specifies the addresses that wiU be dumped.

The "Component Analysis" chapters in Section 5 should help you identify what
areas of the system were dumped and what they contain.

Also, "Appendix C: SDUMP Title DIrectory" lists the titles of SVC dumps
initiated by system components and provides diagnostic information for the
modules that issue the SDUMP macro.

SDUMP options SQA, ALLPSA, and SUMDUMP are the defaults for all
requests. The SUMDUMP option of SDUMP provides a summary dump within
an SVC dump. There is a twofold purpose for this. First, since dump requests
from disabled, locked, or SRB-mode routines cannot be handled by SVC dump
immediately, system activity destroys much useful diagnostic data. With
SUM DUMP, copies of selected data areas are saved at the time of the request
and then included in the SVC dump when it is taken. Second, SUMDUMP
provides a means of dumping many predefined data areas simply by specifying
one option.

The data areas saved in SUMDUMP can be printed out by using the
AMDPRDMP control statement SUMDUMP. This summary dump data is not
mixed with the SVC dump because in most cases it is chronologically out of step.
Instead, each data area selected in the summary dump is separately formatted and

, identified.

For information on print dump statements needed to print the summary dump,
and multiple address-space output from SVC dump, see SPL: Service Aids.

The RTM2WA pointed to by the TCB upon whose behalf the dump is being
taken is the most valid system status indicator available. The dump task is
usually the current task; the task upon whose behalf the dump is being taken will
contain a completion code in the TCB completion code field. It is possible for the
EST AE routine to issue SVC D itself, in which case the current task is also the
failing task.

Because of MVS recovery (retry and percolation), the SVC dump may be only
part of the documentation at the problem solver's disposal. The problem solver
should attempt to obtain:

. I. The system log for the time the dump was taken to ascertain if:

• Any other SVC dumps were taken before or after the one he is
investigating.

• Any task subsequently abended. If so, a system dump that displays other
areas of storage that have meaningful data may be available.

3-4 MVS Diagnostic Techniques

2. The LOGREC formatted listing for the time immediately preceding the time
of the SVC dump. If the component analysis procedure fails to determine the
cause of the problem, analyze the dump as you would a stand-alone dump.
Keep in mind that the information obtained via the CPUDATA option on
AMDPRDMP is probably meaningless. Refer to the "Global System
Analysis" chapter in Section 2 for information on how to do a task analysis
of available address-space-related control blocks.

Keep in mind that the system has detected the error and has attempted recovery,
at least on a system basis. Therefore, there will be a good indication of the type
(internal symptom) of error (loop, abend, problem check, etc.) that caused the
problem. (See Section 4, "Symptom Analysis Approach.")

How to Change the Contents of an SVC Dump Issued by an Individual Recovery Routine

At times, SVC dump contents are not sufficient to solve a problem. The most
convenient way to change the contents is the CHNGDUMP command. It can be
used to establish system options to be added to the options on each SDUMP
reque.st, or to totally override the SDUMP options. See "Using the
CHNGDUMP Command" in Section 2. If you do not want to affect all SVC
dumps or if storage lists are involved, you may want to change the parameter list
in a particular EST AE exit instead.

You can usually find the name of the recovery routine by looking at the user data
(or title) on the SVC dump printout. If not, search the ESTAE's PRB for the
virtual address of the SDUMP SVC instruction.

The following description of SDUMP's parameter list can help you decide which
bits will provide the data you want. The SDUMP macro expansion generates the
parameter list and puts the address of the list in register 1.

SDUMP Parameter List

Offset

o 1.
.1.
.. 1.
... 1
.... 1. ..
..... 1..
...... 1.
....... 1

user-supplied DCB =
BUFFER = YES
user-specified STORAGE == or LIST =
user-specified HDR= or HDRAD=
user-specified ECB =
user-specified ASID =
QUIESCE = YES
BRANCH=YES

1... indicates SDUMP (as opposed to SNAP)
.1.. indicates a SYSMDUMP request
.. 1. indicates the MVS/SP level of the SDUMP macro expansion
... 1 user-specified ASIDLIST =
.... 1... user-specified SUMLIST =
..... 1.. ignore the change dump options (used by SLIP)
...... I. dump came from TSO user
....... 1 parameter list applies for MVS/SP

Section 3. Diagnostic Materials Approach 3-5

2
1
.1.
.. 1.
... 1
.... 1.. .
.... .I ..
...... 1.
....... 1

Offset

3
I.
.1
.. 1.
.. .1
.... 1.. .
..... 1..
others

4
8
C
10
14
16
18
IC
20

24

28
I
.1
.. 1.
others

29

2A
I.
.1.
others

2B

2C
1.
others

2D

2E

3-6 MVS Diagnostic Techniques

SDATA options
ALLPSA
PSA
NUC
SQA
LSQA
RGN
LPA
TRT (MVS trace table, master trace table, GTF butTers)

more SDATA options
CSA
SWA
SUMDUMP
NOSUMDUMP
NOALLPSA
NOSQA
reserved

DCB address
address of storage list (STORAGE, LIST, LISTA)
address of header record (HDR, HDRAD)
address of ECB
caller's ASID
target ASID of scheduled dump
address of ASID list (ASIDLST)
address of summary dump storage list (SUMLIST/SUMLSTA)
address ofSYSMDUMP 4K SQA area (or TSO USERID if the
DUMP command was from TSO)
address of SYSMDUMP CSA work area

SDUMP control flags
LIST A option specified
SUMLSTA option specified
SUSPEND = YES option specified
reserved

reserved

TYPE = parameter options
lYPE = XMEM specified
TYPE = XMEME specified
reserved

reserved

exit options
GRSQ data requested
reserved

reserved

reserved

SYSABENDs, SYSMDUMPs; and SYSUDUMPs

SYSABENDs, SYSMDUMPs, and SYSUDUMPs are produced by the system
when a job abnormally terminates and a SYSABEND, SYSMDUMP, or
SYSUDUMP DD statement was included in the JCL for the terminating step. In
an MVS system, the output produced is dependent on parameters supplied in the
SYS1.PARMLIB members IEAABDOO, IEADMROO, and IEADMPOO for
SYSABENDs, SYSMDUMPs, and SYSUDUMPs, respectively. See SPL:
Initialization and Tuning Guide for the IBM-supplied defaults and options that are
available.

If the IBM defaults are used, a hexadecimal dump Qf LSQA is produced when the
SYSABEND DD statement is specified. MVS systems do not dump the nucleus
or SQA as a default for SYSABEND or SYSUDUMPs. SYSMDUMP defaults
include NUC and SQA.

With a SYSABEND, SYSMDUMP, or SYSUDUMP, the system has detected the
error and therefore provided a starting point (such as a job step completion code)
for analysis. The analyst should always look at the JCL and allocation messages
that accompany the dump. The allocation messages contain error messages that
can sometimes be helpful. There will also be a JES2 job log that shows the
operator messages and responses that relate to the job. The error messages also
contain valuable information about the error and should always be investigated.

SYSABEND, SYSMDUMP, and SYSUDUMP errors can generally be divided
into two categories: software-detected errors and hardware-detected errors.

Software-Detected Errors

Software-detected errors are those in which one or more of the following occurs:

• A module detects an invalid control block queue.

• A called module returns with a bad return code.

• A program check occurs in system code and a recovery routine changes the
program check to a completion code and abnormally terminates the task.

The best approach for a software-detected error is:

1. Use the JES2 job log and allocation messages to investigate all error messages
produced. (Refer to the appropriate Message manual to determine the causes
and corrective action of each message.)

2. Check the abend code defined in the dump. (Refer to Message Library:
System Codes to determine causes and corrective actions of the code.) Some
abend codes define problem determination areas that can be used to help
define the problem.

3. In the event that sufficient data is not available in the Messages and Codes
manuals to resolve the problem, the analyst can go directly to the program
listing. The diagnostic sections of most PLMs contain a message/module. and

Section 3. Diagnostic Materials Approach 3-7

abend/module cross-reference. Once the correct module has been located, the
program list (supplied in the system microfiche) helps to define the problem.

SYSABENDs, SYSMDUMPs, and SYSUDUMPs normally do not produce
system-related data areas other than those which are formatted. Because of this
and the fact that error recovery will attempt to reconstruct invalid control block
chains before terminating the task, any error that does not occur in the private
area may be difficult to resolve from a SYSABEND, SYSMDUMP, or
SYSUDUMP alone.

Because of the recovery and percolation aspects of MVS, the SYSABEND,
SYSMDUMP, or SYSUDUMP could be the end result of an earlier system error.
If so, the analyst should determine if any LOGREC entries were made pertaining
to this task and if any SVC dumps were taken while this task was running. The
system error is normally reflected in either the LOGREC entries, the dump data
sets, or both.

Hardware-Detected Errors

A hardware-detected error is a program check that is not interrupted by a
recovery routine. This is identified by a system completion code of X'OCx' where
x is the program check type. For this type of error, the analyst needs to know the
address of the module where the program check occurred, and the register
contents when the program check occurred. The best place to locate this
information is in the RTM2W A that is pointed to by the abending TCB.

Given the registers and PSW at the time of the error, the analyst should determine
the module that program checked by using the load list link edit maps of the
program. (If the module is outside the private area, a NUCMAP or LPA map
may be necessary.) Then he should examine the program listing for the module
until the cause of the program check is defined.

3-8 MVS Diagnostic Techniques

Section 4. Symptom Analysis Approach

This section describes how to identify correctly an external symptom, and
provides an analysis procedure for determining what kind of problem is causing
the symptom.

Each external symptom is described in a separate chapter, as follows:

• Waits
• Loops
• TP Problems
• Performance Degradation
• Incorrect Output

Section 4. Symptom Analysis Approach 4-1

Waits

Wait states may be either disabled or enabled. The characteristics of and an
analysis approach for each type are described below.

Note: Be aware that hardware problems, such as waiting on I/O or the timer,
can be the cause of enabled waits. Use the information in these topics if you feel
that the cause of the wait is a software problem.

Characteristics of Disabled Waits

Situations can develop during execution of the MVS system that require the
software to abruptly terminate the. system by loading a disabled PSW with the
wait bit set to 1. In previous systems, this occurred much more frequently than it
does in MVS because, in MVS, many of these situations were removed from the
code and replaced with software error recovery. However, a few cases still remain
that cause this symptom. To understand these situations better, refer to the 'Wait
State Codes' section of Message Library: System Codes.

A more critical situation for the analyst is a disabled wait that is caused when
data areas containing PSWs referenced by the dispatcher, RTM, or hardware are
overlaid and subsequently fetched for use in an LPSW, or for interrupt processing
(interrupt new PSWs). This might occur when a PSA overlay condition exists,
that is, these PSWs have been inadvertently overlaid by a program running in
supervisor state key O. Other data areas, such as PRBs, may contain PSWs used
by the dispatcher and are also potential sources of the disabled wait state.
Loading of bad PSW s are difficult to track down. Low address protection
prevents inadvertent destruction of the PSW s used by the hardware to give
control to the first level interrupt handlers. Bytes 0 through 511 of storage are
protected by low address protection which should eliminate many occurrences of
invalid disabled wait conditions. See "Low Storage Overlays" in Section 2. The
most common MVS uses of the LPSW are:

• hardware loading from low storage for an interruption-processing sequence

• dispatcher loading from fields X'420' and X'468' in the PSA. The PSW
loaded by the dispatcher may have come from an RB or an SSRB.

• RTM (IEAVTRTS) passing control to FRRs

• the system termination routine

• I/O and external FLIH's LPSW to resume task or SRB.

Storage overlays resulting in wait state PSWs are approached in the same manner
as other storage overlays. The important step is to realize the storage overlay has
occurred, then re-create the process that was possibly responsible .. The discussion
of pattern recognition in the chapter "Miscellaneous Debugging Hints" in Section
2 should. be helpful. .

4-2 MVS Diagnostic Techniques

Analysis Approach For Disabled Waits

The following is a list of objectives that provides a systematic approach to
analyzing a disabled wait.

Objectipe 1 - Determine positively that an actual disabled wait condition exists. Is
the PSW the type that is used when MVS loads an explicit wait or is this an
overlaid PSW with the wait bit on?

AlUIlysis - Examine the current PSW contained in the dump according to the
technique described in the chapter "Stand-alone Dumpsn in Section 3. The PSA
overlay should also be analyzed to determine if key PSWs have been overlaid.

If the PSW shows an explicit wait, look up the wait state in Message Library:
System Codes to find what conditions could cause the explicit wait. You may
need to do some extra analyzing before the condition can be related to a
component. (Note: No further analysis for explicit wait situations is discussed in
this book.)

If the PSW suggests an overlaid PSA or some other error source, proceed to
Objective 3; otherwise proceed to Objective 2.

Objecti.e 2 - Determine if the situation has been improperly diagnosed as a
disabled wait. This will eliminate a situation in which the locked console is
diagnosed as a disabled wait.

AJUZlysis - In previous operating systems, the operator's inability to communicate
with the system through the console was an external indication of a disabled wait
condition. In MVS, this same external symptom is often not a true disabled wait.
Console communication is dependent upon other services of the operating system,
such as paging, and the I/O subsystem. A problem in any of these services often
terminates console activity and causes an apparent "disabled wait" situation,
when the PSW does not actually reflect a disabled wait.

If the current PSW is not disabled for external and I/O interrupts or if the wait
bit (X'OOO2') in the PSW is not set to one (PSW = X'070EOOOO 00000000'), you
should proceed to either the "Enabled Wait Analysis" topic later in this chapter
or to the chapter on "Loops" later in this section.

Objecti.e 3 - Once you know that the disabled PSW is the result of an overlay in
low storage or in another data area, you must gather specific data about the
overlay. Ask such questions as: What was the damage to the PSW? When did
the overlay most likely occur? Where did the PSW come from?

AlUIlysis - It is important to try to find out how the PSW was overlaid - was it a
byte, an entire word or doubleword, a single bit, or was a large portion of the
surrounding area destroyed along with the PSW? (The discussion of Pattern
Recognition in the chapter "Miscellaneous Debugging Hintsn in Section 2 will
help you determine this.) Much of this analysis depends on your experience and
familiarity with the normal data for the subject PSW and the surrounding area.
You should try to gather enough data to know, for example, that '''nn bytes were
overlaid beginning at location -Iyz.

Section 4. Symptom Analysis Approach 4-3

Also, examine the trace table, if available, and try to determine when the PSW
was probably last valid. Look for interrupts and unusual conditions in the trace
entries to try to reconstruct the process(es) leading up to the incorrect PSW.

If the trace indicates the overlay occurred after the most recent trace entry, the
registers are important because they may show recent BALs and BALRs and they
may contain the address of a routine or control block that was used to overlay the
subject PSW. This is actually a good situation because it will not take long to
relate the overlay to some bad pointer in a control block and, hopefully, your
analysis will proceed to a specific component.

If the overlay occurred several trace entries earlier, determine a possible save area
that might contain the registers that were active at the time of the overlay by
examining interrupt entries or dispatch entries in the trace table.

If there is no trace table, it is almost impossible to define when the overlay
occurred. You might try to analyze, for example, TCB save areas, hoping for a
clue as to when the overlay occurred and to gather information concerning the
problem. However, this process is basically undefined and undisciplined. In most
cases, a trap for the overlay can be generated at this point and used as soon as
possible.

Objecti,e" - Determine which component most likely caused the overlay and
choose a likely set of modules from that component to analyze at an instruction
level. Determine which data area field contains the bad address and who set up
the field.

AlUIlysis - As mentioned earlier, by using the registers and trace table it is possible
to identify which code actually overlaid the PSW, but the source of the error must
still be found. This mostly involves screening code to reconstruct the path which
caused the overlay and locating the data that generated the bad address. At this
point, YQU want to learn which module set the bad field so you can start
backtracking.

Shortcuts are possible according to the analyst's familiarity with the modules that
are involved. Certainly the main objective should be to decide which component
is most likely responsible and then to proceed to the discussion of that
component's analysis (in Section 5).

Characteristics of ' Enabled Waits

Enabled waits have traditionally been the most difficult problem to analyze
becJuse of the lack of an obvious failure. The enabled wait provides no
indication of error other than that the system apparently has nothing to do. In
fact the enabled wait has been accurately described as an end symptom of a
problem with no obvious causes. The task of determining the possible cause is
left to the debugger. Other types of software failures - abends, program checks,
loops, messages - provide a starting point for analysis; that is, software or
hardware has indicated a violation of interfaces or data integrity and has halted
the erroneous process at the point of error. The enabled wait provides none of
these.

4-4 MVS Diagnostic Techniques

~\
v

Note: The subsystem design of many components includes a dispatching
mechanism and internal control block structure not generally recognized by the
operating system. When these subsystems (for example, VT AM, TeAM, JES2)
malfunction, work through these components is often halted. Because of the
critical nature of these processes, external signs of the problem are often
detectable. Within this debugging discussion, these problems are often treated as
wait states, that is, the system may be capable of running batch work, but the TP
network appears "hung-up." This general discussion of analysis-approach applies
for problems such as "permanently" swapped-out address spaces, TP network
hung, and no batch running. The advantage is that the external symptoms may
allow you to more easily isolate the problem component or at least a starting
point - it may be obvious that TeAM is not responding, or that JES2 is not
processing input.

Experience has shown that in MVS a much greater percentage of re-IPL situations
are caused by enabled waits than in previous systems. One reason for this
characteristic of MVS is software recovery. Software recovery attempts to repair
the damage caused by a failure and allow the system to continue meaningful
operation. The general philosophy of recovery is to isolate the error to a job,
terminate the job, and allow the system to continue. This philosophy dictates that
under certain conditions innocent work may be forcefully terminated.

Software recovery obviously may cause the termination of some critical process
which in tum causes dependent processes to wait indefinitely. For example,
assume that while processing a page-fault, an error occurred during the I/O
interruption processing; software recovery was invoked and subsequently caused a
cleanup of the bad control blocks, but did not post the I/O requestor. It is
possible that the paging mechanism will wait indefinitely for the missing interrupt.
Tills in turn could cause a problem program to wait indefinitely for the paging
operation to complete. The end result is no work accomplished and also no
external problem symptom, although a problem clearly exists. The debugger must
find the bottleneck - the paging exception - and subsequently back-track enough
to determine why the bottleneck still exists. Very often, this back-tracking
requires analysis of several components in order to determine the original cause.

Analysis Approach For Enabled Waits

It is most important that you understand the actions that must take place in· order
to accomplish work in the operating system. This requires a basic understanding
of the key system processes in MVS ~ paging, I/O, dispatching, locking,
WAIT/POST, ENQ/DEQ, VTAM, TeAM, SRM, JES2/3. These areas of the
system are responsible for directing work through MVS; a malfunction in anyone
may cause global system problems. Several, if not all, must be investigated in
order to determine why work is not progressing.

This investigation requires a disciplined approach. The relationships of
component interfaces and their mutual dependencies must be understood. With
this in mind, the debugger should proceed to gather information about the various
processes and try to integrate his findings with his other information and
assumptions about the problem, always trying to isolate one cause of the
bottleneck. He must avoid the tendency to guess, assume, and go off on tangents
once the first irregular item is uncovered. Instead, he should continue to gather
known facts and piece them together in some logical pattern that recreates the
situation.

Section 4. Symptom Analysis Approach 4-5

In the majority of wait state cases, more than one key process will appear
backlogged. The challenge is to determine how these problem processes relate
and which is the fundamental cause of the _ wait situation. After you gather the
facts and understand the bottlenecks, you must answer one question. If I "pull
the cork" on this given bottleneck will all the other intertwined situations resolve
themselves? In every problem there is only one bottleneck for which the answer to
this question is £'yes." The other problems are consequences of this key process's
failure to complete its designed function. Isolating the process is half your battle;
the other half is determining the cause of this one process's failure.

Following is a suggested disciplined approach for the problem solver who is
approaching a system wait problem. The approach involves three distinct stages
of problem analysis:

Stage 1-

Stage 2-

Stage 3-

Preliminary global system understanding, including

• system externals
• current system state
• LOGREC analysis
• trace analysis
• determining the reason for waiting

Key subsystem analysis - an in-depth analysis of the MVS components that are
responsible for accomplishing work.

System analysis - using the information gathered in Stages I and 2 the problem solver
must "step back," get perspective about the known facts by piecing them together in a
logical fashion. and isolate the error to a process, component, module, etc.

This approach is described in detail in the following sections.

Stage 1: Preliminary Global System Analysis

I. System Externals - Completely understand the system externals of the
situation. Console sheets and the system log should be inspected.

• For any enabled wait (operators call it £'system hung") find out if a
display requests command was issued. (Lack of operator action can
cause system bottlenecks.)

• Often many pages of console sheets must be investigated to uncover
operational problems and explain events uncovered in the dump.
Scanning provides a feeling for the events, jobs, requests, etc. leading up
to the problem.

• Make sure all DDR SWAP requests, I/O error messages, SQA shortage
messages, etc. can be explained.

Always take the time to examine these external areas because a small
effort here could save many hours of detailed dump analysis. Do not
overlook obvious items such as a MOUNT PENDING message in the
console log that can cause system problems.

• If an IPL for an alternate nucleus was executed, make sure that the
correct nucleus was specified when responding to message IEAIOIA
.SPECIFY SYSTEM PARAMETERS. Additionally, CVTNUCLS can be
checked to verify that the IPL was for the correct nucleus.

4-6 MVS Diagnostic Techniques

CVTEXT2(CVT + X' 148') points to the CVT extension. CVTNUCLS is
located at offset X'04' in the CVT extension.

2. Current System State - Investigate fully the current situation as depicted by
the dump.

For enabled waits, the PSW should equal X'070EOOOOOOOOOOOO' (often called
the "no-work" wait). The last entry should be the wait or there should be a
considerable recurrence of the no-work wait in the trace table - see the
chapter on "MVS Trace Analysis'~ in Section 2. If this is not the case, use the
disabled wait analysis approach (earlier in this chapter).

If the PSW indicates the no-work wait situation, you have an enabled wait.
You should now check other global system data areas indicators to get the
whole picture. Following are key global indicators:

• PSASUPER field (PSA + X'228') should have the dispatcher super bit
(pSADISP) set. PSADISP is left on when wait is dispatched and will be
turned off on the next I/O or external interrupt. If any other bits are set,
some supervisor routine is in control. This situation can indicate
incomplete processing by the associated routine. All possibilities should
be pursued until the situation can be explained.

• Because of SRM timer/analysis processing, even when the system is in the
enabled wait situation, the state of the processor at the very instant the
dump was taken can indicate, via the "super bits" or locks indicator
(PSACLHS), that some process was occurring. You must determine in
this case that these fields being set is normal and continue with wait
analysis. If the fields cannot be explained, you have isolated the error.

• There should be no locks held, as indicated by PSACLHS on either
processor. This situation is similar to the one described just above. You
must try to discover the owner of the lock and determine why it is still
held despite the fact that the system is waiting. Often the purpose of the
lock will provide insight as to who the owner might be. The chapter on
"Locking" in Section 2 should be of help in your analysis.

3. LOGREC Analysis - Determine if key components have encountered
difficulty; determine previous errors encountered by the system. This can be
accomplished by inspecting SYS1.LOGREC as well as the in-storage
LOG REC buffer. Errors encountered in any of the key processes noted
earlier (RSM, ASM, lOS, JES2j3, SRM, ENQ/DEQ, VTAM, etc.) may
provide further information. If you do find an error associated with any of
these areas, determine whether it could lead to the bottleneck.

The LOGREC records generally contain the names of the error-encountering
routines and often the jo.b on whose behalf the system was processing at the
time of the error. If the routine names are not present, you may have to use
system maps and the PSW /register information in the LOG REC records in
order to associate errors with components. The discussion of LOGREC

. analysis in the "Use of Recovery Work Areas" chapter in Section 2 should be
helpful in your analysis.

Section 4. Symptom Analysis Approach 4-7

4. Trace Analysis - Determine the last activity within the system.

Because of SRM's timer processing, the trace table for most wait conditions is
not useful. However, on the rare occasion that the system has been stopped
or if for some reason the trace is not overlaid with timer interrupts (X'I004'
external interrupt entries), the trace should be analyzed to ensure normal
processing, for example, page faults are being processed, I/O is being
accomplished. Be suspicious of large (relative to most entries) time gaps in
the trace table. If the table has not wrapped-around, process re-creation may
be of some use in determining what the system was doing up to the point ~f
incident. (The chapter on "MVS Trace Analysis" in Section 2 should be
helpful.)

5. Determine the reason/or waiting - Once it has been determined that the
system is waiting, it is always useful to determine what the various address
spaces or jobs are waiting for. This is accomplished by inspecting and
scanning the various tasks and their associated RB structure in a formatted
stand-alone dump. Remember the RCT, started task control (STC)/LOGON,
and dump task may· all be waiting in each address space - this is normal. The
question you should ask is: Why are the subtasks below the STC/LOGON
waiting?

Generally in an active system more than one address space will be waiting for
the same or similar resource in a problem situation. Therefore, as you scan
and analyze address space status, look for suspensions in common modules
(RB resume PSWs containing similar addresses):

• Many tasks in page-fault wait can indicate the paging or I/O mechanism
is faulty.

• The PVT can indicate a real frame shortage.

• Many tasks in terminal I/O wait can indicate something is wrong with the
TP access method or some part of the network.

• Several Resume PSWs pointing into the ENQ/DEQ routine, IEAVENQl,
can indicate an ENQ resource contention problem.

In general, be on the look-out. Try to compare and relate the system
activities as you encounter them. Often more than one process or address
space is held up because of a common bottleneck. It may be a global
resource required by more than one address space, for example, a lock or
data set. It is important that the exact cause be determined.

Stage 2: Key Subsystem Analysis

As part of this investigation, if nothing can be easily determined from a cursory
address space scan, you may have to delve into the key components. Followin~
are some highlights of the important and potentially suspect areas:

I. 110 Subsystem - Check for unprocessed I/O requests, bottlenecks in the I/O
process will almost always log-jam the system. Since lOS is the central
facility for controlling I/O operations, I/O problems should always be
suspected in an enabled wait condition. Therefore, the lOS component and

4-8 MVS Diagnostic Techniques

its associated queues should be analyzed early in the subsystem analysis stage
of debugging. Two important lOS queues and control blocks will indicate
whether problems exist in the I/O process:

• Logical channel queues (LCH) contain lists of elements for I/O requests.
If these queues (pointed to by the CVT + X'8C') are not empty in a
waiting system, lOS must be further investigated.

• Unit control blocks (UCBs) are a logical representation of each I/O
device containing I/O active indicators at offset 6/1. If any indicator is
set, this device must be further investigated. This condition can indicate
either a hardware or software problem.

Both the queued (LCH) and active (UCB/IOQE) requests must be further
investigated to determine the associated requestors and what effect their I/O
not being serviced will have on system operation (for example, if paging I/O
or console I/O is not being serviced, the system will usually stop).

The UCB contains indicators for DDR, intervention required, and missing
interrupt handler processing. Any such indication must be further
investigated.

An ENQ on the SYSZEC16 resource is an indication of a waiting condition
generally associated with swapping. The swapping process cannot complete
until active I/O finishes. In a quiesced system, an ENQ on this resource must
be further investigated.

2. Paging Mechanism - Check for unserviced page faults. ASM. RSM. and
SRM are closely related and depend upon each other to maintain real storage,
the swapping process, and page fault resolution. If, when you determined the
reason for waiting as described in stage 1, you discovered several page fault
wait conditions, be suspicious. Some key indicators in determining page fault
waits are:

• ASCBLOCK = X'7FFFFFFF' - indicates suspension while holding a local
lock. If in task mode at the time of suspension, the resume PSW
instruction address (saved at IHSA + X'10' of the locally locked address
space) should be checked. When the instruction address =
RBRTRAN(X'C' offset) and RBXWAIT = 0, it indicates the task is
suspended while it waits for a page fault resolution. Note that a data
reference page fault might have occurred; in this case, the instruction
address does not equal RBTRAN. RBTRAN may be checked against the
register and displacement as determined from the page-faulting
instruction. The page fault occurred when a new module (paged-out) was
referenced. If in SRB mode at the time of suspension, an SSRB will be
queued from a PCB. The anchor for these PC~s is the RSMHDR
(private area page fault) or the PVT (common area page fault).

• ASCBLOCK = X'OOOOOOOO' - indicates the local lock for this address
space is not held. The RB structure can reveal the same situation as
described above for RBOPSW instruction address = RBR TRAN,
RBXWAIT=O and, in addition, an RB wait count = 1. Note that a data
reference page fault might have occurred; in this case, the instruction
address does not equal RBTRAN. RBTRAN may be checked against the

Section 4. Symptom Analysis Approach 4-9

register and displacement as determined from the page-faulting
instruction. If you find several tasks in this state, check the dump for the
page represented by RBTRAN. Is it in storage? (Remember for private
area addresses to be sure that the address space you are investigating is
printed.) If the page is not in storage you may have a potential paging
problem. Again, if in SRB mode at page fault time, the SSRB must be
found to determine more about the process.

If you suspect that paging is a potential problem in the system, several SRM
and RSM/ASM control block fields can be examined. Periodically, SRM
calculates the total paging rate (swap, VIO, and demand), the demand paging
rate (separately), and the average maximum unreferenced interval count
(UIC). These values are saved in the resource management control table
(RCT) for use by the algorithms that adjust the multiprogramming level
(MPL) of the domains. The RCT can be found by locating the SRM control
table (RMCT) which is pointed to by the CVT (field CVTOPCTP at offset
X'25C'). The RCT, like many other SRM control blocks, follows the RMCT
and can be located by examining the program listing for module
IRARMCNS. The total paging rate per second is identified by field name
RCVPAGRT. The demand paging rate is identified by field name RCVDPR.
The average maximum UIC is identified by field name RCVUICA. Two
other fields of interest in the RCT are RCVASMQA, which is the average
number of requests in progress or queued by the ASM, and RCVMSPP,
which is the average time in milliseconds for the ASM to process a page
request. Also examine the page vector table (PVT), which can be found from
the CVT (field CVTPVTP at offset X'164'). The available frame count is
contained in bytes 2 and 3 of the PVT. Previously a low available frame
count (less than 15-20) was an indication that storage contention or paging
was a problem. The SRM attempts to better utilize the real storage resource
and a low available frame count is not uncommon, although it can still be a
source of concern. The combination of low available frame count, a low
VIC, and a high demand paging rate indicate storage contention great enough
to adversely affect response time and throughput.

ASM maintains a count of the number of paging requests received and the
number for which processing has completed in the ASMVT. If these counts
are not equal, ASM is backed-up and page faults have not been resolved.
This can be caused by an I/O problem or some internal ASM problem. The
ASM Component Analysis chapter in Section 5 describes the work queues in
the paging activity reference table entries (PARTEs). Finding unprocessed
work on these queues will aid in determining whether ASM is the problem
component. But again be careful: you are still gathering data about the wait
state. Your purpose now is not to debug ASM - it may not be the problem.
Note the apparent ASM problems and continue your investigation. Later
when you piece together your findings and find the real source of the
problem, detailed debugging and logic flow will be required.

3. ENQ/DEQ - Check for unresolveable resource contention. Finding an
ENQ/DEQ interlock and determining what work is being held up because of
this interlock can provide important information about the overall problem.
The QCBTRACE, Q, or GRSTRACE option of AMDPRDMP provides a
formatted structure of the resources and the work that is in contention for
them. Determining who owns the resources and the current status of the

4-10 MVS Diagnostic Techniques

owners (if swapped-out, why? or if waiting, for what?) often provides
important clues in understanding the bottleneck.

Also in your scanning process, you should be on the alert for address spaces
that contain subtasks (usually below the STC/LOGON level) with mUltiple
RB levels, and with the lowest RB containing a resume PSW with an address
somewhere within ENQ code (nucleus resident) and with the RB wait count
RBWCF = 1. The previous RB should be an RB with the ENQ SVC (SVC
X'38') indication in the "WC-L-IC'" portion of the RB prefIX (-4 offset). This
indicates that this task and probably the address space are suspended because
of an unsatisfied ENQ request. If several address spaces' or tasks are found in
this state you should find out why. The QCBTRACE, Q, or GRSTRACE
facility of AMDPRDMP can be most helpful. An illustration follows:

Investigation of QCBTRACE, Q, or GRSTRACE data shows many requests
backed-up on resource A. The analyst notes this and determines what ASID
or TCB owns resource A at this time (in this example, ASID 9). The other
resources represented in the QCBTRACE, Q, or GRSTRACE are now
scanned. If ASIO 9 is backed-up behind someone else (ASID 10) waiting for
another resource (B), you must now determine ASID 10's status with respect
to other resources, including resource A. Essentially you are looking for cases
where:

• An address space has resource A and is waiting for resource B and a
second address space has resource B and is waiting for resource A. This
indicates a deadlock. You must determine the faulty process. In this case
you have probably isolated the error to the ENQ process and the way it is
being used. You must analyze the task structure of each address space to
determine how this situation occurred. Do not forget the
SYSl.LOGREC buffers. They may contain clues like errors in
ENQJDEQ or one of the tied-up address spaces (jobs). Faulty recovery
should be suspected if the latter is the case.

It may be that a job requests control (via ENQ) of a resource and
subsequently encounters a software error. The task's associated recovery
gains control and "recovers" from the error but does not dequeue (DEQ),
and therefore does not release the resource. Eventually, the contention
for this resource, depending on its importance, could cause severe
problems.

• An address space has control of a resource and a lot of address spaces are
queued-up behind this address space. In this case, you must fmd out why
the holder is not releasing the resource. Also know your system. It is not
unusual to see activity on the master catalog resource: "SYSIGGVl -
Master Catalog Name." But be suspicious of most resources. Determine
from the holder's task structure what pr~ss it is attempting. Determine
whether the address space is waiting or swapped-out and why. Hit is not
waiting or swapped-out, check the non-dispatchability· bits and the
possibility that the address space is looping.

This second case is much more likely to be a sign of some other system
problem. Your clue is what is preventing the holder's execution; this will
point you to another process which must be investigated and may lead to
the detection of the final problem.

Section 4. Symptom Analysis Approach 4-11

Note: When analyzing a dump of a quiesced system you should be suspicious
of "unusual" ENQ resource names - resources that should not be a contention
factor in a quiesced system. Tbe presence of
these names should be understood and explained because they very often will
point you to the problem area. Common resource names are;

SYSZEC16 - PURGE Can indicate a problem in the I/O process related to the resource holders
address space

SYSZVARY - x

Can indicate a bottleneck in the swapping process

indicates the reconfiguration component has been invoked - why is it not
completing?

4. Dispatching - Determine if there is work to do in the system. A common
trouble indicator is an MVS dispatching queue containing elements that
indicate work is ready to execute in a waiting system. The SVTGSMQ,
SVTGSPL, SVTLSMQ, and each ASCBLSMQ and ASCBLSPL should be
empty. (The chapter on "System Modes and Status Saving" in Section 2
contains details of these queues and how to find them.) Generally it is not a
problem in the dispatching mechanism itself but merely an error indication.
Often the most useful information is just that 'yes, there is work.' Why is it
not being dispatched? Is there a problem in some other area of the system?
Is the address space swapped out? Yes, there may be a real storage problem
delaying swap-in. Or perhaps SRM has not been told to swap-in the address
space via a "user-ready" SYSEVENT. (The ASCBURR bit indicates that a
"user-ready" SYSEVENT is required). In summary, investigate the OUCB
for the address space you are concerned with.

Another useful point is to find out what problems could arise if this work
were not dispatched. Investigating the queued work will indicate what would
be accomplished if this work were executed. This is usually important
because it can clear up much of the "smoke" you may be encountering in
your overall system investigation.

Likewise, investigate the task structure. Generally, you can ask the same
questions as above, but you must look in different places for the key
indicators. Among the most important indicators are:

• The ASCB, which contains two counts of ready TCBs in the address
space: ASCBTCBL, which is a count of ready TCBs that require the
local lock; and ASCBTCBS, which is a count of ready TCBs that do not
require the local lock.

• The TCB non-dispatchability flags.

• The RTM work area, which contains status at time of error.

• The RB structure. Look for long RB chains or unusual SVCs and
interrupt codes. Look for page fault waits.

Again, use this information to lead you to processes or problems that hold-up
the system.

4-12 MVS Diagnostic Techniques

5. Locking - Determine if there is a locking conflict. The locking mechanism
causes system bottlenecks when it is not used properly. The global spin locks
cause obvious problem symptoms such as one processor spinning in the lock
manager (lEA VELK) in an MP environment. (In a UP environment, global
spin locks are generally not a problem unless a lock word or interface is
overlaid or bad, causing a disabled spin. The enabled suspend locks
(local/cross memory services) are generally the problem ones.) The chapter
"Locking" in Section 2 describes in detail the considerations with which you
should be concerned. Elements on the local/cross memory services suspend
queues may indicate a problem. The technique you adopt to resolve the
conflicts is exactly the same as the ENQ interlock or logjam situation.

6. Teleprocessing - Determine if the TP network is responding. Problems in the
TP network often manifest themselves as waiting network or waiting
terminals, even waiting systems. The chapter "TP Problems" in Section 4
contains a detailed description of TP problem analysis. The VT AM chapter
in Section 5 contains techniques for VT AM problem analysis.

An important fact for the problem solver here is that these are subsystems.
As such, they maintain their own control blocks, queues, and dispatching
mechanisms. They are responsible for work being processed once it enters the
subsystem and they often have little direct dependency on MVS. That is,
normal MVS problem indicators will not generally solve the problem. You
must understand the subsystem's work-processing mechanism in order to be
an effective analyst. For example, VTAM has its own address space with a
number of tasks used primarily for network start-up, shut-down, and operator
commands. Inmost VTAM problems, a look at the VTAM address space
will show these tasks are waiting. However, this is normal when no operator
processing is required. Even though VT AM is waiting, this is not the place to
be distracted. Again, remember this VTAM task structure, put it aside as
part of your information gathering, and then proceed to the analysis of
VTAM's internal work queues as described in the VTAM chapter of Section
5.

7. Console Communications - Determine whether console communication is
possible. The system can appear or actually prove to be waiting because the
operator is not able to communicate with MVS. This could be the sign of a
problem almost anywhere in MVS, but it often indicates an error in the
communications task or its associated processing.

The communications task (comm task) runs as a task in the master
scheduler's address space and is usually represented by the third TCB in the
formatted portion of the stand-alone dump and identified by a X'FD' in the
TCBTID field (TCB + X'EE'). By inspecting the RB structure associated with
this task, you can determine the current status. It is not unusual to find one
RB with a resume PSW address in the LPA and an RB wait count of one. If
more than one RB is chained from the TCB and you were not able to enter
commands, analyze the RB structure because this is not a normal condition.

Section 4. Symptom Analysis Approach 4-13

Stage 3: System Analysis

The key control block is the unit control module (UCM) which is located in
the nucleus. CVTCUCB (CVT + X'64') points to the base UCM. The base
UCM-4 contains the address of the UCM MCS prefix and the base UCM-8
contains the address of the UCM extension. From the UCM you can
determine the status of the various consoles. The following should be
considered and can warrant further investigation:

• Important WTORs are outstanding.
• An out-of-buffer (wQEs, OREs) situation exists.
• There are unusual flags in the UCM.
• There is a full-screen condition.
• There is a console out of ready.

Remember that comm task processing is dependent on the rest of the
operating system. Most likely, some external service or process has caused
comm task to back-up, and this possibility should be investigated. Remember
the debug process: gather all the facts, then proceed with analysis.

At this point you should have a detailed understanding of the system and its key
components. You should know which components or processes are back-logged
and, correspondingly, what work (jobs) is not being processed by the system
because of these back-logs. You must now stand back from the problem.

Answer this question: Which of these problems and situations can be related to
or attributed to each other? For example, if I/O is queued for the paging devices
(indicated by IOQEs on the LCHs associated with the paging devices' UCBs) and
you also found several address spaces are in "page-fault wait," you can now relate
these findings. And if one of these address spaces performed an ENQ for a
resource and did not yet DEQ because of the page-fault suspension, it is very
likely other address spaces are also backlogged behind this job's processing.
Initially yourENQ/DEQ analysis showed the problem, but at this point you can
attribute the ENQ contention problem to the page-fault suspension problem that
you have already attributed to the I/O problem.

This process must be repeated for all the potential error situations you uncovered
in your investigation. Do not forget to use the system indicators in your attempt
to arrive at the source of the problem. And most importantly, ask yourself: If I
unplug this bottleneck, will all the other intertwined situations resolve themselves?
In the previous example, resolving the ENQ situation will allow the work queued
in the ENQ/DEQ component to execute but the "page-fault waiting" job will still
be hung. That is, ENQ/DEQ is not the problem to pursue. Indeed, if you resolve
the I/O problem, this page fault is resolved, the DEQ will be performed, and all
work in the system will resume normal operation. Yes, the I/O problem is the
important consideration in this case. The I/O problem is the one that must be
pursued. When this problem is resolved, the enabled wait state condition has
been resolved. Global system areas, recovery work areas, LOGREC analysis, and
lOS component analysis will be necessary to further isolate, and eventually solve,
the problem.

4-14 MVS Diagnostic Techniques

Loops

Loops are defined as disabled or enabled, depending upon their external
appearances. A disabled loop can be recognized externally by a solid system light
or 100% CPU busy on the system activity display and the inability to
communicate with the system through the consoles (that is, no input or output).
Usually, a disabled loop indicates a hardware and/or software malfunction. There
are several cases in MVS however in which a disabled loop is purposely used and
is not an error indication. These cases are discussed later in this chapter.

An enabled loop is generally much larger than a disabled loop. Observed from
the console it appears as a bottleneck: the system seems to be slowing down
periodically, suggesting performance degradation. The operator may notice that a
particular job remains in the system for a long time and does not terminate.

Common Loop Situations

There are three common loop situations:

1. Processors of an MP environment communicate via the signal processor
(SIGP) instruction. Often the SIGP-issuing processor enters a disabled loop
until the receiving processor either accepts the SIGP-caused interrupt or
performs the operation requested by the issuing processor. This loop
serializes the processors in the MP configuration. The SIGP-issuing processor
loops in a nucleus-resident module, lEA VERI.

Often during an MP dump analysis you will find that one processor was in
this loop. This is not an error if:

• The operator stopped one processor and not others to investigate a
suspected problem.

• The receiving processor is disabled for external interrupts, thereby
preventing the SIGP-issuing processor from proceeding.

If this situation continues for an extended period, it means there is a system
problem but the loop is a result of that problem and is not an error itself.
Most often, other processors' activities must be analyzed to determine the
problem. For a more detailed discussion of MP communication, refer to the
chapter "Effects of MP on Problem Analysis" in Section 2.

2. The lock manager (lEA VELK), which resides in the nucleus and controls the
locking mechanism of MVS, contains a section of code that enters a disabled
loop when a global spin lock is requested but is not available. On a UP this
is an invalid condition and always signifies an overlaid lockword or invalid
lockword address. On an MP / AP system, this usually indicates that another
processor is holding the lock and not releasing it. But it may indicate an
overlaid lockword; if not, the problem is definitely on the processor that is
not releasing the lock. In either case, register 11 contains the pointer to the
requested lockword and PSALKR14 contains the address of the requestor.
Check the value in the lockword. Valid values are a fullword of zeros, or
three bytes of zeros and the logical processor address in the fourth byte. Any
other bit configuration will cause the system to spin in a disabled loop and

Section 4. Symptom Analysis Approach 4-15

Analysis Procedure

signifies an overlaid lockword or invalid lockword address. If the lockword is
not valid, it is necessary to identify who overlaid the lockword. It is possible
that the lockword was overlaid in conjunction with some other problem.
Again, since the disabled loop may not be the problem but a symptom of a
possible error on the other processor, determine why the requested lock is not
available. For a detailed discussion of "Locking" see Section 2.

3. The intersect service routine (IEAVEINT), which resides in the nucleus,
controls the intersect serialization in a manner similar to the lock manager.
Intersect provides the serialization between a routine holding either the
dispatcher or local lock and the dispatcher (lEAVED SO). The intersect
service routine contains a disabled loop which is entered (for MP or AP
systems only) when a routine requests the intersect on one processor and the
dispatcher is active on another processor. The dispatcher active field is
located via PSA + X'B4C', which points to the SVT. SVT + X'6C'
(SVTDACTV) contains one byte per processor and is indexed by the
processor address. If the loop in the intersect routine is in control, register 2
contains the physical processor address where the dispatcher is processing,
and register 14 contains the return address of the routine requesting the
intersect. Ii is possible that the dispatcher active field is overlaid; its contents
should be checked for validity. Each byte of the dispatcher active field
corresponds to a possible online processor. For an AP or MP system the last
two bytes should always be zero. Other valid contents are logical processor
address, or the logical processor address with the high-order bit on.

Since the disabled loop might not be itself a problem, but a symptom of a
possible error, determine how the dispatcher active field became overlaid or
why the dispatcher is looping on the other processor.

Generally for loop analysis, you will have a stand-alone dump if the operator
considered the problem serious enough to re-IPL the system, or .. an SVC dump,
SYSUDUMP, SYSMDUMP, or SYSABEND (provided by the software
recovery) if the operator pressed the RESTART key in order to break the
apparent loop. For the SVC dump, SYSUDUMP, SYSMDUMP, and
SYSABEND dumps there is an abnormal completion code of X'071' associated
with the looping task of a job if the RESTART key was pressed when the
program was actually looping. In addition, a formatted SYS1.LOGREC listing
should be available.

Note: If the loop recording option is available on your 3033 or 3081 processor,
you can record information about the loop by selecting the option on the system
control (SC) frame of the 3033 or the CC012 frame of the 3081. This option
records several hundred values of the instruction counter in the form of an
instruction trace. After recording the instruction trace, the processor is put in the
STOP state. The information becomes available when you take a stand-alone
dump or when the SVC dump is invoked.

Before you can determine what problem is causing the loop, you must determine
first that a loop really exists, and second whether it is enabled or disabled.

4-16 MVS Diagnostic Techniques

First, verify that a loop exists .. The disabled loop situation is fairly
straightforward. The PSW contains a disabled mask (X'04' or X'OO') and all
other system activity will have stopped.

Recognizing that there is an enabled loop is often the most difficult step. Enabled
loops are often quite large and may encompass several distinct operations - I/O
events, SVCs, module linkage, etc. Because the loop is enabled, it is often
interrupted, preempted and eventually resumed many times.' This makes it
difficult to recognize the loop pattern. Following are some indicators of a
potential enabled loop:

• The current PSW has an enabled mask, X'OT, in the first byte and the
instruction address portion "0. This alone does not prove there is a loop, but
the information may help your analysis of the problem later.

• The MVS trace table shows a repetitive pattern of events, for example, SVCs
issued from the same virtual addresses, or dispatcher entries for virtual
addresses that are relatively close together. Determine if the entries are
related to the same address space by using the ASID field (offset X'16' into
the trace entry). If so, you can now examine the task and control block
structure indicated by the trace entries. The chapter on "MVS Trace
Analysis" in Section 2 should prove helpful.

• Many tasks (TCBs) or address spaces (ASIDs) appear to be bottlenecked
waiting for some resource(s). This can be determined by using the
QCBTRACE or GRSTRACE option for AMDPRDMP and analyzing the
output. If there appears to be a bottleneck, determine what job owns the
resource(s) and what that job is currently doing. It may be that the job that
acquired the resource(s) is in an infinite enabled loop; therefore, when other
jobs request the same resource(s), their requests cannot be satisfied, which
eventually causes a major performance throughput problem. See the chapter
on "System Execution Modes and Status Saving" in Section 2 for how to
recreate the job's current status. A reconstruction of the PSW and registers
helps you to determine if there was an enabled loop.

• TCB/RB structure analysis. Look for unusual or long RB structures chained
from TCBs. These may indicate a loop that includes several levels of
supervisor linkage.

Enabled Loop Exception:

The system resources manager (SRM) of MVS constantly monitors resources, gathers data, and
analyzes the system. Periodically, SRM uses a timer interrupt in order to gather its statistics. This
timer interrupt occurs even when the system is in an enabled wait condition. Because of this, the
enabled wait is often referred to by operators as an enabled loop. (They observe the "WAIT"
indicator from the console, followed by a burst of activity (SRM processing), followed by the
"WAIT" indicator, etc. It may even be possible to enter certain operator commands.) However, this
is really an enabled wait condition and analysis should proceed according to the discussion on
"Enabled Waits" in the "Waits" chapter earlier in this section.

The dump you are analyzing may show the MVS trace table containing a no-work wait (070EOOOO
00000000) PSW followed by a timer interrupt~ SRB dispatch, MP communication, etc. This pattern
indicates an enabled wait condition, not an enabled loop. (See the "Pattern Recognition" topic in the
"Miscellaneous Debugging Hints" chapter in Section 2.)

Section 4. Symptom Analysis Approach 4-17

Once you have determined the type of loop, the following analysis procedure
should help determine what problem is causing the loop.

Objective 1 - Who is looping?

The PSW and registers saved at the time of the dump indicate the active work.
(See the chapter "Global System Analysis" in Section 2.) The register save areas
in the LCCAjPSA indicate important environmental data at the time of the last
I/O interrupt, external interrupt, etc. (See the chapter "System Execution Modes
and Status Saving" in Section 2.)

The PSA indicators contain valid information about disabled loops. Also
remember the recovery areas active at the time of the loop are valid and may
provide hints as to the current process. (See the chapter "Use of Recovery Work
Areas" in Section 2.)

Unlike the disabled loop situation, the enabled loop may not have the current
registers associated with it. This is true if the loop was interrupted and new
processing was initiated before the dump was taken. For the enabled loop, find
the current registers and status from the ASCB/ASXB/TCB/RB structure and the
associated save areas (for example, IHSA). The chapter "System Execution
Modes and Status Saving" in Section 2 will be helpful for this phase.

Objectil'e 2 - What is the system mode?

It is important to know whether the system is in SRB or task mode and the
implications of these modes. In all cases of true disabled loops, the PSW, LCCA,
and PCCA contain valid status indicators such as the last dispatched routine.
The old PSWs reflect the last interrupt status. The register save areas in the
LCCA are valid. The LCCA + X'21D' set to 1 indicates SRB mode; set to 0
indicates task mode. Additionally, PSAMODE (PSA + X'49F') indicates the state
of the system. If set to X'OO', the system is in task mode; if set to X'04', the
system is in SRB mode. This byte can also contain flags to indicate wait mode,
spin mode, or non-preemptive mode. The ASCB NEW/OLD and TCD
NEW/OLD pointers reflect the current task. (Note: If the TCD OLD pointer is
zero, the system is in SRB mode or possibly in supervisor mode - that is,
dispatcher or supervisor recovery. The discussion in the "System Execution
Modes and Status Saving" chapter in Section 2 and the "Dispatcher" chapter in
Section 5 are useful.

By scanning the MVS trace table, you will be able to determine system events
leading up to the loop. See the chapter on "MVS Trace Analysis" in Section 2.

SYSl.LOGREC and the in-storage LOGREC buffer may contain indications of
previous occurrences of the loop (records with X'071' completion codes) or
records of previous errors in the currently looping process that could possibly
contribute to the current loop. See the "Locking" chapter and the discussion on
LOGREC in the "Use of Recovery Work Areas" chapter in Section 2. .

4-18 MVS Diagnostic Techniques

Objecti.e 3 - What is the extent of the loop and why is the system looping?

Using the current PSW and the global data areas in combination with the general
purpose registers, you should be able to determine the extent of the loop. One
register often contains the key to a loop-causing value. Try to isolate that one
register. It may be necessary to inspect the actual object/source to determine the
basic logic in case there is an encoded loop that is supposed to end when a certain
value is reached. If that value cannot be reached for some reason, the loop will
not end.

Isolating the cause of the loop is important in loop analysis. Once the cause is
isolated, you can proceed the same as with a system-detected error such as a
program check.

Objecti.e " - Determine the cause of the error - how is the value that is causing the
loop developed?

To determine how the bad value was developed, it is necessary to back through
the logic leading to the loop. Be aware of bad control blocks. Look at the bad
value itself and the areas from which it was developed. Try to determine if the
value is the result of a storage overlay or if it was calculated from bad logic. See
the "Pattern Recognitionn topic in the "Miscellaneous Debugging Hintsn chapter
of Section 2 to help make this determination.

In addition to bad control blocks and data fields, consider the loop control
mechanism used for encoded loops. Often a common cause of problems is that
the BCT instruction is used and the loop cor..trol register contains a negative
value. Scanning the active registers at the time of the dump often aids in
discovering this type of problem.

Figuring out how the erroneous field could possibly contain the value it does is
the most challenging part of the process. Again, the contents of the field often
provide the clue to determining the error-causing process.

Also, consider how serialization is accomplished for the field in question. Is it
possible for several processors to be updating the field simultaneously? The MVS
trace helps you recreate recent processes, but you also must understand the modes
and structure of the code that updates the field. (Your work in Objective 2
should be helpful.)

It is possible. that the code setting up the field was physically interrupted and,
because it was non-reentrant or the logic was faulty, another process updated the
field or control fields and subsequently caused the first process to encounter
unexpected data.

Section 4. Symptom Analysis Approach 4-19

TP Problems

A common problem in teleprocessing (TP) environments is incorrect data, which
may affect one terminal or an entire component. The symptoms include no data,
wrong data, or too much data, but the general problem symptom is that
something is wrong with one or more messages. The problem is usually not tied
directly to a component or access method, as a program check would be; often an
error message is from a component not directly causing the problem.

Typical symptoms are:

• An error response from an application that suggests incorrect data was
entered from a terminal, when in fact the data was correct

• A "hung" terminal - the system will not respond

• Wait states, in which message traffic gradually dies off

• Incorrect characters in a message (the data may be going into or out of the
system)

This chapter discusses TP problem analysis, in the following topics:

• Message Flow Through the System
• Types of Traces

Message Flow Through the System

Data exchanged between programs in the system and terminals follows a route
through several components. The first step in solving "typical" problems is to
determine where along that route something is happening incorrectly.

By far the most valuable tools for doing this are the traces in the various
components. To use the traces effectively it is neCessary to understand how
messages flow through the system. F or example, consider a· message from an
ACF ITCAM application to an ACF ITCAM terminal. The path might go from
the application program buffer to an ACF ITCAM queue data set, to an
ACF ITCAM buffer while ACF ITCAM processes it, over the channel into the
3705, then into an NCP buffer, and finally over a communications line to a
terminal. Traces allows the message to be checkpointed at certain spots along the
path; therefore, understanding the path is vital to knowing what traces to use and
what you should see for a message that flows correctly.

To use traces effectively you must also understand how components refer to
terminals or lines and how they communicate with each other regarding these
terminals and lines. Terminals or lines are identified in traces by a line control
block (LCB), a logical name, a network address, a polling/addressing sequence, or
a subchannel address. Not only must these relationships be known in order to use
multiple traces, but certain correspondences must be correct in order for data to
move through the network.

4-20 MVS Diagnostic Techniques

Types of Traces

GTF Traces

When using traces, the general approach to a problem of incorrect data is to track
the data flow from a point where everything was all right to a point where the
messages stopped or were incorrect. Messages that are flowing correctly can be
used to establish time relationships between different traces. Then each message
can be followed along its route past each checkpoint, with the goal of isolating a
gap between two checkpoints where the message stopped or became bad. The
next step is to focus on this narrower area to learn what is wrong.

If a message stops, what is wrong or what is missing? How does the flow up to
that point compare with a normal flow? You must understand what resources
and what processes are required for a message to move from where it appeared
last to where it should have appeared next. What buffers and/or control blocks
would have been used? Were they available? A single terminal or all terminals
may encounter a "wait state," and it is necessary to dig into the component to
determine what processing has taken place and what condition or resource is
preventing further processing. The ACF/TCAM Diagnosis Guide should be
referenced for problem isolation in ACF /TCAM.

If a part of the data moving through the system becomes bad, the traces should
isolate a component or an interface over which it was transformed. Comparison
with normal message flow will indicate whether any change at all should have
taken place. If no change should have occurred, an overlay ("clobber") or
incorrect pointers to data buffers may be the problem. The exact amount and
positioning of bad data should be determined, for it might provide an obvious
correlation with other known variables such as a buffer length. If some
transformation normally occurs to a message, the controlling process under which
it is performed must be examined. What could cause an incorrect transformation
of data? Examples are translate/edit tables or mappings from one resource name
into another name, such as mapping the logical network name into the network
address.

The following is a summary of TP-related traces.

The following GTF trace options can be used to provide traces of TP-related
activities. (Refer to SPL: Service Aids for additional information.) The GTF
traces include:

• SIO and 10 trace options - record start I/O and I/O interruptions for either
an emulation mode subchannel or a 3705 controller.

• RNIO trace option - records the header and first few bytes of data for each
PIU coming into or going out of ACF /VT AM.

You can correlate the GTF traces with the ACF /VTAM, ACF /TCAM, and NCP
and EP traces to compare relationships of the system and TP activity.

Section 4. Symptom Analysis Approach 4-21

ACF /VTAM Traces

ACF ITCAM Traces

NCP and EP Traces

ACF /VT AM provides several kinds of traces to record the flow of path
information units (PIUs) between nodes in the ACFjVTAM network. (Refer to
ACF/VT AM Diagnosis Guide for additional information.) The ACF fVT AM
traces include:

• Buffer contents trace - records the contents of inbound and outbound message
buffers.

• I/O trace - provides a chronological history of all I/O activity between
ACF /VT AM and a particular network node.

• Line trace - records the status of a line each time that data is sent or received
along the line.

• Generalized PIU trace - records the PIU trace data obtained by the NCP.

• Transmission group trace - records the sequence of PIUs being sent through a
transmission group.

• SMS (buffer use) trace - records information about the use of buffers.

ACF /TCAM provides several service aids for diagnosing ACF /TCAM problems.
(Refer to ACF/TCAM Diagnosis Guide for additional information.) The
ACF /TCAM traces include:

• Channel I/O interrupt trace -. provides a sequential record of the I/O
interrupts occurring for specified non-NCP line addresses or for the channel
addresses of 3704/05 controllers.

• NCP line trace - provides a sequential record of the level two (I/O) interrupts
occurring for specified NCP lines.

• PIU trace - provides a sequential record of all PIUs sent to or received from
NCP network resources.

• Buffer trace - provides a record of ACF /TCAM buffer contents before and
after message handler (MH) processing.

The network control program (NCP) and emulation program (EP) provide several
diagnostic aids to diagnose difficulties in network operations. (Refer to IBM 3704
and 3705 Control Program Generation and Utilities Guide and Reference for
additional information.) The NCP and EP traces include:

• Address trace facility for network control mode - records the contents of
selected areas of communications controller's storage and registers for
successive interrupts in the NCP.

• Line trace facility for network control mode - records the operating
parameters of a line each time that a level two interrupt occurs for the line.

• Line trace facility for emulation mode - records the operating parameters of a
line each time that a level two interrupt occurs for the line.

4-22 MVS Diagnostic Techniques

Performance Degradation

Operator Commands

This chapter describes how to investigate performance degradation problems. It
is not intended to serve as a tuning guide or as a reference for general
performance analysis (which should be performed through SMF, GTF, etc.)

The following points should be considered when a problem is suspected in the
operating system itself or in the manner in which applications use the operating
system.

When a bottleneck or system failure, hardware or software, is degrading
throughput, the following operator commands can help identify the source of
degradation and, possibly eliminate it.

D A.L Displays current system status. A job step with a name of STARTING indicates initiation
has not successfully completed. Also, if a job step is marked' with an'S,' it is considered
swapped out. Other jobs may be queuing behind these jobs in an allocation/deallocation
path.

D R,L Displays any outstanding requests. Operator action is required (for example, to mount a
volume). Other jobs may need to wait until action has been taken.

D M Displays configuration information. The loss of a hardware component (for example, a
channel) may have been noted on a hard copy console and missed by the operator.

D SLIP Displays the name and status of current SLIP traps. Display those traps that are enabled
(D SLIP = xxxx (where xxxx is the trap id) to see if any are PER traps (PER-IF, PER-SA,
or PER-SB). If an enabled PER trap with an action Qther than IGNORE exists, check
with the system programmer to determine if it should remain enabled Qr if it can be
disabled.

If a resource queue "snooper" program exists, it should be started and output
examined to find any ENQ bottlenecks. If no such program is available, take a
dump of the global resource serialization address space, the nucleus, and request
SQA. The PRDMP service aid (with the QCBTRACE, Q, or GRSTRACE
option) can then be used to print the dump so the resource queue can be
examined.

Section 4. Symptom Analysis Approach 4-23

Dump Analysis Areas

Use the job entry subsystem display commands to find the status of jobs, queues,
printer setups, requirements of SYSOUT data sets, etc. to find reasons why JES2
is not able to schedule work. Some JES2 commands that may be useful are
shown in Figure 4-1.

$D

$AJ

JI-9999
SI-9999
TI-9999

$DF
$DU,PRTS
$TPRTN

$L11-9999,H
$011

$DQ
$AQ

$AA

Status of jobs, started tasks, or time-sharing users.
If a range of jobs has been held they may be released
using $AJ.

Release jobs.

Status of output forms queue.
Status of printer setup characteristics.
Change setup to needs of queue output.

List held SYSOUT data sets.
Release held SYSOUT data sets.

Display queue.
Release queue.

Release all jobs held by a $H command.

Figure 4-1. JES2 Commands for Status Information

If the use of previous commands does not make it obvious why JES2 is not
scheduling work, take a dump of the JES2 address space. Print the
SYS1.DUMPxx data set to help determine the problem.

Find the number of the IPS member that should be active and issue TIPS = na to
ensure that it is active. Print the IPS member in SYSl.PARMLIB and analyze
the IPS for an explanation of degraded service. Then, enter the W command to
print the system log to obtain the history of system execution.

Figure 4-2 shows important hardware components used by the system that should
be understood when a degradation problem is suspected.

The following areas in a storage dump may provide a starting point for further
analysis. Problems in these areas may indicate a bug or some unexpected use of
system services.

1. ENQjDEQ - A check of ENQjDEQ's processing queues may indicate
contention problems. A queue of many QELs off a particular QCB should be
explained. An indication of a possible problem is a mixture of shared and
exclusive requests intertwined for one resource. The state
(runningjwaitingjswapped-outjetc) of the' holder of the resource should be
determined.

The QCBs defining all enqueued resources are chained from either the local
or global hash table. To locate the hash tables:

• CVTGVT (CVT+ X'IBO') points to the global resource serialization
vector table (GVT), which resides in the nucleus .

• GVTGVTX(GVT+ X'lO') points to the GVT extension (GVTX), which
resides in the GRS address space.

4-24 MVS Diagnostic Techniques

• GVTXGQHT (GVTX + X' A4') points to the global queue hash table in
the G RS address space.

• GVTXLQHT (GVTX + X'AS') points to the local queue hash table in the
GRS address space.

Additionally, if the ENQjDEQ request was initiated from this system, you
can locate the resources and the requesters of resources (QELs) for an address
space by following the queue of QELs chained from the fields ASCBGQEL
(ASCB+ X'llO') or ASCBLQEL (ASCB+ X'1l4'). If the request was
initiated from another GRS system, the QELs are chained from the
SYSIDjASID hash table, which is pointed to by GVTXSAHT
(GVTX + X' AC').

Section 4. Symptom Analysis Approach 4-25

No

DASD
Seek
Analysis

Primary Tools

® - SWF

Yes

Yes

Yes

Yes

® - Hardware Wonltor

@ - RWF

(~) - GTF

Find
Dominant
Jobs

No

®®
Find
Major
Contributors

®®
Find
Major
Contributors

Figure 4-2. System Use of Hardware Components

4-26 MVS Diagnostic Techniques

®®
Yes Profile

Services

®
Yes Build PAK

(IEAPAKxx)
List

®®
Concurrent
Analysis

2. lOS storage manager queues should be inspected. The anchors for the
various pools (small, medium, and large block pools) are located at the end of
IECVSMGR at external symbol IEVVSHOR, which should show up in a
NUCMAP. Generally there should be one 2K page of small blocks (used for
10QEs) and one 4K page of medium blocks (used for RQBs). Examine the
large blocks in detail. If the system was quiesced, there should be two 4K
pages of large blocks and all blocks should be on the free queue. Many
heavily-loaded systems require 8-10 pages of large blocks. If the actual
number is much higher than this, determine the ASIO that each in-use block
is assigned to (the two bytes at block address-8 contains the ASIO address).
System address spaces can have many blocks, but any user address space with
a large number of blocks should be explained.

Common problems are: I/O loop, I/O errors, and storage not being freed at
I/O termination time. These page frames occupy real storage, which depletes
the pool of available real storage and possibly causes excessive paging.

3. Check page frame table entries (PFTEs) for large fix counts. The
CVT + X' 164' contains the address of the PVT; PVT + X'C' contains the
address of the apparent PFTE origin - you must index several hundred bytes
(X'10' times the number of pages in the nucleus). Large fix counts may

. indicate a page fix macro loop, or page fix without page free. Frames
allocated to a private area space may indicate a user error. Try to analyze
the contents of the page for a clue as to who is page fixing without page
freeing.

4. Check PFTEs for bad frames caused by hardware storage errors that rendered
these frames unusable (in PFTE + X'C', the X'04' flag should be set if this is
the case). Contact hardware personnel to determine if a machine malfunction
has occurred.

5. COE (contents directory entry). These blocks represent modules loaded into
virtual storage; COEs reside in SQA and the queue is anchored at
CVTQLPAQ (CVT+ X'BC'). The loaded module's name and starting
address reside in the COE. Those with starting addresses less than the value
in CVTLPOIA (CVT+ X'168') were members of either an IEAFIXnn list or
an IEALPAnn list. For members of these lists, COBs are built by NIP and
they occupy real, fixed storage even when the module is not in use. If fixed
storage or fragmentation is a problem, moving these modules to LP A can
provide a partial solution.

6. The BLOL table, pointed to by the nucleus external symbols IEARBSBL
and/or IEARESBS, should be checked. The addressees) should be less than
the value at CVTNUCB, the upper nucleus boundary. If not, try changing
the BLOL = nn system initialization parameter to BLOF = nn. This will cause
the BLOL list to occupy real storage at all times. If the number of entries is
less than 93, one frame is used.

7. In a quiesced system, the number of paging requests received should equal the
number of paging requests completed by ASM. The fields ASMIORQR
(ASMVT + X'28') and ASMIORQC (ASMVT + X'2C') in the ASMVT
represent the number of requests received and completed, respectively. The
difference between the two counts represents requests not completed. A large
number of uncompleted requests can indicate ASM is either not processing at

Section 4. Symptom Analysis Approach 4-27

all or is taking considerable time for each operation. Examine the PAT (page
allocation table) to determine whether the page data sets are almost full. Also
examine ASMERRS (ASMVT+ X'7C'), PAREFLGI (PARTE+X'9'), and
the IOSB for paging requests (lOSCOD = X'D') to determine if 1/0 errors
ha ve occurred and the data sets are no longer in use.

8. CSA use should be examined. If SQA is depleted, requests are filled from
CSA. This can be determined by inspecting the SQA DQE (descriptor queue
element):

• the CVT + X"230' points to the GDA (global data area)
• the GDA + X"I8' points to the SQA SPQE (subpool queue element)
• the SPQE + X'4' points to the SQA DQE.

The DQEs are chained together. If more than one DQE exists for the SQA,
it has expanded into the CSA. This causes the frame to be fixed. Also, often
CSA users page fix. In this case fragmentation, if present, could cause
performance degradation.

9. A possible real frame shortage can be indicated by inordinately large counts
in the PVT fields: PVTRSQA (a count of the number of times the SQA
reserved frame was allocated), and PVTDFRS (a count of the number of
times real frame allocation was deferred because of a lack of frame
availability). These counts by themselves mean little, but can be of some use
when analyzing an overall problem.

4-28 MVS Diagnostic Techniques

Incorrect Output

Initial Analysis Steps

The problem of missing, unexpected, or erroneous output is one of the most
difficult. This incorrect output might take the form of a message on the console
log or in SYSOUT, or an incorrect total in a report. There is usually very little
documentation that assists the debugger in analyzing incorrect output.

To resolve the problem of missing or incorrect output the analyst must have a
com.plete understanding of the job environment. There is no fast, clear cut
approach to these errors. This section only tries to assist your thought processes
as you begin to work on a problem of this type.

There are four basic categories of incorrect output: missing, unexpected,
erroneous, or a combination of these. The steps in resolving the problem must
take the category into account.

Initially, consider the following steps:

1. Gather all possible documentation. You will probably need additional
information as you begin to understand the problem in more detail.

2. Consider all recent hardware and software changes to the system and to the
application(s) if relevant. A change to an application that updates a data
base affects all other data base users.

3. Remember that output requires input. Consider the possibility of bad input.

4. Consider whether the problem is associated with some new function or
application. Most incorrect output errors occur in the installation and test
phase.

Isolating the Component

Next, attempt to locate the component causing the error. Do this by thinking
through the flow. Listed below are some questions that might assist you.

• Is the problem related to a user function or application? If yes, have there
been recent changes or is testing still in progress?

• Is the job control language correct? Have there been recent changes to the
JCL?

• Have any user exits been added or modified?

• Have any user supervisor calls (SVCs) been added or modified?

• Are there operator interactions that could affect the input/output?

• From which access method or function is the output expected? Some
examples are: JES, VSAM, BTAM, TCAM, and WTO.

Section 4. Symptom Analysis Approach 4-29

• Was RJE involved in the input and/or output?

• Was there any cross-address-space communication involved in the data
movement? In MVS, most telecommunication requires data passing between
address spaces.

• Is there any evidence of I/O error activity? Refer to the console log and
LOGREC data.

• Do you have a storage dump, or should you obtain one? See the chapter on
"Additional Data Gathering" in Section 2.

• Would a trace be helpful in understanding the flow? Consider tracing the
activity with GTF.

Many of the above questions have to be answered in order to get a better
understanding of the problem area. In many cases, the problem has to be
recreated with various traces or traps. These questions help to determine what
data is needed to solve the problem.

Analyzing System Functions

To solve an incorrect output problem, you must understand the mode of
operation and the processes required to accomplish the function in question.

The first question must be the following: where does the output originate? Then
you must be able to verify that the activity did occur. There must be some means
for understanding the path the data should take from the origin to the final
location (device).

Consider the following example:

I. A TSO user invokes his program which should write a message to the
terminal and then wait.

2. The program waits after the I/O but no message appears.

3. What are the system functions involved?

a. A language translator and the linkage editor that created the load
module.

b. OPEN code necessary to complete the link between the device and the
user PUT macro.

c. TSO TIOC flow. The user issues PUT which branches to the TIOC
module IGGOI9T4. This module issues TPUT. What is the TPUT path
through TIOC?

d. TSO TIOC interfaces with TCAM. What is the data path through
TCAM?

4-30 MVS Diagnostic Techniques

Summary

e. TCAM interfaces with the I/O supervisor. Can evidence be found of the
SIO? What types of trace would be helpful?

In this example it may be necessary to take a series of dumps to resolve where the
message was lost. But first be certain that the correct message is in the correct
buffer at the time of the user PUT macro.

It could be necessary to apply this type of thinking all the way down to the
CSECT level. '

In analyzing incorrect output, there are two key points. The first is that a better
undentanding of the system flow is probably required for this type of problem
than for any other. The second point is that it is very important to be able to
obtain the correct documentation at the correct time.

Note: The chapter on TP (teleprocessing) problem analysis earlier in this section
provides some specific steps for analyzing incorrect output in the TP environment.
Many of the techniques in that chapter can be applied to incorrect output
analysis.

Section 4. Symptom Analysis Approach 4-31

4-32 MVS Diagnostic Techniques

Section 5. Component Analysis

This section describes the operating characteristics and recovery procedures of
selected system components and facilities, and provides debugging techniques for
determining the cause of an error that has been isolated to a component or
facility.

The section contains the following chapters:

• Supervisor Control

• lOS
• Program Manager
• Virtual Fetch

• VSM
• RSM
• ASM
• SRM
• VTAM
• VSAM
• Catalog Management
• Allocation/Unallocation

• JES2
• SSI
• ENF
• RTM
• Communications Task

• RMS
• Service Processor Call SVC and MSSFCALL DIAGNOSE Instruction
• Service Processor Call SVC and SERVICE CALL Instruction
• Cross Memory Services
• Global Resource Serialization

Section 5. Component Analysis 5-1

Supervisor Control

Dispatcher

This chapter includes diagnostic techniques for the following supervisor control
functions:

• Dispatcher - which controls the initiating of work within the system.

• SRB/SSRB pool manager - which obtains and frees SRBs and SSRBs.

• Stop/reset services - which suspend and then reset units of work.

• SUSPEND/RESUME/TCTL services - which suspend and resume tasks, and
transfer control to tasks.

For effective problem analysis, it is important to understand how work is
processed by the MVS system. The MVS dispatcher plays a large role in
processing work by controlling the initiating of all work within the system. An
understanding of the dispatcher's processing and control block structure is
imperative for the debugger.

This chapter describes the following items about the MVS dispatcher:

• Important dispatcher entry points
• Dispatchable units and sequence of dispatching
• Dispatchability tests
• Dispatcher recovery considerations
• Dispatcher error conditions

Important Dispatcher Entry Points

The dispatcher's main entry points are the following:

lEAODS - Entered disabled, key 0, supervisor state. If there is status to save
(PSATOLD"O), the task being preempted can hold the LOCAL lock, a CML
lock, or one or more of the CMS locks. The dispatcher saves the cross memory
environment (control registers 3 and 4) in the XSB chained off of the TCB.

Callers of this entry point include:

• CALLDISP (type 6 SVC) when cross memory status has not been saved.

• Program FLIH when the FLIH has scheduled an SRB to perform PIEjPICA
processing.

lEAODSl - Entered disabled, key 0, supervisor state. If there is status to save
(PSATOLD"O), the task being preempted can hold the LOCAL lock, a CML
lock, or one or more of the CMS locks. The dispatcher assumes that the cross
memory environment (contro] registers 3 and 4) has already been saved.

5-2 MVS Diagnostic Techniques

Callers of this entry point include:

• Exit Prologue (lEA VEEXP), when control has not returned to the issuer of
an SVC.

• CALLDISP (type 6 SVC) enters the dispatcher at this entry point.

• SVC FLIH (IEAVESVC) when the local lock is required but not available.

• RTM (recovery termination manager).

lEAVDSPC - Entered disabled, key 0, supervisor state if there is status to save
(PSATOLD"O). The task to be preempted may hold the LOCAL or CML lock,
or the LOCAL or CML lock and at least one cross memory services lock.

This entry point is called by the foHewing:

• Program check FLIH (lEA VEPC) when a TCB or SRB is suspended for a
page fault (I/O required or no frames available), or for a page fix.

• Lock manager (lEAVELK) when suspending a task that unconditionally
requested a local lock that was unavailable.

The only difference between IEAODSI and IEAVDSPC is that IEAODSI also
does a store processor timer (STPT) instruction.

lEAPDS7 - Entered disabled, key 0, supervisor state, no locks held.

This entry point is called by the following:

• I/O FLIH
• External FLIH

lEAPDS7 A - Entered disabled, key 0, supervisor state, interrupted task holds
local lock or local and at least one cross memory services lock. This entry point
is called by the following:

• I/O FLIH
• External FLIH

lEAPDS7B - Entered disabled, key 0, supervisor state, no locks held, interrupt
occurred in wait state.

This entry point is called by the following:

• I/O FLIH
• External FLIH

lEAPDS7C - Entered disabled, key 0, supervisor state, interrupted task holds
CML lock or CML lock and at least one cross memory services lock.

This entry point is called by the following:

• I/O FLIH
• External FLIH

Section 5. Component Analysis 5-3

lEA VDSTC - Entered disabled, key 0, supervisor state, no locks held.

This entry point is called by:

• Transfer Control (lEA VETCL), when requested by an SRB to give control
directly to a specific TCB.

lEAPDSRT - Entered enabled or disabled, any key, supervisor state, no locks
held.

This entry point is the termination return address for all SRBs. If a lock is held,
the dispatcher issues an 066 abend with reason code X '04'.

DSJSTCSR - Job step timing subroutine. Calculates and accumulates job step
timing.

This entry point is called by the following:

• Timer SLIH. The timer SLIH calls this subroutine before it gives control to
SRM.

• Stimer service routine to accumulate job step time prior to enqueuing or
dequeuing a task-type TQE.

• EXIT (lEAVEOR) calls this routine when the last RB of the task is exiting.

• SVC FLIH (lEA VESVC) when a type 6 SVC exits and gives control to an
SRB.

Dispatchable Units and Sequence of Dispatching

This section describes the unique dispatchable units of work and the queues where
they are located. The dispatchable units are described below and are listed
according to the priority in which the dispatching queue is searched. In general,
this is also the priority with which units of work are dispatched. (However, there
are exceptions to the dispatching priority: for example, a ready TCB might be
dispatched before a local SRB if the SRB has affinity to another processor.)

1. Special Exit

A special exit is made known to the dispatcher by a unique flag setting in the
LCCADSFI (LCCA + X'2IC') field. The LCCADSFI bits and the exits they
indicate are:

Bit Exit

LCCAACR ACR
LCCAVCPU Vary CPU
LCCA TIMR Timer Recovery

The dispatcher enters these exits via a branch.

5-4 MVS Diagnostic Techniques

2. Global SRBs

SVTGSMQ is the header for the global SRB staging queue. If it is not zero,
it points to the global SRB (see Figure 5-1). Requestors use the
SCHEDULE macro to compare and swap global SRBs onto either this queue
or onto SVTGSPL. If both queues are empty, the SRB is placed directly
onto the GSPL; otherwise it is placed on the GSMQ. The dispatcher moves
the SRBs from the SVTGSMQ with the compare and swap (CS) instruction,
placing them on the SVTGSPL from which they will be dispatched.

SVTGSPL is the global SRB dispatching queue. The dispatcher removes the
SRB from the GSPL queue, updates the PSAAOLD with the SRBASCB
address, uses the CMSET service to establish primary and secondary
addressability to the address space, and dispatches the SRB. PSAANEW is
not updated.

3. Local SRBs

ASCBLSMQ is the header for the local SRB staging queue. If it is not zero,
it points to a local SRB (see Figure 5-1). Requestors use the SCHEDULE
macro to compare and swap local SRBs onto this queue, or onto ASCBLSPL..
If both queues are empty, the SRB is placed directly on the LSPL; otherwise
it is placed on the LSMQ. The dispatcher moves the SRBs from the
ASCBLSMQ with the compare and swap (CS) instruction, placing them on
the ASCBLSPL from which they will be dispatched.

ASCBLSPL is the local SRB dispatching queue. The dispatcher removes the
SRB from the LSPL, updates PSAAOLD, uses the CMSET service to
establish primary and secondary addressability to this address space, and
dispatches the SRB.

For compatibility, SVTLSMQ is included to support users of the
SCHEDULE macro who have not recompiled (see Figure 5-2). Previously,
the SCHEDULE macro placed all local SRBs on one common queue rather
than on the appropriate address space queue. The dispatcher tests this queue
if it cannot find any special exits or global SRBs to dispatch. If the queue is
not empty, the dispatcher calls CSECT IEAVESC5 in order to move the
SRBs to the appropriate ASCBLSMQ.

Section 5. Component Analysis 5-5

10

CVT

1 1
CVTASVT

X'264' CVTGSMQ

X'268' CVTLSMQ

X'26C' CVTGSPL

Notes:

ASVT

I 1

ASVTENTY

ASCB

1,.

X'DO' ASCBLSMQ

X'D4' ASCBLSPL

PSASVT

SVTGSMQ

SVTGSPL

X'28' SVTLSMQ

Unstaged
Note 1

1 . This queue is maintained for compatability. The SCHEDULE macro places local SRBs on the
address space LSMQ.

& System

2. All queues are now single-threaded and one SPL contains system and non-quiescable SRBs.

Figure 5-1. SRB Queue Structure and Control Block Relationships

5-6 MVS Diagnostic Techniques

After·a user request to schedule local SRBs:

10 I'--___J~I--CVT ___ _I ~ SVT

CVTLSMQ ---X' 28' SVTLSMQ h
X'268'

/

~SRB ASCB
___ r :/~

\... --.SRB

X'08'~S-R-B-AS-C-B-~- ~-S-R-B-AS-C-B~~ ASCBLSMQ

ASCB

I ASCBLSMQ I

After the dispatcher has determined there are SRBs to be processed and moves them to the
appropriate ASCB level:

10
1L.-.------...It::JI-----L--

CVT

=~L.~
SVTLSMQCj

ASCB SRB ASCB SRB

X' 04' ASCBLSPL D I ASCBLSPL

Figure 5-2. Local SRB Queue Structure and Control Block Relationships

Section 5. Component Analysis 5-7

4. Address Space Dispatcher

This is not actually a unique dispatchable unit of work, but rather an anchor
for the real dispatchable units of work (that is, local SRBs or TCBs). The
address space dispatcher is entered to select the next address space in which
work will be dispatched. If an address space is dispatchable, the priority of
dispatching within the address space is the following:

a. Local SRBs
b. Local supervisor (locally locked, interrupted work)
c. TCBs

If the dispatcher finds any SRBs on the ASCBLSPL, the top SRB is dequeued
and dispatched. If there are no SRBs on the ASCBLSPL queue, the
ASCBLSMQ is checked. If it contains any SRBs, the dispatcher stages the
entire LSMQ, removing the top SRB and dispatching it. If there are no
SRBs, the LOCAL lock is tested for interrupt id, X'FFFFFFFF'. If the
interrupt id is in the LOCAL lock, the id is changed to the current CPU ID
via compare and swap, and the status (FRRs, GPRs, FRR stack, CPU timer
value, PSATOLD, PSATNEW and resume PSW) is restored from the IHSA
(interrupt handler save area). The ASCBASXB points to the ASXB:
ASXBIHSA (ASXB + X'20') in turn points to the IHSA. Status is saved in
the IHSA when a locally-locked task is interrupted and control is switched
away from it because there is higher priority work to handle.

If ASCBLOCK contains a suspended ID (X'7FFFFFFF'), the dispatcher
checks the ASCBRCMS field to determine if the suspension is due to a cross
memory services lock request. If it is, the dispatching priority of the holder of
the cross memory services lock is checked. If the priority is lower than the
current ASCB dispatching priority, the dispatcher switches to the cross
memory services holder's address space in order to dispatch the holder of the
cross memory services lock.

If ASCBLOCK contains a ready-to-run ID (X'4FFFFFFF'), the dispatcher
checks the ASCBLOCI field to determine if the lock is held as a CML lock.
If the lock is held as a CML lock and the address space in which the holder
of the CML lock resides is lower in priority than the current address space,
the dispatcher switches to the lock holder's address space in order to dispatch
the lock holder. This is done to prevent a low priority address space from
creating a bottleneck in a higher priority address space. If the CML lock
holder's address space is a higher priority, then the dispatcher assumes the
lock holder was not ready to run because it would already have been
dispatched.

If the LOCAL lock is available (ASCBLOCK = 0):

• and the ASCBS3S bit (ASCB + X'138') indicates that there is work for
the stage 3 exit effector to process, the dispatcher will obtain the LOCAL
lock and go to the stage 3 exit effector.

• the dispatcher next determines if the number of ready TCBs not requiring
the LOCAL lock (ASCBTCBS), plus the number of TCBs requiring the
LOCAL lock (ASCBTCBL), exceeds the number of processors active in
the address space. If so, there is work to dispatch and the dispatcher

5-8 MVS Diagnostic Techniques

searches for the first dispatchable TCB that is not active on another
processor, starting at ASCBTNEW. If the first.ready TCB requires the
LOCAL lock, the dispatcher will obtain it for that TCB.

If the LOCAL lock is not available, (or the dispatcher fails to obtain it), and
the number of ready TCBs not requiring the LOCAL lock (ASCBTCBS)
exceeds the number of processors active in the address space, the dispatcher
will select the first dispatchable TCB that does not require the LOCAL lock
and is not active on another processor. Every search for a dispatchable TCB
begins with the ready TCB pointer (ASCBTNEW).

5. Wait Address Space

The wait address space is dispatched when the dispatcher reaches the bottom
of the ASCB ready queue and can find no ready work after a recursive search
of the SRB queues and the ready queue.

When the wait address space is dispatched, the dispatcher uses the CMSET
service routine to establish primary and secondary addressability to the master
scheduler address space (ASID = 1). PSAANEW is set to the ASCB address
of the wait address space and PSAAOLD is set to the ASCB address of the
master scheduler's address space.

Figure 5-3 provides an overview of the processing sequence through the MVS
dispatcher.

Section 5. Component Analysis 5-9

C ___ -)

.... ----- DISABLE
I

"">---'C ___ E_XIT __)

YES

YES

~ MOVE TO GSPL

YES
lEAVESC5

MOVE TO
APPROPRIATE
ASCBLSMQ

0
YES

YES
MOVE TO LSPL

Figure 5-3 (Part 1 of 3). Dispatcher Processing Overview

5-10 MVS Diagnostic Techniques

SPIN ENABLED
UNTIL IT

BECOMES FREE

INDICATE
SRB MODE

SCHEDULE TO
ASCBLSMQ

INDICATE
SRB MODE

SET UP psw

C LPSW)

-.(j)

NO {;\
~~

YES

NO

RESTORE STATUS
FROM IHSA

C ___ LP_SW __)

RESTORE STATUS
FROM SSRB

FREE SSRB

C __ L_PS_W __)

DISPATCH CML
LOCK HOLDER

~
(LPSW

Figure 5-3 (Part 2 of 3). Dispatcher Processing Oveniew

DISPATCH CMS
LOCK HOLDER

NO i
(LPSW)

)

Section 5. Component Analysis 5-11

GET NEXT ASCB

IF ASCBS3S= 1 •
THE STAGE 3
EXIT EFFECTOR
PROCESSES WORK

GET HIGHEST
PRIORITY
READY TCB

RECURSIVE SEARCH
OF THE DISPATCHING

'---------1 QUEUE TO VERIFY
THAT NO READY WORK
EXISTS

Figure 5-3 (Part 3 of 3). Dispatcher Processing Overview

5-12 MVS Diag~ostic Techniques

NO RESTORE
STATUS
FROM TCB

(LPSW)

Dispatchability Tests

The dispatcher conducts the following dispatchability checks:

SRB Tests

Test*

1. ASCBDSPljjASCBSSND

2. ASCBDSPljjASCBFAIL

3. ASCBDSPljjASCBSSS

4. ASCBDSPljjASCBSNQS

5. SRBCPAFF

6. SRBFLGSj jSRBLLREQ

7. SRBFLGSjjSSRLLHLD

8. SRBASCB

Condition

Dispatchability flags

System non-dispatchable and this address space non exempt

Address space in failure mode and in the process of being
terminated

System-level SRBs stopped (does not apply to nonquiesceable
SRBs)

All SRBs stopped

Does SRB. have affinity to this processor? (PCCACAFM defines
the current processor)

LOCAL lock required at dispatch time

This SRB holds the LOCAL lock. The ASCBLOCK will be
changed from X'4FFFFFFF' to the CPU ID when the SRB is
dispatched.

Does SRB point to valid ASCB? (Global SRBs only)

*Format of test description is "field//bit within field."

Address Space and Task Tests

The following address space test criteria must be met before the task dispatcher
gets control.

Address Space Tests

1. ASCBDSPljjASCBSSND

2. ASCBDSPI//ASCBFAIL

3. ASCBDSPI//ASCBSTND

4. LOCAL LOCK//ASCBLOCK

Free
(X'OOOOOOOO')

Other CPUID

Interrupt ID
(X'FFFFFFFF')

Suspend ID
(X'7FFFFFFF')

Condition

System non-dispatchable and this address space not exempt.

The ASeB is in failure mode and in the process of being
terminated. The address space will not be dispatched.

TCBs not dispatchable. STATUS (lEA VSETS) is stopping
SRBs.

If any ready work exists in the address space, it can be dispatched.

If any ready work exists that does not require the LOCAL lock,
it can be dispatched.

Compare and swap CPUID into LOCAL lock and restore the
status (FPRs, GRPs, FRR Stack, CPU timer value,
PSATOLD PSATNEW, and resume PSW) from the IHSA.

If suspension is due to an unsuccessful cross memory services
lock request and the holder of the lock has a lower priority,
then dispatch the lock holder. Otherwise, if any work
exists that does not require the LOCAL lock, that work
can be dispatched.

Section S. Component Analysis 5-13

Ready-to-run ID
(X'4FFFFFFF')

s. ASCBFLGl//ASCBS3S

6. ASCBTCBS + ASCBTCBL
> ASCBCPUS

7. ASCBTCBS>ASCBCPUS

If the lock is held as a CML lock. then dispatch the lock holder
if the lock holder has a lower priority and is dispatchable.
Otherwise. if any work. exists that does not require the LOCAL
lock, that work can be dispatched.

Interface with Stage 3 exit effector, if the LOCAL lock is
available.

The LOCAL lock is available. If the total number of ready
TCBs (those not requiring the LOCAL lock. plus those
requiring it) exceeds the number of processors currently
executing in the address space. the address space can be
dispatched.

The LOCAL lock is not available. There are more ready TCBs
(those not requiring the LOCAL lock) than there are processors
currently executing in the address space; the address space can be
dispatched.

After these seven tests indicate that the dispatcher should dispatch an address
space, the following task indicators are tested.

Task Tests

I. TCBFLGS4 + TCBFLGS5

2. RBWCF

3. TCBXSCTI//TCBACTIV

4. TCBXSCTI/ /TCBLLREQ

5. TCBXSCTI/ /TCBCMLR

6. TCBAFFN

Miscellaneous Notes About the Dispatcher

Condition

TCB primary non-dispatchability flags must not be set.

RB must not be waiting.

If on. this TCB is active on the other processor (TCBCCPVI). or
is suspended holding a local lock.

If on, this TCB requires the LOCAL lock before being
dispatched.

If on. this TCB holds a CML lock and is read) to run.

TCB affinity, if any, must match this processor's (which is
located in PCCACAFM).

1. You can determine the last SRB dispatch by examining the PSW at location
X'420' and the last task dispatch by examining the PSW at location X'468'.

At each dispatch the processor timer is set to a value that will not expire over
a 208-day period unless a task has a TQE, in which case it is set to the TQE
value.

For all initial SRBs, the processor timer is also set to the 208-day value. For
SSRBs, the processor timer is set to the remaining time value stored in the
SSRBCPUT field.

2. The dispatcher sets the following mode indicators before dispatching work.

a. For a global SRB - LCCADSF2jjLCCASRBM, LCCAGSRB, and
LCCADSRW

PSATNEWjPSATOLD = O's

5-14 MVS Diagnostic Techniques

b. For a local SRB - LCCADSF2//LCCASRBM, and LCCADSRW

PSATNEW/PSATOLD = O's

c. For a task - LCCADSF2//LCCADSRW

PSATNEW /PSATOLD " O's TCB address

Dispatcher Recovery Considerations

Dispatcher recovery is designed to record information about the error, reconstruct
critical dispatching queues, and to retry to continue normal dispatching functions.

The data that the dispatcher records in the system diagnostic work area (SDWA)
is the following:

Fixed Data

SDWAMODN
SDWACSCT
SDWAREXN
SDWACID
SDWAMLVL

- lEA VEDSO, dispatcher module name
- lEA VEDSO, dispatcher CSECT name
- lEA VEDSR, dispatcher recovery routine
- SCIC5, component ID
- module date and level

V tlI'iable Data

SDW A VRA - The variable data is written in the key-length-data format. Data
items include control block mapping names followed by pairs of field offsets and
the contents of the control block at the time of error as follows:

Control Field
Block Offset Name Description

IHAPSA X'224' PSAAOLD Current ASCB address.
X'2IC' PSATOLD Current TCB address, or zero.
X'2BO' PSALOCAL ASCB address of the CML lock, or zero.
X'2FS' PSAHLHI Locks held indicator.
X'49C' PSAMODEW Word containing PSAMODE.

IHAASCB X'80' ASCBLOCK Local lockword value.

X'ES' ASCBLOCI Address of ASCB holding this ASCB's CML lock.
X'EC' ASCBMLH Address of suspended unit of work holding this ASCB's local

lock as a CML lock or LOCAL lock.
X'B4' ASCBSRQ Local dispatcher intersect flags.
X'13C' ASCBRCMS Address of the requested cross memory services lock for

which the local lock holder is suspended.

IHALCCA X'36C' LCCAFSSJ SRB journal queue header.
X'2IC' LCCADSFI Dispatcher flag bytes.
X'53C' LCCAPRMT Address space promotion indicators.

IHASVT X'IC' SVTDSREQ Global dispatcher intersect flags.

. If the dispatcher lock and global intersect can be obtained, the following recovery
routines are called by the dispatcher recovery routine:

• lEA VESCR - Scheduler recovery routine; it recovers SRB queues.
• lEA VEQV3 - Verifies, and possibly reconstructs, the ASCB ready queue.
• IEAVEGAS - Verifies each ASCB on the ready queue.

Section 5. Component Analysis 5-15

If the LOCAL lock and local intersect can be obtained, the error was not a OAT
(dynamic. address translation) error; and if the current ASCBSTOR value equaled
the CRt value, then the following recovery routines are invoked by the
dispatcher:

• lEA VEEER - Exit effector recovery routine (if the ASCBS3S is on).
• IEAVEQV3 - Verifies, and possibly reconstructs, the TCB queue.
• lEA VETCB - Verifies each TCB on the TCB queue.

Note: The queue verification routine, lEA VEQV3, also records error information
in the SOW A VRA about any changes to the queue structure.

By removing elements that have been overlaid (or "clobbered") from the queue,
the dispatcher recovery routine attempts to keep the system up at the cost of a
particular user, job, address space, etc. There is a certain exposure in this
philosophy because the element that has been lost might have owned a critical
system resource or might be a critical function in itself (for example, a TCB that
represents the user's main application program). If a TCB queue is truncated or
found to have invalid data, the address space is terminated. Once the element is
lost, there might be no indication that it was a critical resource (a valid control
block, for example) or that it owned a critical resource.

Dispatcher Error Conditions

• Abend 075 is issued from CSECT lEA VESCO when a local SRB is scheduled
to an invalid ASCB at the time the SRB is scheduled. The SRB SCHEDULE
requester can usually be determined by examining the registers.

• The dispatcher issues the following abends:

Abend Reason
Code Code Explanation

x'on' none A task or SRB is found with CPU affinity to a processor not currently
online.

X'22F' none There is no usable CPU timer available for tasks with task type TQE, or the
processor to which the task has affinity has no operable timer.

X'066' X'04' A completed SRB returned to the dispatcher and the SRB holds a lock.

X'066' X'OC' An SRB holds the CML lock of an address space that is failing.

X'066' X'IO' An SRB or SSRB points to an ASCB without a valid ASCB acronym.

X'066' X'14' A task holds the CML lock of an address space that is failing.

• Program check interrupts (usually of the page, addressing, or segment
exception variety) occur when:

PSAANEW is overlaid and the dispatcher attempts to switch address
spaces into the value in the PSAANEW
PSALCCA V or PSAPCCA V values are overlaid
The CVT pointer is overlaid
The ASCB ready queue is overlaid
The TCB queue or the TCBRBP field is overlaid

5-16 MVS Diagnostic Techniques

SRB/SSRB Pool Manager

The SRBjSSRB pool manager obtains and frees SRBs from the SRB pool and
SSRBs (with their associated XSBs) from the SSRB pool. System routines (in key
0, supervisor state) issue the GETSRB, FREESRB~ GETSSRB, and FREESSRB
macros to request the pool manager services.

This topic describes the following:

• SRB/SSRB pool manager entry points
• SRB/SSRB pool manager recovery considerations
• SRB/SSRB pool manager error conditions

SRB/SSRB Pool Manager Entry Points

The pool manager entry points are:

IEAVSPMI - entered key 0, supervisor state, enabled for OAT, system mode acceptable to SETFRR
(not EUT), no locks required (except the SALLOC might be required for UNCONO
and EXPANO type requests.

This entry point is called by the GETSRB macro and obtains an SRB and six-word
parameter area from the SRB pool. The SRB is initialized as follows:

• SRB acronym field
• pointer to the parameter area
• FREEMAIN flags, which indicate the origin of the SRB
• other fields and the parameter area cleared.

IEAVSPM2 - entered key 0, supervisor state, enabled for OAT, system mode acceptable to SETFRR
(not EUT), no locks required (except the SALLOC lock might be required).

This entry point is called by the GETSSRB macro and obtains an SSRB and its
associated XSB from the SSRB pool. The SSRBjXSB are initialized as follows:

• SSRB acronym field
• pointer to a resource management termination routine (RMTR)
• pointer to the SSRB save area
• SSRB pointer to the XSB
• non quiescable and suspended flags set on
• FREEMAIN flags, which indicate the origin of the SSRBjXSB
• XSB acronym field
.. other fields cleared.

IEAVSPM3 - entered key 0, supervisor state, enabled for OAT, system mode acceptable to SETFRR
(not EUT), no locks required (except the SALLOC lock might be required).

This entry point is called by the FREESRB macro and frees an SRB and its six-word
parameter area. If the specified SRB acronym field is not the same as when the SRB
was obtained, the program issuing the macro is abended.

IEAVSPM4 - entered key 0, supervisor state, enabled for OAT, system mode acceptable to SETFRR
(not EUT), no locks required (except the SALLOC lock might be required).

This entry point is called by the FREESSRB macro and frees an SSRB and its XSB. If
the specified SSRB acronym field is not the same as when the SSRB was obtained, the
program issuing the macro is abended.

Section 5. Component Analysis 5-17

SRBISSRB Pool Manager Recovery Considerations

When an error occurs, the SRBjSSRB pool manager recovery routine
(lEA VSPMR) records information about the error in the SDW A. The queue
verifier routine (lEA VEQV1) then uses an SRBjSSRB verification routine in
lEA VSPMR to verify· that the SRB and SSRB pools are intact. Two tests are
used to determine if a given storage area is a valid SRB or SSRB: (1) the storage
address must be a valid virtual address, and (2) the acronym field must contain
the correct acronym.

If an error is found with a pool, the queue verifier routine attempts to repair the
pool, which might include removing invalid SRBs or SSRBs from their pools.
Any removed blocks of storage are unavailable for the remainder of the IPL.

The data recorded in the SOW A is:

Fixed data

SDWAMODN
SDWACSCT
SDWAREXN
SDWACID
SDWASC
SDWAMLVL
SDWARRL

Variable data

- NUCLEUS, pool manager is nucleus resident.
- IEAVESPM, CSECT name.
- lEA VESPM, recovery CSECT name.
- SCIC5, component ID.
- descriptive module name.
- module level information.
- lEA VSPMR, recovery routine label.

The variable data in the SOW A VRA is recorded in the key-length-data format.

• FRR parm area - the six-word parameter area passed to lEA VSPMR by the
mainline routine is as follows:

Mainline SALLOC footprint - indicates if the SALLOC lock was held on
entry to the pool manager.

FRR SALLOC footprint - indicates if the SALLOC lock was held on
entry to the recovery routine.

Return address - contents of register 14 on entry to the pool manager
(caller's return address).

• ASCBASID - address space ID of the current ASCB.

• PSATOLO - address of the current TCB.

• General register 14 - contents of register 14 on entry to the mainline pool
manager (caller's return address).

• Pool problem information - information recorded by the queue verifier
routine if problems are found with the SRB or SSRB pools. .

• Lock name - SALLOC, indicates that the SALLOC lock was held by the pool
manager mainline routine. ~

5-18 MVS Diagnostic Techniques

SRB/SSRB Pool Manager Error Conditions

Stop/Reset Services

Stop/Reset Entry Points

If the lEA VSPM3 (FREESRB) or lEA VSPM4 (FREESSRB) routines are called
and an error is detected, completion code X'OSA' is issued and the caller is
abended. Register 2 contains the address of the invalid SRB or SSRB.

Refer to System Codes for a description of code X'OSA' and specific reason codes
in register 15.

When a unit of work (a current task or SRB) has been dispatched and is
executing, the unit of work might need to be suspended. For example, to satisfy a
page-in due to a page fault.

System routines (in key 0, supervisor state) use the stop/reset service to suspend
and then reset a unit of work. The caller is not required to have addressability to
the home address space to suspend a unit of work, and is not required to have
addressability to the address space containing the unit of work to reset the unit of
work.

This topic describes the following:.

• Stop/reset entry points
• Stop/reset recovery conditions
• Stop/reset error conditions

The stop/reset entry points are:

lEA VSUSP - entered disabled, key 0, supervisor state, no locks required (except the SALLOC lock
might be required).

This entry point is called by the paging supervisor to suspend a current task or SRB
because a page fault occurred.

IEAVSUSQ - entered disabled, key 0, supervisor state, no locks required (except the SALLOC lock
might be required).

This entry point is called by system routines (other than the paging supervisor) to
suspend the current task or SRB.

IEAVRSET - entered disabled, key 0, supervisor state, no locks required (except the SALLOC lock
might be required.

This entry point is called by the paging supervisor to reset a task or SRB that was
suspended because of a page fault.

IEAVRSTD - entered disabled, key 0, supervisor state, no locks required (except the SALLOC lock
might be required). .

This entry point is called by system routines (other than the paging supervisor) to reset
a task or SRB that was suspended.

Section 5. Component Analysis 5-19

Stop/Reset Recovery Considerations

The stop recovery routine (STOPFRR) records information about the error and,
depending on the error, either attempts to restore the system and unit of work to
a consistent state, or attempts to complete the stop function.

The reset recovery routine (RESETFRR) records information about the error and
then attempts to complete the reset function.

The reset STERM, reset schedule, and reset SRB recovery routine (lEA VSCHF)
frees the SRB (if one was obtained but not scheduled), clears the stop/reset super
bit (PSASTPRT), and releases the LOCAL lock (if the LOCAL lock was obtained
by the calling routine).

The data that the stop/reset recovery routines record in the SDWA is:

Fixed data

The fixed data recorded by all of the recovery routines is:

SDWAMODN
SDWACSCT
SDWAREXN
SDWACID
SDWAMLVL
SDWARRL

Variable data

- NUCLEUS, stop/reset is nucleus resident.
- IEAVESRT, CSECT name.
- lEA VESRT, recovery routine.
- SCIC5, component 10.
- module level information.
- STOPFRR, RESETFRR, or lEA VSCHF, label of the recovery routine.

The variable data in the SDW A is recorded in the key.;.}ength format. The
variable data recorded by the recovery routine is:

For the stop recovery (STOPFRR) and the reset recovery (RESETFRR) routines:

• FRR parm area - the six-word parameter area passed to STOPFRR and
RESETFRR by the mainline routine is as follows:

General register 13 - caller's register save area address.

TCB/SSRB address - address of the TCB or SSRB to be reset.

RB address - address of the RB if a TCB is to be reset.

Request code - type of reset requested (conditional, unconditional, or
page I/O error), or completion code for a termination reset.

Flag byte - if X '80', recovery has been entered recursively.

• ASCBASID - address space ID of the current ASCB.

• PSATOLD - address of the current TCB.

• General register 14 - contents of register 14 on entry to the mainline stop
routine (caller's return address).

5-20 MVS Diagnostic Techniques

• General registers - for STOPFRR, contents of the original registers, if they
were changed by the recovery routine.

• Abend code - for STOPFRR, the original abend code, if it was changed by
the recovery routine.

For the reset STERM, reset schedule, and reset SRB recovery routine
(lEA VSCHF):

• FRR parm area - the six-word parameter area passed to lEA VSCHF by the
mainline routine as follows:

SSRB address - address of the SSRB associated with the scheduled SRB.
(Note that an SSRB is obtained, made to look like an SRB, and
scheduled as an SRB. The remainder of the SSRB is used as a work area
by the scheduled routine. The SSRB is restored to an SSRB before it is
returned to the SSRB pool.)

Flag byte - recovery footprint flags:

X'80' - stop/reset super bit footprint, indicates the mainline code set the bit.

X'40' - LOCAL lock footprint, indicates the mainline code had obtained the LOCAL lock
and had not released it before the error occurred.

• ASCBASID - address space ID of the current ASCB.

• PSATOLD - address of the current TCB.

• If an SRB was obtained but not scheduled, the following are also present in
the SDWAVRA:

IHASRB - identifies the following control block.
SRB - contents of the unscheduled SRB.
SRB parm area header - describes the following six-word parameter area.
SRB parm area - contents of the SRB parameter area.

• Lock name - LOCAL, indicates the LOCAL lock was held.

Stop/Reset Error Conditions

The stop/reset services issue the X'059' completion code when an error exists, and
abnormally terminates the program requesting the service.

Refer to System Codes for a description of code X'059' and specific reason codes
in register 15.

Section 5. Component Analysis 5-21

SUSPEND/RESUME/TCTL Services

The SUSPENDjRESUMEjTCTL services are used to place an unlocked task in a
suspended state (SUSPEND), resume an unlocked task from a suspended state
(RESUME), and to transfer control from an SRB to an unlocked task (TCTL).
These macros can only be issued by key 0, supervisor state routines.

SUSPEND can be issued in any cross memory mode and in task mode; it places
the caller in a suspended state. Control is returned to the caller and the task is
suspended only when the task incurs an interruption or enters the dispatcher (such
as via CALLDISP).

RESUME can be issued in any cross memory mode and in SRB or task mode,
with current addressability to the address space of the TCB that is to be resumed.

TCTL can be issued in SRB mode and home mode, with current addressability to
the address space of the task to which control is to be transferred.

This topic describes the following:

• SUSPENDjRESUMEjTCTL entry points
• RESUMEjTCTL recovery considerations
• SUSPENDjRESUMEjTCTL error conditions

SUSPEND/RESUME/TCTL Entry Points

The SUSPENDjRESUMEjTCTL entry points are:

lEA VSPND - entered enabled or disabled, key 0, supervisor state, task mode, no locks held, any cross
memory state.

This entry point is called by the SUSPEND macro and places the current TCB/RB in a
suspended state.

lEA VRSUH - entered enabled, key 0, supervisor state, no locks held, SRB or task mode, home mode.

This entry point is called by the RESUME macro to resume a task in the home address
space. This entry point performs an unconditional synchronous resume function. The
caller must execute enabled and hold no locks unless the LOCAL lock is already held,
because this entry point can require the LOCAL lock to serialize the resume function.
This is the only entry point where RETURN = N can be specified to indicate that
control should be transferred from the calling SRB to the resumed task. .

lEA VRSUS - entered enabled, key 0, supervisor state, no locks held, SRB or task mode, any cross
memory state, current addressability to the resumed TCB.

This entry point is called by the RESUME macro to resume a task in the address space
specified by the input. Current addressability to the task to be resumed must have been
established by the caller. This entry point performs an unconditional synchronous
resume function. The caller must execute enabled and hold no locks unless the LOCAL
lock of the address space of the resume~ TCB is already held, because this entry point
can require the specified lock to serialize the resume function.

lEA VRSCS - entered enabled or disabled, key 0, supervisor state, SRB or task mode, any cross
memory state, locks can be held, current address ability to the resumed TCB.

5-22 MVS Diagnostic Techniques

This entry point is called by the RESUME macro to resume a task in the address space
specified by the input. Current addressability to the task to be resumed must have been
established by the caller. This entry point performs a conditional synchronous resume ~
function. If serialization to perform the resume function is not available, the function is ~
not performed and the caller receives a nonzero return code.

IEAVRSUA - entered enabled or disabled, key 0, supervisor state, SRB or task mode, any cross
memory state, locks can be held, current addressability to the resumed TeB.

This entry point is called by the RESUME macro to resume a task in the address space
specified by the input. Current addressability to the task to be resumed must have been
established by the caller. This entry point performs an unc~nditional asynchronous
resume function. If serialization to perform the resume functiJn is not available, an
SRB is obtained and, asynchronously, an unconditional synchronous function is
performed; a nonzero return code is returned to the caller.

lEA VRSCA - entered enabled or disabled, key 0, supervisor state, SRB or task mode, any cross
memory state, locks can be held, current addressability to the resumed TCB.

This entry point is called by the RESUME macro to resume a task in the address space
specified by the input. Current addressability to the task to be resumed must· have been
established by the caller. This entry point performs a conditional asynchronous resume
function. If serialization to perform the resume function is not available, an SRB is
obtained conditionally, and if successful, asynchronously scheduled to perform an
unconditional synchronous resume function. Return codes are returned to the caller to
indicate whether the SRB could be obtained or not obtained.

lEA VTCTL - entered enabled or disabled, key 0, supervisor state, SRB mode, hometmode, no locks
held.

This entry point is called by the TCTL macro to transfer Control from an SRB to a task
in the home address space.

lEA VETCR - entered disabled, key 0, supervisor state, any cross memory state, SRB or task mode.

This entry point is caUed by RTM and performs recovery processing for the resume and
transfer control functions.

RESUME/TCTL Recovery Considerations

RESUME/TCTL processing is protected by an FRR (lEA VETCR) that receives
control from RTM when an error occurs. The FRR records debugging
information in the SDW A, attempts to restore the system and unit of work to a
consistent state, and then percolates to the caller's recovery routine.

The data recorded in the SDW A is:

Fixed data

SDWAMODN
SDWACSCT
SDWAREXN
SDWACID
SDWASC
SDWAMLVL
SDWARRL

- NUCLEUS, nucleus load module.
- lEA VETCL, mainline microfiche name.
- lEA VETCL, recovery microfiche name.
- SCIC5, component ID.
- RESUME ABEND or TCTL ABEND, subfunction in error.
- module level information.
- lEA VETCR, recovery routine name.

Section S. Component Analysis 5-23

Variable data

Variable data in the SDWAVRA is recorded in the key-length-data format. A
header contains RSLG in key-length-data format followed by the RSLG mapping
in key-length-data format as follows:

Offset RESUME data

X'O' flag byte: Bit 0 = O,RESUME
X'I' 0
X'2' flag byte: Bit 0 = I, lock obtained

Bit 1= 1, SRB obtained
X'4' PSASUPER
X'S' PSACSTK
X'C' PSATOLD
X'tO' PSAAOLD
X'14' input TCB address
X'IS' input ASCB address
X'IC' PSAHLHI
X'20' home address space ID
X'22' 0
X'24' ASCBTCBS
X'2S' address of SRB, or 0

SUSPEND/RESUME/TCTL Error Conditions

TCTL data

flag byte: Bit 0 = I,TCTL
SVTDACTV
o

PSASUPER
PSACSTK
PSATOLD
PSAAOLD
input TCB address
SVTDSREQ
ASCBSRQ

The SUSPEND, RESUME, and TCTL macros issue the X'070' completion code
when an error condition exists, and abnormally terminate the program issuing the
macro.

Refer to System Codes for a description of code X'070' and specific reason codes
in register 15.

5-24 MVS Diagnostic Techniques

lOS

Front-End Processing

Back-End Processing

lOS Problem Analysis

"

The purpose of the I/O supervisor (lOS) is to provide a central facility to control
and conduct I/O activity through the operating system. The structure of lOS in
MVS is somewhat different than that of previous operating systems. In MVS,
lOS "front end processing" is responsible for device control and I/O initiation;
lOS "back end processing" is responsible for processing interrupts, providing
sense information in error situations, and scheduling the posting of the I/O
requestor at completion time. Figure 5-4 provides an overview of I/O front-end
and back-end processing. Figure 5-5 shows the major lOS and EXCP control
block relationships.

The major portion of the I/O process (the queueing of I/O requests and starting
them) is contained in CSECT IECIOSCN (microfiche name IECIOSAM), which
is called the channel scheduler. The channel scheduler is invoked through an
interface provided by the STARTIO macro via a branch entry. The channel
scheduler assumes that all channel program translation and page fixing of buffers
and CCWs is performed by the caller. The control block interface is the
SRB/IOSB combination, which must be non-pageable and commonly addressable
from any address space (that is, SQA and fixed CSA). The channel scheduler
operates in physically disabled mode. Invokers (called "drivers") of the channel
scheduler include EXCP, VSAM block processor, VTAM TPIOS, and PCI fetch;
they are identified by the driver ids located in the IOSB + 4 (lOSDVRID).

When lOS is invoked for an I/O interrupt, processing starts in the I/O first level
interrupt handler (FLIH) which branches to an entry point, IECINT, within the
channel scheduler. Back-end lOS executes physically disabled in the address
space that is active on the processor at the time of the I/O interrupt. lOS then
schedules the SRB/IOSB to the address space of the requestor. The module
IECVPST (post status) receives control under the SRB and interfaces with the
driver's special exits and termination routines (channel end, abnormal end exits).
Figure 5-4 shows an overview of the I/O process using EXCP as the I/O driver.

Problems in the I/O process can cause three symptoms:

1. Abend codes
2. Loops
3. Wait states

These symptoms are discussed in the following sections.

Section 5. Component Analysis 5-25

Front-End Processing

User

SVC 0

EXCP
Driver

-
BALR

-
BR

-
BR

IECVSMGR

Gets storage
for SRB/IOSB,
TCCW, BEB,
FIXLIST, ROE

I ECVTCCW

CCW
Translation
Fixing

SRB/IOSB (input parameter)

.'
- IECVSMGR

IECIOSCN
Gets storage

(lOS) BR for IOOE U/O - Queue Element)

BR

EXCP Driver

User

Figure 5-4. I/O Processing Overview

5-26 MVS Diagnostic Techniques

Back-End Processing

I/O Interrupt

I/O FLIH I
BR

IECINT

(lOS) -
-

BR

Scheduled via SRB/IOSB

IECVPST

EXCP Driver

• POST
• Appendage Interface
.IECVTCCW

- Retranslation
- Unfixing

.IECVSMGR
- Free blocks

Dispatcher

IECVSMGR

Frees IOOE

cvr

8C cvrrLcH

o ~ 1st roo
(.... -- f-,-----I

i 4 ~ Last roo
I
I

I
I
I
\ ... ~lOO

/

(8 rOOrOSB
I
I
I
I
I
I
I
I
I
I
I •

UCB Prefix

.••.... __ I------l

UCB
f-----:-I

14

SRB

10SB
81 SRMscal

ASCB
rOSUCB

D
1C rOSSRB

1-----1

20 IOSUSE - -----------------------./

EWA
34 1--1 O_S_E_RP----l· -----~II....._ __ --l

48 IOSRST
(real)

4C rOSVST
(virtual)

Common UCB
Extension

D

CHAN PGM

8
~ I I
I CCWn I
! .•.. _.,,, .• ,.,.J

ROE [0 +uca
4 ROEIOB

8

C

10
f------I

4 TCCWUCB

8 TCCWBEB

C TCCWFZX

rOB

rOBSTART

FZX

BEB

Virtual
channel
program

DCBDEBAD

Figure 5-5. Major lOS and EXCP Control Block Relationships

Section 5. Component Analysis 5-27

lOS ABEND Codes

Loops

lOS abends are generally caused by an invalid control block. The error can be
caught by validity checking or it can cause a program check. The recovery
routines, generally FRRs, receive control on a program check. For either a
validity check or a program check~ the error is converted to an abend code.
EXCP FRR processing saves the abend code and the relevant status (that is, error
PSW, and error registers) at the time of errbr in the EXCP problem determination
area, which is pointed to by the TCB (X'CO'). lOS abend codes are documented
in Message Library: System Codes. The EXCP problem determination area is
documented later in this section in the topic "The EXCP Debugging Area." A list
of lOS abend codes and issuing procedures is found in the topic "Wait State
Codes."

Note: During abend processing, the EXCP problem determination areas are not
freed. When you find the area pointed to by the TCB, scan that area for
previously-obtained areas to help with lOS analysis.

If an invalid control block is passed to lOS and it is not caught by the validity
check routines, a loop is often the result. The traditional problem has been
caused by a driver that reuses the 10SB before its first use is complete.
Consequently, the requestor initializes the block and overlays some fiel4 whose
use is not complete. On occasion the block is cleared to zeros. The fact that
most of the I/O process runs -in supervisor state, key 0 means that the PSA can be
overlaid. This usually causes a program check loop whenever any type of
interrupt is subsequently received by the processor.

At this point, pattern recognition is important to determine whether the storage
manager has been involved in the problem. (Pattern recognition is discussed in
the "Miscellaneous Debugging Hints" chapter in Section 2.) Try to determine
whether 0 has been used as the address of an SRB/IOSB or EWA control block.
The first X'AO' bytes of PSA may be affected. The routine responsible for this
could be an lOS driver or recovery routine. Look for addresses of exit routines
which are pointed to by the 10SB; they give an indication of the driver and
potentially some idea of the process. Remember that the hardware stores the
current PSW as an old PSW (at locations X'18' - X'40') if any interrupt occurs.
Therefore these locations may not look bad.

Often double freeing has occurred some time earlier, which makes the recreation
of the erroneous process very difficult. Extensive analysis and piecing are
required. Multiple dumps may help provide the pieces necessary to recognize a
pattern or common occurrence. Or, a trap might have to be devised.

If there is evidence of a recent error in the I/O process, searching the in-storage
LOGREC buffer or SYSl.LOGREC records for an lOS error helps recreate the
process. Generally the lOS recovery routines attempt to free control blocks and
might inadvertently free one that has just been freed. Try to determine if there is
any way that the channel scheduler or I/O driver and its associated exits could
have freed blocks before or after recovery processing. In a retry situation, normal
termination procedures could have freed a block that was already freed by
recovery. Again, traps might be required. ~

5-28 MVS Diagnostic Techniques

lOS WAIT States

Another problem is an enabled wait state with work remaining for lOS to
accomplish. For a list of lOS wait state codes and the procedures that issue them,
refer to the topic "Wait State Codes" later in this section. To analyze a wait
state, it is necessary to determine the current status of lOS.

To determine current lOS status, scan the UCBs for valid IOQEs in UCBIOQ
(UCB-4). The 10QE is valid if UCBPST (UCB + 6, bit X'20') is on. The 10QE
address is valid only when it is active. Understand that once a block is freed, it is
generally reused quickly when a subsequent request for an I/O operation is
encountered. Because of this, it is very uncommon to find a significant IOQE
pointed to by the UCB prefix once lOS has returned the block. The block usually
represents another request. If the UCB pointer in the IOQE does not equal the
address of the UCB you started with, the blocks have been reused and the data is
invalid.

Additionally the 10QEs can be found in the storage manager areas. These are
located by CVT + X'7C' which points to 10COM + X'24' which points to module
IECVSMGR. Label IECVSHDR is an external symbol for the storage pool
headers for small blocks (IOQEs). These are followed by the pool headers for
medium (RQEs) and large (SRB/IOSBs, BEB, TCCW, ERPWA, fix lists) blocks.
The pool headers are 16 bytes long and the last word points to segment headers
for 2K bytes (small block) or 4K bytes (medium and large blocks) of storage.
The 10QE + 5 contains an allocated indicator. If all X'3C' bits are on, the block
is allocated and, in the case of 10QEs, represents I/O requests that are started or
that have been requested by a driver but have not been started because of a busy
or not ready condition (UCBFLA).

After the storage manager (medium and large) blocks are found, notice their
8-byte prefixes, the first halfword of which contains the ASID of the address
space to which the block is allocated. Note that the ASID is 0 when the block is
not allocated and in special cases such as when unsolicited device ends are not
associated with any address space. Scanning these prefixes for an ASID that
matches the problem address space can help in finding blocks associated with I/O
requests related to that address space. Medium and large blocks that contain a
X'I7' in the fourth byte of the prefix are not allocated. A value of X'75' for
medium blocks, and X'76' for large blocks, indicates that they are currently
allocated. (Note that the third byte of this first word of the prefix is unused.)

The 10QE points to the associated 10SBs which contain information about the
channel programs and pointers to the requestor's control blocks.

In general, UCBs and associated IOQEs/IOSBs indicate active I/O. Any flag bits
set in the UCB + 6/7 help identify the status of the requestor. Also, investigate
UCB flags indicating the quiesce option, DAVV (direct access volume
verification) processing, I/O restart, missing interrupt handler (MIH), or message
pending.

Another place to look is the LCHs (logical channel queues). When a STARTIO
macro is issued, if both the channel and device are available, lOS attempts to
issue the SIO instruction. If any bit in UCBFLA (UeB + 6) is on, the device is
considered busy. The TCH instruction IS used to determine if the channel is busy.
If either is busy, the IOQE for the request is queued to the LCH. This queue then

Section 5. Component Analysis 5-29

indicates all requests that have been accepted for processing but for which either
no SIO has yet been issued or an SIO was issued but a non-zero condition code
was received. The first LCH is pointed to by CVT + X'8C'. Each LCH is X'20'
bytes long. UCBLCI (UCB + X'A') is an index to the LCH for the given UCB.
Each LCH is a double-headed, single-threaded queue of 10QEs. The LCH +0
points to the first 10QE and LCH +4 points to the last, or only,. 10QE. If
LCH +0 is' all Fs or Os the queue is empty, in which case there are no requests for
that channel. The 10QEs themselves are linked with 10QELNK (IOQE + 0).
10QEIOSB (IOQE + 8) points to the 10SB for the request it represents. Note that
10QENQ (lOQE + 4, bit X'40') must be on for all 10QEs on the LCH.

General Hints For lOS Problem Analysis

1. Saveareas. lOS does not use save areas in the standard manner. When
registers are saved, the order is often 0-15 at offset 0 into the save area. If the
local lock is obtained (as is generally the case), IECVPST, the first module to
execute in the user's address space after an I/O interrupt, uses the local lock
save area (ASXBFSLA at ASXB + X'24') to pass the address of the loc~illock
save area to the exit routines. An exception is I/O interrupt processing for a
paging pack where an lOS storage manager or ASM area is used. Basic lOS
uses the lOS save area (LCCA + X'218' points to the CPU work save area
vector table (WSAVTC); WSAVTC + X'18' points to the lOS 'saye area).
This save area is also passed to DIE (Disable Interrupt Exit) routines. Also,
the TCCW control block contains a save area. EXCP passes the address of
the associated TCCW + X'48' (in Register 13) to appendages for use as a save
area.

2. EXCP back-end processing does all the interfacing to the traditional
appendages. In MVS, appendages are entered in SRB mode, physically
enabled, and with register 13 containing the address of a save area.

It is EXCP's responsibility to map the 10SB to the lOB to maintain
compatibility. Also on return from the appendage, EXCP re-maps the lOB to
the 10SB.

3. The EW A (ERP work area) can be important in problem analysis. The
10SB + X'34' points to EW A, which contains information, including sense
data, passed to the ERPs from lOS as well as work areas and counters for the
ERPs. The ERPIB, which is useful for channel errors, is contained in the
EWA.

See the topic "Error Recovery Procedures (ERPs)" later in this section for a
description of ERP processing.

Several problems have been uncovered where ERPs constantly retry an I/O
operation that constantly fails. The EW A can contain the number of retries
and other control information helpful in determining the reason why. EWAs
often contain the retry CCW s.

4. The LCCA of each processor contains an lRT (lOS recovery table). lOS uses
various fields in the lRT to checkpoint i.ts progress. The lRT also contains
pointers to the active control blocks on whose behalf lOS is processing. ~

5-30 MVS Diagnostic Techniques

5. Two 10SB flags (IOSEX, 10SERR) are used to control error processing. For
a permanent error the general flow is:

• Abnormal or normal exit initially entered with 10SCOD = 7F, 10SEX = 0
or 1, 10SERR=0.

• ERP exit entered with IOSCOD = 7F, IOSEX = 1, IOSERR = O.

• SVC F or branch entry back to IECVPST for direct access (DA) ERP:

with IOSERR = 1, IOSEX =0 for retry
with IOSERR = 0, IOSEX = 1 for permanent error

• Assuming retry, SVC F issues STARTIO.

• At I/O completion, IECVPST returns control to ERP with 10SERR = 1,
10SEX= 1.

• ERP returns to IECVPST with 10SERR=0, 10SEX= 1 to indicate a
permanent error.

• IECVPST enters abnormal exit for second time with 10SCOD = 41,
10SERR = 0, IOSEX = 1.

• Abnormal exit returns to IECVPST for termination processing.

In general, the 10SB flag settings are defined as:

IOSERR = 0 no error or corrected error
IOSEX=O

lOS ERR = 1 ERP retry in progress
IOSEX= 1

lOS ERR = 1 ERP requesting retry
IOSEX=O

IOSERR=O permanent error
IOSEX=l

6. I/O error processing during ACR has caused several problems. The chapter
"Miscellaneous Debugging Hints" in Section 2 addresses the ACR processing
and potential exposures.

7. Check the trace table for unit check/unit exception interrupts. These
interrupts often cause abnormal processing which may contribute to the
problem. (For information on "MVS Trace Analysis," see that chapter in
Section 2.) The fourth word of the SIO trace entry is the 10SB address
associated with the I/O request. The SRB + X' 1 C' points to the IOSB address
associated with the interrupt that caused the post status module (IECVPST)
to be scheduled.

8. Check the LOGREC created by lOS modules (the CSECT name in the record
will be an lOS module name). Register 2 quite often is the 10SB address
associated with a request to be processed at the time of error.

Section 5. Component Analysis 5-31

lOS Diagnostic Aids

9. Prior to SU64, a channel on processor 0 was distinguished from a channel
with the same number on processor 1 by the processor address. This address
is contained in such fields as UCBCPU and EW ACPU. With channel set
switching, the channel set ID is not used to distinguish between two similarly
numbered channels. As a result, control block fields contain the channel set
ID even though the field name is shown as 'CPU'.

10. By using the GTF CCW trace option, you can trace the CCWs associated
with a given SIO or I/O operation along with data to show what was
presented to the channels. The EWAs (see hint 3) and the 10SB (see hint 5)
can be printed as part of the trace information.

Both EXCP and lOS diagnostic aids are described in this chapter under separate
headings. For detailed information about lOS modules and procedures, refer to
I/O Supervisor Logic.

Table of EXCP Abend Codes

The following table lists abend codes with the lOS module and symbolic names of
the EXCP procedures that issue them. For the meanings of the abend codes, refer
to System Codes.

Code Module Procedure - Name

X'15C' IECVEXCP XCPOOO - Validity check

X'l72' IECVEXCP XCPOOO - Validity check

X'200' IECVEXPR XCPFRR - Functional recovery

X'300' IECVEXCP XCPOOO - Validity check

X'400' IECVEXCP XCPOOO - Validity check

X'500' IECVEXCP XCPOOO - Validity check

X'700' IECVEXCP XCPTER - Termination
IECVEXPR XCPFRR - Function recovery

X'800' IECVEXCP XCPPFA - PGFX interface
IECVEXCP XCPTERM - Termination
IECVEXCP XCP115 - Translation interface

X'AOO' IECVEXCP XCPTERM - Termination
IECVEXPR XCPFRR - Functional recovery

X'BOO' IECVEXPR XCPFRR - Functional recovery

X'C22' IECVEXCP XCP035 - Get RQE

X'EOO' IECVEXCP XCPTERM - Termination

5-32 MVS Diagnostic Techniques

EXCP Debugging Area (XDBA)

EXCP's functional recovery procedure, XCPFRR, does not put diagnostic data in
the SDUMP buffer. Instead, it gets storage for its own debugging area (the
XDBA) and puts diagnostic data there. (Note that an XDBA is not provided for
EOO abend codes.)

To locate the debugging area (XDBA) in a SYSABEND, SYSMDUMP, or
SYSUDUMP dump, you must:

1. Get the address of the CVT from location X'4C' (PSA field FLCCVT2) in the
dump.

2. Get the address of the TCB from the first word of the CVT (CVTTCBP).

3. Look X'CO' bytes into the TCB (TCBEXCPD) and get the address of the
de bugging area.

4. If the address of the debugging area is zero then no debugging area is
available.

The format and contents of the EXCP debugging area (XDBA) are as follows:

Byte Contents

o The ABEND code that EXCP issued.

2 A byte that shows where the error occurred. These are the possible bit settings and their
meanings:

X'80': The error occurred while EXCP was preparing to send an I/O request to lOS.

X'40': The error occurred while EXCP was processing an I/O request that lOS was finished
with.

X'21': The error occurred in a PCI appendage.

X'll': The error occurred in a CRE appendage.

X'09': The error occurred in an ABE appendage.

X'05': The error occurred in an EOE appendage.

X'03': The error occurred in a PGFX appendage.

X'OI': The error occurred in an SIO appendage.

3 Reserved

4 The PSW before RTM was entered. (RTM is entered when a program check occurs or when an
ABEND macro is issued.)

C Reserved

E ABEND code at entry to the FRR.

10 The register contents before RTM was entered.

50 Translation exception address.

54 The RQE for the I/O request that was being processed.

7C XDBA chain pointer

Section 5. Component Analysis 5-33

The remainder of the debugging area contains up to twelve 160 byte blocks
involved with the EXCP request. If these blocks are present, they appear in the
following sequence:

EWA
SRBjIOSB
TCCW
IDAL
FIX list
BEB

The first 160 bytes following the last block are zero. The SRB and TCCW are
valid only if the address of the RQE within these blocks is valid.

Note: For errors that occur in the PCI appendage during disabled interruption
exit (DIE) processing, IOCIOSCN provides a SYSl.LOGREC record and an SVC
dump. The r~gister contents and PSW at the time of the original error are
contained in the SYS1.LOGREC record and the dump. EXCP uses the DIE exit
when processing V = Rand EXCPVR requests.

SDW A Variable Recording Area

The format and contents of the SDWA variable recording area are as follows:

Byte
(offset in
SDWA)

194
196
198
19C
1B4
1DC
lDD
IDE
IDF
lEO

Output of lOS Recovery Procedures

Contents

original ABEND code
adjusted ABEND code set by XCPFRR
highest lock held word from the PSA
contents of the 6 word FRR parameter area
contents of the active RQE
TCCW option byte
TCCW translation flag byte
IOSB completion code from the IOSCOD field
reserved
ASID of the EXCP request

Functional (FRR) and EST AE recovery procedures can record their virtual
storage environment by two means:

• By issuing an SDUMP macro, which causes the contents of the 4K SDUMP
buffer to be written in a SYS1.DUMP data set. (There are ten SYSl.DUMP
data sets, SYSl.DUMPOO-09.)

• By issuing a SETRP macro, specifying RECORD=YES, which directs RTM
to write the SDWA in the SYSl.LOGREC data set.

5-34 MVS Diagnostic Techniques

Some Facts about SYSl.DUMP Dumps

To format a dump for a SYSl.DUMP data set, use the AMDPRDMP service aid.
If the dump contains an SDUMP buffer record that was put in the SYSl.DUMP
data set by an lOS recovery procedure, each page will be titled "lOS-module name
ERROR," where module name identifies the module to which the recovery
belongs.

To locate the SDUMP buffer record, you must:

1. Get the address of the CVT from location X'4C' (PSA field FLCCVT2) in the
dump.

2. Look X'24C' bytes into the CVT (CVTSDBF) and get the address of the
SDUMP buffer record.

The third halfword of the SDUMP buffer record tells you how much of the 4K
bytes contains meaningful data; six bytes of zeros mark the end of the meaningful
data.

Some Facts about SYS1.LOGREC Dumps

To get a dump of the SYSl.LOGREC data set, use the IFCEREPI service aid.
IFCEREPI formats the standard area - the first 404 bytes - of each SDWA into a
series of titles, each followed by pertinent data found in the standard area. (For
example, under the title Component/Module/ Name/ID, you would find the
module name IECIOSCN if the functional recovery procedure of the basic lOS
module wrote in the SDWA.) IFCEREPI puts the variable area - the last 108
bytes - of each SDW A in a decimal or hexadecimal format, whichever you
request.

The remaining topics in this section describe the output - the SDUMP buffer
record and SDW A variable areas - of lOS recovery procedures. Before looking at
the descriptions for the first time, note these facts:

• Offsets into SDUMP buffer records and SDWA variable areas are given in
hexadecimal numbers.

• The formats of data areas listed as part of an SDUMP buffer record or
SDW A variable area are shown in the microfiche document Data Areas,
unless stated otherwise.

Output of the Basic lOS Module (IECIOSCN)

The module's functional recovery procedure, IECFRR, puts one or more of these
settings in byte 6 of the SDUMP buffer record:

X'80', indicating that an IRT is in the record, beginning at byte 8.

X'40', if a UeB is in the record.

X'20', if an IOQ is in the record.

X'IO', if an IOSB is in the record.

X'08', if a logical channel queue, the header of the "small block" pool, and the first 2048-byte
segment of the pool are in the record.

Section 5. Component Analysis 5-35

If a UeB lock was held when IECFRR was entered, the UCB associated with
that lock appears in the record. If an LCH lock was held when IECFRR was
entered, the· LCH associated with that lock, the header of the "small block" pool,
and the pool's first 2048-byte segment is included. Ifan I/O request was being
processed, its 10Q and 10SB appears. These data areas appear in this order:
UCB, 10Q, 10SB, logical channel queue, "small block" pool header, first "small
block" pool segment.

Other 4K records and the output of IECFRR follow the SDUMP buffer record in
the dump. These records contain the SQA (system queue area), the system's trace
tables, and the nucleus.

IECFRR puts the following data in the variable recording area of the SDW A:

At byte 0: X'80', if an IOQ is in the SDWA. X'40', if a UCB is in the SDWA.

At byte 1: the code that was returned when IECfrr issued an SDUMP macro to write in the
SYS1.DUMP data set. (X'FF' means nothing was written.)

At byte 4: an IOQ, if an I/O request was being processed when IECFRR was entered.

At byte 10: a UCB (prefix segment included), if a UCB lock was held when IECFRR was entered.

Output of the Build Reserve Table Module (IECVBRSV)

The functional recovery routine (BRSVFRR) of IECVBRSV issues an SDUMP
macro requesting an SQA, nucleus, all PSAs and a summary.

BRSVFRR puts the 24-byte FRR parameter area into the SDW A variable
recording area.

Output of the DA VV Module (IECVDA VV)

The module's ESTAE recovery procedure, DAVVESTA, puts the following data
in the SDUMP buffer record:

At byte 6: the SRB being processed when it was entered.

At byte 32: the IOSB being processed when it was entered.

At byte 9E: the ERP work area used by DAVV. (The work area includes the common segment,
EWA, and the direct-access segment, EWD.)

At byte 13E: the UCB (prefix segment included) used in the processing that preceded the error.

DA VVESTA puts the following data in the variable area of the SDW A:

At byte 0: the IOSB being processed when it was entered.

At byte 6C: X'04', a code indicating that DAVVESTA asked RTM to return control instead of
continuing termination processing.

5-36 MVS Diagnostic Techniques

Output of the Dynamic Pathing Initialization Module (lECVIOSI)

This module's ESTAE procedure (IOSIRECV) issues the SDUMP macro.

IOSIRECV puts the following data in the variable recording area (SOW AVRA)
of the SOW A in a key-length-data format:

• Component 10
• Date and SU or PTF 10
• ENF parameter list (ENFPM) or EV ARY parameter list
• Flag field (includes ENF and/or ESTAE return codes)
• EST AE parameter list
• Path group 10 field, if created

Output of the Dynamic Pathing Module (IECVDPTH)

This module's functional recovery procedure (DPTHFRR) issues the SDUMP
macro.

DPTHFRR puts the following data in the variable recording area (SOW A VRA)
of the SOW A in a key-length-data format:

• Component 10
• Date and SU or PTF 10
• Parameter list (EV AR Y)
• Footprint and flags fields (FLAGSDP)
• Path group 10 field (HOSTIDEN)

If IECVDPTH cannot complete the dynamic pathing request, an OBR-DPA
record (type X'3A') is written to SYSl.LOGREC. The device-dependent data in
the record contains the following two 12-byte fields:

First field: 1 byte .. Function control byte (contains the requested function)
11 bytes .. Path group ID for the system

Second field: 1 byte .. Function control byte (contains the status of the path)
11 bytes .. Path group ID for the path, if one exists

Output of the Force Device Module (IECVFDEV)

This module's functional recovery routine (FDEVFRR) issues the SDUMP
macro.

FDEVFRR puts a copy of the FRR work area in the variable recording area
(SDW A VRA) of the SDW A in a key-length-data format.

Section 5. Component Analysis 5-3 7

The FRR work area contains:

Word 0:
Word 1:
Word 2:
Word 3:

Word 4:
Word 5:

DCB common address.
Module base register.
Data pointer register.
Flags and footprints:
Byte 0: Function indicator flags:

X'80' DCB lock held.
X'40' Device to be boxed.
X'20' Device to be released.

Byte I: Footprints:
X'80' Initialization complete.
X'40' DCB data stored.
X'20' Halt data transfer complete.
X'IO' DCB lock released - Clear reserve complete.
X'08' Dynamic pathing call is complete.
X'04' Simulation of interrupts is complete.
X'02' FRR entered due to an error.

Byte 2: Reserved.
Byte 3: Reserved.
Reserved.
DCB lockword address.

Output of the Force Channel Offline Module (IECVFCHN)

This module's functional recovery routine (FCHNFRR) issues the SDUMP
macro.

FCHNFRR puts the following data in the variable recording area (SDW A VRA)
of the SDWA in a key-length-data format:

• A copy of the FRR work area, which contains:

Word 0:

Word 1:
Word 2:
Word 3:
Word 4:
Word 5:

Byte 0:
Byte 1:
Byte 2:

Channel set ID.
Channel number.
Function indicator flags:
X'80' The other processor receives control through EMS SLIH due to

RISGNL.
X'40' The error occurred while the other processor was in control.
X'20' Do not retry RISGNL.
X' 1 0' Free any extra reserve table segments that were obtained by the

build reserve table routine.
X'08' The IEAOl9A message was issued.
X'04' The clear channel instruction was issued.
X'02' SALLOC lock held.

Byte 3: Footprint indicator flags:
X'80' Initialization completed.
X'40' Force channel offiine subroutine entered.
X'20' Load wait state subroutine entered.
X'IO' Free reserve table segments subroutine entered.

Module base address.
Module workarea address.
Module savearea address.
FRR retry address.
FRR 200-byte workarea pointer.

• The first reserve table segment if any devices were entered in the reserve table
segment.

FCHNFRR loads a nonrestartable wait state if reserves have been released
without rereservation.

5-38 MVS Diagnostic Techniques

Output of the lOS Restart Support Module (IECVRSTS)

This module's functional recovery routine (RSTSFRR) puts the following data in
the variable recording area (SOW A VRA) of the SOW A in a key-length-data
format:

• A copy of the FRR work area, which contains:

Word 0:
Word 1:
Word 2:
Word 3:
Word 4:
Word 5:

SRB address.
The SRB and module work area serialization byte address.
FRR retry address.
MIH message block queue pointer.
IECVRSTS caller's return address.

Byte 0: Footprint indicator flags:
X'SO' Redrive I/O requests segment is entered.
X'40' IOSGEN macro is invoked to mark all generated channels on the

current processor for restart.
X'20' IOSINTRP macro is invoked to simulate a channel available

interruption for the current processor.
X' 1 0' There is a second processor.
X'08' 10SGEN macro is invoked to mark all generated channels on the

second processor for restart.
X'04' RPSGNL macro is invoked to shoulder tap the second processor.
X'02' Scan MIH message queue segment is entered.
X'OI' Terminate address space segment is entered.

• The contents of the input SRB.
• The OCCB, if the scan MIH message queue segment has received control.
• The DCCBMSGS, if the scan MIH message queue segment has received

control.

Output of the Hot 1/0 Recovery Module (IECVHREC)

This module's functional recovery procedure (HRECFRR) takes an SDUMP but
puts no data in the SDUMP buffer.

HRECFRR puts the following data into the variable area of the SDW A:

At byte 0:
At byte 32:

A copy of the SCD.
A copy of the FRR work area, which contains the following:
word 0: first base register
word I: second base register
word 2: SRB pointer
word 3: work area pointer
word 4: SCD pointer
word 5, byte 0: Flags

X'ot'
X'02'
X'04'
X'08'

reserved
reserved
FRR recursion indicator
address of work area is valid

X'IO' reserved devices found, message IEA42lE not yet issued
X'20' channel can be enabled
X'40' channel was reset, re-reserves not complete
X'SO' SALLOe lock held

word 5, bytes 1-3: reserved

Section 5. Component Analysis 5-39

Output of the I/O Restart Module (iECVIRST)

The functional recovery procedures, (lRSTFRR), of this module issues an
SOUMP macro requesting SQA, the nucleus, and the 4K buffer to be dumped.
The work area (storage area retrieved via GETMAIN that holds the compiler's
automatic data) is copied to the 4K buffer along with each reserve table segment.

IRSTFRR puts the following data in the variable area of the SOW A:

At byte 0: The 24 byte FRR parameter area returned by the SETFRR macro.

At byte 24: Halfword channel mask. Each bit in the half word channel mask corresponds to a given
channel.

(Bit 1 corresponds to channel 1

• • •
Bit 16 corresponds to channel 16.)

If a bit is on, the corresponding channel encountered an error.

IECVIRST loads one or more wait states. For each loaded wait state, a system
termination record is written to the SYSl.LOGREC data set. Note: this record
may not appear in the data set since the system may not be able to perform I/O
operations before the wait state is loaded. It appears in the SYSl.LOGRBC
buffer located in the SQA in storage. The mapping macro, IHALRB, maps the
system termination record. The variable area within the system termination
record contains:

At byte 0: Current registers (0-15)

At byte 64: The 24 byte FRR parameter area returned by the SETFRR macro.

At byte 84: Halfword channel mask. Each bit in the halfword channel mask corresponds to a given
channel.

Bit 1 corresponds to channel 1

• • •
Bit 16 corresponds to channel 16.)

If bit is on, the corresponding channel encountered an error.

At byte 86: Halfword channel set id.

Output of the Nonresident Halt-I/O Module (IGC0003C)

The module's functional recovery procedure, HALT0900, writes no SOUMP
buffer record. If HALT0900 is the first recovery procedure entered by RTM, it
writes the following data in the variable area of the SOW A:

At byte 0: the contents of register 0 and 1 when the module was entered to halt a teleprocessing
operation.

At byte 8: the IOQ for the teleprocessing operation.

At byte 14: the DeB (prefix segment included) for the teleprocessing device.

5-40 MVS Diagnostic Techniques

Additionally, HALT0900 directs RTM to put trace data, task-related data areas,
and all the IECIHIO code in a user dump (SYSABEND, SYSMDUMP, or
SYSUDUMP), if such a dump was requested.

Output of the Nonresident Purge Module (IGCOOOIF)

The module's functional recovery procedure, PURGEFRR, puts data in the
SDUMP buffer, but the module's ESTAE recovery procedure, PRGESTAE,
writes the contents of the buffer into the SYSl.DUMP data set. PURGEFRR
puts the following information into the SDUMP buffer:

At byte 10: the PPL.

At byte 20: the IPIB.

At byte 50: a work area whose contents include a variable number of saved registers, a list of pages
to be fixed, and the list forms of macros used by the module.

At byte 140: if the module holds a UCB lock, the UCB (prefix and common segments only) associated
with that lock.

At byte 160: if the module holds an LCH lock, the logical channel queue associated with that lock and
all the IOQs on the logical channel queue.

PURGEFRR puts the following data into the variable area of the SDW A:

At byte 0:
At byte 8:

IGCOOOIF (the module name).
IGC016 (the module's entry point).

At byte 16: PURGEFRR (the recovery procedure's name and entry point).

PRGEST AE puts the same data in its SDW A, except at byte 16, where it writes
its own name.

Output of the Post-Status Module (IECVPST)

The module's functional recovery procedure, PSTFRRTY, puts at byte 6 of the
SDUMP buffer record the IOSB that was being processed when the error
occurred.

PSTFRRTY puts the following data in the variable area of the SDWA:

At byte 0: the IOSB that was being processed when tbe error occurred.

At byte 6C: IECVPST (the module name).

At byte 73: X'04', a code indicating that PSTFRRTY asked RTM to return control instead of
continuing termination processing.

At byte 74: the address of the IOSB.

At byte 78: the address of the FRR work area.

At byte 7C: the contents of the base register.

Output of the Redrive 1/0 Service Routine (IECVRDIO)

The module's functional recovery procedure, RDIOFRR, puts at byte 6 of the
SDUMP buffer record the general work area used for automatic data.

Section 5. Component Analysis 5-41

The following is placed in the variable area of the SDW A:

At byte 0: a copy of the 24-byte FRR work area pointed to by SDWAPARM.

Output of the Re-Reserve Service Routine (lECVRRSV)

The module's functional recovery procedure, RRSVFRR, writes no SDUMP
buffer record. The following is placed in the variable area of the SDW A:

At byte 0: a copy of the 24-byte FRR work area pointed to by SDWAPARM.

Output of the Resident Halt-I/O Module (lECIHIO)

The module's functional recovery procedure, HIOFRR, puts at byte 6 of the
SDUMP buffer record the UCB (prefix segment included) for the device on which
a channel program was to be halted. Following the SDUMP buffer record in the
dump are other 4K records written by HIOFRR. These contain all the IECIHIO
code, the PSA or prefixed save area (the first 4K bytes of low storage), and the
system's trace tables.

HIOFRR puts the following data in the variable area of the SDWA:

At byte 0: X'OC', if the error occurred in the shoulder-tapped processor; otherwise, the code that
was returned when HIOFRR issued an SDUMP macro to write in the SYS1.DUMP data
set. (X'FF' means nothing was written to the SYSl.DUMP data set.)

At byte 1: the UCB (prefix included) for the device on which a channel program halted.

Output of the Special SIO Module (IECVESIO)

This module's functional recovery procedure, ESIOFRR, does not use the
SDUMP buffer. However, the following is placed in the variable area of the
SDWA.

At byte 0: The 24-byte FRR parameters.

Output of the Storage Manager Module (IECVSMGR)

This module's functional recovery procedure, IECVSMFR, puts at byte 6 of the
SDUMP buffer record the pool headers for the "small block," "medium block,"
and "large block" pools.

Following the SDUMP buffer record in the dump are other 4K records written by
IECVSMFR. These contain the SQA (system queue area), the system's trace
tables, and the code in the IECVSMGR module.

The output of the system's queue verification routine is in the variable area of the
SDWA. IECVSMFR passes the variable area to that routine for use as a QVOD
(queue verification output data area). The free queue for small, medium, and
large blocks is moved to SDW A.

Output of the Unconditional Reserve Detection Module (IECVURDT)

This module's functional recovery procedure does not use the SDUMP buffer.
However, the following is placed in the variable area of the SDWA.

At byte 0: The 24-byte FRR parameters.

5-42 MVS Diagnostic Techniques

~l ,

Informative 10SB Fields

Output of the Unconditional Reserve Service Module (IECVURSV)

This module's functional recovery procedure does not use the SDUMP buffer.
However, the following is placed in the variable area of the SDWA.

At byte 0: The 24-byte FRR parameters.

Output of the Resume 1/0 Service Routine (IOSVRSUM)

The module's functional recovery procedure, RSUMFRR, places the following in
the VRADAT A field of the SDW A:

• The IOSB that initiated the request. (If there is not an IOSB, "IOSB ZERO"
is put in VRADATA.)

• The DCB associated with the request. (If there is not a DCB, "DCB ZERO"
is put in VRADATA.)

An examination of three IOSB fields, 10SDRVID, 10SPROC, and 10SCOD,
answers these questions:

1. Did lOS create the 10SB, or did one of its drivers create it? If one of the
drivers, which one?

2. If lOS created the IOSB, why did it?

3. If a driver created the 10SB, what does the 10SB show about the status of
the I/O request it represents?

The 10SDRVID field answers (1), the 10SPROC field answers (2), and the
10SCOD field answers (3).

The 10SDRVID Field

IOSDRVID is a one-byte field at an offset of four bytes into the 10SB. The
possible contents and their meanings are:

Contents Meaning

X'OO' lOS created the IOSB.

X'Ol' The driver wants to be anonymous to lOS because it doesn't want to take part in certain
kinds of I/O processing. (For example, the driver might not want to be called to dispose of
the 10SB during a purge operation.)

X'02' EXCP is the driver.

X'03' ABP (VSAM) is the driver.

X'04' VT AM is the driver.

X'OS' TCAM is the driver.

X'06' OLTEP is the driver.

X'07' Program fetch is the driver.

X'08' JES3 is the driver.

X'09' MSC is the driver.

X'OA' IECVIOPM is the driver.

X'OB' VPSS is the driver.

Section 5. Component Analysis 5-43

X'OC' CRYPTO is the driver.

X'OE' ASM is the driver.

The IOSPROC Field

IOSPROC is a one-byte field at an offset of three bytes into the IOSB. The field
is used as an index to a branch table in the post status module (IECVPST). The
possible contents and what they tell about the IOSB are:

Contents What They Tell about the IOSB

X'OO' Indicates "normal" non-lOS generated 10SB.

X'04' The 10SB was created by EDIEINTl when a PCI interruption occurred without other
status information. It was marked X'04' to direct PSTIOSB to enter the driver's PCI
appendage.

X'08' The 10SB was created by EATTENTl when tests of the CSW, UCB, and attention table
indicated that control should be routed to an attention routine. The 10SB was marked
X'08' to direct PSTIOSB to branch to the attention routine for the device.

X'OC' The 10SB was created by LCHPURG to replace a purged 10SB for an I/O operation that
must be completed - a sense, reserve, or release operation. After the I/O operation is
completed, PSTIOSB sees the the X'OC' and enters FREEBLK, which frees the 10SB.

X'lO' The 10SB was created by EDEVENDl when called by IECVXDAS because a direct-access
device was readied. It was marked x'to' to direct PSTIOSB to enter IECVDAVV via the
exit effectors and ERP loader.

X'14' The 10SB was created by EPOSTIOI when it determined that a message must be sent to
the operator about the availability of the device. The 10SB was marked X'14' to direct
PSTIOSB to enter, via the exit effectors and ERP loader, the ERP message"writer
(IGE0025C).

X'20' The 10SB was created by EDETECTl when it determined that unconditional reserve
recovery was needed. It was marked X'20' to direct PSTIOSB to enter IECVURDT and
IECVDURP.

The IOSCOD Field

IOSCOD is a one-byte field at an offset of five bytes into the IOSB. The possible
contents, with explanations of what they mean are:

Contents Explanation

X'41' An ERP, the ABE appendage, or the CHE appendage detected an I/O error and
determined that is was uncorrectable. (An ERP does not put X'41' in 10SCOD. IGCOl5
does it if, on receiving control from the ERP, it finds the "exceptional-condition" bit
(lOSEX) on, the "retry" bit (lOSERR) off, and X'7F' in 10SCOD.)

X'42' The EOE appendage detected an extent error and directed the driver to put X'42' in
10SCOD.

X'43' A paging I/O operation couldn't be started immediately, and the 10SB specified that
I/O-request processing be terminated in such a case. ETCHI compiled by putting X'43' in
10SCOD and scheduling IECVPST. (ABP, on finding X'43', submits a new I/O request to
read a duplicate page on another device.)

X'44'

5-44 MVS Diagnostic Techniques

ETCHl stopped processing the I/O request because its SRB and 10SB were needed to
process a hardware error on the device allocated to the request. (ETCH I does not put
X'44' in IOSCOD. IGC015 does it if, on receiving control from the ERP, it finds the
"exceptional-condition" bit (lOSEX) on, the "retry" bit (lOSERR) off, and X'7E' in
IOSCOD.)

,~ ,

X'4S' I/O-request processing was terminated abnormally. Reasons for the termination are:

X'48'

X'4B'

X'4C'

X'4D'

X'4E'

X'4F'

X'51'

X'7l'

X'74'

X'7E'

X'7F'

• The IECIOSCN or IECVPST module took a program check.

• . The operator pressed the RESTART key while an I/O request was being processed.

• A program check occurred while a nonresident ERP or ERP service module was in
control.

• A program check occurred in the NRM/ABM exit processing of module, IECVEXCP.

IECFRR, PSTFRRTY, or the ERP loader's ESTAE procedure (ERPLESTA) was entered
by RTM.

The I/O request was purged. The driver's purge procedure put X'48' in 10SCOD.

An I/O error occurred when the tape ERP requested that a volume be repositioned. The
ERP put X'4B' in 10SCOD.

In asking for an I/O operation on a specific 2305 exposure, the driver specified an invalid
exposure number in the 10SB. IECVXDRS puts X'4C' in 10SCOD and scheduled
IECVPST.

The driver guaranteed the availability of a path to the device, but when the start-I/O
instruction was issued, the condition code was set to 3 (channel or device not operational).
EPOSTIOI put X'4D' in 10SCOD and scheduled IECVPST.

One of the following occurred:

• The driver guaranteed the availability of a path to the device, but the device was
reserved to another path.

• The driver asked lOS to release a device, and in trying, lOS found that at least one
other user of the device wanted it to be reserved.

A device dependent SIO module (IECVXDAS, IECVXDRS, IECVXSKS, or IECVXVRS),
put X'4E' in 10SCOD and scheduled IECVPST;

The driver guaranteed the availability of a path to the device, but ETCH 1 found that the
channel set on that path was not configured. ETCHl puts X'4F' in 10SCOD and
schedules IECVPST.

ETCHI determined that the device has been boxed and placed offiine, and scheduled
IECVPST. (ETCHl does not put X'51' in 10SCOD if the driver is EXCP. The ERP is
eventually given control, and if it enters IGCOl5 with the "exceptional-condition" bit
(I0SEX) on, the "retry" bit (I0SERR) off, and X'74' in IOSCOD, IGCOl5 overlays X'74'
with X'51'.)

Set by the direct-access ERP when the sense bytes show a data check and the 10SDRVID
field shows that the driver is program fetch.

Set by ETCH 1 when it determined that a device was boxed and placed offiine, and the
request was from EXCP. (X'74' may be altered by IGCOIS. See the explanation for
X'SI'.)

Set by ETCHI when it determined that the SRB and 10SB for the request were needed to
process a hardware error on the device allocated to the request. (X'7E' may be altered by
IGCOIS. See the explanation for X'44'.)

Set the IECHNSCH before the I/O operation was started. If the 10SB has been returned
to the driver's termination procedure, X'7F' signifies that the I/O operation completed
successfully.

Section 5. Component Analysis 5-45

Table of lOS Messages

The table below gives the numbers of lOS and ERP messages, identifies the lOS
modules that detect a need for the message, and indicates the non-lOS module
that issues it.

Message

IEAOOOA
IEAOOOI
IEAOOll
IEAOO31
IEA0041
IEA0041
IEA0041
IEA0041
IEA018A
IEA019A
IEA0261
IEA066A
IEA067A
IEA068A
IEA069A
IEA070A
IEA071E
IEA0721
IEA073A
IEA151W
IEA151W
IEA151W
IEA151W
IEA410E
IEA410E
IEA421E
IEA421E
IEA427A
IEA4281
IEA4291
IEA438A
IEA439D
IEA440A
IEA442E
IEA4431
IEA444I
IEA446D
IEA604A
IEA605A
IEA6061
IEA9191
IEA9701
IEA9711
IEA9721

Issued by

IGE0025C·
IGE0025C
IGE0025C
IEAVTRET
IEAVTRET
IEAVTRET
IEAVTRET
IEAVTRET
IEEVLDWT
IEEVLDWT
IEAVTRET
IEEVLDWT
IEEVLDWT
IEEVLDWT
IEEVLDWT
IEEVLDWT
IEEVLDWT
IEEVLDWT
IEEVLDWT
IGFPTERM
IEEVLDWT
IEEVLDWT
IEEVLDWT
IEAVTRET
IEAVTRET
IEAVTRET
IEEVLDWT
IECVDURP
I ECVDURP
IECVDURP
IEEVLDWT
IEEVLDWT
IEEVLDWT
IECLMSGD
IECVIOSI
IECVDPTH
IEEVLDWT
IECVDAVV
IECVDAVV
IECVDAVV
IEAVTRET
IEAVTRET
IEAVTRET
IEAVTRET

Module Detecting Need for Message

EPOSTIOI DAVERR or an ERp··
an ERP
EPOSTIOI
CLEARDEV·"
ACRPROC·"
UCBACT···
LOSTCHAN···
IECVRDIO
IECVRSTS
IECVFCHN
IECVRRSV
IECVHREC
IECVHREC
IECVHREC
IECVHREC
IECVHREC
IECVHREC
IECVHREC
IECVPST
IECVRRSV
IECVRSTI
IECVHREC
IECVFCHN
LOSTCHAN···
IECVIRST
IECVIRST
IECVFCHN
IECVDURP
IECVDURP
IECVDURP
IECVIRST.
IECVIRST
IECVRSTI
an ERP
IECVIOSI
IECVDPTH
IECVIRST
DAVINT
DAVINT
DAVINT
IECVCINT
IECVCRHA
IECVCRHA
IECVCRHD

*This is the ERP message writer.

**IEAOOOA is issued only if an ERP module finds the "intervention-required" bit
on in the sense bytes.

***The message is formatted by another lOS procedure, RECORDIT. It gives
control to lEA VTRER, which schedules lEA VTRET to write the message
asynchronously.

5-46 MVS Diagnostic Techniques

lOS Wait State Codes

Table of lOS Return Codes

~

The following table lists wait state codes with the modules that issue them. For
the meanings of the codes, refer to System Codes.

Code
X'022'
X'02F'
X'041'
X'04C'
X'04D'
X'04E'
X'066'
X'067'
X'06S'
X'069'
X'06A'
X'06B'
X'06D'
X'06E'
X'06F'
X'OE6'

Issuing Module
DAVESTA (ESTAE Recovery)
PSTWAIT
ACRPROC (ACR Call Procedure)
IECVIRST
IECVIRST
IECVIRST, IECVHREC, IECVRRSV, IECVRSTI, IECVFCHN
IECVHREC
IECVHREC
IECVHREC
IECVHREC
IECVHREC
IECVCINT
IECVRSTS
IECVFCHN
IECVDURP
IECVFCHN

The following table matches a return code with the names of lOS modules that
exit with the code in register 15.

Return Return Return
Code Module Name Code Module Name Code Module Name

X'OO' HIOCCH X'OS' HIOCCH X'24' IECVESIO
IECIHIO HIOLOP
IGCOOOIG IECIHIO X'28' IECVESIO
IGCOOO3C IGCOOO3C
IGC016 IGCOl6 X'2C' IECVESIO
SMGFREVR SMGFREVR
TCCWROOO TCCWROOO X'30' IECVESIO
IECVCINT I ECVCINT
I ECCONCS I ECVDPTH X'34' I ECVESIO
IECVDPTH IECVESIO
IECVESIO IECHFCHN X'3C' IECVESIO
IECVFCHN IECVIOSI I ECVDPTH
IECVIOSI
IECVRRSV X'OC' IGCOOO3C
IECVURSV TCCWMOOO
IOSVLEVL TCCWMIOO
IOSVSUCB TCCWM300

TCCWM400
X'04' HIOCCH I ECVDPTH

IGCOOOIG IECVESIO
IGCOOO3C IECVFCHN
IGC016
SMGFREVR X'IO' IGCOOO3C
TCCWROOO IECVDPTH
TCCWUOOO IECVESIO
TCCWXOOO
IECVCINT X'14' IGCOOO3C
IECCONCS IGC016
IECVDPTH IECVESIO
IECVESIO
IECVFCHN X'lS' IGCOOO3C
IECVRRSV IECVESIO
IECVURSV
IOSVLEVL X'20' IGCOOO3C
IOSVSUCB IECVESIO

Section 5. Component Analysis 5-47

Error Recovery Procedures (ERPs)

. lOS and ERP Processing

This topic describes ERP routines and helps you determine the module
responsible for problem symptoms.

Error recovery procedures (ERPs) are scheduled by the lOS post status routine
(IECVPST). When lOS receives an interrupt with a unit check, unit exception,
incorrect length, program check, chaining check, channel data check, chan,nel
control check, or interface control check, the IOSEX bit (in the IOSB) is turned
on. If the interrupt shows a unit check, the sense information is read into the
ERP work area (EW A).

lOS Sequence

The sequence of lOS post status events is:

1. Inspect the IOSERR (in the IOSB) to determine if error recovery is already in
progress, if it is, step 2 is bypassed.

2. Turn on IOSEX (in the IOSB) and issue a BALR to the abnormal end
appendage.

3. Upon return from the appendage, or if ERP is already in progress:

a. For DASD error recovery - issue a BALR to IECVDERP.
b. For nonDASD error recovery - branch to IEAOEFOO (the exit effector).

4. Upon return from the ERP, lOS takes action to perform the ERP
requirements listed in step 3 of the following topic "ERP Sequence."

ERP Sequence

The sequence of ERP events is:

1. The required ERP inspects the status and sense information using an ERP
error interpreter table and an lOS routine referred to as the lOS error
interpreter (IECVITRP).

2. The lOS error interpreter routine makes a branch vector return to a label
within the ERP for a given error.

3. For a given error, the ERP determines the requirement for and initiates one
or more of the following actions:

a. Retry jrestart the channel program
b. Issue console message IEAOOOI or IEAOOOA
c. Log the error
d. Indicate that the error is permanent
e. Indicate that the error has been recovered

5-48 MVS Diagnostic Techniques

Identifying ERP Module Names

The name of an ERP routine (for nonDASD devices) must be of the form
IGEOxxxx, where xxxx is a positive decimal number. The decimal number xxxx
corresponds to the one-byte binary value in the UCBETI. When an error routine
is needed, this byte is converted to decimal, unpacked, and substituted for the
value xxxx to complete the name. For example, the ERP routine for the IBM
2540 is IGEOOOIC. The UCBETI for a 2540 contains X'OD'. When this byte is
converted to decimal, it becomes a plus 013. When the plus 013 is unpacked, it
becomes FOFIC3, which is printed as OIC to complete the name IGEOOOIC.

How ERP Transfers Control

Abnormal End Appendages

ERP routines frequently transfer control. They may give control to another load
module of the same ERP, to the outboard recorder (OBR), to an lOS statistics
update routine (IGE0025D), or to the lOS write~to-operator routine (IGE0025C).
The CVT + X'2C' points to the transfer control routine that uses the contents of
register 13 to determine which module should receive control. The technique used
is the same as described in the previous topic "Identifying ERP Module Names."
The contents of register 13 are converted to decimal, unpacked, and placed in the
low-order half word of IGEOxxxx.· The following table shows a few examples:

Contents of Register 13 Control Given to Module

00000009
OOOOOOOE
00000017
OOOOOOFE
000007D6

IGEOOOOI
IGEOOOID
IGE0002C
IGE0025D
IGE0200F

Abnormal end appendages are of critical importance to ERP. Within lOS, the
BALR issued to the appendages is located immediately before a return vector
table. Two important facts are:

• The ability to modify the necessary control blocks allows the appendage to
tum off error indicators, or to perform error recovery actions, without ERP
being invoked.

• Because lOS gives control to the appendage via a BALR instruction
immediately before a return vector table, the appendage can branch back to
lOS as follows:

Return register + 0·- 10BFLAGl in the lOB is examined for the
10BERRTN and IOBIOERR bits and the following actions are taken:

IOBERRTN

o
IOBIOERR Action

o The user channel program is posted complete.

The ERP is scheduled.

1 0 Should not occur during error recovery.

o 1. If this is the first time the appendage was entered
(lOBEeB = X'7F'), schedule error recovery if allowed by
the DCBIFLG field in the DCB. If error recovery is not
allowed, handle as permanent error.

2. If this is the second time the appendage was entered
(IOBECB not equal to X'7F'), handle as a permanent error.

Return register + 4 - channel program not posted complete.

Section 5. Component Analysis 5-49

Return register + 8 - the request is retried.
Return register + C - D D R processing required.

The abnormal end appendage should be examined when analyzing possible error
recovery problems.

Retry IRestart the Channel Program

Ei'ror Interpreter

F or retry, errors are retried from the first CCW. F or restart, errors are restarted
from the failing CCW. An ERP's decision to retry or to restart a channel
program is primarily dependent upon the type of chaining, and secondarily
dependent upon the type of error. For channel programs using data chaining or
no chaining, the request should be retried beginning with the first CCW .. On a
request using command chaining, the restart is done from the failing CCW. The
10SB address of the real channel program (IOSRST) is updated with the real
address of the CCWat which restart is to begin.

After a retry or restart has been successful, the ending status is presented to lOS,
but the ERP is given control again because the 10SERR bit is still on (indicating
that error recovery is in control). ERP performs error inspection using the error
interpreter table to assure a cleanup of the 10SB. The 10SERR and 10SEX bits
(in the 10SB) are turned off, the error count fields are cleared, the abnormal
status bits in the CSW are turned off, and return is made to lOS.

An ERP module usually contains subroutines to handle various errors for the
device types for which the module is responsible. In order to test the two CSW
bytes and the first two sense bytes, ERP' uses a common lOS routine (IECVITRP)
pointed to by CVT + X' 44'. This routine uses the ERP module's error interpreter
table to determine which subroutine within the calling ERP module should be
branched to for handling the error condition detected by lOS. The error
interpreter table establishes the priority and sequence in which errors are handled.
Each entry in the table represents an error condition, and in the entry there is a
label for the subroutine to be branched to when the error condition is detected by
the lOS routine. The label names vary from module to module, but the technique
used is consistent throughout ERP.

Example of an Error Interpreter Table

The following table shows an example of an error interpreter table.

DC X'ID',AL1(CCC-* + I)
DC X'IE',AL1(lCC-*+ I)
DC X'08',AL1(PERM-* + I)
DC X'03',AL1(EQUP-* + I)
DC X'2F',AL1(ENDI-* + I)

Channel control check
Interface control check
Permanent error
Equipment check
End of test

In th~s example, if ERP is entered with a status of channel control check, the
entry shows that a branch is taken to the label CCC. If ERP is entered with sense
bytes indicating only a permanent error, then a branch is taken to label PERM.
The table shows that the lOS routine checks for four error conditions, and if none
of the conditions is satisfied, then a branch is taken to ENDl.

5-50 MVS Diagnostic Techniques

The lOS routine tests the table from the top, ana the first error condition detected
results in a branch to the label within the entry. Because ERP handles only one
error condition at a time, if two or more error conditions are indicated, only a
branch to the first label is taken. For example, if both the interface control check
and equipment check are indicated, then a branch is taken only to the label ICC.

Note that the UCB, IOSB, and EWA are required for ERP to inspect the status
and sense information.

ERP Messages and Logging

Intercept Conditions

ERP causes an error message to appear on the console or an OBR or MDR
record to be written to SYSl.LOGREC based on the 10SMSG and IOSLOG bits
in the IOSB. The following table shows the action taken for the possible settings
of the bits.

Bit Setting
IOSMSG IOSLOG Action

o
1
o
1

o
o
1
1

1. No message, no SYS1.LOGREC entry
2. Console message, no SYSl.LOGREC entry
3. No message, SYS1.LOGREC entry
4. Console message, SYSl.LOGREC entry

• Action 1: Certain permanent errors do not require logging or error messages,
such as no record found.

• Action 2: Certain errors require only an error message, such as intervention
required.

• Action 3: Certain errors are logged but messages are not issued. For
example, if a DASD equipment check is recovered, the error is logged, but a
message is not issued because the recovery was successful.

• Action 4: Some errors are logged and an error message issued to the operator.
For example, if a DASD equipment check is not recovered, an OBR type
record is logged and message IEAOOOI is issued.

ERP transfers control to lOS module IGE0025C for messages and logging. If
logging is required, IGE0025C transfers control to the outboard recorder (OBR).

The conditions that cause entry to an ERP occur at S10 time (indicated by a
condition code of one), or at channel end time. However, if an error condition
occurs at device end time after channel endhas been handled, there is no 10SB
because it was freed with channel end posting. In this case, lOS saves the two
CSW status bytes and complete sense information, and sets the intercept flag
(UCBITF) in the UCB. When the next request for this device is processed, lOS
detects the UCBITF flag and moves the CSW and sense data to the new IOSB.
lOS sets X'7E' in the completion code field of the IOSB and passes control to
ERP via the abnormal end appendage route.

Some intercept conditions are recoverable (such as the 1403 device end with the
channel 9 or 12 sense, or device end with intervention required sense for any
device). If the intercept condition is recoverable, ERP changes the code X'7E' in

Section 5. Component Analysis 5-51

the completion code field of the 10SB to X'7F'. However, most intercept
conditions cannot be recovered. Inthis case, ERP marks the IOSB in error, turns
off the ERP in-control bit in the 10SB, and returns to lOS which changes the
X'7E' to X'44'.

Unit Cheek on Sense CODlDland

Compound Errors

Diagnostic Approach

lOS handles a unit check on the sense command as an equipment check~ To do
this, lOS simulates an equipment check by setting the equipment check in sense
byte zero of the 10SB, and X'FE' in sense byte one. The ERP can then
distinguish a unit check on a sense command from an ordinary equipment check.

A compound error is one that occurs when a previous error has been successfully
retried. In most cases, this condition is handled by normal flow through the ERP.
However, if the compound error is either a unit exception or wrong length
indication in the CSW, special processing must take place to guarantee that the
channel end appendage is entered before the ERP tests the condition. This
processing is needed because lOS does not enter the channel end appendage if
ERP is in control. Therefore, on conditions of unit exception and wrong length
indication, ERP turns off the exception (IOSEX) and error (IOSERR) bits in the
10SB and returns to lOS. lOS then enters the channel end ·appendage, and later,
the ERP is scheduled because the CSW in the 10SB still contains the error status.

The ERP diagnostic approach has two major objectives~

1. To determine the recovery action that is being. performed by the ERP module.

2. To determine what recovery action should be performed, according to the
manuals that provide the component description for the devices ..

The previous topics have explained how to perform the first objective. This topic
explains the use of IBM documentation to perform the second objective.

If the manuals mentioned in this topic do not show that error recovery action is
required, or if the referenced "priority" figures do not show the priority in which
a given error is to be handled, the problem may not be suitable for an AP AR.
The component description manuals show the required/suggested error recovery
actions, and these actions are the specifications for the ERP software. If there are
no specifications for a given error condition, or if the specifications seem
incorrect, then the hardware CE should assume responsibility for any necessary
changes.

For brevity, only those manuals for the devices that require the greatest PSR,
field support, and AP AR activity are shown.

S~S2 MVS Diagnostic Techniques

DASDERP

The error recovery actions for DASD are documented in the following manuals in
the topic "Error Condition Table" or "Recovery Action Table."

Order Number

GA26-3599 -
GA26-1589 -
GA26-1615 -
GA26-1619 -
GA26-1638 -

IBM Device Type

2314 Direct Access Storage Facility
2305 Fixed Head Storage and 2835 Storage Control
3330 Disk Storage
3340 Direct Access Storage Facility and 3344 Direct Access Storage
3350 Direct Access Storage

The manuals indicate a required action number for each valid combination of
error status and sense information, whether the error condition should be logged,
and the action to be taken for each action number. The description includes the
CCWs that must be prefixed to the channel program being retried or restarted.

DASD ERP is totally contained in the ERP module IECVDERP. A BALR is
issued by IECVPST to IECVDERP for DASD ERP. If console messages or
logging are required, control is given to IGE0025C via lOS.

Tape ERP

The error recovery actions for tape devices are documented in the following
manuals in the topic "Error Recovery Procedures."

Order Number

GA32-0020 -
GA32-0021 -
GA26-1647 -
GA32-0022 -

IBM Device Type

3803 Tape Control Modell and 3420 Magnetic Tape Unit Models 3, 5, and 7.
3803 Tape Control Model 2 and 3420 Magnetic Tape Unit Models 4, 6, and 8.
3803 Tape Control Model 3 and 3420 Magnetic Tape Unit Models 3 and 5.
3410 Magnetic Tape Unit and 3411 Magnetic Tape Unit and Tape Control.

The manuals indicate a required action number for each valid combination of
error status and sense information, and the action to be performed for each action
number. The action description includes a verbal description of CCWs to be used
for error recovery, such as "Set the correct mode (if seven track) and reposition
the tape." Also, the priority assignment given to the valid combinations of error
status and sense information is shown in the manuals in the topic "Status and

. Sense Indicator (Bits) Checking Sequence."

Printer ERP

For the IBM 3211 Printer, the manual GA24-3543 describes the error recovery
actions to be performed in the topic "Suggested Error Recovery Procedures." The
priority assignment for handling valid error status and sense combinations is
shown in the figure "Error Recovery Priority Sequence."

For the IBM 3800 Printing Subsystem, the manual GA26-1635 describes error
recovery actions in the chapter "Error Detection, Recovery, and Recording.",The
figure "3800 Error Conditions and Suggested Recovery Actions" describes various
status and sense error indicators, the possible cause of the error conditions, and
what the ERP should do to recover the error. Within the same chapter is a topic
for permanent errors with the required content of operator messages, and a topic
for error logging that specifies the types of SYSl.LOGREC entries (CCH, SDR,
OBR, and MDR). Also, the figure "3800 Error Recording Actions" specifies

Section 5. Component Analysis 5-53

which error conditions require·.SYSl.LOGREC recording and the type of
SYSl.LOGREC entry to be created for specific errors.

ERPTraps

The· previous topic "Error Interpreter" explains how to determine the assigned
label for various error routines within an ERP module. These labels are excellent
places from which to bran~h to the module trap area for traps. However, extra
care should be used because the module location to which an error interpreter
table causes a branch may be used by more than one entry. It is possible that
more than one table entry can contain the same name, and that different label
names can reside at the same module displacement if defined as DS. It is
important, therefore, that code placed in the patch area test the reason for
receiving control. If the patch area verifies the expected reason for receiving
control (by testing the status and sense information), then a program check or
one-instruction loop is an excellent trap/documentation technique.

MVS systems run with ERP enabled, in supervisor state, and under the RCT
TCB. DASD ERP runs in SRB mode. Checking tl1e ERP program is effective
when an OC3 abend is caused (use an EXECUTE instruction to execute itself),
and a SLIP command is used to catch the abend before the system FRR has freed
the 10SB and EW A control blocks.

An abend (such as a program check) in an ERP module causes the address space
to remain unusable until a re-IPL is performed.

When possible, a one-instruction loop in the ERP patch area should be followed
by a stand-alone dump for documentation of the ERP's action and failure.

A GTF trace or CCW trace is usually required to debug ERP problems. When
possible, use a full trace; but for intermittent problems, it may be useful to modify
the interrupt handler so that the trace occurs only for the desired I/O or selected
SVC operations.

Diagnostic Approach Summary

In summary, debugging ERP problems consists of:

1. Determining which ERP module and subroutine receives control for error
recovery (if the abnormal end appendage and DCBIFLG field permit ERP to
execute).

2. Inspecting the routine to determine if it conforms to the specifications for
error recovery provided in the component description of the device.

3. Assigning responsibility for the problem to the CE if ERP operates according
to the specifications, or document the problem using GTF, dumps, and traps
within ERP to assure adequate APAR documentation.

5-54 MVS Diagnostic Techniques

Program Manager

Functional Description

The program manager controls the various means by which programs are located,
brought into storage, and subsequently given control for execution. This chapter
describes the program manager and includes the following topics:

• Functional Description
• Basic Functional Flow
• 806 ABEND
• APF Authorization
• Module Subpools
• Fetch/Program Manager Work Area (FETWK)
• RB Extended Save Area (RBEXSAVE)
• CDE Pool Control

The program manager's primary functions are to create and maintain control
block queues necessary to fetch load modules into virtual storage and delete load
modules from virtual storage, and to transfer control between load modules
during program execution.

Load modules fetched into virtual storage reside in one of the link pack areas
(fixed, modified, or page able) or in a job step's job pack area. External
communication to the program manager during program execution is
accomplished by means of the system macros: LINK, XCTL, LOAD, DELETE,
SYNCH, and IDENTIFY.

Program Manager Organization

The program manager consists of six modules, IEAVLKOO, IEAVLKOl,
lEA VLK02, lEA VLK03, lEA VIDOO, and lEA VNP05. Their major functions are
described Figure 5-6.

Program Manager Control Blocks

Program Manager Queues

The major program manager control blocks and work areas are the contents
directory entry (CD E), the link pack directory entry (LPDE), the load list element
(LLE), the fetch work area (FETWK), the extent list (XL), the program request
block (PRB), and the DE (directory entry) save area. These control blocks and
work areas are described in Figure 5-7.

The job pack queue (JPQ), active link pack area queue (ALPAQ), the load list
(LL), and the SVRB suspend queue (SSQ) are the four basic queues maintained
by the program manager. These queues which are summarized in Figure 5-8, are
described below:

JPQ - Each job step has a job pack queue. The queue consists of CDEs (built in subpool 255)
representing modules (or minor entry points of modules) explicitly requested by one or
more tasks in the step via the LINK,LOAD, XCTL, or IDENTIFY macros, but not
available in one of the link pack areas: This queue is empty at the initiation of the job
step.

Section 5. Component Analysis 5-55

Module CSECT
Name Name

IEAVLKOO IEAVLKOO

IEAVLKOI IEAVLKOI

IEAVLK02 IEAVLK02

IEAVLK03 IEAVLK03

IEAVIDOO IGC041

IEAVNP05 IEAVNP05

ALPAQ - The active link pack area is a system queue consisting of CDEs (built in subpool 245)
representing modules (and minor entry points of modules) that are in the:

• Modified link pack area
• Fixed link pack area
• Pageable link pack area and listed in the IEALODOO member of SYSl.PARMLIB
• Pageable link pack area, with no CDE already on the queue, and currently in use

This queue initially consists of CDEs representing modules belonging to the first three
categories listed above.

LL - The load list is a task-oriented queue consisting of LLEs representing load modules the
task has accessed via the LOAD macro. Each LLE points to the CDE on the JPQ or the
ALPAQ representing the module LOADed. The load list for each task is initially empty.

SSQ - The SVRB suspend queue is a CDE-headed queue consisting of program manager SVRBs
representing requests within the job step for that particular module. The request could
not be immediately satisfied either because the module is currently being fetched into
virtual storage by a previous request or because the module is serially reusable and
currently in use.

PLPAD - The pageable link pack area directory is a table of LPDEs built at system initialization
time. Each LPDE in the table represents a module (or an alias entry point of a module) in
the pageable link pack area. Once built, the table is static and read-only.

Major External
Residence Entry Points Primary Function

Nucleus IGCOO6 Contains the entry points for LINK (IGC006, XCTL (IGCOO7),
IGCOO7 LOAD (IGC008), DELETE (IGC009), and SYNCH (lGC012).
IGCOO8 Along with module IEAVLKOl, it services each of these

functions.
IGCOO9
IGC012
IEAQCSOI
IEAQCDSR
IEAVVMSR

Nucleus None Along with module lEA VLKOO, it services the LINK, XCTL, and
LOAD function.

Nucleus IEAPPGMA Cle.ans up resources in case of an ABEND (IEAPPGMA) and
IEAPPGMX whenever a PRB exits (IEAPPGMX).

Nucleus FRRPGMMG Program Manager Functional Recovery Routines.
FRRPGMX

Pageable IGC041 Service routine and FRR for IDENTIFY.
LPA

Exists only IEAVNP05 Creates the modified, fixed, and pageable link pack areas. Creates
during the initial active link pack area queue. Creates the pageable link
system pack area directory.
initialization

Figure 5-6. Program Manager Modules

5-56 MVS Diagnostic Techniques

Mapping Size Subpool
Area Macro (Bytes) Number Usage Created by Deleted by

CDE IHACDE 32 245 or A CDE represents a copy of a module Program Manager Program Manager
255 in virtual storage (called a major (LINK,XCTL,

CDE). Minor CDEs are also used to LOAD, or
represent minor entry points. IDENTIFY)

CDE None 16 245 Controls access to pools of CDEs SystelIl Not deleted
Pool used for active LPA modules. Initialization
Control
Area

LPDE IHALPDE 40 252 Similar to CDE, except are used for System Not deleted
the load modules in the pageable Initialization
link pack area.

LLE IHALLE 12 255 An LLE is used to control LOAD and Program Manager Program Manager
DELETE references to a module. (LOAD)

FETWK IHAFETWK 1540 253 Used as a work area and communication Program Manager Program Manager
area by FETCH and program when a FETCH is
manager. necessary

XL IHAXTLST 16 255 Contains the load point and size of FETCH, or Program Manager
a load module fetched into virtual Program Manager,
storage. or OS/LOADER

PRB IHARB 136 253 Controls the execution of a load Program Manager Exit Processing
module.

DE None 64 255 Used to save the user-supplied BLDL Program Manager Program Manager
Save entry while program manager is or ATTACH
Area processing. Processor

Figure 5-7. Program Manager Control Blocks and Work Areas

Type of Queue
Queue Serialization Queue Elements Header When Element is Enqueued When Element is Dequeued

JPQ local lock push down CDE Field TCBJPQ When a module is fetched When the module is no
Note I in the job step into virtual storage or an longer needed - that is, its

TCB IDENTIFY is used to define use count goes to zero.
an embedded entry point

ALPAQ general push down CDE field At system initialization and When an activated pageable
cross' Note I IEAQLPAQ thereafter whenever a LPA module is no longer
memory pointed to by pageable LP A module is needed. CDEs enqueued
services CVTQLPAQ activated during system initialization
lock (CMS) are never dequeued.

LL local lock push down LLE field Whenever a module, not Whenever the load count
TCBLLS previously loaded by the goes to zero or when the

task, is loaded task terminates.

SSQ local lock in order SVRB field Whenever a request within When the module becomes
ofTCB Note 2 CDRRBP the job step cannot be available.
priority satisfied because a module

is being fetched or it is
reusable, but in use

Notes:

1. Queues is push down except when minor CDEs are enqueued. Minor CDEs are always queued following the associated major CDE.

2. If the suspend queue is for a serially-reusable module that is in use, the PRB using the module will be queued between the CDE and the
first SVRB.

Figure 5-8. Program Manager Queues

Section 5. Component Analysis 5-57

Qa,eue VaIid_tiOB

System Initialization

JPQ and ALPAQ

The program manager functional recovery routine (module lEA VLK03) calls the
queue verifier (module lEA VEQVO) to verify and repair CDE elements on the
JPQ and on the ALPAQ. Queue verifier validity checks the parameter list, then
verifies and corrects the queue structure, removing elements with bad data.
Errors encountered are recorded as 16-byte entries in the queue verification
output data (QVOD) area. For program management, the QVOD is mapped in
the SDW A variable recording area starting at SDW A VRA + X'E'. On exit to the
caller, register 15 contains return information as follows:

• Byte 0, bit 0 = 0 indicates that any error encountered has been recorded in
the QVOD area.

• Byte 0, bit 0 = 1 indicates that there were more errors than could be
recorded in the QVOD area. Errors were detected but not recorded.

• Byte I = count of errors recorded.

• Byte 2 = count of errors detected.

• Byte 3 contains one of the following return cod~s:

o - No errors detected

4 - Elements with bad data were removed from the queue. Their addresses were recorded in the
QVOD area.

8 - Damage to the queue structure - the queue is operational but an undetermined number of
elements may have been lost.

24 - Invalid input parameters - the queue verifier has not performed its function.

Load List

The load list is validated by the program manager FRR itself, beginning at the
queue's header in the TCB (TCBLLS). When an invalid LLE is encountered the
queue is truncated.

During system initialization the program manager RIM (resource initialization
module), lEA VNP05, is called to create the modified LPA, the fixed LPA, the
pageable LPA, the initial ALPAQ, and the PLPAD. lEA VNP05 fetches modules
into the link pack areas from SYSl.LINKLIB, SYSl.LPALIB, SYSl.SVCLIB,
and user libraries. It is driven by SYSl.PARMLIB members IEAFIXxx,
IEALP Axx, IEALODOO, IEAPAKOO, LNKLSTxx, and by the CLPA system
parameter. (See Figure 5-9.)

5-::58 MVS Diagnostic Techniques

IEAVNP05

-
If CLPA is specified-,

and PLPAO for all
modules on

~ - ~r-~~~----_~I'~
Modules v"

CDEs ~

Vlrtua. Storage

ALPAQ
(SQA)

LPALIB
Modules

builds pageable LPA MOdUleSlb

SYS1 . LPALIB.
~ _____________________ ~,-_-_~~L~P~O~E~s~

J
Pageable
LPA

-

LINKLIB
Modules

-

SVCLIB
Modules

Ul

~
1------------"'0

o
I------~~

,--v"

Figure 5-9. IEAVNP05 Initialization

o

Builds fixed LPA (via
IEAFIXxx) and puts
COEs on the ALPAQ.

Note: Some modules
can now be in both
the pageable and
fixed LPAs.

l
Builds modified LPA L...--..,.I

(via IEALPAxx).
Fetches modules and n
enaueues COEs on
bottom of ALPAQ only
if modules are not
already in the fixed
LPA.

Uses IEALODOO to
build "permanent"
COEs for specified
pageable LPA
modules.

-

PLPAO

Modified
LPA

Fixed LPA

Section 5. Component Analysis 5-59

Basic· FUllCtiOBai Flow

LINK

The following section describes the program manager's major functions.

Module lEA VLKOO is called by the SVC FLIH when the LINK SVC (SVC 6) is
issued. Its first function is to locate a usable copy of the requested load module.
An abend occurs if it cannot. If a usable copy is found, but not in virtual
storage, module IEAVLKOI brings it in.

If a usable copy is found already in virtual storage, the reques~or can use the
module immediately or may be suspended until it becomes available. In the latter
case, a module can be unavailable if either:

• A previous request to fetch it into storage is being processed (indicated by bit
CDNIC being on in the CDE) or

• It is a serially reusable module currently in use (indicated by the CDREN bit
being off, the CDSER bit being on, and a non-zero CDRRBP field).

If a usable copy of the requested module is not immediately available, the
requestor's program manager SVRB is put into a wait state and enqueued on the
SVRB suspend queue (SSQ). The SVRB is dequeued and posted out of its wait
when the desired module becomes available. For "not in storage" suspends,
module IEAVLKOI posts all SVRBs queued on a CDE's SSQ when it successfully
completes a module fetch. Each of these SVRBs then restarts the LINK request
essentially from the beginning at entry point IEAQCS02 in module lEA VLKOO.
For the serially reusable case, module IEAVLK02 posts the top SVRB on a
CDE's SSQ when the PRB that was using the module represented by the CDE
exits. In this case, execution resumes in module lEA VLKOO at entry point
IEAQCS03. The logic at this entry point assumes the requested module is in
storage and immediately available.

Once a module becomes available to a request, the module-use count in the CDE
is increased by one. This use count is decreased by one when. the current
requestor no longer needs the module.

Next, LINK processing gets storage for a PRB out of subpool 253. The PRB is
initialized (including setting the RBOPSW to point to the entry point of the
requested module) and enqueued on the current TCB's RB queue. It is enqueued
after the program manager SVRB, but before the linking module's RB. The
program manager then exits, thus causing the requested load module to gain
control next. (See Figure 5-10.)

5-60 MVS Diagnostic Techniques

ATTACH

XCTL

PRB How initialized by lEA VLKOO for LINK
Field (and ATTACH)

RBPREFIX zero

RBSIZE 13 double words

RBSTABI zero

RBSTAB2 from PM SVRB except RBA TTN = 0

RBCDFLGS zero

RBCDEI @ requested CDE (may be a minor) Note 1

RBOPSW-LH from caller's RB (or AABCODOO) Note 2

RBOPSW-RH module entry point from CDENTPT

RBPGMQ from PM SVRB

RBWCF from PM SVRB

RBLINKB @ caller PRB (or @ TCB if ATTACH)

RBGRSAVE from PM SVRB

Notes:

1. RBCDE1 will point to the CDE containing the requested load module name. This may be a minor
CDE. CDRRBP of the major CDE however will point to the new PRE. Field CDRRBP in a
minor CDE has no meaning.

2. If ATTACH, RBOPSW (left half) is set to AABCODOO where,

AA = from current PM PSW
B = from TCB protect key (TCBPKF)
C = X'C if TCBFSM = 1 .. X'D', otherwise
D = from PICA if there is one, else 0

Figure 5-10. New PRB Initialization - LINK

When the ATTACH service routine completes the initialization of the requested
daughter TCB, it gives control to LINK in order to establish the first PRB for the
daughter TCB. ATTACH simulates the SVC FLIH by creating a program
manager SVRB under the daughter TCB and then causing the daughter to branch
enter module IEAVLKOO at entry point IEAQCSOl. Processing is essentially the
same as for LINK except for APF considerations which are explained later.

Module IEAVLKOO gets control from the SVC FLIH at entry point IGC007
when the XCTL SVC (SVC 7) is issued. With XCTL, unlike LINK, the first
function of module IEAVLKOO is to establish the new RB. The method used
depends on the type of caller, as follows:

• If the caller is an SVRB, the caller's SVRB is reused for the new module. It
remains in the TCB RB queue in the same position as it was when
lEA VLKOO got control.

• If the caller is an IRB, storage is obtained from subpool 255 for a new PRB.
The new PRB is then enqueued on the TCB RB queue between the IRB and
the program manager SVRB.

• If the caller is a PRB, storage is obtained for a new PRB from subpool 255
and then it is enqueued upon the TCB RB queue following the program

Section 5. Component Analysis 5-61

manager SVRB. The caller's PRB is then put on top of the queue. The
program manager then issues the EXIT SVC (SVC 3) forcing the caller's
PRB, since it now is on top of the queue, through exit processing. This
results in the storage for the caller's old module being freed before the new
module is obtained. The program manager then resumes execution at entry
point IEAQCS02 in module lEA VLKOO.

Figure 5-11 shows how the new PRB (SVRB in the case where the caller is an
SVRB) is initialized for an XCTL. Figure 5-12 shows how the new RB is
enqueued in the TCB RB queue before the program manager locates the new load
module.

The next function in the XCTL process is to locate the desired module. If the
caller is an SVRB, the module is searched for via the ALP AQ; if it is not found, it
is searched for via the PLPAD. If it is not found by either the ALPAQ or the
PLPAD, an 806 abend is generated. If the load module is found, final
initialization in the RB is completed and the program manager exits. The
following exceptions to normal processing occur when an SVRB issues an XCTL
macro (they are made for performance reasons):

• Only the ALPAQ and PLPAD are searched.

• If the CDE on the ALPAQ is found usable, the use count is not increased.

• If an LPDE in the PLPAD is found usable, no CDE is built or enqueued on
the ALPAQ .. Furthermore, the RBCDEI field is made to point to the LPDE
rather than a CDE.

If the caller is not an SVRB, the requested load module is located as it is in
LINK. Once found, initialization is completed on the already existing PRB and
return is made to the caller.

How Initialized by lEA VLKOO for XCTL

RB Field Caller is a PRB Caller is a IRB Caller is an SVRB

RBPREFIX zero zero left as is

RBSIZE from caller PRB 17 double words left as is

RBSTABI from caller PRB zero left as is except
RBTRSVRB, Note 1

RBSTAB2 from caller PRB from caller IRB left as is
except RBFDYN= 1

RBCDFLGS zero zero left as is

RBCDEI @·requested CDE @ requested CDE @ CDE or @ LPDE

RBOPSW-LH from caller PRB from caller IRB left as is

RBOPSW-RH @ module entry point @ module entry point @ module entry point

RBPGMQ zero zero left as is

RBWCF from caller PRB from caller IRB left as is

RBLINKB @ caller's @ calling IRB left as is
caller RB

RBGRSAVE from caller PRB from caller IRB left as is

Note:

1. Bit RBTRSVRB indicates (for a dump routine) the location of the load module. It will be set to 0
if the module was located via a CDE on the ALPAQ. It will be set to 1 if the module was located
in the pageable LPA.

Figure 5-11. New RB Initialization - XCTL

5-62 MVS Diagnostic Techniques

XCTl by PRB

At Start: TCB Program XCTL - XCTL -
... Manager issuing ... issuing

SVRB - PRB PRBts
calling RB

Before the SVC 3: TCB XCTL - Program l'J.ew PRB XCTL -
... issuing Manager issuing - PRB - SVRB - PRB's

calling RB

After SVC 3: TCB Program New PRB XCTL -
Manager issuing - SVRB - - PRB's

calling RB

I resume at lEAQCS02

XCTL by IRB

Program New PRB IRB XCTL -
Manager ... issuing
SVRB - - PRB's

calling RB

XCTL by SVRB

Program New XCTL -
Manager SVRB issuing
SVRB PRB's

calling RB

L was XCTL-issuing PRB's SVRB

Figure 5-12. XCTL RB Manipulation

Section 5. Component Analysis 5-63

LOAD

DELETE

Exit Resource Manager

Module lEA VLKOO is called by the SVC FLIH at entry point IGCOO8 when the
LOAD SVC (SVC 8) is issued. For a LOAD request~ the TCB's load. list is first
searched for an LLE representing a usable copy of the requested module. If
found, the LLE total responsibility count is increased by one. In addition~ if the
caller is in supervisor state and/or key 0-7, the system responsibility count is
updated. A separate system count is maintained to prevent a non-system user
from deleting a module loaded by a system routine.

If the load list does not yield a usable copy of the requested module, the module
is located and CDEs are manipulated as explained earlier for LINK. The final
step for LINK processing is the building of the PRB. For LOAD, however, no
PRB is built; instead, an LLE is built and enqueued at the top of the TCB's load
list queue. This LLE points to the CDE (whether it be on the JPQ or the
ALPAQ) of the requested module. The total responsibility count is initialized to
one, and the system responsibility count to zero or, if a system request, to one.

Module lEA VLKOO is called by the SVC FLIH at entry point IGC009 when the
DELETE SVC (SVC 9) is issued. Since the module to be deleted must have been
previously loaded by the same task, IEAVLKOO searches the TCB's load list
queue for the module. If it is not found, the program manager exits with a return
code of 4.

If the module is found, the total responsibility count in the LLE is decreased by
one. The system responsibility count is also decreased by one if the DELETE was
issued by a system program. Finally, the use count in the CDE is decreased by
one.

The LLE is dequeued and freed if the total responsibility count goes to zero. If
the use count in the CDE also goes to zero, routine CDHKEEP in module
IEAVLK02 is called. This routine frees the CDE and all its minor CDEs, the
associated extent list, and the module itself. Once control is returned to
lEA VLKOO, the program manager exits.

Module lEA VLK02 is called by the exit prologue at entry point IEAPPGMX
whenever a PRB exits. The purpose is to clean up the program resources that
were being used by the PRB. First, the program manager decreases by one the
use count in the CDE being used by the PRB.

If the module is serially reusable, and there are SVRBs suspended on the CDE's
SSQ, the top SVRB is posted so it can begin using the module.

5-64 MVS Diagnostic Techniques

SYNCH

IDENTIFY

If the CDE's use count goes to zero, then the CDE, all its minor CDEs, the extent
list, and the module itself are freed. When the module is freed (by subroutine
CDHKEEP) it is freed from:

• Subpool 0, if bit CDSPZ is 1
• Subpool 251, if bit CDSPZ is 0 and bit CDJPA is 1
• Subpool 252, if bit CDSPZ is 0 and bit CDJPA is 0

(See the discussion of "Module Subpools" later in this chapter.)

If the exiting 'PRB is the last in the TCB's RB queue, IEAVLK02 also does
end-of-task clean up. This consists of cleaning up and freeing all LLEs. remaining
on the TCB's load list queue.

Module IEAVLKOO is called by SVC FLIH at entry point IGC012 when the
SYNCH SVC (SVC 12) is issued. SYNCH essentially uses the tail end of LINK
processing to build and enqueue a PRB for the user exit. No module searching,
CDEs, LLEs, etc. are involved.

Module IEAVIDOO is called by the SVC FLIH at entry point IGC041 when the
IDENTIFY SVC (SVC 41) is issued.

IDENTIFY builds a minor CDE for the requested name and entry point. The
CDE is enqueued on the lPQ or ALP AQ following the major CDE that
represents the module containing the entry point. One exception to this is if the
requestor is not authorized (not supervisor state, not in a system key, and not
executing in an APF-authorized step) and the embedded entry point is in a
module that is CDE-authorized and from an APF-authorized library. In this
case, for integrity reasons, a major CDE for the embedded entry point is built and
enqueued on the lPQ. Since the CDE is initialized to represent the module as not
coming from an authorized library, no authorized user is allowed to use this
user-defined entry point.

Module lEA VIDOO also accommodates OS/LOADER with special processing.
When OS/LOADER issues the IDENTIFY SVC, it has loaded a module into
subpool 0, built an extent list, and now wants to be represented by a major CDE
and extent list build and enqueued on the lPQ. This request is called a "major
request" and is indicated when Register 0 contains 0 upon entry to lEA VIDOO.
Register 1 contains a pointer to the module name and extent list.

Figure 5-13 illustrates CDB initialization by IDENTIFY.

Section 5. Component Analysis 5-65

ABEND Resource Manager

806 Abend

Normal Request

Non-authorized
requestor and
module from an
APF -authorized

CDEField Normal library Major Request

CDCHAIN (behind major) (top of JPQ) (top of JPQ)
CDRRBP zero zero zero
CDNAME as per input as per input as per input
CDENTPT as per input as per input as per input
CDXLMJP @majorCDE zero @ XL (at end of CDE)
CDUSE zero zero zero
CDNIP as in major CDE 0 0
CDNIC 0 0 0
CDREN 1 as in major CDE 0
CDSER 1 as in major CDE 0
CDNFN 0 0 0
CD MIN 1 0 0
CDJPA 0 1 0
CDNLR 1 as in major CDE 1
CDSPZ 0 0 1
CDXLE 0 0 1
CDRLC 0 0 0
CDOLY 0 1 0
CDSYSLIB 0 0 0
CDAUTH as in major CDE 0 0

Figure 5-13. CDE Initialization by IDENTIFY

Module IEAVLK02 is called by RTM at entry point IEAPPGMA under two
circumstances: when a TCB is going to abnormally terminate; and when a
program manager SVRB is going to be forced through exit processing because of
a recovery retry.

When lEA VLK02 is called, its function is to clean up CDE SVRB suspend
queues. If the current TCB has any program manager SVRB on an SVRB
suspend queue for any CDE on the JPQ, the SVRB is dequeued. Furthermore,
when a TCB is going to abnormally terminate, if any CDE on the JPQ has the
CDNIC bit on and a program manager SVRB on the abending TCB's RB queue
is responsible for fetching the module into virtual storage, all other SVRBs
waiting for the module are posted and the CDE is dequeued and freed.

If the program manager cannot locate a load module in response to a LINK,
ATTACH, XCTL, or LOAD request, it issues an 806 abend. Two key areas in
the program manager should be understood if an unexpected 806 abend occurs or
if the program manager uses a copy of a module that was not anticipated. These
are (1) the module search sequence or search order and (2) the criteria used in
determining whether or not a module already in virtual storage is useable.

1. Search Sequence

For a LOAD request, CDEs located on the task's load list queue are first
searched for a useable module. If this search fails, the search sequence for
LOAD is then the same as it is for LINK, ATTACH, and XCTL.

5-66 MVS Diagnostic Techniques

The search sequence for LINK, ATTACH, XCTL, and LOAD (if the LLE
scan is unsuccessful) is shown in Figure 5-14 and Figure 5-15.

2. Usability Criteria

When searching for a module, the program manager looks for a COE already
enqueued on the JPQ or ALPAQ with a CONAME the same as that of the
requested name. If a matching name is found and the COE is on the
ALPAQ, the module is immediately available to the requestor because all
these COEs represent modules that are reentrant and from APF-authorized
libraries. If the COE is on the JPQ, however, certain tests have to be made
to determine if the module represented by the COE can be used by the
requestor. The routine CDALLOC (COE Allocation) performs this testing.
The COE with the matching name is the input to COALLOC. Output is a
return code indicating the usability of the associated module. Figure 5-16
describes tests and actions taken by COALLOC.

Section 5. Component Analysis 5-67

LOAD

Search CDEs via
TCB's Load List
Queue

See Figure 5-15

Search Private
Libraries

Search SVCLIB

No

No

Yes

LINK, ATIACH,
XCTL

Search JPQ

Search ALPAQ

Search PLPAD

806 ABEND

Figure 5-14. Module Seal'ch Sequence for LINK, ATTACH, XCTL and LOAD

5-68 MVS Diagnostic Techniques

Notes:

1. For XCTL, if caller is an
SVRB. only the ALPAQand
PLPAD are searched.

2. For ATIACH. if the
TASKLIB=LlNKLlB DCB is
specified, no library other
than LlNKLIB is searched
for the requested module
and an abend 806-4
might occur.

3. For a LOAD request with the
explicit loqd option CADDR
keyword). only the library
indicated by the user-supplied
DCB is searched.

4. If the limited library
search option is requested
(LSEARCH=YES parameter),
only the ibrary indicated
by the user-supplied DCB
is searched. A search of
SYS1 . LINKLIB involves a
preliminary search of the
link pack area.

Order of CDEs on ALPAQ

First: Modules activated from the
pageable LPA -- newest
modules first

Second: Modules in IEALODOO -
in inverse order of
specification in list

Third: Modules in fix lists in
inverse order of
specification in lists.
Lists also in inverse order
of their specification

Fourth: Modules in MLPA lists -
in inverse order of
specification in lists.
Lists also in inverse order
of their specification

Z Byte> 1

Search the Parent
Job/Step/T ask
Libraries Via
Z Byte

Yes

Search Library
Via Given DeB

806 ABEND

Yes

No

Search Library
Via Given DCB

Search All
Job/SteplT ask
Libraries

No

..-_________________ ~ Byte = 1

1
Continue Search
with the ALPAQ

Figure 5-15. Module Search Sequence of Private Libraries

Yes

Job/Step/Task
Libraries

Z Byte> 1

Search the Parent
Job/Step/Task
Libraries Via
Z Byte

Search curren]

--L---'--
i

==r-.
CS06ABEND)

Section 5. Component Analysis 5-69

CDALLOC
Type of Request Module Condition via the Input CDE Return

Code

-Requestor is Authorized· Module from non APF-authorized library 8

From APF-authorized library = same as non-authorized request -
Module being fetched (CDNIC= 1) 16

Reentrant or serially reuseable 4

Module in No Load Non- Fetched by Program Manager 0

LOAD Storage Restrictions reusable Loaded by I USECT=O 4

(CDNIC=O) (CDNLR=I) OS/LOADER I USECT>O 0

Requestor is Load Reentrant or serially reuseable 4

Non-authorized Only Non-reuseable 0

Module being fetched (CDNIC= 1) 16

Reentrant (CDREN= 1) 4

LINK Module in No Load Serially In use (CDRRBP"O) 12

ATTACH Storage Restrictions Reuseable Not in use (CDRRBP=O) 4

XCTL (CDNIC=O) (CDNLR= 1) Non- Used (CDNFN = 1) 8

reuseable Never used (CDNFN=O) 4

Load only (CDNLR=O) 406
ABEND

0: Module not available via JPQ
4: Module is immediately available
8: Module not available - continue JPQ search
12: Module not immediately available - suspend requestor until module is no longer in use
16: Module not immediately available - suspend requestor until fetch is complete

·In supervisor state, in system key, or as part of an APF-authorized step

Figure 5-16. CDE Allocation

APF Authorization

The program manager performs two APF -related functions. The first function
determines whether or not a job step is APF-authorized when the job step TCB is
attached. The second function prevents any authorized program from accessing,
via LINK, ATTACH, XCTL or LOAD, a module that is not from an
APF-authorized library.

1. Establishing APF-Authorization

An APF-authorized job step is executing if bit JSBAUTH is on in the JSCB.
This bit is turned on by the program manager if the following conditions exist
when LINK is called by ATTACH:

• It must be a job step ATTACH. The program manager considers it a job
step ATTACH if field TCBJSTCB in the attached TCB points to itself
and if there is a JSCB for the step indicated by a non-zero TCBJSCB
field.

• The load module being attached must have been link edited with an APF
authorization code of 1. This is indicated to the program manager when
bit PDSAPF is on in the module's directory entry.

5-70 MVS Diagnostic Techniques

Module Subpools

• The load module being attached must be from an APF-authorized library.
This is determined by FETCH and indicated to the program manager by
bit WKAUTH being on in the FETWK.

In summary, a job step is APF-authorized if the first program executed in the
step is both from an APF -authorized library and link edited with an APF
authorization code of one.

2. 306 ABEND

An authorized program is one that is executing in supervisor state, or with a
system protect key (0-7), or as part of an APF -authorized job step. An
authorized program must LINK to, ATTACH, LOAD and XCTL to modules
exclusively from APF -authorized libraries. The program manager issues an
abend code of 306 if the only usable copy of a module requested by an
authorized program is on a non-APF-authorized library.

When a load module is fetched into virtual storage, FETCH indicates to the
program manager via the FETWK bit, WKAUTH, whether it is (bit on) or is
not (bit off) from an APF-authorized library. If the requested module is
already in virtual storage, the program manager determines whether or not it
is from an APF-authorized library by examining the CDE bit, CDSYSLIB, If
it is on, the module can be used by an authorized program.

Bit CDSYSLIB = 1 if the associated module is from an APF-authorized
library except in the following cases:

• The bit=O if the module is reentrant but is still fetched into subpool 251
because of TSO TEST considerations (see the following discussion on
"Module Subpools").

• The bit=O when IDENTIFY creates a major CDE because a
non-authorized user indicates an embedded entry point in a module from
an APF-authorized library.

All modules represented by CDEs on the ALP AQ are loaded into the pageable
LPA, the fixed LPA, and the modified LPA. These modules are never freed.

Modules represented by CDEs on the JPQ however, are freed by the program
manager and can occupy storage in subpool 0, subpool 251, and subpool 252.

Modules loaded by the OS/LOADER always use subpool O. This is indicated by
bit CDSPZ being set to one.

When bit CDSPZ is zero, modules fetched by the program manager use subpool
251 if bit CDJP A is set on or subpool 252 if bit CDJP A is set off.

Reentrant modules from APF-authorized libraries are always fetched into subpool
252 if the requestor is a system program (a program in supervisor state or with a
system key). Reentrant modules from APF-authorized libraries requested by
non-system programs are also fetched into subpool 252 provided TSO test (TCB
bit TCBTCP = 0) is not running. All other modules are fetched into subpool 25 L

Section 5. Component Analysis 5-71

FETCH/Program Manager Work Area (FETWK)

Module IEAVLKOI obtains the FETWK (mapped by DSECT IHAFETWK)
from subpool 253 when a load module is to be fetched into virtual storage. A
pointer to the FETWK is placed in RBCSWORK (at RB + X'74') of the program
manager SVRB. FETWK is logically divided into three areas. The first area, up
to but not including field WKADDR, is used exclusively by FETCH as a work
area. The second area, up to but not including WKPREFX, is used as a work
area by the program manager. Field WKIOADDR and bits WKAUTH and
WKSYSREQ in this area are also addressed by FETCH, as follows:

• WKIOADDR is always set to zero by the program manager. This instructs
FETCH to do the GETMAIN for the load module.

• WKAUTH is set to one by FETCH to tell the program manager when a load
module is from an APF-authorized library.

• WKSYSREQ is set to one by the program manager to tell FETCH that the
requesting program is in supervisor state and/or system key. FETCH uses
this indication to bypass DEB checking.

The third area of the FETWK, starting with WRPREFX, is the BLDL area. This
area contains the directory entry used by FETCH to obtain the requested module.
The directory entry is placed there by the program manager either by moving a
caller-supplied directory entry into the area or by issuing a BLDL.

RB Extended Save Area (RBEXSA VE)

CDE Pool Control

The 48-byte extended save area (RBEXSA VE at RB + X'60') of the program
manager SVRB is used by the program manager as a work area. This area, along
with the FETWK, is a key area in analyzing program manager problems.
RBCSNAME (at RB + X'60') contains the module name requested by the caller,
and RBCSDE (at RB + X'68') points to a copy of the caller-supplied directory
entry if one was supplied. If EP or EPLOC is specified, then this pointer is zero.
Other key areas of the extended save area are RBCSWORK (at RB + X'74'),
which points to the FETWK if FETWK was obtained, and bit RBCSSYSR
(RB + X'70' = X'40'), which is on if the caller is a system program.

Two pools of CDEs are maintained in SQA (one for minor CDEs and one for
major CDEs) from which the program manager obtains the CDEs used to
represent modules on the active LP A queue. A sixteen-byte area is also
maintained in SQA which is used to control access to the CDE pools. This area
is pointed to by CVTCDEQ (CVT + X'3D8'). The format of this control area is
as follows:

+0 Pointer to next available major CDE in pool (zero if major pool is empty).
+4 Pointer to next available minor CDE in pool (zero if minor pool is empty).
+ 8 Pointer to first extent of major pool.
+ C Pointer to first extent of minor pool.

5-72 MVS Diagnostic Techniques

Each pool is comprised of one or more extents. Each extent consists of a 4K
block of SQA allocated on a 4K boundary. The first four words at the beginning
of each extent contain the following information:

+0 "CDEQ" - identifies this 4K page as a CDE pool.
+ 4 Pointer to next extent of this pool (zero if last or only extent in pool).
+ 8 Count of CDEs from this extent that are in use.
+ C Indicates which pool this extent belongs to (0 = major pool, 4 = minor pool).

The remainder of each extent contains the CDEs which make up the pool. Each
CDE in the pool points to the next CDE in the pool using the CDCHAIN field of
the CDE. The last CDE in each pool contains a zero in the CDCHAIN field to
denote the end of the pool.

CDEs are obtained from the pools by the CELLGET subroutine of IEAVLKOI
and returned to the pools by the CELLFREE subroutine of lEA VLK02.

Section 5. Component Analysis 5-73

Virtual Fetch

Functional Description

Module Organization

Virtual fetch is a system service that reduces the time and channel contention to
locate and bring a load module into storage. This chapter describes virtual fetch
and includes the following topics:

• Functional description
• Module organization
• Functional flow
• Control blocks
• Recovery processing
• Debugging hints

For a description of how to use virtual fetch, refer to OSjVS2 MVS System
Programming Library: Job Management.

Virtual fetch provides the following functions:

Function Description

Initialization Establishes the virtual fetch service address space, creates a read-only VIO data set
containing reformatted load modules, creates a hash table of virtual fetch directory
entries (VFDEs) for the modules in the VIO data set, and creates or reactivates the
virtual fetch control block (VFCB) in the CSA.

Refresh Builds a new VIO data set and hash table to reflect any changes made to the load
modules and updates the VFCB.

Build Creates, for the named module, the virtual fetch work area (VFWK) in the user's
address space.

Find Locates, for the named module, the VFDE and copies it into the VFWK in the user's
address space.

Get Brings a copy of the named module from the VIO data set into the user's address space,
relocates the address constants, passes control to the named module, receives control
back ftom the module, and returns to the user.

Virtual fetch consists of the following modules:

Module

CSVVFCRE
alias:
CSVVFRSH

CSVVFGET

CSVVFIND

Primary Function

Performs the initialization and refresh functions. Contains the cross memory
search routine (CSVVFSCH), which obtains the VFDE; the cross memory
post routine (CSVVFRSH), which initiates refresh processing; and
CSVVFCRl, which reformats load modules to be placed in the VIO data set.

Performs the get function. Contains routine CSVVFRM, which is used to free (via
FREEMAIN) local module storage.

Performs the build and find functions. Contains routine CSVVFORK, which is
entered via a non space switch PC instruction and which passes control to the
authorized sections in CSVVFIND and CSVVFGET.

5-74 MVS Diagnostic Techniques

/

Functional Flow

CSVVFMEM Cleans up the VFCB when virtual fetch terminates. It also clears the pointers to the
virtual fetch data areas in a local address space when the job step task terminates.

CSVVFTCH Obtains a copy of a named module from the VIO data set and relocates the address
constants in the user's address space.

The modules that are given control by virtual fetch's get function are effectively
nonreusable. Therefore, recursive calls using virtual fetch will fail.

Additional information for the modules is shown in Figure 5-17.

Module
Name

CSVVFCRE
alias:
CSVVFRSH

CSVVFGET

CSVVFIND

CSVVFMEM

CSVVFTCH

Routines

CSVVFCRE
CSVVFCRI
CSVVFSCH
CSVVFRSH
CSVVFCES-ESTAE
CSVVFCFR-FRR

CSVVFGET
CSVVFGES-ESTAE
CSVVFRR-FRR

CSVVFIND
CSVVFFES-ESTAE

CSVVFMEM

CSVVFTCH

Figure 5-17. Virtual Fetch Modules

Residence

Private (virtual
fetch)

Nucleus

Nucleus

Nucleus

Nucleus

External
Entry Points

CSVVFCRE
CSVVFRSH

CSVVFGET
CSVVFRM

CSVVFIND
CSVVFORK

CSVVFMEM

CSVVFTCH

Flow of control for the virtual fetch modules and routines are shown in the
following topics.

Section 5. Component Analysis 5-7 5

Initialization Function

START Command

CSWFCRE
Initialize
function

Wait for refresh

Refresh Function

EXEC PGM=CSWFRSH

CSWFRSH
Initiate
refresh

Build Function

Exit

CSWFCR1
Reformat
modules

CSWFCRE
Refresh
function

BALR via CVTVFIND (YFPMFUNC ... VFPMBLD>

CSWFIND CSWFORK
Build - .. Pass - -function control

LReturn
~

CSWFRM
Free storage

5-7 6 MVS Diagnostic Techniques

Wait for refresh

CSWFCR1
Reformat
modules

Find Function

BALR via CVTVFIND <VFPMFUNC-VFPMFIND>

~
CSWFIND CSWFORK
Find function - .

Pass control

L Return

CSWFSCH
Obtain VFDE

~ CSWFRM
Free storage

Get Function

BALR via CVTVFGET <VFPMFUNC=VFPMGET>

~
CSWFGET
GET function -

L Return

Termination

Call from RTM

CSWFMEM
Terminate
function

L Return

CSWFORK - Pass control

CSWFTCH --. Obtain
module

~
CSWFRM
Free storage

- CSWFRM
Free storage

Section S. Component Analysis 5-77

Control Blocks

Virtual fetch uses the following control blocks and data areas:

Area

VFCB

VFHE

Description

Virtual fetch control block - used to access the virtual fetch service address space. The
VFCB is located in the CSA and is pointed to by field CVTVFCB in the CVT.

Virtual fetch hash entry - contains the virtual fetch directory entries (VFDEs) for the
modules managed by virtual fetch. VFHEs reside in hash collision queues in a hash
table in the virtual fetch address space. The first elements of the queues are accessed by
the module name.

INFODATA Contains PDS directory entry data. INFODATA format DEs are accumulated in a
temporary table (INFOTAB), copied into the hash table, and then converted into
VFHEs. INFOTAB is located in the virtual fetch address space.

VFPM

VFVT

VFWK

Virtual fetch parameter list - used by the user to request build, find, or get processing.
The VFPM is located in the user's address space. For get processing, virtual fetch sets
flags in the VFPMRTN field if the named module did not receive control or abended.

Virtual fetch vector table - controls the build, find, and get requests in the user's address
space. The VFVT is located in the user's address space.

Virtual fetch work area - controls the use of a module in a user's address space. The
VFWK is located in the user's address space. VFWKs are in push-down queues
anchored in a 31-way hash table in the VFVT. The hash table is accessed by module
name.

L WK Local work area - contains dynamic storage for build, find, and get requests. The L WK
is located in the user's address space.

Additional information for these control blocks and data areas is shown in
Figure 5-18.

Mapping Size in Subpool
Area Macro Bytes Number Created By Deleted By

VFCB IHAVFCB 32 241 (CSA) CSVVFCRE CSVVFCRE (System VFCB
not deleted)

VFHE IHAVFDE 64 230 (PVT) CSVVFCRE CSVVFCRE

INFO- IHAVFINF 64 o (PVT) CSVVFCRE CSVVFCRE
DATA

VFPM IHAVFPM 88 User key User User

VFVT IHAVFVT 144 254 (LSQA) CSVVFIND Job step task termination

VFWK IHAVFWK 112 254 (LSQA) CSVVFIND Job step task termination

LWK Declares in 276 230 (PVT) CSVVFIND CSVVFIND and
CSVVFIND and CSVVFGET
and CSVVFGET
CSVVFGET

Figure 5-18. Virtual Fetch Control Blocks

5-78 MVS Diagnostic Techniques

Recovery Processing

This topic discusses virtual fetch recovery processing. Also see Appendix C for
diagnostic information for the SVC dumps issued by virtual fetch modules.

Error During Initialization Processing

When entered, the EST AE routine CSVVFCES (in CSVVFCRE) attempts to
clean up and retry the initialization or refresh request. If retry is not performed,
CSVVFCES requests an SVC dump and writes a software record to
SYSI.LOGREC. (The dump and LOGREC record are not requested when the
abend code is 222, 322, or 522.) VSVVFCES percolates the error under the
following conditions:

• There is no SDW A.
• The SDWA indicates that a retry is not permitted.
• A previous retry attempt was unsuccessful.
• The error occurs during initialization before the VFCB is activated.
• The error occurs while the VFCB is being updated.
• The error occurs while waiting for a refresh request.

If an error occurs while making VIO requests, CSVVFCRE issues abend code
COD to enter its EST AE routine. Under some conditions, CSVVFCRE will
terminate with a return code. See SPL: Job Management for a description of
these return codes.

If an error occurs during CSVVFCES processing, the FRR routine CSVVFCFR
(in CSVVFCRE) requests an SVC dump and writes a software record to
SYSl.LOGREC.

Debugging Hint - During initialization processing, if an abend 878 occurs or
message CSV119I or CSV113I is issued, increasing the region size for virtual fetch
might correct the problem.

Errors During Build, Find, and Get Processing

The build and find recovery routine (CSVVFFES) and the get recovery routines
(CSVVFGES, EST AE; CSVVFRR, FRR) clean up and attempt to retry the
request. CSVVFFES requests percolation of the error when the SDW A indicates
that only clean up is permitted, if the abend code is X'x22', or if the previous
retry attempt was unsuccessful. CSVVFGES requests percolation of the error
under the same conditions as for CSVVFFES, but in addition, CSVVFGES
requests percolation for abends that occur in the requested program. CSVVFRR
only requests percolation when the SDWA prohibits retry requests or when the
previous retry attempt was unsuccessful.

Except in the case of an X'x22' abend, the recovery routines request an SVC
dump and write a software record to SYSl.LOGREC. If retry succeeds,
CSVVFIND returns to its caller with a return code X'20', and CSVVFGET
returns to its caller with error information in field VFPMRTN of the VFPM. If
the caller's VFPM is not in storage thctt the caller can store into, a protection or
translation exception results and the VFPM is not altered.

Section 5. Component Analysis 5-79

Debugging Hints

The following conditions can occur during build, find, or get precessing:

• If an abend occurs in CSVVFSCH (cross memory search routine), the virtual
fetch service address space is flagged as unusable. Recovery routine
CSVVFFES (in CSVVFIND) turns off flag VFCBUILT, issues message
CSV118E, and returns a code of 20 to the caller. In this case, the virtual
fetch service address space should be cancelled, and then virtual fetch should
be restarted.

• If an abend occurs while virtual fetch is searching the VFWK collision
queues, recovery routine CSVVFFES (in CSVVFIND) or CSVVFGES (in
CSVVFGET) turns off flag VFVTVFUP. Further requests for virtual fetch
processing in this user's address space will result in invalid return codes until
the user's job step task terminates.

• If an abend occurs while virtual fetch is searching or updating the job pack
queue, the VFWK in the user's address space is flagged as unusable.
Recovery routine CSVVFFES (in CSVVFIND) or CSVVFRR (in
CSVVFGET) turns on flag VFWKBADV in the VFWK containing the CDE
being queued. The associated module is not obtainable via virtual fetch until
the job step task terminates. If the abend occurred while removing the CDE
from the job pack queue after the requested program completed processing,
CSVVFGET returns to the caller with no flags on in VFPMRTN.

• If either an abend occurred while assigning or page-loading a page for a
module, or lEA V AMSI returns a nonzero return code to virtual fetch, the
associated module is marked unobtainable in the VIO data set. CSVVFTCH
turns on flag VFWKBADM. (The flag is turned off only after an ASSIGN
with PAGELOAD has successfully completed processing or if a cancel abend
occurs during ASSIGN processing.) The module cannot be obtained via
virtual fetch until the virtual fetch service address space is refreshed, or
cancelled and restarted.

• If a requested program abends, the program is not available via virtual fetch
until a find request is invoked for the program under the TCB under which it
abended. This ensures that any dumps resulting from the abend are able to
include the storage of the requested module.

• If a GETMAIN macro fails during get processing, CSVVFTCH attempts to
obtain storage by issuing FREEMAIN macros for the storage of inactive
modules, and then retries the GETMAIN macro. Subsequent get processing
will issue GETMAIN macros for any modules whose storage was freed as
they are requested. CSVVFGET turns flag VFPMRESH on if CSVVFTCH
cannot obtain storage. When the find function is invoked and if CSVVFIND

. cannot obtain storage, CSVVFIND returns a code of 16 to the user. If the
find function obtains storage and the get function is reinvoked, and the get
function fails again with VFPMRESH on, then find processing should not be
reinvoked unless storage can be freed by the user.

• A module is not obtainable from the current generation of virtual fetch in a
user's address space if (1) a page is obtained by CSVVFTCH for a module,
and (2) the page is released by CSVVFGET after the module completed

5-80 MVS Diagnostic Techniques

execution, and (3) the page is referenced before the next call to IEAVAMSI
by CSVVFTCH. This is because IEAV AMSI is not able to complete an
ASSIGN and PAGE LOAD for the module. CSVVFTCH leaves flag
VFWKBADM on for the module.

• F or get processing, flag VFPMRESH in the user's VFPM is turned on if any
of the following conditions is encountered:

The virtual fetch service address space is not active.

The VFVT or the required VFWK for the module is not usable.

A find request for a module was not issued after the module had
abended.

A build request and a find request were not issued for a module before a
get request was issued for the module.

Virtual fetch found the job pack queue in error. There are probably bad
pointers in the queue. Recovery routine CSVVFGES or CSVVFRR flags
the VFWK as unusable.

CSVVFTCH encounters an abend during ASSIGN with P AGELOAD
processing. CSVVFGES assumes the module cannot be obtained from
the VIO data set and leaves flag VFWKBADM on.

Get processing was requested after find processing had indicated that the
VFDE was not in the current hash table.

The virtual fetch service address space was refreshed or reinitialized after
the previous find request for the module.

Get processing received a nonzero return code from lEA V AMSl.
CSVVFGET assumes the module cannot be obtained from the VIO data
set ana leaves flag VFWKBADM on.

CSVVFRM abended when called by CSVVFGES. CSVVFRR assumes
the VFWK is invalid and marks it unusable.

Section 5. Component Analysis 5-81

VSM

Virtual storage management (VSM) is responsible for allocating virtual storage,
keeping track of what is allocated and, for certain subpools, recording to whom it
is allocated. These services are performed both for the system and problem
programs. (See Figure 5-19.)

The following are the five basic functions that VSM performs:

Function

Nucleus initialization (NIP)

Address space initialization

Step initialization/termination

Virtual storage allocation

Cell pool management

Module
Performing
Function

IEAVNP08

IEAVGCAS

IEAVPRTO

IEAVGMOO

IEAVGTCL
IEAVFRCL
IEAVBLDP
IEAVDELP

Comments

IPL parameters are: SQA =, CSA =, REAL = ,
VRREGN=

Called by memory create

GETPART/FREEPART

GETMAIN/FREEMAIN

GETCELL (get cell)
FREECELL (free cell)
BLDCPOOL (build cell pool)
DELCPOOL (delete cell pool)

The nucleus initialization program (NIP) is not discussed in this book. The
remaining VSM functions, and the related FRRs (functional recovery routines),
are described in the following topics:

• Address Space Initialization
• Step Initialization/Termination
• Virtual Storage Allocation
• VSM Cell Pool Management
• Miscellaneous Debugging. Hints

5-82 MVS Diagnostic Techniques

64K boundary ------...
Cannot be rele
via FREEMAIN

ased .. -
4K boundary ~
64K boundary

These can
intermixed
on a 4K ba

be

sis

These can
intermixed

be

64K boundary

/'

LSOA

SWA

U key

{
...

SP 245 -- Key 0, not fetch protect
SOA

LPA

SP 231/241/227/228/239
CSA

SP 253 -- Key 0, not fetch protect, not pageable
-- AOE for task

SP 254 -- Key 0, not fetch protect, not pageable
-- AOE for any job step task

SP 255 -- Key 0, not fetch protect, not pageable

SP 236, SP 237 -- Key 1. not fetch protect, pageable

SP 229 -- User key. fetch protect, pageable
SP 230 -- User key, not fetch protect, pageable

'-These are not a II owed to cross.

/ Top of SP 0-127, 251, 252 is CURRGNTP
in control block local data area -- (LOA)

SP 252 -- Key 0, not fetch protect, pageable
SP 251 -- User key. fetch protect. pageable
SP 0 - SP 127 -- User key, fetch protect, pageable

SYSTEM REGION

16K chained out of RCT' s TCB (TCBPQE at TCB + X' 98')

NUCLEUS

(FREEMAIN cannot be issued for the NUCLEUS)

--
-

I--

I--

f-

Common
Area

User Area
(Private
Address
Space)

}

System
Area

Figure 5-19. Virtual Storage Management's View of MVS Storage

Section 5. Component Analysis 5-83

Address Space Initialization

The create address space module (lEA VGCAS) initializes the VSM address space.
lEA VGCAS creat~s the local data area (LDA). The LDA is the key anchor
block and VSM save area for space allocation within an address space.
lEA VGCAS builds all the blocks labeled "C" in Figure ~ 5-20. lEA VGCAS also
builds the initial allocation of 16-byte LSQA elements for VSM's local cell pool.
GETMAIN then allocates VSM's internal control blocks from this pool.

IEAVGCAS also contains VSM's task termination and address space termination
resource managers. The task termination routine frees all non-shared space
anchored in the TCB. (See Figure 5-20.) The address space termination routine
frees any WAIT or POST elements of a V = R (virtual = real) job that are
associated with the terminating address space and are chained out of VSM's GDA
(global data area). These V = R WAIT jPOST elements exist only when a job is
waiting for V = R address space.

IEAVGCAS's functional recovery routine (FRR) is IEAVCARR. IEAVCARR is
divided into the following three sections, corresponding to those of lEA VGCAS.

1. Entry IEAVCARR, which protects the create address space portion of
IEAVGCAS.

2. Entry IEAVTTRR, which protects the task termination portion of
IEAVGCAS.

3. Entry IEAVFARR. which protects the address space termination portion of
IEAVGCAS.

lEA VCARR does not place data in the variable recording area of the SDW A
(ST AE diagnostic work area). It does invoke SDUMP and either retries at the
beginning of the function that detects the error or continues with termination.

5-84 MVS Diagnostic Techniques

-

(Release 3 only)
VSM's pool of
16-byte LSOA cells
for VSM' s internal
control blocks

Current TCB

_:J r TCBAOE

TeBPOE

TCBSWA

TeBMSS -
TCBUKYSP -

Current ASCB

ASCBLDA

LDA

(C)

LSOAPTR

LSASRPOE

ASDPQE
\. LCLCELL

Dummy POE

I'
-j

J./
-1--

/
SPQEf")
LSOA

(C)

r
r

SPOE chain
subpools 236
and 237 (SWA)

..,

I
I

DOE
chain/

(C)

POE for system
region (16K
except in (C)
Master
Scheduler's _
address space)

PQE for
address
space

(C)

----/
-

-

V

exists only for V=R job

POEforV=R I ~
user region /V--

I
1

FOE
chain

(e)

8-byte FOEs

FBOE
chain

(C)

FBOE
chain

ee)

r--

r--

-
----'

'-----------'

FBOE
chain

(e) I-
I--

~ _____ --J

built on V=R GETPART

I -
AQE chain

~ 1,..--11 __ ---.

AOE
chain*

, 1

1

1

SPOE chain
subpools
0-127,251,
and 252

-
SPQE chain
subpools 229
and 230 ____ ~-

/-

*AQEs wi II be for SP 254 for a job step task or for SP 253 if not
a job step TCB

C=built by lEAVGCAS

Note: Updates of all control blocks and queues in this figure are
serialized by the local lock.

I--

Figure 5-20. Virtual Storage Management's Control Block Usage

1

J

DOE
chain

1

I

FOE
chain

16-byte FOEs

-
-

Section 5. Component Analysis 5-85

Step Initialization/Termination (lEA VPRTO - GETPART /FREEPART)

IEAVPRTO is invoked by IEAVGMOO (GETMAIN/FREEMAIN) via a branch
entry as a result of a GETMAIN/FREEMAIN request from an initiator for
subpools 242 (V=R) or 247 (V=V). IEAVPRTO does not return to IEAVGMOO;
it returns directly to the initiator.

IEAVPRTO performs four functions, as follows:

1. For a V=V GETPART request:

• Sets TCBPQE to point to the dummy address space partition queue
element (PQE) that was created at address space initialization time.

• Calls the initiator exit routine IEALIMIT in order to establish the
LDALIMIT which is the value used by GETMAIN as an upper limit for
problem program subpool GETMAIN's requests. The OS/VS2 System
Programming Library: Supervisor contains a discussion on LDALIMIT,
REGION =, and variable GETMAIN requests.

2. For a V=R GETPART request:

• Performs IEALIMIT processing as described above.

• Attempts to obtain V = R space by interrogating V = R FBQEs chained
from the GDA.

- If unsuccessful:

Creates V = R wait element
Chains the V=R wait element from the GDA
Indicates the V = R wait element is waiting for space

- If successful:

Interfaces with RSM's (real storage manager) IEAVEQR to
obtain real frames

Builds V=R dummy PQE, V=R PQE, and V=R FBQEs, and
updates TCBQE

3. For a V=V FREEPART request:

• Frees all task-related space by calling FREEMAIN, and freeing one
subpool at a time.

• Frees SPQEs and task-related subpools.

• Sets TCBPQE = O.

5-86 MVS Diagnostic Techniques

(~

4. For a V=R FREEPART request:

• Performs the same functions as for V=V FREEPART.

• Returns space to V=R FBQEs chained from the GDA.

• Attempts to satisfy V = R waiting requests by posting the waiting
initiator. The waiting initiator reissues the request; IEAVPRTO will move
the WAIT elements to the POST queue anchored in the GDA. This
POST element is freed by GETPART when the initiator's new request is
received.

IEAVPRTO's FRR, IEAVGPRR, does not use the variable recording area of the
SDWA. It attempts a retry back into lEA VPRTO based on footprints set in the
FRR's six-word parameter area. Refer to the IEAVPRTO code (microfiche) for a
detailed description of this FRR parameter area.

Virtual Storage Allocation (GETMAIN/FREEMAIN)

IEAVGMOO, IEAVGM03, and IEAVGM04 satisfy all GETMAINjFREEMAIN
requests. The control block structure they use is shown in Figure 5-20 and
Figure 5-21. All GETMAIN processing for the private area subpools and all
associated control blocks are serialized by the local lock. All common area
subpools and associated control blocks are serialized by the SALLOC lock.

A detailed process flow through GETMAIN for a virtual storage allocation
request can be found in Appendix A in the GETMAIN jFREEMAIN process flow
description.

In debugging GETMAIN, the most important information is contained in the
original request for virtual storage. This information can be obtained from the
trace table, from a parameter list passed by the problem program code, or
sometimes from the LDA (local data area).

The LDA cannot always be relied upon to provide information about the request
unless the system is stopped immediately. Unless you insert a code or SLIP trap
and take a stand-alone dump on error, the LDA is overlaid by another request
during the dumping procedure.

If an immediate stop has been obtained upon encountering an error, the most
useful information in the LDA is obtained from the flags in the LDARQSTA
(LDA + X'10') field. The LDARQSTA contains the current request status.
Compare the flags in this field to the request and determine if the two are
consistent. Then check through the control block chain, the LDA and GDA
chains that are set up when subpools are requested to find out why the abend or
error occurred.

Section 5. Component Analysis 5-87

LDARQSTA (LDA+X'lO')

Offset

0 1. Subpool 254 Requester has TCBABGM on
.1. Explicit V = V Region reached
. .1 Variable Request, Pass 2
... 1 SQA or LSQA Expansion
.... 1. .. Deferred Error I/O Flag
.... .1 .. FMAINB or MRELEASR Request
...... 1. GETMAINB Request
...... .1 Branch Entry

I 4096-byte Request from Subpool 253/254
.1. An AQE is needed
.. 1 Fetch Protected Subpool
.. .1 Authorized User Key Subpool
.... 1. .. SWA Subpool
..... 1.. LSQA Subpool
...... 1. CSA Subpool
...... .1 SQA Subpool

2 SVC Number

3 1. Subpool FREEMAIN
....... 1 Supervisor Mode (if zero)

5-88 MVS Diagnostic Techniques

r GDA

CVTGDAT
~--------~ ~--------~

CSAPQEP
~--------~ ~--------~

VRPQEP

PASTART

private area -----+---1 PASIZE
sta rt and size 1------------1

SQASPQEP

SQA space left, --------t SQASPLFT
includes CSA ~------I

available for VRPOSTQ
SOA expansion

V=R virtual is
now available;
the initiator is
posted to
re-issue the
request.

jobs waiting
for V=R
virtual space

V=R wait
element

VRWAITO

PFSTCPAB

CSASPOEP

GLBLCELL

GBLCELCT

count of
free cells

(Release 3 only)
VSM's pool of
16-byte SOA
cells for VSM' s
internal control
blocks

Note: Updates of all the control blocks and queues in this figure,
except PFSTCPAB, are serialized by the SALLOC lock.
PFSTCPAB is read only after NIP.

V=R
PQE

SOA
SPOE

I~~~~----l"'~ CPAB
anchor for the
permanent I---,J"'~ CPAB
cell pool ... CPAB
CPABs

CSA SPQE
chain

FOE ~
,--_d_ra_i_n _--'~

(CPAB Table is shown
in Figure 5-23.)

Figure 5-21. Virtual Storage Management's Global Data Area (GDA)

Section 5. Component Analysis 5-89

GETMAlN's Functional Recovery Routine - lEA VGFRR

Whenever GETMAIN's FRR (IEAVGFRR) finds an error in a queue, an entry is
made in the SDWA variable recording area, SDWAVRA (SDWA+X'194') to
indicate the error that has been found, its location, and the corrective action
taken. Each entry is added to the next available location and the length of the
user-supplied data is increased (field SDWAURAL, SDWA + X'193'). The
high-order byte (byte 0) of the first word contains FF if the space in the variable
recording area was exceeded and data entries were lost. The low order byte (byte
3) of the first word contains a digit indicating the type of error that caused
lEA VGFRR to get control. This digit comes from FRRBRNDX (branch index
FRR) in the LDA where it is set up by lEA VGMOO, lEA VGM03, or
IEAVGM04. FRRBRNDX is X'IF' into the GETMAIN/FREEMAIN work
area (GMFMWKAR); GMFMWKAR is the portion of the LDA that is used by
lEA VGMOO as a work area. It is mapped at the end of this chapter.

The seco~d word of the SDW A variable recording area contains the LDA field
LDARQST A at the time of error. The contents of LDARQST A are described in
the previous topic "Virtual Storage Allocation (lEA VGMOO -
GETMAIN /FREEMAIN)."

The next 16 words usually contain the registers (order 0-15) at the time
lEA VGMOO was ent.ered. These registers are useful for debugging problems that
occur on branch entry requests. Register 14 contains the caller's return address.

The remaining SDW A VRA entries consist of one to three words each. The first
word of each entry will have a code in the high-order byte and a data length in
the low-order byte. If this length is 0, there is no additional data for this entry.
A length of 4 or 8 indicates one or two additional words of data. These data
words always contain the address of the affected field or control block. These are
all shown in the table in Figure 5-22 Control blocks are checked to determine if
they are in the correct subpool, for example, SQA or LSQA; queues are checked
for validity.

If an error occurs in lEA VGMOO, lEA VGM03, or lEA VGM04, the name of the
module in error is indicated in the SDWA. If recovery percolates to the FRR
routine lEA VGFRR, the SDWA module name in error is indicated as
lEA VGMOO, and the CSECT name is indicated as lEA VGMOO, lEA VGMO I,
lEA VGM03, IEAVGM04, or IEASMFGF.

5-90 MVS Diagnostic Techniques

nata Data Addresses
Code Length First Second Explanation

01 4 PVTLCSA PVTLCSA is incorrect - it will remain unchanged.

02 4 PASTRT PASTRT in GOA is incorrect - it is reset using PVT.

03 4 PASIZE PASIZE in GOA is incorrect - it is reset using PVT.

04 0 All three sources of CSA start addresses (GOA, PVT, CSA, PQE) disagree - no
change will be made.

05 4 PVTHQSA PVTHQSA is incorrect - it will remain unchanged.

06 4 Bad TCB TCB pointer is not valid - no queue repairing is attempted.
Pointer

BI 4 SPQE with Next SPQE pointer is incorrect - the SPQE queue is truncated
bad pointer (by setting the bad pointer to zero).

B2 4 SQASPQE SQA SPQE flagword is incorrect - it will remain unchanged.

B3 4 LSQASPQE LSQA SPQE flagword is incorrect - it will remain unchanged.

B4 4 SPQE Next SPQE pointer = 0, but last SPQE flag is not on - the last SPQE flag is set
on.

CI 4 Cell with Next cell address is incorrect - the cell pool chain is truncated.
bad pointer

01 4 SQA SPQE First SQA OQE pointer (in SPQE) is incorrect; it points outside SQA so all of
SQA may be lost - it will remain unchanged.

02 8 OQE with bad Bad OQE OQE pointer is not in SQA or LSQA - OQE queue is truncated
pointer address (by setting the bad pointer to zero).

03 4 OQE OQE area address or length is incorrect - this OQE is removed from the queue.

04 8 Current Overlapped Current OQE area overlaps a previous OQE - current OQE is
OQE OQE removed from queue.

05 8 Current Previous Circular OQE queue - queue is truncated after previous OQE.
OQE OQE

06 4 OQE First SQA OQE area address or length is incorrect - address and length are
corrected.

FI 4 FQE Incorrect type flag in FQE - the flag is corrected.

F2 4 OQEor FBQE Next FQE pointer is incorrect (if SOA or LSQA, then previous FQE
with bad length could be too large) - FQE queue is truncated (by
pointer setting the bad pointer to zero).

F3 4 FQE Incorrect (too long) length in FQE - FQE queue is truncated.

Figure 5-22. SDW A VRA Error Indicators

Section 5. Component Analysis 5-91

VSM Cell Pool Management

VSM's cell pool· management consists of the following functions:

Module

IEAVGTCL
IEAVFRCL
IEAVBLDP
IEAVDELP

Macro

GETCELL
FREECELL
BLDCPOOL
DELCPOOL

Function

Gets a cell from a preformatted pool of cells
Frees a cell to a preformatted pool of cells
Builds a pool of formatted cells
Deletes a pool of formatted cells

The key to the VSM cell pool management function is the cell pool anchor block
(CPAB). The layout of the cell pools is shown in Figure 5-23. Note that the
permanent cell pools have IDs that are negative, while the dynamic cell pools
have IDs that are the address of the first CPAB divided by 4 (shift right 2).

The four VSM cell pool management modules are small enough that processing
can be determined from studying the CPAB mapping along with the code.

Miscellaneous Debugging Hints

1. Most common problems with GETMAIN/FREEMAIN occur in the interface
processing. There is usually a bad TCB or ASCB address or the local lock is
not held upon entry. The ASCB is used only to find the LDA which is in the
same location in all address spaces except the master scheduler's.

Note: On a branch entry to GETMAIN, register 7 contains the address of
the ASCB; however, on return from the branch entry, register 7 no longer
contains this address.

2. A valid GETMAIN/FREEMAIN that is issued for zero bytes is treated as a
no-op.

3. Good places for GETMAIN/FREEMAIN traps are:

• Routine CSPCHK in IEAVGMOO .

• Routines called from branch tables SPBRTBLG and SPBRTBLF in
IEAVGM03.

4. GETMAIN makes few queue manipulation errors. If
GETMAIN/FREEMAIN rejects a request, it is usually because the caller
made an error on the interface; the message lEA 7001 is issued.

5-92 MVS Diagnostic Techniques

CVT

X'23)' CVTGDA

GOA

X'30' PFSTCPAB

Dynamic pools

cells

Permanent CPAB (Cell
J-------i Pool Anchor Block) Table

4 pools are currently

cells

/
//

//
// /

J-----+-I in use:
SRBOO
RM103
RT104

Pointer to next CPAB
for this pool

Contains CPID when
~_-~f--~ cell in use

Pointer to next
....... ---'---""'f available cell

Figure 5-23. VSM Cell Pool Management

5. Subpool queue elements (SPQEs) are not freed even on a subpool
FREEMAIN, and multiple keys for a problem program subpool on the same
TCB are not allowed. This can.result in a problem if a user changes
TCBPFK. The following is an example of such a situation:

Set TCB key TCBPFK=6
GETMAIN SP 1 Causes SPQE to be built, storage in key 6

FREEMAIN SP 1 SPQE for SP 1 is not destroyed

Change TCB key TCBPFK = 8
GETMAIN SP 1 lEA VGMOO uses old SPQE and assigns storage in key 6

6. On branch entry to GETMAIN, registers are saved at field BRANCHSV in
the LDA and turns on tpe BRENTRY flag at offset X'lO' in LDA. To be
sure these saved registers are for the request in question, it is necessary to stop
the system via a trap. (See "Using the SLIP Command" and the "System
Stop Routine" topics in the chapter" Additional Data Gathering Techniques"
in Section 2.)

Section 5. Component Analysis 5-93

7. MVS has added a new register type GETMAIN/FREEMAIN SVC and
branch entry. It is SVC 120. The parameters differ from those of SVC 10 as
follows:

Register 1 - Zero for a GETMAIN; address to be freed fOr FREEMAIN.

Register 15 (SVC only) - Bytes 0 and 1: Reserved~ set to O.

Byte 2: Subpool ID

Byte 3: Following flag values:

Bits 0-4 Reserved~ set to 0
Bit 5

=0 Double word boundary
=1 Page boundary

Bit 6
=0 Conditional request
=1 Unconditional request

Bit 7
=0 GETMAIN
=1 FREEMAIN

For the branch entry SVC 120, register 15 contains the entry point address
and register 3 is used for the parameters. Register 3 is set up the same as
register 15 above with one exception: Byte 1 is the protect key for subpools
227-231 and subpool241. The address that was obtained via GETMAIN is
returned in register 1 as in SVC 10.

8. Some GETMAIN failures are recorded in an information list·Gontained in the
nucleus. This list is similar to a trace table and is pointed to by the
CVTQMSG (CVT+X'IOC'). Each entry contains data such as: ABEND
code, ASCB address, TCB address, register 14 if GETMAIN was branch
entered, and the parameters passed. Refer to the DSECT INFO LIST in
module lEA VGMOO for additional information.

5-94 MVS Diagnostic Techniques

GMFMWKAR (IN LDA AT +X'58')

OFFSET
IN HEX (FROM START OF LOA)

58~--------------------------------------~

ABNDATA (VAR. DATA)
5C~--------~--------~--------~--------~

MSGLEN I FREESW I LOCKFLAG I FRR~RNDX. 60. ~ _______ .L.-_______ ..L-______ -'-_-";' ____ ~

REGSAVE SAVE AREA USED -.... ... ~ FOR SRM AND RSM :t (18 FULL WORDS) T
A~~------------M-S-A-V-E-S-A-V-E-A-R-E-A--U-S-ED---------~JL

FOR MRELEASE
(16 FULL WORDS)

GNOTSAVE SAVE AREA USED
FOR GNOTSAT

-""'" -~
(16 FULL WORDS)

12 8'
LOCKSAVE

(OVERLAPS INTO GFSMFSVE AND MPTRS)
13 0

GFSMFSVE/CSPCKSAV
(SMF CORE ROUTINES SAVE AREAl

CSPCHK SAVE AREA)
13 C

MPTRS
(PR.EVIOUS AND NEXT PTRS SAVE AREA)

14 4.
DUMYDQE

"10.... -10...,
(DUMMY DQE FOR L/SQA EXPANSION)

15J[~ ____________ ~_(4 __ FU __ LL __ W_O_R_D_S_) ____________ ~Jr :c TEMPDQE .i
164'

(TEMPORARY DQE FOR FMCOMMUN)
_ (4 FULL WORDS) T

DUMFBQE ~
-~

17 4

180

18 4

18

19

19

C

0

4

"L....

(DUMMY FBQE FOR MRCLEASE) -""'" (4 FULL WORDS)

SAV911
SAVE AREA FOR REGS 9-11

(BRANCH ENTRY)

LASTSAVE (LAST LIST ENTRY)

MINMAX
MAX & MIN LENGTH FOR VARIABLE REQUEST

LASTLSTA (LAST LIST ENTRY ADDRESS)

LSTINDEX (INDEX FOR LIST REQUEST)

FMARCAS (PTR TO AREAS TO BE FREEMAINED) -L..o

MSGLEN - REASON CODE AND LENGTH OF VAR.
DATA

FREESW
X'SO' FREEMAIN IN PROGRESS
X'40' LENGTH HAS BEEN INCREMENTED
X'20' ADDRESS HAS BEEN DECREMENTED
X'10' NOT 1ST DQE (FOR L/SQA)
X'OS' FQE WAS BELOW FREED AREA
X'04' FURTHER PAGE RELEASE NEEDED

LOCKFLAG
X'02' SALLOC LOCK OBTAINED
X'Ol' SALLOC LOCK ALREADY HELD

FRRBRNDX
X'07' SUBPOOL FREEMAIN, AQE AREA NOT

INDQE
X'06' PAGE RELEASE RETURN CODE OF 1
X'05' SALLOC OBTAIN RETURN CODE NOT

OOR 4
X'04' ON L/SQA EXPANSION, GFRECORE FAILED
X'03' FINDPAGE RETURN CODE NOT 0 OR 4
X'02' CREATE SEGMENT RETURN CODE>O
X'01' SALLOC RELEASE RETURN CODE >0
X'OO' UNEXPECTED ERROR,SEE STATUS

Section 5. Component Analysis 5-95

OFFSET
IN HEX (FROM START OF LOA) --198

19C

1AO

1A4

1A8

1AC

180

184

188

18C

1CO

1C4

lC8

lCC

100

104
108

10C

1EO

lE4

lEC

1FO

1F4

1F8

1FC

200

204

20C

210

214

21

21C

220

8

224

228

22C

230

234

23 8

C

0

PARMLDA I FRRPARM (FAR PARM AREA ADD)

CLOP REV (PREVIOUS FQE TO CLOSEST)

CLOSEST (CLOSEST INSIZE FQE)

LARGESTA (LARGEST AVAILABLE)

LARGEST (LARGEST AVAILABLE FBQE)

LENSAVE (SAVE AREA FOR LENGTH LIST PTR)

SAVESIZE (SIZE OF MULTIPLE OF 4K CORE)

ENDADD (END ADDRESS)

STRTADD (START ADDRESS)

DIFF/SAVEPQE (DIFFERENCE/PQE PTR IN FBQESPCH)

FIXSTART (STARTING ADDRESS TO CLEAR)

FIXEND (ENDING ADDRESS TO CLEAR)

NOTSATSV (LEN PTR USED BY GNOTSAT)

NOTSATSI (LDARQSTA SAVE AREA FOR GNOTSAT)

SAVESEG (ADDRESS OF MULTIPLE OF 4K CORE)

LARSOFAR (LARGEST AVAILABLE IN FBQE)

RSTRTADD (ROUNDED START ADDRESS)

RENDADD (ROUNDED END ADDRESS)

VPFP (FIND PAGE ADDRESS TO BE USED)

DQESAVE
SAVE DQE PTR AND PREVIOUS DQE PTR

FMSAVE (SAVE RETURN REG FOR FREEMAIN)

PREVFQSV (SAVE AREA FOR PREVIOUS FQE PTR)

FQESAVE (SAVE AREA FOR FQE)

SPQESAVE (SAVE AREA FOR SPQE)

SVRLB (SAVE AREA FOR RLB)

SVSIZE (SAVE AREA FOR ROUNDED SIZE)

DQESAVEl
SAVE DQE INFO WHEN USING FMAINB

FMSAVEl (SAVE RETURN REG IN FMAINB)

FQESAVEl (SAVE FQE INFO IN FMAINB)

PREVFQSl (SAVE PREVIOUS FQEIN FMAINB)

SPQSAVE 1 (SAVE SPQE IN FMAINB)

SVRLBl (SAVE RLB FOR FMAINB)

SVSIZEl (SAVE ROUNDED SIZE FOR FMAINB)

SAVSVTSV (SAVE LDARQSTA IN FMAINB)

FQENXTSV (FQE NEXT SAVE AREA)

OLDFQELN (OLD FQE LENGTH)

NEWFQELN (NEW FQE LENGTH)

RQSTSIZE (SIZE OF ORIGINAL REQUEST)

SEGTEST (END SEG TEST AREA) CODEl CLEARSW

GMFMSW FETCH OUTSW CODE2

-"'"

23

24

24
SAVFRESW SPID LSPQEKEY. RQSTRKEY

4
SAVSPID SAVSPID2

5-96 MVS Diagnostic Techniques

PARMLDA
X'SO' GLOBAL REQUEST (GLBRANCH OR

MRELEASE ON GLOBAL REQUEST)
X'4Q' SALLOC LOCK OBTAINED BY GM/FM
X'04' FIRST FLAG BYTE IN FRRPARM
X'OO' -LOA ADDRESS IN FRR PARM

CODEl - (SAVE AREA FOR OPTION CODE)
X'CO' LIST INDICATOR (MIXED IF LIST)
X'20' CONDITIONAL INDICATOR
X'10' MASK FOR PAGE BOUNDARY
X'04' SVC 120 PAGE BOUNDARY REQUEST
X'02' SVC 120 UNCONDITIONAL REQUEST
X'Ol' SVC 120 FREEMAIN REQUEST

CLEARSW - (CLEARSW FOR GFRECORE)
X'Ol' FQECPB INDICATOR ON IN FQE

GMFMSW - (GM/FM SWITCH FOR MRELEASE)
X'04' FIRST TIME SW FOR MRELEASE
X'02' INDICATES FM FOR FBQE
X'Ol' INDICATES GM FOR FBQE

FETCH - (KEY AND FETCH PROTECT)
X'OS' FETCH PROTECT ON

OUTSW - (SWITCH FOR OUT OF REAL/VIRT.)
X'OO' REAL INDICATOR FOR OUTSW
X'FF' VIRT. INDICATOR FOR OUTSW

CODE2 - (SAVE AREA FOR OPTION CODE)

SAVFRESW - (SAVE FREESW IN FMAINB)

SPID - (SPID FOR MRELEASE)

LSPQEKEY - (PROTECT KEY FROM CURRENT SPQE)

RQSTRKEY - (REQUESTER KEY OR KEY = PARM)

SAVSPID - (SAVE SPID FOR FREEMAIN)

SAVSPID2 - (SPID FOR MESSAGES)

Real Storage Manager (RSM)

The real storage manager (RSM) manages the real storage of the system. To do
this, it divides all potentially pageable real storage into 4K-byte frames. Within
RSM, the page frame table entry (PFTE) describes the frame according to type,
current use, or its most recent use.

The current or last state of a request for RSM page able services is described by
the page control block (PCB) within RSM: the requestor supplies information
about his request and RSM reformats this data into a PCB. As the request is
processed, RSM adds other internal RSM information to the PCB.

RSM is a queue-driven component. Both PFTEs and PCBs are queued based on
their current state. Simply stated, frames that can be used immediately are
queued on the available frame queue; their PFTEs describe the frame's last use.
Similarly, free request elements are queued on the FIFO PCB free queue; these
PCBs describe the final state of previously processed requests. (This historical
nature of PCBs is often useful in problem analysis.) To manipulate these control
blocks and manage the queues, RSM has a PFTE manager (lEA VPFTE) and a
PCB manager (lEA VPCB). Besides being queued, PFTEs are located in a
contiguous table starting at (PVTPFTP) + (pVTFPFN) multiplied by 16) and
ending at (PVTPFTP) + (PVTLPFN multiplied by 16). PCBs, however, are
obtained (via GETMAIN) in groups and are spread out in SQA. They can be
found only by following queue pointers.

Major RSM Control Blocks

RSM's major control blocks are the PFTE, PCB, page table entry (PGTE),
external page table entry (XPTE), paging vector table (PVT), RSM header
(RSMHDR), and swap control table (SPCT). An RSM service routine called find
page (lEA VFP) locates the PGTE and XPTE control blocks. The table in
Figure 5-24 lists the control block functions.

Control Block Function

PFTE describes the last use of a frame

PCB describes the current or last state of a request

PGTE describes the current real frame and virtual
XPTE page relationship for a particular virtual

address

PVT basically these are RSM anchors and work areas

RSMHDR header information

SPCT related only to swapping, it describes the RSM requirements necessary to
swap in an address space (the swap out process formats the SPCT)

Figure 5-24. Major RSM Control Blocks and Their Functions

Only the leftmost 14 bits of a real address (XRBN) or the leftmost 12 bits of a
virtual address (VBN) are needed to ,describe a specific real frame or virtual page
(a modulo 4K-bytes real and virtual addressing scheme). Also, note the
following:

Section 5. Component Analysis 5-97

the product of XRBN multiplied
by 16 equal the address of the
PFTE.

• PGTEs contain XRBNvalues in a rearranged format: bits 0 and 1 of the
14-bit XRBN are in bits 13 and 14 of the 16-bit PGTE, and bits 2 through 13
of the XRBN are in bits 0 through 11 of the PGTE.

PGTE
o

o

11 12 13 14 15

2

• The contents of PVTPFTP plus XRBNO is the address of the PFTE for the
frame whose real address is XRBNOOO through XRBNFFF.

Of all the RSM control blocks, the most critical are the PCB, PFTE and SPCT.
The important fields in each block are described below. Figure 5-25 shows the
relationship among the blocks.

PCB PGT

XPT

, XPTE

t PGTE

XRBN VBNO

AlA [)------------I
~VirtualPage Index

:>----i'" VBNO = 55 PO

1.. Virtual Segment Index

Figure 5-25. Relationship of Critical RSM Control Blocks

5-98 MVS Diagnostic Techniques

PCB (Page Control Block)

Important fields in the PCB are:

+OPCBCQN -

+8 PCBFLl:

+9 PCBRTPA-

+X'D' PCBRLPA-

+ X' 10' PCBFL2:

+X'll' PCBXPTA-

+ X'IS' PCBPGTA -

+ X'18' PCBXRBN -

+ X'IA' PCBVBN -

indicates the current queue location of this PCB as follows:

X'10' - PCB is not currently in use. It is queued on the PCB free queue
anchored in the PVT.

X'18' - PCB is currently waiting for frame allocation to occur. It is queued
on the PCB defer queue anchored in the PVT.

X'20' - PCB represents a common area I/O operation. Actual physical I/O
mayor may not be complete. It is queued on the PCB common-I/O
queue anchored in the PVT.

X'88' - PCB represents a private area I/O operation. Actual physical I/O
mayor may not be complete. It is queued on the PCB local-I/O
queue anchored in the RSMHDR for the address space indicated by
PCBASCB; ASCBRSM points to the RSMHDR.

X'FF' - PCB is probably in use. The not-queued state means only that the
PCB is not on the primary forward/backward chain of the above
mentioned major PCB queues. It can be a related PCB, a root PCB,
or an associated PCB.

PCBSRBMD = X'20' - PCBSRB is the address of a page-fault-suspend
SSRB. The use of this address is the only means of
locating page-fault-suspended SRBs.

PCBROOT = X'04' - PCBRTCA is the address of a root PCB. Root
PCBs are only valid if their PCBCQN field is
X'FF'.

When the PCBROOT bit is on, this contains the address of a PCB that
controls a block page operation.

The address of a chain of PCBs for the same PCBVBN /PCBRBN. The
related chain of PCBs are dequeued PCBs that are chained via the PCBRLPA
field (not via PCBFQP/PCBBQP).

PCBRESET=X'IO' - The function indicated by the PCB has been
suspended for a page fault because no frames were
available or paging I/O had to be completed before
redispatching the page faulter. PCBASCB,
PCBRTPA, and PCBSRB define the ASCB, TCB,
and RB to be RESET when PCBSRBMD is O.
When PCBSRBMD is 1, PCBASCB and PCBSRB
define the ASCB and SSRB that will be RESET.

Is either 0 or the address of the XPTE.

Is either 0 or the address of the PGTE.

This value when multiplied by 16 and added to the address in PVTPFTP
gives the address of the associated PFTE.

This field is often zero; when it is zero, the operation has either been NOPed
with page I/O still in pr,ogress or the I/O is complete and the PCB is only
serving a scheduling/tnlcking function. The operation is considered to be
complete when PCBVBN = 0; 1'10 other paging request should be able to relate
to it; that is, it cannot be found via an equal compare on PCBVBN. When
PCBVBN is zero, its previous value can be determined from the AlARPN
field in the AlA. The AlA is the last 28 bytes of the PCB.

Section 5. Component Analysis 5-99

The following information about roots is useful to the problem solver.

• Root PCBs can generally be recognized because most of the PCB is still zero.

• The SPCT points to active roots for SWAP; RSMSPCT in the RSMHDR
points to the SPCT.

• V=R waits for region roots are queued from PVTVROOT in the PVT.

• Vary offiine roots are queued from PVTOROOT in the PVT.

• PAGE FIX and PAGE LOAD roots can only be found via PCBRTPA of the
queued FIX/LOAD PCBs.

For non-root PCBs: PCBCQN, PCBFLI, PCBFL2, and PCBFL3 are the key
fields. They describe the current state of the paging request for which the
non-root PCB was last used.

See the topic "PCB Trace Facility" later in this section for a description of PCB
tracing.

SPCT (Swap Control Table)

The SPCT is mapped in modules IEAVSOUT, IEAVSWIN, IEAVCSEG, and
lEA VIT AS. Space for the SPCT is obtained via GETMAIN and is initialized in
lEA VITAS. As segments are created, lEA VCSEG updates the SPCT.
IEAVSOUT initializes the spct with the pages that make up the working set
(such as, LSQA and fixed pages plus recently referenced pages). IEAVSWIN uses
the information lEA VSOUT put in the SPCT in order to start up a previously
swapped-out address space. Note that a one-stage swap permits pageable working
set pages to be written to the swap data set along with the LSQA pages. This
improves response time for swappable address spaces (such as TSO).

The first portion of the SPCT contains the address of the swap root PCB
(SPCTSWRT); the number of fixed, LSQA and pageable page entries in this
SPCT (SPCTFIX, SPCTLSQA and SPCTSIPE); the number of segment entries
and the number of active segment entries (SPCTNSEG and SPCTSSEG); and the
working set size (SPCTWSSZ). The flags at offset X'A' are defined as follows:

X'80' Swap-in in progress
X'40' Swap-out in progress
X'20' Paging was purged during swap-out
X'IO' There is at least one fix entry with a fix count greater than 255
X'08' Page data set used for LSQA
X'04' Swap-out requested by lEA VEQRP

The next portion of the SPCT (SPCTSW AP) is the SPCT extension and is 56
(decimal) bytes long. It contains a maximum of six fix swap entries or eight
LSQA swap entries, or a combination of the two. In a combination, LSQA
entries precede all fix entries. LSQA entries are six bytes each and fix entries are
eight bytes each. Both entries contain the following flags in the first byte:

X'80' LSID in this entry is valid.

X'40' This is an LSQA or pageable page entry.

5-100 MVS Diagnostic Techniques

X'20' This SPCT entry is for a pageable page that should be backed below 16 Mb, if possible, because
it was previously fixed and will probably be fixed again later.

X'IO' The page was flagged defer release at swap time.

X'OS' This SPCT entry is a pageable page. Note that X'4S' indicates a pageable page and X'40'
indicates an LSQA page.

X'04' This SPCT entry indicates a pageable page that was changed during the swap-in interval. On
swap-in the change bit must be turned on in the protect key because a valid auxiliary copy does
not exist.

X'02' This SPCT entry is ignored.

This flag byte is followed by a three-byte LSID and a two-byte VBN. If the entry
is for LSQA or pageable page, there is nothing more, but if the entry is a fix
entry, the next two bytes contain the fix count. The last portion of the SPCT
contains a variable number of six-byte segment entries. The first byte is the
segment number and it is followed by the address of the page table. The next
two-byte field (SPCTBITM) is a 16-bit map indicating which pages are to be
brought in at swap-in time as two-stage pageable working set pages.

PFTE (page Frame Table Entry)

Page Stealing

Important fields in the PFTE are:

PFTIRRG - indicates the format of the first word of the PFTE. This bit is located in PFTFLAG2 at
offset X'D' and is a X'IO'. If it is on, the first word of the PFTE is mapped as
PFTPGID and contains a VIO LGN and RPN. If PFTIRRG is off, the first word of
the PFTE is mapped as PFTASID and PFTVBN. An ASID cfX'FFFF' indicates a
COmmon area page. Note that a VIO LGN can be the same as an address space ASID;
address space ASIDs and LONs are seldom the same but could be.

PFTPCBSI - indicates there is a PCB on an I/O queue for this page; there can be a string of related
PCBs for this page. This bit is located in PFTFLAG I at offset X'C' and is a X'OS'.
This bit is turned off by the process that validates the page when the I/O completes, or,
for output I/O, after the I/O completes but before the PFTE is sent to the free queue.
Note that I/O queues sometimes contain several "no-op" PCBs; these appear to point
back to a frame and its associated PFTE. When a PCB is made into a "no-op,"
PFTPCBSI is turned off and the association between that PCB and that frame and its
associated PFTE is broken. These "no-op" PCBs are either output PCBs with
incomplete I/O or input PCBs with complete I/O.

PFTSASF - indicates whether RSM or PF A (page fault assist) allocated the frame. If this bit is on,
the frame was allocated by RSM. If this bit is off, the frame was allocated by PF A.

Figure 5-26 shows the flow of the page stealing process. The circled numbers in
the figure correspond to the notes below.

If the frame queue is for a private address space that is not the current address space,
lEA VRFR issues CMSET to the private address space.

2 IEAVRFR scans the local frame queue (LFQ) or common frame queue (CFQ); the queue it
scans is determined by the parameter list received from SRM.

3 lEA VRFR checks the hardware reference bits and then updates the unreferenced interval count
(VIC). lEA VRFR orders the LFQ and the CFQ so that the PFTEs with the highest VICs are
at the top of the queue. The queues are in descending order, with zero VICs at the bottom.

Section 5. Component Analysis 5-101

For common
area steal

... -

is in
MSTM

Parameter list
module IRAR
(Label RFRL STH

RFR

4 Frames are selected to be stolen based on their VIC and pageability; that is, fixed/LSQAjbad
pages, and pages that are V = R allocated cannot be stolen.

5 IEAVRFR calls a common routine, FREEPAGE, to invalidate selected pages and free a frame
(if a page is unchanged), or to build a PCB for the page-out process (if the page is changed).

6 When the scanning of the queue is completed, lEA VRFR calls ASM to start output paging if
any PCBs have been accumulated.

7 lEA VRFR issues CMSET to return to the original address space, if necessary.

IRARMSTM

SR M branches to

parameter list IEAVRFR

Flags ;
A (ASCB) ,

IEAVRFR
Flags

CD Issues CMSET, if necessary
A (0)

Flags
@ Obtains queue headers

A (ASCB) ® Selects frames to be stolen

0 Stops scanning the frame queue when the UIC is
less than the criteria number

® Calls FREEPAGE
ASM

® Starts accumulated I/O - :..-: ILRIODRV I --
CD Issues CMSET, if necessary

Figure 5-26. Page Stealing Process Flow

Reclaim

Reclaim is an RSM function that revalidates a page/real frame pair that was
previously invalidated. IEAVGFA performs the reclaim for the normal case after
a page fault on an address space or common area virtual address. IEAVAMSI
handles the VIO case.

In the virtual address case, lEA VGFA handles work as follows:

1. PCBVBN is used to locate the PGTE.

2. The PGTE is used to obtain the last-used XRBN value.

3. The XRBN is used to address the PFTE.

4. PFTIRRG is checked to determine if the first word of the PFTE is in
PFTPGID or PFTASID/PFTVBN format.

5. If PFTIRRG = 0, PFTVBN is compared to PCBVBN.

5-102 MVS Diagnostic Techniques

Relate

6. If the VBNs match and the VBN is in th~ common area, the reclaim is:
successful. If the VBN is in the private area and PFT ASID matches
ASCBASID (which PCBASCB points to), the private area reclaim is
successful.

In the VIO case, lEA V AMSI handles work as follows:

1. lEA V AMSI is supplied with both a XRBN and a DSPID.

2. The XRBN is used to address the PFTE.

3. PFTIRRG is checked to determine if PFTPGID is in PGID format.

4. If PFTIRRG= 1, PFTPGID must match the DSPID; if it matches, the
reclaim is successful.

When reclaim fails, normal frame allocation paths are followed just as though the
page had never been in storage.

Relate is an RSM function that associates independently-generated page requests
(PCBs) for the same virtual address. When the physical action required to satisfy
one of these requests (I/O or frame allocation) is completed, all related requests
are also satisfied. A PCB-related chain is produced for all cases except the VIO
data set. The same modules that do reclaim, lEA VGF A and lEA VAMSI, handle
the relate process, which only follows after a successful reclaim.

In the virtual address case, IEAVGFA handles work as follows:

1. The relate function is invoked for one of two cases:

• The reclaim function has successfully completed and PFTPCBSI is on,
indicating page I/O is in progress; a PCB I/O queue is searched .

• The XPTDEFER bit is on, indicating that the previous PCBs have been
delayed because frames were not available. The GF A defer queue will be
searched to do the relate function.

2. The search argument is PCBVBN in all cases except that of the GFA defer
queue; in that case PCBASID and PCBVBN are the search arguments.

3. When the correct queued PCB is located, the current PCB is added to the
rela ted PCB chain. For the defer case, the PCB is added to the head of the
chain; for the I/O case, the PCB is added to the end of the chain.

In the VIO data set case, lEA V AMSI handles work as follows:

1. The PCB local I/O queue is scanned for a match on PCBRBN because
PCBVBN is always set to 0 for move-out PCBs. If PCBRBN matches,
PCBV AM must be on.

Section 5. COIl}ponent Analysis 5-103.

RSM Recovery

2. When the correct PCB is found, it is·updated with the information the I/O
completion portion of RSM needs to place the page of the VIO data set in
the new window location (this is not necessarily a new page).

RSM recovery consists of a SETFRR at all major entry points to the RSM:

• The issuer of the SETFRR places the address of the FRR in PVTPRCA.

• Each SETFRR returns a six-word parameter list in the recovery
communications area (RCA).

• RSM has only one FRR - lEA VRCV.

• The IHARCA macro maps the RCA; this macro can be found in most RSM
modules.

• lEA VPSI contains the RCA macro in assembler language format.

Whenever an unexpected error or COD abend occurs, the RCA is copied into
SDW A VRA. The CSECT ID and the module-entered flag in the RCA can be
used to determine the path taken through RSM to the point of error. To
determine this path, you must understand the RSM flow and know which module
issues SETFRR. The following RSM modules issue SETFRR at their main entry
point:

IEAVAMSI
IEAVCSEG
IEAVEQR
IEAVIOCP
IEAVITAS
IEAVPIOI

IEAVPIOP
IEAVPIX
IEAVPRSP
IEAVPSI
IEAVRCF
IEAVRCF3
IEAVRCV
IEAVRFR

IEAVSOUT
IEAVSQA
IEAVSWIN
IEAVTERM
IEAVRELS at IEAVRELV (entry point)
IEAVFRSB at IEAVPRSR (entry point)
IEAVSWPP

RSM's FRR does not attempt complex recovery. Its main objective is to record
the error and issue an SDUMP. It has some special logic based on where the
error occurred, as follows:

Error Occurred In

lEA VEQRI, lEA VRCFI,
or IEAVRF3I

IEAVPIX

IEAVSIRT

IEAVSWIN

IEAVPIOI

IEAVINV

IEAVPSI

FRR Action

Restore registers for return to lEA VPFTE.

Attempt to reset page faulter.

"Memterm" swapping in address space.

"Memterm" swapping in address space.

Retry for cleanup or "Memterm."

Set "GO" indicator and PTLB or retry to PTLB.

If error occurred while checking input parameters, set abend of 171.

5-104 MVS Diagnostic Techniques

Other

If error occurred in IEAVPSI at entry point IEAVPSIX, IEAVPSIY, or
lEA VPSIF, ensure that if the SALLOC lock was held, it is released
prior to percolation.

If it is a non-zero retry address, retry; otherwise continue with
termination.

Recursion is not allowed. The PVT and PFTEs are dumped on the SDUMP.

The following reason codes are put into the RCARCRD field when real storage
management issues abend with a code of COD. All COD abends are retried at the
next sequential instruction.

Real Storage Management ABEND Reason Codes

Code
(hex) Meaning

01 Findpage, translate real to virtual, or the LRA instruction returned an unexpected code for a
segment, page, or frame whose existence was implied by some RSM control block or function.
Findpage, translate real to virtual, or LRA is assumed to be correct.

02 A GETCELL or FREECELL for the RSM cell pool failed. If FREECELL, the error is
ignored; if GETCELL, asynchronous retry is attempted where possible.

03 A FREEMAIN failed for space originally obtained by RSM or VSM using GETMAIN. The
error is ignored.

04 The return code from ASM (ILRSWAP, ILRIODRV, or ILRTRPAG) indicates an invalid
request. The recovery action taken by RSM varies with the type of request, but the RSM
function being performed is usually terminated if ASM resources were being requested, or
continued if ASM resources were being returned.

05 A GETMAIN for RSM control block space was unsuccessful. The function for which the
space was required is terminated.

06 An attempt was made to release a lock which was not held. RSM tables might be damaged
due to the loss of serialization. RSM attempts to continue normal operation.

07 RSM control information indicated a PCB for a page should exist on an 1/0 active queue or
on the defer queue, but searching of the queue(s) failed to find the PCB. It is assumed the
control information is in error and no such PCB exists.

08 The existence of a V = R or offiine root PCB was implied but no appropriate PCB could be
found on the V = R or offiine root queue. The error is ignored and indicators are reset.

09 Swap-in's XMPOST error exit was entered, so restore will not run. The target address space is
terminated.

OA An incorrect fix count was detected in a PFTE. The count is adjusted to the expected value.

OB The interprocessor communications service routine (RISIGNL) could not signal another
processor as requested by IEAVINV. The condition is ignored and normal operation
continues.

OC lEA VPIOP has discovered an undefined combination of I/O completion status flags in the
AlA after a page-in or page-out. The condition is treated as an I/O error.

OD IEAVDSEG was requested to destroy a non-existent or common area segment. The request is
denied.

OE A PCB was required but none were available. The routine needing a PCB is terminated.

OF The attempt to complete processing of a previously deferred FREEMAIN release has failed.

Section 5. Component Analysis 5-105

10 An FOE could not be found on the specified TCB's fix ownership list.

11 An internal RSM invocation of the PGOUT function was unsuccessful. The page remains in
real storage.

12 A swap (in or out) was requested for an address that already has a swap in progress, or no
SPCT exists for the address space to be swapped. The request is denied.

13 Swap-in could not re-establish the address space due to missing or incorrect control
information (SPCT or PCBs). The address space is abnormally terminated.

14 An internal invocation of PGFREE failed. The error is ignored.

15 Swap-out has detected an inconsistency in the SPCT fix entries it has created. The error is
suppressed and recovery attempted.

16 ASCBCHAP could not enqueue or dequeue an ASCB during a swap-in or swap-out operation.
The address space is terminated.

17 Swap-out has detected an error in the allocated frame count (ASCBFMCT) for the address
space. If possible, the count is corrected and the swap-out continued; otherwise, the swap-out
is suppressed.

18 No SPCT segment entry could be found for a segment whose existence was implied by other
RSM control information. The error is ignored and the SPCT update is skipped.

19 An internal RSM function issued a return code which was either invalid or not applicable.
System action depends on the nature of the function.

IA Swap-in detected a common area page that was not obtained using GETMAIN among the
input working set. The page is not made available to the incoming address space. Some other
address space must have freed the page using FREEMAIN while the current one was'"
swapped-out. Probable user error.

I B During an attempt to free the frames backing a V = R region, it has been determined that the
virtual space is not backed by real storage, or that the virtual-to-real mapping is not I to I.

IC lEAVPSI attempted to fix the ECB for a page service that will complete asynchronously, but
lEA VFXLD returned a code indicating the fix was not accomplished.

ID A PCB marked I/O complete (indicating that it was previously processed by lEAVPIOP) has
been passed to lEA VPIOP by ASM.

IE A software error has been found in the AlA passed from ASM to RSM for an I/O request.
Possible errors are:

• The AlA contains data inconsistent with previous AlAs.
• The original input chain (to ASM) was invalid.
• The LSID in the XPTE was invalid.
• The LPID in the XPTE was invalid.
• A hardware I/O error occurred on a pageout PCB (this should not occur).

IF An invalid real storage address was returned to IEAVPRSB at entry point IEAVPRSR.

20 SWAP-out has encountered a bad frame. The page residing in that frame will not be paged
out. If the page is a private area page, it will be "locked" into storage for the duration of the
swap. During this time, V = R allocation and vary omine of storage could be affected. If the
page is an LSQA page, a DONTSW AP sysevent is issued.

21 IEAVPFTE detected a discrepancy in the SQA reserve queue count controls. Use of the SQA
reserve queue is discontinued until after re-IPL RSM attempts to continue normal operation.

22 lEA VTERM has found an FOE fix count that is greater than the fix count in the
corresponding PFTE. The PFTE fix count is not changed, but the FOE is freed.

23 Entry point lEAVREPI in module IEAVPCB was passed a nonzero return code from
IEAVBLDP, which indicates the CPAB for RSM is bad.

5-106 MVS Diagnostic Techniques

RSM Debugging Tips

25 During lEA VSOUT processing, the search for a PCB on a related chain failed.

26 During IEAVRCF processing, using input from PFTASID, the LOCASCB failed.

27 In IEAV AMSI, the ASGNLOAD subroutine found fewer UCBs requiring page-ahead PCBs
than the mainline routine in lEA V AMSI had counted.

28 In IEAVSOUT, a pageable changed page was valid in storage at the time an SPCT entry was
built for it. However, the page was found invalid when an LRA instruction was done while
building a PCB for it.

29 An undefined function code was passed to lEA VPRSB at entry point lEA VPRSS.

2A In IEAVPREF, an attempt to issue message "IEA9881 PREFERRED AREA EXPANDED.
RECONFIGUREABILITY MAYBE IMPAIRED" failed.

2B During page fault assist (PF A) processing, the microcode encountered a program check. Code
X'2B' is issued by lEA VPIX upon receiving control from the program check FLIH after PF A
processing issued a X'26' program interruption.

1. Because the PCB free queue is a FIFO queue, it represents recent history in
RSM. Start your search of the PCB free queue with the youngest PCB
(PVTFPCBL) and look for the appropriate VBN in the PCBVBN or
AIARPN. This approach often reveals what has most recently happened to
the page in question.

2. Whenever the system wants to break the logical connection between the PCB
and the page, it sets PCBVBN to zero. Therefore, look at AIARPN to
determine what VBN the PCB was associated with (AIARPN=PCBVBN/16).

3. The PVT contains several work/save areas that belong to a unique module.
These are often useful to determine the last thing a module did.

4. At any time, there should never be more than one input PCB with a given
PCBVBN on the I/O-active or GF A-deferred PCB queues. Output PCB& are
never in a related position. Although, an output PCB for a nondisconnect
VIO moveout might have input PCBs related to it.

5. The XPTVIOLP flag can be confusing. If it is on, XPTXAV must be on.
XPTVIOLP = 1 indicates that there is an LPID in the XPT, not an LSID.

6. It is sometimes useful to observe the AIANXAIA pointers in PCBs on the
PCB free queue. These pointers probably indicate the order in which I/O
completed for a group of requests.

7. To help diagnose a COD abend, the PVTDUMP bit (byte 0, bit 7 of the PVT)
can be turned on (using superzap) to cause the RSM FRR to dump the PVT,
PFT, SQA, and current LSQA data areas.

8. On a system with page fault assist active, if there is a problem with
RSM-related control blocks, the problem might be caused by an earlier
problem suffered by the page fault assist microcode. The occurrence of a
page fault assist problem is indicated by a program check X'26', which RTM
converts into a X'OD9' abend. The page fault assist microcode alters RSM

Section 5. Component Analysis 5-107

control blocks, and if unable to complete processing, might leave the control
blocks partially updated before generating the program check X'26'.

Converting a Virtual Address to a Real Address

A virtual address contains the segment number in the first byte, the page number
in the next four bits, and the page displacement in the remaining twelve bits (that
is, sspddd - segment, page, displacement). The ASCB for the address space points
to the RSMHD. The first word (RSMVSTO) of the RSMHD is the virtual
address of the segment table (SGT). Multiply the segment number (ss) by the
length of a segment table entry (4) to locate the SGT entry (SGTE). The SGTE
contains the real address of the page table (PGT).

A real address consists of a 14-bit real block number (XRBN) followed by a
12-bit page displacement (that is: rrrrddd-XRBN, displacement). The XRBN
portion of the real address of the PGT is concatenated with zero (XRBNO) to
form an index into the page frame table (PFT). This index is added to the
apparent origin of the page frame table (PVTPFTP) in order to obtain the virtual
address of the page frame table entry (PFTE). The PFTE identifies the frame
that contains the page in which the page table resides.

The second half of the first word of the PFTE is the virtual block number (VBN).
The VBN is concatenated with the displacement portion of the real address of the
page table to form the virtual address of the page table (VBNllddd). Multiply the
page number (p) of the virtual address being converted by the length of a page
table entry (2) to locate the PGT entry (pGTE). The PGTE contains the XRBN
portion of the real address that corresponds with the initial virtual address.

Bits 13 and 14 of the PGTE are concatenated in front of bits 0-11 of the PGTE to
form XRBN, as follows:

11 12 13 14 15

o 2

This XRBN is concatenated with the displacement portion of the initial virtual
address to obtain the desired real address (RBNllddd).

Figure 5-27 shows the relationship of the control blocks used to convert a virtual
address to a real address.

5-108 MVS Diagnostic Techniques

Given a virtual address - find the corresponding real addr ...

Definitions: Virtual address = sspddd = VBNllddd
55 - segment number
p - page number
ddd - displacement within page
VBN - virtual block number

Real address = XRBNllddd
XRBN - real block number:
ddd - displacement within page

r- - ._-- -- -- -- -- -- -- -- -- ---
G) Find the real address of the page table (RBNlld'd'd').

I--

I
i

®

t®

ASCB RSMHD SGT

SGTE

~ ______ ~I ~ RSMVSTO ~

ASCBRSM ~ L- + (4*ss)
1------1

SGTE contains the real address of the page table

- -- ._- -- -- -- -- -- -- - ----
Convert the real address of the page table to a virtual address (VBNlld'd'd').

PVT PFT

PVTPFTP
I . ~--------t

~~-+XRBNO----~ PFTE

L
from SGTE

1----_ ... ,,-

PFTE contains the VBN portion of the virtual address of the page table.

-
Find the XRBN portion of the real address.

PGT
VBNlld'd'd'

[+12<P)1 PGTElyl (m \1._ I
PFTE SGTE ""'" ~

PGTE contains the XRBN portion of the desired real address.

-- -- -
Concatenate the displacement portion of the virtual address (ddd) with tRe real
block number (XRBN) to form the real address that corresponds to the given
virtual address.

real address = XRBNllddd

Figure 5-27. Converting Virtual Addresses to Real Addresses

I

Section 5. C6mponent Analysis 5-109

Example: Converting a Virtual Address to a Real Address

This example shows' how a virtual address of A9ECO was converted to a real
address. The values used in this example (such as ASCBRSM = FC7380) were
obtained from a sample dump.

Given: Virtual address = A9ECO (sspddd)

ss = OA (segment number)
p = 9 (page number)
ddd = ECO (displacement within page)

Step 1: Find the real address of the page table (PGT).

ASCBRSM = FC7380 (address of RSMHD)
RSMVSTO = 89FCOO (address of SGT)

89FCOO (RSMVSTO)
+ 28 (4*ss)

89FC28 (address of SGTE)

SGTE = F0307F20

Real address of PGT = 307F20

Step 2: Convert the real address of the PGT to a virtual address.

XRBN = 307 and XRBNO = 3070
d'd'd' = F20

PVTPFTP = 78760

78760 (PVTPFTP)
+ 3070 (XRBNO)

7B7DO (address of PFTE)

PFTVBN = 87BO

Virtual address of the PGT = VBNlld'd'd' = 87BF20

Step 3: Find the XRBN portion of the real address.

87BF20 (virtual address of PGT)
+ 12 (2*p)

87BF32 (virtual address of PGTE)

PGTE = 3811

XRBN portion = 381

5-110 MVS Diagnostic Techniques

PCB Trace :Facility

Step 4: Form the real address for the sample.

Real address = XRBNllddd = 381ECO

To help you debug RSM, the PCB trace facility places trace entries in PCBs. A
trace entry shows when a particular PCB was processed. (For example, a trace
entry can show that RSM removed a PCB from the PCB defer queue to send it
through GFA.) Trace entry information is available in a dump for those PCBs
that are currently in use. The free PCB queue provides a record of recently
completed RSM processing because the PCB queue is a FIFO queue and a PCB is
cleared only when it is reused.

You enable PCB tracing at NIP time by setting the PVTTRXLN field in the PVT
to the value (in eight-byte increments) that represents the size of the trace entry
extension area you want appended to the end of each PCB. You use the SPZAP
service aid to set the PVTTRXLN field, which must be set before the PCB pool is
initialized. Once the PCB trace facility is enabled, it cannot be disabled for the
life of the IPL.

An example of an eight-byte PCB trace area is:

Before making a new entry:

After making entry X'DD':

I oldest entry (lost)

8CF2D9C7D9C7CEEI

IJJJJJJ
8CD9C7D9C7CEEIDD

T newest entry

In the example, X'8C' represents the RCA CSECT ID of the program that
requested the PCB from the free PCB queue. The remaining seven bytes show the
most recent trace entry points (IDs of the trace points within the RSM module).

See the program listing for module IEAVPCB (PCB manager) for detailed
information on using the PCB trace facility. See the mapping macro IHARCA
(in module lEA VPCB) for the trace IDs for the various RSM modules.

Section 5. Component Analysis 5-111

Auxiliary Storage Manager (ASM)

The auxiliary storage manager (ASM) controls all system direct access storage
that is allocated for virtual address space paging and for virtual input/output
(VIO) data sets. ASM supports the dynamic paging requirements of the real
storage manager (RSM) and the data set storage and retrieval requirements of the
virtual block processor (VBP). For MVS paging, ASM has the responsibility of
selecting the auxiliary storage location (slot), maintaining the slot/page mapping,
and coordinating the slot/frame transfer.

The auxiliary storage manager consists of three sections:

• I/O control
• VIO control
• VIO group operators.

I/O control is the link between RSM and the I/O supervisor for paging and
swapping requests. I/O control accepts the paging/swapping requests from RSM,
determines the type of I/O to be done and how it can be started, and notifies
RSM when the I/O is completed. I/O control records the auxiliary storage
locations of all virtual pages. I/O control also communicates with lOS to cause
the physical transfer of d~ta between real and auxiliary storage. It allocates
auxiliary storage slots, builds paging channel programs, passes them to lOS for
execution, and processes I/O completions.

VIO control coordinates all the ASM processing required to support VIO data
sets (called logical groups by ASM). Operations on a logical group are classified
as group operations and page operations. A group operation is not allowed to
process while another group operation or page operation is processing for a
logical group. The virtual block processor (VBP) initiates group-related
operations and VIO control passes them to the VIO group operators to be
processed. RSM initiates page-related operations and I/O control and VIO
control jointly process them.

VIO group operations maintain the logical group information that VBP requires.
The VBP group operators perform all processing necessary to create, save, restore,
and delete a logical group. These operators are invoked only by VIO control as a
result of requests from VBP.

Modules (CSECTs) belonging to each section are:

1/0 Control VIO Control VIO Group Operators

ILRIODRV ILRFRSLT ILRPOS ILRACT
ILRCPBLD ILRCMP ILRGOS ILRSAV
ILRPAGCM ILRMSGOO ILRVIOCM ILRRLG
ILRSWAP ILRSRBC ILRTMRLG
ILRSWPDR ILRJTERM ILRVSAMI

5-112 MVS Diagnostic Techniques

Component Functional Flow

Saving an LG

ASM provides eight functional services. The first five are invoked by the use of
the ILRCALL macro, the remaining three via BALR:

• ASSIGN LG obtains a logical group identifier from ASM and creates a
logical group for a VIO data set.

• SA VE preserves the status of a logical group for recovery at a later time.

• ACTIVATE places a logical group into active status after it has been saved
and the saved status of the group is desired. (Used for step restart of VIO
data sets.)

• RELEASE LOGICAL GROUP deletes an entire logical group; this allows
ASM to reuse all slots associated with that logical group (VIO data set).

• XM ASSIGN requests a logical group identifier from ASM. It creates a
multi-memory accessible logical group for a virtual fetch data set.

• TRANSFER PAGE moves the logical slot identifier (LSID) for a page from
an address space to a VIO logical group.

• REQUEST 110 transfers page-sized blocks between real storage and ASM's
auxiliary storage.

• REQUEST SWAP 110 transfers LSQA and all working set pages between
real storage and ASM's auxiliary storage. Page-size blocks are transferred if
page data sets are used. Swap-set size (up to 12 pages) blocks are transferred
if swap data sets are used.

The following descriptions track three of these services through the component:
SAVE, which is similar to assign LG, activate, and release logical group; request
I/O; and request swap I/O.

SAVE requests ASM to write the ASPCT containing the slot numbers (LSIDs) of
a VIO dataset to SYSl.STGINDEX. ILRGOS receives control from VBP in
task mode with an ASM control area (ACA) containing the LGN of the VIO data
set as input. ILRGOS builds an ASM control element (ACE), queues it to the
logical group entry (LGE) process queue (LGEPROCQ) for that LGN, and calls
ILRSAV.

ILRSAV calls ILRVSAMI, which calls VSAM to write the ASPCT to the
SYS1.STGINDEX data set. An'S' symbol is returned by ILRVSAMI. (The'S'
symbol is part of the VSAM key used to save this ASPCT and can be used to
uniquely identify the ASPCT for an activate request). ILRSA V puts the'S'
symbol in the ACE and returns to ILRGOS. ILRGOS copies it into the ACA,
frees the ACE, and returns to VBP.

Section 5. Component Analysis 5-113

Requesting 1/0

RSM calls ILRIODRV for I/O requests. An ASM I/O request area (ALA), or
string of ALAs describes the request. ILRIODRV determines if the request is for
a VIO page and, if it is, callsILRPOS to process it. Otherwise, ILRIODRV
continues to process the request. Each request or group of requests from RSM is
for only one type of data request. The request is either all reads or all writes.

For write requests, ILRIODRV frees the previous slot for this page, selects new
page data sets and slots for the requests, and calls ILRCPBLD to start I/O.

F or read requests, the LSID is obtained from the external page table entry
(XPTE) and put into the ALA. The requests are separated into groups based on
the paging activity reference table entry (PARTE) they are associated with. Each
PARTE represents a paging data set. These groups of requests are given to
ILRCPBLD to start the I/O.

ILRCPBLD builds the channel program for the requests and determines how the
requests are to be started. If a channel program is currently running on the page
data set that these requests are to be read from or written to, the new requests are
chained on to the end of the running channel program. If the previous channel
program on the page data set for these requests is suspended, IOSVRSUM is
called to issue a RESUME I/O to start the requests. If the previous channel
program on the page data set for these requests has ended, a START I/O is issued
to process the requests.

New requests chained to a running channel program have a program controlled
interruption (PCI) set in the first new request. The PCI generated indicates to
ASM that the previous channel program (those requests already running when
new requests were added) has ended. Channel programs that support
SUSPEND/RESUME services also have a PCI set at the end of the channel
program to indicate that the requests ahve completed and the page data set is
suspended.

When a PCI occurs, lOS calls ASM's PCI exit ILRCMPCI (an entry point in
ILRCMP). ILRCMPCI determines that the PCI is one of ASM's channel
programs and processes the requests that have completed. The requests are
passed directly to RSM (lEA VPIOP) for single page-ins or to ILRP AGCM for all
other request types.

For I/O interrupts other than PCI, lOS calls ASM's disabled interruption exit
(DIE) routine (lLRCMPDI - an entry point in ILRCMP). ILRCMPDI checks
for errors, and if one occurred, returns to lOS indicating that the I/O should be
handled by the post status lOS routine and ASM's appendages (lLRCMPAE and
ILRCMPNE). If the I/O is successful, ILRCMPDI calls page completion
(lLRPAGCM). ILRPAGCM calls VIO completion (lLRVIOCM) if the I/O is
for a VIa page. If it is a non-VIa write request, ILRPAGCM takes the LSID
that ILRIODRV put into the AlA and puts it in the XPTE for the page in the
correct address space. The AlA is then returned to RSM (lEA VPIOP).

5-114 MVS Diagnostic Techniques

Requesting Swap 1/0

RSM calls ILRSW AP with a chain of AlAs for either a swap-in or swap-out
request. The following discussion traces a swap-out operation.

ILRSW AP separates the nonworking AlAs from the working set AlAs and calls
ILRIODRV to process the nonworking set pages as a regular request I/O
function. The working set AlAs are queued to the ASM header of the address
space (ASHSW APQ). If there were no nonworking set AlAs, ILRSW AP
immediately calls ILRSLSQA to process the working set AlAs. Otherwise,
ILRSWAP returns to RSM.

As nonworking AlAs complete, ILRP AGCM is given control (see Requesting
I/O). When all nonworking set AlAs have completed, ILRPAGCM calls
ILRSLSQA to process the working set AlAs. ILRSLSQA, called by
ILRPAGCM or ILRSWAP, passes control to alternate entry points in
ILRIODRV to process the working set AlAs if there are no available swap sets.
Otherwise, ILRSLSQA assigns swap sets and initializes swap channel control
work areas (SCCWs) for all the AlAs queued to ASHSWAPQ. A count of LSQA
pages (ASHSWPCT) is incremented for each AlA. The completed SCCWs are
chained to the swap activity reference table (SART) entry SCCW queue
(SRESCCW). If an SRB is not already scheduled for swap driver (lLRSWPDR),
ILRSLSQA schedules one. ILRSWPDR searches each SART entry for a
non-zero SCCW queue, chains the SCCWs to an IORB for that data set, and
issues a STARTIO macro to initiate I/O processing. Completed I/O is handled by
ILRCMPDI as in the "Requesting I/O" function, and ILRPAGCM is called.
ILRP AGCM processes working set AlAs by putting the LSID for each page into
the SPCT control block for this address space, putting the AlA on the capture
queue (ASHCAPQ), and decreasing the swap count (ASHSWPCT) by 1. When
the swap count is 0, ILRP AGCM returns all the AlAs on the capture queue to
RSM (lEA VSWPC module).

Figure 5-28 shows the relationship among the important ASM control blocks.

Section 5. Component Analysis 5-115

INPUT PAGE FAULT PROCESSING

I/O Interrupt

PCB

t;~
lEAVPIOP lLRPAGCM lLRCMP

~) CRSM f.-- Page 1lIIIE I/O
POST Completion Completion

lLRCPBLD lLRSIO
lLRIODRV

XPTE

~

CVT + 2CO

\ ASMVT

1t*~j

L-
Q)

0'1
0
c
0
~
Q)

0'1
0
L-
a

U>
0
Q)

0:::

J

Non-VIO
ALA

L~ES{

ILRPOS

Page Operation
Starter

Use LPID to Find
LPME

ALA

I LSID I

Change SRB
Program or
Build CALL

Start
I/O

IOSVRSUM

RESUME
Service

Header

LGVT ASHMD

Header

• LGE

• ASCB

• LGE

• ASCB

PARTES

Header

Header

000111
111111
101101

Figure 5-28. Relationship of Important ASM Control Blocks

5-116 MVS Diagnostic Techniques

IORB

.10SB

• PCCW

DEIB

Header

DEIB
entry

RESUME I/O
Instruction

10SB

• CCW

SRB

SRB

PCCW

CCW

CCW

CCW

uu

Component Operating Characteristics

System Mode

The following topics discuss characteristics of ASM's operating environment.

ASM uses the SALLOC lock in most page and swap processing in I/O control
modules. I/O control modules interface directly with RSM, the principal user of
the SAL LaC lock. The SALLOC is held throughout processing, including the
calls to the VIa control routines ILRPOS and ILRVIOCM. The local lock is
used during assign and release logical group requests processed by ILRGOS and
ILRRLG.

An ASM class lock exists for each active address space (lockword in ASMHD).
The ASM class lock is used by the VIa control modules. The ILRCMPDI,
ILRCMPCI, and ILRCMPNT entries of ILRCMP run in physically-disabled
mode because they run under the I/O interrupt handler. (ILRCMPNT also runs
under lOS front end processing.) The rest of ASM's modules simply run in task
or SRB mode using compare and swap instructions where necessary.

For additional information on locking, refer to the topic "ASM Serialization"
later in this section.

Address Space, Task, and SRB Structure

Storage Considerations

The I/O control modules given control from RSM and lOS run in the address
space of the caller. These modules (and entry points) are:

ILRIODRV
ILRSWAP
ILRCMPDI

ILRCMPCI ILRPAGCM
ILRCMPNT ILRFRSLT
ILRCPBLD

Note: ILRPAGCM transfers to the correct address space (via CMSET) to
update the external page table entry (XPTE) that is in the LSQA.

The remaining I/O control modules and alternate entry points in other modules
run in SRB mode in the master scheduler's address space.

VIa group operator modules, as well as ILRGOS (VIa control module), are tasks
(locked mode) executing in the address space associated with the VIa requests.
ILR TMRLG runs in task mode, but in the master scheduler's address space.

VIa control modules ILRPOS and ILRVIOCM receive control in the address
space of the caller. ILRSRBC executes in SRB mode in the address space
associated with the VIa requests.

ASM maintains three cell pools for its internal control blocks. These cell pools are
pushdown stacks and the elements at the top of the cellpools represent the last
control blocks used by ASM. The cellpools are for work areas, ACEs, BWKs,
and SWKs. These cellpools are expandable. The cellpools are anchored in the
ASMVT and the control blocks reside in SQA. The ASMVT is in the nucleus,
but most of the other ASM control blocks are in SQA. One exception is the
ASPCT, which resides in the LSQA of the associated address space.

Section 5. Component Analysis 5-117

Interfaces With Other Components

Register Conventions

Footprints and Traces

Five other components interface with ASM:

• RSM with I/O control for page and swap I/O requests, .and with VIO control
for transfer page requests.

• VBP with VIO control for assign, save, activate, and release logical group
requests.

• lOS with I/O control to process I/O requests.

• VSAM with VIa group operators to handle I/O to SYSl.STGINDEX. RSM
and VBP call ASM, and ASM calls lOS and VSAM.

• Contents supervisor with VIO control for XM ASSIGN logical group
requests.

ASM modules adhere to the following register conventions when calling other
ASM modules. There are some exceptions where certain addresses are not
required.

Register: 0 Parameter register, if required.

Parameter register, if required.

2 RSMHD or ASMHD address for the current address space or the address space
identified by an input parameter in register 0 or 1.

3 ASMVT address.

4 Address of A TA or EPA TH currently active for recovery tracking.

13 - Address of register save area, if required.

14 - Return address.

15 - Entry point address.

The most useful traces of ASM processing are its control blocks and queues,
because they document the movement of requests through ASM.

The processor work/save area vector table (WSA VT), which is pointed to by
LCCACPUS, will point to the work/save areas for the last I/O processed on the
processor. WSACASMS points to the l024-byte save/work area used by ASM
routines running as SRBs: ILRSWPDR, ILRCMPAE, ILRCMPNE, and
ILRCMP. WSACASMD points to another l024-byte save/work area for disabled
ASM routines: ILRIODRV, ILRCPBLD, ILRCMPDI, ILRCMPCI, and
ILRCMPNT. WSACASMR points to a 512-byte save/work area used by
ILRIOFRR. ILRPAGCM uses the work area of its caller.

ASMVT contains save areas for ASM's other I/O-related modules. ASMBWKPC
is a pool of work areas used by VIO-related modules (ILRGOS, ILRACT,

5-118 MVS Diagnostic Techniques

ILRSAV, and ILRRLG). Bits in the X'OI' byte ,of the ASMVT indicate whether
the IPL was a cold, quick, or warm start.

The LGE process queues (LGEPROCQ) contain AlAs and ACEs in process, or
AlAs and ACEs waiting for processing of VIO requests.

Field IORNOP (IORB + X'2C') points to the end of the channel program pointed
to by the field IORPCCW. If ASMTMECB (ASMVT+X'AS') is a posted ECB,
ILRTMRLG is or was about to process the task portion of a release logical group
request.

When an ASM-Iocked or SRB-mode routine is processing, its functional recovery
routine is on the current FRR stack. The first word of the parameter area passed
to the FRR contains a one-byte id of the ASM module that established the FRR,
followed by three bytes of flags indicating the ASM module or entry point in
process at the time of the error. The different ids are discussed in "Recovery
F ootprin ts. "

When ASM's I/O completion module encounters the first bad slot, an error record
is built with its address at X'14' into the ASMVT. It contains the LSIDs of the
unusable slots. The first three bytes in the record are the address of the current
entry filled, beginning address of the record, and ending address of the record.
An entry contains one byte of flags and the three-byte LSID. If bit 0 is on, the
error occurred on a swap data set. If bit 4 is on, there was a read error. I/O
error counts are found in the ASMVT, PART entries and SART entries.
ASMERRS (ASMVT + X'7C') is the total of error slots found on local page data
sets. PARERRCT (PART entry + X'IS') and SRERRCNT (SART entry +
X'IS') are the error slots encountered on the particular data set represented by the
entry.

In the ASMVT there are four counts, ASMIORQR (ASMVT + X'2S') and
ASMIORQC (ASMVT + X'2C'), which contain both the number of paging I/O
requests ASM has received and the number completed; and ASMSWRQR
(ASMVT + X'30') and ASMSWRQC (ASMVT + X'34'), which contain both the
number of SW AP working set requests ASM has received and the number
completed. If more requests have been received than completed and the system is
waiting, there is something wrong with ASM or lOS ..

General Debugging Approach

Paging Interlocks

This description helps isolate paging problems, the most difficult problems to
debug. Paging problems (not all of which are ASM problems) fall into two main
groups - paging interlocks and incorrect or duplicate pages.

Paging interlocks result in an enabled wait state. There are two indicators that
hint that the enabled wait is a paging interlock:

• The I/O request counts in the ASMVT (ASMIORQR and ASMIORQC, or
ASMSWRQR and ASMSWRQC) are not equal. The PAREREQS field
(PARTE X'3E') in the PART entries indicates which data sets have
uncompleted I/O requests when ASMIORQR is greater than ASMIORQC.

Section 5. Component Analysis 5-119

Incorrect Pages

• Field ASMPSRB points to an SRB used to redrive work through ASM. The
SRB parameter field points to an 8-byte parameter list that contains the
addresses of the first and l&st requests on the redrive queue. If these are
nonzero, the ASM redrive SRB has been scheduled, but not dispatched. It is
necessary to determine why the SRB has not been dispatched.-

The blocks discussed here are in the Debugging Handbook. To find the I/O
request blocks for a given page space, start with the PART entry. The PART
entry points to the first 10RB.

There is one 10RB for each page data set on a disk, four for each page data set
on a drum, and three for each page data set on a cached auxiliary storage
subsystem. The first bit of the fourth byte indicates whether or not ASM has
passed the 10SB to lOS. If the bit is 0, the 10RB/IOSB is available. If the bit is
1, the 10RB/IOSB is in use. The 10RB contains fields that point to the 10SB, to
the first of a queue of PCCW s, and to the last CCW in the channel program. For
an active I/O request, the third word into the PCCW points to the associated
AlA, and the fourth word points to the next PCCW on the chain.

If the request has been sent to lOS and not returned, it is necessary to trace lOS
processing. If I/O processing has caused a page-fault or a request for an enabled
lock, the interlock is probably explained. Either ASM could not get the resources
to handle the page fault, the page is already in use and this request is backed up
behind the previous one, or the holder of the lock has page-faulted and the page
fault cannot be resolved.

It is almost impossible to determine from a dump what caused the wrong page to
be written or read. At best, a dump provides clues as to which general area is
causing the problem. Intensive code reviews are then necessary to find it.
Frequently, traps must be applied to narrow the area further.

The following paragraphs contain descriptions of how to find various pieces of
useful information. There is no attempt to describe how to use them because
there is no general method.

It is first necessary to determine which page contains bad data and whether the
whole page or only part of it is bad. If possible, also determine which page has
overlaid the bad page. If only part of the page is bad, the error probably
occurred while handling a track overflow record to or from an alternate track.
Check for an invalid first or last part of a page. ASM is unlikely to be the cause
of invalid data in the middle of the page.

Incorrect pages cause a system failure when the page is used by a system task or
by a routine holding a critical system resource. The invalid page is more likely to
cause an address space to fail because of program checks that result from invalid
data. These failures are rarely attributed to invalid pages.

Scan the SYS1.LOGREC data set for any improbable program checks and obtain
any associated dumps. Multiple versions of the same problem are helpful in
suggesting a pattern for the error. For example, the error might only occur for
the second page ofLSQA or only on a page associated with an overflow record.

5-120 MVS Diagnostic Techniques

Finding the LSID for a Given Page

A virtual address contains the segment number in the first byte, the page number
in the next four bits, and the page displacement in the remaining bits in the form
sspddd (segment, page, displacement). The ASCB for the address space points to
the RSMHD. The first word of the RSMHD is the virtual address of the segment
table. Multiply the segment number (ss) by the length of the segment table entry
(4) to locate the correct entry. It contains the real address of the page table
(pGT). Convert this address to a virtual address. Then locate the correct
external page table entry (XPTE) by adding 16 times the length of the page table
entry (2), and adding the page number (p) times the length ofaXPTE (12).

The XPTE contains information about the status of this page on auxiliary
storage. If either the XPTV ALID or XPTVIOLP flag is on, there is a slot
assigned to this page. If XPTVALID is on, the LSID (slot identifier) is in the
XPTE. If the page is duplexed, two LSIDs are in the XPTE (one for each slot).
If XPTVIOLP flag is on, an LPID instead of an LSID is in the XPTE. To relate
the LPID to an LSID, see the following topic "Finding LSIDs of VIO Data Sets."

Finding LSIDs of VIO Data Sets

The ASPCT is used to record the auxiliary storage locations (LSIDs) of VIO data
set pages. Only a 1088 byte base ASPCT is created at ASSIGN LGN time. This
ASPCT can handle up to 1 megabyte of VIO data set space. If more than 1
megabyte of VIO space is used, the ASPCT is expanded as follows:

1. For each 256 megabytes of space up to 1 billion bytes, an ASST extension is
built.

2. For each megabyte of space, a LMPE extension is built.

Each ASST or LPME extension requires 1088 bytes of storage. Each ASST
extension contains a vector table of LPME extension addresses. The ASPCT
(base and all extensions) resides in the LSQA of the associated address space.

The LPID is eight bytes. The first four bytes contain an LGID, logical group
(VIO data set) identifier. The second four bytes contain a relative page number
(RPN).

When given an LGID, there are two methods to locate an ASPCT:

1. The ASCB (of the desired address space) points to the ASMHD. ASHLGEQ
in the ASMHD is the queue of LGEs (active VIO data sets) related to this
address space. Searching through the address space's ASHLGE queue, one of
the LGEs will have an LGELGID field that matches this LGID. This same
LGE has the address of the needed ASPCT (LGEASPCT).

2. Another way to locate an ASPCT from an LGID is to follow the CVT to the
LGVT (CVTASMVT, ASMLGVT). Using the LGID as an index, locate the
appropriate LGVT entry. The LGVT entry contains the address of the LGE
that contains the address of the needed ASPCT.

Note: The second method must be used to locate the ASPCT of a cross-memory
assigned VIO data set.

Section 5. Component Analysis 5-121

With the appropriate ASPCT, now use the RPN portion of the LPID as an index
to locate the LPME containing the associated LSID.

Figure 5-29 shows the pointers and control blocks described in the following
paragraphs.

If A' and AA are both zero, use the LL to index ASPLPMES in the ASPCT base
for the LPME containing the LSID.

Otherwise, use A' to index ASP ASSTP for the address of the appropriate ASST
extension. Use AA to index the ASPSECT A of the ASST extension for the
address of the appropriate LPME extension. And use LL to index the
ASPSECT A of the LPME extension for the LPME containing the LSID.

The LSID is the slot identifier for this page of the VIO data set. This LSID can
be related to the ASM control blocks PART and PAT and to the actual paging
device. See the following topic "Locate PART and PAT Bit."

LPID:

RPN:

o

ASPCT Base

Header

+A' (
ASPASSTP 1

ASPLPMES

2 3

indexes the base ASPCT, ASPASSTP.

indexes the ASST extension, ASPSECTA.

indexes the LPME extension, ASPSECTA.

+AA (

ASPCT ASST
Extension

Header

ASPSECTA I
+LL

Figure 5-29. Locating An LSID From An LPID

5-122 MVS Diagnostic Techniques

(

ASPCT LPME
Extension

Header

ASPSECTA I

Locate PART and PAT Bit

Suppose LSID 000403BD was found in the XPTE that represents the sample
address 07 AI2C:

PART entry index is 04.
Relative slot number is 03BD.

The PART has one entry for each page data set, each having a pointer to its
PAT. The PAT is a cylinder bit mapping of this page data set. PATCYLMW is
the number of words that map a cylinder. PATCYLS, slots per cylinder, is the
number of significant bits in each cylinder mapping.

For device 2305-2:

P ATCYLMW is 1
P ATCYLS2 is (A26).

To locate the bit in the PAT map for slot 03BD(957):

1. address of map word = (address of PATMAP) + 147 = (address of
PATMAP) + (957/26) x PATCYLMW x (bytes in a word))

2. bit in the map word (origin 0) = 957/26 = 21.

Section 5. Component Analysis 5-123

PSA

+10 FLCCVT

+224 PSAAOLD

Figure 5-30 shows the control blocks involved in relating a virtual address to the
PART and PAT.

~
CVT ASMVT

~ V ASMPART

+2CO CVTAS_MVT)

(PART
PAT

~
Header

Header PARTE

• ~
PAT

• BIT

• MAP
PAREPATP

~
PAREDEIB

~DEIB • • • • •

ASCB PGT .-.... RSMHD

~ ______ ~/+O RSMVSTO

+34 ASCBRS'M

.- SGT .-----_

1---------4: V
SGTE

PGTE

•
• • •
•

>-16 PGTEs
I-------~ • • • • PGTE

16XPTES1:~ ______ X_P_i_E _____ ~
----~----------------~------~-----140 lao 1 00 1 04 1 E3 (BO 100 100 100 100 1 _____ '---------1

XPTE

12-byte XPTE

Figure 5-30. Relating the Virtual Address to the PART and PAT

Converting a Slot Number to Full Seek Address

The full seek address can be used to read the record from the disk and determine
exactly what it does contain.

The PART entry points to the data set extension information block (DEIB) for
the data set. The DEIB describes the page data set on the device. The DEIB
consists of an 8-byte header followed by entries, one for each extent. The second

5-124 MVS Diagnostic Techniques

Unusable Paging Data Sets

word of the header contains the number of entries in this DEIB and the length of
each entry.

The relative .cylinder and the slot number within the cylinder that the slot is on is
calculated by dividing the relative slot number by the number of slots in a
cylinder. The ext~nt containing this relative slot is found by comparing the
relative cylinder found previously to the low and high relative cylinders in each
extent. The physical cylinder (CC portion of MBBCCHHR) is found by
obtaining the relative cylinder within the extent and adding it to the real starting
cylinder of the extent (also found in the DEIB entry). The head and record
(HHR portion of MBBCCHHR) is found by indexing into the physical
characteristics table (PCT) of the page data set using the slot number within the
cylinder found previously.

For example, when given a relative slot number of 03BD(957), calculate the
MBBCCHHR for device 2305-2.

M = extent number = 0
BB = 00

relative cylinder relative slot number/cylinder size
957/26 = 36

slot within cylinder = relative slot number
- (relative cylinder x slots per cylinder)
957 - (36 x 26)
957 - 936 = 21

CC (relative cylinder - DEILOCYL + DEISTCYL)
(36 - 0 + 0) assuming the page data set starts on physical cylinder O.
36 (X'24')

HHR = (pCTHHR (slot within cylinder + 1)) assumes one origin table
(PCTHHR(22))
000604
head 6, record 4

Therefore: MBBCCHHR = X'0000000024000604'

Certain types of I/O errors received at completion of I/O indicate that ASM is
either unable to, or would be ill-advised to access a particular auxiliary storage
data set any longer. ILRCMPAE, an entry in ILRCMP, receives these errors and
marks the data set as unusable. For page data sets, the DSBD flag in the PART
entry is turned on and the PART entry is removed from the circular queue of
entries. For swap data sets, the DSBD flag in the SART entry is turned on.
Both flags are X'OA' into the respective entries, and are set to X'04'. ILRMSGOO
is then called to determine whether ASM can continue processing without the
data set.

If ASM is unable to continue processing, ILRMSGOO issues message ILR008W
and terminates the system with a X'02E' wa~t state.

Secti0n 5. Component Analysis 5-125

At this point, a stand-alone dump should be taken to determine which of the
above conditions occurred. The console sheet,· if available, might also help
because ASM may have previously issued message(s) ILR009E.

If ASM is able to continue processing without the unusable data set, message
ILR009E is written to the operator. This message indicates which volume
contains the unusable data set. If this message occurs, use the DUMP command
to take an SVC dump of master's address space to determine what error occurred.
The options specified should include NUC and SQA.

To determine from the dump what error occurred, the PART or SART entry for
the unusable data set and the IOSB for the failing request must be located. Use
the AMDPRDMP service aid (print dump) with ASMDAT A control statement to
print the dump. One of the following conditions occurred on the data set to
make it unusable:

• If the number of write errors (X'18' into the entry: PARERRCT or
SRERRCNT) is 175, ASM has stopped using the data set because it has
incurred too many write errors (one way for this to happen is if the data set
was not formatted).

• If the completion code (X'OD') in the IOSB is a X' 51', ASM has stopped
using the data set because there is no longer a path to the device (this could
happen as a result of an ACR condition), or there is an excessively high
channel rate on the path to the data set.

• If the completion code in the IOSB is a X'6D', ASM has stopped using the
data set because the channel or the device has become non-operational.

• If the completion code in the IOSB is a X'41', the device status in the IOSB
(offset X'18') is X'02' and the sense data in the IOSB (offset X'2A') is
X'IOOO', ASM has stopped using the data set because an equipment check
occurred.

• If the completion code in the IOSB is a X'41' and the channel status in the
IOSB (offset X'19') is X'08', X'04', or X'02', ASM has stopped using the data
set because a channel check occurred.

The system is terminated only if this unusable data set (or several unusable data
sets) caused one of the following conditions:

• The unusable paging data set contains PLPA pages and the duplex data set, if
any, is already unusable or full.

• The unusable paging data set is the duplex data set and not all PLP A pages
are accessible (that is, the PLPA paging data set or a data set containing
PLP A pages is unusable).

• The unusable paging data set is the last local paging data set.

5-126 MVS Diagnostic Techniques

Page/Swap nata Set Errors

Error Analysis Suggestions

Figure 5-31 shows the messages issued and the actions taken by the ASM 1/0
subsystem for various error conditions with the page and swap data sets.

Duplex
Status Error Conditions

PLPA Full Common • Available

Common ··Unavailable

PLPA Bad

Common Full PLPA Available

PLPA Unavailable

Common Bad
Duplexing

Active PLPA or Common Available

Duplex Full PLPA and Common
Unavailable

PLPA and Common Available

Duplex Bad PLPA or Common Full

PLPA or Common Bad

PLPA and Common
Unavailable

PLPA Full

Duplexing PLPA Bad

Not Common Full

Active Common Bad

PLPA and Common Full

Local Bad

In Either Last Local Bad

Case Swap Bad

Last Swap Bad

Last Local Full

Last Page Data Set
Eligible for VIa Bad

·Available - Data Set Neither Full Nor Bad
"Unavailable - Data Set. Either Full or Bad

Message(s)
Issued

ILROO51

ILROlOI

ILROO9E,
ILROlOI

ILROO61

ILROIOI

ILROO9E,
ILROIOI

ILROO7I

ILROO8W

ILROO7I

ILROO7I

ILROO8W

ILROO8W

ILROO51

ILROO8W

ILROO61

ILROO8W

ILROO8W

ILROO9E

ILROO8W

ILROO9E

ILROO9E

none

ILROllE

Figure 5-31. Page/Swap Data Set Error Action Matrix

ASM Action Taken

Spill to Common

Duplex Only

Duplex Only

Spill to PLP A

Duplex Only

Duplex Only

Suspend Duplexing

Wait X'03C'

Suspend Duplexing

Suspend Duplexing

Wait X'02E'

Wait X'02E'

Spill to Common

Wait X'02E'

Spill to PLP A

Wait X'02E'

Wait X'03C'

Stop Writes to Bad
Data Set

Wait X'02E'

Stop Swap-outs to
Bad Data Set

All Swap-outs Done
to Page Data Sets

Wait X'03C'

Spill to NONVIO
Page Data Sets

The following are some guidelines for determining ASM problems:

• Print the dump specifying ASMDATA as a control statement to
AMDPRDMP.

• Check SYS 1. LOG REC and the LOG REC buffer to see if ASM's mainline
has abended. If it has, a request might have been lost or mishandled.

• Check the trace table for recent ASM activity. The key trace table entries are
SRB dispatches for ILREDRV (address of SRB in ASMPSRB, X'58' into
ASMVT), ILRSIO (address of SRB in IORSRBP, X'34' into IORB), or

Section 5. Component Analysis 5-127

Validity Checking

ILRSWPDR (address of SRB is SARSRBP, X'30' into SART). Also look for
schedules of the post status SRB closely following an interrupt for ASM I/O
(CSW points to the nucleus area), which could be temporary or permanent
I/O errors coming to ILRCMP or one of its entry points.

• Check for outstanding I/O requests and determine the status of the I/O by
looking at the UCB and 10SB.

• Check for I/O errors on the paging packs, either on the error record (X'14'
into the ASMVT), or on SYSI.LOGREC.

• Scan the ASMHD's LGE process queues (LGEPROCQ) for current VIO
activity. Determine the extent of ASM processing for these LGEs.
Determine the logical group for which a VIO group operator has been
requested.

• Check the PART no-PCCW queue for requests waiting to be redriven
through ASM; Also scan the SART for the SRELOCK flag indicating that
ILRSWPD R should be processing.

• If you are interested in a specific request, find the request on ASM queues
and determine the extent of ASM processing for the request .. For an I/O
request, convert the virtual page number to an LSID.

• Scan the BWK. and SWK cell pool for a work area that Js not chained to
another work area (offset 0). An unchained work area indicates current ASM
processing or a lost work area.

• Check for suspended ILREDRV or ILRSWPDR SRBs by scanning the PCB
I/O queues (pointed to by the RSMHD and the PVT) for a suspended SRB
whose address matches ILREDRV, ILRSIO, or ILRSWPDR SRB's address.
Although this situation should not occur, it does occur occasionally.

ASM is a nucleus-resident, performance-oriented component. For this reason,
there is minimal validity checking in mainline code. In addition, few of ASM's
problems can be attributed to invalid control blocks; this is probably because
ASM communicates only with other system components. In both mainline and
recovery code, critical global control blocks such as the ASMVT, PART, and
SART, are used without any validity checking. ASM's recovery routines do
validity check control blocks (and queues of these control blocks) that represent
work to be processed by ASM. Some of these control blocks are the ACE, AlA,
LGE, and PCCW. In most cases, if a control block fails the validity check, it is
no longer used by ASM. The only exception is the 10RB-IOSB-SRB-SRB
combination, which is refreshed.

5-128 MVS Diagnostic Techniques

ASM Serialization

Serialization of ASM processing is done using the SALLOC and ASM global
locks, the local lock of the current address, compare-and-swap (CS) logic and
control block queueing.

SALLOC Lock

ASM uses the SALLOC lock to serialize most page and swap processing in I/O
control. The I/O control modules interface directly with RSM, the principal user
of SALLOC, either as the called routine or the calling routine. The SALLOC is
held throughout processing including calls to the VIO ILRPOS and completion
routines. The SALLOC is used to serialize most processing of:

lORDs
XPTEs
PCD/A1As
SPCTs
SART
SATs
PATs

- complete coverage, except as noted below.
- complete coverage.
- complete coverage, except AlA noted below.
- complete coverage.
- complete coverage, except where noted below.
- complete coverage.
- complete coverage.

Specific areas of other control blocks serialized by the SALLOC lock are:

ASMVT - Work save areas.
I/O control section fields.
Flags -

ASMDUPLX
ASMNPRIM
ASMCALLQ
ASMNODPX
ASMPLPAF
ASMCOMMF

- LGVT pointer
- Error record pointer.
- ASMCOMDS - index into PART entries for common area writes.
- Request counts.
- Available PCCW queue.
- Non-VIO slot allocated count.

Expansion of ASM pools.

ASMHD - I/O control flags.
Swap and page counters.
Swap queue.

ASCD - Non-VIO slot allocated count.

LGVT - Available LGVTE queue.
Expansion of the LGVT.
Creation/deletion of LGE.

PART - Count of local page data sets.
Circular queue pointers.

Modules whose processing is serialized by the SALLOC lock are:

ILRIODRV complete coverage, held by caller on called entries, obtained on SRD entries.

ILRP AGCM complete coverage~ held by caller.

ILRFRSLT complete cqverage, held by caller.

ILRSW AP complete coverage: held by caller.

Section 5. Component Analysis 5-129

ILRCPBLD dcomplete coverage, except ILRSIO entry point. When held, the lock is held by the
caller.

ILRCMP complete coverage, obtained at entry.

ILRMSOOO complete coverage for main entry point, held by caller.

ILRPOS complete coverage, held by caller (except for ILRTRANS entry point).

ILRVIOCM complete coverage, held by caller.

ILROOS only obtained for LOVT processing and OETMAIN/FREEMAIN requests.

ILRPOEXP only obtained to adjust the SART to reflect addition of a new swap data set and update
the count of local page data sets and new page data sets on the PART.

ILRTERMR obtained when referencing above control blocks.

ILRPEX obtained when expanding an ASM pool.

ASM Class Locks

The ASM lock is a global spin class lock. A lockword must be provided when
obtaining or releasing an ASM class lock. A class lock exists for each active
address space. The lockword is in the ASMHD. It is used by the VIO controller
modules. The address space class locks serialize processing of the following
control blocks:

AlA VIO controller flags, LPID field.

ASMHD VIO controller flags, LOE queue base pointer.

ASCB VIO slot allocation count.

LOE complete coverage, except creation/deletion (SALLOC).

ACE complete coverage.

ASPCT complete coverage while group operations are in progress. Oroup operations and page
operations can be executed in parallel. VIO controller processing of the LOE process queue
provides this serialization.

The address· space class locks serialize processing in the following modules:

ILROOS
ILRPOS
ILRSRBC
ILRVIOCM
ILRJTERM

partial, obtained where processing above control blocks.
complete coverage.
partial, obtained when searching LOE queue and LOE process queues.
complete coverage.
partial, obtained when adding ACEs to LOE process queue.

Local Lock of Current Address Space

The local lock is used by VIO controller and VIO group operator modules to
serialize certain VIO related operations. It is used by ILRGOS (held on entry)
and ILRJTERM (obtained) to serialize release LG requests with the internal
ASM deactivate function used to clean up VIO logical groups for a terminating
job. The local lock is also used by most VIO-related modules to allow use of
branch entry GETMAIN, rather than the SVC route.

5-130 MVS Diagnostic Techniques

Compare and Swap (CS) Serialization

Certain modules of ASM run without locks, requiring CS serialization of pointers,
,flags, and counts. Where routines running with the locks change fields used by
unlocked routines,CS must be used. VIO group operators run unlocked and are
the principal users of compare and swap. Control blocks serialized via CS
include:

ASMVT - group operator sections.
pool controllers.
VIO slot count.

SAR T - A special CS lock exists in each SAR TE to serialize swap driver processing of the swap
data sets. Other fields updated by the swap driver are updated with CS.

The ASM modules that run without locks, using CS to serialize control block
fields are:

ILRSWPDR
ILRSAV
ILRACT
ILRRLG
ILRTMRLG
ILRVSAMI

Serialization via Control Block Queues

Certain ASM control blocks are serialized via their available queues. The blocks
are kept on available queues and removed when needed. While in use the block is
so marked and associated with a specific operation and/or control block. Control
blocks included in this category are PCCWs, IORBs for swap data sets, and
SCCWs.

The ASPCT is a special case. VIO control enforces the rule that page and group
operations cannot be performed in parallel for a given logical group and its
ASPCT. This is controlled by the LGE process queue. While paging operations
are being performed, the ASPCT is serialized via the ASM class lock of the
owning address space. While a group operation is in progress, ASPCT
serialization is maintained by the ACE for the group operation that is on the
LGE process. This ACE prevents any other processing of ASPCT until the group
operation completes.

Recovery Considerations

The philosophy of ASM's recovery is to allow the system and ASM to continue
processing. To accomplish this, the first step in ASM's recovery routines is to
validity check any control block or queue that might have been affected by the
error. This is to allow future ASM processing to proceed without error. The
second step in ASM's recovery is to notify ASM's caller that an error has
occurred. In a few instances where ASM is directly invoked by RSM (such as
ILRIODRV or ILRSWAP), ASM recovery attempts retry to return to RSM with
a failing return code. When an error occurs during ASM processing that runs
asynchronously, ASM recovery queues the failing request for eventual return to
RSM. When an error occurs during ASM processing of a VIO group operator
request, ASM recovery cleans up its resources and allows the associated task to
terminate.

Section 5. Component Analysis 5-131

Recovery Traces

Recovery Structure

A dump of SYSl.LOGREC is a prerequisite to debugging ASM problems.
ASM's recovery always records the SDWA to the SYSl.LOGREC data set. It is
the most convenient way of determining that recovery has been invoked. The
recovery routine ID in the SDW A indicates which recovery routine was invoked.

ASM has a number of system abend completion codes ('08x' series) that are
always set up for retry. The purpose of these ABENDs is to record to
SYSl.LOGREC logical errors that have occurred in ASM'smainline or VIO
processing.

ASM has eight recovery routines for ASM mainline:

• ILRIOFRR is an FRR that provides recovery for ILRPAGCM, and
ILRYIOCM. It also acts as a router, giving control to the routines in
ILRSWPOI and to ILRPOSOI.

• ILRSWPOI contains recovery routines for ILRSWPDR and ILRSWAP.

• ILRDRVOI is an FRR that provides recovery for I/O driver (ILRIODRV)
and channel program build (ILRCPBLD), and also routes control to
ILRPOSOI.

• ILRCMPOI is an FRR that provides recovery for the I/O completion routine
(ILRCMP).

• ILRGOSOI is both an FRR and an ESTAE that provides recovery for
ILRGOS, for the group operators ILRSAV, ILRACT, and ILRRLG, and for
ILRVSAMI.

• ILRTMIOI is the ESTAE that provides recovery for ILRTMRLG and for its
path through ILRVSAMI.

• ILRSRBOI is an FRR that provides recovery for ILRSRBC.

• ILRFRROI is a validity check routine called by most of the recovery routines.

Additional recovery routines are:

• TERMRFRR is an FRR that is an entry point into and provides recovery for
ILRTERMR.

• ILRJTMO 1 is an FRR that is an entry point into and provides recovery for
ILRJTERM.

• ILRMSGOI is an FRR that is an entry point into and provides recovery for
ILRMSGOO.

• ILRPOSOI is an alternate entry in ILRIOFRR and provides recovery for
ILRPOS.

5-132 MVS Diagnostic Techniques

~

• EST AER is an EST AE that is the entry point into and provides recovery for
ILRPGEXP.

• EST AEXIT is an EST AE that is an entry point (nto and provides recovery
for ILRPREAD.

Recovery As a Debugging Tool

Recovery Footprints

Recovery has a beneficial effect on problem solving primarily because having it
invoked isolates the problem to a specific area of ASM. If there is a paging
interlock or duplicate page problem subsequent to an abend in ASM, the two are
probably related and the first error provides information useful in debugging the
second problem.

Recovery ignores invalid control blocks and truncates some of ASM's internal
queues in order to allow ASM to continue processing. Therefore, recovery will
cover up valid problems that cause code overlays in ASM and other system
components.

The primary culprit in covering up errors is the non-historical nature of ASM
resource queues that results in rapid reuses of critical control blocks. The only
valuable information left by the recovery is the SOW A with its variable recording
area in the SYSl.LOGREC data set. At the very least, this record provides
sufficient information to trap the problem when it recurs.

FRR/ESTAE Work Areas

ILRATA and ILREPATH are mapping macros that define the areas required by
ASM modules to provide tracking information for the FRRs and EST AEs.

• ILRA T A defines the six-word parameter area passed to the ASM routine
issuing the SETFRR macro, or it defines the parameter area passed to the
ASM routine issuing the EST AE macro. It contains a module ID in the first
byte, flags in the next three bytes, and four words which have
module-dependent contents. The IDs of the ASM modules are:

ID Module Entry ID Module Entry

X'Ol' ILRIODRV ILRIODRV X'OD' ILRIODRV ILREDRV
X'02' ILRPAGCM ILRPAGCM X'OE' ILRCMP ILRCMPCI
X'03' ILRSWAP ILRSWAP X'OF' ILRCMP ILRCMPNT
X'04' ILRTRPAG ILRTRPAG X'lO' ILRIODRV ILRSWLlO
X'OS' ILRSWPDR ILRSWPDR X'II' ILRIODRV ILRSWPIN
X'06' ILRGOS ILRGOS X'I2' ILRIODRV ILRSWAPO
X'07' ILRIODRV ILRIODR X'l3' ILRCPBLD ILRSIO
X'OS' ILRSRBC ILRSRBC
X'09' ILRCMP ILRCMPDI
X'OA' ILRCMP ILRCMPNE
X'OB' ILRCMP ILRCMPAE
X'OC' ILRCMP ILRCMP

• ILREPATH defines a variable-length area containing any additional recovery
audit-trail data required for recovery by ASM recovery routines. The address
of the EP ATH, if present, is in the AT A. There are four variations of the
EPATH area.

Section 5. Component Analysis 5-133

ASM Diagnostic Aids

The formats of ILRATA (ASM tracking area - ATA) and ILREPATH (recovery
audit trail area - EPATH) are described later in this chapter in the topic "ASM
Recovery Control Blocks."

SDW A Variable Recording Area

ASM uses the SDW A variable recording area (SDW A VRA) to save the contents
of the ATA (and EPATH, if present) upon entry to some of the recovery routines.
This preserves the original state of the error before recovery took place.
ILRIOFRR and ILRCMPOI save the ATA. ILRGOSOI and ILRDRVOI save
the ATA and EPATH. ILRTMIOI saves only the EPATH.

This section contains diagnostic aids that are helpful in debugging problems in
ASM. Topics included are:

• COD ABEND Meanings for ASM
• ASM Recovery Control Blocks
• Additional ASM Data Areas

COD ABEND Meanings for ASM

An ASM routine has found one of the following conditions which should not
occur and has set the appropriate return code in the ASM tracking area (AT A):

RC 4 - The count of available swap sets for a specific swap data is non-zero but no available swap
sets could be found.

RC 8 - The total count of available swap sets is non-zero but none of the swap data sets contain
available swap sets.

RC 12 - The group operations starter has returned from one of the group operators but the ACE is
not the first one on the LGE queue.

RC 16 - The memory termination resource manager for ASM has found that LSQA is not available
for an address space that is abnormally terminating for one of the following reasons:

1. address space is not swapped in
2. address space is in process of being swapped in
3. RSMLSQA frame queue is unusable.

RC 20 - The ASM SRB controller has found an AlA or ACE on the LGE process queue which does
not have the LPID converted flag on.

A software error record is written to SYSl.LOGREC and recovery processing
continues.

5-134 MVS Diagnostic Techniques

ASM Recovery Control Blocks

During error recovery and cleanup processing, the ASM recovery routines
communicate with other routines by using the ASM tracking area (AT A) and
recovery audit trail area (EPATH).

ASM Tracking Area (ATA)

The AT A contains information necessary for the recovery or cleanup processing
performed by the ASM recovery routines. The AT A is mapped to the six word

. work area returned by SETFRR when an FRR is established. For task mode
routines, the AT A is mapped to the parameter area that is passed via the EST AE
macro.

The mapping macro name is: ILRATA.

Disp Name Size

0 ATA 24
0 ATAMODID 1

ATASFLGS 3

ATAIOPPR 800000
ATASLSQA 400000
ATASCOMP 200000
ATAVIOCM 100000
ATAPCOMP 080000
ATAPOS 040000
ATAIOBSL 020000
ATAPAGCM 010000
ATASWAP 008000
ATATRPAG 004000
ATASWPDR 002000
ATACPBLD 001000
ATAIOSSL 000800
ATAIOSCM 000400
ATAIOMXA 000200
ATAIOPF 000100

The remaining flags are reserved:

4 ATARFLGS 2
ATASGNST 8000
ATASCCWP 4000
ATABADPK 2000
ATAPGVIO 1000

The remaining flags are reserved:

6 ATARCRSN 1
ATARCRF1 80
ATARCRF2 40
ATARCRF3 20
ATARCRF4 10
ATARCRF5 08
ATARCRF6 04
ATARCRF7 02
ATARCRF8 01

7 ATARCODE

Description

ASM Tracking Area
ID of module establishing recovery routine. (See the previous
topic "Recovery Foot- prints" for module IDs.)

Bit map representing logical sections of ASM routines; set to 1 on
entry, set to 0 on exit.
PROCPARE subroutine ofILRIODRV flag.
ILRSLSQA flag.
SW APCOMP flag.
ILRVIOCM flag.
PAGECOMP flag.
ILRPOS flag.
BLOCKSEL subroutine of ILRIODRV flag.
ILRPAGCM flag.
ILRSW AP flag.
ILRTRPAG flag.
ILRSWPDR flag.
ILRCPBLD flag.
SLOTSEL subroutine of ILRIODRV flag.
STARTCOM subroutine of ILRIODRV flag.
MIXAIA subroutine of ILRIODRV flag.
PGFLT subroutine of ILRIODRV flag.

Other recovery flags.
ILRSLSQA flag-in ASSIGNSET subroutine.
ILRSLSQA flag-in SCCWPROC subroutine.
ILRCMPAE flag-in BADPACK subroutine.
VIO flag.

Recursion flags.
Recursion flag-function 1.
Recursion flag-function 2.
Recursion flag-function 3.
Recursion flag-function 4.
Recursion flag-function 5.
Recursion flag-function 6.
Recursion flag-function 7.
Recursion flag-function 8.

Reason code for ASM-issued ABEND's.

The mapping of the remaining four words is dependent on the recovery routine involved.

Section 5. Component Analysis 5-135

For the recovery routine ILRIOFRR:

8
8
8
C
C
C

ATACLEAR 16
ATAAIA 4
ATAACE 4
ATAASCB 4
ATALGE 4
ATAAIAQ 4

For the recovery routine ILRSWPOI:

8
8
C
10
14

ATACLEAR 16
ATAAIA 4
ATASARTE 4
ATASCCW 4
ATAIORB 4

For the recovery routine ILRGOS01:

8
C

ATAWORKA 4
ATAEPATH 4

For the recovery routine ILRDRVOl:

8
C
10

ATAAIAQ 4
ATAIOSB 4
ATAEPATH 4

For the recovery routine ILRSRBOI:

8
C
10
14

ATAAIACE 4
ATAAIAQ 4
ATAACEQ 4
ATAEPATH 4

For the recovery routine ILRCMPOl:

8
C
10
14

ATAIOSB 4
ATAPCCWQ 4
ATACOMPQ 4
ATACPCCW 4

For the recovery routine ILRJTM01:

8
8

ATASAVE
ATAACEQ

4
4

Maximum size of four-word area.
Address of in-process AlA.
Address of in-process ACE.
Address of in-process ASCB, or TRAS'd-to address space.
Address of in-process LGE.
Address of AlA queue.

Definition allowing next four words to be cleared.
Address of in-process AlA.
Address of SART entry.
Address of in-process SCCW.
Address of in-process IORB.

Address of work-area cell.
Address of EPATH.

Address of AlA queue to be processed.
IOSB checkpointed by ILRSIO.
ADDRESS of EPATH.

Address of in-process AlA/ACE.
Address of AlA queue.
Address of ACE queue.
Address of EPATH.

Address of in-process IOSB.
Queue of PCCWs to be put back on PCCW available queue.
Queue of AlAs to be returned to ILRPAGCM.
Address of in-process PCCW, not on IORB queue and not on
ATAPCCWQ.

Address of register save area.
Address of ACE queue.

For the recovery routine TERMRFRR:

8
C

ATARMPL 4
ATAWORKA 4

Address of RMPL, resource manager parameter list.
Address of work area.

Recovery Audit Trail Area (EP ATH)

The EPA TH is a communication area between the mainline routine and its
corresponding recovery routine. The EP ATH is necessary when the 6-word AT A
is not large enough to accommodate the data to be tracked. The mapping of the
EP ATH is dependent on the recovery routine or mainline routine including the
macro.

5-136 MVS Diagnostic Techniques

EPATH for ILRIODRV, ILRCPBLD, and recovery routine ILRDRVOl:

Disp Name Size Description

0 EPAAIAI 4 Input AlA chain.
4 EPAAIA2 4 PROCPARE AlA chain.
S EPAAIA3 4 PARTESEL AlA chain.
C EPAAIA4 4 STARTCOM AlA chain.
10 EPAAIAS 4 New NN VIO read AlA.
14 EPAAIA6 4 Reserved.
18 EPACPBLD 36 Channel program build input.
18 EPACPAIA 4 Start of AlA input to ILRCPBLD.
IC EPACPENQ 4 Last AlA on ILRCPBLD AlA chain.
20 EPACPIOR 4 Primary IORB address.
24 EPACPI02 4 Duplex IORB address.
28 EPACPWKA 4 Address of ILRCPBLD work area.
2C EPABITSI 4 Used by ILRCPBLD.
30 EPACPRSI 4 Used by ILRCPBLD to build primary channel program.
34 EPABITS2 4 Used by ILRCPBLD.
38 EPACPRS2 4 Used by ILRCPBLD to build duplex channel program.

EP ATH for VIO group operators and their recovery routines - ILRGOS,
ILRSAV, ILRRLG, ILRACT, ILRVSAMI, ILRGOSOl, ILRTMRLG,
ILRTMIOO, ILRTMIOl, ILRSRBC, and ILRSRBOI. ILRGOSOI is the recovery
routine for ILRGOS which calls ILRSAV, ILRRLG, and ILRACT which call
ILRVSAMI. ILRTMIOI is the recovery routine for ILRTMRLG which calls
ILRVSAMI and ILRTMIOO. ILRSRBOI is the recovery routine for ILRSRBC
which calls ILRRLG. The first section is common because of the use of
ILRVSAMI. The second section is dependent on the recovery routine involved.

Disp

o
4
4
4
8
8
C
C
10
10

14

14

18

Name Size

EPAOWKA 4
EPAVWKA 4
EPATMWKA 4
EPASWKA 4
EPAAASP 4
EPADSLST 4
EPABASP 4
EPATMIBA 4
EPARASP 4
EPATMACB 4

EPARTYRG 4

EPABKSLT 4

EPAFLAGI

EPAVSAMI
EPAGRPOP
EPARLG
EPASAVE
EPAACT
EPAACASR
EPAASGN

EPAUNSAV
EPARPLB

X'SO'
X'70'
X'40'
X'20'
X'IO'
X'08'
X'04'

X'02'
X'OI'

DescriptioD

Group Operator's or ILRTMRLG's workarea address.
ILRVSAMI workarea address also points to RPL in workarea.
ILRTMIOO workarea address.
ILRSRBC workarea address.
Address of active ASPCT.
Address of data set name list storage.
Address of buffer ASPCT.
Base address value for ILRTMlOO.
Address of retrieved ASPCT.
Address of storage used to build ACB for STGINDEX in
ILRTMIOO.
Address of IS-word save area containing retry registers RO-R14
for record-only abends.
Backing slots, only used for assign processing.

Recovery flags.

ILRVSAMI currently processing.
One of group operators processing.
ILRRLG is currently processing.
ILRSA V is currently processing.
ILRACT is currently processing.
Activate or assign request.
Assign processing - backing slots count (ASMBKSL T) has been
updated.
Mark slots unsaved in active ASPCT.
RPL has been built.

Section 5. Component Analysis 5-137

19 EPAFLAG2

EPATMXIT
EPAWARM
EPACOLD
EPABUILD
EPAMAST
EPATMI
EPARECUR

*

X'80'
X'40'
X'20'
X'lO'
X'08'
X'04'
X'02'
X'Ol'

Recovery flags.

ILR TMIOO completed processing.
ILR TMIOO warm start is processing.
ILRTMIOO CVIOS'FRT is processing.
ILRTMIOO BUILDSNL is processing.
Master scheduler initialization has been posted.
ILR TMIOO is currently processing.
Recursion indicator for retry into mainline ILRTMRLG.
Reserved.

For ILRGOSOl, ILRSAV, ILRACT, ILRRLG, ILRSRBC, and ILRSRBOl:

Disp Name Size Description

lA EPALSIZE 2 Size of LGVT expansion~
IC EPALGVTP 4 New LGVT address for LGVT expansion in ILRGOS.
20 EPALGEP 4 Logical group entry for request being processed.
24 EPASRB 4 Address of SRB for SRB controller.
28 EPAACE 4 Address of current ACE being processed.
2C EPARBASP 4 Address of rebuilt ASPCT (LSQA).
30 EPARSIZE 2 LSQA block storage size for rebuilt ASPCT.
32 * 2 Reserved.
34 EPAERAIA 4 Queue of AlAs to be passed to ILRPAGCM.

For ILRTMIOI and ILRTMRLG, and ILRTMIOO:

Disp Name Size Description

lA * 2 Reserved.
IC EPAACE 4 Address of ACE currently being processed.
IC EPAMSECB 4 Address of master scheduler initialization ECB.
20 EPATMRSV 4 Address of ILRTMRLG save area.
24 EPAABEND 4 Retry address for record-only abends.
24 EPATMIRT 4 Current retry address for failure in ILRTMIOO.
28 EPATPART 4 Address ofTPARTBLE while in ILRTMIOO.

5-138 MVS Diagnostic Techniques

Additional ASM Data Areas

The following four ASM data areas (BSHEADER,BUFCONBK, DSNLIST, and
MSGBUFFER) are not contained in Data A.reas. For debugging AS~
BSHEADER (bad slot record) may be especially helpful.

BSHEADER

Acronym: BSHEADER.

Full Name: ASM error record (bad slots).

Macro ID: None.

Size: 1024 bytes.

Function: Trace table of the last 253 slots that ASM has found to be bad. Patterns of bad LSIDs
can indicate where and what paging data sets are having difficulties.

Location: Pointed to by ASMVT (ASMEREC).

Offset

0(0)
4(4)
8(8)
12(C)

BSLIST entry

0(0)

1(1)

Length

4
4
4
1012

1
1.

.... 1. ..

3

BUFCONBK

Name

BSCURR
BSFIRST
BSLAST
BSLIST

BSFLAG

BSTABNTY

Acronym: BUFCONBK.

Full Name: VSAM buffer control block.

Macro ID: None.

Size: 12 bytes.

Description

Current bad slot entry filled.
Beginning address of table.
End address of table.
253 four-byte bad slot identifiers (LSIDs).

BSSPLSID if 1, LSID entry is swap.
if 0, LSID entry is page.
BSRDLSID if 1, LSID entry is for a read error .
if 0, LSID entry is for a write error.
LSID that is bad.

Function: Queue VIO group operation for later processing until VSAM resources are available.

Location: Pointed to by ASMVT (ASMGOSQS).

Offset

0(0)
4(4)
8(8)

Length

4
4
4

Name

BUFCHAIN
BUFASCB
BUFACE

Description

Pointer to next BUFCONBK.
Pointer to ASCB.
Pointer to ACE.

Section S. Component Analysis 5-139

DSNLIST

Acronym: DSNLIST.

Full Name: Data Set Name List (ASM).

Macro ID: None.

Size: 44 times number of possible page/swap data sets. There are two DSNLISTs, one for
page data sets and one for swap data sets.

Function: Make data set names available in non-fixed (pageable) storage.

Location: Pointed to by PART (PARTDSNL) for page data sets, and by SART (SARDSNL) for
swap data sets.

Offset Length Name Description

0(0) 44 DSNENTRY Data set name left-justified and padded with blanks.

MSGBUFER

Acronym: MSGBUFER.

Full Name: ASM message buffer.

Macro ID: None.

Size: .376 bytes.

Function: Ensure that WTOR with LOGREC request.will have a buffer to use.

Location: Pointed to by ASMVT (ASMMSGBF).

Offset

0(0)
4(4)
8(8)
12(C)
16(10)
256(100)

5-140 MVS Diagnostic Techniques

Length

4
4
4
4
240
120

Name

MSGCURR
MSGFIRST
MSGLAST
MSGTERM
MSGBFRS
MSGTBFR

Description

Pointer to current buffer used.
Pointer to first buffer.
Pointer to last buffer.
Pointer to special termination buffer.
Three SO-byte buffers.
Special termination buffer.

)

System Resources Manager (SRM)

SRM Objectives

The system resources manager (SRM) is a component of the MVS control
program. It determines which, of all active address spaces should be given access
to system resources, and the rate at which each address space is allowed to
consume the resources.

An installation controls the MVS system primarily through the SRM. The
evaluations and resulting decisions made by the SRM are dependent on the
constants and parameters with which it is provided. The reader should
understand the philosophy inherent in the use of these constants and parameters,
so that their use will produce the desired effect. The OS/VS2 System
Programming Library: Initialization and Tuning Guide provides the background
information necessary to understand the controls available through the SRM, and
the implementation of these controls.

The SRM bases its decision on two fundamental objectives:

1. To distribute system resources among individual address spaces in accordance
with the installation's response, turnaround, and work priority requirements.

2. To achieve optimal system-throughput through use of system resources.

An installation specifies its requirements for the first objective in members of
SYSl.PARMLIB called th~ installation performance specification (IPS) and the
installation control specification. Through the IPS, the installation divides its
types of work into distinct groups called domains, assigns relative importance to
each domain, a~d describes sets of performance groups. Through the installation
control specification, the installation can assign the correct performance
characteristics to each address space. Another input to the SRM is the OPT
member of SYS1.PARMLIB. Through a combination of the installation control
specification, IPS, and OPT parameters, an installation can exercise a degree of
control over system throughput characteristics.

When the need arises, trade-offs can be made between SRM's objectives. That is,
the installation can specify whether, and under what circumstances, throughput
considerations take priority over turnaround requirements. The SRM attempts to
ensure optimal use of system resources by periodically monitoring and balancing
resource utilization. If resources are under-utilized, the SRM attempts to increase
the system load. If, on the other hand, resources are over-utilized, the SRM
attempts to reduce the system load or to shift commitments to low-usage
resources such as the processor, logical channels, auxiliary storage, and pageable
real st{)rage.

Section S. Component Analysis 5-141

Address Space States

The SRM recognizes address spaces as being in one of three general states. Each
state corresponds in concept to a queue on which SRM places the SRM user
control block (OUCB) which describes the address space. These three states are:

1. In - The working set of an address space in this state occupies real storage.

2. Wait - The working set of an address space in this state mayor may not
occupy real storage. If the address space is logically swapped, the working set
pages remain in reaJ storage. If a physical swap takes place, the working set
pages reside on auxiliary storage. An address space in this state has no ready
work, is therefore incapable of executing, and not considered for swap-in.

3. Out - The working set of an address space in this state mayor may not
occupy real storage. If the address space is logically swapped, the working set
pages remain in real storage. If a physical swap takes place, the working set
pages reside on auxiliary storage. However, the address space is capable of
executing and can be considered for swapping-in. For a logically swapped
address space, the swap-in is reduced to a restore operation by RCT because
no physical transfer of pages has occurred.

It is important to recognize that the correspondence between these states and
presence on the associated queue is not precise; an address space can be in transit
between two states (for example, it may be in the process of being swapped-out).
Thus, the presence on a particular queue might not exactly mirror the physical
state of affairs. Further, these classes are necessarily broad, and SRM recognizes
subclasses; this is especially true among address spaces belonging to the "In" class.
The use of the swap transition flags, in conjunction with the presence of an
OUCB on a particular queue, mirrors the exact physical state of an address space.
For wait state analysis, the exact state of given address spaces is important. If
you can determine precisely what state SRM considers the various address spaces
to be in, and the reasons why, you will gain insight for further analysis. The
OUCB is the primary address-space-related control block in which much of the
above information can be found.

OUCBs on the above three queues can be formatted via the SRMDATA format
control statement of AMDPRDMP. The domain table (DMDT) is also
formatted by SRMDAT A and indicates the swapping status of the system.

In the OUCBQFL field (OUCB+X'OI'), when the OUCBGOB bit is on, the
SRM's OUCB repositioning routine is to be invoked. The destination of this
pending OUCB repositioning is indicated by the following bit settings:

I. OUCBOUT = 'O'B - The OUCB will be placed on the "In" queue.

2. OUCBOUT='I'B and OUCBOFF='I'B - The OUCB will be placed on the
"Wait" queue.

3. OUCBOUT = 'I 'B and OUCBOFF = 'O'B - The OUCB will be placed on the
"Out" queue.

When the repositioning is completed, the OUCBGOB bit is turned off; the setting
of the OUCBOUT and OUCBOFF bits indicates the location of the OUCB.

5-142 MVS Diagnostic Techniques

SRM Indicators

System Indicators

A logically swapped address space can be identified by the OUCB being on the
wait queue or the out queue and OUCBLSW = 'l'B.

The setting of the swap transition flags for swap-out processing occurs in the
following order:

1. If swap-out is initiated successfully, the OUCBGOO bit is set.
2. At quiesce-complete time, the repositioning of the OUCB takes place.
3. At swap-out-complete time, the OUCBGOO bit it turned off.

The setting of the swap transition flags for swap-in processing occurs in the
following order:

1. If swap-in is initiated successfully, the OUCBGOI bit is set.

2. At swap-in status II time, the repositioning of the OUCB takes place and the
OUCBGOI bit is turned off.

I t is helpful to understand how SRM views the total MVS system, as well as the
individual address spaces. This understanding can assist you in further problem
analysis, especially of enabled wait state situations. A disc~ssion of some of the
SRM system and individual user indicators follows. Figure 5-32 shows the
relationships among important SRM control blocks and queues.

A study of several counters and flags aids in further understanding of SRM
processing. The counters and flags that pertain to the entire system are located in
the SRM constants module (lRARMCNS), which resides in the nucleus. The
counters and flags that pertain to a specific user are found in that user's OUCB.

The SRM control table (RMCT) is located at the start of module lRARMCNS.
This address is found in field CVTOPCTP of the CVT + X'25C'. Generally, when
SRM is in control, the address of the RMCT is contained in register 2. In the
module IRARMCNS, the following fields provide information concerning SRM's
current processing:

MCT A VQ 1 This bit indicates that the count of available pages has fallen below the PVT AFCLO
value, so the real storage manager (RSM) has called SRM to steal pages in order to
increase the count of available pages. If this bit is on, it could indicate a normal
condition.

MCTSQAl This bit indicates that the number of available SQA pages is critically low. If
MCTSMSI is 1, the operator was notified of this situation.

MCTSQA2 This bit indicates that the number of available SQA pages has fallen below a second,
more critical threshold than the one noted above. If MCTSMS2 is 1, the operator was
notified of this situation.

MCTASMI This bit indicates that the SRM has detected that less than 30% of all local slots are
available. The SRM has informed the operator of this fact and has taken appropriate
action to relieve the sl1ortage.

MCTAMS2 This bit indicates that the SRM has detected that less than 15% of the total local
auxiliary storage slots are available. The SRM has informed the operator of the slot
shortage, and has taken appropriate action to relieve the shortage.

Section 5. Component Analysis 5-143

MCTFAVQ When this bit is on, a pageable storage shortage condition has been detected by SRM or
RSM. If bit MCTPHPSS is also on, the shortage was detected by RSM because the
count of fixed frames (PVTCNTFX) exceeded the threshold in PVTMAXFX. If bit
MCTLGPSS is on, the shortage was detected by SRM because the sum of the count of
fixed frames and the number of page I/Os in progress to the page data sets exceeded the
threshold in MCCMAXFX.

MCTLGA VQ If this bit is on, SRM has increased the thresholds in PVTAFCLO and PVTAFCOK in
order to cause the frame stealing necessary to swap-in an address space. This bit
indicates that SRM has initiated the steal processing rather than waiting for an
ANQLOW SYSEVENT from RSM.

MCVTWSS

RCVUICA
RCVCPUA
RCVDPR
RCVMSP

RCVFXIOP

RCVMFXA

This half word contains the target working set size for the common area. SRM attempts
to keep this minimum number of frames assigned to the common area.

These halfword values are the system contention indicators that the resource monitor
examined for the last interval. They represent, in the order given: the average high
referenced interval count (UIC), the average processor utilization, the demand paging
rate, and the page delay time (in milliseconds). Based on these values, the target
MPL for a domain might be altered.

This half word contains the average percent of frames that are fixed or used for page
I/O.

This half word contains the average percent of frames eligible to be fixed that are fixed.

RMCAINUS This half word indicates the count of address spaces currently residing in storage. This
count includes non-swapp able address spaces. If this count is high, look at the next
field.

CCVENQCT This half word indicates the count of address spaces currently residing in storage and
marked non-swappable because they are holding ENQ resources that other address
spaces want.

LSCTCNT This fullword contains a count of the number of address spaces currently in the
logically swapped state and swapped for terminal wait.

LSCTCNTW This half word contains a count of the number of address spaces currently in the
logically swapped state and swapped for a long or detected wait.

5-144 .MVS Diagnostic Techniques

f/i:\ IRARMCNS

~RMCT
CVT

(SRM Tables and Entry Points)

~CCT -
• RMCT - • ICT

25C - • MCT

4 RMPT

• RMCA - --.@ • WMST liPS Information)

+ RLCT (Logical Channel
Information)

• RMEX

• RMSB

~-- • 1 Anchor Queue, EPDT

+ EPAT
for RMEPs in
the EPAT. EPDT

+ - LSCT ,

+ WAST (Workload Activity
Specifications)

+ WAMT (Workload Activity
TMQE RMEPs I nformation for M F /1)

• TMQE ~ ~ Timed Entry Point 1
Actions Descriptions

• ACTION QUEUE

• WTQE --• OTQE

• INQE

Algorithm Request Bits

Immediate Algorithm
Request Bits

+ Request Service Work
Area (RQSV)

+ DMDT (Domain Descriptor
Table)

• DMDT (Last Entry)

+ RCT (Resource
Control Table)

+ ICST (Installation Control
~ ICSC

Specification Table) • RPVT

+ Basic Reporting
Available Queue ~~ Subsystem Tables

t Extended Reporting RPVT (Report Performance
Available Queue -.. Group Vector Table)

t Update Reporting
Queue

t ICSP (Installation Control
Specification Parameter
List)

t RSPL (Report Service
Parameter List)

i + EPL (ENF
Parameter List)

t Nucleus Patch
"Area CSECT

End of RMCT
I...- 1"'-'

Figure 5-32 (Part 1 of 2). SRM Control Block Overview

~

OUCBs

rl ~eferred Action ~
OUCBs

~~

WTQE -1 + Wait I I
Queue

OTQE n
• Out

Queue I
INQE

~I + ~ueue}..
I

-{CCT ICT

MCT

RCT

RMPT

RMCA

LSCT

RMEX

RMSB

EPAT

OUCBs
I

V 'Wait'
OUCBs

OUCBs
I

~ 'Out'
OUCBs

OUCBs
I
'In'
OUCBs W

~oJ

CPU Us age Information

I/O Usa ge Information

Storage Usage Information

ce Control Res6ur
Inform ation

Swap A nalysis Parameters

nalysis Variables Swap A
Logical
Variabl

Swap Control
es

Externa I Entry Point
tors Descrip

Subrou tine Entry Points

Algorit hm Entry POint
tors Descrip ~ - ---

EPDT

EPST

Serializ ed Action Entry
escriptors Point D

Scanne d Action Entry
escriptors Point D

Section 5. Component Analysis 5-145

3

2

SRM Registers

+ RRPA
I'

RRPA (Recovery Parameters)

.RMCT ~ Register 0 Contents on Entry
(ASIO, PGI'J, SYSEVENT Code)

Register 1 Contents on Entry
(I nput Parameter Address)

RMEP

~ Entry point descriptor
of routine most

t RMEP
recently entered

B WMST

~------t] Pointer to and indexes into performance group descriptor table
(entry location similar to that for domain descriptor table)

+ PGVT

• PGOT

~] + POVT

+ POOT

Pointer to and indexes into performance objective table
(entry location similar to that for domain descriptor table)

~----------------------------------~~ OMOT .OMDT

.OMVT
~-------I (domain descriptor table)

• TSPT I---~ ___ --I (entry location similar to that for domain + x
• TSGT
4 RTVT

• ROTT

I
' Pointer to and index into the time slice table

descriptor table). .
I-----:~---~ l' . Pointer to and index into the rotate table entry

(entry location similar to that for domain
descriptor table).

ASCS

+ OUCS '\

(
+ OUXS

+ ASXS
J OUCS

./ SRM User

-
~ Entry for i th domain

- ~ -

IMCS

I I/O
Measurement
Information

.(ASXB '--- Statistics

\

+OUSB ~ t~;~: j

OUXS ~,O __ U_SS~ __ _

SRM User
Statistics
(Temporary)

Figure 5-32 (Part 2 of 2). SRM Control Block Overview

5-146 MVS Diagnostic Techniques

SRM User
Statistics
(Swapped)

Individual User Indicator.s

The register conventions generally used by SRM to process individual user
functions can help you locate important SRM control blocks:

Register Contents

2 Address of the RMCT
3 Address of the RRP A
4 Address of the OUCB ,
5 Address of the ASCB (if used by the requested SYSEVENn

The SRM user control block (OUCB) contains flags and counters to provide
information about a specific user. There is one OUCB for each address space,
pointed to by ASCBOUCB (ASCB + X'90').

The following fields help in the understanding of specific user characteristics.

OUCBLSW When this bit is on, the address space is in the logically swapped state.

OUCBMWT If this bit is on, the SRM has detected that this user has not been dispatched, but was
occupying storage for at least delta seconds. This interval is processor-model
dependent. The user will be swapped-out until the dispatcher informs SRM that the
address space has work to do.

OUCBAXS When this bit is on, the user has been swapped-out of storage because the user's
address space was obtaining auxiliary storage slots at the fastest rate in the system
when an ASM slot shortage occurred.

OUCBENQ This bit indicates that a different address space has tried to ENQ on a resource held by
this address space. This user is treated as non-swappable for an installation-defined
time period.

OUCBYFL See specific bit designations below:

• Bit 1 - indicates that the user was created via a START command.
• Bit 2 - indicates that the user was created via a TSO LOGON command.
• Bit 3 - indicates that the user was created via a MOUNT command.

OUCBCSFS If this bit is on, the user is being delayed. Either swap-in has failed for this address
space due to a lack of available storage, or the user was swapped because of a pageable
frame shortage.

OUCBFXS This bit indicates that the address space was selected for swap-out in order to relieve a
pageable storage shortage condition. If bit OUCBLGFX is also on, the address space
had more frames allocated to it than any other swapp able address space when SRM
detected the pageable storage shortage. If OUCBLGFX is off, the address space had
more fixed frames than an average address space when RSM detected the shortage.

OUCBDFSW If this bit is on, swap-in has been delayed. The PVTAFCLO and PVTAFCOK fields
have been increased by the number of frames needed to complete the swap-in.

OUCBJSAS When this bit is on, it indicates that, at the time of job select processing for this user,
there was an auxiliary slot shortage. This user's initiation is being delayed until the
shortage is relieved.

OUCBJSFS When this bit is on, it indicates that there was a pageable frame shortage at the time of
job select processing for this user. This user's initiation is being delayed until the
shortage is relieved.

Section '5. Component Analysis 5-147

Other Indicators

SRM Error Recovery

OUCBSRC This field contains a code describing why this user was last swapped-out. The codes
are:

01 - Terminal output wait
02 - Terminal input wait
03 - Long wait
04 - Auxiliary storage shortage
05 - Real storage shortage
06 - Detected wait
07 - Reqswap SYSEVENT issued
08 - ENQ exchange by swap analysis
09 - Exchange based on recommendation values by swap analysis
OA - Unilateral swapout by swap analysis.

OUCBRDY This bit indicates that ready work became available for this address space which was
swapped-out due to a wait. The address space is now capable of executing and is a
candidate for swap-in.

OUCBTWSS This halfword contains the target working set size for the address space. SRM
attempts to keep this minimum number of frames assigned to the address space.

OUCBHOLD This fullword contains a count of outstanding "Hold" sysevents issued by this address
space. A non-zero count will result in quiesce turning the swap-out around and
restoring the address space.

The SRM domain descriptor table can be useful in pinpointing a problem
involving SRM's MPL control. Mapping of the table can reveal why a user is
kept out of main storage, why erratic response time occurs, and other user and
system information.

SRM maintains two functional recovery routines (FRRs) that are located in
IRARMERR. One FRR (recovery routine 1 - RRI) gets control whenever errors
occur after SRM is branch-entered by a routine that holds a lock higher in the
lock hierarchy than the SRM lock. The other FRR (recovery routine 2 - RR2)
gets control whenever errors occur and SRM is running with the SRM lock.

If it is suspected that SRM is entering error recovery and a stop is necessary at
the time of error, RMRR2INT is a subroutine common to both RRI and RR2.

Recovery routine I (RRI) retries if a retry routine exists. If no routine exists, or
if the error recurs, RRI percolates the error.

With recovery routine 2 (RR2), many special situations such as the following are
first checked:

• Is RMF active and should it be terminated?
• Is SET IPS active and should abend code be converted?
• Is OUCB valid and should abend code be converted?

Then RR2 retries if a retry routine exists. If no retry routine exists, or if the error
recurs, RR2 percolates the error.

5-148 MVS Diagnostic Techniques

SRM SDWA Data

When either FRR is entered, the FRR fills in the SOW A fields prior to
scheduling the SVC dump so that the dump matches the SYSl.LOGREC entry.
However, in some cases, note that the FRR changes the abend code or reason
code after the dump is scheduled and before the LOGREC entry is written, which
results in the LOGREC entry reflecting a different code than the dump.

The FRR also puts problem determination data into the SOW A variable
recording area (SOWAVRA) in key-length-data format using standard keys. (See
the SOW AVRA area in the Debugging Handbook for a description of the keys.)
Additional information is provided for several of the fields as follows:

Key Contents

VRAEBC The EBCDIC message "IRARMCNS OFFSET TO CURR RTNE PTR IS xxx," where xxx
is the hexadecimal offset into the nucleus module IRARMCNS that contains the entry
point address of either the SRM routine that was in control at the time of the error, or, if a
subroutine was in control, the routine that called the subroutine.

VRARRP A copy of the recovery routine parameter area (RRPA). The RRPA contains status
information used on exit from the SRM and during SRM recovery processing. Note that
the low-order byte in the first word in the RRPA contains the SYSEVENT code of the
original entry to SRM. The format of the RRPA can be found in the IRARRPA mapping
macro.

VRAFP A copy of the RRPA (as in field VRARRP» but with several entries cleared. Entries are
cleared because they can be different for different invocations of the same function. The
VRAFP is SRM's footprint area used for recognizing duplicate problems.

Module Entry Point Summaries

For a description of SRM modules and entry points, refer to OSjVS2 System
Logic Library.

Section 5. Component Analysis 5-149

VTAM

Note to· Readers

Component information for MVS VT AM is deleted from this book because it is
obsolete.

For diagnostic information for ACF/VTAM, see the following:

• ACF/VTAM Diagnosis Guide

• ACF/VTAM Diagnosis Reference

5-150 MVS Diagnostic Techniques

VSAM

Record Managemen,t

RPL

The virtual storage access method (VSAM) consists of three major
subcomponents:

• Record management
• OpenJc1ose/end-of-volume
• I/O manager

Record management processing produces no messages. Problem determination
normally begins with an examination of the request parameter list (RPL). If a
physical error occurs and the user has provided a large enough message area
(pointed to by RPLERMSA), VSAM (IDA019R5) builds a SYNADAF-type
record in that area for the user to examine. For both logical and physical errors,
VSAM sets return codes in the RPL.

Three fields in the RPL are used to indicate an error:

1. RPLERREG- (RPL + X'D') a one-byte value which is also returned in register 15 after a
request:

o - request completed normally
S - a logical error occurred
12 - a physical error occurred.

2. RPLCMPON - (RPL + X'E') a one-byte value that indicates which component was being
processed at the time of the error if the request involved alternate indexes. This
value also indicates whether upgrading was valid or was incorrect because of the
error.

Code Component Status of Upgrade

0 base cluster valid
I base cluster might be incorrect
2 alternate index valid
3 alternate index might be incorrect
4 upgrade set valid
5 upgrade set might be incorrect

3. RPLERRCD - (RPL + X'F') a one-byte value describing the error (see the Diagnostic Aids
section of OS/VS2 VSAM Logic).

Other important fields in the RPL are:

RPLREQ -
RPLPLHPT -
RPLECB -
RPLDACB -
RPLAREA
RPLARG -
RPLOPTCD -
RPLDDDD-

(+ X'02') request type
(+ X'04') pointer to the PLH
(+ X'OS') ECB or pointer to the ECB
(+ X'IS') pointer to the ACB
(+ X'20') pointer to the user's record area
(+ X'24') pointer to the user's search argument
(+ X'2S') two bytes of option flags
(+ X'40') last successful request's RBA value (returned to user by VSAM).

Section 5. Component Analysis 5-151

PLH

BUFC

Once the information in the RPL has been evaluated, the next block to examine is
the placeholder (PLH). The PLH contains current information about the'request,
including positioning and pointers to associated control blocks such as buffer
control blocks (BUFCs) and the I/O management block (IOMB).

The following fields are important for understanding the request:

PLHFLG 1 - (+ X'02') status flags

PLHFLG2 - (+ X'03') status flags

PLHEFLGS - (+ X'04') two bytes of exception flags

PLHFLG3 - (+ X'06') status flags

PLHAFLG3 - (+ X'07') status flags

PLHCRPL - (+ X'14') pointer to the current RPL

PLHDBUFC - (+ X'34') pointer to the current data BUFC

PLHDIOB - (+ X'4C') pointer to 10MB

PLHRETO - (+ X'74') halfword offset into register 14 pushdown save area. If the half word at
+ X'76' is zero, PLHRETO is an offset from + X'7S' into a 14-word save area and
points to the next available word. If the half word at + X'76' is not zero, then it is the
offset from + X'7S' to the beginning of a 20-word save area at the end of the PLH,
and PLHRETO is an offset from + X'7S' into that save area.

PLHIBUFC - (+ X'BC') pointer to the current index BUFC

PLHIXSPL - (+ X'CS') 32-byte index search parameter list (IXSPL) containing information about
the results of the last index search.

PLHKEYPT - (+ X'FS') pointer to the current key value or relative record number.

The buffer control block (BUFC) contains function codes, status indicators, and
relative byte address (RBA) values describing the associated buffer.

BUFFLG1-
BUFCIOFL -
BUFCDDDD -
BUFCORBA -
BUFCBAD -

(+ X'OI') BUPC status flags
(+ X'02') I/O status flags
(+ X'OS') RBA for input if BUFCV AL is on
(+ X'OC') RBA for output if BUFCMW is on
(+ X'14') pointer to associated buffer

During record management processing, register usage is as follows:

Rl - RPL pointer
R2 - PLH pointer
R3 - pointer to the access method block (AMB) of the component being processed
R4 - BUPC pointer

Use the register 14 save area in the PLH to find the path taken by a request
through record management.

5-152 MVS Diagnostic Techniques

Record Management Debugging Aids

It is not always desirable to cause program checks as a method of getting dumps,
because some applications have sophisticated error recovery routines that can
possibly change the environment. It is preferable to get documentation of the
error before such routines get control, and then allow these routines to do their
cleanup function after the dump is taken. The following code is an example of a
console-activated communications vector table (CVT) trap for record management
errors that causes the failing application to loop, allowing a console dump to be
taken. Following the dump the trap can be deactivated, allowing the application
to continue processing. The code can be inserted into CSECT IDA019Rl at label
'POSTRPL', label 'POSTRPL2', and the patch area at the end of the module.

NAME IDA019Ll

VER POSTRPL'

VER POSTRPL2'

VER PATCH

REP POSTRPL'

REP POSTRPL2'

REP PATCHI

LOOPI

EXIT 1

PATCH2

LOOP2

EXIT2

IDA019Rl

950C,lOOD

1851,9101,1028

0000,0000

45EO,Bxxx

1851,45EO,Bxxx

58FO,0010,

9102,FI08,
4780,Bxxx,
D500,FIOA,100D,
4770,Bxxx,
D500,FIOB,lOOF,
4770,Bxxx,
47FO,Bxxx,

950C,100D,
07FE,

58FO,0010,

9102,FI08,
4780,Bxxx,
D500,FI0A,I00D
4770,Bxxx,
D500,FI0B,lOOF,
4770,Bxxx,
47FO,Bxxx,

9101,1028,
07FE

X'54' bytes of patch area

to PATCHI

to PATCH2

point to CVT

is trap activated?
no, go to EXITI
compare error type
no, go to EXITI
compare error code
no, go to EXITI
yes, go to LOOPl. Loop until trap bit in CVT is
turned off.

restore instruction
branch back inline

point to CVT

is trap activated?
no, go to EXIT2
compare error type
no, go to EXIT2
compare error code
no, go to EXIT2
yes, go to LOOP2. Loop until trap bit in CVT is
turned off.

restore instruction
branch back inline

To activate the trap, set CVT + X'lOA-IOB' to logical error (X'()8xx') where xx is
the error code (RPLERRCD), or to physical error (X'OCOO'). Then 'OR' on bit 6
(X'02') in CVT+ X'108' taking care to leave the other bits in that byte
undisturbed. After the loop occurs and a console dump of the failing address
space has been taken, tum off bit 6 in CVT + X'108' to deactivate the trap and
allow the application to continue processing. Be sure that the dump taken
includes the region, SQA, and CSA. Note that when using the trap for physical
errors the RPLERRCD is X'OO' at the point of the trap because VSAM has not
yet gone to IDA019R5. Physical errors caused by unit check (for example -

Section 5. Component Analysis 5-153

incorrect length, no record found on a search id, require that the I/O supervisor
block (lOSB) be examined. To get a dump with the 10SB still valid, a trap can
be inserted into nucleUs CSECT IDA121A4 (abnormal end appendage) at label
'PERM ERR' . Since this is in the nucleus, the trap can be set from the console.
(See I/O Manager Debugging.)

Record management error codes (RPLERRCD) are described in the Diagnostic
Aids section of OS/VS2 VSAM Logic. It is useful to know which module sets
each error and the name of each error, so that you can. find where it is set in the
module via the cross reference.

Error Code (hex)

Logical

04
08
OC
10
14
18
IC
20
24
28
2C
40
44
48
4C
50
54
58
5C
60
64
68
6C
70
74
78
84
88
8C
90
94
98
CO
C4
C8
CC
DO

Physical

04
08
OC
10
14
18

Symbolic Name

RPLEODER
RPLDUP
RPLSEQCK
RPLNOREC
RPLEXCL
RPLNOMNT
RPLNOEXT
RPLINRBA
RPLNOKR
RPLNOVRT
RPLINBUF
RPLNOPLII
RPLINACC
RPLINKEY
RPLINADR
RPLERSER
RPLINLOC
RPLNOPTR
RPLINUPD
RPLKEYCH
RPLDLCER
RPLINVP
RPLINLEN
RPLKEYLC
RPLINLRQ
RPLINTCB
RPLSRLOC
RPLARSRK
RPLSRISG
RPLNBRCD
RPLNXPTR
RPLNOBFR
RPLIRRNO
RPLRRADR
RPLPAACI
RPLPUTBK
RPLINVEQ

RPLRDERD
RPLRDERI
RPLRDERS
RPLWTERP
RPLWTER!
RPLWTERS

Module (lDAOl9xx)

RD, RR, RY, R2, R4, R8
RA,RQ,RX,R4
RA, RR, RX, R4
RA,RR,RY
RF, RY, R2, R8
RW, RY, R2, R5
RE, RF, RM, R5, R8
RA,R8
RM
RG,RU,RX
RR, RT, RY, R4, R8
RU, RX, RI
RQ, R4, R8
RI, R8
RI, R8
RL,RX,R8
RQ, RI, R4, R8
RD, RR, R4, R8
RQ, RX, R4, R8
RL,RX
RL,RQ
RA, RR, RY, RX, RI, R4, R8
RL, RQ, RU, R4, R8
Rl
RR, R4, R8
RP
RT
RT
R4
RX
RU
RY
RQ,RR
Rl
RX
RQ,R4
RP

R5
R5
R5
R5
R5
R5

Record management processing sometimes requires serialization of internal
resources. When the needed resource can be acqwred, processing proceea~

5-154 MVS Diagnostic Techniques

normally. However, when another request has control of the resource the request
is deferred. As each request completes, a scan is made for requests which have
been deferred. If the resource has become available, the deferred request is
restarted. While a request is deferred, PLHD RPND is set in the PLH and
PLHDRRSC points to the resource byte to be tested for availability.

Open/Close/End-Of-Volume

OjCjEOV documents errors by means of error messages and access method
control block (ACB) return codes. The codes returned in the ACB (ACBERFLG)
are explained in the Diagnostic Aids section of OSjVS2 VSAM Logic, along with
an indication of the modules that set each error. In the cross reference of the
modules, these error codes have the symbolic name of OPERRddd, where ddd is
the decimal error code. The most significant problem determination feature of
OjCjEOV however, is its message facility. The following messages are issued:

MSGIEC0701 - END OF VOLUME
MSGIEC161I - OPEN
MSGIEC2511 - CLOSE
MSGIEC2521 - CLOSE (TYPE=T)

The messages contain both problem codes (symbolic PPddd) and function codes
(symbolic PDFddd). The problem codes that describe the error are explained
with each message in System Messages. The function codes are described best in
the Diagnostic Aids section of OSjVS2 VSAM Logic, along with the module that
was performing the the function at the time of the error.

O/C/EOV Debugging Aids

There is a built-in trap for OjCjEOV (see the Caution later in this topic). There
are two bits involved. Bit 4 (X'08') at CVT+ X'I08' can be OR/d on (being
careful to leave the other bits in that byte undisturbed) to cause an abend dump
(U888) when the message is issued. Bit 6 (X'02') at CVT+ X'IOA' when turned
on prevents the freeing of module work areas. When both these bits are on, the
U888 dump produced contains the module work area for every module gone
through in the open path. There is a discussion in the Diagnostic Aids section of
OSjVS2 VSAM Logic on finding the work areas in the dump and a diagram
showing how the work areas are chained together.

GTF trace is also available for debugging. If GTF is active for TRACE = USR at
the time of the error, VSAM Open (IDA0192P) writes user records FFF and FF5
containing the VSAM control blocks at the time of the failure. The standard
OPEN work area trace is also available by coding AMP = 'TRACE' on the DD
statement.

Section 5. Component Analysis 5-155

The following ENQs areissued by O/C/EOV:

Major Name Minor Name
(Note 1)

SYSVSAM NNNCCCCB

Modules

IDAO1 92A
IDA0200T
IDA0231T
IDA0557A

SYSVSAM NNNCCCCI IDA0192A

SYSVSAM NNNCCCCO IDA0192A

Reasoo

The 'B' or busy ENQ is used to serialize
the modification of the control block
chains by allowing only one of the
functions (OPEN, CLOSE, TCLOSE, or
END of VOLUME) to process the data set.
This resource is held for the life of the
function.

The 'I' ENQ is issued for each component of a
data set being opened for input processing. DEQ
is issued when the data set is closed.

The '0' ENQ is issued for each component of a
data set being opened for output processing. DEQ
is issued when the data set is closed.

Note: If the data set is opened for both input and output, both the 'I' and '0'
resources will be held for each component.

Note 1: In the minor name, NNN = the 3-byte CI number of the component's catalog record
CCCC = the 4-byte catalog ACB address.

When a VSAM (non-catalog) ACB is opened, data extent blocks (DEBs) are
constructed and chained as follows:

• A DEB containing the data set ACB address at DEB+X'lS' is chained on
the DEB chain of the current TCB. This DEB is referred to as the 'dummy'
DEB. Its purpose is to allow abend to close the VSAM data set if abnormal
termination occurs.

• A DEB containing the component access method block (AMB) address at
DEB + X'lS' is chained on the DEB chain of the jobstep TCB for each
component being opened. These are the 'real' DEBs and are the ones actually
used by VSAM processing.

When an ACB is being opened for DSNAME or DDNAME sharing and the data
set is already open, the ACB is just connected to the existing control block
structure and only the 'dummy' DEB is built and chained on the current TCB.

Caution: When using the O/C/EOV trap be aware that:

• If the bit is turned on to prevent the freeing of work areas and the job causes
many calls to O/C/EOV, the region size may have to be increased to prevent
ABENDSOA.

• JOBCATs and STEPCATs are opened under the initiator TCB. The work
area core is owned by the initiator TCB. If this core is not freed because the
CVT debug bit is on, the initiator tnay get an ABEND20A when it issues
FREEMAIN for subpool 247 at job termination.

5-156 MVS Diagnostic Techniques

1/0 Manager

I/O Manager Debugging

I/O management includes the following modules:

IDA019R3
IGC121
IDA121A2
IDA121A3
IDA121A4

Problem state I/O driver; a CSECT of LPA load module IDA019L1
Supervisor state I/O driver (SIOD); a CSECT in the nucleus
Actual block processor (ABP); a CSECT in the nucleus
Channel end appendage; a CSECT in the nucleus
Abnormal end appendage; a CSECT in the nucleus

The drivers and the ABP translate requests for access to the contents of control
intervals into requests for reading and writing physical records. They also build
the channel program to be passed to lOS.

The combination of the I/O management block (10MB), the I/O supervisor block
(IOSB), and the service request block (SRB), is used by I/O management to
control the processing of a request. The PLH (PLHIOB) points to the 10MB.
The 10MB points to the 10SB (IOMIOSB), which in tum points to the SRB
(IOSSRB).

For debugging unit checks (for example: no record found, incorrect length,
channel program check, channel protection check) the best place to trap for a
dump is at label 'PERMERR' in nucleus csect IDAI21A4.

Section 5. Component Analysis 5-157

Catalog Management

Catalog management manages system requests for references and updates to the
master catalog. The following description of catalog management includes these
topics:

• Major Registers and Control Blocks
• Module Structure
• VSAM Catalog Recovery 'Logic
• Debugging Hints

Major Registers and Control Blocks

How to Find Registers

This section describes the major catalog management registers and control blocks,
shows how each can be located, and describes those control block fields and flags
that have proven to be useful in debugging.

Catalog management runs under control of an SVRB. The registers are saved
across supervisor-assisted linkages and interruptions in the standard ways.
Depending upon the nature of the problem, the registers can usually be found in
one of the following areas:

• For abends, registers are stored in RTM's SVRB and SDWA.

• For program checks, registers are stored in RTM's SVRB, the SDWA, and
the LCCA.

• For catalog-management-issued type 2, 3, and 4 SVCs, registers are stored in
the successor SVRB.

• For waits, registers are stored in the TCB.

The registers stored in any of these areas will be the registers that existed when
the code that was running under a catalog SVRB gave up control. These registers
will either be the registers of one of the three catalog management routines or the
registers of a routine that was branch-entered by catalog management. If register
II points to the CCA (identifiable via a X' ACCA' in the first word), the registers
probably belong to IGGOCLAI; register 12 will be the base register for the
CSECT last in control. Otherwise, if register II is a base register, the code that if
references may be inspected to determine the routine in control. If the routine in
control is one that was branch-entered by catalog management, then catalog
management's registers may have been saved in a standard area pointed to by
register 13.

5-158 MVS Diagnostic Techniques

Major Registers

Major Control Blocks

IGC0002F

Register 11 - Base register
Register 12 - Work area pointer

IGCOCLAl

Register 11 - CCA pointer
Register 12 - Base register (current CSECT)
Register 13 - Register save push down list pointer (see CCAREGS) or standard save area pointer

IGGOCLCA

Register 11 - Base register
Register 12 - Work area pointer

The control blocks described in this section (AM CBS, PCCB, ACB, CAXW A,
CTGPL and CCA) are those that are most useful from a debugging standpoint.
The AMCBS and PCCB are useful in locating the control block structures for
open catalogs. The ACB and CAXWA relate to a particular catalog or catalog
recovery area (CRA) data set. The CTGPL and CCA relate to a particular
catalog request.

AMCBS

The AMCBS (access method control block structure) is essentially a VSAM
vector table. It is constructed within the SQA during early NIP processing
(lEA VNPll) and resides there throughout the life of the system. The AMCBS is
found through CVT+ X'IOO' (field CVTCBSP). Major fields in the AMCBS are:

Field Description

CBSACB Pointer to the master catalog'S ACB.

CBSCMP Pointer to the IGGOCLAlload module.

CBSCAXCN CAXW A chain pointer. The CAXW As of all currently open VSAM catalogs are
included in this chain. The master catalog's CAXW A is the last CAXW A in this chain.

PCCB

A PCCB (private catalog control block) connects a VSAM user cat~log to a
particular initiator or job step. A PCCB is constructed (in SWA) for each user
catalog opened during the life of a job step. PCCBs are chained together to form
an initiator or job-step-oriented PCCB chain. Generally, PCCBs are freed by step
termination. A PCCB is not required for the master catalog.

PCCBs are located through the TCB: TCB + X'B4' (field TCBJSCB) points to the
JSCB; JSCB + X'l5C' (field JSCBACT) points to the active JSCB; the active
JSCB + X'CC' (field JSCBPCC) points to the first PCCB. PCCBs are chained via
PCCNEXTP.

Section 5. Component Analysis 5-159

Major fields in a PCCB are:

Field DescriptioD

PCCACRO PCCB identifier ('PCCB').
PCCNEXTP Pointer to the next PCCB. This field is 0 if it is the last PCCB.
PCCACBP Pointer to the catalog's ACB.
PCCDSNAM Catalog's name.
PCCTGCON Catalog's alias name.

Major flags in a PCCB 'are:

Flag DescriptioD

PCCSTEPC The catalog was specified to the job step through the use of a JOBCAT or STEPCAT
DD card.

PCCACTIV The catalog is allocated and active.

PCOSCVOL The catalog is an OS CVOL.

ACB

There is one ACB (access method control block) for each open VSAM catalog or
CRA. The ACB is created by the routine that opens the data set. Catalog and
CRA ACBs generally reside in the CSA.

An ACB can be located in the following ways:

1. The master catalog's ACB can be located from the AMCBS (CBSACB).

2. A particular user catalog's ACB can be located either via the CAXWA chain
or via the PCCB chain. To locate the ACB via the CAXWA chain, inspect
the CAXCNAM field of each CAXW A in turn until the desired catalog name
is found. The first CAXW A is pointed to by the AMCBS (CBSCAXCN).
The CAXWAs are chained via CAXCHN. When the desired CAXWA is
found, it points to the desired ACB (CAXACB).

To locate the ACB via the PCCB chain, inspect the PCCDSNAM and
PCCTGCON fields of each PCCB in turn until the desired catalog name or
alias name is found. The first PCCB is pointed to by the job step's active
JSCB (JSCBPCC). The PCCBs are chained via PCCNEXTP. When the
desired PCCB is found, it points to the desired ACB via PCCACBP.

3. A particular CRA's ACB can be located as follows:

a. Find the owning catalog's ACB (via steps 1 or 2).

b. Find the owning catalog's CAXWA (pointed to by ACBUAPTR).

c. Find the first CRA's ACB (pointed to by CAXCRACB).

d. Find the first CRA's CAXW A (pointed to by the CRA ACB's
ACBUAPTR field at- ACB+ X'40').

e. Inspect the CAXVOLID field for the desired CRA volume serial number. ~

5-160 MVS Diagnostic Techniques

~

f. If the desired CRA's ACB has not yet been found, then search the
remaining CAXW As in the CRA CAXW A chain. Inspect the
CAXVOLID field of each remaining CRA CAXW A in tum until the
desired CRA volume serial number is found. The remaining CRA
CAXWAs are chained to the first CRA CAXWA (and to each other) via
CAXCHN. When the desired CRA CAXWA is located, it points to the
desired CRA ACB via CAXCRACB.

4. The ACB representing the VSAM catalog that is currently being processed by
a particular catalog request can be located via the CCA (CCAACB).

5. The ACB representing the CRA that is currently being processed by a
particular catalog request can be located via the CCA (CCARAACB).

Major fields in the ACB are:

Field Description

ACBID Control block identifier (X'AO').

ACBAMBL Pointer to the VSAM record management control block structure. This set of control
blocks is built at OPEN time, resides in CSA, and consists of those control blocks
required to support a KSDS (catalog) or an ESDS (CRA).

ACBERFLG Error code stored by OPEN or CLOSE when the operation is unsuccessful.

ACBUAPTR Pointer to the CAXWA.

Major flags in the ACB are:

Flag Description

ACBCAT ACB represents a catalog.

ACBSCRA ACB represents a CRA that has been opened for catalog management use.

ACBUCRA ACB represents a CRA that has been opened for use by an access method services
(AMS) utility function.

CAXWA

There is one CAXWA (catalog ACB extended work area) for each open catalog
or CRA. The CAXW A is created during the OPEN process (either before the
OPEN or by the catalog OPEN routines). CAXW As generally reside in the CSA.
The CAXW A is pointed to by the ACB (field ACBUAPTR). See step 3 for
locating the ACB under the heading "ACB" earlier in this chapter. Major fields
in the CAXW A are:

Field

CAXID

CAXCHN

CAXACT

CAXACB

CAXUCB

Description

Control block identifier (X'CA').

Pointer to the next CAXW A in the CAXW A chain. This is 0 if it is the last CAXW A in
the chain.

Count of the number of job steps for which this catalog is currently open.

Pointer to the catalog ACB.

Pointer to the catalog's or CRA's UCB.

Section 5. Component Analysis 5-161

CAXRPL Pointer to a pool of RPLs. This pool is obtained at OPEN time and resides in CSA.
(Note: This field is not used in CRA CAXWAs. CRA RPLs are included within the
owning cat\llog's RPL pool.)

CAXCNAM Catalog name (for catalog CAXWA only).

CAXVOLID CRA volume serial number (for CRA CAXW A only).

CAXCRACB Fora catalog CAXW A: pointer to the ftrst CRA ACB. For a CRA CAXWA: pointer
to the CRA ACB.

Major flags in the CAXW A are:

Flag

CAXBLD
CAXOPN
CAXCLS
CAXEOV
CAXMCT
CAXF2DT
CAXF2NDD
CAXF2NCR
CAXF210E
CAXF2REC

CTGPL

Deseription

The catalog or CRA is in the process of being created.
The catalog or CRA is being opened.
The catalog or CRA is being closed.
The catalog or CRA is being extended.
The CAXW A represents the master catalog.
The catalog has been deleted.
Unable to OPEN or CLOSE - DDNAME not found.
Unable to OPEN or CLOSE - insufficient main storage.
Unable to OPEN or CLOSE - I/O error.
The catalog is a recoverable catalog (catalog CAXWA only).

The CTGPL (catalog parameter list) is built by the routines that issue SVC 26 to
represent the desired catalog management request. The storage area where this
block resides varies and is controlled by the building routine. When a caller
issues SVC 26, the caller's registers are saved in the SVRB under which catalog
management operates. Register 1 of this SVRB's register save area points to the
CTGPL. The CTGPL may also be located via the CCA (CCACPL).

Note: At times, catalog management processing uses CCACPL as a pointer to an
internal CTGPL. Therefore, you should be careful when you use this pointer to
locate the caller's CTGPL.

Major fields in the CTGPL are:

Field

CTGOPTI
CTGOPT2
CTGOPT3
CTGOPT4
CTGOPTNS
CTGTYPE

CTGENT

CTGFVT

CTGCAT

CTGWKA

Description

These ftelds contain the codes and flags that indicate the type of function
requested.

Pointer to the entry name or CI number (for types of requests other than DEFINE or
ALTER).

Pointer to the field vector table (FVT) for DEFINE and ALTER requests.

Pointer to an area that indicates the speciftc catalog (if any) to be used in processing
this request. The area may contain either the catalog name or a pointer to the
catalog's ACB. If no speciftc catalog is indicated, CTGCAT will be O.

Pointer to the work area. In general, catalog management stores the requested
information into this area.

CTGNOFLD Number of FPL pointers in CTGFIELD.

CTGFIELD An array of 4-byte RPL pointers. The FPLs,.describe the data ftelds· that the request is
to process.

5-162 MVS Diagnostic Techniques

CCA

The CCA (catalog communications area) is the main VSAM catalog work area.
It is built upon entry to the VSAM catalog processor and freed just before exit.
The CCA resides in subpool 252 of the caller's address space. Register 11 points
to the CCA.

Major fields in the CCA are:

Field Description

CCAID Control block identifier (X'ACCA').

CCAPROB Error data - consists of a CSECT ID (2 bytes), reason code (1 byte), and error code (1
byte).

CCATCB Pointer to the caller's TCB.

CCACPL Pointer to the CTGPL.

CCAACB Pointer to the ACB of the catalog that is currently being processed.

CCAURAB Pointer to the record area block (RAB) of the record area currently in use.

CCASRCH Search argument for I/O requests.

CCARxREC Pointer to record area x. (There are six record areas, record area·.() through record area
5; x indicates the number of the record area in question.)

CCARPLl Pointer to the RPL that is currently assigned to this request.

CCAEQDQ An ENQ/DEQ parameter list that is used when VSAM catalog management issues the
RESERVE macro.

CCAMSSPL A GETMAIN/FREEMAIN parameter list that the VSAM catalog processor uses for
most GETMAIN/FREEMAINs.

CCACMS Pointer to the catalog management services work area (CMSW A); it is used only for
DELETE, ALTER, DEFINE, and LISTCATALOG requests.

CCAREGS An array of small (12-byte) register save areas. When a VSAM catalog processor
routine calls a lower level (nested) routine, the contents of registers 12-14 are saved in
the next save area by the routine that is called. Registers 12 and 14 contain the calling
routine's base address and return address, respectively. Register 13 is used to maintain
position within the array. Each time register 13 is saved, it points to the preceding save
area. During a lower level routine's processing, register 13 points to the current save
area (that is, the area containing the caller's registers). When a lower level routine exits,
registers 12-14 are restored which causes register 13 to be automatically switched (the
preceding save area becomes the current save area). Whenever VSAM catalog processor
routines branch-enter external routines, they pass a standard. 72-byte save area to the
external routine. This is accomplished by increasing register 13 by 12 during the process
of setting up the linking conventions for the branch and link. (The 72 bytes that follow
the current save area are used as the standard save area. Note: The register contents
stored within this array can be used in debugging to identify predecessor routines and
modules.)

CCARAACB Pointer to the ACB of the CRA that is currently being processed, or zero.

CCARARPL Pointer to the RPL that is currently assigned to this request for CRA I/O use.

Section 5. Component Analysis 5-163

Module Structure

Major flags in the CCA are:

Flag Description

CCAFLG 1-4 Miscellaneous processing control flags.

CCARPLX I/O option flags:

00 0 PUT direct
001 PUT sequential
01...... ERASE
1 0 GET direct
1.. 1 GET key equal to or greater than
.. 0..... Use the record area pointed to indirectly by CCAURAB
.. 1..... Use record area 0
... 0.... Addressed or CI operation
... 1.... Keyed operation
.... 0... Update operation
.... 1... Non-update operation
..... 0.. Check for errors
..... 1.. Bypass error checking
...... 0. 50S-byte low-key range record
...... 1. 47-byte high-key range record

CCAFLG9 Miscellaneous CRA processing flags

CCARVFGI Miscellaneous recovery (ESTAE) control flags

Catalog management is packaged into three load modules. These modules are the
following:

I. IGC0002F - Catalog Controller
2. IGGOCLAI - VSAM Catalog Processor
3. IGGOCLCA - CVOL Processor

This set of modules resides within SYS1.LPALIB and can be viewed as a type 4
SVC routine consisting of three load modules. Catalog management receives
control via SVC 26 and operates under an SVRB. Control is passed between the
three load modules via XCTL. Each load module establishes its own EST AE
routine. A brief description of each load module follows.

I. IGC0002F - Catalog Controller

The function of this module is to translate (map) interfaces. The module
logically processes from a front end and a back end.

The front end receives control from the SVC SLIH whenever SVC 26 is
issued. Register 1 points either to an OS CAMLIST or a VSAM CTGPL. If
register 1 points to an OS CAMLIST, the OS request is translated into an
appropriate VSAM request (a CTGPL is constructed). Control is then passed
to IGGOCLAI.

The back end receives control (at EP IGGOI02F) from IGGOCLAI upon
completion of a VSAM request for a VSAM catalog. It determines if the
original request was an OS CAM LIST request and if so, it translates the
CTGPL output and the IGGOCLAI return code into appropriateCAMLIST

5-164 MVS Diagnostic Techniques

format. It then returns control to the issuer of SVC 26. For a more detailed
description of this module, see OS/VS2 Catalog Management Logic.

2. IGGOCLAI - VSAM Catalog Processor

IGGOCLAI is a large load module that consists of many CSECTs and
procedures. Control is passed between the various procedures via CALLs.
This module relates a request to a specific catalog and also determines the
catalog type. If the catalog is an OS CVOL, IGGOCLAI passes control to
the CVOL processor (IGGOCLCA). Otherwise, IGGOCLAI accesses the
VSAM catalog and performs the function indicated by the CTGPL. When
the function is completed, IGGOCLAI exits by passing control to the back
end of IGC0002F. For a detailed description of VSAM catalog management,
see OS/VS2 Catalog Management Logic.

3. IGGOCLA - CVOL Processor

IGGOCLCA is a load module that consists of several CSECTs and
procedures. Control is passed between the various procedures via CALLs.
This module translates CTGPL requests into OS catalog requests and accesses
OS CVOLs to perform the indicated function. Upon completion of
processing this module returns control to the issuer of SVC 26. For a detailed
description of this module, see OS/VS2 CVOL Processor Logic.

VSAM Catalog Recovery Logic

This section describes how mainline VSAM catalog management supports
recovery and also how its recovery routine works.

Mainline VSAM catalog management does the following:

• Establishes/releases the recovery environment
• Maintains a pushdown list end mark
• Tracks GETMAIN /FREEMAIN activity
• Maintains a CMS (catalog management services) function gate

Establishing/Releasing a Recovery Environment

To establish or release a recovery environment, the following actions occur:

1. Subfunction BLDCCA in module IGGOCLC9 issues a branch entry to
ESTAE to establish the recovery environment. This is done immediately after
storage has been obtained for the CCA via GETMAIN.

2. When BLDCCA completes the initialization of the CCA, it sets RVCCAV to
indicate that the CCA is now valid.

3. Subfunction IGGPRCLU (request cleanup) in module IGGOCLC9 performs
the following:

• Indicates that the CCA is no longer valid (RVCCAV = off)
• Frees any GETMAIN/FREEMAIN tracking spill blocks that may exist
• Branch enters EST AE to remove the recovery environment

Section 5. Component Analysis 5-165

Maintaining a Pushdown List End Mark

A pushdown list end mark is maintained so that the EST AE recovery routine can
reliably locate the last pushdown list entry. This enables the recovery routine to
determine:

1. The address at which the last call to a nested subfunction was issued.
2. The routine to which this call was directed.

There is an instruction in the exit procedure code contained within each CSECT
to insure that the first byte following the last active entry contains an end-of-list
marker. (Note that X'OO' and X'FF' are considered end-of-list markers.)

Tracking GETMAIN/FREEMAIN Activity

GETMAIN/FREEMAIN tracking provides the recovery routine with the
information it needs to automatically issue FREEMAINs against those areas of
main storage that have been acquired and not yet freed by VSAM catalog
management. The GETMAIN/FREEMAIN tracking function is implemented as
follows:

1. A 256-byte contiguous area is defined in the CCA. The area consists of:

a. A 248-byte tracking buffer.

b. A single entry GETMAIN/FREEMAIN length list (four bytes) with the
high-order byte initialized to X'80' and the low-order three bytes defined
as CCAMNLEN.

c. The GETMAIN/FREEMAIN address word (CCAMNADR).

2. The ?GETMS and ?FREEMS macros generate code that:

a. Track the operation. This is accomplished by an MVC instruction that
traces the GETMAIN/FREEMAIN length and address by pushing it
(shifting it left) to the bottom (low address) of the 248-byte tracking area.

b. Check for full tracking buffer. If the buffer is full, a spill routine
(lGGPARFS) is called before the tracking MVS instruction is issued.
This spill routine:

1) Issues GETMAIN to obtain a 256-byte spill buffer.

2) Chains this buffer to the end of the spill buffer chain. (Note:Chain
anchor words are located in the CCA.)

3) Copies the CCA tracking buffer into the new spill buffer.

4) Clears the CCA tracking buffer.

c. If the ?GETMS macro call is specified with CLASS(S) for storage
(global), a flag (MNATSCLS) is set in the first byte of the two-word trace
entry to indicate this. Refer to the description of CCAMNCAT, a work
area that is located at CCA + X'308', contained in OS/VS2 Catalog ,4
Management Logic. ~

5-166 MVS Diagnostic Techniques

eMS Function Gate

The CMS function gate assists the recovery routine in determining if DEFINE or
DELETE backout action is required. This gate is represented by a bit
(RVCMSFG) in field CCARVFGl. The bit is turned on by the CMS driver
(IGGPCDVR in module IGGOCLAT) immediately after a successful return from
the check authorization function. The bit is reset upon entry to the CMS cleanup
function (IGGPCCLN in module IGGOCLAT).

Recovery Routine Functions

VSAM's catalog processor recovery routine is labelled IGGPCMRR (CSECT
IGGOCLA9). This recovery routine is entered from MVS's recovery termination
manager (RTM) whenever an error or interruption occurs either in VSAM catalog
management or in any successor routine that VSAM catalog management can
cause to receive control. A pointer to the ST AE diagnostic work area (SDW A) is
passed as input to IGGPCMRR. IGGPCMRR performs the following functions.
(Functions 2-13 are performed only when the CCA is marked valid, that is,
RVCCAV=ON.)

1. Retrieves the CCA pointer from the SDW A and puts it into register 11.
2. Saves the RTM return address in CCARI4S.
3. Saves the SDWA pointer in CCASDWAP.
4. Produces diagnostic output.
5. Initializes register 13 to point to the first register save area.
6. Cleans up RPLs (if required).
7. Determines if backout is to be performed.
8. Checkpoints the CCR (if required).
9. Drops catalog orientation.
10. Frees storage (using GETMAINJFREEMAIN tracking information).
11. Frees GETMAINJFREEMAIN tracking spill blocks (if any exist).
12. Performs DEFINE/DELETE backout (if applicable).
13. Restores the RTM return address and the SDWA pointer.
14. Frees the CCA.
15. Returns to RTM indicating that RTM should continue with termination.

The following sections describe the more complex of these recovery routine
functions in greater detail.

Diagnostic Output (Function 4)

Diagnostic output is produced except in those situations where the recovery
routine is invoked only for clean up type functions, such as CANCEL.
Diagnostic output can be produced in two forms:

1. Information is placed in a variable recording area (SDWAVRA) within the
SDWA. This data is written to the SYSl.LOGREC data set as part of an
entry describing the error.

Section 5. Component Analysis 5-167

Backout (Function 7)

This variable data is formatted as follows:

Byte Length Description of Data

0(0) 8 VSAM catalog processor module name - 'IGCOCLA1'
8(8) 3 IGGOCLA1's entry point address
I 1 (B) 8 Procedure name of the last-called routine
19(13) 3 Address of the last-called routine
22(16) 8 Procedure name of the routine that called the last-called routine
30(1 E) 3 Address of the CALL to the last-called routine
33(21) 4 The characters 'CPL = '
37(25) 28 A copy of the user's CTGPL

2. An SDUMP is taken (if allowed by the system).

Backout is performed for DEFINE or DELETE requests (except for DEFINE or
DELETE catalog requests) when the eMS function gate is active (RVCMSFG =
ON). When backout is to be performed, a switch (RVESBOR) is set. The
backout function (Function 12) is described later in this chapter.

Drop Catalog Orientation (Function 9)

This function uses the normal IGGPRPLF subfunction to perform the RPL
freeup/DEQ functions.

Storage Freeup (Function 10)

This function frees all the storage (with the exception of the CCA and any
existing tracking spill blocks) that has been acquired and is still owned by the
current VSAM catalog management request. Storage freeup is done as follows:

1. The GETMAINJFREEMAIN tracking data is scanned starting at the first
spill block (if any) and following the chain of spill blocks. When the last spill
block has been processed, the scan continues with the first valid entry in the
CCA tracking buffer. This first scan selects and eliminates paired entries; a
paired entry consists of two entries with matching storage addresses, which
indicate that the storage area in question has already been freed.

2. The tracking data is scanned again. During this second scan, each valid
remaining entry is processed as follows:

a. The length and address of the storage to be freed are extracted from the
entry.

b. The subpool is determined from a switch setting within the entry.

c. A ?FREEMS macro is issued to free the main storage. This macro
specifies "RFR (NO)" to prevent recursive tracking.

5-168 MVS Diagnostic Techniques

DEFINE/DELETE Backout (Function 12)

This function attempts to preserve catalog integrity by cleanup up
partially-completed DEFINE or DELETE operations. It uses the normal
DELETE function to accomplish this. The switch indicating that backout is
required is tested. If this switch is on, the following actions are performed:

1. A backout work area is obtained.

2. A DELETE CTGPL is constructed in the backout work area. This CTGPL
is set up to cause a DELETE of the object that was being defined (with
DEFINE) or deleted (with DELETE) whenever the error occurred.

3. The CCA is rebuilt as follows:

a. CCACPL, CCASZ, CCATCB, CCASDWAP, CCARI4S, and
CCARVFGI are saved (in the backout work area).

b. The complete CCA is cleared.

c. The previously-saved fields (with the exception of CCACPL) are restored.

d. CCAPCL is initialized to point to the CTGPL, which was built into the
backout work area.

e. CCAID, CCAURAB, CCAROREC through CCAR5REC, CCAEDXFF,
CCAMNPTR, CCAMNLLP, CCAMNLL, and register 13 are
reinitialized to their original values.

f. CCAF2SYS is set on.

g. RVESBO is set on to indicate that backout is in control.

4. The CMS driver (IGGPCDVR is invoked which then invokes the DELETE
function; when the DELETE action is complete, control is returned to the
recovery routine.

5. The CCR is checkpointed (if required).

6. Catalog orientation is dropped (via a call to IGGPRPLF).

7. CCACPL is restored.

8. The backout work area is freed.

9. Any spill blocks acquired during the backout process are freed.

Section 5. Component Analysis 5-1'69

Debugging Aids

The control block structures for the VSAM catalog reside in the CSA. There is a
built-in communications vector table (CVT) debug word which allows you to get
a console dump at the time of the failure. This word is located at CVT+ X'108'
and is examined by module IGGOCLC9 at the end of each catalog request.
Following are the contents of the CVT debug word:

Byte 0 (X'IOS') bits 0-3 must remain unchanged.

bit 4 not used by catalog.

bit 5 = 1 causes message IEC3311 to be issued when condition specified in byte 1
(X'109') is met. IEC3311 contains the name of the catalog module which
detected the error.

bit 6 not used by catalog

bit 7 = I prevents catalog FRR (IGGOCLA9) from freeing the catalog
communications area (CCA) so that it is available in the dump.

Byte I (X'109') Condition for which action specified at location X'IOA-IOB' is to be taken.

X'OI' -

X'02' -

X'03' -

take action at end of every catalog request

take action for any non-zero catalog return code

take action for return codes other than those considered to be
"normal." (The following are considered to be normal return
codes - X'OO, 08, 24,28, 2C, 4C, 8C' and reason codes X'28, BC,
and FO'.)

X'04' to X'FF' - take action only when catalog return code equals value in this
byte.

Bytes 2 and 3 (X'IOA-IOB')
Action to be taken on above condition:

X'07FE' - return immediately to in line catalog code and continue processing. This·
setting, in conjunction with bit 5 of byte 0, causes no action other than
message IEC33 II.

X'07FF' - will cause loop here at CVT + X' lOA' to allow console dump of failing
ASID. To break job out of loop, either cancel the job or set these bytes
to X'07FE' to continue processing.

When message IEC331I appears by itself, use the above CVT trap to get a dump
of the failure. When messages IEC3311, IEC3321, and IEC3331 appear together,
the error is the result of a call to record management. Message IEC3331 contains
the record management return code in the form Lxxx (for logical error) or Pxxx
(for physical error) where xxx = decimal return code. In these cases use the CVT
trap discussed earlier in the Record Management Debugging Aids section of
VSAM component analysis.

In situations where an attempt to open a VSAM catalog results in message
IEC1611 004-080, it is difficult to determine the exact nature of the problem
because there are many conditions which can cause this error. The best place to
trap dump. is at label 'CAPERR' in modules IFG0191X and IFG0191Y. Register
14 at that point will be in the calling routine which detected the failure.

5-170 MVS Diagnostic Techniques

It is sometimes necessary to examine the records in the catalog as part of the
problem analysis. The following is an example of the access method services job
necessary for this.

EXEC PGM=IOCAMS //PRINT
//STEPCAT
//001
//SYSPRINT
//SYSIN

00 OSN=catalognarne,OISP=SHR
00 OSN=catalognarne,OISP=SHR
00 SYSOUT=A

PRINT
/*

00 *
INFILE (001)

The following ENQs are issued for catalog processing:

Major Name Minor Name

SYSIGGVl MCATOPEN

SYSIGGV2 catalogname

SYSVTOC volser

SYSZCAXW CAXW

SYSZPCCB PCCB

SYSZTIOT asid

IEZIGGV3 addr of caxwa

Modules

IGGOCLAC
IGGOCLAD

IGGOCLA3

IGGOCLBU

IDACATII
IDACAT12
IGGOCLBG

IGGOCLA3

IDACATII
IDACAT12
IGGOCLAD

IGGOCLA3

Reason

Open master catalog

Assign RPL processing

Read/Write format 4 DSCB

Open, close, or delete
Catalog request

While building PCCB for catalog open

Open and close of catalog

Component recovery area (CRA) orientation

While Caxwa RPL count is being altered.

Section 5. Component Analysis 5-171

Allocation/Unallocation

Functional Description

Allocation

This section is divided into four parts. Part one provides a description of the six
major functional areas of allocationjunallocation and the way in which they
interrelate. Parts two, three, and four contain general debugging aids, debugging
hints, and reason codes.

Figure 5-33 illustrates the control-flow discussion that is presented in the
following paragraphs.

JFCB
Housekeeping

Figure 5-33. Relationship of the Six Major Functions of Allocation/Unallocation

The flow through allocation following either batch initialization or dynamic
initialization is the same:

• Batch/dynamic initialization and control invokes JFCB housekeeping.

• Batch/dynamic initialization and control then invokes common allocation.

• Common allocation invokes volume mount and verify (if volume unloading or
mounting is needed):

5-172 MVS Diagnostic Techniques

Unallocation

At batch/dynamic unallocation, the control flow is as follows:

• Batch/Dynamic initialization and control invokes common unallocation.

• Common unallocation invokes volume mount and verify (if any volume
unloading is needed).

• Batch initialization and control invokes volume mount and verify (if volume
unloading is needed).

Batch Initialization and Control

Batch initialization and control uses the following control blocks:

• Job control table (JCT)
• Step control table (SCT)
• Linkage control table (LCT)
• Job step control block (JSCB)

The SCT is needed to locate the chain of step I/O tables (SlOTs) and job file
control blocks (JFCBs) in the scheduler work area (SW A). A SlOT and its
corresponding JFCB are constructed by the converter/interpreter for each DD
statement in a job step's JCL. Allocation allocates one step at a time. The SlOTs
and JFCBs for a step are read by batch initialization and control when initialifing
for the allocation or unallocation of a step. At step initiation, space for the task
I/O table (TIOT) ;s obtained, and the JSCB is initialized to point at the top of the
chain of data set association blocks (DSABs), which are actually constructed by
common allocation. At job step allocation, the SlOTs and JFCBs are passed as
the main input, first to JFCB housekeeping, and then to common allocation. At
job step unallocation, the SlOTs and JFCBs are passed as the main input to
common unallocation. At the end of the job, batch initialization and control uses
a volume unload table (VUT) to determine those private volumes that belong to
the ending job and that are to be unloaded. Unloading is done by volume mount
and verify (VM&V).

Dynamic Initialization and Control

When dynamic initialization and control is invoked, the job step's SlOTs and
JFCBs must be read. This is done only for the first dynamic allocation during a
given job step. The caller's parameters are syntax- and validity-checked and used
to build a SlOT and JFCB, just as in a DD statement. Existing allocations
(represented by an existing DSAB and TlOT entry) are used where possible to
satisfy the request. If the requested data set is already allocated, certain
information is copied from the SlOT and JFCB of the existing allocation to those
of the new allocation. By using the existing allocation, invocation of JFCB
housekeeping and common allocation is avoided. If an existing allocation cannot
be used to satisfy the dynamic request, the SlOT and JFCB built by dynamic
initialization and control are used, first as input to JFCB housekeeping, then to
common allocation. After common allocation completes, the SIOT(s)
representing the request is chained to the step's other SlOTs.

Section 5. Component Analysis 5-173

JFCB Housekeeping

Common Allocation

If dynamic unallocation is being requested, the parameters must be syntax- and
validity-checked. The correct SlOT is located and passed to common
unallocation.

The major input to JFCB housekeeping is the SlOT chain, each SlOT having an
associated JFCB. JFCB housekeeping completes needed information about either
batch or dynamic allocation requests that was not placed in SlOTs and JFCBs by
the converter/interpreter. Allocation parameters that JFCB housekeeping
completes are the name, volume, unit, DCB, and disposition of the data set.
Before processing these parameters, JFCB housekeeping, using dynamic
allocation, allocates to the initiator's task control block (TCB) any STEPCAT
DD or JOBCAT DD statements. A private catalog control block (PCCB) is built
for each such catalog allocated, and all SlOTs are processed, one at a time. This
JOB CAT /STEPCAT processing takes place in a batch environment only.
Information for a request is placed in the JFCB housekeeping work area as a
SlOT /JFCB pair, is processed and reinitialized for each SlOT. If volume
information was not specified for an old data set, the passed data set information
(PDI) is searched (only in a batch environment) in the SWA to locate volume and
unit information. If not found, or if the data set name is a generation data group
(GDG) single name, a catalog LOCATE is issued to obtain the volume and unit
information. If volume reference is specified in the SlOT, either the data set
referenced is located in the PDI or via catalog LOCATE, or the SIOT/JFCB of
the referenced DD statement is found. The source of volume and unit
information is recorded in the JFCB housekeeping work area; the information is
then retrieved and placed into the SlOT /JFCB being processed. A DCB reference
to a cataloged data set is resolved by LOCATE and OBTAIN. A DCB reference
to a DD statement is resolved by going to the JFCB of the referenced DD
statement and then issuing an OBTAIN. Finally, disposition-related information
is entered into the SIOT/JFCB.

Common allocation receives as input the SlOTs and JFCBs of allocation requests.
For requests that do not require a unit to be allocated, namely, DUMMY, VIO,
and subsystems, DSAB and TIOT entries are built and the SlOT is marked
"allocated." For each request requiring units, a list of eligible devices called the
eligible device list (EDL) is constructed, and pointed to by the requestor's SlOT.
An entry is built into the volunit table representing each volume/unit required.
Inter-DD relationships are represented primarily by setting fields in the VU table
for use by the remainder of common allocation.

The remainder of common allocation is divided into:

• Fixed Device Allocation
• TP Allocation
• Generic Allocation
• Recovery Allocation

Common allocation control invokes each of these functions in the order indicated.

If all requests have been allocated, any requests needing volumes mounted have
volume mount and verify (VM&V) RBs chained to their SlOTs. These VM&V

5-174 MVS Diagnostic Techniques

Common Unallocation

RBs are chained to each other and sent to VM&V on input. VM&V mounts the
necessary volumes.

Fixed Device Allocation

Allocation for any request that can be allocated to a volume on a
permanently-resident or reserved DASD uses fixed device allocation. The
allocation of a request (VU entry) involves:

• The selection of the device
• The building of the DSAB (pointed to by a SlOT)
• The building of a TIOT entry (pointed to by a DSAB)
• Setting indicators in the unit control block (UCB) of the selected device
• Issuing DADSM commands

TP Allocation

This is a small specialized operation for teleprocessing lines. TP lines, once
allocated, remain allocated whether online or not, and cannot be reallocated.

Generic Allocation

Generic allocation attempts to allocate the remaining requests that were not
allocated by previous processes. Requests for tapes, demountable direct access
volumes, graphics devices, and unit record devices are not considered until generic
allocation. A special set of tables, the generic allocation tables are built to
represent the units eligible for each request (VU entry). These tables are used
throughout generic and recovery allocation. Generic allocation processes requests
not sequentially but on the basis of generic device type. The order in which
generic device types are chosen is determined by a table, built at SYSGEN time,
called the device preference table.

Recovery Allocation

Requests left unallocated by previous steps are allocated by recovery allocation.
The main functions of recovery allocation are to interface with the operator to
request that offline devices be brought online, and, once online, to allocate these
devices to unallocated VU entries.

The input to common unallocation is a chain of RBs, each of which points to a
SlOT to be unallocated. Disposition processing uses the SlOT IJFCB and
common unallocation RB to give the data set a disposition. Units allocated to
each SlOT are unallocated by using the TIOT entry. Private tape volumes are
unloaded and the VUT is updated with volume serials to indicate which of the
job's volumes were left mounted at unallocation time, but need demounting by
batch initialization and control at end of job. Data sets are released (dequeued)
by using the data set enqueue table to determine if the data set's last use in the
job is in the current step. All volumes used by a step are released by a generic
dequeue if unallocation is for a step. In the dynamic unallocation environment,
only the subject request's volumes are dequeued.

Section 5. Component Analysis 5-175

Volume Mount and Verify

Volume mount and verify (VM&V) mounts, verifies, and unloads volumes.
VM&V is driven by a chain ofVM&V request blocks. A VM&V count table is
built in which the numbers of mount, verify, and unload requests are maintained.
In mounting and verifying direct access volumes, VM&V builds a mount
verification communication area (MVCA) in CSA. This contains a pointer to an
MVCA extension (MVCAX), which VM&V builds in the user region. The
MVCAX contains a device-end ECB and UCB pointers for each device for which
a mount has been issued. After issuing mounts and building the MVCA/MVCAX
blocks, VM&V waits for the device-end ECB in the MVCAX. Whenever a
device-end occurs on a unit that VM&V is waiting for, a nucleus routine
(IEFDPOST) posts the device-end ECBs in all MVCAXs. Any VM&V that is
waiting looks at all UCBs being waited for. Volume serials for DASD are read
and verified when the devices become ready.

Volume unloading is accomplished for DASD by signaling a volume unload event
to the event notification facility (ENF), issuing an unload message to the
operator, and clearing volume-related data from the UCB. For tape volume
unloading, a physical rewind/unload operation is also performed. Virtual volume
unloading is accomplished by signaling a volume unload event to the event
notification facility (ENF), issuing an unload SVC (SVC 126), and clearing
volume-related data from the UCB.

General Debugging Aids

Described here in general terms are the following:

• Allocation Module Naming Conventions
• Registers and Save Areas
• Common Allocation Control Block Processing
• EST AE Processing

Allocation Module Naming Conventions

All Allocation module names have the following format:

IEF B4

IEF indicates the module is a scheduler module. The fourth character has the
following meaning:

• If A, the module is part of common allocation, common unallocation, JFCB
housekeeping, or volume mount and verify.

• If B, the module is part of batch allocation or batch unallocation.

• If D, the module is part of dynamic allocation or dynamic unallocation.

• If E, the module is part of an externally available allocation service.

• If H, the module uses cross memory operations.

B4 identifies the module as a part of allocation. The last two c~racters are a
unique module identifier.

5-176 MVS Diagnostic Techniques

Registers and Save Areas

Allocation follows standard register saving and usage conventions. Register 13 is
used as a save area pointer, register 14 as a return address, and register 15 as a
branch address. Register save areas are chained in the standard manner.

Since allocation is coded completely in top-down fashion, it is a simple matter to
find the flow of control leading to the current point of processing by tracing back
through the save areas. All allocation modules have identifiers just after the
beginning of the module, which contain the module name in EBCDIC. A graphic
representation of control flow can be found under "Allocation/Unallocation" in
"Module-to-Module Control Flow" of OS/VS2 System Logic Library.

Space for the allocation save areas is obtained in a unique manner, which can be
of help in debugging. On entry to allocation, a 4K block of space is obtained
from subpool 230. This block is used to contain the save area and data area for
each module called, until the block is full, at which time another 4K block is
obtained. Save areas of modules that had been given control but then returned
are still valid, that is not freed, if the 4K block in which they had been placed has
not been freed. Allocation does not keep the address of a control block in any
particular register. Register 13 always points at the save area of the module in
control. Register 12 is usually the base register of the module in control.

Common Allocation Control Block Processing

This section graphically describes the control blocks used by common allocation
and explains how these control blocks reflect allocation processing. Figure 5-34
shows the control blocks which are input to common allocation. Data set
association blocks (DSABs) and their associated task input/output table (TIOT)
entries are shown as input. Note that DSABs exist only if common allocation
was called by dynamic allocation. When batch allocation calls common
allocation, there are no DSABs, but there is a DSAB queue descriptor block
(QDB).

The first major step in common allocation processing is the construction of the
allocation work area (ALCWA). Following this, requests that do not require
units, such as DUMMY and SYSOUT DD requests, are allocated. A DSAB and
TIOT entry are built for each of these requests as they are allocated. SIOTETIO
is initialized to point to the DSAB whenever it is created for a given SlOT. Bit
SlOT ALCD is set to 1 whenever a request (SlOT) is fully allocated.

After allocating these requests, the volunit table (VU table) is created to represent
the unit requirements of remaining (unallocated) SlOTs. In addition, an eligible
devices list (EDL) is created for each remaining SlOT. The EDL contains the
unit control block (UCB) pointers to all UCBs representing devices eligible for
allocation to the SlOT. (A device is "eligible" at this point whether on or offline,
either logically or physically.) Figure 5-35 shows the relationship of the
ALCW A, SlOTs, etc., after the VU table and EDLs are built. The first SlOT on
the chain (SlOT A) represents a SYSOUT DD statement that has already been
allocated. The second SlOT on the chain (SlOT B) represents a SlOT that
requires one or more units. It is shown to have 2 volunit entries, which indicates
the total number of units that can be allocated to that SlOT. SVOLUNNO in the
SlOT contains the number of VU entries for a SlOT. (Note that the total
number of units allocated to a request can exceed the number of units requested.

Section 5. Component Analysis 5-1 77

This happens, for example, if a specifically requested volume was found to be
mounted with the permanently-resident mount attribute.}

Problem Program
JSCB DSAB ODB DSAB (0) TIOT

DSOFRSTP

DSOLASTP +X'S' TIOENTRY
+X'140' JSCDSABO

+X'10' DSABTIOT UCB

TIOENTRY

r I
+X'S'

DSABTIOT

Virtual Address of 1st SlOT to Allocate

JFCB

+X'9S'
1-------1'}{

+X'9C'

+X'AO'

SIt.. JFCB

JFCB>"

Figure 5-34. Common Allocation Input

5-178 MVS Diagnostic Techniques

SlOT 'A' (SYSOUT)

+ X'2B' (SIOTAlCD) • X'02'

AlCWA +X'98'

~==~
+X'S' SIOT1 P (• 1st SlOT)

+X'50' VOlUNPTR

+X'88' SIOTEDLP
1-------1

+X'SC' SVOLUNAD 1-------.....
+X'98' SIOTNPTR

+X'AS'
t--------t

+X'8S' SIOTEDlP

+X'8C' SVOlUNAD

+X'98' SIOTNPTR (=0)

TJOT

DSABTIOT
I :J

TIOENTRY

(

EDl

VU entry no. 1 for SlOT 'B'

VU entry no. 2 for SlOT 'B'

Figure 5-35. Common Allocation Control Blocks After Construction of Volunit Table and EDLs

Section 5. Component Analysis 5-179

ESTAE Processio2

Common allocation processing is reflected by the status of request's SlOT and
VU entries. As each VU entry requiring a unit is allocated, bit VOLALOC (bit 0
(X'80') at + 7 into the VU entry) is set on. Bit VDEVREQD (bit 2 (X'20') at + 7
into the VU entry), if on, indicates that the VU entry requires a unit. Once all
VU entries with VDEVREQD = 1 for a given SlOT are allocated and
VOLALOC= I, the SlOT is marked allocated by setting on SIOTALCD (bit 6
(X'02') at X'2B' into the SlOT).

As each unit is allocated to a request, that allocation is reflected in (I) the unit's
UCB by setting UCBALOC (bit 4 (X'08') at + 3 in the UCB) on, and in (2) the
request's TIOT entry by placing the UCB pointer into field TIOUCBP in the
TIOT entry. (TIOUCBP is at a X'lO' into a TIOT entry for the first unit
allocated, at + X'14' for the second, etc.) The first time a VU entry for a SlOT is
allocated, a DSAB and TIOT entry are created. For subsequent VU entries
allocated to a SlOT, the DSAB and TIOT entries are updated.

All of allocation is protected from abends by EST AE processing. Only one
EST AE is issued during allocation. The batch allocation EST AE exit routine,
IEFAB4E4, performs a retry, causing routine IEFAB4E3 to get control.
IEF AB4E3 returns to the initiator with a failure return code, causing the initiator
to fail the job. All other EST AE exit routines percolate to the next higher level of
EST AE protection. In a batch unallocation environment, this causes the initiator
to terminate.

When an abend occurs in a batch environment, message IEF1971 "SYSTEM
ERROR DURING ALLOCATIONjUNALLOCATION" is issued to SYSOUT
by EST AE processing. If the abend occurs in batch allocation or a routine called
by batch allocation, such as JFCB housekeeping, message IEFI971 is issued to the
job's SYSOUT. If the abend occurs during batch unallocation, the same message
goes to the initiator's SYSOUT.

An SVC dump is always taken if an abend occurs when allocation is in control.

Unit Allocation Status Recording

Unit allocation status recording uses the control blocks in the allocation address
space (ALLOCAS) to record the use count of all units that are allocated to all
address spaces. (The count is kept in the DALTUSE fields in the DALTs.) Each
time that a unit is allocated to an address space, the use count is increased by one;
and each time that the unit is unallocated from the address space, the use count is
decreased by one. The value in the DAL TUSE field represents the number of
times that a unit is currently allocated to a given address space.

By keeping count of each time that a unit is allocated to each address space:

• When the DISPLAY U"ALLOC operator command is issued, message
IEEI061 displays allocation information which includes the jobnames and
ASIDs of each job to which the unit is allocated.

• I(an address space is abnormally terminated, allocation can unallocate shared
units from the terminating address space. (Without unit allocation status

5-180 MVS Diagnostic Techniques

recording, allocation does not unallocate shared units from an abnormally
terminating address space.)

The control blocks in the allocation address space are created and initialized by
the allocation module IEFHB4I1 during system initialization. The control blocks
are:

ADB - Allocation descriptor block - anchors the other control blocks in the allocation address
space.

DAIT - Display allocation index table - contains an array of eight-byte entries starting at offset X'8'.
An entry contains an index value into the DAL Ts for each unit defined during system
generation and the address of the UCB for each unit. A unit address, which is the same as
the UCBNAME field in the unit's UeB, is used as the index to the unit's entry in the DAIT.

Note: If the unit address in the UCBNAME name field does not equal the unit address that
was used to index into the DAlT, then a DDR swap has occurred. In this case, the unit
address in the located UCBNAME field is used to index into the DAIT to locate the proper
entry for the unit.

DALT - Display allocation lookup table (one for each ASID) - contains an array of two-byte entries
starting at offset X'8'. An entry contains the use count for each unit that is allocated to an
address space. The index value found in the DAIT for a given unit address is used to index
into the DALT to locate the use count for the unit. Index values are used (in the DAIT) so
that the DAL Ts only need to contain as many two-byte use count entries as there are units
defined during initialization (rather than a maximum number of entries, 4096).

DVT - Display allocation vector table - contains an array of four-byte entries starting at offset X'8'.
An entry contains the address to the DAL T for each possible ASID in the system. An ASID
+ 1 value is used as the index into the DVT to locate the address of the DALT for a given
ASID. The DALT for ASID 000 is used by allocation to associate a use count of those units
for which allocation could not determine the ASID that allocated the unit (such as those
units that are allocated during IPL before unit allocation status recording is initialized).

Important fields in these control blocks are:

DAITUNIT - two-byte field containing the index .value into the DALTs for each unit.
DAlTUCB - four-byte field containing the pointer to the UCB for each unit.
DVTDALT - four-byte field containing the pointer to the DALT for each ASID.
DALTUSE - two-byte field containing the use count for each unit allocated to each ASID.

Figure 5-36 shows the control block structure of the control blocks in the
allocation address space (ALLOCAS).

Section 5. Component Analysis 5-181

Allocation address space (ALLOCAS)

CVT' JESCT UCB

'JEST

X'128' CVTJESCT X'D' UCBNAME

X'48' JESALLOP

Nucleus

Private area

ADB DAIT

Unit
000 ~------------~ 'ADS'

X'4' ADBDAIT

X'8' ADBDVT

F~f T _____ T

ma T'-___ --'

T T

Figure 5-36. ALLOCAS Control Block Structure

5-182 MVS Diagnostic Techniques

Important fields in the JES control table (JESCT) related to allocation -status
recording are:

Offset Length

X'48' 4

X'4C' 2

X'4E' 1
10

01..

X'54' 4

ALLOCAS Recovery Considerations

Name

JESALLOP

JESALLOA

JESALLOF
JESUASR

JESUASF

JESAUCBS

Description

Contains the address of the allocation descriptor block (AOB).

Contains the ASIO value of the allocation address space
(ALLOCAS).

ALLOCAS flags:
Indicates that unit allocation status recording was initialized
successfully and is active.
Indicates that unit allocation status recording has failed and is
not active.

Contains the total number of UCBs in the system.

If the allocation address space (ALLOCAS) abnormally terminates, module
IEFAB4E6 sets bit JESUASF on, sets bit JESUASR off, records the error to
SYS1.LOGREC, issues message IEFI00I, and takes an SVC dump. In this case,
allocation continues to process requests but without unit allocation status
recording.

ALLOCAS Debugging Hints

To help you debug problems with unit allocation status recording, this topic
contains procedures to determine:

• The UCB address corresponding to a DALTUSE field
• The ASID corresponding to a DALTUSE field
• The DAIT entry for a unit address
• The DVT entry for an ASID
• The DAL T entry {DAL TUSE field) for an ASID and unit address.

In the procedures that follow, use Figure 5-36 to determine the location of the
DAIT and DVT control blocks.

Figure 5-37 (5 parts) shows a sample dump of the ALLOCAS address space. The
following procedures, formulas, and examples refer to the circled letters shown on
the ALLOCAS dump. (Note that the examples indicate that a DDR swap has
occurred between unit 351 and 354.)

1. Determining the UCB address corresponding to a DALTUSE field.

a. Determine the address of the two-byte DALTUSE field (circle A) in the
dump. The DALTUSE field contains the use count (0005) for the unit
and begins on a halfword boundary.

b. Determine the beginning address of the DALT (circle B) that the
DALTUSE field is part of. To do this, locate the acronym DALT
(X'C4CID3E3') that precedes the DALTUSE field.

Section 5. Component Analysis 5-183

c. Find the index value of the DALTUSE field into the DAL T by using the
formula:

Index value = A .. (B+8) + 1
2

Where:

A is the address of the DAL TUSE field
B is the address of the DALT

Example: A71C7E-(A71918 +8) + 1 = OlBO
2

The index value into the DALT is OlBO.

d. Scan the DAIT (circle C) to find the DAIT entry containing the index
value (OIBO) found on step c. Find the index value of the DAIT entry
into the DAIT by using the formula:

Index value = D-(C + 8)
8

Where:

D is the address of the DAIT entry
C is the address of the DAIT

Example: A68190-(A666E8 + 8) = 354
8

The index value into the DAIT is 354.

Note: The index value into the DAIT is usually equal to the
UCBNAME field of the UCB representing the unit.

e. The fullword (circle E) after the DAIT index value is the pointer to the
UCB (circle F) for the unit. In the example, the UCBNAME field (at
X'D') indicates the unit address (circle G) is 351.

Note: In th~ example, because the UCBNAME field (351) is not equal to
the index value into the DAIT (354), a DDR swap has occurred between
units 351 and 354. In the example, the DALTUSE field (at circle A)
represents the use count for unit address 351.

2. Determining the ASID corresponding to a DALTUSE field.

a. Determine the beginning address of the DALT (circle B) that the
DALTUSE field (circle A) is part of.

b. Scan the DVT (circle H) to locate the entry that contains the address
(circle I) of thejDALT found on step a.

5-184 MVS Diagnostic Techniques

c. Find the index value of the DAL T entry into the DVT by using the
formula:

Index value = I-(H + 8)
4

Where:

I is the address of the DAL T entry
H is the address of the DVT

Example: A6E714-(A6E6FO+8) = 7
4

The index value into the DVT represents ASID 7.

3. Determining the DAIT entry for a unit address.

a. Determine the beginning address of the DAIT (circle C).

b. Find the address of the eight-byte DAIT entry (for an example unit
address of 354).

Entry address =,C+8+(Ux8)

Where:

C is the address of the DAIT
U is the unit address

Example: A666E8 + 8 + (354 x 8) = A68190

The address of the DAIT entry (for unit 354) is A68190.

c. The first half word of the DAIT entry (circle D) is the index value (OIBO)
into the DALT for the given unit address 354.

d. The second fullword of the DAIT entry (circle E) is the pointer to the
corresponding UCB (circle F) for the unit.

e. The UCBNAME field (at X'D') in the UCB contains the UCB's unit
address.

Note: In the example, the unit address (circle G) in the UCBNAME field is
351. Because the UCBNAME field does not equal the unit address used on
step b, a DDR swap has occurred between units 354 and 351. To find the
proper DAIT entry for unit 354, repeat the procedure and use the
DDR-swapped unit address of 351 in the formula on step b. (If the
UCBNAME field is still not equal to 354, then more than one DDR swap has·
occurred; in this case, repeat the procedure again.)

Section 5. Component Analysis 5-185

4. Determining the D VT entry for an ASlD.

a. Find the address of the DVT entry in the DVT (circle H) for a given
ASID (for example, ASID 7) by using the formula:

Entry address = H + 8 + (Sx4)

Where:

H is the address of the DVT
S is the ASID value

Example: A6E6FO + 8 + (7 x 4) = A6E714

b. For ASID 7, the DVT entry is at A6E714 (circle I) which contains the
DALT address A71918 (circle B).

5. Determining the DALT entry for an ASID and unit address.

a. Find the DALT address for a given ASID (for example, ASID 7). See
procedure 4.

b. Find the DALT index value into the DAIT for a given unit address (for
example, 351). See procedure 3. (Be aware of a DDR swap.)

c. Find the address of the DALT entry (DALTUSE field) by using the
formula:

DALTUSE address = B+8+(Lx2)-2

Where:

B is the address of the DAL T
L is the DALT index value

Example: A71918 + 8 + (OIBO x 2) - 2 = A71C7E

d. Address A71C7E (circle A) is the DALTUSE field.

Note: In the examples, a DDR swap has occurred. Refer to the notes on
procedures I and 3 for additional information about howto use these procedures
when a DDR swap has occurred.

5-186 MVS Diagnostic Techniques

CIl
2 o·
=
~

n

~ = (1)

=

~
~
~.
fIl

Vl
I

.......
00
-l

~

i a
u.

~
-;:a
lID
:l
too6

C>

""'"
~

>

8
(")

Fn
~

i

CR1

V005lJlJO
V005lJ60
VOOslJ80
VOOslJAO
VOOslJCO
VOOslJEO
VOOSSOO
VOOss20
VOOs540
VOOSS60
VOOss80
VOOssAO
voossco
V005sEO
VOOs600
V005620
V005640
VOOs660
VOOs680
V0056AO
VOOs6CO
VOOs6EO
VOOs700
VOOS720
V005740
V005760
VOOS780
V0057AO
VOOs7CO
V0057EO
VOOS800
V005820
VOOs8lJO
V005860
V005880
V0058AO
V0058CO
V0058EO
VOOs900
VOOs920
VOOS9lJO
VOOs960
V005980
V0059AO
V0059CO
V0059EO
VOOsAOO
VOOsA20
VOOSA40
VOOsA60
V005A80
V005AAO
VOOsACO
VOOsAEO
VOOsBOO
V005B20
VOOsB40
VOOsB60

00000000
00010100
70000700
00000000
00000000
00000700
00000000
00000000
00000600
00000000
00000000
00000600
00000000
00000000
00000600
00000000
00000000
00000600
00000000
40000000
00000500
00000000
40000000
00000500
00000000
40000000
00000500
00000000
00000000
00000500
00000000
40000000
00000500
00000000
40000000
00000500
00000000
40000000
00000500
00000000
lJOOOOOOO
00000500
00000000
40000000
00000500
00000000
00000000
00000500
00000000
00000000
00000500
00000000
00000000
00000500
00000000
00000000
00000500
00000500

• - Start of the UCB

CD - UCBNAME field

00FF6808 0089FF88
F3F3F3F;l0 fOF10800
00F3F5F 30502009
00FF67B, 0089FFOO
00000 00000000
04F3F 30502009
00FF67B8 0089FFOO
00000000 00000000
04F3F6F1 3050200D
00FF67B8 0089FFOO
00000000 00000000
04F3F6F3 3050200D
00FF67B8 0089FFOO
00000000 00000000
OlJF3F6F5 3050200D
00FF67B8 0089FFOO
00000000 00000000
04F3F6F7 30S0200D
00FFG7B8 OOOOFFOO
00000000 00000000
04F3F7F1 12401009
00FFG7B8 OOOOFFOO
00000000 00000000
04F3F7F3 12401009
00FF67B8 OOOOFFOO
00000000 00000000
04F3F7FS 12401009
00FF67B8 OOOOFFOO
00000000 00000000
04F3F7F7 12001008
00FF67B8 OOOOFFOO
00000000 00000000
OlJF3C1F1 12501009
00FFG7B8 OOOOFFOO
00000000 00000000
,04F3C1F3 12501009
00FF67B8 OOOOFFOO
00000000 00000000
OlJF3C1F5 12501009
00FF67B8 OOOOFFOO
00000000 00000000
04F3C1F7 12501009
00FF67B8 OOOOFFOO
00000000 00000000
04F3C2F1 11001009
00FF67B8 OOOOFFOO
00000000 00000000
04F3C2F3 12001009
00FF67B8 OOOOFFOO
00000000 00000000
04F3C2F5 12001008
00FF67B8 OOOOFFOO
00000000 00000000
OlJF3C2F8 115C1003
00FF67B8 OOOOFFOO
00000000 00000000
OlJF3C3FO 10000822
04F3C3Fl 10000822

DUMP OF ALLOCATION ADDRESS SPACE (ALLOCAS)

03510000
00000500
0000E04C
03564002
00000000
0000E08C
0360lJ002
00000000
OOOOEOCC
03624002
00000000
0000E10C
03644002
00000000
0000E14C
03664002
00000000
0000E18C
03700002
00000000
0000E1CC
03720002
00000000
0000E20C
03740002
00000000
0000E24C
03760002
00000000
0000E28C
031\00002
00000000
0000E2CC
03A20002
00000000
0000E30C
03A40002
00000000
000 OE 3 flC
03A60002
00000000
0000E38C
03A80002
00000000
0000E3CC
03B20002,
00000000
0000E40C
03B40002
00000000
0000E44C
03860002
00000000
0000E48C
03B90002
00000000
0000E4CC
0000E4EC

70000700
00000000
00010100
00000700,
00000
00000
OOOOObUO
00000000
00000000
00000600
00000000
00000000
00000600
00000000
00000000
00000600
00000000
00000000
00000500
00000000
40000000
00000500
00000000
40000000
00000500
00000000
40000000
00000500
00000000
00000000
00000500
00000000
40000000
00000500
00000000
40000000
00000500
00000000
40000000
00000500
00000000
40000000
00000500
00000000
00000000
00000500
00000000
00000000
00000500
00000000
00000000
00000500
00000000
00000000
00000500
00000000
00000000
00000000

OO'~~~~~J
F3FOD7

'04F3F5F6
00FF67B8
00000000
04F3F6FO
00FF67B8
00000000
04F3F6F2
00FFG7B8
00000000
04F3F6F4
00FF67B8
00000000
OlJF3F6F6
00FF67B8
00000000
04F3F7FO
00FF67B8
00000000
OlJF3F7F2
00FF67B8
00000000
04F3F7F4
00FF67B8
00000000
04F3F7F6
00FF67B8
00000000
04F3ClFO
00FF67B8
00000000
OlJF3ClF2
00FF67B8
00000000
OlJF3C1FlJ
00FF67B8
00000000
OlJF3C1F6
00FF67B8
00000000
04F3C1F8
00FF67B8
00000000
04F3C2F2
00FF67B8
00000000
OlJF3C2FlJ
00FF67B8
00000000
OlJF3C2FG
00FF6788
00000000
04F3C2F9
00FF67B8
00FF67B8
00F:r67B8

30502009
0189FF88
C1D20801
30502009
0089FFOO
00000000
3050200D
0089FFOO
00000000
3050200D
0089FFOO
00000000
3050200D
0089FFOO
00000000
3050200D
0089FFOO
00000000
12lJ01009
OOOOFFOO
00000000
12lJ01009
OOOOFFOO
00000000
12401009
OOOOFFOO
00000000
1200100B
OOOOFFOO
00000000
12501009
OOOOFFOO
00000000
12501009
OOOOFFOO
00000000
11501009
OOOOFFOO
00000000
12501009
OOOOFFOO
00000000
12501009
OOOOFFOO
00000000
1200100A
OOOOFFOO
00000000
12001009
OOOOFFOO
00000000
1100100A
OOOOFFOO
00000000
115C1003
OOOOFFOO
OOOOFFOO
OOOOFFOO

0000E02C * 351.&' *
03550000 * 333001 *
00000100 * 355.&. < U30PAK *
0000E06C * 356.&. "-*
0357lJ002 * *
00000000 * 357.& *
OOOOEOAC * - 360.& *
03614002 * / .*
00000000 * 361.&. *
OOOOEOEC *.............. 362. &. *
03634002 * *
00000000 * 363.&. *
0000E12C * 36lJ.&. *
03654002 * *
00000000 * 365.&. < *
0000E16C * 366.&. "-*
0367lJ002 * *
00000000 * 367. &. *
0000E1AC * 370 *
03710002 * *
00000000 * 371. *
0000E1EC * 372 *
03730002 * *
00000000 * 373 5 *
0000E22C * 374 5.*
03750002 * *
00000000 * 375 5< *
0000E26C * 376 57.*
03770002 * *
00000000 * 377 5 *
0000E2AC * 3AO.& 5.*
03A10002 * *
00000000 * 3A1.&. 5 *
0000E2EC * 3A2.&. 5.*
03A30002 * *
00000000 * 3A3.& T *
0000E32C * 3AlJ.&. T.*
03A50002 * *
00000000 * 3A5.&. T< *
0000E36C * 3A6.&. T"-*
03A70002 * *
00000000 * 3A7.&. T *
0000E3AC * 3A8. &. T. *
03B10002 * *
00000000 * 3B1 T *
0000E3EC * 3B2 T.*
03B30002 * *
00000000 * 3B3 U *
0000E42C * 3BlJ U.*
03B50002 * *
00000000 * 3B5 U< *
0000E46C * 3B6 U"-*
03880002 * *
00000000 * 3B8.* U *
0000E4AC * 3B9.* U.*
03C00002 * *
03Cl0002 * 3CO U A .. *
03C20002 * 3C1 U B .. *

PAGE 00013

R005lJ40 06
R005lJ60 06
ROOSlJ80 06
ROOS4AO 06
R005lJCO 06
ROOS4EO 06
ROOSSOO 06
R005520 06
ROOSS40 06
ROOS560 06
R005580 06
R0055AO 06
R0055CO 06
ROOS5EO 06
R005600 06
R005620 06
ROOS6lJO 06
ROOS660 06
R005680 06
R0056AO 06
R0056CO 06
ROOS6EO 06
R005700 06
ROOS720 06
R005740 06
ROOS760 06
ROOS780 06
ROOS7AO 06
ROOS7CO 06
ROOS7EO 06
R005800 04
R005820 04
ROOS840 04
ROOS860 OlJ
R005880 OlJ
ROOS8AO OlJ
ROOS8CO 04
ROOS8EO OlJ
ROOS900 04
R005920 OlJ
R005940 OlJ
ROOS960 04
ROOS980 04
R0059AO 04
ROOS9CO 04
ROOS9EO OlJ
R005AOO OlJ
R005A20 OlJ
R005AlJO 04
ROOSA60 OlJ
R005A80 OlJ
ROOSAAO 04
ROOSACO 04
R005AEO 04
R005BOO OlJ
ROOSB20 OlJ
R005BlJO OlJ
ROO~B60 OlJ

Vt
I

00
00

a::
~
~

i'
'CIl O·

~
~.
CIl

~

='': ;:
u.

~
~
~
N

S.
~

§
n
~

j'

0005 DUMP OF ALLOCATION ADDRESS SPACE (ALLOCAS) PAGE 00006

PAGE TABLE FOR SEGMENT A6

0008 0008 0008 0008
0008 0008 13Dl 30C9
lDFl 1321 2E29 3389
2B49 32F9 13El 32C1
000000000000000000000000 000000000000000000000000 000000000000000000000000

08004080000301DOOOOOOOOO
080040800003018800000000
08004080000301C800000000

000000000000000000000000
080040800003017800000000
080040800003018900000000
08004080000301A400000000

000000000000000000000000 000000000000000000000000
08004080000301C400000000 08004080000301Dl00000000
080040800003018AOOOOOOOO 080040800003018BOOOOOOOO

VA66000

VA666CO
VA666EO
VA66700
VA66720
VA66740
VA66760
VA66780
VA667AO
VA667CO
VA667EO
VA66800
VA66820
VA66840
VA66860
VA66880
VA668J1.0
VA668CO
VA668EO
VA66900
VA66920
VA66940
VA66960
VA66980
VA669AO
VA669CO
VA669EO
VA66AOO
VA66A20
VA66A40
VA66A60
VA66A80
VA66AAO
VA66ACO
VA66AEO
VA66BOO
VA66B20
VA66B40
VA66B60
VA66B80
VA66BAO
VA66BCO
VA66BEO
VA66COO
VA66C20

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
00A6E6FO 80A8CC

i1
FO r4C1C9E3 00000000

00020000 00001030 00030000 00001058
00060000 000010D 00070000 000010r8
000]1.0000 00001 OOOBOOOO 00001188
OOOEOOOO 00001 OOOFOOOO 00001208
00120000 00001£/v 00130000 00001290
00160000 00001300 00170000 00001330
001AOOOO 000013BO 001BOOOO 000013EO
00000000 00000000 001EOOOO 00001450
00210000 000014BO 00220000 000014DO
00250000 00001530 00260000 00001550
00290000 000015BO 002AOOOO 000015DO
002DOOOO 00001630 002EOOOO 00001650
00310000 000016BO 00320000 000016DO
00350000 00001730 00360000 00001750
00390000 000017BO 003AOOOO 000017DO
003DOOOO 00001830 003EOOOO 00001850
00410000 000018BO 00420000 00001800
00450000 00001930 00460000 00001950
00490000 000019BO 004AOOOO 00001~DO
004DOOOO 00001A30 004EOOOO 00001A50
00510000 00001ABO 00520000 00001ADO
00550000 00001B30 00560000 00001B50
00590000 00001BBO 005AOOOO 00001BDO
00500000 00001C30 005EOOOO 00001C50
00610000 00001CBO 00620000 00001CDO
00650000 00001D30 00660000 00001D50
00690000 00001DBO 006AOOOO 00001DDO
006DOOOO 00001E30 006EOOOO 00001E50
00710000 00001EBO 00720000 00001EDO
00750000 00001F30 00760000 00001F50
00790000 00001FBO 007AOOOO 00001FDO
007DOOOO 00002030 007EOOOO 00002050
00810000 000020BO 00820000 000020DO
00850000 00002130 00860000 00002150
00890000 000021BO 008]1.0000 000021DO
008DOOOO 00002230 008EOOOO 00002250
00910000 000022BO 00920000 000022DO
00950000 00002330 00960000 00002350
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
009AOOOO 00002300 009BOOOO 000023FO
009EOOOO 00002450 009roooo 00002470

e - Start of the DA IT

00000000

00000000
00000000
00040000
000800'00
OOOCOOOO
00100000
00140000
00180000
001COOOO
001FOOOO
00230000
00270000
002BOOOO
002FOOOO
00330000
00370000
003BOOOO
003FOOOO
00430000
00470000
004BOOOO
004FOOOO
00530000
00570000
005BOOOO
005FOOOO
00630000
00670000
006BOOOO
006FOOOO
00730000
00770000
007BOOOO
007FOOOO
00830000
00870000
008BOOOO
008FOOOO
00930000
00970000
00000000
00980000
009COOOO
00]1.00000

00000000 00000000 00000000 * * R13DOOO 08
ABOVE LINE IS REPEATED
00000000 C1C4C240 00A666E8 * ADB ... y* R13D6CO 08
00000000 00010000 00001008 * .. WO ... ODAIT * R13D6EO 08
00001080 00050000 000010A8 * * R13D700 08
00001120 00090000 00001148 * 8 * R13D720 08
000011A8 00000000 000011C8 * H* R13D740 08
o 0 0 0 1 2 3 0 0 0 1 1 0 0 0 0 0 0 0 0 1 2 5 0 *....... Y . t * R 1 3 D7 6 0 0 8
000012BO 00150000 000012EO * * R13D780 08
00001350 00190000 00001380 * t * R13D7AO 08
00001410 001DOOOO 00001430 * * R13D7CO 08
00001470 00200000 00001490 * t * R13D7EO 08
000014FO 00240000 00001510 * 0 * R13D800 08
00001570 00280000 00001590 * f:. * R13D820 08
000015FO 002COOOO 00001610 * 0 * R13D840 08
00001670 00300000 00001690 * f:. * R13D860 08
000016FO 00340000 00001710 * 0 * R13D880 08
00001770 00380000 00001790 * E:. * R13D8AO 08
000017FO 003COOOO 00001810 * 0 * R13D8CO 08
00001870 00400000 00001890 * f:. * R13D8EO 08
000018ro 00440000 00001910 * 0 * R13D900 08
00001970 00480000 00001990 * f:. * R13D920 08
000019FO 004COOOO 00001A10 * 0.< * R13D940 08
00001A70 00500000 00001A90 *.< + f:.. I E:. •••••• * R13D960 08
00001AFO 00540000 00001Bl0 * 0 * R13D980 oS"
00001n70 00580000 00001B90 * E:. •••••••••••••••• * R13D9AO 08
00001BFO OOSCOOOO 00001Cl0 *•..... 0.* * R13D9CO 08
00001C70 00600000 00001C90 *.)•..... f:..~ ••••••• - •••••• * R13D9EO 08
00001CFO 00640000 00001Dl0 *./ 0 * R13DAOO 08
00001D70 00680000 00001090 * f:. •••••••••••••••• * R13DA20 08
00001DFO 006COOOO 00001El0 * , O.~ * R13DA40 08
00001E70 00700000 00001E90 *._ > E:..? ••••••••••••• * R13DA60 08
00001EFO 00740000 00001Fl0 * 0 * R13DA80 08
00001F70 00780000 00001F90 * t * R13DAAO 08
00001FFO 007COOOO 00002010 * : t O.~ * R13DACO 08
000020700080000000002090 *., = t." * R13DAEO 08
000020FO 00840000 00002110 * 0 * R13DBOO 08
000021JO 00880000 00002190 * t * R13DB20 OS
000021FO 008COOOO 00002210 * 0 * R13DB40 08
00002270 00900000 00002290 * E:. •••••••••••• , ••• * R13DB60 08
000022FO 00940000 00002310 * 0 * R13DB80 08
000023700000000000000000 * E:. * R13DBAO 08
00000000 00000000 00000000 * * R13DBCO 08
00002390 00990000 000023BO * * R13DBEO 08
00002410 009DOOOO 00002430 * 0 * R13DCOO 08
00002490 00A10000 000024BO * E:. * R13DC20 08

~:::J'

~ 0005 DUMP OF ALLOCATION ADDRESS SPACE (ALLOCAS) PAGE 00007 i!.
VA66C40 00A20000 000024DO 00A30000 000024FO 00A40000 00002510 00A50000 00002530 * 0 * R13DC40 08

~ VA66C60 00A60000 00002550 00A70000 00002570 00000000 00000000 00000000 00000000 * t * R13DC60 08
VA66C80 00A80000 00002590 00A90000 000025BO OOAAOOOO 000025DO OOABOOOO 000025FO * 0* R13DC80 08

UII VA66CAO OOACOOOO 00002610 OOADOOOO 00002630 OOAEOOOO 00002650 OOAFOOOO 00002670 * t * R13DCAO 08
~ VA66CCO OOBOOOOO 00002690 00B10000 000026BO 00B20000 000026DO 00B30000 000026FO * ... : 0* R13DCCO 08
.....J VA66CEO 00B40000 00002710 00B50000 00002730 00B60000 00002750 00B70000 00002770 * t * R13DCEO OS

VA66DOO 00B80000 00002790 00B90000 000027BO OOBAOOOO 000027DO OOBBOOOO 000027FO * .. : 0* R13DDOO 08 -;a VA66D20 OOBCOOOO 00002810 OOBDOOOO 00002830 OOBEOOOO 00002850 OOBFOOOO 00002870 * t * R13DD20 08
flO VA66D40 OOCOOOOO 00002890 00C10000 000028BO 00C20000 000028DO 00C30000 000028FO * A B C O* R13DD40 OS
~ VA66D60 00C40000 00002910 00C50000 00002930 00C60000 00002950 00C70000 00002970 *.D E F e.G * R13DD60 OS

VA66D80 00C80000 00002990 00C90000 000029BO OOCAOOOO 000029DO OOCBOOOO 000029FO *.H I 0* R13DDSO 08
~ ,VA66DAO OOCCOOOO 00002Al0 OOCDOOOO 00002A30 OOCEOOOO 00002A50 OOCFOOOO 00002A70 * , e * R13DDAO OS
C) VA66DCO 00000000 00002A90 00D10000 00002ABO 00D20000 00002ADO 00D30000 00002AFO * J •...•.. K L 0* R13DDCO OS

"""
VA66DEO 00D40000 00002Bl0 00D50000 00002B30 00D60000 00002B50 00D70000 00002B70 *.M N o e.p * R13DDEO OS

~
VA66EOO 00D80000 00002B90 00D90000 00002BBO OODAOOOO 00002BDO OODBOOOO 00002BFO *.2 R 0* R13DEOO OS
VA66E20 OODCOOOO 00002Cl0 OODDOOOO 00002C30 OODEOOOO 00002C50 eODFOOOO 00002C70 * ; e * R13DE20 OS
VA66E40 OOEOOOOO 00002C90 00E10000 00002CBO OOE~OOOO 00002CDO 00E30000 00002CFO * S T 0* R13DE40 OS
VA66E60 00E40000 00002Dl0 00E50000 00002D30 OOE60000 00002D50 00000000 00000000 *.U V w e * R13DE60 OS

~ VA66E80 00E70000 00002D78 00E80000 00002098 00E90000 00002DB8 OOEAOOOO 000020D8 *.X Y Z 2* R13DE80 08
VA66EAO OOEBOOOO 000020F8 OOECOOOO 00002E18 OOEOOOOO 00002E38 OOEEOOOO 00002E58 * 8 * R13DEAO 08

t-C VA66ECO OOEFOOOO 00002E78 OOFOOOOO 00002EAO 00F10000 00002EC8 00000000 00000000 * 0 1 H * R13DECO 08
0 VA66EEO 00F20000 00002EFO 00F30000 00002F18 00F40000 00002F40 00F50000 00002F68 *.2 0.3 45 * R13DEEO OS
n VA66FOO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R13DFOO OS

ABOVE LINE IS REPEATED >- VA68000 019EOOOO 000050E8 019FOOOO 00005118 01AOOOOO 00005148 01A10000 00005178 * eY * R1DFOOO OS 00 VA68020 01A20000 000051A8 01A30000 000051D8 00000000 00000000 00000000 00000000 * 2 * R1DF020 OS
~ VA68040 00000000 00000000 00000000 00000000 0000000000000000 00000000 00000000 * * R1DF040 08
c: ABOVE LINE IS REPEATED

i VA680EO 00000000 00000000 00000000 00000000 01A40000 00005208 01A50000 00005238 * .. '" * R1DFOEO 08
VA68100 01A60000 00005268 01A70000 00005298 00000000 00000000 00000000 00000000 * * R1DF100 08
VA68120 00000000 00000000 00000000 00000000 01A80000 000052C8 01A90000 000052F8 * H 8* R1DF120 08
VA68140 01AAOOOO 00005328 01ABOOOO 00005358 00000000 00000000 00000000 00000000 * * R1DF140 08
VA68160 00000000 00000000 00000000 00000000 01ACOOOO 00005388 01ADOOOO 000053B8 * * R1DF160 08
VA68180 "AEOOOO 00005'E. 01AFO'00 .0.05~01.00~000544. 0,.,0000 0000547. * 1• "DF'.' O.
VA681A0 01B20000. 000054A8 01B30000 000054D8 0000000 00000000 00000000 00000000 * 2 * R1DF1AO 08
VA681CO 00000000 00000000 000000000000000 ooooorA 0000000000000000 00000000 * '" * R1DF1CO 08
VA681EO 00000000 00000000 00000000 00000 1 • 01B40' 00005508 01B50000 00005538 * * R1DF1EO 08
VA68200 01B60000 00005568 01B70000 00005 01B80vvv 000055CS 01B90000 000055F8 * H 8* R1DF200 08
VA68220 01BAOOOO 00005628 01BBOOOO 000056~8 00000000 00000000 00000000 00000000 * * R1DF220 08
VA68240 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R1DF240 08
VA68260 00000000 00000000 00000000 00000000 01BCOOOO 00005688 01BDOOOO 000056B8 * * R1DF260 OS
VA68280 01BEOOOO 000056E8 01BFOOOO 00005718 01COOOOO 00005748 01Cl0000 00005778 * Y A * R1DF280 OS
VA682A0 01C20000 000057A8 01C30000 000057D8 00000000 00000000 00000000 00000000 *.B C 2 * R1DF2AO 08
VA682CO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R1DF2CO 08

ABOVE LINE IS REPEATED
VA683EO 00000000 00000000 00000000 00000000 01C40000 00005808 01C50000 00005838 * D E * R1DF3EO 08
VA6840Q 01C60000 00005868 01C70000 00005898 01C80000 000058C8 01C90000 000058F8 *.F G H H.I S* R1DF400 08
VA68420 01CAOOOO 00005928 01CBOOOO 00005958 01CCOOOO 00005988 0000000000000000 * * R1DF420 08
VA68440 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * , * R1DF440 08

til VA68460 00000000 00000000 00000000 00000000 00000000 00000000 01CDOOOO 000059B8 * , * R1DF460 08
(D VA68480 01CEOOOO 000059ES 01CFOOOO 00005A18 01DOOOOO 00005A48 01D10000 00005A78 * Y J•. * R1DF480 08
(') VA684AO 01020000 00005AA8 00000000 00000000 01030000 00005AD8 01D40000 00005B08 *.K L 2.M $.* R1DF4AO OS .-+ VA684CO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R1DF4CO 08 O· VA684EO 00000000 00000000 00000000 00000000 01D50000 00005B38 01D60000 00005B58 * N $.. 0 $.* R1DF4EO 08 ::s VA68500 01D70000 00005B78 01D80000 00005B98 01D90000 00005BB8 01DAOOOO 00005BD8 *.P $.. 2 $.. R $ $2* R1DFSOO 08
~ VA68520 00000000 00000000 00000000 00000000 00000000 0000000000000000 00000000 * * R1DF520 08
('i ABOVE LINE IS REPEATED
0

VA68560 00000000 00000000 00000000 00000000 01DBOOOO 00005BF8 01DCOOOO 00005C28 * $S *.* R1DF560 08

,g e - DAIT entry
0 a - Pointer to UCB ::s
(D

::s
.-+

> ::s
~
'<

rJ)
(;;.

Vl
I

00
\.0

VI ~ 0005 DUMP OF ALLOCATION ADDRESS SPACE (ALLOCAS) PAGE 00010 I (JQ
1--0 = \0 ~ VA69AOO 021.00000 000080CO 021.10000 000080FO 00000000 00000000 00000000 00000000 * 0 * R132AOO 08
0 'VA69A20 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R132A20 08

ABOVE LINE IS REPEATED
Yl VA69A60 00000000 00000000 00000000 00000000 02A20000 00008120 02A30000 00008158 * * R132A60 08

~
. VA69A80 021.40000 00008190 02A50000 000081C8 021.60000 00008200 02A70000 00008238 * H * R132A80 08 W VA69AAO 02A80000 00008270 02A90000 000082A8 00000000 00000000 00000000 00000000 *, * R132AAO 08 -< VA69ACO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R132ACO 08

CI'.l ~ VA69AEO 00000000 00000000 00000000 00000000 02AAOOOO 000082EO 02ABOOOO 00008318 * * R132AEO 08
tJ SID VA69BOO 02ACOOOO 00008350 02ADOOOO 00008388 02AEOOOO 000083CO 02AFOOOO 000083F8 * e.•.••........ . 8* R132BOO 08
~.

... VA69B20 02BOOOOO 00008430 02B10000 00008468 00000000 00000000 00000000 00000000 * * R132B20 08 - VA69B40 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R132B40 08 (JQ
::s ~ ABOVE LINE IS REPEATED
0 e VA69CEO 00000000 00000000 00000000 00000000 02B20000 000084AO 00000000 00000000 * * R132CEO 08
fI) VA69DOO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R132DOO. 08 g.

Yl ABOVE LINE IS REPEATED

~ ~ VA69EEO 00000000 00000000 00000000 00000000 00000000 00000000 02B30000 000084C8 * ~ H* R132EEO 08
CD VA69FOO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R 132FOO 08
0 ABOVE LINE IS REPEATED
=- > VA69FEO 00000000 00000000 00000000 00000000 02B40000 000084FO 02B50000 00008520 * 0 * R132FEO 08 ::s ~ VA6EOOO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R13EOOO 08
.0' ~ ABOVE LINE IS REPEATED
s= 0 VA6E6EO 00000000 00000000 00000000 00000~e.E5E3.0 00000000 00A6E7Fe 00'6EFOO •................ DVT X * "3E6EO 08
CD VA6E700 00A6F604 00A6FD08 00A7040C 00A70B10 001.71214 00A71918 00A7201C 00A72720 * .. 6 * R13E700 08 fI) n

> VA6E720 00A72E2. OOA73528 00.73e2e 00A7.330 00'7'A~OOA75138 00A7583e 00A75F'0 •.............................. - * .,3E720 08
r:n VA6E740 001.76644 00A76D48 00A7744C 001.77. 00A787." 00A78958 00A7905C 00A79760 * "_" .. < .. ie. * ... -* R13E740 08

VA6E760 00A79E64 00A7A568 00A7AC6C 00A7B 00A7BJ 00A7C178 00A7C87C 00A7CF80 * % A ... H~ * R13E760 08
t::I VA6E780 00A7D684 00A7DD88 00A7E48C 00A7EB90 00A7F: 00A7F998 00A8009C 00A807AO * .. 0 U 2 ... 9 * R13E780 08
= VA6E7AO 001.80E1.4 00A815A8 001.81C1.C 00A823BO 00A82AB4 00A831B8 00A838BC 00A83FCO * * R13E7AO 08 a VA6E7CO 00AS46C4 00AS4DCS 00A854CC 00AS5BDO 00AS62D4 00AS69DS 00AS70DC 001.877EO * ... D .. (H $ M ... Q * R13E7CO 08
~ VA6E7EO 00AS7EE4 00A8S5ES 001.S8CEC 00A893FO 00A89AF4 00ASA1F8 00A8A8FC C4C1D3E3 * .. =U ... Y 0 ... 4 ... 8 DALT* R13E7EO 08

VA6ESOO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R 13E800 08
ABOVE LINE IS REPEATED

VA6EC40 00030000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R 13EC40 08
VA6EC60 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R13EC60 OS

ABOVE LINE IS REPEATED
VA6ECCO 00000000 ·00000000 00000000 00000000 00000000 00020000 00000000 00000000 * * R13ECCO 08
VA6ECEO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R 13ECEO 08

ABOVE LINE IS REPEATED
VA6EFOO C4C1D3E3 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *DALT * R13EFOO 08
VA6EF20 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R13EF20 08

ABOVE ~INE IS REPEATED
VA6FOOO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R32COOO 08

ABOVE LINE IS REPEATED
VA6F240 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000002 * * R32C240 08
VA6F260 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R32C260 08

ABOVE LINE IS REPEATED
VA6F3CO 00000000 00000000 00000000 00000000 00000000 00000000 00020000 00000000 * * R32C3CO 08
VA6F3EO 00000000 OOOOOOO~ 00000000 00000000 00000000 00000000 00000000 00000000 * * R32C3EO 08

ABOVE LINE IS REPEATED
VA6F600 00000000 C4C1D3E3 00000000 00000000 00000000 00000000 00000000 00000000 * DALT * R32C600 08
VA6F620 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R32C620 08

ABOVE LINE IS REPEATED
VA6FSOO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R32C800 08

ABOVE LINE IS REPEATED
VA6FDOO 00000000 00000000 C4C1D3E3 00000000 00000000 00000000 000'00000 00000000 * DALT * R32CDOO 08
VA6FD20 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R32CD20 08

ABOVE LINE IS REPEATED

.. - Start of the DVT

o - Address of the DA L T

....

U'l g
..... o·
::s
~
(j

~ o g
::s

i
f!f.
~

VI
I
~

100
~

~,

~

" ~

u.
~
~
::l
u.
~
I"'tt

U.
':-'

~ o
n
~
~ ,g

0005 DUMP OF ALLOCATION ADDRESS SPACE (ALLOCAS) PAGE 00011

PAGE TABLE FOR SEGMENT A7

3391 1331 3541 3209
32B9 2CC9 32A9 23D9
36C9 3849 2B29 34E9
3219 3809 36F9 3709
0800408000030111.500000000 08004080000301CAOOOOOOOO 08004080000301ADOOOOOOOO

08004080000301BOOOOOOOOO
0800408000030111.300000000
0800408000030111.700000000

08004080000301AEOOOOOOOO
080040800003018100000000
08004080000301ACOOOOOOOO
080040800003018300000000

08004080000301AFOOOOOOOO 08004080000301C500000000
08004080000301C600000000 08004080000301C700000000
08004080000301B200000000 08004080000301A60000000~

VA70000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R339000 08
ABOVE LINE IS REPEATED

VA70400 00000000 00000000 00000000 C4C1D3E3 00000000 00000000 00000000 00000000 * DALT * R339400 08
VA70420 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R339420 08

ABOVE LINE IS REPEATED
VA70800 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R339800 08

ABOVE LINE IS REPEATED
VA70BOO 00000000 00000000 00000000 00000000 C4C1D3E3 00000000 00000000 00000000 * DALT * R339800 08
VA70B20 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R339B20 08

ABOVE LINE IS REPEATED
VA71000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R 133000 Oil.

ABOVE LINE IS REPEATED
VA71200 00000000 00000000 00000000 00000000 00000000 C4C1D3E3 00000000 00000000 * DALT * R133Z00 OA
VA71220 00000000 00000000 00000000 00000000 00000000 00000001 00000000 00000001 * * R133220 OA
VA71240 00000000 00000000 00000000 00000000 00000000 00000000 0000000000000000 * * R133240 Oil.

ABOVE LINE IS REPEATED
VA71560 00000000 00000000 00000000 00000000 00000002 00000000 00000000 00000000 * * R133560 Oil.
VA71580 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R 133580 0)\

ABOVE LINE IS REPEATED
VA716EO 00000000 00000000 00000000 00040000 00000000 00000000 00000000 00000000 * * R1336EO Oil.
VA71700 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R133700 Oil.

ABOVE LINE IS REPEATED
VA71800 00000000 00000000 COOOOOOO 00000000 00000000 00000000 00000000 00000000 * * R133800 OA

ABOVE LINE IS REPEATED
VA71900 00000000 00000000 00000000 00000000 00000000 00000000 C4C1D3E3 00000000 * DALT * R133900 Oil.
VA71920 00000000 00000000 00000000 00000000 o a 0 a a a 0 0 a 0 0 0 0 0 ~O 0 0 0 0 0 0 0 0 0 0 0 00 0 0 *................. * R 1 33920 0 A

ABOVE TT E IS REPEATED
VA71C60 00000000 00000000 00000000 00000000 00000000 000000. 00000000 ~0005 •....•.......•......••....•....•.•• ,33C60 01
VA71C80 00010000 00000000 00000000 00000000 00000000 oooooe· 00000000 000 0000 * * R133C80 Oil.
VA71CAO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00 0000 * * R133CAO Oil.

ABOVE LINE IS REPE.II~·D
VA72000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 I. lD3E3 * DALT* R354000 Oil.
VA72020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 _00000 * * R354020 OA

ABOVE LINE IS REPEATED
VA72720 C4C1D3E3 00000000 00000000 00000000 0000000000000000 00000000 00000000 *DALT * R354720 OA
VA72740 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R354740 Oil.

00000000 00000000
ABOVE LINE IS REPEATED

VA72800 00000000 00000000 00000000 00000000 00000000 00000000 * * R354800 08
ABOVE LINE IS REPEATED

VA72E20 00000000 C4C1D3E3 00000000 00000000 00000000 00000000 00000000 00000000 * DALT * R354E20 08
VA72E40 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * * R354E40 08

ABOVE LINE IS REPEATED

e- DALTUSE field

G- Start of the DALT

Debugging Hints

Allocation Serialization

Hints for debugging specific problem areas are described here including:

• Allocation Serialization
• Subsystem Allocation Serialization
• Device Selection Problems (Non-Abend)
• Address Space Termination
• OBO Abend
• OC4 Abend in IEFAB4FC
• Volume Mount and Verify (VM&V) Waiting Mechanism

Allocation serializes on several types of resources. This has resulted in deadlocks
between job steps when a programming change caused incorrect serialization.

Both dynamic allocation and JFCB housekeeping enqueue on data set names.
Dynamic allocation enqueues on non-temporary data set names before calling
JFCB housekeeping. JFCB housekeeping enqueues on real data set names when
it finds via LOCATE, that the specified data set name is an alias; the
fully-qualified names of GDG single requests (found via LOCATE); the individual
names in a generation data group; and the data set names of temporary, non-VIO
data sets. (The initiator enqueues all non-temporary names of JCL-specified data
sets before a job starts.) Data set names are dequeued by unallocation, either
batch or dynamic, in the last step in which the data set is referenced.

Common allocation enqueues on volume serials of all specific volume requests
except for direct-access volumes, which are either permanently resident or
reserved. This is done after the allocation of permanently resident or reserved
direct-access volumes, that is, following fixed device allocation. The volume
serials of demountable volumes allocated to non-specific volume requests are
enqueued either when the volume is allocated (if the volume is already mounted)
or when the volume is mounted (if allocation mounts and verifies it). (When
there is a nonspecific request for tape, OPEN enqueues the tape-volume serial
numbers because allocation only waits for direct-access volumes to be mounted.)
Before actually allocating a device, common allocation serializes the status of
devices by enqueuing on several resources all with the major name SYSIEFSD.
The minor names and functions serialized are as follows:

1. Q4 - to serialize device allocation with VARY offline processing, which is
actually done by common allocation

2. CHNGDEVS - to serialize device allocation with device unloading done by
the UNLOAD operator command and JES3

3. DDRDA - to serialize device allocation with dynamic device reconfiguration
(DDR) processing of direct access devices and

4. DDRTPUR - to serialize device allocation with DDR processing of tape and
unit record devices

5-192 MVS Diagnostic Techniques

These four resources are enqueued for shared use by allocation and for exclusive
use by the other functions. Within common allocation, these resources, with the
exception of Q4, are dequeued when allocation must wait on an allocation
recovery WTOR or on an allocation group.

Allocation serializes, via an internal mechanism, the processing of all devices
except direct access devices containing non-demountable (permanently mounted or
reserved) volumes. The serialization unit is an allocation group. This
serialization is done to serialize the device allocation in one address space with
that in another. Group serialization is exclusive, that is, it prevents an allocation
in a given address space from considering the same device that an allocation in
another address space is considering. All allocations serialize on groups in the
same order; this order is specified at sysgen and is represented in the csect
PREFT AB, which is part of the load module IEFEDTTB. PREFT AB is simply a
list of generic device types.

To serialize changes to a specific UCB, allocation and unallocation always obtain
the local and CMS locks before setting fields in the UCB.

Dynamic allocation serializes with itself so that only one dynamic allocation may
proceed in an address space. This is done by an enqueue for exclusive use on
major name SYSZTIOT, the minor name consisting of the 2-byte ASID and
4-byte address of the DSAB QDB.

Subsystem Allocation Serialization

Allocation does not serialize when processing subsystem data set requests, but
provides the capability whereby a subsystem may serialize its own requests if it so
desires. The mechanism to do this is the subsystem allocation sequence table
(SAST). A skeletal SAST is built during subsystem interface initialization to
define the order in which subsystems are to be invoked for the allocation of
subsystem data sets. During common allocation processing the subsystem
requests are sorted by subsystem. Using the sequence defined by the SAST, all
requests for a given subsystem are passed to that subsystem for allocation before
the next subsystems requests are processed. Thus a subsystem can serialize its
alloca tion processing in order to prevent deadlocks.

Device Selection Problems (Non-Abend)

The device selection logic of common allocation is heavily dependent on the
eligible devices table (EDT) which is built at SYSGEN. The EDT describes the
unit eligibility of any unit name that may be specified either via JCL or dynamic
request. Users have in the past tried to modify the EDT without doing either a
full or an I/O SYSGEN. Modification of the EDT can result in incorrect
allocation, for example, allocation of a 3330 request to a 2314, or failure of a .
request or job step with no error indicated. If such a device selection error occurs
after modification of an EDT, the modification is suspect and should be carefully
verified by consulting the EDT descriptions in the OS/VS2 System Logic Library
section on Data Areas, and/or EDT mapping in Data Areas (microfiche), via
mapping macro IEFZB421.

Section 5. Component Analysis 5-193

Address Space Termination

OBO Abend

EDT Verification Routine

The eligible device table (EDT) can be verified by using the EDT verification
routine IEFEB400. This module compares the EDT against the DCBs for a given
system. The routine must execute on the system with the DCBs to be compared.
For teleprocessing devices, only the device class is verified. For additional
information about the EDT verification routine, refer to Job Management and
System Generation.

When an address space is being abnormally terminated, the allocation
end-of-memory resource manager, IEFAB4E5, gets control. This routing releases
any allocation groups held by the address space and unallocates any units
allocated to the address space. In the case where the allocation address space
(ALLOCAS) is not active at the time IEFAB4E5 gets control, allocation cannot
unallocate shareable, direct access units because they might be allocated to more
than one address space.

The DCBASID field (at offset X'E') in the common DCB extension contains:

• The ASID of the address space that is allocated to the unit, or

• In the case of shareable direct access units, the ASID of the last address space
that allocated the unit.

Cleanup: When an allocation routine abnormally terminates, the EST AE routine
IEFAB4ED receives control. Abnormal termination can result from an abend,
cancel, or machine check. In each case, IEFAB4ED performs recovery
processing, takes a dump (if there is a possibility that the error occurred in
allocation), and routes control to other exit routines for more specific error
recovery. If a cancel is issued during dynamic allocation, a dump is always taken
and an X'x22' or X'x3E' abend occurs.

OBO abends have occurred in allocation more than once. The code is issued by
the SW A manager, which handles the reading, writing, and assigning of SW A
records. Allocation requests all these functions of the SW A manager. Two
situations cause allocation to receive a OBO abend from the SW A manager:

1. The address of a SW A record to be read or written, in behalf of allocation,
has been overlaid. Allocation usually obtains a SW A virtual address (SV A)
to read or write from another SW A record. When such an SVA has been
overwritten by a scheduler sub-component, a OBO abend may occur.

2. A OBO abend will occur when allocation assigns an SVA for a record and then
uses the SV A to attempt to read the record without first having written the
record.

5-194 MVS Diagnostic Techniques

OC4 Abend in IEF AB4FC

This error always occurs when the device type in a UCB is changed from one
generic type to another, and when a JCL statement or dynamic request specifies
that particular unit. This error is usually the result of an improper IOGEN or the
zapping of the EDT or UCB.

This error can be diagnosed by running the EDT verification routine (IEFEB400).

//EDT JOB
//VERIFY EXEC PGM=IEFEB400
//EDT DD DSN=SYS1.LPALIB,DISP=SHR
//SYSPRINT DD SYSOUT=A

Volume Mount and Verify (VM&V) Waiting Mechanism

Volume mount and verify must wait for direct access volumes to be mounted so
that the labels can be verified, and so that allocation can enqueue the volume
serials for non-specific volume requests and obtain space (for new data set
requests). In order to allow for several allocations to be waiting simultaneously,
the control block structure shown in Figure 5-38 is set up by VM&V.

Each address space waiting for at least one direct access volume to be mounted
has its own mount verification control area (MVCA), MVCA extension
(MVCAX), one or more mount entries, and, in each mount entry, one or more
UCB entries. Each MVCAX contains an ECB. When an allocation is waiting for
a direct-access volume to be mounted, VM&V waits for this ECB in behalf of the
allocation. The MVCA chain is anchored in the allocation/termination
communication area (ATCA) in the nucleus. The ATCA is pointed to by location
CVTQMWR in the CVT. All devices on which allocation waits for a device end
(volume mount), will have the scheduler attention table index placed in their
UCBs (at + 3 in the common UCB extension). The index is X'OC'.

Any destruction of the MVCA/MVCAX structure causes one or more allocations
to wait "permanently." The wait is not truly permanent, however, because VM&V
also waits for (in a batch environment) the cancel ECB (in the CSCB-command
scheduling control block), which is posted when the operator cancels a job. In a
dynamic environment, VM&V waits for a WTOR ECB, in which case the
operator can, via reply, cancel the single mount but not the job.

Section 5. Component Analysis 5-195

Nucleus

Memory A (Subpool 230)

Mount Entry

o
t--------t

4
t--------t

8
t--------I

C

o Dev End DCB

4
....--------t

8
1-------1

C

Device Entries

Figure 5-38. VM& V Control Block Structure

5-196 MVS Diagnostic Techniques

ATCA

o Device Entries
1-------1

4 1------.....
8
t-------V'

C

~

Allocation/Unallocation Reason Codes

The reason codes listed here are divided into three groups:

• Reason codes set by batch and common allocation modules and by JFCB
housekeeping modules.

• Reason codes set by unallocation modules.

• Reason codes set by dynamic allocation modules.

Common and Batch Allocation and JFCB Housekeeping Reason Codes

The reason codes set by common and batch allocation and by JFCB housekeeping
are divided into step-related reason codes and DO-related reason codes.

The following are DO-related error reason codes set by allocation and JFCB
housekeeping modules and placed in the SIOTRSNC field of the SlOT. The
reason codes serve as an index into message module IEFBB4M3. The prologue of
IEFBB4M3 lists the modules which detect the error conditions.

Reason Error
Code Reason Code Message Meaning

1 1700 IEF2l21 Data set not found.
2 0244 IEF3711 Telecommunication device is not accessible.
3 0210 IEF2lll Unable to .ENQ on data set name.
4 020C IEF21 11 Unable to ENQ on data set name.
5 0458 IEF365I Referenced data set name is GDG ALL.
6 0214 IEF7021 Unable to allocate.
7 * IEF221I Invalid backward reference to a step.
8 021C IEF210I Invalid UNIT parameter.
9 0480 IEF195I Maximum number of devices for statement exceeded.
10 0224 IEFt921 Not enough eligible devices.
11 0398 IEF1941 Volume sequence number incorrect.
12 4714 IEF2461 Insufficient space on storage volumes.
13 * IEF72l1 Protection conflict in ISAM requests (SU 32 only).
14 * IEF3721 VOL = REF to unresolved DD.
15 * IEF3181 UNIT = AFF to new direct access data set.
16 47A8 IEF719I Data set previously defined (SU 32 only).
17 47AC IEF720I User not authorized to define this data set (SU 32 only).
18 * IEF6881 Nullfile and DSNAME conflict in ISAM concatenation.
19 reserved
20 039C IEF2451 Inconsistent unit name and volser.
21 0228 IEF4741 Unit or volume in use by system task.
22 4704 IEF2531 Duplicate data set name on direct access volume.
23 4708 IEF2S41 Insufficient space in VTOC.
24 470C IEFI93I Space not obtained because of I/O error.
25 4710 IEF2561 Absolute track not available.
26 4714 IEF2571 Space requested not available.
27 4718 IEF258I Invalid record length in SPACE parameter.
28 * IEF260I Incorrect DSORG or DISP.
29 * IEF2611 No prime area request for ISAM data set.
30 * IEF262I Prime area must be requested before overflow area.
31 * IEF2631 Space request not on cylinder boundary.
32 * IEF2641 Duplication of DSNAME element.
33 4734 IEF266I Invalid JFCB or partial DSCB pointer.
34 4838 IEFI40I Directory space request too large.
35 reserved
36 4740 IEF273I Invalid user label request.

* ~ means that the error cannot be set in dynamic allocation.

Section 5. Component Analysis 5-197

37 reserved
38 474C IEF127I No SPACE parameter or zero space request at ABSTR

O.
39 * IEF128I Invalid request for ISAM index;
40 * IEF129I Multivolume index request.
41 * IEF130I DSNAME element wrong.
42 * IEF1311 Multivolume OVFLOW request.
43 * IEF132I CYL and ABSTR conflict in SPACE parameter.
44 * IEF133I CYL and CONTIG conflict in SPACE parameter.
45 * IEF134I Subparameter wrong in SPACE parameter.
46 476C IEF135I Zero primary space request.
47 * IEF136I Index area requested twice.
48 4780 IEF267I Space request for directory larger than primary space

request.
49 * IEF145I Space request not ABSTR for DOS volume.
50 * IEFI411 Index request did not precede prime request.
51 * IEF143I Last concatenated DD card unnecessary or invalid.
52 035C IEF366I Relative ODO generation number contains syntax error.
53 0390 IEF219I ODO group name exceeds 35 characters.
54 0394 IEF286I DISP field incompatible with data set name.
55 * IEF466I Unable to recover from DADSM failure.
56 0218 Mounting required but not allowed.
57 0494 IEF704I Can't access SYSCATLG data set on CVOL.
58 022C IEF475I Volume on ineligible permanently resident or reserved

device.
59 0214 IEF467I Units required not available - waiting not allowed.
60 0220 IEF710I Volumes required not available - waiting not allowed.
61 4794 IEF476I Data sets overlap in VTOC.
62 4798 IEF477I DOS split cylinder data sets overlap.
63 479C IEF478I Possible VTOC error.
64 * IEF479I VTOC error on second or later volume of ISAM prime

data set.
65 * IEF4811 Same unit request twice - conflicts exist.
66 0230 IEF482I Permanently resident or reserved volume on requested

unit.
67 0488 IEF217I Volume containing pattern DSCB not mounted.
68 048C IEF218I Pattern DSCB record not found in VTOC.
69 47A4 IEF703I New data set requested on DOS stacked pack format

volume.
70 0214 Can't wait for offiine devices.
71 0240 IEF483I Requested device is a console.
72 04B8 IEF726I MSS not initialized.
73 04BC IEF725I MSS select error.
74 0234 IEF484I More units required for demand request.
75 * IEF493I Invalid JOBCAT or STEPCAT parameters.
76 * IEF492I Invalid data set name for JOBCAT or STEPCAT.
77 * reserved
78 0470 Unauthorized requestor of subsystem data set.
79 046C IEF480I Invalid destination requested.
80 * reserved
81 0490 IEF7011 Error changing allocation assignments.
82 17FF IEF213I Error processing cataloged data set.
83 022C IEF687I Requested volume mounted on JES3-managed unit.

84 024C
IEflS21 1 85 0250 IEF752I

86 03AO IEF752I The req1,1est for a subsystem data
87 04A4 IEF752I set was failed by the subsystem
88 0484 IEF752I attempting to allocate the request.
89 7700 IEF752I

90 04A8 IEF753I A SUBSYS parameter specified a subsystem which does
not support the allocation of subsystem data sets.

91 04AC IEF754I The subsystem requested on a SUBSYS parameter was
not operational.

* - means that the error cannot be set in dynamic allocation.

5-198 MVS Diagnostic Techniques

)

92

93

94
95

96

97

98

99
100

101
102

04BO

7704

reserved
04B4

03A4

04CO

0258

47BO
47B4

025C
47B8

IEF7551

IEF7561

IEF740I

IEF7411

IEF74 11

IEF1981

IEF2741
IEF2751

IEF4641
IEF2761

The subsystem requested on a SUBSYS parameter does
not exist.
A system error occurred in allocating a subsystem data
set.

Data set/volume could not be RACF protected - RACF
not active.
Protect request failed - invalid data set/ volume
specification.
Data set/volume could not be RACF protected - user
not defined to RACF.
There are not enough unrestricted devices to satisfy the
request. (Restricted devices are defined in OS/VS2
System Programming Library: System Generation
Reference.)
A request for space was rejected by the installation exit.
A request for space cannot be satisfied on any eligible
volume(s).
The device is boxed and cannot be allocated.
RACF DEFINE request with modeling and the required
model could not be found.

The following are step-related error reason codes set by allocation and JFCB
housekeeping modules in an area pointed to by the allocatiqp. work area
(ALCW A) .. With the exception of reason code l, the reason codes serve as an
index into message module IEFBB4M2. The prologue of IEFBB4M2 lists the
modules which detect the error condition. Reason code 1 is set by IEF AB469 and
is returned to dynamic allocation.

Reason Error
Code Reason Code Message Meaning

1 023C Catalog not mounted.
2 0204 IEF180I GETMAIN error.
3 0220 IEF7131 MSS volume not available.
4 • reserved
5 0484 IEF25 11 Job cancelled.
6 0238 IEF240I No space in TIOT or in TCTIOT.
7 0220 IEF4851 Volumes not available and waiting not allowed.
8 049C IEF714I MSS volume not defined.
9 0474 IEF4731 System Resources Manager error.
10 0248 IEF7161 Unable to mount MSS volume.
11 0450 IEF4911 Number of DDs exceeds 1635.
12 172C IEF3631 Not enough storage for processing cataloged data set.
13 1718 IEF3641 Permanent I/O error processing cataloged data set.
14 670C IEF367I I/O error obtaining pattern DSCB.
15 0478 IEF4651 Unable to allocate subsystem data set.
16 047C IEF456I Error issuing ESTAE macro.
17 0214 IEF700I Environment changed - no longer able to allocate.
18 0490 IEF7011 Error changing allocation assignments.
19 0468 IEF3611 Unable to allocate private catalog.
20 • IEF3621 Unable to unallocate private catalog.
21 • IEF2021 Step not run because of condition codes.
22 • IEF2021 Step not run because of condition codes.
23 0498 IEF715 MSS volume inaccessible.
24 04AO IEF7171 Specified virtual volume group (MSVGP) name does not

exist.
25 • IEF7181 Space or virtual volume group (MSVGP) required for

nonspecific MSS request
26 024C IEF751I

I
The job was failed in

27 0250 IEF7511 allocation by a subsystem
28 03AO IEF7511 processing a request to
29 04A4 IEF751I allocate one or more
30 7700 IEF751I subsystem data sets.

• - means that the error cannot be set in dynamic allocation.

Section 5. Component Analysis 5-199

Common and Batch Un allocation Reason Codes

The following reason codes are set by common and batch unallocation modules.
Reason codes 1: 2, and 4 serve as an index into message module IEFBB4M5.
Reason code 3 does not result in a message; it is returned to dynamic allocation.

Reason Code Message Meaning Module Setting

IEF468I GETMAIN error. IEFBB410,IEFBB414,
IEFBB416, IEFAB4AO

2 IEF469I Data sets not released. IEF AB4AO, IEF AB4A6

3 Volumes not released. IEF AB4AO, IEF AB4A8
(Dynamic allocation only).

IEF724I Step catalogs not allocated. IEFAB4A2
(Warm start only).

4 IEF456I Error issuing ESTAE macro. IEFBB410, IEF AB4AO

In addition, IEFAB4A2 (disposition processor) receives return codes returned by
the data management catalog and scratch functions (called by IEFAB4A2 to
perform disposition processing). If the allocation is dynamic, these return codes
are returned to dynamic allocation as reason codes in a field in the unallocation
request block. For batch allocation, the return code is converted to a code for a
disposition message.

Dynamic Allocation Reason Codes

For a description of dynamic allocation reason codes, refer to the topics
"Informational Reason Codes" and "Error Reason Codes" in OSjVS2 System
Programming Library: Job Management.

5-200 MVS Diagnostic Techniques

JES2

Note to Readers

Component information for JES2 is deleted from this book because it is
duplicated in the JES2 logic book.

See the J ES2 Logic book for diagnostic information for JES2.

Section 5. Component Analysis 5-201

Subsystem Interface (SSI)

In the course of HASP/ASP installation, hooks were put into OS and SVS
operating systems to establish an interface. With the job entry subsystem (JES),
an interface was designed to eliminate the need for these hooks.

The subsystem interface (SSI) is primarily used to communicate with the job entry
subsystem (either JES2 or JES3), but is flexible enough to communicate with any
subsystem.

System Initialization Processing

At system generation, the name of the primary job entry subsystem and secondary
subsystems are listed on the SCHEDULR macro and put in the job entry
subsystem names table (CSECT IEFJESNM). Subsystems may be specified in the
subsystem names table (load module IEFJSSNT), and also, you can specify
subsystems in the IEFSSNxx members of SYSl.PARMLIB. The PARMLIB
suffixes are specified at IPL.

The master scheduler base initialization module (IEEVIPL) gives control to the
subsystem interface initialization module (IEFJSINT). IEFJSINT calls the
subsystem service routine (lEFJSBLD) to:

• Build a subsystem communication vector table (SSCVT) for each unique
name in the JES names table and in the subsystem names table.

• Build and initialize. the subsystem vector table (SSVT) for the master
subsystem.

• Build the subsystem allocation sequence table (SAST) for later use in
allocating subsystem data sets.

IEFJSINT then returns control to IEEVIPL.

The job entry subsystem builds and initializes its own SSVT when the system is
initialized. All other subsystems must do likewise. A subsystem can be initialized
as follows:

• By being started (for example: START JES2) or,

• By having an initialization routine specified in the subsystem names table, or
in the IEFSSNxx SYSl.PARMLIB record.

Additional subsystem initialization is performed by module IEFJSIN2, which is
invoked by IEEMB860. IEFJSIN2 calls the PARMLIB read routine (IEEMB878)
to read each record from the IEFSSNxx members. All records read are passed to
the positional parse routine (IEEMB882). IEFJSIN2 also calls IEFJSBLD to
perform the following:

• Link to the subsystem initialization routines specified in the subsystem name
table.

5-202 MVS Diagnostic Techniques

• Build a SSCVT for each unique subsystem specified in the IEFSSNxx
members and link to the initialization routine if any is specified on the
P ARM LIB- record.

• Build a hash table containing SSCVT addresses for use in processing SSI
requests.

• Rebuild the SAST if additional subsystems were defined in SYSI.PARMLIB.

IEFJSBLD and IEFJSIN2 call the subsystem initialization message writer
(IEFJSIMW) to issue operator messages. The text of the messages is contained in
IEFJSIMM. The following messages are detected by IEFJSBLD:

• Message IEE7301 indicates that a duplicate subsystem was specified for an
SSCVT request.

• Message IEE8591 is issued for each subsystem initialization routine that could
not be found.

• Message IEF7591 indicates that a GETMAIN failed, or that an abend
occurred.

Note: It is the responsibility of the subsystem initialization routine to inform the
operator of errors and to recover from errors in the initialization routine. If the
subsystem initialization routine fails to recover from an error, message IEF759I is
issued to indicate the abend and the next subsystem is processed. The failing
subsystem might not be completely initialized.

The following messages are detected by IEFJSIN2:

• Message IEF7581 is issued if the subsystem names table (IEFJSSNT) could
not be found, and it is issued if any IEFSSNxx members could not be found
in SYSl.PARMLIB. Message IEF7581 is also issued to indicate an abend in
IEFJSIN2 processing.

• Message IEF7601 is issued when IEEMB882 (parse routine) finds a syntax
error in a subsystem SYS1.PARMLIB record or when IEFJSIN2finds an
invalid subsystem name.

Subsystem Interface Major Control Blocks

Subsystem interface's major control blocks are the JES control table (JESCT), the
subsystem allocation sequence table (SAST), the subsystem hash table (SHAS),
the subsystem communications vector table (SSCVT), the subsystem vector table
(SSVT), the subsystem information block (SSIB), the subsystem options block
(SSOB), and the extension to the SSOB or function dependent area. The
following table summarizes each of these control blocks.

Section 5. Component Analysis 5-203

Control Pointed Mapping
Block Created By Subpool Key Size ToBy Function Macro

JESCT SYSGEN NUCLEUS 0 108 bytes CVT Contains information needed by IEFJESCT
the Subsystem Interface and
addresses of Scheduler routines.

SAST IEFJSBLD 241 0 Note 1 JESCT Defines the order in which IEFJSAST
subsystems will be invoked
to allocation subsystem
data sets.

SHAS IEFJSBLD 241 0 76 bytes JESCT Contains a hash table of SSCVT IEFSSHSH
addresses, used by subsystem
interface to locate a specific
subsystem.

SSCVT IEFJSBLD 241 0 36 bytes JESCT Identifies each subsystem defined IEFJSCVT
to the system and 'points to the
SSVT for each subsystem.

SSVT Subsystem Any - determined Any Note 2 SSCVT Contains the indication of IEFJSSVT
owning the by the subsystem functions of a subsystem and
SSVT, at the addresses of the routines
Initialization that perform those functions.
of subsystem.

SSIB The user of User's Subpool Any 36 bytes SSOB, Identifies the subsystem to the IEFJSSIB
Subsystem JSCB Subsystem Interface and passes
Interface information between the

subsystem and its caIler.

SSOB The user of User's Subpool Any 20 bytes SSWA, The parameter for the IEFJSSOB
Subsystem IEL Subsystem Interface.
Interface.

Function The user of User's Subpool Any Variable SSOB Passes information to the function IEFJSSOB
Dependent Subsystem of the subsystem the user wishes to
Area Interface invoke.

Notes:

1. The SAST size is 8 bytes plus 12* (the number of subsystems in the SSCVT chain).

2. The SSVT size is 260 bytes plus 4* (the number offunctions supported by the subsystem). Minimum size is 264 bytes, maximum -
1284 bytes.

Control Block Usage is shown in Figure 5-39, Figure 5-40, and Figure 5-41.

5-204 MVS Diagnostic Techniques

LOC X'10'

r
JESCT

'JEST'

CVT V: JESSSREQ

X'18' JESSSCT I------

X'128' CVT JESCT-
JESPJESN

X'1C'

~-::
,~

X'30' JESSASTA f---."

X'40' JESHASH I)

(_ SSCVT SSCVT SSCVT - l(V X'O' 'SSCT' 'SSCT' 'SSCT'

X'4' SSCTSCTA SSCTSCTA SSCTSCTA

X'8' SSCTSNAM SSCTSNAM SSCTSNAM

X'10' SSCTSSVT SSCTSSVT SSCTSSVT

C ,SSVT SSVT

1
SSVTCOD -
256-byte
Function Matrix

X'104' SSVTRTN] Function Pointer SSVTRTN SSVTRTN
Matrix can be
Maximum 256 Words

- ~

'SHAS' Size ofl Number of-t
'SAST' SAST Entries

Number of
1--- ..L

Length .J"

of table slots in lSubsystem I I I I table 0 0 0
~ Name

1 'MSTR' I r ~ SSCVT
~~ ~~ . addresses

~

Figure 5-39. Subsystem Interface Control Block Usage

Section 5. Component Analysis 5-205

Because the hashing algorithm can produce synonyms, a synonym chain exits as
shown in Figure 5-40. Field SSCTSYN is a synonym pointer.

JESCT

I 'JEST' :1 'SHAS'

JESSSCT

~~ ~ V ~~ ~~

JESHASH

[.. SSCVT SSCVT SSCVT SSCVT

V /' - 'SSCT' ~ 'SSCT' 'SSCT' 'SSCT'

SSCTSCTA SSCTSCTA SSCTSCTA

~ 8
~~ ;~ 8

SSCTSYN

~
Figure 5-40. Control Block Usage With Synonyms

Requesting Subsystem Services

To request subsystem services, a system routine enters the correct function code
(see Subsystem Interface Summary in OSjVS2 System Logic Library) in the
subsystem options block (SSOB), and the name of the desired subsystem in the
subsystem information block (SSIB). The IEFSSREQ macro is then issued,
causing control to pass to the subsystem interface routine IEFJSREQ. The
specified function code and subsystem name indicates to the interface routine the
subsystem routine to receive control.

Invoking the Subsystem Interface

Storage is acquired for the SSIB, the SSOB, and the function dependent area of
the SSOB if required. The following entries are made in the SSOB header:

SSOBID - 'SSOB'.

SSOBLEN - The length of the SSOB header.

SSOBFUNC - The function ID of the function to be invoked.

SSOBSSIB - The address of the SSIB or zero. Zero means that the life-of-job SSIB is to be used. Its
address is in the active JSCB, field JSCBSSIB. The request will thus be directed to the
subsystem that started the initiator under which the job is running. (See Figure 5-42).

SSOBINDV - The address of the function dependent area, or if not needed by the function, zero.

5-206 MVS Diagnostic Techniques

The following entries are made in the SSIB:

SSIBID - 'SSlB' .

SSIBLEN - The length of the SSIB.

SSIBFLGI - The no-SVC flag (SSIBNSVC) must be set when SVCs cannot be issued by the
subsystems invoked (such as SRB mode).

SSIBSSNM - The name of the subsystem to which the request is being made.

SSIBJBID - (If the function requires this field.)

SSIBDEST - (If the function requires this field.)

The entries made in the function dependent area are:

length - The length of the function dependent area (first halfword).

* Any fields required by the function.

Register 1

SSOB Header

X'O' 'SSIB'

X'4' X'4' SSIBLEN SSIBFLG1

X'S' X'S' SSIBSSNM

} Function
X'C' SSOBRETN Dependent

X'10' SSOBINDV

Function Dependent Area (SSOB Extension)

l ~:;: .. ~.\:. on

1-------....... J Type of Function

1-------.......

Figure 5-41. Control Block Structure for Invoking Subsystem Interface

Section 5. Component Analysis 5-207

Logic Flow Examples

TCB

X'B4' TCBJSCB

JSCB JSCB

(-
X'15C' JSCBSACT X'13C' JSCBSSIB

~SSIB
X'O' 'SSIB'

X'4' SSIBlEN I
Note: The active JSCB may be the X'S' SSIBSSNM

same as TCBJSCB.

Figure 5-42. Finding the SSIB for a Job When SSOB Pointer is Zero

Register 1 points to a one-word parameter list which points to the SSOB. (See
Figure 5-41).

Macro IEFSSREQ is invoked which passes control to routines which handle the
Subsystem Interface request. The communications vector table (CVT) and the
JES control table (JESCT) must be mapped if IEFSSREQ is invoked.

The subsystem interface returns a code in register 15. Possible return codes are:

o - Successful completion - request went to subsystem
4 - Subsystem does not support this function
8 - Subsystem exists, but is not active
12-- Subsystem does not exist
16 - Function not completed - disastrous error
20 - Logical error (such as invalid SSOB format, incorrect length)

The field SSOBRETN in the SSOB contains a return code from the subsystem if
the request was successful. The return code depends on the function being
invoked (see the SSOB description in the Debugging Handbook.

This section provides an overall logic flow from a task making a request, through
the subsystem interface to the subsystem, and then back to the task. Two
examples are described.

Notifying a Single Subsystem

1. A task (TSOjcancel) wants to inform JES2 that a job is to be canceled.

2. The task creates an SSOB, SSIB, and a function dependent area.

a. The SSOB is filled in. A function code of 2 is used. (See OSjVS2 System
Logic Library, for a complete function code list.

5-208 MVS Diagnostic Techniques

)

b. The SSIB is filled in. The subsystem name is JES2.

c. The function dependent area is filled in with the necessary information
that the subsystem needs for this type of request.

3. Macro IEFSSREQ is invoked which branches to module IEFJSREQ
(IEFJSREQ's address is in the JESCT). Register 1 points to a parameter list
which points to the SSOB.

4. IEFJSREQ checks:

a. Are the pointers to the SSOB and SSIB valid? No, then return with a
return code of 16 in register 15.

b. Are the formats of the SSOB and SSIB correct? No, then return with a
return code of 20 in register 15.

c. Find the requested subsystem's SSCVT. If not found, return with a
return code of 12 in register 15.

d. Find the requested subsystem's SSVT. If not found, return with a return
code of 8 in register 15.

e. Is the requested function code valid? No, then return with a return code
of 16 in register 15.

f. Is the requested function code supported by the requested subsystem?
No, then return with a return code of 4 in register 15.

g. Index into the SSVT and get the address of the function routine.

h. Branch to the function routine. Register 0 = Address of the SSCVT,
register 1 = Address of the SSOB.

5. Module HASPSSSM at label HOSCANC receives control. It is the function
routine" for JES2 for function code 2 (CANCEL request).

a. Process the request and place a return code in the SSOB (SSOBRETN).

b. Return codes for this function code are as follows:

o - CANCEL completed.
4 - Job name not found.
8 - Invalid JOBNAMEjJOB ID combination.
12 - Job not canceled - Duplicate jobnames and no job ID given.
20 - Job not canceled - Job is on output queue.
24 - Job ID with invalid syntax for subsystem.
28 - Invalid CANCEL request. Cannot cancel an active TSO user or a started task.

6. Control is then returned to the requesting task directly from the function
routine. The task then examines register 15 and SSOBRETN and acts
accordingly.

Section 5. Component Analysis 5-209

Notifying All Active Subsystems

1. A task wants to notify all active subsystems of a WTO message.

2. The task creates an SSOB and a function dependent area. No SSIB need be
created if the task's life-of-job SSIB has the master subsystem's name (MSTR)
in it. If it does not, and that SSIB is used,· only one subsystem would be
notified. The SSOB and the function dependent area are filled in. A function
code of 9 is used. (A list of all function codes is in OSjVS2 System Logic
Library.)

3. Macro IEFSSREQ is invoked which branches to IEFJSREQ (address is in the
JESCT). Register 1 points to a parameter list which points to the SSOB.

4. IEFJSREQ checks:

a. Are the pointers to the SSOB and SSIB valid? No, return with a return
code of 16 in register 15.

b. Are the formats of the SSOB and SSIB correct? No, return with a return
code of 20 in register 15.

c. Find the requested subsystem's SSCVT. If not found, return with a
return code of 12 in register IS.

d. Find the requested subsystem's SSVT. If not found, return with a return
code of 8 in register IS. /

e. Is the requested function code valid? No, return with a return code of 16
in register 15.

f. Is the requested function code supported? No, return with a return code
of 4 in register 15.

g. Index into the SSVT and get the address of the function routine.

h. Branch to the function routine. Register 0 = address of the SSCVT.
Register I = address of the SSOB.

5. If the SSIB contains the name of the master subsystem and the function code
is defined as a broadcast code in the master scheduler's SSVT, then module
IEFJRASP is the function routine that receives control.

a. IEFJRASP makes a copy of the SSIB.

b. F or each SSCVT, IEF JRASP determines if the subsystem is active by
checking for a nonzero subsystem vector table pointer (SSCTSSVT). For
each active subsystem except the master subsystem, IEFJRASP copies the
name of the subsystem into the SSIB copy and then invokes IEFSSREQ.

c. The highest return code from the subsystems is placed in the requesting

\

task's SSOB, and the lowest return code from the subsystem interface is (
put in register 15.

5-210 MVS Diagnostic Techniques

Debugging Hints

6. Control is then returned to the requesting task directly from the function
routine. The task then examines register 15 and SSOBRETN and acts
accordingly.

• Paging must be possible at the time subsystem interface is entered because the
code for subsystem interface may not already be paged in at the time the can
is made.

• For the same reason, the processor must not be physically disabled.

• The mapping macro IEFJSSVT maps the SSVT. Only the master subsystem's
SSVT matches the mapping exactly. JES2 and JES3 SSVTs have additional
material appended to the end of the area mapped by IEFJSSVT. For JES3,
the mapping macro is IATYSVT. For the contents of the JES2 SSVT, refer
to OSjVS2 JES2Logic.

• Some functions requested at the master subsystem cause the function to be
broadcast to every active subsystem. These function codes are:

4 - Notify the subsystem of end-of-task.
8 - Notify the subsystem of end-of-address space.
9 - Notify the subsystem of a WTO message.
10 - Notify the subsystem of an operator command.
14 - Notify the subsystem of a delete operator message (DOM).
32 - Notify the subsystem of a failing START command.
50 - Notify, early, the subsystem of end-of-task.
63 - Notify the subsystem of service processor damage.

• If the WTO broadcast count (field UCMBRDST in the UCM) is greater than
zero, functioncodes 9 and 14 use an SSOB with the SSIB pointer containing
the address of the SSIB for the master subsystem. Otherwise, the pointer to
the SSIB is set to zero, causing the SSIB pointer in the JSCB to be used. If
the resulting SSIB is for the master subsystem, the request is given to every
active subsystem. If the SSIB is not for the master subsystem, the request is
given to only the subsystem named in the SSIB.

• If a subsystem verification request (function code 15) is made to the master
subsystem, (field SSIBSSNM in the SSIB contains 'MSTR'), and the name in
the SSIBJBID field of the SSIB is not that of a job entry subsystem, then
upon return from the subsystem interface, field SSIBSSNM will contain the
name of the primary job entry subsystem. A job entry subsystem is defined as
a subsystem that can provide its own sysout services. This is indicated by bit
SSCTUPSS being off in the subsystem's SSCVT.

Section 5. Component Analysis 5-211

Event Notification Facility (ENF)

The event notification facility (EN F) provides a service for MVS system routines
that allows them to:

• Signal the occurrence of an event
• Listen for the occurrence of an event
• Delete the listen request

A system routine that has detected a condition or performed a function (the
signaller) signals the event to ENF. Other system routines (the listeners) can
request that they receive control (at an exit routine) from ENF when the event
has occurred. A routine that is listening can also delete the request to listen.

The events that are signalled and can be listened for are:

Event
Code Description

I A vary online of a device is being performed.
2 A vary offline of a device is being performed.
3 A removable volume is being unloaded.
4 Free SQA storage that is not currently in use.
S The communications task and TOD clock initialization completed.
12 A device pending is offline.

The system components (and modules) that signal and listen for these events are:

Event
Code Signallers

2

3

4

S

12

Command Processing (lEE3103D)
AJlocation (IEF AB488)

AJlocation (IEF AB429)

AJlocation (lEF AB494)

SRM (IRARMSRV)

IEEVIPL

AJlocation (IEF AB429)

Listeners

lOS (lECVDPTH)

lOS (lECVDPTH)

IXVTOC/CVAF

Media Manager

Global resource serialization

Global resource serialization

To help you diagnose ENF problems, the following topics describe how system
routines request ENF services, the ENF control blocks, and ENF initialization
and processing.

Requests for ENF Services

A system routine makes a request to ENF by building an event parameter list
(ENFPM), calling the ENF request router (IEFENFFX), and passing the address
of the ENFPM to IEFENFFX. The address of IEFENFFX is contained in field
ENFCFMOD in the ENF control table (ENFCT).

In the ENFPM, the requesting routine specifies the type of request (signal, listen,
or delete listen), the event code, synchronous or asynchronous processing, the
address of the exit routine to receive control, and other information.

5-212 MVS Diagnostic Techniques

The format of the ENFPM is shown in Figure 5-43; a description of the fields
follows the figure.

Register 1

(Parameter

J

(ENFPM

J

ENFPLEN 1 ENFPACT

ENFPCODE

X'O

X'4

X'8

X'C

X'1

X'1

X'1

X'1

ENFPFLG I ENFPQMSK 1 ENFPKEY I ENFPSPL

ENFPQUAL

0' ENFPEADR

4' ENFPSPRM

8' ENFPTOK

C' ENFPFLEN

Figure 5-43. ENF Event Parameter List (ENFPM)

The fields in the event parameter list (ENFPM) are:

Offset Length Name

0(0) 2 ENFPLEN

2(2) 2 ENFPACT

4(4)

8(8)

9(9)

10(A)

11 (B)

4

lxxx xxxx
Oxxx xxxx
xxxx lxxx

ENFPCODE

ENFPFLG
ENFPASN

ENFPFREE

ENFPQMSK

ENFPKEY

ENFPSPL

Description

Length of the parameter list

Request:
X'OOOl' - Signal request
X'OOO2' - Listen request
X'OO03' - Delete listen request

Event code:
X'OOOOOOOl' - A vary online of a device is being performed.
X'00000002' - A vary offline of a device is being performed.
X'000OOO03' - A removable volume is being unloaded
X'OOOOOOO4' - Free SQA storage that is not currently in use.
X'00OO0005' - Communications task and TOD clock

initialization completed.
X'OOOOOOOC' - A device pending is offiine.

Flag field:
Asynchronous processing
Synchronous processing
Free signal parameter list

Qualifier mask field:
For a listen request, specifies which bytes in the qualifier field
(ENFPQUAL) are to be used during listen processing to filter
the event:

X'08' - First byte
X'04' - Second byte
X'02' - Third byte
X'O l' - Fourth byte
X'OO' - No filtering

Key of signal parameter list to free.

Subpool of signal parameter list to free.

Section 5. Component Analysis 5-213

12(C) 4 ENFPQUAL

16(10) 4 ENFPEADR

20(14) 4 ENFPSPRM

24(18) 4 ENFPTOK

28(1C) 4 ENFPFLEN

Qualifier field:
For a signal request, ~.pecifies the qualifier bytes aSsociated
with the event.
For a listen request, specifies the qualifier bytes that must
match with the signaller's qualifier bytes in order for the
listener's exit routine to receive control. The listener
specifies which qualifier bytes are to be matched via the
ENFPQMSK field.

Exit routine address:
For a listen request, specifies the address of the listener's
exit routine that is to receive control when the event is
signalled.
For a signal request, specifies the address of the signaller's
exit routine that is to receive control when all listeners of an
event have been notified and have completed processing.

For a signal request, specifies the address of a parameter list
that the signaller passes to all listeners.

Token value:
For a signal request, specifies the token value to be passed
to the signaller's exit routine.
For a synchronous listen request, contains the token value
returned by ENF for the event listener element (ENFLS).
For a delete listen request, specifies the token value of the
event listener element (ENFLS) to be deleted.

Length of signal parameter list to free.

Note: The system routines that use ENF services have agreed to pre-defined
values for some fields in the ENFPM. These are the qualifier bytes used in the
ENFPQUAL field and the content of the parameter list pointed to by the
ENFPSPRM field. To determine these values, refer to the module listings of the
signallers and listeners of events. The topic "ENF Logic Flow Examples" shows
an example of how the qualifier bytes are used.

Listen and Signal Exit Routines

When a system routine makes a listen or signal request, the routine specifies the
address of an exit routine to receive control in the event parameter list (field
ENFPEADR). ENF mainline module IEFENFNM passes control to a listen exit
routine when the specified event is signalled. When all listeners of the event have
been notified and have completed processing, and if the signaller has specified the
optional signal exit routine, IEFENFNM passes control to the signal exit routine.

ENF passes the following to a listen exit routine:

• Register 0 contains the event code.

• Register 1 contains the address of a fullword parameter, which contains the
address of the parameter list passed by the signaller to the listeners of the
event.

• Register 13 contains a save area address.

• Register 14 contains the return address.

5-214 MVS Diagnostic Techniques

ENF Control Blocks

ENF passes· the following to a signal exit routine:

• Register 1 contains the address of a fullword parameter, which contains the
address of the token value specified by the signaller on its signal request.

• Register 13' contains a save area address.

• Register 14 contains the return address.

Exit routines are entered enabled, in system key 0, supervisor state, and with no
locks held.

The following control blocks are used during ENF processing. For the format of
these control blocks, refer to the Debugging Handbook, Volume 2.

ENFCT ENF control table - contains ENF-related data and addresses of ENF routines and control
blocks.

ENFVT ENF vector table - contains a pointer to the queue of listener elements (ENFLSs) for each
event code.

ENFDS ENF process table - contains the event parameter lists (ENFPMs) to be processed for
asynchronous requests.

ENFLS ENF listener element - contains the listener's exit routine address and optional qualifying
(filtering) information for the listen request. For each listen request, ENF builds an ENFLS
on the ENFLS queue of the specified event.

Figure 5-44 summarizes the ENF control blocks and Figure 5-45 shows the
structure of the ENF control blocks.

Control Size in Pointed Mapping
Block Created by Subpool Key Bytes to by Macro

ENFCT SYSGEN Nucleus 0 44 CVT IEFENFCT

ENFVT IEAVNPA7 231 0 Note 1 ENFCT IEENFVT

ENFDS IEAVNP47 239 0 1604 ENFCT IEFENFDS

ENFLS IEFENFNM 241 0 28 ENFVT IEFENFLS
ENFLS

Note 1. Four bytes plus eight bytes for each event code.

Figure 5-44. ENF Control Block Summary

Section 5. Component Analysis 5-215

ENF Initialization

CVT

CVTENFCT

'ENFC'

ENFCFMOD

ENFCVT

ENFCDS

'ENFV'

Module
IEFENFFX

ENFVPTR } Field repeated for
~------f each defined event code

'ENFL'

ENFLRTN

ENFLPTR

-..-----~
Listen
exit
routine

Next ENFLS on the
queue for this event

Figure 5-45. ENF Control Block Structure

ENF request
router routine

50 slots for
event parameter
lists (ENFPMs)
for asynchronous
requests

Module IEAVNP47 initializes ENF during nucleus initialization (NIP) processing,
which includes:

• Initializing the ENF control table (ENFCT)

• Creating the ENF vector table (ENFVT) for the event codes specified in the
ENFCT.

• Creating the ENF process table (ENFDS), which is used for asynchronous
requests.

Also, the master scheduler region initialization module (IEEMB860) attaches the
ENF wait routine (IEFENFWT), which waits to process asynchronous requests.

5-216 MVS Diagnostic Techniques

ENF Processing

ENF Return Codes

ENF Logic Flow Examples

When a request is made for ENF services, module IEFENFFX (request router)
pre-processes the request.

If synchronous processing is requested in the event parameter list (ENFPM),
IEFENFFX calls the ENF mainline module (lEFENFNM) to process the
request.

If asynchronous processing is requested in the ENFPM, IEFENFFX stores the
ENFPM in the ENF process table (ENFDS) and posts the ENF wait routine
(IEFENFWT). IEFENFWT runs in the master address space and calls
IEFENFNM to process the request.

For a description of the program logic for the ENF modules, refer to OSjVS2
System Logic Library.

The following topics describe the return codes returned by ENF to the caller, and
show examples of logic flow.

ENF returns the following return codes in register 15 to its caller.

Return Code
Dec (Hex)

0 (0)
4 (4)*
8 (8)
12 (C)
16 (10)
20 (14)
24 (18)*
28 (IC)*
32 (20)*
44 (2C)

Description

The request was processed successfully.
A duplicate listen request was detected.
The ENFDS control block is full (ENF cannot process the asynchronous request).
An error was detected in the caller's event parameter list (ENFPM).
ENF is not available.
ENF is not initialized.
Storage cannot be obtained for the listen request.
An invalid token value was detected on a delete listen request.
An error occurred in the signal exit routine for a signal request.
The freemain for the signal parameter list failed.

*Returned for synchronous requests only. (For asynchronous requests, these conditions result in a zero
return code because the conditions have not yet been checked by ENF.)

Examples of the logic flow for a signal, listen, and delete listen request are
described in the following topics.

Listen for an Event

A system routine (for example, lOS initialization) needs to listen for the "vary
online" event, and wants to limit the listen request to tape devices.

1. The routine builds an event parameter list (ENFPM) and fills in the following
fields:

ENFPLEN X'OOIC' (28 bytes)

ENFPACT X'OO02' (listen request)

Section 5. Component Analysis 5-217

ENFPCODE X'OOOOOOOI' (vary online event)

ENFPFLG X'OO' (synchronous processing)

ENFPQMSK X'02' (qualifier mask)

ENFPQUAL X'00008000' (qualifier field)

ENFPEADR address of the listen exit routine that is to receive control when the event (vary
online) occurs

ENFPSPRM zero

ENFPTOK zero (ENF returns the ENFLS token value in this field)

2. The routine calls the ENF request router (IEFENFFX) with register 1
pointing to a full word parameter which points to the event parameter list
(ENFPM).

3. IEFENFFX checks the validity of the ENFPM and, if valid, calls the ENF
mainline routine (IEFENFNM).

4. IEFENFNM adds a listener element (ENFLS) to the listen queue for the vary
online event.

5. IEFENFNM returns to IEFENFFX, which returns to the caller and passes
back the listen token value for the ENFLS in field ENFPTOK of the caller' s
ENFPM.

The listen exit routine (specified in field ENFPEADR) will receive control when a
vary online event occurs and the third byte of the signaller' s qualifier field
matches the third byte of the listener's qualifier field (X'80'). As shown in the
next example, the signaller of the vary online event puts the UCBTYP field in its
qualifier field (where X'80' indicates a tape device). Therefore, the listen exit
routine is entered for a vary online of tape devices.

Signal an Event

A system routine (for example, vary device processing) is performing a vary online
function and signals the event to ENF. In this example, the routine puts the
UCBTYP field in the ENFPQUAL field. This allows listeners to filter their listen
requests to specific device types or characteristics.

1. The routine builds an event parameter list (ENFPM) and fills in the
following fields:

ENFPLEN X'OOIC' (28 bytes)

ENFPACT X'OOOI' (signal request)

ENFPCODE X'OOOOOOOOI' (vary online event)

ENFPFLG X'OO' (synchronous processing)

ENFPQMSK zero (not u.sed)

ENFPQUAL X'02208001' (qualifier field)

5-218 MVS Diagnostic Techniques

ENFPEADR optional (address of a signal exit routine to receive control when alllisteners
have been notified and have completed processing)

ENFPSPRM optional (address of a parameter list to be sent to al1listeners)

ENFPTOK optional (the token value to be passed to the signal exit routine)

2. The routine calls the ENF request router (IEFENFFX) with register 1
pointing to a fullword parameter which points to the event parameter list
(ENFPM).

3. IEFENFEX checks the validity of the ENFPM and, if valid, calls the ENF
mainline routine (IEFENFNM).

Note: For asynchronous processing, IEFENFFX. stores the ENFPM in the
ENFDS (process table) and posts the ENF wait routine (IEFENFWT), which
calls IEFENFNM.

4. IEFENFNM processes the request as follows:

a. Searches the listen queue (ENFLSs) of the vary online event and, if the
listener had specified qualifier bytes, looks for a match of the signaller's
qualifier bytes to the listener's qualifier bytes.

b. Calls each listener's exit routine and passes to each exit the event code
and, if specified, the address of the signaller's parameter list
(ENFPSPRM).

c. If a signal exit routine address was specified in field ENFPEADR of the
signaller's ENFPM, passes control, with the token value, to the signaller's
exit routine.

d. Returns control to IEFENFFX.

5. IEFENFFX returns to the caller.

Delete a Listen Request

A system routine that has been listening for a specific event (such as vary online
processing) no longer needs to know when the event occurs.

1. The routine builds an event parameter list (ENFPM) and fills in the following
fields:

ENFPLEN
ENFPACT
ENFPCODE
ENFPFLG
ENFPQMSK
ENFPQUAL
ENFPEADR
ENFPSPRM
ENFPTOK

X'OO 1 C' (28 bytes)
X'0003' (delete listen request)
X'OOOOOOOOl' (vary online event)
X'OO' (synchronous processing)
zero
zero
zero
zero
token value of the ENFLS that ENF returned on the listen request for the event.

2. The routine calls the ENF request to router (IEFENFFX) with register I
pointing to a fullword parameter which points to the evetlt parameter list
(ENFPM).

Section 5. Component Analysis 5-219

ENF Recovery Routines

3. IEFENFFX checks the validity of the ENFPM and, if valid, calls the ENF
mainline routine (IEFENFNM).

4. IEFENFNM processes the delete listen request as follows:

a. Searches the listen queue (ENFLS) for a matching token value for the
event code specified.

b. Deletes the appropriate listener element (ENFLS) by marking the ENFLS
available for reuse. (See Note).

c. Returns control to IEFENFFX.

5. IEFENFFX returns to the caller.

Note: If the ENFLS is in use, indicated by a use count of one or more in
field ENFLUSE, ENF sets the high-order bit (ENFLDEL) of field
ENFLUSE to one to indicate that a delete request is pending. ENF does not
call the listen exit routine for any additional signal requests to this ENFLS.
After any existing listen exit routines that are in process are serviced, ENF
marks the ENFLS available for reuse when the next signal request for the'
event is processed.

The ENFLUSE field has the following meaning:

High-order
Bit (ENFLDEL)

1
I
o
o

Remainder
ofField

o
>0
>0
o

Me~

The ENFLS has been deleted and is available for reuse.
A delete request is pending for the ENFLS.
The ENFLS is active and is in use.
The ENFLS is active but not in use.

If an error occurs during ENF processing, ENF recovery routines issue the
SETRP macro (with RECORD = YES) to record errors to the SYSl.LOGREC
data set and issue the SDUMP macro to dump virtual storage.

The FRR and EST AE recovery routines (FRRRTN and EST AERTN) in modules
IEFENFFX and IEFENFNM put the following data in the variable recording
area (SDW A VRA) of the SDW A in a key-length format:

• Component ID (BB 131)
• Product level
• Module footprints (FOOTPRNT)
• EST AE or FRR parameter list

The ESTAE recovery routine (EST AEXIT) in module IEFENFWT does not put
data in theSDW A VRA.

5-220 MVS Diagnostic Techniques

Recovery Termination Manager (RTM)

Functional Description

Work Areas

Major RTMModules

The recovery termination manager (RTM) cleans up system resources when a task
m. address space terminates, either normally or abnormally.

Logically, RTM consists of four related processes.

1. RTMI attempts recovery for software ,or hardware errors; it is entered via the
CALLRTM macro instruction issued by supervisory routines. Functional
recovery routines (FRRs) are processed in this logical phase.

2. RTM2 performs normal and abnormal task termination for both system and
problem program routines. The ABEND macro (SVC 13) requests RTM2
services.

3. Address space termination provides normal and abnormal address space
termination for supervisory routines. The CALLRTM macro instruction is
used to request this function.

4. RTM support functions such as error recording, formatting of dumps (see
note), and creating recovery control blocks for- error exit processing.

Note: RTM generates an error id that ensures that information recorded in
SYS1.LOGREC concerning a problem, can be readily correlated with SVC dump
information concerning the same problem. See 'Error ld' later in this topic.

For details of RTM work areas see "Use of Recovery Work Areas for Problem
Solving" in Section 2.

RTM1, which is part of the nucleus, comprises seven modules:

1. IEAVTRTI - RTM entry point processor
2. lEA VTRTM - RTMI mainline
3. lEA VTRTS - system recovery manager
4. lEA VTRTR - RTMI recovery routines
5. lEA VTRSO - RTMI subroutines
6. lEA VTSRI - ITERM processor
7. IEAVTRMC - RMGRCML preprocessor

RTM2, which resides in the link pack area (LPA), is entered via SVC 13. The
mainline for RTM2 comprises the following three modules:

1. lEA VTRT2 - initialization
2. lEA VTRTC - controller
3. IEAVTRTE - exit handler

Section 5. Component Analysis 5-221

Process Flow

Hardware Error Processing

Other important RTM2 modules are:

• lEA VT AS 1 - pre-exit processing
• lEA VT AS2 - post-exit processing
• lEA VT AS3 - control recovery
• IEAVTSKT - task termination purges
• lEA VTMRM - RTM2 resource manager
• lEA VTRML - installation resource manager list

The following charts depict the process flow for:

• Hardware error processing
• Normal end-of-task termination
• Abnormal end-of-task termination

• Retry
• Cancel
• Address-space termination
• PER activation/deactivation

Depicted in the following diagram is the processing for a hard type machine check
in a global routine that has FRR recovery. It shows the interfaces and control
flow between the machine check handler and RTMI for both hardware error
processing and the resulting software recovery attempt by the FRR. It indicates
that software recovery continues in task mode because, in this example, the FRR
does not recover the error.

The use of extended error descriptors (EEDs) allows the LOGREC buffer to be
available for further possible machine checks and is the mechanism for passing
information to RTMI and RTM2. The information in the global system
diagnostic work area (SDWA) used by RTMI recovery was obtained from the
EEDs. RTM2 obtains an SDWA, but also uses the EEDs as its source of error
data to be passed to recovery routines.

RTMI uses the RTM processor-related work save area (WSACRTMK) to alter
the registers and the PSW that MCH reloads, thereby determining whether MCH
resumes the interrupted process (soft error), or reenters RTMI for software
recovery (or hard error).

5-222 MVS Diagnostic Techniques

Legend:

MCH
• ProC8lling a storage

check in a global
routine that hes
esubllshad an FRR •

Logrec Buffer

Information
about
hardware

____ Pointer

__ ContrOl flow

error ~Dataflow

• Invokes RTM1 for
software repair:
CALLRTM ,
TYPE-MACHCK

WSACRTMK

regs and

~IEAVTRT1
.. • Sets up environ

ment for MACHCK
entry.

• Returns to caller
(MCH) with pointer
to WSACRTMK.

I

EEDs

RTM1

01EAVTRTM

~ • Calls IEAVTRTH
(Hardware error
proc:euor).

• Passes back pointer

0.IEAVTRTH

~ • Preserve hardware
data in EED's
(RTM's internal
control blocks).

• Call appropriate
repair routine.

• Record hardware
error to lagrec.

...
to re-entry dataJ
(stored in· ,.....,

• Establish
environment for
re~ntry to RTM in
WSACRTMK.

W5ACRTMK).

EED
General pur- EED
pose registers, .. control registers .,.
3 and 4, and Repair

PSW at time of status

MACHCK
informa-
tion

I

WSACRTMK

Registers
and PSW for

... re~ntry to

.. RTM1

SDWA

PSW
altered
by RTM1

MCH ~
,.-J\, MACHCK

rV Information

~J~=_ ~_i~;6;i~I;E;A;VT;;R;T;1;;;;;;;;=~~7~-7~~~I-E-A-v-T-R-T-M-----~~~8~-~-A-V-T-R-T-S------~
PSWfrom
WSACRTMK (causing • Sets up environment • Attempt system • Routes to FRR to _- .-.,.
re-entry to RTM1 _ r for MACHCK recovery since error attempt recovery fOr ,.
type MACHCK _ re~ntry. (MACHCK) occurred routine that suffered .. _
RE-ENTRY) for in a globa! routine. MACHCK.
software recovery

DISPATCHER

The task is
dispatched eventually
and execute the SVC
13 which causes
RTM2 task
recovery I termination
services to be invoked.

• Exits to the
dispatcher.

.. • Sets up talk for
entry to RTM2 by
altering RBOPSW.

. ~
~------------------------~~

TCB

TCBRTM12 • EEDs
RB

• SVC 13
~-

SDWA

Continue
with·term.

• Records the error .

• Returns with a
'Continue-with
termination'
indicator

FRR .l1.

PerCOlates

Section 5. Component Analysis 5-223

Normal Task Termination

• •

\
DISP

EXIT and parts of RTM2 make up this function as shown in the following
diagram. The flow shows how EXIT is entered and then reentered to complete
task termination; it also provides a perspective of RTM2 functions related to
normal termination of a task.

Task issues SVC 3

V.,SP

IGC003 - EXIT

Determine task's
eligibility for normal
task termination .
• EXit'w8s Issued by

last RB on RB queue .
• TCBEDT = zero.

PRB SVRB

~---v~:J--r:J=====~A
ASXB

a"IA.XSTCS. ~

Legend:

---. Pointer

.... Control Flow

~DataFlow

\A 2 Issue SVC 13 to pass
control to RTM2.

RTM2

1 Pass control to task termination
processor.

2 If ASXBTCBS indicates' l' task is left
in the memory - then address space
termination Is necessary. Set the task
non·dlspatchable and issue CALL RTM
TYPE=MEMTERM~SCHEDULEan
SRB which Initiates address space
termination processing.

3 If only normal task termination, then
branch to exit prolog to get rid of
SVRB.

4 Free the RTM2 work area.

BRANCH

Prolog deletes SVRB

1

IEAQSPET - IEAVGCAS
1 ... BALR ..

Free storage
I ..

BALR ...
IGC062Rl - IEAVEEDO

" 2
Free TCB & RB core.
Dequeue TCB.

~
DISP

\

IEAVTSKT

Free resources via Link to); TM2 and
user defined resource managers,
passing resource managers parameter
list (RMPL).

2 Set PRB resume psw to point to an
SVC 3 Instruction.

3 Set end-of·task indicator for exit in
TCB (TCBEOT).

4 Indicate proper control flow in RTM2
work area.
• If last task in memory, indicate

address space termination
processing.

• Not last task.

IGCOO3 - EX IT

Since the end·of·task indicator
has been set (TCBEOT) BALR to
resource manager for cleanup of
task. I

CD TRAM .. BALR

CD
.. " VSM

0 .. BALA PGM

0
,-

"I DET

Exit to dispatcher.

RTM2WA

Communications are
for processing within
the RTM2 load
module.

RMPL

• LINK. To all Resource Managers
defined in IEAVTRML

lI_iii" To System Resource
"'II Managers

PRS

IEAVTSBP I
Dequeue/Free SCB's owned by RS or I task.

IEAPPGMX 1
Free programs

1

EITHER

• Schedule end·of·task exit SR 14
routine for task.

OR II'

• Post mother task if attached
w/ECB operand. Normal Task Termination

is Complete

5-224 MVS Diagnostic Techniques

Abnormal Task Termination

ABEND

TCB

Shown in the following diagram is the logic flow during abnormal termination of
a non-critical nature. If the error is not recoverable at a particular task level, that
task and its subtasks are removed. If the scope of the abend is "Step," then the
entire job step is removed. Optionally, serviceability information (dumps and
software error records) is supplied to the user.

(Recoverv processing

1----.J,'tt.~oObbtUaJ.ln;:.'7inniiittiialize and Queue RTM2WAL:::::~{f~or~f~agil~in~g~t~al~kf.)~::~ __ ~~ .. ii""""~~~~-' 1= IEAVTASl PI

Contrails
returned from
IEAVTASl

Legend

~Pointe'

...... Conlrol Flow

c::::::::::> Data F low

the RTM2 work area •
• Save a copy of the trace

t!!J11!:.... _
IEAVTRTC ~-
• Valid ltv check and process

the dump options.

normal exit

resource managers •
• Update the RB queue

for exit.

optiOns.

Recorder

IEAVTRT2

Section 5. Component Analysis 5-225

Retry

Shown in the following diagram is the flow through RTM2 when processing a
potentially recoverable error. The recovery exit is supplied environmental data
that describes the error (for example, completion code, register contents, PSW,
system state at time of error) to aid in diagnosing the error. To retry, the resume
PSW in each request block (RB) up to and including the retry RB is modified.
The retry address supplied by the exit is placed in the resume PSW field of the
retrying RB, and all RBs between the retry RB and the RTM2 RB have their
resume PSW set to either exit prologue or SVC 3. To ensure that the retry
routine runs in the hoine address space, the RBOPSW S-bit is zeroed and the
ASIDs of the primary and secondary address spaces in the XSB of the retrying
RB are set to the ASID of the home address space. When R TM2 eventually
returns to the system, supervisor-assisted linkage will cause the retry address in
the retry RB to be given control.

~"~ ~J~~~r~_3_VI_.~~~~~
~D ~ - --

TeB

• Select an exit (SCB).
• ODtain and Initiailze the SOWA.
• Perform 110 requests and block

asynchronous exits If requested.

• ~:'C~t:"EXI~ t- -----IEAVTAS2
• Track the SOWA.
• Record. if requested.
• Save the dump opt/ons.

• Free the saved copy of the trace
table if available. (RTM2TRTBI'O).

• Free the RTM2 work area.
• Clear the TCB flags.
• Branch to the exit prologue.

5-226 MVS Diagnostic Techniques

Abnormal
exit

'

EAVTRT 2

Branch to
disp.tcher

User exit

Legend:

--....Polnt.r

~ Control flow

~Dataflow

XSB

XSBSASID=home
address space ASID

XSBPASID=home
address space AS I 0

Cancel

RTM1

Shown in the following diagram is the flow of control through RTM when a job
is cancelled. The CANCEL request is indicated by specific completion codes set
in the TCB by RTMI (code = 'X22'). The CANCEL process is distinctive in that
it is considered a strictly unrecoverable situation. Normal termination procedures
are abandoned in favor of creating an express path through termination.
However, term exits are given control.

Lagend:

......... ,r------r------,
~ IEAVTRT2

_Pointer -+ Control Flow

~DataFloW

• Obtain, initialize and queue the
work area.

• Save a COpy of the trace table if
available.

• Process the EED's.
• SDUMP/SLIP considerations.

IEAVTRTC ~
• Set the subtasKs non

dispatch able.
• Process tne subtasks and current

task. Setting abend bits,
nalting I/O and purging
resources.

IEAVTRTC

.Initialize term exit processing
until all term exits have been
entered_

• Determine tne type of dump
(SYSABEND or SYSMDUMP).

• Process tne dump data set for
current & SNAP.

• Find tne daugnters & SNAP if
not SYSMDUMP.

• Reset tne TeB flags In current
and daugnters.

_ ____ Jiiiiiiiiilliiiiiiitl

• Find tne deepest subtask.
• Detacn tne subtask.

1..---_ ...

Resource managers

• Installation resource
managers.

• Initiate task termination until ••••••••• : ~U;~;t~htn:e~O~~~;~e for

• IBM resource
managers .

L-~e:ac~n~su~b~ta~s~k~h~a~s~'e~x~it~e~d~'. ____ ~............ ~_e_x_it_. __________________ ~

• Free tne.saved trace table
If available.

Exit prologue
(lEAVEEXP)
Normal exit

Section 5. Component Analysis 5-227

FORCE Command

The FORCE command is designed to remove ajob or TSO user from the system
after the CANCEL command has failed to do so. For example, a job is writing
to a DASD unit when the unit is suddenly made unavailable to the system; in this
case, the CANCEL command is frequently unable to remove the job. If
CANCEL does fail to remove the job, then FORCE can be used. However,
FORCE does not use normal termination or normal cleanup routines, and is
intended to be used only as an alternative to another IPL.

When FORCE is issued, the job's address space is terminated and any task
running in the address space is terminated. If a job is running under an initiator,
the initiator is also terminated.

FORCE processing is dependent on the recovery termination manager (RTM),
and on the command scheduling control block (CSCB), which contains a new bit
definition in CHAFORCE. When the FORCE command is entered on a console
having system authority, control is given to the CANCEL-FORCE processor
which verifies that the command syntax is correct. The processor then scans the
CSCB chain to see if the job exists and is cancelable. A bit in the job's CSCB is
then checked to see if a CANCEL has been issued for this job. If not, a call is
made to the message module to issue message IEE838I - 'CANCELABLE -
ISSUE CANCEL BEFORE FORCE', and control is returned to the system. If
CANCEL has been issued, a CALLRTM TYPE = MEMTERM is issued. The
message module is called to issue message IEE301I - 'FORCE COMMAND
ACCEPTED', and control is then returned to the system. If an error is found in
the command syntax, or the job was either not found or was non-cancelable, the
message module issues an appropriate message and control is returned to the
system.

The FORCE processor uses the current CANCEL serialization code. The CSCB
chain resource is serialized via ENQUEUE on SYSIEFSD QI0. Because the
holder of CSCB QIO must be non-swappable while holding the resource, the
FORCE command processor issues a SYSEVENT DONTSW AP before issuing
the ENQUEUE on QI0.

For additional information concerning the use of FORCE, see Operator's Library:
System Commands.

5-228 MVS Diagnostic Techniques

Address-Space Termination

The process of terminating an address space (memory) is one that cannot be
isolated to one task, module, or logical unit of code. The many parts of the
process, depicting control flow and data flow, are shown in the following
diagram.

Since the MEMTERM prc.c'!ss cir
cumvents all TASK recover { and
T ASK resource manager processing.
its USe is restricted to a select group
of routines which can determine that
task recovery and resource manager
clean up is either not warranted or
will not successfully operate in the
address space being terminated.
It therefore is restricted to the
following users:

1) PaginC) Supervisor when it de-
tel mines th.t it cannot swap in the
LSQA for an address space.

2) Address sPace create when It
determines that an address sPace
cannot be 100tialized.

3) The RTM or the supervisor <';00-
trol FRR when they determine
that un.:orrectable transl.ttion
errors are occurring in ·the
address space,

4) The RTM2 when it determines
that task reco ery and termination
cannot take place in the current
address space;

5) The RCT when It determines that
the address space IS permanently
deadlocked.

6) The RTM2 when all tasks In the
address space have terminated
(tEAVTRTE). This IS the only
requestor of normal address space
termination (that IS COMPCOD '0)

BALR

CALLRTM
TYPE=MEMTERM
ASIO=
COMPCOO=O (normal)

+0 (abnormal)

ASCB

j:R=TC=T=====l . _-" ~-"
RTCTFASB~ ASIO r--v

'--__ ..1 \\ t:::==:J

p" to ASCe
Queue of
address space (I)

to be termineted.

7) The auxiliary storage manaqement
recovery rout me when it suUers an
Indeterminate error from which It
cannot rec.over, while handling a
swap·ln or swap·out reQuest.

a) The aUXiliary storage manaqement
recovery r<Jutlne when it deter·
mines that uncorrE'ctabl~ transla·
tlon errors are OCCUrJlr'lg willie ASM
IS usmg !he contrOl u;:glster of

another address sPace t~ UPdate tne
address space's LSQA.

9) SVC 34 In response to a FORCE
commdnd.

10) V TIOC In response to an F5 TOP
rePly.

Note: Since callers 4, 5, and 6 above are task-related and runninq in the
address space to be terminated. tlley will SEt themselves non-dlspatchable
after issuance of CALLRTM.

ATCT

POST

/
RTCTMECB

W ®
Resident dddre~~ ~Pd<.e tern"linatiun
controller task in master addre~":. SPJle

IEAVTMTC

Aeset the address space termination ECB ..

2 Dequeue the ASCB representing the
address space to be terminated.

ATMl

I IEAVTRTl
\;\
Global SRB dispatcher

I
Via branch table 90 to
'TYPE' processor.
TYPE~MEMTERM

-,
Address space
termination SRB

I
I

IEAVTRTM

Put the ASCB of the
address space to be .
terminated on the address
space Queue.

2 Stort! the completion
code in the ASCS with
matching ASIO (or
current).

3 Schedul.· the SRB to post
the address space termina-
tion :ask in the master
address space (use of
the SRB routine is
serialized by compare and
swap).

IEAVTRTI

Return to the caller.

ASCB on
queue
ASCB

...... ASIO

fA
I

Completion
code

SRB On
dispatch
queue J

Post RTCTMECB .
This activates the
address space
termintion task in
the master address
space.

Dispatcher
(IEAVEDSO)

r
Step 1 Identify the requesters I
Step 2 The request format
Steps 3.4 Initiate rhe request
Steps 5,6.7 Process the request

Rl

t 10 deqlleued ASCB

Addre$s space
tern'\inator proces.sor task

IEAVTMTA
I
I IEAVEBBR

Set RO to point to thiS
terminating address

r-------, I
ReSident task I I

I atta~hed bV I I
I ~~~s~:r~~~~dU!er L-.J
I ~;i~il~Ii~:~~:'a~~s I
I inactive until 1
I pOSted for work. I
L _____ -l

3 Stop all processing inside the address
space being terminated.

• If an excessive spin is detected,
inform the operator.

4 Aelease any cross memory (CML) locks
held.

5 Purge any 1/0 operations.

6 Free any real and auxiliarv storage.

7 Attach a subtask to handle remainder of
purges for the address space (pass ASeS
inRl).

8 If the address space termination ASCB
queue pointer is not zero, do processing
steps

o to 0 for the next ASCB.

~~;~~~ec~~~ talk walts for work (wait on 1
• Both cross rTlemory servk.es locks.

WAIT

. IEEVEXSN

Excessive spin
notification
routine

space's ASCB.

2 I ndlcate the
MEMTEAM oPtions

SVC13
in Rl .

3 Issue SVC 13 - to
invoke the services of

Return
ATM2;.... to caller.

4 EXIT to the dispatcher.

SA 14

;"TTACH

Section 5. Component Analysis

ATM2

Perform
address
space
purges

5-229

PER Activation/Deactivation

The following diagram shows the normal module flow that results when PER
(program event recording) is activated or deactivated on behalf of a SLIP PER
trap.

Activation can occur as a result of a SLIP command being entered which enables
or sets a non-IGNORE SLIP PER trap. Deactivation can occur as a result of a
SLIP command being entered which disables or deletes a non-IGNORE SLIP
PER trap. Deactivation can also occur as a result of a non-IGNORE PER trap
being automatically disabled by the SLIP processor (lEAVTSLS) or its recovery
routine (lEA VTSLR). Whether activating or deactivating PER, the SLIP PER
global activation/deactivation routine (IEAVTGLB) is scheduled as an SRB with
global priority to run in the master address space.

lEA VTGLB manages the global resources associated with PER monitoring such
as the control registers on all processors, processor local work and save areas,
I/O, EXT, and SVC new PSW PER bits, and the ASCBPER bit in each address
space.

The status (enabled or disabled) of the non-IGNORE PER trap will determine
whether PER should be activated or deactivated. If activating or deactivating
PER in an address space, lEA VTGLB schedules IEAVTLCL to run in that
address space with local priority.

lEA VTLCL manages the address space local resources that affect PER
monitoring. The PSW PER bits in saved PSWs are set to reflect that status of
PER monitoring in the address space as determined by the ASCBPER bit.
lEA VTLCL may also be scheduled by lEA VTJBN while PER is active in the
system. This happens when a new address space is created or a change of jobs
occurs in an address space. When scheduled by lEA VTJBN, lEA VTLCL
determines whether or not PER should be active in the address space and sets the
ASCBPER bit accordingly in addition to setting the PSW PER bit in saved
PSWs.

5-230 MVS Diagnostic Techniques

CSCB

l

SLIP
command
text

• Non-IGNORE PER
trap is enabled.

• Non-IGNORE PER
trap is disabled or
deleted.

IEAVTSLS/IEAVTSLR

• Non-IGNORE PER
trap disabled
due to MATCHLIM
Or PRCNTLIM.

IEESB605

• LOGON, MOUNT Or started
task and non·IGNORE PER
trap exists.

IEFIB60a

• Processing for a job and
non·IGNORE PER trap exists.

IEAVEMRQ

SCHEDULE -----,
I
L __

• Request for new address space 14 •••••••• ~
and non-IGNORE PER trap
exists.

ASVT

: •

RISGNL
~~~ ____ --L._--I 

• Set or reset PER control registers and 
new PSW PER bits on all processors. 

• Obtain or delete SLIP processor local 
storage. 

• Scan ASCBs and determine if PER 
should be activated or deactivated. 
Set ASCBPER bit accordingly and 
schedule I EAVTLCL. 

SRB 

PARM 

SLPL 
and 
work 
areas 

ASXB 

in the address space. 

TCB 

• Set tasks non-dispatchable in the 
address space. 

• Turn the RBOPSW PER bit onloff 
in all RBs based on the setting of 
ASCBPER. 

• Set tasks dispatch able. 

IEAVTJBN 

• Determine if SLIP 
is active and schedule 
IEAVTLCL. 

TCB 

• Set or reset control 
registers 9, 10, 11. 

• Set or reset 1/0, EXT, 
SVC, and new PSW PER 
bits. 

RB 

chain for next TCB. 

Section 5. Component Analysis 5-231 



Error ID 

Error ID ensures that problem information recorded in SYSI.LOGREC, can be 
easily correlated with message IEA91lA and SVC dump information concerning 
the same problem. The error id function is invoked whenever the RTM is entered 
to process an error condition. The RTM determines if the entry is to process a 
recursive or a new error, a new error being one unrelated to a previous error. 

If an error occurs during the processing of a previous error, the error id has the 
same sequence number as the original error, but is given a new time stamp. In 
this way, the sequence numbers show that the errors are related, and the time 
stamps show the history of error processing. 

The RTM generates an entirely new error id: 

1. Upon entry to RTMI for a machine-check error (module IEAVTRTH). 

2. Upon entry to RTMI in SLIH mode for non-recursive error processing. 

3. Upon entry to RTM2 when there has been no previous error processing in 
RTMI. Control passed to RTM2 by RTMI does not result in a new error id 
if RTMI has already generated one. 

RTMI maintains the error id in either the SDWA or an EED. RTM2 maintains 
the error id in its work area, RTM2WA. At an appropriate point in the error 
processing, the error id is moved to the SDUMP work area (pointed to by 
RTCTSDWK), where it is stored until processed by SDUMP. The correct error 
id is passed to SYSl.LOGREC when a software or hard machine check error 
record is written by RTM. Soft machine check error records do not contain an 
error id because no subsequent software recovery takes place following a "soft" 
error. IFCEREPI recognizes and prints the error id in the LOGREC software or 
machine check record. AMDPRDMP recognizes and prints the error id as part 
of the header information for an SVC dump, formatted as follows: 

ERRORID FOR THIS DUMP = SEQyyyyy CPUzz ASIDaaaa 
TIMEhh.mm.ss.t 

where: 

yyyyy 
zz 
aaaa 
hh.mm.ss.t 

represents the sequence number of the error id 
represents the error id logical processor 
represents the error id ASID 
represents the error id time stamp converted to read as hours, minutes, seconds, and 
tenths of seconds 

If an error id is not available for a dump (indicated to AMDPRDMP by zeroes in 
the error id header field), the message "NO ERRORID ASSOCIATED WITH 
THIS DUMP" is printed where the error id is normally found. 

To further increase the usefulness of error id, message IEA91lA is changed to 
include the error id when an SVC dump is taken. The message reads: 

IEA911A COMPLETE/PARTIAL DUMP 
ON SYSl.DUMPxx/UNIT=ddd 
ERRORID=SEQyyyy CPUzz ASIDaaaa TIMEhh.mm.ss.t 

where xx and ddd have the same meaning as in the current message. 

5-232 MVS Diagnostic Techniques 



SVC Dump Debugging Aids 

The SVC dump function of RTM is invoked when the SDUMP macro is issued. 
SVC dump produces dumps of system errors on a SYSl.DUMPxx or user-defined 
data set. SVC dump also produces abend dumps requested by SYSMDUMP DD 
statements. 

Items that are important for you to understand when debugging errors in SVC 
dump processing are described in the following topics: 

• Important SVC Dump Entry Points 
• SVC Dump Error Conditions 
• SYSl.LOGREC Entries Produced for SVC Dump Errors 
• Control Blocks Used to Debug SVC Dump Errors 
• Resource Cleanup for SVC Dump 

Important SV C Dump Entry Points 

The BRANCH = parameter on the SDUMP macro determines the SVC dump 
entry points and mainline processing to be used. 

BRANCH = YES Option 

Entry point lEA VTSDX is used for branch-entry SVC dumps. lEA VTSDX 
creates a summary dump in a real storage buffer (if the SUMDUMP option is 
requested on the SDUMP macro), schedules one or more SRBs to invoke dump 
task (lEAVTSDT) processing for the requested address spaces, and then returns 
control to the caller. 

The branch-entry option is requested by many FRR routines and some EST AE 
routines. This option is also requested when ACTION = SVCD is specified on the 
SLIP command. 

BRANCH=NO Option 

Entry point lEA V ADOO is used for the SVC entry to SVC dump. For scheduled 
dump requests (ASID, ASIDLST, LISTA, TYPE=XMEM, or TYPE=XMEME 
is specified on the SDUMP macro), lEA V ADOO calls lEA VTSDX which 
schedules one or more SRBs to invoke dump task (lEA VTSDT) processing for 
the requested address spaces, and then returns control to the caller. For 
synchronous dump requests (ASID, ASIDLST, LIST A, TYPE = XMEM, and 
TYPE = XMEME are not specified on thy SDUMP macro), lEA V ADOO processes 
the dump and then returns to the caller. 

The SVC entry is requested by many EST AE routines. It is also requested by the 
DUMP command (as a scheduled dump), and by the abend dump processor 
(IEAVTABD) for SYSMDUMP DD statements (as a synchronous dump). 

Section 5. Component Analysis 5-233 



Determining the SVC Entry Point 

The title line produced for SVC dumps that are formatted by the print dump 
service aid indicates whether a scheduled or synchronous SVC dump was 
requested, as follows: 

• If "MODULE IEAVTSDT" is in the title line, then the dump was scheduled 
(SDUMP BRANCH = YES, or SDUMP BRANCH=NO with the ASID, 
ASIDLST, LISTA, TYPE=XMEM, or TYPE=XMEME.keyword). 

• If "MODULE SVCDUMP" is in the title line, then the dump was 
synchronous (SDUMP BRANCH = NO without the ASID or ASIDLST 
keyword). 

• If another module name is in the title line, then the dump was synchronous. 

SV C Dump Error Conditions 

SVC dump was able to determine which load module invoked it and insert 
the name in the title. 

If the SVC dump function encounters an unexpected abend during its processing, 
it produces a software SYS1.LOGREC record and, if possible, continues taking 
the dump. 

Expected program checks can occur when SVC dump is checking whether a 
virtual page that is to be dumped is valid and assigned. These program checks do 
not result in SYS1.LOGREC entries. 

SVC dump issues abends 133 and 233 if it detects an unauthorized caller or 
invalid input parameter. In these cases, LOGREC entries are not created and 
retry is not attempted. 

SVC dump issues a COD abend for some unexpected errors during its processing. 
In this case, retry is attempted. 

SYS1.LOGREC Entries Produced for SVC Dump Errors 

The best starting place for debugging SVC dump problems is the SYSl.LOGREC 
entries contained in the in-storage SYS1.LOGREC buffer or in the 
SYSl.LOGREC data set, because a dump of the SVC dump problem is generally 
not available. (SVC dump does not take a dump of its own problems.) 

Many SVC dump problems can be debugged from the SYSl.LOGREC entries 
alone. However, more complex problems may require a stand-alone dump that 
can be taken after a SLIP trap with ACTION = WAIT has matched. These 
problems include loops and failures to free critical system resources 

Fixed Data 

The fixed data that SVC dump places in the system diagriostic work area (SDW A) 
for recording on SYS!.LOGREC is: 

SDWAMODN - Load module name (generally IGC0005A, which is the SVC 51 load module in 
SYS 1.LPALIB). 

5-234 MVS Diagnostic Techniques 



SDWACSCT - CSECT (microfiche) name, which can be any SVC dump module name. For details 
of SVC dump module functions, interfaces, and flow, refer to OS/VS2 System Logic 
Library. 

SDW AREXN - Recovery routine CSECT name. 

SDW ARRL - Recovery routine name, which is given as a label. This label is not always within the 
failing CSECT shown in SDW ACSCT. 

The following table shows the label of the recovery routine, the microfiche name 
of the containing CSECT, and. a description of the recovery processing. 

Label CSECT 

DISRBFRR IEAVTSDX 

DTESTAEI IEAVTSDT 

ESTAEXIT IEEMB879 

IEAVTSDR IEAVTSDR 

SCHFRR lEA VTSDX 

SDESTAEX IEAVADOO 

SDFRRRTN IEAVADOO 

SRBFRR IEEMB880 

SUMFRFRR IEAVTSSD 

SUMFRR IEAVTSSD 

Variable Data 

Description 

FRR routine for the SRB that creates the timer disabled interrupt 
exit (DIE) used to free the real storage buffer that is used with 
summary dumps for for branch-entry SVC dumps. This FRR is 
established by the SCHDISRB routine in lEA VTSDX. 

ESTAE routine for scheduled SVC dumps that are executing under 
the dump task (lEA VTSDT) in the requested address space. 
IEAVTSDT also establishes SDESTAEX which can percolate to 
DTESTAEI. 

ESTA~ routine for the master trace exit routine invoked by SVC 
dump module IEAVTSDU. This ESTAE is established by 
IEEMB879. 

FRR for SDUMP SRBs. This FRR starts the dump task in the 
requested address space. 

FRR routine for branch-entry to SVC dump, for part of scheduled 
SVC dump initialization, and for the timer disabled interrupt exit 
(DIE) used to free SVC dump's real storage buffer. This FRR is 
established by lEA VTSDX. 

ESTAE routine for mainline SVC dump processing. This ESTAE is 
established by lEA V ADOO and IEA VTSDT. 

FRR routine for mainline SVC dump processing. This FRR is 
established by SVC dump modules when a lock is held and a retry is 
needed in the locked state. lEA V ADOO and IEAVTSDT are the 
main users of this FRR. 

FltR routine for IEEMB880 which is the SRB routine that does 
data moves for IEEMB879. IEEMB879 is is the master trace exit 
for SVC dump. This FRR is established by IEEMB880. 

FRR routine for SUMFRR routine processing. This FRR is 
established by the SUMFRR routine. 

FRR routine for summary dump processing invoked for 
branch-entered SVC dumps. This FRR is is established by 
IEA VTSSD. If SUMFRR abends, SUMFRFRR receives control; 
and if it percolates, SCHFRR receives control. 

The variable data that SVC dump places in the SOW A VRA field of the SOW A 
for recording to SYSl.LOGREC is: 

• The 24-byte recovery routine parameter area if OTESTAEl, SOESTAEX, 
SOFRRRTN, SUMFRFRR, or SUMFRR is the recovery routine name in 
SOW ARRL. This area contains bits that indicate the resources held, other 
status bits, the retry address, the base register value, and the address of the 

Section 5. Component Analysis 5-235 



• 

• 

SVC dump work area (ERRWKADR atX'8'). The contents of the 
parameter area are mapped by the IHASDERR macro. The common name 
of the work area is ERRWORK. 

To obtain the offset into the failing module, subtract the base register field in 
ERRWORK (ERBASEI at X'C') from the address in the failing PSW (found 
in the SDW ANXTI field at X'6C'). 

The ERRWORK data is mapped as follows: 

Offset Lengtb Name Description 

0(0) ERRFLGSI Flags: 
1. ...... FRR protection is active. 
. 1. ..... EST AE protection is active . 
.. 1 ..... SVC dump lock is set on (high-order bit in 

RTCTSDPL). 
.. .1 .... SVC dump 4K SQA buffer lock is set on (high-order 

bit in CVTSDBF). 
.... 1 ... TCBs in the address space are set non-dispatchable . 
.... . 1 .. HOOK macro was issued for GTF . 
.... .. 1. Local lock is held . 
.... ... 1 SALLOC lock is held . 

1(1) ERRFLGS2 Flags: 
1. ...... Error occurred during I/O - no retry. 
. 1. ..... SVC dump has had a terminating error . 
.. 1 ..... lEA V ADOO is fixed in real storage . 
... 1 .... The SVC dump work area is fixed in real storage . 
.... 1. .. CMS lock is held . 
.... . 1.. SVC dump has successfully initialized . 
...... 1. LOGREC recording is not needed (expect program 

checks during storage validation). 
....... 1 At least one record has been successfully written to 

the dump data set. 
2(2) 2 ERRUBSW Register prime flags used for SETRP retry. 
4(4) 4 ERRADDR Retry address to be used by the error recovery 

routine. After a retry, the retry routine changes this 
to the address of ERRWORK. 

4(4) 4 ERRRETRY Another name for ERRADDR. 
8(8) 4 ERRWKADR Address of SVC dump work area (reg 7). 
12(C) 4 ERRBASEI First base register (reg 9). 
16(10) ERRFLAG3 Flags: 

1. ...... A term EST AE exit was not established. Do not risk 
retry. 

. 1. ..... Switch used to end DO loop processing . 

.. 1 ..... ENQ performed on the SVC dump resource (doing 
I/O to a dump data set). 

... 1 .... lEA VTSDT called this module . 

.... 1. .. All dump tasks scheduled to other address spaces 
should DEQ and quit because of a terminating error. 

.... . 1.. Dispatcher lock is held . 

.... .. 1. SRB being scheduled . 

.... ... 1 Reserved . 
17(11) 1 ERRSAVE One-byte general save space. 
18(12) 2 Reserved. 
20(14) 4 ERRBASE2 Second base register. 

For DTESTAEI, the RTCT array of information about address spaces being 
dumped (R TCT ASO) follows the 24-byte recovery routine parameter area in 
the SDWAVRA. 

For ESTAEXIT (IEEMB879) and SRBFRR (IEEMB880), the variable data 
consists of as much of the SVC dump exit parameter list (SDEXP ARM) as 

5-236 MVS Diagnostic Techniques 

~ 



will fit in the SDWAVRA. The SDEXPARM data is mapped (by the 
IHASDEXP macro) as follows: 

Offset Length Name Description 

0(0) 4 SDEXECB ECB used to synchronize SVC dump processing. 
4(4) 4 SDEXASCB ASCB a4dr~. used to post the ECB. 
8(8) 2 SDEXWAID ASID used to post the ECB. 
10(A) 2 Reserved. 
12(C) 4 SDEXBFAD Buffer address for the data moved by the exit. 
16(10) 4 SDEXBFLN Length of the data buffer. 
20(14) 4 SDEXORAD Address of the output routine used to process the buffer. 
24(18) 2 SDEXKEYS Two one-byte keys - for first and second 2K of storage in 

the buffer. 
26(1 A) 2 SDEXASID ASID of the data that was last moved to the buffer. 
28(lC) 4 SDEXNDAD Address of the next data to move to the buffer. 
32(20) 4 SDEXCDAD From address of the data that was last moved to the 

buffer. 
36(24) 4 SDEXBTIA Start address of the master trace table (if the master trace 

exit is executing). 
40(28) 4 SDEXTILN Length of the master trace table (if the master trace exit is 

executing). 
44(2C) 72 SDEXSAVE Save area for exit use. 

Control BlOcks Used to Debug SVC Dump Errors 

The following control blocks contain key information that can be used to debug 
problems in SVC dump routines. 

• Address Space Control Block (ASCB) 
• Recovery Termination Control Table (RTCT) 
• RTCT Extension (RTSD) 
• SVC Dump V-/ork Area (SDWORK) 
• Summary Dump Work Area (SMWK) 

Address Space Control Block (ASCB) 

The ASCB contains the address of the TCB for the SVC dump task (lEA VTSDT) 
in the ASCBDUMP field (at offset X'60'). In this TCB, the TCBEXSVC bit 
(low-order bit at X'CC') is set on while the SVC dump task is executing. The 
ASCB is mapped by the IHAASCB macro. 

Recovery Termination Control Table (RTCT) 

The RTCT is pointed to by the CVTRTMCT field (at X'23C') in the CVT. It 
contains SVC dump information including status bits, an array that describes the 
SYSl.DUMPxx data sets, and an array that contains information for the address 
spaces to be dumped. The RTCT is mapped by the IHARTCT macro. 

RTCT Extension (RTSD) 

The RTSD is pointed to by the RTCTRTSD field (at X'16C') in the RTCT. It 
contains storage that SDUMP uses to save user parameters and internal variables. 
The RTSD is mapped by the IHARTSD macro. 

Section 5. Component Analysis 5-237 



SVC Dump Work Area (SDWORK) 

The SDWQRK is pointed to by the RTCTSDWK field (at X'DC') in the RTCT 
and the CVTSDBF field (at X'24C') in the CVT. It contains most of the 
reentrant storage used by SVC dump including register save areas, CCWs, and the 
I/O buffer that contains the 4104-byte SVC dump records before they are written 
to the dump data set. The SDWORK work area is mapped by the IHASDWRK 
macro. 

Summary Dump Work Area (SMWK) 

The SMWK, is pointed to by the RTCTSDSW field (at X'B4') in the RTCT and 
contains fields used when a summary SVC dump was requested or defaulted (via 
the SUMDUMP option on the SDUMP macro). It includes counter fields that 
show how many real frames are used for the real storage buffer that holds the 
summary dump created for branch-entry callers of SVC dump. The count of real 
frames held (field SMWKFRHD at X'C6') is zeroed after the summary dump is 
written to the dump data set and the frames returned to RSM. The SMWK work 
area is mapped by the IHASMWK macro. 

Resource· Cleanup for SVC Dump 

Resource cleanup performed by SVC dump includes: setting the system 
dispatchable, setting tasks dispatchable, freeing the summary dump real storage 
buffer, deleting the TQE for the real storage buffer, restarting the system trace, 
writing end-of-file on the dump data set, dequeueing the dump data set, and 
turning off indicators that an SVC dump is in progress. These resources are 
cleaned up by SVC dump's mainline processing or recovery routines. In special 
cases, the following routines also perform resource cleanup. 

If an address terminates during SVC dump processing, SVC dump's MEMTERM 
exit (IEAVTSDR) cleans up the resources related to that address space. If the 
address space was the last to be processed, then all resources are cleaned up and 
the SVC dump in-progress indicators (high-order bits in the CVTSDBF (at 
X'24C') and RTCTSDPL (at X'9C') fields) are turned off so that additional 
dumps can be taken. 

SVC dump also uses a timer DIE exit that is contained in module lEA VTSDX at 
label SCHDIE. This exit ensures that the SVC dump real storage buffer is 
returned to RSM if SVC dump encounters an error during processing (such as a 
loop). 

SLIP Processor Debugging Aids 

The SLIP function of RTM allows you to establish SLIP traps in the system via 
the SLIP command. When a trap has been established, the SLIP processor is 
driven by the events that occur in the system. 

Entering a SLIP command activates the SLIP command processor and possibly 
the PER activation/deactivation function (depending on the type of trap). The 
occurrence of a SLIP event (a system-detected error or a PER interrupt) activates 
the SLIP processor to check existing traps. ~ 

5-238 MVS Diagnostic Techniques 



Because a considerable amount of recovery processing is built into the SLIP 
function, some portion of that recovery is executed if an error occurs. 
Consequently, when trying to debug the SLIP function, you should have an idea 
of what the recovery processing is attempting to do. This section discusses the 
recovery philosophy and provides details for the major SLIP functions. 

SLIP Command Processor Recovery 

SLIP Processor Recovery 

Module IEECB906 provides recovery processing for the SLIP command processor 
(primarily IEECB905). Most errors encountered in the command processor affect 
only the command that is issued and not the rest of the system. However, if a 
PER trap is involved, an error in the command processor could potentially affect 
the system. 

If a PER trap is being disabled or deleted and an error is encountered, IEECB906 
disables the non-IGNORE PER trap and schedules IEAVTGLB to deactivate 
PER. If a PER trap is being set or enabled and an error occurs after SHDRPER 
has been updated but before lEA VTG LB has been scheduled, IEECB906 tries to 
schedule IEAVTGLB to activate PER. Additionally, whenever an error occurs, 
the command processor recovery routine checks to make sure the double-threaded 
SCE chain is properly chained. Forward and backward pointers found to be in 
error are repaired if possible. Recovery for the SLIP command processor does 
not return to mainline processing but requests percolation in the event of an error. 

Diagnostic information concerning errors that occur in the command processor is 
available in a software LOGREC record and a dump. The ESTAE parameter list 
(mapped by IEEZB906) is part of the LOG REC record. The EST AE parameter 
list and SHDR data area along with other information are available in a dump 
for the error. 

Recovery for the SLIP processor is designed to handle both expected and 
unexpected errors. 

Errors which are considered "expected" are: 

• A page fault occurs while examining or retrieving the instruction that caused 
a PER interrupt. 

• A page fault occurs while retrieving user-defined data. 

• A page fault occurs while processing in IEAVTADR. 

• A page fault occurs while examining the instruction that caused a PER 
interruption in the ASIDSA subroutine of lEA VTSL2. 

• The CMSET SSARTO function fails in the DATA subroutine of lEA VTSL2. 

• The CMSET SSARTO function fails in the ADRCMSET subroutine in 
IEAVTSLS. 

When the above error conditions are recognized, the SLIP processor attempts to 
retry at an appropriate point. In general, the retry allows normal trap processing 

Section 5. Component Analysis 5-239 



to continue. You may eventually receive an indication that an error has occurred 
while examining a trap (for example, the data unavailable counter has been 
incremented). SYSl.LOGREC recording does not occur for these expected errors. 

When an unexpected error (none of those shown above) occurs, SLIP processor 
recovery gathers information concerning the error, cleans up any resources being 
used by the SLIP processor, and then retries at a point which will terminate 
processing for the event that caused the SLIP processor to receive control. 
Diagnostic information concerning the error can be found in the dump taken by 
the SLIP processor recovery routine (lEA VTSLR). The summary dump usually 
contains: 

• The FRR parameter list (lHASLFP). 

Note: Bits in the SLFPFLGS portion of the FRR parameter list provide an 
indication of what portion of the SLIP processor encountered the error. 

Note: The FRR parameter list is also recorded as part of the software 
LOG REC record for the error. 

• The SHDR data area. 

• The SCE/SCV A data areas being processed at the time of the error. 

• The SLIP parameter list (lHASLPL). 

• SLIP work areas (lHASL W As). 

• The SLIP register save area. 

• The SCE/SCV A data areas representing the enabled non-IGNORE PER trap 
(if they exist). 

Further information concerning the error is included in the software LOGREC 
record for the error. 

PER Activation/Deactivation Recovery 

The PER activation/deactivation function is performed primarily by SLIP 
modules lEA V~GLB, lEA VTSIG, lEA VTLCL, and lEA VTJBN. (Refer also to 
the process flow for PER activation/deactivation described in a previous topic of 
this chapter.) In general, if an error is encountered at any point in the PER 
activation/deactivation process, these modules try to deactivate PER completely. 
Recovery processing for these modules is described in the following topics. 

lEA VTGLB Recovery 

If an error is encountered by IEAVTGLB, the recovery for this module gathers 
information concerning the error, frees the resources held by the mainline code, 
disables the non-IGNORE PER trap, and then retries at a point in the module 
which attempts to completely deactivate PER. Diagnostic information concerning 
the error is recorded in a software LOGREC record and a-dump. The 

5-240 MVS Diagnostic Techniques 



information available in the summary dump includes some or all of the following 
(depending on when the error occurred). 

• The FRR parameter list (mapped by FRRWA in module IEAVTGLB). 

Note: The FRR parameter list is also recorded as part of the software 
LOGREC record for the error. 

• The CVT data area. 

• The SHDR data area. 

• The SCEjSCVA data areas for the non-IGNORE PER trap. 

• The model PSA data area. 

• The PCCA VT data area. 

• The ASCB being processed by lEA VTGLB. 

• The name of the job running in the address space being processed by 
IEAVTGLB. 

• The PCCA data area. 

• The PER control registers (9, 10, and 11). 

If a recursive error is encountered by IEAVTGLB, message IEA4141 is sent to the 
operator and percolation is requested. 

lEA VTLCL Recovery 

If an error is encountered by lEA VTLCL, the recovery for this module sets tasks 
dispatchable in the address space, gathers information concerning the error, frees 
the resources held by the mainline code, and then percolates the error. Diagnostic 
information concerning the error is available in a software LOGREC record and 
a dump. The information in the summary dump includes some or all of the 
following (depending on when the error occurred). 

• The FRR parameter list (mapped by FRRPARMS in module IEAVTLCL). 

• The CVT data area. 

• The SHDR data area. 

• The SCEjSCVA data areas for the non-IGNORE PER trap. 

• The ASCB for the address space in which lEA VTLCL was running when the 
error occurred. 

• The name of the job in the address space. 

Recovery processing for IEAVTLCL is accomplished by message IEA4l5I. 

Section 5. Component Analysis 5-241 



lEA VT JBN Recovery 

If an error is encountered by IEAVTJBN, the recovery for this module gathers 
information concerning the error, notifies the SLIP user that the status of PER in 
the system is uncertain (via message IEA422I), and then returns to mainline 
processing where'control is returned to the caller of IEAVTJBN. Diagnostic 
information concerning the error is available in a software LOGREC record and 
a dump. 

Control Blocks Used by SLIP 

The following control blocks contain key information that can be used to debug 
problems in SLIP routines. 

• System Control Blocks 

Address Space Control Block (ASCB) 
Logical Configuration Communication Are~ (LCCA) 
Prefixed Save Area (PSA) 
Request Block (RB) 
Task Control Block (TCB) 

• SLIP Control Blocks 

ASCB 

SLIP Control Element (SCE) 
SLIP Control Element Variable Area (SCVA) 
SLIP Header (SHDR) 
SLIP TSO Element (STE) 

The ASCBPER bit in the ASCB indicates the status of PER in the address space 
(1 - PER is active, 0 - PER is inactive). 

LCCA 

The LCCA contains information related to a PER interrupt processed by SLIP. 
The PSW (in field LCCAPPSW) and the interrupt code (in field LCCAPERC) for 
a PER interrupt are saved in the LCCA. The LCCA also contains a pointer (field 
LCCASLIP) to an area of storage used by the SLIP processor to process a PER 
interrupt. This area (512 bytes) is split into a parameter list, a work area, and a 
register save area by lEA VTPER before calling the SLIP processor. 

PSA 

The PSA contains the external, SVC, and I/O new PSWs. Each PSW has a bit 
reflecting the status of PER. The PSA also contains the PSASLIP super bit used 
by SLIP for recursion control. 

RB 

The RB contains a save area for a PSW (in field RBOPSW). The saved PSW 
contains a bit reflecting the status of PER. 

5-242 MVS Diagnostic Techniques 



TCD 

The TCB contains secon4ary non-dispatchability bits. The non-dispatchability bit 
for SLIP is used while PER is eeing activated or deactivated in an address space. 

SCE/SCVA 

The SCE/SCV A pair of data areas is the internal representation of a SLIP trap. 
In addition to bits which define what was specified for the trap, other indicators 
provide information relative to the status of the trap. Some important indicators 
are: 

SCEDSABL - a bit that indicates if the trap is enabled (0) or disabled (1). 

SCEMATCH - a bit that indicates if the trap has matched at least once since it was enabled (1). 

SCV AMLNO - a field that indicates the number of times a trap has matched since it was enabled. 
(present only if MATCH LIM was specified or defaulted for the trap.) 

SCVADAUN - a field that indicates the number of times data was unavailable for comparison for the 
trap. Present only if DATA was specified for the trap. 

SHDR 

The SHDR provides the anchor for the chain of SCE/SCV A control blocks. It is 
pointed to by CVTRTMS. The SHDRFWD field points to the first SCE on the 
chain and the SHDRBKWD field points to the last SCE. Other fields in the 
SHDR are of interest when debugging a SLIP error. They are: 

SHDRPFC - this field is zero when there are no enabled SLIP traps. It is one when the SLIP 
processor and associated routines have been page-fixed by the command processor 
and no processing is taking place on behalf of any trap. It is two or more when the 
SLIP processor or portions ofIEAVTGLB are running. 

SHDRSRBR - this bit is turned on to indicate that lEA VTGLB needs to be scheduled. This bit is 
usually turned on when IEAVTGLB tries to get a resource (primarily SHDRSEQ) to 
perform some service but the resource is not available. When on, it indicates that 
IEAVTGLB will be scheduled to perform the service later. The SLIP command 
processor (lEECB905) may also set this bit and examines this bit when the sequence 
word is released. 

SHDRPER - this field points to the enabled non-IGNORE PER trap or is zero. 

SHDRSEQ - this word is used as a lock to serialize access to the SCE chain for the SLIP command 
processor (lEECB905), PER activation/deactivation routine (IEAVTGLB), local PER 
activation/deactivation routine (lEA VTLCL), and the SLIP display processor 
(IEECB907). The contents of the word indicate the owner of the word as follows: 

STE 

'CMD' - IEECB905 
'DSP' - IEECB907 
'GLB' - IEAVTGLB 
'Lxx' - lEA VTLCL (where xx indicates the ASID in which lEA VTLCL is 

running). 

The STE is used to communicate between the SLIP command processor running 
in the master address space and a TSO user who issued the SLIP command. The 
STE is created when the TSO user issues the SLIP command and is deleted when 
SLIP command processing is completed. The STE chain is pointed to by the 
RTCTSTE field in the RTCT. 

Section 5. Component Analysis 5-243 



Communications Task 

Functional Description 

The communications task (comm task) handles communications between console 
operators and the system (user programs and system routines). 

The types of communications that the communications task handles are: 

• Operator commands from a console as a result of an attention interrupt (on 
local devices). 

• Output fo the operator caused by the write-to-operator (WTO), 
write-to-operator with reply (WTOR), and delete-operator-message (DOM) 
macro instructions. 

• External interrupts that are caused by the operator pressing the interrupt key 
on the operator control panel. The communications task switches the master 
console's function to an alternate console. 

• Automatic console switching from a failing console to its alternate when an 
unrecoverable I/O error occurs. 

• Console" switching as the result of the VARY CHANNEL, VARY CPU, or 
VARY MSTCONS command. 

• Console switching as a result of a processor failure in a multiprocessing 
system as a part of alternate CPU recovery (ACR). 

Before processing WTO, WTOR, and DOM macro reque~ts, the communications 
task passes control to the job entry subsystem (JES) responsible for the job issuing 
the request. The JES exit routine may suppress the message, or modify the 
message text or routing code. 

Multiple console support (MCS) is a standard feature that supports up to 99 
consoles. With MCS, messages can be routed to up to 15 different functional 
areas, according to the type of information in the message. 

Device independent display operator console support (DIDOCS) is an optional 
feature that provides uniform console services for various display consoles. 

The wait service routine (IEAVMQWR) determines the functions to be performed 
by the communications task. It is given control by the dispatcher (supervisor 
control routine lEAVED SO) after one of the communications task's event control 
blocks (ECBs) has been posted. 

Upon each entry to the wait service routine, the entire list of communications 
task's ECBs is tested from top to bottom in priority sequence. The posted ECB 
identifies the service that will be performed by the communications task. As each 
service is completed, control is returned to the wait service routine and the entire 
list of ECBs is again tested for an active ECB. When no active ECBs are found, 

5-244 MVS Diagnostic Techniques 



the wait service routine issues the WAIT macro which places the communications 
task in the wait state until the next communications task ECB is posted. 

In addition to testing for posted ECBs, the wait service routine checks other 
indicators (represented by control bits). The commanications task ECBs and 
control bits are located in the unit control module (UCM) and unit control 
module entries (UCMEs). 

Figure 5-46 lists and describes the ECBs and control bits in the sequence that the 
wait service routine makes the tests. 

ECB or Control Bit Function 

UCMARECB Alternate CPU recovery - the process of 
(in UCM) switching from one processor to another in 

multiple processor configurations. The 
communications task switches consoles 
as required. 

UCMXECB External interrupt - switches the master 
(in UCM) console functions from the current master 

console to the next available alternate 
console. This results when the operator 
presses the interrupt key on the console 
control panel. 

UCMAECB Attention interrupt - prepares the consol~ 
(in UCM) (from which the interrupt was received) to 

accept operator input. 

UCMECB I/O processing complete - indicates a 
(in UCME) message has been sent to or received from 

a console. Results from the interrupt 
that an I/O device causes after 
performing each I/O operation. 

UCMPF Console output pending - indicates a 
(bit in UCME) message is queued and ready for some 

console. Results if (1) one message is 
queued for several consoles, or (2) a 
console is busy when a WTO or WTOR 
message is queued for that console. 

UCMSYSJ Hardcopy output pending - indicates a 
(bit in UCM) message is queued for hardcopy output and 

ready to be sent to a data set. 

Note: Before the following ECB is processed, the communications task tests the WQEs and may 
issue message IEA405E (80% of WQEs in use), IEA404A (limit of WQEs reached), or IEA406I 
(shortage relieved). 

UCMOECB Queue message for output - prepares the 
(in UCM) message posted by the WTO or WTOR macro for 

output to the appropriate consoles. 

UCMSYSI Cleanup WQE chain - eliminates WQEs marked 
(bit in UCM) for deletion by system functions (such as 

task termination). 

UCMDECB Delete operator message - indicates that a 
(in UCM) DOM macro has been issued to (1) delete 

a WTOR message that the operator has not 
responded to, or (2) delete a WTO message 
when the issuer has determined that the 
requested action was performed. 

UCMNPECB Write NIP messages to buffer - indicates 
(in UCM prefix) that NIP messages stored during nucleus 

initialization can be written. 

Figure 5-46. Sequence of Communications Task Processing 

Section 5. Component Analysis 5-245 



Communications Task Control Blocks 

The following control blocks are used by the communications task: 

UCM Unit control module - created at system generation. Contains pointers to the control blocks 
and routines that support the communications task. ' 

UCME Unit control module entry - created at system generation for each generated device. Contains 
information about the device including attributes, pointer to the UCB, I/O ECB and message 
queue for the device. 

WQE* Write queue element - created for each WTO or WTOR request. Contains information about 
the request including message text and routing code. 

ORE Operator reply element - created for each WTOR. Contains information about the reply 
portion of a WTOR request including the buffer to receive the reply. 

CQE* Console queue element - created for each console that is to receive a message. Contains 
information about messages queued to particular consoles. 

ElL Event indication list - created at system generation. Contains pointers to the various ECBs in 
the UCB and UCME. 

RDCM Resident display control module - created at system generation. Contains information about a 
display console. 

TDCM* Pageable display control module - created at system generation. Contains DIDOCS work and 
save areas, pointers to related modules, and the screen image. 

CXSA Communications extended save area - used to communicate among communications task 
modules. 

*These control blocks are located in the private address space of the communications task. 

Refer to Figure 5-47 for the relationship of these control blocks. 

5-246 MVS Diagnostic Techniques 



CVT TCB 

Communications 
CVTCUCB Task 

Pointan to 
UCM 

~ 
ElL the ECBs in 

UCM and UCME 

"" UCMPXA 

UCMLSTP ~ 

.... WOE (last> UCMWTOO 
~ WOE (fint> ...... 
~ WOETXT 

UCMWOEND 
WOELKPA ~Next (message) 

WOE 

UCMRPVO 

~ 
·WOETXT 
(message) 

f-
UCMVEA 

r---rRE hast) UCMVEL ORE 

I 
j 

~Next ORELKP 

\ ORE 

!'-. UCME (first) OR EWOE 
(address of 
associated 

I~ 
UCMXB WOE) 
UCMOUTO 

.1- L- ORERPVor 
OREOPBUF 

\ UCME (last) 
(reply 
buffer) 

( 
Pointan to 
associated WOEs 

.... CaE 

COEWQEA 
RDCM • • 

DCMADTRN (word 51) 
COE 

TDCM 

DCMCXSVE ~ CXSA 

1 

Figure 5-47. Communications Task Control Block Structure 

Section 5. Component Analysis 5-247 



Debugging Hints 

Hints for debugging various problems are described in this topic. 

Console Not Responding to Attention 

Enabled Wait State 

If a console is not responding to an attention interrupt, check the following: 

• The console attention processor (lEA VVCRA) may not be posting the 
attention ECB (UCMAECB) in the UCM. The communications task will not 
process the attention interrupt until the attention ECB is posted. This 
normally occurs when the console is inactive (UCMUF indicator in the 
UCME is off), a CLOSE is pending for the device (UCMCF indicator in the 
UCME is on), or the device does not support interrupts (UCMIF indicator in 
the UCME is off). 

• The attention processor may not be setting the attention pending indicator 
(UCMAF in the UCME) on for the console causing the interrupt. It is 
turned on when the attention ECB (UCMAECB) is posted. 

• If the attention pending (UCMAF) and busy (UCMBF) indicators in the 
UCME are both on, the attention interrupt will not be processed until an I/O 
processing complete interruption is received from the console. I/O processing 
is performed by a specific device support processor (DSP). The busy 
indicator (UCMBF) is turned on while the console is waiting for the 
completion of an I/O operation and is turned off when the I/O completion 
operation is processed. 

If the communications task is in an enabled wait state, check the following: 

Normal Case: The communications task has no work to do; that is, no 
communications task ECBs have been posted. Check the following ECBs (see 
Figure 5-46 for descriptions and locations of the ECBs). 

UCMXECB UCMAECB UCMOECB UCMDECB 
UCMARECB UCMNPECB UCMECB 

WQE Limit Reached: The system limit for WQEs or OREs has been reached 
(indicated by message IEA404A). 

• Check the following fields in the UCM: 

UCMWQNR - indicates the current number of WQEs in the system. 
UCMWQRSV - indicates how many WQEs are reserved for WTOs being built. 
UCMWQLM - indicates how many WQEs can be built. 
UCMRQNR - indicates the current number of OREs in the system. 
UCMRQLM - indicates how many OREs can be built. 

• Check the following indicators in the. UCM prefix: 

UCMSYSI - indicates that cleanup of the WQE chain is needed; that is, eliminate WQEs 
marked for deletion. This indicator is checked by the'wait service 
(lEA VMQWR) and device service (lEA VMDSV) routines; and it is set on by the fltl 

DOM processing (IEAVMDOM), wait service (lEA VMQWR), console queueing ~ 

5-248 MVS Diagnostic Techniques 



Disabled Wait State 

Messages or Replies Lost 

(IEAVMWSV), multiple-line processing (IEAVMWTO), and WTO/WTOR 
processing (lEA VVWTO) routines. 

UCMSYSJ - indicates that at least one message needs to lie sent to the hardcopy log. 
Possibly, the WQE space is filled with WQEs (messages) that need to be sent to 
the hardcopy log. This indicator is referenced by the wait service (IEAVMQWR) 
and device service (lEA VMDSV) routines, and it is set on by the wait service 
(lEA VMQWR) .and console switching (lEA VSWCH) routines. 

UCMSYSM - indicates a failure in a composite console. This indicator is used by the console 
switching (lEA VSWCH) routine. 

UCMSYSO - indicates a dummy attention interrupt. This indicator is checked by the wait 
service (IEAVMQWR) routine. It is set on by the WTO/WTOR processing 
(lEA VVWTO) routine when the system log is not available and a WTL 
(write-to-log) is changed to a WTO macro. 

The communications task issues only one wait state code, code 007. this code is 
issued during nucleus initialization when a master console is not available to the 
system. See wait state code 007 in OSjVS2 System Initialization Logic. 

Messages and replies can be lost or routed incorrectly if the WQE, ORE, or CQE 
control blocks are not chained correctly. 

• To ensure that the WQE chain is intact, check the fOllowing: 

In the UCM, check fields: 

UCMWTOQ - points to the first WQE on the chain. 
UCMWQEND - points to the last WQE on the chain. 

In each WQE, check: 

WQELPKA
WQEORE-

points to the next WQE on the chain. 
indicates that an ORE exists for this WQE. 

• To ensure that the ORE chain is intact, check the following: 

In the UCM, the UCMRPYQ field points to the first ORE. 

In each ORE, check: 

ORELKP
ORERWQE-

points to the next ORE on the chain. 
points to the WQE associated with this ORE. 

• To ensure that the CQE chain is intact, check the following: 

In the UCME (for each console), the UCMOUTQ field points to the first 
group of 51 CQEs. 

In each group of CQEs, the CQEWQEA field in the last CQE points to 
the next group of CQEs on the chain. 

Section 5. Component Analysis 5-249 



Note: Each CQE is one word; one byte for control bits, and three bytes 
for a pointer. The CQEs are built in groups of 51. The first 50 CQEs 
point to WQEs and the last points to the next group of CQEs. 

In each group of CQEs, the CQEWQEA field in the first 50 CQEs point 
to their associated WQEs. 

In each CQE, the CQEFLAG byte contains the control bits. 

No Messages on One Console 

If messages are not being received on a specific console, check the following: 

• The device busy indicator (UCMBF) in the failing console's UCME may be 
on. A message is not processed until an I/O processing complete interruption 
is received from the console. I/O processing is performed by a specific device 
support processor (DSP). The busy indicator (UCMBF) is turned on while 
the console is waiting for the completion of an I/O operation and is turned 
off when the I/O completion operation is processed. 

• If the console is not busy, ensure that the CQE chain for the console is intact. 
(Refer to the previous topic "Messages or Replies Lost.") 

• If the CQE chain is valid, then check for unusual status in the failing 
console's UCME and UCB. 

Messages Routed to Wrong Console 

Truncated Messages 

The console queueing routine (lEA VMWSV) queues messages for specific 
consoles and builds the CQE chain. If messages are routed to the wrong console, 
then: 

• Ensure that the CQE chain is correct for the failing console. (Refer to the 
previous topic, "Messages or Replies Lost.") 

• Check the routing codes for each console. The UCMRTCD field in each 
consnWs-UCME defines the routing codes for the respective consoles. 

• Check the routing codes for the messages that are being incorrectly routed: 

- In the WTO/WTOR WQE, the WQEROUT field contains the routing 
codes for the message. 

- In a major multiple-line WQE (for MLWTO), the WMJMRTC field 
contains the routing codes. 

If message text is being truncated (the length of the message text is shortened), 
then: 

• The message may' exceed the maximum allowable bytes for console messages. 

5-250 MVS Diagnostic -Techniques 



Console Switching 

• The console operator may have requested that time stamps and/or job names 
appear with the messages. Check the following indicators in the UCME for 
the failing console: 

UCMDISPI - indicates 'that messages are to appear with both time stamps and job names. 
UCMDISPJ - indicates that only job names are to appear with messages. 

Console -switching is performed by the lEA VSWCH routine for the following 
error conditions: 

• An 1/0 error occurs on a console. The failing console's function is 
automatically switched to its alternate (or, if none available, to the master 
console). Check the I/O interrupt ECB (UCMECB) in the failing console's 
UCME. Note that successful I/O completion is indicated by X'7F' in the first 
byte of the ECB. 

• An abnormal termination in the device support processor (DSP) that services 
the failing console. The failing console's function is automatically switched to 
its alternate (or, if none available, to the master console). Check the 
appropriate DSP in load module IGC0007B. 

• A processor failure in a multiprocessing environment as a part of alternate 
CPU recovery (ACR). Consoles are switched as required. Check the 
alternate CPU recovery ECB (UCMARECB) in the UCM. 

Action Message Retention Facility Debugging Aids 

If an error occurs in the action message retention facility, pointers to queues and 
other fields are saved before they are cleared. In the UCM, the following fields 
and bits are helpful in diagnosing problems. 

Field at time If zero, use 
of error or this field 

UCMPAMRQ UCMFAMRQ 

UCMPIAMQ UCMFIAMQ 

UCMPEAMQ UCMFEAMQ 

UCMPAMRN UCMFAMRN 

UCMPRQSD UCMFRQSD 

UCMPIQSD UCMFIQSD 

UCMPEQSD UCMFEQSD 

UCMAMRFF 

UCMAMRFS 

Meaning 

Pointer to the retained message queue. 

Pointer to the retained immediate action message queue. 

Pointer to the retained eventual action message queue. 

Number of messages that have been retained. 

If on, the retained message queue was successfully scanned 
before the error occurred. 

If on, the retained immediate action message queue was 
successfully scanned before the error occurred. 

If on, the retained eventual action message queue was 
successfully scanned before the error occurred. 

If on, the action message retention facility suffered an 
error. 

If on, the action message retention facility was active at 
the time of error_and an attempt to restart the facility 
should be made. 

Section 5. Component Analysis 5-251 



DIDoes Trace Table 

UCMAMRFR 

UCMAMRFA 

If on and -another errol' occurs in the action message 
retention facility, the fields are not copied again and the 
facility is not restarted. 

If on, the action message retention facility is active. 

A DIDOCS-trace table exists in the pageable DCM (display control module 
IEETDCM) beginning at field DCMTRACE. The trace table contains the 
identifiers of up to 16 of the last DIDOCSmodules to receive control on the 
console represented by the pageable DCM. 

After each DIDOCS module receives control, it places a two-byte identifier in the 
trace table. The first byte of the identifier states whether the module is. an "E" 
module such as IEECVEfA) or aIi "F" module (such as IEECVrFTA). The 
second byte of the identifier is the last character in the module name. For 
example, the identifier for IEECVET A is "EA" and the identifier for IEECVFTI 
is "FI." (An exception to this rule occurs during DIDOCS recovery processing. 
Entries to the ESTAE routine in IEECVETI are indicated by the identifier "ES.") 

When DIDOCS is entered for the first time to perform an operation, the first 
DIDOCS module to receive control (module IEECVETl) places two bytes of 
asterisks in the trace table before it stores its identifier. The asterisks signal the 
beginning of a DIDOCS operation. 

DIDOeS-In-Operation Indicator 

DIDoes Locking 

At offset X'IIF' in a console's pageable DCM (display control module 
IEETDCM) is a field labeled DCMMCSST. When DIDOCS is processing, bit 
DCMUSE (X'80') in DCMMCSST is set on. This bit remains on during any 
SVC processing initiated by DIDOCS (SVC34, GETMAIN, FREEMAIN, and 
EXCP). DIDOCS turns the bit off when DIDOCS exits (via BR14). 

DIDOCS uses two fields (CSAXB and CSAXC) in the communications extended 
save area (CXSA) to control locking during DIDOCS operations. 

The two fields are used as follows: 

• When the lock is available: 

Field CSAXB contains the address of the subroutine that obtains the 
lock. 
Field CSAXC contains the address of a BR14 instruction. 

• After a DIDOCS module obtains the lock, the subroutine that obtains the 
lock: 

Sets field CSAXB to the address of a BR14 instruction. 
Sets field CSAXC to the address of the subroutine that releases the lock. 

5-252 MVS Diagnostic Techniques 



• After the DIDOeS module releases the lock, the subroutine that releases the 
lock: 

Resets field eSAXB to the address of the subroutine that obtains the 
lock. 
Resets field eSAXe to the address of a BRl4 instruction. 

When the lock is already held by a DIDOeS module (field eSAXB contains the 
address of a BRI4), any attempt by another DIDOeS module to obtain the lock 
results in a no-operation (NOP). 

K Q Command Debugging Aids 

The K Q command processor (IEE8B03D) provides the following debugging aids 
to assist you in diagnosing problems in the command processor. 

FRR Work Area 

The FRR work area is initialized after syntax processing is complete and 
IEE8B03D is starting to execute the K Q command. The FRR work area is 
initialized as follows: 

4 bytes - Module base register. 
4 bytes - Dynamic work area of the module. 
S. bytes - Name of the procedure in control. 
1 byte - ID of the last function that has executed within the procedure. 

The last two items are a footprint that identifies the last function that has 
executed before the error occurred. This information helps to lead you to where 
the error occurred. Refer to the IEE8B03D module listing for the definitions of 
the IDs and their use. 

Module/Function Trace 

The module dynamic area contains procedure/function trace bits. This area is 
prefixed with 'TRACEBIT' in the dynamic area. Refer to the IEE8B03D module 
listing for a definition of these bits and their use. 

The trace bits are associated in pairs. The first bit indicates if a function was ever 
entered and the second bit indicates if the function is actively being used. Both 
bits are turned on when a function is entered and the second bit is turned off on 
exit from it. 

SYSl.LOGREC Data 

When an error occurs, the SYS1.LOGREC entry is initialized with data from the 
variable recording area (SDW A VRA). The data identifies the entry and locates 
information contained in the module's (lEE8B03D) dynamic area. The 
information is: 

S bytes - Load module name IGCOOOJD. 
8 bytes - Module name IEESB03D. 
S bytes - Footprint procedure name. 
4 bytes - Footprint ID in the procedure. 
4 bytes - Character header 'UCM'. 
1 byte - UCMFLGI flags from UCM at time of error. 
3 bytes - Reserved (initialized to blanks)" 

Section 5. Component Analysis 5-253 



4 bytes - Character header 'UCME'. 
1 byte - UCMSTS flag from UCME at time of error.· 
1 byte - UCMSDS5 flags from UCME at time of error.· 
2 bytes - .Reserved (initialized to blanks). 
4 bytes - UCMWLAST pointer from UCME at time of error.· 
4 bytes - UCMMLAST pointer from UCME at thne of error.· 
4 bytes - Character header 'LCON'. 
4 bytes - Pointer to L = console UCME. 
4 bytes - Character header 'RCON'. 
4 bytes - Pointer to R = console UCME. 
4 bytes - Character header 'MeON'. 
4 bytes - Pointer to master console UCME. 
4 bytes - Character header 'ICON'. 
4 bytes - Pointer to issuing console UCME. 
4 bytes - Character header 'CQE'. 
4 bytes - Pointer to CQE in process. 
4 bytes - Character header 'DBUG'. 
4 bytes - Pointer to module trace bits. 

*These fields contain Xs if cleanup had already occurred which initialized the fields. 

Master Trace Debugging Aids 

The master trace facility (modules IEEMB808, IEEMB809, and IEEMB816) 
provides the following debugging aids to assist you in diagnosing problems in 
master trace. 

Copy of Master Trace Table 

The communications task maintains a copy of the master trace table header in the 
CSA (subpool 231). It builds a new table entry and updates the header in this 
copy. Then the updated header and entry are copied into the master trace table 
located in the master scheduler's address space. 

MSRDAArea 

The master scheduler resident data area (MSRDA) contains three bytes of status 
flags that indicate checkpoints in master trace processing. The CVTMSER field 
points to this data area. The fields are: 

BAMTCNTL - Indicates module in control. 
BAMTRECF - Notes possible error recursion. 
BAMTITFL - Master trace processing flags. 

FRR Work Area 

Each master trace module contains data in the FRR work area. The data consists 
of pointers and individual module processing flags. 

Each module has two flags associated with a major function. When a major 
function is entered, a flag is set on. On exit from the function, another flag is set 
on. This pair of flags indicates the functions that are invoked and executed. 

For IEEMB808, the FRR work area contains: 

4 bytes - Pointer to the caller's parameter list. 
4 bytes - Pointer to the caller's save area. 

5-254 MVS Diagnostic Techniques 



The module processing flags are contained in the master trace table in field 
MTIPFLAG (at X'20'). 

For IEEMB809, the FRR work area contains: 

4 bytes - Pointer to the caller's parameter list. 
4 bytes - Pointer to the caller's save area. 
4 bytes' - Pointer to the module's dynamic work area. 
S bytes - Processing flags. 

For IEEMB816, the FRR work area contains: 

4 bytes - Pointer to the caller's parameter list. 
4 bytes - Pointer to the caller's save area. 
4 bytes - Pointer to the IEEMB809 dynamic work area. 
4 bytes - Processing flags. 
3 bytes - MSRDA processing flags (described earlier). 

SDWAVRA Area 

In the event of an error in master trace processing, module IEEMB816 (FRR 
routine) supplies the following data for the variable recording area (SDWAVRA) 
in the SDWA. The information is: 

• Header for master scheduler's resident data area information - 'IEEBASEA' 

• Address of IEEBASEA. 

• Return code to be passed to the caller of master trace. 

• Reason code to be passed to the caller of master trace. 

• ComponentID - 'SCIB8'. 

• Copy of the FRR parameter area passed by the CSECT in error. (For a 
description of the area, see the previous topic "FRR Work Area.") 

• Function in error - 'MTRACE'. 

• FMID. 

• Header for master trace table data area - 'IEEZB806'. 

• Address of the master trace table. 

• Address of the old master trace table. 

• Header for master trace table entry work area - 'IEEZBS06'. 

• Address of master trace table entry work area. 

Section 5. Component Analysis 5-255 



Recovery Management Support (RMS) 

MCH Diagnostic Aids 

MCH Return Codes 

This section is divided into five parts. They contain diagnostic aids information 
for the following components of recovery management support (RMS). 

• The machine check handler (MCH) - which alerts the control program of 
hardware failures that affect system operation. MCR analyzes machine check 
interruptiQns and provides RTM with a diagnostic record describing the 
hardware failure. 

• The Power Warning Feature (PWF) Support - which, along with its supporting 
hardware, prevents the loss of data in real storage when a utility power 
disturbance occurs by dumping real storage to disk. 

• The channel check handler (CCH) - which supports lOS in handling channel 
errors. When a channel error occurs, lOS invokes CCR to aid in the 
recording of the error. 

• Dynamic device reconfiguration (DDR) - which supports I/O processing by 
making data on a malfunctioning device available to processing programs. 
DDR responds to operator- and system-initiated requests for device swapping. 

• The missing interruption handler (MUI) - which monitors UCBs at 
installation-specified time intervals for pending mounts, device swaps, and I/O 
interruptions. 

This topic contains the following diagnostic aids information that can be used to 
diagnose problems in the machine check handler (MCH). 

• A list of return codes set by MCH modules 
• An explanation of the processor work area (PW A) 

For additional information related to machine checks, refer to the topic 
"Debugging Machine Checks" in Section 2 of this publication. 

Return codes are set by: 

IGFPMMSG - which schedules error messages. 
IGFPMPFX - which converts a failing address to an absolute address. 

The MCR return codes are: 

Module Location Code Meaning 

IGFPMMSG register 15 0 Indicates a message is scheduled. 
4 Indicates the message buffer is full. (The message is lost.) 

IGFPMPFX register 15 0 The failing storage address is returned. 
:PO The failing storage address is invalid). 

5-256 MVS Diagnostic Techniques 



Processor Work Area (PWA) 

PWF Diagnostic Aids 

PWF Return Codes 

PWF Data Areas 

When MCH receives control it stores the contents of storage location 0 through 
231 in the PW A field PW ASFLC. The MCH register save areas are PW A fields 
PWASA1, PWASA2, PWASA3, and PWASA4. An explanation of the PWA can 
be found in Data Areas. 

When a machine check, program check, or restart interruption occurs in MCH, 
the following PW A fields are used: 

• PW ASOSW holds the PSW at the time of the interruption. 

• PW AINTC holds the machine check or program interruption code. 

• PW AFRRCD holds one of the following codes indicating the type of 
interruption. 

X'OOOOOOOI' -
X'OOOOOO23' -
X'OOOOOO24' -
X'OOOO0025' -
X'OO000026' -

recursive machine check or threshold exceeded. 
program interruption. 
restart interruption. 
system damage. 
a zero machine check interrupt code. 

This topic contains the following information that can be used to diagnose 
problems in the Power Warning Feature (PWF) Support. 

• A list of return codes set by PWF 
• A description of the data areas that PWF uses 
• A dump footprint table 
• An appendage footprint table 
• A description of LOGREC recording 

The PWF return codes are: 

Module Location Code Meaning 

ICFBDFOO register 15 0 Power warnings are to be disabled on the MCH exit. 

User-written register 15 0 Continue executing with PWF. 
routines 4 Return to the MCH. 

This sectiQn describes the major data areas used by the Power Warning Feature 
Support. These data areas include: 

• Unit control block (UCB), one byte at offset 17. 
• Communications vector table (CVT), one word .at offset: 244. 
• PWF communications area. 

Section 5. Component Analysis 5-257 



5-258 

For description of other fields in the UCB and in the CVT see: 

• Data Areas 
• Debugging Handbook 

UCB Unit Control Block 

Offset 

17(11) 

Size/BUs 
Length 

1 
...... 1. 

...... .1 

Name Description 

UCBTBYT2 
UCB20PT6 Volume attribute. This volume must be mounted on a 

device supported by UPS. 
UCB20PT7 Device attribute. This is a device supported by UPS, and 

is turned on at SYSGEN by specifying AP = YES in the 
IODEVICE macro. 

CVT Communications Vector Table 

Offset 

244(F4) 

Size/Bils 
Length 

4 
I 
1. ..... 
.xxx xxx 
3 

Name 

CVTVOLM2 
CVTVOLF2 
CVTVOLl2 

CVTVOLT2 

PWF Communication Area 

Description 

Address of the PWF communications area 
PWF Flag 
PWF not initialized 
Reserved, set to zero 
PWF time delay parameter. This field is set with the 
WARN = parameter in the CTRLPROG MACRO (0 is 
the default). 

Common Name: PWF Communications Table 

Macro ID: ICFWORK 

Created by: ECFBIFOO 

Size: 2048 Bytes 

Pointed to by: CVTVOLM2 field of the CVT data area 

Function: To provide common information required by the Power Warning 
Feature Support routines. 

Offsels Length Name Description 

0(0) 4 ICFADRI Pointer to footprint table 

4(4) 4 ICFADR2 VS2-2 - real address of PCCA vector table 

8(8) 4 ICFADR3 VS2-2 - real address of CSD 

12(C) 4 ICFADR4 Pointer to ICFBIEOO 

16(10) 8 ICFSEKOO Seek CCW track 00 

24(18) 8 ICFSRCOO Search for track 00 

32(20) 8 ICFICOO TIC CCW track 00 

40(2~) 8 ICFWRDOO Write data track 00 

48(30) 8 ICFSEKOI «Seek CCW track 01 

MVS Diagnostic Techniques 

~ 



S6(38) 8 ICFSRCOI Search for track 01 

64(40) 8 ICFTICOI TIC CCW track 01 

72(48) 8 ICFWRDOI Write data track 01 

80(SO) 8 ICFSEK02 Seek CCW track 02 

88(S8) 8 ICFSRC02 Search for track 02 

-96(60) 8 ICFTIC02 TIC CCW track 02 

104(68) 8 ICFWRD02 Write data track 02 

112(70) 8 ICFSEK03 Seek CCW track 03 

120(78) 8 ICFSRC03 Search for track 03 

128(80) 8 ICFTIC03 TIC CCW track 03 

136(88) 8 ICFWRD03 Write data track 03 

144(90) 8 ICFSEK04 Seek CCW track 04 

IS2(98) 8 ICFSRC04 Search for track 04 

160(AO) 8 ICFTIC04 TIC CCW track 04 

168(A8) 8 ICFWRD04 Write data track 04 

176(BO) 8 ICFSEKOS Seek CCW track OS 

184(B8) 8 ICFSRC05 Search for track OS 

192(CO) 8 ICFTICOS TIC CCW track OS 

200(C8) 8 ICFWRDOS Write data track 05 

208(DO) 8 ICFSEK06 Seek CCW track 06 

216(D8) 8 ICFSRC06 Search for track 06 

224(EO) 8 ICFTIC06 TIC CCW track 06 

232(E8) 8 ICFWRD06 Write data track 06 

240(FO) 8 ICFSEK07 Seek CCW track 07 

248(F8) 8 ICFSRC07 Search for track 07 

256(100) 8 ICFTIC07 TIC CCW track 07 

264(108) 8 ICFWRD07 Write data track 07 

272(110) 8 ICFSEK08 Seek CCW track 08 

280(118) 8 ICFSRC08 Search for track 08 

288(120) 8 ICFTIC08 TIC CCW track 08 

296(128) 8 ICFWRD08 Write data track 08 

304(130) 8 ICFSEK09 Seek CCW track 09 

312(138) 8 ICFSRC09 Search for track 09 

320(140) 8 ICFTIC09 TIC CCW track 09 

328(148) 8 ICFWRD09 Write data track 09 

336(150) 8 ICFSEKI0 Seek CCW track 10 

344(158) 8 ICFSRCI0 Search for track 10 

352(160) 8 ICFTICI0 TIC CCW track 10 

360(168) 8 ICFWRDI0 Write data track 10 

368(170) 8 ICFSEKll Seek CCW track 11 

376(178) 8 ICFSRCII Search for track 11 

384(180) 8 ICFTICII TIC CCW track 11 

~ 392(188) 8 ICFWRDII Write data-track 11 
~' 

400(190) ICFSEK12 Seek CCW track 12 8 

Section 5. Component Analysis 5-259 



408(198) 8 ICFSRC12 Search for track 12 

416(IAO) 8 ICFTIC12 TIC CCW track 12 

424(IA8) 8 ICFWRD12 Write data track 12 

432(lBO) 8 ICFSEK13 Seek CCW track 13 

440(1B8) 8 ICFSRC13 Search for track 13 

448(1 CO) 8 ICFTIC13 TIC CCW track 13 

456(lC8) 8 ICFWRD13 Write data track 13 

464(1 DO) 8 ICFSEK14 Seek CCW track 14 

472(1D8) 8 ICFSRC14 Search for track 14 

480(1 EO) 8 ICFTIC14 TIC CCW track 14 

488(1E8) 8 ICFWRD14 Write data track 14 

496(IFO) 8 ICFSEK15 Seek CCW track 15 

504(lF8) 8 ICFSRC15 Search for track 15 

512(200) 8 ICFTIC15 TIC CCW track 15 

520(208) 8 ICFWRD15 Write data track 15 

528(210) 8 ICFSEK16 Seek CCW track 16 

536(218) 8 ICFSRC16 Search for track 16 

544(220) 8 ICFTIC16 TIC CCW track 16 

552(228) 8 ICFWRDI6 Write data track 16 

560(230) 8 ICFSEKI7 Seek CCW track 17 

568(238) 8 ICFSRC17 SRC FOR TRK 17 

576(240) 8 ICFTIC17 TIC CCW track 17 

584(248) 8 ICFWRDI7 Write data track 17 

592(250) 8 ICFSEK18 Seek CCW track 18 

600(258) 8 ICFSRC18 Search for track 18 

608(260) 8 ICFTICI8 TIC CCW track 18 

616(268) 8 ICFWRD18 Write data track 18 

624(270) 8 ICFSEKl9 Seek CCW track 19 

632(278) 8 ICFSRC19 Search for track 19 

640(280) 8 ICFTICl9 TIC CCW track 19 

648(288) 8 ICFWRDI9 Write data track 19 

656(290) 4 ICFWADEV Device address of primary data set 

660(294) 4 ICFWAUCB UCB address of primary data set 

664(298) 7 ICFWACHR Start of primary extent 
671 (29 F) I ICFFLAGA Flag A field 

I ....... ICFINOP PWF function inoperative 
.1. ..... ICFCMTDM Commit to dump 
.. 1 ..... ICFUSRC4 User set return code of 4 
... x xxxx Reserved, set to zero 

672(2AO) 4 ICFWBDEV Device address of alternate data set 

676(2A4) 4 ICFWBUCB UCB address of alternate data set 

680(2A8) 7 ICFWBCHR Start of alternate extent 

5-260 MVS Diagnostic Technique:; 



687(2AF) ICFFLAGB Flag B field 
... 1 .... ICFMVT System type - MVT 
... 1 .. 1. ICFSVM System type - VS2 RI 
... 1 .. 11 ICFMVM System type - VS2 R2 
.. 1. .. 1. ICFVSI System type: - VS 1 R3 
Xx .. xx .. Reserved, set to zero 

688(2BO) 4 ICFTRSIZ Number of bytes per track 

692(2B4) 4 ICFTPC Number of tracks per cylinder 

696(2B8) 8 ICFCHROO Seek/search address for track 00 

704(2CO) 8 ICFCHROI Seek/search address for track 01 

712(2C8) 8 ICFCHR02 Seek/search address for track 02 

720(2DO) 8 ICFCHR03 Seek/search address for track 03 

728(2D8) 8 ICFCHR04 Seek/search address for track 04 

736(2EO) 8 ICFCHR05 Seek/search address for track 05 

744(2E8) 8 ICFCHR06 Seek/search address for track 06 

752(2FO) 8 ICFCHR07 Seek/search address for track 07 

760(2F8) 8 ICFCHR08 Seek/search address for track 08 

768(300) 8 ICFCHR09 Seek/search address for track 09 

776(308) 8 ICFCHRIO Seek/search address for track 10 

784(310) 8 ICFCHRll Seek/search address for track 11 

792(318) 8 ICFCHR12 Seek/search address for track 12 

800(320) 8 ICFCHR13 Seek/search address for track 13 

808(328) 8 ICFCHR14 Seek/search address for track 14 

816(330) 8 ICFCHRl5 Seek/search address for track 15 

824(338) 8 ICFCHRl6 Seek/search address for track 16 

832(340) 8 ICFCHR17 Seek/search address for track 17 

840(348) 8 ICFCHR18 Seek/search address for track 18 

848(350) 8 ICFCHR19 Seek/search address for track 19 

856(358) 4 ICFSTSIZ Storage size 

860(35C) 4 ICFTMEOO Original time value (in MSEC) 

864(360) 8 ICFTMEOI Original time in TOD units 

872(368) 8 ICFTODOO Time at entry to MCH appendage 

880(370) 8 ICFTODOI Time at inner warning signals 

888(378) 8 ICFTOD99 Time to commit to dump 

896(380) 4 ICFLRDAT Date of dump for LOGREC 

900(384) 4 ICFLRTIM Time of dump for LOGREC 

904(388) 8 ICFLRCPU Processor ID for LOGREC 

912(390) 8 ICFLRCHA Channel assignment for LOGREC 

920(398) 16 ICFRSVDI Reserved 

936(3A8) 4 ICFPXREG Prefix register contents at dump time 

940(3AC) 4 ICFTRMSA Trace flags for MSJ appendage 

944(3BO) 4 ICFTRMCA Trace flags for MCH appendage 

948(3B4) 4 ICFTRDMP Trace flags for dump 

952(3B8) 72 ICFIOMAP Work area for IOSGEN 

~ 1024(400) 512 JCFCNTRK Buffer for control record r 1024(400) 4 ICFCnD Control track identifier 

Section 5. Component Analysis 5-261 



1028(404) 128 ICFCTCF Cylinder flags for 128 cylinders 

1156(484) ICFCTFLA Control track flag A 
ICFCTEMP Data set is empty 

I ....... ICFCTFUL Data set contains valid dump 
.... I. .. ICFCTINV Data set contains invalid dump 
1.. .. 1.. ICFCTFBT Data set contains valid dump but one PWF or more 

tracks gave I/O errors - PWF alternate track(s) are in 
use 

1160(488) 4 ICFCTTS Number of bytes per track 

1164(48C) 4 ICFCTAWA Address of PWF work area 

1168(490) 4 ICFCTB11 Start of storage block address 

1172(494) 4 ICFCTBI2 Track addr at which storage blk begins 

1176(498) 4 ICFCTB13 End of storage block address 

1 180(49C) 4 ICFCTB14 Track addr at which storage block ends 

1184(4AO) 4 ICFCTB21 Start of storage block address 

1188(4A4) 4 ICFCTB22 Track addr at which storage blk begins 

1192(4A8) 4 ICFCTB23 End of storage block address 

1196(4AC) 4 ICFCTB24 Track addr at which storage block ends 

1200(4BO) 4 ICFCTB31 Start of storage block address 

1204(4B4) 4 ICFCTB32 Track addr at which storage blk begins 

1208(4B8) 4 ICFCTB33 End of storage block address 

1212(4BC) 4 ICFCTB34 Track addr at which storage block ends 

1216(4CO) 4 ICFCTB41 Start of storage block address 

1220(4C4) 4 ICFCTB42 Track addr at which storage blk begins 

1224(4C8) 4 ICFCTB43 End of storage block address 

1228(4CC) 4 ICFCTB44 Track addr at which storage block ends 

1232(4DO) 4 ICFCTB51 Start of storage block address 

1236(4D4) 4 ICFCTB52 Track addr at which storage blk begins 

1240(4D8) 4 ICFCTB53 End of storage block address 

1244(4DC) 4 ICFCTB54 Track addr at which storage block ends 

1248(4EO) 4 ICFCTB61 Start of storage block address 

1252(4E4) 4 ICFCTB62 Track addr at which storage blk begins 

1256(4E8) 4 ICFCTB63 End of storage block address 

1260(4EC) 4 ICFCTB64 Track addr at which storage block ends 

1264(4FO) 4 ICFCTB71 Start of storage block address 

1268(4F4) 4 ICFCTB72 Track addr at which storage blk begins 

1272(4F8) 4 ICFCTB73 End of storage block address 

I 276(4FC) 4 ICFCTB74 Track addr at which storage block ends 

1280(500) 4 ICFCTB81 Start of storage block address 

1284(504) 4 ICFCTB82 Track addr at which storage blk begins 

1288(508) 4 ICFCTB83 End of storage block address 

1292(50C) 4 ICFCTB84 Track addr at which storage block ends 

1296(510) 8 ICFCTST TOD at entry to MCH appendage 

1304(518) 8 ICFCIED TOD at end of dump 

1312(520) 4 ICFCTTPC Number tracks per cylinder 

1316(524) 4 ICFCTRDA Device address for restore 

5-262 MVS Diagnostic Techniques 



1320(528) 4 ICFCTPXR Prefix register conten~ at dump time 

1324(52C) 4" ICFCTSTS Highest storage address for LOGREC 

1328(530) 4 ICFCTDAT Date of dump for LOGREC 

1332(534) 4 ICFCITIM Time of dump for LOGREC 

1336(538) 8 ICFCTCPU Processor ID for LOGREC 

1344(540) 8 ICFCTCHA Channel assignment for LOGREC 

1352(548) 184 ICFCTRSV Reserved 

1536(600) 16 ICFRSVD2 Reserved 
'Jj 

1552(610) 64 ICFSAVE Register save area for user ~xit 

1616(650) 8 ICFSNMCP SA for his MCNPSW 

1624(6~8) 8 ICFMCOPS SA for his MCOPSW 

1632(660) 160 ICFDMPWA Work area for dump routine 

1792(700) 256 ICFRSVD3 Reserved 

Section 5. Component Analysis 5-263 



Name Offsets/EQU Value Name Offsets/EQU Value Name Offsets/EQU Value 

ICFADRI 0(0) ICFCTFLA 1156(484) ICFSRC16 536(218) 
ICFADR2 4(4) ICFCTFUL 1156 X'80' ICFSRC17 568(238) 
ICFADR3 8(8) ICFCTID 1024(400) ICFSRC18 600(58) 
ICFADR4 12(C) ICFCTINV 1156 X'08' ICFSRC19 632(278) 
ICFCHROO 696(2B8) ICFCTPXR 1320(528) ICFSTSIZ 856(358) 
ICFCHROI 704(2CO) ICFCTRDA 1316(524) ICFSVM 687 X'12' 
ICFCHR02 712(2C8) ICFCTRSV 1352(548) ICFTICOO 32(20) 
ICFCHR()3 720(2DO) ICFCTST 1296(510) ICFTICOI 64(40) 
ICFCHR04 728(2D8) ICFCTSTS 1324(52C) ICFTIC02 96(60) 
ICFCHR05 736(2EO) ICFCTTIM 1332(534) ICFTIC03 128(80) 
ICFCHR06 744(2E8) ICFCITPC 1312(520) ICFTIC04 160(AO) 
ICFCHR07 752(2FO) ICFCTTS 1160(488) ICFTIC05 192(CO) 
ICFCHR08 760(2F8) ICFDMPWA 1632(660) ICFTIC06 224(EO) 
ICFCHR09 768(300) ICFFLAGA 671(29F) ICFTIC07 256(100) 
ICFCHRIO 776(308) ICFFLAGB 687(2AF) ICFTIC08 288(120) 
ICFCHRll 784(310) ICFINOP 671 X'80' ICFTIC09 320(140) 
ICFCHR12 792(318) ICFIOMAP 952(3B8) ICFTICIO 352(160) 
ICFCHR13 800(320) ICFLRCHA 912(390) ICFTIC11 384(180) 
ICFCHR14 808(328) ICFLRCPU 904(388) ICFTIC12 416(IAO) 
ICFCHR15 816(330) ICFLRDAT 896(380) ICFTIC13 448(1 CO) 
ICFCHR16 824(338) ICFLRTIM 900(384) ICFTIC14 480(1 EO) 
ICFCHRl7 832(340) ICFMCOPS 1624(658) ICFTIC15 512(200) 
JCFCHRI8 840(348) ICFMVM 687 X'13' ICFTIC16 544(220) 
ICFCHR19 848(350) ICFMVT 687 X'IO' ICFTIC17 576(240) 
ICFCMTOM 271 X'40' ICFPXREG 936(3A8) ICFTIC18 608(260) 
ICFCNTRK 1024(400) ICFRSVDl 920(398) ICFTIC19 640(280) 
ICFCTAWA 1 164(48C) ICFRSVD2 1536(600) ICFTMEOO 860(35C) 
ICFCTBll 1168(490) ICFRSVD3 1792(700) ICFTMEOI 864(360) 
ICFCTB12 1172(494) ICFSAVE 1552(610) ICFTODOO 872(368) 
ICFCTB13 1176(498) ICFSEKOO 16(10) ICFTODOI 880(370) 
ICFCTB14 1 180(49C) ICFSEKOI 48(30) ICFTOD99 888(378) 
ICFCTB21 1184(4AO) ICFSEK02 80(50) ICFTPC 692(2B4) 
ICFCTB22 1188(4A4) ICFSEK03 112(70) ICFTRDMP 948(3B4) 
ICFCTB23 1192(4A8) ICFSEK04 144(90) ICFTRMCA 944(3BO) 
ICFCTB24 1196(4AC) ICFSEK05 176(BO) ICFTRMSA 940(3AC) 
ICFCTB31 1200(4BO) ICFSEK06 208(DO) ICFTRSIZ 688(2BO) 
ICFCTB32 1204(4B4) ICFSEK07 240(FO) ICFUSRC4 671 X'20' 
ICFCTB33 1208(4B8) ICFSEK08 272(110) ICFVSl 687 X'22' 
ICFCTB34 1212(4BC) ICFSEK09 304(130) ICFWACHR 664(298) 
ICFCTB41 1216(4CO) ICFSEKIO 336(150) ICFWADEV 656(290) 
ICFCTB42 1 220(4C4) ICFSEKll 368(170) ICFWAUCB 660(294) 
ICFCTB43 1224(4C8) ICFSEK12 400(190) ICFWBCHR 680(2A8) 
ICFCTB44 I 228(4CC) ICFSEK13 432(1BO) ICFWBDEV 672(2AO) 
ICFCTB51 1232(4DO) ICFSEK14 464(1 DO) ICFWBUCB 676(2A4) 
ICFCTB52 1236(404) ICFSEK15 496(1FO) ICFWRDOO 40(28) 
ICFCTB53 1240(408) ICFSEK16 528(210) ICFWRDOI 72(48) 
ICFCTB54 1244(4DC) ICFSEK17 560(230) ICFWRD02 104(68) 
ICFCTB61 1248(4EO) ICFSEK18 592(250) ICFWRD03 136(88) 
ICFCTB62 1252(4E4) ICFSEK19 624(270) ICFWRD04 168(A8) 
ICFCTB63 1256(4E8) ICFSNMCP 1616(650) ICFWRD05 200(C8) 
ICFCTB64 1260(4EC) ICFSRCOO 24(18) ICFWRD06 232(E8) 
ICFCTB71 I 264(4FO) ICFSRCOI 56(38) ICFWRD07 264(108) 
ICFCTB72 1268(4F4) ICFSRC02 88(58) ICFWRD08 296(128) 
ICFCTB73 1272(4F8) ICFSRC03 120(78) ICFWRD09 328(148) 
ICFCTB74 1276(4FC) ICFSRC04 152(98) ICFWROIO 360(168) 
ICFCTB81 1280(500) ICFSRC05 184(B8) ICFWRD11 392(188) 
ICFCTB82 1284(504) ICFSRC06 216(08) ICFWRDl2 424(lA8) 
ICFCTB83 1288(508) ICFSRC07 248(F8) ICFWRD13 456(IC8) 
ICFCTB84 1292(50C) ICFSRC08 280(118) ICFWRD14 488(1E8) 
ICFCTCF 10281(404) ICFSRC09 312(138) ICFWRD15 520(208) 
ICFCTCHA 1344(540) ICFSRCIO 344(158) ICFWRD16 552(228) 
ICFCTCPU 1336(538) ICFSRCII 376(178) ICFWRD17 584(248) 
ICFCTDAT 1328(530) ICFSRC12 408(198) ICFWRD18 616(268) 
ICFCTED 1304(518) ICFSRC13 440(IB8) ICFWRD19 648(288) 

~ ICFCTEMP 1156 X'OO' ICFSRC14 472(1D8) 
ICFCTFBT 1156 X'84' ICFSRC15 504(IF8) 

5-264 MVS Diagnostic Techniques 



Dump Footprint Table 

The dump footprint table is a 4-byte record of the steps performed by the dump 
routine. In case the dump routine fails, a printout of this table will aid in 
diagnosing the failure. This table is located in the PWF communication area. If 
the dump routine is in control, register 14 contains the address of the footprint 
table for the W ARNA data set. The footprint table for W ARNA is located at 
ICFTRDMP, and the footprint table for WARNB is located at ICFTRDMP+2. 

First Byte 

1... .... Dump routine was started . 
. 1.. .... Initialization (PWF) complete . 
.. 1. .... Control track read and erased . 
.. .1 .... Storage scan complete. 
. ... 1... One or more cylinders written from real storage . 
.... . 1.. Transfer of real storage complete . 
.... .. 1. Control track written . 
.... .. .1 Storage protect keys read: transfer from real storage completed. 

SeeondByte 

1... .... One or more unit checks occurred . 
.1.. .... One or more uncorrectable storage errors validated . 
.. 1. .... Retrying write using spare track . 
... 1 .... Retrying write while in I/O subroutine. 
.... 1... Retrying write while in sense subroutine . 
.... . 1.. Two track errors occurred on one cylinder . 
.... .. 1. Failed to write on control track . 
. ... ... 1 Channel checks or device was inoperative. 

Appendage (ICFBDFOO) Footprint Table 

The machine check appendage footprint table is a 4 byte record of the steps 
performed by the machine check appendage. In case of a failure within this 
routine, a storage print out of this table will aid in diagnosing the failure. This 
table is located in the PWF communications area with register 14 containing the 
address when this routine is in control. 

First Byte 

1... .... Function entered . 
. 1.. . ... Function inoperative bit is set. 
.. 1. .... Function is operative . 
... 1 ;... First store clock is successful. 
.... 1... Dump immediate flag is not set . 
.... . x.. Reserved . 
.... .. 1. The power disturbance was transient . 
.... .. .1 Normal return to machine check handler after transient warning. 

Second Byte 

1 ...... . 
. 1. .... . 
.. 1. ... . 
... 1 ... . 
.... 1. .. 
.... . xxx 

Commit to dump, power disturbance is not transient. 
Commit to dump, user routine has been entered . 
User routine returned control with a code of 0 (go dump) . 
Control has been transferred to dump routine . 
User routine returned control with a code of 4 (return to system) . 
ReserVed, set to zero . 

Section 5. Component Analysis 5-265 



LOGREC Recording 

CCH Diagnostic Aids 

Message IGF002I 

Third Byte 

(This byte relates to the availability of WARNA) 

I ....... 
to the device); 
. 1. ... .. 
.. 1. .. .. 
... 1 .. .. 
.... 1 .. . 
.... . 1.. 
.... .. 1. 
.... .. .1 

Fourth Byte 

IOSGEN map complete (information to provide the online paths 

At least one path is online . 
At least one path is clear . 
Path check routine has been entered . 
At least one path is available after clear . 
Sense I/O has been accepted (code 0 was returned) . 
CE/DE (channel end/device end) returned form sense I/O . 
W ARNA processing complete . 

(This byte relates to the availability of WARNB.) Same as the third byte. 

During initialization of Power Warning Feature Support an indication that a 
power disturbance has occurred is placed in SYSI.LOGREC. When 
SYSl.LOGREC is printed, the indication of a power disturbance will appear as 
the first of two IPL records. The format of the IPL record is shown in OSjVS2 
System Programming Library: SYS1.LOGREC Error Recording 

This topic contains the following information that can be used to diagnose 
problems in the channel check handler (CCH). 

• CCH message IGF002I information 
• PCCA fields used to trace the activity of CCH 

There is one message issued by CCH: 

IGF0021 CHANNEL DETECTED ERROR ON ddd, pa, err, op, stat 

The variable fields of the message (ddd, pa, err, op, stat) are put into the channel 
data area (CDA) by IGFCCHCR. The following chart shows what CDA fields 
are used and where IGFCCHCR obtains the information. 

CDA Field Contents Obtained from 

CDACCHBL Error indicator PCCACHBL 

CDACCHOP CCW operation code LRBCFCCW 

CDACCHPA Channel set ID LRBCMPPA 

CDACCHRn Message statistics and static message field Dummy module 

CDACCHST Unit and channel status LRBCFCSW 

CDACCHUA Unit address LRBCCUA2 

5-266 MVS Diagnostic Techniques 



IGFCCHCR formats the message in one of the CCH message buffers: 
CDACCHMI or CDACCHM2. The recovery termination manager (RTM) issues 
the message through a RECORD macro instruction. After the message is issued, 
IGFCCHCR sets the record buffer (CDACCHRn) to o. 

PCCA Fields Showing CCH Footprints 

The following fields in the PCCA (starting atX'134') may be used to trace the 
action of CCH. 

PCCACHFI 

1. ..... . 
.1. .... . 
.. 1. ... . 
... 1 ... . 
.... 1. .. 
..... 1.. 
...... 1. 
....... 1 

PCCACHF2, 

1 ...... . 
.1. .... . 
.. 1. ... . 
.. .1 ... . 
.... 1. .. 
..... 1.. 
...... 1. 
....... 1 

PCCACHF3 

1. ..... . 
.1. .... . 
.. xx xxxx 

PCCACHSI 

1. ..... . 
.1. .... . 
.. 1 .... . 
... 1 ... . 
.... 1 .. . 
..... 1.. 
...... 1. 
....... x 

PCCACHS2 

1. ..... . 
.1. .... . 
.. 1. ... . 
... 1 ... . 
.... 1. .. 
..... 1 .. 
...... xx 

CCH footprint byte 1 

PCCACFll 
PCCACFI2 
PCCACF13 
PCCACFI4 
PCCACFI5 
PCCACFI6 
PCCACFI7 
PCCACF18 

I/O supervisor registers have been saved 
UCB address supplied by I/O supervisor is 0 
ERPIB already exists 
IGFCCHSI entered 
ICFCCHII entered 
IGFCCHFE entered 
IGFC60 entered 
IGFC70 entered 

CCH footprint byte 2 

PCCACF21 
PCCACF22 
PCCACF23 
PCCACF24 
PCCACF25 
PCCACF26 
PCCACF27 
PCCACF28 

IGFC80 entered 
IGFCIC entered 
IGFCCHRD entered 
IGFCCHMP entered 
IGFCCHUC entered 
IGFCCHAS entered 
IGFCCHIO entered 
IGFCCHEX entered 

CCH footprint byte 3 

PCCAISRB 
PCCASLCK 

SRB for IECVIRST scheduled 
Space allocation lock held by CCH 
Reserved 

CCH internal switch 1 

PCCACCMP 
PCCACNRE 
PCCACFRR 
PCCACNLS 
PCCACAND 
PCCACIBC 
PCCACUCB 

Command register parity is valid 
No recording to be done by CCH 
CCH FRR is in the stack 
Record only; ERPIB not put in EW A 
Attention has been presented 
ERPIB already created for this error 
UCB is invalid 
Reserved 

CCH internal switch 2 

PCCACIOR 
PCCACALT 
PCCACMOD 
PCCACNLG 
PCCACURC 
PCCACCRA 

I/O restart is required 
Use the alternate return to I/O supervisor 
Module required to analyze channel logout is unavailable 
Channel failed to log or store an LCL 
CAT entry is valid, but channel type is not recognized 
Channel reconfiguration hardware active 
Reserved 

Section-5. Component Analysis 5-267 



DDR Diagnostic Aids 

DDR Tasks 

This topic contains the following information that can be used to diagno~ 
problems in dynamic device reconfiguration (DDR). 

• A description of the DDR task 
• An explanation of the DDRCOM 
• A mapping of the DDR error recovery parameter list (DERPLIST) 
• The return codes set by DDR modules 
• An explanation of DDR software recording 
• A description of a DDR storage dump 

There are several DDR tasks: a DDR task for DASD swaps, a DDR task for 
tape and unit record swaps, and a separate DDR task for each tape swap when a 
tape is being repositioned on a new tape drive. 

The DDR tasks are created via ATTACH macro instructions as subtasks of the 
master scheduler task. The DDR tasks are in the master scheduler's address 
space only when the DDR swaps are active. When all swaps are complete, the 
DDR tasks terminate. The tasks are identified by the TCBTID field being 252 
(X'FC'). 

Tape, disk, and unit record swaps are performed in the master scheduler address 
space (ASID = 1). When a tape is swapped, part of routine IGFDTI is executed 
in the user's address space to obtain information about the tape. This address 
space is pointed to by the UCBASID field of the UCB for the tape. 

DDR Communication Table (DDRCOM) 

There is a DDRCOM for each DDR request. There are three DDRCOM chains, 
pointed to from the CVT, for the following: 

• DASD swaps 
• Tape and unit record swaps 
• Tape swaps in the repositioning phase 

A DDRCOM for a tape request is moved from the DDRCOM chain (pointed to 
by CVTTPUR) to the DDRCOM chain (pointed to by CVTTRPOS) when the 
tape enters the repositioning phase. 

5-268 MVS Diagnostic Techniques 



The format of the DDRCOM is described in the Debugging Handbook. 
Figure 5-48 shows typical DDRCOM chains. 

CVT 
DDRCOM 

CVTOPUR DDRNXT 

CVTTPUR 

CVTTRPOS 

Figure 5-48. Typical DDRCOM Chains 

DDR Error Recovery Parameter List (DERPLIST) 

OORCOM 

OORNXT 

OORCOM 

DORNXT 

5.aooRCOM 

DORNXT 

OASDSwaps 

Tape and Unit 
Record Swaps 

Tape Swaps 
(Repositioning) 

The DDR error recovery parameter list is used by a DDR error recovery routine, 
IGFDEO, to determine whether to cancel or create an error recovery environment. 
IGFDEO invokes the EST AE routine through an EST AE macro instruction and 
passes the address of DERPLIST as a parameter. 

When an error occurs, IGFDEI, another DDR error routine, uses DERPLIST to 
determine what queued resources and storage are to be freed, to locate the address 
of the retry routine, and to determine what information to pass to the retry 
routine. 

Each module creates its own DERPLIST, and the address is known locally. 

Section 5. Component Analysis 5-269 



Figure 5~49 (part 1) is a map of the DERPLIST. The fields shown in the map 
are listed in alphabetic order in Figure 5-49 (parts 2 and 3). 

DERPLIST 

DEC HEX 

0 0 DERFUNK I DERSWCHS I DERQUEUE I 
4 4 DERREC 

8 8 DERSPEC 

12 C DERRETRY 

16 10 DERDASPN I DERDALNG 

. :20 16 DERRSRC I DERLRC I DERPFX 

24 18 DERRCODE 

28 lC DERRDATA 

32 20 DERRDDR 

36 24 DERRSAVE 

40 28 DERGMSPN I DERGMLNG 

44 2C DERGMADR 

48 30 DERRCRTY 

52 34 DERDDPA 

56 38 DEREDATA60 3C 

Figure 5-49 (Part 1 of 3). DDR Error Recovery Parameter List 

DEC HEX LEN Field Description 

17 11 3 DERDALNG Length of the module workarea. 

16 to DERDASPN Subpool of the module workarea. 

52 34 4 DERDDPA If the DDR device dependent exit is in control (X'08' 
on in DERSWCHS), this field contains the address of 
the parameter list passed to the DDR device dependent 
exit. Otherwise, zero. 

Figure 5-49 (part 2 of 3). DDR Error Recovery Parameter List 

5-270 MVS Diagnostic Techniques 



DEC HEX LEN Field Description 

56 38 8 DEREDATA Additional DDR device dependent exit data. 
If the load of the DDR exit is in progress (X'02' on 

in DERSWCHS), this field contains the name of the 
module being loaded. 

If the DDR exit returned an invalid return code 
(X'04' on in DERSWCHS), the first word of this field 
contains the invalid return ~ode passed back by the exit 
and the second word contains the highest valid return 
code for that call. 

If the DDR exit is in control (X'08' on in 
DERSWCHS), this field contains the load module 
name of the DDR device dependent exit (if the exit is 
in LPA or L1NKLlB). 

Otherwise, this field is zero. 
0 0 DERFUNK Function code. 

DERINIT X'OI'. Issue the initial ESTAE for the calling module. 
DERCANC X'02'. Issue ESTAE 0 for the calling module. 

44 32 4 DERGMADR Address of the area obtained by a GETMAIN macro 
instruction specified in DERGMLNG. 

41 29 3 DERGMLNG Length of area obtained by a GETMAIN macro 
instruction in a DDR module. 

40 28 DERGMSPN Subpool number of area obtained by a GETMAIN 
macro instruction in a DDR module. 

21 15 1 DERLRC Local return code. 
22 16 2 DERPFX Rub prefix. 
2 2 1 DERQUEUE Queue indicators. (If zero, determine the queue from 

DDRCOM.) 
1. ...... DASD queue. 
. 1 ...... Tape/unit record queue . 
.. 1 ..... Tape repositioning queue . 
... x xxxx Reserved . 

24 18 4 DERRCODE Module base (CODEREG). 
48 30 4 DERRCRTY Retry address when the DDR device dependent exit 

supplied an invalid return code. 
28 IC 4 DERRDATA Workarea base (DATAREG). 
32 20 4 DERRDDR Address of the DDRCOM (DERPTR). 
4 4 4 DERREC Address of the 24-byte recording of the ID to be used 

during IGFDEI processing. 
12 C 4 DERRETRY Address of retry routine after IGFDEI processing. 
36 24 4 DERRSAVE Save area register. 
20 14 1 DERRSRC Resources controlled by this module (compared with 

DDROWN in DDRCOM). 
1. ...... DERTAPE - Tape allocation resource held. 
. 1. ..... DERUREC - Unit record allocation resource held . 
... 1 .... DERDISK - Disk allocation resource held . 
... x xxxx Reserved . 

8 8 4 DERSPEC Address of special cleanup exit during IGFDEI 
processing. 

DERSWCHS IGFDEI indicator switches. 
1. ...... DERCRASH - No SDW A exists, do not issue a 

SETRP. 
.1. ..... DERPERK - Do not retry; issue SETRP to continue 

termination. 
.. 1 ..... DERECALL - This DDR module is recallable on error 

conditions. 
... 1 .... DERESTAE - Initial EST AE issued was successful. 
.... I .... DDR device dependent exit in control. 
..... 1.. DDR device dependent exit supplied an invalid return 

code. 
.... .. 1. Load of DDR device dependent exit in progress . 
....... 1 Vary service routine in control. 

Figure 5-49 (Part 3 of 3). DDR Error Recovery Parameter List 

Section 5. Component Analysis 5-271 



DDR Return Codes 

Software Recording 

DDR Storage Dumps 

The return codes for DDR are: 

Object Location of Return 
Module Code Code MeaDing 

IGFDDO register 15 0 Valid condition 
4 Invalid condition 
12 Catastrophic condition 

IGFDDI register 15 0 Valid condition 
4 Invalid condition 
12 Catastrophic error, DDRINVI, DDRTERI set 

IGFDIl register 15 0 Element removed, queue not empty 
4 Element removed, queue empty 
12 Catastrophic error, queue empty 

IGFDLl register 15 0 Device found 
4 Device not found 
12 Catastrophic error 

IGFDMO register 15 0 Message issued without error 
4 Invalid input detected in DDRCOM 
12 Catastrophic error 

IGFDMI register 15 0 Successful 
4 Unsuccessful 
12 Catastrophic error 

IGFDRO register 15 0 Recording initiated successfully 
4 Invalid function requested 
12 Catastrophic error 

IGFDTO register 15 0 SWAP completed successfully 
12 SWAP terminated 

IGFDTl register 15 0 Valid 
4 Invalid 
12 Catastrophic error 

IGFDT2 register 15 0 Positioning completed successfully 
4 I/O error 
8 Wrong volume loop 
12 Catastrophic error 

IGFDUO register 15 0 Valid condition 
4 Invalid condition 
12 Catastrophic condition 

IGFDVO register 15 0 SWAP completed 
4 SWAP canceled or terminated 

IGFDVI register 15 0 Valid 
4 Invalid 
12 Catastrophic error 

No special DDR information is recorded in the variable fields of the software 
ABEND record. However, the FRR ID field of the load module/CSECT/FRR 
ID data contains the date of the compilation of the CSECT. This may be used in 
verifying the level of the module against the available microfiche. 

Whenever an abnormal termination occurs, the DDR ESTAE module IGFDEI 
uses the SDUMP macro to dump those portions of main storage necessary to 
diagnose the problem. Included in the dump are the SQA, PSA, IP A, trace table, 
CSA, and the local storage. The dump is titled "Dynamic Device R,ecovery 
Dump." 

5,;,272 MVS Diagnostic Techniques 



MIH Diagnostic Aids 

MIH Process 

MIH Work Area 

This topic contains the following information that can be used to diagnose 
problems in the missing interruption handler (MIH). 

• A description of the MIH process 
• A description of the MIH work area 
• An explanation of MIH software recording 
• A description of an MIH storage dump 

The MIH process is invoked through the ATTACH macro instruction during 
master scheduler initialization and executes in the master scheduler address space 
(ASID = 1). Two modules perform the MIH processing; IGFTMCHK, a load 
module in the link pack area, and IGFTMCOO, a CSECT in the nucleus. 

IGFTMCHK obtains the MIH work area from fixed SQA, subpool 245. Both 
IGFTMCHK and IGFTMCOO use this work area which contains the TQE, SRB, 
LRB, message ECB, WTO buffer, ESTAE parameter list, 16 and 18 word save 

. areas, MIH first and second level exit parameter lists, the message queue pointer, 
all general usage work areas, and the secondary look-up table. The first 16 bytes 
of the work area contain an identifier (**MIH WORK AREA **). IGFTMCHK 
initializes the remainder of the work area to zeros. Once obtained, the work area 
is not freed. If the MIH process is terminated, the work area is retained for 
problem determination. 

A pointer to the MIH work area is contained in register 10 and at location X'IC' 
in the IGFINTVL CSECT. Figure 5-50 shows a mapping of the work area. 
Fields of special interest in the MIH work area are: 

Offset 
(Hex) 

co 

C4 
C4 

C5 

C6 

Length 

4 

3 
I 
1. ...... 
. 1. ..... 
.. 1. .... 
... 1 .... 
.... 1 ... 
..... 1.. 
.... .. 1. 
... .. .1 
I 
1. ...... 
. 1. ..... 
.. 1. .... 
... x xxx. 
.... ... 1 
1 
1 ....... 
. 1. ..... 
.. 1. .... 
... 1 .... 
.... 1. .. 

Name 

MIHRCNT 

MIHMCHKF 
MIHFLAGI 
MIHESTAA 
MIHIPLRA 
MIHIPLOK 
MIHUCBSK 
MIHINITC 
MIHSDIEA 
MIHRDEA 

MIHFLAG2 
MIHLGRCA 
MIHTIMEA 
MIHRECDA 

MIHNSDWA 
MIHFLAG3 
MIHMSGPA 
MIHMSGBA 
MIHMBLDA 
MIHWTOA 
MIHACTNP 

Description 

MIH FRR retry counters for IGFTMCHK and IGFTMC01 
respectively. 
IGFTMCHK flag bytes: 
MIH IGFTMCHK flag byte I: 
ESTAE active. 
SVC 76, IPL record active . 
SVC 76, IPL record written. 
UCB scan active. 
IGFTMCHK initialization complete . 
SET DIE successful. 
SVC 76, RDE active, UPD time/date stamp . 
Reserved . 
MIH IGFTMCHK flag byte 2: 
LOGREC processing active . 
SVC 11, TIME macro active. 
RECORD LOGREC active . 
Reserved . 
ESTAE routine - no SDW A provided . 
MIH IGFTMCHK flag byte 3: 
Message processing active. 
Message build active . 
Message build routine active. 
SVC 35, WTO message active . 
Action message requires DOM flag. 

Section 5. Component Analysis 5-273 



..... 1 .. MIHDMSET DOM table search flag. 

.... .. xx Reserved . 
C7 3 MIHMCOIF IGFTMCOI flag bytes: 
C7 1 MIHFLAGI MIH IGFTMCOI flag byte I: 

I ....... MIHFRRA FRR active. 
.1 ...... MIHEXTIA MIH eXit 1 active. 
.. 1. .... MIHUCBSA UCB scan active. 
.. .1 .... MIHUCBVA Valid UCB processing. 
.... I ... MIHEXT2A MIH exit 2 active. 
..... 1 .. MIHTQEA MIH TQE ENQ active. 
...... 1. MIHEXITE MIH permanent error in exit. 
...... .1 MIHOIRTY MIH FRR retry active. 

C8 1 MIHFLAGS MIH IGFTMCOI flag byte 2: 
xxxx xxxx Reserved. 

C9 1 MIHPOSTF MIH POST flag byte: 
I ....... MIHPOST MIH posting active. 
. 1111111 TS instruction is used to serialize posting . 

CA 2 MIHFRRSA MIH IGFTMCOI FRR flag save area 
CC I MIHCODE MIH condition translation code. 
CD I MIHPSTCD MIH POST code. 
CE I MIHUCBTI MIH exit index in error. 
CF I Reserved. 

5-274 MVS Diagnostic Techniques 



0 header 

10 TOE 

90 SRB 

BC ECB 

CO MIHRCNT I i 
MIHFLAGS , I MIH~RRSA MIHCODE IMIHPSrCDI MIHUCBTlI 

00 LRB 

13C WTO 

188 ESTAE 

198 MIHTIMEP - PRI binary sec MIHTIMES - SEC binary sec 

1A8 MIHTACCM - Accumulated time MIHTOD - TOO value 

1 B8 MIHTMCT - Sec EBCDIC value MIHWK1 

1C8 MIHWK2 MIHREMOR 

108 MIHWK3 MIHMSGPR MIHR13SV 

1E8 MIHR14SV I MIHR14SA MIHR14SB MIHR14SC 

1F8 MIHINTVP I MIHUCBLA MIHR14SD 

208 MIHEXT1P 

218 MIHEXT2P MIHINDEX MIHUASCB 

228 TMC01SAV 
18 Word Save Area for IGFTMCHK 

270 TMCHKSAV 

18 Word Save Area for IGFTMCHK 

2B8 MIHFRRSV 

IGFTMC01 FRR Save Area 

2F8 MIHPSTSV 

IGFTMC01 POST Interface Save Area 

33C MIHDMTBL 
MIH DOM Table 

3F2 MIHULKTB Secondary Look-up Table for 48 UCB Entries 

Figure 5-50. MIH Work Area 

Section 5. Component Analysis 5-275 



Software Recording 

MIH Storage Dumps 

The CSECT name, PTF number and date are moved into the variable field of the 
software ABEND record. The PTF number and date can be used in verifying the 
level of the module against the available microfiche. The FRR ID field contains 
the load module/CSECT/FRR ID. 

Whenever an abnormal termination occurs, storage areas necessary to diagnose a 
problem are dumped by the EST AE recovery routine, IGFTMCHS, in module 
IGFTMCHK, using the SDUMP macro instruction. Included in the dump are 
the SQA, NUC, and trace table. 

5-276 MVS Diagnostic Techniques 



Service Processor Call SVC and MSSFCALL DIAGNOSE 
Instruction 

Note: This topic describes the MVS support for processor complexes with the 
monitoring and system support facility (MSSF). See the topic "Service Processor 
Call SVC and SERVICE CALL Instruction" for a description of the MVS support 
for processor complexes with the Service Processor Architecture. 

The Service Processor Call SVC (SVC 122), formerly called the MSSFCALL 
SVC, is a type 2 extended SVC with a routing code of 6 in register 15. It is used 
to communicate with the monitoring and system support facility (MSSF) in the 
processor controller of the processor complex. 

MVS system routines issue the Service Processor Call SV C to request various 
hardware functions and to obtain hardware status information. 

When the Service Processor Call SVC is issued, the Service Processor Call SVC 
processing routine (lEA VMSF) processes the SVC request. lEA VMSF issues the 
DIAGNOSE instruction (operation code X'83'). The MSSFCALL DIAGNOSE 
instruction directly interfaces with the MSSF, which is a logical unit within the 
processor controller. 

IEAVMSF issues the SERVICE CALL instruction (rather than the MSSFCALL 
DIAGNOSE instruction) on processor complexes with the Service Processor 
Architecture. 

For program logic information, refer to the System Logic Library, System 
Initialization Logic, and Input/Output Configuration Program (IOCP) Logic. 

The following topics describe: 

• Service Processor Call SVC (SVC 122) used with the MSSF 

• Service Processor Call SVC (SVC 122) processing and control blocks used 
with the MSSF 

• MSSFCALL DIAGNOSE instruction 

Service Processor Call SVC (SVC 122) Used With the MSSF 

To issue the Service Processor Call SVC for the MSSF, the caller prepares an 
MSSFCALL data block (also called a service processor data block) and an 
MSSFCALL command word (also called a service processor command word) in 
the caller's own private area. The caller sets register 15 to 6 (the routing code) 

Section 5. Component Analysis 5-2 77 



MSSFCALL Data Block 

and sets register 1 to the address of a parameter list, which points to the data 
block and the command word. 

Register 1 

MSSFCALL data block 

Parameter list 

MSSFCALL command word 

The parameter list is a standard SVC parameter list. The MSSFCALL data block 
contains command-dependent information and is used to send data to the MSSF 
and to receive responses and data from the MSSF. The MSSFCALL command 
word specifies the function requested. 

The following topics describe: 

• MSSFCALL data block 
• SVC abend and return codes with the MSSF 

The MSSFCALL data block (also called the service processor data block) is a 
variable-length data area. The format of the data block is: 

0-1 2 3-5 6-7 

Length Reserved 
Response 
field 

8 Data field 
(0 to 2,040 bytes) 

y 

Length - bytes 0 and 1 
specifies the length of the data block in eight-byte increments. The 
minimum length is eight (X'0008') and the maximum length is 2,048 
(X'0800') bytes. The length varies depending on the command request. 
Errors in the specification of the length are indicated by the MSSF in the 
response field. 

Caller flags - byte 2 
specifies flags associated with the command request. Set the appropriate 
flags if used with the command; otherwise, set to X'OO'. Errors in the 
specification of caller flags are indicated by the MSSF in the response field. 

5-278 MVS Diagnostic Techniques 



Reserved - bytes 3 through 5 
set to X'OOOOOO'. 

Response field - bytes 6 and 7 
receives the two-byte response from the MSSF. At the completion of the 
request, the MSSF sets this two-byte field to indicate the status of the 
request. The field must be set to X'OOOO' before issuing the Service 
Processor Call SVC. 

Data field ... byte 8 to end of data block 
specifies command-dependent information, if any, related to the command. 
Before issuing the SVC, the caller either puts the appropriate 
command-dependent information into the data field or sets the field to 
zeroes. The MSSF returns command-dependent data in the data field if 
applicable for the command. 

SVC Abend and Return Codes With the MSSF 

Abend Code - The Service Processor Call SVC processing routine (lEA VMSF) 
issues system abend X'67A' if the caller is not authorized to issue the SVC or if 
an error occurs during processing of the SVC. Refer to System Codes for a 
description of abend X'67 A'. 

Return Codes - IEAVMSF returns the following return codes in register 15 to the 
caller of the SVC. 

Code MeaDing 

00(00) Successful completion - the MSSFCALL data block contains the MSSF response (in bytes 6 
and 7) and any data (in the data field) requested on the command. 

04(04) The MSSF is busy - the caller can reissue the SVC. 

08(08) One of the MSSFCALL SVCprocessing control blocks (MSFCB, MSFAB, or MSFKB) is in 
use - the caller can reissue the SVC. 

12(OC) The MSSF is not available on the processor complex or the control block chain is invalid. 

16(10) The MSSF did not respond during a 100second disabled spin. 

SVC Processing and Control Blocks With the MSSF 

The Service Processor Call SVC processing routine (lEA VMSF) provides the 
interface between system routines and the monitoring and system support facility 
(MSSF) in the processor controller. lEA VMSF processes requests made by 
programs issuing the Service Processor Call SVC (including the users of the data 
communications link) and routines that· branch-enter IEAVMSF. 

When processing the Service Processor Call SVC request, IEAVMSF copies the 
caller's MSSFCALL data block to the data block pointed to by the MSFCB, 
MSF AB, or MSFKB control block. The MSSF puts its respOnses and data into 
the data block (pointed to by the MSFCB, MSF AB, or MSFKB). lEA VMSF 
then copies the MSSF response and data, if any, into the. caller's· MSSFCALL 
data block. 

-Section S. Component Analysis 5-279 



Figure 5-51 shows an overview of lEA VMSF processing. 

Service Processor 

I Call SVC CSVC 122) 

~ 
SVC FLIH 
ClEAVESVC) 

~ 
lEAVMSF - Service Processor Call 
SVC processing 
routine 

• Validates the request. -

• Issues the MSSFCALL 
DIAGNOSE instruction. 

• Waits for the completion 
of the request to the MSSF. 

~ 
Caller 

-

-

Invalid r equest 
n IEAVEVAL results i 

Validity check abend X' S7A' 
routine 

Processor controller 

The MSSF executes the request. 

• Generates an X' 2401 ' 
external interruption. 

~ 
IEAVEEXT, IEAVMFIH, and 
IEAVMSFS process the 
interruption. 

Figure 5-51. Overview of SVC Processing With the MSSF 

SVC Control Blocks Used with the MSSF 

lEA VMSF uses three control blocks to serialize Service Processor Call SVC 
requests, the MSSFCALL control block (MSFCB), the MSSFCALL attention 
block (MSFAB), and the MSSFCALL communications block (MSFKB). All are 
created at NIP time by the RIM module lEA VNPE6 and are located in the SQA. 

The MSFKB is used to serialize all read-restart-reason commands. The MSFCB 
is used to serialize all other requests except the TP connect and TP read 
commands. The MSF AB is used to serialize the TP connect and TP read 
commands. 

5-280 MVS Diagnostic Techniques 



Figure 5-52 shows an overview of the SVC control blocks. 

lEAVMFRM 

CVT MSSFCALL 
resource 

CVTMFRM 
manager 

CVTMSFCB 
MSFCB 

CVTSCPIN 

MSFCADB 

MSFCBCMD. 

MSFCMSFA 

MSFCMSFK 

System 
hardware 
information 

.MSFCBCMD, MSFABCMD, and MSFKBCMD 
contain the command word being processed. 

MSFCB's 
data block 

MSFAB 

MSFAADB 

MSFABCMD. 

MSFKADB 

MSFKBCMD. 

Figure 5-52. SV C Control Block Structure With the MSSF 

MSSFCALL DIAGNOSE Instruction 

MSFAB's 
data block 

MSFKB's 
data block 

The MSSFCALL DIAGNOSE instruction is a variation of the DIAGNOSE 
instruction (operation code X '83'). The MSSFCALL DIAGNOSE instruction 
directly interfaces with the MSSF in the processor controller. It is used to request 
hardware functions and to request hardware status. 

The MSSFCALL DIAGNOSE instruction is issued by the Service Processor Call 
SVC processing routine (lEAVMSF) to process Service Processor Call SVC (SVC 
122) requests. It is also issued by other system components (such as IPL, NIP, 
and SADMP) to obtain system and hardware information. 

The format of the MSSFCALL DIAGNOSE instruction is: 

I X'83' 

0-7 

Bits 0-7 
Rl 
R3 
Bits 16-31 

Rl R3 I X'OO80' 

8-11 12-15 16-31 

specifies the DIAGNOSE instruction (X'83'). 
specifies the register containing the address of the MSSFCALL data block. 
specifies the register containing the MSSFCALL command word. 
specifies the MSSFCALL instruction (which must be set to X'0080'). 

lEA VNIPO sets bit 22 of control register 0 (the class 21 external interruption 
mask bit) to 1 for each processor. This enables the system for service signal 
interruptions. 

Section 5. Component Analysis 5.;;.281 



The MSSF indicates the completion of the MSSFCALL DIAGNOSE instruction 
by generating an external interruption~ The interruption code is X'2401 '. 

MSSFCALL DIAGNOSE Instruction Condition Codes 

At the completion of the MSSFCALL DIAGNOSE instruction, one of the 
following condition codes is set in the PSW: 

Code MeaDing 

o The MSSF processed the request without error. 

2 The MSSF is busy. (Note that IEAVMSF converts this condition code to a return code of 4, 
busy.) 

5-282 MVS Diagnostic Techniques 



Service Processor Call SVC .and SERVICE CALL Instruction 

Note: This topic describes the MVS support for processor complexes with the 
Service Processor Architecture. See the topic "Service Processor Call SV C and 
MSSFCALL DIAGNOSE Instruction" for a description of the MVS support for 
processor complexes with a monitoring and system support facility (MSSF). 

The Service Processor Call SVC (SVC 122) is a type 2 extended SVC with a 
routing code of 6 in register 15. The SVC is used with processor complexes that 
have the Service-Processor Architecture. 

MVS system routines issue the Service Processor Call SVC to request various 
hardware functions and to obtain hardware status information. 

When the Service Processor Call SVC is issued, the Service Processor Call SVC 
processing routine lEA VMSF processes the SVC request. IEAVMSF issues the 
SERVICE CALL instruction to directly interface with the Service Processor 
Architecture within the processor complex. 

IPL module IEAVNIPO sets bit CVTSVPRC on (in field CVTFLAGI at X'178' 
in the CVT) to indicate to IEAVMSF (and other system modules) that the 
processor complex has the Service Processor Architecture. 

For program logic information, refer to the System Logic Library, System 
Initialization Logic, and Input/Output Configuration Program (IOCP) Logic. 

The following topics briefly describe the: 

• Service Processor Call SVC (SVC 122) used with the Service Processor 
Architecture 

• SERVICE CALL instruction 

Service Processor Call SVC (8VC 122) Used With the Service Processor Architecture 

To issue the Service Processor Call SVC, the caller prepares a service call control 
block (SCCB), also called a service processor data block, and a service processor 
command word in the caller's own private area. The caller sets register 15 to 6 
(the routing code) and sets register 1 to the address of a parameter list, which 
points to the SCCB and the command word. 

Register 1 

Service call control block (SCCS) 

Parameter list 

Service processor command word 

Section 5. Component Analysis 5-283 



The parameter list is a standard SVC parameter list. The SCCB contains 
command-dependent information and is used to send data to the service processor 
and to receive responses and data from the service processor. The command 
word specifies the command to be executed by the SERVICE CALL instruction. 

Service Call Control Block (SCCD) 

The SCCB (also called the service processor data block) is a variable-length data 
area. The format of the block is: 

0-1 2 3--5 

Length ICallp.r I 
flags Reserved 

8 Data field 
(Q to 4,088 bytes) 

-"....-
L 

Length - bytes 0 and I 

6-7 

I 
Response 
field 

specifies the length of the data block. The minimum length is eight 
(X'0008') and the maximum length is 4,096 (X'1000') bytes. The length 
varies depending on the command request. 

Caller flags - byte 2 
specifies command-dependent information. 

Reserved - bytes 3 through 5 
set to X'OOOOOO'. 

Response field - bytes 6 and 7 
receives the two-byte response from the service processor. The service 
processor sets this two-byte field to indicate the status of the request. The 
field must be set to X'OOOO' before issuing the Service Processor Call SVC. 

Data field - byte 8 to end of data block 
specifies command-dependent information, if any, related to the command. 

SVC Abend and Return Codes With the Service Processor Architecture 

Abend Code - The Service Processor Call SVC processing routine (IEAVMSF) 
issues system abend code X'67 A' if the caller is not authorized to issue the SVC 
or if an error occurs during processing of the SVC. Refer to System Codes for a 
de'scription of code X'67 A'. 

5-284 MVS Diagnostic Techniques 



Return Codes - IEAVMSF returns the following codes in register 15 to the caller 
of the SVC. 

Code Meaning 

00(00) Successful completion - the SCeB contains the service processor response (in bytes 6 and 7) 
and any data (in the data field) requested on the command. 

04(04) The service processor is busy - the caller can reissue the SVc. 

08(08) One of the Service Processor Call SVC control blocks (MSFCB or MSFKB) is in use - the 
caller can reissue the SVc. 

12(0C) The service processor is not available or the control block chain is invalid. 

16(10) The service processor did not respond during a 10-second disabled spin. 

SV C Processing With the Service Processor Architecture 

The Service Processor Call SVC processing routine (IEAVMSF) provides the 
interface between system routines and the Service Processor Architecture. 
lEA VMSF processes requests made by programs issuing the Service Processor 
Call SVC and routines that branch-enter IEAVMSF. 

lEA VMSF enqueues (using the ENQ macro) the system resource 
SYSMSF,MSFCONTROLBLOCK. 

When processing the SVC request, IEAVMSF copies the caller's service call 
control block (SCCB) to the data block pointed to.by the MSFCB or MSFK B 
control block. The service processor puts its responses and data into the data 
block pointed to by MSFCB or MSFKB. lEA VMSF then copies the response 
and data (if any) into the caller's SCCB. 

Section 5. Component Analysis 5-285 



Figure 5-53 shows an overview of lEA VMSF processing. 

Service Processor 

I Call SVC (SVC 122) 

~ 
SVC FLIH 
CIEAVESVC) 

~ 
IEAVMSF - Service Processor Call 
SVC processing 
routine 

• Validates the request. 

• Issues the SERVICE 
CALL instruction. 

• Waits for the completion 
of the request to the service 
processor. 

~ 
Caller 

- -- -

-

~. -

Invalid r 
results i 

equest 
n IEAVEVAL 

Validity check abend X' 67A ' 
routine 

Service processor 

Executes the request. 

• Generates an X I 2401 I 

external interruption. 

~ 
I EAVE EXT, lEAVMFIH, and 
IEAVMSFS process the 
interruption. 

Figure 5-53. Overview of SVC Processing With the Service Processor Architecture 

SVC Control Blocks Used With the Service Processor Architecture 

lEA VMSF uses the control blocks MSFCB and MSFKB to serialize requests. 
MSFCB and MSFKB are created at NIP time by the RIM module lEA VNPE6 
and are located in the SQA. 

5-286 MVS Diagnostic Techniques 



Figure 5-54 shows an overview of the Service Processor Call SVC control blocks. 

cvr 

CVTMFRM 

CVTMSFCB 

cvrsCPIN 

System 
hardware 
information 

I EAVMFRM 

Service 
processor 
resource 
manager 

MSFCB's 
MSFCB data block 

.MSFCAOB MSFKB 

MSFCBCMO* 

MSFCMSFK MSFKAOB 

MSFKBCMO* 

*MSFCBCMD and MSFKBCMD contain the 
command word being processed. 

MSFKB's 
data block 

Figure 5-54. SVC Control Block Structure With the Service Processor Architecture 

SERVICE CALL Instruction 

The SERVICE CALL instruction (operation code X'B220') interfaces with the 
Service Processor Architecture. It is used to request hardware functions and to 
request hardware status. 

The SERVICE CALL instruction is issued by the SVC processing routine 
(lEA VMSF) when lEA VMSF is processing Service Processor Call SVC requests. 
The SERVICE CALL instruction is also issued by other system components (such 
as NIP, IPL, and SADMP) to obtain system and hardware information. 

lEA VNIPO sets bit 22 of control register 0 (the class 21 external interruption 
mask bit) to 1 for each processor. This enables the system for service signal 
interruptions. 

The service processor indicates the completion of the SERVICE CALL instruction 
by generating an external interruption. The interruption code is X'240 1 ' . 

SERVICE CALL IDstructlon Condition Codes 

At the completion of the SERVICE CALL instruction, one of the following 
condition codes is set in the PSW: 

Code Meaning 

o The service processor has initiated the request and a service-signal interruption will be presented 
when execution completes. 

2 

3 

The service processor is busy. 

The service processor is not available. 

Section 5. Component Analysis 5-287 



Cross Memory Services 

PC/AUTH Services 

Cross memory services, a component of the MVS system control program, 
consists of the program call/authorization ryC/AUTH) services and the PCLINK 
ST ACK/UNST ACK/EXTRACT services. This chapter contains diagnostic 
information for both the PC/AUTH and the PCLINK services. 

The PC/AUTH services create and manage the data structures that support the 
program call ryC) instruction and allow control of the cross memory 
authorization structure. These services are used by supervisor state or PSW key 
mask (PKM) 0-7 callers, usually subsystems, to set up the environment for 
controlling cross memory access to programs and/or data. 

There are three instances, other than when the PC/AUTH address space is 
initialized, when PC/AUTH code is executed. The first is when an address space 
is created, the second is when a task or an address space is terminated, and the 
third is when one of the 11 PC/AUTH services is invoked. 

All PC/AUTH code executes in the PC/AUTH address space (PASID=2) except 
the NIP RIM (lEA VNPF5) and the PC/AUTH address space initialization 
routine (lEA VXMIN). 

When an address space is created, lEA VXMIN initializes its address space second 
table entry (ASTE) and chains the new address space to the system linkage table 
(SL T) and the system authorization table (SAT). The new address space is given 
an authorization index (AX) of 0, which makes it unauthorized to issue the PT or 
SSAR instruction to another address space. It has access only to those global PC 
services that are available to all address spaces via the SLT. 

When a task or address space terminates, the PC/AUTH resource manager 
(lEA VXP AM) gets control. If a cross memory resource owning (CMRO) task or 
address space is terminating, IEAVXPAM recovers PC/AUTH-related resources. 

The 11 PC/AUTH services are invoked via macro calls by supervisor state or 
PKM 0-7 callers. The following table lists the macro names with their descriptive 
names. The table is arranged in the same order as the entries in the system 
function table (SFT). 

Macro Descriptive Name 

LXRES 
LXFRE 
ETCRE 
ETDES 
ETCON 
ETDIS 
AXRES 
AXFRE 
AXEXT 
AXSET 
ATSET 

Linkage index (LX) reserve 
Linkage index (LX) free 
Entry table (ET) create 
Entry table (ET) destroy 
Entry table (ET) connect 
Entry table (ET) disconnect 
Authorization index (AX) reserve 
Authorization index (AX) free 
Authorization index (AX) extract 
Authorization index (AX) set 
Authorization table (AT) set 

5-288 MVS Diagnostic Techniques 



III, 
I 

~/ 

Module Structure 

For a complete description of these macros, refer to OS/VS2 System Programming 
Library: Supervisor. For a description of the logic of the PC/AUTH services, 
refer to OS/VS2 System Logic Library and OS/VS2 System Initialization Logic. 

For PC/AUTH services, this topic contains the following: 

• Module structure of the PC/ Auth modules 
• Process flow of PC/AUTH processing 
• Control block structure of PC/AUTH control blocks 
• Recovery consideratioQ~ for PC/ AUTH services 
• Debugging hints for the PC/AUTH services 

All PC/AUTH service routines and their FRR are contained in the load module 
lEA VXPCA, which is loaded into the PC/AUTH address space from 
SYSI.LINKLIB by the PC/AUTH address space initialization module 
IEAVXMAS. IEAVXMAS is loaded from SYSl.LINKLIB into the PC/AUTH 
address space by the PC/AUTH NIP RIM, IEAVNPF5. IEAVXMAS is given 
control during NIP via a LINK macro from IEEPRWI2. 

The PC/AUTH service routines in load module lEA VXPCA are ordered in the 
same sequence as the entries in the system function table (SFT) for their 
corresponding services. The following table lists the modules in load module 
lEA VXPCA. The load module has an alias associated with each entry point that 
receives control via a PC instruction. The alias enables lEA VXMAS to issue a 
LOAD macro for each of these entry points to obtain the entry point address, 
which is stored in the entry table entry (ETE) associated with the service. The 
FRR (lEA VXPCR) is not loaded and therefore does not require an alias. Also 
shown in the table are the associated system function table (8FT) index value, the 
service-in-control code (pCRASERV) value, and the entry table index (EX) value. 
Note that when a PC/AUTH service routine abends, the service-in-control code is 
the high-order byte of the half word reason code. 

Module Entry SFT PCRA- EX 
Name Points Index SERV Value Service/Function 

IEAVXLRE IEAVXLRE 1 01 0 LXRES (LX reserve) 
IEAVXLFR IEAVXLFR 2 02 1 LXFRE (LX free) 
IEAVXECR IEAVXECR 3 03 2 ETCRE (ET create) 
IEAVXEDE IEAVXEDE 4 04 3 ETDES (ET destroy) 
IEAVXECO IEAVXECO 5 05 4 ETCON (ET connect) 
IEAVXEDI IEAVXEDI 6 06 5 ETDIS (ET disconnect) 
IEAVXRFE IEAVXARE 7 07 6 AXRES (AX reserve) 

IEAVXAFR 8 08 7 AXFRE (AX free) 
IEAVXAEX 9 09 8 AXEXT (AX extract) 

IEAVXSET IEAVXAXS 10 OA 9 AXSET (AX set) 
IEAVXATS 11 OB A ATSET (AT set) 
IEAVXACK Authorization check 

IEAVXPAM IEAVXPAM 12 OC B PC/AUTH resource 
manager 

IEAVXPCR IEAVXPCR OD PC/AUTH FRR 

Section 5. Component Analysis 5-289 



Process Flow 

There are three modules in the nucleus that are related to the PC/AUTH services. 
They are: , 

lEA VXSFM - a nonexecutable module containing the system function table (lEA VXSFT). It 
provides.PC numbers for system services and pre-assigns linkage indexes (LXs) as 
system LXs. When a system LX is connected to an entry table, all address spaces are 
then connected to that system entry table. 

iEA VXNEP - a nonexecutable module containing the nucleus entry point table (lEA VXNEn. It 
contains pairs of names and virtual addresses used to locate nucleus routines that can 
be invoked by a PC instruction. 

lEA VXEPM - a service module used by the entry table create service (lEA VXECR) to find the 
location of requested nucleus routines. It is also used by the PC/AUTH address space 
initialization module (lEA VXMAS) to find the location of the OD6 abend routine 
(lEA VXABE, located in lEA VXEPM). 

The PC/AUTH address space initialization routine (lEA VXMIN) is in the link 
pack area: 

lEA VXMIN - initializes the address space second table entry (ASTE) of a new address space, and 
chains the new address space to the system linkage table (SL T) and the system 
authorization table (SAn. IEAVXMIN is contained in the load module 
IEAVEMCR. 

When one of the PCI A UTH services is invoked by a macro call from a system 
routine, the macro-generated code saves the caller's registers in a standard save 
area, sets up the necessary parameters, and then issues the PC instruction. When 
the service completes its function, it returns to the caller by issuing the PT 
instruction. The macro-generated code then restores the caller's registers (except 
those containing output values). 

Each PC/AUTHservice routine performs a common sequence of operations. 
Upon entry, each routine Saves the PC instruction information by using the 
PCLINK STACK service. The routine then serializes its operation with other 
services by obtaining the PC/AUTH address space's local lock. It then sets up 
two levels of FRR for recovery, and obtains (via a GETMAIN) its dynamic work 
area from the private area of the PC/ AUTH address space. 

At this point, each service routine performs its own service function. 

Upon successful completion, the service routine frees (via a FREEMAIN) its 
dyriamic work area, deletes its FRR coverage, and releases PC/AUTH address 
space's local lock. The service then restores the information necessary to issue the 
PT instructi'on to the caller by invoking the PCLINK UNSTACK,THRU service, 
and then issues the PT instruction. 

5-290 MVS Diagnostic Techniques 



Control Block Structure 

Most control blocks and programs related to the PCjAUTH services are located 
in the LSQA, or pageable private area of the PCjAUTH address space. 

LSQA 

Because they must reside in fixed real storage, the control blocks that are accessed 
by the cross memory instructions reside in the LSQA (subpool 255) of the 
PCjAUTH address space~ These control blocks include: 

L T - Linkage tables (L Ts) consisting of linkage table entries (L TEs), mapped by IHAL TE. 

SL T - SysteQl linkage table; 

AT - Authorization tables (ATs) with entries mapped by IHAATD. 

SAT - System authorization table. 

ET - Entry tables (ETs) consisting of entry table entries (ETEs), mapped by IHAETE. 

LPA - PC/AUTH's latent parameter areas (LPAs) associated with PCJAUTH's ETEs. (Used only to 
find the PCLlNK stack pool header.) 

Pageable Private Area 

The control blocks that are needed only by the PCjAUTH service routines reside 
in the pageable private area (subpoo1229) of the PCjAUTH address space. These 
control blocks include: 

XMD- Cross memory directory, mapped by IHAXMD. 

LXAT- Linkage index allocation table, mapped by IHALXA T. 

AXAT- Authorization index allocation table, mapped by IHAAXAT. 

ETIB/ETIX - Entry table information block (ETIB) and ETIB extension (ETIX), mapped by 
IHAETIB. 

The formats of these control blocks are described later in this chapter. 

Subpool 229 is also used for the dynamic data area storage for each of the 
PCjAUTH service routines and their FRR, and for all temporary storage needed 
by the services (such as the force disconnect queue blocks (FDQBs) used by the 
LXFRE service for the FORCE option). 

SQA 

The doubleword latent parameter area (LPA) associated with each entry table 
entry (ETE) is located in the SQA (subpool 245) for all entry tables (ETs) except 
PCjAUTH's LPAs, which are located in the LSQA (subpool 255) of the 
PCj A UTH address space. 

Figure·5-55 shows an overview of the control block structure related to the 
PCj A UTH services. More detailed control block diagrams are shown in OS j VS2 
System Logic Library (in the topic "PCjAUTH Services"), and in OSjVS2 System 
Programming Library,' Debugging Handbook. 

Section 5. Component Analysis 5-291 



PSA SVT (Supervisor vector table) -I I -
PSASVT SVTXMD -

I I SVTXMSOP 

SVTXM~UP 

--- ---- ------ -----
l~ XMD LXAT - ~-XMDLXAT 

XMDETIBF t ... ETIB 

XMDETIBL I--- ETiBNEXT -

XMDAXAT ~ @[ 
+ ... ETIB .. ETIX ~-

I - :1-' I ETIBBACK - ! ETIXEXT ~ 
ETIBFEXT 

----,-----
I G) A 

ASCB 

ASCBLTOV 

ASCBATOV 

ASCBASTE 

ASTE 

ASTEICMA 

ASTEATO 

ASTEAX 

ASTELTD 

LT/SLT 

I,. LPA 

I~ 

0- PC/AUTH pageable private storage (subpool 229) 

@- SOA (subpooI245) 

@- PC/AUTH LSOA (subpool 255) 

L_ ETIX 

~I 

0- The ETIB contains addresses and lengths of its associated ET and LPA. 

Figure 5-55. PC/AUTH Control Block Structure 

5-292 MVS Diagnostic Techniques 

I 



Control Block Formats 

\ 
'I 
jj 

The format of the PC/AUTH control blocks (XMD, LXAT, AXAT, and 
ETIB/ETIX) are described in this topic. Also, descriptions of key fields and 
indicators in selected system control blocks (ASCB, ASTE, and SVT) are 
provided. 

XMD Control Block 

The cross memory directory (XMD) anchors the other PCjAUTH control blocks. 
Also, lEA VXMIN uses values from the XMD to initialize the AT and L T 
pointers for a new address space. 

Offset 

X'OO' 
X'04' 
X'OS' 
X'OC' 
X'tO' 
X't4' 
X'I5' 
X'18' 
X'IC' 
X'IE' 

X'20' 
X'24' 
X'28' 
X'2C' 

Field 

XMDXMD 
XMDLXAT 
XMDETIBF 
XMDETIBL 
XMDAXAT 
XMDFLGS 
XMDRSV9 
XMDRSVIO 
XMDATLND 
XMDSATLN 

XMDSATOR 
XMDSATOV 
XMDSLTD 
XMDSLT 

Contents 

'XMD' acronym. 
Address of the LXAT. 
Address of the first ETID on the queue. 
Address of the last ETIB on the queue. 
Address of the AXAT. 
Reserved. 
Reserved. 
Reserved. 
Length, in bytes, of the SAT. 
Bits 0-11 contain the number of words, minus one, in the SAT. Bits 12::-15 
are zero. Used to initialize an ASTE. 
Real address of the SAT in a format to initialize an ASTE. 
Virtual address of the SAT. 
Real address of the SLT (with the valid bit .on) in an ASTE format. 
Virtual address of the SLT. 

AXA T Control Block 

The authorization index allocation table (AXA T) contains authorization index 
(AX) ownership information. 

Offset 

X'OO' 
X'04' 
X'08' 
X'OC' 
X'lO' 

Field 

AXATNAME 
AXATCT 
AXATAVAL 
AXATRSVD 
AXATENT 
AXATENTY 

Contents 

'AXAT' acronym. 
Count of entries in the AXAT. 
Number of entries currently available (unreserved). 
Reserved. 
First two-byte AXA T entry. 
(Alternate name for the AXAT entry.) 

A zero entry indicates that an AX is unreserved. If an entry is nonzero, it 
contains the ASID that has reserved (owns) the corresponding AX. The first 
entry in the table is the AX=O entry, the second is the AX= I entry, and so on. 
The first two AXs are pre-assigned and owned by the PC/AUTH ASID. 
Therefore, the first two entries always contain the PCjAUTH ASID, which is 2. 
The following shows an AXAT as it might appear in a dump. 

'AXAT' 
CIE1CIE3 

CT AVAL AX=O AX= 1 AX=2 AX=3 AX=4 
0080 003C 0002 0002 0009 0013 0000 

Section 5. Component Analysis 5-293 



LXAT Control Block 

The linkage index allocation table (LXAT) contains linkage index (LX) ownership 
information. 

Offset 

X'OO' 
X'OO' 
X'04' 
X'06' 
X'08' 

Field 

LXATHDR 
LXATLXAT 
LXATHILX 
LXATMSLX 
LXATINDX 

Contents 

LXAT header. 
'LXA T' acronym. 
Highest LX contained in the LXAT. 
Maximum system LX in the LXAT. 
Linkage index status, array -

Each entry in the array contains: 

X'OO' LXATASID 
X'02' LXATBIND 

X'04' LXATETCT 

X'06' LXATFLGS 
I ....... LXATRIP 
.1 ...... LXATOWND 

.. I ..... LXATSYS 

.. .I .... LXATDORM 

.... III I LXATRSVI 
X'OT LXATRSV2 

The ASID that owns this index. (Valid only if LXATOWND is on.) 
The bind count - count of address spaces using this LX. For a system LX 
that was ever connected, the field is X'FFFF'. 
The entry table connect count - count of ETs connected to this LX. For a 
system LX that is connected, the field is X'FFFF'. 
Flag byte: 
An LXRES macro is in process for this LX. 
This LX is reserved - owned by the address space whose ASID is in 
LXATASID. 
This is a system LX . 
This system LX is dormant. A dormant LX is a system LX whose owning 
address space has terminated. A restartable subsystem that restarts in a 
new address space can reconnect to this LX. 
Reserved. 
Reserved. 

The LXA T is divided into two sections. All the LXs up to the LX number in the 
LXATMSLX field are permanent system LXs. This number can be altered by 
zapping the SVTMSLX field prior to IPL or during IPL but before PC/AUTH 
initialization; it cannot be altered after IPL. The remainder of the LXs are 
non-system LXs. For an LX of either type to be available for assignment by the 
LXRES macro, the LXATOWND bit must be off and the LXA TBIND and 
LBXATETCT fields must both be zero. The following shows an LXAT as it 
might appear in a dump: 

'LXAT' HILX MSLX 
D3E7 CIE3 0020 0010 
ASID BIND ETCT FLGS 

LX=O: 0002 FFFF FFFF 6000 Program call/authorization 
(PCjAUTH) 

ASID BIND ETCT FLGS 
LX=I: 0003 FFFF FFFF 6000 Global resource serialization 

(GRS) 
ASID BIND ETCT FLGS 

LX=2: 0004 FFFF FFFF 6000 Allocation address space 
(ALLOCAS) 

ASID BIND ETCT FLGS 
LX=lO: 0000 0000 0000 2000 Available system LX 

ASID BIND ETCT FLGS 
LX= 11: 0000 0000 0000 0000 Available non-system LX 

5-294 MVS Diagnostic Techniques 



ETIB and ETIX Control Blocks 

The entry table information blocks (ETIBs) contain entry table ownership and 
connection information. They are arranged in a double-threaded queueA For 
non-system connections, connection information is kept in ETIB extension blocks 
(ETIXs), which are queued off the ETIB. ETIXs are arranged in a 
single-threaded queue. 

The format of the ETIB is: 

Offset Field 

X'OO' ETIBETIB 
X'04' ETIBASCB 
X'OS' ETIBNEXT 
X'OC' ETIBBACK 
X'to' ETIBETR 

X'14' ETIBETV 
X'IS' ETIBLPAO 
X'Ie' ETIBLPLN 
X'20' ETIBRSVI 
X'24' ETIBRSV2 
X'28' ETIBRSV3 
X'29' ETIBFLGS 

1. ...... 

.1. ..... 

.. 1. .... 

.. .1 1111 
X'2A' ETIBCNCT 

X'2C' ETIBFEXT 

Contents 

'ETIB' acronym. 
Address of the ASCB that owns the entry table (En. 
Forward link fdr the ETIB queue. 
Backward link for the ETIB queue. 
Real address of the associated ET. Bits 26-31 contain an indicator of the 
ET length (the number of ETEs/4 - 1). 
Virtual address of the associated ET. 
Address of the latent parameter area (LPA) for the ET. 
Length of the latent parameter area (LPA). 
Reserved. 
Reserved. 
Reserved. 
Flag byte: 
ETIBSYS This entry table is a system ET. (It is connected to a system 

LX and is available to all address spaces.) 
ETIBSS This ET has space switch entries. (That is, an address space 

switch occurs when the program described by the ETE is 
invoked via the PC instruction. 

ETIBCIL Connection information has been lost. 
Reserved. 

Count of connections to this entry table (ET). (For a system ET, this 
value is X'FFFF'. 
Address of first ETIX. This field is zero if there are no connections. It is 
not used for system ETIBs (ETIBSYS = 1). 

The format of the ETIX is: 

Offset Field Contents 

X'OO' ETIXETIX 'ETIX' acronym. 
X'04' ETIXRESV Reserved. 
X'OS' ETIXSLOT Count of connection slots in the ETIX (X' A'). 
X'OA' ETIXFREE Free slot count. 
X'OC' ETIXEXT Pointer to next ETIX. 

This field is followed by an array of 10 connection slots that show which address spaces are 
connected to the ET and which LX the ET is connected to. 

X'OO' ETIXASIO ASIO of the address space connected to this ET. 
X'02' ETIXLX Linkage index (LX) at which this ET is connected in the linkage table of 

the above ASIO. (This value is the 12-bit LX value, right justified - not 
the LX value as it is returned by the LXRES service.) 

The following shows an ETIX as it might appear in a dump: 

'ETIX' reserved SLOT/FREE next ETIX 
C5E3C9E7 00000000 000AOO07 00000000 

SLOTt: SLOT2: SLOT3: SLOT4: SLOT 5: ... SLOT 10: 
ASIO/LX ASIO/LX ASIO/LX ASIO/LX ASIO/LX .. , ASIO/LX 
00140005 000EOO05 00000000 002COO05 00000000 ... 00000000 

(free) (free) (free) 

Note: Used slots are not necessarily contiguous. Slot 3 is free, which indicates 
that an address space was once connected and has been disconnected. 

Section 5. Component Analysis 5-295 



Recovery Considerations 

Key Fields and Indicators in System Control Blocks 

The following fields and indicators in the ASCB, ASTE, and SVT (which are not 
in the PCjAUTH address space) contain information related to the PC/AUTH 
services. 

ASCBETC - This field indicates the number of entry tables (ETs) currently owned by the address 
space. This count should always be equal to or greater than the number actually 
owned, which is indicated in the ETIB queue. The PCjAUTH resource manager 
(IEAVXPAM) keys on this value to determine if any ETs owned by an address space 
must be cleaned up. 

ASCBETCN - The field indicates the number of connections to entry tables (ETs), owned by this 
address space that contain space switch entries. This count should always be equal to 
or greater than the number of connections that actually exist. A nonzero value in this 
field indicates, that the authorization index (AX) of the address space cannot be 
changed. 

ASCBLXR -' This field indicates the number of linkage indexes (LXs) reserved by this address 
space. This count should always be equal to or greater than the number of LXs 
reserved as indicated in the LXAT. The PCjAUTH resource manager (IEAVXPAM) 
keys on this value to determine if any LXs must be freed for an address space. 

ASCBAXR - This field indicates the number of authorization indexes (AXs) reserved by this 
address space. This count should always be equal to or greater than the number of 
AXs as indicated in the AXAT. The PCjAUTH resource manager (IEAVXPAM) 
keys on this value to determine if any AXs must be freed for an address space. 

ASCBXMET - This bit indicates that either space switch entry tables are owned by the address space, 
or incomplete termination processing of PCjAUTH resources for the address space 
has prevented reuse of the ASID. 

ASCBXMEC - This bit indicates that one or more entry tables containing space switch entries were 
created by this address space. 

ASTEICMA - This bit (high-order bit in field ASTEATO) indicates that the address space associated 
with this ASTE is not available for cross memory access. 

ASTEL TV - This bit (high-order bit in field ASTELTD) indicates that the linkage table entry 
(LTE) is valid. 

SVTXMSOP - This bit indicates that the PCjAUTH services are operational. 

SVTXMSUP - This bit indicates that the PCjAUTH services have been initialized. 

PCjAUTH recovery is designed to recover from nonrecursive errors that do not 
cause permanent damage to critical PCjAUTH data structures. All of the 
PCj A UTH service routines and the resource manager are covered by a common 
FRR routine, lEA VXPCR. The FRR contains a validation routine that attempts 
to detect damage to PCjAUTH's pageable control blocks. If the FRR determines 
that damage has occurred, it disables further execution of PCjAUTH services by 
turning off the SVTXMSOP (operational) bit in the SVT. This prevents 
PCjAUTH from continuing execution with known defective data. The FRR does 
not contain logic to repair or reinitialize PCjAUTH if its control blocks are 
damaged, with the exception of the ETIB/ETIX structure. The ETIB/ETIX 
queues can be repaired by the queue verification routines, isolating the problem to 
a subset of users while maintaining system integrity. PCjAUTH mainline service 
routines always check that PC/AUTH is operational (SVTXMSOP= 1). They 
assume, if PCjAUTH is operational, that PC/AUTH's control blocks are valid if 
their acronyms are valid. 

5-296 MVS Diagnostic Techniques 



~I 
f 

The FRR performs those recovery functions that are common to all the service 
routines. This includes recording data in SYSl.LOGREC, taking an SVC dump 
of PCjAUTH data at the time of the error, and validating the PCjAUTH control 
blocks. If a service requests a retry, a retry of the function is performed. If retry 
is not performed, a cleanup exit (in the service routine module) might be given 
control to clean up resources specific to the service. The FRR then cleans up the 
service routine's dynamic storage and PC LINK stack entry, and percolates to the 
caller with an X'053' abend. 

For a detailed description of the interfaces between the service routines and the 
FRR, refer to the program listing for module lEA VXPCR. Figure 5-56 shows 
the relationship of the key PCjAUTH recovery data structures. The Program 
Call recovery area (PCRA) is mapped by the IHAPCRA mapping macro. The 
fixed portion of the service routine recovery area (SRRA) isa mapped by the 
IHASRRA mapping macro. The formats of the SRRA, PCRA, and PCRA flag 
field is provided in the following topics. 

PC/AUTH 
service Service routine's 

routine dynamic work area 

GETMAIN r -~ ~SRRA ~~ 
dynamic ~ 
work area SRRADATA I---

: 
: 

I 

: 
: FRR stack _ Main PCRA 

SETFRR -I Second J ,~ -
,; (IEAVXPCR) level FRR ~ ~~ : 

: PCRASRRA ,--

: 
First level 

: 
PCRA SETFRR ... -l First 1 ,. 

(lEAVXPCR) 
: level FRR 

~~ :::~ 
: 

PCRAMAIN --: 

Figure 5-56. PCI AUTH Recovery Areas 

SRRA Control Block 

The format of the service routine recovery area (SRRA) is: 

Offset 

X'OO' 
X'04' 
X'08' 
X'OA' 
X'OC' 
X'IO' 
X'14' 
X'18' 
X'IC' 
X'20' 
X'24' 
X'28' 
X'2C' 

Field 

SRRANAME 
SRRADATA 
SRRADLEN 
SRRASLEN 
SRRABASE 
SRRABAS2 
SRRARREG 
SRRARTY@ 
SRRASUML 
SRRAESAR 
SRRAHOME 
SRRAMLIA 

Contents 

'SRRA' acronym. 
Address of the service routine's dynamic work area. 
Length of the work area. 
Length of the SRRA. 
Service routine base register. 
Second base register. 
Address of the retry registers (0-15). 
Address of retry routine. 
Optional SUMLSTA list. 
Secondary ASID. 
Address of home ASCB. 
Address of module level information. 
Key variables: 
These variables are unique for each service routine. Refer to the program 
listings of the service routines for a description of these variables. 

SeCtion 5. Component Analysis 5-297 



Main PCRA Control Block 

The format of the main Program Call recovery area (peRA) is: 

Offset Field 

X'OO' PCRASERV 
X'OJ' PCRAREAS 
X'02' 

X'04' PCRASTIK 
X'OC' PCRAFOOT 
X'IO' PCRARRDA 
X'14' PCRASRRA 

Notes: 

Contents 

Service-in-control code. 
Abend reason code. 
PCRA flags: 
Refer to the following topic "PCRA Flags" for a description of these bits. 
For the main PCRA, PCRA2ND = I. 
PCLINK token value. 
FRR footprint data. (See Note 1.) 
Address of the FRR dynamic work area. (See Note 2.) 
AddreSs of the SRRA. 

1. The PCRAFOOT field contains a value that indicates which section of the FRR 
(lEA VXPCR) is processing. These footprints are useful in debugging when the 
ERR encounters an error. The functional meaning of these footprints is: 

Value in 
PCRAFOOT FRR Label Function 

X'OO' IEAVXPCR 

X'ot' POINT I 
X'02' POINT2 
X'03' POINT3 
X'04' POINT4 
X'OS' POINTS 
X'06' POINT6 
X'07' POINT7 

Preliminary processing, SYSI.LOGREC preparation, and 
recursion checking. 

Issue the SDUMP macro. 
Validate PCjAUTH's control blocks. 
Retry, if requested. 
Call cleanup exit, if requested. 
Free the service routine's dynamic work area. 
Cleanup the FRR's dynamic work area. 
Issue PC LINK UNSTACK and percolate the error. 

2. The value in PCRARRDA does not point to the RRDA structure defined in 
lEA VXPCR, it points to the beginning of the FRR's dynamic work area. 

First Level PCRA Control Block 

Offset Field 

X'OO' PCRASERV 
X'OI' PCRAREAS 
X'02' PCRA 

X'04' PCRASTTK 
X'OC' PCRAFOOT 
X'IO' PCRARRDA 
X'14' PCRAMAIN 

5-298 MVS Diagnostic Techniques 

Contents 

Zero. 
Zero. 
PCRA flags: 
Refer to the following topic "PCRA Flags" for a description of these bits. 
For the first level PCRA, PCRAIST= 1. 
Zero. 
Zero. 
Zero. 
Address of the main PCRA. 



Debugging Hints 

PCRA Flags 

The contents of the PCRA flag bytes at offsets X'02' and X'03' are: 

Offset Field Contents 

X'02' Flag byte: 
1 ....... PCRARSBI Reserved . 
. 1. ..... PCRACML The PC/AUTH address space local lock is held. 
.. 1. .... PCRACMS The cross memory services lock is held . 
.. .1 .... PCRAKCML The caller of the service now running already held the PC/AUTH 

address space's local lock, and therefore it should not be released if 
recovery percolates to RTM. (This occurs when the ETDIS service is 
called by either the LXFRE macro with the FORCE option, or by the 
ETDES amcro with the PURGE option.) 

.... 1. .. PCRACLUP Cleanup exit invocation is requested. 

..... 1.. PC RARCUR Retry recursion indicator. If this bit is on when the FRR is entered 
after a retry, then the retry is recursive and a retry request is not 
honored. The bit is set on by the FRR when it retries to a service. 
The service must clear the bit (set it to 0) after setting a new retry 
address if the service wants further retry capability. 

..... .1. PCRAFRRE lEA VXPCR has been entered as an FRR. 

....... 1 PCRARMGR IEAVXPCR has been entered as a CML (cross memory lock) 
resource manager. 

X'03' Flag byte: 
1. ...... PCRA1ST 'This PCRA is associated with the first level FRR. If this bit is on, the 

sixth word of the PCRA (PCRAMAIN) contains the address of the 
main PCRA. 

.1. ..... PCRA2ND This is the main PCRA, associated with the second level FRR. If this 
bit is on, the sixth word of the PCRA (PCRASRRA) contains the 
address of the SRRA. 

.. 1. .... PCRANTH This PCRA is associated with a nested (or Nth level) FRR, which is 
set by the second (or another Nth) level FRR to protect itself. If this 
bit is on, the sixth word of the PCRA (PCRAMAIN) contains the 
address of the main PCRA. 

... 1 .... PCRAPERC Percolate to the caller. This bit is set on by the FRR to indicate to 
any higher level FRR that recovery is complete and it should 
percolate to R TM. 

.... 1. .. PCRAREC2 Recursion in the FRR. This bit is set on to indicate that the FRR has 
detected a recursive error in its processing. 

..... 1.. PCRAFRRG An FRR GETMAIN is in progress. 

.... .. 1. PCRADUMP An SDUMP macro has been issued during this recovery process . 

.... ... 1 PCRARSB2 Reserved . 

1. The RR,DA structure defined in lEA VXPCR contains many flags that are 
useful in debugging problems in the FRR, including flags that footprint the 
progress through the control block validation process. If the validation -
routine takes a recursive program check during its processing, the PCjAUTH 
services are made inoperable. Because an SDUMP macro is issued only once 
during the recovery process, the values in the RRDA cannot be obtained 
from a dump when errors occur in the FRR. Each level of the FRR that 
executes, however, records the RRDEBUG portion of the RRDA in the 
SYSl.LOGREC variable recording area. For a mapping of the RRDA, refer 
to the program listing for module lEA VXPCR. 

2. For SVC dumps, the dump title indicates which service had the problem. It 
also provides the reason code and diagnostic value (described in System 
Codes) for X'053' abends, or the system completion code and register 14 
contents for other failures .. The SUMDUMP portion of the dump provides a 
synchronous dump of the PCjAUTH data at the time ofth~ failure and 

Section 5. Component Analysis 5-299 



before any retry or cleanup action has been taken by the FRR. The first 
SUMLST A record contains the SUMLST A list of storage ranges to be 
synchronously dumped. The second SUMLST A record is the lEA VXPCA 
load module containing the service routines, resource manager, and FRR as 
they appear at the time of the failure. These two records are followed by 
SUMLSTA records that contain the PC/AUTH control blocks as they existed 
at the time of the failure. 

3. The main PCRA contains the pointer to the SRRA in the executing service's 
working storage; it also contains many flags of value in determining what is 
going on, especially if the error occurs during recovery, retry, or cleanup 
processing. The main PCRA at the time the suspended summary dump was 
taken can be found by looking in the SUMDUMP portion of the dump. It is 
the work area portion of the first FRR on the formatted FRR stack from the 
interrupt handler save area (IHSA). The same PCRA can also be found in 
the variable recording area of the SDW A record in the SUMDUMP section 
of the dump but it is more difficult to read because it might not start on a 
word boundary. Be sure to use the PCRA found in the SUMDUMP output 
and not one found in asynchronous portions of the dump because the latter 
does not necessarily relate to the error. 

4. The SYSl.LOGREC records written during recovery processing provide a 
large amount of data relevant to the problem. The variable recording area 
(VRA) in the SDWA is fully used. The data in the VRA is in the 
key-length-data format where the key fields are defined by the IHAVRA 
macro. The data includes the main PCRA at the time of entry to the FRR, 
possible diagnostic messages from the FRR's validation routine, possible 
diagnostics from the queue verification routines, and as much of the service 
routine's SRRA as possible. Each service routine declares variables that are 
of value in debugging within the SRRA structure, with the most useful near 
the beginning of the SRRA, thus enhancing the diagnostic value of the 
SYS1.LOGREC record. The SYSl.LOGREC entry contains the registers at 
the time of the failure except that for X'053' abends with a X'xx97' 
(unexpected error) reason code, the original value of register 15 is in the VRA 
(VRAKEY=VRAORI5) and the original system completion code is also in 
the VRA (VRAKEY=VRAOA). 

5. In stand-alone dumps, if a PCjAUTH service routine was running when the 
system failed, two PCRAs should be found in the PSA. Look for a six-word 
FRR parameter area with a pointer in the sixth word pointing to another 
FRR parameter area. The second (main) PCRA has a PCLINK stack token 
value in the second word. The PC LINK token value appears as two small 
half word values, the first is the number of levels of Program Calls to the 
currently executing service (usually 0001), and the second is the PC/AUTH 
ASID. The sixth word is a pointer to the SRRA for the executing service 
routine in the PCI A UTH address space. The first word of the SRRA 
contains the SRRA acronym. The fourth word contains the first or only base 
register value of the service routine that was executing. This value is close to 
the beginning of the code for the service that was executing. 

5-300 MVS Diagnostic Techniques 



SLIP Traps 

) 

The following shows how FRR parameter areas might appear in.a dump. 

FRR ENTRIES 

PARMAREA 05004242 00010002 00000000 01000000 007D21E8 007D24EC 
PARMAREA 00000080 00000000 00000000 00000000 00000000 OOOOOD08 
PARMAREA 80000000 50027AIE 007D2230 00000000 00000000 OO02883C 
PARMAREA 60000000 50E42032 50E42032 OOA4F2B8 OOE44368 ooA4F4FO 

6. If the problem is an X'052' abend that should not be occurring, the reason 
code indicates what part of tne data structure to look at if the caller's input is 
not in error. To look at the PC/AUTH data structures, use the DUMP 
command or a SLIP trap with ACTION=SVCD to dump the PC/AUTH 
address space. For example, if a caller tries to disconnect an ET that the 
caller had connected and receives an X'052' abend with an X'0613' reason 
code (indicating the specified ET is not connected), then the debugger should 
look at the ETIB queue. It is possible in this example that the ETIX queue 
had been truncated due to an error. If this had occurred, the ETIBCIL 
(connection information lost) bit would be set on in the ETIB associated with 
the ET. If no ETIB can be found that is associated with the ET, then the 
ETIB might have been removed from the queue due to an error. If either of 
these queue repair operations has occurred, there should be an X'OS3' abend 
dump and a SYSl.LOGREC record written with queue verification 
diagnostics in its VRA indicating why the element was removed. Note that 
an ETIB associated with a connection or disconnection operation can be 
readily found in the PC/AUTH address space. This is because the token 
value received from the ETCRE service and passed to the ETC ON, ETDIS, 
or ETDES service is the address of the ETIB. For this ETDIS service X'OS2' 
abend descrihl.-d in this example, the token value related to the error is 
supplied in register 2. 

If a program check is occurring in a PC/AUTH service routine or in the FRR 
that cannot be solved with the information provided in a dump or the 
SYSl.LOGREC records, set a SLIP trap similar to the following to stop the 
system at the point of error. 

SLIP SET,ID=ERR2,ASID=2,ERRTYP=ALL,A=WAIT,END 

This trap matches on all errors that occur in the PC/AUTH address space. Only 
the PC/AUTH service routines, resource manager, and FRR execute in the 
PC/AUTH address space. To determine the PC/AUTH ASID, issue a 'D A,ALL' 
operator command. 

If the error is an erroneous X'OS2' abend, a SLIP trap with COMP = OS2 and a 
comparison of the reason code in register IS can be used to detect a. specific 
X'OS2' abend. Further selectivity can be achieved in some cases by checking for a 
specific diagnostic register value. For example, the following trap checks for an 
AXRES request with an invalid request count of 0, and provides an SVC dump of 
both the current (calling) address space and the PC/AUTH address space 
(ASID=2). 

SLIP SET, ID=COS2, COMP=OS2"ACTION=SVCD ,ASIDLST= (0,2) , 
DATA=(lSR,EQ,00000703,4R,EQ,OOOOOOOO),ML=1,END 

Section 5. Component Analysis 5-301 



PCLINK Services 

STKE Control Block 

The PC LINK service routines provide services for users of the Program Call (PC) 
and Program Transfer (PT) instructions by saving key linkage information in 
queues of PC LINK stack elements (STKEs). There is a separate queue for each 
oRB or SRB. A program that receives control via a PC instruction should issue 
the PC LINK STACK macro prior to updating registers 2, 3,4, 13, and 14 (and 0, 
1, and 15 if they are parameter registers). A PCLINK stack token value is 
returned in register 14. The called program can then perform its processing, 
which might result in other PC instructions being issued. 

When the called program is about to return to its caller, it should load registers 0, 
1, and 15 with any data to be passed back to the caller. It should then issue the 
PC LINK UNSTACK,THRU macro and provide the token value received on the 
PCLINK STACK macro. This restores registers 3, 13, and 14, and, optionally, 
the original PSW protect key. The called program can then issue the PT 
instruction to return to the caller. 

For a description of the PCLINK macro and services, refer to OSjVS2 System 
Programming Library: Supervisor. For a description of the logic of the PCLINK 
services, refer to OSjVS2 System Logic Library. 

Figure 5-57 shows the control block structure of the PC LINK stack elements 
(STKEs) when a program has passed control to another program (via a PC 
instruction), and when a program that has received control (via a PC instruction) 
abends. 

Important fields in the STKE are: 

Offset Length Name Contents 

X'C' 4 STKEPREV Contains either the address of the prior STKE, or the address 
of the next free STKE. 

X'I4' 4 STKESA Address of the caller's register save area. 
X'I8' 4 STKERET Address of the instruction following the caller's PC instruction. 
X'IC' 4 STKEPRI5 Contents of parameter register 15. 
X'20' 4 STKEPRMO Contents of parameter register O. 
X'24' 4 STKEPRMI Contents of parameter register 1. 
X'34' 4 STKEEPA Address (near the beginning) of the program receiving control 

(via the PC instruction). 

5-302 MVS Diagnostic Techniques 



Address 
space X 

Address 
space Y 

Program A 

PC 

Program B's 
register 
save area 

Abend 

STKEEPA 

Program C's 
STKE 

PSA 

Program A 
issues a PC 
to program B 
in address 
space Y. 

Program B 
issues a PC 
to program C 
in the same 
address space. 

Program C 
abends. Its 
FRR issues 
SDUMP. 

Figure 5-57. PCLINK Control Block Structure 

Section 5. Component Analysis 5-303 



December 27, 1985 

Module Structure 

Debugging Hints 

The PCLINK services are contained in the nucleus module lEA VXSTK, which 
has the following entry points: 

Entry Point Function 

IEAVXSTS PCLINK STACK,SAVE = YES 
lEA VXSTN PCLINK STACK,SAVE = NO 
lEA VXUNS PC LINK UNSTACK,SAVE = YES 
lEA VXUNN PCLINK UNSTACK,SAVE = NO 
lEA VXEXT PC LINK EXTRACT 

The recovery routines in lEA VXSTK are: 

Entry Point Function 

FRRFRSTK FRR for PCLINK STACK service 
FRRUNSTK FRR for PCLINK UNSTACK service 
FRRUNSK2 FRR for the FRRUNSTK FRR 

I. All of the FRRs tum off the PC LINK super bit and issue the SETRP macro 
to record the error to SYSI.LOGREC. FRRUNSTK also issues the SDUMP 
macro and, if requested by the caller, attempts a retry. 

2. By looking at the STKEs in a formatted dump, you can track the transfers of 
control between modules that issue the PC instruction. You can do this in 
the same way you would look at save areas to track transfers of control 
between modules that use standard linkage conventions. 

3. A key indicator and field in the PSA useful for debugging are: 

PSASTKE - Pointer to the current PCLINK stack element (STKE). 

PSASTKSP - PCLINK STACK/UNSTACK super bit. This bit is set on to allow I/O and 
external interruptions to be disabled when the PCLINK service routine sets an 
FRR or issues the GETMAIN or GETSRB macro during expansion of the local 
or global STKE pools. 

4. If an X'OD5' abend occurs (which indicates that a PT instruction failed) and 
the value in register 3, 4 or 14 is in error, check the following possible causes 
before assuming that the PCLINK UNST ACK macro failed. First check that 
none of the contents in the registers are destroyed between the issuance of the 
PC LINK UNST ACK macro and the PT instruction. Second, check that 
none of the contents in the registers are destroyed prior to the issuance of the 
PC LINK STACK macro at the beginning of the program. Note that the 
PC LINK service does not check the contents of the registers it is saving. 

5-304 MVS Diagnostic Techniques 



Global Resource Serialization 

The global resource serialization component provides ENQ/DEQ/RESERVE 
services, operator commands, and GQSCAN macro support. 

The ENQ/DEQ/RESERVE services control the use of serially reusable resources. 
The ENQ macro requests the use of a resource. The RESERVE macro requests 
the use of a resource and generates the hardware RESERVE instruction if the 
resource is on a shared DASD. The"DEQ macro releases the resource. 

The DISPLAY GRS and VARY GRS operator commands are provided. The 
DISPLAY GRS command obtains information about the systems in a global 
resource serialization complex and the CTC links for the system on which the 
command was issued. The VARY GRS command resumes global resource 
serialization activities following a ring disruption, resumes or suspends global 
resource serialization processing in a system, or purges a system from the global 
resource serialization complex. . 

The GQSCAN macro obtains the status of resources and their uses from control 
blocks in the global resource serialization address space. 

For information on how to use the services provided by global resource 
serialization, refer to OS/VS2 System Programming Library: Supervisor. For 
information about the global resource serialization commands, refer to Operator's 
Library: System Commands. For logic information about this component, refer 
to OS/VS2 MVS Global Resource Serialization Logic. 

This section contains the following topics for global resource serialization: 

• Functional Overview - includes a brief description of the various 
subcomponent functions. 

• Control Blocks - contains control block overviews related to selected 
subcomponents. 

• Module Flow Diagrams - these diagrams show the flow of control between 
global resource serialization modules for selected functions. 

• Diagnostic Aids - contains debugging hints to help you isolate problems in 
global resource serialization. 

Section 5. Component Analysis 5-305 



Functional Overview 

Ring Processing 

Command Processing 

The global resource serialization component consists of several subcomponents. 
All global resource serialization module names begin with ISG and the fourth 
character identifies the subcomponent that the module supports. The following 
table summarizes the module naming conventions. 

Module names: ISGsmmmm 

ISG = Global resource serialization 

s = Subcomponent 

B Ring processing 
C Command processing 
D Dump support 
G/L Resource request processing 

G - Mainline ENQ/DEQ/RESERVE processing 
L - Fast path ENQ/DEQ/processing 

J CTC processing 
M WTO/WTOR message processing 
N Initialization 
Q Queue scanning services 
S Storage management 

mmmm = Module identifier 

(Note: An exception is ISGJPARM, an initialization module.) 

The ring processing subcomponent has the following functions: 

• Pass to all systems in the main ring the information required to serialize 
global resource requests across all the systems. 

• Add or delete systems from the main ring as specified in the initialization 
parameters or requested by the operator. 

• Provide information about the system and CTCs in the complex. 

Other subcomponents invoked by ring processing are: 

• CTC processing 
• Storage management 
• WTO /WTOR message processing 
• Resource request processing 

The command processing subcomponent supports the VARY GRS and the 
DISPLAY GRS operator commands. The global resource serialization interface 
module executes in the master scheduler's address space and receives control from 
the command service processor. The command interface module posts the 
command router in the global resoUrce serialization address space. The command 
router module attaches the DISPLAY, PURGE, QUIESCE, or RESTART 
command request processor. 

5-306 MVS Diagnostic Techniques 



Dump Support 

Other subcomponents invoked by command processing are: 

• Queue scanning services 
• Ring processing 
• ·WTOjWTOR message processing 
• ~torage management 

The dump support subcomponent provides the support to dump the global 
resource serialization control blocks. The dump support modules obtain and 
format information for SNAP dump, SVC dump, print dump (PRDMP), and 
interactive problem control system (IPCS). Queue scanning services is invoked by 
dump support. 

Resource Request Processing (Mainline and Fast Path) 

CTC Processing 

The resource request processing subcomponent performs ENQ/DEQ/RESERVE 
request processing. It is also invoked during task and address space terminations 
to clean up outstanding requests. Fast path processing handles local ENQ and 
DEQ requests which do not require special processing. Mainline processing 
handles all other requests. 

Other subcomponents invoked by resource request processing are: 

• Ring processing 
• Storage management 

The CTC processing subcomponent builds control blocks for the CTCs that 
connect the system in a global resource serialization complex (based on 
information specified in the GRSCNFxx member of SYSl.PARMLIB). It 
initiates I/O on the CTCs and handles their interrupts. When an interrupt is 
received, it invokes the ring processing subcomponent. 

WTOJWTOR Message Processing 

Initialization 

The message processing subcomponent issues global resource serialization 
messages (ISGnnns) to the operator and to the system log. It issues both 
informational (WTO/MLWTO) and reply (WTOR) messages to the operator and 
informational (WTL) messages to the system log. 

The initialization subcomponent has two primary functions: 

• Creating and initializing the global resource serialization address space. 

• Establishing the global resource serialization complex defined in the 
GRSCNFxx and IEASYSxx members of SYS1.PARMLIB. 

All other subcomponents are invoked by initialization except dump support. 

Section 5. Component Analysis 5-307 



Queue Scanning Services 

Storage Management 

Control Blocks 

Initialization is not discussed further in this publication. See OS/VS2 System 
Initialization Logic for information on this subcomponent. 

The queue scanning services subcomponent processes the requests made via the 
GQSCAN macro. 

Other subcomponents invoked by queue scanning are: 

• Storage management 
• Ring processing 

The storage management subcomponent maintains the resource queue area (RQA) 
of the global resource serialization address space. An interface module provides 
access to the storage manager for routines that do no execute in the global 
resource serialization address space. Also, the storage manager hashes resource 
names and SYSIDjASID information to expedite searches into the local queue 
hash table (LQHT), global queue hash table (GQHT), and system/ASID hash 
table (SAHT). 

Global resource serialization uses the following control blocks. For the format of 
these data areas, refer to OSjVS2 System Programming Library: Debugging 
Handbook and OS/VS2 Data Areas (microfiche). 

Data 
Area 

CEPL 

CRB 

CRWA 

DEPL 

DPL 

DSPL 

Description 

Command ESTAE parameter list - anchors the LIFO queue ofCRWAs and contains an 
error recording area for requested functions. 

Command request block - contains information required to process a DISPLAY GRS or 
VARY GRS command. 

Command recovery work area - contains the error information used by the command 
recovery routine to handle errors. 

SDUMP ESTAE parameter list - contains information used by the global resource 
serialization dump support subcomponent to process an SDUMP request. 

DEQ purge list - contains the information needed to complete processing for a DEQ 
SYSID, DEQ ASID, or DEQ TCB purge request. 

Dump sort parameter list - contains information for the global resource serialization dump 
sort routine. 

GCB Global resource serialization CTC-driver request block - is the parame~r list required by 
the CTC-driver for all functions (except extracting area lengths). 

GCC Global resource serialization CTC-driver control card table - contains the information from 
the global resource serialization SYSl.PARMLlB member for this system. 

GCL Global resource serialization CTC-driver link control block - contains information related 
to each CTC in the system. 

5-308 MVS Diagnostic Techniques 



GCP 

GCQ 

GCT 

Global resource serialization CTC-driver buffer prefix - contains message length and 
validity checking data. 

Global resource serialization CTC-driver queueing element - contains information used by 
CTC processing when sending or receiving a message or an unusual-event notification. 

Global resource serialization CTC-driver branch table - contains addresses of the CTC 
processing DIE routines and exit routines. 

GCV Global resource serialization CTC-driver vector table - contains addresses of CTC-driver 
entry points for CTC.:driver functions and information common to all CTCs used by CTC 
processing. 

GCX 

GVT 

GVTX 

MRB 

PEL 

PEXB 

PQCB 

QCB 

QEL 

QFPL 

QFPLl 

QHT 

QWA 

QWB 

QXB 

REPL 

Global resource serialization CTC-driver extract table - is the parameter list required by the 
CTC-driver for the extraction of area lengths. 

Global resource serialization vector table - contains common information (global queues, 
pointers and entry point addresses) for all global resource serialization functions. It also 
has sections containing information for the various subcomponents. 

Global resource serialization vector table extension - contains information specific to the 
global resource serialization address space. 

Message request block - contains information required to process message requests. 

Parameter element - is the input parameter list to ENQ/DEQ/RESERVE processing. 

Pool extent block - maps a 4K page in the RQA. 

Placeholder queue control block - contains the information necessary to resume a global 
resource serialization queue scanning request. 

Queue control block - describes a resource to global resource serialization. 

Queue element - describes the requester of a resource to global resource serialization. 

ENQ/DEQ/FRR parameter list - is the FRR parameter list used by ENQ/DEQ/RESERVE 
processing. 

Queue scanning services FRR parameter list - is the FRR parameter list used by queue 
scanning services. 

Queue has table - contains queue hash table entries. Each queue hash table entry is a 
double-headed anchor of QCBs. There are two QHTs; one for global requests (GQHT), 
and one for local requests (LQHT). 

Queue work area - is a work area used by ENQ/DEQ/RESERVE processing modules. 

Queue work block - describes a resource request. A global resource request is described by 
a QWB in the private area of the global resource serialization address space. A local 
resource request is described by the permanent QWB in the SQA. 

Queue extension block - contains the data that describes an ENQ/DEQ/RESERVE request. 

Ring processing EST AE parameter list - is the EST AE parameter list used by ring 
processing. 

RIB/RIBE Resource information block - contains the information that describes a resource and any 
requesters for the resource. The variable portion of the RIB (containing RIB extents) is 
located immediately after the RIB. Each RIB extent (RIBE) describes a requester of the 
resource. RIBs and RIBEs are returned to the issuer of the GQSCAN macro. 

RNLE Resource name list entry - contains information about resources that are to be included or 
excluded from global resource serialization processing and RESERVE resources that are to 
be converted to global ENQs. 

RPT Resource pool table - contains entries for each cell type in the RQA There are two RPTs -
one for global resources (GRPT), and one for local resources (LRPT). Each RPT points to 

the first and last PEXB for that pool. 

Section 5. Component Analysis 5-309 



Control Block Overviews 

RQA Resource queue area - contains PEXBs that define QCBs, QELs, QXBs, QWBs, PQCBs, 
MRBs, CRBs, and work areas. 

RSA Ring processing system authority message - is used to pass command data and 
ENQ/DEQ/RESERVE requests between global resource serialization systems in the main 
ring. 

RSAIRCD Ring processing information record - is used to pass control information between systems 
that are not both in the main ring. 

RSC 

RSL 

RST 

RSV 

SAHT 

SMPL 

Ring status change parameter list - is the parameter list used to call the interface module 
ISGBCI. 

Ring processing system link block - contains information about a CTC and is used by 
global resource serialization ring processing functions. 

Ring processing status table - contains the status of global resource serialization systems 
and CTCs. 

Ring processing system vector table - contains information used by the global resource 
serialization ring processing modules. 

System/ASID hash table - contains entries that point to a chain of QELs that define global 
resource requesters from another system. 

Storage management parameter list entry - contains information for a request to global 
resource serialization storage management. 

The figures in this topic show the control block structures of the global resource 
serialization control blocks for the following: 

• Permanent TCBs 
• CTC processing 
• Ring processing 
• Command processing 
• ENQjDEQ processing 

- Local resources 
- Global resources 

• Queue scanning services 
- Local resources 
- Global resources 

• Storage management 
• WTOjWTOR Message processing 

5-310 MVS Diagnostic Techniques 



ASCB 

2 

TCB 

I TCBRBP I 
3 I 

I I 

TCB 

I TCBRBP 
I 
I 

4 I I 
I 

TCB 

I TCBRBP 
I 

I 
4 I 3 

I I 

TCB 

I TCBRBP I 
4 ... II----~: 

Notes: 

--

... -

~ -

ASXB 

PRB 

IEAVAROO 

Region 
control 
task 

PRB 

IEAVTSDT 

SVCdump 
task 

PRB 

IEEPRWI2 

Started 
task control 

PRB 

ISGCMDR 

Command 
router 

PRB 

ISGGRPOO 

Global 
resource 
processor 

PRS 

ISGBTC 

Ring 
processing 
task mode 
controller 

• The numbers show the hierarchy. 
• When GRS=START or JOIN, all 

TCB/PR Bs are permanent. 
• When GRS=NONE: all TCB/PRBs 

.are perman.ent except the TeB/PRB 
for ISGGRPOO, which is temporary; and 
the TCB/PRB for ISGBTC, which is 
not present. 

PRS 

-- ISGNASIM 

- Address 
space 
initialization 

Figure 5-58. TCBs in the Global Resource Serialization Address Space 

Section 5. Component Analysis 5-311 



CVT 

GCl 

GCl 

GCl 

GClWGCQF 

GClRGCQF 

sense IOSB/SRB 

read IOSB/SRB 

write IOSB/SRB 

(Read channel program) 
(Write channel program) 

Figure 5-59. CTC Processing - Control Block Overview 

5-312 MVS Diagnostic Techniques 

\ 
\ 
\ 

\ Sense 
IOSB/SRB 

IOSUCB 



CVT 
I If OWB 

CCVTGVT request 

I I queue 

GVT-
OWB 

I 
GVTGVTX i(! proc~s !/ .queue 
GVTREOO 

GVTPRCOF RSV 

GVTX 
RSVIBFOR 

I RSVOBFOR 

GVTXBRSV 
~ RSVBCIBF 

RSVRSLO 

RSVOWBIF 

RSVOWBSF 

RSVOWBHF 

RSVENTY 

I'Ll 

RSA 

Main ring I input buffer 

RSA 

output buffer 
VI Main ring 

RSAIRCD 

~ buffer 

RSL (for CTC1) RSL (for CTCn) 

/ RSLNRSL ~ 

~~ GCB ~~ $:~GCB ~~ 

GCBABUF ~ GCBABUF 
~ 

RSAIRCD 

J buffer 

V OWB 
internal 
queue 

.... - OWB 

~ 
sent 
queue 

OWB 
hold 
queue 

r-_ --r"-, - RSVENTY (1 entry per system) -,." , 
........ 

""" """ 

SYSNAME 

SYSID 

status flags 

RSAIRCD I buffer 

Figure 5-60. Ring Processing - Control Block Overview 

Section 5. Component Analysis 5-313 



Command 
request 
queue 

Command 
work 
queue 

Command 
cleanup 
queue 

CRBCEPL 

CRBRST 

Figure 5-61. Command Processing - Control Block Overview 

CVT aCB aCB 

QCBFOEL 
aCBFaEL 

aELOXB 

ASCBLQEL 

Figure 5-62. ENQ/DEQ Processing - Local Resources - Control Block Overview 

5-314 MVS Diagnostic Techniques 



CVT • OCB aEL --. -- ! OELNOEL 
"OEL ~ CVTGVT 

OCBFOEL 

OELOXB ! OELNOEL ~ ( GVT OCB OELOXB ~faEL 
- ~QXB OCBFOEL ~ --GVTGVTX 

J 
OELOXB J J aCB I 

aXB 

~OXB 
, 

-OCBNOCB 

I GVTX 
... ·OEL 

OCBFOEL 

I J 
GVTXGOHT OELNOEL 

,/ Q:~LNQELQ U OELNOELO 
GOHT 

V OELOX~ OELQXB. 

'.-/ 
(lXB 

I ASCB 
OEL \.. 

ASCBGOEL 
~~ l,) 

j 
OELNOELO I I 

SYSID/ASID 
OELNSYN 

hash table 
OELOXB 

OXB 

I 
Figure 5-63. ENQ/DEQ Processing - Global Resources - Control Block Overview 

Section 5. Component Analysis 5-315 



CVT OCB POCB OCB ... 
I I ~ 

/ v--- ~ 

~ 
CVTGVT OCBNOCB POCBNOCB OCBFOEL 

~ J 

GVT 
OCBFOEL POCBFOEL ~ ... OEL 

J 

OEL 

Vi --
I GVTGVTX ASCB OELOXB r OELNOELO 

~ ASCBLOEL OELOXB 
GVTX OXB 

I 

I GVTXLOHT 
I 

LOHT I 
/ 

) tJ .... ~ OEL 

\ - OEL 
OELNOEL ---,oo;;j 

OELNOELO OXB 
OELOXB - I OELOXB -
OXB 

ASCB I 
I I 

ASCBLOEL : 
I I 

Figure 5-64. Queue Scanning Services - Local Resources - Control Block Overview 

5-316 MVS Diagnostic Techniques 



CVT 

~ CVTGVT 

GVT 
J 

GVTGVTX 

-' 
GVTX 

GVTXGOHT 

GOHT 

OCB 

/t-------t~ 
OCBFOEL 

OCB 

I' OCBNOCB I-' 

POCB 

1'1------4 
POCBNOCB ~ 

POCBFOEL D 
OCBFOEL D ",,~O_E_L __ --, 

ASCB ~ ~ OELOXB 

r ASCBGOEL V ~""O_X_B __ ... 

.. aEL 

? OELNOEL 
1-------1~OEL 

OELOXB 4 QELNOEL ~ 

( 
r'~ ___ -II , 

OELOXB , OEL 

~ oxe I { t't-------1 

I OELOXB 
OXB 

OXB 

J 

I I I 
l' OCB 

ASCB ~OEL 
~;.;;;.;::...-.--~ 

I ~ ~ OELNOEL 
ASCBGOELJ--'~~------~ 

I -' 

SYSID/ASID 
hash table 

OELNOELO 

QELNOELO 1-----
OELNSYN 

-OXB 
QELOXB 

Figure 5-65. Queue Scanning Services - Global Resources - Control Block Overview 

Section 5. Component Analysis 5-317 



GVT 

GVTXLRPT 

RQA 
rHi;e-;j -- - -- --1 
I 
I 

_______________ ..... ~w~ ______ .J 

Figure 5-66. Storage Management - Control Block Overview 

5-318 MVS Diagnostic Techniques 



Synchronous Request 

Register 1 

I .... __ ---'~ MRB@ 

Alnychronoul Request 

MRB 

MRBCEPL 

MRBRMRB 

Note: Control block structure when the 
message processing routine (lSGMSGOO) 
receives control. 

MRB MRB 

~ MRBRMRB ~W_---------

Figure 5-67. WTO/WTOR Message Processing - Control Block Overview 

Section 5. Component Analysis 5-319 



Module Flow Diagrams 

The figures in this topic show the flow of control between global resource 
serialization modules for selected functions. Figure 5-68 shows an overview of 
module flow between subcomponents, and includes a directory of the module flow 
diagrams to help you use them. 

In the diagrams, a solid double line indicates communication across the I/O 
interface between systems. A broken double line indicates communication 
between address spaces within one system. 

5-320 MVS Diagnostic Techniques 



System A 

Operator 

T 
ISGCxxxx 

Command It processing -- ISGBxxxx 

Ring ~ 

ISGGxxxx 
processing 

ISGLxxxx 

ENO/DEO/ f4-
RESERVE 
processing 

GQSCAN SVC dump 

J t 
ISGOxxxx ISGDxxxx 

Oueue Dump 
scanning support 
services 

Figure Title (Module Flow for:) 

CTC Processing 
5-69 -- Handle Arrival of Immediate-CCW 
5-70 -- Handle Arrival of RSA or RSAIRCD 
5-71 -- Send a RSA or RSAIRCD 

Ring Processing 

5-72 -- Send/Receive a RSA 

ISGJxxxx 

CTC -
processing 

5-73 -- Send a RSAIRCD or Immediote-CCW (Requested by ISGBCI) 
5-74 -- Send a RSAIRCD (Requested by ISGBTC) 
5-75 -- Handle Arrival of RSAIRCD (Not Requested by This System) 
5-76 -- SNAPSHOT Function 
5- 77 -- SENDCMD (RSCRADDS) Function 
5-78 -- SENDCMD (RSCRSNAD) Function 

Command Processing 
5-79 -- Command Initialization and Cleanup 
5-80 -- DISPLAY GRS 
5-81 -- VARY GRS(x). PURGE 
5-82 -- VARY GRS(x). QUIESCE to Another System 
5-83 -- VARY GRS(x). QUIESCE by a System to Ouiesce Itself 
5-84 -- VARY GRS(x). RESTART to Restart Another System 
5-85 -- VARY 8RSCALU. RESTART to Restart All Systems 
5-86 -- VARY GRS(x). RESTART by a System Not in the Main Ring 
5-87 -- Join Processing at Initialization Time 

ENO/DEO Mainline (Resource request processing) 
5-88 -- Local Resource Request 
5-89 -- Global Resource Request 
5-90 -- Termination Resource Manager 

5-91 -- Queue Scanning Services 

5-92 -- Dump Support -- SVC Dump 

~ Figure 5-'8. Module Flow Overview and Directory 

System 8 

Operator 

T 
ISGCxxxx 

r Command 
ISGJxxxx ISGBxxxx ~ processing 

CTC Ring ~ - -
processing processing 

ISGGxxxx 
ISGLxxxx 

---.. ENO/DEO/ 
RESERVE 
processing 

SVC dump GQSCAN 

• + 
ISGDxxxx ISGQxxxx 

Dump Queue 
support scanning 

services 

Section 5. Component Analysis 5-3 21 



Any Address Space 
II 

" II 

Global Resource Serialization Address Space 

Attention Interrupt 

lOS - IECTCATN 

II 
~ ISGBTC Ring processing 

• Issues STARTIO channel task mode controller -
Exception-handl ing task program for sense command II ISGJFE byte • Determines which GCl - - EP-ISGJGTUE 

(representing a CTC) received " -, 

t II the immediate-CCW CTC driver 

" 
• At EP-ISGBTCIR, sends the front end 

ISGJDI CTC driver DIE 
EP-DI 1 000 

" 
RSAIRCD on the specified f---+ See figure 5-74 CTC 

• Marks the GCl to show 
immediate-CCW was II • Gives control, to CTC - ~ ISGJFE -- ~ 

EP-ISGJGVSR sensed processing, of the SRB used 

- • Schedules an SRB to 

" 
to post GVTXBECB CTC driver 

execute ISGBSR 

" 
• Wait on ECB .GVTXBECB front end 

• Returns to lOS • " 
SRB ( Wait ) 
~ ISGBSR RSA send/receive II 

routine 

" • Posts ECB GVTXBECB to POST II 
awaken ring processing task II 

• Exits to dispatcher 

" ~ II 
( Exit ) 

" 
Figure 5-69. Module Flow for CTC Processing - Handle Arrival of Immediate-CCW 

Attention interrupt 

-+ 
105 I ECTCATN 

• Issues ST ARTIO channel 
program for sense 
command byte 

t 
ISGJDI CTC driver DIE 
EP-DI 1 000 

Any Address Space 

Channel end 

+ 
10SSlIH 

• Processes the read channel 
program 

J" , 
ISGJDI CTC driver DIE 
EP·D12000 

• Analyzes resu Its of the sense • Analyzes results of the read 
command byte channel program 

• Returns to 105 and requests • Schedules an SRB to execute 
initiation of a read channel ISGJFE 
program • Returns to 105 

II 

" 1/ 
II~ 

" II 
U 
II 

" 11 
II 
11 

II 

Global Resource Serialization 
Address Space 

ISGJF E CTC driver front end 
EP-ISGJSRBX 

• Loads regiiiters with the 
address and length of 
received RSA or RSAIRCD 

• Branches to ISGBSR to process 
the received message , 

ISGBSR RSA send/receive 
routine 

EP·ISGBSRR processes a 
received RSA 

EP-ISGBSRRI processes 
a received RSAIRCD 

See figures 5· 72 and 5·75 

Figure 5-70. Module Flow for CTC Processing - Handle Arrival of RSA or RSAIRCD 

5-322 MVS Diagnostic Techniques 



Global Resource Serialization 
Addreu Space 

( l:nter J From ring processing 

~ 
Figure 5-73 

ISGBSR RSA send/receive 
routine 

EP-ISGBSRSR sends a RSA 

Ej)-ISGBSRRI sends a RSAIRCD 

j 
ISGJFE eTC driver 
front end 
EP-ISGJSN BF 

• Initializes a write channel 
program and an 10SB 

• Issues STARTIO to initiate 
the write channel program 

EP-ISGJSRBX 

• If a RSAIRCD was sent. 
branches to ISGBSR to 

r+ handle the RSAIRCD 
send-completion 

• ( Exit J 

~ ISGBSR RSA send/receive 
routine' 
EP-ISGBSRRI 

• Handles RSAI RCD send-
completion 

--

II 
"II 
"II 
II 
II 
II 
"II 

II 
II 
II 
II 
II 
... 
II 
II 
1/ 
II 
II 
\I 
II 
II 
II 
II 
II 
II 

r+ 

SRB 

Any Addr .. Space 

Channel end 

~ 
lOS 

• Proceses write channel 
program 

t 
ISGJDI CTC driver DIE 
EP-DI3000 

• Analyzes results of the write 
channel program 

• If a RSA was sent, updates 
GVTMRSCW to show RSA 
send-completion occurred 

• If a RSAIRCD was sent, 
schedules an SRB to 
execute ISGJFE 

• Returns to lOS 

Figure 5-71. Module Flow for erc Processing - Send a RSA or RSAIRCD 

Section S. Component Analysis 5-323 



( Enter) From CTC processing 
f Figure 5-70 

ISGBSR RSA send/receive routine 
EP·ISGBSRR 

• Sets the RSA residence interval 

• Performs one of the following: 

1. Processes a command or message 
If the received RSA contains a CRB or MRB from 
another system -
- Obtains a CRB or MRB 
- Initializes the CRB or MRB and places it on the 

command request queue (GVTCMDRQ) 
- Posts the command router's ECB GVTCECB 

.---

..--

... ISGBDR 

Timer 
manager 

... 
ISGSALC .. 
Storage 
manger 

POST .... 
~ ISGCMDR 

2. Processes a ring configuration command Command See figure 5-79 
If the received RSA shows that another system is 
performing a ring configuration command (ADDSY, 
SUBSYS, DELSYS, or SERRELS function) -
- Marks the RSV to indicate which function and 

phase is being performed 
- Posts ECB GVTXBECB to awaken the ring 

processing exception·handling task 

3. Continues a ring processing function 
If the received RSA shows that ring processing 
command should be continued via the RSA -
- Marks the RSV and RSA to indicate the ring 

processing function has advanced to its next 
phase 

- If all phases of the function are complete: 
marks the RSV to indicate completion and 
the RSA to indicate the function is no longer 
being performed 

4. Initiates II ring processing function 
If the received RSA shows that no other system is 
performing a ring processing function, and the RSV 
shows that this system is trying to perform a ring 
processing function: 
- Marks the RSV,to indicate a ring processing 

function is in progress 
- Updates the RSA to show that this system is 

performing a ring processing function 

• Moves any QWBs on the sent queue (RSVQWBSF) to 
the process queue (GVTPRCQF) or hold queue 
(RSVQWBHF) 

• Posts the RB (GVTGRPRB) used by ISGGRPOO 

• Obtains QWBs and copies data from the RSA to the 
QWBs and places the QWBs on the sent queue 

• Moves the QWBs that are on the request queue 
(GVTREQQ) to the sent queue (RSVQWBSF), 
and copies them into the RSA 

• Exits to the dispatcher 

i 

router 

POST 
~----------~... ISGBTC 

... 

POST 

... - ~ 

Ring processing 
task mode 
controller 

ISGGRPOO 

Global resource 
processor 

ISGGQWBO 
EP·ISGGQWB1 

Queue 
service 

See figure 

Any Address Space II Global Resource Serialization Address Space 

ISGBDR Timer manager 
IlsRB ~ ISGBSR RSA send/receive ~ ISGJFE 

• Residence interval routine EP·ISGJGVBF 

expires II EP·ISGBSRSR CTC driver 
Gives the RSA input buffer .-

II • front end 
to CTC processing 

II Sends the RSA - ... ISGJFE • -
Exits to the dispatcher EP·ISGJSNBF 

II • 
i CTC driver 

II ( EXit) 
front end 

Figure 5-72. Module Flow for Ring Processing - Send/Receive a RSA 

5-324 MVS Diagnostic Techniques 

5-89 

See "figure 5-71 



-

~ 

( Enter) From ISGBCI , 
ISGBTC Ring processing task mode controller 
EP-ISqBTCIR 

• Examines the RSL time stamp and flags (pas!)ed by ISGBCI, 
subroutine NONMSEND) and performs one of the following: 

1. If this system should wait for an RSAIRCD, pauses for a 
short time to await the arrival of the RSAIRCD 

2. If this system should send a RSAIRCD or an 
immediate-CCW: 
- Seizes control of the GCQ for this RSL 
- Initializes the GCQ as an SRB 
- Schedules the SRB to execute ISGBSR 

• Returns to ISGBCI , 
ISGBCI Ring processing 

• Pauses until the request is complete 
- If a RSAIRCD was sent, awaits the arrival of a 

response from the target system 
- If an immediate-CCW was sent, awaits the send-

completion from CTC processing 
(Note that ISGBCI might send an immediate-CCW 
on another CTC before receiving a response from 
the remote system.) 

• Exits to caller 

i 
( Exit ) 

.j 

ISGBSR RSA send/receive routine 
EP-ISGBSRRI 

• Examines the RSV flags to determine if a RSAIRCD 
or an immediate-CCW should be sent 

• Gives, to CTC processing, control of the GCQ and 
RSAIRCD buffer for this RSL 

• Sends the RSAIRCD or immediate-CCW 

• Exits to the dispatcher 

i 
( Exit ) 

From CTC processing 

ISGBSR RSA send/receive routine 
EP-ISGBSRRI 

Receives the RSAIRCD response (requested by ISGBCI) 

• Marks the RSL to show that the RSAIRCD has arrived 

• If the RSV flags show that the RSVENTY table of this 
system should be updated, copies the system status from 
the received RSAIRCD to an entry in the RSVENTY table 

• Gives control of the GCO and RSAIRCD buffer for this 
RSL back to CTC processing 

• Exits to the dispatcher 

.. -
~ -- -

- A --
~ B -

~ 

---
- _ .... - -
~ 

See figure 5-75 

ISGJFE 
EP-ISGJTKBF 

CTC driver 
front end 

ISGJFE 
EP-ISGJGVBF 

CTC driver 
front end 

ISGJFE 
EP-ISGJSNBF 

CTC driver 
front end 

ISGJFE 
EP-ISGJGVBF 

CTC driver 
front end 

See figure 5-71 

Figure 5-73. Module Flow for Ring Processing - Send a RSAIRCD or Immediate-CCW (Requested by ISGHel) 

Section 5. Component Analysis 5-325 



( Enter) From ISGBTC 

+ 
Exception-handling task 

ISGBTC Ring processing task mode controller 
EP-ISBGTCI R 

• Examines the RSL time stamp and flags (passed by 
ISGBTC, exception-handling task) and performs 
one of the following: 

1. If this system should wait for a RSAIRCD, pauses 
for a short time to await the arrival of the RSAIRCO .. See figure 5-75 

2. If this system should send a RSAIRCD: 
- Seizes control of the GCQ for this RSL - L - Initializes the GCQ as an SRB -- ISGJFE - EP-ISGJTKBF - Schedules the SRB to execute ISGBSR 

~ 

• Returns to ISGBTC, exception-handling task CTC driver , front end 

ISGBTC Ring processing task mode controller, 
Exception-handling task 

• Processes another RSL, or waits on its ECB 
(GVTXBECB) 
(Note that the exception-handling task does not 
wait for a send completion or arrival of a 
RSAIRCD.) 

~t 
( Exit ) 

~ ISGBSR RSA send/receive routine 
EP-ISGBSRRI 

• Copies the status of this system from the 
RSVENTY table to the buffer for this RSL 

• Sends the RSAIRCD using the GCQ and buffer - - ISGJFE 
for this RSL - - EP-ISGJSNBF 

• Exits to the dispatcher CTC driver 
See figure 5-71 

1-
front end 

( Exit ) 

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --. -- -
CEnter ) From CTC processing 

l 
ISGBSR RSA send/receive routine 
EP-ISGBSRRI 

• Receives the send completion 

Gives control of the GCQ and buffer for this RSL - - ISGJFE • - -
back to CTC processing EP-ISGJGVBF 

• Exits to the dispatcher eTC driver 
front end 

i 
( Exit ) 

Figure 5-74. Module Flow for Ring Processing - Send a RSAIRCD (Requested by ISGBTC) 

5-326 MVS Diagnostic Techniques 



( Enter From CTC processing 

l 
ISGBSR RSA send/receive routine 
EP-ISGBSRRI 

RSAIRCD is received from a remote system that is not 
in response to a request from this system. 

• Marks the RSL to show that a RSAIRCD has arrived 

• If the RSV flags show that the RSVENTY table in 
this system should be updated, copies the system 
status from the received RSAIRCD to an entry in the 
RSVENTY table 

If the received RSAIRCD contains a command that has Lr ISGSALC 
• 

not previously been received by this system: Storage 

- Obtains a CRB 
manager 

- Copies data from the received RSAIRCD to the CRB 
- Places the CR B on the command request queue and ... ISGCMDR -posts ECB GVTCECB 

POST Command See figure 5-79 
• Copies the system status from the RSVENTY table to router 

the RSAIRCD that is to be sent 

• Sends the RSAIRCD using the GCQ and buffer for - - ISGJFE - ,. 
this RSL EP-ISGJSNBF 

• Exits to the dispatcher CTC driver See figure 5- 71 

i front end 

( Exit ) 

CEnter) From CTC processing , 
ISG BSR RSA send/receive routine 
EP-ISGBSRRI 

Receives the send completion 

• Gives control of the GCQ and buffer for this RSL -- - ISGJFE - -back to CTC processing EP-ISGJGVBF 

• Exits to the dispatcher CTC driver 

i 
front end 

( Exit ) 

Figure 5-75. Module Flow for Ring Processing - Handle Arrival of RSAIRCD (Not Requested by This System) 

Section 5. Component Analysis 5-327 



( Enter ) From command processing 

+ 
ISGBCI Ring processing 

Examines the RSC passed by the caller and starts the 
SNAPSHOT function 

• Enqueues exclusively on the ISGBCI-ENO-resource 

• Marks the RSV to show that the RSVENTY table must be 
updated with the status contained in any received RSAIRCD 

• For every RSL that is not used to send or receive the main -- -- ISGBTC 
ring RSA, sends an immediate-CCW to obtain the status of - -
the remote system at the opposite end of the CTC represented Ring processing 
by that RSL task mode 

• After all imrnediate-CCWs have been sent, pauses to allow controller 

the remote systems to respond See figure 5 73 --- -- -- ---------------
• If this system is not in the main ring and some remote system '* .... ISGBTC 

is in the main ring, repeatedly sends a RSAIRCD to the 
... -

remote system. ISGBCI waits for the arrival of a response Ring processing 
before sending the next RSAIRCD. (Each RSAIRCD requests task mode 
a RSVENTY entry from the RSVENTY table of the remote controller 
system.) 

See figure 5-73 
......---- -- -- -- -- -- -- -- ---- ---
• Marks the RSV to show that RSVENTY table updates are no 

longer allowed 

• Copies system status from the RSVENTY entries to the RST 

• Copies eTC status from the RSLs to the RST 

• Dequeues the ISGBCI-ENO-resource 

• Returns to command processing 

-+ ( Exit ) 

Figure 5-76. l\1odule Flow for Ring Processing - SNAPSHOT Function 

5-328 MVS Diagnostic Techniques 



From RESTART command 
processing 

ISGBCI Ring processing 

A system, not in the main ring, is requesting a system in the 
main ring to add it to the main ring 

• Examines the RSC passed by the caller and starts the SEN DCMD 
(RSCRADDS) function 

• Enqueues exclusively on the ISGBCI·ENQ·resource 

• Chooses the RSL to the target system in the main ring 

• Initializes the RSAIRCD with the data from the input CRB 
that requests this system to be added to the main ring 

• Sends the RSAIRCD to the target system and pauses 
until the target system sends back the RSAIRCD 

• Repeats sending the RSAIRCD and pauses until the target 
system responds that it is performing phase 1 A of the 
ADDSYS function (or has cancelled the CRB) 

• Marks the RSV to show that the RSVENTY table must be 
updated in this system 

• Sends a RSAIRCD to the target system to obtain the contents 
of each entry in the target system's RSVENTY table and pauses 
for the target system to respond to each RSAIRCD 

• Marks the RSV to show that the RSA can be received 

• Sends a RSAIRCD to the target system showing that this 
system is in the main ring and is ready to process the RSA 

• Marks the RSV to show that RSVENTY table updates are 
no longer allowed 

• Dequeues the ISGBCI·ENQ-resource 

• Returns to RESTART command processing 

ISGBTC 
Ep·ISGBTCIR 

Ring processing 
task mode 
controller 

See figure 5-73 

ISGBTC 
Ep·ISG BTCI R 

Ring processing 
task mode 
controller 

See figure 5· 73 

Figure 5-77. Module Flow for Ring Processing - SENDCMD (RSCRADDS) Function 

Section 5. Component Analysis 5-329 



From RESTART command processing 

ISGBCI Ring processing 

A system, in the main ring, will add a system not in the main 
ring to the main ring 

• Examines the RSC passed by the caller and starts the 
SENDCMD (RSCRSNAD) function 

• Enqueues exclusively on the ISGBCI-ENQ-resource 

• Chooses the RSL to the target system not in the main ring 

• Initializes the RSAIRCD with the data from the input 
CRB that requests the target system to add itself to the 
main ring 

• Sends the RSAIRCD to the target system and pauses until 
the target system sends back the RSAIRCD 

• Repeats sending the RSAIRCD and pauses until the 
target system responds that it is performing the 
SENDCMD (RSCRADDS) function (or has cancelled the CRB) 

• Dequeues the ISGBCI-ENQ-resource 

• Returns to RESTART command processing 

ISGBTC 
EP-ISGBTCIR 

Ring processing 
task mode 
controller 

See figure 5-73 (for processing 
done on this system) and 
figure 5-75 (for processing 
done on the target system) 

Figure 5-7ft Module Flow for Ring Processing - SENDCMD (RSCRSNAD) Function 

5-330 MVS Diagnostic Techniques 



Master Scheduler Address Space 

" 
Global Resource Serialization Address Space. 

( Enter) From console services 
, (lEECBSOS) 

ISGCMDI Command interface 

• Establishes a recovery 
environment 

• Checks the console authority 
and the command syntax 

• Obtains a command request 
block (CRB) 

• I nitializes the CR Band 
places it on fhe command 
request queue 

• Posts ECB GVTCECB 

• Waits for the command to 
complete 

- ---

POST 

"'--------"4-
• Deletes the recovery 

environment 

C Exit) 

·Command request processors 

ISGSMI 

Storage 
manager 

ISGCDSP - DISPLAY GRS (figure 5-80) 
ISGCPRG - VARY GRS(x), PURGE (figure 5-81) 

II 
II 
II 
.II 
II 
II 
II 
II 
II 

11 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

r-----..:; ... ISGCMDR Command router 

_-:-_. M. Moves the CR Bs from the 
command request queue to 
the command work queue 

~ • Initializes the CEPL, CRWA, 
and RST areas for a CRB 

• Does a SNAPSHOT to fill 
in the RST 

• Attaches a command 
request processor 

• Places the CR B on the 
cleanup queue 

• Repeats these steps for 
each CR B on the command 

L....-- work queue f-----------
• Waits for another command 

request to be placed on the 
command request q~eue 

EP-ISGETXR1 

ISGCQSC - VARY GRS(x), QUIESCE (figures5-82and 5-83) 
ISGCRST - VARY GRS(x), RESTART (figures 5-84,5-85, and 5-86) 
ISGMSGOO - Asynchronous message request -

Figure 5-79. Module Flow for Command Initialization and Cleanup 

See 
figure 5-76 

Lr ISGBCI 

Ring 
processing 

-
ATTACH' * 

-- Return from 
the command 
. request processor 

Section 5. Component Analysis 5-331 



( Enter ) From figure 5-79 

l 
ISGCDSP Display request processor 

• Obtains storage for a control line ---
• For a SYSTEM or ALL request: .. IEECB808 - EP-MSGSERV - Obtains storage for a label line ---- For each pair of system entries in the RST, obtains Message 

storage for a data line -. service --- Places the system information into the line routine 

• For a LINK or ALL request: 
- Obtains storage for a label line --- For each pair of CTC entries in the RST, obtains 

storage for a data line ---- Places the system information into' the line 

• Writes all lines of the message ----
• Returns all storage for the lines --• Returns to ISGCMDR 

i 
( Exit ) 

Figure 5-80. Module Flow for DISPLAY GRS 

( Enter) From figure 5-79 .- ISGMSGOO --, , - Message --, 

ISGCPRG Purge request processor 
routine 

• Determines the status of this system and others -- ISGBCI #' 

in the complex Ring 

• Issues GQSCAN to determine if the system to be processing 
purged (target system) holds or is waiting for any 
global resources -. ISGGQWBO .. 

• If the target system has outstanding global resource ~ EP-ISGGQWB5 
requests, issues messages ISG0161 and ISG017D' Queue 
to obtain the operator's permission to continue the 

service 
purge 

Issues message ISGOlll on this system -• -- -- ISGMSGOO .. 
• I nitiates a DE LSYS of the target system --- Message -. • Initiates a SYSID purge of the target system routine 

• Issues message ISG0181 for the resource requests 0# -that were purged -- ISGGQWBF #' -• Releases the QWBs and MRBs returned by ISGGQWBO - Queue 

• Issues message ISG0131 on this system .. 
service -

Broadcasts message ISG0131 to all active systems in -• --the ring - ISGMSGOO --, 

• Returns to ISGCMDR Message 

t routine 

( Exit ) --- ISGBCI .. 
Ring 

Figure 5-81. Module Flow for VARY GRS(x), PURGE 
processing 

5-332 MVS Diagnostic Techniques 



System A System B 

( Enter ) From figure 5-79 

+ 
ISGCQSC Quiesce request 

~ ISGMSGOO ~ ISGBSR RSA send/receive 
processor • Obtains a MRB ~ ISGSALC Message 
• Determines the status of this routine Initializes the MRB with the • Storage system and others in the complex 

message request and places the 
~ manager • Issues message ISG0111 

ISGB~I ~ ~ MRB on the command request 

-- - queue • Sends a message request (SENDCMD Ring 
for message ISG011I) to the processing ~ POST target system ---------

• Performs a SUBSYS of the ~ ISGBCI ~ - ISGCMDR Command router 

target system Ring • Issues message ISG0111 ~ ISGMSGOO 

• Issues message ISG0131 on h. 
processing 

• Returns Message 
this system 

ISGMSGOO routine 

• Broadcasts message ISG0131 ~ Message 
to all active systems in the 

routine ~ ISGBTC Ring processing complex 
task mode controller 

• Returns to ISGCMDR 
~ 

+ ISGBCI • Changes the status of this 
Ring system from active to 

( Exit) processing quiesced 
ISGMSGOO 

Issues message ISG0131 ~ • 
Returns 

Message • routine 

Figure 5-82. Module Flow for VARY GRS(x), QUIESCE to Another System 

Section 5. Component Analysis 5-333 



System A 

( Enter) From figure 5-79 

+ 

System B 

ISGCQSC Quiesce request 
processor 

~ ISGBSR RSA send/receive 

• Determines the status of 
this system and others 
in the complex 

• Issues messages ISG0111 
andISG01210nth~sy~em 

J ISGMSGOO 

Message 
...... r.;.ou.;.t.;.i n.;.,;e;""--I 

• Sends a quiesce request r-.... --i~~I~S~G~B~C~I~.JI---tt-' 
(SENDCMD) to another ,. 
system in the main ring to 
cause it to quiesce this 
system ------------

• Issues message ISG0131 

• Returns to ISGCMDR 

C Exit) 

Note: ISGBCI changes the status 

Ring 
processing 

See note 

... ~..--... ~ ISGMSGOO 

Message 
routine 

of this system from active to quiesced. 

-

- -- ISGSALC • Obtains a CRB 

• Initializes the CRB for the 
quiesce request and places 
the CR B on the command 
request queue 

Storage 
manager 

POST 

-- ISGCMDR Command router 

ISGMSGOO ~ • Processes the quiesce request 

Message 
routine ATTACH 

" ISGBCI ~ 
Ring ISGCQSC Quiesce request processor 

processing • Determines the status of this 
system and others in the complex 

ISGMSGOO ... ~ • Issues message ISG0111 

Message ---. • Performs a SUBSYS of system A 
routine ----. • Issues message ISG0131 

ISGBCI - ... • Broadcasts message ISG0131 -
Ring to all systems 

processing • Returns to I~GCMDR 

Figure 5-83. Module Flow for VARY GRS(x), QUIESCE by a System to Quiesce Itself 

5-334 MVS Diagnostic Techniques 



System A 

( Enter) From figure 5-79 

+ 
ISGCRST Restart request 
processor 

• Determines the status of this 
system and others in the 
complex ~ ISGMSGOO 

• Locates the RST entry for Message 
system B routine 

• Issues message ISG0111 .. 

• Does a SENDCMD (RSCRSNAD) ~ ISGBCI ~ l-
to tell system B to restar~ Ring r- I"" 

itself processing 
~---------

• Does an ADDSYS of system B ...-. ISGBCI 

• Copies the compatibility level 
and the RNLs into a buffer 

• Does a BUFSEND 

~. Issues GQSCAN to obtain data 
about all global resources and 
requesters 

• Does a BUFSEND 

I-- • Repeats these steps until all 
data has been sent 

1---- -- -------.• 

t.:. .... -- -

~ 

Ring 
processing 

ISGBCI 

Ring 
processing 

ISGBCI 

Ring 
processing 

l- I-

l- i"" 

System B 

..... ISG BSR RSA send/receive 

• Obtains a CRB 1-.1:_--... : ISGSALC 
• I nitializes the CR B for the 

restart request and places the 
CRB on the command request 
queue 

Storage 
manager 

I POST ---------------, 
'----~~~ ISGCMDR Command router 

• Praeesses the restart 
request 

+ ATTACH 

ISGCRST Restart request 
p'rocessor 

~ ISGBCI 

Ring 
processing 

~. Does a SENDCMD (RSCRADDS) 
to signal system A that th is 
system is ready 

~ ISGBCI 

Ring 
processing 

r-. Updates the resource queues 
1---- -- -- -- ---

• Cleans up and exits Ie--

~ ISGCQMRG Queue merge 

• Does a BUFSEND of the 
end-of-Hle 

~ ISGBCI 
Ring 
processing 

ISGBCI .... ~ • Does a BUFRECV 

~1-I--"~.J~R;;-;-:in::g:--1 • Compares the compatibility 

• Does a BUFRECV for the - _ .... 
ISGBCI ... --- -notification that system B 
Ring has completed 
processing 

Releases serialization -- -- ISGBCI • - -
(SERRELS) Ring 

processing 

Issues message ISG0131 ~ ... ISGMSGOO • r-- ---on this system 
Message 
routine 

Broadcasts message ISG0131 • ~ ISGBCI 
to all active systems in the 

I--

complex Ring 
processing 

• Returns to ISGCMDR 

e 
.i._ 
Exit) 

processing level and RNLs to those 
in this system 

ISGGQSRV 

Queue 
service 

ISGGRPOO 
Global 
resource 
processor 

ISGBCI 

Ring 
processing 

ISGBCI 

Ring 
processing 

~ • Does a BUFRECV 

~ 

+-

.... 
~ 

• Issues GQSCAN for each 
resource in the buffer 

• Generates the QWBs to get 
this system's resource queues 
to match the other systems 
in the complex and puts the 
QWBs on the process queue 

• Posts ISGGRPOO to process 
the aWBs 

• Repeats these steps until 
end-of-file is received 

t-- ---- -- -- --
• Does a BUFSEND to notify 

system A that queue updates 
are complete 

• Releases serialization 
(SERRELS) 

• Returns to iSGCRST 

l"'"--

. 
r--

Figure 5-84. Module Flow for V AJt¥ GRS(x), RESTART to Restart Another System 

Section 5. Component Analysis 5-335 



System A System B 

C Enter) From figure 5-79 

+ 
ISGCRST Restart request r+ ISGBSR RSA send/receive 
processor 

Obtains a CRB - .... • ISGSALC • Determines the status of this -- -
system and others in the • Initializes the CRB for the Storage 
complex restart request and places the manager 

For an operator command: 
CRB on the command request 

• - .. queue 
- Does a STARTPOP to - - ISGBCI 

perform restart processing Ring I POST -on this system processing ,. ISGCMDR Command router 

• F-or an internal command: 
~ ISGBCI • Processes the restart reql..!est - Does a ST ARTPOP - with-

permission to perform Ring 
automatic restart pro- processing + ATTACH 
cessing on this system 

Issues message ISG0131 - ... ISGMSGOO 
ISGCRST Restart request 

• -- - processor 

~ • Locates the next RST entry Message 
for a restartable system routine r- ISGBCI ~ • Does a SENDCMD (RSCRADDS) 

Ring to signal system A that this 
• Issues message ISG0111 

~ ISGMSGOO system is ready processing 
Message .- • Updates the resource queues 
routine ~-------------

• Cleans up and exits ~ 
• Does a SENDCMD ~ ISGBCI -

(RSCRSNAD) to tell Ring ~ - ~ system B to restart itself ISGCOMRG Oueue merge 
processing ,... ~ ~----------- ISGBCI • Does a BUFRECV 

• Does an ADDSYS of system B ~ ISGBCI Ring • Compares the compatibility 

• Copies the compatibility level Ring processing level and RNLs to those in 
and the R N Ls into a buffer processing this system 

• Does a BUFSEND ~ ~ • 
Does a BUFRECV ~ ISGBCI r-

~. Issues GOSCAN to obtain data rJ- ISGBCI • Issues GOSCAN for each 
about all global resources and Ring 

~ Ring resource in the buffer 
requesters processing 

processing :.r • Generates the OWBs to get 

• Does a BUFSEND this system's resources 
~ ISGBCI I-- ISGGOSRV queues to match the other 

• Repeats these steps until all 
Oueue systems in the complex and - data has been sent Ring 

processing service puts the OWBs on the process 

"------ ---- -- ---- rc-- queue 

• Does a BUFSEND of the ~ ISGBCI r- r- ISGGRPOO • Posts ISGGRPOO to process 
Global the OWBs end-of-file Ring resource 

processing processor • Repeats these steps until 
end-of-file is received r--

• Does a BUFRECV for the 
~ 

--- ---- -- -- ---
notification that system B ISGBCI - ~ Does a BUFSEND to notify - ISGBCI • 
has completed Ring 

Ring system A that queue updates 

• Releases serialization 

~ 
processing 

processing are complete 

(SERRELS) 
ISGBCI / • Releases serialization 

(SERRELS) • Issues message ISG0131 on ~ Ring ISGBCI 
this system processing • Returns to ISGCRST I---

Ring 

• Broadcasts message ISG0131 ~ processing 
to all active systems in the ~ ISGMSGOO' 

L 
complex Message 

• Repeats these steps for each routine 
restartable system 

• Resturns to ISGCMDR ~ ISGBCI 

1. . Ring 

( Exit) 
pro.cessing 

Figure 5-85. Module Flow for VARY GRS(ALL), REST ART to Restart AU Systems 

5-336 MVS Diagnostic Techniques 



System B System A 

( Enter) From figure 5-79 

l 
ISGCRST Restart request r+ ISGBSR RSA send/receive 
processor 

Obtains a CRB • - ... ISGSALC - -• Determines the status of this • Initializes the CRB for the Storage system and others in the restart request and places 
complex the CR B on the command 

manager 

request queue 

1 ISGMSGOO I POST 
Issues messages ISG0111 and Message ... ISGCMDR Command router • -
ISG0121 routine 

• Processes the restart request 

• Does a SENDCMD (RSCRADDS) ~ ISGBCI r- i-

to tell system A to build a new Ring ~ """ main ring that includes system B processing ----- --------
~. Links to ISGCQMRG ATTACH ---- ----------- ,. 
r-~. Issues message ISG0131 on ~ ISGMSGOO ISGCRST Restart request 

this system 
Message processor 

• Does a SENDCMD to broadcast 

1. 
routine 

message ISG031 to all active • Determines that a restart for 
systems in the complex 

ISGBCI 
system B is possible 

• Returns tolSGCMDR (command Ring ISGMSGOO - - • Issues message ISG0111 
router) 

-. -processing Message 

i routine 

C Exit -- --- ISGBCI - -- • Does an ADDSYS of system B 
Ring 

~ ISGCQMRG Queue merge 
processing • Copies the compatibility level 

and the RNLs into a buffer 

• Does a BUFRECV ........ ISGBCI - ISGBCI - • Does a BUFSEND -- -1--------------
• Compares the compatibility Ring Ring • Issues GaSCAN to obtain ~ 

level and RNLs to those processing processing data about all glbbal resources 
in thts 'system and requesters 

~. Does a BU FR ECV ..... ISGBCI -- ISGBCI .. ... • Does a BUFSEND - -- -
~------------ Ring .. Ring • Repeats these steps until all 
• Issues GaSCAN for each processing processing data has been sent ~ 

resource in the buffer ~-----------

~ ISGGaSRV ""'--- ISGBCI - ... 
Does a BUFSEND of the • Generates the aWBs to get -- - • 

this system's resource queues Queue Ring end-of-file 

to match the other systems in service processing ~ • Does a BUFRECV for the 
the complex and puts the notification that system B 
aWBs on the process queue 

~ ISGBCI has completed 

Posts ISGGRPOO to process ~ ISGGRP()O ~ Releases serialization • Ring • the aWBs Global processing (SERRELS) 
III ..... • Repeats these steps until resource . • Cleans up and exits 

end-of-file is received 
processor 

ISGBCI ~ --- -- --------- i • Does a BUFSEND to notify ~ ISGBCI r- Ring ( ) system A that queue updates Ring processing Exit 

are complete processing 

• Releases serialization :t. (SERRELS) 

Returns to ISGCRST 
ISGBCI 

~ • Ring 
processing 

Figure 5-86. Module Flow for VARY GRS(x), RESTART by a System Not in the Main Ring 

Section 5. Component Analysis 5-337 



System B System A 

(Enter) 

l 
ISGNGRSP Option processor 

~ ISGBSR RSA send/receive 
(initialization module) 

Obtains a CRB . • ISGSALC 
~ ISGBCI -- ~ • Does a SNAPSHOT of the • Initializes the CRB for the .. 

complex Ring restart request and places 
Storage 

processing manager • Determines the status of this the CRB on the command 
system and others in the request queue 
complex I POST • Selects a system to send data ~ ISGMSGOO - ISGCMDR Command router 
about all global resources 

.. ~ 

Message 
to this system routine Processes the restart request • • Issues message ISGOO31 Ioc-

• Does a SENDCMD (RSCRADDS) ~ ISGBCI I-- l-
to tell system A to build a 

Ring ~ I-
new main ring that includes 
system B processing 

1---- ---- -- -- -- -
ATTACH 

r-- • Links to ISGCQMRG 1~ 

1---- -- ---- ----- ISGCRST Restart request 
~. Issues message ISGOO41 ~ ISGMSGOO processor 

on th is system 
Message 

• Does a SENDMCD to broad- routine • Determines that a restart 
cast message ISG0041 to all for system B is possible 
active systems in the complex 

ISGBCI .- Issues message ISG011 I ISGMSGOO -- .. • • Returns to initialization Ring 
processing Message 

processing routine 
.I_ -( Exit) 

I-... ISGBCI -- ... • Does an ADDSYS of system B - Ring 
.....---.. 

t., ISGCQMRG Queue merge processing • Oopies the compatibility level 
and the RNLs into a buffer 

Does a BUFRECV ~ ISGBCI - ISGBCI 
~ -- • Does a BUFSEND • - -- ,. 

• Compares the compatibility Ring Ring • Issues GQSCAN to obtain data .. 
level and RNLs to those in processing processing about all global resources and 
this system requesters 

~. Does a BUFRECV ~ ISGBCI ISGBCI '" - • Does a BUFSEND -- -- ... 
1-- ~-. --.-- -- -- - Ring ~ 

L 
Ring • Repeats these steps until all ---• Issues GQSCAN for each processing processing data has been sent 

resource in the buffer ~ ---- -------
ISGGQSRV ISGBCI 

~ - • Does a BUFSEND of the Generates the QWBs to get ~ r-- -,. • end-of-file this system's resource queues Queue Ring 
to match the other systems in service processing 

~ 
• Does a BUFRECV for the 

the complex and puts the QWBs notification that system B 
on the process queue 

~ ISGBCI 
has completed 

~ • Posts ISGGRPOO to process the ISGGRPOO Ring • Release serialization 
QWBs Global processing 

(SERRELS) 
l...- • Repeats these steps until resource • Cleans up and exits 

end-of-file is received processor 
~ i--- -- -- -- -- -- - ISGBCI , 

• Does a BUFSEND to notify ~ ISGBCI t-- Ring ( system A that queue updates Ring processing Exit 
are complete processing 

• Releases serialization 

~ (SERRELS) 
ISGBCI 

L.-.- • Returns to ISGNGRSP 
Ring 
processing 

Figure 5-87. Module Flow for Join Processing at Initialization Time 

5-338 MVS Diagnostic Techniques 



User's Address Space 

ENO/DEO/ SVC 

• IEAVESVC 

SVC FLiH 

l 
ISGLNODQ ENO/DEO fast path 
routine 
EP-IGC048FP (DEO) 
EP-IGC056FP (ENO) 

• Validity checks the request 

• Invokes ISGGREXO resource 
exit routine at EP: 
- ISGGSI EX (I nclusion exit) 

• If request can be handled by fast 
path processing 

r-- • If request cannot be handled by 
fast path processi ng 

~--------• Returns to caller via exit prolog 

i 
( Exit ) 

L,a.. ISGGNODO ENO/DEQ/RESERVE 
processing 
EP-IGC048 (DEO) 
EP-IGC056 (ENO) 

• Validity checks the request 

• Initializes the local OWA 

- • Sets up to process the request 
~-- -- -- -- -----
• Returns to caller via exit prolog 

i 
( Exit ) 

:~ ISGGOWBI OWB initialization 

• Initializes the SQA OWB 

• Invokes ISGGREXO resource 
exit routine at EPs: 
- ISGGSIEX (Inclusion exit) 
- ISGGSEEX (Exclusion exit) 
- ISGGRCEX (RESERVE 

conversion exit) 

• Sets addressabil ity to the global 
resource serialization address 
space 

PC 

~ 

~ 

--

~ 

II 
II 
JI 
II 
II 
II 
II 
II 
II 
II 
!! 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

I 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

Global Resource Serialization Address Space 

... ISGLNODO ENO/DEQ fast path -
routine 
EP-ISGLDQOO (DEQ) _��_ 

ISGSHASH 
EP-ISGLNQOO (ENQ) EP-ISGSGLH 

• Initializes the resource request Hashing 
blocks routine 

Queues or dequeues the resource ~ • - ISGSALC request blocks to or from the 
~ 

. 
local queues Storage 

• Returns manager 

~ ISGSDA!-

Storage 
manager 

- ISGGOWBI OWB initialization - EP-ISGGED01 (ENO/DEO) 

• Obtains storage - - ISGSALC 

• Returns to ISGGNODO Storage 
manaQer 

" 
ISGGNODO ENO/DEO/RESERVE 
processing 

• Initializes the resource request 
blocks 

Oueues or dequeues the resource - - ISGSHASH • - ... EP-ISGSGLH request blocks to or from the 
local queues Hashing 

Frees local storage rL 
routine • 

~ • Returns 
ISGSDAL 

Storage 
manager 

Figure 5-88. Module Flow for ENQ/DEQ Mainline - Local Resource Request 

Section 5. Component Analysis 5-339 



User's Address Space 

ENQ/OEQSVC 

+ 
IEAVESVC SVC FLiH I , 
ISGLNOOQ ENQ/OEQ Fast path 

;-- • Branches to ISGGNOOO to 
process global requests 

~ ISGGNOOO ENO/OEQ/RESERVE 
processing 
EP-IGC048 (OEO) 
EP·IGC056 (ENQ) 

• Validity checks the request 

• Initializes the local OWA 
r---

• Sets up to process .the request 
~-------------,-

• Returns to caller via exit prolog 

i 
C Exit ) 

~ ISGGOWBI OWB initialization 

• Initializes the SOA OWB 

• Invokes ISGGREXO resource 
exit routine at EPs: 
- ISGGSI EX (I nclusion exit) 
- ISGGSEEX (Exclusion exit) 
--- ISGGRCEX (RESERVE 

conversion exit) 

• Sets addressability to the global 
resou rce serial ization address 
space 

-

PC -

II 
II 
II 
II 
II 
If 
II 
II 
II 

II 
II 
II 
II . 
II 
II 
II 
II 
II 
II 
II 
II 
II __________ -.-ll 

Gloval Resource Serialization Address Space 

.. - ISGGOWBI OWB initialization 
EP-ISGGE001 (ENO/OEO) 

Obtains storage - - ISGSALC • --
• Returns to ISGGNOOO Storage 

manager 

+ 
ISGGNOOO ENO/OEO/RESERVE 
processing 

• Copies the SOA OWB into the - - ISGGOWBC 
global resource serialization - -
private area OWB OWB copy 

Puts the request on the request ~ 
routine 

• 
queue 

• Waits for the request to be - .... ISGGWAIT 
processed - -

1---- -- ----------
Wait 

PT 
Returns routine '--- • 

ct 
- - -- --AnyAddr';sssPa;;-----"- - ~- - - ----- --------

ISGBOR Timer manager 

• RSA residency interval expired 

II 
SRB II 

II 
II 
II 

routine 

• Moves the request queue to the 
RSA and sent queue and sends 
the RSA 

• Returns to the dispatcher 
See figure 5-72 

-·-----------1r-------------------
I/O interrupt - ISGBSR RSA send/receive routine 

II --
+ • Moves requests from the sent See figure 5-72 

II queue to the process queue and 
IEAVEIO I/O FLiH posts ISGGRPOO 

• RSA message arrival II , POST 

+ II ISGGRPOO Global resource 

f ISGGNOOO 

II 
processor _. 

ISGJDI CTC driver DI E • Oueues or dequeues the 
ENO/OEQ 

SRB II request to or from the 
processor 

• Schedules ISGBSR to process - global resource queues 
the RSA II .... B • Posts the caller -

II Waits for the next request 

.'igure 5-89. Module Flow forENQ/DEQ Mainline - Global Resource Request 

5-340 MVS Diagnostic Techniques 

( 



= 

Terminating Address Space 

Enter) From RTM 

-. 
ISGGTRMO Termination resource 
manager - stage 1 

• If the global resource serialization 
address space is not initialized or 
there are no resources to purge, 
returns to RTM 

• Initializes the OWA for ISGGTRMl 

~ • Invokes ISGGTRMl to purge 
resources 

-----------
.If "reset must complete" is 

necessary, i nvo ke STATUS 
via SVC 79 (to IEAVSETS) 

II 
II 
\I 
II 
II 
II 

~ Exit )1\11 

II 
\I 
\I 
II 

.t II 
~ == ~i~ ~R~ = === == == == = :::::!J 
~ ISGGTRMl Termination resource Lr 

manager - stage 2 Storage 
~------i L-----....I 

• Obtains a dynamic area ~ 

ISGSALC 

• Purges local reSOurces 

• Purges global resources 

• Frees the returned OWB 

• Places purge messages on the 
command request queue and 
notifies the command router 

• Frees Dynamic storage 

~ • Returns to ISGGTRMO 

---
ISGSDAL 

Storage 

POST ...... m_an_a_g_e_r--.l 

~ 
... 

ISGCMDR 

Command 
router 

Global Resource Serialization Address Space 

ISGGDEOP DEO purge 
processing 

• Dequeues local resources 1+ 

-. ISGGNODO 
EP-ISGGDOOO 

ENO/DEO/ 
RESERVE 
processing 

• Frees OCBs, OELs, and OXBs ~ ISGSDAL 
~----------~ Storage 

ISGGOWBO Oueue work block 
service routine (EP-ISGGOWBS) 

• Obtains a OWB for the task or 
address space termination request 

• Places the OWB on the request 
queue and waits for the request 
to be processed 

ISGGWAIT Wait routine 

• Sets up to wait 

• Branches to wait routine to 
wait for the request to be 
processed 

IEAVWAIT 

Wait 
routine 

--

manager 

~ ISGSALC 

Storage 
manager 

ISGSDAL = == == == == == == == == == == ,l t-S-to-r-ag-e--I 

Interrupt on CTC II ...... m_a_n_a_g_er_ ... 

Any ISGJ! CTC driver DIE II 
Address • Schedules ISGBSR to process 11\ 
Space the RSA 

====+~=====~ 
ISGBSR RSA send/receive 

• Places the OWBs on the process 
queue 

~ 

~ ISGGNODO 

ENO/DEO/ 
RESERVE 

ISGGDEOP DEO purge 
processing 

processing 

• Dequeues a resource f-t-
... ISGSDAL • Frees OCBs, OELs, and OWBs .--ISGGRPOO Global resource 

processor 

• Processes the task or address 
space termination request 

• Purges resources 

• Notifies the requester that the 
purge request is complete (if the 
requester is from this system) 

• Wait for more requests 

:if 
W-

IEAOPTOl 

RB post 
routine 

IEAVWAIT 

Wait 
routine 

Figure 5-90. Module Flow for the Termination Resource Manager 

Storage 
manager 

POST 

Section 5. Component Analysis 5-341 



User's Address Space Global Resource Serialization Address 

--- ISGOSCAN Oueue scanning service User program 
... 

: • Obtains an internal buffer and a dynamic area in the ROA .- ... ISGSALC 
: 

Copies the parameter list (from the GOSCAN macro) into Storage PC • 
GOS·CAN the dynamic area and syntax checks it. (A syntax error manager -- results in an 09A abend) ~ - PT 

• Starts (or resumes) the search of the LOHT and/or GOHT ~ 
for resources that have the attributes specified on GOSCAN 

• Places the information found on the search in the internal 
buffer 

• If the search is complete or the internal buffer is full, copies 
the contents of the buffer to the user-provided area 

• If the search is not complete and the user-provided area is 
not full, repeats these steps 

• If the search is not complete and the user-provided area is 
full, sets the token value if token was specified 

• Releases the internal buffer and dynamic area ~ ISGSDAL 

• Returns to the caller Storage 
manager 

Figure 5-91. Module Flow for Queue Scanning Services 

Any Address Space 

II 
Global Resource Serialization Address Space 

( Enter) SVC dump request II 
I II IEAVTSDU SVC dump exit 

interface routine 

II • Processes the G RSO request 

; II 
ISGDSDMP SVC dump exit II 
• Establishes a recovery environment Ilr ISGDGCBO Dump control blocks 

~ Obtains a page of resource PC • • Obtains a page of resource information, . information -- II in the order listed, from the following 

• Writes a page of resource information ~ IEAVTSEO global resource serialization control 
to the dump data set II blocks: 

SVC dump - GVT 
~ • Repeats these steps, for each page I/O routine 

II 
- ASCB 

of information, until all information - GVTX,GOHT,LOHT,GRPT,LRPT 
is dumped SAHT, RSV, and RSV entries ----------------

II - Active ROA pages for OCBs, OELs, • Deletes the recovery environment OX Bs, and POCBs 

• Returns to I EAVTSDU II ~ • Returns to caller 

Figure 5-92. Module Flow for Dump Support - SVC Dump 

5-342 MVS Diagnostic Techniques 



Diagnostic Aids 

This topic contains diagnostic aids to help you solve problems with global 
resource serialization. It contains the following sections: 

• Check on Enabled Wait During IPL 
• System Indicators 
• Probe Points 
• CTC Processing Debugging Hints 
• Ring Processing Debugging Hints 
• ENQ/DEQ/RESERVE Processing Debugging Hints 
• Storage Management Debugging Hints 
• Serialization 
• Recovery Routines 
• SYSI.LOGREC Recording 

Check on Enabled Wait During IPL 

System Indicators 

If an enabled wait occurs during IPL processing, you can make the following 
check to determine if the wait was due to missing entries in the SYSTEMS 
exclusion RNL. 

• Check the request queue in the GVT (GVTREQQ) for QWBs. 

• Compare the resource name identified in the PEL portion of the QWB to the 
entries in the SYSTEMS exclusion RNL and SYSTEM inclusion RNL. 

• If the RNLs indicate that the resource name identifies a global resource, the 
requester of that resource must wait until master scheduler initialization 
completes before the requester is granted control of the resource. 

• If the requester must complete processing prior to master scheduler 
initialization completing, the resource name must be added to the SYSTEMS 
exclusion RNL. 

The following indicators, when set to one, have these meanings: 

GVT indicators: 

GVTGRSNA - Global resource serialization is not active. (Only local requests can be processed.) 

GVTNCMDR - Global resource serialization commands cannot be processed. 

GVTGQDMG - Global resource queues have been damaged. This system will reject VARY 
GRS,RESTART commands. 

GVTNCOMM - CTC-driver and ring processing functions are not operative .. 

GVTNREQS - Requests cannot be put on the command request queue. 

GeL indicators: 

GCLINOP - CTC processing will not allow use of this CTC because a software error occurred 
and the control blocks of this CTC (GCL or RSL) might be damaged. 

GCLIOERR - CTC processing will not allow use of this CTC because an I/O error occurred on 
this C{C. 

GCLOFFLN - CTC processing will not allow use of this CTC because the CTC has been varied 
offiine. 

Section 5. Component Analysis 5-343 



Probe Points 

The following probe points are useful to help you debug global resource 
serialization problems or set SLIP traps. 

I. Probe point for obtaining the RSA message that this system received: 

Module: ISGBSR 
Label: RECVPTl 
Data: - RSAPTR (register 6) points to the RSA. 

- Register 4 contains the length of the RSA. 
- Register 13 points to the RSV. 
- RSVIBFOR (RSV + X'BC') points to the received RSA. 

2. Probe point for obtaining the RSA message that this system sent: 

Module: ISGBSR 
Label: SENDPTI 
Data: - Register 13 points to the RSV. 

- RSVOBFOR (RSV + X'90') points to the sent RSA. 

3. Probe point for obtaining the QWB that is to processed (the first QWB on the 
process queue): 

Module: ISGGRPOO 
Label: GRPNXTPQ 
Data: - Register 3 points to the GVT. 

- GVTPRCQF (GVT + X'40') points to the QWB to be processed. 

eTC Processing Debugging Hints 

The following debugging hints help you isolate problems in the CTC processing 
subcomponent. 

I. Field GCLWGCQF of the GCL is the write queue of the corresponding GCL 
(representing a CTC) and points to a write GCQ when the write queue is not 
empty. GCLWGCQF is zero when the write queue is empty. 

2. Field GCLCNTS is bumped by one before the STARTIO for a SENDBUF 
or SENDBUF-IMMEDIATE. Field GCLCNTC is bumped by one when the 
SENDBUF or SENDBUF-IMMEDIATE completes. Therefore, by 
comparing these two count fields you can determine if a write operation is in 
progress. 

3. Field GCLRGCQF is the read queue of the corresponding GCL and points 
to a read GCQ when the read queue is not empty. GCLRGCQF points to a 
dummy GCQ (located in the GCV) when the read queue is empty. 

4. The address in field GCLRGCQF is a word-multiple address when the GCL 
does not have a read channel program in progress. . The address is bumped by 
one when a read channel program is started. Therefore, by checking the low 
order bit in GCLRGCQF you can determine if a read channel program is in 
progress. 

5. Field GCLTRACE contains the last 15 CCW operation codes sensed from the 
corresponding CTC. In a dump, the acronym TRCI appears a short distance 
before this field. The occurrence of an EE or ED operation code in this area 

5-344 MVS Diagnostic Techniques 



indicates that the system taking the dump sensed a broken channel program 
that was started by the system at the opposite end of the CTC. 

Ring Processing Debugging Hints 

The following debugging hints help you isolate problems in the ring processing 
subcomponent. 

1. Field RSVIBFOR points to the RSA input buffer. Field RSVMRLRL 
contains the length of the last RSA received. 

2. Field RSVOBFOR points to the RSA output buffer. Field GCBLNBUF of 
the RSA output GCB contains the length of the last RSA sent or the length 
of the RSA that soon will be sent. Field RSVGCBOP points to the RSA 
output GCB. 

3. Field RSARCSEQ of the RSA is the RSA send count, which is a number that 
is bumped by one each time the RSA is sent. By comparing RSARCSEQ in 
the input buffer to RSARCSEQ in the output buffer, you can determine if the 
system that took the dump was holding the RSA at the time of the dump. 
Also, by comparing RSARCSEQ values in dumps taken by different systems, 
you can determine which system last received the RSA before a failure. 

4. When a system is in the main ring, field RSVRSASC contains the RSA send 
count of the last RSA sent by this system (if the system is not holding the 
RSA) or the send count of the RSA that will soon be sent by this system (if 
the system is holding the RSA). RSVRSASC is set to zero when a system 
does main ring cleanup. 

5. Subroutine CLNUFAIL (in module ISGBCI) does the main ring cleanup. 
When a system does main ring cleanup after a main ring disruption, 
CLNUF AIL copies field RSVRSASC to an entry in the RSVENTY table, 
and also marks entries in the RSVENTY table to show which systems were in 
the main ring at the time of the disruption and which RSA was last received 
before the disruption. Because main ring cleanup is serialized by the 
ISGBCI-ENQ-resource, cleanup might not occur immediately after the main 
ring disruption because another task might be holding the 
ISGBCI-ENQ-resource at the time of the disruption. 

ENQ/DEQ/RESERVE Processing Debugging Hints 

The following debugging hints help you isolate problems in the 
ENQ/DEQ/RESERVE processing subcomponent. 

1. The queue work areas (QWAs) used by ENQ/DEQ mainline processing 
contain information that is useful in solving ENQ/DEQ/RESERVE problems. 
There are two QW As: one for local resource processing (the local QW A 
pointed to by GVTLQWA), and the other for global resource processing (the 
global QW A pointed to by GVTGQW A). 

The QW A is divided into the following major areas: 

QWABASIC - This is the basic section of the QW A. It contains the information required 
by the mainline routine to process the resource request. For example, it 
indicates whether or not the request is authorized, whether global resources 

Section 5. Component Analysis 5-345 



are part of the request, and whether the request is an ENQ or DEQ. This 
is also the only section of the QW A that can be mapped to the SVRB 
extended save area or the RMPL work area. 

QWARSA ~ This is the first request save area section of the QWA. It contains the 
information required to process a global or local resource request. This 
section is moved to the QWBHRSA field and later restored to the 
QWARSA field by module ISGGRPOO. It exists in the QWABASIC 
section of the QW A. 

QW ARSA2 - This is the second request save area section of the QW A. It contains the 
information needed to process a global or local resource request. This 
section contains the requester's job name, SYSID, ASID, and ASCB 
address. This data is moved to the QWBHRSA2 field and later restored to 
the QWARSA2 field by module ISGGRPOO. It exists in the QWARDA 
section of the QWA. 

QW ARDA - This is the request data area section of the QW A. It contains the counts of 
the types of resources being processed, and the addresses of internal control 
blocks. 

Work/Save areas - This series of general work/save areas follows the QWARDA area in the 
QWA and are used by the resource request processing routines. These 
areas are used to save register contents. 

QW A TRMRM - This work area section of the QW A is used by the termination resource 
manager. It contains information used by ISGGTRMO and ISGGTRMI to 
process a termination request. 

When a local resource is being processed, the QW ABASIC section of the 
QW A is moved to the SVRB extended save area when the requester of the 
resource must be suspended because the resource is not immediately available. 
QW ABASIC infonnation is then referenced in the SVRB extended save area 
following the notification that the resource is available. 

When a global resource is being processed, the QW ABASIC section of the 
QW A is always moved to the SVRB extended save area because the global 
resource requester is always suspended. 

After the requester is notified (via cross memory post) that the requested 
resource is availabI'e, the data in the SVRB extended save area is copied back 
to the QW ABASIC section of the QW A. This infonnation in QW ABASIC is 
then used to complete the processing of the request. 

The main point to consider about the QW A is that whenever an 
ENQ/DEQ/RESERVE requester is suspended, the SVRB extended save area 
contains useful infonnation that can be used in debugging. An important 
piece of infonnation in the QW ABASIC section of the SVRB extended save 
area is the QWB address used to define a global resource request. By locating 
this QWB (pointed to by QW AQWBA), you can find the data presented to 
ENQ/DEQ/RESERVE processing in the original requ:est. If this field in the 
QW A is zero, then a local resource is being processed. 

2. ENQ/DEQ/RESERVE processing uses two types of QWBs to process 
resource requests: the SQA QWB (pointed to by GVTSQWB), and the global 
resource serialization address space QWBs (pointed to by QXBQWB, 
GVTREQQ, and GVTPRCQF). 

When a local resource is being processed, the SQA QWB is used. When a 
global resource is being processed, the SQA QWB is used only until the global 

5-346 MVS Diagnostic Techniques 



) 

resource serialization private area QWBs are constructed. The following 
shows 
the process in which the resource data is passed between ISGGNQDQ and 
ISGGRPOO. 

• The requester's PEL is moved to the SQA QWB. 

• The local QW A is initialized. 

• Information in the QW A and SQA QWB is moved to the global resource 
serialization private area QWBs. 

• The QW ABASIC section of the local QW A is moved to the SVRB 
extended save area. 

• The global resource serialization private area QWBs are placed on the 
request queue. (These QWBs are subsequently moved to the process 
queue by ring processing routines.) 

• The ring processing function notifies ISGGRPOO that work (QWBs) is 
now available on the process queue. 

• ISGGRPOO moves the QWBHRSA and QWBHRSA2 fields to the global 
QW ARSA and QW ARSA2 fields respectively. 

• ISGGRPOO processes the requests and notifies the requester 
(ISGGNQDQ SVRB) when the resource request is satisfied. 

• ISGGNQDQ restores the local QW A from the QW ABASIC section of 
the SVRB extended save area. It then locates the global resource 
serialization private area QWBs defining this request from the restored 
QW ABASIC section. This address is then used to restore the QW ARSA 
from the QWBHRSA. 

3. Prior to master scheduler initialization completing, any global resource 
requests placed on the request queue that are required for IPL processing will 
cause an enabled wait state. To prevent this from occurring, any global 
resource requests required during IPL processing before master scheduler 
initialization has completed should be placed in the SYSTEMS exclusion 
RNL. 

ENQ/DEQ/RESERVE Termination Resource Manager Debugging Hints 

The following debugging hints help you isolate problems in the 
ENQ/DEQ/RESERVE termination resource manager function: 

l. For normal and abnormal task termination, ISGGTRMO receives control 
from RTM in either the. address space of the terminating task or the address 
space of the master scheduler. In either case, ISGGTRMO issues a PC to 
ISGGTRMI in the global resource serialization address space to process the 
request. The input resource manager parameter list (RMPL, which is pointed 
to by register 1 on entry) defines the type of termination request. 

Section 5. Component Analysis 5-347 



2. ISGGTRMO uses the local QW A to store information related to its 
processing. QWABASIC is initialized with common resource processing 
information and QW ATRMRM is initialized with information related to the 
task or address space being purged. For the format of this data, refer to the 
QWA in the Debugging Handbook. 

3. If only local resources are being purged, the ENQ/DEQ cross memory 
services lock (CMSEQDQ) is held to provide serialization for the local QWA. 

4. If global resources need to be purged, then the data stored in the QWA must 
be preserved during this process. ISGGTRMI saves this data in the dynamic 
area before calling ISGGQWB5. Register 9 in ISGGTRMI points to the 
dynamic area. The information in the dynamic area includes the QW ARSA, 
QWAASCB, QWATRMRM, QWAJOBNM, GVTXLSMP, and RUB 
(register update block). 

Storage Management Debugging Hints 

The following debugging hints help you isolate problems in the storage 
management subcomponent. 

1. Most global resource serialization control blocks reside in the global resource 
serialization address space. Pools of control blocks are maintained in 
resource pools as defined by two resource pool tables (RPTs), the local RPT 
and the global RPT. RPTs, in turn, address pool extension blocks (PEXBs) 
that define the control blocks (cells) for global resource serialization. (For an 
overview of these control blocks, see Figure 5-66.) 

Each PEXB is 4K bytes in length and contains multiple cells for control 
blocks of the same type and size. Listed below are the global resource 
serialization control blocks that are defined within a PEXB. (The RPT 
indexes are described in the following hint.) 

Control RPT 
Block Index Name Attributes 

QCB I queue control block - size I local or global 
QCB 2 queue control block - size 2 local or global 
QCB 3 queue control block - size 3 local or global 
QEL 4 queue element local or global 
QXB 5 queue extension block local or global 
QWB 6 queue work block global only 
HWKA 6 huge work area local only 
TWKA 7 tiny work area local or global 
PQCB 8 placeholder QCB local or global 
MRB 9 message request block local or global 
CRB lO command request block global only 

The RPT header contains either the acronym LRPT (local RPT) or GRPT 
(global RPT). Also, in the PEXB headers, the PEXBs addressed by each 
RPT contain the acronym PEXB as well as the acronym for one of the 
control blocks listed above. This information is useful when you are scanning 
the RQA in a dump listing to locate a particular control block, or when you 
find an address of an unknown control block. From the information in the 
PEXB, you can determine the type of control block (defined by the acronym) 
and whether or not the control block is in use by global resource serialization. 

5-348 MVS Diagnostic Techniques 



) 

The control block is in use if it is not chained to the available cell chain in the 
PEXB header. 

The available chain is double-headed (pEXFRST and PEXLAST) and 
single-threaded (PEXNCELL). Note that the first four bytes of each cell are 
used to chain available cells together. 

2. A storage manager parameter list (SMPL) is the input to the storage manager 
allocation (ISGSALC) and deallocation (ISGSDAL) routines. The SMPL 
describes the number and type of control blocks requested .. The type of 
control block is defined by an RPT index value in the SMPL. The RPT 
indexes (defined in the ISGRPT and ISGSMPL mapping macros) are used to 
index into the RPT to locate the RPT entry (RPTE) for the control block in 
question. 

3. The QCB is defined in three sizes: size I for those with an RNAME of 24 
bytes or less, size 2 for those with an RNAME of 44 bytes or less, and size 3 
for those with an RNAME of 255 bytes or less. Each QCB has a unique 
index corresponding to the three sizes. 

4. The sequence in which the storage manager allocates control blocks is: 

• When a request is received, ISGSALC attempts to satisfy the request 
from the queue of active PEXBs that are chained from RPTEFPXB and 
RPTELPXB. If, while scanning the active PEXB queue, ISGSALC finds 
a PEXB with no available cells, the PEXB is rechained to the end of the 
active PEXB queue. 

• If sufficient PEXBs are not available on the active queue, ISGSALC 
searches the inactive PEXB queue that is chained from RPTEIAPQ. If 
available, the inactive PEXB is moved to the front of the active PEXB 
queue and the required cells are obtained from this PEXB. 

• If the inactive PEXB chain is empty and the request is still not satisfied, 
an additional page is obtained from the RQA. A new PEXB is then 
constructed and chained to the front of the active queue. 

• If the RQA has been completely assigned, then the storage manager issues 
abend 09A with a reason code of 8104. 

5. A bit map in the RQA defines each page of the RQA. When the storage 
manager attempts to allocate a control block and no active or inactive PEXB 
is found, the RQA bit map is searched for an available page. (The address of 
the bit map is in GVTXBTMP and the length of the bit map is in 
GVTXBTML.) The storage manager allocates control blocks from the high 
end of the RQA for global resources and the low end for local resources. 
Therefore, for global resources, the search proceeds from the high order bit in 
the bit map to the low order bit. For local resources, the search proceeds 
from the low order bit in the bit map to the high order bit. When a page is 
allocated in the RQA, the corresponding bit in the bit map is set to 1. When 
a page is deallocated from the RQA, such as a PEXB, the corresponding bit 
in the bit map is set to O. By scannIng the bits in the bit map, you can 
determine the number and locations of all allocated control blocks in the 
RQA. (The address of the RQA is in GVTXRQA.) 

Section 5. Component Analysis 5-349 



Serialization 

6. You can locate a PEXB header by zeroing the low order 12 bits of the cell (or 
control block) address. The PEXB header contains the addresses of the first 
and last available cells in this PEXB. The header also contains pointers to 
the previous and next PEXBs for this control block. By scanning the queue 
of available cells (pointed to by PEXFRST), you can determine if a particular 
control block is allocated to a function or has been released. 

When cells are returned to the storage manager, they are placed at the end of 
the available chain. When cells are assigned by the storage manager, they are 
assigned from the front of the queue. This ensures that a history of cell usage 
is maintained within the PEXBs because the oldest are used first. 

When all cells within a PEXB have been freed, the PEXB is moved to the 
front of the chain of available PEXBs (that is, the inactive PEXBs pointed to 
by RPTEIAPQ). Therefore, a history of PEXBs is not maintained. 
Whenever the count of inactive PEXBs (maintained in GVTXIACT) equals 
the count in RPTIACNT, all inactive PEXBs defined by this PRT are 
released. The storage manager deallocation routine (ISGSDAL) schedules 
ISGSPRLS to perform the page release function (via a branch entry to 
IEAVPSIB). 

7. Control blocks in the RQA are not fixed. Instead, global resource 
serialization relies on the storage isolation function of SRM to ensure that the 
real frames associated with these virtual pages remain in storage until a 
critical storage shortage is encountered. (Refer to the Initialization and 
Tuning Guide for information about storage isolation.) 

8. With the exception of the QWB, all global control blocks are serialized with 
the global resource serialization local lock. All local resources and the QWB 
are serialized with the ENQ/DEQ cross memory services lock (CMSEQDQ). 

When GRS = NONE is specified, all required global resource serialization 
resources are serialized with the CMSEQDQ lock. 

When GRS=START or GRS=JOIN is specified, the following chart summarizes 
the serialization of the resources used by global resource serialization. 

CMSEQDQ Local 

X 
X 
X 

X 
X 

X 
X 

X 

X 
X 

X 

CS Resource 

Local hash table 
Global has table 
SYSID/ASID hash table 
Local ASCB QEL queue 
Global ASCB QEL queue 
Local storage management pools 
Global storage management pools 
Storage management QWB pools 

X Request queue 
Process queue 
Local QWA 
Global QWA 

5-350 MVS Diagnostic Techniques 



Recovery Routines 

SYSl.LOGREC Recording 

Legend: 

CMSEQDQ - ENQ/DEQ cross memory services lock 

Local - Global resource serialization local lock 

CS - Compare and Swap instruction 

The recovery routines for the global resource serialization subfunctions are: 

Recovery Routine SubfunctiOD 

ISGBERCV - ESTAE Ring processing 
ISGBFRCV - FRR 

ISGCRCV - EST AE Command processing 
ISGCRETO - FRR 
ISGCRETI - FRR 

ISGDSDMP (EP-ISGDSDRV) - EST AE Dump support 
ISGDSNAP (EP-ISGDSNRV) - ESTAE 

ISGGESTO - ESTAE Request (ENQ/DEQ/RESERVE) 
ISGGFRRO - FRR processing 

ISGGQSRV (EP-ISGGRTRy) - FRR Global queue services 

ISGJRCV - FRR CTC processing 

ISGCRCV - ESTAE WTO/WTOR message processing 

ISGCRCV - EST AE Initialization 

ISGQSCNR - FRR Queue scanning services 

ISGGFRRO - FRR Storage management 
ISGSMI (EP-ISGSMIFR) - FRR 

All global resource serialization recovery routines (except ISGGESTO) record the 
following information in the SDW A: 

SDW AMODN - Load module name 
SDW ACSCT - CSECT name 

- Date of compilation 
- Product/PTF number 

SDW ACID - Component identifier (SCSDS) 
- Subcomponent identifier 

SDW AREXN - Recovery routine name 

Additional information is recorded in the variable recording area (SDWAVRA) in 
the key-length-data format as described in the following topics. 

Recorded by ISGBERCV 

ISGBERCV records the following in the SDW AVRA: 

• The REPL and its address. (The REPL contains execution footprints. Also, 
if the failing module was working with a particular RSL, the REPL contains 
the address of that RSL.) 

Section 5. Component Analysis 5-351 



• The RSC being processed at the time of failure and its address. (Recorded 
only if ISGBCI was the failing module.) 

• Six words copied from the DCB of the CTC that encountered the timeout 
condition. (Recorded only if ISGBCI is the failing module and the abend 
reason code is 620C.) 

Recorded by ISGBFRCV 

ISGBFRCV records the following in the SDW A VRA: 

• The RVR and its address. (The RVR contains execution footprints. Also, if 
the failing module was working with a particular RSL, the RVR contains the 
address of that RSL.) 

• The ISGBSR entry point that encountered the failure. 

• The addresses of the RSLs used to receive and send the RSA. 

• Field RSVCRSAT of the RSV, which indicates whether a ring processing 
function was being performed at the time of the failure. Also, field 
RSVCPHNO, which indicates the phase of the function being performed. 

• The addresses of the RSA input buffer and output buffer, plus six words from 
the beginning of each buffer. 

If the failure occurred for entry point ISGBSRRI, the following is also recorded: 

• The address of the RSL. 
• The device address of the CTC represented by that RSL. 
• The RSL flags: RSLLKSF, RSLLKIF, and RSLBFCTC. 

Recorded by ISGCRCV 

ISGCRCV records the following in the SDW A VRA: 

• The contents of the CRW ALEIB field (LOGREC error information) when 
ISGCRCV begins recovery processing. 

• The parameter list passed to ISGBCI if the error exit routine determined that 
the failure occurred during a call to ISGBCI. (ISGCRCV invokes exit 
routines in failing modules as a part of its recovery processing.) 

• The contents of the CR W ALEIB field when ISGCRCV completes processing. 

For each CRW A on the chain, ISGCRCV repeats the recording noted above. 
Therefore, multiple CR W ALEIB fields might be recorded. 

Recorded by ISGCRETO 

ISGCRETO (at entry point ISGCRORV) records the following in the SDWAVRA: 

• The FRR parameter list. (Refer to the P ARMAREA structure in module 
ISGCRETO.) 

5-352 MVS Diagnostic Techniques 



Recorded by ISGCRETI 

ISGCRETI (at entry point ISGCRIRV) records the following in the SDWA VRA: 

• The FRR parameter list. (Refer to the PARMAREA structure in module 
ISGCRETl.) 

Recorded by ISGDSDMP 

ISGDSDMP (at entry point ISGDSDRV) records the following in the 
SDWAVRA: 

• The contents of the DEPL (ESTAE parameter list for SDUMP). 

Recorded by ISGDSNAP 

ISGDSNAP (at entry point ISGDSNRV) records the following in the 
SOWAVRA: 

• The EST AE parameter list. (Refer to the PARMAREA structure in module 
ISGDSNAP.) 

Recorded by ISGGESTO 

ISGGESTO does not request recording to SYSl.LOGREC. Nothing is copied 
into SOW A VRA. 

Recorded by ISGGFRRO 

ISGGFRRO records the following in the SDW A VRA: 

• The contents of the QFPL (ENQ/DEQ FRR parameter list). 

• The contents of the output data area (ODA) if the queue verifier routine 
detects queue damage. (Refer to module lEA VEQVO for the mapping of the 
ODA.) 

• Internal processing flags. (Refer to the FLAGS structure in module 
ISGGFRRO.) 

• Resource damage flags. (Refer to the DAMAGE structure in 'module 
ISGGFRRO.) 

Recorded by ISGGQSRV 

ISGGQSRV (at entry point ISGGRECV) records the following in the 
SDWAVRA: 

• The error information block (EIB), which is local to ISGGQSRV. 

Section 5. Component Analysis 5-353 



Recorded by ISGJRCV 

ISGJRCV records the following in the SOW A VRA: 

• The CTC unit address. 

• The address of the IOSB. 

• The IOSB fields: IOSFLA, IOSFLB, IOSFLC, IOSCOO, IOSCSW, IOSSNS, 
and IOSUSE. 

• The address of the GCQ. 

• The first five words of the GCQ. 

• The contents of GCL. 

Recorded by ISGQSCNR 

ISGQSCNR records the following in the SOW A VRA: 

• The contents of QFPLI (queue scanning services FRR parameter list). 

• The input parameter list (built by the GQSCAN macro) to ISGQSCAN, if it 
is available. 

• The original system completion code and reason code describing the error. 

• The control block cell type and address, if the control block was found not 
valid. 

• Internal recovery status flags. (Refer to the RCVYSTFG structure in module 
ISGQSCNR.) 

Note: ISGQSCNR does not record the 09A abend code issued by ISGQSCAN. 

Recorded by ISGSMI 

ISGSMI (at entry point ISGSMIFR) records the following in the SOW A VRA: 

• The FRR parameter list. (Refer to the P ARMAREA structure in module 
ISGSMI.) 

• The original system completion code and reason code (in SOWAGR15) 
describing the error. 

5-354 MVS Diagnostic Techniques 



) 

Appendix A. Process Flows 

This appendix describes the flow of various MVS processes. These processes are 
described in the following chapters: 

• RSM Processing for Page Faults 
• Swapping 
• EXCP/IOS 
• GETMAIN/FREEMAIN 
• VT AM Process 

• TSO 

Appendix A. Process Flows A-1 



RSM Processing for Page Faults 

lEA VPIX Tests 

IEAVGFA Tests 

This chapter describes the important aspects of the RSM component's page-fault 
processing. Figure A-I outlines the major functions in this processing. 

Note: When page fault assist (PF A) microcode is installed and active, initial page 
faults are usually resolved by PF A without presenting an interruption to the 
software. (Also note that PFA does not make entries in the trace table.) 

During page fault processing, several important tests are made. The following 
describes what these tests are, where they are made, and what they mean during 
the course of the RSM page fault process. 

lEA VPIX performs the following: 

• Checks the PGTE to ensure that PGTPVM is still on after the SALLOC lock 
has been obtained. This is done because in an MP environment the other 
processor might have validated the PGTE (turned PGTPVM off) between the 
time this processor page-faulted and the time the SALLOC lock was obtained. 

• Checks the PGTE to ensure that PGTPAM is on. If it is not, this is a logical 
protection violation. 

• For a first reference, a PFTE is allocated directly, if one is available on the 
available frame queue; the page is cleared to zeros and the PGTE is validated. 
A first reference is one where the PGTE contains X'OO 19' or X'0009' and 
there is no auxiliary storage assigned or there is no deferred PCB for the 
page. 

• If reclaim from the available frame queue is possible, IEAVPIX allocates the 
PFTE and validates the PGTE. 

• If IEAVPIX cannot allocate a PFTE, it initializes a PCB and calls 
IEAVGFA. 

IEAVGFAperforms the following: 

• Checks the XPTE to determine if any other requests for this page are 
outstanding. If XPTDEFER is on, other paging requests (PCBs) for this 
page have been deferred. (The PCB is on the GF A defer: queue anchored in 
the PVT.) Normally, the fact that a paging request is currently outstanding is 
indicated by PFTPCBSI, but in the defer case there is no frame and therefore 
no PFTE is yet associated with the request. Collect any deferred requests for 
this page (using a match on VBNO and also on the ASID if the page is in the 
private area) and relate them to the current request. 

• Analyzes the current request and any related requests for the requirements of 
the frame that is needed for the requests. 

A -2 MVS Diagnostic T echniq ues 



lEA VPIOP Tests 

• Checks to see if the XRBN from the PGTE does not represent a first 
reference case. If it is not a first reference, it can be determined if page I/O is 
in progress for the page, of if the frame has been .used for another purpose 
since last backing the VBN. If no I/O is in progress, the frame is acceptable 
to the current request and its related requests, and the frame still contains the 
requested VBN; then the frame is reclaimed and is available immediately. 

• If PFTPCBSI is on, checks to see if a PCB can be found on an I/O queue. 
The VBNO value is used to search for the correct PCB on the I/O queue to he 
searched. If no PCB is found, lEA VGF A issues a COD abend to record the 
error. If a PCB is found, a PCB relate function is performed if the I/O frame 
is acceptable to the current request and its related requests. 

• If an old frame with or without I/O in progress cannot be found that is 
acceptable to the current request and its related requests, a frame is selected 
from the front of the AFQ. The PFTE is fil1ed in and it is queued on either 
the common or the local frame queue. The XPTE (XPTXAV) is now 
checked to see if the paging data sets contain a copy of this virtual page. I.f 
XPTXA V is on, a page in operation is started; if it is off, the frame is cleared 
to zeroes. 

• If the AFQ is empty, the request is deferred by placing the current PCB and 
any related PCBs on the PCB defer queue (PVTGF ADF) of the PVT. The 
XPTDEFER flag is set in the XPTE. 

• If a page-in is needed, the XRBN of the allocated frame is placed in the PCB 
in the AlA (which is always physically adjacent to the PCB) and the AlA is 
passed to ASM. Processing then exits as shown by steps 9, 10 and 11 in 
Figure A-I. 

lEA VPIOP receives control from ASM and lEA VPIOP is passed the AlA when 
I/O has completed. lEA VPIOP checks for an I/O error and marks the PCB I/O 
complete. If necessary, IEAVPIOP indicates an I/O error in the PCB. 
lEA VPIOP checks PCBFREAL to determine if the reason for the page-in still 
exists. If PCBFREAL = 1, the page-in has been NOPed for some reason (such as 
FREEMAIN) and the frame is sent to the AFQ. If PCBFREAL = 0, the PGTE is 
validated. IEAVPIOP will then RESET/RESUME the suspended page fauiter 
and the PCB is returned to the free queue. If RESUME is unsuccessful, then 
lEA VPIOP will leave the PCB on the I/O queue and SCHEDULE lEA VIOCP. 

Appendix A. Process Flows A-3 



PIC 11 

IEAVFP 

Locates PGT E 
and XPTE 

IEAVPCB 

Allocates a 
PCB from the 
PCB free 
queue 

IEAVPFTE 

Moves PFTE 
from AFO to 
LFO or CFO 

IEAVSUSP 
(physically located in 
IEAVEPC) Suspends 
page faulting TCB/SAB 
and allocates an SSA B 
for an SAB mode page 
fault 

IEAVEPC 

Determines type of 
program interrupt 

IEAVPIX 

Formats page 
fault PCB 

0 
IEAVGFA 

IEAVPCB 

Queues PCB on 
I/O queue 

® 

@ 

0 

Note: Circled numbers indicate the sequence of processing. 

Figure A-I (Part I of 2). Page Fault Process Flow 

A -4 MVS Diagnostic Techniques 

IEAVEDSO 

Saves status and 
selects next unit 
of work to run 

ILAIODAV 

Passes AlA (ASM's 
request element) 
to ASM. 



ILRPAGCM 

ASM I/O complete 
processor 

Executes under an 
I ECVPST (POST 
STATUS) SRB IEAVPIOP 

IEAVETCL 

Resume sets 
dispatchable 
suspended 
unlocked TCBs 

• Validates PGTE 
• Resets/Resumes 

page faulter 
• Frees the PCB 
• Schedules IEAVIOCP 

if could'not do resume 

IEAVRSET 

(physically located 
in I EAV EPC) Sets 
dispatchable 
suspended SSRBs 
or locked TCBs 

IEAVPCB 

Returns PCB to 
PCB free queue 

IEAVIOCP 

• Runs in page 
faulting address 
space in SRB mode 

• Resets page 
faulter for any PCB 
bel ongi ng to 
address space with 
PCBRESET=1 

• Frees the PCB 

Note: Circled numbers indicate the sequence of processing. 

Figure A-I (Part 2 of 2). Page Fault Process Flow 

Appendix A. Process Flows A -5 



lEA VIOCP Tests 

lEA VIOCP runs in SRB mode and searches the local and common PCB queues 
looking for I/O complete PCBs. Once found, lEA VIOCP calls lEA VRSET for 
any I/O complete PCBs with PCBRESET = 1. The reset function (lEA VRSET in 
lEA VEPC) is responsible for making the suspended work (TCB/SSRB) 
redispa tcha ble. 

lEA VIOCP searches the local and common PCB queues looking for I/O complete 
PCBs. Once found, lEA VIOCP calls lEA VRSET for any I/O complete PCBs 
with PCB RESET = 1. The reset function (lEA VRSET in lEA VEPC) is 
responsible for making the suspended work (TCB/SSRB) redispatchable. 
lEA VIOCP validates the PGTE for any I/O-complete PCB with a nOll-zero 
PCBVBN, with PCBFREAL = 0, and without an I/O error (PCBIOERR = 0). 
When this is done, lEA VIOCP returns the PCB to the free queue. 

Because lEA VIOCP is queue-driven, it might not be able to get the local lock 
when it requests it. In such a case, it can be held in suspension by a page faulter 
whose PCB is on the queue lEA VIOCP is working on. Therefore, up to two 
SRBs can be scheduled for lEA VIOCP at one time. If lEA VIOCP does not hold 
the local lock and discovers an I/O-complete PCB that needs to be reset and for 
which reset requires the local lock (PCBLLHLD = 0, PCBSRBMD = 0, 
PCBPEX = I, an unlocked TCB page fault), it can call lEA VOPBR to reschedule 
itself (exit to dispatcher). IEAVIOCP continues its scan of the PCB queues, doing 
any work possible before it exits to the dispatcher. 

A -6 MVS Diagnostic Techniques 



Swapping 

Swap-In Process 

This chapter describes the major considerations and decisions of the swapping 
processes (swap-in and swap-out). 

The numbers in the following descriptions correlate to the circled numbers in 
Figure A-2. 

1 - 2 

3 - 4 

5 

SRM schedules IEAVSWlN and passes it the address of the ASCB in SRBPARM. 
lEA VSWlN obtains working-set size (SPCTWSSZ) + 1 PCBs. It then scans the SPCT 
LSQA entries and fills in a PCB for each entry. Next IEAVSWlN scans the stage one 
pageable page entries. Finally, IEAVSWIN scans the fix entries. For private area fix entries, 
it builds a stage one PCB. For common area fixes, it adds the SPCT fix count to the PFTE 
fix count. For common area fixes not in storage, it builds a PCB. Next, lEA VSWIN scans 
the SPCT segment entries and builds a PCB for each bit map entry. It then returns unused 
PCBs to the PCB free queue and calls IEAVGF A. If enough frames are not available for the 
stage one pages, IEAVGFA returns a code of eight to IEAVSWIN and sets PCBRETRY. 
IEAVSWIN notifies SRM via a SYSEVENT SWINFL to try the swap-in later. 

IEAVGF A allocates frames for both stage one and stage two PCBs and then calls ASM to 
start swap-in I/O. 

After swap-in I/O completes, the lEAVSWIN root exit IEAVSIRT is called by IEAVPIOP 
with stage one PCBs chained from the root PCB. lEAVSWIN does the following: 

• Updates PFTFXCT if any fix counts are greater than 255 
• Sets ASTESTD 
• Fills in SGTEs in non-translate mode 
• Fills in PGTEs in non-translate mode 

6 IEAVSIRT calls lEAVPCB to free the root and all stage one PCBs. 

7 IEAVSIRT calls ASCBCHAP to put the ASCB back on the ASCB queue. 

8 IEAVSIRT calls status to start both quiesceable and non-quiesceable SRBs. 

9 IEAVSIRT obtains an SRB from the RSM cell pool and schedules IEAVSWPP into the 
swapped-in address space so it can post the region control task. SWINPOST posts RCT's 
ASCBQECB to restore the address space and to start the I/O for stage two pages. Note that 
stage two frames are allocated at the same time as stage one frames. 

10 IEAVGFA allocates frames for stage two PCBs and then calls ASM to start paging I/O. 

Appendix A. Process Flows A -7 



IEAVPCB 
SWIN gets 
SPCTWSSZ+1 
PCBs 

PCBs on entry to 
SWIN root exit 

IRARMCSI 
SRM schedules 
swap-in 

IEAVSWIN 
(MAINLINE) 

(';;'\ Executes in SRB 
~ __ \V_2;:;;-. __ ~ mode in master's 

address space. 
Builds PCBs and 
gets frames 
allocated 

o 
IEAVGFA 
Allocates 
Stage 1 
frames 

Stage 1 I/O Completes 

ILRPAGCM 

IEAVPIOP 
Decrements 
SWIN root 
count; Calls 
root exit 
when CQunt=O 

IEAVPCB 
Frees root 
and Stage 1 
PCBs 

® 

Stage 1 

ILRSWAP 
Starts 
Swap-in 
paging I/O 

PCBs on exit 
from SWIN 
mainline 

IEAVSWIN 

Schedules SRB to 
swapped-in 
address space IEAVSWIN 

Entry IEAVSIRT 
(root exit) 
Rebuilds segment 
and page tables 

IEAVEACO 
(ASCBCHAP) 
Places ASCB 
on dispatching 
Queue 

IGG079 
(entry IGC07903) 
Status start SRBs 

Entry I EA VSWPP 
Post RCT to 
restore address 
space, build PCBs, 
and get frames 
allocated 

IEAVGfA 
Allocates 
Stage 2 
frames 

Private Area Stage 1 PCBs chained out of 
PCBRWRK 1 and PCBRWRK2 

Figure A-2. Swap-In Process Flow 

A-8 MVS Diagnostic Techniques 

ILRIODRV 
Starts paging 
I/O 



Swap-Out Process 

IEAVAR02 

SRM (IRARMCSO) posts the region control task (RCT) to swap out the address 
space. RCT is responsible for: 

• lOS purge processing: I/O requests that have been requested or started are 
purged or quiesced, respectively. 

• Halting all tasks in the address space with the exception of its own task. 

• Preventing system SRBs from executing. 

IEAVSOUT 

The numbers in the following descriptions correlate to the circled numbers in 
Figure A-3. 

1 IEAVSOUT receives control from RCT and calls STATUS (IEAVSSNQ) to stop 
non-quiesceable SRBs. 

2 lEA VSOUT gets enough PCBs to page out every private area page in the address space plus one 
to be used as a swap out root. 

3 IEA VSOUT clears the swap control table (SPCT) LSQA stage one pageable page, and fix entries 
(SPCTSWPE), and all bits in the bit maps in the segment entries (SPCTSEGE). Prior to this, 
the SPCT reflects the status of the address space at the last swap-out. SPCTSEGEs provide a 
mechanism to check how many and which segments are obtained via GETMAIN in an address 
space because there is a SPCTSEGE for each private area segment that is obtained by 
GETMAIN. 

4 IEA VSOUT builds a six-byte LSQA entry for each frame on the LSQA frame queue. 

5 IEAVSOUT builds an eight-byte fix entry for each page (private or common) that has an FOE 
on any TCB in this address space. The fix count is added into the fix entry SPCTSWPE. Note 
that fixes done without a TCB address supplied do not have FOEs. 

6 IEAVSOUT initializes a root PCB to zero. It initializes the remaining PCBs, which might be 
used to swap-out a page as follows: 

Partially initialized Swap-Out PCB 

PCB 

X'OO' FFOOOOOO - Not currently queued flags 
,,00000000 

X'08' 06aaaaaa - Root and output flags, and 
00000000 address of root PCB 

X'tO' 80000000 - Free r~al frame flag 
X'14' 80000000 - Swap-out flag 

00000000 
00000000 

X'20' aaaaaaaa - Address of ASCB 

X'24' 00000000 - Start of AlA 
00000000 

X'2C' 18COOOOO - Swap-out and write flags 
00000000 
00000000 
00000000 
00000000 

Appendix A. Process Flows A-9 



IEAVAR02 
Region Control Task 

IEAVSOUT ~ 

0) Stops non-quiesceable SRBs 

0 Gets ASCBFMCT+l PCBs 
(1 extra for root) 

0 Initializes SPCT 

0 Builds LSOA entries in SPCT 

0 Builds fix entries in SPCT 
from FOEs 

G) Initializes PCBs including 
root 

0 Purges paging I/O 

0 Completes Stage 1 PCBs 
(LSQA and Fixed) 

0 Completes working set PCBs 
(changed private area) 

@ Frees unused PCBs 

@ Schedule I EAVPI 01 to master 

IEAVEACO 
(ASCBCHAP) 
Removes ASCB 
from dispatching 
queue 

scheduler's address space 

@ Returns to RCT 

After the SRB is dispatched in 

space: 

@ 

ILRSWAP 
Starts paging 
I/O 

Figure A-3. Swap-out Process Flow 

A -10 MVS Diagnostic Techniques 

IEAVINV 
Issues PTLB 

SRB for 
IEAVPIOI 

PCBs are on local queue 
(RSM L 100) when 
received by PIO I 



7 lEA VSOUT purges paging for this address space on the common PCB I/O queue, local PCB 
I/O queue, and the OF A deferred queue. The processing is to post users waiting on fixes, reset 
page faulters, and to NO·OP the PCB. (Fix entries are made for PCBs found for private area 
zero TCD fixes.) The NO-OP process makes the PCB look like a cancelled page load PCB; that 
is, no notification (RESET/POSTING) is to be done and the frame is to be freed. PCBs on the 
OFA defer queue are removed. The only exceptions here are for zero TCB fixes for which no 
entries could be made in the SPCT (OETMAIN for SQA failed). These PCBs remain 
unchanged and the fixed frame remains fixed throughout the swap. 

8 IEAVSOUT fills XRBNs and VBNs into PCBs for each LSQA stage one pageable page or fix 
entry now in the SPCT. Even unchanged fixed or LSQA pages are paged out. If a one·stage 
swap is to be done, unchanged recently referenced pageable pages are also paged out. 

9 IEAVSOUT next initializes a PCB for each changed page on the local frame queue for which a 
stage one pageable page PCB was not built. It then sets a bit in the bit map (SPCTBITM) for 
all pages that are to be paged in as part of stage two swap-in. The steal is based on a 
comparison of a criterion number passed by SRM in OUXBSTC to PFTUIC. 

10 IEAVSOUT returns any unused PCBs to the free queue. This marks where un the free queue 
the swap-out began. 

11 IEAVSOUT schedules an SRB for IEAVPIOI, releases the SALLOC lock, and returns to ReT 
(lEA V AR02), which waits for ASCBQECB to be posted by swap-in (IEAVSWIN). Because 
release of the SALLOC lock enables the processor, an address space is often swapped·out before 
RCT has gotten a chance to wait. When analyzing a stand-alone dump, you will see the 
following if the above case is true: 

• The RCT is dispatcLible. 
• There is no wait count in RBWCF. 
• There are no frames allocated to storage (ASCBFMCT = 0). 
• The address space is not on the ASCB dispatch ability queue. 

Do not consider this situation a problem. 

lEAVPIOl 

IEAVPIOI receives control in the master scheduler's address space. It calls 
ASCBCHAP to remove the ASCB from the dispatching queue, calls ASM with 
the string of AlAs passed to it from lEA VSOUT via the SRBPARM field, and 
calls lEA VINV to PTLB and exits. 

Appendix A. Process Flows A-II 



EXCP/IOS 

Figure A-4 is an overview of the I/O process through MVS using EXCP as the 
driver. The following outline correlates to this process. 

1. Problem program issues GET/PUT (implied wait). 

2. Problem program branches to access method. 

3. Access method issues SVC 0 (EXCP) to EXCP front end. 
or 
Access method issues SVC 114 (EXCPVR) to EXCP front end. 

4. EXCP front end: 

a. Valida tes request. 
b. Builds RQE. 
c. Queues related requests. 
d. If a VIO data set, goes to window intercept processor. 
e. Builds SRB/IOSB. 
f. If a virtual user, gets TCCW and BEB. 
g. Branches to PAGE FIX appendage (if specified and not a V = R region). 
h. Branch returns. 
1. If EXCPVR request, fixes pages from PAGE FIX appendage. 
j. Fixes DEB for V = R user if not already fixed. 
k. If a DASD device, branches to END of EXTENT appendage (if seek 

address is out of specified extent). 
1. Branch returns. 
m. Branches to START I/O appendage if specified. 
n. Branch returns. 
o. If virtual user: translates CCWs, fixes pages for buffers, and builds IDAL. 
!' !~~'-!~~ START I/O ~~~;:'~ (~;~~~b. ~~ti'j" tv lOS flV11l I;;;11U). 

5. lOS front end. 

a. Builds 10Q. 
b. Selects physical path (channel scheduling). 
c. If path available, adds prefix CCWs and issues SIO; otherwise, queues 

10Q on LCH. 
d. Restarts all queued l/Os to available channels. 
e. Branch returns to EXCP front end and branch returns from EXCP front 

end to problem program WAIT. 

A -12 M VS Diagnostic Techniques 



:> 
~ 
8-
;;<' 

?> 
"" '"' o 
~ 
Cf} 
Cf} 

~ 

~ 
Cf} 

> I ...... 
W 

'-=' 

.. 

~ ;* 
"'l 
It> 

i> 
~ 

o 
00 -~ 
~ 
~ 

'"" ~ 

i 
~ 
~ 

User 

Enabled, Problem Program, User Key, Under TCB ---------
BR Access Method SVC 0 (EXCP) 

GET/PUT 
EXCP SVC 114 (EXCPVR) 

Enabied, Supervisor. Key 0, Under TCB, Local Lock 
-----------

PAGE FIX BRANCH 

AppendagE 

1 BRANCH 

" 
BRANCH 

EOE 
Appendage 

BRANCH 

BRANCH 

C~I~pendag;):= BRANCH 

Enabled, Problem Program, User Key, Under TCB -- -- -- -- -- ----
WAIT BRANCH 
ECB=ECBX 

--------- -------------
Disabled, Supervis~e~ 

PCI BRANCH 
Appendage 

l BRANCH 

- - -- -- --- ---- ---- ---
Supervisor, Enabled, User Key, Local Lock, Under SRB - -- ---- -- -- -- -- --

Appendages 

PCI fV=Vj BRANCH 

CE 
BRANCH 

ABE 

EXCP Processor lOS 

Enabled, Supervisor, Key 0, Under TCB, Local Lock Disabled, Supervisor, Key 0, Under TCB 

EXCP Front End ~ IDS Front End 

I Validates Request Builds 100 

Builds ROE Selects Physical Path 

Oueues Related Requests (CHANNEL SCHEDULING} 

If VIO Data Set, Goes to WINDOW 
Path INTERCEPT PROCESSOR No 

Builds SRBIIOSB Available Oueues 100 on LCH 

If Virtual User, Gets TCCW and BEB ? Return To Caller 

Yes 

Branches (If PAGE FIX Appendage 
Specified and Not V=R Region) Prefixes CCWs 

Issues SIO (Instruction) -----, 
Fixes DEB For V=R if Not Fixed Yet. Restarts All Oueued I/Os 

to Available Channels 

Branches IDASD Device and Seek Returns 

Address is Out of Extent} 

I Branches (If SIO Appendage Specified) 

I 

I 

I 

Channel Program 
If Virtual User: Translates CCWs, Execution 

Fixes Pages For Buffers, Builds IDAL 

I Issues ST ART 10 (Macro} 

Returns 
BRANCH I I I/O Interrupt 

I 
f----- -- -- -- ---- -- --

f-- -- Supervisor, Disabled, Key ~ l---- -- -- - -Supervisor, Disabled, Key 0 
---------

Disabled Interrupt Exit (DIE) 
IDS Back End 

( FLiH ) 
If PCI and V=R or EXCPVR 

Maps 10SB/IOB 

y" <>-DIE? 

Maps 108/1058 
BRANCH 

TRAS 

BRANCH 
TRAS l

NO 
Oueues Type 3 Related Requests -

Schedules POST STATUS 
(Global SRB) 

Channel Restart 
Returns to FLiH 

f---- -- -- -- -- -- -----r--- -- -- -- -- -- -- -- -- -- ---
Supervisor, Enabled, Key 0, Under SRB Supervisor, Enabled, Key 0, Under SRB 
---------- -- -----.-----

IDS POST STATUS From 
Dispatcher 

E XCP Back End , 
BRANCH 

Maps 10SB/IOB If Exit Processing (PCI, CE, ABE) 

Maps 108/IOSB 
BRANCH 

Termination: 
Maps 10SB/IOB 
Start Related Requests BRANCH No Yes Branches to ERP or 

I 
Error 7 

Free Control Blocks Schedules ERP 
Posts ECB = ECBX Exits to Dispatcher 
Exits to Dispatcher 



6. lOS back end (entry from I/O FLIH) entered as a result of I/O interrupt. 

a. If DIE is specified: 

1) TRAS (translates address space - to get addressability to control 
blocks in originating address space). 

2) Branch enters DIE. 
3) If PCI and Y = R or EXCPYR, maps 10SB to lOB and branch enters 

PCI appendage. 
4) PCI processing. 
5) Branch returns ot DIE. 
6) Maps lOB to 10SB. 
7) Queues type-3-related requests. 
8) Branch return to lOS front end. 
9) TRAS (returns to addressability at time of interrupt). 

b. Schedules POST STATUS fflglobal" (means POST STATUS will be 
entered via dispatcher). 

c. Branches to channel restart to start queued 10QEs on LCHs. 

d. Returns to FLIH. 

e. If system was in SRB mode, loads PSW for SRB or returns to dispatcher. 

7. lOS POST STATUS (scheduled from lOS back end). 

a. If PCI, CE or ABE appendages specified: 

1) Branch enters EXCP back end. 
2) Maps 10SB to lOB. 
3) Branch enters appropriate appendage. 

5) Branch returns to EXCP back end. 
6) Maps lOB to 10SB. 
7) Branch returns to lOS POST STATUS. 

b. If error, schedules ERP. (See 8.) 

c. Branches to EXCP back end for termination processing. 

1) Maps 10SB to lOB. 
2) Starts related requests. 
3) Unfixes buffer pages. 
4) Posts ECB (the one after the GET/PUT). 
5) Exits to the dispatcher. 

8. ERP interface. 

a. If IBM ERP, get ERP work area. 
b. If DASD (lECYDERP), branch to ERP. 
c. If non-DASD, schedule ERP loader (lECYERPL) under SIRB. Use 

stage II exit effector to queue SRB to ASXBFSRB. Set stage II exit 
effector switch in ASCB. 

A -14 MVS Diagnostic Techniques 



GETMAIN/FREEMAIN 

GETMAIN Processing 

This chapter describes the processing for virtual storage requests in terms of 
GETMAIN processing and FREEMAIN processing. The flow through the 
GETMAIN jFREEMAIN process is complicated and the VSM control block 
structure should be understood prior to following this process. This process flow 
is not intended to explain how GETMAINjFREEMAIN works but to provide an 
understanding of the important considerations of virtual storage management, 
how the important control blocks are manipulated, and the common subroutines 
ofVSM. 

The following describes the processing required to satisfy a given -GETMAIN. 

1. A problem program issues an SVC 10 GETMAIN for subpool 0 for 256 
bytes. 

2. GETMAIN (entry at IGCOI0) saves the TCB addresses in LDA, sets 
GETMAINjFRE~MAIN's FRR (module IEAVGFRR), sets up the length 
and subpool ID for common processing routines, saves the caller's mode in 
LDARQSTA, and goes to the common GETMAIN routine, GMCOMMI. 

3. GMCOMMI goes to routine UG4SPO to find the SPQE for the requested 
subpool 0, PGTSPQE2 is called to search the TCBMSS chain. If no SPQE is 
found, PGTSPQE2 saves the address of the previous SPQE on the chain in 
SPQE SAVE. 

UG4PSO then calls routine GETSPQEC to get a 16-byte element to build and 
chain-in an SPQE for the requested subpool. The 16-byte blocks for internal 
control blocks are obtained via GETMAINC (a simple GETCELL function). 
After obtaining the SPQE, module lEA VGM04 is branched to and processing 
continues at label lEA VGM4G. 

4. At label ROUND, the request is rounded up to a doubleword boundary. 

5. GMCOMM calls GFRECORE to search the FQEs pointed to by each DQE 
for the appropriate subpool. A first-fit algorithm is used to find a free 
element large enough to satisfy the request. Exception: LSQAjSQA req uests 
for 4096 bytes or less are not satisfied across page boundaries because the 
request can be for page or segment tables that must reside in contiguous real 
storage. 

6. If storage is found in an FQE, GFRECORE calls GFQEUPDT to maintain 
and update the FQE chain. (Control is passed to step 9.) 

7. If storage is not found in an FQE, GFRECORE determines the number of 
4K-blocks that are required and calls G4KSRCH to satisfy the request. 

8. G4KSRCH performs the following functions: 

a. Calls FBQSRCH to search the appropriate FBQE chain to find 4K bytes 
of free space. (For problem program subpools, TCBPQE points to PQE 

Appendix A. Process Flows . A -15 



which points to FBQE.) Once found, FBQSRCH removes the space from 
the FBQE and, if the FBQE is empty, frees it via an internal 
FREEMAIN (FMAINB in module lEA VGMOO) or an .internal freecell 
(FMAINC in module lEA VGMOO). 

h. Acquires a DQE and chains it onto the DQE chain anchored in the 
SPQE. 

c. Calls RSM (IEAVFPI) to locate the page table entry (PGTE) and the 
external page table entry (XPTE) .of the new 4K-block. Then at label 
SETUPPTE it initializes both the GETMAIN-assigned flag (PGTPAM) 
in the PGTE and the XPTPROT (protection key) in the XPTE ( + 0). 
Note: This is the only place XPTPROT is set. 

d. Updates the SMF region usage fields of the TCT (task control table). 

e. Creates an FQE and chains it from the DQE that was just built. 

f. Returns to GMCOMM I. 

9. GMCOMMI places the address of the allocated storage in register 1 and sets 
the return code. Then GMCOMMI performs housekeeping of any areas 
chained from FMAREAS in the LDA, deletes the FRR, and passes control to 
the EXIT prologue. 

FREEMAIN Processing 

The following is a logic flow of the FREEMAIN process when a problem 
program issues an SVC 10 requesting 256 bytes from subpool O. 

1. Upon entry at IGCOIO', FREEMAIN: 

a. Saves the TCB address in LDA. 
b. Establishes the FRR (lEA VGFRR). 
c. Saves the callers mode in LDARQSTA. 
d. Sets up the length and subpool ID for common processing. 
e. Passes control to FMCOMMI. 

2. FMCOMMI passes control to FMCOM because the request is not to free an 
entire subpool. FMCOM calls PGTSPQE2 to locate the SPQE. When the 
appropriate SPQE is found, control passes to module lEA VGM04 (at label 
IEAVGM4F) where processing continues. The associated DQEs are searched 
to locate the one DQE that describes the area to be freed. 

3. The routine at label QELOCATE ensures that the area is not already 
described in an FQE (if it is, the requestor is abnormally terminated). 
Subroutine CREATFQE obtains a 16;'byte element for an FQE, then builds 
the FQE and adds it to the proper FQE chain. Note: If possible, FQEs are 
combined if the new free space is adjacent to free space described by an 
existing FQE. 

4. If less than 4K bytes are freed, FREEMAIN has completed its task and 
control is passed to the EXIT prologue. 

A -16 MVS Diagnostic Techniques 



s. 

a. If all space described by a DQE has become free, FREEMAIN frees the 
FQE and DQE and notifies RSM (IEAVRELV) that a page(s) can be 
released. 

b. If a virtual page is freed, FREEMAIN frees the FQE (and adjusts the 
DQE if the free pages exist at either end of the described area) and 
notifies RSM (IEAVRELV) to release the page(s). 

c. If the free page exists in the middle of the area described by the DQE, 
FREEMAIN obtains a new DQE and the two DQEs will now describe 
the area (essentially the area has been split into two parts). FREEMAIN 
updates the associated FQEs and notifies RSM (lEA VREL V) to releas\: 
the page(s). 

Note: RSM invalidates the PGTE(s) for the associated pages being freed 
and calls ASM to release the auxiliary storage copy of the page. If a 
page table has become completely free, lEA VGM04 is passed the PGT 
address, which is queued Jrom a field in the LDA (FMAREAS) to be 
freed at exit time. FMAREAS is really a list of items no longer required 
to describe virtual storage. 

6. After restructuring the DQEs, MRELEASE returns virtual space to the 
appropriate FBQEs. If possible, MRELEASE places 4K blocks of storage in 
an existing FBQE; if not, it builds a new FBQE and includes it in the existing 
FBQE chain. 

7. FREEMAIN returns to FMCOMMIA, which performs FMAREAS 
bookkeeping, deletes the FRR, and returns to the caller. 

Note: FMAREAS anchors a one-way chain of areas to be freed. The area 
itself contains the address of the next area at offset +0 and the subpool's ID 
and length at offset +4. These areas are not freed immediately, because 
freeing them might cause register save area overlays on the double recursion 
into FREEMAIN processing. 

Appendix A. Process Flows A -17 



VTAM Process 

The following sho~s the logic flow through the VT AM component into lOS and 
out to the 3705 when an application issues a SEND request. This description 
includes the major module flow and the control blocks required in order to 
process the request. Note that this is a general processing flow; additional 
modules not shown can be entered depending on options and device type. 
Figure A-5 illustrates the system modes at various stages of the VTAM 
processing. 

1. The application program issues the VT AM SEND macro, passing an RPL 
(request parameter list), which points to the data that is to be sent. 

2. The SEND macro branches to a VT AM interface routine (1ST AICIR). 

3. ISTAICIR determines that this is a non-authorized request and issues the 
VTAM SVC. This is a type 1 SVC (SVC 124). 

4. The type 1 SVC routine (IST APC22) obtains an MQL (MPST queueing 
element), places the address of the user RPL in it, and issues the TPQUE 
macro to queue the MQL to the TPIO PAB for the application's address 
space. 

5. The TPQUE macro (normally) issues the TPSCHED macro in order to 
schedule the TPIO PAB. 

6. The TPSCHED macro invokes ISTAPC32, which queues the TPIO PAB to 
the memory process scheduling table (MPST), and schedules an SRB to 
execute ISTAPC55. 

7. ISTAPC32 returns to ISTAPC22. 

8. 1ST APC22 issues a Type 1 exit back to 1ST AICIR. 

9. 1ST AICIR determines if the request was synchronous or asynchronous. If it 
was synchronous, is issues the WAIT macro. If it was asynchronous, it 
returns control to the application program. 

10. When the SRB is dispatched, ISTAPC55 dequeues the TPIO PAB from the 
MPST, obtains a component recovery area (CRA) from the large pageable 
(LP) pool and passes control to ISTAPC57. 

11. ISTAPC57 formats the request parameter header (RPH) (within the CRA), 
dequeues the MQL from the TPIO PAB, and passes control to ISTAPC23. 

12. ISTAPC23 release the MQL, obtains a Copy RPL (CRPL) from the CRPL 
pool and copies the user RPL into it. 

13. ISTAPC23 then issues the TPQUE macro to queue the CRPL to the control 
layer outbound PAB in the appropriate FMCB and schedules control layer 
processing. 

A -18 MVS Diagnostic Techniques 



14. ISTAPC23 then issues the VTAM·TPEXIT macro, which passes control to 
ISTAPC31. 

15. ISTAPC31 recognizes that there is more work to do· (control layer processing) 
and passes control to 1ST APCS7. 

Application's Address Space I Application's Address Space 
Task Mode SRB Mode 

VS2 Dispatcher 
Via SRB 

~ 

Control Layer 
Processing 

Any Address Space 
Disabled Mode 

I/O interrupt 

\ 

TP lOS 
Processing Exits to VS2 Dispatcher 

Figure A-S. VT AM SEND Process Flow 

I 
I 
I 
J 

16. ISTAPCS7 reformats the RPH (within the same CRA) for processing by the 
control layer. 

17. ISTAPCS7 then passes control to the control layer (lSTDCCOO). 

18. ISTDCCOO recognizes that this is a SEND request, obtains a logical channel 
program block (LCPB) from th~ CRPL pool, and invokes ISTRCC22. 

19. ISTRCC22 sets up the logical channel command words (LCCWs) in the 
LCPB from the options in the CRPLand issues the TPQUE macro to queue 
the LCPB to the TPIOS outbound PAB in the FMCB and schedule TPIOS 
processing. 

Appendix A. Process Flows A -19 



20. ISTRCC22 then passes control to ISTCDDOO, which issues the TPEXIT 
macro. 

21. The TPEXIT macro passes control to ISTAPC31, which recognizes that there 
is more work to do (TPIOS processing) and passes control to 1ST APCS7. 

22. 1ST APCS7 reformats the RPH (within the same eRA) for TPIOS processing 
and passes control to ISTZAFIB. 

23. Within TPIOS, ISTZDF AO allocates the fixed I/O buffer; ISTZDFCO' and 
ISTZDFDO move the user data to the I/O buffer. 

24. Once the data is moved from the user's buffer, TPIOS invokes a routine 
(ISTRCFYO) which calls 1ST AICPT. 1ST AICPT copies the CRPL back to 
the user's RPL, frees the CRPL, and POSTs the ECB complete. 

2S. ISTRCFYO then frees the LCPB and returns control to TPIOS. 

26. TPIOS then invokes ISTZEMBB, which obtains the UCB lock for the 370S 
and checks the ICNCB (intermediate controller node control block) to see if 
there is an active channel program currently executing for the 370S. 

27. If the 370S is busy, ISTZEMBB queues the I/O buffer to the ICNCB write 
queue, releases the UCB lock, and returns to TPIOS. (Go to step 29.) 

28. If the 370S is not busy, ISTZEMBB calls ISTZEMAB, which issues the 
STARTIO macro to lOS and then returns to ISTZEMBB, which returns to 
TPIOS. The IOSB, which is the interface to lOS, physically resides within the 
ICNCB. 

29. After ISTZEMBB returns to TPIOS, TPIOS issues the TPEXIT macro, which 
invokes 1ST APC31. 

30. ISTAPC31 recognizes that there is nothing more to do and calls ISTAPCS8. 

31. ISTAPCS8 frees the CRA an exits to the VS2 dispatcher. 

32. Sometime later, an I/O interrupt occurs as a result of the write channel 
program completing. 

33. lOS passes ·control to the VTAM DIE (disable interrupt exit) (ISTZFM3B). 

34. ISTZFM3B frees the I/O buffer and returns to lOS, indicating that POST 
ST A TUS should not be scheduled. 

3S. lOS exits to the dispatcher. 

A -20 MVS Diagnostic Techniques 



TSO 

Following are- some of the more important processes-invoLved with the 
.TSO/TIOC/TCAMinterfaceportion ofMVS. The processes are: 

• Time Sharing Initialization 
• LOGONProcessing 
• TSO Line Drop Processing 
• TMP· and Command Processor Interface 
• TSO Command Processor Recovery 
• TSO Terminal I/O Overview 
• TSO/TIOC Terminal I/O Diagnostic Techniques 
• TSO Attention Processing 

Time Sharing Initialization 

The system operator issues the MODIFY command (F TeAM, TS=START) to 
initialize the time sharing system. Terminal I/O control (TIOe) logic is 
documented in OS/VS TeAM Level 10 Logic. 

The major functions that occur during time sharing initialization are: 

1. The SYSl.PARMLIB member IKJPRMxx is read to determine the TIOe 
buffer size and number, the maximum number of time sharing users allowed 
to !:>e logged on at one time, and thresholds for the maximum number of 
Tloe buffers a single user can use at one time. 

2. The main control block for the time sharing system (TIOe reference table -
TIOCRPT) is initialized. This control block points to the free queue of TIOe 
buffers and has status flags indicating whether the system is in an L WAIT 
(out of TIOe buffers). The TIOCRPTalso points to a pool of terminal 
status blocks. 

3. The pool of terminal status blocks (TSBs) is built. The number of TSBs is 
determined by the maximum user parameter in IKJPRMxx. A TSB is 
assigned to a user during logon processing. The TSB connects the ASCB of 
the user to the terminal-name table entry of the terminal. From the 
terminal-name table entry, TCAM can locate t~e terminal table entry for the 
user and hence the address of the destination QCB. The TSB contains input 
and output queues for TIOCbuffers that are used by the time sharing user. 

The TSB also contains status indicators that record whether the user is in an 
input wait (TGET issued and no TIOC buffer on TSB input queue) or an 
output wait (maximum number of TIOC buffers used for output). 

4. The TIOC buffer pool is built. The number and size of the buffers is 
determined from IKJPRMxx. If no parmlib member was specified on the 
MODIFY TCAM command, SYSl.PARMLIB is searched for the default 
parmlib member name - IKJPRMOO. If this member is not found, standard 
default values are used. 

5. The 'TSO HAS BEEN INITIALIZED' message is issued (via WTO). 

Appendix A. Process Flows A-21 



Terminal User Issues LOGON 

,-- - ---- -- -- -r;;;S-;;';;-' 

I 
I 
I 
I 
I 
I 
I 

TIOC 

IEDAYL 
and 
IEDAYLL 

SVC34 

'LOGON' 
POST 

I Address Space I 
I 
I 

ATTACH I 
IEDAY3 
TIOC 
LOGON 
SYNC 

I 
I 
I 

I TeAM Address Space I I 
I 

L---.---r----1--
I 
I 
I 

-~ 

LOGON 
Processor 

XCTL 
STC 

ATTACH 

TMP 

New User Address Space 

Note: Details of this process are shown in 
part 2 of this figure. 

I 
I 
I 

Figure A-6 (Part 1 of 2). Ove"iew of Logon Processing 

A-22 MVS Diagnostic Techniques 



LOGON Scheduling 

IKJEFLA 

STC 
XCTL .. Logon Installation 

Initialization Exit 

I IUNK 

IKJEFLB IKJEFLC IKJEFLE 

Logon ATTACH Logon LINK Logon 
Scheduler Monitor Verification 
Router 

IKJEFLH 

Calls Job POST Schedules CALL Logon 
Scheduling Session Information 
Subroutine Routine 

IXCTL 

IEESB605 IKJEFLJ 

Job LINK Pre-TMP 
Scheduling Exit 
Subroutine 
(STC) 

ATTACH TMP 
Issues 
"READY" 
Message 

Figure A-6 (part 2 of 2). Overview of Logon Processing 

Appendix A. Process Flows A-23 



LOGON Processing 

The major functions of LOGON processing are: 

1. TCAM handles line I/O and routes the buffer to the TSO message handler. 
The message handler routes the buffer to various functional routines. One of 
these is logon. 

2. The logon routine receives control from the TSO message handler as a result 
of the expansion of the LOGON macro. Logon routes the buffer to 
TSINPUT so that logon scheduling may retrieve it via a TGET SVC. TIOC 
logon then issues an SVC 34 to notify the master scheduler that logon 
processing should be started. TIOC then issues QTIP 10 to initialize control 
blocks. Note: QTIP is the TIOC code invoked when SVC 101 is issued. It 
performs functions related to communication between the TCAM and TSO 
user address spaces. The specific function it is to perform is indicated by an 
entry code (for example, QTIP 10). A table of entry codes, their callers, the 
functions performed, and the modules that provide the function is contained 
in OS/VS TeAM Level 10 Logic. 

QTIP issues an XMPOST to inform the master scheduler that TIOC 
initialization is complete and that memory create may begin. TIOC then 
returns to the message handler for final buffer disposition. If logon fails or is 
terminated, TIOC i~ notified so that the appropriate error message can be 
issued. 

3. TSINPVT invokes QTIP to move the contents of the TeAM buffer to the 
TIOC buffers. This data can then be accessed using TGET services. 

4. The master scheduler recognizes that a logon has been requested and attaches 
TIOC synchronization. This routine waits until QTIP signals with a post that 
memory create can begin. Once an address space has been initialized for the 
logon request, the region control task is the first task to be dispatched. 

5. Region control establishes an EST AE routine, attaches the dump task, 
attaches started task control, and waits for one of the following: 

• An attention request signaled by TIOC via XMPOST 
• A swap request signaled by SRM 
• A termination request 

6. Started task control recognizes that logon is requested and passes control to 
logon initialization (lKJEFLA). 

7. Logon initialization opens the VADS and broadcast data sets, initializes 
control blocks, and calls logon scheduling (IKJEFLB). 

8. The logon load module contains four service modules. One, IKJEFLPO, 
contains the default values for the number of seconds requested between 
'LOGON PROCEEDING' messages and the number of logon attempts 
allowed before automatic logoff. Both values are sysgen options on the TSO 
macro. The logon scheduler attaches the logon monitor (lKJEFLC). The 
scheduler and monitor now begin parallel processing. WAITs and POSTs are 
used when synchronization is required. 

A-24 MVS Diagnostic Techniques 



9. The logon monitor (IKJEFLC) builds the environment control table (ECT), 
sets the tIrst element of the input stack to indicate terminal input, and links to 
logon verification. 

10~ Logon v~rification (IKJEFLE) calls the user's pre-prompt exit if it was coded. 
Logon verification makes the following, checks: 

• Determines (via ENQ) iftheuserid is in use. 
• Checks the user's password, account number, and procedure name. 
• Checks the performance group requested in the LOGON command. 

Logon verification proJ,llpts the user for missing parameters if required 
parameters' do'not have defaults in the UADS. After all required parameters 
have been obtained, verification builds the JOB and EXEC statement images 
for the session. The EXEC statement contains the name of a logon procedure 
specified in the UADS or the LOGON command. 

11. Logon verification posts the logon scheduler when the parameters are 
complete and the jobcan,be scheduled. The scheduler's job now is to cause 
the broadcast messages to be listed at the terminal at the same time that the 
user's job is being scheduled. 10 do this, it posts the monitor task and then 
XCTLs to the initiator, passing it the JCL that has been created. 

12. The logon monitor regains control when signaled by the logon scheduler, 
attaches the LISTBC command processor to write broadcast messages to the 
terminal, and then waits for a post from a special initiator logon routine. 
This post signals that final processing can be completed. 

13. The initiator uses the TSO internal reader to send the logon job to JES2. 
JES2 reads the user's procedure from the procedure library specified by the 
&TSU job class parameter and changes the JCL to internal text. This is 
placed on the spool data set. Once this processing has completed, the 
initiator requests the user's job by ID and completes initiation and allocation. 
Initiation finally gives control to a special TSO routine (pre-TMP exit, 
IKJEFLJ). This routine posts the logon monitor and issues a WAIT. The 
logon monitor then terminates. This causes the initiator task to regain 
control. The logon monitor is then detached. Once the monitor is detached, 
the initiator attaches the TMP and waits. 

14. The TMP (specified as IKJEFTOI in the LOGON PROC on the EXEC 
statement) performs initialization and then issues a PUT GET to write the 
'READY' message and request a command from the user. This PUTGET 
results in a TPUT to send READY and a TGET to request terminal input. 
The user is now in an input wait. This signals SRM to perform a swap-out 
until input is available. 

Figure A-7 shows TCAM's organization after a TSO logon. The following are 
detailed descriptions of the logon process including information on control block 
manipulation. The numbers in parentheses correlate to the numbers in the 
preceding summary of the logon process. 

Appendix A. Process Flows A-25 



Common Storage 

CVT 

TCAM's Address Space 

MCP 

" " 
H MH 

7 
/ 

ASCB 

TSINPUTaCB 

-TSO 

- User ASID 

Figure A-7. TeAM Organization After a TSO Logon 

A -26 MVS Diagnostic Techniques 

TS buffers 
(with data) 

TCAM buffers 

1 TSINPUT aCB I 



TIOC Logo" Proc~ss;"g (2): 

• Checks the maximum user count in TIOCRPT. 

• Issues SVC 34 'LOGON'. 

• Places the returned ASID in the QCB for this line. 

• Calls QTIP (entry 10) to find and initialize the TSB. 

Puts TSB address in the ASCB for the user's address space. 
Puts the ASCB address in the TSB. 
·Updates the user count. 
Puts the·UeB address in the TSB. 
XMPOSTs 'TIOC SYNC'. 

• Sets the QCB to indicate TSO. 

• Pass the logon message buffer to TSINPUT QCB (which is now available to 
system logon processing via GETLINE). 

Logo" Inititdizatio" (IKIEFLA) (7): Logon initialization uses the address of the 
ASCB as input arid does the following: 

• Ensures SYS1.UADS and SYS1.BRODCAST data sets are allocated. 

• Gets the LWA (logon work area) from the LSQA. (See Figure A-8.) 

• Puts the LW A address in the ASXB. 

• Gets the JSEL Gob scheduling entrance list) from the LSQA. 

• Puts the CSCB and ASCB addresses in the JSEL. 

• Gets the JSXL Gob scheduling exit list) from the LSQA. 

• Puts the LWA address in the JSXL. JSXL contains pointers to the 
PRE-TMP, POST-TMP, and PRE-FREEPART exits. 

• Puts the JSXL address in the JSEL. 

• Gets the UPT (user profile table) from subpool230. 

• Issues BLDL for the installation exit routine (Release 2 only). 

• Gets the PSCB (protected step control block) from subpool 230. 

• Puts the PSCB address in the L W A. 

• Puts the UPT address in the PSCB. 

• Get-s the re-Iogon buffer from subpool230. 

• Puts the re-Iogon address in the PSCB. 

• Calls the logon scheduler router. 

Logo" Scheduler Router (IKIEFLB) (8): 

• Frees subpool O. 
• Attaches the logon monitor. 
• Posts the monitor with the 'schedule' code. 
• Waits for the 'what to do' post from the monitor. 

Appendix A. Process Flows A-27 



ASXB 

X'14' ~ LWA 

X'20' 

24 

28 

2C 

5C 

60 

Logon work area 

II LWA" 

PSCB 

• ECT 

LOGON ECB 

PROMPT ECB 

SCHED ECB 

~ LOGON ECB 

, PROMPT ECB 

o 

30 ~ RLGB 

34 • UPT 

.-...-------1 
4 • 

*The logon work area (lKJEFLWA) is a 148-byte area that is created by IKJEFLA 
and is pointed to by ASXB and JSXL. It contains control block pointers, entrance 
lists, and parameter lists that are required for logon/logoff. 

Figure A-S. Logon Work Area 

A-28 MVS Diagnostic Techniques 



(AJgtM'Mollitor (IKIEFLC)· (9): 

• Switches the storage key to '8'. 
• Gets theSTAXwork area fromsubpooll. 
• Gets the BCT (environment control table) from subpooll. 
• Puts the BeT addtess in the LWA. 
• Invokes the STACK macro (input is to come from the terminal). 
• Gets thenewCSCB (command scheduler control block) from the SQA. 
• Sets theCSCB toindicate to the master scheduler that the job is: 

swapp able 
terminal job 

. cancellable 
TSO 

• Gets the local and CMS locks. 
• Puts the CSCB address in the ASCB. 
• Frees the local and CMS locks. 
• Issues the MGCR macro to remove the old CSCB from the chain. 
• Puts the new CSCB pointer in the JSCB and JSEL. 
• Issues the MGCR macro to add the new CSCB to the chain. 
• Issue the ST AX m.acro to set up attention handling. 
• Links to logon verification. 

Logon Verification (IKJEFLE) (10): 

• Calls the installation exit (if necessary). 

• Issues GETLINE or uses the installation supplied'buffer containing the logon 
parameters. 

• Calls the command scan service routine to ensure that input is the LOGON 
or LOGOFF command (assumes LOGON). 

• Calls PARSE for logon parameter parsing. 

• Indicates no password required for the UADS. 

• Issues ENQ on the UADS (prevents the ACCT CP from changing UADS). 

• Opens the UADS. 

• Issues FIND for the use rid member (userid is taken from the logon 
parameter). 

• Places the userid in the PSCB (protected step control block). 

• Posts the logon scheduler. 

• Waits for the post from the logon scheduler. 

Logon Scheduler (IKJEFLB): 

• Enqueues (via ENQ) on SYSIKJUA.USERID. 
• Posts logon verification. 
• Waits for logon verification. 

Appendix A. Process Flows A -29 



Logon Verification (IKIEFLE): 

• Dequeues (via DEQ) from DADS. 

• Puts the userid in the CSCB. 

• Puts the userid in the ASCB. 

• Enqueues (via ENQ) on DADS. 

• Finds userid member. 

• Dequeues (via DEQ) on DADS. 

• Reads UADS. 

• Issues check. 

• Places the parameter in the proper control block. 

• Places the password in the TSB. 

• Places the procname in the CSCB. 

• Places the region size in the PSCB. 

• Informs SRM of the performance group. 

• Builds the JCL: 
/ /USERID JOB 'account#' ,REGION = region size 
/ /procname EXEC procname, PERFORM = performance group 

• Issues the 'LOGON IN PROGRESS' message to the terminal. 

• Closes the DADS. 

• Clears 'NO PASSWORD' in the JSCB. 

• Dequeues (via DEQ) from UADS. 

• Posts the logon scheduler to schedule the session. (11) 

• Waits for the logon scheduler. 

• Sends the broadcast messages (via the information routine). (12) 

• Issues the 'LOGON IN PROGRESS' messages until posted by the initiator. 

• Frees subpool 78. 

A -30 MVS Diagnostic Techniques 



Logon Scheduler (IKJEFLB) (11): 

• Sets up the interface to JSS. 
• Posts the logon monitor. 
• XCTLs to JSS (initiator). 

Job Scheduling Subroutine (IEESB605) (13): 

• Calls the PRE-TMP exit. 

PRE-TMP Exit (IKJEFLJ): 

• Posts the monitor task to terminate. 

• Moves the PSCB from (unaccountable) subpool230 storage to (accountable) 
subpool 252 storage. The PSCB address is placed in the active JSCB. 

• Moves the UPT and the re-Iogon buffer to 0 (allows updating by CPs). 

• Returns to the initiator. 

Initiator: 

• Attaches TMP (P ARM = 'xxx ... ' is passed). 

TMP (14): 

• Issues "READY" message. 
• Requests terminal input. 

Appendix A. Process Flows A -31 



LOGON Scheduling Diagnostic Aids 

The following two figures contain information that can be.used for diagnosing 
problems that occur during logon scheduling. 

Field Name 
8nclCOIiteIRs 

LWAINXI 
LWALA 
LWALB 
LWALC 
LWALE 
LWALEA 
LWALI 
LWALH 
LWALL 
LWALGM 
LWALJ 
. LWALK 
LWALG 
LWALGB 
LWALS 
LWALTBC 
LWAMCK 
LWAPCK 
LWAPHASE 

LWAPHASE 
LWAPSW 
LWATNBT 

Name of 
Ex~Moduie 

=1 IKJEFLD 
=1 IKJEFLA 
=1 IKJEFLB 
=1 IKJEFLC 
=1 IKJEFLE 
=1 IKJEFLEA 
=1 iIoEFLI 
=1 IKJEFLH 
=1 IKJEFLL 
=1 IKJEFLGM 
=1 IKJEFLJ 
=1 IKJEFLK 
=1 IKJEFLG 
=1 IKJEFLGB 
=1 IKJEFLS 
=1 IKJEFLH 

IKJEFLGB 
IKJEFLGB 

= 0 Any LOGON module 
except IKJEFLH 

=1 IKJEFLH 
IKJEFLGB 
IKJEFLG 

Common Name of Module 

In~tallation Exit (written by installation) 
LOGON Initialization 
LOGON Scheduling 
LOGON Monitor 
LOGON/LOGOFF Verification 
Parse/Scan Interface 
Installation Interface 
LOGON Synchronizer 
LOGOFF Processing 
LOGON Message Handler 
Pre = attach Exit 
Post-attach Exit 
Attention Exit 
LOGON Monitor Recovery 
LOGON Scheduling Recovery and Retry 
Mail and Notices Processing 
ABEND was a machine check 
ABEND was a program check 
LOGON/LOGOFF Verification 

LOGON Synchronizer 
Console Restart key depressed 
Attention Routine 

Figure A-9. LOGON Work Area Bits That Indicate the Currently Executing Module 

A-32 MVS Diagnostic Techniques 



Module Module Location Condition of Action Taken by 
Issuing Being of Post Module Is$uing Module Being 
POST Posted ECB Code POST Posted 

IKJEFLB IKJEFLC field 16 Ready to invoke job Invoke LOGON 
LWASECB scheduling subroutine information routine 
inLWA (lEESB60S). (IKJEFLH). 

24 Terminating for Perform clean-up 
LOGOFF or for operations and 
unusual termination terminate. 
of LOGON monitor 
(IKJEFLC). 

IKJEFLC IKJEFLB field 12 Termination or Issue D EQ on user 
LWAPECB attention requested. iden tifica tion. 
inLWA 

16 Verified and processed Schedule a terminal 
the LOGON session. 
parameters. 

24 Processing a LOGOFF Terminate. 
command. 

KJEFLE IKJEFLB field 8 Authorized the user Issue ENQ on user 
LWAPECB identification. identification. 
inLWA 

12 Error processing. Issue DEQ on user 
identification. 

IKJEFLJ IKJEFLH field 20 Detects that the Finish LISTBC 
LWASECB initiator is ready to processing; return 
inLWA attach the TMP. to caller. 

IKJEFLH IKJEFLJ field 20 Finished LISTBC Terminate so the 
LWAPECB processing. initiator can attach 
inLWA the TMP. 

Figure A-tO. LOGON Scheduling Post Codes 

Appendix A. Process Flows A -33 



TSO Line Drop Processing 

The following description corresponds to the overview of line drop processing 
shown in Figure A-II. 

IEDAYH (Part of TCAM MCP): 

• Gets control from the TCAM dispatcher when either of the following occurs: 

- A hang up on a monitoring channel program or a message generation. 

Each input or output message ends. 

• Tests for and handles several kinds of errors. If it discovers the line has 
dropped, it begins terminating the user. Each of the following is considered a 
line drop: 

Entry because of a hang up on a monitoring channel program or a 
message generation 

A 3705 control unit error - indicated in the SCB. (station control block) 

A permanent terminal error - indicated in the SCB 

A countable error and an appropriate number of retries have been done -
indicated in the SCB 

• If a line drops, issues a QTIP 4 (SVC 101, entry co.de 4). 

QTIP 4 (IEDAYHH): 

• TSBHUNG= I. 

• Issues QTIP 28 to free the TCAM buffers. 

• If the reconnect time limit is 0 (in TIOCRPT), then branch enters SIC 
(system-initiated-cancel IKJEFLF) with code 622; upon return, returns to 
caller. 

• For a non-O RECONLIM: 

Sets TSBMINL equal to the reconnect time hmn. 

If TIOCTECB (in TIOCRPT) is posted, then increases the value in 
TSBMINL by one. Otherwise, posts TIOCTECB (which IEDA Y802, 
running as a subtask of TCAM, is waiting for). 

• Returns. 

A -34 MVS Diagnostic Techniques 



LINE DROP IN TSO ENVIRONMENT 

TeAM Address Space 

TCAMMCP 

SVC 101 
IEDAYH .. 

P OST 
QTIP4 I--

IEDAY802 CALL SIC .... Subtasks 
of TCAM 

IKJEFLF -
I 

USER Address Space r---------.J 

POST r---
I 
t 

SVC 
INITIATOR* -

-
I 

RETURN 

I 
SCHEDULE 

SRB 
I 

SIC (SRB) 
IKJL4TOO 

SVC 34 
CALL 

CALLRTM 

-
I 
I 
I 

ABEND 
TMP 

~ _______ ----.J 

Command 
Processor 

*Upon return, continues with 
normal logoff. 

Figure A-II. Overview of TSO Line Drop Process 

Appendix A. Process Flows A -35 



IEDAY802 (sub task of TCAM): Keeps track of users whose lines have dropped 
and, if the time limit expires before they come back, terminates the address space. 
IEDA Y802 does the following: 

• Waits for TIOCTECB. 

• Sets the one-minut ~ timer. 

• Invokes QTIP 27 (lEDAY88) SVC 101, entry 27 which scans the TSBs for 
TSBHUNG = 1 and TSBMINL"O. 

- If so, QTIP 27 decreases TSBMINL by 1. 

- If TSBMINL is now 0, QTIP 27 branch enters SIC 
(system-initiated-cancel) with code 622. 

- QTIP 27 returns a code of 0 if any users have time left or a code of 4 if 
all users have been cancelled. 

• If the return code is 0, IEDAY802 goes to the one-minute timer. 

• If the return code is 4, lED A Y802 waits for TIOCTECB. 

SIC (system-initiated cancel): 

IKJEFLF schedules an SRB in the address space to be terminated, passes a 
completion code (622 for line drop), and returns to the caller. 

IKJL4TOO runs under the SRB scheduled by IKJEFLF and gets control the next 
time the address space is dispatched. IKJL4TOO does the following: 

• If TMP is in control, skips to POST. 
• Issues STATUS STOP for TCB = (lW AIT JOW AIT dispatchability bits). 
• Issues QTIP 24, which sets TSBCANC = 1 and removes OW AIT for other 

address spaces TPUTing to this user. 
• POST cancels the ECB in the CSCB (IKJL4TOO branch enters POST with 

completion code 622). The initiator (lEFSD263) waits for the ECB while 
TMP is in control. 

• If TMP is not in control, issues STATUS START for the logon scheduler and 
monitor tasks. 

• Exits. 

Initiator (IEFSD263): 

• Waits for the CANCEL ECB and ATTACH ECB of the TMP task. 
• When the CANCEL ECB is posted, issues SVC 34 to abnormally terminate 

the user. 

SVC 34: 

• Issues CALLR TM, which- sets the resume PSW of the TMP task to point to 
an SVC D instruction and forces the TMP task to be dispatchable. 

A -36 MVS Diagnostic Techniques 



S;yC -D (RTM2): 

• Oversees the termination of the TMp,task and all daughter tasks. 

• When the TMP task terminates, its attach ECB is posted, giving the initiator 
control again. 

Initiator: 

Processing continues the same as for normal logoff except: 

• IKJEFLK, the POST-TMP exit module, issues QTIP 24. 

• IKJEFLC issues the "session cancelled" message before the logon scheduler 
XCTLs to the STC termination. 

• If the line drops, IEDAY8, the TIOC resource manager, does not force the 
remaining messages out. 

TMP and Command Processor Interface 

The following is a description of the TMP and command processor flow. 

1. The TMP is attached by the initiator as a result of a logon command from a 
terminal user or the execution of a batch job. Logon initialization establishes 
the STAE environment to handle abends and the STAX exit to handle 
attention interrupts. 

2. The TMP mainline routine receives control and determines which buffer to 
obtain. This can be either: 

a. The logon buffer (from PART = on the EXEC statement of the logon 
procedure) 

b. The command buffer, as a result of a PUT GET 

c. The buffer obtained by the attention prolog 

d. The buffer obtained by the ST AI exit 

3. If the current input is the command buffer, the TMP must check for five 
special cases as follows: 

a. PUTGET is responsible for checking for a '?' in the first buffer position 
in response to a mode message. When one is detected PUTGET 
immediately issues the next available second-level message. This TMP 
should never receive a '1' in a buffer, but if the user enters a '~' (blank ?). 
PUTGET passes the buffer through to the TMP. 

b. A null line. 

c. TEST command without operands. 

d. TIME command. 

Appendix A. Process Flows A-3 7 



e. If scan determines that the data in the buffer is not one of these special 
cases and that the data begins with an alphabetic character and is less 
than eight bytes, the TMP issues an ATTACH for the command name. 
Prior to ATTACH processing a search is conducted (through MLPA, 
LPA, joblib, LNKLSTxx, respectively) to assure a successful ATTACH. 
If the ATTACH is not successful, the TMP assumes a CLIST and 
attaches the EXEC CP to search the user's command procedure library. 
If the TMP does not locate either a command or a command procedure 
whose name is the same as that fQund in the input buffer, a 
'COMMAND NOT FOUND' Inessage is issued to the terminal. 

4. If the command processor was attached, the TMP waits for an ECB list 
containing the following ECBs: 

a. STAI ECB: The TMP's STAI exit routine posts this when a command 
processor abnormally terminates and does not recover with its own ST AE 
routine. 

b. Attention exit ECB: The TMP's attention exit routine posts this when it 
gains control. It gains control when the user enters an attention 
interrupt and the TMP exit is the current level exit. For more details, see 
the discussion of "TSO attention processing" later in this chapter. 

c. STOP/MODIFY ECB: This ECB is posted if a stop userid is requested by 
the system operator. 

d. Command processor ECB: This is the ECB specified in the attach of the 
command processor. It is posted when the processor terminates. 

5. If the command processor ECB is posted, the TMP repeats step 2 to 
determine what action to take. 

6. If the attention exit or ST AI ECB is posted, the TMP does one of the 
following: 

a. If a '1>1' was entered in response to the mode message, the TMP sends 
second level messages to the terminal. 

b. If a null line was entered, TMP returns control to the command 
processor. If an attention interrupt occurred, the TMP continues normal 
processing. If an abend occurred, the TMP takes a dump. 

c. If TEST was entered without operands, the TMP links to TEST and 
places the interrupted command processor under test control. When 
TEST processing is ended, the TMP detaches the current command and 
prompts the user with a 'READY' to enter a new command. 

d. If the TIME command was entered, the TMP displays the current time 
and prompts the user for a new command. In this case, the user can 
exercise any of the preceding options or enter a new command. 

e. If the user enters a new command or exercises one of the preceding 
options, the TMP detaches the current command and issues a PUTGEt 
requesting new input. 

A-38 MVS Diagnostic Techniques 



The following common control blocks are used for communication among the 
TMP, connnand processors, and service routines (PUTGET, PARSE, etc.): 

lKITMPWA (TMP Work AretJ) 

Created by: IKJEFT01 

Length: 1076 bytes 

Pointed to by: TMPWAPTR,WORKAPTR 

Function: Provides communication among 
TMP modules. Contains register save 
areas, parameter lists for TEST and TMP, 
ABEND exit routines, and mappings of 
macros commonly used by TMP modules. 

lKICPPL (Commtlnd Processor Parameter List) 

Created by: IKJEFT01 

Length: 16 Bytes 

Pointed to by: Register 1 

Function: Provides parameters for the 
command processor. 

lXIECT (Environment Control Table) 

Created by: IKJEFTOI 

Length: 40 bytes 

Pointed to by: TPL,CPPL 

Function: Provides communication among 
the TMP, CP, and service routines. 
Contains current command/subcommand 
names, pointers to work areas and 
second-level message chains, and return 
codes. 

I WORt~R I 
TMPWA 

o 

3C 

14C 

158 

168 

170 

2E4 

2E8 

2EC 

2FO 

2F4 

334 

338 

33C 

340 

348 

350 

TPL MAPPING 

,.CPPL 

, ECT 

• PSCB 

• UPT 

(CPPL), CBUF 

~ UPT 

, PSCB 

~ ECT 

(ECT) 

~ IOWA 

I. SMSG 

PRIMARY 
COMMAND 

SUBCOMMAND 

Appendix A. Process. Flows A -39 



lKJPSCB (Protected Step Control Block) 

Created by: IKJEFLA 

Length: 72 bytes 

Pointed to by: LWA, CPPL 

Function: Contains information from 
UADS, control bits, and accounting 
data for the user ID. (This accounting 
data is controlled by the installation 
via the ACCOUNT command.) 

lKJRLGB (Re-Logon Buffer) 

Created by: IKJEFLA 

Length: 264 bytes 

Pointed to by: PSCB 

Function: Contains the LOGON/LOGOFF 
command entered at the terminal at 
the end of the session. 

lKJUPT (User Profile Table) 

Created by: IKJEFLA 

Length: 24 bytes 

Pointed to by: PSCB,CPPL 

Function: Contains information 
stored in VADS that is used by 
LOGON/LOGOFF, the TMP, 
and the command processors. 
(This information is all 
controlled by the installation 
via the PROFILE command.) 

A -40 MVS Diagnostic Techniques 

PSCB 
0 

User to 
8 

30 t RLGa 
34 

, UPT 

RLGB 

X'100'1-.------------I _ ECT 

UPT 

C 
User Line Line 
Environmental Delete' Delete 
Switches Char Char 

10 
~ DSNAME I Prefix 

18 



TSO Command Processor Recovery 

The following describes the TSO command processors. Figure A-12 summarizes 
their recovery activity. 

ACCOUNT 

The STAE exit routine for ACCOUNT flushes the input stack and posts the 
ACCOUNT ECB before returning to continue abend processing. ACCOUNT 
attaches the HELP command processor, specifying for a STAI exit routine the 
same name as the STAE exit routine. 

EDIT 

The ESTAE exit routine for EDIT flushes the input stack, stops automatic line 
prompting, and frees any acquired storage still remaining. The EDIT work area, 
mapped by IKJEBECA, can be located in a dump to obtain certain data on the 
EDIT session. The pointer to the communication area is passed between routines 
in register O. By convention, most routines keep the pointer in register 9 during 
execution. A description of IKJEBECA can be found in the data areas 
microfiche (Data Areas). 

LOGON 

The ESTAE exit routine for LOGON dequeues from the userid, closes the UADS 
data set, and detaches IKJEFLC. The LOGON work area, mapped by 
IKJEFLWA, can be located in the dump (field ASXBLWA in the ASXB) to 
obtain certain information on the session. A description of IKJEFL W A can be 
found in the data areas microfiche. 

LOGON also has an EST AI exit routine, which dequeues from the userid, closes 
the UADS data set, cancels the attention exit, and frees subpools 1 and 78. 

OPERATOR 

The STAE exit routine for OPERATOR stops all active monitor function if the 
abend is caused by a DETACH with STAB. OPERATOR also has a STAI exit 
routine that is the same name as the ST AE exit routine. 

The SVC 100 parameter list, mapped by IKJEFFIB and passed to the 
OPERATOR command processor, can be located in the dump and certain data 
about the session can be obtained. A description of IKJEFFIB can be found in 
the data areas microfiche. 

OUTPUT 

Before returning to continue abendprocessing, the ESTAE exit routine for 
OUTPUT closes any data sets that are being processed. The OUTPUT work 
area, mapped by IKJOCMTB, can be located in a dump (while OUTPUT is in 
control) and certain data about the session can be obtained. 

OUTPUT attaches the HELP command processor specifying a ST AI exit routine. 
The ST AI exit routine simply returns to continue abend processing. 

Appendix A. Process Flows A -41 



SUBMIT 

The SUBMIT command processor iUns under the STAI environment established 
by SVC 100. This STAI routine closes the INTRDR data set before it returns to 
continue abend processing. The SVC 100 parameter list, mapped by IKJEFFIB 
and passed to the SUBMIT command processor, can be located in the dump and 
certain data on the session can be obtained. A description of IKJEFFIB can be 
found in the data areas microfiche. 

Command STAE STAll 
Processor ESTAE ESTAI RETRY SDUMP LOGREC Messages 

ACCOUNT STAE IKJ56554I 
STAI IKJ565541 

EDIT ESTAE X See Note 1 

LOGON ESTAE X X 110564521 
ESTAI X IKJ564511 

IKJ564521 
IKJ564061 

OPERATOR STAE X IKJ550041 
STAI X IKJ55004I 

OUTPUT ESTAE See Note 2 See Note 3 IKJ56318I 
STAI 

SUBMIT STAI IKJ56294I 

Notes: 

1. Abend codes B37, D37, and E37 point to IKJ52427I, IKJ52428I; the others point to IKJ52422I. If 
the data set is modified, abend codes point to IKJ52555I. 

2. SDUMP is issuedfor all abends exceptfor DETACH with STAE, codes 437,913, and 422. 

3. LOGREC is written to except for DETACH with STAE. 

4. An effective trapping and problem solving techniquefor TSO command processors is to stop the error 
processing in the appropriate error recovery routine. 

Figure A-12. Summary of Command Processor Recovery Activity 

TSO Terminal 1/0 Overview 

Terminal I/O flow is divided into two parts, input flow and output flow. This 
overview highlights each at the SVC level. 

TS/TCAM uses the services of three SVCs to communicate between the user's 
address space and the TCAM address space: 

1. TGET/TPUT (SVC93): The TMP and command processors issue this SVC 
to move data form the user's buffer to an interface buffer in CSA (TIOC 
buffer). 

2. QTIP (SVC 101): This SVC is a set of multipurpose routines that perform 
functions for both the user address space and the TCAM address space. For 
example, QTIP is used by TCAM to move data from a TCAM buffer to an 
interface (TIOC) buffer and is also used by TGET jTPUT to move data from 
a user's buffer to a TIOC buffer. 

3. STCC (SVC 94): This SVC is a set of routines used to update TCAM 
control blocks from the user! s address space. For example, the user can use 

A-42 MVS Diagnostic Techniques 



Terminal Output Flow 

the terminal command to change a terminal characteristic. This is 
communicated to TCAM via SVC 94. 

TS/TCAM data flow also requires a logical connection between a terminal, a line, 
and an address space. This is accomplished as follows: 

.• The terminal macro in the user's MCP establishes the connection between a 
terminal name and a destination (destination QCB). 

• At TCAM initialization, OPEN establishes the connection between the 
destination and a physical terminal (a line cQntrol block is connected to the 
terminal name table via an index into the table). 

• Logon processing establishes the connection between the destination QCB and 
the user's address space (the destination QCB contains the ASID of the user 
and the user's terminal status block (TSB) contains an index to the TCAM 
terminal name table). Also, a user's TSB and ASCBpoint to each other. 
The station's control block contains the address of the TSINPUT QCB. 

Terminal I/O flow also .requires the use of two special TCAM subtasks: 
TSINPUT and TSOUTPUT. TSOUTPUT acts as the router for all messages 
coming from time sharing users. TSOUTPUT is responsible for editing output 
messages as it moves the data from the time sharing interface buffers (TIOC 
buffers) in CSA to the TCAM buffers in the TCAM address space. Once 
TSOUTPUT has moved data to the TCAM buffer~, the buffer is routed to the 
output side of the message handler and then written to the terminal. 

TSOUTPUT also runs as a subroutine of TCAM. TSOUTPUT is the first 
subroutine in control of the disk I/O QCB in a TCAM system that supports time 
sharing. 

Assume thata user has logged on, the TMP has been initialized, and a PUTGET 
has been issued by the TMP to put out a 'READY' message and request input 
from the terminal user. The following now occurs: 

1. The TMP invokes the services of the PUTQET service routine, which issues a 
TPUT and then a TGET (both SVC 93s). TPUT performs the following 
basic functions: 

a. Obtains a TIOC buffer from the pool of free buffers. If a buffer is not 
available or the user has passed the· output buffer limit (OWAITHI 
parameter in IKJPRMOO), the user is placed in an output wait (the 
appropriate flag is set in the TSB). 

b. If a buffer is available, th~ 'READY' message is moved from the user's 
buffer to the TIOC buffer. 

c. The user's terminal status block is placed on TCAM's asynchronous 
ready queue. (A special element at TSB + X'40' is used.) 

d. An XMPOST is done to alert TCAM. 

e. Control is returned to PUTGET. 

Appendix A. Process F16ws A-43 



Terminal Input Flow 

2. When the TCAM address space is dispatched, and the MCP TCB regains 
control, TCAM searches its asynchronous ready queue and discovers the 
user's TSB. However, because this is a TS/TCAM system, TSOUTPUT 
receives control instead of the disk I/O routine. TSOUTPUT performs the 
following functions: 

a. Builds TCAM buffers from basic TCAM buffer units. 

b. Uses QTIP services to move the TIOC buffer from the TSB header queue 
(queue of complete output messages) to the TSB output trailer queue 
(queue of TIOC buffers being moved). 

c. Uses special TIOC edit routines (not QTIP) to move and edit data from 
the TIOC buffer to the TCAM buffer. 

d. Once the data has been moved into the TCAM buffers, the TCAM 
buffers are routed to the output side of the message handler and are then 
written to the terminal. After the message is successfully written, the 
TIOC buffers are freed via a subsequent call to TSOUTPUT. 

The following process can run in parallel with step 2 in the preceding section, 
"Terminal Output Flow." It starts when control is returned to PUT GET as 
described at the end of step 1 in that section. 

1. PUTGET issues a TGET to obtain input. TGET (SVC 93) performs the 
following functions: 

a. Checks to determine if there is an input buffer on the user's terminal 
status input queue. TCAM normally allows users of remote terminals to 
enter input while the current input is being processed. Therefore, it is 
possible that input could be 'stacked' and an input buffer found on the 
TSB input queue. However, TCAM does not allow local devices to 
'stack' input. In this case, assume a local device and no buffer on the 
TSB input queue. 

b. Therefore, the TGET notifies SRM that an input WAIT has been entered 
and sets the appropriate flag in the TSB (lW AIT condition). 

c. SRM eventually performs a swap-out on the user. 

2. The user now enters a new command at the display station and hits 
'ENTER'. TCAM handles the interrupt, associates it via the LCB to a 
terminal name table index, terminal table entry, and destination QCB. 

3. The TCAM buffer is routed to the input side of the appropriate message 
handler (determined from the DCB for the line). The message handler 
normally translates the data from line code to EBCDIC. The message 
handler must locate the destination QCB of the terminal that issued the 
message and also check that the terminal is logged on to time sharing. If it is 
logged on, the message handler routes the buffer to TSINPUT as the common 
input destination for all time sharing messages. 

A -44 MVS Diagnostic Techniques 



4. TSINPUT performs the following functions: 

a. From the ASID value in the terminal's destination QCB, TSINPUT 
determines which address space should receive a particular message. 

b. TSINPUT obtains a TIOC buffer from the free buffer pool. If no TIOC 
buffers are available, the TCAM buffer is chained from a special queue in 
the TSINPUT QCB until TIOC buffers are made available. In this case, 
the time sharing system is placed in an LWAIT (out of TIOC buffers). 

c. If a TIOC buffer is available, TSINPUT uses the services of QTIP to 
move data from the TCAM buffer to the TIOC buffer. Most line control 
characters and all 3270 buffer control characters are edited out of the 
message during this move. 

d. SRM is notified that the user is no longer in an input wait and may be 
swapped in. 

e. The TCAM buffer is routed to the buffer disposition routine for final 
processing. 

5. Once the TCAM buffer has been freed and final cleanup has been performed 
on the line, TCAM searches for additional work on the work-to-do queues. 
If there is none, TCAM enters a wait. 

6. Once SRM has swapped-in the user, TGET regains control. Using QTIP, 
TGET moves the data from the TIOC buffer to the user's buffer. 

TSO/TIOC Terminal 1/0 Diagnostic Techniques 

For terminal hangs or interlocks involving TSO terminal I/O, a good place to 
start is at the TSB and TIOCRPT. The TSBs are physically contiguous and 
adjacent to the TIOCRPT (all in CSA), as shown below: 

TCX (TCAM CVT extension) 

+24 
TIOCRPT (reference pointer table) 

TSB 

TIOCRPT is described in the Debugging Handbook. TSB is described in Data 
Areas (microfiche). TIOC is described in OS/VS TeAM Level 10 Logic. 

TSBOWIP and TSBWOWIP are used to serialize TPUTs to a user. TSBOWIP is 
set at the start of a TPUT SVC, while that SVC holds the local and CMS locks. 

Appendix A. Process Flows A -45 



If another TPUT is issued before OWIP is reset, then WOWIP is set and the 
issuer of the second TPUT is put in OW AlT. 

The task that has "seized the TSB" (that is, set OWIP) can be detennj.ned by 
checking TSBCTCB. (TSBTJIP and TSBTJOW serve approximately the same 
function for cross-memory TPUTs.) 

TSO Attention Processing 

The following section summarizes the process of TSO attentions. The numbers in 
parentheses correlate to the numbers in Figure A-I3. 

TCAM Channel End Appendage (1) 

• Ensures TCAM is active. 

• Finds the element associated with this terminal. 

• Places the element on the asynchronous queue. 

• TCAM dispatcher merges the asynchronous queue to the ready queue and 
give control to the message handler. 

• TeAM recognizes the following forms· of terminal attention interrupts: 

I/O attention interrupt for a 2741, which is checked in the line end 
appendage. 

Two separate interrupts for the 3270; (1) a keyboard-invoked I/O 
attention interrupt, followed by (2) an I/O complete interrupt for the read 
issued by TCAM in response to the first interrupt. 

A user character string for a simulated attention, which is checked by the 
SIMATTN routine. 

Simulated Attention (2): 

The message control program (MCP) reads input from the terminal the same as it 
does for normal operation. It then passes the message to the message handler. 

Message Handler (MH) (3): 

• Checks for the following conditions and calls TIOC if any exist: 

Terminal input (character string) 
PAl function key 
Terminal output lines 

TIOC Attention Handler (4): 

• Ensures TSO is active. 
• Gets the user's TSB. 
• Checks if the attention was caused by a deleted line. 
e Invokes QTIP (TIOC/TSO interface). 

A -46 MVS Diagnostic Techniques 



Hardware Attention Simulated Attention 

(1) 
(3) (2) Message TeAM Channel - Message -

End Appendage Handler - Control 
Program (MCP) 

r 

TIOC 
(4) Attention 

Handler 

/ 
/ QTlP 

/ (5) Attention 

/ 
Handler 

/ / 
r-.L--( 

Time (6) 
I Sharing t- - - RCT -
L~~~J 

/ 
r-L -, 

RCT RCT 
I User Issues I (7) Attention (9) Attention STAX L ___ -1 Scheduler Exit 

~ 

If 

Selected 
(8) UserSTAX 

Exit 

Figure A-13. TSO Attention Flow 

QTIP Attention Handler (5): 

• Checks if the user has issued any ST AX macros. 

• Ensures the number of unprocessed attentions does not exceed the number of 
active STAXs (causes '!I'=TOO MANY ATTENTIONS or 
'I' = ATTENTION ACCEPTED to be printed at the terminal). 

• Posts the RCT to schedule the user's attention exit. 

• Purges input and output message queues to/from user except ASID type 
messages. 

RCT (Region Task Control) (6): 

• Waits for: 

Termination 
QUIESCE/RESTORE 
Attention 

Appendix A. Process Flows A -4 7 



RCT Attention Scheduler (7): 

• Cancels previously-scheduled attentions that have not been executed. 

• Determines the current attention level requested. 

• Disables any affected tasks. 

• If OBUF and/or IBUF was specified on the ST AX macro, issues TPUT 
and/or TGET. 

User STAX Exit (8): 

• User defined. 

RCT Attention Exit (9): 

• Enables any affected tasks. 
• Checks for another attention pending. 
• RCT enters wait. 

TSO AP AR Documentation 

TSO AP AR documentation should include: 

• Terminal input and output. 

• SYSUDUMP or stand-alone dump, as appropriate. 

• Information about how the system differs from PID release in the TSO area: 

PTF list. 
Information about non-IBM commands that appear in terminal output. 
Description of any TMP modifications. 
Description of applicable installation exits (LOGON, SUBMIT, etc.). 

• Listing of the logon procedure, with a list of membernames in STEPLIBs, if 
any. 

A -48 MVS Diagnostic Techniques 



Appendix B. Stand-Alone Dump Analysis 

Overview 

This appendix contains a procedure that has been used successfully in stand-alone 
dump analysis. It is part of the course material in Field Engineering classes that 
teachMVS problem determination. This procedure does not attempt to cover all 
situations but it can be used as a guide through major status areas until you 
become thoroughly familiar with the system. 

Stand-alone dumps are generally taken by the operator when: 

• The system has stopped in a solid wait state with a wait state code. 
• There appears to be a system loop. 
• The system is not running or is running slowly. 

Usually the 'Title From Dump' reflects what the operator thought happened. 

Before becoming too involved in the problem itself, it is a good practice to get 
some feel for the status of the system at the time the dump was taken. Some 
valuable system status indicators can be obtained from the formatted section of 
the dump. Indicators can be obtained from the formatted portion of the dump 
under "System Summary" (produced by the SUMMARY control statement) and 
CSD, PSA, LCCA, and PCCA (produced by the CPUDATA control statement). 
Although it is seldom that anyone indicator definitely points out the problem, 
when -all indicators are noted and analyzed. a pattern might emerge that points 
the problem solver to the proper area for further investigation. 

The enabled wait generally occurs as a result of the lack of some critical system 
resource. If the PRINT statement of PRDMP is used, PRDMP identifies the 
current task. If the current task is the wait task, the message "Current Task = 
Wait Task" might appear. 

If it appears you have an enabled wait condition, read the chapter on "Waits" in 
Section 4 of this book before proceeding with your analysis. 

The system can appear or actually prove to be bottlenecked because the operator 
cannot communicate with MVS. This is the sign of a problem almost anywhere 
in MVS, but an error in the communication task or its associated processing 
might be the direct cause. The communication task is identified by a X'FD' in 
the TCBTID field (TCB + X'EE'). By inspecting the RB structUre associated with 
this task, you can determine the current status. It is not unusual to find one RB 
with a resume PSW address in the LP A and an RB wait count of one. If more 

Appendix B. Stand-Alone Dump Analysis B-1 



than one RB is chained from the TCB and you could not enter commands, 
analyze the RB structure as this is not a normal condition. 

Remember that communications task processing is very dependent on the rest of 
the operating system. Probably some external service or process has caused the 
communications task to back-up, and this possibility should be investigated. 

For the system to continue execution, the major components must be operational. 
If any critical system components such as master scheduler, ASM, JES2, and 
TCAM for TSO, terminate abnormally and fail to recover, the system cannot 
continue normal operation. Usually this can be determined from the records in 
SYSl.LOGREC. However, check the TCB summary in the formatted section for 
completion codes. 

The presence of a TCB completion code does not positively identify the associated 
task as being inoperative. It is possible that the completion code is residual and 
the task has recovered. The presence of a completion code makes the task 
suspect, however, and should be investigated. 

Unless the operator STORE STATUS command was issued before taking the 
dtimp or the "Title from Dump" reflects a WSC (wait state code), it can be 
difficult to determine if a WSC exists and what it is if it does. 

If however, the WSC PSW is dispatched by NIP during IPL, it is generally 
located in one of two places: 

• In the MCH new PSW if a program check occurred prior to RTM 
initialization. 

• In the nucleus vector table (NVT + X'EO') in the case of a system-detected 
error during the NIP process. 

The other WSCs (they are few in number) issued by the system are dispatched by 
the master scheduler communications task and ASM. The current address space 
should identify who loaded the WSC PSW; WSC PSW s are issued when the 
system determines that it cannot continue. They are usually preceded by other 
error indicators that should be investigated along with theWSC. 

Note: A valid WSC looks like: X'OOOAOOOO OOnnnxxx' 

where: nnn is the reason code 
xxx is the wait state code. 

A disabled wait normally has a wait state code associated with it. If so, "he 
messages and codes should contain a problem description. 

If there is no wait state code, the trace table should indicate the last sequence of 
events leading to the wait state condition. Probably a bad PSW (wait bit on) has 
been loaded. 

If no valid WSC exists and if the PSW reflects the wait bit, is disabled, and the 
STORE STATUS registers are not equal to zero, suspect: a user or Field 
Engineering trap or a SLIP trap (with a wait state code of X'OlB~), a bad branch, 
or system damage. Examine the trace table and attempt to define the events that 
led lip to the wait condition. Was the last entry an SRB dispatch or an SVC I/O 

B-2 MVS Diagnostic Techniques 



interrupt? U sing the PSW address, determine the entry point of the routine if 
possible. 

The PSA is a system area whose status indicators are dynamically changing. The 
status indicators reflect the condition of the system the instant the dump was 
taken. Taken out of context, they can be misleading. 

Therefore, find out if the operator entered a STORE STATUS command and 
keep in mind that the status could have been stored any time and not necessarily 
just before the dump~ 

Note: If you IPL the stand-alone dump program from the system control (SC) 
frame on the 3033, it is not necessary to perform the STORE STATUS operation. 
Status is automatically stored when stand-alone dump is invoked from the SC 
frame. 

Note: The best evidence that the operator issued STORE STATUS is the content 
of 'Current Registers and PSW at Time of Dump.' This is because the stored 
status is put in the PSA + X'IOO' and the registers are put at PSA + X'160- IFF', 
and SADMPprogram reads this area as the current PSW and registers and writes 
them to the dump data set. On a UP, the formatted current data will be the same 
as in the PSA. On an MP system, however, the SADMP program issues SIGP to 
another processor to store status. The STORE STATUS command always stores 
in the unprefixed PSA at location zero. This means that the unprefixed PSA will 
contain the registers and PSW from another processor. If the SADMP program 
did not save the STORE STATUS data before issuing the SIGPinstruction to the 
other processor, the data from the operator's STORE STATUS command would 
be overlaid and the contents lost. 

Also note that on an MP system there are three PSAs and the AMDPRDMP 
program formats all of them for you. The unprefixed PSA is used only during 
NIP (and SADMP). Always be sure you are looking at the right PSA when you 
are analyzing the PSA contents. 

If the PSW + X'OI' = xE or x2, the PSW is a wait PSW. If PSW + X'OO' = 
X'04', the system was disabled. If PSW + X'OO' = X'07', the system was enabled. 
Determine whether the PSW contains a WSC or an address. Then determine 
what key the PSW reflects. PSW + X'OI' = X'xC' or X'xE' where the x = key, 
as follows: 

o = supervisor 
I = scheduler/JES2/JES3 
5 = lOS, data management, actual block processor, O/C/EOV 
6 = TCAM/VTAM 
7 = IMS 
8 = virtual problem program 
9-F = V = R problem program 

In a SADMP on a UP, locations X'OO' through X'18' are always overlaid by the 
IPL CCWs and PSW from the IPL of SADMP itself. These locations never 
contain valid data. 

Appendix B. Stand-Alone Dump Analysis B-3 



Loops can be either disabled or enabled. The best way of determining which has 
occurred is by examining the PSW, the loop recording option table, and the trace 
table. 

Recorded addresses that fall within the SRM code are usually not indicative of a 
loop because this code is entered periodically as a result of a timer interrupt. This 
signifies, however, that the system does enable for interrupts and you can treat the 
error as an enabled loop. 

Note: If the only addresses the operator furnished or the loop recording option 
recorded are in the timer or SRM .code, check that it is not really an enabled wait 
condition. 

The typical disabled loop is quite short, whereas the enabled loop covers a wide 
range of addresses. Be careful that the recorded addresses that may reflect a short 
loop are not a 'loop within a loop.' Scan the trace table and try to determine if a 
pattern of activity exists. Look for SIOs to the same device, SVCs from the same 
address, program checks occurring frequently for other than page faults, or any 
repetitive activity. If no pattern exists, try to correlate the last trace entry with 
what you already know about the loop (for example, I/O interrupts, a loop in an 
lOS or SRB dispatch, and a loop in the nucleus in some routine which is entered 
via an SRB). 

The enabled loop usually reflects a wide range of addresses and can even span 
address spaces between a user and the system address spaces. An examination of 
the trace table usually shows some pattern of activity that is recognizable as a 
loop. 

Be especially suspicious of a SVC OD or SVC OA for the same size area, SVC 33, 
SVC 4C, and SIOs to the same device with the same IOSB address in register 1. 

Trace table entries with SVC OD and/or SVC 33 in a stand~alone dump usually 
mean that some task is abending and the system is attempting to recover and 
purge the task from the system. 

If any address within the loop points to the lock manager (module IEAVELK), 
the problem is probably caused by someone requesting an unavailable spin lock 
On a UP, this is an invalid condition and always signifies an overlaid lockword. 
On an MP system, this signifies that another processor is holding the lock and 
failing to release it. There is a strong possibility that this indicates an overlaid 
lockword also. If not, the problem is on another processor. In either case, 
register 11 can point to the lockword requested and register 14 is the address of 
the requestor. Check the value in the lockword. Valid values are a full word of 
zeros or three bytes of zeros and the CPUID in the fourth byte. Any other bit 
configuration causes the system to spin in a disabled loop and signifies an overlaid 
lockword. Register 12 always contains the bit mask to check the locks-held-table 
in the PSA. 

If the lockword is overlaid, you must identify who overlaid it. It is possible that 
the lockword was overlaid in conjunction with some other problem. 

This proc~dure is designed to aid the problem solver and to supplement the 
diagnostic procedures he has developed over the years. Its main purpose is to call 
attention to the new serviceability features within MVS and provide an index into 

B-4 MVS Diagnostic Techniques 



start ) 

Note 25 

the correct component analysis procedures, in Section 5 of this manual. Once 
again, the· component analysis procedures are there as hints and helps rather than 
to provide a structured approach to all problems. 

Yes 

Any Bit On At 
PSA+X'2F8' 

Yes 
LCCA+X'210' - 80 

Note 13 Note 15 

"">-.:..:.N=0--i~ Note 11 

"7-Y_e_s--i~ Note 21 
Current FRR stack 
+ X' 28' " X' 00 ' 

",>-_N_0--l~ Note 18 

>-Y_e_s---'l~ Note 14 
PSA+X'2F8' 
- 0000xxx1 

Yes 
>------'1... Note 20 

Figure B-1. Stand-alone Dump Analysis Flowchart 

Appendix B. Stand-Alone Dump Analysis B-5 



Analysis Procedure 

The following explanations correlate to the "Notes" in Figure B-1. 

Note 0 - Dummy Task? 

The dummy wait has been dispatched on the processor if the following fields 
contain the values shown: 

STORE STATUS PSW = 070EOOOO 00000000 
STORE STATUS GPRs = 0 
PSATNEW = PSATOLD = 0 
PSAANEW points to ASID 0 
PSAAOLD points to ASID I 
PSASUPI = 04 (dispatcher) 
PSAMODE = 08 (wait) 

Note 1 - System Enabled/or IIO? 

Is bit 6 on in the current PSW? 

Is control register 2 correctly loaded? 

The current status of the system is in the PSA if a STORE STATUS command 
was entered before the dump was taken. 

Note 2 - Dispatchahle Work to be Done? 

I. One of the first places to check for system dispatchability is the common 
system data area (CSD). For example, CSD + X'C' = X'40' indicates that 
most of the system is non-dispatchable. This bit can be set by SDUMP. Is 
any address space abending and in the process of taking an SDUMP? Check 
the TCB summary for completion codes. 

2. Dispatchable work within an address space is indicated by: 

ASCB + X'80' = X'FFFFFFFF' or X'4FFFFFFF' 
ASCB + X'80' = X'OOOOOOOO' (indicates the LOCAL lock is available) 
ASCB + X'DO' = SRB on the address space service management queue 
(ASCBLSMQ) 
ASCB + X'D4' = SRB on the address space service priority list (ASCBLSPL) 
ASCB + X'D8' " 0 indicates ready TCBs not requiring the LOCAL lock. 
ASCB + X'DC' " 0 indicates ready TCBs requiring the LOCAL lock. 

3. The JES2/JES3 address space can contain work that should be passed to a 
waiting initiator or interface that has an address space for SYSIN or 
SYSOUT data. 

4. Dispatchable work at the system level is indicated by SRBs queued to the 
global service manager queue (GSMQ) and the global service priority list 
(GSPL). 

B-6 MVS Diagnostic Techniques 



For (1), you must determine who set the bit on, who should have reset it and why 
the bit was set. It might be necessary to trap on the setting of this bit. 

For (2), a X'7FFFFFFF' indicates that the holder of the local lock is suspended 
(for example, a page fault or CMS lock request). A CPUID value (such as 
X'OOOOOO40') indicates that the unit of work holding the local lock is currently 
running on that processor. Any nonzero value indicates that the lock is held and 
that" TCBs requiring the LOCAL lock cannot be dispatched. 

For (3), check the JES control blocks more closely. 

For (4), determine why the dispatcher is not functioning. See the "Dispatcher" 
chapter in Section 5 of this manual. 

Note 3 - Enqueue Lockout'! 

As in other systems, an exclusive enqueue prevents other tasks from using the 
same resource. However, in MVS, locks are now used frequently instead of an 
enqueue. 

1. Use the QCB format function (QCBTRACE, Q, or GRSTRACE option of 
print dump) to print the QCBs and check for exclusive enqueues. 

2. CVT.+ X'lBO' points to the GVT. 
GVT + X' 10' points to the GVTX. 
GVTX + X'A4' points to the global queue hash table. 
GVTX + X'AS' points to the local queue hash table. 
GVTX + X'AC' points to the SYSID/ASID hash table. 
ASCB + X' 110' points to the global QEL queue. 
ASCB + X'114' points to the local QEL queue. 

Note: The GVTX, the hash tables, and the QEL queues reside in the GRS 
address space. 

3. Any QEL reflecting exclusive control prevents any other task from using that 
resource. Any QEL reflecting shared status prevents any task requesting 
exclusive control from using that resource. 

4. The Debugging Handbook defines some of the major and minor ENQ names. 

Note 4 - Incomplete lID? 

Label IECVSHDR in IEANUCOI points to a pool of cells used by lOS to build 
the IOQ (I/O queue element). The IOQs are found in two places: 

1. An 10Q chained to the UCB-4 indicates an I/O operation is in progress or 
has completed on that device. The flag bytes at UCB + 6 determine the 
current state of the device. The device is available when the flag byte is zero. 

No request for this device should be chained to the LCH during an enabled 
wait. 

2. The 10Qs are chained to the logical channel queues (LCH) if the I/O 
operation has been requested but not started. 

Appendix B. Stand-Alone Dump Analysis B-7 



The LCH is pointed to by the CVT + X'8C'. The entry for each logical 
channel is 20 bytes long. At X'OO' into each entry is a pointer to the first 
IOQ queued for that logical channel. The presence of IOQs on any logical 
channel is immediately suspect when examining an enabled wait state dump_ 
An empty queue (no requests) is indicated by a word of FFFFFFFF in the 
LCH at X'OO'. 

Note 5 -Is Any Task in a Page Wait? 

Check the TCB RBs for a wait count not equal to zero. 

RB+X'IC' = wait count 
RB-8 " 40 (FLAG I) 
TCBFLGS4 " '04'. This indicates a page-fault wait or a synchronous page fix 
wait. 

Note 6 - Explicit Wait in System Code? 

Does the address in the PSW fall within the nucleus or LPA code? Compare the 
address with a NUCMAP or LPA map. 

Check the load list and CDEs for system modules that have been loaded into the 
private area. 

Note 7 - Real Storage Okay? 

If a task remains in a page wait, it could indicate a shortage of page frames or a 
real storage failure. 

The control blocks that contain status about the use of real storage are: 

1. Page vector table (PVT) 

PVT + X'04' = available frame count 
PVT + X'24' = free PCB count 
PVT+ X'754' = deferred for lack of free page frames 

2. Page frame table (PFT) 

Shows use of each frame of real storage available for paging. 

Note 8 -Is Auxiliary Storage Okay? 

If tasks are in a page wait and real storage is not a problem, the trouble could be 
within the auxiliary storage manager (ASM). 

ASM status indicators are: 

I. ASMVT + X'28' = the number of paging I/O requests received 

2. ASMVT + X'2C' = the number of paging I/O requests completed 

3. ASMVT + X'30' = the number of swap I/O requests received 

B-8 MVS Diagnostic Techniques 



4. ASMVT + X'34' = the number of swap I/O requests completed 

5. ASMVT+X'58' = the SRB address used to redrive work through ASM 

6. SRB + X' 1 C' = the address of an 8-byte parameter list that contains the 
addresses- of the first and last I/O requests to be redriven through ASM 

7. 10RB + X'03' = indicates whether the I/O requests on the 10RB have been 
passed to lOS. 

If the number of I/O requests completed is equal to the number of I/O requests 
received, ASM has no outstanding work. If I/O requests have been started but 
not completed, determine what has happened to the I/O. If ASM's redrive SRB 
parameter list is nonzero, the SRB has been scheduled. Determine what the 
dispatcher has done with the SRB. 

Note 9 -Is lOS Okay'! 

If all 10RBs ~re idle (IORB + X'03', bit 0 is zero), then lOS has completely 
processed all the I/O that ASM has started. 

Note 10 -Interrupted TeB'! 

The condition that caused the TCB holding the local lock or local lock and at 
least one cross memory services lock to be suspended has been resolved. The save 
area to be restored upon dispatching is the IHSA. 

A TCB holding the local lock, or local lock and at least one cross memory 
services lock has been interrupted by a higher priority task. The save area used 
for redispatching is the IHSA. See the chapter "Dispatcher" in Section 5 or the 
chapter "System Execution Modes and Status Saving" in Section 2 of this manual. 

Note 11 - Not R TM'! 

Without the detection of a failure by MVS, which would have caused entry into 
RTM, check the following. If the trace table in the stand-alone dump reflects the 
same task in most of its entries, this could be normal operation or the task could 
be in a loop. Check the following for status information: 

LCCA 
PSA 
PCCA 
Trace table 
TCB 
RB/SVRB 

If no failure information is found (the system appears to be running normally), 
the problem might be that another task or address space should be running and is 
unable to. Check the following for status information: 

1. Check each address space that is expected to be running to find out why it is 
not running. The information about each address space and task within that 
address space can be found in: ASCB, ASXB, TCB, and RB/SVRB. 

Appendix B. Stand-Alone Dump Analysis B-9 



2. Or, check the total system to find out why other work is not being run. 
Check the status of the system resources: 

ENQ lockout of data sets 
I/O failures 
RSM or ASM failure 
Waits in system code for other system resources (such as buffers) 

If you are checking other than the current task, the TCBs could be dispatchable, 
but not yet dispatched. If the task is non-dispatchable (non-dispatchability bits 
on in the TCB), this can indicate an error situation. Or the task could be simply 
waiting (indicated by a wait count in the current RB). Check the dispatchability 
flags in the following control blocks for status of this task or select another 
address space or task and continue at Point A. 

Status information can be found in: ASCB, ASXB, TCB, and RB/SVRB. 

Note 12 - RTM2, Yes. 

The most important place to find information about abend codes is Message 
Library: System Codes. 

The R TM2 work area address is stored by RTM2 in TCB + X~EO'. Every system 
dump (SYSABEND/SYSMDUMP/SYSUDUMP) should have at least one TCB 
with an RTM2WA address at TCB+X'EO'. The error indicators contained in the 
RTM2WA are described in the Debugging Handbook. 

If an EST AE routine is in control when an error occurs, RTM builds an SDW A 
(described in the Debugging Handbook) and places its address at the 
RTM2WA+X'D4'. 

Additional information about the failure may be found in the LOGREC buffer. 
RTM2WA+X'38' points to RTCT; RTCT+X'20' points to the LOGREC buffer. 

If recursion occurs during RTM processing, other RTM2WAs may exist. If other 
work areas were obtained, the last one is pointed to by the TCB + X'EO'. The last 
RTM2W A points to the previous work area (RTM2W A + X' 168, 16C, 170'). 

The RTM2W A is obtained from LSQA. It is therefore unique to each address 
space. If you are looking at a stand-alone dump, be sure that the area you are 
looking at belongs to the failing address space. 

If the abending task is one of several abending tasks it is important to decide 
which task to look at first. There could be several failures or one failure causing 
all the others. Any failure in the system address spaces (JES2, master scheduler) 
are important be~ause they might have caused the user address spaces to 
. terminate. 

For the system to continue execution, the major components must be operational. 
If any of the critical system components (master scheduler, ASM, JES2, TCAM 
for TSO, etc.) abend and fail to recover, the system cannot continue normal 
operation. Usually this can be determined from the records in LOGREC. 
However, check the TCB summary in the format section for completion codes. 

B-IO MVS Diagnostic Techniques 



The presence of a TCBcompletion'code :does: not positively identify the associated 
task asbeinginoperational. It ispossibie that the completion code is residual and 
the task has 'recovered~ The _ presence of a completion code makes the task _ suspect 
however" and should be investigated. 

Simplify your choice of address ,spaces by using: 

• SYSl.LOGREC external and intenial entries 
• Console sheets 
• Trace table or GTF (check for SVC D or program check entries) 

Once you have selected an address space' and TCB, continue at Point A. (Check 
Section 5 for the component analysis of the involved component.) 

In addition to the RTM2WA, status indicators related to the problem cab. be 
found in: 

• Trace table 
• ESTAE control block (SCB) 
• RBjSVRB 

• TCB 

Note 13 - Local Lock Only? 

The current ASCB + X'SO' contains the CPU ID. The current TCB + X'FO' also 
contains the CPU ID. The loop is within this task. Status is saved (if a STORE 
STATUS was done) in: 

• PSA 
• LCCA 
• Current stack 
• Local SDW A (ASXB + X'6C') - if the task abended while holding the lock 
• Trace table 
• In-storage LOGREC buffer 

Is. this task looping in the lock manager's code? Check the PSA + X'22S' and 
LCCA + X'20C'. If the task is looping and this is an MP system, another 
processor could be causing the loop by not freeing a spin lock that it is currently 
holding. The failure to free or obtain a lock-can be caused by the lockword being 
overlaid on either an MP or UP. 

If all processors of an MP are looping in lock manager code, then the failure 
could be in that code. If only one processor is in lock manager code, then the 
failure is likely to be in the processor currently holding the lock. 

Where is the task looping? Why doesn't it free the locks? Is RTM involved with 
this task? If it is, continue at Point A. 

See the chapters on "Locking" and "Effects of Multi-Processing on Problem 
Analysis" in Section 2 of this manual. 

Appendix B. Stand-Alone Dump Analysis B-ll 



Note 14 - Local Lock Plus Another Lock. 

The current ASCB + X'80' contains the CPU ID. The current TCB + X'FU' 
contains the CPU ID. The loop could be a spin loop waiting for the other 
processor to release a global lock. In this case, determine why the lock has not 
been released. 

Status indicators can be found in the following areas (if a STORE STATUS was 
done): 

• PSA 

• LCCA 

• Current stack 

• Local SDW A (ASXB + X'6C') - if the task abended while holding the local 
lock and at least one cross memory services lock 

• Trace table 

• In-storage LOG REC buffer 

See Note 13 for additional information. Also see the chapters "Locking" and 
"Effects of Multiprocessing on Problem Analysis" in Section 2 of this manual. 

Note 15 - Global Lock Held. 

A global lock loop in an MP system could be normal. The spin loop continues 
until the global lock is released by the other processor. Determine why the other 
processor has not released the lock. 

Error status indicators can be found in the following areas if a STORE STATUS 
was done: 

• PSA (current PSW) 
• LCCA 
• Current stack 
• Global SDW A (if there was an abended failure while the global lock was 

held) 

The global SDW A for the super stacks is located at the respective super 
stack + X'410'. For the normal stack, the global SDWA immediately follows the 
RESTART super stack SDWA+X'3FO'. 

Now continue at Point A in the procedure. See Note 13 for additional 
information. Also see the chapters "Locking" and "Effects of Multiprocessing on 
Problem Analysis" in Section 2 of this manual. 

B-12 MVS Diagnostic Techniques 



Note 16 - lOS lVotOkfJ.v. 

Check the requests sent to lOS. from auxiliary storage manager (ASM). Control 
blocks containing information are: 

1. PART (paging activity reference table) - One entry per page data set. Each 
PART entry· contains a pointer to an IORB (I/O request block) at X'lC' and 
a pointer to a· UCB at X'2C'. 

2. 10RB contains the following I/O related data: 

10RB + X' l' = number of IORBs for this page data set 
IORB + X'3' = indicates whether 10RB is in use 
10RB+ X'4' = pointer to next 10RB for this page data set 
IORB+X'8' = pointer to the first PCCW 
10RB + X'C' = pointer to the 10SB 
IORB + X'2C' = pointer to the last CCW in the channel program. 

Refer to the Component Analysis section for additional lOS status indicators. 

Note 17 - SlIspended SRB or TeB With Lock Held. 

An SRB can be suspended because of a page fault, a synchronous page fix, a 
request for a cross memory services lock when it is being held by another address 
space, or SMF suspension. The save area for the suspended SRB is the SSRB. If 
interrupted by a page fault, the SSRB is pointed to by the corresponding 
PCB+X'lC'. 

For a general cross memory services lock request, the SSRB is on the requested 
CMS lock suspend queue, which can be located in the system lock area. (See the 
topic on locking to locate the system lock area.) 

For an ENQ/DEQ cross memory services lock request, the SSRB is on the 
CMSEQDQ lock suspend queue (CMSEDSQH). 

A locked TCB can be suspended for the same reasons as an SRB. The save area 
is the IHSA of the locally locked address space (described in the Debugging 
Handbook). The IHSA is valid during a page fault if the corresponding 
PCB + X'08' flag is on. The IHSA is vafid for a cross memory services (CMS) 
lock suspension if the ASCB is on the CMS lock suspend queue (SQH) for that 
cross memory service lock requested (either the general CMS, the CMSEQDQ, or 
the CMSSMF). 

Note 18 - Not RTM2. 

The presence of a TCB completion code does not positively identify the associated 
task as being inoperational. It is possible that the completion code is residual and 
the task has recovered. The presence of a completion code makes the task suspect 
however, and it should be investigated. 

The save areas have been released. The status of the error has been written to 
SYSl.LOGREC. Continue at Point A with other TCBs in the dump. Another 
abending task is likely. If this is a stand-alone dump, it very likely has the needed 

Appendix B. Stand-Alone Dump Analysis B-13 



LOGREC entry in the in-storage buffer. CVT+'23C' points to RTCT; 
RTCT+ X'20' points to the LOGREC buffer. 

Note 19 - Real Storage Not Okay. 

If page waits seem to be caused by the lack of real frames, check their usage. The 
PFT contains information about each frame currently being used. Important 
items to check are: 

Which ASID holds the most real storage? 
What are the frames being used for? 
Is it valid that they be held or is there a problem with the freeing of the frames? 

Status information might be found in the PVT, PFT, and RSMHD and ASCB 
(X'98') for the ASID that is holding all the frames. 

See the "RSM" chapter in Section 5 of this manual" for more information about 
RSM. 

Note 20 - lOS Okay. 

Either something was missed along the way or the failure might be in one of the 
following areas: 

• The lOS interrupt handler has failed to schedule the SRB/IOSB t<? the address 
space. 

• The dispatcher has not handled the SRB correctly. 

• POST has not functioned properly. 

Information on these errors might be found in the trace table or the in-storage 
LOGREC buffers. 

Note 21 - RTMI Involved. 

If there is an address at TCB + X'104' there might be two problems to resolve: 

• The failure that caused the system to enter RTM initially~ 

• A loop between RTMI and RTM2 since the pointer at TCB + X'104' 
normally lasts for only a short time. 

The pointer at TCB + X' 104' is the EED (described in the Debugging 
Handbook). This data area is used to pass information from RTMI to 
RTM2. Once RTM2 receives control the information is moved to the RTM2 
work area and the EED is deleted. Therefore, because of its short duration, 
the presence of an EED is unusual. 

A SLIP trap may be required to solve the RTM loop. This loop is of course the 
most important problem. 

B-14 MVS Diagnostic Techniques 



If the loop is in the current task, check these status indicators: 

• LCCA 
• PSA 
• Current stack 
• RTMIWA 
• RTM2WA 
• SDWA pointed to by RTMIWA 

• EEDs 
• LOGREC buffer 
• Trace table 

If the loop is not in the current task, all the indicators above except the LCCA, 
PSA, and current stack are valid. The current FRR stack is also a valid status 
indicator. Remember that all disabled or locally locked code runs under the 
protection of an FRR routine. 

Check the current stack pointer at PSA + X'380'. If the current stack pointer 
points to a super FRR it is almost certain that system damage has occurred. 

The normal stack at X'COO' contains a record of FRR activity for the current 
address space. Location X'COC' is the pointer to the current entry on the normal 
FRRstack. An address at X'COC' equal to the address at X'COO' indicates an 
empty stack. Any address at X'COC' greater than the address at" X'COO' indicates 
that the system is currently under FRR protection and the first word in each FRR 
entry is a pointer to the FRR routine. Because the FRR routine is usually 
embedded within the routine it protects, identifying the FRR routine identifies the 
"looper. " 

The second word in each entry contains an indicator in the first byte. A X'80' 
indicates that this routine is in control. A X'40' indicates that this nested 
recovery routine is in control. In a SADUMP, if an entry on the stack points to 
RTM or SVCDUMP's FRR, it is almost certain that system damage has occurred 
in a SADMP. This is normal in an SVC dump. 

If the byte at X'C28' is not 0 and there is an address at either X'C5C' or X'C60', 
there has been an entry into RTMI and an SDWA has been obtained. The loop 
could be occurring in the FRR routine itself. The first word in the FRR stack 
entry points to the FRR routine. The SDW A (pointed to by X'C5C' or X'C60') 
is the input passed to the FRR. Examine the code for the FRR and the module 
and consider the input passed to it in the SDW A to gain some insight into the 
cause of the loop. 

Note 22 - Auxiliary Storage Not Okay. 

If the count of I/O requests received (ASMVT + X'28' for paging requests, and 
ASMVT + X'30' for swapping requests) differs from the count of I/O requests 
completed (ASMVT + X'2C' for paging requests, and ASMVT + X'34' for 
swapping requests), and the 10RBS are all idle (IORB + X'03', bit 0 is zero), 

Appendix B. Stand-Alone Dump Analysis B-15 



locate those paging· I/O requests (represented by an AlA) that ASM has received 
but not completed. Control blocks containing information are: 

1. PARTE + X'3E' = count of outstanding I/O requests on a page data set 

2. AIA-X'2S' = part of PCB which contains RSM-related data 

3. PART + X'24-2S'· = queue of AlAs waiting for PCCWs 

4. ASMHD + X'OC' = swapout AlAs waiting to be processed 

S. ASMHD + X'lO' = queue of completed swap requests waiting to be returned 
to RSM 

6. The following fields in the ASMVT point to SRBs to be processed: 

ASMVT + X'SS' = the SRB whose parameter field (SRB + X'IC') points to a 
parameter list that points to I/O requests to be redriven through ASM 

ASMVT + X'SC' = the SRB whose parameter field (SRB + X' I C') has swap 
requests to be started 

ASMVT + X'60' = the SRB whose parameter field (SRB + X' I C') has error 
requests to be handled. 

7. Each active 10RB (PART entry + X'IC') contains a chain of PCCWs 
(IORB+ X'S'). Each of these PCCWs that is active points to an AlA 
(PCCW + X' 10'). 

S. If the AlA cannot be found by the above means (that is, it was lost by ASM), 
PCB/AlA may be found on the common I/O queue (PVT+ X'7SC-760') or 
one of the local I/O queues (RSMHD + X' I C-20'). 

For further information, see ASM's "General Debugging Approach" in Section 5. 

Note 23 - Local SRB Mode. 

This indicates a loop (or enabled wait) within a single address space. 

The SRB code cannot be pre-empted. If a loop occurs in the SRB routine, no 
higher priority task can be dispatched. 

For an MP system there is a second possibility. Determine if the loop is in the 
lock manager code. If so, see notes 13, 14, and 15 for additional information. 
Continue at Point A. 

Status Indicators 

• Trace table. 

• PSA (current PSW). 

• LCCA. 

B-16 MVS Diagnostic Techniques 



• Current stack. 

• RTMIWA (SDWA) - ifabend occurred during SRB processing. 

• ASCB. 

• RTMIWA+X'38' points to an SDWA obtained via GETMAIN (if 
RTMIWA+ X'40' = 10). 

• RTMlWA+X'34' points to a local SDWA if the GETMAIN for SDWA 
failed. 

No te: If the system is an MP and the loop is in the lock manager code, then 
another processor might be at fault. See notes 13, 14, and 15 for additional 
information. Continue at Point A. 

Status Indicators 

• PSA (current PSW). 

• LCCA. 

• Current stack. 

• RTMIWA (SDWA) - if failure occurred during SRB processing. 

• Trace table. 

• RTMI WA + X'38' points to an SDWA obtained via GETMAIN (if 
RTMIWA+X'40' = 10). 

• RTMIWA+X'34' points to a local SDWA if the GETMAIN failed. See the 
chapter "Dispatcher" in Section 5. Also see the chapters "Locking," "System 
Execution Modes and Status Saving," and "Effects of MP on Problem 
Analysis" in Section 2 of this manual. 

Note 24 - Global SRB Mode. 

This indicates an enabled loop (or enabled wait) within a single address space. 

The SRB code cannot be pre-empted. If a loop occurs in the SRB routine, no 
higher priority task can be dispatched. 

For an MP system there is a second possibility. Determine if the loop is in the 
lock manager code. If so, see notes 13, 14, and 15 for additional information. 
Continue at Point A. 

Status Indicators 

• Trace table. 

• PSA (current PSW). 

• LCCA. 

Appendix B. Stand-Alone Dump Analysis' B-17 



• Current stack. 

• RTMIWA (SDWA) - if ABEND occurred during SRB proCessing. 

• ASCB. 

• RTMIWA+X'38' points to an SDWA obtained via GETMAIN (if 
RTMIWA+X'40' = 10). 

• RTMIWA+X'34' points to a local SDWA if the GETMAIN failed. 

Note: If this is an MP system and the loop is in the lock manager code, then 
another processor might be at fault. See notes 13, 14, and 15 for additional 
information. Continue at Point A. 

Status Indicators 

• PSA (current PSW). 

• LCCA. 

• Current stack. 

• RTMIWA (SDWA) - if failure occurred during SRB processing. 

• Trace table. 

• RTMI WA + X'38' points to an SDWA obtained via GETMAIN (if 
RTMIWA+X'40' = 10). 

• RTMIWA+X'34' points to a local SDWA if the GETMAIN failed. See the 
chapter "Dispatcher" in Section 5. Also see the chapters "Locking," "Systerr 
Execution Modes and Status Saving," and "Effect of MP on Problem 
Analysis" in Section 2 of this manual. 

Note 25 - Wait in User Code. 

This could be normal operation for an explicit wait (SVC I) issued by a user 
routine. Determine if the event waited upon has completed. Check the TCB 
non-dispatchability flags to determine the reason. The flags normally indicate the 
area of the problem. For example, if TCBFLGS4 = X'04', this indicates a 
VARY or QUIESCE command is in process on an MP system; TCBFLGS5 = 
X'80' means the task was terminated. 

Note 26 - Non-enabled System. 

A disabled wait normally has a wait state code associated with it. If so, the 
messages and codes should contain a problem description. 

If there is no wait state code, the trace table should indicate the last sequence of 
events leading to the wait state condition. Probably a bad PSW (wait bit on) has 
been loaded. 

B-18 MVS Diagnostic Techniques 



Status Indicators 

• LCCA 
• PSA 
• Current stack 
• Trace table 
• In-storage LOGREC buffer 

If no valid WSC exists, if the PSW reflects the wait bit and is disabled, and if the 
STORE STATUS registers are not equal to zero, suspect a user/FE trap, bad 
branch, or system damage. Examine the trace table and attempt to define events 
that lead. up to the wait condition. Was the last entry an SRB dispatch or an 
SVC or I/O interrupt? Using the PSW address, determine the entry point of the 
routine if possible and go to the chapter "MVS Trace Analysis" in Section 2 of 
this manual. 

If the wait state occurs during system initialization, see the NIP vector table for 
error information. If the system is in a disable loop, determine what code is in 
control and why it is not returning to the enabled state. 

A disabled loop in the lock manager on an MP system could be okay. Read 
notes 13, 14, and 15. A disabled loop in the SIGP processor on an MP system 
could be okay. (Another processor should tum off its PCCA's parallel/serial bit.) 

If the systemis looping (no wait bit), follow the SRB mode path. Check if RTM 
is involved and if it is, go to Point A. 

Note 27 - Dispatchable Work Available. 

If the system is dispatchable and an address space has dispatchable work, the 
following are possible causes: 

• The dispatcher is not functioning. 

• CPU affinity may have been requested. 

• JES2 might not be sending work to the initiators. In this case take a closer 
look at JES2. 

See the chapter "Dispatcher" in Section 5 of this manual to determine why the 
dispatcher is not functioning properly. 

Note 28 - Enqueue Lockout. 

Determine why the t~p task of a series of exclusive enqueues is not running or has 
not dequeued from the resource. 

Note: It is valid for the top task to be swapped out. If it does not get swapped 
back in, then the failure might be in the system resource manager (SRM). 

Appendix B. Stand-Alone Dump Analysis B-19 



Note 29 - Incomplete 110. 

This is a probable hardware error. See the "lOS" chapter in Section 5 to 
determine the status of I/O. 

Note 30 - Explicit Wait in System Code. 

Check in the program listings (on microfiche) for the reason of the wait. Then 
determine which resource is being waited upon. 

Once the resource is identified, determine if the wait should have been satisfied. 
If the wait appears to be a normal operation, continue at Point A for this TCB. 

If the last thing done before the wait was an SVC 23 (WTO), related information 
can be found in the UCM base, prefix UCM, UCM extension and the chain of 
used WQEs. 

Note 31 - System Analysis. 

If the failing task or component is not known, continue on the "yes" path of the 
flowchart. 

To determine status about a TCB without doing a total system analysis, continue 
on the "no" path of the flowchart. 

For a complete system analysis, start with low storage. Check the PSA for a low 
storage overlay. Critical fields are the CVT pointer at X'IO', the PSW new 
locations at location X'58-78' and at location X'OO', and the trace table pointer at 
location X'54'. Be especially critical of the interrupt handler new PSWs. Any 
change to any new PSW will cause the next interrupt handler for that event to be 
dispatched in the wrong mode or key or to the wrong address. Subsequent results 
can be very unpredictable. 

Keep in mind that the CVT pointer at location X'lO' is constantly refreshed and 
the old PSWs are constantly updated by the hardware. They could have been 
overlaid at one time and still look okay in the dump from an MP system. 

In a SADMP on a UP, locations X'OO' through X'18' are always overlaid by the 
IPL CCWs and PSW from the IPL of SADMP itself. They will never contain 
valid data. 

Other important fields in the PSA are as follows. 

The interrupt code for the various classes of interrupts are located at: 

• X'84' external interrupt 
• X'88' SVC interrupt 
• X'8C' program interrupt 

These fields indicate the last type of interrupt associated with each interrupt class 
for each processor. 

B-20 MVS Diagnostic Techniques 



PSA + X'210' -address of the LCCA (l per processor). The LCCA contains 
many of the status-saving areas that were located in low storage in previous 
systems. It is used for software environment saving and indicators. The registers 
associated with each of the interrupts you have discovered in the PSA are saved in 
this area. In addition. the system mode indicators for each processor are 
maintained in the LCCA. 

The ASCB and TCB NEW/OLD pointers in the PSA (locations X'21S-227') 
indicate the currently dispatched task. Note: PSATOLD can equal zero if an 
SRB is dispatched. 

PSA + X'228' - PSASUPER. This is a field of bits that represent various 
supervisory functions in the system. If a loop is suspected, check these fields to 
isolate the looping process. Note that the dispatcher's super bit (X'04') will be 
left ~n when the wait task is dispatched. 

PSA + X'2FS' - PSACLHS. This field indicates the current locks held on each 
processor. Knowing which locks are held may help isolate the problem, especially 
in a loop situation. By determining the lock holders you can isolate the current 
process. 

PSA + X'3S0' - PSACSTK. This is the address of the active recovery stack that 
contains the addresses of the recovery routines to which control will be routed in 
case of an error. If the address is other than X'COO' (normal st~ck), determining 
the type of stack (for example, program check FLIH, restart FLIH) should aid in 
debugging the loop situation. Note that the external FLIH runs under the super 
stack (current stack = SSTK). 

Another thing to consider in systems analysis is the possibility of a storage overlay 
of some critical system code such as lOS or GETMAIN. 

Because of the recovery aspects of MVS (percolation and retry), evidence of 
storage overlays can often be found in the LOGREC recording buffers. 

To find the LOG REC recording buffers: 

• CVT + X'23C' = pointer to the recovery termination control table. (RTCT). 
• The RTCT+ X'20' = pointer to the recording buffers. 
• The recording buffer (LRB) + 0 = pointer to the start of the area. 
• The recording buffer (LRB) + 4 = pointer to the end of the area. 
• The recording buffer (LRB) + S = pointer to the next available buffer. 

Each buffer entry for a software record begins with X'40Sx' or '428x' where x = 
the release number. Each software entry is approximately X'200' bytes long. The 
first X'20' bytes is header information and contains the CPUID and serial, the 
time and date, and the JOBNAME if entry is made from an ESTAE routine. 
This is followed by an SDW A as defined in the Debugging Handbook. 

Identify the last entry. Are there entries following it? If so, the buffer might have 
been wrapped and it no longer contains the earliest entry. It is a good idea to 
have the SYSl.LOGREC records for the time leading up to the dump. Scan the 
trace table for SVC 4C. This represents a call to the LOGREC recording task 
and identifies a record being written to SYSl.LOGREC. If SVC 4Cs appear in 
the trace, it is certain that there are SYS1.LOGREC records that may more 

Appendix B. Stand-Alone Dump Analysis B-21 



closely define the problem. (See the discussion of LOGRECrecords in the 
chapter "Use of Recovery Work Areas for Problem Analysis" in Section 2 of this 
manual.) 

As a general approach, follow the flow of FRR activity from the last entry 
backwards until a pattern is recognizable or the first entry is found. 

If the abend codes relate to a particular component, refer to that component's 
analysis procedure in Section 5 of this manual. 

If you can define a function that is consistently failing (lOS, a program check, 
etc.), examine the trace table for evidence of successful completion of this 
function. If the function completed successfully, the search for the function that 
caused the overlay is narrowed to those functions appearing in the trace between 
the last successful completion and the first evidence of error. This should at least 
narrow the search to the address space and task level. 

Analyze the contents of the overlaid storage. If it appears to contain registers, 
determine what data areas or modules the registers are pointing at. This helps to 
identify the failing code. 

If there is no evidence of a storage overlay, return to your system analysis at the 
beginning of Note 31. 

If a storage overlay exists, further examination of the reported problem is usually 
non-productive until the cause of the system damage is explained. 

It might be necessary to build a trap to identify the cause of the overlay. The 
chapter "Additional Data Gathering Techniques" in Section 2 of this manual 
helps in building such a trap. 

B-22 MVS Diagnostic Techniques 



Appendix C. SVC DUMP Title Directory 

This directory lists the titles of SVC dumps produced by MVS components via the 
SDUMP macro instruction. It also provides a module name to dump title 
cross-reference. 

The directory has the following topics: 

• System-Defined SVC Dump Titles - lists, in alphameric order, the titles of 
SVC dumps and provides diagnostic information for the modules that initiate 
the SVC dump via the SDUMP macro. 

• Operator- and Caller-Defined SVC Dump Titles - provides diagnostic 
information for the modules that initiate SVC dumps via the SDUMP macro 
but where the dump title is defined by the system operator or the caller of 
SVC dump. 

• SVC Dumps Without Titles - provides diagnostic information for the modules 
that initiate SVC dumps but where no titles are supplied on the SDUMP 
macro. 

• Module to SVC Dump Title Cross-Reference - lists, in alphameric order, the 
MVS modules that issue the SDUMP macro and provides the titles of the 
SVC dumps specified by the modules on the SDUMP macro. 

Appendix C. SVC DUMP Title Directory C-l 



System-Defined SVC Dump Titles 

This topic lists, in alphameric order, the titles of SVC dumps and provides 
diagnostic information for the modules that initiate the SVC dump via the 
SOUMP macro. 

ABOUMP ERROR 

Component: RTM - ABOUMP (5752-SCI CM) 

Issuing Module: lEA VT ABO 

PLM: OS/VS2 System Logic Library 

Explanation: An error has occurred during RTM processing of a 
SYSABEND, SYSMDUMP, or SYSUDUMP dump. The error occurred 
when (1) ABDUMP attempted to set up dump processing, or (2) SNAP or 
SDUMP processing encountered an error while taking the dump. The areas 
dumped are RGN, LPA, and LSQA. 

Problem Determination: A software record is written to SYSl.LOGREC. 
The failing CSECT name and the error condition can be determined from 
RTM2WA and SDWA (in the LOGREC record). 

ABENDINIEAVTGLB 

Component: RTM - PER Activation/Deactivation (5752-SCICM) 

Issuing Module: lEA VTGLB 

PLM: OS/VS2 System Logic Library 

Explanation: An error has occurred then the SLIP processor attempted to 
activate or deactivate PER in the system. Message IEA4151 is also issued. 
The areas dumped are PSA and SQA. The summary part of the dump 
requested by lEA VTGLB contains information relevant to the error. 

Problem Determination: A software record is written to SYSl.LOGREC. 
Also refer to message IEA4151 in VS2 System Messages. 

ABEND IN lEA VTJBN 

Component: RTM - PER Activation/Deactivation (5752-SCICM) 

Issuing Module: lEA VTJBN 

PLM: OS/VS2 System Logic Library 

Explanation: An error has occurred when the SLIP processor attempted to 
determine if PER should be active for a new address space, started task, 
logon, mount, or job. Message IEA4221 is also issued. The areas dumped 
are PSA and SQA. The summary part of the dump requested by 
lEA VTjBN contains information relevant to the error. 

C-2 MVS Diagnostic Techniques 



TNL SN28-5095 (December 27, 1985) to SY28-1133-2 

Problem Determination: A software record is written to SYS1.LOGREC. 
Also refer to message IEA422I in System Messages. 

ABEND IN lEA VTLCL 

Component: RTM - PER Activation/Deactivation (5752-SCICM) 

Issuing Module: lEA VTLCL 

PLM: OS/VS2 System Logic Library 

Explanation: An error has occurred when the SLIP processor was 
attempting to activate or deactivate PER in an address space. Message 
IEA4151 is also issued. The areas dumped are PSA, SQA, and LSQA. The 
summary part of the dump requested by lEA VTLCL contains information 
relevant to the error. 

Problem De~ermination: A software record is written to SYS1.LOGREC. 
Also refer to message IEA4151 in System Messages. 

ABEND IN SMF INTERVAL PROCESSING - ROUTINE IEEMB836 
JOBNAME = xxxxxxxx 

Component: SMF (5752-SCI02) 

Issuing Module: IEEMB836 - FRR 

PLM: OS/VS2 System Logic Library 

Explanation: An abend has occurred during SMF interval processing. 
xxxxxxxx indicates the name of the affected job. 

Problem Determination: A software record is written to SYSl.LOGREC. 
The SDW ACSCT field in the SDW A contains the name of the module in 
control at the time of the error. 

ABEND code AT hhhhhhhh (nnnnnn) + X'nnnn' cc- - -cc 

Component: JES2 (5752-SCIBH) 

Issuing Module: HASPTERM or HASPRAS 

PLM: JES2 Logic. 

Explanation: An abend has occurred during JES2 processing. Fields in the 
dump title are: 

code abend code 
hhhhhhhh failing module name 
n'lnnnn entry point address 
X'nnnn' offset to the failing instruction 
cc- - -cc brief description of the abend code and the JES2 or JES2 NJE release level 

Appendix C. SVC DUMP Title Directory C-3 



TNL SN28-5095 (December 27, 1985) to SY28-1133-2 

Abend codes that start with S are system codes, and those that start with $ 
are JES2 codes. The areas dumped are PSA, NUC, RGN, TRT, SQA, 
CSA, LPA, and SWA. 

Problem Determination: For information on system abend codes, refer to 
System Codes; for JES2 abend codes, refer to message $HASP095 in JES2 
Messages. 

ABEND = aaa,COMPON = ALLOC,COMPID = SCIB4,ERRMOD = xxxxxxxx, 
ERRCSECT = YYYYYYYY,LVL = zzzzzzzz,ISSUER = IEFAB4E6 

Component: Allocation (5752-SCIB4) 

Issuing Module: IEFAB4E6 - Recovery routine 

PLM: OSjVS2 System Logic Library 

Explanation: An error has occurred during allocation processing. The areas 
dumped are NUC, LPA, ALLPSA, SQA, TRT, and RGN. If the error 
occurred during processing related to the allocation address space 
(ALLOCAS), message IEFIOOI is issued, the allocation address space might 
be terminated, and allocation processing continues. For other errors, all 
units allocated to the failing address space are unallocated and the job is 
abnormally terminated. The fields in the dump title are: 

aaa system completion code 
xxxxxxxx name of the failing load module 
yyyyyyyy name of the failing CSECT 
zzzzzzz PTF or product level number of the failing CSECT (such as JBB1226) 

Problem Determination: A software record is written to SYSl.LOGREC. If 
the recovery routine was entered due to system completion code 05C, 
register 0 contains a reason code. See System Codes for an explanation of 
system code 05C and reason codes. If the recovery routine was entered due 
to an error related to allocation address space processing, message IEFIOOI 
is also issued. See System Messages for an explanation of message IEFIOOI. 

ABEND = aaa,COMPON = CONVERTER, 
COMPID = SCIB9,ISSUER = IEFNB9CR 

Component: Converter (5752-SCIB9) 

Issuing Module: IEFNB9CR - Converter Recovery Routine 

PLM: None (refer to microfiche) 

Explanation: IEFNB9CR was entered due to an expected error (OBO abend 
or program check) during converter processing. The areas dumped are 
LSQA, RGN, LPA, and SWA. 

Problem Determination: A software record is written to SYSl.LOGREC. 

C-4 MVS Diagnostic Techniques 



ABEND =aaa,COMPON = INTERPRETER, 
COMPID'=SCIB9,ISSUER =:JEFNB9CR 

Conipollent: Interpreter (5752-SCIB9) 

Issaing Module: IEFNB9IR - Interpreter Recovery Routine 

PLM: None (refer to microfiche) 

Explanation: IEFNB9IRwas entered due to an expected error (OBO abend 
or program chec~) during interpreter processing. The areas dumped are 
LSQA, RGN, LPA, and SWA. 

Problem Determination: A software record is written to SYSl.LOGREC. 

ABEND=aaa~COMPON=PC/AUTH-PCLINK 
UNSTACK,COMPID = SCXMS, 
ISSUER = lEA VXSTK 

Component: PC/AUTH Services (5752-SCXMS) 

Issuing Module: lEA VXSTK 

PLM: OSjVS2 System Logic Library 

Explanation: An error has occurred while the PC LINK service routine 
(IEAVXSTK) was processing an UNSTACK request. The areas dumped 
are NUC, LSQA, SQA, and SUM. 

Problem Determination: A software record is written to SYSl.LOGREC. 
The SDW A VRA includes the following key-length data formatted entries: 

• The 24-byte FRR parameter area 
• The caller's return address 
• The current TCB address (if not task mode, 0) 
• The PCLINK work areas in the LCCA (56 bytes beginning at 

LCCASREG) 
• The PSASTKE and PSAKPSW fields 

ABEND = aaa,REASON = xxyy,GPRrr= zzzzzzzz,COM~ON = PC/AUTH-macro, 
COMPID = SCXMS.ISSUER = lEA VXPCR 

Component Program Call/Authorization (PC/AUTH) Services 

Issuing Module IEAVXPCR - PC/AUTH Services FRR 

PLM: OS/VS2 System Logic Library 

Explanation: An error has occurred while a PC/AUTH service routine was 
processing. lEA VXPCR issues the SDUMP macro. The areas dumped are 
ALLPSA, NUC, SQA, SUM DUMP, RGN, and LSQA. Also, subpools 255 

Appendix C" SVC DUMP Title Directory C-5 



(LSQA) and 229 (pageable private area) of the PC/AUTH address space are 
synchronously dumped via SUMLST A. Fields in the title are: 

aaa 
xxyy 
rr 
zzzzzzzz 
macro 

Notes: 

system completion code 
low-order two bytes of register 15 at the time of the error 
general purpose register 
contents of general purpose register rr 
name of the macro that invoked the PC/AUTH service 

1. If the system completion code is 053, refer to VS2 System Codes for a 
description of the reason code xxyy and the diagnostic register value. For 
other system completion codes, the contents of register 14 at the time of 
the error are shown as G P R14 = zzzzzzzz. 

2. If register contents are not available at the time of error, then the title 
text contains N/A or UNA V AIL. 

3. If the FRR is entered with an invalid service-in-control code value in 
PCRASER V, the title will contain 'PCRAEERC = nnnn' where nnnn is 
the PCRAEERC field at entry to the FRR. 

Problem Determination: A software record is written to SYS1.LOGREC and 
includes key-length-data formatted entries in SDW A VRA containing: 

• The program call recovery area (PCRA) at entry to the FRR. 

• Diagnostic information, if any, from the control block validation and/or 
queue verification routines. 

• The service routine recovery area (SRRA). (As much as possible is 
included in the SDW A VRA.) 

It is suggested that you initially print the dump using the PRDMP options 
LOGDATA, SUMMARY, SUMDUMP, and PRINT CURRENT to 
obtain sufficient diagnostic data. 

ABP:IDAI2IA2 - ABEND FROM ABP FRR 

Component: Block Processor (5752-SCIDA) 

Issuing Module: IDAl21 A2 - FRR 

PLM: OS/VS2 VSAM Logic 

Explanation: An abnormal termination has occurred during VSAM block 
processing. The FRR routine in IDAl21A2 issues the SDUMP macro. The 
areas dumped are PSA, NUC, RGN, TRT, CSA, and SQA. 

Problem Determination: A VSAM request was being processed in the actual 
block processor (ABP), initiating I/O, when the error occurred. Register 3 
points to the 10MB for the request. For information on how the 10MB 
relates to the VSAM control block structure, refer to OS/VS2 VSAM Logic. ~ 

C-6 MVS Diagnostic Techniques 



ABP:IDAl21A3 ... ABEND FROM NORMAL END FRR 

COdlpoaent: Block Processor (5752-SCIDA) 

lssuiogMotlule: IDA121AJ - FRR 

PLM: OS/VS2 VSAM Logic 

Explanation: An abnormal termination has occurred while IDA121A3 was 
processing a VSAM request. RTM passes control to the FRR in IDA121A3 
(at entry point IDA121F3), which issues the SDUMP macro. The areas 
dumped are PSA, NUC, RGN, TRT, CSA, and SQA. 

Problem Determination: I/O for a VSAM request had completed normally 
when the error occurred. Register 3 points to the 10MB for the request. 
For information on how the 10MB relates to the VSAM control block 
structure, refer to the OS/VS2 VSAM Logic. 

ABP:IDAI21A4 - ABEND FROM ABNORMAL END FRR 

Component: Block Processor (5752-SCIDA) 

Issuing Module: IDA121A4 - FRR 

PLM: OS/VS2 VSAM Logic 

Explanation: An abnormal termination has occurred while IDAt21A4 was 
processing a VSAM request. RTM passes control to the FRR in IDAl2lA4 
(at entry point IDA121F4), which issues the SDUMP macro. The areas 
dumped are PSA, NUC, RGN, TRT, CSA, and SQA. 

Problem Determination: I/O for a VSAM request had completed abnormally 
when the error occurred. Register 3 points to the 10MB for the request. 
For information on how the 10MB relates to the VSAM control block 
structure, refer to OS/VS2 VSAM Logic. 

ABP:IGC121 - ABEND FROM SIOD FRR 

Component: Block Processor (5752-SCIDA) 

Issuing Module: IGC121 - FRR 

PLM: OS/VS2 VSAM Logic 

Explanation: An abnormal termination has occurred while IGC121 was 
processing a VSAM request. RTM passes control to the FRR in IDA121 
(at entry point IDA121FI), which issues the SDUMP macro. The areas 
dumped are PSA, NUC, RGN, TRT, CSA, and SQA. 

Problem Determination: The I/O manager was processing a VSAM request 
when the error occurred. Register 3 points to the 10MB for the request. 
For information on how the 10MB relates to the VSAM control block 
structure, refer to OS/VS2 ,VSAM Logic. 

Appendix C. SVC DUMP Title Directory C-7 



AHLOO7I GTF TERMINATING ON ERROR CONDITION 

Component: GTF (5752-SCll1) 

Issuing Module: AHLGTFI 

PLM: OS/VS2 MVS Service Aids Logic 

Explanation: An error has occurred during GTF initialization. The EST AE 
routine AHLIEST A in AHLGTFI requests a retry action which issues the 
SDUMP macro, writes message AHL016I, and frees storage and other 
resources that were allocated to GTF. GTF terminates itself. The areas 
dumped are RGN, SQA, and MCHEAD control block. 

Problem Determination: A software record is written to SYSl.LOGREC. 
All control blocks allocated to GTF are dumped. 

COMMON AUTHORIZATION CHECK ROUTINE ERROR, 
ABEND = xxx,COMPON = SCHR-CMF,COMPID = BB131, 
ISSUER = IEFCMAUT 

Component: Scheduler (57 52-SC 1 B6) 

Issuing Module: IEFCMA UT 

PLM: System Logic Library 

Explanation: An abend has occurred during authorization checking. EST AE 
routine SETEST AE in IEFCMA UT sets up the recovery environment. If 
no previous abend has occurred, recovery routine RECOVERY in 
IEFCMAUT requests a retry. If there was a previous abend, the recovery 
routine issues a SETRP to indicate that RTM should percolate the error to . 
the next level of recovery. 

Problem Determination: If an SDW A was obtained, a software record is 
written to SYSl.LOGREC which includes: 

SDWAMODN 
SDWACSCT 
SDWAREXN 
SDWARRL 
SDWACID 
SDWARCDE 
SDWAMLVL 

- IEFCMAUT (load module in error) 
- IEFCMAUT (CSECT in error) 
- IEFCMAUT (CSECT containing recovery routine) 
- RECOVERY (recovery routine) 
- SCIB6 (component identifier) 
- return code 
- product level 

COMPID=SCIB8, xxx ABEND IN MASTER TR modname 

Component: Master SCheduler Commands (5752-SCIB8) 

Issuing Module: IEEMB816 

PLM: OS/VS2 System Logic Library 

Explanation: An abend has occurred during (1) processing of the TRACE 
command, or (2) execution of the IEETRACE macro, xxx indicates the . 

C-8 MVS Diagnostic Techniques 



abend code. Modname indicates the module in control at the time of the 
error and is one of the following: 

IEEMB808 - the error occurred while adding an entry to the master trace function during 
system initialization or in response to a TRACE command. 

IEEMB809 - the error occurred while activating or deactivating the master trace function 
during system initialization or in response to a TRACE command. 

IEEMB816 - the abend occurred while processing some other error in the master trace 
facility. 

UNKNOWN - the recovery routine could not determine the module that was in control at 
the time of the error. 

The areas dumped are SUMDUMP, TRT, FRR work area, FRR parameter 
area, UCM extension, master trace caller's parameter list, and load module 
IEEMB808 with its dynamically acquired storage. Message IEE4801 or 
IEE581 I is also issued. 

Problem Determination: A software record is written to SYSl.LOGREC. 
Refer to message IEE4801 or IEE481I in VS2 System Messages, and to the 
appropriate code (indicated by xxx in the title) in VS2 System Codes. 

COMPON = COMMTASK,COMPID = SCICK,ISSUER = IEAVMFRR = FRR 
or ESTAE, COMMUNICATIONS TASK DUMP 

Component: Communications Task (5752-SCICK) 

Issuing Module: lEA VMFRR 

PLM: OSjVS2 System Logic Library 

Explanation: lEA VMFRR is entered when an error has occurred during 
processing of a communications task function. The areas dumped are SQA, 
NUC, LSQA, LPA, SWA, CSA, ALLPSA, RGN, SUM, and TRT. The 
SUMLSTA contains the UCM, RDCMs, SACBs, and TDCMs. 

Problem Determination: A software record is written to SYSl.LOGREC. 

COMPON = COMMTASK,COMPID = SCICK,ISSUER = IEAVSTAA, 
FAILURE IN COMMUNICATIONS TASK 

Component: Communication Task (5752-SCICK) 

Issuing Module: lEA VST AA 

PLM: OSjVS2 System Logic Library 

Explanation: lEA VST AA is entered when both (1) an error has occurred 
during communications task processing, and (2) after unsuccessful recovery 
processing by EST AE or FRR routines in the communications task. The 
areas dumped are NUC, LSQA, RGN, LPA, CSA, SWA, ALLPSA, SQA, 
and TRT. 

Problem Determination: A software record is written to SYS1.LOGREC. 

Appendix C. SVC DUMP Title Directory C-9 



COMPON = COMMTASK,COMPID = SCICK,ISSUER = lEA VN700,F AlLURE 
IN COMM TASK ADDRESS SPACE CREATE ROUTINE 

Component: Communications Task (5752-SCICK) 

Issuing Module: lEA VN700 

PLM: OS/VS2 System Initialization Logic 

Explanation: An error has occurred while IEAVN700 was creating the 
communications task address space. The areas dumped are ALLPSA, 
RGN, LSQA, SQA", and SUMDUMP. SUMDUMP contains the trace 
table, registers, and storage near the register values at the time of the error. 

Problem Determination: A software record is written to SYSl.LOGREC. 

COMPON=COMMTASK,COMPID=SCICK,ISSUER=IEAVN701, 
FAILURE IN COMM TASK ADDRESS SPACE INITIALIZATION 

Component Communications Task (5752-SCICK) 

Issuing Module: lEA VN70 1 

PLM: OS/VS2 System Initialization Logic 

Explanation: An error has occurred while lEA VN701 was initializing the 
communications task address space. The areas dumped are ALLPSA, 
NUC, RGN, LSQA, SQA, CSA, TRT, and SUMDUMP. SUM DUMP 
contains the trace table, registers, and storage near the register values at the 
time of the error. 

Problem Determination: A software record is written to SYS1.LOGREC. 

COMPON = GRS-COMMANDS,COMPID = SCSDS,ISSUER = ISGCRETO, 
POST OF GVTCECB FAILED 

Component: Global Resource Serialization (5752-SCSDS) 

Issuing Module: ISGCRETO 

PLM: OS/ VS2 MVS Global Resource Serialization Logic 

Explanation: An error has occurred while one of the following modules was 
attempting to cross-memory post the command ECB being used by 
ISGCMDR. 

ISGBSR 
ISGCMDR 
ISGGFRRO 
ISGGTRMI 

- RSA send/receive routine 
- Command router 
- FRR for ENQ/DEQ;RESERVE 
- ENQ/DEQ/RESERVE termination resource manager 

ISGCMDR was waiting for a command request or a message request. The 
areas dumped are PSA, SQA, and LSQA of the global resoruce serialization 
address space, and the GVT. 

C .. 1 0 MVS Diagnostic Techniques 



Problem Determination: Either the ECB address provided on the 
cross-memory post is in error, or the RB address in. the ECB is in error. 

COMPON =GRS;.COMMANDS,COMPID = SCSDS,ISSUER = ISGCRETl, 
POST OF ECB OF COMMAND REQUESTOR FAILED 

Component: Global Resource Serialization (5752-SCSDS) 

Issuing Module: ISGCRETI 

PLM: OSjVS2 MVS Global Resource Serialization Logic 

Explanation: An error has occurred while ISGCMDR (command router) 
was attempting to cross-memory post the ECB that was being used by a 
command requestor to wait for a command request to be processed by 
ISGCMDR. The areas dumped are PSA, SQA, and LSQA of the command 
requestor's address space, and the commmand requestor's ECB. 

Problem Determination: Either the ECB address provided on the 
cross-memory post is in error, or the RB address in the ECB is in error. 

COMPON = GRS-CTC-DRIVER,COMPID = SCSDS,ISSUER = ISGJRCV 

Component: Global Resource Serialization (5752-SCSDS) 

Issuing Module: ISGJRCV 

PLM: OSjVS2 MVS Global Resource Serialization Logic 

Explanation: An error has occurred while ISGJDI (CTC driver DIE) was 
processing. The FRR ISGJRCV (for ISGJDI) uses the branch entry to SVC 
dump. If the GCL is valid, a summary dump is requested that contains the 
GCV. 

Problem Determination: A software record is written to SYSl.LOGREC. It 
includes the failing CSECT name plus the following in the variable 
recording area (SDW A VRA) of the SDW A: 

• If the IOSB is valid: 

UCBNAME field of the UCB. 
IOSB identifier. 
IOSB address. 
IOSB Fields: IOSFLA, IOSFLB, IOSFLC, IOSCOD, IOSUCB, 
IOSCSW, IOSUSE, IOSSNS. 

• If the GCQ is valid: 

- GCQ address. 
GCQDISEC field. 

Appendix C. SVC DUMP Title Directory C-ll 



• If the GCL is valid: 

GCL address. 
GCL (without IOSBs) 

• If the IOSB, GCQ, and/or ·GCL is in error, then the IOSB, GCQ, 
and/or GCL address is recorded. 

COMPON=GRS-CTC DRIVER ENF 
EXITS,COMPID = SCSDS,ISSUER = ISGJENFO 

Component: Global Resource Serialization (5752-SCSDS) 

Issuing Module: ISGJENFO - EST AE 

PLM: OS/VS2 MVS Global Resource Serialization Logic 

Explanation: An error has occurred while ISGJENFO (event notification 
facility exits routine) was processing. The EST AE routine ISGJENFR (in 
ISGJENFO) issues the SDUMP macro. 

Problem Determination: A software record is written to SYSl.LOGREC. It 
includes the EST AE parameter list and the VARY parameter list in the 
variable recording area (SDW A VRA) of the SDW A. 

COMPON = GRS-QUEUE SCANNING SERVICES,COMPID = SCSDS, 
ISSUER = ISGQSCNR 

Component: Global Resource Serialization (5752-SCSDS) 

Issuing Module: ISGQSCNR - FRR 

PLM: OSjVS2 MVS Global Resource Serialization Logic 

Explanation: An error has occurred while ISGQSCAN (queue scanning 
services) was processing. The FRR routine ISGQSCNR issues the SDUMP 
macro. 

Problem Determination: A software record is written to SYSl.LOGREC. 

COMPON = G RS-RING-PROCESSING,COMPID = SCSDS, 
ISSUER = ISGBERCV 

Component: Global Resource Serialization (5752-SCSDS) 

Issuing Module: ISGBERCV - ESTAE 

PLM: OS/VS2 MVS Global Resource Serialization Logic 

Explanation: An error has occurred while ISGBTC (ring processing task 
mode routine) or ISGBCI (ring processing command interface routine) was 
processing. EST AE routine ISGBERCV issues the SDUMP macro. If the 
basic control blocks are valid, a summary dump is requested that includes 
the GVT, SQA (obtained byISGBTC), and the private area (obtained by 

C-12 MVS Diagnostic Techniques 



(ISGBTC) for ring processing. An asynClrronous dump of the current 
a~dress space is always included in the dump request. 

Pro.blem.Determinaon:A software'record is written to SYSl.LOGREC. It 
includes 'the fai~g.CSECT name plus the following in the variable 
rec~rdiilg .area(SDWAVRA) of the SDWA: 

• Address of ISGREPL (input parameter list to ISGBERCV) . 
• ' The ISGREPL. 
• Address of ISGRSC (input parameter list to ISGBCn. 
• The ISGRSC if ISGBTC failed. 

COMPON =·GRS-RING-PROC,COMPID = SCSDS,ISSUER = ISGBFRCV 

Component. Global Resource Serialization (5752-SCSDS) 

Issuing Module: ISGBFRCV - FRR 

PLM: OS/VS2 MVS Global Resource Serialization Logic 

Explanation: An error has occurred while ISGBSR (RSA send/receive 
routine) was processing. The FRR ISGBFRCV uses the branch entry to 
SVC dump. If the basic control blocks are valid, a summary dump is 
requested that includes the GVT,'SQA (obtained by ISGBTC), and the 
private area (obtained by ISGBTC) for ring processing. . An asynchronous 
dump of the. current address space is always included in the dump request. 

Problem Determination: A software record is written to SYSl.LOGREC. It 
includes the failing CSECT name plus the following in the variable 
recording area SDW A VRA) of the SDW A: 

• RVRPARM address. 

• The RVRPARM (input parameter area to ISGBFRCV). 

• RSV ID and address. 

• The following fields in the RSV control block: 

RSVCRSAT 
RSVRSLR 
RSVRSLS 
RSVRSLRF 
RSVRSLSF 

RSVTRSL 
RSVERR 
RSVWLOCK 
RSVRSASC 
RSVCPHNO 

• RSL ID and address. 

RSVIBFOR (input bu~er) 
RSAMRPFX (input buffer) 
RSVOBFOR (output buffer) 
RSAMRPFX (output buffer) 

• The following fields jn the RSL control block (if the error occurred in 
ISGBSRRI): 

RSLWLOCK RSLLKIF 
RSLLNKI RSLBFCT 
RSLNMSC RSLEaR 
RSLLKSF 

Appendix C. SVC DUMP Title Directory C-13 



COMPON = GRS,COMPID = SCSDS,ISSUER = ISGDSNRV 

Component: Global Resource Serialization (S7S2-SCSDS) 

Issuing Module: ISGDSNAP 

PLM: OSjVS2 MVS Global Resource Serialization Logic 

Explanation: An error has occurred while ISGDSNAP (snap dump exit) was 
processing. ESTAE routine ISGDSNRV (in ISGDSNAP) issues the 
SDUMP macro. 

Problem Determination: A software record is written to SYS1.LOGREC. 

COMPON = GRS,COMPID = SCSDS,ISSUER = ISGGFRRO 

Component: Global Resource Serialization (S7S2-SCSDS) 

Issuing Module: ISGGFRRO - FRR 

PLM: OSjVS2 MVS Global Resource Serialization 

Explanation: An error has occurred while one of the following modules was 
processing. 

ISGGDEQP ISGGRPOO 
ISGGNQDQ ISGGTRMO 
ISGGQWBC ISGGTRMI 
ISGGQWBI ISGLNQDQ 
ISGGREXO 

ISGSALC 
ISGSDAL 
ISGSHASH 

The FRR ISGGFRRO uses the branch entry to SVC dump. A summary 
dump is requested that includes the GVT and GVTX control blocks. An 
asynchronous dump of the current address space is also included in the 
dump request. 

Problem Determination: A software record is written to SYS1. LOGREC. 

COMPON = GRS,COMPID = SCSDS,ISSUER = ISGSMIFR 

Component: Global Resource Serialization (S7S2-SCSDS) 

Issuing Module: ISGSMI 

PLM: OSjVS2 MVS Global Resource Serialization 

Explanation: Either a program check has occurred while ISGSMI, 
ISGSALC, or ISGSDAL was processing, or an abend has occurred while 
ISGSALC was processing. The FRR routine ISGSMIFR (in ISGSMI) uses 
the branch entry to SVC dump. The areas dumped are PSA, SQA, and 
GRSQ. The dump also contains a summary dump. 

Problem Determination: A software record is written to SYS1.LOGREC. 

C-14 MVS Diagnostic Techniques 



COMPON= IOS,COMPID = SCI C3,ISSUER = IECVBRSV 

Component: lOS (5752-SCIC3) 

Issuing' Module: IECVBRSV 

PLM: OS/VS2 I/O Supervisor Logic 

Explanation: An error has occurred during IECVBRSV (build reserve table) 
processing. The FRR routine in IECVBRSV issues the SDUMP macro. 
The areas dumped are SQA, NUC, SUM, and ALLPSA. 

Problem Determination: A software record is written to SYS1.LOG-REC. 
The SDW AVRA contains the FRR work area. 

COMPON = IOS,COMPID = SCI C3,ISSUER = IECVDPTH 

Component: lOS (5752-SCIC3) 

Issuing Module: IECVDPTH 

PLM: OS/VS2 I/O Supervisor Logic 

Explanation: An error has occurred during IECVDPTH (dynamic pathing) 
processing. The FRR routine (DPTHFRR) in IECVDPTH issues the 
SDUMP macro. The areas dumped are SQA, NUC, ALLPSA, and SUM. 

Problem Determination: A software record is written to SYSI.LOGREC. 
The SDW A VRA is formatted in the key-length-data format. 

COMPON = IOS,COMPID = SCIC3,ISSUER = IECVFCHN,FCHNFRR 

Component: lOS (5752-SCIC3) 

Issuing Module: IECVFCHN 

PLM: OS/VS2 I/O Supervisor Logic 

Explanation: An error has occurred during IECVFCHN (force channel 
offline) processing. The FRR routine (FCHNFRR) in IECVFCHN issues 
the SDUMP macro. 

Problem Determination: A softwJlre record is written to SYSI.LOGREC and 
includes: 

SDWAMODN 
SDWACSCT 
SDWAREXN 
SDWACID 
SDWARRL 
SDWAVRA 

- IECVFCHN 
-IECVFCHN 
- IECVFCHN 
- SCIC3 
-FCHNFRR 
- The six-word FRR work area, arid the first reserve table segment if any 

devices were entered in the reserve table segment. 

Appendix C. SVC DUMP Title Directory C-15 



COMPON == 10S,COMPID = SCI C3,ISSUER = IECVFDEV,FDEVFRR, 
FAILURE IN FORCE DEVICE ROUTINE 

Component: lOS (5752-SCIC3) 

Issuing Module: IECVFDEV 

PLM: OS/VS2 I/O Supervisor Logic 

Explanation: An error has occurred during IECVFDEV (force device) 
processing. The FRR routine FDEVFRR in IECVFDEV issues the 
SDUMP macro. 

Problem Determination: A software record is written to SYSl.LOGREC and 
includes: 

SDWAMODN 
SDWACSCT 
SDWAREXN 
SDWACID 
SDWARRL 
SDWAVRA 

- IECVFDEV 
- IECVFDEV 
- IECVFDEV 
- SCIC3 
-FDEVFRR 
- The 24-byte FRR parameter list. 

COMPON=IOS,COMPID=SCIC3,ISSUER=IECVGENA 

Component: lOS (5752-SCIC3) 

Issuing Module: IECVGENA - FRR 

PLM: None - refer to the microfiche 

Explanation: A program check has occurred during IECVGENA (lOSGEN 
resident subroutine) processing. The areas dumped are RGN, LPA, and 
TRT. 

Problem Determination: A software record is written to SYSI.LOGREC. 
The SD UMP buffer contains: 

- Parameters indicating the function performed 
- Register save area 
-SDWA 
- The 6 word FRR parameter area 

COMPON = 10S,COMPID = SCIC3,ISSUER = IECVHREC 

Component: lOS (5752-SCIC3) 

Issuing Module: IECVHREC 

PLM: OS/VS2 I/O Supervisor Logic 

Explanation: An error has occurred during IECVHREC (hot I/O recovery) 
processing. The FRR routine in IECVHREC issues the SDUMP macro. 
The areas dumped are SQA, NUC, SUM, and ALLPSA. 

C-16 MVS Diagnostic Techniques 



Problem Determination: A software record is written to SYSI.LOGREC. 
The SOW AVRA contains the FRR work area and a copy of the SCD. 

COMPON = 10S,COMPID = SCIC3,ISSUER = IECVIOSI 

Component: lOS (5752-SCIC3) 

Issuing Module: IECVIOSI 

PLM: OS/VS2 I/O Supervisor Logic 

Explanation: An error has occurred during IECVIOSI (dynamic pathing 
initialization) processing. The ESTAE routine (IOSIRECV) in IECVIOSI 
issues the SDUMP macro. The areas dumped are SQA, RON, TRT, 
LSQA, SW A, SUM, and automatic storage area. 

Problem Determination: A software record is written to SYSI.LOOREC. 
The SDWAVRA is formatted in the key-length-data format. 

COMPON = 10S,COMPID = SC I C3,ISSUER = IECVRRSV 

Component: lOS (5752-SCIC3) 

Issuing Module: IECVRRSV 

PLM: OS/VS2 I/O Supervisor Logic 

Explanation: An error has occurred during IECVRRSV (re-reserve device) 
processing. The FRR routine in IECVRRSV issues the SDUMP macro. 
The areas dumped are SQA, NUC, SUM, and ALLPSA. 

Problem Determination: A software record is written to SYSl.LOOREC. 
The SOW A VRA contains the FRR work area. 

COMPON=IOS,COMPIO=SCIC3,ISSUER=IOSVRSUM - RESUME 
SERVICE ROUTINE 

Component: lOS (5752.;SCIC3) 

Issuing Module: 10SVRSUM 

PLM: OS/VS2 I/O Supervisor Logic 

Explanation: An error has occurred during IOSVRSUM (resume I/O service) 
processing. The areas dumped are SQA, PSA, NUC, and TRT. 

Problem Determination: A software record is written to SYSI.LOOREC. 
The SOWAVRA contains the FRR work area. It also contains the UCB 
and IOSB if their addresses are not zero. If the UCB or IOSB address is 
zero, then the SDW A VRA contains 'UCB ZERO' or 'IOSB ZERO'. 

Appendix C. SVC DUMP Title Directory C-17 



COMPON = JES3 SUBSYS COMMUNIC,COMPID =SCIBA, 
ISSUER = IATSSRE(SSREFRR) 

Component: JES3 (5752-SCIBA) 

Issuing Module: IATSSRE 

PLM: OSjVS2 MVS JES3 Logic 

Explanation: An error has occurred during read end processing of subsystem 
communication. RecQvery routine SSREFRR issues the SDUMP macro. 

Problem Determination: A software record is written to SYSl.LOGREC. 

COMPON=JES3 SUBSYS COMMUNIC,COMPID=SCIBA, 
ISSUER = IATSSXM(SXMFRR) 

Component: JES3 (5752-SCIBA) 

Issuing Module: LA TSSXM 

PLM: OSjVS2 MVS JES3 Logic 

Explanation: An error has occurred during cross memory processing of 
subsystem communication. Recovery routine SXMFRR issues the SDUMP 
macro. 

Problem Determination: A software record is written to SYSl.LOOREC. 

COMPON = MSTR-W AIT,COMPID = SCIB8,ISSUER = IEEVW AIT,reason 

Component: Master Scheduler Commands (5752-SCIB8) 

Issuing Module: IEEVW AIT 

PLM: OSjVS2 System Logic Library 

Explanation: An error has occurred during command processing. The 
'reason' field is one of the following: 

BAD ESTAE RETURN CODE 
ERROR IN MASTER ADDR SPACE 
ERROR IN CONSOLE ADDR SPACE 
IEEVWAIT RESTART FAILED IN CONSOLE ADDR SPACE 

IEEVW AIT issues SDUMP for all but percolation and :machine check 
entries. The areas dumped are PSA, NUC, LSQA, RON, LPA, TRT, CSA, 
ORSQ, and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC. 

C-18 MVS Diagnostic Techniques 



~ 
I 

;/ 

COMPON=M S CMNDS,COMPID=SCIBS,ISSUER=IEECBS62, 
FAILURE IN VARY ONLINE/OFFLINE/CONSOLE PROCESSOR 

Component: Master Scheduler Commands (5752-SCIBS) 

Issuing Module: IEECBS62 

PLM: System Logic Library 

Explanation: An error has occurred in the V ARY device command. The 
areas dumped are SQA, ALLPSA, LSQA, LPA, TRT, and GRSQ. In 
addition, the UCM and UCMEs are dumped using a storage list. 

Problem Determination: A software record is written to SYSl.LOGREC. 
The SDW A VRA contains the following: 

• Pointer to the vary service routine interface list (VSRI) 
• The vary footprints 
• Pointer to the XSA 
• Pointer to the CSCB 
• The command operand from CHBUF 
• The command verb code 
• The caller's token 

COMPON=M S CMNDS,COMPID=SCIBS,ISSUER=IEEMB881, FAILURE 
IN SYSTEM ADDR SPACE CREATE ROUTINE 

Component: Master Scheduler Commands (5752-SCIB8) 

Issuing Module: IEEMB881 - System address space create routine 

PLM: OS/VS2 System Initialization Logic 

Explanation: An error occurred, after master scheduler initialization, while 
IEEMB881 was attempting to start a system address space. Routine 
EAESTAE issues the SDUMP macro. The areas dumped are SQA, PSA, 
LSQA, LPA, TRT, GRSQ, and the master scheduler's ASCB. 

Problem Determination: A software record is written to SYSl.LOGREC. 
The SDW A VRA contains the following: 

• Return and reason codes 
• Footprints 
• Input attribute list 
• Name of the initialization routine specified by the caller 
• Start parameters specified by the caller 
• Code and data registers 
• Pointers to the CSCB, ASCB, JSCB, TCB, and BASEA 

Appendix C. SVC DUMP Title Directory C-19 



COMPON = M S CMDS,COMPID = SCIB8,ISSUER = IEEMB883, FAILURE 
IN SYSTEM ADDR SPACE INIT WAIT/POST ROUTINE 

Component Master Scheduler Commands (5752-SCIB8) 

Issuing Module: IEEMB883 - System address space initialization 
WAIT/POST routine 

PLM: OS/VS2 System Initialization Logic 

Explanation: An error occurred, after master scheduler initialization, during 
WAIT/POST processing. Routine WPEST AE issues the SDUMP macro. 
The areas dumped are SQA, PSA, LSQA, LPA, and TRT. 

Problem Determination: A software record is written to SYSl.LOGREC. 
The SDW A VRA contains the following: 

• Return and reason codes 
• Input event code 
• Footprints 
• Code and data registers 
• Pointer to TCB in error 
• Pointers to the CSCB, ASCB, JSCB, and BASEA 

COMPON = MS CMNDS,COMPID = SC 1 B8,ISSUER = IEEMB887, 
GENERALIZED PARSER,ABEND = xxx, 
RSN = xxxxxxxx I UNKNOWN 

or 
COMPON = MS CMNDS,COMPID = SCI B8,ISSUER = IEEMB887, 
GENERALIZED PARSER-EXIT ABENDED,ABEND=xxx, 
RSN = xxxxxxxx I UNKNOWN 

Component: Master Scheduler (5752-SCIB8) 

Issuing Module: IEEMB887 - Generalized Parser 

PLM: System Logic Library 

Explanation: An error has occurred: (1) in module IEEMB887, or (2) in an 
exit routine that was called by IEEMB887. 

Recovery routine PRSEST AE issued a summary SVC dump with the 
following areas included: 

• IEEMB887 
• IEEMB887' s data area 
• SCL (IEEMB887's parameter list) 
• First parse description 
• Current parse description 
• Input being processed 

c-20 MVS Diagnostic Techniques 



PrOblem Determiilation: A·software record is written to SYSl.LOGREC. 
The SDW AVRA contains: 

• 'ENABLING DAE' 

• If 'ROUT' exit routine abended, exit routine address with the address of 
the keyword used to call the routine 

• If I/O exit abended, exit routine address 

• Footprints 

• Base registers 

• Data register 

• Address of SCL 

• Address of current parse description 

• Current value of input record pointer 

COMPON = PROGRAM-MANAGER-VIRTUAL-FETCH,COMPID = SCICJ, 
ISSUER = CSVVFCES-CSVVFCRE 

Component: Virtual Fetch (5752-SCICJ) 

Issuing Module: CSVVFCRE - issued by EST AE CSVVFCES 

PLM: OS/VS2 System Logic Library 

Explanation: An abend (other than code 222, 322, or 522) occurred during 
virtual fetch initialization processing in CSVVFCRE. EST AE routine 
CSVVFCES requests an SVC dump. Up to nine storage ranges are dumped 
and include: 

• The VFCB pointed to by CVTVFCB. 
• The VFCB obtained by this task and pointed to by VFCBPTR. 
• The old hash table, if a new hash table was obtained. 
• The new hash table. 
• The temporary table of PDS directory entries (INFOTAB). 
• The ACA area. 
• The VCBs area. 
• The area used as a VIO window for reformatted modules. 
• The·area used as an input buffer for load module TXT records. 

Problem Determination: A software record is written to SYSl.LOGREC. 
Register 1 contains the address of the SDW A. The- following fields in the 
SDWA are filled in: SDW AMODN, SDWACSCT, SDW AREXN, 
SDWASC, SDWALVL, SDWARRL, and SDWACID. 

Field CVTVFCB points to theVFCB. Field VFCBASCB points to the 
ASCB of the address space that owns the VFCB. CSVVFCRE sets 
VFCBASCB early in its processing. The VFCB also indicates whether 

Appendix C. SVC DUMP Title Directory C-21 



CSVVFCRE was doing an initial build (VFCBECB=O) or a refresh 
(VFCBECB"O). 

In CSECT CSVVFCRI, local variable IOERTEXT contains a text 
description of the most recent I/O error detected by BSAM while reading 
modules. It is filled in by BSAM whenever the SYNAD exit is entered for 
the DCB named PCBLIBS. 

In CSECT CSVVFCRE, field USERPRMS contains processing footprints 
that indicate the resources owned and the stage of processing at the time of 
the dump. USERPRMS is mapped by the structure FOOTPRTS in 
CSVVFCRE. Field RETRY in CSVVFCRE indicates whether CSVVFCES 
was retrying (RETRY = ON) or percolating the error. The intended retry 
address is in field RETRYADR in CSVVFCRE. 

In the case when the ESTAE routine is percolating the error, no clean up 
has been performed and the footprints will describe the stage of processing 
at the time of the error. 

COMPON=PROGRAM-MANAGER-VIRTUAL-FETCH,COMPID=SCICJ, 
ISSUER = CSVVFCFR-CSVVFCRE 

Component: Virtual Fetch (5752-SCICJ) 

Issuing Module CSVVFCRE - issued by FRR CSVVFCFR 

PLM: OS/VS2 System Logic Library 

Explanation: During refresh processing of the virtual fetch service address 
space, an abend occurred in CSVVFCES (CSVVFCRE's ESTAE routine) 
while it was attempting to release the logical group number (LGN) of the 
new VIO data set obtained by CSVVFCRE. Refresh processing failed after 
the new LGN was obtained, and before the VFCB had been updated for the 
new generation. CSVVFCFR requests an SVC dump only when flag 
SDWACLUP is on, or when the FRR was reentered after attempting a 
retry. 

Up to nine storage areas are dumped and include: 

• The VFCB pointed to by CVTVFCB. 
• The VFCB obtained by this task and pointed to by VFCBPTR. 
• The old hash table. 
• The new hash table. 
• The temporary table of PDS directory entries (INFOT AB). 
• The ACA area. 
• The VCBs area. 
• The area used as a VIO window for reformatted modules. 
• The area used as an input buffer for load module TXT records. 

Problem Determination: A software record is written to SYSl.LOGREC. 
Register 1 contains the address of the SDW A. The following fields in the 
SDWA are filled in: SDWAMODN, SDWACSCT, SDWAREXN, 
SDWASC, SDWALVL, SDWARRL, and SDWACID. 

c-22 MVS Diagnostic Techniques 



In CSECT CSVVFCRl, local variable 10ERTEXT contains a text 
description of the most recent I/O error detected by BSAM while reading 
modules. It is filled in by BSAM whenever the SYNAD exit is entered for 
the DCB named DCBLIBS. 

The VRA area in the SDW A contains a copy of variable USERPRMS as it 
was on entry to CSVVFCFR. Variable USERPRMS (in CSVVFCRE) 
contains processing footprints that indicate ~ resources owned and the 
stage of processing at the time of the dump. USERPRMS is mapped by the 
structure FOOTPRTS in CSVVFCRE. If this is a recursion, flag 
FPFRRCUR in USERPRMS is set on. 

COMPON = RMF~ENQ EVENT 
HANDLER,COMPID =XY400,ISSUER = ERBMFEEQ 

Component: RMF (5752-XY400) 

Issuing Module: ERBMFEEQ 

PLM: OS/VS2 MVS Resource Measurement Facility (RMF) Version 2 
Program Logic Manual 

Explanation: An abend occurred while the RMF Monitor 1 ENQ event 
handler (ERBMFEEQ) was processing. EREMFEEQ receives control when 
an increase or decrease in enqueue contention occurs. Recovery routine 
ERBMFFRQ issues theSDUMP macro. The areas dumped are 
SUMDUMP and TRT. The SUMLIST option specifies the ERBMFEEQ 
module work area and the ENQ data collection area (ERBEQEOT and 
ERBEQRES). 

Problem Determination:" A software record is written to SYSl.LOGREC. 
The SOW A VRA contains module trace information and pointers to the 
module work area and the ERBEQEOT area. 

COMPON = SUPV CNTL,COMPID = SCIC5,FUNCTION = RESUME, 
MODULE = IEAVETCL,ISSUER = IEAVETCL(IEAVETCR) 

Component: Supervisor Control (5752-SCIC5) 

Issuing Module: lEA VETCL 

PLM: OS/VS2 System Logic Library 

Explanation: An error has occurred during RESUME or TCTL processing. 
Recovery routine lEA VETCR issues the SDUMP macro. 

Problem "Determination: A software record is written to SYSl.LOGREC. 
The SOW A VRA contains diagnostic information indicating the function in 
controlat the time of the error, and debugging data related to that function. 

Appendix C. SVC DUMP Title Directory C-23 



DAVVERROR 

Component: lOS - DASD Volume Verification (5752-SCIC3) 

Issuing Module: IECVDA VV - FRR/EST AE 

PLM: OS/VS2 I/O Supervisor Logic 

Explanation: Ali error has occurred while IECVDA VV was in control. The 
areas dumped are PSA, TRT, dump buffer, and storage containing the 
module. 

Problem Determination: The dump buffer contains: 

X'O' - SRB/IOSB 
X'A6' - EW A (work area) 
X'146' - UeB 

The SDW A VRA also contains a copy of the IOSB. A software record is 
written to SYSl.LOGREC. 

D U"ALLOC ABEND 

Component: DIDOCS (5752-SCl C4) 

Issuing Module: IEE24 1 I 0 - EST AE 

PLM: OS/VS2 System Logic Library 

Explanation: An error has occurred during D U,ALLOC (DISPLAY) 
processing. Any storage areas obtained are freed. The following areas are 
dumped for both the master and the allocation address space: SQA, PSA, 
NUC, LSQA, RGN, LPA, TRT, and CSA. The ESTAE routine percolates 
to IEECB860. 

Problem Determination: A software record is written to SYS1.LOGREC. 

DUMP BY/(OF) MODULE xxxxxxxx 

Component: GTF (5752-SClll) 

Issuing Module: AHL WTO 

PLM: OS/VS2 Service Aids Logic 

Explanation: Entry point AHLDMPMD in AHLWTO provides a dumping 
service for the GTF FGBRs (filter, gather, and build routines). xxxxxxxx 
indicates the FGBR affected: AHLTSLIP, AHLTSYSM, AHLTUSR, 
AHLTSIO, AHLTSVC, AHLTPID, AHLTSYFL, AHLTEXT, AHLTFOR, 
or AHLTXSYS. The GTF control blocks dumped are MCHEAD, 
MCRWSA, MCAWSA, MCCE, MCQE, and GTFPCT. The SQA, SDWA, 
and the failing FGBR module are also dumped. 

Problem Determination: The error is probably a page fault that occurred 
when the FGBR referenced a data area that should be fixed but was not. 

c-24 MVS Diagnostic Techniques 



Message AHLI181 is issued. For additional information, refer to message 
AHLI181 in VS2 System Messages. For most errors, the GTF FGBR also 
writes a software record to SYSl.LOGREC. 

DUMP OF AHLREADR 

Component: GTF (5752-SCIIl) 

Issuing Module: AHLREADR 

PLM: OS/VS2 Service Aids Logic 

Explanation: An error has occurred while AHLREADR was attempting to 
pass GTF buffers to SDUMP or SNAP for inclusion in an outstanding 
dump request. The dump taken by AHLREADR includes a dump of itself 
plus a dump of the failing address space. The AHLREAD macro request is 
cleaned up, which includes posting the original requestor, releasing locks, 
dequeueing on the MC (monitor call) control blocks, and releasing allocated 
storage. 

Problem Determination: A software record is written ~o SYSLLOGREC. 

DUMP OF GTF MODULE AHLSBLOK 

Component: GTF (5752-SClll) 

Issuing Module: AHLSBUF 

PLM: OS/VS2 Service Aids Logic 

Explanation: An error has occurred while moving the GTF global trace 
buffer to a page in the GTF address space. The failing address space is 
dumped. The error is percolated to the FRR for the active data gathering 
routine. The FRR in the router routine (AHLMCER) disables and 
terminates GTF. 

Problem Determination: A software record is written to SYSl.LOGREC. 

DUMP OF GTF MODULE AHLWTASK 

Component: GTF (5752-SClll) 

Issuing Module: AHLWTASK 

PLM: OS/VS2 Service Aids Logic 

Explanation: An error has occurred when either (I) entry point 
AHLWPOST in AHLWTASK was attempting to post AHLWTASK in 
order to schedule message AHL1l81, or (2) entry point AHLWTASK was 
attempting to schedule an SRB for a WTO of message AHL1l8I. The areas 
dumped are the SDUMP buffer, failing module, and failing address space. 

Appendix C. SVC DUMP Title Directory C-25 



Problem Determination: Message AHLl191 is issued. The SDUMP buffer 
contains message AHLl181 (which would have been issued if the error had 
not occurred), the SRB that did not complete, and the SDW A. 

DUMP OF JES2 CHECKPOINT DATA. SYSTEM=id, $ERROR 
CODE = code 

Component: JES2 or JES2 NJE (5752-SCIBH) 

Issuing Module: HASPCKPT 

PLM: OS/VS2 MVS JES2 Logic or Network Job Entry Facility/or JES2 
Logic 

Explanation: JES2 has detected a major error during I/O processing to the 
checkpoint data set. Fields in the dump title are: 

id - system ID on which the error was detected 
code - JES2 abend code 

The JES2 actual checkpoint master record, job queue, and JOT storage are 
dumped. 

Problem Determination: For additional information on JES2 error codes, 
refer to message HASP095 in VS2 System Codes. For additional 
information on the action to be taken, refer to SPL: JES2 or SPL: NJE/or 
JES2. 

DYNAMIC DEVICE RECOVERY ERROR DUMP 

Component: RMS (5752-SCICE) 

Issuing Module: IGFDEI - DDR ESTAE exit 

PLM: OS/VS2 System Logic Library 

Explanation: An error has occurred during DDR (dynamic device 
reconfiguration) processing. The areas dumped are PSA, TRT, SQA, NUC, 
module storage, and DDRCOM (the DDR general work area. 

Problem Determination: A software record is written to SYSl.LOGREC . 
. Also, the ASXBDDR field in the ASXB of the master address space points 
to the current DDRCOM. The DDRCOM might contain useful debugging 
information. 

c-26 MVS Diagnostic Techniques 



ENF ABEND ERRORMOD=IEFENFFX 

Component: Scheduler Services (5752-BBI31) 

Issuing Module: IEFENFFX 

PLM: OSjVS2 System Logic Library 

Explanation: An abend has occurred while IEFENFFX (ENF request router 
routine) was processing an event notification request. The areas dumped are 
NUC ·and SQA. 

Problem Determination: A software record is written to SYSl.LOOREC. 
The SDW A VRA contains the EST AE or FRR parameter list and footprint 
bits that indicate the execution path of IEFENFFX. 

ENF ABEND ERRORMOD=IEFENFNM 

Component: Scheduler Services (5752-BBI31) 

Issuing Module: IEFENFNM 

PLM: OSjVS2 System Logic Library 

Explanation: An abend has occurred while IEFENFNM (ENF mainline 
routine) was processing an event notification request. The areas dumped are 
NUC, RON, CSA, and SQA. 

Problem Determination: A software record is written to SYSl.LOOREC. 
The SDW A VRA contains the EST AE or FRR parameter list and footprint 
bits that indicate the execution path of IEFENFNM. 

ENQUEUE FAILURE IN ABDUMP 

Component: RTM - ABDUMP Processing (5752-SCICM) 

Issuing Module: lEA VT ABD 

PLM: OSjVS2 System Logic Library 

Explanation: An error has occurred when ABDUMP attempted to enqueue 
(ENQ) on the dump data set in order to process a dump request specified 
on a user's SYSABEND, SYSMDUMP, dr SYSUDUMP DD statement. 
The areas dumped are RON, LPA, LSQA, and SQA. 

Problem Determination: Because ABDUMP was unable to take the dump 
requested by the user,use the SVC dump information to identify the user's 
problem. 

Appendix C. SVC DUMP Title Directory C-27 



ERROR DURING RESTART PROCESSING - IEFXB609 

Component: Scheduler Restart (5752~SCIB3) 

Issuing Module: IEFXB609 - Data Set Descriptor Record Processor 

PLM: OS/VS2 System Logic Library 

Explanation: An error has occurred during restart processing. The areas 
dumped are NUC, LSQA, RGN, LPA, TRT, SWA, and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC. 

ERROR DURING SNAP 

Component: RTM - Dump Services (5752-SCICM) 

Issuing Module: lEA V ADO I - EST AE 

PLM: OS/VS2 System Logic Library 

Explanation: An error has occurred during SNAP dump processing when 
SNAP was attempting to take a dump for the user. An I/O error or invalid 
control block field can cause this error. The areas dumped are RGN, LPA, 
and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC. It 
includes the failing CSECT name that identifies the fonnatter in control at 

. the time of the error. 

ERROR IN AHLSETEV 

Component: GTF (5752-SClll) 

Issuing Module: AHLSETEV 

PLM: OS/VS2 Service Aids Logic 

Explanation: A program check has occurred when referencing the MC 
(monitor call) tables that are built during GTF initialization by the 
SETEVENT macro. GTF applications are tenninated and acquired 
resources are freed. Message AHL1321 is issued. The area dumped is SQA l 

which contains the MC tables. 

Problem Determination: Validate the MC tables that are located in the SQA 
For additional infonnation, refer to message AHL1321 in VS2 System 
Messages. 

c-28 MVS Diagnostic Techniques 



ERROR IN GETMAINjFREEMAIN 

Component: VSM (5752-SClCH) 

Issuing Module: IEAVGFRR - FRR 

PLM: OSjVS2 System Logic Library 

Explanation: One of the following errors has occurred during lEA VGMOO 
(GETMAINjFREEMAIN service routine) processing: 

• The SALLOC lock-release return code was not zero. 
• The page release return code was not zero or eight. 
• The create segment return code was not zero. 
• The find page return code was not zero or four. 
• GFRECORE failed during SQA or LSQA expansion. 
• The SALLOC lock obtain return code was not zero or four. 
• Subpool freemain for subpool 253 found an AQE whose area was not in 

an LSQADQE. 

The areas dumped are PSA, LSQA, and SQA. 

Problem Determination: A software record is written to SYS1.LOGREC. 
For additional debugging information, refer to the topics "Virtual Storage 
Allocation (IEAVGMOO - GETMAIN/FREEMAIN" and "GETMAIN's 
Functional Recovery Routine - lEA VGFRR)" under VSM in Section 5 of 
this publication. 

ERROR IN IATSIDMO FOR SYSOUT DATA SET 

Component: JES3 (5752-SCIBA) 

Issuing Module: IA TDMFR - FRR 

PLM: OS/VS2 MVS JES3 Logic 

Explanation: An error has occurred while module IATSIDM (USAM 
subsystem interface routine) was attempting to open a SYSOUT data set. 
The FRR routine IATDMFR issues the SDUMP macro. IATDMFR 
returns to IATSIDM via the retry address (RETADDR parameter) on the 
SETRP macro. IATSIDM terminates the job with a IFB system abend 
code. The areas dumped are SQA, CSA, and LP A. 

Problem Determination: A software record is written to SYSl.LOGREC. 
For a description of the IFB abend code, refer to VS2 System Codes. 

Appendix C. SVC DUMP Title Directory C-29 



ERROR IN IEAVTSLP 

Component: RTM - SLIP Processor (5752-SCICM) 

Issuing Module: lEA VTSLR 

PLM: OSjVS2 System Logic Library 

Explanation: An error has occurred during SLIP processing. The FRR in 
IEAVTSLR issues SDUMP. The areas dumped are ALLPSA, NUC, 
LSQA, and SQA. The summary part of the dump requested by lEA VTSLR 
contains information relevant to the· error. 

Problem Determination: A software record is written to SYSl.LOGREC. 
The FRR parameter list is put in the SDW A VRA. 

ERROR IN MASTER SUBSYSTEM BROADCAST FUNCTION, 
ABEND = aaa,COMPON = INIT -SSI,COMPID = SCI B6,ISSUER = IEFJRASP 

Component: Initiator - Subsystem Interface (5752-SCIB6) 

Issuing Module: IEFJRASP 

PLM: OSjVS2 System Logic Library 

Explanation: An abend has occurred while IEFJRASP was routing a 
subsystem interface request to all active subsystems, via the subsystem 
interface. The areas dumped are NUC, CSA, LPA, TRT, and LSQA. 

Problem Determination: A software record is written to SYSl.LOGREC. 
The SDW A VRA contains footprint bits that indicate the execution path of 
IEFJRASP. 

ERROR IN MODULE AHLMCER 

Component: GTF (5752-SClll) 

Issuing Module: AHLMCER 

PLM: OSjVS2 MVS Service Aids Logic 

Explanation: An error has occurred during GTF processing when 
AHLMCER attempted to route the MC (monitor call) interruption to its 
affiliated FGBR (filter, gather, and build routine). The FRR routine 
(AHLMCFRR) requests the dump prior to attempting retry. The 
MCRWSA and SDWA are moved into the SDUMP buffer. AHLMCER is 
included in the dump as part of the storage dumped. GTF is terminated. 
The areas dumped are SQA, SDUMP buffer, failing module, and failing 
address space. 

Problem Determination: Message AHL0071 is issued. A software record is 
written to SYSl.LOGREC. This error is usually an inability to pass control 
to an FGBR because of changes to the FGBR in SYSl.LPALIB. Field 

C-30 MVS Diagnostic Techniques 



MCREID in the MCRWSA contains the event identifier of the HOOK that 
GTF was processing. 

ERROR IN QMNGRIO PROCESSING 

Component: RTM - Dump Services (5752-SCICM) 

Issuing Module: lEA V ADO I - ESTAE 

PLM: OS/VS2 System Logic Library 

Explanation: An error has occurred during SNAP dump processing when the 
QMNGRIO macro attempted to read the JFCB in order to obtain an 
output line and the page capacity. The areas dumped are RGN, LPA, 
SW A, and SQA. 

Problem Determination: The JFCB might be in error. 

ERROR IN REAL STORAGE MANAGER 

Component: RSM (5752-SCICR) 

Issuing Module: IEAVRCV - FRR 

PLM: OSjVS2 System Logic Library 

Explanation: An error has occurred during RSM processing. The areas 
dumped are SQA, PVT, and PFT. If IEAVRCV was running in the failing 
address space, LSQA is also dumped. 

Problem Determination: A software record is written to SYSl.LOGREC and 
includes: 

SOWAMOON - Name of the module in error. 
SOWACSCT - CSECT name of the routine in control at the time of the error. 
SOWAREXN - IEAVRCV (recovery routine) 
SOW A VRA - The 24-byte FRR parameter list (RCA). 

The RCA contains: 

Byte 9 - CSECT 10 of the module that issued the SETFRR to put lEA VRCV on the 
recovery stack. The lOs are defined in mapping macro IHARCA. 

Bytes 8, - Footprint bits that indicate- which RSM module was in control at the time of 
12-17 the error. A description of the bits is in mapping macro IHARCA. 

Byte 11 - Reason code for COD abends. An explanation of RSM abend reason codes is in 
the "Real Storage Manager (RSM)" topic. 

Refer to mapping macro IHARCA for an explanation of all bytes in the 
RCA. 

Appendix C. SVC DUMP Title Directory C-31 



ERROR IN REAL STORAGE MANAGER FRR 

Component: RSM (5752-SCICR) 

Issuing Module: lEA VRCV - FRR 

PLM: OSjVS2 System Logic Library 

Explanation: An error has occurred while the FRR routine lEA VRCV was 
processing. Routine IEAVRCV3 issues the SDUMP macro. The areas 
dumped are SQA, PVT, and PFT. 

Problem Determination: A software record is written to SYSl.LOGREC and 
includes: 

SDW AMODN - lEA VRCV (module in error) 
SDW ACSCT - lEA VRCV (CSECT in error) 
SDW AREXN - lEA VRCV3 (recovery routine) 

ERROR IN SUBSYSTEM SERVICE RTN, COMPON= INIT-SSI, 
COMPID = SCI B6,ISSUER = IEFJSBLD,ABEND = aaa 

Component: Initiator - Subsystem Interface (5752-SCIB6) 

Issuing Module: IEFJSBLD 

PLM: OSjVS2 System Initialization Logic 

Explanation: An abend (aaa) has occurred while IEFJSBLD was either 
building an SSCVT, SSVT, SHAS, or SAST, or was preparing to link to a 
subsystem's initialization routine. The areas dumped are ALLPSA, LSQA, 
RGN, CSA, and TRT. 

Problem Determination: A software record is written to SYSl.LOGREC and 
includes: 

SDW AMODN - IEEVIPL (module in error) 
SDW ACSCT - IEFJSBLD (CSECT in error) 
SDW AREXN - IEFJSBLD (recovery routine) 

The SDWAVR~ contains the input parameter list and footprint bits that 
indicate the execution path of IEFJSBLD. 

ERROR IN SUBSYSTEM INITIALIZATION,COMPON=INIT-SSI, 
COMPID = SCIB6,ISSUER = IEFJSIN2,ABEND = aaa 

Component: Initiator - Subsystem Interface (5752-SCIB6) 

Issuing Module: IEFJSIN2 

PLM: OSjVS2 System Initialization Logic 

Explanation: An abend (aaa) occurred during initialization processing of the 
subsystems. The error occurred in IEFJSIN2 or in service routines 
IEEMB878 or IEEMB882. The areas dumped are ALLPSA, LSQA, RGN, 
and TRT. 

C-32 MVS Diagnostic Techniques 



December 27, 1985 

Problem Determination: A software record is written to SYSl.LOGREC and 
includes: 

SDW AMODN - IEEMB860 (module in error) 
SDW ACSCT - IEFJSIN2 (CSECT in error) 
SDW AREXN - IEFJSIN2 (recovery routine 

The SDW A VRA contains footprint bits to indicate the execution path of 
IEFJSIN2. 

EVENT NOTIFICATION FACILITY ERROR,ABEND=xxx, 
COMPON=SCHR-ENF,COMPID=BBI31,ISSUER=IEFENFWT 

Component: Scheduler Services (5752-BBI31) 

Issuing Module: IEFENFWT 

PLM: OS/VS2 System Logic Library 

Explanation: An abend has occurred while IEFENFWT (ENF wait routine) 
was processing. The areas dumped are NUC, CSA, SQA, and RGN. 

Problem Determination: A software record is written to SYSl.LOGREC. 

FAILURE DURING SNAP RECOVERY 

Component: RTM - Dump Services (5752-SCICM) 

Issuing Module: lEA V ADO 1 - EST AE 

PLM: OS/VS2 System Logic Library 

Explanation: An err~~ has occurred while the SNAP dump EST AE routine 
was attempting to cleanup after an error had occurred during SNAP 
mainline processing. No further cleanup is attempted. The areas dumped 
are RGN, LPA~ ~nd SQA. 

Proble:m Determination: The SNAP storage buffers are probably incorrect. 
USt: t.heprevious RTM2WA to identify the error that occurred during 
SNAP mainline processing. The SNAP mainline error might have affected 
this error. 

FIOD:IDAOI9S2 - ABEND FROM FIOD FRR 

Component: VSAM - Record Management (5752-SCIDE) 

Issuing Module: ID AO 19S2 - FRR 

PLM: OS/VS2 VSAM Logic 

Explanation: An abnormal termination has occurred during VSAM record 
management processing. The FRR routine IDA019S2 (at entry point 
IDAFI9S2), issues the SDUMP macro. The areas dumped are PSA, NUC, 
RGN, TRT, CSA, and SQA. 

Appendix C. SVC DUMP Title Directory C-33 



11'ljL ;:SNL~-:)U'J) (Uecember 27, 1985) to SY28-1133-2 

Problem Determination: A VSAM ICIP (improved control interval 
processing) request was executing in supervisor state or SRB mode and 
encountered a program check while the I/O manager was processing the 
request. Register 3 points to the 10MB for the request. For information on 
how the 10MB relates to the VSAM control block structure, refer to 
OS/ VS2 VSAM Logic. 

GTF TERMINATING ON ERROR CONDITION 

Component: GTF (5752-SClll) 

Issuing Module: AHLTMON 

PLM: OS/VS2 MVS Service Aids Logic 

Explanation: An error has occurred during GTF initialization before the 
initialization was successfully completed. The retry routine AHLTERM2 
(in AHLTMON) issues the SDUMP macro. GTF is terminated. The areas 
dumped are RGN, LPA, SQA, and MCHEAD control block. 

Problem Determination: A software record is written to SYSl.LOGREC. 

HASPDUMP SUBSYS=ssss vvvvvvvv MODULE=mmmmmmmm CODE=cccc 

Component: JES2 (5752-SCIBH) 

Issuing Module: HASPTERM or HASPRAS 

PLM: OS/VS2 MVS JES2 Logic 

Explanation: An error 1H1S occurred during JES2 processing. ssss is the 
subsystem identification, normally JES2 (ssss is obtained from the TIOT); 
vvvvvvvv is the JES2 version identification; mmmmmmmm is the name of 
the primary JES2 load module, normally HASJES20; cccc is either the 
system completion code, Shhh (such as SOCl) or JES2 catastrophic error 
code, $ccc (such as $KOl). 

Problem Determination: See message $HASP095 in System Messages for an 
explanation of JES2 error codes, and System Codes for an explanation of 
system codes. 

A software record is written to SYSl.LOGREC. Refer to the JES2 LGRR 
mapping macro in module HASPDOC for a description of SDW A VRA 
information. 

c-34 MVS Diagnostic Techniques 



IATSIJS JSESEXIT 

Component: JES3 (5752-SCIBA) 

Issuing Module: IA TSIJS 

PLM: OSjVS2 MVS JES3 Logic 

Explanation: An abend has occurred during IATSIJS Gob,processing 
subsystem interface) processing. The EST AE routine established by 
IATSIJS is given control to examine the function control table (FCT) active 
at the time of termination to determine which function or DSP has failed. 
The areas dumped are PSA, NUC, SQA, RGN, LPA, TRT, and CSA. 

Problem Determination: A software record is written to SYSl.LOGREC. 

IATSNLS - ESTAE EXIT 

Component: JES3 (5752-SCIBA) 

Issuing Module: IA TSNLS 

PLM: OSjVS2 MVS JES3 Logic 

Explanation: A subtask was terminated because an abend has occurred in 
one of the following: (1) OPNDST processing, (2) CLSDST exit, (3) 
CLSDST error exit, (4) SET LOGON exit, (5) SIMLOGON exit, (6) 
LOGON IRB, (7) TPEND processing, (8) LOSTERM exit, (9) RESPONSE 
IRB exit, (10) DFSAY exit or (11) OPEN or CLOSE processing (in which 
case, no retry is attempted). IATSNLS issues the SDUMP macro. The 
areas dumped are SQA, ALLPSA, NUC, LSQA, RGN, LPA, TRT, and 
CSA. 

Problem Determination: A software record is written to SYSl.LOGREC. 

IATSSCM READ-END FAILURE 

Component: JES3 (5752-SCIBA) 

Issuing Module: IATSSCM 

PLM: OSjVS2 MVS JES3 Logic 

Explanation: An error has occurred during IATSSCM (subsystem 
communication scheduler) read-end processing. The areas dumped are PSA, 
NUC, RGN, LPA, TRT, CSA, and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC. 

Appendix C. SVC DUMP Title Directory C-35 



IATI081 ERROR IN IATDMDKT - IATYISR POSSIBLY LOST 

Component: JES3 (5752-SCIBA) 

Issuing Module: IATDMFR - FRR 

PLM: OSjVS2 MVS JES3 Logic 

Explanation: A software or hardware error has occurred and caused the 
JES3 channel end termination routine (IATDMDKT) to abnormally 
terminate. The FRR routine IATDMFR was not able to recover from the 
error. Either the input/output service block (lOSB) or service request block 
(SRB) in IATYISR might be invalid. The areas dumped are SQA, LPA, 
and CSA. 

Problem Determination: A software record is written to SYSl.LOGREC. 
Message IATl801 is issued. For a description of message IAT1801, refer to 
J ES3 Messages. 

IAT3702 dspname (ddd) ABENDED/FAILED ABEND code/DMxxx - JES3 
FAILURE NO.nnn 

Component: JES3 (5752-SCIBA) 

Issuing Module: IA T ABNO 

PLM: OS/VS2 MVS JES3 Logic 

Explanation: A DSP has abended or failed. The text in the SVC dump title 
identifies the failing DSP (dspname), and the unit address (ddd), if available. 
The system abend code (code) or the DM type (xxx) is given along with the 
unique JES3 failsoft identifier (nnn). Message IAT3702 is issued. 
IATABNO (online format driver) issues the SDUMP macro. The areas 
dumped are PSA, NUC, SQA, LSQA, RGN, LPA, TRT, and CSA. 

Problem Determination: For additional information: refer to abend codes in 
VS2 System Codes, DM codes in JES3 Debugging Guide, and message 
IAT3702 in JES3 Messages. 

IAT4830 IATIISB MASTERTASK ABEND 

Component: JES3 (5752-SCI BA) 

Issuing Module: IA TIISB 

PLM: OS/VS2 MVS JES3 Logic 

Explanation: An abend has occurred during IA TIISB (interpreter master 
sub task) processing. The areas dumped are NUC, PSA, RGN, LPA, TRT, 
and CSA. 

Problem Determination: A software record is written to SYSl.LOGREC. 
Also check the SYSMSG data set for error indications. 

C-36 MVS Diagnostic Techniques 



IAT4831 IATIISB SUBTASK ABEND 

Component: JES3 (5752-SCIBA) 

Issuing Module: IATIISB (IATYICT work area) 

PLM: OSIVS2 MVS JES3 Logic 

Explanation: An abend has occurred while an interpreter subtask (R/I or 
C/I) was processing. Message IAT4211 is issued. IATIISB issues the 
SDUMP macro. The areas dumped are SQA, PSA, NUC, RGN, LPA, 
TRT, and CSA. 

Problem Determination: A software record is written to SYSl.LOGREC. 

ICBRECRD RECORDING FAILED 

Component: MSS - MSSC (5752-SCIDP) 

Issuing Module: ICBRECRD - EST AE 

PLM: OSIVS2 MVS Mass Storage System Communicator Logic 

Explanation: An abend has occurred in the 3850 message journaling function 
of MSS processing. The REST AEXT routine in module ICBRECRD issues 
the SDUMP macro. The areas dumped are CSA, LSQA, and TRT. 

Problem Determination: A software record is written to SYSl.LOGREC. 
Message ICB328E is sent to the system console indicating that 3850 message 
journaling is disabled due to a system failure. The MJX (message 
journaling exit control block), located in the CSA, indicates the function 
that ICBRECRD was performing at the time of error (such as, enabling the 
message journaling function, disabling the message journaling function, or 
writing a record to the message journaling data set). Also, the MJX 
contains the queue header for the messages to be written to the message 
journaling data set. 

ICB4251 ABEND IN PROCESS - MSVC TASK (nnnnnnnn) 

Component: MSS - MSVC (5752-SCIDR) 

Issuing Module: ICBVPROO - EST AE 

PLM: OSIVS2 MVS Mass Storage System Communicator Logic 

Explanation: An abend has occurred in the MSVC (mass storage volume 
control) function of MSS processing. The VPRSDUMP routine in module 
ICBVPROO issues the SDUMP macro. The areas dumped are PSA, TRT, 
and CSA. Address ranges are included to dump the following control 
blocks: SDW A, MSVC control block (IEZVVICB), and the MSSC control 
block (IEZSSC). 

Problem Deterniination: In the dump title, nnnnnnnn indicates the module in 
error, ICBVPROO is a generalized recovery module, therefore, nnnnnnnn can 

Appendix·C. SVC DUMP Title Directory C-37 



be any module that is part of the MSVC function. Refer to OS/VS2 MVS 
Mass Storage System Communicator Logic for a complete list of MSVC 
modules. If 'UNKNOWN' appears in the title, ICBVPROO was unable to 
determine the module in error. Message ICB425I is sent to the system 
operator. This message indicates the failing module and contains the MSS 
order that was being performed at the time of the error. When 
'UNKNOWN' appears in the message and SDUMP title, the MSS order 
can be used to determine which MSVC module was involved in the error. 
Refer to OS/VS2 MVS Mass Storage System Communicator Logic for a 
description of the MSVC modules and their relationship to MSS orders. 

ICHRSTOO - RACF SVCS, ABEND CODE = xxx, SVC = svcname, USER = user, 
GROUP = group, EXIT = installation exit name 

Component: RACF - SVC Processing (5752-XXHOO) 

Issuing Module: ICHRSTOO - EST AE 

PLM: OS/VS2 MVS Resource Access Control Facility (RACF): Program 
Logic Manual 

Explanation: An abend has occurred during processing of one of the RACF 
SVCs (ICHRINOO, ICHRCKOO, or ICHRDFOO). The executing task is 
terminated. The areas dumped are PSA, RGN, LPA, TRT, CSA, and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC and 
includes: 

SDWAMODN 
SDWACSCT 
SDWAREXN 
SDWAGR15 
SDWACRC 
SDWACID 
SDWAEAS 
SDWAREQ 

- main CSECT name of SVC 
- blanks or installation exit name 
- ICHRSTOO (recovery routine) 
- reason code if the abend is a RACF abend 
- completion code 
- XXHOO 
- 1 if SDUMP is taken by ICHRSTOO 
- 0 if SDUMP is taken by ICHRSTOO 

ICTMCSOl, CRYPTOGRAPHY INITIALIZATION 

Component: Programmed Cryptographic Facility (5752-XY500) 

Issuing Module: I CTM CSO 1 - EST AE 

PLM: OS/VS2 MVS Programmed Cryptographic Facility: Program Logic 
Manual 

Explanation: An abend has occurred during initialization of the 
Programmed Cryptographic Facility. The areas dumped are PSA, NUC, 
LSQA, RGN, LPA, TRT, CSA, SWA, and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC and 
includes: 

SDWAMODN - ICTMCSOI (module in error) 
SDWACSCT - ICTMCSOI (CSECT in error) 
SDWAREXN - ESTAEXIT (recovery routine) 

C-38 MVS Diagnostic Techniques 



ICTMKGOO, KEY GENERATOR PROGRAM 

Compoaent: Programmed Cryptographic Facility (S752-XYSOO) 

Issuing Module: ICTMKGOO - ESTAE 

PLM: OSjVS2 MVS Programmed Cryptographic Facility: Program Logic 
Manual 

Explanation: An abend has occurred during key generator program 
processing in ICTMKGOO. The areas dumped are PSA, NUC, LSQA, 
RGN, TRT, CSA, and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC and 
includes: 

SDW AMODN - ICTMKGOO (module in error) 
SDW ACSCT - ICTMKGOO (CSECT in error) 
SDWAREXN - ESTAEXIT (recovery routine) 

ICTMKGOI HANDLE SYSIN MODULE 

Component: Programmed Cryptographic Facility (5752-XY500) 

Issuing Module: ICTMKGOI - ESTAE 

PLM: OSjVS2 MVS Programmed Cryptographic Facility: Program Logic 
Manual 

Explanation: An abend has occurred during key generator control statement 
processing in ICTMKGOI. The areas dumped are PSA, NUC, LSQA; 
RGN, TRT, CSA, and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC and 
includes: 

SDW AMODN - ICTMKGOO (module in error) 
SDWACSCT - ICTMKGOI (CSECT in error) 
SDWAREXN - RECVRTN (recovery routine) 

ICTMKMOI, START CRYPTOGRAPHY COMMAND 

Component: Programmed Cryptographic Facility (5752-XY500) 

Issuing Module: ICTMKMOI - ESTAE 

PLM: OSjVS2 MVS Programmed Cryptographic Facility: Program Logic 
Manual 

Explanation: An abend has occurred during start cryptography command 
processing in ICTMKMO 1. The areas dumped are PSA, NUC, LSQA, 
RGN, LPA, TRT, CSA, SWA, and SQA. 

Appendix C. SVC DUMP Title Directory C-39 



Problem Determination: A software record is written to SYSI.LOGREC and 
includes: 

SOWAMOON - ICTMKMOI (module in error) 
SOWACSCT - ICTMKMOI (CSECT in error) 
SOW AREXN - ESTAEXIT (recovery routine) 

ICTMKM04 - KEY MANAGER 

Component: Programmed Cryptographic Facility (S7S2-XYSOO) 

Issuing Module: ICTMKM04 - FEST AE 

PLM: OSjVS2 MVS Programmed Cryptographic Facility: Program Logic 
Manual 

Explanation: An abend has occurred during GENKEY or I\ETKEY macro 
processing in ICTMKM04. The areas dumped are PSA, NUC, LSQA, 
RGN, LPA, TRT, CSA, SWA, and SQA. 

Problem Determination: A software record is written to SYSI.LOGREC and 
includes: 

SOW AMOON - ICTMKM04 (module in error) 
SOWACSCT - ICTMKM04 (CSECT in error) 
SOW AREXN - ICTMKM04 (recovery routine) 

Message ICT922I is issued to the master console and identifies the requested 
function and abend code. 

ICTMSM07 - ICTMSM07 - CIPHER DUMP 

Component: Programmed Cryptographic Facility (5752-XYSOO) 

Issuing Module: ICTMSM07 - FEST AE or FRR 

PLM: OSjVS2 MVS Programmed Cryptographic Facility: Program Logic 
Manual 

Explanation: An abend has occurred during processing of a request to 
encipher or decipher data (CIPHER macro) in ICTMSM07. If the 
CIPHER macro was branch-entered, an FRR was established and a branch 
entry to SDUMP was used. The areas dumped are NUC, LSQA, RGN, 
LPA, TRT, CSA, SWA, ALLPSA, and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC and 
includes: 

SOW AMOON - ICTMSM07 (module in error) 
SOW ACSCT - ICTMSM07 (CSECT in error) 
SOW AREXN - ERRFES or ERRFRR (recovery routine) 

C-40 MVS Diagnostic Techniques 



ICTMSM07 - ICTMSM08 TRNSKEY DUMP 

Component: Programmed Cryptographic Facility (5752-XY500) 

Issuing Module: ICTMSM07 - FEST AE 

PLM: OS/VS2 MVS Programmed Cryptographic Facility: Program Logic 
Manual 

Explanation: An abend has occurred during the processing of the translate 
key (TRNSKEY macro) function. The areas dumped are NUC, LSQA, 
RGN, LPA, TRT, CSA, SWA, ALLPSA, and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC and 
includes: 

SDW AMODN - ICTMSM07 (module in error) 
SDWACSCT - ICTMSM08 (CSECT in error) 
SDWAREXN - ERRFES (recovery routine) 

ICTMSM07 - ICTMSM09 EMK DUMP 

Component: Programmed Cryptographic Facility (5752-XY500) 

Issuing Module: ICTMSM09 - FEST AE 

PLM: OS/VS2 MVS Programmed Cryptographic Facility: Program Logic 
Manual 

Explanation: An abend has occurred during the processing of the encipher 
under master key (EMK macro) function. The areas dumped are NUC, 
LSQA, RGN,·LPA, TRT, CSA, SWA, ALLPSA, and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC and 
includes: 

SDW AMODN - ICTMSM07 (module in error) 
SDW ACSCT - ICTMSM09 (CSECT in error) 
SDWAREXN - ERRFES (recovery routine) 

IDAOI9SB:IDAI21F7 - ABEND FROM BUILD IDACPA 

Component: VSAM - Record Management (5752-SCIDE) 

Issuing Module: IDAO 19SB - FRR 

PLM: OS/VS2 VSAM Logic 

Explanation: An abnormal termination has occurred during VSAM record 
management processing. The FRR in IDA019SB issues the SDUMP macro. 
This FRR allows termination to continue. The areas dumped are PSA, 
NUC, RGN, TRT, CSA, and SQA. 

Problem Determination: A channel program was being constructed for a 
VSAM global shared resources (GSR) request. Register 3 points to the 

Appendix C. SVC DUMP Title Directory C-41 



10MB for the request. For information on how the 10MB relates to the 
VSAM control block structure, refer to OS/VS2 VSAM Logic. 

IEAVEACOIEAVEACOIEAVEAC3 

Component: Task Manager - ASCB Dispatching (5752-SCICL) 

Issuing Module: lEA VEACO - FRR 

PLM: OS/VS2 System Logic Library 

Explanation: An error has occurred during mainline ASCB CHAP 
processing. The area dumped is TRT. 

Problem Determination: A software record is written to SYSI.LOGREC. 
The SDW A VRA field contains the associated ASCB-queue-verification 
output. 

IEAVEMCR - MEMORY CREATE ABNORMAL TERMINATION 

Component: Supervisor Control (5752-SCIC5) 

Issuing Module: IEAVEMCR - Memory Create 

PLM: OS/VS2 System Logic Library 

Explanation: An error has occurred during memory create processing in 
IEAVEMCR. The ESTAE routine in IEAVEMCR issues the SDUMP 
macro. The areas dumped are NUC, LPA, TRT, ALLPSA, and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC and 
includes: 

SDWAMODN - lEA VEMCR (module in error) 
SDWACSCT - IEAVEMCR (CSECT in error) 
SDWAREXN - MCRESTAE (recovery routine) 

IEAVEMDL - MEMORY DELETE ABNORMAL TERMINATION 

Component: Supervisor Control (5752-SCIC5) 

Issuing Module: lEA VEMDL - Memory Delete 

PLM: OS/VS2 System Logic Library 

Explanation: An error has occurred during memory delete processing in 
IEAVEMDL. The ESTAE routine in IEAVEMDL issues the SDUMP 
macro. The areas dumped are NUC, LPA, TRT, ALLPSA, and SQA. 

Problem Determination: A software record is written to SYSI.LOGREC and 
includes: 

SDWAMODN - IEAVEMDL (module in error) 
SDW ACSCT - lEA VEMDL (CSECT in error) 
SDWAREXN - MDLESTAE (recovery routine) 

C-42 MVS Diagnostic Techniques 



IEAVEMRQ UNEXPECTED ABEND 

Component: Supervisor Control (5752-SCIC5) 

Issuing Module: lEA VEMRQ - Memory Request 

PLM: OS/VS2 System Logic Library 

Explanation: An error has occurred during memory request processing in 
lEA VEMRQ while the global dispatcher lock was not held. The ESTAE 
routine in lEA VEMRQ issues the SDUMP macro. The areas dumped are 
NUC, LPA, TRT, ALLPSA, and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC and 
includes: 

SDWAMODN - IEAVEMRQ (module in error) 
SDW ACSCT - IEAVEMRQ (CSECT in error) 
SDWAREXN - MRQESTAE (recovery routine) 

IEAVEMRQ - UNEXPECTED ABEND WITH DISPATCHER LOCK 

Component: Supervisor Control (5752-SCIC5) 

Issuing Module: lEA VEMRQ - Memory Request 

PLM: OS/VS2 System Logic Library 

Explanation: An error has occurred during memory create (ASID or ASCB) 
processing while the global dispatcher lock was held. The FRR in 
IEAVEMRQ issues the SDUMP macro. The areas dumped are NUC, 
LPA, TRT, ALLPSA, and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC. It 
contains information concerning the associated ASCB and ASCR. 

IEAVSY50 IGCOOI IGC002 XMPOST FAIL - NO ERRET 

Component: Task Manager - POST Processing (5752-SCICL) 

Issuing Module: lEA VSY50 - FRR 

PLM: OS/VS2 System Logic Library 

Explanation: During error recovery, there was not an available error routine 
(ERRET) when the POST FRR retry routine (SRBRETRY) attempted to 
schedule the error routine's SRB. This error occurs when the originating 
address space has terminated. The areas dumped are LSQA, TRT, and 
SQA. 

Problem Determination: A software record is written to SYSI.LOGREC. 
Register 0 (in the LOGREC record) contains the SRB address. The 
parameter list addressed via the SRB contains the originating ASCB 
address, ECB address, ERRET address, post completion code, and key (if 
specified). 

Appendix C. SVC DUMP Title Directory C-43 



IEAVTRT2 - UNRECOVERABLE ABEND FAILURE 

Component: RTM - RTM2 Processing (5752-SCICM) 

Issuing Module: lEA VTRT2 

PLM: OS/VS2 System Logic Library 

Explanation: An unrecoverable error has occurred during R TM2 processing. 
On completion of lEA VTRT2 processing, the current task tree is set 
nondispatchable and the failing address space is terminated. The areas 
dumped are PSA, NUC, RGN, and SQA. 

Problem Determination: The most recent RTM2W A addressed by the TCB 
contains the most pertinent information. However, if a RTM2W A does not 
exist, not enough storage was available in LSQA or SQA. 

IECVESIO ERROR 

Component: lOS (5752-SCIC3) 

Issuing Module: IECVESIO 

PLM: OS/VS2 I/O Supervisor Logic 

Explanation: An error has occurred during IECVESIO (special I/O) 
processing. The FRR routine in IECVESIO (ESIOFRR) issues the 
SDUMP macro. The areas dumped are SQA, NUC, SUM, and ALLPSA. 

Problem Determination: A software record is written to SYSl.LOGREC. 
The SDW A VRA contains the FRR work area. 

IECVIOPM PROGRAM ERROR 

Component: lOS (5752-SCl C3) 

Issuing Module: IECVIOPM 

PLM: OS/VS2 I/O Supervisor Logic 

Explanation: An error has pccurred during IECVIOPM (I/O path mask 
update) processing. The areas dumped are NUC, LPA, TRT, and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC. 
The SDW A VRA field contains a copy of the dynamic work area used by 
IECVIOPM. 

C-44 MVS Diagnostic Techniques 



IECVIRST ERROR 

Component: lOS (S752-SCIC3) 

Issuing Module: IECVIRST 

PLM: OS/VS2 I/O Supervisor Logic 

Explanation: An error has occurred during. channel recovery processing in 
IECVIRST. The areas dumped are PSA, NUC, TRT, and SQA. 

Problem Determination: The SDW A VRA field contains the FRR parameter 
area and the copy of the lost channel mask. The 4K dump buffer contains 
the IECVIRSTgeneral work area and the list of reserved devices on the 
failing channels. 

IECVRDIO ERROR 

Component: lOS (S752-SCIC3) 

Issuing Module: IECVRDlO 

PLM: OS/VS2 I/O Supervisor Logic 

Explanation: An error has occurred during IECVRDIO (redrive I/O service) 
processing. The FRR routine in IECVRDIO issues the SDUMP macro. 
The areas dumped are SQA, NUC, SUM, and ALLPSA. 

Problem Determination: A software record is written to SYSl.LOGREC. 
The SDWAVRA contains the FRR work area. The SDUMP buffer 
contains the IECVRDIO work area. 

IEC251I, VSAM GSR FORCE DLVRP DUMP DATA 

Component: VSAM - CLOSE Processing (5752-SCIDE) 

Issuing Module: IDA0200T 

PLM: OS/VS2 Virtual Storage Access Method (VSAM) Logic 

Explanation: VSAM was closing the last data set opened against the 
resource pool, and the ASCB originating the pool had already terminated. 
A force delete of the pool was done to release resources and storages. 

Problem Determination: This is an informational dump (with associated 
message IEC251I). It indicates that a FORCE DLVRP was done to free 
storage used by a GSR (global shared resources) pool, with an attempt to 
dump control blocks to the SYS1.DUMP data set. For additional 
information, refer to message IEC251I to VS2 System Messages. 

Appendix C. SVC DUMP Title Directory C-45 



IEC999I IFGORROA,IFGORROF ,jobname,stepname, 
WORKAREA = address 

Component: OpenjClosejEOV (5752-SCIDl) 

Issuing Module: IGFORROF - EST AE 

PLM: OSjVS2 OpenjClosejEOV Logic 

Explanation: An error has occurred during open, close, or EOV processing. 
If the TIOT is available, jobname and stepname indicate the name of the 
affected job. WORKAREA = address indicates the address of the task 
recovery routine (TRR) work area. The areas dumped are NUC and RGN. 

Problem Determination: For additional information, refer to message 
IEC999I in VS2 System Messages. 

IEC999I IFGORROA,error-module,jobname,stepname, 
WORKAREA = address 

Component: OpenjClosejEOV (5752-SCIDI) 

Issuing Module: IFGORROA - EST AE 

PLM: OSjVS2 OpenjClosejEOV Logic 

Explanation: An error has occurred during open, close, EOV, or DADSM 
processing. error-module indicates the name of the module in which the 
error occurred. If the TIOT is available, jobname and stepname indicate the 
name of the affected job. WORKAREA = address indicates the address of 
the task recovery routine (TRR) work area. The area dumped is RGN. 

Problem Determination: For additional information, refer to message 
IEC999I in VS2 System Messages. 

IEC999I IFGORROA,error-module,jobname,stepname, 
WORKAREA = address 

Component: OpenjClosejEOV (5752-SCIDI) 

Issuing Module: IFGORROE - ESTAE 

PLM: OSjVS2 OpenjClosejEOV Logic 

Explanation: An error has occurred during open, close, EOV, or DADSM 
processing. error-module indicates the name of the module in which the 
error occurred. If the TIOT is available, jobname and stepname indicate the 
name of the affected job. WORKAREA = address indicates the address of 
the task recovery routine (TRR) work area. The areas dumped are NUC 
and RGN. 

Problem Determination: For additional information, refer to message 
IEC999I in VS2 System Messages. 

C-46 MVS Diagnostic Techniques 



IEC999I IFGOTCOA,subroutine,jobname,stepname,DEB ADDR·:::: address 
IEC9991 IFGOTC4A,subroutine,jobname,stepname,DEB ADDR = address 
IEC9991 IFGOTC5A,subroutinejobname,stepname,DEB ADDR = address 

Component: Open/Close/EOV (5752-SCIDl) 

Issuing Module: IFGOTCOA (Task Close) or IFGOTC4A (EST AE) 

PLM: OS/VS2 Open/C/ose/EOV Logic 

Explanation: An error has occurred during task 'close processing. If the 
abend occurs in one of the subroutines called by task close, the task close 
ESTAE routine IFGOTC4A issues SDUMP. If the error occurs during 
mainline task close processing~ IFGOTCOA issues SDUMP. More than one 
SDUMP may be issued when errors are encountered in the called 
subroutines. The failing subroutine is indicated by subroutine in the title. 
If the TIOT is available, jobname and stepname indicate the name of the 
affected job. DEB ADDR = address identifies the associated DEB control 
block. The areas dumped are NUC, RGN, CSA, and SQA. 

Problem .Determination: If a program check has occurred within task close 
processing; a software record is written to SYS1.LOGREC that includes the 
error module/routine information in the format of message IEC999I. For 
additional information: refer to message IEC999I in VS2 System Messages. 

IEECB800 - TRACK COMMAND 

Component: Master Scheduler Commands (5752-SCIB8) 

Issuing Module: IEECB800 - DISPLAY TRACK Common Processor 

PLM: OS/VS2 s.ystem Logic Library 

Explanation: An error has occurred during TRACK command processing. 
Routine STAEXIT in IEECB800 issues the SDUMP macro. The areas 
dumped are PSA, NUC, LSQA, RGN, LPA, TRT, CSA, ALLPSA, and 
SQA. 

Problem Determination: A software record is written to SYS1.LOGREC. 

IEECB861 - FAILURE IN COMMAND xxxx 

Component: Master Scheduler Commands (5752-SCIB8) 

Issuing Module: IEECB860 

PLM: OS/VS2 System Logic Library 

Explanation: An error has occurred in the command processor while 
processing command xxxx. The areas dumped are PSA, NUC, LSQA, 
RGN, LPA, TRT, CSA, and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC. 

Appendix C. SVC DUMP Title Directory C-47 



IEECB906 SLIP ESTAE DUMP 

Component: RTM - SLIP Command (5752-SCICM) 

Issuing Module: IEECB906 - EST AE 

PLM: OSjVS2 System Logic Library 

Explanation: An error has occurred during SLIP or DISPLAY SLIP 
command processing. 

Problem Determination: The SDW A VRA field in the SDW A contaIns the 
EST AE parameter list. A software record is written to SYS1.LOGREC. 

IEECB914 SLIP TSO COMM RTN ESTAE DUMP 

Component: RTM - SLIP TSO Communication (5752-SCICM) 

Issuing Module: IEECB914 

PLM: OSjVS2 System Logic Library 

Explanation: An error has occurred while a SLIP command was being 
entered from a TSO terminal. The area dumped is SQA. 

Problem Determination: A software record is written to SYS1.LOGREC. 
The SDW A VRA contains a copy of the EST AE parameter list and a copy 
of the SLIP TSO element (STE) associated with the SLIP command. 

IEEMB860 

Component: Master Scheduler Commands (5752-SCIB8) 

Issuing Module: IEEMB860 - Master Scheduler Region Initialization 

PLM: OSjVS2 System Initialization Logic 

Explanation: Either EST AE or recovery termination setup failed. The error 
occurs if the LOAD macro (SVC 8) was unsuccessful, or master scheduler 
initialization failed. The areas dumped are PSA, NUC, LSQA, RGN, LPA 
TRT, CSA, and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC. 

IEEMPDM - DUMP OF MAIN WORKAREA 

Component: Reconfigura tion (57 52-SC I CZ) 

Issuing Module: IEEMPDM 

PLM: OSjVS2 System Logic Library 

E~planation: An abend has occurred during DISPLAY MATRIX 
processing. The main work area of the command processor is dumped. 

C~48 MVS Diagnostic Techniques 



Problem Detel'lDination: A software record is written to SYSl.LOGREC and 
includes: 

SDW AMODN - IEEMPDM (module in error) 
SDW ACSCT - IEEMPDM (CSECT in error) 
SDWAREXN .. ESTAERTN (recovery routine) 

IEEMPS03 .. DUMP OF MAIN WORKAREA 

Component: Reconfiguration (5752-SClCZ) 

Issuing Module: IEEMPS03 

PLM: OS/VS2 System Logic Library 

Explanation: An abend has occurred during QUIESCE command 
processing. The main work area for IEEMPS03 is dumped. 

Problem Determination: A software record is written to SYSl.LOGREC and 
includes: 

SDW AMODN - IEEMPS03 (module in error) 
SDW ACSCT - IEEMPS03 (CSECT in error) 
SDWAREXN - ESTAERTN (recovery routine) 

IEEMPVST - DUMP OF MAIN WORK AREA 

Component: Reconfiguration (5752-SC1CZ) 

Issuing Module: IEEMPVST 

PLM: OS/VS2 System Logic Library 

Explanation: An abend has occurred during VARY STORAGE command 
processing. The main work area for IEEMPVST is dumped. 

Problem Determination: A software record is written to SYS1.LOGREC and 
includes: 

SDW AMODN - IEEMPVST (module in error) 
SDW ACSCT - IEEMPVST (CSECT in error) 
SDWAREXN - ESTAERTN (recovery routine) 

IEEVIPL - ERROR IN MASTER SCHEDULER INITIALIZATION 

Component: Master Scheduler Commands (5752-SClB8) 

Issuing Module: IEEVIPL - Master Scheduler Base Initialization 

PLM: OS/VS2 System Logic Library 

Explanation: During error recovery processing, SDUMP is issued if (1) 
STAEprocessing was unsuccessful, (2) the time of day clock failed, (3) a 
program check occurred, (4) the system restart key was pressed, or (5) 
control was returned because system initialization terminated. The areas 
dumped are PSA, NUC, LSQA, RGN, LPA, TRT, CSA, and SQA. 

Appendix C. SVC DUMP Title Directory C-49 



Problem Determination: A software record is written to SYS1.LOOREC. 

IEEVLDWT ERROR 

Component: Reconfiguration (5752-SCICZ) 

Issuing Module: IEEVLDWT 

PLM: OSjVS2 System Logic Library 

Explanation: An error has occurred during IEEVLDWT (load-wait) 
processing. The FRR routine in IEEVLDWT issues the SDUMP macro. 

Problem Determination: The SDW A VRA field in the SDW A contains the 
FRR parameter list. 

IEEVPTH - MAIN WORK AREA DUMP 

Component: Reconfiguration (5752-SCICZ) 

Issuing Module: IEEVPTH 

PLM: OS/VS2 System Logic Library 

Explanation: An abend has occurred during VARY PATH command 
processing. The main work area of IEEVPTH is dumped. 

Problem Determination: A software record is written to SYS1.LOOREC and 
includes: 

SOW AMOON - IEEVPTH (module in error) 
SOW ACSCT - IEEVPTH (CSECT in error) 
SOWAREXN - VPTHESTA (recovery routine) 

IEE5103D - FAILURE IN SVC 34/COMMAND xxxx 

Component: Master Scheduler Commands (5752-SCIB8) 

Issuing Module: IEE5103D - STAE 

PLM: OS/VS2 System Logic Library 

Explanation: The SVC 34 STAE routine IEE5103D issues SDUMP when (1) 
a system error or program check has occurred, or (2) the system restart key 
was pressed. The areas dumped are PSA, NUC, LSQA, RON, LPA, TRT, 
CSA, and SQA. 

Problem Determination: A software record is written to SYS1.LOOREC. 

c-50 MVS Diagnostic Techniques 



IEFIB620 

Component: Initiator· (57 52-SCI 86) 

Issuing Module: IEFIB620 - EST AE 

PLM: OS/VS2 System Logic Library 

Explanation: During initiator processing, the EST AE exit routine IEFIB620 
issues SDUMP when (1) a system error or program check has occurred, or 
(2) the system restart key is pressed. The areas dumped are PSA, NUC, 
RGN, LPA, TRT, CSA, and SQA. 

Problem Determination: A software record is written to SYSI.LOGREC. 

IGCTOO 18jobname,stepname 

Component: SAM (5752-SCIDO) 

Issuing Module: IGCT0018 - ESTAE 

PLM: OS/VS2 SAM Logic 

Explanation: During.SVC 18 (BLDL or FIND) processing, the ESTAE 
routine IGCT0018 issues SDUMP if either (1) an abend has occurred, (2) a 
previous error recovery routine has failed, or (3) a system error has 
occurred. For a system error, message IEC909I is issued. The areas 
dumped are PSA, NUC, SQA, and RGN. 

Problem Determination: A software record·is written to SYSl.LOGREC. 
Also refer to message IEC909I in VS2 System Messages. 

IGCT002D,jobname, step name 

Component: SAM (5752-SCIDO) 

Issuing Module: IGCT002D - EST AE 

PLM: OS/VS2 SAM Logic 

Explanation: During SVC 24 (DEVTYPE) processing, the EST AE routine 
IGCT002D issues SDUMP if either (1) an abend has occurred, (2) a 
previous error recovery routine has failed, Qr (3) a system error has 
occurred. F or a system error, message IEC912I is issued. The areas 
dumped are PSA, NUC, RGN, and SQA. 

Problem Determination: A software record is written to SYSI.LOGREC. 
Also refer to message IEC912I in VS2 System Messages. 

Appendix C. SVC DUMP Title Directory C-51 



Je'rCT002EJobname,stepname 

Component: SAM (5752-SCIDO) 

Issuing Module: IGCT002E - ESTAE 

PLM: OS/VS2 SAM Logic 

Explanation: During SVC 25 (track balance/overflow) processing, the 
ESTAE routine IGCT002E issues SDUMP if either (1) an abend has 
occurred, (2) a previous error recovery routine has failed, or (3) a system 
error has occurred. For a system error, message IEC9151 is issued. The 
areas dumped are PSA, NUC, RGN,.and SQA. 

Problem Determination: A software record is written to SYS1.LOGREC. 
Also refer to message IEC9151 in VS2 System Messages. 

IGCT0021,jobname,stepname 

Component: SAM (5752-SCIDO) 

Issuing Module: IGCT0021 - EST AE 

PLM: OS/VS2 SAM Logic 

Explanation: During SVC 21 (STOW) processing, the ESTAE routine 
IGCT0021 issues SDUMP if either (I) an abend has occurred, (2) a previous 
error recovery routine has failed, or (3) a system error has occurred. For a 
system error, message IEC9111 is issued. The areas dumped are PSA, NUC, 
RGN, and SQA. 

Problem Determination: A software record is written to SYSI.LOGREC. 
Also refer to message IEC9111 in VS2 System Messages. 

IGCT005C,jobname,stepname 

Component: DAM (5752-SCID7) 

Issuing Module: IGCT005C - ESTAE 

PLM: OS/VS2 BDAM Logic 

Explanation: During SVC 53 (exclusive control) processing, the ESTAE 
routine IGCT005C issues SDUMP if either (1) a previous error recovery 
routine has failed, or (2) a system error has occurred. Message IEC903I is 
issued. The areas dumped are PSA, NUC, RGN, and SQA. 

Problem Determination: A software record is written to SYSI.LOGREC. 
Also refer to message IEC9031 in VS2 System Messages. 

C-52 MVS Diagnostic Techniques 



IGCT005G,jobname,stepname 

Component: DAM (5752-SC1D7) 

JssuiaJModule: IGCTOO5G - EST AE 

PLM: OS/VS2 BDAM Logic 

ExplaDation: During SVC 57 (FREEDBUF) processing, the EST AE routine 
IGCTOOSG issues SDUMP if either (l ) an error other than a program check 
occurred·in'the cleanup routine, (2) a previous.·error recovery has failed, or 
(3) a system error has occurred. For a systetnerror, message IEC9051 is 
issued.'The areas dumped are PSA, NUC, RGN, and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC. 
Also refer to message IEC9051 in VS2 System Messages. 

IGCTOO6H,jobname,stepname,procstepname,744 

Component: ,SAM (5752-SCIDO) 

Issuing Module: IGCTOO6H - EST AE 

PLM: OS/VS2 SAM Logic 

Explanation: During SVC 68,(SYNADAF/SYNADRLS) processing, the 
ESTAE routine IGCT006H issues SDUMP if either (1) an abend has 
occurred, (2) a previous error recovery routine has failed, or (3) a system 
error has occurred. F or a system error, message IEC9061 is issued. The 
areas dumped are PSA, NUC, RGN, and SQA. 

Problem Determination: A software record is written to SYSI.LOGREC. 
Also refer to message IEC9061 in VS2 System Messages. 

IGCTOO69,jobname,stepname 

CompOnent: SAM (5752-SCIDO) 

Issuing Module: IGCT0069 - EST AE 

PLM: OS/VS2 SAM Logic 

Explanation: During. SVC 69 (BSP) processing, the EST AE routine 
IGCT0069 issues SDUMP if either (I) an abend has occurred, (2) a previous 
error recovery routine has failed, or (3) a system error has occurred. For a 
system error, message IEC9171 is issued. The areas dumped are PSA, NUC, 
RGN, and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC. 
Also refer to message IEC9171 in VS2 System Messages. 

Append.i.x. C SVC DUMP Title Directory C-53 



IGCTO 1 OE,johname,stepname 

Component: SAM (5752-SCIDO) 

Issuing Module: IGCTOIOE - ESTAE 

PLM: OSjVS2 SAM Logic 

Explanation: During. SVC 105 (1M GLIB) processing, the ESTAE routine 
IGCTOIOE issues SDUMP if either (1) an abend has occurred, or (2) a 
previous error recovery routine has failed, or (3) a system error has 
occurred. For a system error, message IEC920I is issued. The areas 
dumped are PSA, NUC, RGN, and SQA. 

Problem Determination: A software record written to SYSl.LOGREC. Also 
refer to message IEC9201 in VS2 System Messages. 

IGCTI05C jobname,stepname 

Component: DAM (5752-SCID7) 

Issuing Module: IGCTI05C - ESTAE 

PLM: OSjVS2 BDAM Logic 

Explanation: During SVC 53 (exclusive control) processing, the EST AE 
routine IGCTI05C issues SDUMP if either (I) an abend has occurred, or 
(2) an error other than a program check has occurred in the cleanup routine 
for the first-level EST AE routine. Message IEC903I is issued. The areas 
dumped are PSA, NUC, RGN, and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC. 
Also refer to message IEC9031 in VS2 System Messages. 

IGCTI 081 ,jobname,stepname 

Component: SAM (5752-SCIDO) 

Issuing Module: IGCTI08I - ESTAE 

PLM: OSjVS2 SAM Logic 

Explanation: During SVC 81 (SETPRT) processing, the ESTAE routine 
IGCTI08I issues SDUMP if either (1) the DEB is invalid, (2) the FCB 
image is invalid, or (3) a system error has occurred. If the ESTAE routine 
was not entered directly from R TM, then message IEC918 is issued. The 
areas dumped are PSA, NUC, RGN, and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC. 
Also refer to message IEC9I8I in VS2 System Messages. 

c-54 MVS Diagnostic Techniques 



IGCOOO2F CATLGCTLR. 3 

Component: Catal.og C.ontr.oller 3 • CVOL Process.or (5752-SCIDH) 

Issuing Module: IGCOO02F ... ESTAE 

PLM: OS/VS2 CVOL Processor Logic 

Explanation: During SVC 26. (CATALOG/INDEX/LOCATE) processing, 
the catal.ogcontr.oller EST AE r.outine IGCOOO2F issues SDUMP if any OCx 
abend occurs. The EST AE r.outine frees st.orage res.ources s.o they are n.ot 
l.ost t.o the system. The areas dumped are PSA, LSQA, and RGN. 

IGFTMCHK MIH PROGRAM ERROR 

Component: RMS (5752-SCICE) 

Issuing Module: IGFTMCHK -·ESTAE 

PLM: OS/VS2 System Logic Library 

Explanation: An err.or' has .occurred during MIH (missing interrupti.on 
handler) initializati.on .or while MIH attempted t.o issue missing interrupt 
messages. The areas dumped are NUC, SQA, and TRT. Message IGF993E 
is als.o issued. 

Problem Determination: If an SDWA is pr.ovided by RTM, this ESTAE exit 
writes a rec.ord t.o SYS1.LOGREC. The SDW A variable rec.ording area 
c.ontains the current level .of the m.odule. Als.o refer t.o message IGF993E in 
VS2 System Messages. 

IKJEFLGM REQUEST 

Component: TSO Scheduler (5752-SCl T4) 

Issuing Module: IKJEFLGM (LOGON Message M.odule) 

PLM: OS/VS2 System Logic Library 

Explanation: An err.or has .occurred during LOGON processing. SDUMP is 
taken if .one .of the f.oll.owing messages is issued: 

IKJ56451 - results fr.om an installati.on-exit err.or. 
IKJ56452 - results fr.om a system err.or. 
IKJ6001 - results fr.om an I/O, OBTAIN, .or OPEN err.or. 
IKJ603I - results fr.om an installati.on-exit abend. 
IKJ6081 - results fr.om a TSO service r.outine err.or. 

The areas· dumped are NUC, LSQA, SW A, SQA, and LPA if TSO dump is 
requested. 

Problem Determination: Refer t.o message IKJ600I, IKJ603I, and IKJ6081 in 
VS2 System Mess(lges. 

Appendix C. SVC DUMP Title Directory C-55 



IKTLTERM - I/O ERROR 

Component: TSO/VTAM (5752-SCIT9) 

Issuing Module: IKTLTERM 

PLM: OS/VS2 MVS VTIOC and TCAS Logic 

Explanation: TSOjVTAM has issued an abend due to an unrecoverable I/O 
error. The installation had requested the SVC dump by specifying the RPL 
sense code for the I/O error via the RCFBDDMP keyword in the 
TSOKEYxx member ofSYSl.PARMLIB. 

Problem Determination: Excessive line or hardware errors might be 
occurring. A software record is written to SYSl.LOGREC. 

lOS - IECIHIO ERROR 

Component: lOS (5752-SCIC3) 

Issuing Module: IECIHIO 

PLM;: OS/VS2 I/O Supervisor Logic 

Explanation: An error has occurred during IECIHIO (resident HALT) 
processing. The FRR routine HIOFRR issues SDUMP. The areas dumped 
are TRT and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC. 
The dump buffer contains a copy of the UCB for which the HDV 
instruction had been requested. If the FRR was entered due to a program 
check, the most likely cause of the error is a bug in IECIHIO. 

lOS - IECIOSCN ERROR 

Component: lOS (5752-SCIC3) 

Issuing Module: IECIOSCN - FRR 

PLM: OS/VS2 I/O Supervisor Logic 

Explanation: An error has occurred during IECIOSCN (basic lOS) 
processing. The FRR routine IECIOSCN issues SDUMP. The areas 
dumped are SQA, TRT, and PSA. The address space dumped is the address 
space associated with the I/O request being processed. This address space 
might not match the current ASID in the associated LOGREC entry. 

Problem Determination: A software record is written to SYSl.LOGREC. 
The SDWAVRA contains the 10Q and DCB (when appropriate). The 
SDUMP buffer contains the IRT, UCB, 10Q, 10SB, and LCH (when 
appropriate). 

C-56 MVS Diagnostic Techniques 



lOS - IECVERPL ERROR 

Component: lOS (5752 .. SCIC3) 

Issuing Module: IECVERPL 

PLM: OS/VS2 I/O Supervisor Logic 

Explanation: The ESTAE routine of the ERP loader issues SDUMP if a 
program check occurs in either (1) IECVERPL, or (2) an ERP (error 
recovery procedure) or service routine that IECVERPL has loaded. The 
areas dumped are PSA, SQA, LPA, CSA, NUC, TRT, and the LSQA and 
SWA for the current address space. 

Problem Determination: A software record is written to SYSI.LOGREC. 
The SRB and IOSBare copied to the SDUMP buffer. The SIRB chained 
off of the RCT TCB contains the name of the ERP module that is currently 
executing. 

lOS - IECVSMGR ERROR 

Component: lOS (5752-SCIC3) 

Issuing Module: IECVSMGR - FRR 

PLM: OS/VS2 I/O Supervisor Logic 

Explanation: An error has occurred during IECVSMGR (storage manager) 
processing. The FRR routine IECVSMFR issues SDUMP. In most cases, 
the error is a COD abend that results when a caller of IECVSMGR attempts 
to (1) get an lOS block that is already allocated, or (2) free an lOS block 
that is not in use. The areas dumped are SQA, NUC, and TRT. 

Problem Determination: A software record is written to SYSl.LOGREC. 
Includld in the SDW A VRA is the six-word FRR area, the storage pool 
headers and free queue headers. The registers identify the type of request 
and resulting error. The SDUMP buffer contains the storage pool headers, 
free queue headers, and registers. 

lOS - POST STATUS ERROR 

Component: lOS (5752-SCIC3) 

Issuing Module: IECVPST 

PLM: OS/VS2 I/O Supervisor Logic 

Explanation: The lOS post status FRR has received control because of a 
program check. The error might have occurred in IECVPST or in an exit 
(channel end, abnormal end, PCI, attention, etc.). The areas dumped are 
PSA,SQA, NUC, and TRT. The SDUMP buffer contains the 10SB and 
the PSA highest lock held indicator. The SDW A VRA also contains the 
10SB. 

Appendix C. SVC DUMP Title Directory C-57 



Problem Determination: Examine the IOSB for bad exit pointers 
IOSB + X'38' and IOSB + X'44'. Determine where in the module the error 
occurred. The IOSB and the UCB are valuable sources of information 
about exits via the device types. A software record is written to 
SYSl.LOGREC. 

lOS - SMGR SQA EXHAUSTED 

Component: lOS (5752-SCIC3) 

Issuing Module: IECVSMGR - FRR 

PLM: OS/VS2 I/O Supervisor Logic 

Explanation: Module IECVSMGR was not able to obtain a 2K or 4K block 
of SQA for lOS control blocks. The areas dumped are SQA, NUC, and 
TRT. 

Problem Determination: A software record is written to SYS1.LOGREC. 
Included in the SDW A VRA is the six-word FRR area, pool headers and 
free queue headers. The SDUMP buffer contains the storage pool headers, 
free queue headers, and registers. 

ISAM INTRFC,OPEN,IDAOI921,IDAICIAl,**AUDIT NOT STARTED** 
ISAM INTRFC,OPEN,IDAOI921,IDAICIAI,**IDA01921 IN CONTROL** 
ISAM INTRFC,CLOSE,IDA0200S,IDAICIAI, ** AUDIT UNAVAILABLE** 
ISAM INTRFC,CLOSE,IDA0200S,IDAICIAI,**IDAIIPMI IN CONTROL** 
ISAM INTRFC,CLOSE,IDA0200S,IDAICIAI, **IDA0200S IN CONTROL ** 

Component: VSAM - ISAM-Interface (5752-SCIDE) 

Issuing Module: IDAICIAI - ESTAE 

PLM: OS/VS2 Virtual Storage Access Method (VSAM) Logic 

Explanation: An error has occurred during the opening or closing of a DCB 
via the ISAM interface. Module IDAICIAI (ISAM-interface data-set 
management recovery routine) issues SDUMP. One of the five titles 
appears depending on the error and whether open or close was in control at 
the time of error. 

Problem Determination: Depending on the error, some or all of the following 
areas are dumped: the dump list itself, user's DCB, protected copy of the 
user's DCB, OPEN/CLOSE work area, recovery work area, nCB, ACB, 
EXLST, buffers and message area. 

C-58 MVS Diagnostic Techniques 



ISTAPCES - ACF/VTAM PSS·ESTAE ROUTINE 

ComponeDt: ACF fVTAM (5665;;28001) 

Issuing Module: 1ST APCES . PSS EST AE 

PLM: ACFjVTAM Diagnosis.Reference 

Explanation: An abend has occurred while an ACF(VTAM task was 
processing and an ACF JVT AM lRB was active. The areas dumped a.re 
SQA, NUC, RGN, LPA, TRT, ALLPSA, and CSA. 

Problem Determination: A software record is written to SYSl.LOGREC. 
For a description of the CRA fields recorded, refer to ACFjVTAM Data 
Areas. 

ISTAPCFR - ACFjVTAM PSS FUNCTIONAL RECOVERY 

Component: ACFjVTAM (5665 .. 28001) 

Issuing Module: 1ST APCFR - PSg FRR 

PLM: A CFj VT AM Diagnosis Reference 

Explanation: An abend has occurred while ACF /VT AM was processing and 
running under an SRB. The areas dumped are ALLPSA, CSA, NUC, SQA, 
TRT, LPA, and RGN. 

Problem Determination: A software record is written to SYS1.LOGREC. 
For a description of the CRA fields recorded, refer to ACF/VT AM Data 
Areas. 

ISTAPCMT - ACF /VTAM ABEND IN .MEMORY TERMINATION 

Component: ACF/VTAM (5665-28001) 

Issuing Module: 1ST APCMT 

PLM: ACF/VTAM Diagnosis Reference 

Explanation: An abend has occurred while the ACF /VT AM memory 
termination resource manager was processing. ACF /VT AM attempts 
minimal cleanup so that ACFjVTAM can be restarted. However, CSA 
storage might not be usable until the next IPL. The areas dumped are SQA, 
NUC, RGN, LPA, LSQA, TRT, ALLPSA, and CSA. 

Problem Determination: A software record is written to SYSl.LOGREC. 
For a description of the CRA fields recorded, refer to ACFjVT AM Data 
Areas. 

Appendix C. SVC DUMP Title Directory C-59 



ISTAPC61 - VTAM IRB ABEND 

Component: VTAM or ACF/VTAM (5752;.SC123) 

Issuing Module: 1ST APC61 - VT AM EST AE 

PLM: OS/VS2 MVS VTAM Logic or ACF/VTAM Logic 

Explanation: An abend has occurred while a VT AM task was processing 
and a VTAM IRB was active. The areas dumped are SQA, NUC, RGN, 
LPA, TRT, ALLPSA, and CSA. 

Problem Determination: A software record is written to SYSl.LOGREC. 
For a description of the CRA fields recorded, refer to the VT AM System 
Programmer's Guide or ACF/VTAM System Programmer's Guide. 

1ST APC62 - VT AM SRB ABEND 

Component: VTAM or ACF/VTAM (5752-SC123) 

Issuing Module: 1ST APC62 - VT AM FRR 

PLM: as/VS2 MVS VTAM Logic or ACF/VTAM Logic 

Explanation: An abend has occurred while VT AM was processing and 
running under an SRB. The areas dumped are ALLPSA, CSA, NUC, SQA, 
TRT, LPA, and RGN. 

Problem Determination: A software record is written to SYSl.LOGREC. 
For a description of the CRA fields recorded, refer to the VT AM System 
Programmer's Guide or ACF/VTAM System Programmer's Guide. 

1ST APC66 - VT AM ABEND 

Component: VTAM or ACF/VTAM (5752-SCI23) 

Issuing Module: 1ST APC66 - VT AM FRR 

PLM: OS/VS2 MVS VTAM Logic or ACF/VTAM Logic 

Explanation: An abend has occurred during 1ST APC25, 1ST APC55, 
ISTAPC59, or ISTAICIR processing. The FRR routine (ISTAPC66) issues 
the SDUMP macro and also indicates that an abend is in' progress for each 
ACDEB and PST that are not associated with the VT AM jobstep TCB or a 
subtask of the VTAM jobstep. The areas dumped are SQA, NUC, RGN, 
LSQA, LPA, TRT, ALLPSA, CSA, and SWA. 

Problem Determination: A software record is written to SYSl.LOGREC. 
For a description of the CRA fields recorded, refer to the VT AM System 
Programmer's Guide or ACF/VT AM System Programmer's Guide. 

C-60 MVS Diagnostic Techniques 



ISTATMOO .. VTAM TERMINATION SUBTASK ESTAE 

Component: VTAM or ACF/VTAM (5752-SC123) 

Issuing Module: 1ST ATMOO .. EST AE 

PLM: OS/VS2 MVS VT AM Logic or ACF/VT AM Logic 

Explanation: An abend has occ\lrredwhile the VT AM termination subtask 
(VTT) was processing. The ESTAE routine ISTATMOO issues the SDUMP 
macro for abends that occur during VTAM processing (but not for abends 
that occur during application processing). The areas dumped are SQA, 
LSQA, TRT, ALLPSA, CSA, and RGN. 

Problem Determination: A software record is written to SYS1.LOGREC. 
For a d~scription of the CRA fields recorded, refer to the VTAM System 
Programmer's Guide or ACF/VTAM System Programmer's Guide. 

ISTINCST - VTAM STAE EXIT 

Component: VTAM or ACF/VTAM (5752-SC123) 

Issuing Module: ISTINCST - EST AE 

PLM: OS/VS2 MVS VT AM Logic or ACF/VTAM Logic 

Explanation: An abend has occurred while the VT AM jobstep task was 
processing. The areas dumped are SQA, NUC, RGN, LPA, TRT, 
ALLPSA, and CSA. 

Problem Determination: None. 

ISTORMMG - ACF/VTAM FRR DUMP 

Component: ACFjVTAM (5665-28001) 

Issuing Module: ISTORMMG 

PLM: A CF/ VT AM Diagnosis Reference 

Explanation: An abend has occurred while ISTORMMG was running in 
SRB mode. ISTORMMG frees CSA storage and recovery is attempted by 
zeroing the CSA to-he-freed queue (ATCORTBF). The areas dumped are 
SQA,NUC, RGN, LPA, ALLPSA, and CSA. 

Problem Determination: A software record is written to SYS1.LOGREC. 
For a description of the eRA fields recorded, refer to ACF/VT AM Data 
Areas. 

Appendix C. SVC DUMP Title Directory C-61 



ISTRAMA2 DUMP FOR TRAMA6 

Component: VTAM or ACF/VTAM (5752-SC123) 

Issuing Module: ISTRAMA2 

PLM: OS/VS2 MVS VTAM Logic or ACF/VTAM Logic 

Explanation: An error has occurred in ISTRAMA5, which is an internal 
routine to ISTRAMA2 (address space termination resource manager). 
ISTRAMA5 receives control from ISTRAMA2 via an SRB for the purpose 
of scheduling TPEND exits. ISTRAMA5's FRR (ISTRAMA6) issues the 
SDUMP macro. The areas dumped are SQA, ALLPSA, NUC, RGN, LPA, 
TRT, and CSA. 

Problem Determination: A software record is written to SYSl.LOGREC. 

ISTRAMA2 DUMP FOR TRAMST 

Component: VTAM or ACF/VTAM (5752-SCI23) 

Issuing Module: ISTRAMA2 

PLM: OS/VS2 MVS VT AM Logic or ACF/VTAM Logic 

Explanation: An abend has occurred in ISTRAMUE which is an internal 
routine to ISTRAMA2 (address space termination resource manager). 
ISTRAMUE receives control from ISTRAMA2 via an IRB for the purpose 
of scheduling user TPEND exits. ISTRAMUE's ESTAE routine 
(ISTRAMST) issues the SDUMP macro. The areas dumped are SQA, 
ALLPSA, NUC, RGN, LPA, TRT, and CSA. 

Problem Determination: A software record is written to SYSl.LOGREC. 

ISTRAMA3 - VT AM TASK TERM FAILS 

Component: VTAM or ACFjVTAM (5752-SC123) 

Issuing Module: ISTRAMA3 - EST AE 

PLM: OS/VS2 MVS VT AM Logic or ACF/VT AM Logic 

Explanation: An abend has occurred while ISTRAMAI (task termination 
resource manager) was cleaning up VTAM resources for a terminating user 
task. ISTRAMAl's ESTAE routine (ISTRAMA3) issues the SDUMP 
macro. The areas dumped are SQA, LSQA, TRT, ALLPSA, and CSA. 

Problem Determination: A software record is written to SYS1.LOGREC. 
For a description of the CRA fields recorded, refer to the VT AM System 
Programmer's Guide or ACFjVTAM System Programmer's Guide. 

C-62 MVS Diagnostic Techniques 



ISTMMA4- VTAM MEMORY TERMINATION ESTAE 

Component: VTAMor ACFjVTAM (5752~SC123) 

Issuing Module: ISTRAMA4 .;; EST AE 

PLM: OS/VS2MVS VTAM Logic or ACF/VTAM Logic 

Explanation: An abend has occurred while ISTRAMA2 (address space 
termination resource manager) was processing. ISTRAMA2's ESTAE 
routine (ISTRAMA4) issues the SDUMP macro. The areas dumped are 
SQA, LSQA, TRT, ALLPSA, and CSA. 

Problem Determination: A software record is written to SYS1.LOGREC. 
For a description of the CRA fields recorded, refer to the VT AM System 
Programmer's Guide or ACF/VTAM System Programmer's Guide. 

JES2 FSI ERROR. CODE=cde RC=rc (text) 

Component: JES2 (5752-SCrBH) 

Issuing Module: HASPFSSM 

PLM: OS/VS2 MVS JES2 Logic 

Explanation: A catastrophic error has occurred in the JES2 functional 
subsystem interface (FSI) support routines (HASPFSSM) for which JES2 
issued a $ERROR macro. HASPfSSM was operating in a functional 
subsystem (FSS) address space. JES2 terminates the FSS address space. 

The HASPFSSM error routine FSMCATER issued the SDUMP macro. 
The areas dumped are ALLPSA, RGN, TRT, SQA, CSA, LPA, SWA, and 
LSQA 

This dump is associated with JES2 message $HASP750 and system abend 
code 02C. 

Problem Determination: See message $HASP750 in System Messages and 
abend code 02C in System Codes for information on this error. 

JES3 LOCATE SUBTASK ABEND 

Component: JES3 (5752-SCIBA) 

Issuing Module: IA TL VLC 

PLM: OS/VS2 MVS JESJ Logic 

Explanation: An abend has occurred during IATLVLC (locate subtask) 
processing. The EST AE routine established by IATL VLC is given control 
to examine the function control table (FCT) active at the time of 
termination to determine which function or DSP has failed. The areas 
dumped are SQA, CSA, PSA, RGN, LPA, and TRT. 

Appendix C. SVC DUMP Title Directory C-63 



Problem Determination: A software record is written to SYS1.LOGREC. 

JES3 SNA FRR IATSNDF 

Component: JES3 (5752-SCIBA) 

Issuing Module: IATSNDF - FRR 

PLM: OSjVS2 MVS JES3 Logic 

Explanation: The FRR routine (IATSNDF) handles abends that occur 
during SNA RJP processing under an SRB. Each time that the FRR is 
entered, an SVC dump is taken. Therefore, control of dumping is 
dependent on the FRR's recursion control to prevent more than two retry 
failures. (A dump is taken for every retry failure.) The areas dumped are 
SQA, ALLPSA, NUC, LSQA, RGN, TRT, CSA, and LPA. 

Problem Determination: The SDWA is logged after it is updated with LCB 
data if available. A software record is written to SYS1.LOGREC. 

JOB=jobname hh:mm:ss yy.ddd DUMP BY IGGOCLA9 - VSAM CATALOG 
MANAGEMENT 

Component: VSAM - Catalog Management (5752-SCIDE) 

Issuing Module: IGGOCLA9 - ESTAE 

PLM: OSjVS2 Catalog Management Logic 

Explanation: An abend has occurred during catalog management processing. 
The ESTAE routine IGGOCLA9 issues the SDUMP macro, frees storage 
resources, and backs-out partially defined catalog entries in the VSAM 
catalogs. Message IEC3381 is also issued if a validity check failed on a user 
field parameter list (FPL) or a catalog parameter list (CPL). 

Problem Determination: A software record is written to SYSl.LOGREC. 
The SDW A VRA includes the following: 

Offset Length Meaning 

0(0) 8 c'IGGOCLA9' 
8(8) 3 Entry point address of IGGOCLA9. 

I I (B) 8 Name of the last routine called. 
19(13) 3 Entry point address of the last routine called. 
22(16) 8 Name of the calling routine. 
30(1 E) 3 Entry point address of the calling routine. 
33(21) 4 c'CPL=' 
37(25) 28 User's CPL. 

C-64 MVS Diagnostic Techniques 



LOAD MOD-IEFW2ISD EXIT RTN-xxxxxxxx 

Component: Allocation (5752-SCIB4) 

Issuing Module: IEF AB4ED - Allocation Common EST AE Exit 

PLM: OSjVS2 System Logic Library 

Explanation: An error has occurred during allocation processing. The 
EST AE routine IEF AB4ED performs general recovery processing and issues 
the SDUMP macro if no SDW A exists. If an SDW A exists, additional 
checks on the error are made. The SDUMP macro is then issued if the 
error was not a user error and is either (I) a program check, or (2) the 
restart key was pressed, or (3) an abend occurred and there was no 
percolation or if there was percolation, it was via FRR recovery. The areas 
dumped are: NUC, RGN, LPA, TRT, CSA, ALLPSA, and SQA. 

In the title, xxxxxxxx indicates the name of the recovery routine that 
receives control after IEFAB4ED processing in order to release the 
resources for the fUnction. The possible exit routine names and the 
functional areas of the allocation component that they represent are: 

Exit 

IEFAB4DD 
IEFAB4DE 
IEFAB4EA 
IEFAB4E2 
IEFAB4E4 
IEFAB4E7 
IEFAB4E8 
IEFAB402 

Functional Area 

Initiator/job or step unallocation interface 
Common unallocation 
JFCB housekeeping 
Volume mount and verify 
Initiator/job or step allocation interface 
Group lock/unlock 
Common allocation 
Dynamic allocation (SVC 99) 

Problem Determination: A software record is written to SYSl.LOGREC. 

PGM CHECK IN IEAVGCAS 

Component: VSM - Memory Create (5752-SCICH) 

Issuing Module: IEAVCARR - FRR 

PLM: OSjVS2 System Logic Library 

Explanation: A program check has occurred in lEA VGCAS while recovering 
from a previous error in lEA VGCAS during address space create, free 
address space, or task termination. The areas dumped are PSA and LSQA. 

Problem Determination: A software record is written to SYSl.LOGREC 
and includes: 

SDWAMODN - Module name of the routine in error. 
SDWACSCT - CSECT name of the routine in error. 
SDWAREXN - FRR module name. 

Appendix C. SVC DUMP Title Directory C-65 



PGM CHECK IN IEAVPRTO 

Component: VSM - GETPART/FREEPART (5752-SCICH) 

Issuing Module: lEA VGPRR - FRR 

PLM: OS/VS2 System Logic Library 

Explanation: A program check has occurred in IEAVPRTO while recovering 
from a previous error in lEA VPRTO or in post processing by XMPOST. 
The areas dumped are PSA, LSQA, and NUC. 

Problem Determination: A sqftware record is written to SYSl.LOGREC and 
includes: 

SDW AMODN - Module name of the routine in error. 
SDWACSCT - CSECT name of the routine in error. 
SDWAREXN - FRR module name. 

RACF INITIALIZATION FAILURE 

Component: RACF (5752-XXHOO) 

Issuing Module: ICHSEC02 - EST AE 

PLM: OS/VS2 MVS Resource Access Control Facility (RACF): Program 
Logic Manual 

Explanation: An abend has occurred during ICHSECOO (RACF 
initialization) processing. The areas dumped are SQA, CSA, NUC, and 
RGN. 

Problem Determination: A software record is written to SYSl.LOGREC 
and includes: 

SDWAMODN 
SDWAREXN 
SDWACID 
SDWACSCT 
SDWAEAS 
SDWAREQ 

- ICHSECOO (modu]e in error) 
- ICHSEC02 (recovery routine) 
- XXHOO 
- ICHSECOO 
- 1 if SDUMP is taken by ICHSECOO 
- 0 if SDUMP is taken by ICHSECOO 

RCT DUMPING LSQA 

Component: Region Control Task (57S2-SCICU) 

Issuing Module: lEA V AROO - EST AE 

PLM: OS/VS2 System Logic Library 

Explanation: The EST AE routine in lEA V AROO issues the SDUMP macro 
when a previous error recovery routine could not diagnose the error and 
either (1) ReT's RB was in control, (2) an error occurred in the previous 
recovery exit, (3) an RCT FRR routine requested the dump, or (4) retry 
recursion has occurred. 

C-66 MVS Diagnostic Techniques 



Problem Hetenmaation: A software record is written toSYSl.LOGREC. 
Pay particular attention to the cause of error flags and the RCT flags in the 
SDW A VRA. A<;iditional footprints and data are available in the RCTD of 
the dumped storage. 

RECORD PERMANENT ERROR 

Component: RTM - RECORD Macro (5752-SCICM) 

Issuing Module: IEAVTRET - EST AE 

PLM: OSjVS2 System Logic Library 

Explanation: An operation exception (OCt) has occurred while IEAVTRET 
(RECORD macro processing) was in control and processing a "temporary 
error" type but not while IEAVTRET was attempting to post the user's 
ECB. The recording function is turned off and message IEA8961 is issued, 
stating that the recording function is not active. A return code of 20 is 
issued for following RECORD macro requests. The areas dumped are 
SQA, NUC, LPA, and RGN. 

Problem Determination: A software record is written to SYS1.LOGREC. 
(Refer also to RECORD TEMPORARY ERROR.) 

RECORD TEMPORARY ERROR 

Component: RTM - RECORD Macro (5752-SCICM) 

Issuing Module: lEA VTRET 

PLM: OSjVS2 System Logic Library 

Explanation: An abend has occurred while lEA VTRET (RECORD macro 
processing) was in control and the RCB buffer was not being manipulated 
by the requesting routine. This abend is not a "peqnanent error" type. If 
the error was not an operation exception (OCl), an interface is established 
from the EST AE parameter list and retry is initiated at the point where the 
task wakes up from the wait state. The areas dumped are SQA, NUC, 
LPA, and RGN. 

Problem Determination: A software record is written to SYSl.LOGREC. 
(Refer also to RECORD PERMANENT ERROR.) 

• Appendix C. SVC DUMP Title Directory C-67 



REQUESTOR = xxxxxxxx,ISSUER = ISGCRCV,COMPID = SCSDS, 
COMPON=GRS 

Component: Global Resource Serialization 

Issuing Module: ISGCRCV - EST AE 

PLM: OSjVS2 MVS Global Resource Serialization Logic 

Explanation: An error has occurred while one of the following command 
processing modules was processing. The field xxxxxxxx in the dump title 
indicates the failing module. 

ISGCMDI ISGCQMRG ISGNGRSP 
ISGCMDR ISGCQSC 
ISGCPRG ISGCRST 

The ESTAE module ISGCRCV issues the SDUMP macro. If the error 
occurred in ISGCMDI, the master address space is dumped. For errors in 
the other modules, the global resource serialization address space is dumped. 

Problem Determination: A software record is written to SYSl.LOGREC. 

RESOURCE MANAGER 

Component: Initiator (5752-SCIB6) 

Issuing Module: IEFISEXR - EST AE 

PLM: OS/VS2 System Logic Library 

Explanation: A program check or a restart interruption has occurred in the 
initiator or a subsystem interface resource manager. The ESTAE routine 
IEFISEXR issues the SDUMP macro. The areas dumped are SQA, PSA, 
LSQA, RGN, LPA, TRT, CSA, and NUC. 

Problem Determination: A software record is written to SYS1.LOGREC. 

RESTART INTERRUPT IN CONVERTER**IEFNB9CR** 

Component: Converter (5752-SCIB9) 

Issuing Module: IEFNB9CR - Converter Recovery Routine 

PLM: None (refer to microfiche) 

Explanation: A restart interruption has occurred during converter 
processing. The EST AE routine IEFNB9CR issues the SDUMP macro. 
The areas dumped are SQA, LSQA, SWA, RGN, and LPA. 

Problem Determination: A software record is written to SYS1.LOGREC. 

C-68 MVS Diagnostic Techniques 



RESTART INTERRUPT IN INTERPRETER**IEFNB9IR** 

Component: Interpreter (5752-SCIB9) 

Issuing Module: IEFNB9IR - Interpreter Recovery Routine 

PLM: None (refer to microfiche) 

Explanation: A restart interruption has occurred during interpreter 
processing. The recovery routine IEFBN9IR issues the SDUMP macro. 
The areas dumped are SQA, LSQA, SWA, RGN, and NUC. 

Problem Determination: A software record is written to SYS1.LOGREC. 

RMFDEA 

Component: RMF (5752-XY400) 

Issuing Module: ERBMFDEA - ESTAE 

PLM: OSjVS2 MVS Resource Measurement Facility (RMF) Version 2 
Program Logic Manual 

Explanation: An error has occurred during RMF processing. The data 
control ESTAE routine ERBMFDEA issues the SDUMP macro. The areas 
dumped are SQA, CSA, RGN, LPA, ALLPSA, NUC, and LSQA. 

Problem Determination: A software record is written to SYS1.LOGREC. 
The RMF control block STGST (pointed to by field CVTMFCTL in the 
CVT) and the trace table are helpful in determining the cause of the error. 

RMFSDE 

Component: RMF (5752-XY 400) 

Issuing Module: ERBMFSDE - EST AE 

PLM: OS/VS2 MVS Resource Measurement Facility (RMF) Version 2 
Program Logic Manual 

Explanation: An error has occurred during RMF processing. The 
MFSTART ESTAE routine ERBMFSDE issues the SDUMP macro. The 
areas dumped are SQA, CSA, RGN, LPA, ALLPSA, NUC, and LSQA. 

Problem Determination: A software record is written to SYS1.LOGREC. 
The RMF control block STGST (pointed to by field CVTMFCTL in the 
CVT) and the trace table are helpful in determining the cause of the error. 

Appendix C. SVC DUMP Title Directory C-69 



SCHEDULER JCL FACILITY FAILURE,ABEND= ,COMPON=SCHR-SJF, 
COMPID = BB 131 ,ISSUER = IEFSJCNL 

Component: Scheduler Services (5752-BB 131) 

Issuing Module: IEFSJCNL 

PLM: System Logic Library 

Explanation: An abend has occurred while the scheduler JCL facility was 
processing. The areas dumped are SWA, CSA, LPA, and LSQA. 

Problem Determination: A software record is written to SYSl.LOGREC. 
The SDW A VRA contains footprint bits that indicate the execution path of 
the scheduler JCL facility. 

SDUMP - IGGOCLCA CVOL CATALOG MANAGEMENT 

Component: Catalog Controller 3 - CVOL Processor (5752-SCIDH) 

Issuing Module: IGGOCLCA - EST AE 

PLM: OSjVS2 CVOL Processor Logic 

Explanation: An abend has occurred in the first CSECT of the CVOL 
processor mapper. The EST AE routine IGGOCLCA issues the SDUMP 
macro, and dequeues the PCCB and DSNAME resources. The areas 
dumped are PSA, LSQA, LPA, and RGN. 

SDUMP - IGGOCLCD - CVOL CATALOG MANAGEMENT 

Component: Catalog Controller 3 - CVOL Processor (5752-SCIDH) 

Issuing Module: IGGOCLCD - EST AE 

PLM: OSjVS2 CVOL Processor Logic 

Explanation: An abend has occurred while IGGOCLCD was building catalog 
entries for CVOLs. The EST AE routine IGGOCLCD issues the SDUMP 
macro and frees resources. The areas dumped are PSA, LSQA, LP A, and 
RGN. 

SET SMF COMMAND - IEEMB835 

Component: SMF (5752-SCI00) 

Issuing Module: IEEMB835 - EST AE 

PLM: OSjVS2 System Logic Library 

Explanation: An abend has occurred during SET SMF processil)g. In 
addition to the SVC dump, message IEE965I is also issued. 

c-70 MVS Diagnostic Techniques 



Problem Determination: A software record is written to SYSl.LOGREC. 
For additional information, refer to message IEE965I in VS2 System 
Messages. 

SLIP ID = xxxx 

Component: RTM - SLIP Processor (5752-SCICM) 

Issuing Module: lEA VTSLP 

PLM: QSjVS2 System Logic Library 

Explanation: A SLIP trap has matched and the action specified on the trap 
definition is ACTION=SVCD. IEAVTSLP issues the SDUMP macro. 
The areas dumped are defaulted or specified on the SDATA, LIST, 
SUMLIST, and ASIDLST keywords of the SLIP command. ID=xxxx is 
the SLIP trap identifier. 

Problem Determination: None - the system is functioning as requested. 

SMF ABEND, ERRMOD = IEEMB829jIEFU29, RECVRMOD = IEEMB825 

Component: SMF (5752-SCIOO) 

Issuing Module: IEEMB825 

PLM: OSjVS2 System Logic Library 

Explanation: An abend has occurred during task mode SMF writer 
processing. If ERRMOD = IEFU29, the user exit was in control at the time 
of the error. The· areas dumped are PSA, NUC, RGN, CSA, LPA, SQA, 
and SUMDUMP. 

Problem Determination: A software record is written to SYSl.LOGREC. 

SMF ABEND, ERRMOD=xxxxxxxx, RECVRMOD= IEEBM830 

Component: SMF (5752-SCIOO) 

Issuing Module: IEEMB830 

PLM: OSjVS2 System Logic Library 

Explanation: An abend has occurred during SMF record processing. If 
xxxxxxxx is IEFU83 or IEF084, the error occurred during processing by 
the installation ,exit. Otherwise, xxxxxxxx is IEEMB830. The areas dumped 
are PSA, NUC, RGN, CSA, LPA, SQA, and SUMDUMP. 

Problem Determination: A software record is written to SYSI.LOGREC. 
The SDW A VRA field contains the output of the queue verify routine 
lEA VEQV3, ifit was invoked to verify the BQE chain. 

Appendix C. svC DUMP Title Directory C-71 



SMF ABENDED, ERRMOD=IEEMB834, RECVMOD=IEEMB834 

Component:SMF (57 52-SC 1 00) 

Issuing Module: IEEMB834 - FRR 

PLM: OSjVS2 System Logic Library 

Explanation: An abend has occurred during the SRB mode processing which 
writes to the SMF recording data set. The areas dumped are PSA, NUC, 
RGN, CSA, LPA, SQA, and SUMDUMP. 

Problem Determination: A software record is written to SYSl.LOGREC. 
The FRR parameter area contains footprints and is mapped by the structure 
FRRPARM. 

SMF ERRMOD = IEASMFSP, RECVRMOD = IEASMFSP 

Component: SMF (5752-SCIOO) 

Issuing Module: IEASMFSP - FRR 

PLM: OSjVS2 System Logic Library 

Explanation: An abend occurred while SMF was attempting to suspend or 
reset a caller of SMF because of a buffer shortage. The areas dumped are 
PSA, NUC, RGN, CSA, LPA, SQA, and SUMDUMP. 

Problem Determination: The FRR parameter area indicates the function 
being performed. It is mapped by the structure FRRPRM. A software 
record is written to SYSl.LOGREC. 

SMF INITIALIZATION, RECVRMOD=IEEMB827 

Component: SMF (5752-SCIOO) 

Issuing Module: IEEMB827 

PLM: OSjVS2 System Initialization Logic 

Explanation: An abend has occurred during SMF writer initialization. If the 
completion code is X'253', the abend occurred during initialization of the 
writer task (as opposed to the initialization task). In this case, the 
initialization task abended itself due to the failure of the SMF writer task 
initialization. The areas dumped are PSA, NUC, RGN, CSA, LPA, SQA, 
and SUMDUMP. 

Problem Determination: A software record is written to SYSl.LOGREC. 
For a description of code 253, refer to VS2 System Codes. 

c-72 MVS Diagnostic Techniques 



SMF TIMER - IEEMB839 

Component: SMF (5752-SCI02) 

Issuing Module: IEEMB839 - FRR 

PLM: OS/VS2 System Logic Library 

Explanation: An error has occurred in the SMF timer module while the 
dispatcher lock was held. 

Problem Determination: A software record is written to SYSl.LOGREC. 

SRM - IRARMSRV 55F ABEND DURING XMPOST 

Component: SRM (5752-SCt CX) 

Issuing Module: IRARMSRV 

PLM: OS/VS2 System Lo~ic Library 

Explanation: An error has occurred during the cross-address-space post 
function. The post· was requested by module IRARMEVT to notify the 
issuer of a REQSW AP or TRANSW AP that the swap is complete or that 
the address space became non-swappable before the swap could be initiated. 
The address space being posted is terminated with a 55F completion code. 
The areas dumped are PSA, SQA, and TRT. 

Problem Determination: The terminating address space's ASCB and OUCB 
are copied into the SDUMP buffer pointed to be CVTSDBF. The buffer 
fields are mapped by SDMPBUFF in module IRARMSRV. 

SRM RECOVERY ENTERED,COMPON=SRM,COMPID=SCICX, 
ISSUER = IRARMERR 

Component: SRM (5752-SCICX) 

Issuing Module: lRARMERR - FRR 

PLM: OS/VS2 System Logic Library 

Explanation: An error has occurred during SRM processing. Depending on 
the error, retry of the failing function is attempted or the error is percolated, 
The current address space is dumped. 

Problem Determination: A software record is written to SYSl.LOGREC. 
The variable recording area in the SDWA contains a m.essage that gives an 
offset into the data module lRARMCNS. This offset is the location of the 
control block for the SRM routine in contrdl when the error occurred. 

Appendix C. SVC DUMP Title Directory C-73 



SSICS ABEND 6FB 

Component: JES3 (5752-SCIBA) 

Issuing Module: IATSSCM 

PLM: OSjVS2 MVSJES3 Logic 

Explanation: A system error has occurred while IA TSSCM (subsystem 
communication scheduler) was processi~g in an address space other than 
JES3's address space. Abend 6FB is issued. The areas dumped are PSA, 
RGN, LPA, TRT, CSA, NUC, and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC. 
For a description of code 6FB, refer to VS2 System Codes. 

SSICS ESTAE-IATSSCM 

Component: JES3 (5752-SCIBA) 

Issuing Module: IATSSCM 

PLM: OSjVS2 MVS JES3 Logic 

Explanation: IATSSCM (subsystem communication scheduler) was not able 
to reduce the system impact caused by communication failures for the 
second time. JES3 is put in the IATSSCM quiesce condition. The areas 
dumped are PSA, RGN, LPA, TRT, CSA, NUC, and SQA. 

Problem Determination: A software record is written to SYSI.LOGREC. 

STARTED TASK CONTROL 

Component: Master Scheduler Commands (5752-SCIB8) 

Issuing Module: IEESB665 

PLM: OSjVS2 System Logic Library 

Explanation: The recovery exit routine IEESB665 schedules a retry for STC 
in the event of an error (if information is available for a retry). If an 
SDW A is provided, IEESB665 issues the SDUMP macro. The areas 
dumped are SQA, PSA, LSQA, RGN, LPA, TRT, CSA, and NUC. 

Problem Determination: A software record is written to SYSl.LOGREC. 

c-74 MVS Diagnostic Techniques 



STARTED TASK CONTROL 

Component: Master Scheduler Commands (5752-SCIB8) 

Issuing Module: IEESB670 

PLM: OS/VS2 System Logic Library 

Explanation: The recovery exit routine IEESB670 schedules a retry of the 
job scheduling subroutine (IEESB605). If an SOW A is provided, IEESB670 
issues the SOUMP macro. The areas dumped are SQA, PSA, LSQA, RGN, 
LPA, TRT, CSA, and NUC. 

Problem Determination: A software record is written to SYS1.LOGREC. 

STORAGE DUMP TAKEN AT ENTRY TO IEEMB812 ESTAE EXIT 

Component: SRM (5752-SCICX) 

Issuing Module: IEEMB812 - SRM SET Processor 

PLM: OS/VS2 System Logic Library 

Explanation: An error has occurred during SRM processing of a SET 
command. The new tables are freed and the old controls remain in effect. 
The SET command is retried. If the error recurs, IEEMB812 percolates the 
error. 

Problem Determination: A software record is written to SYS1.LOGREt. 

STORAGE DUMP TAKEN AT ENTRY TO IRARMERR 

Component: SRM (5752-SCICX) 

Issuing Module: IRARMERR - FRR 

PLM: OS/VS2 System Logic Library 

Explanation: An error has occurred during SRM processing. Depending on 
the error, retry of the failing function is attempted or the error is percolated. 
The current address space is dumped. 

Problem Determination: A software record is written to SYS1.LOGREC. 
The variable recording area in the SDWA contains a message that gives an 
offset into the data module IRARMCNS. This offset is the location of the 
control block for the SRM routine in control when the error occurred. 

Appendix C. SVC DUMP Title Directory C-75 



SWACREATE 

Component: SWA Manager (5752-SCIB5) 

Issuing Module: IEFIB645 

PLM: OS/VS2 System Logic Library 

Explanation: A program check or a restart interruption has occurred during 
interpreter, restart, warmstart, or SWA create processing. The recovery 
routine IEFIB645 issues the SDUMP macro. The areas dumped are SQA, 
PSA, LSQA, RGN, LPA, TRT, CSA, and NUC. 

Problem Determination: A software record is written to SYSl.LOGREC. 

SYSTEM LOG DUMP 

Component: Master Scheduler Commands (5752-SCIB8) 

Issuing Module: IEEMB803 

PLM: OS/VS2 System Logic Library 

Explanation: An error has occurred during IEEMB803 (system log 
initialization/writer) processing. The areas dumped are PSA, NUC, LSQA, 
RGN, and CSA. 

Problem Determination: A software record is written to SYSI.LOGREC. 

SYSTEM LOG DUMP 

Component: Master Scheduler Commands (5752-SCIB8) 

Issuing Module: IEEMB806 - EST AE 

PLM: OS/VS2 System Logic Library 

Explanation: An abend has occurred during system log task processing. The 
areas dumped are PSA, NUC, LSQA, RGN, CSA, and SQA. 

Problem Determination: A software record is written to SYSl.LOGREC. 

SYSTEM LOG SVC DUMP 

Component: Master Scheduler Commands (5752-SCIB8) 

Issuing Module: IEEMB804 

PLM: OS/VS2 System Logic Library 

Explanation: Tpe data of a non-authorized user does not exist in his own 
storage area. The user has failed the authorization check and 
FETCH/PROTECT validity test, or an abend occurred during processing. 

c-76 MVS Diagnostic Techniques 



Procedure DUMPRTN issues the SDUMP'macro. The areas dumped are 
LSQA, RGN, and CSA. 

Problem Determination: A software record is written to SYSl.LOGREC. 

TCASDUMP 

Component: TSOJVTAM (5752-SCIT9) 

Issuing Module: IKTCAS52 

PLM: OSjVS2 MVS VTIOC and TCAS Logic 

Explanation: TeAS (terminal control address space) is terminating because 
(l) the operator requested termination via the STOP command, or (2) a 
program check has occurred. The dump is taken as a result of the operator 
responding DUMP to message IKT012D. 

TIMER FRR DUMP 

Component: Timer Supervisor (5752-SCICV) 

Issuing Module: lEA VRTII - FRR 

PLM: OSjVS2 System Logic Library 

Explanation: An error has occurred during timer supervision processing. In 
module IEAVRTIl, subroutine IEAVRSWR (entry point IEAVRFRR) 
issues the SDUMPmacro. The areas dumped are PSA, NUC, SQA, TRT, 
and LSQA for the current address space. 

Problem Determination: A software record is written to SYS1.LOGREC. 
The data area TFRRPARM (mapped in IEAVRTIl) is saved in the 
SOW A VRA. TFRRP ARM contains indicators that tell the type of 
processing taking place and the locks held at the time of the error, as well @os 
the results of the TQE validation process. The SOW A also includes: 

SOW AMOON - Name of the module in control at the time of the error 
SOW ACSCT - Name of the CSECT in control at the time of the error 
SOW AREXN - IEAVRFRR (recovery routine) 

TSO OUTPUT CP ESTAE 

Component: TSO Scheduler (5752-SCIT4) 

Issuing Module: IK.JCT460 - ESTAE 

PLM: OSjVS2 TSO Command Processor Logic, Volume IV 

Explanation: An abend error or a DETACH with STAE has occurred 
during TSO command processing. The ESTAE exit routine IKJCT460 
receives control from the supervisor and issues the SDUMP macro for (1) 
xOA abends (except 80A), and (2) all other abends except for a DETACH 
with STAE, the abendsB37, 037, E37, 913, 622, and 222. The areas 
dumped are LSQA, SWA, NUC, SQA, and LPA. 

Appendix C. SVC DUMP Title Directory C-77 



Problem Determination: For some errors, a software record is written-to 
SYSl.LOGREC. Ifa workarea was obtained, SDWAREXN='IKlCT460' 
and the SDW A is based on register 1 for the SETRP macro. 

TSO SDUMP FROM IKJEFT05 - THE TMP ESTAE ROUTINE 

Component: TSO Scheduler (5665-28502) 

Issuing Module: IKJEFT05 

PLM: TSO/E Terminal Monitor Program and Service Routines Logic 

Explanation: The TMP EST AE exit routine, IKJEFT05, issues the SDUMP 
macro on the first occurrence of an error in a TMP module. The areas 
dumped are NUC, LSQA, RGN, TRT, and SQA. 

Problem Determination: A software record is written to SYSI.LOGREC. 

TSOLOGON ESTAE 

Component: TSO Scheduler (5752-SCIT4) 

Issuing Module: IKJEFLS - EST AE 

PLM: OS/VS2 System Logic Library 

Explanation: A program check or PSW restart interruption has occurred 
during TSO logon initialization or scheduling. The EST AE routine 
IKJEFLS issues the SDUMP macro. The areas dumped are LSQA, SW A, 
NUC, SQA, and LPA. 

Problem Determination: A software record is written to SYSl.LOGREC. 
Register I points to the SDWA (if one exists) and includes: 

SDWAMODN - IKJEFLA - Name of the abending load module. 
SDWAREXN - IKJEFLS - Name of the ESTAE routine. 

TSOLOGON ESTAI 

Component: TSO Scheduler (5752-SCIT4) 

Issuing Module: IKJEFLG B - Prompter's EST AI 

PLM: OS / VS2 System Logic Library 

Explanation: During logon processing, the EST AI routine IKJEFLGB 
issued the SDUMP macro for (1) a program check, (2) a PSW restart 
condition, or (3) an abend in IKJEFLD (logon pre-prompt exit). The areas 
dumped are LSQA, SWA, NUC, SQA, and LPA. 

Problem Determination: A software record is written to SYSl.LOGREC. If 
a SDW A exists: 

- Register 1 contains the address of the ST AE work area. 
- Register 14 contains the return address. 

C-78 MVS Diagnostic Techniques 



If a SDW A does not exist: 

- Register 1 contains the abend code. 
- Register 2 contains a pointer to the L W A. 
- Register 14 contains the return address. 

VIRTUAL FETCH JPQ FAILURE 

Component: Virtual Fetch (57 52-SC 1 CJ) 

Issuing Modules: CSVVFIND - issued by EST AE CSVVFFES or 
CSVVFGET - issued by FRR CSVVFRR 

PLM: OSjVS2 System Logic Library 

Explanation: One of the following occurred: 

• During build or find processing, an abend occurred while CSVVFIND 
was attempting to remove a CDE from the job pack queue for a module 
that previously abended under the current TCB. EST AE routine 
CSVVFFES in CSVVFIND requests an SVC dump. Register 8 points 
to the VFWK containing the CDE at the time of the error. 

• During get processing, an abend occurred while CSVVFGET was 
attempting to remove a CDE from the job pack queue~ FRR routine 
CSVVFRR in CSVVFGET requests an SVC dump. Field LWKVFWK 
of the local work area (LWK) points to the VFWK containing the CDE 
at the time of the error. 

The areas dumped are LWK, VFPM, VFCB, and LSQA (which contains 
the ASXB, VFVT, VFWKs, and job pack queue). 

Problem Determination: A software record is written to SYSl.LOGREC. 
The following fields in the SDW A are filled in: SDW AMODN, 
SDWACSCT, SDWAREXN, SDWAMDAT, SDWAMVRS, SDWACID, 
and SDW ARRL. 

VIRTUAL FETCH LOCAL CONTROL BLOCK FAILURE 

Component: Virtual Fetch (5752-SCICJ) 

Issuing Modules: CSVVFIND - issued by EST AE CSVVFFES or 
CSVVFGET - issued by ESTAE CSVVGFES or CSVVFGET - issued by 
FRRCSVVFRR 

PLM: OSjVS2 System Logic Library 

Explanation: One of the following occurred: 

• An abend occurred while CSVVFIND (build or find processing) or 
CSVVFGET (get processing) was searching a queue of VFWKs. 
EST AE routine CSVVFFES in CSVVFIND or CSVVFGES in 
CSVVFGET requests an SVC dump. 

Appendix C. SVC DUMP Title Directory C-79 



• An abend occurred while CSVVFGES (ESTAE for CSVVFGET) was 
attempting to free storage (by calling CSVVFRM) related to a VFWK. 
FRR routine CSVVFRR in CSVVFGET requests an SVC dump. 

The areas dumped are LWK, VFPM, VFCB (if it exists), and LSQA (which 
contains the ASXB, VFVT, VFWKs, and job pack queue). 

Problem Determination: A software record is written to SYSl.LOGREC. 
The following fields in the SDW A are filled in: SDW AMODN, 
SDWACSCT, SDWAREXN, SDWAMDAT, SDWAMVRS, SDWACID, 
and SDW ARRL. 

Field ASXBVFVT points to the VFVT. VFVTHASH is the start of a 
31-way hash table, which contains pointers to the VFWK collision queues. 
The VFWKs are chained in single-threaded queues using field VFWKSYNP 
as the chain pointer. 

If the error occurred while searching a queue of VFWKs, a probable cause 
might be that a chain pointer in the VFWK was overwritten with invalid 
data. In this case, flag VFVTVFUP is set off after requesting a SVC dump 
to prevent virtual fetch from being used again in this address space. 

If the error occurred while freeing module and VCBs storage, the VFWK 
might have been overwritten causing CSVVFRM to pass invalid addresses 
to FREEMAN. In this case, flag VFWKBADV is set on after requesting 
an SVC dump to prevent the VFWK from being used again. 

VIRTUAL FETCH RETRY INHIBITED 

Component: Virtual Fetch (5752-SCICJ) 

Issuing Modules: CSVVFIND - issued by EST AE CSVVFFES or 
CSVVFGET - issued by ESTAE CSVVFGES or CSVVFGET - issued by 
FRRCSVVFRR 

PLM: OSjVS2 System Logic Library 

Explanation: One of the following occurred: 

• The FRR CSVVFRR (in CSVVFGET) was entered with flag 
SDWACLUP on and the abend was not a cancel abend (X'x22'). 

• One of the recovery routines (CSVVFFES, CSVVFGES, or CSVVFRR) 
attempted to retry, but was reentered before retry processing was 
established. Retry is not attempted again. CSVVFFES and 
CSVVFGES set flag LWKRECUR on in the LWK. CSVVFRR sets 
flag L WKFRRR on in the L WK. 

The areas dumped are LWK, VFPM, VFCB (if it exists), and LSQA (which 
contains the ASXB, VFVT, VFWKs, and job pack queue). 

Problem Determination: A software record is written to SYSl.LOGREC. 
The following fields are filled in: SDWAMODN, SDWACSCT, 

C-80 MVS Diagnostic Techniques 



Uecemoer L.I, 1 ~o:> 

SDWAREXN, SDWAMDAT, SDWAMVRS, SDWACID, and 
SDWARRL. 

VSAM CHECKPOINT (lDAOxxxx) or VSAM RESTART (IDAOxxxx) with one 
of the following: 

MACHINE CHECK 
PROGRAM CHECK LOCATION=xxxxxx 
RESTART KEY DEPRESSED 
PAGING ERROR 
ABEND Sxxx, Uxxxx, REGISTER 15=xxxxxxxx 

Component: VSAM - Checkpoint/Restart (5752-SCIDE) 

Issuing Module: IDACKRAI - EST AE 

PLM: OS/VS2 Virtual Storage Access Method (VSAM) Logic 

Explanation: An error has occurred during VSAM checkpoint or restart 
processing. The ESTAE routine issues the SDUMP macro. The title on the 
dump depends on the type of error and whether checkpoint or restart was in 
control at the time of error. The areas dumped are SQA, LPA, and user's 
region. 

Appendix C. SVC DUMP Title Directory e-81 



.I..L'U ... ~l'IkO-JV:7J ~LJt;~t;mOer £.1, l~ls)) to :SYL~-1l33-2 

Operator- and Caller-Defined SVC Dump Titles 

This topic provides diagnostic information for the modules that initiate SVC 
dumps via the SDUMP macro but where the dump title is defined by the system 
operator or the caller of SVC dump. 

variable title - supplied by the system operator 

Component: Master Scheduler Commands (5752-SCIB8) 

Issuing Module: IEECB866 - Console Dump 

PLM: OSjVS2 System Logic Library 

Explanation: The system operator has issued the DUMP command and 
specified the title of the SVC dump on the command. 

Problem Determination: None. 

variable title - supplied by the system operator 

Component: JES2 (5752-SCIBH) 

Issuing Module: HASPTERM or HASPRAS 

PLM: JES2 Logic. 

Explanation: The system operator has entered an SVC dump title in 
response to the $HASP098 message. This title overrides the default dump 
title. The areas dumped are PSA, NUC, RGN, TRT, SQA, CSA, LPA, and 
SWA. 

Problem Determination: For information on the error, refer to messages 
$HASP098 and $HASP095 in JES2 Messages. 

variable title - supplied by the caller 

Component: Task Manager (5752-SCICL) 

Issuing Module: lEA VECHO - CHAP Service Routine 

PLM: OS j VS2 System Logic Library 

Explanation: An error has been detected in the TCB dispatching queue for 
the current address space by the TCB queue verification routine. The FRR 
(IGC044RI) issues the SDUMP macro. The areas dumped are LSQA, 
SQA, and TRT. 

Problem Determination: A software record is written to SYSl.LOGREC. 
The SDW A VRA contains the associated TCB-queue-verification output. 

C-82 MVS Diagnostic Techniques 



SVC Dumps Without Titles 

This topic proyides diagnostic information for the modules that initiate SVC 
dumps but where no titles are supplied on the SDUMP macro. 

no title 

Component: Catalog Controller 3 - CVOL Processor (5752-SCIDH) 

Issuing Module: IGGOCLCB - ESTAE 

PLM: OS/VS2 CVOL Processor Logic 

Explanation: An abend has occurred during the processing of a GENERIC 
LOCATE request for a CVOL. All storage resources are freed and the 
CVOL processor SDUMP routine issues the SDUMP macro. The area 
dumped is LP A. 

no title 

Component: lOS (5752-SCIC3) 

Issuing Module: IGCOOO 1 F 

PLM: OS/VS2 I/O Supervisor Logic 

Explanation: An error has occurred during IGCOOOIF (nonresident purge) 
processing. The areas dumped are PSA, SQA, NUC, and TRT. 

Problem Determination: A software record is written to SYS1.LOGREC. 
The SDUMP buffer contains a copy of the purge work area and optionally: 

- A copy of a UCB (if the IOSUCB lock is held) 
- A copy of a LCH (if the IOSLCH lock is held) 
- Copies of IOQEs on the LCH for which the lock is held. 

The most likely cause of the error is an invalid IOSB address. 

no title 

Component: JES3 (5752-SCIBA) 

Issuing Module: IATIIII (IATYIIW work area) 

PLM: OS/VS2 MVS JES3 Logic 

Explanation: An abend has occurred during interpreter/initiator (IATIIII) 
processing. The EST AE routine established by lATIIII is given control to 
examine the functioJ;l control table (PCT) active at the time of termination 
to determine which function or DSP failed. The areas dumped are PSA, 
RGN, LPA, TRT, and CSA. 

Appendix C; SVC DUMP Title Directory C-83 



Problem Determination: A software record is written to SYS1.LOGREC. 
Register 9 points to a work area containing formatted messages. 

no title 

Component: RTM (5752-SCICM) 

Issuing Module: lEA VTRTE 

PLM: OSjVS2 System Logic Library 

Explanation: The SDUMP macro is issued by the RTM2 exit processor 
(IEAVTRTE) as a result of an error during abnormal termination of a 
subtask of the jobstep task. The jobstep task is terminated with a DOD 
completion code. The current task is set non-dispatchable in order to wait 
for the jobstep task to detach it. If another failure occurs, the address space 
is terminated. The areas dumped are SQA, LSQA, LPA, TRT, CSA, and 
SWA. 

Problem Determination: The R TM2W As addressed by the current TCB 
contain the most pertinent information. 

no title 

Component: VTAM or ACFjVTAM (5752-SCI23) 

Issuing Module: ISTZRMOI - FRR 

PLM: VT AM - refer to the microfiche; for ACF jVT AM refer to 
A CFj VT AM Logic 

Explanation: An abend has o~curred duringVTAM processing while the 
global UCB spin lock was held. The areas dumped are ALLPSA, CSA, 
LSQA, SQA, TRT, LPA, NUC, and SWA. 

Problem Determination: A software record is written to SYS1.LOGREC. 
The SQA includes the UCB and the ICNCB or LDNCB control block. 

C-84 MVS Diagnostic Techniques 



TNL SN28-5095 (December 27, 1985) to SY28-1133-2 

Module to SVC Dump Title Cross-Reference 

This topic lists, in alphameric order, the MVS modules that issue the SDUMP 
macro and provides the titles of the SVC dumps specified by the modules on the 
SDUMP macro. 

Issuing 
Module 

AHLGTFI 
AHLMCER 
AHLREADR 
AHLSBUF 
AHLSETEV 
AHLTMON 
AHLWTASK 
AHLWTO 

CSVVFCRE 
CSVVFCRE 
CSVVFGET 

CSVVFIND 

ERBMFDEA 
ERBMFEEQ 
ERBMFSDE 

HASPCKPT 
HASPFSSM 
HASPTERM 

or 
HASPRAS 

IATABNO 
IATDMFR 

IATIIII 
IATIISB 

IATLVLC 
IATSIJS 
IATSNDF 
IATSNLS 
IATSSCM 

IATSSRE 
IATSSXM 

ICBRECRD 
ICBVPROO 

Dump 
Title 

AHL007I GTF TERMINATING ON ERROR CONDITION 
ERROR IN MODULE AHLMCER 
DUMP OF AHLREADR 
DUMP OF GTF MODULE AHLSBLOK 
ERROR IN AHLSETEV 
GTF TERMINATING ON ERROR CONDITION 
DUMP OF GTF MODULE AHLWTASK 
DUMP BY J(OF) MODULE xxxxxxxx 

COMPON = PROGRAM-MANAGER ... CSVVFCES .. . 
COMPON = PROGRAM-MANAGER ... CSVVFCFR .. . 
VIRTUAL FETCH JPQ FAILURE 
VIRTUAL FETCH LOCAL CONTROL BLOCK ... 
VIRTUAL FETCH RETRY INHIBITED 
VIRTUAL FETCH JPQ FAILURE 
VIRTUAL FETCH LOCAL CONTROL BLOCK ... 
VIRTUAL FETCH RETRY INHIBITED 

RMFDEA 
COMPON=RMF-ENQ EVENT HANDLER ... 
RMFSDE 

DUMP OF JES2 DATA. .. 
JES2 FSI ERROR ... 
ABEND code AT hhhhhhhh (nnnnnn) + X'nnnn' ce
HASPDUMP SUBSYS = ssss ... 
title - supplied by the system operator 

IAT3702 dspname (ddd) ABENDEDJFAILED ... 
ERROR IN IATSIDMO FOR SYSOUT DATA SET 
IAT1801 ERROR IN IADMDKT - IATYISR POSSIBLY LOST 
none 
IAT4830 IATIISB MASTERTASK ABEND 
IAT4831 IATIISB SUBTASK ABEND 
JES3 LOCATE SUBT ASK ABEND 
IA TSIJS JSESEXIT 
JES3 SNA FRR IATSNDF 
IA TSNLS - ESTAE EXIT 
IATSSCM READ-END FAILURE 
SSICS ABEND 6FB 
SSICS ESTAE-IATSSCM 
COMPON = JES3 SUBSYS COMMUNIC. .. 
COMPON = JES3 SUBSYS COMMUNIC ... 

ICBRECRD RECORDING FAILED 
ICB4251 ABEND IN PROCESS- MSVC TASK (nnnnnnnn) 

Appendix C. SVC DUMP Title Directory C-85 



December 27, 1985 

ICHRSTOO 
ICHSEC02 

ICTMCSOI 
ICTMKGOO 
ICTMKGOI 
ICTMKMOI 
ICTMKM04 
ICTMSM07 
ICTMSM08 
ICTMSM09 

IDACKRAI 

IDAICIAI 
IDAOl9SB 
IDAOl9S2 
IDA0200T 
IDAl2lA2 
IDAl2lA3 
IDAl2lA4 

IEASMFSP 
IEAVADOI 

IEAVAROO 
IEAVCARR 
IEAVEACO 
IEAVECHO 
IEAVEMCR 
IEAVEMDL 
IEAVEMRQ 

IEAVETCL 
IEAVGFRR 
IEAVGPRR 
IEAVMFRR 
IEAVN700 
IEAVN701 
IEAVRCV 

IEAVRTIl 
IEAVSTAA 
IEAVSY50 
IEAVTABD 

IEAVTGLB 
IEAVTJBN 
IEAVTLCL 
IEAVTRET 

IEAVTRTE 
IEAVTRT2 
IEAVTSLP 
IEAVTSLR 
IEAVXPCR 
IEAVXSTK 

IECIHIO 
IECIOSCN 
IECVBRSV 

C-86 MVS Diagnostic Techniques 

ICHRSTOO - RACF SVCS, ABEND CODE = xxx, ... 
RACF INITIALIZATION FAILURE 

ICTMCSOI, CRYPTOGRAPHY INITIALIZATION 
ICTMKGOO, KEY GENERATOR PROGRAM 
ICTMKGOI HANDLE SYSIN MODULE 
ICTMKMOI, START CRYPTOGRAPHY COMMAND 
ICTMKM04 - KEY MANAGER 
ICTMSM07 - ICTMSM07 - CIPHER DUMP 
ICTMSM07 - ICTMSM08 TRNSKEY DUMP 
ICTMSM07 - ICTMSM09 EMK DUMP 

VSAM CHECKPOINT (IDAOxxxx) ... 
VSAM RESTART (IDAOxxxx) ... 
ISAM INTRFC, OPEN/CLOSE, IDAOI92I/IDA0200S ... 
IDAOI9SB:IDAI2IF7 - ABEND FROM BUILD IDACPA 
FIOD:IDAOI9S2 - ABEND FROM FIOD FRR 
IEC251I, VSAM GSR FORCE DLVRP DUMP DATA 
ABP:IDAI21A2 - ABEND FROM ABP FRR 
ABP:IDAI2IA3 - ABEND FROM NORMAL END FRR 
ABP:IDAI2IA4 - ABEND FROM ABNORMAL END FRR 

SMF ERRMOD=IEASMFSP, RECVRMOD=IEASMFSP 
ERROR DURING SNAP 
ERROR IN QMNGRIO PROCESSING 
FAILURE DURING SNAP RECOVERY 
RCT DUMPING LSQA 
PGM CHECK IN IEAVGCAS 
IEAVEACOIEAVEACOIEAVEAC3 
variable title - supplied by caller 
IEAVEMCR - MEMORY CREATE ABNORMAL TERMINATION 
IEAVEMDL - MEMORY DELETE ABNORMAL TERMINATION 
IEAVEMRQ UNEXPECTED ABEND 
IEAVEMRQ - UNEXPECTED ABEND WITH DISPATCHER LOCK 
COMPON = SUPV CNTL,COMPID = SCI C5 
ERROR IN GETMAIN/FREEMAIN 
PGM CHECK IN IEAVPRTO 
COMPON = COMMTASK .. .ISSUER = IEA VMFRR ... 
COMPON = COMMTASK .. .ISSUER = lEA VN700 .. . 
COMPON = COMMTASK. . .ISSUER = IEAVN701 .. . 
ERROR IN REAL STORAGE MANAGER 
ERROR IN REAL STORAGE MANAGER FRR 
TIMER FRR DUMP 
COMPON = COMMTASK .. .ISSUER = lEA VST AA ... 
IEAVSY50 IGCOOI IGC002 XMPOST FAIL - NO ERRET 
ABDUMP ERROR 
ENQUEUE FAILURE IN ABDUMP 
ABEND IN IEAVTGLB 
ABEND IN IEAVTJBN 
ABEND IN lEA VTLCL 
RECORD PERMANENT ERROR 
RECORD TEMPORARY ERROR 
no title 
IEAVTRT2 - UNRECOVERABLE ABEND FAILURE 
SLIP ID = xxxx 
ERROR IN IEAVTSLP 
ABEND = aaa,REASON = xxyy,GPRrr = ZZZZZZ:Z:Z, ••• 

ABEND = aaa,COMPON = PCjAUTH-PCLlNK UNSTACK. .. 

lOS - IECIHIO ERROR 
lOS - IECIOSCN ERROR 
COMPON = IOS .. .ISSUER = I ECVBRSV 



IECVDAVY 
I ECVDPTH 
IECVERPL 
IECVESIO 
IECVFCHN 
IECVFDEV 
IECVGENA 
IECVHREC 
IECVIOPM 
IECVIOSI 
IECVIRST 
IECVPST 
IECVRDIO 
IECVRRSV 
IECVSMGR 

IEECB800 
IEECB860 
IEECB862 
IEECB866 
IEECB906 
IEECB914 
IEEMB803 
IEEMB804 
IEEMB806 
IEEMB812 
IEEMB816 
IEEMB825 
IEEMB827 
IEEMB830 
IEEMB834 
IEEMB835 
IEEMB836 
IEEMB839 
IEEMB860 
IEEMB881 
IEEMB883 
JEEMB887 
IEEMPDM 
IEEMPS03 
IEEMPVST 
IEESB665 
IEESB670 
IEEVIPL 
IEEVLDWT 
IEEVPTH 
IEEVWAIT 
IEE24110 
IEE5103D 

IEFAB4ED 
IEFAB4E6 

IEFCMAUT 
IEFENFFX 
IEFAB4ED 
IEFENFFX 
IEFENFNM 
IEFENFWT 
IEFIB620 
IEFIB645 
IEFISEXR 
IEFJRASP 
IEFJSBLD 

DAVVERROR 
COMPON= JOS,COMPID:;:: SCIC3,ISSUER=IECVDPTH 
lOS - lECVERPL: ERROR 
IECVESIOER,ROR 
COMPON=,IOS .. .ISSUER =IECVFCHN,FCHNFRR 
COMPON :;::'IOS ... ISSUER;:: IECVFDEV,FDEVFRR ... 
COMPON= IQS .. .ISSUER = IECVG,ENA 
COMPON = IOS •. .ISSUER = IECVHREC 
IECVIOPMPROGRAMERROR 
COMPON=IOS,COMPID=SCIC3~ISSUER=IECVIOSI 
IECVIRSTERROR 
lOS - POST STATUS ERROR 
IECVRDIO ERROR 
COMPON = 10S .. .ISSUER = IECVRRSV 
lOS· IECVSMGR ERROR 
lOS - SMGR SQA EXHAUSTED 

IEECB800 .. TRACK COMMAND 
IEECB861- FAILURE iN COMMAND xxxx 
COMPON = M S CMNDS,COMPID =SCIB8, ... 
variable title - supplied by the system operator 
IEECB906 SLIP ESTAE DUMP , 
IEECB914 SLIP TSO COMM RTN ESTAE DUMP 
SYSTEM LOG DUMP 
SYSTEM LOG SVC DUMP 
SYSTEM LOG DUMP 
STORAGE DUMP TAKEN AT ENTRY TO IEEMB812 ESTAE 
COMPID = SCIB8,xxx ABEND IN MASTER TR .. . 
SMF ABEND, ERRMOD =IEEMB829/IEFU29, .. . 
SMF INITIALIZATION, RECVRMOD=U1EMB827 
SMF ABEND, ERRMOD=XXXXXxxx, RECVRMOD= IEEMB830 
SMF ABEND ED, ERRMOD= IEEMB834, RECVMOD = IEEMB834 
SET SMF COMMAND - IEEMB835 
ABEND IN SMF INTERVAL PROCESSING - ROUTINE ... 
SMF TIMER - IEEMB839 
IEEMB860 
COMPON=M S CMNDS,COMPID=SCIB8, .. . 
COMPON=M S CMNDS,COMPID=SCIB8, .. . 
COMPON = MS CMNDS,COMPID = SCIB8,ISSUER = IEEMB887 ... 
IEEMPDM - DUMP OF MAIN WORKAREA 
IEEMPS03 - DUMP OF MAIN WORKAREA 
IEEMPVST - DUMP OF MAIN WORKAREA 
STARTED TASK CONTROL 
STARTED TASK CONTROL 
IEEVIPL - ERROR IN MASTER SCHEDULER INIT 
IEEVLDWT ERROR 
IEEVPTH - MAIN WORKAREA DUMP 
COMPON = MSTR-W AIT .. .ISSUER = IEEVW AlT ... 
D U"ALLOC ABEND 
IEE5103D - FAILURE IN SVC34/COMMAND xxxx 

LOAD MOD-IEFW21SD EXIT RTN-xx.xxxxxx 
ABEND = aaa,COMPON = ALLOC,COMPID = SCIB4, 
ERRMOD= ... 
COMMON AUTHORIZATION ROUTINE ... 
ENF ABEND ERRORMOD = IEFENFFX 
LOAD MOD-IEFW21SD EXIT RTN-xxxxxxxx 
ENF ABEND ERRORMOP = IEFENFFX 
ENF ABEND ERRORMOD =IEFENFNM 
EVENT NOTIFICATION FACILITY ERROR 
IEFIB620 
SWACREATE 
RESOURCE MANAGER 
ERROR IN BROADCAST FUNCTION,ABEND= aaa, ... 
ERROR IN SUBSYSTEM SE~VICE RTN, COMPON=INIT-SSI 

Appendix C. SVC DUMP Title Directory C-87 



IEFJSIN2 
IEFNB9CR 

IEFNB9IR 

IEFSJCNL 
IEFXB609 

IFGORROA 
IFGORROE 
IFGORROF 
IFGOTCOA 

I GCTOO 1 8 
I GCT002D 
IGCT002E 
IGCT002l 
IGCT005C 
IGCT005G 
IGCT006H 
I GCTOO69 
IGCTOIOE 
IGCTl05C 
IGCTl08l 
IGCOOOIF 
IGC0002F 
IGC12l 

IGFDEI 
IGFTMCHK 

IGGOCLA9 
IGGOCLCA 
IGGOCLCB 
IGGOCLCD 

IKJCT460 
IKJEFLGB 
IKJEFLGM 
IKJEFLS 
IKJEFT05 

IKTCAS52 
IKTLTERM 

IOSYRSUM 

IRARMERR 
IRARMSRV 

ISGBERCV 
ISGBFRCV 
ISGCRCV 
ISGCRETO 

C-88 MVS Diagnostic Techniques 

ERROR IN SUBSYSTEM INITIALIZATION, COMPON=INIT-SSI ... 
ABEND = aaa,COMPON = CONVERTER ... 
RESTART INTERRUPT IN CONVERTER**IEFNB9CR** 
ABEND = aaa,COMPON = INTERPRETER::. 
RESTART INTERRUPT IN INTERPRETER **IEFNB9IR ** 
SCHEDULER JCL FACILITY ... 
ERROR DURING RESTART PROCESSING - IEFXB609 

IEC999I IFGORROA,error-modulejobname, .. . 
IEC999I IFGORROA,error-modulejobname, .. . 
IEC999I IFGORROA,IFGORROF jobname,stepname ... 
IEC999IIFGOTCOA/4A/5A,subroutinejobname ... 

I GCTOO l8,jobname,stepname 
IGCT002Djobname,stepname 
IGCT002Ejobname,stepname 
IGCT0021,jobname,stepname 
IGCT005CJobname,stepname 
IGCT005Gjobname,stepname 
IGCT006Hjobname,stepname,procstepname,744 
IGCT0069 jobname,stepname, 
IGCTOIOEjobname,stepname 
IGCTl05Cjobname,stepname 
IGCTI 081 jobname,stepname 
no title 
IGC0002F CATLG CTLR 3 
ABP:IGC121 - ABEND FROM SIOD FRR 

DYNAMIC DEVICE RECOVERY ERROR DUMP 
IGFTMCHK MIH PROGRAM ERROR 

JOB=jobname hh:mm:ss yy.ddd DUMP BY IGGOCLA9 ... 
SDUMP - IGGOCLCA CVOL CATALOG MANAGEMENT 
no title 
SDUMP - IGGOCLCD - CVOL CATALOG MANAGEMENT 

TSO OUTPUT CP ESTAE 
TSOLOGON ESTAI 
IKJEFLGM REQUEST 
TSOLOGON ESTAE 
TSO SDUMP FROM IKJEFT05 .,. 

TCASDUMP 
IKTLTERM - I/O ERROR 

COMPON = IOS .. .ISSUER = IOSVRSUM ... 

SRM RECOVERY ENTERED,COMPON=SRM 
SRM - IRARMSRV 55F ABEND DURING XMPOST 

COMPON = GRS-RING-PROC .. .ISSUER = ISGBERCV 
COMPON = GRS-RING-PROC .. .ISSUER = ISGBFRCV 
REQUESTOR = xxx,ISSUER = ISGCRV ... 
COMPON = GRS-COMMANDS .. .ISSUER = ISGCRETO ... 



ISGCRETI 
ISGDSNAP 
ISGGFRRO 
ISGJENFO 
ISGJRCV 
ISGQSCNR 
ISGSMI 

ISTAPCES 
ISTAPCFR 
ISTAPCMT 
ISTAPC61 
ISTAPC62 
ISTAPC66 
ISTATMOO 
ISTINCST 
ISTORMMG 
ISTRAMA2 

ISTRAMA3 
ISTRAMA4 
ISTZRMOI 

COMPON = GRS-COMMANDS .. .ISSUER = ISGCRETl ... 
COMPON = GRS .. .ISSUER = ISGDSNRV 
COMPON = GRS .. .ISSUER = ISGGFRRO 
COMPON = GRS-CTC-DRIVER .. .ISSUER = ISGJENFO 
COMPON = GRS-CTC-DRIVER ... ISSUER = ISGJRCV 
COMPON = GRS-QUEUE SCANNING .. .ISSUER = ISGQSCNR 
COMPON = GRS,COMPID = SCSDS,ISSUER = ISGSMIFR 

ISTAPCES - ACF /VTAM PSS ESTAE ROUTINE 
ISTAPCFR - ACF/VTAM PSS FUNCTIONAL RECOVERY 
ISTAPCMT - ACFfVTAM ABEND IN MEMORY TERMINATION 
ISTAPC61 - VTAM IRB ABEND 
ISTAPC62 - VTAM SRB ABEND 
ISTAPC66 - VTAM ABEND 
ISTATMOO - VTAMTERMINATION SUBTASK ESTAE 
ISTINCST - VTAM STAE EXIT 
ISTORMMG - ACF/VTAM FRR DUMP 
ISTRAMA2 DUMP FOR TRAMA6 
ISTRAMA2 DUMP FOR TRAMST 
ISTRAMA3 - VTAM TASK TERM FAILS 
ISTRAMA4 - VTAM MEMORY TERMINATION ESTAE 
no title 

Appendix C. SVC DUMP Title Directory C-89 



( 

C-90 MVS Diagnostic Techniques 



Appendix D. Abbreviations 

ABP 
ACA 
ACB 
ACE 
ACFfVTAM 
ACP 
ACR 
ACT 
ADA 
ADB 
AFQ 
AlA 
ALCWA 
ALPAQ 
AMB 
AMBL 
AMCBS 
AMDSB 
AP 
APF 
APG 
ASCB 
ASID 
ASM 
ASMHD 
ASMVT 
ASPCT 
ASST 
ASTE 
ASVT 
ASXB 
AT 
ATA 
AVT 
AX 
AXAT 

BASEA 
BPCB 
BUFC 

CA 
CAW 
CAXWA 
CCA 
CCH 
CCW 
CDE 
CEPL 
CFQ 
CHAP 
CI 
CIDF 
CKB 
CMB 

- Actual block processor 
- ASM control area 
- Access method control block 
- ASM control element 
- Advanced Communications Function for VTAM (Program Product) 
_. Automatic command processing 
- Alternate CPU recovery 
- Account control table 
- Automatic data area 
- Allocation descriptor block 
- Available frame queue 
- ASM I/O request area 
- Allocation work area 
- Active link pack area queue 
- Access method block 
- AMB list 
- Access method control block structure 
- Access method data statistics block 
- Attached processor 
- Authorized program facility 
- Automatic priority group 
- Address space control block 
- Address space identification 
- Auxiliary storage manager 
- Auxiliary storage management header 
- ASM vector table 
- Auxiliary storage page correspondence table 
- Address space sector table 
- Address space second table entry 
- Address space vector table 
- Address space extension block 
- Authorization table 
- ASM tracking area 
- TCAM address vector table 
- Authorization index 
- Authorization index allocation table 

- Master scheduler resident data area 
- Buffer pool control block 
- Buffer control area 

- Control area or cllannel adapter 
- Channel address word 
., Catalog ACB extended work area 
- Catalog communications area 
- Channel check handler 
- Channel command word 
- Contents directory entry 
- Command ESTAE parameter list 
- Common frame queue 
- Change priority 
- Control interval 
- .Control interval definition field 
- Checkpoint buffer 
-·Console message butTer 

Appendix D. Abbreviations D-1 



CML 
CMS 
CMSWA 
CPA 
CPAB 
CPB 
CPPL 
CPU 
CPUID 
CQE 
CRA 
CRB 
CRWA 
CSA 
CSCB 
CSD 
CTGPL 
CVT 
CXSA 

DADSM 
DAIT 
DALT 
DAM 
DAT 
DAVV 
DCB 
DCM 
DCT 
DDR 
DDRCOM 
DE 
DEB 
DECB 
DEPL 
DIDOCS 
DIE 
DIR 
DMDT 
DMVT 
DPL 
DQE 
DRQ 
DSAB 
DSCB 
DSPCT 
DSPL 
DVT 

ECB 
ECC 
ECT 
EDB 
EDL 
EDT 
EED 
ElL 
EIP 
EMS 
ENF 
ENFPM 
EOA 
EOE 
EOV 
EP 
EPATH 
EPS 
ERP 

D-2 MVS Diagnostic Techniques 

- Cross memory lock 
- Cross memory services or catalog management services 
- CMS work area 
- Channel program area 
- Cell pool anchor block 
- Channel program block 
- Command processor parameter list 
- Central processing unit 
- CPU identification 
- Console queue element 
- Component recovery area 
- Command request block 
- Command recovery work area 
- Common service area 
- Command scheduling control block 
- Common system data area 
- Catalog parameter list 
- Communications vector table 
- Communications extended save area 

Direct access device space management 
- Display allocation index table 
- Display allocation lookup table 

. - Direct access method 
- Dynamic address translation 
- Direct access volume verification 
- Data control block 
- Display control module 
- Device control table 
- Dynamic device reconfiguration 
- Dynamic device reconfiguration communication table 
- Directory entry 
- Data extent block 
- Data event control block 
- SDUMP ESTAE parameter list 
- Device independent display operators console support 
- Disabled interruption exit 
- Deferred incident record 
- Domain descriptor table 
- Domain vector table 
- DEQ purge list 
- Descriptor queue element 
- Data ready queue 
- Data set association block 
- Data set control block 
- Data set page correspondence table 
- Dump sort parameter list 
- Destination vector table or display allocation vector table 

- Event control block 
- Error checking and correction 
- Environment control table 
- Extent descriptor table 
- Eligible device list 
- Eligible device table 
- Extended error descriptor 
- Event indication list 
- EXCP intercept processor 
- Emergency signal 
- Event notification facility 
- ENF event parameter list 
- End of address 
- End of extent 
- End of volume 
- Emulator program 
- Error path· (recovery audit trail area) 
- External page storage 
- Error recovery procedures 



EIU'IB 
ESTAE 
ESTAI 
'ET 
ETE 
rnB 
ETIX 
EVNt 
EWA 
EX 

FBQE 
FOB 
FETWK.' 
FIFO 
FLlH 
FMCB 
FOE 
FOT 
FQE 
FRR 
FRRS 
FSA 
FSACB 
FSAXB 
FSB 
FVT 
FSI 
FSS 
FSSCB 
FSSWORK 
FSSXB 

GCB 
GCC 
GCL 
GCP 
GCQ 
GCT 
GCV 
GCX 
GDA 
GPR 
GQHT 
GRS 
GSMQ 
GSPL 
GSR 
GTF 
GVT 
GVTX 

HFCT 
HIR 

IC 
ICNCB 
IHSA 
ILC/CC 
lOB 
10E 
10MB 
10QE 
10RB 
lOS 
10SB 
lOT 
IOWA 
IPC 

.. ,Error te<:OveryprocedureS;mterrate block 
·Ex~edSTAE 
- ,Extend~ST AI 
- Entry table 
.. Entry table entry 
- Entry table information blOCk 
- ETIB elEtension. 
.; EVent table 
- Common SRP work area 
-Entry table' index 

-Freeblock. queue element 
- Feedback data block 
-Fetch work area 
- First in fIrst out 
- First leve1.interrupt handler 
- VT AM f~ction management control block 
- Fixed ownership element 
- Fixed ownership table 
- Free queue element 
- Functional recovery routine 
- FRR stack 
- Functional subsystem application 
- FSA control block 
- FSACB extension 
- Feedback status block 
- Field vector table 
- Functional subsystem interface 
- Functional subsystem 
- Functional subsystem control block 
- ESS PCE work area 
- FSSCB extension 

- Global resource serialization CTC-driver request block 
- Global resource serialization CTC-driver control card table 
- Global resource serialization CTC-driver link control block 
- Global resource serialization, CTC-driver buffer prefIx 
- Global resource serialization CTC-driver queueing element 
- Global resource serialization. crC-driver branch table 
- Global resource serialization CTC-driver vector table 
- Global resource serialization CTC-drlver extract table 
- Global data area 
- General purpose register . 
- Global queue hash table 
- Global resource serialization 
- Global serVice manager queue 
- Global system priority list 
- Global shared resource 
- Generalized trace facility 
- Global resource serialization vector table 
- GVT extension 

- HASP FSS communications control block 
- Hardware instruction retry 

- InstruCtion counter 
- Intermediate controller node control block 
- Interrupt handler Save area 
- Instruction length condition code 
- Input output block 
- I/O request element 
- I/O management block 
- I/O queue element 
- 1/0 request block 
- 1/0 supervisor 
- 1/0 supervisor block 
- 1/0 table 
- 1/0 work area 
- Inter-processor communication 

Appendix D. Abbreviations D-3 



IPCS 
IPL 
IPS 
IQE 
IRB 
IRT 
ISAM 

JCL 
JCT 
JOT 
JOVT 
JES 
JES2 NJE 
JESCT 
JFCB 
JFCBX 
JIB 
JIX 
JOE 
JOT 
JPQ 
JQE 
JSCB 
JSEL 
JSXL 

KSOS 

LCB 
LCCA 
LCCAVT 
LCH 
LCPB J 

LCT 
LOA 
LFQ 
LG 
LGF 
LGCB 
LGE 
LGN 
LGVT 
LGVTE 
LIFO 
LIT 
LLE 
LLQ 
LPA 
LPOE 
LPID 
LPME 
LQHT 
LRB 
LSIO 
LSMQ 
LSPL 
LSQA 
LT 
LTE 
LUB 
LWA 
LWK 
LX 
LXAT 

MCH 
MCIC 

D-4 MVS Diagnostic Techniques 

- Interactive problem control system 
- Initial program load 
- Installation performance specifications 
- Interrupt queue element 
- Interrupt request block 
- lOS recovery table 
- Indexed sequential access method 

- Job control language 
- Job control table 
- JCL definition table 
- JCL definition vector table 
- Job Entry Subsystem 
- JES2 Network Job Entry (program Product) 
- JES control table 
- Job file control block 
- Job file control block extension 
- JOE information block 
- Job queue index 
- Job output element 
- Job output table 
- Job pack queue 
- Job queue element 
- Job step control block 
- Job scheduling entry list 
- Job scheduling exit list 

- Key sequence data set 

- TP line control block 
- Logical configuration communication area 
- LCCA vector table 
- Logical channel queue 
- Logical channel program block 
- Linkage control table 
- Local data area 
- Local frame queue 
- Logical group 
- Line group block 
- Logical group control block 
- Logical group entry 
- Logical group number 
- Logical group vector table 
- Logical group vector table entry 
- Last in first out 
- Lock interface table 
- Load list element 
- Load list queue 
- Link pack area or latent parameter area 
- Link pack directory entry 
- Logical page identifier 
- Logical to physical mapping entry (or) logical page mapping entry 
- Local queue hash table 
- Logrec buffer 
- Logical slot 10 
- Local service manager queue 
- Local service priority list 
- Local system queue area 
- Linkage table 
- Linkage table entry 
- NCP logical unit block 
- Logon work area 
- Local work area 
- Linkage index 
- Linkage index allocation table 

- Machine check handler 
- Machine check interrupt code 



MCP 
MCS 
MFA 
MH 
MIH 
MLPA 
MP 
MPF 
MPFr 
MPST 
MRD 
MSFAB 
MSFCD 
MSFKD 
MSS 
MSSC 
MSSF 
MSVC 
MVS 
MWA 

NCD 
NCP 
NIP 

OCR 
OCT 
OPWA 
ORE 
OUCB 
OUSB 
OUXB 

PAB 
PART 
PARTE 
PAT 
PCjAUTH 
PCB 
PCCA 
PCCAVT 
PCCB 
PCCW 
PCE 
PCRA 
POOB 
POS 
PEL 
PEP 
PER 
PEXD 
PFT 
PFTE 
POT 
POTE 
PICA 
PIE 
PIT 
PIU 
PLH 
PLPA 
PLPAD 
PQCB 
PQE 
PRB 
PSA 
PSCB 
PSS 
PST 

- Message control program 
- Multiple console .support 
- Malfunction alert 
.. Message handler 
-Missing inte1'l"ijpt handler 
- Modified 4ink pack area 
- Multiprocessor 
- Message processing facility 
- MPF table 
;. Memory process scheduling table 
- Message request block 
- MSSFCALL SVC attention block 
- MSSFCALL SVC control block 
- MSSFCALL svt communication block 
- Mass storage subsystem 
- Mass storage system communicator 
- Monitoring and system support facility 
- Mass storage volume control 
-Multiple Virtual Storage 
- Module work area 

- VTAM node control block 
- Network Control Program 
- Nucleus initialization program 

- Output control record 
- Output control table 
- Open work area 
- Operator reply element 
- SRM-user control block 
- SRM-user swappable block 
- SRM-user extension block 

- Process anchor block 
- Paging activity reference table 
- PART entry 
- Page allocation table 
- Program call/authorization 
- Page control block 
- Physical configuration communication area 
- PCCA vector table 
- Private catalog control block 
- Paging channel command work area 
- Processor control element 
- Program call recovery area 
- Peripheral data definition block 
- Partitioned data set 
- Parameter element 
- Partitioned emulator program 
- Program event recording 
- Pool extent block 
- Page frame table 
- Page frame table entry 
- Page table 
- Page table entry 
• Program interrupt control area 
- Program interrupt element 
- Partition information table 
- Physical information unit 
- Place holder 
- Pageable link pack area 
- PLPA directory 
- Placeholder queue control block 
- Partition queue element 
- Program request block 
- Prefixed save area 
- Protected step control block 
- Process scheduling service 
- Process scheduling table 

Appendix D. Abbreviations D-5 



PSW 
PTLB 
PVT 
PVTAFC 
PWF 
PWKA 

QAB 
QCB 
QEL 
QFPL 
QFPLl 
QHT 
QWA 
QWB 
QXB 

RACF 
RB 
RBA 
RBN 
RCA 
RCB 
RCT 
RDCM 
RDF 
RDT 
RDTE 
REPL 
RIB 
RIBE 
RIM 
RJE 
RMCT 
RMF 
RMS 
RNLE 
RPH 
RPL 
RPT 
RQA 
RQE 
RRPA 
RSA 
RSAIRCD 
RSC 
RSL 
RSM 
RSMHD 
RST 
RSV 
RTAM 
RTCA 
RTCT 
RTM 

S/A 
SAHT 
SAM 
SART 
SAST 
SAT 
SCCD" 
SCCW 
SCT 
SDWA 
SFT 
SGT 

D-6 MVS Diagnostic Techniques 

- Program status word 
- Purge translation loo~aside buffer 
- Paging vector table 
- PVT available frame count 
- Power Warning Feature Support 
- Paging work area 

- Queue anchor block 
- Queue control block 
- Queue element 
- ENQ/DEQ FRR parameter list 
- Queue scanning services FRR parameter list 
- Queue hash table 
- Queue work area 
- Queue work block 
- Queue extension block 

- Resource Access Control Facility (Program Product) 
- Request block 
- Relative byte address 
- Real block number 
- RSM recovery communication area 
- Resource control block 
- Region control task 
- Resident display control module 
- Record definition field 
- Resource definition table 
- Resource definition table entry 
- Ring processing EST AE parameter list 
- Resource information block 
- Resource information block extent 
- Resource initialization module 
- Remote job entry 
- Resource manager control table 
- Resource Measurement Facility (Program Product) 
- Recovery management support 
- Resource name list entry 
- Request parameter header 
- Request parameter list 
- Request pool table 
- Resource queue area 
- Request queue element 
- Recovery routine parameter area 
- Ring processing system authority message 
- Ring processing information record 
- Ring status change parameter list 
- Ring processing system link block 
- Real storage manager 
- RSM header 
- Ring processing status table 
- Ring processing system vector table 
- Remote terminal access method 
- Recovery termination control area 
- Recovery termination control table 
- Recovery termination manager 

- Stand-alone (dump program) 
- System/ASID hash table 
- Sequential access method 
- Swap activity reference table 
- Subsystem allocation sequence table 
- Swap allocation table or system authorization table 
- Service call control block 
- Swap channel control work area 
- Step control table 
- System diagnostic work area 
- System function table or swap function table 
- Segment table 



SGTE - Segment table entry 
SHAS - Subsystem hash table 
SIC - System initiated cancel 
SIGP - Signal processor instruction 
SIO - Start input/output 
SlOT - Step I/O table 
SJF - Scheduler JCL facility 
SLIH - Second level interrupt handler 
SLIP - Serviceability level indication processing 
SLT - System linkage table 
SMF - System management facility 
SMPL - Storage management parameter list entry 
SMS - Storage management services 
SNA - System Network Architecture 
SPCT - Swap control table 
SPQE - Subpool queue element 
SQA - System queue area 
SRB - Service request block 
SRM - System resources manager 
SRR - Serially reusable resource 
SRRA - Service routine recovery area 
SSCP - System services control point 
SSCVT - Subsystem communications vector table 
SSI - Subsystem interface 
SSIB - Subsystem identification block 
SSOB - Subsystem options block 
SSQ - SVRB suspend queue 
SSRB - Suspended service request block 
SSVT - Subsystem vector table 
STAE - Specify task abnormal exit 
STAI - Subtask abend intercept 
STC - Start task control 
STCB - Subtask control block 
STKE - Stack element 
STOR - Segment table origin register 
SVC - Supervisor call 
SVRB - Supervisor request block 
SVT - Supervisor vector table 
SWA - Scheduler work area 
SWB - Scheduler work block 

TCAM - Telecommunications Access Method 
TCB - Task control block 
TCH - Test channel 
TDCM - Pageable display control module 
TEA - Translation exception address 
TH - Transmission header 
TIOC - Terminal I/O coordinator 
TIOT - Task input/output table 
TLB - Translation lookaside buffer 
TMC - Task mode controller 
TME - Task mode element 
TMP - Terminal monitor program 
TOD - Time of day 
TSB - Terminal status block 
TSO - Time Sharing Option 
TIE - Trace table entry 

UADS - User attribute data sets 
UCB - Unit control block 
UCM - Unit control module 
UCME - Unit control module entry 
UIC - Unreferenced interval count 
UPT - User profile table 

) VBN - Virtual block number 
VBP - Virtual block processor 
VDSCB - Virtual data set control block 
VFCB - Virtual fetch control block 

Appendix D. Abbreviations D-7 



VFHE 
VFPM 
VFVT 
VFWK 
VIO 
VSAM 
VSM 
VTAM 
VTOC 
VUT 

WAST 
WMST 
WQE· 
WSC 
WTQE 

XL 
XMD 
XPTE 
XRBN 
XSB 

D-8 MVS Diagnostic Techniques 

- Virtual fetch hash entry 
- Virtual fetch parameter list 
- Virtual fetch vector table 
- Virtual fetch work area 
- Virtual I/O 
- Virtual storage access method 
- Virtual storage management 
- Virtual Telecommunications Access Method 
- Volume table of contents 
- Volume unload table 

- Workload activity specification table 
- Workload manager specification table 
- Write queue element 
- Wait state code 
- Wait queue element 

- Extent list 
- Cross memory directory 
- External page table entry 
- Extended real block number 
- Extended status block 



Index 

A 

abbreviations 
list of D-l 

abend codes 
COD in ASM 5-134 
EXCP 5-32 
Service Processor Call SVC 5-279, 5-284 
started task control 2-93 
SWA manager 2-94 
symptoms of lOS problems 5-28 
OBO in allocation 5-194 
OC4 in allocation 5-195 
08x series in ASM 5-132 
306 abend in program manager 5-71 
806 abend in program manager 5-66 

abend dump debugging 2-86 
abend resource manager 5-66 
abnormal end appendages 

with ERPs 5-49 
abnormal task termination (RTM) 5-225 
ACB (access method control block) 

how to locate 5-160 
major fields in 5-161 

ACCOUNT command processor A-41 
ACF/TCAM 

See TCAM 
ACF/VTAM 

See VTAM 
ACR 

See alternate CPU recovery 
ACTION keyword 

SLIP 2-112 
action message retention facility 

debugging aids 5-251 
additional data gathering techniques 2-95 
address space 

analysis 2-6 
ASM's 5-117 
dispatchable work in B-6 
dispatcher's 5-8 
initialization 5-84 
OUCB queues 5-147 
states recognized by SRM 5-142 
termination 5-229 
tests made by dispatcher 5-13 
wait 5-9 

addresses 
commonly bad 2-80 

AlA 
RSM test on A-3 

allocation 
of virtual storage 5-87 

allocation/unallocation 
abends 

OBO 5-194 

0C4 5-195 
address space (ALLOCAS) 5-180 
address space termination 5-194 
allocation 

common 5-174 
description 5-172 
fixed device 5-175 
generic 5-175 
recovery 5-175 
serialization 5-192 
TP 5-175 

batch initialization 5-173 
common allocation 5-174 
common unallocation 5-175 
component analysis 5-172 
control block processing 5-177 
debugging aids 5-176 
debugging hints 5-192 
device selection 5-193 
dynamic initialization 5-173 
EST AE processing 5-180 
functional description 5-172 
JFCB housekeeping 5-174 
module naming conventions 5-176 
reason codes 5-197 
registers and save ares 5-177 
unallocation 

common· 5-175 
description 5-173 

unit status recording 5-180 
volume mount and verify 5-176, 5-195 

alternate CPU recovery (ACR) 
problem analysis 2-75 

AMCBS 
major fields in 5-159 

AMDPRDMP 
control statements 2-97 
example of use of data 4-10 
GRSTRACE option 

use for loop analysis 4-17 
use for wait analysis 4-10 

how to copy tapes 2-99 
QCBTRACE option 

use for loop analysis 4-17 
use for wait analysis 4-10 

APF authorization 5-70 
appendage footprint table 

with PWF 5-265 
appendages 

abnormal end 
with ERPs 5-49 

ASCB (address space control block) 
analysis 2-6 
indicators 2-14 

ASM (auxiliary storage man~ger) 
address space structure 5-117 

Index X-I 



cell pools 5-117 
component analysis 5-112 
component functional flow 5-113 
control blocks 5-116, 5-135 
converting a slot number to full seek address 5-124 
COD abend 5-134 
error analysis suggestions 5-127 
finding the LSID for a given page 5-121 
footprints and traces 5-118 
FRR/EST AE work areas 5-132 
general debugging approach 5-119 
incorrect pages 5-120 
interfaces with other components 5-118 
operating characteristics 5-117 
page/swap data set errors 5-127 
paging interlocks 5-119 
recovery 

as a debugging tool 5-133 
considerations 5-131 
footprints 5-133 
structure 5-132 
traces 5-132 

register conventions 5-118 
requesting I/O 5-114 
requesting swap I/O 5-115 
saving an LG 5-113 
SDW A variable recording area 5-134 
serialization 5-129 
SRB structure 5-117 
storage considerations 5-117 
system mode 5-117 
task structure 5-117 
unuseable paging data sets 5-125 
validity checking 5-128 
08x abend codes 5-132 

ASMDATA statement (ofPRDMP) 2-99 
ATA (ASM tracking area) 5-135 
ATTACH (program manager function) 5-61 
attention processing (TSO) A-46 
audit trail area (EPATH) 5-136 
auxiliary storage manager 

See ASM 

B 

backout (for DEFINE/DELETE) 5-168 
batch initialization 5-173 
BLDL table analysis 4-27 
BSHEADER data area 5-139 
BUFCONBK data area 5-139 
buffer 

C 

external call 2-59 
LOGREC 2-38 
translation lookaside 2-43 

caller-defined SVC dump titles C-82 

x -2 MVS Diagnostic Techniques 

cancel process (R TM) 5-227 
catalog communications area 

See CCA 
catalog management 

backout 5-168 
CMS function gate 5-167 
component analysis 5-158 
debugging aids 5-170 
diagnostic output 5-167 
establishing/releasing a recovery 

environment 5-165 
how to find registers 5-158 
maintaining a pushdown list end mark 5-166 
major control blocks 5-159 
major registers 5-159 
module structure 5-164 
recovery routine functions 5-167 
tracking GETMAIN/FREEMAIN activity 5-166 
VSAM catalog recovery logic 5-165 

catalog parameter list (CTGPL) 
major fields 5-162 

CAXWA 
major fields 5-161 
major flags 5-162 

CCA (catalog communication area) 
major fields 5-163 
major flags 5-164 

CCH (channel check handler) 
diagnostic aids 5-266 
message IGF0021 5-266 
PCCA fields 5-267 

CDE (contents directory entry) 
allocation 5-70 
analysis 4-27 
initialization by IDENTIFY 5-65 
order of on ALPAQ 5-68 
pool control 5-72 

cell pool anchor block 
See CPAB 

cell pool management 
VSM 5-92 

channel check handler 
See CCH 

channel program 
with ERPs 5-50 

channel scheduler 
invoked for lOS 5-25 

channel set ID 5-32 
channel set switching 5-32 
checkpoint/restart 

with SLIP command 2-128 
CHNGDUMP command 

to change SDUMP contents 2-95, 3-5 
to override SVC dump parameters 2-99 

class locks 
with ASM 5-130 

CML (cross memory lock) 
classification 2-26 
definition 2-22 
location 2-26 



CMS function gate ?-167 
CMS lock 2-22 
CMS lockword 

contents 2-25 
suspend queues 2-28 

CMSEQDQ lock 2-22 
CMSSMF lock 2-22 
COMM task 

See communications task 
command processing (global resource serialization) 

control block overview 5-314 
introduction 5-306 
module flow 5-331 

command processor 
and TMP interface A-37 
parameter list A-39 

common allocation 5-174 
common service area 

See CSA 
common unallocation 5-175 
communications task 

component analysis 5-244 
control blocks 5-246 
current status 4-13 
debugging hints 5-248 
functional description 5-244 
sequence of processing 5-245 

compare and swap 
serialization with ASM 5-131 

completion codes in IOSB for ASM errors 5-126 
component analysis 5-1 
considerations 

MVS 2-1 
console 

not responding to attention 5-248 
console switching 5-251 
contents directory entries 

See CDE 
contents supervision 

See virtual fetch 
CONTROL Q command debugging aids 5-253 
converting virtual to real addresses 5-108 
CPAB 5-92 
CPUDA T A statement (of PRDMP) 2-98 
CQE control block 5-246 
cross memory lock 

See CML 
cross memory services 

component analysis 5-288 
lock description 2-22, 2-28 
lock suspend queues 2-28 

cross memory services lock 2-28 
CSA (common service area) 

analysis of use of 4-28 
CTC processing 

control block overview 5-312 
debugging hints 5-344 
introduction 5-307 
module flow 5-322. 5-323 

CTGPL (catalog parameter list) 

major fields 5-162 
current recovery stack 

See FRR stacks 
CVOL processor 5-165 
CVTMAP statement (of PRDMP) 2-98 
CXSA control block 5-246 
COD abend in ASM 5-134 

D 

DASD ERPs 5-53 
data gathering techniques 2-95 
data sets 

page/swap errors 5-127 
DDR (dynamic device reconfiguration) 

DDRCOM table 5-268 
DERPLIST parameter list 5-269 
diagnostic aids 5-268 
return codes 5-272 
software recording 5-272 
storage dump 5-272 
task description 5-268 

DDRCOM table 5-268 
debugging hints (chapter) 2-75 
DEFINE/DELETE backout 5-169 
DELETE (function of program manager) 5-64 
delete listen request (EN F) 

description 5-212 
example 5-219 

DERPLIST parameter list 5-269 
DIAGNOSE instruction 

description 5-277, 5-281 
trace entry 2-64 

diagnostic materials approach 3-1 
diagnostic techniques 

component analysis 5-1 
diagnostic approach 3-1 
important considerations 2-1 
introduction I-I 
process flows A-I 
stand-alone dump analysis B-1 
SVC dump title directory C-l 
sympton analysis approach 4-1 

DIDOCS 
in-operation indicator 5-252 
locking 5-252 
trace table 5-252 

disabled loop 
See loops 

disabled mode 2-12 
disabled wait 

See waits 
DISP lock 

description 2-22 
dispatchability tests 

address space 5-13 
SRB 5-13 
task 5-13 

dispatchable units of work 

Index X-3 



in an address space B-6 
prio,rity and location 5-4 

dispatcher 
abend codes 5-16 
component analysis 5-2 
determining the last dispatch 5-14 
dispatchability tests 5-13 
error conditions 5-16 
important entry points 5-2 
processing overview 5-10 
recovery considerations 5-15 

DISPLAY DUMP command 2-95 
DISPLAY GRS command 

introduction 5-305, 5-306 
module flow 5-332 

DSNLIST data area 5-140 
dummy task B-6 
dump analysis 

abend dumps 2-86 
areas 4-24 
?vIP 2-45 
problem program 2-86 
stand-alone 2-2, 3-2, B-1 
summary dump 2-89 
tracing procedure 2-66 

DUMP command 2-95 
dump footprint table 

with PWF 5-265 
dumps 

how to copy tapes 2-99 
how to print 2-97 
SVC dump titles C-l 
tailoring with SLIP 2-117 

dynamic device reconfiguration 
See DDR 

E 

EDIT command processor A-41 
EDIT statement (of PRDMP) 2-98 
EDT 

See eligible device table 
EED 

important fields 2-41 
ElL control block 5-246 
eligible device table (EDT) 

description 5-193 
verification routine 5-194 

Emergency Signal instruction 
See EMS 

EMS (function of SIGP) 
definition 2-49 
process flow 2-56 

enabled loop 
See loops 

enabled loop exception 4-17 
enabled wait 

See waits 
ENF (event notification facility) 

X -4 MVS Diagnostic Techniques 

component analysis 5-212 
control blocks 5.-215 
event codes 5-212 
examples of logic flow 5-217 
exit routines 5-214 
initialization 5-216 
processing 5-217 
recovery routines 5-220 
requests for services 5-212 
return codes 5-217 

ENFCT control block 5-215 
ENFDS control block 5-215 
ENFLS control block 5-215 
ENFPM parameter list 5-212 
ENFVT control block 5-215 
ENQ/DEQ 

analysis for enabled waits 4-10 
analysis for performance degradation 4-23 
common ENQ resource names 4-12 
enqueue lockout B-7 
global save area 4-24 

ENQ/DEQ/RESERVE services 
control block overview 5-314, 5-315 
debugging hints 5-345 
introduction 5-305, 5-307 
module flow 5-339, 5-340 

EP mode traces 4-22 
EPATH (error path) 5-136 
ERPs (error recovery procedures) 

abnormal end appendages 2-77, 5-49 
description 5-48 
EW A (ERP work area) 5-30 
traps 5-54 . 
with ACR 2-76 

error id 5-232 
error interpreter table 5-50 
error recovery procedures 

See ERPs 
event notification facility 

See ENF 
event parameter list (ENFPM) 5-212 
EW A (ERP work area) 5-30 
EXCP abend codes 5-32 
EXCP debugging area (XDBA) 5-33 
EXCP major control block relationships 5-27 
EXCP/IOS process flow A-12 
execution modes 

See system mode 
exit resource manager 5-64 
exit routines (ENF) 5-214 
explicit waits 2-7 
extended error descriptor (EED) 2-41, 5-222 
external call (XC function of SIGP) 

description 2-49 
process flow 2-55 

external symptoms 1-2 

F 



FETCH 
program manager work area (FETWK) 5-72 

FORCE command 5-228 
FORMAT statement (of PRDMP) 2-98 
formatted R tM control blocks 2-42 
formatting (LOGREC buffer) 2~3'8 
FREEMAIN 

See GETMAIN/FREEMAIN 
FRR (functional recovery routine) 

ASM's 5-132 
FRR stacks 

important field contents 2-40, B-15 
GETMAINS's 5-90 
RSM's 5-104 

FRR/ESTAE 
ASM work areas 5-133 

PSS (functional subsystem) 
functional recovery routine 

See FRR 
functional subsystem 

See PSS 
functional subsystem application 

See FSA 
functional subsystem interface 

See FSI 

G 

GDA (global data area) for VSM 5-89 
GETMAIN processing A-I5 

FREEMAIN processing A-16 
GETMAIN/FREEMAIN 

GETMAIN FRR 5-90 
indication in trace table 2-71 
process flow A-15 
SVC 120 5-94 
virtual storage allocation 5-87 

GETPART/FREEPART 5-86 
global data area for VSM 5-89 
global indicators of current system state 2-2 
global locks 

definition 2-21 
error status B-12 
requests for unavailable 2-26 
spin locks 

content of lockword 2-25 
definition 2-23 

suspend locks 
content of lockword 2-25 
definition 2-23 

global resource serialization 
component analysis 5-305 
control blocks 5-308, 5-348 
control blocks overviews 5-310 
diagnostic aids 5-343 
functional overview 5-306 
module flow diagrams 5-320 
module flow overview 5-321 
module naming conventions 5-306 

probe points 5-344 
recovery routines 5-351 
serialization 5-350 
system indicators 5-343 
SYSl.LOGREC recording 5-351 

global SRBs 
control block relationships 5-6 
dispatching 5-5 
mode indicators set by dispatcher 5-14 
queue structure 5-6 
status indicators B-17 

global system analysis (chapter) 2-2 
GQSCAN macro 

See also queue scanning services 
introduction 5-305 

GRSTRACE (AMDPRDMP option) 
use for loop analysis 4-17 
use for wait analysis 4-10 

GRSTRACE statement (of PRDMP) 2-98 
GSMQ/LSMQ 2-5 
GSPLs/LSPLs 2-5 
GTF (generalized trace facility) 

bypassing lost events 2-68 
I/O and SIO trace (EP) 4-21 
RNIO trace 4-21 
trace examples 2-64 
with SLIP command 2-115 

H 

hardcopy log 
master trace 2-71 

hardware-detected errors 
analysis 3-8 

hierarchy of locks 2-23 

I 

I/O 
capability in MP 2-59 
enabled B-6 
incomplete B-7 
NCP trace 

See NCP 
problems in enabled waits 4-8 
requesting (ASM) 5-114 
requesting swap 5-115 
trace entries 2-69 
VTAM I/O trace 

. See VTAM 
I/O manager 

debugging 5-157 
modules 5-157 

I/O request 
information in PLH 5-152 

IDENTIFY (function of program manager) 5-65 
lEA VGF A tests by RSM A-2 
lEA VIOCP tests by RSM A-6 

Index X-5 



lEA VPIOP tests by RSM A-3 
.lEA VPIX tests by RSM A-2 
IEAVSWIN A-7 
ILC/CC important field contents 2-3 
in-operation indicator 

DIDOCS 5-252 
incorrect output (chapter) 

analyzing system functions 4-30 
initial analysis 4-29 
isolating the component 4-29 

installation performance specifications (IPS) 5-141 
inter-processor communication 2-49 
interactive problem control system (IPCS) 1-4 
intercept condition 

ERPs 5-51 
in terruptions 

status saving 2-15 
intersect 

description 2-31 
service routine 4-16 

lOB 
See 10MB 

10MB 5-157 
lOS (I/O supervisor) 

ABEND codes 5-28 
back-end processing 5-25, A-14 
component analysis 5-25 
diagnostic aids 5-32 
ERP processing 5-48 
EXCP/IOS process flow A-12 
front-end processing 5-25, A-12 
general hints 5-30 
loops 5-28 
major control block relationships 5-27 
message table 5-46 
output of recovery procedures 5-34 
POST STATUS A-14 
problem analysis . 5-25 
processing overview 5-26 
return codes 5-47 
save areas 5-30 
SDW A variable recording area 5-34 
storage manager queues 4-27 
VTAM interaction A-18 
wait state codes 5-47 
wait states 5-29 

10SjEXCP process flow A-13 
10SB fields 5-43 
10SCAT lock 2-22, 2-26 
IOSCOD field 5-44 
IOSDRVID field 5-43 
10SLCH lock 2-22, 2-26 
10SPROC field 5-44 
IOSUCB lock 2-22, 2-26 
IOSYNCH lock 2-22,2-26 
IPC 

See inter-processor communication 
IPCS 1-4 

. X-6 MVS Diagnostic Techniques 

1 

1ES2 (job entry subsystem) 
note to readers 5-201 
operator commands for status information 4-24 

1ES3 
See note in Preface 

1FCB housekeeping 5-174 
join processing 

module flow 5-338 

K 

K Q command debugging aids 5-253 
key-length-data format 

SDWA VRA 2-35 

L 

LCCA indicators 2-13 
LCH queues 

analysis for enabled waits 4-9 
LDA 

important flags 5-87 
LG 

saving 5-113 
line drop (TSO processing) A-34 
LINK (function of program manager) 

description 5-60 
module search sequence 5-68 

listen request (ENF) 
description 5-212 
example 5-217 
exit routine 5-214 

LMODmap 
how to print 2-103 

LOAD (function of program manager) 
description 5-64 
module search sequence 5-68 

local lock 
definition 2-21 
lockword contents 2-25 
lockword location 2-26 
requests for unavailable 2-27 
suspend (definition) 2-23 
with ASM 5-130 

local SRBs 
dispatching 5-5, 5-7 
dispatching priority in address space 5-8 
mode indicators set by dispatcher 5-15 
status indicators B-16 

locating status information in a storage dump 2-15 
lock interface table (lEA VESLA) 2-26 
locked mode 

definition 2-13 
status saving during execution 2-11 

locking (chapter) 2-21 
locks (see also lockwords) 



) 

categories 2-21 
classification 2-26 
determining which held on a processor 2;.24 
hierarchy 2-23 
location of 2-26 
PSAHLSI bits 2-24 
requests for unavailable 2-26 
table of definitions 2-22 
types 2-22 
with ASM 5-117, 5-129 

lockwords 
contents of 2-25 
how to find 2-26 

LOGDATA verb 2-38 
logging 

ERPs 5-51 
logical groups 

assigning 5-112 
releasing 5-113 

logon 
command processor A-41 
diagnostic aids A-32 
initialization A-27 
monitor A-29 
post codes A-33 
process overview A-24 
scheduler A-29, A-31 
scheduler router A-27 
TMP exit A-31 
verification A-29, A-30 
work area A-28, A-32 

LOGREC 
analysis 2-34 
considerations 2-36 
for debugging SVC dump 5-234 
formatting 2-38 
how to print 2-104 
listing LOGREC data set 2-34 
recording control buffer 2-38 

loop recording option 4-16 
loops 

analysis 4-15 
disabled 

definition 4-15 
system mode 4-18 

enabled 
definition 4-15 
exception 4-17 

in lock manager code B-16, B-18 
symptoms of lOS problems 5-28 

low storage overlays 2-78 
LPAMAP statement (of PRDMP) 2-98 
LPSW 

common uses of 4-2 
LSID 

finding for a page 5-121 
LSMQ 2-5 
LSPL 2-5 

M 

machine check handler 
See MCH 

machine checks 
debugging 2-81 
interruption code (M CIC) 2-81 
reference matrix 2-84 

master trace 
debugging aias 5-254 
description 2-71 
trace table 2-72 
trace table entry 2-73 

MCH (machine check handler) 
diagnostic aids 5-256 
PWA 5-257 
return codes 5-256 

MCIC (machine check interruption code) 2-81 
message flow 

through the system 4-20 
message. processing facility (MPF) 

description 2-74 
table (MPFT) 2-74 

lllessages 
ERPs 5-51 
IGF0021 5-266 
lOS message table 5-46 
lost 5-249 
master trace 2-71 
missing on one console 5-250 
processing facility 2-74 
routed to wrong console 5-250 
truncated 5-250 

MIH (missing interruption handler) 
diagnostic aids 5-273 
process 5-273 
software recording 5-276 
storage dumps 5-276 
work area 5-273 

miscellaneous debugging hints (chapter) 2-75 
missing interruption handler 

See MIH 
module search sequence 

for LINK,ATTACH, XCTL, LOAD 5-68 
of private libranes 5-69 

module subpools 5-71 
monitoring and system support facility 

See MSSF 
MP (mUltiprocessing) 

activity in trace table 2-70 
associated data areas 2-45 
debugging hints 2-58 
direct services 2-50 
dump analysi$, 2-45 
dump analysis hints 2-48 
effects on problem analysis 2-43 
features of MP environment 2-43 
parallelism 2-46 
PSA analysis B-3 
remote immediate services 2-52 

Index X-7 



remote pendable services 2-51 
SIGP instruction 2-49 
system stop routine 2-133 

MPF (message processing facility) 2-74 
MPFT (MPF table) 2-74 
MSGBUFFER data area 5-140 
MSSF (monitoring and system support facility) 

with MSSFCALL DIAGNOSE instruction 5-277, 
5-281 

with Service Processor Call SVC 5-277 
MSSFCALL data block 

description 5-278 
MSSFCALL DIAGNOSE instruction 

condition codes 5-282 
description 5-277, 5-281 
trace entry 2-64 

MSSFCALL SVC 
See Service Processor Call SVC 

multi processing 
See MP 

MVS trace 
See trace table 

N 

NCP (network cont.rol program) 
traces 4-22 

no-work wait (see also waits) 4-7 
normal task termination 5-224 

o 

O/C/EOV (open/c1ose/end-of-volume) 
abends 2-80 
DEB chaining 5-156 
debugging aids 5-155 
ENQs issued by 5-156 
messages 5-155 

online problem analysis 1-4 
open/close/end-of-volume 

See O/C/EOV 
OPERATOR command processor A-41 
operator commands 

for status information 4-23 
to identify performance degradation 4-23 

operator-defined SVC dump titles C-82· 
ORE control block 5-246 
OUCB (SRM user control block) 

analysis 5~147 

important fields 5-142 
OUTPUT command processor A-41 
output of lOS recovery procedures 5-34 
overlays 

storage 
cause of wait state PSWs 4-3 
how to locate the trace table 2-62 
in low storage 2-78 
pattern recognition 2-77 

X -8 MVS Diagnostic Techniques 

P 

page control block 
See PCB 

page fault 
process flow A-2, A-4 
reclaim 5-102 
trace examples 2-64 
waits 4-9 

page frame table entries 
See PFTE 

page stealing 5-101 
page waits B-8 
page/swap data set errors 5-127 
paging 

finding the LSID 5-121 
incorrect pages 5-120 
interlocks 5-119 
process 5-101 
unuseable data sets 5-125 

paging requests 
analysis 4-27 

parallelism 2-46 
PART/PAT bit 

locating 5-123 
pattern recognition 2-77 
PC/AUTH services 

control blocks 5-291 
debugging hints 5-299 
description 5-288 
module structure 5-289 
process flow 5-290 
recovery cO'nsiderations 5-296 
recovery data areas 5-297 
SLIP traps 5-301 

PCB (page control block) 
important fields in 5-99 
trace facility 5-111 
use in debugging A-9 

PCCA fields for CCH 5-267 
PCCB major fields and flags 5-159 
PCLINK services 

debugging hints 5-304 
description 5-302 
module structure 5-304 
STKE control block 5-302 

PER activation/deactivation 
debugging aids 5-240 
process flow 5-230 
recovery 5-240 

PER monitoring 2-105 
PER traps 2-127 
performance degradation 

chapter on 4-23 
dump analysis area 4-24 
operator commands to identify 4-23 

PFTE (page frame table entries) 
analysis 4-27 ( 



~ y 

important field~ 5-101 
PGTE 

RSM test on A-2 
physically disabled mode 2-12 
PLH (place holder) 5-152 
post codes 

LOGON A-33 
Power Warning Feature Support 

See PWF 
PRB initialization 5-61 
PRDMP 

See AMDPRDMP 
PRE-TMP exit A-31 
PRINT statement (of PRDMP) 2-98 
printer ERP 5-53 
private libraries 

module search sequence 5-69 
problem analysis techniques 1 ~ 1 
problem program dump debugging 2-86 
process flows 

chapter A-I 
EXCP/IOS A-12 
GETMAIN/FREEMAIN A-IS 
page faults (RSM processing) A-2 
TSO A-21 
VTAM A-18 

processor work area (PW A) 5-257 
program call/authorization 

See PC/AUTH services 
program checks 

interrupts 5-16 
program manager 

APF authorization 5-70 
ATTACH 5-61 
CDE 

allocation 5-70 
CDE pool control 5-72 
component analysis 5-55 
control blocks 5-55~ 5-57 
DELETE 5-64 
exit resource manager 5-64 
FETCH/program manager work area 5-72 
functional description 5-55 
functional flow 5-60 
IDENTIFY 5-65 
LINK 5-60 
LOAD 5-64 
module description 5-56 
module search sequence 

for LINK~ ATT ACH~ XCTL~ LOAD 5-68 
of private libraries 5-69 

module subpools 5-71 
organization 5-55 
overview 5-57 
queue validation 5-58 
queues 

description 5-55, 5-57 
RB extended save area 5-72 
SYNCH 5-65 
system initialization 5-58 

XCTL 5-61 
306 abend 5-71 
806 abend 5-66 

PSA (prefixed save area) 
contents' of important fields 2-4 
indicators 2-13 
used to determine current system state 2-2~ 2-13 
using as a patch area 2-104 

PSW (program status word) 
analysis 2-3 
wait state B-2 

pushdown list end mark 
maintaining 5-166 

PW A work area 5-257 
PWF (Power Warning Feature) 

appendage footprint table 5-265 
communications area 5-258 
data areas 5-257 

Q 

diagnostic aids 5-257 
dump footprint table 5-265 
LOGREC recording 5-266 
return codes 5-257 

QCBTRACE (AMDPRDMP option) 
use for loop analysis 4-17 
use for wait analysis 4-10 

QCBTRACE statement (of PRDMP) 2-98 
QTIP 

processing A-24 
queue scanning services 

R 

control block overview 5-3l6~ 5-317 
introduction 5-305, 5-308 
module flow 5-342 

RB (request,blo~k) 
analysis 2-8 
extended save area (RBEXSA VE) 5-72 
manipulation by XCTL 5-63 
new RB initialization for XCTL 5-62 

RCB (recording control buffer) 2-38 
RDCM (resident display control module) 5-246 
real addresses 

converting 5-108 
real frame shortage 

indicators 4-28 
real storage manager 

See RSM 
reason codes 

allocation 5-197 
RSM5-105 
started task control 2-93 
SW A manager 2-94 

reclaim (function of RSM) 5-102 
record management 

Index X-9 



debugging aids 5-153 
processing 5-151 

recovery audit trail (ASM) 5-136 
recovery management support 

See RMS 
recovery procedures 

output of lOS modules 5-34 
recovery stack 2-13 
recovery work areas 

use of 2-33 
register conventions 

ASM 5-118 
relate (function of RSM) 5-103 
replies 

lost 5-249 
requesting 

I/O (ASM) 5-114 
swap I/O (ASM) 5-115 

reset services 
See stop/reset services 

resource request processing 
See global resource serialization 

RESUME service 
See SUSPEND/RESUME/TCTL services 

retry process (RTM) 5-226 
retry /restart 

with ERPs 5-50 
return codes 

Service Processor Call SVC 5-279, 5-284 
ring processing 

control block overview 5-313 
debugging hints 5-345 
introduction 5-306 
module flow 5-3~4, 5-325, 5-326, 5-327, 5-328, 

5-329, 5-330 
RMCT (SRM control table) 

system indicators 5-143 
RMS (recovery management support) 

component analysis 
diagnostic aids 

CCH 5-256, 5-266 
DDR 5-256, 5-268 
MCH 5-256 
MIH 5-256, 5-273 
PWF 5-256, 5-257 

RPL error fields 5-151 
RSM (real storage manager) 

abend reason codes 5-105 
component analysis 5-97 
debugging tips 5-107 
major control blocks 5-97 
page fault processing A-2 
page stealing process 5-101 
reclaim 5-102 
recovery 5-104 
relate 5-103 

RTM (recovery termination manager) 
cancel 5-227 
component analysis 5-221 
error id 5-232 

X-I0 MVS Diagnostic Techniques 

extended error" descriptor (EED) 5-222 
FORCE command 5-228 
functional description 5-221 
hardware error processing 5-222 
major RTM modules 5-221 
PER processing 5-230 
process flow 5-222 
retry 5-226 
RTMI 5-221 
RTM2 5-221 
SLIP command debugging aids 5-238 
stack vector table 2-13 
SVC dump debugging aids 5-233 
system diagnostic work area (SDW A) 5-222 
termination 

abnormal task 5-225 
address space 5-229 
normal task 5-224 

RTM2WA 
definition 2-41 

S 

SALLOC lock 
description 2-22, 2-26 
with ASM 5-129 

SCCB (service call control block) 5-284 
SCHEDULE macro 2-11 
scheduler work area 

See SW A manager 
SDUMP macro C-l 
SDUMPs (see also SVC dumps) 

analysis 3-4 
how to change contents of 3-5 
parameter list 3-5 
titles C-l 

SDW A (system diagnostic work area) 
data recorded by dispatcher 5-15 
use by SYSl.LOGREC 2-34 
use in FRR stack 2-41 
use in /R TM2 2-42 
with SVC dump 5-234, 5-235 

SDWA VRA (SDW A variable recording area) 
entries $-90 
error indjicato~s 5-91 
key-length-data format 2-35 
use by ASM 5-134 
use by catalog management 5-167 

sense command 
with ERPs 5-52 

serialization 
ASM 5-129 

service call control block (SCCB) 5-284 
SERVICE CALL instruction 

condition codes 5-287 
description 5-283, 5-287 
trace entry 2-64 

Service Processor Architecture 5-283 
Service Processor· Call SVC 



abend codes 5~279,5-284 

control blocks 5-280, 5-286 
data block 5:278 
description 5-277, 5-283 
introduction 5-277, 5-283 
processing 5-279, 5-285 
return codes 5-279, 5..;284 
trace entry 2-64 
with ACR 2-76 
with MSSFCALL DIAGNOSE instruction 5-277 
with SERVICE CALL instruction 5-283 

signal request (ENF) 
description 5-212 
example 5-218 
exit routine 5-214 

SIGP (signal processor) instruction 
description 2-49 
return codes 2-50 
XC function 2-49 

SLIP command 
ACTION keyword 2-112 
control blocks 5-242 
controlling traps 2-125 
debugging aids 5-238 
description 2-105 
designing an effective trap 2-125 
dump tailoring 2-117 
event qualifiers 2-105 
examples 2-118 
examples with TSO 2-124 
PER monitoring 2-105 
placement of PER traps 2-127 

,processor recovery 5-239 
summary 2-129 
trap design 2-125 
using 2-105 
with checkpoint/restart 2-128 

SLIP processor 
PER activation/deactivation 5-240 
recovery 5-239 

slot number 
converting to full seek address 5-124 

SMF suspension 2-19 
software-detected errors 

analysis 3-7 
SPCT (swap control table) 

important fields in 5-100 
special exits 

dispatching 5-4 
spin locks 

definition 2-22 
SRB (see also local and global SRBs) 

dispatching queues 2-5, 5-5 
local 5-7 
mode 2-11 
mode interruptions 2-15 
suspension 2-8, 2-17, 2-27 
tests made by dispatcher 5-13 

SRB/SSRB pool manager 
description 5-17 

entry points 5-17 
error conditions 5-: 19 
recovery considerations 5-18 

SRM (system resources manager) 
address space states 5-142 
component analysis 5-141 
control blocks 5-145 
entry point summaries 5-149 
error recovery 5-148 
indicators 5-143 
objectives 5-141 
SDWA data 5-149 
system (RMCT) indicators 5-143 
user (OUCB) indicators 5-147 

SSB (SMF suspend block) 2-19 
SSI (subsystem interface) 

component analysis 5-202 
debugging hints 5-211 
function codes 5-211 
initialization processing 5-202 
logic flow examples 5-208 
major control blocks 5-203 
requesting services 5-206 
return codes 5-208 
subsystem 

allocation sequence table 5-202 
communications vector table (SSCVT) 5-202 
vector table (SSVT) 5-202 

stand-alone dump 
analysis 2-2 
analysis procedure B-6 
chapter on 3-2 
description B-1 
determining system mode from 2-13 
flowchart B-5 
how to print 2-97 
special notes 2-2 

started task control 
See STC 

status information 
locating in storage dump 2-15 

STC (started task control) 
abend codes 2-93 
reason codes 2-93 

step initiation/termination 5-86 
STKE control block 5-302 
stop/reset services 

description 5-19 
entry points 5-19 
error conditions 5-21 
recovery considerations 5-20 

storage management (global resource serialization) 
control block overview 5-318 
debugging hints 5-348 
introduction' 5-308 

SUBMIT command processor A-42 
subpools for modules 5-71 
subsystem interface 

See SSI orFSI 
SUM DUMP output 2-89 

Index X-II 



SUMDUMP statement (of PRDMP) 2·98 
summary dump 2·89 
SUMMARY statement (of PRDMP) 2·98 
super bits 

See PSASUPER 
supervisor control 5·2 
superzaps 

system stop routine 2·133 
to expand trace table 2·133 

suspend locks 
definition 2·22 

SUSPEND/RESUME/TCTL services 
description 5·22 
entry points 5·22 
error conditions 5·24 
recovery considerations 5·23 

suspended 
locally locked tasks 2·17 
SRB status 2·8 
SRB/task with lock ,held B·13 
tasks or address space caused by unsatisfied ENQ 

request 4·10 
suspension 

SMF 2·19 
SVC D entries in trace table 2· 70 
SVC dump title directory C·l 
SVC dumps 

analysis 3·4 
caller·defined titles C·82 
debugging of 

control blocks, use of 5·237 
SLIP traps, use in 5·234 
SYSl.LOGREC, use in 5-234 

entry points 
error conditions 5~234 

how to override parameters 2-99 
module cross reference C-85 
operator-defined titles C-82 
resource cleanup 5-238 
SDUMP macro BRANCH = parameter 
system-defined titles C-2 
titles C-l 
without titles C-83 

SVC 122 5-277, 5-283 
SWA (scheduler work area) manager 

reason codes 2-94 
swap transition flags 5-142 
swap-in process A-7 
swap-out process A-9, A-1O 
swapping 

process flow A-7 
SWIN (lEVSWIN) A-7 
sympton analysis approach 4-1 
SYNCH (function of program manager) 5-65 
SYSABENDs 

analysis approach 3-7 
SYSMDUMPs 

analysis approach 3-7 
system degradation 

See performance degradation 

X -12 MVS Diagnostic Techniques 

system diagnostic work area 
See SDWA 

system execution modes and status saving 2-10 
system hung 

See waits 
system modes 

determining from stand-alone dump 2-13 
locked mode 2-13 
physically disabled mode 2-12 
SRB mode 2 .. 11 
task mode 2-10 

system opt,ions for SVC dump 2-99 
system resources manager 

See SRM 
system stop routine 2-133 
system-defined SVC dump titles C-2 
SYSUDUMPs 

analysis approach 3-7 
SYSZECI6-PURGE 4-12 
SYSZVARY-x 4-12 
SYSI.COMWRITE data set 

how to print 2-103 
SYS1.DUMP 

how to clear without printing 2-102 
how to print 2-101 

SYS1.LOGREC 
See LOGREC 

SYS1.STGINDEX 
how to recreate 2-103 

SYSI.UADS 
how to rebuild 2-100 

T 

tape ERP 5-53 
task 

analysis 2-7 
locally locked interrupted 2-13 
locally locked suspended 2-17, 2-25, 2-27, 4-9 
mode indicators set by dispatcher 5-15 
mode interruptions 2-15 
RB structure 2-8 
tests made by dispatcher 5-13 

task mode 
description 2-10 

TCAM 
organization after a TSO logon A-26 
TIOC logon processing A-27 
traces 4-22 
TSO terminal I/O diagnostic techniques A-45 

TCB (task control block) 
analysis 2-7 
dispatching priority in address space 5-8 
summary report 2-5 
suspended with lock held B-6 
with global resource serialization 5-311 

TCTL services 
See SUSPENDjRESUME/TCTL services 

TDCM (pageable display control module) 5-246 



teleprocessing 
See TP 

timer value in trace table 2-69 
TMP Icommand processor 

interface A-37 
work area A-39 

TP (teleprocessing) 
typical problems 4-20 

TP traces (see also trace table) 
types of 4-21 

trace entry 
Service Processor Call SVC 2-64 

trace table 
cautionary notes 2-69 
how to expand 2-133 
how to locate 2-61 
master trace 2-72 
traps 

SLIP command 2-105 
types of entries 2-63 
with DIDOCS 5-252 

traces (see also trace table) 
analysis of 2-61 
events not traced 2-70 
examples 2-64 
interpreting 2-66 
master trace 2-71 
PCB facility 5-111 
summary of 4-21 
summary of TP traces 4-21 
unit exception on 3705 2-70 

TSO (time sharing option) 

U 

APAR documentation A-48 
attention processing A-46 
command processor recovery A-41 
line drop processing A-34, A-35 
overview of logon processing A-22 
process flow A -21 
terminal I/O flow A-42 
time sharing initialization A-21 
TSO/TIOC terminal I/O diagnostic 

techniques A-45 

UCB 
analysis for enabled waits 4-9 

UCM (unit control module) 5-246 
UCME (UCM entry) 5-246 
unallocation 

description 5-173 
unit allocation status recording 

control blocks 5-181 
debugging hints 5-183 
description 5-180 
recovery considerations 5-183 

unit check 
with ERPs 5-52 

use of recovery work areas for problem analysis 2-33 

v 

VARY GRS command 
introduction 5-305, 5-306 
PURGE module flow 5-332 
QUIESCE module flow 5-333, 5-334 
RESTART module flow 5-335, 5-336, 5-337 

virtual addresses 
converting 5-108 

virtual fetch 
control blocks 5-78 
debugging hints 5-80 
description 5-74 
functional flow 5-75 
module organization 5-7 4 
recovery processing 5-79 

virtual storage access method 
See VSAM 

virtual storage manager 
See VSM 

virtual telecommunications access method 
See VTAM 

volume mount and verify 5-176, 5-195 
VSAM (virtual storage access method) 

component analysis 5-151 
debugging aids 5-153 
error codes 5-154, 5-155 
I/O manager debugging 5-157 
O/C/EOV debugging aids 5-155 
O/C/EOV messages 5-155 
record management 

buffer control block (BUFC) 5-152 
request parameter list (RPL) 5-151 

VSM (virtual storage manager) 
address space initialization 5-84 
allocation 5-87 
basic functions 5-82 
cell pool management 5-92 
control block usage 5-85 
debugging hints 5-92 
GETMAIN/FREEMAIN process flow A-I5 
global data areas (GDA) 5-89 
step initialization/termination 5-86 
view of MVS storage 5-83 

VT AM (virtual telecommunications access method) 
note to readers 5-150 
process flow A-18 
traces 4-22 

w 

wait address space 5-9 
waits 

chapter on 4-2 
disabled 

analysis approach 4-3 
;haracteristics of 4-2 

Index X-I3 



locked console exception 4-3 
with communications task 5-249 

enabled 
analysis approach 4--5 
analysis via trace table 2-69 
characteristics of 4-4 
with communications task 5-248 
with global resource serialization 5-343 

enabled loop exception 4-17 
explicit 2-7, B-8 
in user code B-18 
indications of paging interlocks 5-119 
no-work wait 4-7 
OUCB analysis 5-147 
page fault waits 4-9 
page waits B-8 
wait state PSW B-2 

window spin 2-52 
work queues 

TCBs 
address space analysis 2-5 

WQE control block 5-246 

x 

XC (SIGP external call) 
definition 2-49 
process flow 2-55 

XCTL (function of program manager) 

X -14 MVS Diagnostic Techniques 

description 5-61 
module search sequence 5-68 
RB manipulation 5;.63 

XDBA (EXCP debugging area) 5-33 
XPTE 

RSM test on A-2 

z 

zaps 
See superzaps 

o 

080 abend in allocation 5-194 
OC4 abend in allocation 5-195 
08x abends in ASM 5-132 

3 

306 abend in program manager 5-71 

8 

806 abend in program manager 5-66 



--... -- ----.-. ~ 

l~r.n: /Technical Newsletter 

MVS Diagnostic Techniques 

©Copyright IBM Corp. 1981, 1985 

MVS/System Product - JES3, Program No. 5665-291 
MVS/System Product - JES2, Program No. 5740-XC6 

This Newsletter No. 

Date 

Base Publication No. 

File No. 

Prerequisite Newsletters/ 
Supplements 

SN28-5095 

December 27, 1985 

SY28-1133-2 

S370-37 

None 

This Technical Newsletter contains replacement pages for MVS Diagnostic Techniques in support of 
MVS/System Product Version I Release 3.6. 

Before inserting any of the attached pages into MVS Diagnostic Techniques, read carefully the 
instructions on this cover. They indicate when and how you should insert pages. 

Pages to Attached Pages 
be Removed to be Inserted * 

Cover - Edition Notice 
vii - viii 
xxv - xxvi 
5-303 - 5-304 
C-3 - C-4 
C-33 - C-34 
C-81 - C-82 
C-85 - C-86 

Cover - Edition Notice 
vii - viii 
xxv - xxvi 
5-303 - 5-304 
C-3 - C-4 
C-33 - C-34 
C-81 - C-82 
C-85 - C-86 

*If you are inserting pages from different Newsletters/Supplements and identical page numbers are 
involved, always use the page with the latest date (shown in the slug at the top of the page). The page 
with the latest date contains the most complete information. 

A change to the text or to an illustration is indicated by a vertical line to the left of the change. 

Summary of Amendments 

This Technical Newsletter contains updates in support of Version 1 Release 3.6 of MVS/System Product 
and several technical corrections. 

Note: Please file this cover letter at the back of the publication to provide a record of changes. 

IBM Corporation, Information Development, Dept. 058, Building 921-2, 
P.O. Box 390, Poughkeepsie, New York 12602 

©Copyright IBM Corp. 1985 
©Copyright IBM Corp. 1985 Printed in U.S.A. 





;~ 
!';; 
i.:C ..... 
h5 
~ " "III : 0 
:; .... 
58. 
~.s 
~] 
- E 
~ E 
"':::I I:: 010' 

3 ~ ::i 
0' ;,.£: I:: ::10 0 

§~ 
;( 
"0 

iI:" ~ n.~ 
E~ L-II(/) 0 -I:: 
Q" :I E!(/) 

(.) 
o.~ 
11:::1 
111111 
:::I(/) 

8~ 
1::" c(/) 
0:::1 

~~ 
o.c 
ceo 
iiii: 

N 
0 z 

MVSDiagnostic Techniques 

SY28-1133-2 

READER'S 
COMMENT 
FORM 

This mariual is part of a library that serves as a reference source for systems analysts, progralD.l1}ers, 
and operators of IBM systems. You may use this form to communicate your comments about this 
publication, its organization, or subject matter, with the understanding that IBM may use or distribute 
whafeverinformation you supply in any way it believes appropriate without incurring any obligation to 
you. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please 
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM 
representati,e or to the IBM branch office serring your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If you wish a reply, give your name, company, mailing address, and date: 

What is your occupation? 

How do you use this publication? 

Number of latest Newsletter associated with this publication: 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an 
IBM office or representative will be happy to forward your comments or you may mail directly to the 
address in the Edition Notice on the back of the title page.) 



MVS Diagnostic Techniques 

SY28-1133-2 

Reader's Comment Form 

5370-37 

'I 

o .... 

i 
Fold and tape Please Do Not Staple Fold and tape ! 

----------------~--------------------------------------------------------------------------------------------------------------------1 

Fold and tape 

----- -. .... ---- .-----..-- ------ -.. ------ -.....,---- .. ---- -..,.-® 

I II" I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Department 058, Building 921 -2 
PO Box 390 
Poughkeepsie, New York 12602 

Please Do Not Staple 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 

Printed in U.S.A. 

SY28-1133-02 





MVS Diagnostic Techniques 

SY28-1133-2 S370-37 

Printed in U.S.A. 
-~-- ---------------- -. ---- - - ----=~=~=® 


