
Program Product

SC28-1 ~09-0
File No. S370-39

TSO Extensions
Programmer's Guide
to the Server-Requester
Programming Interface for
MVS / Extended Arch itectu re

Program Number 5665-285

-~- ----- .-- --------- -. ------ -- ----------~-,,-

First Edition (September 1986)

This edition applies to TSO Extensions (1'SO/E) Release 3, Program Number 5665-285,
and all subsequent releases until otherwise indicated in new editions or Technical
Newsletters. Changes are made periodically to the information herein: before using this
pUblication in connection with the operation of IBM systems, consult the latest IBM
System/370 Bibliography, GC20-OOO1, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
references to an IBM program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any functionally equivalent
program may be used instead.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Information
Development, Department D58, Building 921, PO Box 390, Poughkeepsie, New York
12602. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1986

Preface

About this Book

Audience

Organization

The server-requester programming interface (SRPI) of the TSO Extensions
Enhanced Connectivity Facility lets you write server programs. The servers can
provide MVS host computer services, data, and resources to requester programs
on IBM personal computers.

The host computer must be running TSO Extensions (TSO/E) Release 3 with
MVS/Extended Architecture (MVS/XA).

This book tells you how to write an MVS server to receive a service request,
process the request, and return a reply to the requester. The book includes a
sample server, along with information on installing, testing, and debugging
servers.

This book is for the following audience:

• Application programmers who design and write MVS servers and server
initialization/termination programs.

• System programmers who allocate and initialize the data sets that make MVS
servers and diagnosis information available to users.

The audience should be familiar with MVS programming conventions and the
assembler language.

"Chapter 1. Introduction" describes MVS servers and how they provide MVS
services, data, and resources to requester programs.

"Chapter 2. How to Write a Server" describes the input a server receives, the tools
a server can use to process requests, and the output a server must provide.

Preface 111

"Chapter 3. How to Write a Server Initialization/Termination Program" describes
how to write a program that initializes one or more servers, obtains resources for ~
them, and terminates them. •

"Chapter 4. How to Install a Server" describes how to allocate and initialize the
data sets that give users access to servers and diagnosis information.

"Chapter 5. Testing and Diagnosis" tells how to use the MVSSERV command
processor and test a server. This chapter also tells how to use the MVSSERV
trace data set to diagnose any problems.

Related Publications

You may want the following books for help with writing servers in assembler:

• OS/VS, DOS/VSE, and VM/370 Assembler Language, GC33-4010

• OS/VS, VM/370 Assembler Programmer's Guide, GC33-4021

You may want the following books for related information about IBM Enhanced
Connectivity Facilities and MVS:

• Introduction to IBM System/370 to IBM Personal Computer Enhanced
Connectivity Facilities, GC23-0957

Introduces IBM Enhanced Connectivity Facilities, and the IBM host and
personal computer hardware and software configurations supported.

• IBM Programmer's Guide to the Server-Requester Programming Interface for
the IBM Personal Computer and the IBM 3270 PC, SC23-0959

Describes how to write requester programs for IBM personal computers;
includes sample requesters.

• TSO/E User's Guide, SC28-1333

Describes how to assemble, link-edit, load, and execute programs in
TSO/E.

• TSO Extensions Command Processor Logic Volume IV, L Y28-1S06

Contains diagnosis information related to the MVSSERV command
processor and MVS servers.

• TSO Extensions Command Language Reference, GC28-1307

- Gives syntax and reference information for the MVSSERV command.

• TSO Messages, GC28-1310

- Lists and explains the MVSSERV messages.

IV Programmer's Guide to the SRPI for MVS/XA

• MVS/Extended Architecture Message Library: System Codes, GC28-1157

- Lists MVS ABEND and reason codes.

• MVS/Extended Architecture Message Library: System Messages, Volume 1,
GC28-1376

- Lists messages associated with MVS ABEND and reason codes.

• MVS/Extended Architecture Diagnostic Techniques System Programming
Library, GC28-0725

- Contains information about system dump options.

• OS/VS2 MVS Supervisor Services and Macro Instructions, GC28-0683.

- Contains information about the EST AE macro for recovery routines.

• TSO Extensions Guide to Writing a Terminal Monitor Program or a Command
Processor SC28-1136.

Contains information about the TSO command processor parameter list
(CPPL).

Preface V

VI Programmer's Guide to the SRPI for MVS/XA

Contents

Chapter 1. Introduction 1-1
Concepts of the TSO/E Enhanced Connectivity Facility 1-1

What is an MVS Server? 1-2
Service Functions 1-2
Initialization/Termination Programs 1-2

What is MVSSERV? 1-3
The SRPI 1-4
The 'CPRB Control Block 1-4
The INITIERM Control Block 1-4
The Sequence of Events in an MVSSERV Session 1-5

What You Need to Do to Write Servers 1-5
Writing Servers 1-6
Writing Server Initialization/Termination Programs 1-6
Installing Servers 1-7
Testing and Diagnosing Servers 1-7

Chapter 2. How to Write a Server 2-1
Server Design 2-1

Steps for Designing a Server 2-1
Writing a Server 2-2

Using the CPRB 2-2
Receiving the Service Request 2-3
Mapping to the CPRB Fields 2-3
Sending the Service Reply 2-4
The Server Recovery Routine 2-5

Compiling or Assembling a Server 2-6
Sample Server 2-6

Chapter 3. How to Write a Server Initialization/Termination Program 3-1
Program Design 3-1

Steps for Designing an Initialization/Termination Program 3-2
Writing an Initialization/Termination Program 3-3
Initialization 3-3

Input to the Initialization/Termination Program 3-3
Loading the Servers 3-4
Obtaining Resources 3-5
Defining a Server 3-5
Recovery 3-9
Ending Initialization 3-10

Termination 3-10
Freeing Resources 3-11
Deleting the Servers 3-11

Compiling or Assembling an Initialization/Termination Program 3-11
Sample Initialization/Termination Program 3-11

Contents VB

Chapter 4. How to Install a Server 4-1
Installing the Server 4-1

In a STEPLIB 4-1
In a System Library 4-1

Input Parameter Data Set 4-2
Allocating the Input Parameter Data Set 4-2
Initializing the Input Parameter Data Set 4-2

Additional MVSSERV Data Sets 4-3
Trace Data Set 4-3
Dump Data Set 4-4
Dump Suppression Data Set 4-4

Chapter 5. Testing and Diagnosis 5-1
Testing Servers 5-1

Steps for Testing Servers 5-1
Diagnosing Servers 5-3

Reading the Trace Data Set 5-3

(;Iossary){-1

Index){-7

Vlll Programmer's Guide to the SRPI for MVS/XA

c

c

Figures

1-1.
1-2.
1-3.
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.

3-10.
3-11.
3-12.
5-1.

Logical Server Organization 1-2
The MVSSERV Enhanced Connectivity Environment 1-3
Events in an MVSSERV Session 1-5
Overview of Service Request Handling 2-2
Registers Passed to the Server 2-3
CPRB Control Block on Entry to Server 2-4
Registers Expected from the Server 2-5
CPRB Control Block on Exit from the Server 2-5
Sample Server 2-7
MVSSERV Logical Task Structure 3-1
Overview of an Initialization/Termination Program's Processing
Registers Passed at Initialization 3-4
INITTERM Control Block with Initialization Input 3-4
DEFSERV Macro in Assembler Language 3-6
CPRB Control Block used to Define a Server 3-8
The Define Server Parameter Area 3-8
Return Codes from the DEFSERV Macro 3-9
CPRB Control Block for the DEFSERV Reply 3-9
Registers Passed at Termination 3-10
INITTERM Control Block with Termination Input 3-10
Sample Initialization/Termination Program 3-12
Sample Trace Data Set 5-4

3-3

Figures IX

c

X Programmer's Guide to the SRPI for MVS/XA

Chapter 1. Introduction

This chapter introduces the TSOjE Enhanced Connectivity Facility, the server
programs that you can write for it, and the MVSSERV command that manages
TSOjE Enhanced Connectivity sessions on MVS/XA.

Concepts of the TSO IE Enhanced Connectivity Facility

The TSOjE Enhanced Connectivity Facility provides a standard way for
application programs on different systems to share services.

With the TSOjE Enhanced Connectivity Facility, programs on
properly-configured IBM Personal Computers (PCs) can obtain services from
programs on IBM host computers running MVSjXA. The PC programs issue
service requests and the host programs issue service replies, which the TSOjE
Enhanced Connectivity Facility passes between the systems.

The PC programs that issue service requests are called requesters, and the host
programs that issue replies are called servers. Servers and requesters together
form enhanced connectivity applications.

Because the TSOjE Enhanced Connectivity Facility passes the requests and
replies, you can write servers and requesters without concern for communications
protocols. The requester simply specifies the server's name, the request input, and
a reply buffer. The server receives the input, performs the service, and provides
the reply. The TSOjE Enhanced Connectivity Facility passes the requests and
replies in a standard, easily-referenced control block.

Host servers can give PC requesters access to host computer data, commands, and
resources such as printers and storage. This book explains how to write an MVS
host server, and includes a sample server that lets PC requesters process MVS
data.

For information about PC hardware and software requirements, refer to
Introduction to IBM Systemj370 to IBM Personal Computer Enhanced Connectivity
Facilities.

Chapter 1. Introduction 1-1

What is an MVS Server?

Service Functions

MVS servers are programs that provide MVS host services, through the TSO/E
Enhanced Connectivity Facility, to requester programs on a properly-configured
IBM Personal Computer.

MVS servers are made up of service functions. The servers themselves are defined
in initialization/termination programs.

Figure 1-1 shows the logical organization of servers, their service functions, and
an initialization/termination program.

Server A

Service Function 1

Service Function 2

Server B

Service Function 3

Figure 1-1. Logical Server Organization

A server can handle different service requests by having separate service functions,
one for each request. Requests identify the service function as well as the server.
The server receives the request and passes control to the specified service function.
For details, see Chapter" 2, "How to Write a Server."

Service functions can be related to the server in several ways: as subroutines of the
server, as separate CSECTs, or as separate load modules.

Initialization/Termination Programs

An initialization/termination program defines one or more servers and provides a
common work environment and resources for them. In particular, an
initialization/termination program does the following:

• Defines its servers to the TSO/E Enhanced Connectivity manager,
MVSSERV, so MVSSERV can route service requests to the servers.

• Isolates servers in a single MVS subtask, thus protecting the main task
(MVSSERV) or other sub tasks from server failures.

1-2 Programmer's Guide to the SRPI for MVS/XA

• Obtains and releases resources such as data sets, storage, and locks for the
servers.

Servers and their initialization/termination programs can be physically packaged
as separate load modules or as separate CSECTs in the same load module.
Chapter 3, "How to Write a Server Initialization/Termination Program"
describes factors to consider when packaging servers and initialization/termination
programs.

What is MVSSERV?

PC SYSTEM

REQUESTER

MVSSERV is a TSOjE command processor that manages TSOjE Enhanced
Connectivity sessions on the MVS host computer. Users issue MVSSERV on
TSOjE to start an Enhanced Connectivity session. The users can then invoke
requesters to issue service requests from a IBM PC that is running an Enhanced
Connectivity program.

MVSSERV consists of a router and an interface to the servers. The server
interface is called the server-requester programming interface (SRPI).

The router, through the SRPI, routes service requests to servers and routes service
replies back to the requesters. Figure 1-2 shows the TSO/E Enhanced
Connectivity environment during an MVSSERV session.

HOST SYSTEM with MVS/XA

MVS Subtask

ROUTER ROUTER

Figure 1-2. The MVSSERV Enhanced Connectivity Environment

Chapter 1. Introduction 1-3

The SRPI

MVSSERV's server-requester programming interface (SRPI) resembles the
CALL/RETURN interface of most high-level programming languages. Through
the SRPI, MVSSERV gives the server control along with input, a buffer for
output, and a return address to which the server returns control. This interface
allows you to write and use your own servers with MVSSERV.

Through the SRPI, MVSSERV calls servers and their initialization/termination
programs for three phases of processing:

• Initialization -- setting up servers and their resources when MVSSERV begins,
and defining the servers to MVSSERV.

• Handling service requests -- passing service requests to servers and sending
back replies.

• Termination -- cleaning up servers and their resources when MVSSERV ends.

The CPRB Control Block

Service requests and replies pass through the SRPI in a control block called the
connectivity programming request block (CPRB).

In MVSSERV, CPRBs have two purposes:

• The initialization/termination program uses a CPRB to define servers to
MVSSERV.

• MVSSERV uses a CPRB to send service requests from the PC to the server,
and to receive the server's reply.

The CPRB contains service request data such as the following:

• The name of the requested server and the service function ID
• The lengths and addresses of buffers containing input
• The lengths and addresses of reply buffers.

The INITTERM Control Block

When MVSSERV begins and ends, it passes the INITTERM control block to the
initialization/termination programs. INITTERM indicates whether the call is for
initialization or termination, and includes other input that the program needs.

Figure 1-3 shows the sequence of events in an MVSSERV session.

1-4 Programmer's Guide to the SRPI for MVS/XA

The Sequence of Events in an MVSSERV Session

MVSSERV SRPI
Server Initialization

In;t;al;zat;an I INITTERM

Y ~ CPRB

0- - Get server resources

~I - Define servers User Action
CPRB

- Return

Server
• (TSO) Issue MVSSERV

• (PC) Issue Request Server call CPRB - Get service request

• (TSO) End MVSSERV - Perform service

CPRB - Send reply

Server Termination

Termination INITTERM - Clean up for servers

- Return

j 0 ,----I -----1\ \
Figure 1-3. Events in an MVSSERV Session

What You Need to Do to Write Servers

The following is an overview of the steps you need to follow when writing servers
for MVSSERV. Further details are contained in subsequent chapters of the book.

1. Select or create a load module to contain the executable code for the server
and initialization/termination program. If they are in different load modules,
the initialization/termination program must load the server (see Chapter 3 for
details).

2. Write the server (see Chapter 2).

• Access the service request input in the CPRB.
• Call the service function.
• Perform the service.
• Indicate the reply length in the CPRB.
• Set the return code in register 15.
• Return control to MVSSERV.
• Provide recovery (optional).
• Compile or assemble the server and link it to a load module.

Chapter 1. Introduction 1-5

Writing Servers

3. Write an initialization/termination program (see Chapter 3).

• F or initialization:

Load the server (if necessary).
Obtain resources (if necessary).
Define the server to MVSSERV and pass any parameters.

• For termination:

Free any resources.
Delete the server (if loaded).

• Compile or assemble the initialization/termination program and link it to
a load module.

4. Install the server and initialization/termination program (see Chapter 4).

• Install the programs in a STEPLIB or system library.
• Define the initialization/termination program to MVSSERV in the input

parameter data set.
• Allocate diagnosis data sets (optional):

Trace data set
Dump data set
Dump suppression data set.

5. Invoke MVSSERV to test your server (see Chapter 5).

Chapter 2, "How to Write a Server," describes how your servers and service
functions must use the CPRB to communicate with a requester. The chapter also
contains a sample server to illustrate use of the CPRB. As long as your servers
use the CPRB correctly, they can do any processing and provide any services
available on MVS. Your servers are restricted only by MVS and PC resources,
and by any conventions used in the requester program.

You can write servers in any programming language, as long as the server can
access the CPRB fields to retrieve input from, and send replies to, the requester,
IBM provides a CPRB mapping macro, CHSDCPRB, for use with the assembler
language.

Writing Server Initialization/Termination Programs

Chapter 3, "How to Write a Server Initialization/Termination Program"
describes how to write a program to initialize your servers, define them to
MVSSERV, and terminate them. The chapter explains how to use the DEFSERV
macro to define a server to MVSSERV, and includes a sample
initialization/termination program.

Note: Servers, as well as initialization/termination programs, can issue the
DEFSERV macro to define other servers.

1-6 Programmer's Guide to the SRPI for MVS/XA

Installing Servers

After you have written a server and defined it in an initialization/termination
program, you need to:

• Install the server and initialization/termination program in a private STEPLIB
for testing or in a system library for general use.

• Name the initialization/termination program in an input parameter data set
for MVSSERV. The input parameter data set must be available to the
programs or users who invoke MVSSERV and issue requests.

Chapter 4, "How to Install a Server" describes how to install the server and how
to allocate and initialize the input parameter data set.

If you want diagnostic information, additional data sets are needed. The
diagnostic data sets receive MVSSERV trace data and dump data, and allow you
to specify any ABENDs for which you do not want dumps to be taken.
Chapter 4, "How to Install a Server" describes how to allocate and use the
diagnostic data sets.

Testing and Diagnosing Servers

After you have written and installed servers and their initialization/termination
programs, you will want to test them with the corresponding requesters.
Chapter 5, "Testing and Diagnosis" describes how to invoke MVSSERV on
TSO/E to test a server. The chapter also tells how to read diagnostic messages in
the MVSSERV trace data set.

Chapter 1. Introduction 1-7

c

1-8 Programmer's Guide to the SRPI for MVS/XA

Chapter 2. How to Write a Server

Server Design

This chapter describes the steps to follow when designing and writing servers.

Servers provide MVS services, data, and resources to requester programs.
Therefore, before you write a server, you need to consider what output it will
provide, and what requester input it will receive.

Servers and requesters work in pairs. Each service request must name the
corresponding server and service function, and must include any input that the
server needs. The server must use the input and produce output that the requester
can use.

For information about writing requesters, refer to IBM Programmer's Guide to the
Server-Requester Programming Interface for the IBM Personal Computer and the
IBM 3270 PC.

Steps for Designing a Server

Follow these steps when designing a server:

1. Decide what service request (or requests) your server will handle. If your
server handles more than one service request, your server needs a service
function for each request. The service functions can be:

• Subroutines of the server
• CSECTs of the server
• Load modules that are separate from the server.

2. Decide what AMODE and RMODE the server should execute in. Servers
can execute in any AMODE or RMODE.

3. Select a name for the server. Server names must conform to MVS program
naming conventions. They can have up to eight characters, including the
characters A-Z, 0-9, @, #, and $. The first character cannot be 0-9.

Chapter 2. How to Write a Server 2-1

Writing a Server

Using the CPRB

Your server must follow certain rules to receive service requests and reply to them
successfully. The rules apply to using the connectivity programming request block
(CPRB).

To respond to a service request, the server must:

• Receive the service request input in the CPRB
• Perform the service
• Send a service reply in the CPRB.

Figure 2-1 shows the process for handling service requests.

Requester MVSSERV Server

Request ~

Send request .. See registers passed (Figure 2-2). to server

· Standard entry and linkage.

· Access CPRB and server parameter. · Pass control to service function
based on function ID in the CPRB. · Get from the CPRB the address of
the request parameters. · Get from the CPRB the address of
the request data. · Perform the service function,
using TSO resources as needed.

• Provide reply parameter, reply
data, and return code.

See registers expected (Figure 2-4).

Send reply to

- requester

Figure 2-1. Overview of Service Request Handling

2-2 Programmer's Guide to the SRPI for MVS/XA

Receiving the Service Request

MVSSERV passes control to the server in key 8, problem program state, with the
register contents shown in Figure 2-2.

Register 1 points to a parameter list that contains addresses of the CPRB, the
connectivity environment descriptor (CED), and a parameter from the server
initialization/termination program. Of the three:

• The CPRB contains the service request.

• The CED is for system use only. (If the server issues the DEFSERV macro to
define another server, it must pass the CED address.)

• The server parameter can point to data sets or other resources for the server.
(For details about creating the server parameter, see Chapter 3, "How to
Write a Server Initialization/Termination Program.")

Register Contents

1 Address of parameter list

13 Address of 18-word save area
Hex

14 Return address a r
Address of CPRB

15 Address of server entry point 4
Address of CED

8

Address of server
parameter

C

Figure 2-2. Registers Passed to the Server

Mapping to the CPRB Fields

Your server can use the CHSDCPRB mapping macro to access the fields of the
CPRB. The CHSDCPRB macro has the following assembler syntax:

[label] CHSDCPRB [DSECT = YES!NO]

Code the macro with DSECT=YES (or omit the DSECT parameter) to build a
DSECT for the CPRB fields. You can use the label CHSDCPRB to address the
CPRB with an assembler USING statement. For an example of using the
CHSDCPRB macro, see "Sample Server" on page 2-6.

Figure 2-3 shows the CPRB with the fields that pertain to the server.

Chapter 2. How to Write a Server 2-3

The Receive Request CPRB (Entry to Server)

Byte Byte
Field Label Offset Length Contents

CRBF1 0(0) 1 The control block's version number (first four bits) and
modification level number (last four bits).

1(1) 2 Reserved

CRBF4 3(3) 1 The type of request (X'O l' indicates a service request).

CRBCPRB 4(4) 4 The value of C'CPRB'.

8(8) 8 Reserved

CRBSNAME 16(10) 8 The name of the requested server.

24(18) 2 Reserved

CRBFIDO 26(lA) 2 The ID of the requested service function.

28(lC) 12 Reserved

CRBRQDLNO 40(28) 4 The length of the request data.

CRBRQDATO 44(2C) 4 The address of the request data.

CRBRPDLNO 48(30) 4 The 'length of the reply data (maximum length allowed by the
requester).

CRBRPDATE) 52(34) 4 The address of the buffer for reply data.

CRBRQPLNO 56(38) 4 The length of the request parameters.

CRBRQPRMO 60(3C) 4 The address of the request parameters.

CRBRPPLNO 64(40) 4 The length of the reply parameters (maximum length allowed by the
requester).

CRBRPPRME) 68(44) 4 The address of the butTer for reply parameters.

72(48) 40 Reserved

Figure 2-3. CPRB Control Block on Entry to Server

Notes:

8 Request field. Use but do not alter.
Request/Reply field. The requester initializes these fields. The server may
modify the contents of these fields. e Address of Reply field. Use but do not alter. The server may return
information in a buffer located at this address. Do not return more
information than will fit in the buffer (as indicated in the associated length
field).
Do not modify any fields other than those marked with a O.

Sending the Service Reply

After performing the requested service function, the server must:

• Move the reply data, if any, to the reply data buffer using CPRB field
CRBRPDAT.

• Move the reply parameters, if any, to the reply parameter buffer using CPRB
field CRBRPPRM.

• Put the actual reply data length in CPRB field CRBRPDLN.

• Put the actual reply parameter length in CPRB field CRBRPPLN.

2-4 Programmer's Guide to the SRPI for MVS/XA

• Put the return code expected by the requester in register 15.

• Return the reply CPRB to the requester (branch to the return address that
was in register 14 on entry to the server).

The registers should have the following contents when the server ends:

Register Contents

13 Address of 18-word save area

14 Return address

15 Server return code

Figure 2-4. Registers Expected from the Server

Figure 2-5 shows the CPRB fields that the server uses in its reply.

The Send Reply CPRB (Exit from Server)

Byte Byte
Field Label Offset Length Contents

0(0) 48 Reserved

CRBRPDLNO 48(30) 4 Specify the actual length of the reply data.

52(34) 12 Reserved

CRBRPPLNO 64(40) 4 Specify the actual length of the reply
parameters.

68(44) 44 Reserved

Figure 2-5. CPRB Control Block on Exit from the Server

Note:

o The actual length cannot exceed the initial value (maximum allowed
by the requester).

The Server Recovery Routine

Your servers can have their own recovery routines. If a server fails and does not
recover, MVSSERV traps the error, provides a dump, and marks the server's
subtask as inactive, preventing further requests for that server or any other servers
defined by the same initialization/termination program.

Your servers can issue the EST AE macro to establish a recovery routine. The
server recovery routine should do the following:

• Record pertinent diagnostic information in the SDW A and VRA, such as the
caller, the current module in control, and the input parameters.

• Optionally, specify a dump (if not, MVSSERV provides one).

Chapter 2. How to Write a Server 2-5

• If the failure is recoverable, set return parameters specifying that a retry is to
be made. The retry routine must return control to MVSSERV with the
server's return code.

• If the failure is not recoverable, percolate to MVSSERV.

For more information about using the ESTAE macro and retry routines, refer to
OS/VS2 MVS Supervisor Services and Macro Instructions.

Compiling or Assembling a Server

Sample Server

After writing a server, you need to compile or assemble it and link it to a load
module. For information about preparing and running a program in TSO/E,
refer to Section III of the TSO/E User's Guide.

The sample server in Figure 2-6 corresponds to the sample assembler requester in
the IBM Programmer's Guide to the Server-Requester Programming Interface for
the IBM Personal Computer and the IBM 3270 PC. The server, IBMABASE, has
two service functions:

• Function 1 retrieves a record from a customer records data set on MVS,
translates the record into ASCII, and sends the record to the requester for
processing.

• Function 2 receives a record with a positive balance from the requester,
translates the record back into EBCDIC, and puts the record into an accounts
receivable data set on MVS.

The initialization/termination program for this server is in Chapter 3, "How to
Write a Server Initialization/Termination Program."

2-6 Programmer's Guide to the SRPI for MVS/XA

* TITLE: IBMABASE MAINLINE
*
* LOGIC: Determine the function requested, and perform that function.
* * OPERATION:
* 1. Establish addressability to the CPRB.
* 2. Establish addressability to the server parameters.
* 3. If the data sets are not open:
* - Open them.
* 4. Determine the function requested.
* 5. If function 1 is requested:
* - Issue the GET macro to read in a record.
* - If the end of file was encountered:
* a. Close the data sets.
* b. Set end of file return code
* - Else, no end of file encountered:
* a. If the transaction should be logged:
* - Issue the PUT macro to output the log message.
* b. Translate the reply data into ASCII.
* 6. If function 2 is requested:
* - Translate the request data into EBCDIC.
* - Issue the PUT macro to write the record.
* - If the transaction should be logged:
* a. Issue the PUT macro to output the log message.
* 7. Else set invalid function return code.
* 8. Return to the caller with return code.

IBMABASE CSECT
IBMABASE AMODE
IBMABASE RMODE

OPEN

STM
LR
USING
ST
LA
ST
LR

L
USING
L
USING
SPACE
CLI
BE
L
L
L
L
OPEN
MVI
DS
LA
CH
BE
LA
CH
BE
LA
B

24
24
14,12,12(13)
12,15
IBMABASE,12
13,SAVEAREA+4
15,SAVEAREA
15,8(,13)
13,15

2,0(,1)
CHSDCPRB,2
3,8(,1)
PARAMETERS,3

Save the caller's registers.
Establish addressability within
this CSECT.
Save the caller's save area address.
Obtain our save area address.
Chain it in the caller's save area.
Point register 13 to our save area.

Obtain the CPRB address.
Establish addressability to it.
Obtain server parameter address.
Establish addressability to them.

STATUS,OPENED Are the data sets opened?
OPEN Yes, then don't try to open them.
5,DCBIN_ADDR Load the INPUT DCB address.
6,DCBOUT_ADDR Load the OUTPUT DCB address.
7,DCBLOG_ADDR Load the LOG DCB address.
8,OPEN ADDR Load the list form address.
«5),,(6),,(7»,MF=(E,(8}) Open the data sets.
STATUS ,OPENED Indicate that they are open.
OH
4,1
4,CRBFID
FUNCTION_l
4,2
4,CRBFID
FUNCTION_2
15,8
EXIT

Load the first function ID.
Is function one requested?
Yes, branch to the function.
Load the second function ID.
Is function two requested?
Yes, branch to the function.
Else, bad function ide
Exit the server.

Figure 2-6 (Part 1 of 4). Sample Server

Chapter 2. How to Write a Server 2-7

FUNCTION_1 DS OH
L 4,CRBRPDAT
USING REPLY_BUFFER,4
L 5,DCBIN_ADDR Obtain INPUT DCB address.
USING IHADCB,5
MVC DCBEODA,=AL3(END_OF_FILE) Set end of file exit.
GET (5),REPLY Get the record.
DROP 5
L 5,CRBRQPRM
CLI O(5),X'01'
BNE NO_I NPUT_LOG
L 5,DCBLOG_ADDR
PUT (5),INPUT_LOG
PUT (5) , REPLY

Load request parameter address.
Should we log the transaction?
No, branch around logging.
Obtain LOG DCB address.
Output the log message and
the record.

PUT (5) ,BLANK Insert a blank line.
NO INPUT_LOG DS OH

LA 15,0 Set the return code.
TR TRANS_PART,TRANS~SCII Translate the record to ASCII.
CLI CUST_BAL,X'60' Check for a minus sign.
BNE DO_PACK
NI CUST_BAL+3,X'DF' Allow CVB to make it negative.

DO_PACK DS OH
PACK WORKAREA(8),CUST_BAL(4) Convert balance to decimal.
CVB 6,WORKAREA Convert balance to binary.
ST 6,BINARY_BAL Save the balance.

**
* Move the balance into the reply area, taking into account the PC's
* method of reverse byte retrieval.
**

MVC
MVC
MVC
MVC
LA
ST
LA
ST
B

END OF_FILE DS
L
L
L
L
CLOSE
MVI
LA
B

CUST_BAL(1),BINARY_BAL+3 Place it into the reply.
CUST_BAL+1(1),BINARY_BAL+2 Place it into the reply.
CUST_BAL+2(1),BINARY_BAL+1 Place it into the reply.
CUST_BAL+3(1),BINARY_BAL Place it into the reply.
5,REPLY_LEN Get the length of the reply,
5,CRBRPDLN and store it into the CPRB.
5,0 Set the reply parameter length,
5,CRBRPPLN and store it into the CPRB.
EXIT
OH
5,DCBIN_ADDR Load the INPUT DCB address.
6,DCBOUT_ADDR Load the OUTPUT DCB address.
7,DCBLOG_ADDR Load the LOG DCB address.
8,CLOSE_ADDR Load the list form address.
«5),,(6),,(7»,MF=(E,(8» Close the data sets.
STATUS,CLOSED Indicate that they are closed.
15,4 Set end of file return code.
EXIT

Figure 2-6 (Part 2 of 4). Sample Server

2-8 Programmer's Guide to the SRPI for MVS/XA

FUNCTION_2 DS OH
L 4,CRBRQDAT
USING REPLY_BUFFER,4
TR TRANS_PART,TRANS_EBCDIC Translate the record to EBCDIC.

**
* Move the reply balance into the work area, taking into account the
* PC's method of reverse byte retrieval.
**

MVC
MVC
MVC
MVC
L
CVD
UNPK
MVZ
L
PUT
L
CLI
BNE
L
PUT
PUT
PUT

BINARY_BAL(1),CUST_BAL+3 Obtain customer balance.
BINARY_BAL+l(l),CUST_BAL+2 Obtain customer balance.
BINARY_BAL+2(l),CUST_BAL+l Obtain customer balance.
BINARY_BAL+3(1),CUST_BAL Obtain customer balance.
6,BINARY_BAL Prepare for CVD.
6,WORKAREA Convert the balance to decimal.
CUST_BAL(4),WORKAREA(8) Convert to zoned decimal.
CUST_BAL+3(1),CUST_BAL+2 Fix zone format.
5,DCBOUT_ADDR Obtain OUTPUT DCB address.
(5) ,REPLY Output the record.
5,CRBRQPRM Load request parameter address.
0(5),X'01' Should we log the transaction?
NO_OUTPUT_LOG No, branch around logging.
5,DCBLOG_ADDR Obtain LOG DCB address.
(5),OUTPUT_LOG Output the log message and
(5),REPLY the record.
(5),BLANK Insert a blank line.

NO_OUTPUT_LOG
LA

DS OH
15,0 Set the return code.

EXIT DS
L
L
LM
BR

OH
13,SAVEAREA+4
14,12 (,13)
0,12,20(13)
14

Restore caller's save area address.
Restore the caller's registers
except for 15 (return code).
Return to caller with return cod~.

* Data section.

* EBCDIC to ASCII translate table.

TRANS_ASCII DS

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

OCL256
X'00010203CF09D37FD4D5C30BOCODOEOF'
X'10111213C7B408C91819CCCD831DD21F'
X'81821C84860A171B89919295A2050607'
X'EOEE16E5DOIEEA048AF6C6C21415CIIA'
X'20A6E180EB909FE2AB8B9B2E3C282B7C'
X'26A9AA9CDBA599E3A89E21242A293B5E'
X'2D2FDFDC9ADDDE989DACBA2C255F3E3F'
X'D78894BOBIB2FCD6FB603A2340273D22,
X'F861626364656667686996A4F3AFAEC5'
X'8C6A6B6C6D6E6F7071729787CE93FIFE'
X'C87E737475767778797AEFCODA5BF2F9'
X'B5B6FDB7B8B9E6BBBCBD8DD9BF5DD8C4'
X'7B414243444546474849CBCABEE8ECED'
X'7D4A4B4C4D4E4F505152AIADF5F4A38F'
X'5CE7535455565758595AA0858EE9E4Dl'
X'30313233343536373839B3F7FOFAA7FF'

* ASCII to EBCDIC translate table.

TRANS_EBCDIC DS OCL256

DC X'00010203372D2E2F1605250BOCODOEOF'
DC X'101112133C3D322618193F27221D351F'

Figure 2-6 (part 3 of 4). Sample Server

Chapter 2. How to Write a Server 2-9

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

SAVEAREA DC
SUBSAVE DC
WORKAREA DS
BINARY_BAL DS
STATUS DC
INPUT_LOG DS

DC

OUTPUT_LOG DS
DC

X'405A7F7B5B6C507D4D5D5C4E6B604B6l'
X'FOFlF2F3F4F5F6F7F8F97A5E4C7E6E6F'
X'7CClC2C3C4C5C6C7C8C9DlD2D3D4D5D6'
X'D7D8D9E2E3E4E5E6E7E8E9ADEOBD5F6D'
X'798l82838485868788899l9293949596'
X'979899A2A3A4A5A6A7A8A9C04FDOAl07'
X'43202llC23EB249B7l28384990BAECDF'
X'45292A9D722B8A9A6756644A53685946,
X 'EADA2CDE8B554lFE585l524869DB8E8D ,
X'737475FA15BOBlB3B4B56AB7B8B9CCBC'
X 'AB3E3BOABF8F3A14A017CBCAlAlB9C04 ,
X'34~FlE0608097770BEBBAC5463656662'
X'30424757EE33B6ElCDED3644CECF3lAA'
X'FC9EAE8CDDDC39FB80AFFD7876B29FFF'
l8F'O' IBMABASE's save area.
l8F'O' IBMABASE subroutine's save area.
D Work area for CVB and CVD.
F Holds binary form of the balance.
X'O' Status word.
OCLl09 Input log message.
CLl09'The following customer record was read from the cu*
stamer files.'

OCLl09 Output log message.
CLl09'The following customer record was written to the b*
illing file.'

BLANK DC CLl09"
OPENED EQU X'OO' Data sets are opened.
CLOSED EQU X'Ol' Data sets are closed.

* Server parameter list mapping.

PARAMETERS DSECT
DCBIN_ADDR DS A INPUT DCB address.
DCBOUT_ADDR DS A OUTPUT DCB address.
DCBLOG_ADDR DS A LOG DCB address.
OPEN_ADDR DS A OPEN list form address.
CLOSE_ADDR DS A CLOSE list form address.

* CPRB reply buffer mapping.

REPLY_BUFFER DSECT
REPLY DS OCLl09
TRANS_PART DS OCLl05
CUST_NAME DS CL25
CUST_ADDR DS CL25
CUST_CITY DS CL15
CUST_STATE DS CL15
CUST_ZIP DS CL9
CUST_ACCT DS CL16
CUST_BAL DS CL4
REPLY_LEN EQU *-REPLY

* CPRB mapping

CHSDCPRB DSECT=YES

* DCB mapping

DCBD
END

DSORG=PS
IBMABASE

Figure 2-6 (Part 4 of 4). Sample Server

2-10 Programmer's Guide to the SRPI for MVS/XA

Chapter 3. How to Write a Server Initialization/Termination
Program

Program Design

This chapter describes the steps to follow when designing and writing server
initialization/termination programs.

When MVSSERV gets control, it invokes your server initialization/termination
programs in separate subtasks. The initialization/termination programs define
one or more servers to MVSSERV, and optionally load the servers and provide
resources for them. When MVSSERV ends, it re-invokes your
initialization/termination programs to free any server resources and terminate the
servers.

Figure 3-1 shows the position of initialization/termination programs in the
MVSSERV task structure.

Main Task

MVSSERV

Subtasks

I
Inltlallzatlon/Termlnatlo n Program Initialization/Termination Program Inltlallzatlo n/Termination Program

Servers Servers Servers

Figure 3-1. MVSSERV Logical Task Structure

When you design an initialization/termination program, you need to consider
what servers it will define, what resources the servers require, and how to package
the initialization/termination program in relation to the servers.

Chapter 3. How to Write a Server Initialization/Termination Program 3-1

Steps for Designing an Initialization/Termination Program

Follow these steps when designing an initialization/termination program:

1. Decide what servers the initialization/termination program will define. The
main considerations are server resources and recovery.

• Resources -- The initialization/termination program can obtain and
release resources such as storage, data sets, and locks for its servers. If
servers share resources, you can increase their efficiency by having a
single initialization/termination program define the servers and obtain and
release the resources for them.

• Recovery -- If a server fails and cannot recover, MVSSERV calls the
server's initialization/termination program to terminate all the servers it
defined. Therefore, you might want to define interdependent servers in
the same initialization/termination program, and define unrelated servers
in different initialization/termination programs.

2. Decide how to package the initialization/termination program in relation to
the servers.

You can package servers and their initialization/termination program as
CSECTs of the same load module or as different load modules. The main
consideration is server loading:

• If you want the server and its initialization/termination program to be in
the same load module, the initialization/termination program does not
have to load the server. The initialization/termination program can use a
constant server address to define the server to MVSSERV.

• If you want the server and its initialization/termination program to be in
different load modules, the initialization/termination program must load
the server and get the server address from the LOAD macro to use when
defining the server to MVSSERV.

3. Decide what AMODE and RMODE the initialization/termination program
should execute in. Initialization/termination programs can execute in any
AMODE or RMODE.

4. Select a name for the initialization/termination program. The name must
conform to MVS program naming conventions. It can have up to eight
characters, including the characters A-Z, 0-9, @, #, and $. The first character
cannot be 0-9.

5. Put the name of the initialization/termination program in the input parameter
data set (see Chapter 4, "How to Install a Server").

3-2 Programmer's Guide to the SRPI for MVS/XA

Writing an Initialization/Termination Program

Initialization

Figure 3-2 gives an overview of an initialization/termination program's
processing.

MVSSERV Initialization/Termination Program

Initialization
input .. See registers passed (Figure 3-3). ,

· Access initialization input.

· Load servers, if necessary.
• Obtain resources for servers.
• Define servers and server parameters

Return code ~ (resources) to MVSSERV.
from MVSSERV .. ,

· Return

Termination
input , See registers passed (Figure 3-10).

· Access termination input.

· Check last server reply (optional).

· Free server resources.

· Delete loaded servers.

· Return

Figure 3-2. Overview of an Initialization/Termination Program's Processing

When MVSSERV receives control, it invokes the server initialization/termination
programs in separate subtasks. MVSSERV gets the names of the
initialization/termination programs from the input parameter data set described in
Chapter 4, "How to Install a Server."

Input to the Initialization/Termination Program

Figure 3-3 and Figure 3-4 show the input that MVSSERV makes available to the
initialization/termination programs.

As shown in Figure 3-3, Register 1 points to a two-word area. The first word
contains the address of the INITTERM control block; the second word contains
the address of data (the CED) for MVSSERV use only. Your
initialization/termination program needs the CED address when defining servers
to MVSSERV.

Chapter 3. How to Write a Server Initialization/Termination Program 3-3

Byte
Field Label Offset

INTINlTO 0(0)

INTWALENG 4(4)

INTWAPTRG 8(8)

12(C)

INTENVRN 28(lC)

32(20)

Register Contents

1 Address of parameter list

14 Return address Hex

o ' 15 Address of initialization/termination
program Address of INITTERM

4
Address of CED

Figure 3-3. Registers Passed at Initialization

You can use the INITTERM mapping macro to obtain input from the
INITTERM control block. The INITTERM macro has the following assembler
syntax:

[label] INITTERM [DSECT = YESINO]

Code the macro with DSECT=YES (or omit the DSECT parameter) to build a
DSECT for the control block fields. You can use the label INITTERM to
address the control block with an assembler USING statement. For an example
of using the assembler INITTERM macro, see "Sample Initialization/Termination
Program" on page 3-11.

Byte
Length Contents

4 Initialization or termination indicator. X'OOOO' indicates the call is for
initialization. (X'OOOl' indicates termination.)

4 Work area length. Specify the length of a work area that the program can
use at termination time.

4 Work area address. Specify the address of a work area that the program
can use at termination time.

16 Reserved

4 Address of the TSO CPPL (command processor parameter list). The
CPPL is for system use only; its address must be in register 1 if a server
or initialization/termination program invokes a TSO command processor
or uses TSO services such as SCAN or PARSE. For more information
about the CPPL, see TSO/E Guide to Writing a Terminal Monitor
Program or a Command Processor.

4 Reserved

Figure 3-4. INITTERM Control Block with Initialization Input

Notes:

8 Check for initialization or termination indicator.
Specify a work area (optional).

3-4 Programmer's Guide to the SRPI for MVSjXA

Loading the Servers

Obtaining Resources

Defining a Server

If the servers are not in the same load module as their initialization/termination
program, the initialization/termination program needs to load the servers.

The following assembler language example shows how an
initialization/termination program can load a server that is not in the same load
module.

LOAD EP=server name
LR 5,0

Load the server
Get server address from LOAD macro
for use in the DEFSERV macro

Your initialization/termination program can obtain any resources that the servers
require or share. For example, the initialization/termination program can:

• Open data sets that the servers will need to use.

• Obtain storage using the GETMAIN macro, such as a work area to be shared
among the servers.

• Obtain locks for any resources to which the servers require exclusive access.

The initialization/termination program makes resources available to the server by
placing them in a server parameter list as part of the server definition process.
When MVSSERV passes a service request to the server, it passes the server
parameter list as well.

The initialization/termination program must define its servers to MVSSERV. The
definition must include the names and addresses of the servers, and the addresses
of any parameter lists to be passed to the servers along with service requests.
MVSSERV makes a table of the names and addresses; the MVSSERV router
obtains the addresses of requested servers from the table.

You can define the servers using the IBM-supplied DEFSERV macro. The coded
DEFSERV macro does the following:

• Fills in fields of a connectivity programming request block (CPRB) that
defines the server to MVSSERV.

• Creates a parameter list for the server.

Before issuing the DEFSERV macro, the initialization/termination program must
define storage for the DEFSERV CPRB. To define storage, the program can use
the CHSDCPRB macro with the following assembler syntax:

[label] CHSDCPRB DSECT = NO

Chapter 3. How to Write a Server Initialization/Termination Program 3-5

For an example of using the CHSDCPRB macro with DEFSERV, see "Sample
Initialization/Termination Program" on page 3-11.

The initialization/termination program can use the same CPRB to define each of
its servers to MVSSERV.

Register Contents for DEFSERV

Before issuing the DEFSERV macro, an initialization/termination program must
set Register 13 to the specified contents:

Register Contents I
13 Address of a standard I8-word save area I

There are no requirements for the other registers. However, the DEFSERV
macro may change the contents of the following registers: 0, 1, 14, 15.

Syntax and Parameters in Assembler

Figure 3-5 shows the syntax of the DEFSERV macro for assembler language.
For the execute form, all parameters are required keyword parameters. For the
list form, only a label and the MF keyword are required.

EXECUTE FORM:

label

LIST FORM:

DEFSERV CPRB=address,
CED=aq,dress,
SERVNAME=server name,
SERVEPA=server address,
SERVPARM=parmlist address,
MF=(E,parmlist_name)

parmlist_name DEFSERV MF=L

Note: The addresses can be any address valid in an RX instruction,
or the number of a general register (2-12) enclosed in parentheses.

Figure 3-5. DEFSERV Macro in Assembler Language

CPRB = address
Specify the address of the DEFSERV CPRB. The CPRB must begin on a
fullword boundary. The address must be in the same addressing mode
(AM ODE) as the initialization/termination program. For 24-bit addresses
(AMODE 24), the high-order byte in the address must be 0; for 31-bit
addresses (AMODE 31), the high-order bit must be set to 1.

CED = address
Specify the address of the CED that was passed as input to the
initialization/termination program.

3-6 Programmer's Guide to the SRPI for MVS(XA

SERVNAME = server name
Specify the name of the server being defined. You can also specify a general
register (2-12) that points to an eight-byte field containing the server name.
To do so, enclose the register number in parentheses. This name is passed
to MVSSERV in the CRBSNAME field of the DEFSERV CPRB.

SERVEP A = server address
Specify the address of the server being defined. If the
initialization/termination program loaded the server, obtain the address
from the LOAD macro. If you do not obtain the address from the LOAD
macro, and the server is AMODE 31, be sure to specify the address with the
high-order bit set to 1.

SERVP ARM = parmlist address
Specify the address of a server parameter list. The address must be in the
same AMODE as the server address. The server parameter should point to
any resources that the initialization/termination program obtained for the
server, such as shared storage, data sets, and locks. MVSSERV passes this
parameter to the server when it calls the server to handle a service request.

MF = (E,parmlist name)
Specify the name of a five-word area that will contain:

• The addresses of the CPRB and CED (two words)

• The server entry point address and server parameter address (the define
server parameter area-- three words).

parmIist name MF = L

Results of the DEFSERV Macro

Generates storage for five words (20 bytes) of storage to contain the
addresses of the CPRB and CED (two words) and the define server
parameter area (three words). The DEFSERV macro fills in this storage.
The label on this statement must match the parmlist name used in the MF
keyword of the execute form of the macro.

Note: If the issuing program is reentrant, it must use the GETMAIN
macro to allocate the five words of storage.

The DEFSERV macro fills in fields of a CPRB that MVSSERV uses to identify
the server name with the server's address and parameter list. The CPRB and its
significant fields are shown in Figure 3-6.

Chapter 3. How to Write a Server Initialization/Termination Program 3-7

The DEFSERV Request CPRB

Byte Byte
Field Label Offset Length Contents

CRBFl 0(0) 1 The control block's version number (first four bits) and modification
level number (last four bits).

1(1) 2 Reserved

CRBF4 3(3) 1 The type of request (Hex '03' indicates a Define Server request).

CRBCPRB 4(4) 4 The value of C'CPRB'.

8(8) 8 Reserved

CRBSNAME 16(10) 8 The server name specified in the DEFSERV parameter SERVNAME.

24(18) 32 Reserved

CRBRQPLN 56(38) 4 The value x'0003', indicating the length of the define server
parameter area.

CRBRQPRM 60(3C) 4 The address of the define server parameter area.

64(40) 48 Reserved

Figure 3-6. CPRB Control Block used to Define a Server

Note: All fields shown are set by the DEFSERV macro.

The Define Server Parameter Area

The field CRBRQPRM of the DEFSERV CPRB points to the define server
parameter area. This area, created by the DEFSERV MACRO, points to the
following:

• The server entry point.
• The server parameter - resources passed to the server when it is called.

Figure 3-7 shows the layout of the define server parameter area.

Hex

o r----------,
Address of server
entry point

4 1--------;

Address of server
parameter

8 1--------;

Reserved
c '---------'

Figure 3-7. The Define Server Parameter Area

Return Codes from the DEFSERV Macro

When a program resumes control after issuing the DEFSERV macro, the
program must inspect register 15 for a return code from MVSSERV. The
possible return codes are shown in Figure 3-8.

3-8 Programmer's Guide to the SRPI for MVS/XA

Return Code Meaning
Dec(Hex)

0(0) The DEFSERV request was successful.

4(4) The DEFSERV request was unsuccessful. The program must inspect the MVSSERV return code
in the CPRB (field CRBCRTNC) to detennine the cause of the failure. See "Return Codes from
the DEFSERV CPRB."

8(8) The CPRB is not valid. Data fields in the CPRB, such as CPRBF4, contained infonnation that
was not valid.

12(OC) The CPRB is not valid. 24-bit addresses in the CPRB were not valid (the high-order byte of the
addresses was not 0).

16(10) The CPRB is not valid. The address of the CPRB or addresses within the CPRB were checked
and found to be not valid, causing the router to ABEND.

Figure 3-8. Return Codes from the DEFSERV Macro

Return Codes from the DEFSERV CPRB

If the return code in register 15 is 0, the program must check for an additional
return code in the DEFSERV CPRB, which MVSSERV returns after it is finished
with the DEFSERV macro. The additional return code, if any, is in field
CRBCRTNC, as shown in Figure 3-9.

The DEFSERV Reply CPRB

Byte Byte
Field Label Offset Length Contents

0(0) 12 Reserved

CRBCRTNC 12(OC) 4 The return code from MVSSERV in response to the DEFSERV request CPRB.
Contains one of the following return codes:

0000 Processing was successful.
0148 Request failed; another defined server has the same name.
0152 Request failed; MVSSER V error.

16(10) 96 Reserved

Figure 3-9. CPRB Control Block for the DEFSERV Reply

Recovery

Like the server, the initialization/termination program can have its own recovery
routine. If the initialization/termination program fails and does not recover,
MVSSERV traps the error and marks all the servers in the subtask as unavailable.

If the initialization/termination program provides recovery, it must use the
EST AE 0 option to delete its recovery environment before returning control to
MVSSERV after initialization and after termination.

Chapter 3. How to Write a Server Initialization/Tennination Program 3-9

Ending Initialization

Termination

Byte
Field Label Offset

INTINITO 0(0)

INTWALEN 4(4)

INTWAPTR 8(8)

INTSNAMEO 12(C)

INTRSNU 20(14)

24(18)

INTENVRN 28(1C)

32(20)

When the initialization/termination program is finished with initialization, it m~st
return control to MVSSERV with a return code of 0 (successful) or 4
(unsuccessful) in register 15. If the return code is 4, MVSSERV marks all the
servers in the subtask as unavailable.

Before MVSSERV ends, it calls the initialization/termination program again to
end the servers and free any resources obtained for them. The termination input
to the initialization/termination program is shown in Figure 3-10 and
Figure 3-11, with the significant fields indicated.

Register Contents

1 Address of parameter list
Hex'r

14 Return address 0
Address of INITTERM

Address of initialization/termination program
4

15 Address of CEO

Figure 3-10. Registers Passed at Termination

Byte
Length Contents

4 Initialization or termination indicator. X'OOO I' indicates that the call
is for termination.

4 Work area length. The length of a work area, if any, specified at
initialization.

4 Work area address. The address of a work area, if any, specified at
initialization.

8 Name of last server to send a reply. If the initialization/termination
program defined this server and the last reply was not received
successfully (see INTRSN), the initialization/termination program may
take appropriate action; for example, cancelling the last service
performed.

4 Return code for last reply. Contains one of the following return codes:
0(0) Processing was successful.
4(4) The reply may not have been successfully received by the

requester.
8(8) The reply was not successfully received by the requester.
10(A) The reply CPRB from the server was not valid.

4 Reserved

4 CPPL address (See Figure 3-4).

4 Reserved

Figure 3-11. INITTERM Control Block with Termination Input

Notes:

I Check for initialization or termination.
Check the name of the last server to send a reply (optional).
If the last server was defined by the initialization/termination
program, check the status of the last reply (optional).

3-10 Programmer's Guide to the SRPI for MVS/XA

Freeing Resources

Deleting the Servers

Your initializationjtennination program must release any resources that it
obtained. The program must:

• Release any locks that were obtained.
• Free any storage that was obtained by GETMAIN.
• Close any open data sets.

The initializationjtennination program must delete any servers that it loaded. The
following assembler language example shows how to delete a server.

DELETE EP=server name Delete the server

When finished, the initializationjtennination program must return control to
MVSSERV with a return code of 0 (successful) or 4 (unsuccessful) in register 15.

Compiling or Assembling an Initialization/Termination Program

After writing a server, you need to compile or assemble it and link it to a load
module. For information about preparing and running a program in TSOjE,
refer to Section III of the TSOjE User's Guide.

Sample Initialization/Termination Program

The initializationjtennination program in Figure 3-12 corresponds to the sample
server in Figure 2-6. The initializationjtennination program does the following:

• Loads the server.
• Opens two data sets (one for customer records and one for accounts

receivable).
• Points to the two data sets in a server parameter list.
• Issues the DEFSERV macro.
• Cleans up at tennination.

Note that this program is not reentrant.

Chapter 3. How to Write a Server Initialization/Termination Program 3-11

**
* TITLE: IBMINTRM MAINLINE
* * LOGIC: Perform server initialization/termination.
* * OPERATION:
* 1. Determine if the program is in initialization or termination.
* 2. If initialization:
* - Call INIT SERVER to load and define the server to MVSSERV.
* 3. Else, termInation:
* - Call CLEAN_UP to delete the server.
* 4. Return to caller with return code.
**
IBMINTRM CSECT
IBMINTRM AMODE
IBMINTRM RMODE

STM
LR
USING
ST
LA
ST
LR
L
USING
L
LA
C
BNE
BAL
B

TERMINATE DS
BAL

EXIT L
L
LM
BR

24
24
14,12,12(13)
12,15
IBMINTRM,12
13,SAVEAREA+4
15,SAVEAREA
15,8(,13)
13,15
2,0(,1)
INITTERM,2
3,4(,1)
4,0
4,INTINIT
TERMINATE
14,INIT_SERVER
EXIT
OH
14 ,CLEAN_UP
13,SAVEAREA+4
14,12 (,13)
0,12,20(13)
14

Save the caller's registers.
Establish addressability within
this CSECT.
Save the caller's save area address.
Obtain our save area address.
Chain it in the caller's save area.
Point register 13 to our save area.
Load the init/term area address.
Establish addressability to it.
Load the CED address.
Load the initialization value (0).
Are we in initialization?
No, then we must terminate.
Yes, Call INIT_SERVER.
Yes, leave the init/term program.

Call CLEAN_UP.
Restore caller's save area address.
Restore the caller's registers
except for 15 (return code).
Return to caller with return code.

**
* TITLE: INIT_SERVER
* * LOGIC: Load the server and define it to MVSSERV.
*
* OPERATION:
* 1. Load the server.
* 2. Open the necessary data sets.
* 3. If the data sets are not open:
* - Set a bad return code.
* 4. Else:
* - Issue the DEFSERV macro to attempt to define
* the server to MVSSERV.
* 5. Save the return codes.
* 6. Return fo the mainline.
**
INIT_SERVER DS

STM
ST
LA
ST
LR

OH
14,12,12(13)
13,SUBSAVE+4
15,SUBSAVE
15,8(,13)
13,15

Save the caller's registers.
Save the caller's save area address.
Obtain our save area address.
Chain it in the caller's save area.
Point register 13 to our save area.

Figure 3-12 (part 1 of 4). Sample Initialization/Termination Program

3-12 Programmer's Guide to the SRPI for MVS/XA

**
* Issue the LOAD macro to load the server into storage.
**

LOAD EP=IBMABASE
LR 5,0 Save IBMABASE's address.

**
* Open the customer record files.
**

*

OPEN

LA
LA
USING

TM
BO
LA

INPUT_OK DS
LA
TM
BO
LA

OUTPUT_OK DS
LA
TM
BO
LA
DS
DROP
LTR
BNZ

(DCBIN,(INPUT),DCBOUT,(OUTPUT),DCBLOG,(OUTPUT»),
MF=(E,OPEN_LIST)
15,0
4,DCBIN
IHADCB,4

DCBOFLGS,DCBOFOPN
INPUT_OK
15,4
OH
4,DCBOUT
DCBOFLGS,DCBOFOPN
OUTPUT_OK
15,4
OH
4,DCBLOG
DCBOFLGS,DCBOFOPN
LOG_OK
15,4
OH
4
15,15
LEAVE

Initialize the return code.
Load the address of the DCB.
Establish addressability to the
fields in the DCB mapping.
Test for successful open.
If open don't set bad return code.
Bad open, set bad return code.

Load the address of the DCB.
Test for successful open.
If open don't set bad return code.
Bad open, set bad return code.

Load the address of the DCB.
Test for successful open.
If open don't set bad return code.
Bad open, set bad return code.

Did the opens work?
No, then don't define the server.

**
* Issue the DEFSERV macro to define the server to MVSSERV.
**

*

LA
LA
ST
LA
ST
LA
ST
LA
ST
LA
ST
LA

4,CHSDCPRB
6,DCBIN
6,SERVER_PARM
6,DCBOUT
6,SERVER_PARM+4
6,DCBLOG
6,SERVER_PARM+8
6,OPEN_LIST
6,SERVER_PARM+12
6,CLOSE_LIST
6,SERVER_PARM+16
6,SERVER_PARM

Load the address of the CPRB.
Get INPUT DCB address.
Place it in the server parameter.
Get OUTPUT DCB address.
Place it in the server parameter.
Get OUTPUT DCB address.
Place it in the server parameter.
Get address of OPEN list form.
Place it in the server parameter.
Get address of CLOSE list form.
Place it in the server parameter.
Load the address of the server
parameter.

DEFSERV CPRB=(4),CED=(3),SERVNAME=SERVER_NAME, *
LTR
BZ
LA
B
DS
L
LTR
BZ
LA

SERVEPA=(5),SERVPARM={6),MF={E,PARMLIST)
15,15 Check the return code.
CPRB_RET If it is zero, check the CPRB's.
15,4 Otherwise, set a bad return code,
LEAVE and leave.
OH
15,CRBCRTNC
15,15
LEAVE
15,4

Obtain the CPRB's return code.
Check the return code.
If it is zero, then leave.
Otherwise, set a bad return code.

Figure 3-12 (Part 2 of 4). Sample Initialization/Termination Program

*

Chapter 3. How to Write a Server Initialization/Termination Program 3-13

LEAVE DS
L
L
LM
BR

OH
13,SUBSAVE+4
14,12 (,13)
0,12,20(13)
14

Restore caller's save area address.
Restore the caller's registers
except for 15 (return code).
Return to caller with return code.

**
* TITLE: CLEAN_UP
* * LOGIC: Delete the server from storage.
* * OPERATION:
* 1. Delete the server.
* 2. Close the necessary data sets.
* 3. Return to the mainline.
**
CLEAN_UP DS OH

STM 14,12,12(13) Save the caller's registers.
ST 13,SUBSAVE+4 Save the caller's save area address.
LA 15,SUBSAVE Obtain our save area address.
ST 15,8(,13) Chain it in the caller's save area.
LR 13,15 Point register 13 to our save area.

* Issue the DELETE macro to delete the server from storage.
**

DELETE EP=IBMABASE
**
* Close the customer record files.
**

CLOSE (DCBIN"DCBOUT"DCBLOG),MF=(E,CLOSE_LIST)
LA 15,0
L 13,SUBSAVE+4 Restore caller's save area address.
L 14,12(,13) Restore the caller's registers
LM 0,12,20(13) except for 15 (return code).
BR 14 Return to caller with return code.

**
* Data section.
**
SERVER_NAME DC CL8'IBMABASE' Server name.

**
* OPEN macro (list form).
**
OPEN_LIST OPEN (,(INPUT),,(OUTPUT),,(OUTPUT»,MF=L

**
* CLOSE macro (list form).
**

CLOSE_LIST CLOSE ("",),MF=L

Figure 3-12 (Part 3 of 4). Sample Initialization/Termination Program

3-14 Programmer's Guide to the SRPI for MVS/XA

**
* DCB macro (input).
**

DCBIN DCB DDNAME=CUSTRECS,DSORG=PS,MACRF=GM

**
* DCB macro (output).
**

DCBOUT DCB DDNAME=ACCTRECS,DSORG=PS,MACRF=PM

**
* DCB macro (log).
**

DCBLOG DCB DDNAME=LOGTRANS,DSORG=PS,MACRF=PM
SAVEAREA DC 18F'O' IBMINTRM's save area.
SUB SAVE DC 18F'O' IBMINTRM subroutine's save area.

**
* Server parameter list, contains the addresses of:
* The INPUT DCB
* The OUTPUT DCB
* The LOG DCB
* The OPEN LIST FORM
* The CLOSE LIST FORM
**

SERVER_PARM DC SA(O)

**
* Issue the DEFSERV macro list form to supply a parameter list.
**

PARMLIST DEFSERV MF=L

**
* CPRB
**

CHSDCPRB DSECT=NO

**
* INIT/TERM area mapping.
**

INITTERM DSECT=YES

**
* DCB macro mapping.
**

DCBD
END

DSORG=PS
IBMINTRM

Figure 3-12 (Part 4 of 4). Sample Initialization/Termination Program

Chapter 3. How to Write a Server Initialization/Termination Program 3-15

3-16 Programmer's Guide to the SRPI for MVS/XA

Chapter 4. How to Install a Server

After a server has been written, compiled or assembled, and linked to a load
module, you must install the server to make it available to users and to
MVSSERV.

Installation is a two-step process. The steps are:

1. Installing the server (and its initialization/termination program).

2. Naming the server's initialization/termination program in an input parameter
data set.

Installing the Server

In a STEPLIB

In a System Library

You can install a server in one of two ways:

• In a STEPLIB.
• In a system library in the linklist concatenation.

You can install a server in a STEPLIB in a user's logon procedure. This method
of installation lets you restrict the server to specific users, and is especially useful
when testing a new server.

To install an existing server in a STEPLIB, add the following JCL in the user's
logon procedure:

//STEPLIB DD DSN=data.set.narne,DISP=SHR

If the server's initialization/termination program is not in the same data set and is
also being tested, install it in the STEPLIB in the same way.

To make a server available to all system users, copy the server and its
initialization/termination program to a member or members of a system library in
the linklist concatenation, such as data set SYSl.LPALIB.

Chapter 4. How to Install a Server 4-1

Input Parameter Data Set

Before issuing the MVSSERV command, you must name the
initialization/termination programs in the input parameter data set. From this
input, MVSSERV invokes the initialization/termination programs, which define
the servers to MVSSERV.

Allocating the Input Parameter Data Set

The input parameter data set must have the following characteristics:

• ddname -- CHSPARM
• logical record length -- 80
• format -- fixed or fixed block.

You can create the input parameter data set with the following command:

~LL0CATE F(CHSPARM) DA: 'data.set.name') NEW LRECL 80) RECFM(F:

To make the input parameter data set available to an MVSSERV user, install the
existing data set in the user's logon procedure, or in a CLIST or ISPF dialog that
issues MVSSERV for the user.

• In a logon procedure, you can use the following JCL:

//CHSPAR;\l DD DSN=data. set. name, DISP=SHR

• In a CLIST or ISPF dialog, you can use the following command:

ALLOCATE ~(CHSPARM) DAt 'data.set.name') SHR

Be sure that the user has authority to access the input parameter data set.

Initializing the Input Parameter Data Set

Each record of the input parameter data set must contain the name of an
initialization/termination program, starting in column 1. The name must conform
to MVS program naming conventions; it can have up to eight characters,
including the characters A-Z, 0-9, @, #, and $. The first character cannot be 0-9.

For example, type the name of your initialization/termination program in the
following position on a line of the input parameter data set:

----+----1----+----2----+----3----+----4----+----5---

4-2 Programmer's Guide to the SRPI for MVS/XA

Additional MVSSERV Data Sets

Trace Data Set

Along with the input parameter data set, you can allocate optional data sets to
contain MVSSERV diagnosis information. These diagnostic data sets can also be
allocated in a user's logon procedure, in a CLIST or ISPF dialog that invokes
MVSSERV, or in ready mode TSO. The diagnostic data sets and their functions
are as follows:

• Trace data set -- receives trace data and messages
• Dump data set -- receives system dump data
• Dump suppression data set -- lets you specify ABEND codes for which you

do not want dumps to be taken.

You can specify a data set to receive trace data from an MVSSERV session. The
level of trace data depends on the parameter with which MVSSERV is invoked
(see Chapter 5, "Testing and Diagnosis" for a list of these parameters):

• TRACE parameter -- records events in the MVSSERV session. including any
internal problems.

• IOTRACE parameter -- records the TRACE information and
communications with the PC, including data transmissions and the contents
of the CPRB.

Allocating the Trace Data Set

The trace data set must have the following characteristics:

• ddname -- CHSTRACE
• logical record length -- 80
• format -- fixed or fixed block.

You can create the trace data set with the following command:

ALLOCATE F(CHSTRACE) DA('data.set.name') NEW LRECL(80) RECFM(F)

To make the trace data set available to an MVSSERV user, install the existing
data set in the user's logon procedure, or in a CLIST or ISPF dialog that issues
MVSSERV for the user. Users must have their own trace data sets.

• In a logon procedure, you can use the following JCL:

//CHSTRACE DD DSN=da~a.set.name,DISP=OLD

• In a CLIST or ISPF dialog, you can use the following command:

ALLOCATE F(CHSTRACE) DA('data.set.name') OLD

Refer to Chapter 5, "Testing and Diagnosis" for more information about the
MVSSERV trace parameters and syntax.

Note: Use of the trace parameters may affect MVSSERV performance.
Therefore, your installation may decide not to use the MVSSERV trace

Chapter 4. How to Install a Server 4-3

Dump Data Set

parameters for regular production work. However, for testing or diagnosing
servers, or requesting diagnosis help from IBM service personnel, use MVSSERV ~.:I.!
with the trace data set and the parameter TRACE or IOTRACE. .:

You can allocate a data set to receive dump data from an MVSSERV session. If
you allocate a dump data set, MVSSERV provides a dump at the first occurrence
of an ABEND.

Allocating the Dump Data Set

The dump data set must be associated with one of the following ddnames:

• SYSUDUMP, for a formatted dump of the MVSSERV storage area
• SYSMDUMP, for an unformatted dump of the MVSSERV storage area and

the system nucleus
• SYSABEND, for a formatted dump of the MVSSERV storage area including

the local system queue area and lOS control blocks.

The exact contents of a dump depend on the default options specified in your
SYSl.PARMLIB members SYSUDUMP, SYSMDUMP, and SYSABEND.
These system default options can be changed using the CHNGDUMP command.
For further information about the possible dump data sets and how to read them,
refer to MVS/XA Diagnostic Techniques.

To make a dump data set available to an MVSSERV user, install the existing
data set in the user's logon procedure, or in a CLIST or ISPF dialog that issues
MVSSERV for the user. Users must have their own dump data sets.

• In a logon procedure, you can use the following JCL:

//SYSUDUMP DD DSN=data.set.name,DISP=OLD

• In a CLIST or ISPF dialog, you can use the following command:

ALLOCATE F(SYSUDUMP) DA('data.set.name') OLD

Dump Suppression Data Set

If you use a dump data set, you can eliminate unnecessary dumps by using the
MVSSERV dump suppression data set. The dump suppression data set lets you
specify ABEND codes for which you do not want to receive dumps from
MVSSERV. For example, you can specify ABEND code 913 to avoid dumps
caused by unsuccessful OPEN macro requests.

Allocating the Dump Suppression Data Set

The dump suppression data set must have the following characteristics:

• ddname -- CHSABEND
• logical record length -- 80
• format -- fixed or fixed block.

4-4 Programmer's Guide to the SRPI for MVS/XA

You can create the dump suppression data set with the following command:

ALLOCATE F(CHSABEND) DA('data.set.name') NEW LRECL(80) RECFM(F)

To make the dump suppression data set available to an MVSSERV user, allocate
the existing data set in the user's logon procedure, or in a CLIST or ISPF dialog
that issues MVSSERV for the user.

• In a user's logon procedure, you can use the following JCL:

//CHSABEND DD DSN=data.set.name,DISP=SHR

• In a CLIST or ISPF dialog, you can use the following command:

ALLOCATE F(CHSABEND) DA('data.set.name') SHR

Initializing the Dump Suppression Data Set

Each 80-byte record of the dump suppression data set must be in the following
format:

OFFSET LENGTH DESCRIPTION

+0 3 EBCDIC ABEND code
in hex. for system ABENDs
in decimal for user ABENDs

+3 1 Reserved
+4 4 EBCDIC REASON code (hex)
+8 1 Reserved
+9 1 EBCDIC dump action field:

o = Do not dump
1 = SNAP Dump

+10 70 Reserved

Use leading zeros for ABEND and reason codes as needed. For example, to
suppress dumps from ABENDs of the OPEN macro (ABEND code 9l3) caused
by RACF authorization failure (reason code 38), type the following on a line of
the dump suppression data set:

----+----1----+----2----+----3----+----4----+----5---

913 0038 0

You can replace the first character of the ABEND code and the entire reason
code with X's, to signify all values. For example, to suppress dumps from all
reason codes of the 913 macro, type the following:

----+----1----+----2----+----3----+----4----+----5---

913 XXXX 0

And to suppress dumps for all ABEND codes ending in 13, type the following:

----+----1----+----2----+----3----+----4----+----5---

X13 XXXX 0

For a list of ABEND and reason codes, refer to MVSjXA Message Library:
System Codes and MVSjXA Message Library: System Messages.

Chapter 4. How to Install a Server 4-5

c

4-6 Programmer's Guide to the SRPI for MVS/XA

Chapter 5. Testing and Diagnosis

Testing Servers

After you have written and installed a server, you will want to test it. You can
first test the server as a member of a STEPLIB. When you are satisfied that the
server works correctly, you can then re-install and test the server again for general
use in a system library.

When testing a server, you need to start an MVSSERV session on TSO/E and, on
the PC, invoke the requester program that requests the server. The requester
must name the server and service function, and pass any data and parameters that
the service function needs.

Steps for Testing Servers

Use the following steps to test a server.

1. Make sure that you have the necessary data sets available for your
MVSSERV session. For information about allocating the data sets, refer to
Chapter 4, "How to Install a Server." You should have the following data
sets available:

• The server and its initialization/termination program, installed in a
STEPLIB in your logon procedure.

• An input parameter data set, containing the name of the
initialization/termination program.

• A trace data set, to receive MVSSERV messages.

You may also want to have the dump data set and the dump suppression data
set as described in Chapter 4, "How to Install a Server."

Chapter 5. Testing and Diagnosis 5-1

2. To start the MVSSERV session, logon to TSOjE and issue the MVSSERV
command.

MVSSERV has the following syntax, with the default underscored:

MVSSERV NOTRACE
TRACE
rOTRACE

For a test, use the TRACE parameter. TRACE produces messages in the
trace data set about internal MVSSERV events, including server failures.

3. Switch to the PC session. (If you are using a PC other than the 3270 PC, issue
the appropriate TSOjE Enhanced Connectivity Facility command for the PC.)

4. Invoke the requester that corresponds to the server you want to test.

5. Note any messages from the requester. The requester should issue messages
about any non-zero return codes from the server.

6. Verify that the request was satisfied.

7. Switch back to the host session and press the END PF key to end
MVSSERV.

8. Note any messages that appear on your TSOjE screen. In TSO/E, you can
obtain online help for MVSSERV terminal messages by typing the message
ID (CHSxxxxxxx)in the following command:

HELP MVSSERV MSG(messaae ID)

9. Access the trace data set. Because you used the TRACE parameter when
invoking MVSSERV, the trace data set should have recorded informational
and error messages about events in the session and any errors that may have
occurred.

See the following section, "Diagnosing Servers," for information about
reading the trace data set messages.

10. When the server works properly, you may want to copy it to LPALIB to
make it available to other users. Make sure that the other users allocate the
input parameter data set in their logon procedures, in a CLIST or ISPF
dialog, or in line mode TSO. Then test the server again in its new
installation.

5-2 Programmer's Guide to the SRPI for MVS/XA

Diagnosing Servers

Reading the Trace Data Set

bUonnational~~ges

Error~~ges

You can edit, browse, or print the trace data set to see messages about your most
recent MVSSERV session. For explanations of the messages, refer to TSO
Messages. The message explanations include information about what action, if
any, you must take when you see a message.

The messages are preceded by message IDs beginning with the letters CHS. The
last character of the message ID indicates the type of message: I for informational
messages, and E for error messages.

Informational messages provide information about the status of the MVSSERV
session and data transmissions. Informational messages also describe exception
conditions, such as server failures, which do not cause MVSSERV to end.

Error messages describe conditions that cause MVSSERV to end abnormally.
The conditions may be internal MVSSERV errors, system errors, or input errors.
Possible input errors include incorrect syntax of the MVSSERV command, a
missing input parameter data set, or an invalid CPRB address.

Internal and system errors often require help from IBM service personnel, but you
may be able to correct input errors by following directions in the message
explanations.

The Internal Execution Path Trace Table

The last message in the trace data set, CHSTTP02I, displays MVSSERV's internal
execution path trace table. MVSSERV makes an entry in the table whenever one
MVSSERV module calls another. Thus, the table provides a history of
MVSSERV module calls and makes it possible to track internal MVSSERV
errors. For information about how to read the internal execution path trace
table, refer to TSOjE Command Processor Logic Volume IV.

Figure 5-1 shows a sample of a trace data set obtained using the TRACE
parameter. The message IDs are in the left-hand column of the figure.

Chapter 5. Testing and Diagnosis 5-3

CHSCMI02I The control unit supports Read Partitioned Queries.
CHSTCA13I DFT access method driver is active.
CHSTRR01I CPRB request at 12:37:07 server=SERVER2 function=OOOl:
CHSRUTR06I Server request failed; SERVER2 is in an inactive task.
CHSDCOM09I User pressed the PF3 key, requesting termination.
CHSCPS08I MVSSERV is ending.
CHSTTP01I Internal trace table
CHSTTP02I 000 TIOR 001 TIOR
CHSTTP02I 004 TIOR 005 TIOR
CHSTTP02I 008 TIOR 009 TIOR
CHSTTP02I 012 TIOR 013 TIOR
CHSTTP02I 016 TIOR 017 TIOR
CHSTTP02I 020 TSRV 021 TRUTR
CHSTTP02I 024 TRUTR 025 TCMI
CHSTTP02I 028 TDCA 029 HRES
CHSTTP02I 032 TC7H 033 PACK
CHSTTP02I 036 TLMP 037 TIOR

Figure 5-1. Sample Trace Data Set

follows. Last
002 TIOR
006 TIOR
010 TIOR
014 TIOR
018 TIOR
022 TRUTR
026 TLMP
030 TDCOM
034 TINF
038 HQNL

entry is
003 TIOR
007 TIOR
011 TIOR
015 TIPM
019 TTTP
023 TRUTR
027 TIOR
031 TCH7
035 TTRL
039 TDCOM

019:

For explanations of the messages that appear in your MVSSERV trace data set,
refer to TSOjE Messages. The message explanations include information about
what action, if any, you must take when you see a message.

5-4 Programmer's Guide to the SRPI for MVS/XA

Glossary

This glossary defines important terms and abbreviations
used in this manual. If a term is not defined here, refer
to the index or IBM Vocabulary for Data Processing,
Telecommunications, and Office Systems, GC20-1699.

ABEND. Abnormal end of task.

address. A character or group of characters that
identify a location in storage, a device in a system or
network, or some other data source.

addressing. (1) In data communications, the way that
the sending or control station selects the station to
which it is sending data. (2) A means of identifying
storage locations. (3) Specifying an address or location
within a file.

allocate. To assign a resource, such as a disk file or a
diskette.

American National Standard Code for Information
Interchange (ASCII). The code developed by ANSI for
information interchange among data processing systems,
data communications systems, and associated
equipment. The ASCII character set consists of 7 -bit
control characters and symbolic characters.

application program (m). The instructions to a
computer to accomplish processing tasks for a user.

ASCII. See American National Standard Code for
Information Interchange.

assembler language. A source language that includes
symbolic machine language statements in which there is
a one-to-one correspondence with instruction formats
and data formats of the computer.

buffer. An area of storage, temporarily reserved for
performing input or output, into which data is read, or
from which data is written.

compile. To translate a program written in a high-level
programming language into a machine language
program.

configuration. The arrangement of a computer network
as defined by the nature, number, and characteristics of
the computers and other machines that are attached to
the network.

connectivity programming request block (CPRB). An
interface control block used by requesters and servers to
communicate information.

constant. A value that does not change. Contrast with
variable.

control program. (l) A computer program designed to
schedule and supervise the execution of programs in a
computer system. (2) The set of functions in the IBM
3270 Personal Computer allowing you to create
windows, change their size and position, and hide and
enlarge them; use auto keying and copying; save and
restore autokey recordings, notepad contents, and
screen profiles; and transfer files between Systemj370
and PC sessions.

CPRB. See connectivity programming request block.

Glossary X-I

data set. The major unit of data storage and retrieval,
consisting of a collection of data in one of several
prescribed arrangements and described by control
information to which the system has access.

default. A value that is used when nothing is specified
by the user.

device. Equipment that is designed for a specific
purpose and that attaches to your computer, for
example, a printer, disk drive, or display station.

DFT. See distributed function terminal.

distributed function terminal (DFf). (1) An operational
mode. (2) A hardware/software protocol used to
communicate between a terminal and a 3274 control
unit.

EBCDIC. See extended binary-coded decimal
interchange code.

end user. (1) The ultimate source or destination of
information flowing through a system. (2) A person,
process, program, device, or system that employs a user
application network for the purpose of data processing
and information exchange. See also user.

Enhanced Connectivity Facility. The strategy for
sharing services and resources in a heterogeneous
network.

Enhanced Connectivity Facility management services.
Any service provided through the Server-Requester
Programming Interface.

Enhanced Connectivity Facility base component. The
base code for an Enhanced Connectivity Facility
environment, including a router.

entry point. An address or label of an instruction
performed upon entering a computer program, a
routine, or a subroutine. A program may have several
different entry points, each corresponding to a different
function or purpose.

extended binary-coded decimal interchange code
(EBCDIC). A set of 256 characters, each represented
by 8 bits.

x -2 Programmer's Guide to the SRPI for MVS/XA

field. (1) An area in a record or panel used to contain
a particular category of data. (2) The smallest
component of a record that can be referred to by a
name. (3) An area in a structured file defined in the
form used to enter and display data. Fields are defined
using either text data paths or tree data paths. See
protected field and unprotected field.

file. A collection of related data that is stored and
retrieved by an assigned name.

file name. The name used by a program to identify a
file.

file naming. Assigning a specific name to a data file on
the System/370 or the PC.

format. (1) A defined arrangement of such things as
characters, fields, and lines, usually used for displays,
printouts, or files. (2) The pattern which determines
how data is recorded.

hardware. The equipment, as opposed to the
programming, of a computer system.

hex. See hexadecimal.

hexadecimal. Pertaining to a system of numbers to the
base sixteen; hexadecimal digits range from 0 (zero)
through 9 (nine) and A (ten) through F (fifteen).

host. A computer that receives requests for services
from another personal computer in the Enhanced
Connectivity Facility environment.

host computer. The primary and controlling computer
in a network; usually provides services such as
computation, data base access, and advanced
programming functions. Sometimes referred to as a host
processor or mainframe.

ID. Identification.

initialize. To set counters, switches, addresses, or
contents of storage to starting values.

interface. A shared boundary between two or more
entities. An interface might be a hardware or software
component that links two devices or programs together.

invoke. To start a command, procedure, or program.

keyword. One of the predefined words of a
programming language; a reserved word.

load. (1) To move data or programs into storage.
(2) To place a diskette into a diskette drive. (3) To
insert paper into a printer.

load module. (1) A program unit that is suitable for
loading into main storage for execution; is usually the
output of a linkage editor.

LOGOFF. A command for ending a host session.

LOGON. A command for beginning a host session.

macro. (1) A single instruction representing a set of
instructions. (2) The name of a "pseudo command"
that performs the functions of many commands, by
combining those commands under the common label
described above.

main task. (1) The main program within a partition in
a multiprogramming environment. See also sub task.

message. (1) A response from a program to inform you
of a condition that may affect further processing of a
current program. (2) Information sent from one user in
a multi-user operating system to another user.

module. A discrete programming unit that usually
performs a specific task or set of tasks. Modules are
subroutines and calling programs that are assembled
separately, then linked to make a complete program.

MVS router. A program running under TSOjE that
uses the Server-Requester Programming Interface
(SRPI) to route requests from the PC to the
corresponding server on the host. The MVS router is
part of the MVSSERV command processor in TSO/E
Release 3.

MVSSERV. (1) A program that provides the
Server-Requester Programming Interface (SRPI) and a
service request manager on an IBM System/370 using
the TSO/E (time sharing option/extensions) on
MVS/XA. (2) A command processor in TSO/E Release
3. It initializes, terminates, and provides recovery for
an Enhanced Connectivity Facility session between a PC
and a host system. It also establishes communication
and routes requests from the PC user to the
corresponding server on the host.

object module. A set of instructions in machine
language. The object module is produced by a compiler
or assembler from a subroutine or source module and
can be input to the linking program. The object module
consists of object code. See module.

operating environment. The operating environment at
the node, generally referred to as the operating system.
It provides services to the Enhanced Connectivity
Facility implementation, requesters, and servers.

operating system. Software that controls the running of
programs; in addition, an operating system can provide
services such as resource allocation, scheduling,
input/output control, and data management.

parameter. (1) Information that the user supplies to a
panel, command, macro, or function. (2) In Enhanced
Connectivity Facility, information that a requester or
server passes to a send_request or send_reply function.

personal computer. A properly-configured IBM
Personal Computer or 3270 Personal Computer that
allows communication between IBM requesters/servers
programs. These communicating programs reside on
both a personal computer and host system.

presentation space. In the 3270 PC environment, a
region in computer memory (either host, PC, or
notepad) that can be displayed, in whole or part, in a
window on the screen. For example, a spreadsheet
consisting of 4,096 rows and 4,096 columns is a
presentation space that cannot be viewed in its entirety
on one screen. However, it can be viewed in sequence,
part-by-part. Sometimes Hpresentation spaceR is used
synonymously with session, although not all
presentation spaces are sessions. (Technically, some
internal components are presentation spaces.)

Glossary X-3

program. A file containing a set of instructions
conforming to a particular programming language
syntax.

prompt. A displayed request for information or user
action.

protocol. In data communications, the rules for
transferring data.

query. The action of searching data for desired
information.

queue. A line or list formed by items waiting to be
processed.

record. A collection of fields treated as a unit.

register. A storage area, in a computer, capable of
storing a specified amount of data such as a bit or an
address. Each register is 32 bits long.

reply. The answer to a service request that came from
the server.

request. The requirement for service that came from
the requester.

requester. The program that relays a request to another
computer through the server-requester programming
interface (SRPI). Contrast with server.

required parameter. A parameter that must have a
defined option. The user must provide a value if no
default is supplied.

return code. A value that is returned by a subroutine or
function to indicate the results of an operation of the
program.

router. An Enhanced Connectivity Facility program
which interprets requests for services and directs them
to the applicable server. See also MVS router,
Server-Requester Programming Interface.

X -4 Programmer's Guide to the SRPI for MVS/XA

server (m). The program that responds to a request
from another computer through the Server-Requester
Programming Interface (SRPI). Contrast with requester.

server return code. A 4-byte return code presented to
the server's Enhanced Connectivity Facility
Management Services. The content and format of the
return status are defined by the individual server.

server-requester programming interface (SRPI). (1) A
protocol between requesters and servers in an Enhanced
Connectivity Facility network; includes the protocol to
define Enhanced Connectivity Facility subsystem.
(2) The interface that enables Enhanced Connectivity
Facility between requesters and servers in a network.

session. A connection between two stations that allows
them to communicate.

software. Programs, procedures, rules, and any
associated documentation pertaining to the operation of
a computer system. Contrast with hardware.

SRPI. See server-requester programming interface.

storage. (1) The location of saved information. (2) In
contrast to memory, the saving of information on
physical devices such as disk or tape. See memory.

subtask. A task that is initiated and terminated by a
higher order task. Contrast with main task.

subroutine. (1) A sequential set of statements that can
be used in one or more computer programs and at one
or more points in a computer program. (2) A routine
that can be part of another routine.

syntax. The rules for the construction of a command or
program.

trace. To record data that provides a history of events
occurring in the system.

transparent. In data transmission, pertaining to
information that is not recognized by the receiving
program or device as transmission control characters.

user. Anyone who requires the services of a computer
system. See also end user.

variable. A name used to represent a data item with a
value that can change while the program is running.
Contrast with constant.

Glossary X-5

X-6 Programmer's Guide to the SRPI for MVS/XA

Index

ABENDs
obtaining dumps for 4-4
recovery from

in the initialization/termination program 3-9
in the server 2-5

suppressing dumps for 4-4
about this book iii
allocating

dump data set 4-4
dump suppression data set 4-4
input parameter data set 4-2
trace data set 4-3

AMODE
for initialization/termination programs 3-2
for servers 2-1

assembling
a server 2-6
an initialization/termination program 3-11

audience for book iii

bibliography iv

CED
See connectivity environment descriptor

CED parameter of DEFSERV macro 3-6
CHSABEND data set 4-4
CHSDCPRB macro

for creating the DEFSERV CPRB 3-5
for mapping to the server input 2-3

CHSPARM data set 4-2
CHSTRACE data set 4-3
command syntax for MVSSERV 5-2
compiling

a server 2-6
an initialization/termination program 3-11

concepts of the IBM Enhanced Connectivity
Facility 1-1

connectivity environment descriptor (CED)
on entry to the initialization/termination

program 3-3

on entry to the server 2-3
connectivity programming request block (CPRB)

definition of 1-4
for DEFSERV reply 3-9
for DEFSERV request 3-8
on entry to the server 2-4
on exit from the server 2-5
using one CPRB to define multiple servers 3-6

control blocks
CPRB

for DEFSERV reply 3-9
for DEFSERV request 3-8
on entry to the server 2-4
on exit from the server 2-5

INITTERM

CPPL

at initialization 3-4
at termination 3-10

See TSO command processor parameter list
CPRB

See connectivity programming request block
CPRB parameter of DEFSERV macro 3-6

data sets for MVSSERV
dump data set 4-4
dump suppression data set 4-4
input parameter data set 4-2
sample 5-4
trace data set

allocating 4-3
reading 5-3

define server parameter area
contents 3-8
creating (in DEFSERV macro) 3-7

defining a server to MVSSERV 3-5
defining multiple servers with one CPRB 3-6
definitions

glossary of X-I
DEFSERV macro

syntax and parameters 3-6
deleting a server 3-11
designing a server 2-1
designing an initialization/termination program 3-2
diagnosis for MVS servers 5-3
dump data set 4-4
dump suppression data set 4-4
dumps, obtaining 4-4

Index X-7

ending MVSSERV 5-2
Enhanced Connectivity Facility

concepts 1-1
ending a TSO/E Enhanced Connectivity session 5-2
environment using MVSSERV 1-3
starting a TSO/E Enhanced Connectivity

session 5-2
error messages 5-3
error recovery

for the initialization/termination program 3-9
for the server 2-5

ESTAE macro
for server recovery 2-5

examples
of a server 2-7
of a trace data set 5-4
of an initialization/termination program 3-12

execution path trace table 5-3
external trace data

creating a data set for 4-3
retrieving and reading 5-3

freeing resources 3-11

glossary X-I

handling service requests
overview 2-2

help for MVSSERV messages 5-2

ID, service function
obtaining from the receive request CPRB 2-4

informational messages 5-3
initialization/termination program

definition of 1-2

X -8 Programmer's Guide to the SRPI for MVS/XA

design 3-2
functions of

defining servers 3-5
deleting servers 3-11
freeing resources 3-11
loading servers 3-5
obtaining resources 3-5

in relation to a server 1-3, 3-2
input to

at initialization 3-3, 3-4
at termination 3-10

installation 4-1
naming 3-2
naming in the input parameter data set 4-2
processing overview 3-3
recovery routine 3-9
sample 3-12

initializing
dump suppression data set 4-5
input parameter data set 4-2

INITTERM control block
at initialization 3-4
at termination 3-10

INITTERM macro 3-4
input

to initialization/termination programs
at initialization 3-3, 3-4
at termination 3-10

to servers 1-4
input parameter data set 4-2
installing

initialization/termination programs 4-1
servers 4-1

INTENVRN field of INITTERM control block
at initialization 3-4
at termination 3-10

INTI NIT field of INITTERM control block
at initialization 3-4
at termination 3-10

INTRSN field of INITTERM control block
at termination only 3-10

INTSNAME field of INITTERM control block
at termination only 3-10

INTW ALEN field of INITTERM control block
at initialization 3-4
at termination 3-10

INTW APTR field of INITTERM control block
at initialization 3-4
at termination 3-10

IOTRACE parameter of MVSSERV
command syntax 5-2
trace data produced by 4-3

issuing MVSSERV 5-2

languages supported 1-6
link-editing

a server 2-6
an initialization/termination program 3-11

load module
linking a server to a 2-6
linking an initialization/termination program to

a 3-11
loading a server

considerations 3-2
example 3-5

mapping macros
CHSDCPRB

for creating the DEFSERV CPRB 3-5
for mapping to the server input 2-3

INITTERM
for mapping to initialization/termination

input 3-4
message help (online) 5-2
message manual, using 5-4
MVSSERV command

description 1-3
diagnosis 5-3
invocation 5-2
messages 5-3

error messages 5-3
informational messages 5-3

online message help 5-2
sequence of events 1-5
syntax 5-2
task structure 3-1
termination 5-2

obtaining resources 3-5
online message help 5-2
overview

of initialization/termination program
processing 3-3

of service request handling 2-2

parameter, server
contents 3-5
on entry to the server 2-3
pointer from initialization/termination

program 3-7, 3-8
parameters of MVSSERV 5-2
preface iii
preparing for execution

initialization/termination programs 3-11
servers 2-6

procedures
for designing a server 2-1
for designing an initialization/termination

program 3-2
for writing initialization/termination programs 1-6
for writing servers 1-5

programming languages supported 1-6
publications related to this book iv

receiving a service request 2-3
recovery routines

for the initialization/termination program 3-9
for the server 2-5

register contents
at entry to server 2-3
at exit from server 2-5
at initialization 3-4
at termination 3-10
required for DEFSERV macro 3-6

related publications iv
reply, service

definition of 1-1
detecting reply failures 3-10
sending from the server 2-4

requesters
books about 2-1
definition of 1-1
planning considerations 2-1

resources, for servers
freeing 3-11
obtaining 3-5

return address
after initialization 3-4
after termination 3-10
for server 2-5

return codes
from MVSSERV

for DEFSERV CPRB 3-9
for DEFSERV macro 3-8
for last service reply 3-10

from the initialization/termination program 3-11
from the server-requester pair 2-4

Index X-9

RMODE
for initialization/termination programs 3-2
for servers 2-1

sample
ini tialization/termination program 3-12
server 2-7
trace data set 5-4

sending a service reply 2-4
sequence of events in an MVSSERV session 1-5
SERVEPA parameter of DEFSERV macro 3-7
server

definition of 1-2
deleting 3-11
design 2-1
diagnosis 5-3
input from MVSSERV 2-3
input from requester 2-3
installation 4-1
languages supported 1-6
loading 3-5
naming 2-1
recovery routine 2-5
sample server 2-7

server parameter
contents 3-5
on entry to the server 2-3
pointer from initialization/termination

program 3-7, 3-8
server-requester programming interface (SRPI)

definition of 1-4
summary of SRPI functions 1-4

service function
definition of 1-2
ID, obtaining from the receive request CPRB
in relation to a server 1-2, 2-1
packaging 2-1

service reply
definition of 1-1
detecting reply failures 3-10
sending from the server 2-4

service request.
definition of 1-1
server handling of 2-2

SERVNAME parameter of DEFSERV macro 3-7
SERVPARM parameter of DEFSERV macro 3-7
SRPI

See server-requester programming interface
starting MVSSERV 5-2

X-I0 Programmer's Guide to the SRPI for MVS/XA

STEPLIB
installing a server in a 4-1

steps
for designing a server 2-1
for designing an initialization/termination

program 3-2
for writing initialization/termination programs 1-6
for writing servers 1-5

suppressing MVSSERV dumps 4-4
SYSABEND dump, data set for 4-4
SYSMDUMP dump, data set for 4-4
system library

installing a server in a 4-1
SYSUDUMP dump, data set for 4-4

task structure
for MVSSERV 3-1

terms
glossary of X-I

testing a server 5-1
trace data set

allocating 4-3
reading 5-3

TRACE parameter of MVSSERV
command syntax 5-2
trace data produced by 4-3

tracing
MVSSERV messages 5-3
MVSSERV's execution path 5-3

TSO command processor parameter list (CPPL)
address of

as input at initialization 3-4
as input at termination 3-10

TSO/E Enhanced Connectivity Facility
concepts 1-1
ending a TSO/E Enhanced Connectivity session 5-2
environment using MVSSERV 1-3
starting a TSO/E Enhanced Connectivity

session 5-2

using the CPRB
to define servers to MVSSERV 3-7
to receive a service request 2-2
to send a service reply 2-4

TSO Extensions Programmer's Guide to the Server- Requester Programming Interface for MVS/Extended Architecture

SC28-1309-0 S370-39

Printed in U.S.A. _-.. ------- ---..-
-~----. ----- -- _ ---_ .. -_.-..r _ y _®

TSO Extensions
Programmer's Guide
to the Server-Requester
Programming Interface for
MVSjExtended Architecture

5-C28-1309-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers,
and operators of IBM systems. You may use this form to communicate your comments about this
pUblication, its organization, or subject matter, with the understanding that IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to
you.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

How do you use this publication?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail directly to the
address in the Edition Notice on the ba~k of the title page.)

TSO/E Programmer's Guide to the Server- Requester Programming Interface for MVS/XA

SC28-1309-0 5370-39

Reader's Comment Form

_~~~~~ ___________ ~.e~taPII~_
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK. N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 058, Building 921-2
PO Box 390
Poughkeepsie, New York 1 2602

11

Fold and tope

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

(")

s.

---1
Fold and tope

--. -. .---....-. .-- --_ - -----~ ..,....,---- -...,----..,-
-~- ... -®

Please Do Not Staple Fold and tope

Printed in U.S.A.

1
1
1
1
1
1
1
1
I

