
--- ------- - ---- ---- - ---- - - --------------

This document is directed to data processing professionals and their management. Its
purpose is to demonstrate, through examples, both the simplicity and the power of
SOUDS.

Contents

Introduction

3 SOLIDS- An Application Development Alternative for Intermediate Systems

5 The Relational Approach

8 Productivity Aspects of SOLIDS

11 Application Design Approaches

14 The Interactive Ouery Facil ity of SOLIDS
15 Highlights
15 Structure
16 Sample Data Base
19 Defining a Table
20 Simple List
21 Queries Using More Than 1 Table
22 Formatting a Report
23 Built-In Functions
25 Tailoring SQLlDS fo r the End User

-Creating a View
-Stored Queries
-Parameter-Driven Queries

28 Making Changes to Stored Data
-Modifying Data
-Adding Columns to a Table
-Entering Data from a Terminal

31 Data and System Administration

36 Loading Data From Existing Files

41 Developing Transaction Programs with CICS/DOS/vS

44 Advanced Uses of SOLIDS

52 Summary of Benefits

1 Introduction

As the demands on the data processing department continue to increase, many installa
tions are re-examining their traditional approaches to application development in order
to keep pace with the rapidly growing backlog of applications.

For some installations, this has meant providing their data processing professionals with
additional tools so that they can become more productive. Other installations have cre
ated a new functional organization with in data processing, cal led an Information Center,
to provide and support a set of end-user tools. This allows the person with minimal DP
skills to develop his own applications with a minimum of dependence on the DP
department.

In either case, new technologies in hardware and software have created an application
development environment with significantly different characteristics than in the past.
Installations have begun to focus on those aspects of application development from which
they can achieve significant productivity gains by effectively using machine resources to
augment people time - either by increasing the ongoi ng rate of traditional program devel
opment and associated maintenance, or by reducing the number of times that they must
choose the "programming alternative :'

As a resu lt, many new applications are being developed in a heterogeneous fashion. In
other words, while some portions of code are written via traditional programming, other
portions are produced by "generators;' or by "report writers" and "query" products. With
Information Centers, some portions of applications are written and maintained by the end
user, not just by the data processing department.

IBM's new Structured Query Language/Data System (SQLlDS) provides the intermediate
system installation with a new application development alternative. It is aimed at improv
ing the productivity of both the data processing professional and the end user communi
ties through a wide range of design and implementation approaches.

2

,.

4

A Tool for the
DP Professional

A Tool for the
End User

An Integ ral
Data Systems
Environment
Product

Providing a
Wide Range of
Design Approaches

Allowing Interactive
Program
Development

Offering Control
and Administrative
Facilities

With Utilities for
Data Extraction
and Creation

SQLlDS-An Application
Development Alternative
for Intermediate Systems

SOLIDS is a new IBM program product for the Data Systems Environment; it consists of
a relational data base facility, a powerful query language, and a standard programming
interface to COBOL, PLlI, and Assembler. In this sense, it is a tool for the DP
professional.

In another sense, there are features that allow applications to be designed so that
SOLIDS is a very practical tool for the end user. When tailored by the DP professional,
or Information Center Specialist, SOLIDS is appropriate for the Information Center
environment.

Most importantly however, SOLIDS is an integral product of the Data Systems Environ
ment. It is designed to work in conjunction with other IBM Data Systems Environment
products such as CICS/DOSNS and DLII DOSNS.

Because SOLIDS is designed to work in conjunction with these products, the installation
can use SOLIDS in many ways, depending on the requirements of the application and
the capabilities of the end users. These ways are:

• Unplanned end-user query
• Stored query transactions
• Online CICS/DOSNS transaction programs
• Batch application programs

These effectively provide a "building block" approach to design and implementation. This
approach will be discussed later in this publication.

The relational data base can be shared with an interactive system such as VSE/ICCF.
COBOL, PLlI , and Assembler language programs can be compiled , edited, and tested
directly from the terminal with the results received back at the terminal. Standard submis
sion to DOSNSE batch, use of the interactive usability aids, the procedure processor,
and the online library system of ICCF are completely supported in this environment.

SOLIDS is flexible in permitting either centralized or decentralized administration of data
... and most administrative tasks can be performed via terminals.

SOLIDS is normally operated in a way that many users and applications can access
SOLIDS data concurrently. Data access can be controlled by a comprehensive authoriza
tion facility and a set of system catalogs. The system also includes facilities for controlling
the security and integrity of its data, even in the event of abnormal termination of applica
tion programs, SOLIDS itself, or the operating system.

SOLIDS also provides facilities for bulk-loading new data or data from existing systems
into its relational data base. For example, it may be desirable to apply the advantages of
SOLIDS to existing portions of DLII applications. The interactive query language includes
commands to extract data from the DLII data base and copy it into SOLIDS.

6

Objective

User Perception
of Data
Tabular View

Path-Free
Access

Relational
Language
Dynamic
Relationships

The Relational

Approach

An objective of the relational approach is to simplify data base design and processing for
programmers and end users. This is achieved through the use of a familiar form of
logical data organization-a table-and a high-level language especially designed to
take advantage of data in tabular form .

Traditionally, data in and out of business is in tabular form; that is, in the form of either
tables or reports, which have a title and columns of data. And, of course, in these tables
or reports are multiple lines or rows . The relational data structure is a table and allows
users to perceive their collection of reports as a collection of tables.

In the figure below, the rows of the INVENTORY table can be thought of as instances of
records. The columns INVPART, PNAME, and ONHAND can be thought of as fields
for these records. Note that the word "perceived" is essential; how this data is actually
stored is not relevant to the relational view.

INVENTORY Table

INVPART PNAME ONHAND

105 GEAR 0

106 GEAR 700

124 BOLT 900

125 BOLT 1000

In addition, the tabular view of data contains no physical access paths that are visible to
the user. This means that access paths, such as links, rings, chains, indexes, etc., do
not have to be learned and remembered by the user for purposes of navigating through
the data base. Therefore, since the user does not need to consider access paths, the
formulation of requests for data is simplified.

Relationships between rows in one table and rows in another can be established dynami
cally using the facilities of the relational language. For example, suppose we need to
determine the name of the suppliers of part 124 from the two tables shown below. 1

SUPPLIERS Table

SUPSUPP NAME ADDRESS

53 ATLANTIS CO. B OCEAN AVE. , WASHINGTON, D.C.
57 EAGLE HARDWARE 64 TRANQUILITY PLACE, APOLLO, MN
64 KNIGHT LTD. 256 ARTHUR COURT, CAMELOT, ENGLAND

QUOTATIONS Table

QUOSUPP QUOPART PRICE TIME ONORD

51 124 1.25 5 400
51 125 0.55 5 0
53 124 1.35 3 500

1 The names used herein are fictitious ; they are used solely for illustrative purposes and are not for identification
of any company.

7

Set
Processing

Tabular
Output

First, the supplier numbers (QUOSUPP) for part 124 need to be identified by examining
the QUOTATIONS table. Next, the supplier numbers obtained from this table are com
pared to the supplier numbers (SUPSUPP) in the SUPPLIERS table . When they match,
the system extracts NAMEs from those rows in the SUPPLIERS table.

This table-lookup process is accomplished using the operators of the relational language;
there is no need to use conventional programming techniques to obtain the information
needed.

The important point here is that many interrecord or intertable relationships can be
established by the user spontaneously. With conventional approaches, only those rela
tionships that were defined prior to the creation of the data base can be used this simply.

The relational language provides operators that process sets of records at a time, rather
than single record-at-a-time processing. A single relational request can be used to selec
tively retrieve data from multiple rows of multiple tables for presentation to the terminal
user. Similarly, a single relational request can be used to selectively update or delete
multiple rows of a single table . In conventional language approaches, such operations
would require multiple requests to the data manager.

The result of a relational query, or request, is also presented to the user in the form of a
table. By adding some commands to the original query, the user can make the query
result a permanent table. In this way, new tables that are (later) needed can be defined
dynamically and easily, can be generated online, and become immediately available
as part of the entire collection of tables within the system.

9

Simple
Underlying
Concept

Concise
Language

Responsive to
Changing
Requirements

Coexistent

The tabular view is a primary reason why a relational system is easy to understand. Since
the data structure is familiar to most users, there is greater potential for improved commu
nications with the data processing organization when specifying information requirements.

The relational query language used in SOLIDS is called Structured Ouery Language
(SOL). Its data handling capabilities , being geared to operations on sets of records,
can mean a significant reduction in the number of statements the user must provide,
compared to many existing languages.

There are many application areas-particularly those involving user analysis, reporting,
and planning-where the very nature of the application is constantly changing. Some
typical application areas are:

• Financial
- Budget analysis
- Profit and loss
- Risk assessment

• Inventory
- Vendor performance
- Buyer performance

• Marketing & sales
- Tracking & analysis

• Personnel
- Compliance
- Skills and job tracking

• Project management
- Checkpoint/milestone progress
- Development and test status

• EDP auditing
- Data verification
- Installation configuration

• Government/education/health
- Crime and traffic analysis
- Admissions/recruiting/research
- Medical.data analysis

These applications typify instances where it is of primary importance to establish inter
relationships within the data base and to define new tables.

The fact that the relational approach provides certain advantages over existing systems
for specific applications does not mean that it replaces them. SOLIDS is designed to work
in conjunction with several other IBM application development facilities in the Data Sys
tems Environment.

This means that the developer is not limited to a single approach to develop an applica
tion and can determine the most appropriate development technique for each phase
of the application.

10

Extendable to
the End User

Application
Prototyping

Data Management
System

Productivity Aspects
of SOLIDS

In many installations, the key to overall productivity is the ability of DP to offload the
appropriate portions of the development and maintenance of an application to the
end user.

The flexible design approach mentioned above allows an application to be designed with
the end user's capabilities in mind . This could enable the DP professional to implement
an application up to the point where the end user could create and execute his own
queries, thereby expanding the application on his own and reducing his dependence on
the data processing department.

Al l of these characteristics make SOLIDS a powerful prototyping tool. The terminal facili
ties of SOLIDS can be used to create prototype tables loaded with sample or production
data. Online queries can easily be written to demonstrate application usage. End users
can see the proposed scheme in operation prior to formal DP development. In this proto
type approach, people time and computer time are saved while design flaws are easily
corrected at an early phase.

Considering all of the facilities provided by SOLIDS and the fact that it operates in con
junction with CICS/DOSNS and DLiI DOSNS, it is obvious that elements of a data sys
tems environment are there. SOLIDS is especially appropriate for non-integrated
applications, or for those applications that must be implemented in a relatively short time.

12

New
Applications

A Variety of Building
Blocks to Help
You Build
an Application

Application Design
Approaches

Let's take a brief look at how an installation might use SOLIDS for new applications, or for
extending existing applications. We'll consider new applications first.

Created Ad Hoc
by the Queries
end user

Developed Predefined Parameter-
by the DP Queries Driven
professional Queries

!
Online Batch
Transaction Programs
Programs
(CICS)

Relational Data Base

As you can see from the illustration above, there are building blocks for both the DP
professional and the end user. Depending on the application, one cou ld initially develop
most of the basic functions of the application using the high level SOL language.

Once the data base is created, the end user, depending on his capabil ities, could begin to
write queries. Repetitively run queries could be predefi ned and stored for later use.
There is even the capabil ity to store queries so that they can be "parameter-driven:' just
like online transactions.

Of course, some of the more difficult queries will be written by DP, which may also elect
to code specific onl ine functions using a programming language. This decision to "hard
code" or use a programming alternative may be postponed unti l after the application
is verified.

13

Applicat ion
Extensions

Allowing the User
to Breathe New Life
into Existing
Applications

Ad Hoc Created
Queries by the

end user

I
Predefi ned Parameter Created and
Queries Driven assisted by

Queries the DP ..__..:======:..:======~___professional

Relational Data Base

i t

U Load
DLII Utility 1..----1 Other
Data Base Data

In many of today's applications, significant potential remains unrealized because the data
cannot be made more readily available to the end user. In such situations, data is main
tained on a regular schedule through some set of operational applications, possibly even
in a data base system. Often, however, the typical programming costs to extend the use
of that data for planning, reporting, and analysis purposes put a "lock" on the information.

SOLIDS can help "un lock" th is data. By using the extraction and loading facilities of
SOLIDS, "old data" can be given new life by transferring it to relational form. Both the DP
professional (or Information Center Specialist) and the using department could develop
the needed improvements using the interactive query language.

I

15

Highlights 	 The interactive query language consists of the Structured Ouery language (SOL) and
additional commands that provide access to tabular data. Using familiar words like
SELECT, FROM, WHERE, and others, you can

. • List all or parts of a table

• Sort or sequence the data

• Combine data in one table with data from another

• Perform calculations based on common arithmetic functions

• Invoke various built-in functions such as SUM and COUNT

• Format the output by adding a bottom page title, changing the top page title, and adding
subtotal and total lines, all of which can improve the appearance of the report

• Enter, update, and delete data

Several examples of these language capabilities will be shown later in this publication.
Before that, however, let's take a closer look at the structure of the language.

Structure 	 Retrieving data is the most fundamental task of SOL and, for this function, the SELECT
command is used. The basic form of the SELECT command is:

SELECT some data (field names)

FROM some place (table names)

WHERE certain conditions (if any) are to be met

In some instances, WHERE may not be necessary. This is shown in the first few sample

queries. However, many special needs can be expressed in the WHERE part of the query,

and these will be shown later.

Around this SELECT. .. FROM ... WHERE structure, the user can place other SOL com- .

mands in order to express the many powerful operations of the language.

In all uses of SOL, the user does I]ot have to be concerned with how the system should

get the data. Rather, the user tells the system what he wants. This means that the user

only needs to know the meaning of the data, not its physical representation, and this

feature can relieve the user from many of the complexities of data access.

- - -- --- -- --- ----- --- -- ----- --

16 The Interactive
Query Facility of
SQUOS

Sample Data Base Most of the examples in this book use three tables that we've created called INVENTORY,
QUOTATIONS, and SUPPLIERS. Let's look at the data in these tables by using simple
queries.

First, we'll list INVENTORY in part number sequence. The commands to do this are:

User
--------------------~~~ SE LECT *
Asterisk is .-------:-I FROM INVENTORY
shorthand for
"all fields "

Name of table from
which fields specified
in SELECT are obtained

Order the output by
part number

Indicates hard copy as
well as display

Hard-copy
Output

The first 50 characters
of the query are auto
matically printed when
no page title is speci
fied in the query.

_
.-----'-_ ORDER BY INVPART

,-PRI NT

.. 1/20/81 SELECT * FROM INVENTORY ORDER BY INVPART PAGE 1

INVPART PNAME ONHAND

105 GEAR 0

106 GEAR 700

124 BOLT 900

125 BOLT 1000

134 NUT 9 00

135 NUT 1000

171 GENERATOR 500

172 GENERATOR 400

181 WHEEL 1000

182 WHEEL 1100

207 GEAR 7500

209 CAM 5000

221 BOLT 65000

222 BOLT 125000

23 1 NUT 70000

2 32 NUT 110000

241 WASHER 600000

285 WHEEL 3 5000

295 BELT 85 00

---- - -- ------- ---- ---- -- ------------

17

User

Throughout this publi
cation hyphens are
used for continuing
SQL statements on
multiple lines when
entered from the
terminal.

Hard-copy
Output

Since we did not spec
ify the left-to-right
order of the columns in
the SELECT request,
the columns are pre
sented in the same
order defined when the
table was created.

Now let's see all of the data in the QUOTATIONS table and order the output by part within
supplier number:

SELECT *
FROM QUOTATIONS

-

ORDER BY QUOSUPP, QUOPART

PRINT

1/20/ 81 SELECT * FROM QUOTATIONS ORDER BY QUOSUPP,QUOPART PAGE

~ QUOSUPP QUOPART PRICE TIME ONORD

51 124 1. 25 5 400

51 125 0 . 55 5 0

51 134 0 . 40 5 500

51 135 0 . 39 5 1000

51 221 0.30 10 10000

51 231 0.10 10 5000

52 105 7.50 10 200

52 205 0.15 20 0

52 206 0.15 20 0

53 124 1. 35 3 500

53 125 0 . 58 3 0

53 134 0 . 38 3 200

53 135 0.42 3 1000

53 222 0.25 15 10000

53 232 0.10 15 20000

53 241 0.08 15 6000

54 134 0. 47 4 0

54 171 21. 75 20 200

54 209 18 . 00 21 200

54 221 0 . 10 30 5000

54 231 0 . 04 30 15000

54 241 0.02 30 10000

57 172 4 5.15 25 300

57 285 2 1.00 14 0

57 295 8. 50 21 2400

61 105 9 . 95 8 400

61 106 4 . 35 8 300

61 221 0 . 20 21 5000

61 222 0.20 21 10000

61 241 0.05 21 4000

64 106 4.85 10 0

64 181 5.65 15 400

64 182 7.05 10 400

64 207 29 . 00 14 2000

64 209 19 . 50 7 800

1

18 The Interactive
Query Facility of
SQUOS

Finally, let's create a listing of the SUPPLIERS table. In this case, we want a specific left
to-right appearance of the data in our list. This differs from the left-to-right appearance
in the data base. We specify this alteration in the SELECT statement.

User
---------------------~~. SELECT NAME,SUPSUPP,ADDRESS

This is the actual left- FROM SUPPLIERS
to-right appearance ORDER BY NAME
that we want the data PRINT
to have. As stored
in the SUPPLIERS
table, however,
SUPSUPP actually
appears before NAME.

Hard-copy 1/20/81 SELECT NAME,SUPSUPP,ADDRESS FROM SUPPLIERS ORDER BY PAGE 1
Output

NAME SUPSUPP ADDRESS

ATLANTIS co. 53 8 OCEAN AVE., WASHINGTON DC
DEFECTO PARTS 51 16 JUSTAMERE LANE, TACOMA WA
EAGLE HARDWARE 57 64 TRANQUILITY PLACE, APOLLO MN
KNIGHT LTD. 64 256 ARTHUR COURT, CAMELOT ENGLAND
SKYLAB PARTS 61 128 ORBIT BLVD., SYDNEY AUSTRALIA
TITANIC PARTS 54 32 SINKING ST., ATLANTIC CITY NJ
VESUVIUS, INC. 52 512 ANCIENT BLVD., POMPEII NY

NOTE: For ease of reference in using the examples in this book, the data in INVENTORY,

QUOTATIONS, and SUPPLIERS is shown on the foldout page attached to the back cover.

19

Defining a 	 The tabular form of data as stored in SQLlDS is easy to access and understand. There
Table 	 are no embedded pOinters or special paths to consider. The user just focuses on the data

and its meaning. These same characteristics allow the data definition and creation proc
ess to be simple as well.

Before a table can be loaded, it must first be defined. The following command was used
to define the INVENTORY table :

User

NOT NULL means each CREATE 	 SMALLINT NULL,TABLE INVENTORY (INVPART NOT •
row of the table must PNAME CHAR(10),
have a part number ONHAND INTEGER)

The QUOTATIONS table and the SUPPLIERS table were defined by these two
commands:

CREATE TABLE QUOTATIONS (QUOSUPP SMALLINT NOT NULL,
QUOPART SMALLINT NOT NULL,
PRICE DECIMAL(5,2),
TIME r SMALLINT,
ONORD INTEGER)- --.;----------' t

Halfword binary 	 _

Fullword binary CREATE TABLE SUPPLIERS (SUPSUPP SMALLINT NOT NULL,
NAME CHAR (15),
ADDRESS VARCHAR(35))

We also defined synonyms for the INVENTORY and QUOTATIONS tables to save key
strokes when entering their names. These are the commands we used:

CREATE SYNONYM INV FOR USERl.INVENTORY
CREATE SYNONYM QUO FOR USERl.QUOTATIONS

You will see how these tables can be loaded later in this publication.

20 The Interactive
Query Facility of
SQLlDS

Simple List Assume we want a list of only those parts for which the balance-an-hand is between a
and 1000 units; we want the list in part number sequence.

User 	 SELECT *
FROM INV
WHERE ONHAND BETWEEN 0 AND 1000
ORDER BY INVPART

Display INVPART PNAME ONHAND
Output ------- ---------- -----------

105 GEAR a
106 GEAR 700
124 BOLT 900
125 BOLT 1000
134 NUT 900
135 NUT 1000
171 GENERATOR 500
172 GENERATOR 400
181 WHEEL 1000

21

Queries Using More What if we wanted to see the supplier numbers for the parts identified in the last example
Than One Table and the quantities ordered from these suppliers. We also want to sequence the output

by part number within part name.

Refer to the foldout page of this publication. Notice that the quantity-ordered column
(ONORD) and the supplier number column (QUOSUPP) are in the QUOTATIONS table.
To answer this request, we will require information from the INVENTORY table and the
QUOTATIONS table. (This type of operation is often called a join of tables).

User SELECT PNAME,INVPART,ONHAND,QUOSUPP,ONORD
----------------------••FROM INV,QUO
Names of the tables for WHERE ONHAND BETWEEN 0 AND 1000
II ¥ ' Id d r AND QUOPART=INVPART

_a__'le__s__us_e__i_n______~ ORDER BY PNAME,INV_P_A_R_T__~ SELECT line .

Indicates matching
fields between tables

Display PNAME I NVPART ONHAND QUOSUPP ONORD
Output ---------

BOLT

124

900

51

400
BOLT 124 900 53 500
BOLT 125 1000 53 0
BOLT 125 1000 51 0
GEAR 105 0 52 200
GEAR 105 0 61 400
GEAR 106 700 61 300
GEAR 106 700 64 0
GENERATOR 171 500 54 200
GENERATOR 172 400 57 300
NUT 134 900 51 500
NUT 134 900 54 0
NUT 134 900 53 200
NUT 135 1000 53 1000
NUT 135 1000 51 1000
WHEEL 181 1000 64 400

Even from this simple example, some of the power of SQl should become obvious. Con
sider, from a programming point of view, what would be required to do the same thing:

A record from one file has to be read, the selection criteria evaluated, and the data
fields extracted. One of these fields will then be used to find the corresponding rec
ords from the other file. Then the other file has to be searched, using this matching
field. When a record is selected, the required data has to be extracted and proc
essed. In most cases, another record has to be read to see if there are any other
matching records to process.

These programming considerations tend to get even more complicated as the number of
matching files or tables increases.

This is not the case with SQl because it works on sets of records at a time, and because
the user does not have to tell it how to go about getting the data. In fact, there are search
optimizers in the relational access mechanism that attempt to minimize the amount of
data search processing for the user.

22

Formatting
a Report

User

Changes INVPART to
PART

Causes group indica
tion on DESCRIPTION

Subtotals orders

Titles report on top of
page

Hard-copy
Output

Subtotal lines

The Interactive
Query Facility of
SQLlDS

The appearance of the output from the previous query can be improved by making the
column headings more readable and adding a title. We can also create subtotal lines
of the orders for each part. For example, if we had just executed the query in the previous
example, these commands would generate the subsequent formatted report:

~ FORMAT COLUMN INVPART NAME 'PART'

FORMAT COLUMN PNAME NAME 'DESCRIPTION'

FORMAT COLUMN QUOSUPP NAME 'SUPPLIER'

FORMAT COLUMN ONORD NAME 'ON ORDER'

FORMAT COLUMN ONHAND NAME 'ON HAND'

~ FORMAT GROUP DESCRIPTION

FORMAT GROUP PART

- FORMAT SUBTOTAL 'ON ORDER'

r----FORMAT TITLE 'INVENTORY REPORT'

PRINT

01 / 20/ 81 INVENTORY REPORT

DESCRIPTION PART ON HAND SUPPLIER ON ORDER
---------- ----------- ------- -----------
BOLT 124 900 51 400

900 53 500

****** 900

125 1000 53 0
1000 51 0

****** 0

""*""*""* * 900

GEAR 105 0 52 200
0 61 400

****** ~OO

106 700 61 300
700 64 0

****** 300

*********** 900

GENERATOR 171 500 54 200

****** 200

172 400 57 300

*** * * * 300
----- -

.....
NUT 134 900

23

Built-In Functions

User

The built-in functions of SQL are another indication of the power of the language and can
save a significant amount of programming. For example, we can also find the total
orders for each of the part numbers in the preceding report by using the built-in function
SUM. This time, let's sequence the output by balance-on-hand in descending order.

SELECT QUOPART,PNAME,ONHAND,SUM(ONORD)
FROM INV,QUO
WHERE ONHAND BETWEEN 0 AND 1000
AND OUOPART = INVPART

--------------------~•• GROUP BY QUOPART,PNAME,ONHAND
The sum is calculated ORDER BY ONHAND DESC
for each unique combi
nation of these fields

Descending order

Display QUOPART PNAME ONHAND SUM(ONORD)
Output ------

181

WHEEL

1000

400

135 NUT 1000 2000
125 BOLT 1000 0
134 NUT 900 700
124 BOLT 900 900
106 GEAR 700 300
l71 GENERATOR 500 200
172 GENERATOR 400 300
105 GEAR 0 600

In this simple use of the SUM function, consider what a programmer would probably have
to do in order to accomplish the same thing.

First, a list of parts ordered has to be obtained and sequenced by part number within part
name. Then, a subtotal of the orders has to be computed by part number and saved.

Next, a listing for output has to be developed for those parts matching the search criteria
(performing all the things we had to do in "Queries Using More Than One Table") and,
for each part, the on-order subtotals previously saved must be retrieved. Finally, the
listing has to be sorted by quantity-on-hand, in descending sequence.

Almost everyone of these operations requires a record to be read, or some data stored
and a location posted. And, for each I/O operation, return codes and ancillary logic are
usually necessary.

24 	 The Interactive
Query Facility of
SQLlDS

Let's consider another example of the power of built-in functions. For every part in our
inventory, we want to list the minimum, maximum, and average prices charged by the
various suppliers and we also want to show a count of the number of suppliers that we
have for each part. We will use the MIN, MAX, AVG, and COUNT built-in functions to do this.

User ,
The COUNT(*) allows

SELECT QUOPART,PNAME,MIN(PRICE),MAX(PRICE) , AVG(PRICE),COUNT(*) us to count the number
of occurrences within
each group defined FROM INV,QUO

,-~,....~ WHERE QUOPART=INVPART
GROUP BY QUOPART,PNAME

by the GROUP BY
clause. ORDER BY QUOPART

Indicates matching
field between INVand f Means the fifth column

FORMAT COLUMN 5 PRECISION 3
QUO +

Reduces the precision Indicates the level at FORMAT COLUMN 6 NAME 'NO OF SUPPLIERS' to 3 decimal places which to calculate
the built-in functions

Replace heading of
column six

Display 	 QUOPART PNAME MIN(PRICE) MAX(PRICE) AVG(PRICE) NO OF SUPPLIERS
Output ------- ---------- ---------- ---------- ---------- --------------

105 GEAR 7 . 50 9.95 8.725 2
106 GEAR 4 . 35 4.85 4.600 2
124 BOLT 1. 25 1. 35 1. 300 2
125 BOLT 0 . 55 0 . 58 0.565 2
134 NUT 0 . 38 0.47 0.417 3
135 NUT 0 . 39 0.42 0.405 2
171 GENERATOR 21 . 75 21.75 21. 750 1
172 GENERATOR 45.15 45.15 45.150 1
181 WHEEL 5 . 65 5.65 5 . 650 1
182 WHEEL 7 . 05 7 . 05 7 . 050 1
207 GEAR 29 . 00 29 . 00 29 . 000 1
209 CAM 18.00 19.50 18.750 2
221 BOLT 0 . 10 0.30 0 . 200 3
222 BOLT 0.20 0 . 25 0.225 2
231 NUT 0.04 0.10 0.070 2
232 NUT 0.10 0 . 10 0.100 1
241 WASHER 0.02 0 . 08 0 . 050 3
285 WHEEL 21 . 00 21 . 00 21 . 000 1
295 BELT 8.50 8 . 50 8.500 1

25

Tailoring SOLIDS
for the End User

Tailoring
Creating
a View

User

SOLIDS was designed for a broad range of users with varying backgrounds and different
capabilities. While many people will be able to learn much of the query language, the
DP professional or Information Center Specialist can further simplify its use by creating
views, stored queries, and parameter-driven queries.

For some users, a single table may be considerably easier to work with than multiple
tables. In addition to tables, Sal supports views. A view is a logical (or "virtual") table
that is derived from one or more tables or other views. In general, views look like, and
can be operated on, just as if they were real tables . They can simplify data access
requests and can reduce keystrokes and errors.

To create a single-table view of the data from our three tables for the users in the Nuts
and Bolts Department (department 17) so that they may retrieve their data as if it were in
a single table, we could enter the following:

CREATE VIEW D17INVENTORY (SUPPNAME,ADDRESS,D17PART,PARTNAME,LEADTIME,
ONHAND,ONORDER,PRICE,TOTALPRICE) AS

SELECT NAME,ADDRESS,QUOPART,
PNAME,TIME,ONHAND,ONORD,PRICE,PRICE*ONORD

FROM INV,QUO,SUPPLIERS
WHERE INVPART = QUOPART
AND SUPSUPP = QUOSUPP
AND PNAME IN ('NUT', 'BOLT')

D17 INVENTORY

SUPPNAME ADDRESS D17PART PARTNAME LEADTIME ONHAND ONORDER PRICE TOTALPRICE

Users in Department 017 would think of their data as if it were all in a single table, as
shown above. Only the DP department would need to know that the data is actually stored
in several tables.

The end user is thus insulated from the actual physical data storage. Moreover, it is possi
ble for the underlying data storage to change (for example, the fields in a table could be
rearranged or new fields could be added) and the user would neither know or care.

26 The Interactive
Query Facility of

SQLlDS

Now that their data appears as a single table, the users' queries are simpler to write .
Consider how easily the following ad hoc requests might be answered by the inventory
department using SQLlDS.

How much do we owe TITANIC PARTS?

User
---------------------7~. SELECT SUM(TOTALPRICE)
TOTALPRICE is a pre- FROM D17INVENTORY
defined calculation WHERE SUPPNAME = 'TITANIC PARTS'

stored in the view

Display
Output

SUM(TOTALPRICE)

1100.00

How much do we owe our suppliers for BOLTS?

User SELECT SUM(TOTALPRICE)
FROM D17INVENTORY
WHERE PARTNAME = 'BOLT'

Display
Output

User

DISTINCT gives us a
count of the part num
bers that are distinct,
not just a count of part
numbers within the
D17PART column
(which would include
duplicates)

Display
Output

User

The % signs cause a
search for the charac
ter string anywhere
in the ADDRESS field.

SUM(TOTALPRICE)

10175.00

How many different parts do we stock?

L..-...:....-. SELECT COUNT(DISTINCT D17PART)
FROM D17INVENTORY

COUNT(DISTINCT D17PART)

8

Do we have a supplier located in TACOMA?

SELECT DISTINCT SUPPNAME,ADDRESS
FROM D17INVENTORY
WHERE ADDRESS LIKE '%TACOMA%'

Display SUPPNAME ADDRESS
Output

DEFECTO PARTS 16 JUSTAMERE LANE, TACOMA WA

http:10175.00

27

Tailoring
Stored
Queries

User

HOLD causes the
query to be held for
further processing
before execution

STORE causes the
currently held query to
be stored for execution
by name

START is used to exe
cute a query that has
been stored

Tailoring
Parameter-Driven
Queries

User

You can save a query for later use without having to re-enter it when it has to be used.

Let's say, for example, that the queries created on the D171NVENTORY view were going
to be frequently used by our inventory clerks. The query for the SUM of TOTALPRICE
for BOLTs could be made a permanent part of a clerk's query library by entering:

HOLD 	 SELECT SUM(TOTALPRICE)
FROM D17INVENTORY
WHERE PARTNAME = 'BOLT'

L-- STORE BOLTS

Whenever our inventory clerks have to run that report, they would enter:

START BOLTS

Users can also store a query in such a way that allows it to be tailored to meet specific
requests at execution time.

If a user wanted to be able to find the name and address of suppliers from any given city,
he could store a parameter-driven query that produced the result for a specific city by
entering:

HOLD 	 SELECT DISTINCT SUPPNAME,ADDRESS
FROM D17INVENTORY

-----------7----~~ WHERE ADDRESS LIKE '% &1 %'
&1 is the parameter for STORE SUPPCITY
which a city name
will be substituted by
the user when he
"starts " his query.

To execute this query for CAMELOT, the user would enter:

User START SUPPCITY (CAMELOT)

Display SUPPNAME ADDRESS
Output

KNIGHT LTD. 256 ARTHUR COURT, CAMELOT ENGLAND

28

Making
Changes to
Stored Data

Modifying
Data

User

Hard-copy
Output

The Interactive
Query Facility of
SQLlDS

SQLlDS allows users to modify, delete, and insert data into shared or private tables.
These operations can be performed interactively from the terminal and can be especially
useful to persons who would like to maintain their own records. The following examples
will give you an idea of the scope of the system's capabilities in this area.

Suppose supplier 51 increases his prices by 11 %. We have to update QUOTATIONS to
reflect this change.

UPDATE QUO
SET PRICE = PRICE * 1.11
WHERE QUOSUPP = 51

A subsequent query on this table would confirm the update.

SELECT * FROM QUO ORDER BY QUOSUPP

PRINT

1/20/ 81 SELECT * FROM QUO ORDER BY QUOSUPP PAGE 1

QUOSUPP QUOPART PRICE TIME ONORD
------ ------ --------- -----------

51 134 0.44 5 500
51 124 1. 38 5 400
51 221 0.33 10 10000
51 231 0.11 10 5000
51 125 0.61 5 0
51 135 0.43 5 1000
52 205 0 . 15 20 0
52 206 0.15 20 0
52 105 7.50 10 200
53 241 0.08 15 6000
53 232 0 . 10 15 20000
53 222 0.25 15 10000
53 135 0.42 3 1000
53 134 0.38 3 200
53 124 1. 35 3 500
53 125 0 . 58 3 0
54 209 18.00 21 200
54 134 0.47 4 0
54 171 21. 75 20 200
54 241 0.02 30 10000
54 231 0.04 30 15000
54 221 0.10 30 1;("'""'" -

57
57

295
285

8.50
21.00

21, ~

172 45 . , <:;

Users of views containing PRICE (such as D17INVENTORY) would automatically have
this increase reflected in their data.

29

Adding Columns Suppose that we require new columns in the QUOTATIONS table for DISCOUNTRATE
to a Table and DISCOUNTQTY. These columns may be added to the table using the following SQL

commands:

User

User

ALTER TABLE QUOTATIONS
ADD DISCOUNTRATE DECIMAL (2,2)

ALTER TABLE QUOTATIONS
ADD DISCOUNTQTY INTEGER

With SQLlDS, these data definitions are dynamically executed. All the existing rows of
the QUOTATIONS table are effectively expanded and stored with an initial "null" value
and the user need not be concerned with "reorganizing" the data.

Another feature of SQLlDS is that most queries and views that referred to the QUOTA
TIONS table before these columns were added do not have to be modified. For example,
the D171NVENTORY view is not affected by this modification.

Actual data for these new columns would be entered using a series of UPDATE com
mands. For example, assume that TITANIC PARTS (supplier number 54) has a discount
rate of 10 percent on parts over 10 dollars and a discount rate of 5 percent on parts 10
dollars or less. Furthermore, assume their discount quantity is 20 for the former and 100
for the latter sets of parts. This information can be added to the QUOTATIONS table
using the following UPDATE commands:

UPDATE QUOTATIONS
SET DISCOUNTRATE=.10,DISCOUNTQTY=20
WHERE QUOSUPP=54
AND PRICE > 10

UPDATE QUOTATIONS
SET DISCOUNTRATE=.05,DISCOUNTQTY=100
WHERE QUOSUPP= 54
AND PRICE <= 10

------- ------- ---------- ------------ ------------

30

User

Display
Output

Each user can set his
own "null" character for
reporting purposes.

Entering Data
from a
Terminal

User

The Interactive
Query Facility of
SQLlOS

To verify that updates were made, we can query the (newly expanded) QUOTATIONS
table. Notice that the quotations for which no discount rate or discount quantity has been
entered have "null" (?) entries in the corresponding columns.

SELECT QUOSUPP,QUOPART,PRICE,DISCOUNTRATE,DISCOUNTQTY
FROM QUOTATIONS
WHERE QUOSUPP > 53
ORDER BY QUOSUPP,QUOPART

QUOSUPP QUOPART PRICE DISCOUNTRATE DISCOUNTQTY

54 134 0.47 0.05 100
54 171 21.75 0.10 20
54 209 18.00 0.10 20
54 221 0.10 0.05 100
54 231 0.04 0.05 100
54 241 0.02 0.05 100
57 172 45.15 ? ?
57 285 21.00 ? ?

57 295 8.50 ? ?
61 105 9.95 ? ?
61 106 4.35 ? ?
61 221 0.20 ? ?
61 222 0.20 ? ?
61 241 0.05 ? ?
64 106 4.85 ? ?
64 181 5.65 ? ?
64 182 7.05 ? ?
64 207 29.00 ? ?

64 209 19.50 ? ?

Entire rows of data, or portions of rows of data, can be entered by the user directly from
the terminal. Suppose the purchasing department was negotiating contracts with new
suppliers. If supplier numbers were assigned, we could add new rows to the SUPPLIERS
table as follows:

--------------------7-.~ INSERT INTO SUPPLIERS (NAME,ADDRESS,SUPSUPP)
To insert a single row VALUES (' OLYMPUS CORP',' 12 KROE ST., COS COB CT' ,66)
into a table

Or

--------------------~•• INPUT SUPPLIERS (NAME,ADDRESS,SUPSUPP)
To insert multiple rows 'VILLAGE PARTS', '347 HILLSBORO AVE., PHILA PA' ,67
into a table 'PLASTICS INC.',' 16 HIGHMEADOW RD., ST. LOUI S MO' ,72

'SUPERIOR METALS', '160 SANDPIPER AVE., MOUNTAIN VIEW CA' ,70
END

32 	 Data and
System
Administration

In every business, someone is responsible for such assets as cash, inventory, and pro
duction, and for the standards and procedures that make a business run. Within a
data processing department, there is a similar need to control, audit, and protect its
resources.

This requires documentation about data, programs, queries, and users. It also means that
the data definitions and relationships between these items must be documented so that
they can be made available whenever changes occur. Frequently asked questions are:

• Who accesses the data and which programs use it?
• Which programmers are responsible for which applications?
• What will be affected by changing a particular data field?

All too often, the initial effort for creating and maintaining this information is greater than
a department can afford. And, as a result, this important information is scattered through
out the DP department: in program listings, in desk drawers, or in people's memories.

The System Catalogs 	 Data and system administration is aided by use of the SOLIDS system catalogs. These
of SQL/DS 	 catalogs are a special set of tables, which are totally integrated into the system, and

which contain descriptive information on data, programs, users, and other "objects" in the
SOLIDS system.

These tables look like and can be queried like any other tables in SOLIDS, except that
their contents are dynamic and maintained through the use of the SOL Data Definition
commands, rather than through UPDATE, INSERT, and DELETE commands. Some of
the items described by the SOUDS catalogs, and the specific catalog tables that
describe them are shown below:

Item 	 Catalog Name Comments

Tables SYSCATALOG Includes views
Columns SYSCOLUMNS Includes view columns
Programs SYSACCESS Information on programs
Programs SYSUSERAUTH More information on programs
Users SYSUSERAUTH User authorities
Synonyms SYSSYNONYMS User synonyms
Table usage SYSUSAGE Tables used by programs
Oueries STMTS Stored queries

Managing 	 Let's look at how these catalogs can be used to help manage a typical DP department
a Typical DP problem.
Department
Problem 	 A senior programmer (GEORGE) is transferred and we wish to find out which programs/

queries he wrote and what tables these programs/queries used. We also want to know
what tables he created.

------------------ ----------- ------------------ ----------

33

The following queries will give us this information:

• Find Programs Written by GEORGE

To find the programs written by senior programmer GEORGE, we would query the SYS
ACCESS catalog:

User SELECT TNAME,TIMESTAMP
______________________~~~FROM SYSTEM.SYSACCESS
Since all the catalogs WHERE CREATOR = 'GEORGE'

AND TABTYPE = 'x' . are "owned" by the
system, references to FORMAT COLUMN TNAME NAME PROGRAM

catalog names must be

FORMAT TTITLE 'GEORGES PROGRAMS'preceded by

"SYSTEM."
 PRINT

Hard-copy 1/20/81 GEORGES PROGRAMS PAGE 1

Output
 PROGRAM TIMESTAMP

ORDERPLAN 06/16/80.16:55:17
ORDERANALYSIS 06/13/80.18:54:32
PARTSBUDGET 06/16/80.17:15:23

• Find Tables Used by GEORGE's Programs

Tables used by GEORGE's programs can be found by querying SYSUSAGE:

User

Can be a real table or a SELECT DNAME,BCREATOR,BNAME,BTYPE
FROM SYSTEM.SYSUSAGE
WHERE BTYPE IN ('R', 'V')

----------------------~~AND DTYPE = 'x'
Using objects are AND DCREATOR = 'GEORGE'

ORDER BY DNAME,BCREATOR

view

programs r
__________________~ FORMAT COLUMN DNAME NAME PROGRAM

GEORGE's programs FORMAT COLUMN BCREATOR NAME 'TABLE OWNER'

FORMAT COLUMN BNAME NAME 'TABLE NAME'

FORMAT COLUMN BTYPE NAME 'TABLE TYPE'

FORMAT TTITLE 'TABLES USED · BY GEORGES PROGRAMS'

PRINT

Hard-copy 1/20/80 TABLES USED BY GEORGES PROGRAMS PAGE 1

Output
 PROGRAM TABLE OWNER TABLE NAME TABLE TYPE

ORDERANALYSIS JONESDA SUPPLIERS R
ORDERANALYSIS GEORGE D17INVENTORY V
ORDERPLAN JONESDA INVENTORY R
ORDERPLAN JONESDA QUOTATIONS R
PARTSBUDGET JONESDA QUOTATIONS R

34 Data and
System

Administration

• Find Tables Created by GEORGE

To find the tables created by GEORGE, we would query SYSCATALOG:

User
--------------------~-.. SELECT TNAME,TABTYPE
Table name and type FROM SYSTEM. SYSCATALOG

WHERE CREATOR = 'GEORGE'
--------------------~~.ORDER BY TABTYPE,TNAME
To separate views and
real tables FORMAT COLUMN TNAME NAME 'TABLE NAME'

FORMAT COLUMN TABTYPE NAME 'TYPE'

FORMAT TTITLE 'GEORGES TABLES'

PRINT

Hard-copy 1/20/81 GEORGES TABLES PAGE 1
Output

TABLE NAME TYPE

CUSTOMERS R
DEPT R
EMPLOYEES R
COMPOSITE V
DEPT PAY V
D17INVENTORY V
INV V
ORGANIZATION V
PAYCHECKS V
QUO V

Imagine how much work it would take to accumulate this information manually?

35

Securing
the Data Base

User

Another aspect of data admi nistration and control is data secu rity. Although not al l data is
considered to be "sensitive", most end-user applications require some level of data
authorization to control the reading and/or writing of data across the data base. The
ability to share access on tables and views within SQLlDS is provided by the GRANT and
REVOKE commands. These commands can be used only by those who have been
authorized to use them or by the owners of the tables and views.

Let's look at some examples.

Assume that the department manager has decided to allow all users to have only
retrieval (read) access to the SUPPLIERS table. He would grant their access privilege by
issuing the following command:

GRANT SELECT
ON SUPPLIERS
TO PUBLIC

As another example, the administrator could further authorize USER1 and USER2 to
update the ADDRESS column in SUPPLIERS:

GRANT UPDATE (ADDRESS)
ON SUPPLIERS
TO USER1,USER2

JONES is in the Purchasing Department and negotiates contracts with suppliers num
bered 51 and 53. Let's allow JONES to have update privileges only on these suppliers for
the PRICE and TIME columns in the QUOTATIONS table.

First, we define a view on QUO that subsets the data for suppliers 51 and 53 only.
(JONES already has SELECT access to QUO.)

CREATE VIEW JONESQUO
AS SELECT * -

-

FROM QUO -
WHERE QUOSUPP IN (51, 53)

Then we grant update access on this view:

GRANT UPDATE (PRICE,TIME)
ON JONESQUO
TO JONES

The authorization capability of SQLlDS is quite thorough and can be used to establish
similar authorizations for other operations such as ALTER, DELETE , and INSERT.

37

Loading Data
from Sequential
Files

Ouite often the information used in analysis and planning applications is derived directly
from data stored in existing production files. Generally, the user performing the analysis
requires the data from different pOints of view and arranged rather differently than it may
have been structured for the production applications.

By loading their data into relational tables, these users can obtain the freedom necessary
to do various queries across these tables in ways which perhaps could not have been
easily anticipated and predefined.

Finally, the interactive query language gives users the opportunity to directly access thei r
data with less dependence on the data processing professional to write a program for
each of their requests.

Although the user could directly enter his data from the terminal, to meet bulk loading
requirements SOLIDS provides various faci lities for loading large volumes of data
into relational tables from existing files.

Typically, many information needs can be satisfied simply by putting the data online and
allowing users to directly access it.

SOLIDS provides a batch uti lity program, called Data Base Services (DBS) , that provides
several supportive functions for maintaining the system. The DATA LOA0 command of
the DBS Utility allows you to load rows into a previously defined SOLIDS table from data
contained in a user-created sequential file (SAM) .

We mentioned earlier that SOLIDS can be used in conjunction with an interactive system
such as IBM's VSE/ICCF. In this way, even batch programs can be invoked by users
from their terminals. Invocation of the DBS utility program is a good example of this
"batch" mode of execution.

IRelatlooal Data Base

1 1

LJ Load
DLiI Utility _---1 Other
Data Base Data

38 Loading Data from
Existing Files

Load the
"Equipment" File
into SOLIDS

Many installations maintain a capital equipment fi le to keep track of depreciated assets,
delivery schedu les, and costs. If this data were loaded into SOLIDS, then the system's
easy-to-use query faciliti es would allow the DP department to make timely use of this
information and keep abreast of changes readily.

Let's assume that the "Equipment" file is sequential (SAM) and stored on DASD. The
ICCF user can load this data into SOLIDS using the ICCF library support and the SOLI
OS DBS utility in the following way.

First, using the ICCF editor, he could build a DBS job in an ICCF library member (call it
EOIPLOAD). The resulting job stream would look like this:

----------------------~.~/LOAD ARIDBS
This statement obtains / FILE NAME=EQUIP,SER=xxxxxx

/OPTION GETVIS=AUTOthe DBS utility
.-----/DATA

CONNECT GEORGE IDENTIFIED BY PSWRD
CREATE TABLE EQUIPMENT (EQUIPTYP SMALLINT,

NAME CHAR(15),
This statement says the
DBS command cards SERIALNO INTEGER,
follow 	 MODELNO CHAR(10),

FUNDNGCD SMALLINT,
LOCATION CHAR(II),This card tells DBS
ACQDATE CHAR(6),

who the user is PVALUE INTEGER,
LVALUE INTEGER);

DATALOAD TABLE (EQUIPMENT)
EOUIPTYP 2-3
NAME 5-19
SERIALNO 21-28
MODELNO 31-40
FUNDNGCD 41-42
LOCATION 44-55
ACQDATE 58-63
PVALUE 68-77
LVALUE 78-87

INFILE (E QUIP PDEV (DASD))

This job could then be run by executing the library member:

/ EXEC EQIPLOAD

The DBS utility messages could be transmitted to the terminal so the user would see
when his table was loaded. At that point, he could sign on to SOLIDS and immediately
begin to query the new table.

39

Extracting and
Loading Data from
DL/I Data Bases

The online DLiI EXTRACT facil ity allows users to issue requests for DLiI data from their
terminals, yet provides the system administrator with a high degree of central control.
This arrangement allows the Data Base Administrator to determine the proper time to
actually execute the data transfer. The most appropriate time, for example, may be at off
peak hours .

All phases of the extraction process are invoked by the interactive query language and a
typical application is described in the following examples.

Let's assume that the INVENTORY table data comes from our DLiI data base. Before the
SOLIDS EXTRACT facility can communicate with DLlI, the system administrator must
first describe to SOLIDS the DLiI data needed by INVENTORY.

This is done online, using DEFINE commands of the interactive query language (not
shown) . These definitions are stored in the SOLIDS catalogs, and refers to special kinds
of tables called external data tables (EDTs).

In our example, let's say that the system administrator called this external data table
INVDB_PARTS, and that USER1 and others want to access it in order to load their tables.

Using the following commands, the administrator gives three users the authority to issue
EXTRACT commands against INVDB_PARTS:

Administrator GRANT EXTRACT ON INVOB_PARTS TO USERI
GRANT EXTRACT ON INVDB_PARTS TO USER2
GRANT EXTRACT ON INVOB_PARTS TO USER3

Once a user has been granted "extract" privileges, he can request that the DLiI data be
copied to the SOLIDS tables for which he has been authorized for insert operations.

User (USER1) EXTRACT INTO INV(INVPART,PNAME ,ONHAND)
SELECT(PARTS_NUMBER,PARTS_DESCR,PARTS_BALANCE)

--------------------7-~~FROM SA.INVDB_PARTS
The SA owns INVDB
and is sharing it with
these users

The system will put the request on the EXTRACT queue, and assign an EXTRACT ID
(extract identification number) for the request. An information message is issued to the
user (USER1) giving him the EXTRACT ID (for example, 56) .

System
EXTRACT REQUEST NOW IS WAITING TO BE SUBMITTED.
EXTRACT 10 IS 56.

40 Loading Data from

Existing Files

At the appropriate time, the administrator determines if there were any outstanding
extract requests and submits the queue of INVDB requests for execution as follows:

Administrator
------------------~~· READQ *
The Administrator is
asking for all outstand
ing requests

System EXTRACTID STATUS EXTRACTOR EDTNAME DEFINER FNAME

56 WAITING USERI I NVDB_PARTS SA INVDB

Administrator
----------------:--'.~SUBMIT INVDB
The Administrator is
submitting all requests
against the INVDB Users can determine the status of their extracts by entering:
data base

User (USER1)
----~----~------~~. READQ *
The user is asking for
the status of all his
requests The status of the user's requests wil l be displayed. If the extract run has been completed,

the system responds as follows:

System EXTRACTID STATUS TNAME CREATOR EDTNAME DEFINER

56 DONE INV USER1 I NVDB_PARTS SA

With the run completed, USER1 would then want to delete the entry in the EXTRACT
queue. This would be done by issuing the DELETEQ request for EXTRACTID 56:

User (USER1) DELETEQ 56

The user-to-system dialogue faci lity automates many of the manual activi ties typical of
data extraction procedures. It allows users and the system administrator to carryon their
regular activities without needing to be in constant touch with one another.

42

Online
Transactions
Via COBOL, PLlI,
or Assembler

Developing Transaction
Programs with CICS/OOS/VS

SOLIDS is not just for end-user access. One can also use its facilities in a normal appli
cation program.

In order to provide special fu nctions, or to access other data (e.g. DLlI) along with SOLI
OS data, or to improve the efficiency of highly repetitive operations, it may be more
appropriate to develop online tran saction programs instead of writing interactive SOL
queries.

As an application programmer, you can develop online transactions in one of these host
programming languages by using SOL statements inline in your program.

Let's see how we might do this in a COBOL program that will be executed as a CICS
transaction.

Suppose the purchasing department wants to determine the suppliers of "overpriced"
parts so that it can renegotiate orders.

The transaction program will have to develop a list of suppliers whose price for a part
exceeds the average price for that part.

For each of these suppliers, the program also has to retrieve the part numbers, the
quantities on hand for these parts, and the quantities our customers are ordering from
us for the parts.

All but the customer order information can be retrieved from the SOLIDS data base.
However, our customer order entry system, which is on DLlI, uniquely contains the cus
tomer orders. Therefore, the program has to access both the SOLIDS and the DLII
data bases.

We want the program to develop screens similar to the one shown below, giving the
purchasing agent the information needed.

SUPPLIER STATUS
F OUANTITY
L ON ORDER TOTAL
A INV FROM SUPPLIER AVERAGE CUSTOMER
G SUPPLIER # PART # STATUS SUPPLIER PRICE PRICE ORDER

* 	 51 221 65,000 10,000 . 30 . 20 12,450
51 231 70,000 5,000 .10 .07 55,000

* 	 53 241 60,000 6,000 . 08 .05 26,000
* 	 64 209 5,000 800 19.50 18.75 975

User
~ Terminal

43

Portions of a COBOL program to retrieve this information are shown below.

WORKING STORAGE SECTION.
--------------------~~---.~ EXEC SQL INCLUDE SQ LCA END-EXEC
This causes the SOL
return code structure to
be automatically gener r-----~~~ EXEC SQL BEG I N DECLARE SECTION END-EXEC .
ated in the program. 01 SUPP PIC S9(9) COMPo

01 PART PIC S9(9) COMP o
This section identifies 01 PRICE PIC S9(3)V9(2) COMP-3.

01 ONORD PIC S9(9) COMPothe program variables AVPRC PIC S9(3)V9(2) COMP-~
to be used in SOL --'''Q P TC S9 (9) r (\M"
statements.

PROCEDURE DIVISION:

---------------------~I~--~~ EXEC SQL WHENEVER SQLERROR GOTO
This statement identi- ERROR-RECOVERY END-EXEC.
fies where to find error-
handling logic for
SOL errors. r------.~ EXEC SQL DECLARE Cl CURSOR FORI SELECT QUOSUPP,QUOPART,PRICE,ONORD,AVPRC,INVOH

FROM QUO, TEMP
This statement defines WHERE QUOPART = TEMP PART

AND PRICE > AVPRCa cursor for stepping
END-EXEC . through the query

results one row at a
time.

GETNEXT.

--------------------~~--~.EXEC SQL FETCH Cl
The FETCH statement INTO :SUPP, : PART, : PRICE, :ONORD, :lWPRC, : I NVOH
retrieves one row of the END- EXEC.
query result and puts
the field values in
the program variables CALCORDER.
identified by the INTO
clause.

I • BUILDMAP.
This routine builds the
output screen (code
not shown) .

r------~.~ EXEC DLj I GET UNIQUE USING PCB(l)
I SEGMENT (PARTSEG) WHERE (KEY = PART-NUMBER) INTO

(PART-SEG- IN) END-EXEC.For each new part, a
OW call is executed to I
retrieve the customer
order directly from EXEC CICS RETURN END-EXEC.
the OW data base.

The program could
also make an evalua
tion of the inventory
status and the cus
tomer orders, based on
other indicative infor
mation, and flag those
supply orders that
appear cancelable.
The purchasing agent,
of course, would make
the decision. (This
code IS not shown.)

, ,

45

Using Multiple
Queries Together
Creating a Temporary
Table Ouerying
Three Tables

User

Result

The SOL language exploits the power of relational operations and allows the user to
clearly state the solution to solve the problem .

The examples that follow are more complex than the earlier examples of the SOL lan
guage shown. These examples are presented so that you can appreciate the power and
scope of the SOL relational operations, although , at this point, you may not completely
understand the language.

At the very least, these sample queries should make it clear that an SOL user, in rela
tively few statements, can define operations that could take several pages of statements
using traditional programming languages and perhaps several days to debug.

Assume that our Inventory department is instituting a new ordering policy: "NEW
ORDERS MUST EXCEED TWICE THE REMAINING BALANCE:' Let's see those parts,
with supplier and price, when this rule is not in effect.

As you can see from the output in the "minimax" example of the "Built-in Functions"
section, more than one supplier usually supplies each part, and there may be multiple
orders for a part. However, in our data base, there is no single field that contains the total
orders for each part. (This often happens in a data base. One does not always store
computed fields for every requirement.)

One simple approach to solving our problem when we need to know the total orders is
shown below.

First Step: First we build a temporary table creating the field we need (TOTORDER) , and
then we query against that field.

CREATE TABLE TEMP (TEMPPART I NTEGER, TOTORDE R I NTEGER)

I NSERT INTO TEMP VALUES SELECT QUOPART , SUM(ONORD)
FROM QUO
GROUP BY QUOPART

TEMP Table

TEMPPART TOTORDER
106 300

124 900

125 0

295 2400

-- - --- - ---------- - - ----- ---------- ------------ ---------- - -

46 Advanced

Uses of SOL

Second Step: Now we can access the new table, along with the QUOTATIONS and
INVENTORY tables, to get our answer.

SELECT QUOPART,PNAME, QUOSUPP ,PRICE,ONHAND, ONORD
User 	 FROM QUO,I NV , TEMP
--------------------~~.~WHERE QUOPART=INVPART
Matching fields r--:----" AND QUOPART=TEMPPART
between QUO and INV 	 AND TOTORDER < 2 * ONHAND

ORDER BY QUOPART

Matching fields
between QUO and
TEMP

Display QUOPART PNAME QUOSUPP PRICE ONHAND ONORD
Output

106 GEAR 61 4.35 700 300
106 GEAR 64 4.85 700 0
124 BOLT 51 1. 25 900 400
124 BOLT 53 1. 35 900 500
125 BOLT 51 0.55 1000 0
125 BOLT 53 0.58 1000 0
134 NUT 51 0.40 900 500
134 NUT 53 0.38 900 200
134 NUT 54 0.47 900 0
171 GENERATOR 54 21.75 500 200
172 GENERATOR 57 45.15 400 300
1B1 WHEEL 64 5.65 1000 400
1B2 WHEEL 64 7.05 llOO 400
207 GEAR 64 29.00 7500 2000
209 CAM 64 19.50 5000 BOO
209 CAM 54 1B.00 5000 200
221 BOLT 51 0 . 30 65000 10000
221 BOLT 54 0.10 65000 5000
221 BOLT 61 0.20 65000 5000
222 BOLT 61 0.20 125000 10000
222 BOLT 53 0.25 125000 10000
231 NUT 54 0.04 70000 15000
231 NUT 51 0.10 7000.0 5000
232 NUT 53 0.10 llOOOO 20000
241 WASHER 53 O.OB 600000 6000
241 WASHER 54 0.02 600000 10000
241 WASHER 61 0.05 600000 4000
2B5 WHEEL 57 21.00 35000 0
295 BELT 57 B.50 8500 2400

47

Third Step: Since we no longer need the data in the TEMP table , we can elect to DROP
(erase) it.

User DROP TABLE TEMP

You will see how all of the preceding can be done in a single query later. Again, th ink of
how much more effort would have been required to do th is in a non-SQLlDS environment.

Summary CREATE TABLE TEMP
QUO TEMP

First Step: EHE .. I---t--i
EHE INV

j j - §;§
Second Step: ~ SELECT FROM QUO, INV, TEMP

U
DROP TABLE TEMP

Third Step:

48

Subqueries

Advanced
Uses of SQl

When one query is embedded in another, it is called a subquery. One reason why SOL is
so powerful is that the user can build complex queries by an assembly of many simple
queries.

Subqueries are usually evaluated once during the processing of the overall query, and
their resulting "answer list" is substituted directly into the main query.

Depending on how the user structures his subquery, it can operate in a different way.
The following examples show various ways of writing a subquery.

To find those quotations for part 134 in which the price is greater than the minimum price
for that part, we could enter:

User
--------------------~~ SELECT QUOSUPP,PRICE
This is the main part of FROM QUO
the query WHERE QUOPART = 134

AND PRICE >
--------------------~---~~ (SELECT MIN (PRICE)
This is the sub query FROM OUO

WHERE-QUOPART = 134)

Display QUOSUPP PR I CE
Output

51 0.40
54 0 . 47

Now to find those quotations for part 105 in which the price is greater than the average
unit price for all the parts in our inventory, we enter:

User 	 SELECT OUOSUPP,PR I CE
FROM QUO
WHERE OUOPART = 105
AND PRI CE >

(SE LECT AVG(PR I CE)
FROM QUO)

Display QUOSUPP PRICE
Output

6 1 9.95
52 7.50

- -- -- -- - ---- - - ------ - -- -

49

Repeating In the previous two examples of subqueries, the subquery was processed once and the
Subqueries resulting value substituted into the main query. The following example shows a subquery

that is executed repeatedly, once for each row in the table.

Let's find those suppliers whose price for a part exceeds the average price for that part
and show the supplier, part, and price.

User
------------------'1 I SELECT QUOSUPP,QUOPART, PRI CE
The 'X' indicates that ~FROM OUO X

WHERE~PRICE >
the subquery should be (SELECT AVG (PR I CE) _

processed for each FROM QUO _

selected row in QUO. ,----------_ WHERE X. QUOPART QUOPART

'X' is a character string ORDER BY QUOSUPP

the user creates of

his own choosing. (e .g.

'Y', 'Each ', etc.)

Means "find the aver

age price for each

part we SELECT from

the QUOTATIONS

table "

Display QUOSUP P QUOPART PRICE
Output

51 22 1 0.30
51 231 0.10
53 241 0.08
53 222 0.25
53 135 0.42
53 124 1. 35
53 125 0.58
54 l34 0.47
61 105 9.95
61 221 0.20
61 241 0.05
64 106 4 . 85
64 209 19.50

Looking over these last three examples, you can see the subtle power of subqueries.
Within the basic SELECT.FROM .. WHERE structure, the user can concisely direct SOU
OS to do precisely what is needed, just by a sl ight modification of the query. And it
doesn't require learn ing different commands to perform each of the variations of these
special operations.

50 Advanced
Uses of SQL

Repeating Let's go back to the example where we wanted to know about those parts on order that
Subqueries with were less than twice the balance-on-hand. Our previous solution involved building a
Multiple Tables temporary table.

We can obtain our answer in another way by using a repeating subquery. This technique
is shown below.

Let's see the parts where the total quantity ordered is less than twice this balance.

SELECT QUOPART,PNAME, QUOSUPP,PRICE , ONHAND,ONORD
FROM INV, QUO X
WHERE QUOPART=I NVPART

User AND 2 * ONHAND >
------------------------•• (SELECT SUM(ONORD)
We want to calculate FROM QUO -
the total orders each WHERE X.QUOPART QUOPART)
time we SELECT ORDER BY QUOPART

another part number
from the INV table.

Display
Output

QUOPART PNAME QUOSUPP PRICE ONHAND ONORD
- - --- --------- ---- -- -------- - ------ ---- - - --- --- -- --

106 GEAR 6 4 4.85 700 0
106 GEAR 61 4.35 700 300
124 BOLT 53 1. 35 900 500
124 BOLT 51 1. 25 900 400
125 BOLT 51 0.55 1000 0
125 BOLT 53 0.58 1000 0
134 NUT 53 0.38 900 200
13 4 NUT 54 0.47 900 0
134 NUT 51 0 . 40 900 500
171 GENERATOR 54 21. 75 500 200
172 GENERATOR 57 45.15 400 300
181 WHEEL 64 5.65 1000 400
182 WHEEL 64 7 . 05 1100 400
207 GEAR 6 4 29.00 7500 2000
209 CAM 64 19.50 5000 800
209 CAM 54 18.00 5000 200
221 BOLT 51 0 .30 65000 10000
221 BOLT 61 0 . 20 65000 5000
221 BOLT 5 4 0.10 65000 5000
222 BOLT 61 0.20 125000 10000
222 BOLT 53 0.25 125000 10000
231 NUT 51 0.10 70000 5000
231 NUT 5 4 0.04 70000 15000
232 NUT 53 0.10 110000 20000
241 WASHER 53 0.08 600000 6000
241 WASHER 61 0 . 05 600000 4000
241 WASHER 54 0.02 600000 10000
285 WHEEL 57 21 . 00 35000 0
295 BELT 57 8.50 8500 2 400

The technique above and the approach using temporary tables are both valid solutions.
An advantage of the SQL language is that one can choose the way that feels most
comfortable.

The query above used the QUOTATIONS table twice : once in the main part of the query
to get the detail information (suppl ier number, price, quantity ordered), and then again
in the subquery, to get the total ordered (SUM(ONORD)) .

Now we're going to show how you can conceptually access a single table to get informa
tion from two different rows in the same table.

------- ------- -------

51

Working on Let's display the maximum and minimum prices for each part in our data base, and show
Two Rows at the corresponding supplier numbers. (The maximum and minimum prices are associated
a Time with different suppliers, and therefore are in two different rows of the QUOTATIONS table.)

We're going to imagine that we have two "virtual" copies of the QUOTATIONS table. From
one of these we're going to get the maximum price and supplier number for each part,
and from the other, we 're going to get the minimum price and supplier number.

Just as we did earlier, we'll make up character strings MX and MN and call the two copies
of the QUO table QUO MX and QUO MN . This will allow us to distinguish between
similarly named fields from the two tables .

User 	 SELECT MX.QUOPART,MAX(MX.PRICE),MX. QUOSUPP,MIN(MN.PRICE),MN .QUOSUPP
FROM QUO MX, QUO MN
WHERE MX . QUOPART = MN.QUOPART
AND MX . PRICE = (SELECT MAX(PRICE)

FROM QUO
WHERE QUOPART = MX.QUOPART)

AND MN . PRICE = (SELECT MIN(PRICE)
FROM QUO
WHERE QUOPART = MN.QUOPART)

GROUP BY MX . QUOPART,MX . QUOSUPP,MN . QUOSUPP
ORDER BY MX.QUOPART

Display 	 QUOPART MAX(PRICE) QUOSUPP MIN(PRICE) QUOSUPP
Output ---------- ---------

105 9.95 61 7.50 52

106 4.85 64 4 . 35 61

124 1. 35 53 1. 25 51

125 0.58 53 0.55 51

134 0.47 54 0.38 53

135 0.42 53 0.39 51

171 21. 75 54 21.75 54

172 45.15 57 45 . 15 57

181 5.65 64 5.65 64

182 7.05 64 7.05 64

205 0.15 52 0 . 15 52

206 0.15 52 0 . 15 52

207 29.00 64 29.00 64

209 19.50 64 18 . 00 54

221 0.30 51 0 . 10 54

222 0.25 53 0 . 20 61

231 0.10 51 0.04 54

232 0.10 53 0.10 53

241 0.08 53 0.02 54

285 21 . 00 57 21.00 57

295 8 . 50 57 8.50 57

Using this approach, a rather complicated inquiry is simplified by a two-table query.

53

An Application
Development Tool
That is Easy to Use

Improves Produc
tivity for the DP
Professional and
the End User

Allows for Faster
Implementation
of New Systems

Cost Effective
Alternative

SOLIDS can provide your installation with a comprehensive development capability that
can span a wide range of users and applications.

The underlying relational data structure and concise interactive language permeate all
aspects of SOLIDS and provide the DP department with a powerful yet easy-to-use
alternative to add to its repertoire of application development tools.

For the DP department, the productivity gains obtained can be considerable, either by
using SOL directly, or by offloading much of the reporting, analysis, and planning aspects
of applications to the user department. On the other hand, end-user departments can
begin using the data they have long needed. They can gain the benefits from its
increased availability, getting more of the right data at the right time.

From application specification to production operation, the productivity aspects of SOLI
DS affect virtually every phase of developmenLfrom the initial discussions with the user
departmenLto building the data base ... to validating the results with prototype queries.

If you have applications that are constantly changing, have a short life cycle, or involve
stand-alone non-integrated data, SOLIDS may offer the best development alternative
at a lower cost.

Whatever your current application development approach is, SOLIDS may be the appro
priate addition you need to complement your existing development and end-user strate
gies in order to satisfy the growing demands of the 80's.

INVENTORY Table
I NVPART PNAME

105 GEAR
106 GEAR
124 BOLT
125 BOLT
134 NUT
135 NUT
171 GENERATOR
172 GENERATOR
181 loJHEEL
182 WHEEL
207 GEAR
209 CAM
221 BOLT
222 BOLT
231 NUT
232 NUT
241 WASHER
285 WHEEL
295 BELT

QUOTATIONS Table

QUOSUPP QUOPART

51 124
51 125
51 134
51 135
51 221
51 231
52 105
52 205
52 206
53 124
53 125
53 134
53 135
53 222
53 232
53 241
54 134
54 171
54 209
54 221
54 231
54 241
57 172
57 285
57 295
61 105
61 106
61 221
61 222
61 241
64 106
64 181
64 182
64 207
64 209

SUPPLIERS Table

SUPSUPP NAME

51 DEFECTO PARTS

ONHAND

0
700
900

1000
900

1000
500
400

1000
1100
7500
5000

65000
125000

70000
110000
600000

35000
8500

PRICE TIME ONORD

1. 25 5 400
0.55 5 0
0.40 5 500
0.39 5 1000
0.30 10 10000
0.10 10 5000
7.50 10 200
0 . 15 20 0
0.15 20 0
1. 35 3 500
0.58 3 0
0.38 3 200
0.42 3 1000
0.25 15 10000
0 . 10 15 20000
0.08 15 6000
0.47 4 0

21.75 20 200
18.00 21 200
0.10 30 5000
0 . 04 30 15000
0.02 30 10000

45 . 15 25 300
21 . 00 14 0

8.50 21 2400
9.95 8 400
4.35 8 300
0.20 21 5000
0.20 21 10000
0 . 05 21 4000
4.85 10 0
5.65 15 400
7.05 10 400

29.00 14 2000
19 . 50 7 800

ADDRESS

16 JUSTAMERE LANE, TACOMA WA
52
53

VESUVIUS, INC.
ATLANTIS CO.

512 ANCIENT BLVD., POMPEII NY
8 OCEAN AVE . , WASHINGTON DC

54 TITANIC PARTS 32 SINKING ST., ATLANTIC CITY NJ
57
61
64

EAGLE HARDWARE
SKYLAB PARTS
KNIGHT LTD.

64 TRANQUILITY PLACE, APOLLO MN
128 ORBIT BLVD., SIDNEY AUSTRALIA
256 ARTHUR COURT, CAMELOT ENGLAND

International Business Machines Corporation
Data Processing DIvIsion
1133 Westchester Avenue. White PlainS, N.V. 10604 USA

IBM World Trade Amerrcas Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, NY. 10591 USA

IBM World Trade Europe Middle East Africa Corporation
360 Hamilton Avenue, White PlainS. NY. 10601 USA

	f1
	f2
	toc
	toc1
	1
	2
	3
	4
	5
	6-7
	8
	9-10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	f3
	f4
	f5
	f6

