
Program Product

5C28-1333-1
File No._ 5370-39

TSO Extensions
User's Guide

Program Number 5665-285

--- .------ --------- ----- -- ------------., -

Second Edition (February, 1986)

This is a major revision of, and obsoletes, SC28-1333-0 and Technical Newsletter
SN28-1039. See the Summary of Amendments following the Contents for a summary of
the changes m,ade to this book. Technical changes to the text are indicated by a vertical
line to the left of the change.

This edition applies to TSO Extensions Release 2, Program Number 5665-285 and to all
subsequent releases until otherwise indicated in new editions or technical newsletters.
Changes are made periodically to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM SystemJ370
Bibliography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM's program product may be used. Any functionally equivalent program
may be used instead.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Information
Development, Department D58, Building 921-2, PO Box 390, Poughkeepsie, N.Y. 12602.
IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1984, 1986

Preface

Organization

This publication describes how to use the Time Sharing Option (TSO) command
language to handle data and to compile, link edit, load and execute programs at a
terminal. It is intended as a guide for all TSO users, from those unfamiliar with
TSO to experienced users who need further information to perform a specific task.
This manual can be used at a terminal or as a tutorial manual before a new user
begins work with TSO. System programmers responsible for generating and
maintaining a system with TSO should consult System Programming Library:
TSO Extensions.

Your installation may have the Interactive System Productivity Facility/Program
Development Facility (ISPF /PDF). These IBM program products provide panels
that prompt you for information as an interface between you and TSO. Behind
the ISPF/PDF panels, the TSO commands are processed as if you had entered
them individually at your terminal. Most TSO tasks can be accomplished with or
without ISPF/PDF. If you are using ISPF/PDF, see Interactive System
Productivity Facility/Program Development Facility for MVS: Reference.

This book is divided into three sections. Section One describes information that
every TSO user must understand, such as the concept of data sets and the data set
naming conventions, how to specify TSO commands, and how to communicate
with other TSO users. Section Two describes the use of the TSO command
language to allocate, rename, copy, protect, free and delete data sets. Section
Three describes how to compile, link edit, load and execute programs in the
foreground and background.

Related Publications

The publications referred to in this book are:

MVS/Extended Architecture

Refer to MVS/System Product Version 2 General Information Manual, Ge28-1118
for the order numbers of these MVS/XA books on the level that you are using.

MVS/Extended Architecture Access Method Services
MVS/Extended Architecture JCL
MVS/Extended Architecture System Programming Library: System Macros
and Facilities, Volume J

Preface 111

MVS/370

MVS/Extended Architecture System Programming Library: System Macros and
Facilities, Volume 2
MVS/Extended Architecture Message Library: System Messages
MVS/Extended Architecture System Programming Library: TSO
MVS/Extended Architecture Message Library: TSO Terminal Messages

Refer to MVS/System Product Version 1 General Information Manual, GC18-1025
for the order numbers of the MVS/370 books on the level that you are using.

MVSJCL
OS/VS Message Library: VS2 System Messages, GC28-1002
OS/VS Assembler Language, GC33-4010
OS/VS2 Access Method Services, GC26-3841
OS/VS2 System Programming Library: Supervisor, GC28-1046
OS/MVT and OS/VS2 TSO Data Utilities: COPY, FORMAT, LIST, MERGE
User's Guide and Reference, SC28-6765

MVS/370 or MVS/Extended Architecture

1 V TSO IE User's Guide

System Programming Library: TSO Extensions Planning and Installation
Volume 1, SC28-1379
System Programming Library: TSO Extensions User Exits and Modifications
Volume 2, SC28-1380
System Programming Library: TSO Extensions Command and Macro
Reference Volume 3, SC28-1381

? -TSO Extensions CLISTs: Implementation and Reference, SC28-1304
TSO Extensions Command Language Reference, SC28-1307
TSO Extensions Guide to Writing a Terminal Monitor Program or Command
Processor, SC28-1136
TSO Extensions Session Manager Program Reference, SC28-1306
TSO Extensions Session Manager Terminal User's Guide, SC28-1305

IBM 3790 Communication System Operator's Guide for the 2741
Communications Terminal, GA27-2783
IBM 3270 Information Display System Operator's Guide, GA27-2742
IBM 3290 Information Panel Description and Reference GA23-0021
IBM 3767 Communication Terminal Operator's Guide, GA18-2000
Introduction to the IBM 3770 Data Communication System, GA27-3144
OS/MVT and OS/VS2 TSO Terminals, GC28-6762

Assembler H Version 2 Application Programming: Language Reference,
GC26-4037
OS/TSO Assembler Prompter User's Guide, SC26-3740
IBM OS (TSO) COBOL Prompter Terminal User's Guide and Reference,
SC28-6433
IBM System/360 OS (TSO) Terminal User's Supplement for FORTRAN IV
(GJ) Processor and TSO FORTRAN Prompter, SC28-6855 \
OS PL/I Optimizing Compiler: TSO User's Guide, SC33-0029

Interactive System Productivity Facility/Program Development Facility for
MVS: Reference, SC34-2089

Resource Access Control Facility Command Language Reference, SC28-0733

Program Products

The IBM Program Products referred to in this book are:

• Interactive System Productivity Facility (ISPF), 5668-960 or 5665-319
• Interactive System Productivity Facility/Program Development Facility

(ISPF /PDF), 5665-268 or 5665-317

• OS/MVT and OS/VS2 TSO Data Utilities, 5734-UTl

• Resource Access Control Facility (RACF), 5740-XXH

• TSO Extensions (TSO/E), 5665-285

• Assembler H Version 2, 5668-962
• COBOL TSO Prompter, 5734-CPl
• OSjVS COBOL Release 2.4, 5740-CBl
• PL/I OS Optimizing Compiler, 5734-PLl
• PL/I OS Checkout Compiler, 5734-PL2
• TSO Assembler Prompter, 5734-CP2
• TSO FORTRAN Prompter, 5734-CP3
• VS BASIC, 5748-XXl
• VS FORTRAN, 5748-F03

Preface V

VI TSO/E User's Guide

Contents

Section I: General TSO Functions

Chapter 1. Using Your Terminal 1-1
Learning About Your Terminal 1-1
LOGON/LOGOFF Command 1-3
Using Session Manager 1-4
Messages 1-4
The Attention Interrupt 1-7
PROFILE Command 1-8
TERMINAL Command 1-12

Chapter 2. Data Sets 2-1
TSO Data Set Naming Rules and Conventions 2-1
How to Enter Data Set Names 2-4
EDIT Command 2-5

Chapter 3. Using TSO Commands 3-1
Positional Operands 3-1
Keyword Operands 3-2
Abbreviating Keyword Operands 3-2
Delimiters 3-3
Line Continuation 3-3
Comments 3-4
Subcommands 3-4
Executing TSO Commands 3-5
TSOEXEC Command 3-6
HELP Command 3-7
List of TSO Commands 3-9

Chapter 4. Communicating With Other Users 4-1
SEND Command 4-1
TRANSMIT Command 4-5

Example of a NAMES data set 4-10
RECEIVE Command 4-11
The LOG Data Set 4-13

Example of a LOG data set 4-13

Section II: Using Data Sets

Chapter 5. Allocating Data Sets 5-1
ALLOCATE Command 5-1

Contents VB

Chapter 6. Renaming Data Sets 6-1
RENAME Command 6-1

Chapter 7. Copying Data Sets 7-1
Data Sets You can Copy Using SMCOPY 7-1
Some Examples of Using SMCOPY 7-2

Chapter 8. Listing Data Set Information 8-1
LIST ALC Command 8-2
LISTCAT Command 8-5
LISTDS Command 8-9

Chapter 9. Protecting Data Sets 9-1
PROTECT Command 9-1
RACF Commands 9-5

Chapter 10. Releasing Data Sets 10-1
FREE Command 10-1

Chapter 11. Deleting Data Sets 11-1
DELETE Command 11-1

Section III: Preparing and Running a Program

Chapter 12. Compiling and Assembling Code 12-1
The Compile Commands 12-4
RUN Command 12-6

Chapter 13. Link Editing Programs 13-1
LINK Command 13-1

Chapter 14. Loading and Executing Programs 14-1
LOAD GO Command 14-1
CALL Command 14-5

Chapter 15. SUbmitting and Monitoring a Background Job 15-1
Submitting Batch Jobs 15-1
The JOB Statement 15-2
SUBMIT Command 15-3
Displaying the Status of Jobs 15-10
STATUS Command 15-10
Cancelling a Batch Job's Execution 15-12
CANCEL Command 15-12

Chapter 16. Directing the Output of a Background Job 16-1
OUTPUT Command 16-1
OUTPUT Subcommands 16-7

Chapter 17. Executing Foreground Commands from a Background Job 17-1
Concurrent Execution 17-1
Output Handling 17-1
Submitting Commands Using the SUBMIT Command 17-2

Vlll TSOjE User's Guide

Submitting Commands Using JCL 17-5
Writing JCL for Command Execution 17-5
Command Processing Differences in the Background 17-8
Error Condition Handling 17-11

Chapter 18. Invoking Programs or Commands from a Program with the TSO
Service Facility 18-1

Introduction 18-1
TSO Service Facility Parameters 18-2
Examples of Invoking the TSO Service Facility 18-6

Appendix A. Full Screen Logon Processing A-I

Index X-I

Contents IX

X TSO IE User's Guide

Figures

2-1. Descriptive Qualifiers 2-2
4-1. Example of a NAMES Data Set 4-10
4-2. Example of a LOG Data Set 4-13
5-1. Operands Needed to Allocate a Data Set 5-2
5-2. Choosing a Disposition for a Data Set 5-4

12-1. Commands Used to Execute a Program 12-1
12-2. Compiling and Link-Editing a Single Program 12-2
12-3. Terminal Session Showing Execution of a Single Program 12-3
12-4. Source/Program Product Relationship 12-6
15-1. The SUBMIT * Function 15-8
17-1. Creating and Submitting Data Sets Containing Commands 17-2
17-2. The SUBMIT Process Using System-Generated JCL 17-3
17-3. The SUBMIT Process With User-Created JCL Statements 17-4
17-4. JCL Setup for Processing Commands in the Background 17-5
17-5. Allocating and Creating Input Data Sets 17-8
17-6. Entering Blank Lines Into Your Data Set 17-9
17 -7. Receiving a Data Set in the Background 17 -10
17-8. Receiving a Message in the Background 17-10
17-9. Processing Considerations (RACF and Non-RACF Systems) 17-11
18-1. IKJEFTSR Return Codes 18-4
18-2. IKJEFTSR Reason Codes 18-5
18-3. Assembler Program Demonstrating the Use of IKJEFTSR to Invoke a

Command 18-7
18-4. Fortran Program Demonstrating the Use of TSOLNK to Invoke a

Command 18-8
18-5. PLI Program Demonstrating the Use of TSOLNK to Invoke a

Command 18-9
18-6. PASCAL Program Demonstrating the Use of TSOLNK to Invoke a

Command 18-11
18-7. COBOL Program Demonstrating the Use of TSOLNK to Invoke a

Command 18-12
18-8. Assembler Program Demonstrating the Use of IKJEFTSR to Invoke a

Program 18-15
18-9. Fortran Program Demonstrating the Use of TSOLNK to Invoke a

Program 18-16
18-10. PLI Program Demonstrating the Use of TSOLNK to Invoke a

Program 18-17
18-11. PASCAL Program Demonstrating the Use of TSOLNK to Invoke a

Program 18-19
18-12. COBOL Program Demonstrating the Use of TSOLNK to Invoke a

Program 18-21

Figures Xl

xii TSO/E User's Guide

Summary of Amendments

Summary of Amendments
for SC28-1333-1
for TSO Extensions Release 2

There are minor technical and editorial changes throughout the book.
Information about the TSO service facility has been rewritten and the following
information has been added: handling error conditions, using the RECEIVE
command in background jobs, and using the SMCOPY command.

Summary of Amendments
for SC28-1333-0
as Updated December 14, 1984
By Technical Newsletter SN28-1039

This technical newsletter contains changes to the description of attention
interrupt.

Summary of Amendments XU1

XIV TSO/E User's Guide

Section I: General TSO Functions

TSO is a tool you can use to interact with MVS to process data. Programs,
commands, and command procedures are the vehicles you use in a TSO
environment to process data. This section describes:

• Using your terminal to communicate with TSO
• The data sets that contain the information you want to process
• The general format and syntax of the TSO commands
• Communicating with other TSO users.

Section I: General TSO Functions

TSO/E User's Guide

Chapter 1. Using Your Terminal

Your terminal is your link to the computer system using TSO. Before you start
to use TSO, you need to understand how to use your terminal and how to tailor
its capabilities to your needs. This chapter discusses:

• Where to look for information on using your terminal
• How to log on and off of TSO
• How using session manager can record your terminal session
• What system messages can tell you
• How to use an attention interrupt
• How to define or alter your terminal characteristics
• How to define or alter your user profile.

Learning About Your Terminal

You can use TSO on any device which supports MVS. For example, TSO is
supported on the following types of commonly used terminals:

IBM 2741 Communication Terminal
IBM 3270 Information Display System
IBM 3290 Information Panel
IBM 3767 Communication Terminal
IBM 3770 Data Communications System

A terminal session is relatively simple. A terminal user identifies himself to the
system and then issues commands to request work from the system. In order to
conduct a TSO terminal session you need to:

• Understand how to use your terminal, including how to enter data, correct
mistakes, add or delete characters and lines, and how to interrupt operations
from the terminal

• Log on to the computer system you will be using

• Contact TSO

• End the TSO terminal session (logoff).

All TSO terminals have a typewriter-like keyboard. The features of each
keyboard vary from terminal to terminal. For example, one terminal may not
have a backspace key, while another may not allow for lowercase letters. To
learn how to use your terminal, consult the terminal operators manual that

Chapter t. Using Your Terminal 1-1

1-2 TSO/E User's Guide

accompanies your device. Some frequently used terminal operators guides are
listed below:

• IBM 3790 Communication System Operator's Guide for the 2741
Communications Terminal

• IBM 3270 Information Display System Operator's Guide

• IBM 3290 Information Panel Description and Reference

• IBM 3767 Communication Terminal Operator's Guide

• Introduction to the IBM 3770 Data Communication System - contains list of
operating procedures guides for the various devices in this series

• OSjMVT and OSjVS2 TSO Terminals

Because each installation differs in its access methods, configuration, and
procedures, you will have to consult your system programmer or system support
center to learn how you can contact your computer system, and begin using TSO.

LOGON/LOGOFF Command

Accessing the System

Use the LOGON command to identify yourself to the system and request use of
its resources.

When you use the LOGON command, the system requires two pieces of
information. They are:

1. Your user ID, which tells the system who wants to use it.
2. The password, which authorizes you to use the systems resources.

You can issue the LOGON command with no operands. This results in the
system prompting you for your user ID and your password, if one is used with
your system. For example, to simply request access to the system, enter:

LOGON

You can also issue the LOGON command followed by your user ID. Separate
your user ID from the command with a blank character. Once you enter this
command, the system prompts you for your password. For example, if your user
ID is DOOABC 1, you would enter:

LOGON DOOABCl

Each installation determines what appears on your screen after you issue the
LOGON command. You will see one of three things. They are:

• A full screen menu, where you can type in required information. See
Appendix A, "Full Screen Logon Processing" in this book for further
information on full screen menus.

• A message or messages, prompting you for required information.

• A READY message, indicating that the system recognized your user ID and
password, and is now at your disposal.

Your installation might require you to specify other information with the
LOGON command; see your system programmer for LOGON instructions.

Use the LOGOFF command to sign off from the system and end your terminal
session. For example, to sign off from the system, enter:

LOGOFF

The system releases your user ID until the next time you issue the LOGON
command.

You can also sign off from the system by issuing the LOGON command. When
you sign off using the LOGON command, the system terminates your previous
session and starts a new one using the options specified on the LOGON
command. For more information about the LOGON and LOGOFF commands,
see TSOjE Command Language Reference.

Chapter'I. Using Your Terminal 1-3

Using Session Manager

Messages

Mode Messages

1-4 TSOjE User's Guide

The TSO session manager is part of the TSOjE program product. The session
manager keeps a complete journal of everything that happens during your
terminal session. It records everything you type in and everything the system
displays. Any time during your terminal session, you can look at any of the work
you did in the beginning, middle, or at the end of your session. The session
manager also lets you print a copy of this information.

The session manager operates as an interface to TSO. You invoke session
manager as part of your logon procedure. Consult your system programmer to
learn how to invoke session manager at your installation.

For more information about using session manager, see TSOjE Session Manager
Program Reference and TSOjE Session Manager Terminal User's Guide.

You can receive four types of messages at your terminal:

• Mode messages
• Prompting messages
• Informational messages
• Broadcast messages.

A mode message indicates the system is ready to accept a new command or
subcommand. When the system is ready to accept a new command it displays:

READY

The EDIT, OUTPUT and TEST commands have subcommands associated with
them which you can use only after you issue the command. After you enter
ED'rT, OUTPUT or TEST and the system is ready to accept that command's
subcommands. the mode message is the name of the command, instead of
READY. The mode messages indicating the system is ready to accept a valid
subcommand are:

EDIT
OUTPUT
TEST

The TEST message also appears after each TEST subcommand has been
processed. If the system has to display any output or other messages as a result
of the previous command or TEST subcommand, it does so before displaying the
mode message. The EDIT and OUTPUT messages are not displayed after each
subcommand executes. For more information about when mode messages for
subcommands appear, see TSOjE Command Language Reference.

As long as you enter commands and subcommands correctly, you can sometimes
save time by entering two or more commands in succession without waiting for

Prompting Messages

the intervening mode message. The system then prints the mode messages in
succession after the commands. For example, if you enter the DELETE, FREE
and RENAME commands without waiting for the intervening mode messages,
your display is:

READY
delete .. .
free .. .
rename .. .
READY
READY
READY

Use care when entering commands without waiting for the intervening mode
messages. If you make a mistake in one of the commands, the system sends you
messages telling you of your mistake, then cancels the remaining commands you
entered. After you correct the error, you have to reenter the other commands.
Therefore, unless you are sure your input is correct, wait for a READY message
before entering a new command.

Some terminals "lock" the keyboard after you enter a command, so that when
you press the keys, you are not communicating with the system. You cannot
enter commands until you get a READY message. Terminals that do not
normally lock the keyboard might occasionally do so, for example, when all
buffers allocated to the terminal are full. See your terminal operator's guide for
information about the terminal you work on.

A prompting message indicates that you did not supply required information or
that you supplied incorrect information. A prompting message asks you to supply
or correct that information. For example, a partitioned data set name is a
required operand of the CALL command. If you enter the CALL command
without that operand, the system prompts you for the data set name. Your
display looks like this:

READY
call
ENTER DATA SET NAME -

Respond by typing the requested information, in this case the data set name, and
pressing the ENTER key. For example, if the data set name is ALPHA.DATA,
you would respond to the prompting message as follows:

ENTER DATA SET NAME -
alpha. data

You can choose to receive prompting messages when appropriate. You can use
the PROFILE command to control prompting. For more information on the
PROFILE command, see "PROFILE Command" later in this chapter.

Some messages have additional information available that you can choose to
request.

To request an additional level of a message:

1. Type a question mark (?) in the first position of the command line
2. Press the ENTER key.

Chapter 1. Using Your Terminal 1-5

Informational Messages

Broadcast Messages

1-6 TSO/E User's Guide

If the second message is not enough, you can request a further message to give
you even more detail. An indication that a second or additional message levels
are available is a plus sign (+) at the end of the message. However, not all
prompting messages that have further levels of prompting information are
followed by a plus sign (+). When unsure of how to respond to a message,
continue requesting additional messages, regardless of whether or not the previous
message ended with a plus sign (+).

If you enter a question mark and there are no further messages, you receive the
following message:

NO INFORMATION AVAILABLE

You can stop a prompting sequence by entering the requested information or by
requesting an attention interrupt to cancel the command.

An informational message tells you about the status of the system or your
terminal session. For example, an informational message can tell you how much
processor time you have used. Informational messages do not require a response.

If an informational message ends with a plus sign (+), you can request an
additional message by entering a question mark (?) after READY, as described in
"Prompting Messages" in this section. Like prompting messages, informational
messages may have two or more levels.

Broadcast messages are messages that an operator or a user sends to another user
via the SEND command. Broadcast messages are messages of general interest to
users of the system. The system operator can send messages to all users of the
system or to individual users. For example, an operator might send the following
message to all users:

DO NOT USE TERMINALS #4, 5 AND 6 ON 6/30. THEY ARE
RESERVED FOR DEPARTMENT D04.

When you receive a broadcast message on a display terminal, the screen you are
working on disappears and a screen with the message appears. After reading the
message, you can return to your work screen without losing any of your previous
work by pressing the ENTER key. If you are using session manager, the message
will be incorporated into the record of your terminal session.

You can also display broadcast messages at your terminal by issuing a LISTBC
command, which lists the contents of the SYSl.BRODCAST data set. The
SYS1.BRODCAST data set contains messages of general interest (NOTICES) that
are sent from the system to all terminals and messages directed to a particular
user (MAIL).

You, or any other user, can send messages to other users or to the system
operator.

A message sent by another user shows the user identification so you know who
sent the message. For more information on how to communicate with other TSO
users, see Chapter 4, "Communicating With Other Users" later in this book.

The Attention Interrupt

The attention interrupt allows you to interrupt processing at any time so that you
can enter a command or subcommand, postpone further processing, or terminate
processing altogether. For instance, if you are executing a program and the
program gets in a loop, you can use the attention interrupt to halt execution. As
another example, when you are having data listed at your terminal and you would
like to know what time it is, you can request an attention interrupt and issue the
TIME command, and then resume execution.

You can also request an attention interrupt while the system processes a
command. When the system is processing a command and you request an
attention interrupt, you can enter the TIME or TEST command, and then
resume with the interrupted operation by pressing the ENTER key. Entering any
command other than TIME or TEST causes current processing to terminate. One
output record from the interrupted program may be displayed at the terminal
after you enter your next command. This is normal for some programs.

If, after causing an attention interrupt, you want to continue with the operation
that you interrupted, simply press the ENTER key before typing anything else.
Keep in mind however, that data you were entering or displaying at the time of
the attention interrupt might be lost.

If you request an attention interrupt after issuing a CANCEL, STATUS, or
SUBMIT command, the attention interrupt might terminate that command's
processing. In this case, pressing the ENTER key would not cause command
processing to continue. For example, if the attention interrupt terminated
processing by the SUBMIT command, you would not see the SUBMIT job name
displayed.

Note: If you are using session manager, press the ERASE EOF key and then
press the ENTER key to enter a null line to resume execution.

Chapter 1. Using Your Terminal 1-7

PROFILE Command

1-8 TSO/E User's Guide

Your user profile defines how you want the system to respond to information sent
to or from your terminal when performing data processing tasks. Use the
PROFILE command to change or list your user profile.

An authorized system programmer creates your user ID and your user profile.
The typical user profile is defined by the default values of the PROFILE operands
discussed under this command. A typical user profile might look like this:

CHAR(O) LINE(O) PROMPT INTERCOM NOPAUSE NOMSGID NOMODE
NOWTPMSG NORECOVER PREFIX(USERID)
DEFAULT LINE/CHARACTER DELETE CHARACTERS IN EFFECT FOR THIS
TERMINAL

You can use the PROFILE command to change or list your user profile. When
you use the PROFILE command to change your profile, only the characteristics
that you explicitly specify using the operands of this command are changed, the
others remain as they are. The new characteristics you specify usually remain
unchanged from one session to another. If the changes you requested do not
remain in effect from one session to another, your installation might have a
special feature that prevents this. For example, you installation might have a
LOGON pre-prompt exit that prevents the system from saving any changes to
your user profile. You can check with the system programmer to learn if this
applies at your installation.

Using the PROFILE command, you can specify:

• On terminals without a delete key, the characters that when typed in, cause
the system to delete a single character or an entire line

• Whether or not you want to be prompted for message responses

• Whether or not you want to accept messages sent from other terminal users

• Whether or not you want the opportunity to obtain additional information
about messages issued to your terminal while you execute a command
procedure

• Whether or not you want the message numbers associated with diagnostic
messages that may be displayed at your terminal

• A particular user ID or character string to be used instead of your own user
ID as the first qualifier of all non-fully qualified data set names

• Whether or not you want to display at you terminal all all messages issued to
you by a program (write-to-programmer messages).

In the following examples, you will see either no operands or one operand entered
with each example of the PROFILE command. However, you may enter any
number of non-conflicting operands on a PROFILE command.

For more information about the PROFILE command, see TSOjE Command
Language Reference.

Displaying Your Current User Profile - the LIST Operand

You might want to display your current user profile to find out what options it
contains. To list the current characteristics of your user profile, enter the
PROFILE command with no operands or use the LIST operand with no other
operands.

EXAMPLE

To list the characteristics of your current profile, enter:

PROFILE
or

PROFILE LIST

If you specify other operands with the LIST operand, the system first changes
your user profile according to the other operands you specify, and then lists the
changed user profile.

Specifying a Character Deletion and a Line Deletion Character - the CHAR and LINE Operands

Some terminals have a special key set up to tell the system to delete the character
above the cursor. For example, on 3270 Display Stations, the delete key has DEL
written on it. On terminals without a specific character deletion key, the
backspace key is specified for character deletion by the default value on the
PROFILE command of CHAR(BS). You can choose a different character to use
for character deletion, by using the CHAR operand. To specify a character
deletion key, enter the PROFILE command:

• Specify the CHAR operand.
• Immediately enclose in parentheses the character to function as a delete key.

EXAMPLE

To use $ as the character deletion key, enter:

PROFILE CHAR($)

To specify that no character be used as a character deletion key, use the
NOCHAR operand:

PROFILE NOCHAR

Some terminals have a special key set up to tell the system to delete the remainder
of a line. For example, on 3270 Display Stations, the line delete key has ERASE
EOF written on it. On terminals that do not have a specific line deletion key, the
attention key is specified as the default for line deletion by the operand
LINE(A TTN). You can chose a different character for line deletion by using the
LINE operand. To specify a character deletion key, enter the PROFILE
command:

• Specify the· LINE operand

• Immediately enclose in parentheses the character to function as a line deletion
key.

Chapter l. Using Your Terminal 1-9

EXAMPLE

To use # as the line deletion key, enter:

PROFILE LINE(#)

When you specify a character or line deletion character, avoid specifying a blank,
tab, comma, asterisk or parentheses because these characters are used when
entering commands. Do not use alphabetic or other commonly-used characters as
character deletion or line deletion characters.

If you enter an invalid character and/or line deletion character on the PROFILE
comman9, an error message informs you which character is invalid; the character
or line deletion field in the user profile table is not changed. You may continue
to use the old character or line deletion character.

To specify that the system not use a character as a line deletion character, enter:

PROFILE NOLINE

Requesting to be Prompted by the System - the PROMPT INOPROMPT Operand

If you enter invalid information with a command, or the system requires further
information, the system will prompt you for the correct information. The
PROMPT operand, which allows you to receive these messages, is a default with
the PROFILE command.

To request that the system not prompt you for missing or invalid information, use
the NOPROMPT operand. For example:

PROFILE NOPROMPT

Receiving Messages from Other Users - the INTERCOM/NOINTERCOM Operand

By using the INTERCOM or NOINTERCOM operands, you have the choice of
specifying whether or not you want to receive messages sent from other terminal
users. INTERCOM, allowing you to receive messages from other users, is the
default value with the PROFILE command.

To specify that you do not want to receive messages from other users, specify the
NOINTERCOM operand. For example:

PROFILE NOINTERCOM

Obtaining Additional Diagnostic Information - the PAUSE/NOPAUSE Operand

1-10 TSO/E User's Guide

Use the PAUSE operand to obtain additional levels of information about a
message. When the system issues a message with additional levels of information,
the system displays the word PAUSE, and waits for you to either press the
ENTER key or enter a question mark (?). When you enter a question mark, the
system displays the next level of information associated with the message. When
you simply press the ENTER key, the system resumes processing where it left off.
For example, to request that the system give you the opportunity to obtain
additional diagnostic information while executing a CLIST, enter:

PROFILE PAUSE

If you do not want the opportunity to obtain additional information about
messag~.~Jssued to your terminal use the NOPAUSE operand. Note that
@~f.\~§E is the default value for your profile when your profile is created.

-.~

Displaying Message IDs with Messages- the MSGID/NOMSGID Operand

To include the message identifier for the diagnostic messages that appear at your
terminal, enter the MSGID operand. With the message identifier, you can look
up the correct message in TSO Terminal Messages.

EXAMPLE

If the message, ENTER RESTORE PARAMETERS OR 'DELETE'
OR 'END' appears on your screen, and you wanted the
message identifier (INMR906A) displayed also, enter:

PROFILE MSGID--.. __ _.--_. __ ._---.......,
-"'"

Note that NOMSGID is "the default\alue for your profile when your profile is
created. '

Specifying a Data Set Name Prefix - the PREFIX/NOPREFIX Operand

To request the system use a specific user ID or other valid string as the first
qualifier of all non-fully qualified data set names, use the PREFIX operand
followed by the user ID or string enclosed in parentheses.

EXAMPLE

To use DOOABCl as the first-level qualifier of all non-fully
qualified data sets, enter:

PROFILE PREFIX(DOOABCl)

If you do not want to append a prefix to all non-fully qualified data sets, enter:

PROFILE NOPREFIX

--"
The default prefix for foreground processing is your user ID. No prefix is the
defatiltfor background processing. .

Receiving Write-to-Programmer Messages - the WTPMSG/NOWTPMSG Operand

Some programs issue messages to the programmer. To receive all
write-to-programmer messages at your terminal, use the WTPMSG operand. For
example, to ensure that you can receive all write-to-programmer messages, enter:

PROFILE WTPMSG

NOWTPMSG, which specifies that you dQ. not;;~t'to rec~ive'any write-to
programmer messages, is the default value fo'i-your profile when your profile is
created.

Chapter 1. Using Your Terminal 1-11

TERMINAL Command

Most installations provide a default TERMINAL command through the logon
procedure (PROC) in the LOGON command. The options specified with a
TERMINAL command remain in effect until the end of the session or until
another TERMINAL command is issued. Use the terminal command to define
or alter the operating characteristics of your terminal. The values you can specify
with the operands on the TERMINAL command depend on the type of terminal
you are using.

Using the TERMINAL command, you can specify:

• The maximum number of characters allowed per line of your terminal
• The screen dimensions of an IBM 3270 display station.

When you define or alter your terminal characteristics, the options you request
remain in effect until you enter the LOGOFF command. If you terminate a TSO
session and begin a new session by entering the LOGON command, (instead of a
LOGOFF command followed by a LOGON command) the terminal
characteristics defined in the earlier session are used during the subsequent
session.

If a line disconnection interrupts your session, and you log on again using the
LOGON command with the RECONNECT option, the terminal characteristics
defined earlier in the session are not saved. You must redefine your terminal
characteristics because all records for defined data are lost as a result of a line
disconnection.

The TERMINAL command is not allowed as a TSO command in the
background. For a description of foreground and background execution, see
Chapter 17, "Executing Foreground Commands from a Background Job."

In the following examples, you will see only one operand entered with each
example of the TERMINAL command. You may enter any number of
non-conflicting operands on a TERMINAL command.

For more information about the TERMINAL command, see TSO/E Command
Language Reference.

Specifying the Maximum Characters Per Line - the LINESIZE Operand

1-12 TSOjE User's Guide

To specify the maximum number of characters allowed on one line of your
terminal, use the LINE SIZE operand followed by a number enclosed in
parentheses. For example, to specify 40 as the maximum number of characters
the system can display on one line of your terminal, enter:

TERMINAL LINESIZE(40)

The LINE SIZE operand is not applicable to IBM 3270 Display Stations.

If you enter LINESIZE(80) and try to view a data set with its record format
attribute (RECFM) sat to U, specifying records of undefined length, the line is

truncated at the 79th character. The truncated byte (80) is reserved for an
attribute character.

Specifying Your Terminal's Screen Size - the SCRSIZE Operand

To specify the maximum number of horizontal rows of characters per screen and
the maximum number of characters per row, enter the TERMINAL command:

• Specify the SCRSIZE operand

• Enclose in parentheses the number of rows per screen, and the number of
characters per row, separated by a comma.

EXAMPLE

To specify a maximum of 32 rows of data where each row
is a maximum of 80 characters as the dimensions of the
screen of an IBM 3270 Display Station, enter:

TERMINAL SCRSIZE(32,80)

/ \
rows maximum characters

Your installation defines the default values for the screen sizes when it defines the
terminal characteristics.

Chapter 1. Using Your Terminal 1-13

1-14 TSO/E User's Guide

Chapter 2. Data Sets

A data set is a unit of information that can be stored and retrieved. It is
organized in one of several prescribed arrangements and is described by control
information which the system can access. The two types of data sets most often
used with TSO are sequential data sets and partitioned data sets. In a sequential
data set, the data is arranged in a sequence, from top to bottom or beginning to
end. A partitioned data set is divided into separately named, independent
partitions called members, each of which can contain data.

Examples of types of data a TSO user might put in a data set are:

• A program's source code
• Job control language statements
• Input to a program
• Output from a program

• Memos
• A CLIST
• Text of a report.

This chapter describes how to name data sets, how to use data set names when
processing data, and how to edit data sets.

TSO Data Set Naming Rules and Conventions

Each data set is identified by a unique data set name. When naming data sets,
you must follow certain rules:

• A data set name consists of one or more parts connected by periods. Each
part is called a qualifier.

• Each qualifier must begin with an alphabetic character (A - Z) or national
character (@, #, $).

• The remaining characters in each qualifier can be alphabetic characters, digits
(0-9) or national characters.

• Each qualifier must be between one and eight characters in length.

Q The maximum length of a complete data set name is 44 characters, including
the periods.

Chapter 2. Data Sets 2-1

2-2 TSO/E User's Guide

Some examples of valid data set names are:

PARTS

PARTS.DATA

DOOABC1.DA.PARTS.DATA

In addition to the rules, you can make use of certain naming conventions that will
make TSO easier for you to use. These conventions are:

• Data set names consist of three qualifiers.

• The first qualifier of each data set name is your TSO user ID, or a prefix
specified using the PROFILE command.

• The second qualifier of each data set name is your choice; it should be a
meaningful name to you.

• The third qualifier is a descriptive qualifier implying certain characteristics of
the data. See the list of descriptive qualifiers below:

Descriptive Qualifier

ASM
CLIST
CNTL
COBOL
DATA
FORT
LINKLIST
LIST
LOAD
LOADLIST
OBJ
OUTLIST
PASCAL
PLI

TESTLIST
TEXT
VSBASIC

Data Set Contents

Assembler (F) input
TSO commands and CLIST statements
JCL and SYSIN for SUBMIT command
American National Standard COBOL statements
Uppercase text
FORTRAN (G I, H) statements
Output listing from linkage editor
Listings
Load module
Output listing from loader
Object module
Output listing from OUTPUT command
PASCAL statements
PL/I(F), PL/I Checkout, or PL/I Optimizing
compiler statements
Output listing from TEST command
Uppercase and lowercase text
VSBASIC statements

Figure 2-1. Descriptive Qualifiers

A data set name that consists of a user ID, a user-supplied name, and a
descriptive qualifier is a "fully qualified" data set name. A fully qualified data set
name looks like:

DOOABC1.PARTS.DATA

/
User's TSO user ID User-supplied name Descriptive qualifier

When you refer to partitioned data sets, enclose the member name in parentheses
immediately following the descriptive qualifier. A fully qualified partitioned data
set name looks like:

DOOABC1.PARTS.DATA(PART 14)

/ ~Member nam.e

User's TSO user ID User-supplied name Descriptive qualifier

You do not have to use the conventional descriptive qualifiers when naming a
TSO data set. However, when a data set name adheres to the conventions, you
can refer to the data set by an abbreviated version of the name, and the system
will supply the rest of the name. Also, certain TSO procedures expect to find
data in specific types of data sets.

You must enclose the data set name in single quotation marks if you specify:

• A fully qualified data set name with a user identification (leftmost qualifier)
that is not your own

• A data set name that does not conform to the naming conventions.

For example:

'DOOABC1.PROG.LIST'

where DOOABC1 is not your user identification

'DOOABC1.PROG.FIRST'

where FIRST is not a valid descriptive qualifier in this case

Chapter 2. Data Sets 2-3

How to Enter Data Set Names

2-4 TSO/E User's Guide

The data set naming conventions simplify the use of data set names. If the data
set name conforms to the conventions, you need to specify only the user-supplied
name field when you refer to the data set on commands. The system adds the
necessary qualifiers to the beginning and to the end of the name that you specify.
In some cases, however, the system prompts you for a descriptive qualifier.

When you specify only the user-supplied name, the system adds the prefix
specified in your user profile, usually your user identification and, whenever
possible, a descriptive qualifier. The system attempts to derive the descriptive
qualifier from available information.

If you do not specify enough information, the system issues a message at your
terminal requesting the required information. For example, when user DOOABCI
enters the following:

EDIT SAMPLE

the system responds with:

ENTER DATA SET TYPE -

The user should then respond by typing in a valid data set qualifier. For
example:

TEXT

The user can now edit data set DOOABCl.SAMPLE.TEXT.

The system will not append qualifiers to any name enclosed in single quotation
marks.

EDIT Command

Use the EDIT command and its subcommands to modify the contents of a data
set. Using the EDIT command, you can:

• Add data

• Delete data

• Change data

• Move data

• Copy data

• Control line numbers

• Locate data

• Display data

• Control tab settings.

There are two main facilities available to you for modifying the contents of a data
set. They are the TSO EDIT command and the EDIT option of the Interactive
System Productivity Facility (ISPF). If you have ISPF installed at your location,
you will probably want to use the ISPF EDIT option because it is a full-screen
editor. The TSO EDIT command is a line mode editor, and most often used in
CLISTs. Line mode means that the data is displayed at the terminal one line at a
time and you can access data only through commands. In full screen editing, an
entire screen of data is displayed at once and you can access data through
commands or by using the cursor.

For more information on the TSO EDIT command, see TSO/E Command
Language Reference.

For more information on how to perform edit functions when executing a CLIST,
see TSO Extensions CLISTs: Implementation and Reference.

For information on how to use the ISPF EDIT facility, see Interactive System
Productivity Facility/Program Development Facility for MVS: Reference.

Chapter 2. Data Sets 2-5

2-6 TSO/E User's Guide

Chapter 3. Using TSO Commands

A command consists of a command name usually followed by one or more
operands. A command name is typically a familiar English word that describes
the function of the command; for instance, the RENAME command changes the
name of a data set.

Nearly all TSO commands have abbreviations that you can use in place of the
command name for the function. These abbreviations save you entry time at the
terminal. In general, these abbreviations are as short as possible while still
providing uniqueness among them. For example, you may enter "ALLOC"
instead of "ALLOCATE" or "E" instead of "EDIT". However, for readability
and clarity in this book, all the references to commands and all examples of their
use appear in the long form.

Operands provide the specific information required to perform the requested
operation. For example, the RENAME command has two operands that identify
the data set to be renamed and specify the new name:

RENAME OLDNAME NEWNAME

I I I
Command name operand-l operand-2

(old data-set-name) (new data-set-name)

Two types of operands are used with the commands: positional and keyword.

Positional Operands

Positional operands immediately follow the command name in a certain order. If
you enter positional operands incorrectly, you will get an er~.or message. Usually
you supply a name or value for a positional operand. In some cases, you must
specify both the operand and its value. The examples in this pUblication show
actual values in place of positional operands. For example:

EDIT TFKNU47.DATA

where TFKNU47.DATA is the data-set-name positional operand
with the EDIT command

To enter a positional operand that is a list of several names or values, enclose the
list within parentheses. The names or values must not include unmatched right
parentheses. For example,

LISTDS (PARTS.DATA TEST.DATA)

Chapter 3. Using TSO Commands 3-1

Keyword Operands

Keywords are specific names or symbols that have a particular meaning to the
system. You can include keywords in any order following the positional
operands.

In some cases you may specify values with a keyword. You must enter the value
within parentheses following the keyword. A typical keyword operand with a
value could be described as the LINESIZE operand of the TERMINAL
command:

TERMINAL LINESIZE(integer)

Continuing this example, you would select the number of characters that you
want to appear in a line and substitute that number for the "integer" when you
enter the operand:

TERMINAL LINESIZE(80)

If you enter conflicting, mutually exclusive keywords, the last keyword entered
overrides the previous ones.

Abbreviating Keyword Operands

3-2 TSO/E User's Guide

You may enter keywords spelled exactly as they are shown, or you may use an
acceptable abbreviation. An acceptable abbreviation is as much of the keyword
as is necessary to distinguish it from the other keywords of the command or
subcommand. (If you supply an abbreviation which is not specific enough, the
system will prompt you.) For instance, the LISTBC command has four
keywords:

MAIL
NOMAIL
NOTICES
NONOTICES

The abbreviations are:

M for MAIL (also MA and MAl)
NOM for NOMAIL (also NOMA and"NOMAI)
NOT for NOTICES (also NOTI, NOTIC, and NOTICE)
NON for NONOTICES (also NONO, NONOT, NONOTI, NONOTIC,
and NONOTICE)

Delimiters

When you type a command, separate the command name from the first operand
by one or more blanks. Separate operands by one or more blanks or a comma.
F or example, you can type the LISTBC command like this:

LISTBC NOMAIL NONOTICES
or

LISTBC NOMAIL,NONOTICES
or

LISTBC NOMAIL NONOTICES

A list of items may be enclosed in parentheses and separated by blanks or
commas. For example,

LISTDS (MYDSA MYDSB,MYDSC)

Line Continuation

You might want to issue a command that does not fit on one line, making it
necessary to continue the command on the next line. Use a plus or minus sign as
the last character of the first line to continue the command onto the next line. A
plus sign causes leading delimiters to be removed from the continuation line. For
example, typing in:

ALLOC DA(DSN1.PLI) NEW /* allocate the first of +
my data sets */

causes the line to appear to the system as:

ALLOC DA(DSNl.PLI) NEW /* allocate the first of my data sets */

A minus sign causes leading delimiters to be kept with the continuation line. For
example, typing in:

ALLOCATE DATASET(OUTPUTDS.TEXT)
NEW VOLUME(TSOMAR2)

causes the line to appear to the system as:

ALLOCATE DATASET(OUTPUTDS.TEXT) NEW VOLUME(TSOMAR2)

Note: When TSO encounters a line plus sign or minus sign at the end of a line
with no following line, it waits for you to add a new line.

Chapter 3. Using TSO Commands 3-3

Comments

Subcommands

3-4 TSO/E User's Guide

You can include comments in a command anywhere a blank might appear.
Simply enter them within the comment delimiters /* and * /. To continue a
comment, use a line continuation character (+ or -) at the end of the line.

listd (data-set-list) /* my data sets */

or

listd (data-set-list) /* this is a list of my -
active data sets */

You do not need to end a comment with * /. Ending a comment with * / is a
convention, not a requirement.

Note: To continue a line that contains a comment, use a continuation character
after the comment:

ALLOCATE DATASET(OUTDS.TEXT) /* data set name */ +
NEW VOLUME(TSOMAR2)

Three TSO commands, EDIT, OUTPUT, and TEST have subcommands
associated with them. When you issue EDIT, OUTPUT, or TEST, the system
responds by putting you into either EDIT, OUTPUT, or TEST mode and issuing
a mode message. You can then enter a subcommand to specify the particular
operation that you want performed. You can continue entering subcommands
until you enter the END subcommand. Subcommands are very similar to
commands in that they can have positional and keyword operands.

After you receive the mode message from the system, you can execute any of the
subcommands associated with the command that put you in that mode. For
example, your terminal session could look like this:

READY
edit book. text emode
EDIT
top
save
EDIT
end
READY

where

• READY and EDIT are mode messages.

• EDIT is a command. EMODE is an operand of the EDIT command
specifying that EDIT should start in EDIT mode, not INPUT mode.

• Top, save and end are EDIT subcommands.

Executing TSO Commands

You execute TSO commands or subcommands by:

• Entering them at your terminal
• Submitting them in a job using JCL statements
• Including them in a CLIST.

To enter a command at your terminal, type the command and the operands (if
any), then press the ENTER key.

To enter a command using JCL statements, see Chapter 17, "Executing
Foreground Commands from a Background Job."

CLISTs are groups of TSO commands and CLIST statements that are stored in
data sets having a descriptive qualifier of CLIST. You execute a CLIST by using
the EXEC command or by typing the CLIST name preceded by a percent sign
(%) on the command line. The system executes the commands within a CLIST in
the order in which they appear in the data set. For more information concerning
CLISTs, refer to TSO Extensions CLISTs: Implementation and Reference.

Examples of the commands and their operands in this book are in upper case
type. In examples of terminal sessions, responses from the system are in upper
case, and commands you type in are in lower case type.

Chapter 3. Using TSO Commands 3-5

TSOEXEC Command

3-6 TSO/E User's Guide

Some installations distinguish between authorized and unauthorized commands
and programs. The system programmer designates which commands and
programs are authorized.

The TSOEXEC command allows a TSO user to invoke all unauthorized and some
authorized commands and programs from an unauthorized environment. This is
especially helpful when using TSO in an unauthorized environment, such as ISPF.
When you invoke an authorized command with the TSOEXEC command, TSO
processes the authorized command as if you invoked it from an authorized
environment. You can invoke some authorized programs by using the TSOEXEC
command with the CALL command. The TSOEXEC command can be invoked
in both foreground and background TSO sessions.

The TSOEXEC command is based on the TSO service facility. For further
information on how the TSO service facility functions, see Chapter 18, "Invoking
Programs or Commands from a Program with the TSO Service Facility" in this
book and TSOjE Guide to Writing a Terminal Monitor Program.

To invoke an authorized command from an unauthorized environment, issue the
TSOEXEC command followed by the authorized command.

EXAMPLE

USERI at node NODEA using TSO under ISPF wants to use the
TRANSMIT command to send a copy of data set SYSl.PARMLIB
to another user (USER2 at NODEB).

TSOEXEC TRANSMIT NODEB.USER2 DA('SYSl.PARMLIB')

For more information on the TSOEXEC command, see TSOjE Command
Language Reference.

HELP Command

Use the HELP command to receive all the information available on the system on
how to use any TSO command. The requested information is displayed at the
user's terminal.

Using the HELP command with its operands, you can request the system to
display:

• The syntax notation used to request the HELP information

• A list of all TSO commands in the system, along with an explanation of each

• All the available information in the system associated with a command

• The function and operation of a command

• The syntax for issuing a command

• More information about a command's operands

• More information associated with messages that result from executing a
program coded in VSBASIC, or from issuing the TRANSMIT or RECEIVE
commands.

The EDIT, TEST, and OUTPUT commands have a HELP subcommand. This
subcommand acts similarly to and uses similar syntax as the TSO HELP
command. When using the HELP subcommand, follow the instructions for the
HELP command, but substitute the subcommand names.

For more information about the HELP command, see TSOjE Command
Language Reference.

Syntax of HELP Information

Listing All TSO Commands

You can get the syntax descriptions for commands by entering the HELP
command followed by the HELP operand. For example:

HELP HELP

To receive a list of all the TSO commands in the system along with a description
of each, enter the HELP command with no operands.

EXAMPLE

HELP

An installation may also place its own information about installation-written
commands on the system. The system treats this information in the same way as
it treats the IBM-supplied information.

Chapter 3. Using TSO Commands 3-7

Requesting All Available Information about a Command

You may request specific information about commands by specifying operands
with the HELP command. You can request additional information about the
function, syntax, operands, subcommands or certain messages associated with all
commands or a particular command.

To request all available information about a particular command, specify the
command name.

EXAMPLE

To request all of the information available in the system
about the LISTCAT command, enter:

HELP LISTCAT

This results in the system displaying information about the syntax, function, and
operands associated with the LISTCA T command.

Requesting Information about a Command's Function - the FUNCTION Operand

To request only the information pertaining to a command's function and
operation, specify the command name followed by the FUNCTION operand.

EXAMPLE

To request the information about the function and operation
of the SEND command, enter:

HELP SEND FUNCTION

Requesting Information about a Command's Syntax - the SYNTAX Operand

To request only the information pertaining to a command's syntax, specify the
command name followed by the SYNTAX operand.

EXAMPLE

To request the information about the syntax of the RENAME
command, enter:

HELP RENAME SYNTAX

Requesting More Information about a Command's Operands - the OPERANDS Operand

3-8 TSOjE User's Guide

To request more information pertaining to all operands of a command, specify
the command name followed by the OPERANDS operand.

EXAMPLE

To request more information about all the operands of the
LISTDS command, enter:

HELP LISTDS OPERANDS

To request more information about a specific operand of a command, specify that
operand in parentheses after the OPERANDS operand.

EXAMPLE

To request more information about the STATUS operand of the
LISTDS command, enter:

HELP LISTDS OPERANDS (STATUS)

Requesting More Information about a Message - the MSGID Operand

To request more information than that provided in the text of a TRANSMIT,
RECEIVE, or VSBASIC error message, use the MSGID operand. Issue the
HELP command:

• Specify the command

• Specify the MSGID operand

• Immediately enclose in parentheses the message identifiers separated by
commas.

EXAMPLE

To request information about the TRANSMIT message INMX090A,
enter:

HELP TRANSMIT MSGID(INMX090A)

The information you receive includes what caused each error and how to prevent
reoccurrences. You cannot use the FUNCTION, SYNTAX, OPERANDS, or
ALL operands with MSGID.

List of TSO Commands

Following is a list of all the TSO commands that are documented in this manual
and the major function each command performs.

The commands in this publication are not documented individually. They are
documented according to the task each command performs. For an individual
description of each command and its operands, see TSOjE Command Language
Reference.

Chapter 3. Using TSO Commands 3-9

Command Function

ALLOCATE Allocating data sets.

CALL Loading and executing load modules.

CANCEL Halting a submitted job.

COPY Copying all or part of one data set into another.

DELETE Deleting one or more data set entries or one or more members of a
partitioned data set.

EDIT Entering data into data sets, or directly modifying data that is
already in a data set.

FREE Releasing (un allocating) a previously allocated data set.

HELP Obtaining information about the function, syntax, and operands of
commands and subcommands and information about certain
messages.

LINK Invoking the linkage editor service program.

LIST Listing the contents of a data set.

LISTALC Listing of the data sets that were allocated during the current TSO
session.

LISTBC Listing of the contents of the SYSI.BRODCAST data set.

LISTCAT Listing the entries in a catalog.

LISTDS Listing certain attributes of specific data sets at your terminal.

LOAD GO Loading a compiled or assembled program into real storage and
beginning execution.

LOGOFF Ending a terminal session.

LOGON Accessing the system.

PROFILE Establishing, changing, or listing your user profile.

PROTECT Preventing unauthorized access to your non-VSAM data set.

OUTPUT Directing held output.

RECEIVE Receiving a transmitted message or data set.

RENAME Changing the name of a non-VSAM cataloged data set or a member
of a partitioned data set, or creating an alias name for a member of
a partitioned data set.

RUN Compiling, loading, and executing source statements in a data set.

SEND Sending messages to another terminal user or the system operator on
your system.

STATUS Checking the progress of a background job.

SUBMIT Submitting a background job for processing.

TERMINAL Defining the operating characteristics of your terminal.

TRANSMIT Sending messages or data sets to users on your system or on another
system.

TSOEXEC Invoking authorized commands or programs from an unauthorized
environment.

3-10 TSOjE User's Guide

Chapter 4. Communicating With Other Users

SEND Command

To communicate with the operator or other users, use the SEND, TRANSMIT,
and RECEIVE commands. You can send and receive messages, sequential data
sets, partitioned data sets, or select members of a partitioned data set. Use the
SEND command to send a message to another user or to the operator within
your system. Use the TRANSMIT command to send a message or a data set to
another user within your system or on another system. Use the RECEIVE
command to retrieve transmitted messages or data sets and restore them to their
original formats. You can keep a record of your TRANSMIT and RECEIVE
activity in a LOG data set. You can avoid repetitive typing of commonly used
names and addresses when you use TRANSMIT by using a NAMES data set.
The SEND, TRANSMIT, and RECEIVE commands and the NAMES and LOG
data sets are discussed in this chapter.

U sing the SEND command, you can:

e Send a message to the master console operator

e Send a message to specific users

G Ensure that a user receives the message you send, even though he or she may
not be logged on when you send the message the LISTBC or LOGON
command

CD Specify to which operator or operator console you send a message to.

In the following examples, you will see one to three operands coded with each
example of the SEND command. You must enclose the text of each message in
single quotation marks.

When you send a message, the text cannot exceed 115 characters, including
blanks. If you want to display an apostrophe in your message, enter two to get
one. For example, when you send '1"M READY' as the message text, the receiver
sees I'M READY.

For more information about the SEND command, see TSOjE Command
Language Reference.

Chapter 4. Communicating With Other Users 4-1

Sending a Message to the Master Console Operator

When you send any message, the minimum you can specify is the SEND
command followed by the message text enclosed in single quotation marks. If
you specify no operands, the system sends the message to the master console
operator.

EXAMPLE

To send the message "Please cancel my ID" to the master
console operator, enter:

SEND 'Please cancel my ID'

Sending a Message to Specific Users - the USER Operand

4-2 TSO IE U serf s Guide

To send a message to a specific user, specify the SEND command:

• Enter the message text

• Specify the USER operand followed by the destination user ID enclosed in
parentheses.

EXAMPLE

To send the following message to user ID DOOABC1, enter:

SEND 'Don' 't forget the meeting at 2:00.' USER(DOOABC1)

To send a message to two or more users, enter the SEND command:

• Enter the message text

• Specify the USER' operand followed by the destination user IDs separated by
commas, and enclosed in parentheses.

EXAMPLE

To send the following message to user IDs DOOABCl and D99XYZ1,
enter:

SEND 'All you need is on CRSPK1.' USER(DOOABC1,D99XYZ1)

You can send a message to a maximum of 20 different users.

To send a message to your own user ID, enter an asterisk instead of a user ID
when specifying the USER operand.

EXAMPLE

To send the following message to your user ID, enter:

SEND 'MAP has completed.' USER(*)

Specifying When to Receive a Message - the LOGON, SAVE, and NOW Operands

To ensure that the user gets the message you send, regardless of whether he or she
is logged on or is receiving messages, enter the SEND command and specify:

o The message text
• The USER operand
• The LOGON operand.

EXAMPLE

To send the following message to DOOABC1, and to ensure that
he gets it, regardless of whether or not he is able to
receive the message immediately, enter:

SEND 'Have you gotten FRANK' 's new disk?' USER(DOOABC1) LOGON

If DOOABCl is logged on and receiving messages, the system displays the
message at his terminal immediately. If the user is not logged on or is not
receiving messages, the system displays the message at his terminal the next time
he logs on.

To send a message to a user, but not have it displayed at the user's terminal until
the next time he issues the LOGON or LISTBC command, enter the SAVE
operand following the USER operand.

EXAMPLE

To send the following message to user DOOABCl, and not
have it displayed at his terminal until he either logs
on or issues the LISTBC command, enter:

SEND 'JUMBO has gone away' USER(DOOABCl) SAVE

NOW is a default operand with the SEND command. If you do not specify the
LOGON or SAVE operands with the SEND command, the system will
immediately send the message to the user specified. If the user is not logged on
the system notifies you and deletes the message.

Sending Messages to a Specific Operator or Operator Console - the OPERATOR and CN Operands

Specific operators are known to the system by a route-code used to identify them.
To send a message to a specific operator, enter the SEND command and specify:

• The message text

• The OPERATOR operand with the operator's specific route-code enclosed in
parentheses.

EXAMPLE

To send the following message to the operator identified by
route-code 7, enter:

SEND 'PLEASE MOUNT TAPES' OPERATOR(7)

Chapter 4. Communicating With Other Users 4-3

4-4 TSO/E User's Guide

If you omit the route-code, the default value is 2, which indicates that the system
routes the message to the,master console operator. If you omit both the USER
and OPERATOR operands, the system also routes the message to the master
console operator.

Specific operator consoles are known to the system by a number assigned to
identify them. To send a message to a specific operator console, enter the SEND
command and specify:

• The message text
• The eN operand with the operator console identifier enclosed in parentheses.

EXAMPLE

To send the following message to the operator console
identified by number 29, enter:

SEND 'DID YOU MOUNT THE TAPES?' CN(29)

The integer you specify with this operand must be between 0 and 64.

TRANSMIT Command

Transmitting a Message

Transmitting a Data Set

The TRANSMIT command allows you to send to one or more users:

• A message
• A data set
• Selected members of a partitioned data set
• A message with a data set.

If you specify the MESSAGE operand when you transmit data, the TRANSMIT
command prompts you for a message that will accompany the data. The message
is displayed when the receiving user issues the RECEIVE command. The receiver
sees the message before actually getting the data set, in case you want to include
special processing instructions. You may enter the messages in either full-screen
mode or single line mode.

The TRANSMIT command does not support:

• Data sets with keys
• Data sets with user labels
• ISAM data sets
• VSAM data sets.

For further information on the TRANSMIT command see TSOjE Command
Language Reference.

To transmit a message to another user, enter TRANSMIT and specify:

• The destination node, followed immediately by a period
• The destination user ID.

EXAMPLE

To transmit a message to user USERl at node NODEID, enter:

TRANSMIT NODEID.USERl

The TERMINAL operand, a default with the TRANSMIT command, causes the
system'to prompt you to enter the text in either full screen mode or line mode,
depending on the default for the type of terminal you are using.

To transmit a data set to another user, enter the TRANSMIT command and
specify:

• The destination node, followed immediately by a period
• Immediately specify the destination user ID
• The DATASET operand with the data set name enclosed in parentheses.

Chapter 4. Communicating With Other Users 4-5

EXAMPLE

To transmit data set SAMPLES.TEXT to user USERl at node NODEID,
enter:

TRANSMIT NODEID.USERl DATASET(SAMPLES.TEXT)

Transmitting Selected Members of a Partitioned Data Set - the MEMBER Operand

To transmit selected members of a partitioned data set to another user, enter the
TRANSMIT command and specify:

• The destination node, followed immediately by a period
• Immediately specify the destination user ID
• The DATASET operand with the data set name enclosed in parentheses
• The MEMBER operand with the member names enclosed in parentheses.

- Within the parentheses, separate the member names with commas.

EXAMPLE

To send members FIRST and SECOND of data set SAMPLES.TEXT to
user USERl at node NODEID enter:

TRANSMIT NODEID.USERl DATASET(SAMPLES.TEXT) MEMBER (FIRST ,SECOND)

Transmitting a Data Set and a Message - the MESSAGE Operand

4-6 TSO/E User's Guide

To transmit a data set with an accompanying message to another user, enter the
TRANSMIT command and specify:

• The destination node, followed immediately by a period
• The destination user ID
• The DATASET operand with the data set name enclosed in parentheses
• The MESSAGE operand.

EXAMPLE

To send data set SAMPLES.TEXT with an accompanying message
to user USERll at node NODEID, enter:

TRANSMIT NODEID.USERll DATASET(SAMPLES.TEXT) MESSAGE

The system then prompts you to enter the message text in either full-screen mode
or in line mode, depending on the default for the type of terminal you are using.

If you specify MESSAGE along with the default, TERMINAL, the system
prompts you twice for the message text.

Transmitting to More than One Receiver

To transmit a message or a data set to more than one receiver, enter the
TRANSMIT command and:

• Enclose in parentheses the following:

The destination node, followed immediately by a period, followed by the
destination user ID

Separate each nodeid. userid by commas

• Specify the data set and/or message as described previously.

EXAMPLE

To send a message to users USERl and USER2 at node NODEID
enter:

TRANSMIT (NODEID.USER1,NODEID.USER2)

Using Nicknames and the Names Data Set

You can reduce repetitive typing of nodes and user IDs by using nicknames and
the NAMES data set. The nickname is a I to 8 character name that is a synonym
for the node and user ID. The system finds the actual node and user ID by
looking up the nickname in tables provided in the NAMES data set.

The NAMES data set allows you to perform the following general functions:

• Abbreviate addresses by associating a nickname with a node name and user
ID or with a list of other nicknames (distribution list).

• Provide standard openings and closings for messages

• Control defaults for logging and notification of transmissions

• Use the nicknames section of other NAMES data sets.

The NAMES data set is composed of two parts:

• The control section. The control section must precede the nicknames section
and is terminated by the first nick tag. The control section is used to set
defaults for the LOG/NOLOG and NOTIFY/NONOTIFY tags, set prolog or
epilog lines, set the default LOG data set name, and identify other NAMES
data sets which the system can use.

• The nicknames section. The nicknames section is a directory of nicknames
comprised of one nickname with its supporting data and tags for each entry
that you wish to define.

Chapter 4. Communicating With Other Users 4-7

4-8 TSO/E User's Guide

The NAMES data set in Figure 4-1 contains commonly used tags. Your own
NAMES data set may have these tags as well as any tags listed below.

The tags are:

Tag

:AL TCTL.dsname

:Cc.name name ...

:EPILOG.text

:LIST.name name ...

:LOGSEL.name

:LOGN AME.name

:LOG/:NOLOG

Description

The :AL TCTL tag is used in the control section of the
userid.NAMES.TEXT data set to provide the name of secondary NAMES
data sets. Your first NAMES data set must be userid.NAMES.TEXT, but
the ALTCTL tags can point to another user's NAMES data set or another
data set that you own. The :AL TCTL tag may appear up to ten times.

The :CC tag is used in a nickname entry to specify a list of users that make
up the distribution list. A distribution list can contain up to 100 names.
Each name specified may be either a nickname or the name of another
distribution list. The explicit user identification (userid and node name) can
not be used with this tag. The :CC tag is identical to the :LIST tag.

The :EPILOG tag is used in the control section to specify a text line to be
appended at the end of any transmitted message. Typically, this will be a
standard memo closing. The maximum length of an epilog line is 72
characters. Up to ten epilog lines may be specified.

The :LIST tag is used in a nickname entry to specify a list of users that
make up the distribution list. A distribution list can contain up to 100
names. Each name specified may be either a nickname or the name of
another distribution list. The explicit user identification (userid and node
name) can not be used with this tag. The :LIST tag is identical to the :CC
tag. If you want to be notified when addressees on a distribution list
receive your mail, you must specify :NOTIFY in the distribution list entry
or specify NOTIFY(ALL) on the TRANSMIT command.

The :LOGSEL tag is used in the control section to specify the second
(middle) qualifier(s) of all LOG data set names. The value specified with
LOGSEL may be 1 to 40 characters (for example: userid.name.
name2.name3 ... Remember that the middle qualifiers can be 1 to 40
characters, but each 8 characters must be separated by a period. If no
middle qualifier is specified, LOG is used as the middle qualifier
(userid.LOG.MISC)

The :LOGNAME tag may be used either in the control section or in a
nickname entry. The value specified in the control section serves as a
default third qualifier for the LOG data set name. For example
ltserid.LOG.logname If :LOGNAME. is specified in a nickname entry, the
value provided overrides the default set in the control section. If no
LOGNAME is specified, the default MISC is used (userid.LOG.MISC).

The :NOLOG and :LOG tags may be used either in the control section or
in the nickname section. When used in the control section, the LOG or
NOLOG tag controls logging for any addressee specified by node and
userid and also controls logging for any nickname which does not also
specify :LOG or :NOLOG. If the nickname entry contains the :LOG or
:NOLOG tag, this value overrides any value in the control section, but in
turn may have been overridden by the LOG or NOLOG parameter on the
TRANSMIT command.

When receiving a message, if NOLOG is specified in the receiver's NAMES
data set, either:

• in the control section
• on a NICK tag describing the sender

the receiver is prompted with a message asking to receive dataset
'A.MAIL.userid'. When the message is stored it will be placed in
'myid.MAIL.userid'. "Myid" is the receiver's TSO user-ID and "userid" is
the sender's TSO user-ID.

:LOGLSTj:NOLOGLST The :LOGLST or :NOLOGLST tag is used in a nickname entry that defines
a distribution list. The tags indicate whether a log entry should be made
for each user in the list (:LOGLST) or not (:NOLOGLST).

:NAME.username The :NAME tag specifics the name of the user being defined. This name
wiII appear in the copylist and in any log entries for this nickname. The
specified name value may be up to 30 characters long.

:NICK.nickname The :NICK tag is used to begin each nickname entry in the NAMES data
set. It must be the first nonblank (except for line numbers) character of the
record. The nickname can be any string of non blank alphanumeric (A-Z
and 0-9) characters and one to eight characters in length. The first :nick tag
separates the control section of a NAMES data set from the nicknames
section.

:NODE.nodeid The :NODE tag is used within a nickname entry to specify the computer
system that you want to TRANSMIT to. If the :NODE tag is not present
in a nickname entry, the computer system that you arc transmitting from is
assumed. This tag can not be included in a distribution list (a nickname
entry that includes either a :CC tag or :LIST tag).

:NOTIFYj:NONOTIFY The :NOTIFY and :NONOTIFY tags can be used either in the control
section or in a nickname entry. When used in the control section, the
NOTIFY or NONOTIFY tag controls notification for any addressee
specified by node and userid and for any nickname where the nickname
entry does not contain :NOTIFY or :NONOTIFY. The value of a
:NOTIFY or :NONOTIFY tag can be overridden by the NOTIFY or
NONOTIFY parameter on the TRANSMIT command.

:PROLOG.text

:USERID.userid

Receipt notification is the default for any addressee entered individually on
the TRANSMIT command, but not for addressees derived from
distribution lists. If you want to be notified for addressees on distribution
lists, you must have specified :NOTIFY on the distribution list in the
control data set or specified NOTIFY(ALL) on the TRANSMIT command.

The :PROLOG tag is used in the control section to specify a text line to be
inserted at the beginning of any transmitted message. The maximum length
of a prolog line is 72 characters. Up to ten prolog lines may be specified.

The :USERID tag identifies the userid for a nicknamed user. The
:USERID tag may not be used in the same entry as the :LIST or :CC tags.

Chapter 4. Communicating With Other Users 4-9

Example of a NAMES data set

4-10 TSO/E User's Guide

*Control Section
:altctl. OTHER.NAMES.DATA.SET
:prolog. MY NAME
:prolog. MY ADDRESS
:prolog. MY PHONE NUMBER
:epilog. SINCERELY YOURS,
:epilog. MY NAME

*Nicknames Section
:nick.DISTRIB :name. Distribution List

:list. BILL
HOWARD
RUTH
SUE
TOM

:nick.DISTRO :name. Other Distribution List
:cc. DISTRIB

SHERRY
MARK
JOHN

:nick.DISTR02 :name. Other Distribution List
:cc. BILL,DISTRO,ALEX

:nick.TOM :name. Tom Jones
:node. PLPSC
:user id. D01TXJ
:logname.INM.LOG.DATA

:nick.SUE :name. Susan Smith
:node. ABCXYZ
:user id. AllSXS

:nick.BILL :name. Bill West
:node. TDCSYS5
:user id. H01WWW

:nick.RUTH :name. Ruth Ryan
:node. ARDNIA
:user id. T35RYR

Figure 4-1. Example of a NAMES Data Set

EXAMPLE

To transmit a message to four of the users in the NAMES
data set, enter:

TRANSMIT (TOM,SUE,BILL,RUTH)

RECEIVE Command

Use the RECEIVE command to retrieve files that have been transmitted to you.
When you issue the RECEIVE command, the system retrieves the transmitted
data set or message that has been waiting longer than any other. The system then
displays any descriptive information about the data set and prompts you for
information the system uses to control the restore operation.

Using the RECEIVE command, you can:

• Retrieve transmitted data: messages, data sets, or both.
• Control how you save the data set under your user ID.

The RECEIVE command enables you to receive data sets or messages that are
transmitted to you from the same system that you are using or another one.
Procedures to initiate receiving will vary with different installations. At your
installa tion:

• A RECEIVE command may be issued automatically when you enter LOGON

• A message may be sent to notify you when a message or data set is available
to be received.

Contact your system support center to determine what option is in effect on your
system. If neither of these two options is used on your system, you may have to
enter a RECEIVE command periodically to determine if transmissions are
available for you.

What happens when the RECEIVE command is entered depends on what (if any)
transmissions are available. The possibilities are:

• If no transmissions have arrived, the system issues a message and terminates
the process

• If multiple transmissions are available, the system processes them one after
another without your having to enter additional RECEIVE commands

• If a transmission is a message, the system displays it immediately at your
terminal.

• If a transmission is a data set, you have the following options:

Receive the data set with either the default name or a name that you
supply

Delete the data set

Postpone receiving the data set.

The RECEIVE command cannot, in general, reformat data sets. Be sure that you
tell the system to write the transmitted data into a data set that has the same
record format as the original data set. Be sure that the record length is
compatible (equal for fixed length records and equal or longer for variable length

Chapter 4. Communicating With Other Users 4-11

records.) Also, be sure to specify a block size that is compatible with both the
record length and record format of the transmitted data. If the system detects a
mismatch in block size, record length, or record format, the system terminates the
RECEIVE command and issues the appropriate error messages.

The system warns you if you receive a data set that was RACF or PASSWORD
protected. The system takes no further action to protect the received data.

Receiving a Transmitted Data Set

4-12 TSOjE User's Guide

To retrieve and restore a transmitted data set, use RECEIVE with no operands.

EXAMPLE

If data set EXAMPLES.TEXT is transmitted to your user ID,
to retrieve and restore the data set, enter:

RECEIVE

To retrieve a data set accompanied by a message, or a message itself, enter
RECEIVE with no operands, as in the preceding example.

When receiving a data set, the system prompts you for information to control
how the data set is restored. You can accept the system defaults offered with the
prompts, or supply additional operands with the RECEIVE command, as
described in the TSOjE Command Language Reference.

The LOG Data Set

The LOG data set is a journal of all TRANSMIT and RECEIVE activity. It
keeps a record of:

• What you transmitted
• To whom you transmitted
• When you transmitted
• The success or failure of your attempt to transmit
• What you received
• From whom you received
• When you received
• The success or failure of your attempt to receive

Example of a LOG data set

TRANSMIT D01TXJ.INM.LOG.DEFAULT 16 SEP 1981 10:26
TO: JONES PLPSC D01TXJ Tom Jones

This is the text of a message that was
transmitted

RECEIVE D01TXJ.INM.LOG.DEFAULT 16 SEP 1981 10:34
FROM: JONES PLPSC D01TXJ Tom Jones 16 SEP 1981 10:26

This is the text of a message that was
received along with a data set (SEQ.DATA)

DSN: D32JAD3.SEQ.DATA

RECEIVE ** ACKNOWLEDGMENT ** 16 SEP 1981 10:34
FROM: JONES PLPSC D01TXJ Tom Jones 16 SEP 1981 10:34

STORED ** MESSAGE ** 16 SEP 1981 10:26

Figure 4-2. Example of a LOG Data Set

The three entries in the above LOG data set show:

• A transmitted message
• A message received along with a data set
• Notification that a message was received.

You may have several LOG data sets or just one. The default data set name is
userid.LOG.MISC but can be specified by use of the :LOGSEL and :LOGNAME
tags in your NAMES data set. For further information concerning these tags see
"The NAMES Data Set" in TSOjE Command Language Reference.

Chapter 4. Communicating With Other Users 4-13

4-14 TSOjE User's Guide

Section II: Using Data Sets

TSO allows you to use data sets in the following ways:

• Create data sets and specify access to them

• Rename data sets

• Delete data sets

• Copy the data from one data set to another

• Request information about data sets

• Protect data sets from unauthorized use

• Release allocated data sets

• Delete data sets from the system.

This section shows you how to perform the preceding tasks using TSO commands.

Section II: Using Data Sets

TSO/E User's Guide

Chapter 5. Allocating Data Sets

Allocating a data set is the way you request MVS to allow you to use a data set.
If the data set does not exist, the system creates it and then gives you access to it.
You can allocate data sets at your terminal, or you can dynamically allocate data
sets during program execution.

ALLOCATE Command

U sing the ALLOCATE command you can:

• Create data sets

• Model the attributes of a new data set after an existing data set

• Request two types of access to an existing data set. They are:

Exclusive access, such that no other user can access the data set until you
are finished using it

Non-exclusive access, such that other users can access the data set while
you are using it.

• Specify how much space a data set can use on a device

• Specify on what tape or disk the data set resides

• Specify the disposition of the data set when you are finished using it

• Designate a data set as a system output data set

• Concatenate library data sets - allocate a number of data sets to be associated
with a single ddname.

For more information on ALLOCATE and its operands, see the TSOjE
Command Language Reference.

Chapter 5. Allocating Data Sets 5-1

The Operands Used with ALLOCATE

TASK

Because the allocation process describes the attributes of a data set, the
ALLOCATE command has many operands associated with it. To help you
decide which of the operands you will need to use in a particular situation, and
what you can do with the operands, look through the following list of the more
commonly used operands. Also, Figure 5-1 can help you choose which operands
you need for a specific task.

DISP

OLD,SHR
DATASET or MOD NEW VOLUME SPACE

Create A Data Set X X Optional X

Retrieve a Cataloged X X
Data Set

Retrieve an Uncataloged X X X
Data Set

Figure 5-1. Operands Needed to Allocate a Data Set

5-2 TSO/E User's Guide

Naming the data set - DATASET, FILE

One of these operands must be specified. The DATASET operand names the
particular data set you allocate. The FILE operand names the data definition
(DD) statement that defines the data set you allocate.

Modeling one data set after another - LIKE

This operand specifies the name of an existing data set whose attributes are to
be used as the attributes of the new data set being allocated.

Requesting type of access to data sets - NEW, MOD, OLD, SHR

The NEW operand tells the system that the data set does not exist, that you
want to create it, and that you will have exclusive access to it.

The MOD operand tells the system that you want to add data to the end of a
data set, and gives you exclusive access to the data set. The data set must be
sequential.

The OLD operand gives you exclusive access to a data set.

The SHR operand gives you non-exclusive access to a data set that already
exists.

Requesting an output data set - SYSOUT

The SYSOUT operand indicates that the data set is to be a system output
data set. This operand is mutually exclusive with the NEW, MOD, OLD,
and SHR operands.

With the SYSOUT operand, you can also specify one of the SYSOUT classes
used at your installation. Consult your system support center to find out
what classes you can use.

Requesting space for a data set - SPACE

When you allocate a new data set you can make specific requests for the
amount of storage the data set can use. You need to request space attributes
for a new data set only if you do not want to use the system defaults. For
more information about the system default space allocations for a data set,
see TSOjE Command Language Reference. You need not request any space
attributes for an existing data set.

Accessing a data set on a specific volume - VOLUME

This operand specifies the serial number of a direct access volume on which a
new data set is to reside or on which an existing data set is located. If you
specify VOLUME for an existing data set, the data set must reside on the
specified volume, or you get an error. If you do not specify VOLUME for a
new data set, the system places the data set on any eligible volume.

Disposing of a freed data set - KEEP, DELETE, CATALOG, UNCATALOG

The disposition of a data set specifies what happens to the data set when you
are finished using it.

• KEEP specifies that the system retain the data set.

• DELETE specifies that the system delete the data set.

CD CATALOG specifies that the system retain descriptive information about
the data set in a catalog. Cataloging allows you to keep track of and
retrieve data sets. You can catalog data sets in the system master catalog
or in user (private) catalogs. When retrieving a cataloged data set, you
do not have to specify volume information.

• UNCAT ALOG specifies that the system remove descriptive information
from the catalog.

The disposition of a data set only takes effect when the data set is freed. You
free the data sets when you issue the FREE command or when you terminate
your TSO session with either the LOGOFF or LOGON commands. When
you terminate your session, the system automatically frees all data sets
allocated to your user ID.

You can use anyone of the four preceding operands when specifying a data
set's disposition, regardless of the data set's disposition before your program
began executing.

See Figure 5-2 for help in choosing a disposition in a specific situation.

Chapter 5. Allocating Data Sets 5-3

Initial Status Disposition at Normal Termination of Program

TASK OLD,SHR NEW KEEP DELETE CATLG UNCATLG

To keep a new data set X X

To delete a new data set X X

To catalog a new data set X X

To keep an existing data set X X

To delete an existing data set X X

To catalog an existing data set X X

To un catalog a cataloged X X
data set

Figure 5-2. Choosing a Disposition for a Data Set

Creating a Data Set

5-4 TSO/E User's Guide

To create a data set issue the ALLOCATE command and specify:

• The DATASET operand.

• The name of the data set enclosed in parentheses.

When you specify a data set name on the ALLOCATE command, the data
set is kept and cataloged when you free it, unless you specify otherwise.
When you do not specify a data set name, the data set is deleted when you
free it or log off.

• Either the NEW or MOD operand.

The MOD operand indicates that if the data set already exists you want to
change it. If the data set does not exist, you want to create it.

• If you are creating a new partitioned data set, the DIR operand.

DIR specifies the number of directory blocks that the system allocates for a
new partitioned data set.

EXAMPLE

To create the partitioned data set, TEST.DATA, with five
directory blocks, and space of ten cylinders primary
allocation and five cylinders secondary space allocation,
enter:

ALLOCATE DATASET (TEST. DATA) NEW DIR(S) SPACE(lO,S) CYL

Although you can specify record format, data set type, and other information for
a data set, the system uses default values when you omit this information. For
more information on the defaults, see TSOjE Command Language Reference.

Creating a Data Set Modeled After Another Data Set - the LIKE Operand

To create a data set that has the same data set attributes as an existing data set,
issue the ALLOCATE command and specify:

• The DATASET operand followed by the name of the data set to be created
enclosed in parentheses

• The LIKE operand followed by the name of the model enclosed in
parentheses.

EXAMPLE

To create data set TEST.DATA, and to ensure that it has the
same attributes as MODEL.DATA, specify:

ALLOCATE DATASET (TEST. DATA) LIKE (MODEL.DATA)

Requesting Access to an Existing Data Set - the OLD, SHR, MOD Operands

When using these operands, you must specify a data set name. If you are
accessing an existing data set that is not cataloged, specify the VOLUME
operand. The system retains existing data sets when you free them unless you
specify the DELETE operand.

Requesting Exclusive Access:

To request exclusive access to a data set that already exists, use the OLD
operand. While you are using the data set, no one else can use it or change it.
Issue the ALLOCATE command and specify:

• The DATASET operand with the name of the data set enclosed in
parentheses. You may also specify an associated file name.

• The OLD operand.

EXAMPLE

Assume data set TEST.DATA associated with the file name
SYSPRINT already exists, and you want to write to it.
You want to prevent any other user from also writing to it.
Request exclusive access to the data set by entering:

ALLOCATE DATASET (TEST. DATA) FILE (SYSPRINT) OLD

Requesting Non-exclusive Access:

The SHR operand indicates that you are willing to share the data set with any
other user who also requests non-exclusive access. If you are only going to read
from a data set, you can request non-exclusive access. To request non-exclusive
access to a data set that already exists, issue the ALLOCATE command and
specify:

• The DATASET operand with the name of the data set enclosed in
parentheses. You may also specify an associated file name.

'i The SHR operand.

Chapter 5. Allocating Data Sets 5-5

EXAMPLE

To request non-exclusive access to data set TEST.DATA,
associated with the file name SYSIN, enter:

ALLOCATE DATASET (TEST.DATA) FILE(SYSIN) SHR

Requesting Access to Add to a Sequential Data Set

If your program adds records to the end of a data set, use the MOD operand
when requesting access to the data set. The MOD operand requests exclusive
access to the data set. Issue the ALLOCATE command and specify:

• The DATASET operand with the name of the data set enclosed in
parentheses. You may also specify an associated file name.

• The MOD operand.

EXAMPLE

If your program adds records to the end of data set
TEST.DATA, associated with file name SYSPRINT, enter:

ALLOCATE DATASET(TEST.DATA) FILE (SYSPRINT) MOD

Making Specific Space Requests for a Data Set - The SPACE Operand

5-6 TSOjE User's Guide

When you allocate a data set, you may not always be sure how much or what
type of space to specify. You can copy space information from another data set
using LIKE or, if you are enlarging an existing data set, look at the previous
space allocation and increase it. When you request a specific amount of space,
you can specify two quantities: a primary quantity and a secondary quantity. The
primary quantity is how much space the system originally allots to the data set.
The secondary quantity is how much more space the system allots each time the
data set's current allotment gets filled. The secondary quantity will be allocated
to the data set up to fifteen times. You can also define the units of space the
system allots. You can request units of space in blocks, tracks, or cylinders.

Some points to keep in mind when choosing values for the SPACE operand are:

• Tracks and cylinders represent different storage values depending on the
device the data set resides on. Either consult a system programmer or the
manual that describes the particular device your data set will reside on for the
number of bytes in a track or cylinder.

• It is often better to request more secondary space than you might need as
opposed to running out of allotted space for the data set.

• If you have not allocated enough space for a data set, to enlarge it, you can:

1. Create another data set with the same attributes as the full data set,
except that you should request more space.

2. Copy the full data set into the new data set.

3. Delete the first data set, and, if you want, rename the new data set using
the name of the original data set.

To specify the space allocation for a data set, issue the ALLOCATE command
and specify:

• The DATASET operand with the data set name enclosed in parentheses
• The NEW operand
• The SPACE operand

Enclose in parentheses the primary and secondary space quantities,
separa ted by a comma

Specify the type of space you want. The choices are BLOCK,
A VBLOCK, TRACKS, or CYLINDER.

EXAMPLE

To create data set TEST.DATA, and allocate 10 cylinders
of primary space and 5 cylinders of secondary space, enter:

ALLOCATE DATASET (TEST.DATA) NEW SPACE(10,5) CYL

/\
primary quantity secondary quantity

Locating a Data Set on a Specific Volume - the VOLUME Operand

To create or access data sets that are uncataloged, use the Volume operand. Use
the NEW operand with VOLUME to create an uncataloged data set on a
specified volume. Use the OLD operand with VOLUME to request exclusive
access to an existing uncataloged data set. Issue the ALLOCATE command and
specify:

• The DATASET operand with the name of the data set enclosed in
paren theses

• The VOLUME operand with the volume's serial number enclosed in
parentheses.

EXAMPLE

To create a data set TEST. DATA, modeled after the data set
MODEL. DATA and to reside on volume TS0349, enter:

ALLOCATE DATASET (TEST.DATA) NEW VOLUME(TS0349) LIKE (MODEL. DATA)

You can also make a specific volume request for a data set that resides on more
than one volume (a multivolume data set). This is very similar to the preceding
example. The only difference is that you specify the volume serial numbers of
each volume the data set resides on.

EXAMPLE

To gain exclusive access to data set TEST.DATA, which resides
on volumes TS0349, TS0350, and TS0359, enter:

ALLOCATE DATASET (TEST. DATA) OLD VOLUME(TS0349,TS0350,TS0359)

Chapter 5. Allocating Data Sets 5-7

Specifying a Data Set's Disposition When Freed - the KEEP, CATALOG, UNCATALOG, and DELETE
Operands

5-8 TSOjE User's Guide

To ensure that the system retains the data set after the data set has been freed,
use the KEEP operand. Issue the ALLOCATE command and specify:

• The DATASET operand with the name of the data set enclosed in
parentheses. You may also include an associated file name.

• The KEEP operand.

EXAMPLE

To retain the SYSOUT data set associated with the file
SYSPRINT after it has been freed, enter:

ALLOCATE SYSOUT FILE(SYSPRINT) NEW KEEP

To ensure that the system retain the data set's descriptive information in a catalog
after the data set has been freed, use the CATALOG operand. Issue the
ALLOCATE command and specify:

• The DATASET operand with the name of the data set enclosed in
parentheses

• The CATALOG operand

EXAMPLE

To retain the new data set TEST.DATA's descriptive information
in a catalog after it has been freed, enter:

ALLOCATE DATASET(TEST.DATA) NEW CATALOG

To ensure that the system remove the data set's descriptive information from a
catalog after the data set has been freed, use the UNCAT ALOG operand. Issue
the ALLOCATE command and specify:

• The DATASET operand with the name of the data set enclosed in
paren theses

• The UNCATALOG operand.

EXAMPLE

To remove data set TEST.DATA's descriptive information from a
catalog after the data set has been freed, enter:

ALLOCATE DATASET(TEST.DATA) OLD UNCATALOG

To ensure that the system deletes the data set from the system and uncatalogs the
data set after the data set has been freed, use the DELETE operand. Issue the
ALLOCATE command and specify:

• The DATASET operand with the name of the data set enclosed in
paren theses

• The DELETE operand.

EXAMPLE

To delete data set TEST. DATA from the system after it has
been freed, enter:

ALLOCATE DATASET (TEST. DATA) OLD DELETE

Designating a System Output Data Set - The SYSOUT Operand

The system directs output data to the job entry subsystem (JES2 or JES3). The
job entry subsystem routes the data set to a final output device, based on the class
you specify with the SYSOUT operand. After the job entry subsystem routes the
data set, the system deletes it.

To allocate a data set as a system output data set, issue the ALLOCATE
command and specify:

fit The FILE operand with the name of the data definition (DD) statement that
defines the output data set enclosed in parentheses.

• The SYSOUT operand.

You can also specify the output class the system uses when processing the
output data set. The output class is a single letter following the SYSOUT
operand and enclosed in parentheses.

EXAMPLE

To allocate the data set defined by DD statement SYSPRT
as a system output data set, and to request the system
to process as output class A, enter:

ALLOCATE FILE(SYSPRT) SYSOUT(A)

Chapter 5. Allocating Data Sets 5-9

Concatenating Data Sets into a Library

5-10 TSO/E User's Guide

You can concatenate related data sets in a library under a single ddname, to
establish the order in which the system searches the data sets and to simplify data
set invocation. For example, if you concatenate CLIST data sets in the file
SYSPROC, you can invoke individual CLISTs by typing %CLISTname on the
command line.

To concatenate a number of data sets, specify a list of the data set names with the
DATASET operand.

EXAMPLE

To concatenate existing data sets A.CLIST, B.CLIST, and
C.CLIST to the data definition statement named SYSPROC,
specify:

ALLOCATE FILE(SYSPROC) DATASET(A.CLIST,B.CLIST,C.CLIST) +
SHR REUSE

There are two ways to add another data set to a data set concatenation:

1. Use the FREE command to unallocate or free the data sets in the
concatenation. Then reallocate the entire concatenation, including the data
set to be added, using the ALLOCATE command.

2. Specify the REUSE operand with the ALLOCATE command when you
concatenate. The REUSE operand specifies that the filename being allocated
is to be freed and reallocated if it is currently in use. Then reallocate the
entire concatenation, including the data set to be added, using the
ALLOCATE command.

When data sets are concatenated, the system treats the group as a single data set.
It is important to consider the characteristics of the individual data sets that you
are working with. Concatenated partitioned data sets use the attributes of the
first data specified only. If you are concatenating data sets with unlike attributes,
you should specify the data set with the largest block size first to ensure that you
will not lose any data during the concatenation. If you need to concatenate the
data sets in a certain order regardless of block size, see TSOjE Command
Language Reference for information on specifying sufficient buffer space.

For more information about data set concatenation, see MVS JCL. For more
information about the FREE command, see "FREE Command."

Chapter 6. Renaming Data Sets

RENAME Command

Use the RENAME command to:

• Change the name of one or more non-VSAM cataloged data set
• Change the name of a member of a cataloged partitioned data set
• Create an alias for a member of a cataloged partitioned data set.

You can use the Access Method Services ALTER command to change the name
of a VSAM data set. For more information on the ALTER command, see Access
Method Services.

Do not use the RENAME command to create an alias for a load module created
by the linkage editor.

When you rename a password protected data set, the data set does not retain the
password. If you want to password protect the renamed data set, you must use
the PROTECT command to assign a password to the data set before you access
it.

In the following examples, assume that the user issuing the RENAME command
owns the data set.

For more information on the RENAME command, see TSOjE Command
Language Reference.

Changing a Data Set's Name

To change the name of a data set, specify on the RENAME command:

• The data set name you want to change
• The data set's new name.

EXAMPLE:

To change the name of data set TEST.DATA to PARTS.DATA,
enter:

RENAME TEST.DATA PARTS.DATA

Chapter 6. Renaming Data Sets 6-1

Renaming a Group of Data Sets

Renaming a Member

6-2 TSO IE U serf s Guide

To rename a group of data sets that have at least one qualifier in common, issue
the RENAME command and specify asterisks in place of the qualifiers that vary
in both the new and old data set names. Remember that you are renaming all
data sets with the specified common qualifier.

EXAMPLE

To change the descriptive qualifier of the following data sets
from DATA to TEXT:

TEST. DATA
PARTS.DATA
OLD. DATA
WORK. DATA

to

TEST.TEXT
PARTS.TEXT
OLD.TEXT
WORK. TEXT

enter the command as

RENAME *.DATA *.TEXT

To change the name of a member of a partitioned data set, issue the RENAME
command and:

• Specify the data set name and specify the old member name enclosed in
parentheses

• Optionally, specify the data set name again

• Enclose the new member name in parentheses.

EXAMPLE

To rename MEMBERl of data set TEST.DATA to MEMBER2, enter:

RENAME TEST.DATA(MEMBERl) TEST.DATA(MEMBER2)
or

RENAME TEST. DATA (MEMBER1) (MEMBER2)

Creating an Alias Name for a Member - the ALIAS Operand

To create an alias name for a member of a partitioned data set, issue the
RENAME command and:

• Specify the data set name and enclose the member name parentheses
• Optionally, specify the data set name again
• Enclose the member's alias in parentheses
• Specify the ALIAS operand.

EXAMPLE

To create AUXMEM as an alias for MEMBERl of data set TEST.DATA,
enter:

RENAME TEST.DATA(MEMBER1) TEST. DATA (AUXMEM) ALIAS
or

RENAME TEST. DATA (MEMBER1) (AUXMEM) ALIAS

Chapter 6. Renaming Data Sets 6-3

6-4 TSOjE User's Guide

Chapter 7. Copying Data Sets

The following are some of the facilities you can use to copy information from one
data set to another:

• The UTILITIES option of the Interactive System Productivity Facility
(ISPF).

• The TSO Data Utilities COPY command, which is described in TSO Data
Utilities: COPY, FORMAT, LIST, MERGE User's Guide and Reference.
Your installation must have the TSO Data Utilities package for you to use
the COPY command.

• The TSO/E command SMCOPY. Although SMCOPY is primarily intended
for use under the session manager, you can use it to copy some data set types
regardless of whether or not you're logged on under the session manager.
(See "Data Sets You can Copy Using SMCOPY" below for information
about the types of data sets you can copy.) This chapter provides some
information on using SMCOPY. For a description of the syntax of the
SMCOPY command, see TSO Extensions Session Manager Program
Reference.

Data Sets You can Copy Using SMCOPY

You can use the SMCOPY command to copy:

• A member of a partitioned data set into another member or into a sequential
data set.

• A sequential data set into another sequential data set or into a member of a
partitioned data set.

The data sets or members you copy must have:

• A variable (V) or fixed (F) record format. (The records can be either blocked
or unblocked.)

• A logical record length of no more than 256 bytes.

To copy other types of data sets-such as load libraries, which have a record
format of U-you can use ISPF (Interactive System Productivity Facility); for
more information, see Interactive System Productivity Facility/Program
Development Facility for MVS: Reference.

Chapter 7. Copying Data Sets 7-1

Some Examples of Using SMCOPY

In general, when using the SMCOPY command, specify the following operands:

• FROMDATASET(dsname) or FDS(dsname) to designate the originating
sequential data set or member of a partitioned data set

• TODATASET(dsname) or TDS(dsname) to designate the destination
sequential data set or member of a partitioned data set

• NOTRANS, if you do not want characters in the data set to be translated.

You can copy a data set to either a new or existing data seL When you copy to a
new data set, the system allocates one for you, using the attributes of the data set
being copied. When you copy to an existing data set, the system uses the
attributes of the data set to which you're copying the data; you can copy data sets
that have different logical record lengths or block sizes. You cannot, however,
copy data sets that have different record formats. For example, you can't copy a
data set with a record format of FB to a data set with a record format of VB.

Copying a Member of a Partitioned Data Set

For example, to copy member MEMI of the partitioned data set PDS1.DATA
into member MEM2 of PDS2.DAT A, specify:

SMCOPY FDS(PDS1.DATA(MEM1)) TDS(PDS2.DATA(MEM2)) NOTRANS

To copy member MEMI of the partitioned data set PDS1.DATA into the
sequential data set SEQl.DATA, specify:

SMCOPY FDS(PDS1.DATA(MEM1)) TDS(SEQ1.DATA) NOTRANS

Copying a Part of a Data Set

7-2 TSOjE User's Guide

You can copy specific records from one sequential data set or member to another.
U sing the SM COPY command, specify:

• The FDS and TDS operands, as shown above.

• The LINE operand with the range of records to be copied enclosed in
parentheses. Specify a starting record and an ending record.

For example, to copy the first five records of text from the member MEMI of
PDSl.DATA to MEM2 of PDS2.DAT A, specify:

SMCOPY FDS(PDSl.DATA(MEMl)) LINE(1:5) TDS(PDS2.DATA(MEM2)) NOTRANS

You cannot use the LINE operand to copy specific line numbers within a
numbered data set; the system treats the numbers you specify as offsets from the
beginning of the data set.

Chapter 8. Listing Data Set Information

You can request that the system return various types of information about a data
set or a list of data sets by using the following commands:

LIST
Displays all or part of the contents of one or more data sets at your
terminal. Your installation must have the TSO Data Utilities package for
you to use the LIST command. The LIST command is not described in this
chapter; for more information, see TSO Data Utilities: COPY, FORMAT,
LIST, MERGE User's Guide and Reference.

LISTALC
Displays a list of the data sets allocated to your user ID during the current
TSO session.

LISTCAT
Displays a list of entries from a catalog.

LISTDS
Displays the attributes of specific data sets at your terminal.

When you display information about a data set you own, you don't need to fully
qualify the data set name; the system appends your user ID (or a prefix specified
with the PROFILE command) to the beginning of the data set for you. For
example, to list the attributes of a data set you own, PARTS.TEXT, enter:

LISTDS PARTS.TEXT

To list the attributes of a data set you do not own, be sure to specify the data
set's fully-qualified name and enclose the name in apostrophes. For example:

LISTDS 'DOOABC1.PARTS.TEXT '

For all of the following examples of the LISTALC, LISTCAT, and LISTDS
commands, assume that you want to display information pertaining to data sets
you own.

Chapter 8. Listing Data Set Information 8-1

LISTALC Command

Use the LISTALC command to list and optionally display information about the
data sets and attribute-lists allocated to your user ID during the current TSO
session. The list includes the data sets and attribute-lists you dynamically
allocated and any data sets previously allocated for temporary use by a command.

Using the LIST ALC command you can display:

• The data sets allocated to your user ID during the current TSO session.
• The attribute list names created by your use of the ATTRIB command.
• The data definition name (DDNAME) associated with a data set.
• The disposition of a data set.
• The history of a data set. The. history of a data set includes:

The date the data set was created.
The date the data set will expire (retention period).
Whether or not the data set is password-protected.
The organization of the data set (sequential or partitioned).

• The names of the members of a partitioned data set.
• The fully-qualified name of a system-generated data set name.

When you see the list, data sets allocated to your terminal are followed by the
word TERMINAL and attribute-lists are followed by the word NULLFILE. If an
asterisk precedes the data set name in the list, the data set is allocated but not
currently in use.

For more information on the LISTALC command, see TSO/E Command
Language Reference.

Listing Attribute lists and Data Sets

There are times when you might want to find out exactly what data sets the
system has currently allocated to your user ID. To list all attribute list names and
all data sets allocated to your user ID during the current TSO session, enter:

LISTALC

Listing Attribute Lists, DDNAMEs, and Data Set Disposition - the STATUS Operand

8-2 TSO/E User's Guide

When writing programs and JCL statements, it is often useful to know if any
other steps or programs use the same data sets you do, and when and how they
intend to do so. You can find this type of information by examining the
attribute-list name, data definition names (DDNAME), and the data set's
disposition.

A data set's disposition is indicated by one of the following operands discussed in
detail under the ALLOCATE command:

CATLG
Requests that the system retain the data set and enter the data set's name
into the system catalog.

UNCATLG
Requests that the system remove the data set's name from the system
catalog, but still retain the data set.

KEEP
Requests that the system retain the data set.

DELETE
Requests that the system remove the data set's name from the system
catalog and release the storage space the data set formerly occupied.

EXAMPLE

To list all attribute list names, dispositions, and all
DDNAMEs associated with each data set currently allocated
to your user ID, enter:

LISTALC STATUS

Listing the History of a Data Set - the HISTORY Operand

Before you access a data set, you might want to know more about it. For
example, you might want to know when the data set was created, or when it will
expire (be removed from the system). To avoid errors, you would also want to
know if the data set is password-protected and how the data set is organized. The
system
displays the data set's organization under the title, DSORG. The possible values
for DSORG and their meanings are:

DSORG

PS
PO
IS
DA
VSAM

**
??

EXAMPLE

Meaning

A sequential data set
A partitioned data set
An indexed sequential data set
A direct access data set
A virtual sequential access method (VSAM) data set
An unspecified type of data set
Any other type of data set

To find out each data set's creation and expiration dates,
whether or not the data set is password-protected, and its
organization, enter:

LISTALC HISTORY

Listing the Members of a Partitioned Data Set - the MEMBERS Operand

A partitioned data set can have many members, often too many to remember by
name. When using TSO, there are times when you need to use a specific member
name within a partitioned data set. TSO provides a way for you to list the names
of the members of each partitioned data set currently allocated to your user ID.
Enter:

LISTALC MEMBERS

The list also includes each member's alias name(s), if any exist.

Chapter 8. Listing Data Set Information 8-3

Listing the System-generated Data Set Names - the SYSNAMES Operand

8-4 TSO/E User's Guide

To list the fully-qualified system-generated data set names for each data set
currently allocated to your user ID, enter:

LISTALC SYSNAMES

LIST CAT Command

Use the LISTCAT command to obtain a list of entries from a catalog. You can
select entries by name, by type, or by specific fields within an entry.

Using the LISTCAT command you can request that the system:

• List the entries of a particular catalog.
• Write the output to a data set rather than to the terminal screen.
• List the information associated with only specific entries.
• List the entries in a particular level.
• List alias entries only.
• List the entries that were created a specific number of days before the present.
• List the entries that expire within a certain number of days.
• Return all or a part of the following information stored in a catalog entry:

Data set name
Owner identification
Creation date
Expiration date
Entry type
Volume serial number
Device types.

For information on how to list catalog information for VSAM data sets, refer to
Access Method Services.

When you enter LISTCAT with no operands, your user ID, or the last prefix
specified with the PROFILE command, becomes the highest level entry name
qualifier. The system only displays information about those entries associated
with that user ID or prefix.

For more information on the LISTCAT command, see TSOjE Command
Language Reference.

Listing the Entries From a Specific Catalog - the CATALOG, OUTFILE Operands

You can list all of the entries from a specific catalog at your terminal, or write
them to a data set. To list all of the entries of a specific catalog at your terminal,
enter the LISTCAT command:

• Specify the CATALOG operand
• Immediately enclose in parentheses the catalog name.

EXAMPLE

To list all of entries in catalog USERCATl at your terminal,
enter:

LISTCAT CATALOG (USERCAT1)

Chapter 8. Listing Data Set Information 8-5

To write all of the entries of a specific catalog to a data set, enter the LISTCAT
command and specify:

• The CATALOG operand, enclosing the catalog name in parentheses.
• The OUT FILE (abbreviated OFILE) operand.

The OUTFILE operand specifies the ddname of the DD statement, or the
name specified with the FILE operand of the ALLOCATE command,
that defines the data set to which the system writes the list of catalog
entries. To find out which DD statement defines the data set you want to
write to, use the LISTALC command. For more information on how to
do this, see "Listing Attribute Lists, DDNAMEs, and Data Set
Disposition - the STATUS Operand," earlier in this chapter.

When using the OUTFILE operand, enter the ddname or file name
immediately after the operand, and enclose it in parentheses.

Be sure to separate the operands by either a comma or a space.

EXAMPLE

To list all of entries in catalog USERCATl in data set
CATLIST1.DATA, where CATLIST.DATA is defined by DD
statement CATDD, enter:

LISTCAT CATALOG(USERCAT1),OUTFILE(CATDD)

If USERCAT2 is a password-protected catalog, and the password is VGTBLS,
enter a slash (j) and the catalog's password immediately following the catalog
name field.

EXAMPLE

To list all of the entries in password-protected catalog
USERCAT2 at your terminal, enter:

LISTCAT CATALOG (USERCAT2/VGTBLS)

Listing the Entries for Specific Data Sets - the ENTRIES Operand

8-6 TSO/E User's Guide

You can list the catalog information about specific data sets using the ENTRIES
operand. To list specific data sets' information, enter the LISTCAT command
and:

• Specify the ENTRIES operand

• Immediately enclose in parentheses the list of data sets separated by a comma
or blank.

EXAMPLE

To list the catalog information about data sets named
TEST.DATA and TEST.TEXT, enter:

LISTCAT ENTRIES(TEST.DATA,TEST.TEXT)

If the data sets whose catalog information you want to obtain are
password-protected, enter the password following the data set name and separate
them using a slash(f).

EXAMPLE

TEST.DATA and TEST.TEXT have passwords of TESTD and TESTF,
respectively. To list the catalog information associated
with the entries for the data sets named TEST. DATA and
TEST.TEXT enter:

LISTCAT ENTRIES(TEST.DATA/TESTD,TEST.TEXT/TESTF)

If you enter neither ENTRIES nor LEVEL (discussed later in this section) the
system displays only the entries associated with the user ID.

Listing the Entry Names in a Catalog by Level - the LEVEL Operand

To list the entry names in a catalog associated with a particular entry name level,
enter the LISTCAT command:

• Specify the LEVEL operand
• Immediately enclose in parentheses the level of the entry names.

EXAMPLE

To list all of the entry names in a catalog associated with
user ID DOOABC1, enter:

LISTCAT LEVEL(DOOABC1)

To list all of the entry names in a catalog associated with
user ID DOOABCl and qualifier PROJ2, enter:

LISTCAT LEVEL(DOOABC1.PROJ2)

If neither LEVEL nor ENTRIES is entered, only the entries associated with the
user's prefix are listed.

Listing Alias Entries in a Catalog - the ALIAS Operand

Catalogs can contain aliases, or as they are sometimes known, alternate entries.
An alias entry is a copy of an entry that already exists, but with a different name.
You can list all the alias entries in a catalog by specifying the ALIAS operand.
You need not specify any other information with this operand.

EXAMPLE

To list all the alias entries in a catalog, enter:

LISTCAT ALIAS

Chapter 8. Listing Data Set Information 8-7

Listing Entries in a Catalog By Creation and Expiration Dates - the CREATION, EXPIRATION Operands

You can list all the entries in a catalog for data sets that were created on or
before a specified number of days from the present by using the CREATION
operand followed immediately by a decimal number enclosed in parentheses.

EXAMPLE

To list the entries that were created in the last ten days,
enter:

LISTCAT CREATION(lO)

You can list all the entries in a catalog for data sets that expire on or before a
specified number of days from the present by using the EXPIRATION operand
followed immediately by a decimal number enclosed in parentheses.

EXAMPLE

To list the entries that expired in the last eight days,
enter:

LISTCAT EXPIRATION(8)

Listing Specific Data Set Information in a Catalog - the ALL, NAME, and HISTORY Operands

8-8 TSO/E User's Guide

Use the ALL operand to list each data set's:

• Name
• Owner identification
• Creation date
• Expiration date
• Entry type
• Volume serial number
• Device type.

You need not specify any further information. To list only the name of each data
set, use the NAME operand. To list only the name of each data set, the owner
identification, creation date and expiration date, use the HISTORY operand.

EXAMPLES

To list each data set's name, owner identification, creation
date, expiration date, entry type, volume serial number(s),
and device type(s) in a catalog, enter:

LISTCAT ALL

To list only each data set's name, enter:

LISTCAT NAME

To list only each data set's name, owner identification,
creation date, and expiration date, enter:

LISTCAT HISTORY

If you don't enter either LEVEL or ENTRIES, the system displays only the
entries associated with the user ID.

LISTDS Command

Use the LISTDS command to display the attributes of specific data sets at your
terminal. Each data set you specify must be currently allocated or available from
the system catalog, and must reside on a currently-active volume.

Using LISTDS, you can display the attributes of one or more data sets. For
example, you can use an asterisk (*) in place of any qualifier except the first.
When you specify an asterisk, the system searches for all catalogued data sets
whose names contain the qualifiers you specified. For example, if you wanted to
list the attributes of all the data sets starting with MYDATA.TEXT, specify:

LISTDS MYDATA.TEXT.*

Using the LISTDS command, you can display:

• The volume identifier (VOLID) of the volume the data set resides on.

" The logical record length (LRECL), the block size (BLKSIZE), and for
non-VSAM data sets, the record format (RECFM) of the data set.

• The data set organization (DSORG). For an explanation of the possible
values for DSORG and their meanings, see "Listing the History of a Data Set
- the HISTORY Operand" earlier in this chapter.

o The date the data set was created.

GIl The date the data set will expire.

CD For non-VSAM data sets, whether or not the data set is password-protected.

• File name and disposition.

CD The members in a partitioned data set, including any aliases.

• Non-VSAM data set control blocks (DSCBs)

• The information from the data sets in a particular user catalog.

• A list of information about data sets with a common high-level qualifier.

You can specify a list of data set names when using any of the operands of the
LISTDS command.

For more information on the LISTDS command, see TSOjE Command Language
Reference.

Chapter 8. Listing Data Set Information 8-9

Listing Data Set VOLID, LRECL, BLKSIZE, RECFM and DSORG

You can list the VOLID, LRECL, BLKSIZE, RECFM, and DSORG of a
specific data set by using the LISTDS command followed by a data set name.

EXAMPLE

To list the VOLID, LRECL, BLKSIZE, RECFM, and DSORG of
data set PARTS.DATA, enter:

LISTDS PARTS.DATA

You can also list the VOLID, LRECL, BLKSIZE, RECFM, and DSORG of a
number of specific data sets by entering the LISTDS command followed by the
data sets' names enclosed in parentheses and separated by commas or blanks.

EXAMPLE

To list the VOLID, LRECL, BLKSIZE, RECFM, and DSORG of
data sets PARTS.DATA, ART.TEXT, JONES.CNTL, enter:

LISTDS (PARTS.DATA,ART.TEXT,JONES.CNTL)

Listing Data Sets' Creation and Expiration Dates - the HISTORY Operand

You can list the date a data set was created, the date the data set expires, and for
non-VSAM data sets, whether or not the data set is password-protected by
specifying the data set name followed by the HISTORY operand. Be sure that
you separate the operands by a comma or a blank.

EXAMPLE

To list the creation and expiration dates, and whether or
not non-VSAM data set PARTS.DATA is password-protected,
enter:

LISTDS PARTS.DATA HISTORY

Listing Data Sets' Associated DDNAMEs and Dispositions - the STATUS Operand

8-10 TSO/E User's Guide

You can list the DDNAME currently associated with a data set, and that data
set's disposition by specifying the data set name followed by the STATUS
operand.

EXAMPLE

To list the DDNAME currently associated with data set
PARTS.DATA, and its disposition, enter:

LISTDS PARTS.DATA STATUS

Listing the Members of a Partitioned Data Set - the MEMBERS Operand

You can list all of the members in a partitioned data set, including any aliases, by
specifying the data set name followed by the MEMBERS operand.

EXAMPLE

To list all of the members in partitioned data set PARTS.DATA,
including any aliases, enter:

LISTDS PARTS.DATA MEMBERS

Listing the DSCB for a Non-VSAM Data Set - the LABEL Operand

You can list the data set control block (nSCB) associated with a non-VSAM data
set by specifying the data set name followed by the LABEL operand.

EXAMPLE

To list the DSCB associated with non-VSAM data set PARTS.DATA,
enter:

LISTDS PARTS. DATA LABEL

This operand is only applicable to non-VSAM data sets on direct access devices.
The list will be displayed in hexadecimal notation.

Listing the Information in a User Catalog for a Data Set - the CATALOG Operand

To list the information associated with a data set in a user catalog, enter the
LISTnS command and specify:

• The data set name

•. The CATALOG operand followed by the catalog name enclosed in
parentheses.

EXAMPLE

To list the information associated with data set PARTS.DATA
in user catalog, USECAT5, enter:

LISTDS PARTS.DATA CATALOG(USECAT5)

This operand is only required for data sets whose information is in catalogs other
than the ones specified in the STEPCAT JCL statements or the catalogs implied
by the data sets' highest-level qualifier.

Chapter 8. Listing Data Set Information 8-11

Listing Information for Commonly Owned Data Sets - the LEVEL Operand

8-12 TSOjE User's Guide

You can list information for data sets that have a common high-level qualifier by
specifying the high-level qualifier followed by the LEVEL operand. These could
be data sets that are owned by a particular user.

EXAMPLE

To list all the data sets whose high-level qualifier is
DOOABC1, that is, all data sets owned by the user
associated with user ID DOOABC1, enter:

LISTDS 'DOOABC1' LEVEL

When you specify this operand, the data set name cannot contain an asterisk.
You may specify only one data set list with this operand.

Chapter 9. Protecting Data Sets

You can protect a data set by using the PROTECT command, which allows you
to specify a type of access through the use of a password. You can request that
the system restrict access to a data set to only those who meet specific access
req uirements.

The system allows four types of access to a data set, which are represented by
four operands on the PROTECT command. The operands are PWREAD,
PWWRITE, NOPWREAD, and NOW RITE.

You protect a data set by assigning it a password that a user must specify to gain
access to the data set. You can assign one or more passwords to a data set. A
password consists of one through eight alphameric characters. The system allows
you two attempts to supply a correct password. After two attempts, the system
issues a message indicating that the password is invalid and you cannot access the
data set.

PROTECT Command

Use the PROTECT command to prevent unauthorized access to a non-V SAM
data set. (Use the Access Method Services ALTER and DEFINE commands to
protect VSAM data sets. These commands are described in Access Method
Services.)

Using the PROTECT command, you can:

• Specify the type of access you want to allow to a data set

• Specify a password with which to protect your data set

• Add an extra password to a data set

• Replace an existing password with a new password

• Delete an existing password or access type

• Display the number of times the data set has been accessed, the access type,
and any optional security information for a data set.

Each password is stored as part of an entry in a password data set, which resides
on the system residence volume. The first password entered in the password data
set is called the control entry. This control entry must be specified for each access

Chapter 9. Protecting Data Sets 9-1

of the password data set via the PROTECT command, with one exception: the
LIST operand of the PROTECT command does not require the control entry.

If you have allocated a data set either during a LOGON procedure or via the
ALLOCATE command, you cannot protect it by specifying the PROTECT
command. If you want to protect an allocated data set, you have to deallocate it
via the FREE command before you can protect it via the PROTECT command.

If you omit a required password when using the PROTECT command, the system
will prompt you for it. If your terminal is equipped with the print-inhibit feature,
the system will disengage the printing mechanism at your terminal while you enter
the password in response. However, the print-inhibit feature is not used if the
prompting is for a new password.

For more information on the PROTECT command, see TSOjE Command
Language Reference.

Specifying the Type of Access to a Data Set - the PWREAD, NOPWREAD, PWWRITE, NOWRITE
Operands

9-2 TSO/E User's Guide

You can specify one of the four types of access to a data set: password read
(PWREAD), no password read (NOPWREAD), password write (PWWRITE), or
no password write (NOWRITE). To specify a particular type of access to a data
set, enter the PROTECT command and specify:

• The data set name.

• The type of access - PWREAD, NOPWREAD, PWWRITE, or NOWRITE:

PWREAD
You must specify the password before you can read the data set.

NOPWREAD
You can read the data set without specifying the data set's password.

PWWRITE
You must specify the data set's password before you can write to the
data set.

NOWRITE
You cannot write to the data set.

If you specify a password but do not specify a type of access, the default is:

NOPWREAD PWWRITE if the data set does not have any existing
access restrictions

The existing type of access if a type of access has already been
established.

The system does not support a combination of NOPWREAD and
NOWRITE. If you specify NOPWREAD and NOWRITE the system uses
the values NOPWREAD and PWWRITE as defaults.

EXAMPLES

To specify that a password is needed to read PARTS.DATA,
enter:

PROTECT PARTS.DATA PWREAD

To specify that a password is not needed to read PARTS.DATA,
enter:

PROTECT PARTS.DATA NOPWREAD

To specify that a password is needed to write to PARTS.DATA,
enter:

PROTECT PARTS.DATA PWWRITE

To specify that a password is not needed to write to PARTS.DATA,
enter:

PROTECT PARTS.DATA NOWRITE

Specifying a Password for a Data Set - the ADD Operand

To specify a password with which to protect a data set that is not already
protected, enter the PROTECT command and specify:

• The data set name
• The ADD operand with the password enclosed in parentheses.

EXAMPLE

To protect data set PARTS.DATA for the first time using
POODLE as the password, enter:

PROTECT PARTS.DATA ADD(POODLE)

To add an additional password to a data set that is already password- protected,
enter the PROTECT command as shown in the previous example.

EXAMPLE

To add password PHYDEAUX to the password data set for
PARTS.DATA, enter:

PROTECT PARTS.DATA ADD(PHYDEAUX)

Replacing a Password for a Data Set - the REPLACE Operand

To replace one of a data set's passwords with a new password, enter the
PROTECT command:

• Specify the data set name
• Enter the REPLACE operand
• Immediately enclose in parentheses:

The password you want to replace, followed by a blank
The new password.

Chapter 9. Protecting Data Sets 9-3

EXAMPLE

To replace password POODLE for data set PARTS.DATA with
the new password RUTABAGA, enter:

PROTECT PARTS.DATA REPLACE(POODLE RUTABAGA)

/ \
old password new password

When you specify the REPLACE function of the PROTECT command, the
default type of access is that of the entry being replaced.

Deleting Password Information for a Data Set - the DELETE Operand

For this and the following two examples, assume that the control entry for
PARTS.DATA is RAKE. To delete one of a data set's passwords, enter the
PROTECT command:

• Specify the data set name
• Enter a slash (/) immediately following the data set name
• Immediately specify the control entry
• Specify the DELETE operand with the password enclosed in parentheses.

EXAMPLE

To delete data set PARTS.DATA's password, RUTABAGA, enter:

PROTECT PARTS.DATA/RAKE DELETE (RUTABAGA)

To delete an access type from those specified for a data set, follow the
instructions above, specifying the access type with the DELETE operand.

EXAMPLE

To delete data set PARTS.DATA's access type NOWRITE, enter:

PROTECT PARTS.DATA/RAKE DELETE (NOWRITE)

Displaying Password Information for a Data Set - the LIST Operand

9-4 TSOjE User's Guide

To display the number of times a data set has been accessed, the access type, and
any optional security information for the data set, enter the PROTECT command
and:

• Specify the data set name
• Enter the LIST operand with the data set's password enclosed in parentheses.

EXAMPLE

To list the password information for data set PARTS.DATA,
enter:

PROTECT PARTS.DATA LIST(POODLE)

RACF Commands

You can also protect a data set using the Resource Access Control Facility
(RACF). RACF is a program product and you can obtain it for a license fee.

Using RACF you protect a data set by issuing the ADDSD command and its
appropriate operands. There are a number of other protection-related tasks you
can perform using RACF commands. For more information on the how to
protect resources using RACF, see MVS Resource Access Control Facility
(RACF) Command Language Reference. Below are brief discussions on how to
RACF protect a data set, and how to list the protection attributes of a data set.

Protecting a Data Set Using RACF

You can RACF protect a data set by issuing the ADDSD RACF command
followed by the name of the data set. To protect data set PARTS.DATA using
the default values for the ADDSD command, enter:

ADDSD PARTS.DATA

Listing a Data Set's RACF Protection Attributes

You can list the RACF protection attributes for a data set at your terminal by
issuing the LISTDSD RACF command, followed by the DATASET operand with
the name of the data set enclosed in parentheses. To list data set
PARTS.DATA's RACF protection attributes, enter:

LISTDSD DATASET(PARTS.DATA)

Chapter 9. Protecting Data Sets 9-5

9-6 TSO/E User's Guide

Chapter 10. Releasing Data Sets

FREE Command

Use the F,REE command to release (deallocate) previously allocated data sets that
you no longer need to use.

There is a maximum number of data sets that the system can allocate to your user
ID at anyone time. The system does not automatically release any data sets that
are allocated as a result of issuing the LOGON or ALLOCATE commands. To
avoid reaching the maximum limit of allocated data sets, and being denied access
to desired resources, use the FREE command to release data sets that you no
longer need.

Using the FREE command, you can request that the system:

• Release all dynamically allocated data sets, files, and attribute lists that are
not currently in use.

• Release one or more specific data sets.

• Send SYSOUT data sets to a specific printer or destination.

• Place a data set in a HOLD queue to print later or view only.

• Not place a data set in a HOLD queue.

• Retain the data set after you release it.

• Delete the data set after you release it.

• Retain the data set in a catalog after you release it.

• Remove the data set from a catalog after you release it. The system still
retains the data set.

When a command terminates, the system does not automatically deallocate data
sets that the command dynamically allocated. You must explicitly release
dynamically allocated data sets.

Chapter 10. Releasing Data Sets 10-1

When using the FREE command, you must use one of the following operands
when specifying a data set:

• DATASET
• DSNAME
• FILE
• DDNAME

For more information about the FREE command, see TSO/E Command
Language Reference

Releasing All Your Data Sets not Currently in Use - the ALL Operand

Use the ALL operand to release all data sets, files, and attribute lists that were
dynamically allocated to your user ID, but are not currently in use.

EXAMPLE

A data set allocated to your user ID is tying up the system, anc
you are not sure which data set is causing the problem.
You decide to free all your data sets until you can correct
the problem. You enter:

FREE ALL

Be aware that after issuing a FREE ALL, you may be unable to use ISPF or
other programs that are dependent on the data sets just released. In this
situation, you will have to LOGON again to continue your terminal session.

Releasing Specific Data Sets

10-2 TSO/E User's Guide

You can release data sets by specifying:

• The data set name
• A group of specific data set names
• The file or ddname associated with a specific data set
• A group of file or ddnames associated with a specific data set.

To release a specific data set by specifying the data sets name, enter the FREE
command:

• Specify the DATASET or DSNAME operand.

• Enclose the data set name in parentheses.

You must include the descriptive qualifier in the data set name.

You may include a member name in parentheses when specifying a
parti ti oned data set.

EXAMPLE

To release data set PARTS.DATA, enter:

FREE DATASET(PARTS.DATA)

To release a group of specific data sets, enter the FREE command:

• Specify the DATASET or DSNAME operand
• Enclose in parentheses the data set names separated by commas.

EXAMPLE

To release data set PARTS.DATA, REPORT.TEXT, and
SIMIAN.CNTL(HAPE), enter~

FREE DATASET(PARTS.DATA,REPORT.TEXT,SIMIAN.CNTL(HAPE))

To release the data set(s) associated with a specific data definition name, enter the
FREE command and specify:

• The FILE or DDNAME operand
• The data definition name enclosed in parentheses.

EXAMPLE

To release the data set associated with data definition name
SYSUT1, enter:

FREE FILE(SYSUT1)

To release the data sets associated with a specific group of data definition names,
enter the FREE command and specify:

• The FILE or DDNAME operand
• The data definition names enclosed in parentheses.

EXAMPLE

To release the data set associated with data definition names
SYSUT1, SYSUT3, SYSPRINT, and SYSIN, enter:

FREE FILE(SYSUT1,SYSUT3,SYSPRINT,SYSIN)

Releasing SYSOUT Data Sets and Sending Them to a Work Station - the DEST Operand

To release a SYSOUT data set and send it to another work station for output
processing, enter the FREE command and specify:

• The SYSOUT data set and the associated file name

• The DEST parameter with the name of the work station enclosed in
parentheses.

EXAMPLE

To send the SYSOUT data set associated with the file name
SYSPRINT to work station LONDONW3 after releasing the data
set, enter:

FREE FILE(SYSPRINT) SYSOUT DEST(LONDONW3)

You can send more than one SYSOUT data set to a destination by following the
same procedure for releasing multiple data sets.

If you omit this operand when releasing SYSOUT data sets, the data sets are
directed to the work station you specified at the time you allocated the data set.

Chapter 10. Releasing Data Sets 10-3

Releasing Data Sets and Placing Them in a HOLD Queue - the HOLD, NOHOLD Operands

You can send data to the HOLD queue if you want to view it with the option of
printing it later or not printing it. To place a data set on a HOLD queue, enter
the FREE command and specify:

• The data set
• The HOLD operand.

EXAMPLE

To place the data set associated with data definition name
SYSUTI in a HOLD queue, enter:

FREE FILE(SYSUTl) HOLD

When you specify this operand, it overrides any HOLD/NOHOLD specification
made when the data set was originally allocated, and it also overrides the default
HOLD/NOHOLD specification associated with a SYSOUT class.

To ensure that the system not place a data set on a HOLD queue, enter the
FREE command and specify:

• The data set
• The NOHOLD operand.

EXAMPLE

To keep the data set associated with data definition name
SYSUTI from being placed on a HOLD queue, enter:

FREE FILE(SYSUTl) NOHOLD

Releasing Data Sets and Specifying Their Disposition

10-4 TSO/E User's Guide

When you release a data set, you can also tell the system what you want done
with the data set once it is released. You can specify one of four data set
dispositions. They are:

• KEEP
• DELETE
• CATALOG
• UNCATALOG

For an explanation of the meaning of each of these four dispositions, see,
"Specifying a Data Set's Disposition When Freed - the KEEP, CATALOG,
UNCATALOG, and DELETE Operands" under the discussion of the
ALLOCATE command.

To specify that the system is to retain the data set after you release it, enter the
FREE command and specify:

• The data set or file
• The KEEP operand.

EXAMPLE

To retain file name SYSPRINT in the system after you release
it, enter:

FREE FILE(SYSPRINT) KEEP

To specify that the system is to delete the data set after you release it, enter the
FREE command and specify:

• The data set
• The DELETE operand.

EXAMPLE

To delete data set PARTS.DATA from the system after you
release it, enter:

FREE DSNAME(PARTS.DATA) DELETE

The DELETE operand is not valid when releasing a data set that was allocated
with a disposition of SHR, or when releasing a member of a partitioned data set.

The DELETE operand is the only valid disposition operand when you release a
SYSOUT data set. It deletes the data set without printing it.

To specify that the system is to retain the data set in a catalog after you release it,
enter the FREE operand and specify:

• The data set
• The CATALOG operand.

EXAMPLE

To retain the data set(s) associated with ddname SYSUT2 in a
catalog after you release it, enter:

FREE FILE(SYSUT2) CATALOG

Note: if you use FREE FILE(SYSUT2) DELETE, all the data sets associated
with it are deleted.

To specify that the system is to remove the data set(s) from a catalog after you
release it, enter the FREE command and specify:

• The data set
• The UNCATALOG operand.

EXAMPLE

To remove the data set associated with ddname SYSUT2 from a
catalog after you release it, enter:

FREE FILE(SYSUT2) UN CATALOG

Chapter 10. Releasing Data Sets 10-5

10-6 TSO/E User's Guide

Chapter 11. Deleting Data Sets

Use the DELETE command to delete one or more data set entries or one or more
members of a partitioned data set from the system.

The system removes a catalog entry for a partitioned data set only after the entire
partitioned data set is deleted. The system deletes members of a partitioned data
set by removing the member name from the directory of the partitioned data set.

You must explicitly delete both members of a partitioned data set and their
aliases. When you delete a member, the system does not delete any aliases for
that member. When you delete an alias, the system does not delete its associated
member.

Before you delete a protected non-VSAM data set, use the PROTECT command
to delete the data set's password from the password data set. This will prevent
you from finding insufficient space in the password data set when you want to
add future entries.

For more information about the DELETE command, see TSO/E Command
Language Reference.

DELETE Command

Using the DELETE command, you can specify:

• The name of the entry you want to delete. You can also specify an entry's
password, if the entry is password-protected.

• The name of the catalog that contains the entries you want to delete.

• The name of the DD statement that identifies either the volume on which the
entry to be deleted resides or the entry itself.

• Whether or not to delete a data set depending on its retention period.

• Whether or not to scratch (remove) a non-VSAM data set's entry from the
volume table of contents (VTOC) on the volume on which the data set
resides.

• That the system is to delete an alias entry.

Chapter 11. Deleting Data Sets 11-1

Deleting a Data Set from the System

11-2 TSO/E User's Guide

You can delete a data set by specifying either:

• The data set name
• The data set name and its passwords
• A number of data sets
• The volume identifier from the data set's DD statement.

To delete from the system a data set that doesn't have a password, enter the
DELETE command and specify the data set name.

EXAMPLE

To delete data set PARTS.DATA, enter:

DELETE PARTS.DATA

To delete a data set that is password-protected, enter the DELETE command:

• Specify the data set name
• Immediately enter a slash, followed by the data set's password.

EXAMPLE

To delete data set PARTS.DATA with the password BLOBULNT,
enter:

DELETE PARTS.DATA/BLOBULNT

To delete a number of data sets, enter the DELETE command:

• Specify each data set name separated by a comma or blank
• Enclose the group of names in parentheses.

EXAMPLE

To delete data sets PARTS.DATA, PARTS.TEXT, PARTS.ASM, and
PARTS.CNTL, enter:

DELETE (PARTS.DATA,PARTS.TEXT,PARTS.ASM,PARTS.CNTL)

To delete PARTS.DATA using the volume identifier from the data definition
statement associated with the data set, enter the DELETE command and specify:

• The data set name
• The FILE operand.

EXAMPLE

To delete data set PARTS.DATA if the DD statement SYSIN
contains the volume identifier on which the volume
PARTS.DATA resides, enter

DELETE PARTS.DATA FILE(SYSIN)

Deleting a Data Set Entry from a Catalog - the CATALOG Operand

To delete a data set entry from a catalog, enter the DELETE command:

• Specify the CATALOG operand
• Enclose the name of the catalog in parentheses.

EXAMPLE

To delete data set PARTS.DATA from the catalog USERCAT1,
enter:

DELETE PARTS.DATA CATALOG (USERCAT1)

When deleting an entry for a password-protected data set, you may either specify
the password for the data set itself, or specify the password to the catalog that
contains the entries you want to delete. If catalog USERCATI had a master
password of PFEFFER, you could specify:

DELETE PARTS.DATA CATALOG (USERCAT1/PFEFFER)

Deleting a Data Set Based On Its Retention Period - the PURGE/NOPURGE Operands

When you allocated a particular data set, you may have specified a retention
period after which the system would automatically delete the data set. To delete a
data set regardless of its retention period, use the PURGE (abbreviation PRG)
operand.

EXAMPLE

If data set PARTS.DATA still has 30 days left in its retention
period, but you want to delete it now,enter:

DELETE PARTS.DATA PURGE

The NOPURGE operand (abbreviation NPRG) specifies that the system should
delete a data set only if its retention period has expired. NOPURGE is a default
with the DELETE command.

Deleting and Scratching a Data Set's VTOC Entry - the SCRATCH/NOSCRATCH Operand

The volume table of contents (VTOC) is a data set that describes the contents of a
direct access volume. It is used to account for each data set and available space
on the volume. The VTOC includes the name, location, organization, and other
control information about each data set stored on the volume.

When you delete a data set, you scratch (remove) its entry from the volume table
of contents (VTOC) on the volume on which it resides. The SCRATCH operand
is a default on the DELETE command.

If you do not want to scratch (remove) an entry from the VTOC, enter the
DELETE command and specify:

• The data set name
• The NOSCRATCH (abbreviation NSCR) operand.

Chapter 11. Deleting Data Sets 11-3

EXAMPLE

To delete data set PARTS.DATA, but not remove its entry from
the VTOC, enter:

DELETE PARTS.DATA NOSCRATCH

If you use the NOSCRATCH operand with the DELETE command, you remove
the catalog entry for the data set. The data set still exists, and to reaccess it, you
must specify the volume on which it resides.

Deleting an Alias Entry - the ALIAS Operand

To delete an alias entry, issue the DELETE command and specify:

• The alias name of the member of the partitioned data set
• The ALIAS operand.

EXAMPLE

To delete alias entry, JCL.CNTL(ALIASl), enter:

DELETE JCL.CNTL(ALIASl) ALIAS

11-4 TSO/E User's Guide

Section III: Preparing and Running a Program

After you have written a program, or source code, the next step is to execute it.
To execute a program, the processor needs to have the program's source
statements changed into a format that the processor can interpret. This process is
called compiling or assembling. You assemble assembler language statements and
you compile any other language's statements. The compiler or assembler creates
certain data sets for you that assist you in diagnosing problems, known as listings,
and data sets that contain the compiled or assembled code. The data sets that
contain the compiled or assembled code are called object modules.

Some programs require data from system libraries or from other programs in
order to complete execution. When this data is in object module form, you can
link edit a number of object modules together using TSO. A group of object
modules linked together is known as a load module. The linkage editor also
produces diagnostic listings. You can use TSO to bring the load or object
modules into real storage and execute them while you control the process at your
terminal. This is known as executing a program in the foreground.

You can use JCL statements to set up the proper conditions for running your
program, and then use TSO to submit the JCL statements to the processor. The
program is put on a queue and executed at a later time, leaving you free to do
other work at your terminal. This process is called executing a job in the
background, also known as a batch environment.

This section describes how to:

• Compile or assemble source code
• Link object modules together to form load modules
• Load programs into real storage and execute them
• Submit and monitor a batch job
• . Execute TSO commands in a background or batch environment
• Invoking commands or programs from an unauthorized environment.

Section III: Preparing and Running a Program

TSO/E User's Guide

Chapter 12. Compiling and Assembling Code

Command

RUN

ASM, FORT, PLI,
COBOL

LINK

LOADGO

CALL

The following figures show the steps and commands you use when executing a
program. Figure 12-1 presents the commands you can use when executing a
program, showing what each command accomplishes. These commands are
discussed later in this section. Figure 12-2 shows in diagram form the compile,
link edit and execution of a PLI language program. The commands, highlighted
in dark print, are discussed later in this section. The modules and listings
produced by these commands are shown in the boxes. Figure 12-3 shows what
you would see at your terminal when you execute this program. The commands
you enter are in lower case type and the system responses are in upper case type.

Begins
Compiles Link Edits Loads Execution Notes

X X X X For use ONLY with certain program
products

X Command used to compile; depends on
programming language used.

X Produces linkage editor listings to help test and
debug a program

X X X

X X Program must be in executable load module
form and must be a member of a PDS

Figure 12-1. Commands Used to Execute a Program

Chapter 12. Compiling and Assembling Code 12-1

USERID. PROGRAMS. PLI(SAMPLE>
source module

Compile PLI PROGRAMS(SAMPLD SOURCE PRINT
Step

USERID. PROGRAMS. OBJ(SAMPLE>
object module

Linkedit LINK PROGRAMS(SAMPLE> PRINT PLIBASE
Step

Execution CALL PROGRAMS(SAMPLE>
Step

USERID. PROGRAMS. LOAD(SAMPLE)
load module

Program Executes

Figure 12-2. Compiling and Link-Editing a Single Program

12-2 TSO/E User's Guide

USERID. PROGRAMS. LIST
compiler listing

USERID. PROGRAMS. LINKLIST(SAMPLE>
linkage editor listing

READY
pli programs(sample) source print
PLjI OPTIMIZER VI R4.0
OPTIONS SPECIFIED
S;

NO MESSAGES PRODUCED FOR THIS COMPILATION
COMPILE TIME 0.00 MINS SPILL FILE= 0 RECORDS, SIZE 4051
READY
list programs.list
IKJ528271 PROGRAMS.LIST
PLjI OPTIMIZING COMPILER VERSION 1 RELEASE 4.0
OPTIONS SPECIFIED
S;
PLjI OPTIMIZING COMPILER TSOCALL =

SOURCE LISTING
NUMBER
10000 TSOCALL:

PROCEDURE OPTIONS(MAIN);
63500 DECLARE (FILEOUT) FILE;/* PLI OUTPUT FILE *j
71000 PUT FILE (FILEOUT) EDIT (,THIS PLI PROGRAM IS EXECUTING')

(A)
90000 END TSOCALL;
PLjl OPTIMIZING COMPILER TSOCALL:
NO MESSAGES PRODUCED FOR THIS COMPILATION
COMPILE TIME 0.00 MINS SPILL FILE = 0 RECORDS, SIZE 4051

READY
link programs(sample) print plibase

READY
list programs.linklist(sample)
IKJ 528271 PROG RAMS.LINKLIST(SAMPLE)

H96-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED TERM
DEFAULT OPTION(S) USED _ SIZE = (262144,49152)

****SAMPLE NOW REPLACED IN DATA SET AMODE 24
RMODE IS 24
AUTHORIZATION CODE IS O.

READY
alloc f(fileout) dsn(*)
READY
call programs(sample)

THIS PLI PROGRAM IS EXECUTING

READY

Figure 12-3. Terminal Session Showing Execution of a Single Program

Chapter 12. Compiling and Assembling Code 12-3

The Compile Commands

ASM command

COBOL Command

12-4 TSOjE User's Guide

After you write your source code, you must compile it into object code and place
it in an object module (see Figure 12-2). The command you use to compile your
source code depends on which programming language you are using. The third,
or descriptive qualifier in the source code data set name should identify the
programming language used to help the compiler find and process the data.

There are a number of versions of some compilers. You can usually find
information on how to use your version of a compiler with the compiler code or
in its accompanying reference material. This manual will describe the commands
used with several common compilers.

The RUN command, which is designed specifically for use with certain program
products, will compile, load, and execute source statements. These program
products are listed in Figure 12-4. If you cannot use the RUN command, need
the diagnostic information provided by the other commands, or need to link your
program to other modules, you will have to issue separate commands to link edit
your object modules into load modules, load these modules into main storage,
and begin program execution. These commands, listed in Figure 12-1, are
described in the following chapters.

Some commands used to compile or assemble source statements are:

• ASM
• COBOL
• FORT
• PLI

The ASM command is provided as part of the optional TSO ASM Prompter
program product, which is available for a license fee. Use the ASM command to
process assembler language data sets and produce object modules. The prompter
requests required information and enables you to correct your errors at the
terminal. See OS/TSO Assembler Prompter User's Guide, for detailed information
on this command.

For those who use an MVS/XA system, you need to use the Assembler H
compiler to process your assembler language statements. For information on how
to use and invoke this compiler, see Assembler H Version 2 Application
Programming: Language Reference.

The COBOL command is provided as part of the optional COBOL Prompter
program product, which is available for a license fee. Use the COBOL command
to compile American National Standard (ANSI) COBOL programs. This
command reads and interprets parameters for the OS Full American National
Standard COBOL Version 3 or Version 4 compiler and prompts you for any
information that you have omitted or entered incorrectly. It also allocates
required data sets and passes parameters to the compiler. See IBM OS (TSO)

FORT command

PLI command

COBOL Prompter Terminal User's Guide and Reference, for detailed information
on this command.

The FORT command is provided as part of the optional TSO FORTRAN
Prompter program product, which is available for a license fee. Use the FORT
command to compile a FORTRAN IV (01) program. You will be prompted for
any information that you have omitted or entered incorrectly. The FORT
command also allocates required data sets and passes parameters to the
FORTRAN IV (01) compiler. See IBM System/360 OS (TSO) Terminal User's
Supplement for FORTRAN IV (GJ) Processor and TSO FORTRAN Prompter, for
detailed information on this command.

The PLI command is provided as part of the optional PL/I Optimizing compiler
program product, which is available for a license fee. Use the PLI command to
invoke the PL/I Optimizing cpmpiler. The prompter will allocate required data
sets and prompt you for any information that you have omitted or entered
incorrectly, then it will pass control to the compiler. See OS PL/I Optimizing
Compiler: TSO User's Guide, for detailed information on this command. The
program product includes the PL/I Prompter.

Chapter 12. Compiling and Assembling Code 12-5

RUN Command

12-6 TSO/E User's Guide

Use the RUN command to compile, load, and execute the source statements in
the data set that you are editing. The RUN command is designed specifically for
use with certain program products; it selects and invokes the particular program
product needed to process your source statements. Figure 12-4 shows which
program product is selected to process each type of source statement.

SOURCE PROGRAM PRODUCT

ASSEMBLER MVS/370: Assembler F and TSO Assembler
Prompter
MVS/XA: Assembler H Version 2

COBOL OS/VS COBOL Release 2.4 and TSO COBOL
Prompter

FORTRAN TSO FORTRAN Prompter and FORTRAN IV (Gl)
VSFORTRAN

PL/I PL/I Checkout Compiler or PL/I Optimizing Compiler

VSBASIC VSBASIC

Note: User-defined data set types can be executed under the RUN subcommand of the EDIT
command if a prompter name was specified at system generation time. The RUN command will
not recognize these same data set types.

Figure 12-4. Source/Program Product Relationship

U sing the RUN command, you can specify:

• Which data set contains the source code or object module you want to
process and which assembler or compiler you want to use to process your
source statements.

• A string of up to 100 characters that is to be passed as parameters to the
program you are running.

• The libraries that contain subroutines your program will use during its
execution.

• What options you want to use with a VSBASIC program.

The RUN subcommand of the EDIT command is very similar to the RUN
command, and you may use it similarly to the way you use the RUN command.
Before you use the RUN command, keep in mind:

• Any data sets required by your problem program may be allocated before you
enter EDIT mode or may be allocated using the ALLOCATE subcommand.

• If you wish to enter a value for 'parameters,' you should enter this prior to
any of the other keyword operands.

For more information about the RUN command, see TSOjE Command Language
Reference.

Compiling Source Code Statements

To compile a data set, issue the RUN command:

• Specify the data set name
• Optionally specify the compiler.

If the data set name follows standard naming conventions and includes the name
of the programming language used in the descriptive qualifier, you do not need to
specify a compiler with the RUN command. If the system cannot determine
which compiler to use, you will be prompted for more information.

EXAMPLE

To compile the source code statements in member SAMPLE of
data set PROGl.PLI, enter:

RUN PROGl.PLI(SAMPLE)

Passing Parameters When Compiling

To pass parameters to a program, issue the RUN command and specify:

• The data set name

• The parameters enclosed in single quotes

• The compiler to be used, if the data set name does not follow standard
naming conventions.

EXAMPLE

To specify 13, FRIDAY, CAT as parameters to pass to program
PROGl, which was written in PLI, enter:

RUN PROGI '13 FRIDAY CAT' PLI

Specifying a Subroutine Library When Compiling - the LIB Operand

If you use subroutines that reside in a library data set, use the LIB operand.
Issue the RUN command and specify:

• The data set name
• The LIB operand with the name of the library data set enclosed in

parentheses.

EXAMPLE

When running COBOL program PROGl, you need to use library
SUBS.LOAD because it contains the subroutines your program
calls:

RUN PROGI COBOL LIB(SUBS.LOAD)

You can also use the LIB operand when running the assembler, Fortran, and PLI
compilers.

Chapter 12. Compiling and Assembling Code 12-7

Specifying VSBASIC Compiler Options

12-8 TSO/E User's Guide

When running the VSBASIC compiler, you can use a number of options with the
TSO RUN command. To do this, use the options you want following the data
set's descriptive qualifier (in this case, VSBASIC). Following is a list of operands
and a description of each:

LPREC
Specifies that long precision arithmetic calculations are required by the
VSBASIC program.

SPREC
Default specifying that short precision arithmetic calculations are adequate
for a VSBASIC program.

TEST
Specifies that testing of a VSBASIC program is to be performed.

NOTEST
Default specifying that the TEST function is not desired with a VSBASIC
program.

STORE
Specifies that the VSBASIC compiler is to store an object program.

NOSTORE

GO

Default specifying that the VSBASIC compiler is not to store an object
program.

Default specifying that the VSBASIC program is to receive control after
compilation.

NOGO
Specifies that the VSBASIC program will not receive control after
compilation.

SIZE(value)
Specifies the number of one thousand-byte blocks of VSBASIC user area
where value is an integer of one-to-three digits.

PAUSE
Specifies that the VSBASIC compiler is to prompt to the terminal between
program chains, giving the user the chance to change certain compiler
options.

NOPAUSE
Default specifying no prompting between program chains.

SOURCE
Default specifying that new VSBASIC source code is to be compiled.

OBJECT
Specifies that the data set name entered is a fully-qualified name of an
object data set to be executed by the VSBASIC compiler.

Chapter 12. Compiling and Assembling Code 12-9

12-10 TSO/E User's Guide

Chapter 13. Link Editing Programs

LINK Command

The linkage editor, invoked by the LINK command, provides a great deal of
information to help you test and debug a program. This information includes a
cross-reference table and a map of the module that identifies the location of
control sections, entry points, and addresses. You can specify which of these
types of information you want by including the LIST, MAP, and XREF operands
with the LINK command. You can have this information listed at your terminal
or saved in a data set.

Use the LINK command to invoke the linkage editor service program. Basically,
the linkage editor converts one or more object modules (the output modules from
a compiler or the assembler) into a load module that is suitable for execution.

You can specify all the linkage editor options explicitly or you can accept the
default values. The default values are satisfactory for most uses. By accepting
the default values, you simplify the use of the LINK command. This chapter
does not describe every operand available with the LINK command. For more
information on the LINK command, see TSO/E Command Language Reference.

In some cases, you might want to use the LOAD GO command as an alternative
to the LINK command. If the module that you want to process has a simple
structure (that is, it is self contained and does not pass control to other modules),
you do not require the extensive listings produced by the linkage editor, or you do
not want a load module, the LOADGO command might better serve your needs.

Using the LINK command, you can specify:

• The names of one or more data sets containing your object modules and/or
linkage editor control statements

• The name of the partitioned data set that will contain the load module after
processing by the linkage editor

• One or more names of library data sets the linkage editor is to search to
locate object modules referred to by the module being processed; that is, to
resolve external references

(i) Whether or not you want the system to produce linkage editor listings and
place them in a data set you specify or at your terminal

Chapter 13. Link Editing Programs 13-1

Creating a Load Module

13-2 TSO/E User's Guide

• Whether or not you want the system to produce and include in the PRINT
data set:

A map of the output module consisting of the control sections, the entry
names, and for overlay structures, the segment number

A list of all linkage editor control statements

A cross-reference table

• Whether or not you want the system to place the symbol tables created by the
assembler and contained in the input modules into the output module

• Whether or not you want error messages directed to your terminal as well as
to the PRINT data set.

To create a load module by link editing an object module, issue the LINK
command and specify the object module name. If you want to link more than
one object module, issue the LINK command and list the object modules' names
separated by commas and enclosed in parentheses. For example, to link edit
sequential data set object modules FIRST.OBJ, SECOND.OBJ and FIFTH.OBJ,
enter:

LINK (FIRST,SECOND,FIFTH)

The specified data sets will be concatenated within the output load module in the
sequence that they are included in the list of data set names. If there is only a
single name in the data-set-list, parentheses are not required around the name.
To link edit object modules in members, enclose the member names in
parentheses.

EXAMPLE

To link members ONE, TWO, and THREE of data set
DOOABC.SAMPLE.OBJ, enter:

LINK (SAMPLE(ONE),SAMPLE(TWO),SAMPLE(THREE))

If the data set name is DOOABC.OBJ, enclose the member names within two pairs
of parentheses, for example:

LINK «ONE),(TWO),(THREE))

You may substitute an asterisk (*) for a data set name to indicate that you will
enter linkage editor control statements from your terminal. The system prompts
you to enter the control statements, which should begin in column 2. Press the
ENTER key after you type in each control statement. Enter a null line to indicate
the end of your control statements.

When you link edit an object module that is a sequential data set, the linkage
editor generates a load module in a partitioned data set and assigns the load
module the member name of TEMPNAME.

To store the output from the LINK command in a data set, use the LOAD
operand with the user-specified qualifier of the data set enclosed in parentheses.

EXAMPLE

To store the results of the previous example in data set
SALES.LOAD(ONE), enter:

LINK (FIRST,SECOND,FIFTH) LOAD(SALES(ONE»

If you omit the LOAD operand, the system generates a name according to the
data set naming conventions.

Resolving External References - the LIB Operand

To have the system search specific library data sets to resolve any external
references in your program, issue the LINK command and specify:

• The data set name

• The LIB operand, followed by the name of the library data set(s) enclosed in
parentheses.

When you specify more than one name, the names must be separated by a valid
delimiter. If you specify more than one name, the data sets are concatenated to
the file name of the first data set in the list. For control statements, the first data
set in the list must be preallocated with the ddname or file name SYSLIB before
issuing the LINK command. If you specify more than one name, the data sets
concatenated to the file name of the first data set lose their individual identity.
See MVS/XA System Programming Library: System Macros and Facilities for
details on dynamic concatenation.

EXAMPLE

To have the system search library data sets MYLIB, YOURLIB,
and OURLIB to resolve any external references, enter:

LINK SECOND LIB(MYLIB,YOURLIB,OURLIB)

Producing Output Listings - the PRINT Operand

To have the system produce linkage editor output listings and place them into a
data set, use the PRINT operand with the name of the data set enclosed in
parentheses.

EXAMPLE

To have the system produce linkage editor listings from
object modules FIRST.OBJ, SECOND.OBJ, and FIFTH.OBJ and
place them in data set PRINT.DATA, enter:

LINK (FIRST,SECOND,FIFTH) LOAD (SALES) PRINT(PRINT.DATA)

Use the PRINT operand with an asterisk enclosed in parentheses to have the
system produce linkage editor output listings and display them at your terminal.

Chapter 13. Link Editing Programs 13-3

EXAMPLE

To have the system produce linkage editor listings from
object modules FIRST.OBJ, SECOND.OBJ, and FIFTH.OBJ and
display them at your terminal, enter:

LINK (FIRST,SECOND,FIFTH) LOAD (SALES) PRINT(*)

When you omit the data set name on the LOAD operand, the data set that is
generated is named according to the data set naming conventions. Naming this
data set is the default value if you specify the LIST, MAP, or XREF operand. If
you want to have the listings displayed at your terminal, you may substitute an
asterisk (*) for the data set name.

To have the system produce no linkage editor output listings, use the NOPRINT
operand.

EXAMPLE

To have the system not produce linkage editor listings
from object modules FIRST.OBJ, SECOND.OBJ, and FIFTH.OBJ
enter:

LINK (FIRST,SECOND,FIFTH) LOAD(SALES) NOPRINT

NOPRINT causes the MAP, XREF, and LIST options to become invalid.
NOPRINT is the default value if both PRINT and NOPRINT are omitted, and
you do not use the LIST, MAP, or XREF operand.

Creating a Map of the Load Module - the MAP Operand

To have the system include a map of the output module use the MAP and
PRINT operands. The output module consists of the control sections, the entry
names, and (for overlay structures) the segment number in the PRINT data set.
NOMAP, specifying that you do not want a map of the output module, is the
default.

EXAMPLE

To have the system include a map of the output module from
object module SECOND into PRINT data set PRINT.DATA, enter:

LINK SECOND PRINT(PRINT.DATA) MAP

Producing a List of All Linkage Editor Control Statements - the LIST Operand

13-4 TSO/E User's Guide

To have the system include a list of all linkage editor control statements and place
them in the PRINT data set, use the PRINT and LIST operands. NOLIST,
which specifies that you do not want a list of all linkage editor controL statements,
is the default.

EXAMPLE

To produce a list of all the linkage editor control
statements from object module SECOND.OBJ, and place them in
PRINT data set PRINT. DATA, enter:

LINK SECOND PRINT(PRINT.DATA) LIST

To produce a list of all the linkage editor control
statements from object module SECOND.OBJ, and place them in
data set SECOND.LINKLIST, where SECOND.OBJ contains both
linkage editor control statements and the object module,
enter:

LINK SECOND LIST

Producing a Cross Reference Table - the XREF Operand

To have the system create a cross reference table and place it in the PRINT data
set, use the PRINT and XREF operands. The cross reference table includes the
module map and a list of all address constants referring to other control sections.
Since the XREF operand includes a module map, both XREF and MAP cannot
be specified for a particular LINK command. NOXREF, which specifies that you
do not want a cross reference table in the PRINT data set, is the default.

EXAMPLE

To produce a cross reference table from object module
SECOND.OBJ, and place it in PRINT data set PRINT.DATA,
enter:

LINK SECOND PRINT(PRINT.DATA) XREF

Producing a Symbol Table - the TEST Operand

To have the system place a symbol table created by the assembler and contained
in the input modules into the output module, use the TEST operand. NOTEST,
specifying that you do not want a symbol table, is the default.

EXAMPLE

To have the system place a symbol table created by the
assembler and contained in the input module SECOND into
the output module, enter:

LINK SECOND TEST

Sending Error Messages to Your Terminal - the TERM/NOTERM Operand

You can choose whether or not you want error messages directed to your terminal
as well as the PRINT data set. TERM, which specifies that the system direct
error messages to your terminal as well as to the PRINT data set, is a default. If
you do not want error messages directed to your terminal as well as to the
PRINT data set, use the NOTERM operand.

EXAMPLE

LINK SECOND NOTERM

Chapter 13. Link Editing Programs 13-5

13-6 TSOjE User's Guide

Chapter 14. Loading and Executing Programs

When you run a program, the program must be placed into main storage, because
programs reside most often on auxiliary storage. Placing a program into main
storage is called loading the program. To load and execute a program, use either
the LOADGO or CALL command. The LOADGO command loads object
modules produced by a compiler or assembler, and load modules produced by the
linkage editor. If you want to load and execute a single load module, the CALL
command is more efficient.

LOADGO Command

Use the LOAD GO command to load a compiled or assembled program into main
storage and begin execution. The LOAD GO command invokes the system loader
to accomplish this function. The loader combines basic editing and loading
services of the linkage editor and program fetch in one job step. Therefore, the
load function is equivalent to the link edit and go function.

The LOAD GO command does not produce load modules for program libraries,
and it does not process linkage editor control statements such as INCLUDE,
NAME, or OVERLAY. If you need to use these control statements, use the
LINK and CALL commands.

The LOAD GO command also searches a specified call library (SYSLIB) or a
resident link pack area, or both, to resolve external references.

Using the LOAD GO command, you can specify:

• The names of one or more data sets containing your object modules and/or
load modules

• Parameters to pass to the program you execute

• Whether or not the system is to produce output listings and place them in a
data set you specify or display them at your terminal

• One or more names of library data sets to be searched by the linkage editor
to locate object modules referred to by the module being processed; that is, to
resolve external references

a Whether or not the system is to send error messages to your terminal as well
as to the PRINT data set

Chapter 14. Loading and Executing Programs 14-1

• Whether or not the system is to include a list of external names and their
addresses in the PRINT data set

• Whether or not the system is to search the data set(s) you specified on the
LIB operand to locate load modules to which the executing load module
refers

• The external name for the loaded program's entry point

• The name you want to assign to the loaded program.

For more information about the LOAD GO command see TSOjE Command
Language Reference.

Loading and Executing Programs with No Operands

To load and execute the source code in a data set or a group of data sets, issue
the LOADGO command and specify the data set name. The rightmost qualifier
of the data set name must be OBJ or LOAD. When loading and executing the
code in a single data set, specify the data set name without parentheses.

EXAMPLE

To load and execute the code in data set PAYROLL. LOAD , enter:

LOAD GO PAYROLL.LOAD

When loading and executing the code in a group of data sets, specify the data set
names in parentheses, separating each name with a comma. The names may be
data set names, names of members of partitioned data sets, or both.

EXAMPLE

To load and execute the code in data sets FIRST.OBJ,
SECOND.OBJ and THIRD.LOAD, enter:

LOADGO (FIRST.OBJ,SECOND.OBJ,FIFTH.LOAD)

Passing Parameters when Loading and Executing Programs

14-2 TSO/E User's Guide

To pass parameters to a program when loading and executing it, specify the
parameter enclosed in single quotes following the data set name field.

EXAMPLE

To pass THE RAIN IN SPAIN as a parameter to the program in
data set FIFTH.LOAD, enter:

LOAD GO FIFTH.LOAD 'THE RAIN IN SPAIN'

Requesting Output Listings when Loading and Executing Programs - the PRINT INOPRINT and
TERM/NOTERM Operands

To produce output listings and place them in a data set, use the PRINT operand
with the data set name enclosed in parentheses. The NOPRINT operand,
suppressing output listings, is the default. Note that the NOPRINT and MAP
operands are mutually exclusive. The MAP operand, discussed below, puts data
in the PRINT data set. Therefore, if you want the MAP information, you must
also specify the PRINT operand with the LOAD GO command.

EXAMPLE

To send the output listings from the program in data set
FIFTH.LOAD to data set OUTS.DATA, enter:

LOAD GO FIFTH.LOAD PRINT(OUTS.DATA)

To produce output listings and send the output to your terminal, use the PRINT
operand with an asterisk enclosed in parentheses.

EXAMPLE

To send the output listings from the program in data set
FIFTH.LOAD to your terminal, enter:

LOADGO FIFTH.LOAD PRINT(*)

All error messages are directed to your terminal as well as to the PRINT data set,
as the TERM operand is a default with the LOADGO command. To direct all
error messages only to the PRINT data set, not to your terminal, use the
NOTERM operand.

EXAMPLE

To direct all error messages only to the print data set
OUTS.DATA, enter:

LOADGO FIFTH.LOAD PRINT(OUTS.DATA) NOTERM

Resolving External References when Loading and Executing Programs - the CALL/NOCALL and Lm
Operands

To resolve external references, you must know in which data sets the code or data
being referred to is kept. If you know the load module library data set(s) name,
use the LIB operand with the name enclosed in parentheses to tell the system
where to look to resolve any external references.

EXAMPLE

To search library data sets MYLIB, YOURLIB, and OURLIB,
in order to resolve any external references when executing
the program in FIFTH. LOAD , enter:

LOADGO FIFTH.LOAD LIB(MYLIB,YOURLIB,OURLIB)

The CALL operand is a default with the LOAD GO command. The system will
search for the data set(s) you specified on the LIB operand to locate the load
modules to which the executing code refers.

Chapter 14. Loading and Executing Programs 14-3

Use the NO CALL operand following the LIB operand to prevent the system from
searching the data set(s) you specified on the LIB operand.

EXAMPLE

To suppress searching for load modules within data set
MYLIB, YOURLIB, or OURLIB when executing the program
in FIFTH.LOAD, enter:

LOADGO FIFTH.LOAD LIB(MYLIB,YOURLIB,OURLIB) NOCALL

To include a list of external names and their addresses in the PRINT data set, use
the PRINT, LIB and MAP operands. The NOMAP operand is the default and
does not include the MAP information in the PRINT data set.

EXAMPLE

To resolve external references found in data set PROLIB,
and list them in data set OUTS.DATA, enter:

LOADGO FIFTH.LOAD PRINT(OUTS.DATA) LIB(PROLIB) MAP

Note that MAP and NOPRINT are mutually exclusive operands.

Specifying an Entry Point when Loading and Executing Programs - the EP Operand

To specify an external name for a program's entry point when loading and
executing the program, use the EP operand with the entry point name enclosed in
parentheses.

EXAMPLE

To specify START as the external name for the entry point
into the program in data set FIFTH. LOAD , enter:

LOADGO FIFTH.LOAD EP(START)

If the entry point of the loaded program is a load module, you must specify this
operand.

Specifying Names when Loading and Executing Programs - the NAME Operand

14-4 TSO/E User's Guide

To assign a name to a program in a data set, use the NAME operand followed by
the name of the program.

EXAMPLE

To assign the name PROG3 to the program in FIFTH.LOAD,
enter:

LOADGO FIFTH.LOAD NAME (PROG3)

CALL Command

Use the CALL command to load and execute a program that exists in executable
(load module) form. The program may be user-written or it may be owned by the
system, for example, a compiler, sort, or utility program.

You must specify the name of the program (load module) to be processed. It
must be a member of a partitioned data set. Also, you can pass parameters to the
program.

For more information about the CALL command see, TSOjE Command
Language Reference.

Loading and Executing Load Modules

To load and execute a load module in a member of a partitioned data set, specify
the name of the data set with the name of the member enclosed in parentheses.

EXAMPLE

To load and execute the load module in member JOYCE of data
set PUBS.LOAD, enter:

CALL PUBS (JOYCE)

If JOYCE is the only member of data set PUBS. LOAD, you need not specify the
member name when issuing the CALL command.

EXAMPLE

CALL PUBS

If the partitioned data set does not conform to data set naming conventions
described in Chapter 2, "Data Sets," then you must specify the member name
that contains the program you want to execute. If you specify a fully-qualified
data set name, enclose it in single quotation marks in the following manner:

CALL 'DOOABCl.MYPROG.LOADMOD(DISCHARG)'
or

CALL 'SYSl.LINKLIB(IEUASM)'

Passing Parameters when Loading and Executing Load Modules

To load and execute the load module in a partitioned data set and pass it
parameters, specify the parameters enclosed in single quotation marks following
the data set name.

EXAMPLE

To pass PRANCE as a parameter to the load module in member
UDOIT of data set DLW.LOAD, enter:

CALL DLW(UDOIT) 'PRANCE'

Chapter 14. Loading and Executing Programs 14-5

14-6 TSO/E User's Guide

Chapter 15. Submitting and Monitoring a Background Job

Some TSO tasks require a great deal of system resources, or keep the user from
doing other TSO tasks until one particular task is completed. To increase
productivity and improve system performance, you can submit such tasks to run
in the background. Jobs executed in the background are also known as batch
jobs. Examples of batch jobs are compiles and link edits.

Batch jobs consist of

• Job control language (JCL) statements
• The user's program
• The data for the program

You must first prepare the JCL and then submit the job. The system executes the
job and directs the results to an output queue.

The JCL for a batch job can be user created under EDIT, or system created using
the SUBMIT command. User created JCL is discussed in Chapter
17, "Executing Foreground Commands from a Background Job." Generally, the
JCL data set should have the descriptive qualifier CNTL.

When the job is submitted, the system gives it a job number, which you can use to
identify the job. Using the job number, you can display the status of the job to
see what stage of processing it is in. You can request the system to notify you
when the job terminates. If you want to stop the processing of your batch job,
you can cancel the job.

Use SUBMIT, STATUS, CANCEL and OUTPUT commands primarily to
control the submission and processing of jobs in a batch environment.

Submitting Batch Jobs

If your installation authorizes you to do so, you can submit batch jobs for
processing. This authorization is recorded in the system with your user attributes.
If you have this authorization, the system lets you use the four commands
SUBMIT, STATUS, CANCEL and OUTPUT that control the processing of
batch jobs. You can use these commands to submit a batch job, to display the
status of a batch job, to cancel a batch job, and to control the output of a batch
job.

Chapter 15. Submitting and Monitoring a Background Job 15-1

The JOB Statement

15-2 TSOjE User's Guide

Before you submit a batch job with the SUBMIT command, you must know
which data set (or a member of a partitioned data set) contains the job or jobs
you want to submit. Each job consists of job control language (JCL) statements
and program instructions and data.

The first JCL statement in the data set is usually a JOB statement. The job name
in the JOB statement can be up to eight characters in length and should consist of
your user identification followed by one or more letters or numbers, for example,
D58ELM5 or D04DMB74.

If the job name does not begin with your user identification, you can submit the
job with the SUBMIT command and request its status with the STATUS
command, but you cannot refer to it with the CANCEL or OUTPUT command
unless your installation has replaced the IBM-supplied installation exit.

If the job name consists of only your user identification, the system prompts you
for one or more characters to complete the job name. This allows you to change
job names without re-editing the data. For example, you may submit the same
job several times, and supply a different character for the job name each time you
are prompted.

If the first JCL statement of your data set is not a JOB statement, the system
generates the following JOB statement when you submit the job with the
SUBMIT command:

Iluserid JOB accounting info,
II userid, ** JOB STATEMENT GENERATED BY SUBMIT **
II NOTIFY=userid,
II MSGLEVEL=(l,l)

TSO prompts you for a character to complete the job name. The job accounting
information is the information specified by the user when logging on to the
system.

When you enter the SUBMIT command, you must give the name of a data set (or
data sets) containing the batch job (or jobs). You can also use the NONOTIFY
operand to specify that you do not want to be notified when the batch job with a
generated JOB statement terminates. The SUBMIT command performs best if
you enter the fully-qualified data set name in quotation marks. Submitted data
sets must have a logical record length of 80 bytes, a record format of
fixed-blocked (FB), and must not contain lowercase characters.

SUBMIT Command

Use the SUBMIT command to submit one or more batch jobs for processing.
Each job submitted must reside in either a sequential data set, a direct-access data
set, or in a member of a partitioned data set, unless you use the asterisk (*)
function of the SUBMIT command. The asterisk (*) function tells the system
that you will enter the data in some way other than a permanent data set. For
more information on the asterisk function, see "The SUBMIT * Function" later
in this chapter. Submitted data sets must be fixed blocked, 80 byte records.

Any of these data sets can contain part of a job, one job, or more than one job
that can be executed via a single entry of SUBMIT. Each job must comprise an
input job stream, that is, JCL plus data. Do not submit data sets with descriptive
qualifiers TEXT or PLI if the characters in these data sets are lower case.

You may include more than one job in one data set. You can omit the JOB
statement for the first job, but all jobs after the first must have their own JOB
statement. Although you submit all jobs in the data set with one SUBMIT
command, you can subsequently refer to each job with separate STATUS,
CANCEL, and OUTPUT commands.

When you submit more than one job with a single command and TSO finds an
error while processing the first job, the second job is not processed. An error that
occurs in the second job does not affect the first. Any jobs processed before the
error are submitted for execution; jobs that were not processed because of the
error should be resubmitted after the error is corrected.

If you wish to provide a JOB statement but you also want to be prompted for a
unique job name character, put your user ID in the job name field and follow it
with blanks so that there is room for the system to insert the prompted-for
character. This process allows you to change job names without re-editing the
JCL data set.

Once SUBMIT has successfully submitted a job for conventional batch
processing, it issues a 'job nameGob ID) submitted' message. The job ID is a
unique job identifier assigned by the job entry subsystem.

If SUBMIT is- to generate a JOB statement preceding one or more job entry
subsystem control statements, make the first statement of your data set a
comment. If this is not done, SUBMIT generates the JOB statement following
any job entry subsystem control statements.

Data sets that are dynamically allocated by the SUBMIT command are not
automatically freed when the command terminates. You must explicitly free
dynamically allocated data sets via the FREE command.

A submitted data set need not contain an entire job. A JCL data set and a source
data set could be used if both were the proper type of data set.

Chapter 15. Submitting and Monitoring a Background Job 15-3

Submitting a Batch Job

15-4 TSO/E User's Guide

Using the SUBMIT command, you can specify:

• The data set or data sets that contain the input stream you want to process as
a batch job

• The data set or data sets that contain the input data you want to use when
processing a batch job

• That you want the option of continuing or cancelling the job after the job
stream has been read into the system

• A character string that indicates the end of the job stream

• Whether or not you want the system to hold the job's output for later output
processing

• Whether or not you want to predefine characters that the system appends to
the job's name

• Whether or not you want the system to prompt you for a password when it
generates a job statement

• Whether or not you want to define a user ID that the system uses when it
generates a JOB statement

• Whether or not you want the system to let you know when your job has
termina ted.

For more information on the SUBMIT command, see TSOjE Command Language
Reference.

To submit only one member of a data set as a batch job, specify the name of the
data set followed by the name of the member enclosed in parentheses.

EXAMPLE

To submit the job in the member JOBI in data set JCL.CNTL,
enter:

SUBMIT JCL(JOBl)

To submit a number of jobs at once, specify the list of data set names in
parentheses, with each data set name separated from the others by a comma.

EXAMPLE

To submit the jobs in data sets JOB5.CNTL, DOOABCl.SIX.JOB,
and member JCL.CNTL(JOBl), enter:

SUBMIT (JOB5,'DOOABC1.SIX.JOB' ,JCL(JOBl»

You can specify the data sets a job uses for input when you issue the SUBMIT
command. To identify the input data set, specify the input data set's name

following the data set name that contains the job. For this form of the command
to be valid, the input data set must have a descriptive qualifier of DATA.

EXAMPLE

To run the job in data set JOB5.CNTL, and to use the input data
in data set MYDATA.DATA, enter:

SUBMIT (JOB5,MYDATA)

To submit a number of jobs at once, and to specify the data sets from which the
jobs will get their input, issue the SUBMIT command and enclose in parentheses:

• The data set that holds the job, followed by
• The name of the data set that contains the input.

EXAMPLE

To submit the jobs in data sets JOBS.CNTL and JOB7.CNTL,
where data sets FIVEIN.DATA and SEVNIN.DATA contain input
for each job, enter:

SUBMIT (JOBS,FIVEIN,JOB7,SERVININ)

I I
job input

job input

Holding a Batch Job's Output - the HOLD/NOHOLD Operands

To have the system hold a job's output for later processing, use the HOLD
operand. NOHOLD, specifying that you do not want the output held for later
processing, is a default.

EXAMPLE

To have the system retain the output from the job in data
set JOBS.CNTL, enter:

SUBMIT JOBS HOLD

Appending Characters to a Batch Job's Job Name - the JOBCHAR/NOJOBCHAR Operands

To have the system append characters to the job name on each job statement in a
data set, use the JOBCHAR operand. This operand is useful if you want to
submit the same job several times but each time use a different job name. Use
only one character if you plan to use the STATUS command and the job name
matches your user ID. Issue the SUBMIT command and specify:

• The name of the data set containing the job(s)

• The JOB CHAR operand with the characters to be appended to each job's
name enclosed in parentheses.

Chapter 15. Submitting and Monitoring a Background Job 15-5

EXAMPLE

To define the characters XL as the characters that the
system appends to each job's name in data set JOBS.CNTL,
enter:

SUBMIT JOBS JOBCHAR(XL)

The NOJOBCHAR operand, indicating that you want the system to prompt you
for job name characters whenever the job name is the user ID, is a default with
the SUBMIT command.

Password Prompting When Submitting a Batch Job - the PASSWORD/NOPASSWORD Operand

To request that the system prompt you for a password when generating a job
statement, use the PASSWORD operand. This operand is valid only if you have
the RACF program product installed at your location, and you request the system
to generate a JOB statement for you.

EXAMPLE

To request that the system prompt you for a password when
it generates a job statement for the job in data set
JOBS.CNTL, enter:

SUBMIT JOBS PASSWORD

If you do not have the RACF program product installed at your installation, the
NOPASSWORD operand, specifying that the system not prompt you for a
password, is a default.

Specifying a User ID When Submitting a Batch Job - the USER/NOUSER Operand

15-6 TSOjE User's Guide

To use a specific user ID when the system generates a JOB statement, use the
USER operand with the user ID enclosed in parentheses.

EXAMPLE

To define user ID DOOABCl as the user ID the system uses
when it generates a JOB statement for the job in data
set JOBS.CNTL, enter:

SUBMIT JOBS USER(DOOABCl)

This operand is valid only if you have the RACF program product installed at
your location, and you request the system to generate a JOB statement for you.
The user ID you specify with this operand is also used as the job name for the job
you submit. If you have the RACF program product on your system, this
operand is the default.

To not define either a PASSWORD or a user ID the system uses when it
generates a JOB statement, use the NOUSER password.

EXAMPLE

If you do not want to have the system build either a PASSWORD
or user 10 when you run the job in data set JOBS.CNTL, enter:

SUBMIT JOBS NOUSER

This operand is the default if you specify neither USER nor NOUSER and if you
do not have the RACF program product on your system.

Receiving Notice When a Batch Job is Done - the NOTIFY /NONOTIFY Operand

The SUBMIT * Function

The system notifies you when a batch job has ended, as the NOTIFY operand is a
default with the SUBMIT command. The system ignores the NOTIFY operand if
the data set you submit already contains a JOB statement.

To prevent the system from notifying you when a batch job has ended, use the
NONOTIFYoperand.

EXAMPLE

If you do not want the system to notify you when the job in
member JOBl in data set JCL.CNTL has terminated, enter:

SUBMIT JCL.CNTL(JOB1) NONOTIFY

The SUBMIT command supports an asterisk (*) for the positional operand value
and two keyword operands, END and PAUSE. The keyword operands, END
and PAUSE, are valid only when (*) is specified and when the issuer is not in
EDIT mode.

SUBMIT * allows the job stream source to reside in other than a permanent data
set, such as a terminal, in-storage lists, temporary data sets, and the CLIST -type
in-storage lists. The job stream may be entered directly without creating and
editing a data set. Figure 15-1 illustrates how the SUBMIT * function is used to
submit background jobs. Note that the existing SUBMIT * function of EDIT
continues to select the current data set as the input job stream. Therefore, this
SUBMIT * function is not available in EDIT mode.

Chapter 15. Submitting and Monitoring a Background Job 15-7

15-8 TSO/E User's Guide

/*Example 1: Submitting a job with input from a terminal*/
READY
submit *
ENTER INPUT JOB STREAM:
//step exec pgm=somepgm
(null line)
ENTER JOBNAME CHARACTER(s)
a
JOB USERIDA (JOB00007) SUBMITTED
READY
/*Example 2: Submitting jobs with input from a CLIST*/
/* The following is a listing of the CLIST about to be

submitted*/

PROC 0 STEP(2)
CONTROL PROMPT
SUBMIT * PAUSE END (GO)
//USERIDA JOB MSGLEVEL=l
//STEPA1 EXEC PGM=YOURPGM
//SYSPRINT DD SYSOUT=A
IF &STEP=2 THEN DO
//STEPA2 EXEC PGM=PROGRAM2
//SYSPRINT DD SYSOUT=A
END
ELSE DO
//STEPA3
//SYSPRINT
END
//USERIDB
//STEPB
//SYSPRINT
GO

EXEC
DD

JOB
EXEC
DD

PGM=PROGRAM3
SYSOUT=A

MSGLEVEL=l
PGM=SOMEPGM
SYSOUT=A

/* The following shows the CLIST being executed.

exec myclist list
ENTER INPUT JOB STREAM:
SUBMIT * PAUSE END (GO)
//USERIDA JOB MSGLEVEL=l
//STEPA1 EXEC PGM=YOURPGM
//SYSPRINT DD SYSOUT=A
//STEPA2 EXEC PGM=PROGRAM2
//SYSPRINT DD SYSOUT=A
//USERIDB JOB MSGLEVEL=l
//STEPB EXEC PGM=SOMEPGM
//SYSPRINT DD SYSOUT=A
go
SHOULD INPUT JOB STREAM BE SUBMITTED? ENTER YES OR NO: +
yes
JOB USERIDA(JOB00008) SUBMITTED
JOB USERIDB(JOB00009) SUBMITTED
READY

Figure 15-1. The SUBMIT * Function

Ending a Batch Job

To request the option of continuing or cancelling a job after it has been read into
the system, use the PAUSE operand.

EXAMPLE

To request the option of continuing or cancelling a
submitted job, enter:

SUBMIT * PAUSE

The PAUSE operand supports the SUBMIT * function only. If you do not
specify this operand, the system processes the job stream when it detects the end
of the job stream.

To specify a character that indicates the end of a job stream, use the END
operand with the character string enclosed in quotation marks.

EXAMPLE

If you want the system to end the job when it encounters the
character string #$, enter:

SUBMIT * END(#$)

The END operand supports the SUBMIT * function only. You can only specify
alphabetic, numeric, or national characters when using this operand. If you don't
specify this operand, a null or blank line indicates the end of the job stream.
Specifying this operand allows you to enter blank lines as part of your job stream.
The END characters must begin in column 1 and be the only data on the line.

Chapter 15. Submitting and Monitoring a Background Job 15-9

Displaying the Status of Jobs

Any time after you submit a background job you can use the STATUS command
to display its status. The display tells you whether the job is awaiting execution,
is currently executing, or has executed but is still on the output queue. The
display also indicates whether a job is in hold status.

STATUS Command

Use the STATUS command to display the status of batch jobs at your terminal.
You can obtain the status of all your batch jobs, of several specific batch jobs, or
of a single batch job.

Using the STATUS command, you can specify which of your job's or jobs' status
you want to display.

You can use this command only if the installation management has given you the
authority to do so.

For more information on the STATUS command, see TSOjE Command Language
Reference.

Displaying the Status of All Your Jobs

To display all the jobs whose job names consist of your user ID plus one
character, issue the STATUS command with no operands.

EXAMPLE

If you submitted ten jobs and you wanted to know the status of
each, enter:

STATUS

Displaying the Status of Specific Jobs

To display all the jobs associated with a specific job name, specify the job name
following the STATUS command.

EXAMPLE

To display all the jobs associated with job name DOOABCIA,
enter:

STATUS DOOABCIA

To display all the jobs associated with a number of job names, specify the list of
job names, separated by commas, and enclosed in parentheses.

15-10 TSO/E User's Guide

EXAMPLE

To display the status of all the jobs whose job names are
DOOABC1A, DOOABC1B, and DOOABC1C, enter:

STATUS (DOOABC1A,DOOABC1B,DOOABC1C)

To display a specific job associated with a job name, enter the job name with the
system-supplied job identifier enclosed in parentheses.

EXAMPLE

To display the status of the job identified by number
JOB01098 with job name DOOABC1A, enter:

STATUS DOOABC1A(JOB01098)

Chapter 15. Submitting and Monitoring a Background Job 15-11

Cancelling a Batch Job's Execution

Use the CANCEL command to halt a batch job's execution and its output.

CANCEL Command

Cancelling Specific Jobs

Use the CANCEL command to halt processing of batch jobs that you submitted
from your terminal. If you cancel the job successfully, the system displays a
READY message at your terminal. The system also notifies the system operator
when you cancel a job.

Using the CANCEL command, you can specify:

• Which job or jobs you want to cancel
• Whether or not you want to purge a job's output.

You can use this command only if the installation management has given you the
authority to do so.

For more information on the CANCEL command, see TSO/E Command
Language Reference.

To cancel the job associated with a specific job name, specify the job name
following the CANCEL command.

EXAMPLE

To cancel the job associated with job name DOOABClA, enter:

CANCEL DOOABCIA

If there is more than one job associated with job name DOOABCIA, the system
prompts you for a specific job identifier.

To cancel each job associated with a number of job names, specify the list of job
names enclosed in parentheses and each separated from the others by a comma or
blank.

EXAMPLE

To cancel the jobs whose names are DOOABCIA, DOOABCIB, and
DOOABCIC, enter:

CANCEL (DOOABCIA,DOOABCIB,DOOABCIC)

To cancel a specific job associated with a job name, specify the job name with the
system-supplied job identifier enclosed in parentheses.

15-12 TSO/E User's Guide

EXAMPLE

To cancel the job identified by number JOBOI098 with job
name DOOABCIA, enter:

CANCEL DOOABCIA(JOBOI098)

Cancelling Jobs and Purging Their Output - the PURGE/NOPURGE Operand

When you cancel a job, its output is not purged from the system. The
NOPURGE operand is a default with the CANCEL command. You can purge a
job's output from the system when you cancel that job's execution by specifying
the PURGE operand. As with cancelling a job, you can purge the output for all
jobs associated with your user ID. To purge a job's output, use the PURGE
operand following the job name operand.

EXAMPLE

To cancel the job with a job name of DOOABCIA and purge its
associated output, enter:

CANCEL DOOABCIA PURGE

Chapter 15. Submitting and Monitoring a Background Job 15-13

15-14 TSO/E User's Guide

Chapter 16. Directing the Output of a Background Job

Use the OUTPUT command to display or direct any output that is held by the
system. Held output is output that the system does not immediately place on a
print queue. Held output can consist of the job's job control language (JCL)
statements, system messages, or system output data sets.

You can simplify the use of the OUTPUT command by including the NOTIFY
operand either on the JOB statement or on the SUBMIT command when you
submit a job for batch processing. The system will notify you when the job
terminates, giving you an opportunity to use the OUTPUT command.
MSGCLASS and SYSOUT data sets should be assigned to reserved classes or
explicitly held in order to be available at the terminal.

Once you enter the OUTPUT command and the operands you want, the system
places your terminal session in OUTPUT mode. At this point, you can enter any
of the four subcommands associated with the OUTPUT command to modify a
job's held output. The four subcommands are CONTINUE, END, HELP, and
SAVE. For more information on the OUTPUT command's subcommands, see
"OUTPUT Subcommands" later in this chapter.

Note that you can also use the OUTPUT command and its subcommands to
modify foreground-created output.

OUTPUT Command

Using the OUTPUT command, you can:

• Direct the output from a job to your terminal. The output includes the job's
job control language (JCL), system messages (MSGCLASS), and system
output (SYSOUT) data sets.

• Direct the output from a job to a specific data set.

• Delete the output for jobs.

• Change the output class(es) for a job.

• Route the output for a job to a remote work station.

• Release the output for a job for printing.

Chapter 16. Directing the Output of a Background Job 16-1

The OUTPUT command applies to all jobs whose job names begin with your user
identification. Access to jobs whose job names do not begin with a valid user
identification must be provided by an installation-written exit routine.

Displaying Held Output for Specific Jobs

16-2 TSO/E User's Guide

You can display held output for:

• A specific job identified by job name
• A number of jobs
• A specific job identified by a system-supplied job identifier
• A job with a particular output class.

To display the held output from the job associated with a specific job name,
specify the job name following the OUTPUT command.

EXAMPLE

To display the output from the job with job name DOOABCIA,
enter:

OUTPUT DOOABCIA

If there is more than one job associated with a job name, the system prompts you
for a specific job identifier.

To display the held output for each job associated with a number of job names,
enclose in parentheses the list of job names separated by a comma or blank.

EXAMPLE

To display the output for the jobs whose job names are
DOOABCIA, DOOABCIB, DOOABCIC, enter:

OUTPUT (DOOABCIA,DOOABCIB,DOOABCIC)

To display the held output for a specific job associated with a job name, specify
the job name with the system-supplied job identifier enclosed in parentheses.

EXAMPLE

To display the job identified by number JOB02249 with job
name DOOABCIA, enter:

OUTPUT DOOABCIA(JOB02249)

To display the held output in a particular output class for the jobs associated with
a specific job name, issue the OUTPUT command and specify:

• The job name.

• The CLASS operand with the job class or classes to be searched enclosed in
parentheses. A class name is a single letter or digit (A-Z or 0-9). If you do
not specify the name of a class, all held output for the jobs are available.

EXAMPLE

To display the held output in output class A, B, or S
associated with job name DOOABCIP, enter:

OUTPUT DOOABCIP CLASS(A,B,S)

Redirecting Held Output for Specific Jobs - the PRINT Operand

You can redirect output for a specific job to:

• A terminal
• A data set

To redirect the held output from the jobs associated with a specific job name to
your terminal, issue the OUTPUT command and specify:

• The job name
• The PRINT operand with an asterisk (*) enclosed in parentheses.

If you do not specify either a data set name or an asterisk, an asterisk is the
default. PRINT is the default value if you omit the PRINT, DELETE,
NEWCLASS, DEST, HOLD and NOH OLD operands, discussed later in this
chapter.

EXAMPLE

To redirect the held output for the jobs associated with job
name DOOABCIP to your terminal, enter:

OUTPUT DOOABCIP PRINT(*)

To redirect the held output from the jobs associated with a specific job name to a
data set, issue the OUTPUT command and specify:

• The job name.

• The PRINT operand.

• Immediately enclose in parentheses the second level, user-supplied name of
the data set to which the output is to go.

EXAMPLE

To redirect the held output for the jobs associated with
job name DOOABCIP to data set DOOABCl.HLDPRINT.OUTLIST,
enter:

OUTPUT DOOABCIP PRINT (HLDPRINT)

In the previous example, the system appends your user ID (DOOABCl) as the
first-level qualifier. It uses the name you specify as the user-specified qualifier,
and OUT LIST as the default descriptive qualifier.

Chapter 16. Directing the Output of a Background Job 16-3

Directing Held Output Based on Checkpointing - the BEGIN, HERE, and NEXT Operands

16-4 TSO/E User's Guide

A checkpoint is a point at which information about the status of a job and the
system can be recorded so that the job step can be restarted later. A data set is
checkpointed if it was interrupted during printing and never processed to the end
of the data during a terminal session. Interruptions which cause a data set to be
checkpointed occur when:

• Processing terminates in the middle of printing a data set because of an error
or ABEND condition.

• The attention key is pressed during the printing of a data set and the
CONTINUE NEXT subcommand is entered. The KEEP operand must be
present or the data set is deleted.

• The attention key is pressed during the printing of a data set and the END
subcommand is entered.

You can start output processing of held output data sets at the following points:

• At the beginning of each data set, regardless of checkpoints.
• At the beginning of each data set, if the data set has not been checkpointed.
• At the approximate point of interruption in a checkpointed data set.
• After skipping a checkpointed data set.

For information on checkpointing a data set, see TSOjE Command Language
Reference or MVS JCL.

To start output processing for the held output data sets associated with a job
name at the beginning of each data set, regardless of whether the data set has
been checkpointed or not, use the BEGIN operand.

EXAMPLE

To ensure that the system starts its output processing at
the beginning of each data set that contains the held
output for each job associated with job name DOOABCIP,
enter:

OUTPUT DOOABCIP BEGIN

To start output processing for the held output data sets associated with a job
name at the beginning of each data set, as long as the data set has not been
checkpointed, use the HERE operand. You can also use the HERE operand to
start output processing for the held data sets associated with a job name at the
approximate point of interruption, as long as the data set has been checkpointed.

EXAMPLE

To ensure that the system starts its output processing at the
beginning of each data set that is not checkpointed, and that
contains the held output for each job associated with job
name DOOABCIP, enter:

OUTPUT DOOABCIP HERE

To skip output processing for the held output data sets associated with a job
name that are checkpointed, use the NEXT operand. Output processing resumes
at the beginning of the next uncheckpointed data set. Note that the system
deletes the checkpointed data sets it skips, unless you specify the KEEP operand.

EXAMPLE

To request that the system skip output processing for each
checkpointed data set that contains the held output for
each job associated with job name DOOABC1P, enter:

OUTPUT DOOABC1P NEXT

Pausing to Process Held Output - the PAUSE/NOPAUSE Operand

You can have the system pause after it lists a SYSOUT data set. Do this to allow
yourself the opportunity to enter a SAVE or CONTINUE subcommand. To have
the system pause after it lists a SYSOUT data set, use the PAUSE operand. The
NOPAUSE operand, a default with the OUTPUT command, requests that the
system does not pause after listing each SYSOUT data set.

EXAMPLE

To have the system pause after it lists each SYSOUT
data set associated with the jobs with job name
DOOABC1P, enter:

OUTPUT DOOABC1P PAUSE

Pressing the ENTER key causes normal processing to continue. You can override
the PAUSE operand by using the CONTINUE subcommand.

Specifying a Disposition for Held Output - the KEEP/NOKEEP, HOLD/NOHOLD, and DELETE Operands

To request that the system keep the held output data sets associated with a
specific job name on the output queue after printing them, use the KEEP operand
following the job name. After a job is printed, the system releases and deletes the
held output data sets. The NOKEEP and NOHOLD operands specifying the
releasing and deleting of held output are defaults.

EXAMPLE

To keep the held output data sets associated with the jobs
with job name DOOABC1P on the output queue after printing
them, enter:

OUTPUT DOOABC1P KEEP

When you submit a job to the system and the message class or output class is not
a held class, the output data sets are not held by the system. To request that the
system hold the output data sets associated with a specific job name so you can
display them later, use the HOLD operand following the job name operand.

Chapter 16. Directing the Output of a Background Job 16-5

EXAMPLE

To hold the output data sets associated with the jobs with
job name DOOABCIP, enter:

OUTPUT DOOABCIP HOLD

To request that the system delete the output data sets associated with a specific
job name, use the DELETE operand following the job name operand.

EXAMPLE

To delete the output data sets associated with the jobs
with job name DOOABCIP, enter:

OUTPUT DOOABCIP DELETE

Specifying a New Output Class for Held Output - the NEWCLASS Operand

To change the output class for the held output for the jobs associated with a
particular job name, use the NEWCLASS operand with the new output class
enclosed in parentheses.

EXAMPLE

To change the output class to R for the held output for
the jobs associated with job name DOOABCIP, enter:

OUTPUT DOOABCIP NEWCLASS(R)

Routing the Held Output to a Remote Work Station - the DEST Operand

16-6 TSO/E User's Guide

To route the output for the jobs associated with a particular job name to a remote
work station, use the DEST parameter with the remote work station ID enclosed
in parentheses.

EXAMPLE

To route the output from the jobs with job name DOOABCIP
to remote work station PAPUA#NG, enter:

OUTPUT DOOABCIP DEST(PAPUA#NG)

OUTPUT Subcommands

CONTINUE Subcommand

There are four subcommands associated with the OUTPUT commands. They are
CONTINUE, END, HELP, and SAVE. Use these subcommands to interactively
display or direct output data sets. Use OUTPUT subcommands as follows:

• The CONTINUE subcommand to resume interrupted output operations

• The END subcommand to terminate OUTPUT

• The HELP subcommand to obtain further information about the OUTPUT
command and its associated subcommands

• The SAVE subcommand to copy a SYSOUT data set to another data set for
retrieval by a different method.

Use the CONTINUE subcommand to resume interrupted output operations.
Interruptions causing subcommand mode occur when:

• Processing of a SYSOUT data set completes and the PAUSE operand was
specified with the OUTPUT command

• You press the attention key.

Pressing the attention key purges the input/output buffers for the terminal. Data
and system messages in the buffers at this time may be lost. Although the
OUTPUT command attempts to back up records to recover the lost information,
results are unpredictable due to record length and buffer size. You may see
records repeated or you may notice records missing if you attempt to resume
processing of a data set at the point of interruption using the HERE operand with
the CONTINUE subcommand, or in the next session using HERE on the
OUTPUT command.

Using the CONTINUE subcommand, you can specify:

• Where in the output data set you want the system to begin processing

• Whether or not you want to skip processing for a checkpointed output data
set

• Whether or not you want the system to pause after each SYSOUT data set is
listed.

Specifying Where to Continue Output Processing - the BEGIN, HERE, and NEXT Operands

To have the system start output processing for the output data set at the
beginning of the data set, regardless of whether it has been checkpointed or not,
use the BEGIN operand.

Chapter 16. Directing the Output of a Background Job 16-7

EXAMPLE

To ensure that the system starts processing the output data
set you are currently displaying at the beginning, enter:

CONTINUE BEGIN

For information on checkpointing a data set, see TSO/E Command Language
Reference and "Directing Held Output Based on Checkpointing" earlier in this
chapter.

To have the system start output processing for the output data set at the
beginning of the data set, as long as the data set has not been checkpointed, use
the HERE operand. You can also use the HERE operand to have the system
start output processing for the data set at the approximate point of interruption,
as long as the data set is checkpointed.

EXAMPLE

As long as the data set you are displaying is not
checkpointed, to ensure that the system starts processing
the output data set at the beginning, enter:

CONTINUE HERE

To have the system skip output processlng for a checkpointed output data set, use
the NEXT operand. Output processing resumes at the beginning of the next
uncheckpointed data set. Note that unless you specify the KEEP operand, the
checkpointed data sets the system skips are deleted from the system.

EXAMPLE

As long as the current data set is checkpointed, to ensure
that the system skip output processing for this data set,
enter:

CONTINUE NEXT

Pausing During Output Processing for a Data Set - the P AUSE/NOPAUSE Operand

16-8 TSO/E User's Guide

To have the system pause after it lists each SYSOUT data set, use the PAUSE
operand.

EXAMPLE

CONTINUE PAUSE

Pressing the ENTER key after the pause causes normal processing to continue.
You can use this operand to override a NOPAUSE specification on the OUTPUT
command.

NOPAUSE, a default on the CONTINUE subcommand, specifies that you do not
want the system to pause. You can use this operand to override a PAUSE
specification on the OUTPUT command.

END Subcommand

Use the END subcommand to terminate the operation of the OUTPUT
command.

Terminating the OUTPUT Command

HELP Subcommand

To terminate the operation of the OUTPUT command, issue the END
subcommand, as follows:

END

Use the HELP subcommand to obtain the syntax and function of the OUTPUT
subcommands. Refer to the HELP command for a description of the syntax and
function of the HELP subcommand.

Obtaining Information About OUTPUT Subcommands

SAVE Subcommand

To obtain syntax and function information about all the subcommands of the
OUTPUT command, issue the HELP command, as follows.

HELP

To obtain syntax and function information about a specific subcommand of the
OUTPUT command, use the HELP subcommand, followed by the name of the
subcommand in question.

EXAMPLE

To obtain information about the CONTINUE subcommand, enter:

HELP CONTINUE

Use the SAVE subcommand to copy the SYSOUT data set from the spool data
set to the named data set. The named data set can be any data set that would be
valid if used with the PRINT operand. There is no restriction against saving
JCL. Using the SAVE command you can specify the name of the data set into
which you want to save the output currently being processed.

To use SAVE, you must specify the PAUSE operand on the OUTPUT command.
SAVE does not save the entire SYSOUT output of the job; it saves only the data
set currently being processed.

To have the system save the output currently being processed into a data set, use
the SAVE subcommand followed by the user-specified qualifier of the destination
data set's name.

EXAMPLE

To save the data from the output data set you are currently
processing into data set OUTSAVE.OUTLIST, enter:

SAVE OUTSAVE

Chapter 16. Directing the Output of a Background Job 16-9

16-10 TSO/E User's Guide

Chapter 17. Executing Foreground Commands from a Background
Job

There are times when it is not practical to execute a series of commands or a
CLIST from your terminal. If a job is going to take an extended period of time
to execute or if a large amount of output is to be printed, it is more convenient to
execute in the background, that is, independent of the terminal.

TSO allows the user to execute a CLIST or a series of commands in the
background. To use this function, you must be authorized by your installation to
use the SUBMIT command or to process JCL.

Note: There are a number of restrictions that apply to using commands in the
background. See Figure 17-9, "Processing Considerations (RACF and
non-RACF Systems)" for a complete list of the restrictions.

Concurrent Execution

Output Handling

When executing commands in the background and foreground concurrently, you
should be aware that allocation of a data set both in the foreground and the
background might not be successful. If a data set has been allocated (foreground
or background mode) with a disposition of OLD, MOD, or NEW, it cannot be
allocated in the opposite mode by the ALLOCATE command or any other
command processor. For example, the ALLOCATE command issued in the
background for a data set in use in the foreground, will issue an error message
that the data set is already in use. Any command remaining in the job stream is
processed.

If a user's LOGON procedure allocates a data set with a disposition of NEW,
MOD, or OLD, a background job specifying the same LOGON procedure will
not execute until the user logs off or frees the data set in the foreground.
Similarly, if a background job is executing and the user attempts to log on a
terminal with the same LOGON procedure, the logon attempt fails.

Output produced by a background job differs from output in the foreground in
the following ways:

• Messages producing multiple levels are printed in their entirety. (It is the
same as entering a (?) and recovering all levels.)

Chapter 17. Executing Foreground Commands from a Background Job 17-1

• The allocation of an output data set to the terminal causes that output to be
printed after all other output.

If it is necessary to see the output at your terminal rather than waiting to have it
printed on the system printer, one of two things can be done; place the output in
a data set or have the output held and use the OUTPUT command to look at it.

For the appropriate JCL, see "Writing JCL for Command Execution" in this
book.

Submitting Commands Using the SUBMIT Command

17-2 TSO/E User's Guide

The SUBMIT command is used to submit batch jobs. Refer to the "SUBMIT
Command" in Chapter 15, "Submitting and Monitoring a Background Job" for
more information about the SUBMIT command. There are two techniques for
submitting batch jobs using the SUBMIT command.

1. Use the SUBMIT command or subcommand of EDIT. When submitting a
batch job in a data set, the data set must be in the same format as a
CNTL-type data set. Using the EDIT command to create the data set assures
you of the correct data set format. Figure 17-1 illustrates how the EDIT
command can be used to create a data set containing commands and how the
SUBMIT command is used to submit this same data set as a background
TSO session.

2. The SUBMIT command supports an asterisk (*) for the positional operand
value and two keyword operands, END and PAUSE. The keyword operands,
END and PAUSE, are valid only when (*) is specified and when the issuer is
not in EDIT mode.

edit examp2.cntl new
INPUT
00010 logon
00020 profile prefix(user2)
00030 edit a.data new emode
00040 5 this is first line
00050 10 this is second line
00060 save b.data reuse
00070 end save
00080 (null line)
EDIT
submit * jobc(a)
JOB USER2A(JOB000347) SUBMITTED
EDIT
end save
READY

Figure 17-1. Creating and Submitting Data Sets Containing Commands

If you want the SUBMIT command to generate the JCL statements to execute
commands in the background, specify LOGON as the first command in the data
set. No operands are required on the LOGON command. However, you must
specify your user ID if you specified any other operands on the LOGON

command. If you want to charge the job to an account number other than the
one you are currently using, you must specify the ACCT operand. MAIL,
NOMAIL, NONOTICE and RECONNECT operands are ignored when you
specify them on a LOGON command executed in the background. Figure 17-2
illustrates how the system integrates your data with the JCL generated by the
system from the example in Figure 17-1

preceded by a
LOGON
command

SUBMIT
Process

Figure 17-2. The SUBMIT Process Using System-Generated JCL

Batch
Process

System generated
JCL and data
from dsname

Other conditions that apply when submitting jobs in the background are:

• You can precede the LOGON command with JES2 or JES3 JCL statements.
If this is done, however, TSO does not process any other JCL statements in
the job stream, and the system does not generate any JCL statements. If a
JCL statement follows the LOGON command, it is executed in the
background as an input line.

• You must write the LOGON command on one line in columns 1 thru 72
only.

• You can have more than one LOGON command within a single data set.
SUBMIT creates the JCL statements for each of them and executes them
accordingly.

• You cannot use the characters * / in columns one and two in a data set where
SUBMIT-generated JCL is to be used. SUBMIT designates these characters
as a delimiter. If you must use these characters in columns one and two, you
have to provide your own JCL.

• Use only the PROC operand on a submitted LOGON command if the
procedure is available in the SYSl.PROCLIB.

Chapter 17. Executing Foreground Commands from a Background Job 17-3

1 7-4 TSO IE User's Guide

• The PROC specified on a submitted LOGON command must not contain the
ddnames SYSTSIN or SYSTSPRT. SUBMIT will always generate these
ddnames.

For example, if you submit a data set containing the commands LOGON and
LISTCAT, SUBMIT enters the following background job:

IIYOURID JOB ACCT.INFO.,
II YOURID
II NOTIFY=YOURID
II MSGLEVEL=(l,l)
1/** ****
1/* THE FOLLOWING LOGON COMMAND WAS FOUND IN SUBMIT'S *
1/* INPUT DATA SET(S) AND WAS USED TO GENERATE THE JCL *
1/* TO EXECUTE TSO COMMANDS IN THE BACKGROUND: *
1/* *
1/* LOGON *
1/* *
1/** ****
I/CBSTEP EXEC PGM=IKJEFTOl,DYNAMNBR=30
I/SYSTSPRT DD SYSOUT=A **OUTPUT FROM COMMANDS IN

I/SYSTSIN
LISTCAT

*/

DD
BACKGROUND**

DATA,DLM='*I' **INPUT COMMANDS**

If the above SUBMIT-generated JCL statements are not sufficient, you can insert
your own JCL. Do not include a LOGON command if this is done. Figure 17-3
illustrates the SUBMIT process if you create your own JCL.

SUBMIT
Process

Figure 17-3. The SUBMIT Process With User-Created JCL Statements

Batch
Process

JCL and data
from dsname

Submitting Commands Using JCL

When submitting a background job that contains foreground commands, you
must use at least one of each type of the JCL cards shown in the following figure.

Figure 17-4 illustrates the JCL statements required for input and the appropriate
placement of the data statements.

/ /SYSTSIN

//SYSTSPRT

//EXEC

//JOB

data

comments
subcommands
commands

Figure 17-4. JCL Setup for Processing Commands in the Background

Writing JCL for Command Execution

JOB Statement

The following JCL statements are required for executing commands in the
background. Other statements can be used, but are not required. (See MVS JCL
for a complete description of JCL statements.)

The JOB statement is the first JCL statement in a batch job. It marks the
beginning of a job and, when jobs are stacked in the input stream, marks the end
of the control statements for the preceding job. This statement consists of four
fields. The format is:

//jobname JOB operands comments

Chapter 17. Executing Foreground Commands from a Background Job 17-5

EXEC Statement

SYSTSPRT DD Statement

17-6 TSOjE User's Guide

jobname
is required and is used to identify the job to the system.

JOB
the JCL term that identifies the type of statement.

operands
specifies the specific processing options the system uses when processing this
job.

comments
optional user-supplied information pertaining to the function of this
statement.

The program needed to execute TSO commands from the background is the
terminal monitor program, known as TMP, or by its program name, IKJEFTOI.
The EXEC (execute) statement is used to execute program IKJEFTOI (TSO
terminal monitor program (TMP)). The format is:

//stepname EXEC PGM=IKJEFT01,DYNAMNBR=nn,PARM=' command I

stepname
is optional and can be used as a step identifier in the programs consisting of
more than one step.

EXEC
the JCL term that identifies this type of statement.

PGM=
specifies the module being executed.

DYNAMNBR=
the number of allocations of data sets, ddnames, or attribute lists that can
be used at one time per job step. This number can be from 1 to 1635.

PARM=
is optional and can be used to supply the first (or only) command to be
executed. This is used most often when you only execute one command in
the step.

The SYSTSPRT DD statement is used to control the output from your
background job. By specifying different operands on this statement, you can have
the output listed on a system printer, placed in a specified data set for later use,
or held in a work data set so you can look at it using the OUTPUT command.

If you want to see your output as soon as the job has executed, hold the output
and specify the NOTIFY = user ID operand on the JOB statement. NOTIFY
causes a message to be printed at your terminal when the job completes. For

SYSTSIN DD Statement

example, assume that you specified NOTIFY = your user ID on the JOB
statement. To hold the output, enter:

//SYSTSPRT DD SYSOUT=H

where H is a held class and MSGCLASS = H is also specified on the JOB
statement.

You can also hold output by specifying:

//SYSTSPRT DD SYSOUT=N,HOLD=YES

where N is not a held class.

You might not always want to hold a job's output. To not hold a job's output,
specify the SYSOUT operand with the non-held output class value. For example,

//SYSTSPRT DD SYSOUT=N

where N is the installation-defined class for output that is not held.

You can write a job's output to a specified data set. To write a job's output to
new data set DOOABCl.JOBOUT.DATA, where your user ID is assumed to be
DOOABCl, enter the following:

//SYSTSPRT DD DSN=DOOABC1.JOBOUT.DATA,DISP=NEW,SPACE=(TRK,5,5),
UNIT=SYSDA

where DOOABCl.JOBOUT.DATA is a new data set allocated with 5 tracks of
primary space and secondary extents of 5 tracks each.

To write a job's output to old data set DOOABCl.OLDOUT.DATA, where your
user ID is assumed to be DOOABCl, specify the following:

//SYSTSPRT DD DSN=DOOABC1.OLDOUT.DATA,DISP=OLD

where the data set already existed before the step executes.

The SYSTSIN DD statement is used to specify that the data to follow consists of
executable commands and/or subcommands. For example, to indicate to the
system that all data following this statement is to be used as input, until the
system encounters an input delimiter, such as the characters 1* or the DLM
operand, specify:

//SYSTSIN DD *

If any of the input statements start with the characters /I, use the DD DATA
statement instead.

To indicate to the system that all data following this statement is to be used as
input, including statements that start with the characters II, until an input
delimiter (f* or DLM) is found, specify:

//SYSTSIN DD DATA

Chapter 17. Executing Foreground Commands from a Background Job 17-7

To indicate to the system that all the input data can be found in data set
DOOABCI.INPUT.DATA, specify:

//SYSTSIN DD DSNAME=DOOABC1.INPUT.DATA

The SYSTSIN and SYSTSPRT DD statements can refer to a sequential data set
or a member of a partitioned data set.

Command Processing Differences in the Background

CALL Command

17-8 TSOjE User's Guide

When executed in the background, some TSO commands process differently from
when they are executed in the foreground. The commands listed here show only
the differences between how they process in the background as opposed to how
they process in the foreground. The command syntax is shown only where
operands have been added. For a complete description of each of these
commands, see TSO/E Command Language Reference. Restrictions which apply
to commands processed in the background are listed in Figure 17-9.

Service aids, utilities, and other programs obtaining their input from an allocated
file such as SYSIN, must have the input in a created data set or a job stream data
set that is created with a DD * or a DD DATA statement. Once the data set has
been created and allocated, the CALL command can be used to execute the
program that accesses the SYSIN data. Figure 17-5 illustrates the allocation and
creation of input data sets:

//exampl exec pgm=ikjeftOl,dynamnbr=20
//systsprt dd sysout=a
//systsin dd *

profile prefix(userl)
allocate file (sysprint) dataset(*)
allocate file(sysin) altfile(inputdd)
call progl
allocate file(sysin) altfile(inputdd2) reuse
call prog2
free all

//inputdd dd *
input to progl

//inputdd2 dd *
input to prog2

/*

Figure 17-5. Allocating and Creating Input Data Sets

In the preceding example, the second allocate statement allocates the SYSIN data
for PROGI, and specifies that the data is defined by the DD statement named
INPUTDD. The third allocate statement allocates the SYSIN data for PROG2,
and specifies that the data is defined by the DD statement named INPUTDD2.
DD statements INPUTDD and INPUTDD2 use in-stream data as input.

Note: Allocating the input file to a terminal results in an I/O error message.
Termination occurs when the program tries to get input from the terminal.

/

EDIT Command

LOGOFF Command

PROFILE Command

Although EDIT performs the same in the foreground and background, you must
be careful when inserting blank lines into a data set because EDIT interprets a
blank line as a null line. This causes the system to switch from input mode to
edit mode. To insert blank lines into a data set, you can:

• Insert a character string that you do not use anywhere else in the data set.
Then, before ending the EDIT session, issue a global change, changing every
occurrence of the character string to blanks.

• Specify the EMODE operand on the EDIT command. Each new line is
preceded by a line number, wherever line numbering is allowed.

Figure 17-6 illustrates how to insert blank lines using the unused character string
method.

edit examp4.cntl new
INPUT
00010 logon user4 proc(proca)
00020 profile prefix(userid)
00030 edit p data new
00040 line one
00050 @@@@@
00060 line two
00070 @@@@@
00080 line three
00090 @@@@@
00100 line four
00110 (null line)
00120 c 10 999 /@@@@@// all
00130 list
00140 end save
00150 (null line
end save
READY
submit examp4.cntl notify jobchar(a)
JOB USER4A(JOB00001) SUBMITTED
READY

Figure 17-6. Entering Blank Lines Into Your Data Set

When the LOGOFF command is executed in the background, your TSO session is
terminated normally. Any remaining commands in the input stream are ignored.

The following differences should be noted for foreground/background processing:

• Changes made while processing in the foreground are saved from session to
session.

• Changes made while processing in the background are not saved.

Chapter 17. Executing Foreground Commands from a Background Job 17-9

RECEIVE Command

You can use the RECEIVE command in a background job to receive a message
or data set. To use RECEIVE in the background, you must specify the
RECEIVE command and the responses to any prompts that you would anticipate
when using RECEIVE in the foreground. Supply the responses in the same order
as they would appear in the foreground. The commands are executed as if
PROFILE NOPROMPT were entered.

The data set or message that you receive will be prefixed by the userid that you
supply on the JOB statement. To use an alternate prefix as the data set name,
include the following command at the beginning of the SYSTSIN data stream:

PROFILE PREFIX(prefix)

Be sure that any alternate prefix you use is a valid catalog alias.

Messages are written to the data set defined in the SYSTSPRT DD statement.

Figure 17-7 shows a batch job for receiving a data set in the background.
Figure 17-8 shows a batch job for receiving a message in the background.

//JOBNAME JOB
//STEPl EXEC
//SYSTSPRT DD
//SYSTSIN DD

RECEIVE
RESTORE

USER=USERID,PASSWORD=PASSWD
PGM=IKJEFT01,REGION=512K
SYSOUT=A
*

responses to anticipated prompts
r

/*

Figure 17-7. Receiving a Data Set in the Background

//JOBNAME JOB
//STEPl EXEC
//SYSTSPRT DD
//SYSTSIN DD

RECEIVE
/*

USER=USERID,PASSWORD=PASSWD
PGM=IKJEFT01,REGION=512K
SYSOUT=A
*

Figure 17-8. Receiving a Message in the Background

17-10 TSO/E User's Guide

Error Condition Handling

The return code from the job step that executes commands in the background is
that of the last command executed.

Specific ABEND codes are documented in Message Library: System Codes.
ABENDs occurring in the background will be handled in the following manner:

XXX ABEND code 'xxx' will occur if a command or the TMP has abended. A dump will be
taken if a SYSUDUMP or SYSABEND has been allocated, either in the JCL or with the
ALLOCATE command, and the remainder of the commands in SYSTSIN will be ignored.

These restrictions always apply to the execution of commands processed in the background:

• The OPERATOR and TERMINAL commands are not supported. You get an error if you try
to issue them.

• You cannot specify USER(*) on the SEND command in the background. A user ID is
required. USER(*) causes an error message to be issued.

• Specifying RECOVER with the EDIT command has no affect. The EDIT CLIST workfile
recovery function is not supported.

• The CLIST statements READ and TERMIN are not supported.

• The symbolic variable &SYSPROC has a null value.

The following restrictions apply only to the execution of commands processed in the background
when the RACF program product is not in the system.

• The IBM-supplied installation exit rejects the CANCEL, RECEIVE, and OUTPUT commands
because no user ID is available in the background.

• You must specify operands on the STATUS command. The system issues an error message if
none are supplied.

• A PROFILE command with a PREFIX (userid) operand is required if you want a user ID to
be prefixed to all data-set-names, or if something other than a null value is required for the
CLIST symbolic variable, &SYSPREF.

• The CLIST symbolic variable &SYSUID has a null value.

• When a data set containing a job to be submitted in the background does not contain a JOB
statement, SUBMIT generates one. It attempts to construct the job name using the value on
the USER operand. If there is no value with the USER operand, the system issues a warning
message and uses default job name SUBMIT JB.

• When generating a JOB statement, SUBMIT does not insert a NOTIFY = user ID operand.

Note: In a system with RACF installed, there are fewer restrictions for users that are both RACF
and TSO defined. When RACF is installed, TSO can establish profile attributes for a background
job, provided the J,oB statement contains a value for the USER operand. TSO accesses the UADS
entry associated with the user identified on the USER operand on the JOB statement.

Figure 17-9. Processing Considerations (RACF and Non-RACF Systems)

Chapter 17. Executing Foreground Commands from a Background Job 17-11

17-12 TSO/E User's Guide

Chapter 18. Invoking Programs or Commands from a Program with
the TSO Service Facility

Introduction

To enhance system security, some installations give special authority to commands
and programs that execute in restricted areas of system storage. System
programmers are responsible for authorizing such commands and programs.

Authorized commands and programs can usually be invoked only from authorized
environments. However, the TSO service facility allows a TSO user to invoke
some authorized programs and commands (such as RECEIVE) from an
unauthorized environment like VSAPL.

Note: ISPF is also an unauthorized environment, but in Release 2 and later
releases it automatically invokes the TSO service facility to access authorized
commands or programs.

When you create a program that uses authorized commands or programs, it must
invoke the TSO service facility. Unauthorized commands or programs can use
the TSO service facility to access any commands or programs. However,
authorized commands or programs can use the TSO service facility to invoke only
other authorized commands or programs.

Note that the EXEC, LOGON, and LOGOFF commands do not execute through
the TSO service facility. For more information on these commands, see the
discussion of the TSO service facility's parm2 later in this chapter.

The TSO service facility can be invoked in both foreground and background TSO
sessions by either a command or a program. An applications program written in
a high level language such as PLI, COBOL,FORTRAN, PASCAL, or assembler
can use the TSO service facility.

Chapter 18. Invoking Programs or Commands from a Program with the TSO Service Facility 18-1

TSO Service Facility Parameters

18-2 TSO/E User's Guide

The TSO service facility is invoked via module IKJEFTSR or alias name
TSOLNK. If you want to use a command or program, you must specify six
parameters. If you want to pass parameters to a program, you can specify an
optional seventh parameter when you invoke the TSO service facility. The
seventh parameter is intended for use with assembler programs. The seven
parameters are:

PARMI
This parameter contains a fullword of flags.

1. Bytes one and two are zeros.

2. Byte three is the error processing flag byte.

• It contains either a binary zero (0) to show that no dump should be
taken if the invoked function abends, or

• It contains a binary one (1) to show that a dump should be taken if
the invoked function abends.

3. Byte four is the function flag byte.

• It contains either a binary one (1) to show that a TSO command is
being invoked, or

• It contains a binary two (2) to show a program is being invoked.

For non-assembler language programmers, this parameter can be thought of
as an integer which contains the value of byte 3 multiplied by 256 plus the
value of byte 4.

PARM2
The second parameter contains a character string, which contains the name
of the command or program being invoked. If a command is invoked, the
character string must also contain all the parameters for the command. If
you are invoking an authorized program using assembler language, the
invoked program must be in a member of a partitioned data set allocated to
STEPLIB or LINKLIB. All the data sets in the concatenated STEPLIB
must be authorized.

Note that the execution of the EXEC, LOGON, and LOGOFF commands
remains pending until the program environment terminates. That is, if
invoked from within a program, these commands would take effect after the
program finishes, where you would ordinarily see a READY prompt. These
commands provide a return code of 0 in parm4 if the syntax is accurate.

PARM3
The third parameter contains the length of the invoked command or
program (parameter 2). This is automatically provided in some Fortran
compilers.

PARM4
The fourth parameter will contain the return code of the invoked program
or command specified in parm2.

PARM5
The meaning of the fifth parameter is dependent on the service facility
return code found in register 15. If the service facility return code is 12,
parm5 contains the abend reason code of the invoked function. If the
service facility return code is 20, parm5 contains the service facility reason
code. See Figure 18-2 for the meaning of the service facility reason codes.

PARM6
The sixth parameter will contain the ABEND code, if the requested
program or command ends unsuccessfully.

P ARM7 - optional
The seventh parameter contains a parameter list used to pass parameters to
the invoked program. Parm7 is optional, and intended for use with
assembler language programs. It can only be coded when a program (not a
TSO command) is being invoked. The parameter list pointed to by this
parameter is a variable length list of one to four parameters and the high
order bit of the last address must be on to indicate the end of the list.

The parameters of the parm7 parameter list are:

• parameters 1-3

a halfword contains the parameter length in binary bytes,
immediately followed by

a variable length data string

• parameter 4

a fullword containing 2 bytes of binary zeros, immediately followed
by

2 bytes containing the binary number of full words of data,
immediately followed by

a variable length data string

The exact format of this parameter list will vary depending on the program
being invoked.

The following pages contain return and reason codes from IKJEFTSR and
examples of programs that invoke the TSO Service Facility.

Chapter 18. Invoking Programs or Commands from a Program with the TSO Service Facility 18-3

Return Codes from IKJEFTSR

This table contains the return codes from the TSO service facility.

Return Codes Meaning

0 IKJEFTSR and the requested program or command completed successfully.

4 The invoked function (program or command) had a non-zero return code

8 The invoked function was terminated because of an attention. If the application
programmer wishes to notify the end user his application program should issue a
message.

12 The invoked function abended. The 6th parameter contains the abend code.
The reason code in the 5th parameter contains the reason code associated with
the abend.

16 One of the first 6 parameters in the parameter list contains addresses of storage
not accessible to the calling program.

20 The IKJEFTSR parameter list contains an error or the TSO service facility was
invoked from a non-TSO environment. The 5th parameter contains the reason
code associated with the error.

24 The TSO routines associated with IKJEFTSR encountered an unexpected failure.

28 The invoker of IKJEFTSR has AMODE 24 and the parameter list contains
31-bit addresses.

Figure 18-1. IKJEFTSR Return Codes

18-4 TSOjE User's Guide

Reason Codes from IKJEFTSR

This reason code is found in parm5 if IKJEFTSR completes with a return code of
20.

Reason Codes Meaning

4 The length of the parameter list was invalid.

One of the following is true

"
The invoker of the TSO service facility did not turn on the first
bit of the last parameter to indicate the end of the list.

"
The high order bit is on in any of the first five parameters.

"
More than seven parameters are coded

8 The reserved flags (bytes 1 and 2) of the function(program or command) flag
field pointed to by the first parameter are non-zero.

12 The function(program or command) flag byte (byte 4) of the flag field pointed to
by the first parameter was invalid. It should contain a decimal one for a
command or a decimal two for a program.

16 The function(program or command) flag byte (byte 4) of the flag field pointed to
by the first parameter specified a command (contained a decimal one). However,
a seventh parameter (program parameter list) was also coded. The seventh
parameter can only be coded for the program function.

20 The abend processing flag byte is invalid. This byte (byte 3) of the flag field
pointed to by the first parameter should contain either a decimal zero to request
a dump, or a decimal one to indicate no dump is to be taken.

24 IKJEFTSR was invoked from a non-TSO environment. This service can only be
used in a TSO (foreground or background) environment.

28 The function buffer length is invalid. The function buffer pointed to by the 2nd
parameter must be greater than zero and less than 32K-5.

32 The program parameter list (pointed to by the seventh parameter of the TSO
service routine parameter list) contains addresses of storage not accessible to the
calling program.

36 The program parameter list pointed to by the 7th parameter is invalid.

40 The requested function (program or command) was not found.

44 IKJSCAN detected a syntax error in the function (program or command) name.

48 A command began with "0/0". CLISTs are not supported.

52 Unsupported background function (program or command).

56 The function (program or command) is authorized, but the a copy of the
function could not be found in an authorized library.

Figure 18-2. IKJEFTSR Reason Codes

Chapter 18. Invoking Programs or Commands from a Program with the TSO Service Facility 18-5

Examples of Invoking the TSO Service Facility

18-6 TSO/E User's Guide

IKJEFTSR is invoked according to the rules of the applications programming
language in use. Since certain programming languages can accept only up to six
characters in a name, the alias TSOLNK may be used for IKJEFTSR. For link
editing the user program, the SYSLIB concatenation must contain SYSl.LPALIB,
in which TSOLNK and IKJEFTSR reside.

The following sample programs demonstrate the use of the TSO Service Facility
to invoke commands and programs in:

• assembler
• FORTRAN

• PLI
• PASCAL
• COBOL.

In these examples, the term 'function' means the program or command
IKJEFTSR invokes.

For further information about the TSO service facility, see TSO Terminal Monitor
Program and Service Routines Logic.

* THIS ASSEMBLER PROGRAM CALLS THE TSO SERVICE ROUTINE *
* TO EXECUTE THE LISTBC COMMAND. *

TSFCMD CSECT

STM 14,12,12(13) ENTRY LINKAGE
BALR 12,0
USING *,12 USE R12 AS BASE REG
ST 13,SAVE+4 SAVE CALLERS SAVE AREA
LA 13,SAVE HAVE POINTER TO THIS SAVE AREA
L 15,=V(IKJEFTSR) GET ADDRESS OF IKJEFTSR

CALL (15),(FLAGS,CMD,CMDLEN,RETCODE,REASONC,ABENDCD) ,VL
LTR 15,15 WAS RETURN CODE FROM IKJEFTSR O?
BZ NOERROR NO ERROR ---- PROCEED ON

*
*
* CHECK RETCODE, REASONC, AND ABENDCD AT THIS POINT
*
*
NOERROR EQU
*
*
*

L
LM
BR

* DECLARES
SAVE OS
FLAGS OS

CMD
CMDLEN
RETCODE
REASONC
ABENDCD

DC
DC
DC
DC
DC
OS
OS
OS
END

*

13,SAVE+4
14,12,12(13)
14

18F
OF
XL2'0000'
XL1'01'
XL1' 01'
C'LISTBC'
F'6'
F
F
F

CONTINUE ON WITH PROGRAM

GET CALLERS SAVE AREA
EXIT LINKAGE
RETURN TO SUPERVISOR

INITIALIZE TO ZERO
SPECIFY DUMP TO BE TAKEN
COMMAND TO BE EXECUTED
COMMAND TEXT
LENGTH OF COMMAND NAME
FUNCTION RETURN CODE
TSF REASON CODE
ABEND CODE

Figure 18-3. Assembler Program Demonstrating the Use of IKJEFTSR to Invoke a Command

Chapter 18. Invoking Programs or Commands from a Program with the TSO Service Facility 18-7

C THIS FORTRAN PROGRAM WILL INTERFACE WITH THE TSO SERVICE ROUTINE.
C THE PROGRAM ISSUES THE LISTD COMMAND IN TSO AND THEN PRINTS OUT
C THE COMMAND BUFFER AND THE RETURN, REASON AND ABEND CODES
C RESULTING FROM THE EXECUTION OF THE TSO SERVICE ROUTINE.
C SINCE THIS PROGRAM DOES ITS OWN 1/0 AFTER IT CALLS THE
C TSO SERVICE ROUTINE, THE USER MIGHT WANT TO ALLOCATE THE FILE
C NAME FT06FOOl TO THE TERMINAL WITH THE TSO COMMAND:
C ALLOC F(FT06F001) DSN(*)
C THIS PROGRAM WAS COMPILED ON THE FORTRAN Gl COMPILER
C

C

EXTERNAL TSOLNK
INTEGER PARMll,PARM12,PARM13,PARM14
INTEGER PARM1,PARM3,PARM4,PARM5
INTEGER PARM2(20),FILL
PLACE COMMAND NAME IN PARM2
DATA PARM2 I'LIST' ,'D "s' ,'YS1.' ,'LINK' ,'LIB"','

+' ',I ',I ',I ',I ',I ',I ',I
+' ',I ',I ',I 'I

DATA FILL I' 'I
PARM11 0
PARM12 = 0
PARM13 = 0

C SPECIFY THAT A COMMAND IS TO BE EXECUTED
PARM14 = 1

C FILL IN THE CONTROL BITS OF THE FIRST PARAMETER
C TO REQUEST DUMP OFF

, , , , , ,

PARMI = (PARMll*16**6)+(PARM12*16**4)+(PARM13*16**2)+PARM14
C PUT THE COMMAND LENGTH INTO THE THIRD PARAMETER

PARM3 = 80
C ZERO OUT THE RETURNED VALUES BEFORE THE CALL

PARM4 0
PARM5 = 0
PARM6 = 0

C EXECUTE THE TSO SERVICE ROUTINE
I = TSOLNK(PARM1,PARM2,PARM3,PARM4,PARM5,PARM6)
WRITE (6,104)

C PRINT OUT THE COMMAND EXECUTED
104 FORMAT (' ','COMMAND EXECUTED: ')
C PRINT OUT THE RETURNED VALUES

WRITE (6,103) I
103 FORMAT (' ','THE TSOLNK RETURN CODE IS ',16)

WRITE (6,105) FILL, (PARM2(I) ,1=1,20)
105 FORMAT (21A4)

WRITE (6,100) PARM4
100 FORMAT (' ','THE FUNCTION RETURN CODE IS ',16)

WRITE (6,101) PARM5
101 FORMAT (' ',' THE TSF REASON CODE IS ',16)

WRITE (6,102) PARM6
102 FORMAT (' ','THE ABEND CODE IS ',16)

STOP
END

Figure 18-4. Fortran Program Demonstrating the Use of TSOLNK to Invoke a Command

18-8 TSO/E User's Guide

/**/
/* THIS PLI PROGRAM WILL INTERFACE WITH THE TSO SERVICE ROUTINE. */
/* THE PROGRAM WILL ISSUE THE LISTA COMMAND IN TSO AND THEN PRINT */
/* OUT THE RETURN, REASON AND ABEND CODES AS A RESULT OF USING THE */
/* SERVICE. SINCE THIS PROGRAM DOES ITS OWN I/O AFTER IT CALLS */
/* THE TSO SERVICE ROUTINE, THE USER MUST ALLOCATE THE FILE NAME */
/* FILEOUT, PREFERABLY TO THE TERMINAL WITH THE TSO COMMAND: */
/* ALLOC F(FILEOUT) DSN(*) */
/* */
/* THIS PROGRAM WILL RUN ON THE OS/VS PLI COMPILER RELEASE 2 OR */
/* HIGHER. */
/**/
TSOCALL:

PROCEDURE OPTIONS (MAIN) ;
/**/
/* DECLARE PARAMETERS */
/**/
DECLARE 1 PARM1,

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

2 PARM11 FIXED BINARY (15,0), /*
2 PARM13 BIT(8), /*

2 PARM14 BIT(8);

PARM2
PARM3
PARM4
PARM5
PARM6

CHARACTER (8) ;
FIXED BINARY(31,0);
FIXED BINARY(31,0);
FIXED BINARY(31,0);
FIXED BINARY(31,0);

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

RESERVED
ABEND FLAG ° -ABEND WITHOUT DUMPT
1 -ABEND WITH DUMP
FUNCTION CODE
1 - COMMAND
2 - PROGRAM
COMMAND OR PROGRAM
LENGTH OF CMD OR PROG
FUNCTION RETURN CODE
TSF REASON CODE
FUNCTION ABEND CODE

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/**/
/* DECLARE OUTPUT FILE */
/**/
DECLARE (FILEOUT) FILE;
/**/
/* DECLARE TSOLNK ROUTINE PARAMETER LIST */
/**/
DECLARE TSOLNK ENTRY(/* */

1, /* STRUCTURE OF 4 BYTES */
2 FIXED BINARY(15,0), /* BYTE 1 RESERVED */
2 BIT(8), /* BYTE 3 ABEND FLAG */
2 BIT(8), /* BYTE 4 FUNCTION FLAG */

CHARACTER (*), /* NAME OF PROGRAM OR CMD */
FIXED BINARY(31,0), /* LENGTH OF CMD OR PROG */
FIXED BINARY(31,0), /* FUNCTION RETURN CODE */
FIXED BINARY(31,0), /* REASON CODE */
FIXED BINARY(31,0) /* FUNCTION ABEND CODE */
)

EXTERNAL OPTIONS(ASSEMBLER RETCODE INTER);
DECLARE PLIRETV BUILTIN;

Figure 18-5 (Part 1 of 2). PLI Program Demonstrating the Use of TSOLNK to Invoke a Command

Chapter 18. Invoking Programs or Commands from a Program with the TSO Service Facility 18-9

/**/
/* START OF EXECUTABLE CODE */
/**/
PARM13='00000001'B; /* DUMP YES OR NO */
PARM14='00000001'B; /* COMMAND OR PROGRAM */
PARM2 ='LISTA ST'; /* FUNCTION NAME */
PARM3 = 8; /* COMMAND LENGTH */
/**/
/* CALL TSO SERVICE ROUTINE */
/**/
CALL TSOLNK(PARM1,PARM2,PARM3,PARM4,PARMS,PARM6);
/**/

/* PRINT RESULTS OF CALL */
/* PRINT OUT RETURN CODE OF TSO SERVICE ROUTINE */
/**/
PUT FILE (FILEOUT) EDIT (I THE TSOLNK RETURN CODE IS ',PLIRETV)

(A,F(3));
/**/
/* PRINT OUT RETURN CODE OF LISTA COMMAND PROCESSOR */
/**/
PUT FILE (FILEOUT) EDIT (I THE FUNCTION RETURN CODE IS ',PARM4)

(SKIP, A, F (3)) ;
/**/
/* PRINT OUT REASON CODE */
/**/
PUT FILE (FILEOUT) EDIT (I THE TSF REASON CODE IS ',PARMS)

(SKIP, A, F (3)) ;
/**/
/* PRINT OUT ABEND CODE OF LISTA COMMAND PROCESSOR */
/**/
PUT FILE (FILEOUT) EDIT (I THE FUNCTION ABEND CODE IS ',PARM6)

(SKIP, A, F (3)) ;
END TSOCALL;

Figure 18-5 (Part 2 of 2). PLI Program Demonstrating the Use of TSOLNK to Invoke a Command

18-10 TSO/E User's Guide

(***)
(* *)
(* THIS PASCAL PROGRAM WILL INTERFACE WITH THE TSO SERVICE ROUTINE*)
(* THIS PROGRAM WILL ISSUE THE LISTC TSO COMMAND. SINCE THIS *)
(* PROGRAM DOES ITS OWN I/O AFTER THE TSO COMMAND IS EXECUTED TO *)
(* DISPLAY RETURN CODES, THE USER SHOULD ALLOCATE FILE "FILEOUT" *)
(* TO THE TERMINAL. *)
(* *)
(* *)
(***)
PROGRAM TSOINTER;

TYPE
PA4=PACKED ARRA? (.1 .. 4.) OF CHAR;
PA80=PACKED ARRAY (.1 .. 80.) OF CHAR;

(***)
(* *)
(* SET UP CALL TO TSOLNK - THE TSO SERVICE ROUTINE. *)
(* WITH PARAMETER LIST. *)
(* *)
(***)
PROCEDURE TSOLNK(VAR PARM1:PA4;

VAR PARM2:PA80;
VAR PARM3:INTEGER;
VAR PARM4:INTEGER;
VAR PARMS:INTEGER;
VAR PARM6:INTEGER);

FORTRAN; (*
VAR

THIS KEYWORD IS REQUIRED TO ESTABLISH LINKAGE TO TSF *)

PARM1:PA4;
PARM2:PA80;
PARM3:INTEGER;
PARM4:INTEGER;
PARMS:INTEGER;
PARM6:INTEGER;
FILEOUT:TEXT;

(* WORD OF CONTROL BITS *)
(* COMMAND BUFFER *)
(* LENGTH OF COMMAND *)
(* FUNCTION RETURN CODE
(* TSO SERVICE ROUTINE REASON
(* FUNCTION ABEND CODE
(* DECLARE OUTPUT FILE NAME

(* ZERO OUT
(* ZERO OUT BYTE
(* SPECIFY DUMP *)

CODE

*)
*)

BEGIN
PARM1(.1.):=CHR(0);
PARM1(.2.) :=CHR(O);
PARM1(.3.):=CHR(1) ;
PARM1(.4.):=CHR(1);
PARM2:='LISTC' ;

(* SPECIFY COMMAND TO BE EXECUTED
(* FILL IN COMMAND BUFFER

*)
*)

PARM3:=S;
PARM4:=0;
PARMS:=O;
PARM6:=0;
TSOLNK (PARM1,

PARM2,
PARM3,
PARM4,
PARMS,

(* ZERO
(* ZERO
(* ZERO

(* SPECIFY COMMAND LENGTH
OUT TSO FUNCTION RETURN CODE
OUT TSO SERVICE ROUTINE REASON
OUT TSO FUNCTION ABEND CODE

PARM6); (*' INTERFACE WITH TSO SERVICE ROUTINE
WRITELN(FILEOUT, 'THE FUNCTION RETURN CODE IS ',PARM4);

(* PRINT OUT FUNCTION RETURN CODE *)
WRITELN(FILEOUT,' THE TSR REASON CODE IS ',PARMS);

(* PRINT OUT TSR REASON CODE *)
WRITELN(FILEOUT, 'THE FUNCTION ABEND CODE IS ',PARM6);

(* PRINT OUT FUNCTION ABEND CODE *)
END.

Figure 18-6. PASCAL Program Demonstrating the Use of TSOLNK to Invoke a Command

*)
*)

CODE *)
*)

*)

*)
*)
*)
*)

Chapter 18. Invoking Programs or Commands from a Program with the TSO Service Facility 18-11

ID DIVISION.
PROGRAM-ID. TSOSVR.

* THIS COBOL PROGRAM WILL INTERFACE WITH THE TSO SERVICE ROUTINE.
* THIS PROGRAM WILL ISSUE THE LISTBC COMMAND.
* SINCE THIS PROGRAM DOES
* ITS OWN I/O AFTER THE TSO COMMAND IS EXECUTED TO DISPLAY RETURN
* CODES, USER SHOULD ALLOCATE FILE "SYSPRT" TO THE TERMINAL.

* THIS PROGRAM WILL RUN ON THE OS/VS COBOL COMPILER RELEASE 3 OR
* HIGHER

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

* DEFINE OUTPUT DEVICE

SELECT TRMPRT ASSIGN TO UT-S-SYSPRT.
DATA DIVISION.
FILE SECTION.

DEFINE OUTPUT FILE

FD TRMPRT
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 133 CHARACTERS.

* DEFINE OUTPUT RECORD

01 OUTREC.
02 OUT-LINE PICTURE X(133).

WORKING-STORAGE SECTION.

* DEFINE OUTPUT RECORD FORM

01 OUT-RECORD.
02 CONTROL-CHAR PICTURE X VALUE SPACE.
02 COMMENT PICTURE X (25) .
02 OUT-VALUE PICTURE +++++++++9.
02 FILLER PICTURE X(lll) VALUE SPACES.

* DEFINE COMMENT VALUES FOR OUTPUT RECORD FORM

01 RETURN-COMMENT PICTURE X(25) VALUE 'FUNCTION
01 REASON-COMMENT PICTURE X(25) VALUE , TSF
01 ABEND-COMMENT PICTURE X(25) VALUE 'FUNCTION

RETURN
REASON
ABEND

* DEFINE FLAGS TO BE FULL WORDS WITH APPROPRIATE BITS

01 FLAG1-0N PICTURE S9(9) VALUE +16777216 CaMP.
01 FLAG2-0N PICTURE S9(9) VALUE +65536 CaMP.
01 FLAG3-0N PICTURE S9(9) VALUE +256 CaMP.
01 FLAG4-0N PICTURE S9(9) VALUE +2 CaMP.
01 FLAG1-0FF PICTURE S9(9) VALUE +0 CaMP.
01 FLAG2-0FF PICTURE S9(9) VALUE +0 CaMP.
01 FLAG3-0FF PICTURE S9(9) VALUE +0 CaMP.
01 FLAG4-0FF PICTURE S9(9) VALUE +1 CaMP.

CODE IS
CODE IS
CODE IS

ON

,

Figure 18-7 (Part 1 of 3). COBOL Program Demonstrating the Use of TSOLNK to Invoke a Command

18-12 TSO/E User's Guide

* DEFINE STORAGE FOR PARMS
* PARMI IS DECIMAL VALUE OF FLAGS
* PARM2 IS COMMAND TEXT
* PARM3 IS COMMAND LENGTH (SET TO 80)
* PARM4 IS FUNCTION RETURN CODE VALUE FROM TSOLNK
* PARMS IS TSF REASON CODE VALUE FOR ABEND FROM TSOLNK
* PARM6 IS FUNCTION ABEND CODE VALUE FROM TSOLNK

*

01 PARMI PICTURE S9(9) COMPo
01 PARM2 PICTURE X (80) .
01 PARM3 PICTURE S9(9) VALUE +80 COMPo
01 PARM4 PICTURE S9(9) VALUE +0 COMPo
01 PARMS PICTURE S9(9) VALUE +0 COMPo
01 PARM6 PICTURE S9(9) VALUE +0 COMPo

PROCEDURE DIVISION.

MOVE DESIRED COMMAND TO PARM2

READY-COMMAND.
MOVE SPACES TO PARM2.
MOVE 'LISTBC' TO PARM2.

* SET FLAGS BY ADDING APPROPRIATELY VALUED FLAG VARIABLES

READY-FLAGS.
MOVE 0 TO PARMI.

* RESERVED FLAG

ADD FLAGI-0FF TO PARMI.

* RESERVED FLAG

ADD FLAG2-0FF TO PARMI.

* FLAG3-0N TO REQUEST ABEND WITH DUMP

ADD FLAG3-0N TO PARMI.

* FLAG4-0FF TO REQUEST A TSO COMMAND (NOT A PROGRAM) BE INVOKED

ADD FLAG4-0FF TO PARMI.

CALL TSOLNK

Figure 18-7 (Part 2 of 3). COBOL Program Demonstrating the Use of TSOLNK to Invoke a Command

Chapter 18. Invoking Programs or Commands from a Program with the TSO Service Facility 18-13

CALL-TSOLNK.
CALL 'TSOLNK' USING PARMl PARM2 PARM3 PARM4 PARMS PARM6.

* PRINT RESULTS

PRINT-COMMENTS.
OPEN OUTPUT TRMPRT.

* PRINT THE FUNCTION RETURN CODE

MOVE RETURN-COMMENT TO COMMENT.
MOVE PARM4 TO OUT-VALUE.
WRITE OUTREC FROM OUT-RECORD.

* PRINT THE TSF REASON CODE

MOVE REASON-COMMENT TO COMMENT.
MOVE PARMS TO OUT-VALUE.
WRITE OUTREC FROM OUT-RECORD.

* PRINT THE FUNCTION ABEND CODE

MOVE ABEND-COMMENT TO COMMENT.
MOVE PARM6 TO OUT-VALUE.
WRITE OUTREC FROM OUT-RECORD.

CLOSE TRMPRT.
STOP RUN.

Figure 18-7 (Part 3 of 3). COBOL Program Demonstrating the Use of TSOLNK to Invoke a Command

18-14 TSO/E User's Guide

* THIS ASSEMBLER PROGRAM CALLS THE TSO SERVICE FACILITY TO
* EXECUTE THE LINKAGE EDITOR PROGRAM (SYS1.LINKLIB(IEWL)).
* THIS PROGRAM PASSES ONE PARAMETER TO THE LINKAGE EDITOR.
* TO SUCCESSFULLY EXECUTE THE PROGRAM, THE USER SHOULD
* ALLOCATE THE FOLLOWING FILES: SYSUT1, SYSLMOD, SYSLIN AND
* SYSPRINT.

*
*
*
*
*
*

TSFPROG CSECT

STM 14,12,12(13) ENTRY LINKAGE
BALR 12,0
USING *,12 USE R12 AS BASE REG
ST 13,SAVE+4 SAVE CALLERS SAVE AREA
LA 13,SAVE HAVE POINTER TO THIS SAVE AREA
L 15,=V(IKJEFTSR) GET ADDRESS OF IKJEFTSR

CALL (15), (FLAGS,PGM,PGMLEN,RETCODE,REASONC,ABENDCD,PARMLIS T),VL
LTR 15,15 WAS RETURN CODE FROM IKJEFTSR = 07
BZ NOERROR NO ERROR ---- PROCEED ON

*
*
* CHECK RETCODE, REASONC, AND ABENDCD AT THIS POINT
*
*
NOERROR EQU
*
*
*

L
LM
BR

* DECLARES
SAVE DS
FLAGS DS

DC
DC
DC

PGM DC
PGMLEN DC
RETCODE DS
REASONC DS
ABENDCD DS
PGMPARM1 DS

DC
DC

PARMLIST CALL
END

* CONTINUE ON WITH PROGRAM

13,SAVE+4 GET CALLERS SAVE AREA
14,12,12(13) EXIT LINKAGE
14 RETURN TO SUPERVISOR

18F
OF
XL2'0000' INITIALIZE TO ZERO
XLI' 01' SPECIFY DUMP TO BE TAKEN
XL1'02' PROGRAM TO BE EXECUTED
C'IEWL' NAME OF PROGRAM / LINKAGE
F'4' LENGTH OF PROGRAM NAME
F FUNCTION RETURN CODE
F TSF REASON CODE
F ABEND CODE
OF FIRST AND ONLY PARAMETER
H'8' LENGTH OF PARM TO IEWL
C'MAP,XREF' THE ACTUAL PARM TO IEWL
, (PGMPARM1) ,VL,MF=L SET UP PARM LIST TO IEWL

Figure 18-8. Assembler Program Demonstrating the Use of IKJEFTSR to Invoke a Program

EDITOR

TO IEWL

Chapter 18. Invoking Programs or Commands from a Program with the TSO Service Facility 18-15

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

C

C
C

C

C

C

C
104

105
C
C

100
C

101
C

102

THIS FORTRAN PROGRAM INVOKES THE IEBCOPY PROGRAM IN TSO AND
THEN PRINTS OUT THE COMMAND BUFFER AND THE RETURN, REASON
AND ABEND CODES RESULTING FROM THE EXECUTION OF THE TSO
SERVICE ROUTINE. TO USE THE EXAMPLE THE USER MUST ALLOCATE
THE FOLLOWING FILES:

ALLOC F(FT06FT001) DSN(*)
ALLOC F(SYSIN) DSN(YOUR.SYSIN)
ALLOC F(SYSPRINT) DSN(*)
ALLOC F(INDD) DSN(YOUR.INPDS)
ALLOC F(OUTDD) DSN(YOUR.OUTPDS)

THE EXAMPLE REQUIRES THE FOLLOWING CARD IN YOUR.SYSIN FILE:
EXAMPLE COpy OUTDD=OUTDD,INDD=INDD

THIS PROGRAM WAS COMPILED ON THE FORTRAN G1 COMPILER

EXTERNAL TSOLNK
INTEGER PARM11,PARM12,PARM13,PARM14
INTEGER PARM1,PARM3,PARM4,PARMS
INTEGER PARM2(20),FILL
PLACE PROGRAM NAME IN PARM2
DATA PARM2 I'IEBC' ,'OPY ','

+' ',' ',' ',' ','
+' ',' ',' ',' 'I

DATA FILL I' 'I
PARM11 0
PARM12 = 0
PARM13 = 0

, , , , , ,

SPECIFY THAT A PROGRAM IS TO BE EXECUTED
PARM14 = 2

, , , , , ,

FILL IN THE CONTROL BITS OF THE FIRST PARAMETER
TO REQUEST DUMP OFF

, , , , , ,
, , , , , ,

PARM1 = (PARM11*16**6)+(PARM12*16**4)+(PARM13*16**2)+PARM14
PUT THE PROGRAM LENGTH INTO THE THIRD PARAMETER
PARM3 = 80
ZERO OUT THE RETURNED VALUES BEFORE THE CALL
PARM4 0
PARMS = 0
PARM6 = 0
EXECUTE THE TSO SERVICE ROUTINE
CALL TSOLNK(PARM1,PARM2,PARM3,PARM4,PARMS,PARM6)
WRITE (6,104)
PRINT OUT THE FUNCTION EXECUTED
FORMAT (' ','FUNCTION EXECUTED: ')
WRITE (6,105) FILL, (PARM2(I),I=1,20)
FORMAT (21A4)
PRINT OUT THE RETURNED VALUES
PRINT OUT THE FUNCTION RETURN CODE
WRITE (6,100) PARM4
FORMAT (' ','THE FUNCTION RETURN CODE IS ',16)
PRINT OUT THE TSF REASON CODE
WRITE (6,101) PARMS
FORMAT (' ',' THE TSF REASON CODE IS ',16)
PRINT OUT THE FUNCTION ABEND COOE
WRITE (6,102) PARM6
FORMAT (' ','THE FUNCTION ABEND CODE IS ',16)
STOP
END

Figure 18-9. Fortran Program Demonstrating the Use of TSOLNK to Invoke a Program

18-16 TSO/E User's Guide

/***/
/* THIS PL/I PROGRAM ISSUES THE IEBCOPY PROGRAM IN TSO AND THEN */
/* PRINTS OUT THE COMMAND BUFFER AND THE RETURN, REASON AND */
/* ABEND CODES RESULTING FROM THE EXECUTION OF THE TSO SERVICE */
/* ROUTINE. TO USE THE EXAMPLE THE USER MUST ALLOCATE THE */
/* FOLLOWING FILES: */
/* ALLOC F(FILEOUT) DSN(*) */
/* ALLOC F(SYSIN) DSN(YOUR.SYSIN) */
/* ALLOC F(SYSPRINT) DSN(*) */
/* ALLOC F(INDD) DSN(YOUR.INPDS) */
/* ALLOC F(OUTDD) DSN(YOUR.OUTPDS) */
/* THE EXAMPLE REQUIRES THE FOLLOWING CARD IN YOUR.SYSIN FILE: */
/* EXAMPLE COpy OUTDD=OUTDD,INDD=INDD */
/* */
/* THIS PROGRAM WILL RUN ON THE OS/VS PLI COMPILER RELEASE 2 OR */
/* HIGHER. */
/***/
TSOCALL:

PROCEDURE OPTIONS (MAIN) ;
DECLARE 1 PARM1,

2 PARM11 FIXED BINARY (15,0), /*
2 PARM13 BIT(S), /*

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

1,

2 PARM14 BIT(S);

PARM2 CHARACTER(S);
PARM3 FIXED BINARY(31,0);
PARM4 FIXED BINARY(31,0);
PARM5 FIXED BINARY(31,0);
PARM6 FIXED BINARY(31,0);
(FILEOUT) FILE;
TSOLNK ENTRY(

2 FIXED BINARY(15,0),
2 BIT(S),
2 BIT(S),

CHARACTER (*),
FIXED BINARY(31,0),
FIXED BINARY(31,0),
FIXED BINARY(31,0),
FIXED BINARY(31,0)
)

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

RESERVED
ABEND FLAG ° -ABEND WITHOUT DUMPT
1 -ABEND WITH DUMP
FUNCTION CODE
1 - COMMAND
2 - PROGRAM
COMMAND OR PROGRAM
LENGTH OF CMD OR PROG
FUNCTION RETURN CODE
TSF REASON CODE
FUNCTION ABEND CODE
PLI OUTPUT FILE

STRUCTURE OF 4 BYTES
BYTE 1 RESERVED
BYTE 3 ABEND FLAG
BYTE 4 FUNCTION FLAG
NAME OF PROGRAM OR CMD
LENGTH OF CMD OR PROG
FUNCTION RETURN CODE
TSF REASON CODE
FUNCTION ABEND CODE

EXTERNAL OPTIONS(ASSEMBLER
DECLARE PLIRETV BUILTIN;

RETCODE INTER);

Figure 18-10 (Part 1 of 2). PLI Program Demonstrating the Use of TSOLNK to Invoke a Program

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Chapter 18. Invoking Programs or Commands from a Program with the TSO Service Facility 18-17

/**/
/* START OF EXECUTABLE CODE */
/**/
PARM13='OOOOOOOl'B; /* DUMP YES OR NO */
PARM14='OOOOOOlO'B; /* COMMAND OR PROGRAM */
PARM2 = 'IEBCOPY'; /* FUNCTION NAME */
PARM3 = 7; /* LENGTH OF PROGRAM */
CALL TSOLNK(PARMl,PARM2,PARM3,PARM4,PARMS,PARM6);

/* CALL TSO SERVICE ROUTINE */
PUT FILE (FILEOUT) EDIT (' THE TSOLNK RETURN CODE IS ',PLIRETV)

(A,F(3)); /* PRINT OUT RETURN CODE OF
TSO SERVICE ROUTINE */

PUT FILE (FILEOUT) EDIT (' THE FUNCTION RETURN CODE IS ',PARM4)
(SKIP, A, F(3)); /* PRINT OUT RETURN CODE OF

PUT FILE (FILEOUT) EDIT ('
(SKIP, A,

PUT FILE (FILEOUT) EDIT ('
(SKIP, A,

END TSOCALL;

IEBCOPY PROGRAM */
THE TSF REASON CODE IS ',PARMS)

F(3)); /* PRINT OUT TSF REASON CODE*/
THE FUNCTION ABEND CODE IS ',PARM6)
F(3)); /* PRINT OUT ABEND CODE

FOR IEBCOPY */

Figure 18-10 (Part 2 of 2). PLI Program Demonstrating the Use of TSOLNK to Invoke a Program

18-18 TSO/E User's Guide

(***)
(* *)
(* THIS PASCAL PROGRAM ISSUES THE IEBCOPY PROGRAM IN TSO AND *)
(* THEN PRINTS OUT THE COMMAND BUFFER AND THE RETURN, REASON *)
(* AND ABEND CODES RESULTING FROM THE EXECUTION OF THE TSO *)
(* SERVICE ROUTINE. TO USE THE EXAMPLE THE USER MUST ALLOCATE *)
(* THE FOLLOWING FILES: *)
(* ALLOC F (OUTPUT) DSN (*) *)
(* ALLOC F(SYSIN) DSN(YOUR.SYSIN) *)
(* ALLOC F(SYSPRINT) DSN(*) *)
(* ALLOC F(INDD) DSN(YOUR.INPDS) *)
(* ALLOC F(OUTDD) DSN(YOUR.OUTPDS) *)
(* THE EXAMPLE REQUIRES THE FOLLOWING CARD IN YOUR.SYSIN FILE: *)
(* EXAMPLE COpy OUTDD=OUTDD,INDD=INDD *)
(* *)
(* *)
(***)
PROGRAM TSOINTER;

TYPE
PA4=PACKED ARRAY (.1 .. 4.) OF CHAR;
PA80=PACKED ARRAY (.1 .. 80.) OF CHAR;

(***)
(* *)
(* SET UP CALL TO TSOLNK - THE TSO SERVICE ROUTINE. *)
(* WITH PARAMETER LIST. *)
(* *)
(***)
PROCEDURE TSOLNK(VAR PARMl:PA4;

VAR PARM2:PA80;
VAR PARM3:INTEGER;
VAR PARM4:INTEGER;
VAR PARM5:INTEGER;
VAR PARM6:INTEGER);

FORTRAN; (*
VAR

THIS KEYWORD IS REQUIRED TO ESTABLISH LINKAGE TO TSF *)

PARMl:PA4;
PARM2:PA80;
PARM3:INTEGER;
PARM4:INTEGER;
PARM5:INTEGER;
PARM6:INTEGER;
FILEOUT:TEXT;

(* WORD OF CONTROL BITS *)
(* PROGRAM BUFFER *)
(* LENGTH OF PROGRAM *)
(* FUNCTION RETURN CODE
(* TSO SERVICE ROUTINE REASON
(* FUNCTION ABEND CODE
(* DECLARE OUTPUT FILE NAME

CODE
*)
*)
*)
*)

Figure 18-11 (Part 1 of 2). PASCAL Program Demonstrating the Use of TSOLNK to Invoke a Program

Chapter 18. Invoking Programs or Commands from a Program with the TSO Service Facility 18-19

BEGIN
(* ZERO OUT
(* ZERO OUT BYTE
(* SPECIFY DUMP *)

*)
*)

PARM1(.1.):=CHR(O);
PARM1(.2.):=CHR(O);
PARM1(.3.):=CHR(l);
PARM1(.4.):=CHR(2);
PARM2:='IEBCOPY' ;

(* SPECIFY PROGRAM TO BE EXECUTED *)
(* FILL IN PROGRAM BUFFER *)

PARM3:=7;
PARM4:=O;
PARMS:=O;
PARM6:=O;
TSOLNK(PARM1,

(* SPECIFY PROGRAM LENGTH *)

PARM2,
PARM3,
PARM4,
PARMS,

(* ZERO
(* ZERO
(* ZERO

OUT FUNCTION RETURN CODE *)
OUT TSF REASON CODE *)
OUT FUNCTION ABEND CODE *)

PARM6); (* INTERFACE WITH TSO SERVICE ROUTINE
WRITELN(FILEOUT, 'THE FUNCTION RETURN CODE IS ',PARM4);

(* PRINT OUT FUNCTION RETURN CODE *)
WRITELN(FILEOUT,' THE TSF REASON CODE IS ',PARMS);

(* PRINT OUT TSF REASON CODE *)
WRITELN(FILEOUT, 'THE FUNCTION ABEND CODE IS ',PARM6);

(* PRINT OUT FUNCTION ABEND CODE *)
END.

*)

Figure 18-11 (Part 2 of 2). PASCAL Program Demonstrating the Use of TSOLNK to Invoke a Program

18-20 TSO/E User's Guide

*
*
*
*
*
*
*
*
*
*
*
*
*

ID DIVISION.
PROGRAM-ID. TSOSVR.

THIS COBOL PROGRAM ISSUES THE IEBCOPY PROGRAM IN TSO AND
THEN PRINTS OUT THE COMMAND BUFFER AND THE RETURN, REASON
AND ABEND CODES RESULTING FROM THE EXECUTION OF THE TSO
SERVICE ROUTINE. TO USE THE EXAMPLE THE USER MUST ALLOCATE
THE FOLLOWING FILES:

ALLOC F(SYSPRT) DSN(*)
ALLOC F(SYSIN) DSN(YOUR.SYSIN)
ALLOC F(SYSPRINT) DSN(*)
ALLOC F(INDD) DSN(YOUR.INPDS)
ALLOC F(OUTDD) DSN(YOUR.OUTPDS)

THE EXAMPLE REQUIRES THE FOLLOWING CARD IN YOUR.SYSIN FILE:
EXAMPLE COpy OUTDD=OUTDD,INDD=INDD

* THIS PROGRAM WILL RUN ON THE OS/VS COBOL COMPILER RELEASE 3 OR
* HIGHER

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

* DEFINE OUTPUT DEVICE

SELECT TRMPRT ASSIGN TO UT-S-SYSPRT.
DATA DIVISION.
FILE SECTION.

DEFINE OUTPUT FILE

FD TRMPRT
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 133 CHARACTERS.

* DEFINE OUTPUT RECORD

01 OUTREC.
02 OUT-LINE PICTURE X(133).

WORKING-STORAGE SECTION.

* DEFINE OUTPUT RECORD FORM

01 OUT-RECORD.
02 CONTROL-CHAR PICTURE X VALUE SPACE.
02 COMMENT PICTURE X (25) .
02 OUT-VALUE PICTURE +++++++++9.
02 FILLER PICTURE X(lll) VALUE SPACES.

* DEFINE COMMENT VALUES FOR OUTPUT RECORD FORM

01 RETURN-COMMENT PICTURE X(25) VALUE 'FUNCTION
01 REASON-COMMENT PICTURE X(25) VALUE , TSF
01 ABEND-COMMENT PICTURE X(25) VALUE 'FUNCTION

RETURN CODE IS
REASON CODE IS
ABEND CODE IS

,

Figure 18-12 (Part 1 of 3). COBOL Program Demonstrating the Use of TSOLNK to Invoke a Program

Chapter 18. Invoking Programs or Commands from a Program with the TSO Service Facility 18-21

* DEFINE FLAGS TO BE FULL WORDS WITH APPROPRIATE

01 FLAGI-0N PICTURE S9(9) VALUE +16777216 COMPo
01 FLAG2-0N PICTURE S9(9) VALUE +65536 COMPo
01 FLAG3-0N PICTURE S9(9) VALUE +256 COMPo
01 FLAG4-0N PICTURE S9(9) VALUE +2 COMPo
01 FLAGI-0FF PICTURE S9(9) VALUE +0 COMPo
01 FLAG2-0FF PICTURE S9(9) VALUE +0 COMPo
01 FLAG3-0FF PICTURE S9(9) VALUE +0 COMPo
01 FLAG4-0FF PICTURE S9(9) VALUE +1 COMPo

* DEFINE STORAGE FOR PARMS
* PARMI IS DECIMAL VALUE OF FLAGS
* PARM2 IS FUNCTION TEXT
* PARM3 IS FUNCTION LENGTH (SET TO SO)
* PARM4 IS FUNCTION RETURN CODE VALUE FROM TSOLNK
* PARM5 IS TSF REASON CODE VALUE FROM TSOLNK
* PARM6 IS FUNCTION ABEND CODE VALUE FROM TSOLNK

*

01 PARMI PICTURE S9(9) COMPo
01 PARM2 PICTURE X (SO) .
01 PARM3 PICTURE S9(9) VALUE +SO COMPo
01 PARM4 PICTURE S9 (9) VALUE +0 COMPo
01 PARM5 PICTURE S9(9) VALUE +0 COMPo
01 PARM6 PICTURE S9(9) VALUE +0 COMPo

PROCEDURE DIVISION.

MOVE DESIRED FUNCTION TO PARM2

READY-COMMAND.
MOVE SPACES TO PARM2.
MOVE 'IEBCOPY' TO PARM2.

BITS ON

* SET FLAGS BY ADDING APPROPRIATELY VALUED FLAG VARIABLES

Figure 18-12 (Part 2 of 3). COBOL Program Demonstrating the Use of TSOLNK to Invoke a Program

18-22 TSOjE User's Guide

READY-FLAGS.
MOVE 0 TO PARM1.

* RESERVED FLAG

ADD FLAG1-OFF TO PARM1.

* RESERVED FLAG

*

ADD FLAG2-0FF TO PARM1.

FLAG3-0N TO REQUEST ABEND WITH DUMP

ADD FLAG3-0N TO PARM1.

* FLAG4-0FF TO REQUEST A TSO PROGRAM (NOT A COMMAND) BE INVOKED

ADD FLAG4-0N TO PARM1.

CALL TSOLNK

CALL-TSOLNK.
CALL 'TSOLNK' USING PARMl PARM2 PARM3 PARM4 PARMS PARM6.

* PRINT RESULTS

PRINT-COMMENTS.
OPEN OUTPUT TRMPRT.

* PRINT THE FUNCTION RETURN CODE

MOVE RETURN-COMMENT TO COMMENT.
MOVE PARM4 TO OUT-VALUE.
WRITE OUTREC FROM OUT-RECORD.

* PRINT THE TSF REASON CODE

MOVE REASON-COMMENT TO COMMENT.
MOVE PARMS TO OUT-VALUE.
WRITE OUTREC FROM OUT-RECORD.

* PRINT THE FUNCTION ABEND CODE

MOVE ABEND-COMMENT TO COMMENT.
MOVE PARM6 TO OUT-VALUE.
WRITE OUTREC FROM OUT-RECORD.

CLOSE TRMPRT.
STOP RUN.

Figure 18-12 (Part 3 of 3). COBOL Program Demonstrating the Use of TSOLNK to Invoke a Program

Chapter 18. Invoking Programs or Commands from a Program with the TSO Service Facility 18-23

18-24 TSO/E User's Guide

Appendix A. Full Screen Logon Processing

Command Entry Field

Full screen logon menus are available to a 3270 terminal user if the display
format is 24 rows by 80 columns or larger. After you enter LOGON userid, TSO
displays a menu containing the logon operand fields relevant to your session. If
you enter more operands than your user ID on the LOGON command, TSO
accepts and displays them, except for the old and new password fields for a
RACF-defined user, and the current password field for a non-RACF-defined user.
If you enter the password operand on the LOGON command, TSO ignores it.

Unless you override default values on the LOGON command, logon operand
values default to the values present on the menu the last time you logged on.
Excluding user ID and password values, you may override one or more of the
default values on the LOGON command or on the menu itself.

If you are a RACF -defined user, you may change your password by entering your
password in the PASSWORD field and by entering the value that is to replace the
current password in the NEW PASSWORD field.

When you are satisfied with the values on the logon menu, press the appropriate
key to transmit the LOGON command to TSO. To process a full screen menu,
you must supply TSO with at least a valid user ID and a valid password. Also,
TSO will not process a menu until your other operand values are acceptable.

You may also enter a single command, up to 80 characters in length, in the
command field on the logon menu. TSO executes this command after any
command entered in the PARM Field on the EXEC statement of the logon
procedure.

Appendix A. Full Screen Logon Processing A-I

Full Screen Logon Menus

Note: In the following discussion, yourid represents your user ID and the logon
menu values are hypothetical.

If you are a non-RACF -defined user:

1. Enter LOGON yourid. TSO displays the following menu with default values:

VS2 REL xxx TIME SHARING OPTION

PFl/PF13 ==> Help PF3/PF15 ==> Logoff PAl ==> Attention PA2 ==> Reshow
You may request specific HELP information by entering a '?' in any ENTRY field.
ENTER LOGON PARAMETERS BELOW: RACF LOGON PARAMETERS:

USERID ===> YOURID

PASSWORD ===> NEW PASSWORD ===>

PROCEDURE ===> PROCOI GROUP IDENT ===>

ACCT NMBR ===> G4002

SIZE ===>

PERFORM ===>

COMMAND ===> CALL MY.PROG

ENTER AN'S' BEFORE EACH OPTION DESIRED BELOW:

-NOMAIL -NONOTICE -RECONNECT -OIDCARD

A-2 TSO/E User's Guide

2. Type in your password. For your protection, TSO inhibits the display of the
password on the screen. If you want to change any of the other values on the
menu, except userid, use the cursor positioning keys to position the cursor to
the appropriate fields.

3. Press the appropriate key to transmit the logon menu to TSO. After TSO
verifies your logon values, it displays the following preliminary message:

YOURID LOGON IN PROGRESS AT 9:00 ON 2/7/80

4. When you are logged on, TSO displays the following message:

READY

In this case TSO processes your command, CALL MY.PROG. Had you left the
command entry field blank, you could begin entering commands immediately
after the READY message.

If you are a RACF-defined user, and this is your first logon using the full screen
logon menu:

1. Enter LOGON yourid. TSO displays the following menu with default values:

VS2 REL xxx TIME SHARING OPTION

PF1/PF13 ==> Help PF3/PF15 ==> Logoff PAl ==> Attention PA2 ==> Reshow
You may request specific HELP information by entering a I?' in any ENTRY field.
ENTER LOGON PARAMETERS BELOW: RACF LOGON PARAMETERS:

USERID ===> YOURID

PASSWORD ===> NEW PASSWORD ===>

PROCEDURE ===> PROC02 GROUP IDENT ===>

ACCT NMBR ===> N0341B

SIZE ===>

PERFORM ===>

COMMAND ===>

ENTER AN'S' BEFORE EACH OPTION DESIRED BELOW:

-NOMAIL -NONOTICE -RECONNECT -OIDCARD

Error Prompting

2. Enter your password (commonly a group password) in the PASSWORD field,
a new password in the NEW PASSWORD field, and, if you wish, other logon
operand values.

3. Press the appropriate key to transmit the logon menu to TSO. After a
preliminary message, TSO displays the READY message and, then, processes
your command (if you specified one on the menu).

Full screen logon processing checks the syntax of each entry field. When TSO
discovers a syntax violation, it:

• Sounds an alarm (if terminal is so equipped)
• Displays an appropriate syntax message on the third line of the menu
• Places an asterisk (*) before the syntactically incorrect entry(ies)
• Highlights syntactically incorrect entry(ies)
• Positions the cursor in the first syntactically incorrect entry field.

TSO highlights nonsyntactical errors in the same ways. For example, if you enter
an incorrect user ID that is syntactically valid on the LOGON command, TSO
displays a menu containing any parameter values you entered on the LOGON

Appendix A. Full Screen Logon Processing A-3

command, including the invalid user ID. If RACF is installed and active, TSO
also displays RACF entry fields. No default values are available however.

Program Function Key Support for Full Screen Logon

A -4 TSO IE U serf s Guide

During full screen logon processing, TSO processes interrupts caused only by the
following program function keys.

PAl Attention Key - Full screen logon attention processing erases the present
screen. When the word LOGON appears at the top of the blank screen, you may
enter LOGOFF or another LOGON command. If you enter anything else, TSO
issues an appropriate error message.

P A2 Reshow Key - When you modify entries on a menu and then decide to start
over, press PA2 to retrieve and re-display the entries you have overridden. TSO
displays the logon information present on the screen when you last caused an
interrupt.

PFI/PFI3 HELP Key - Whenever you enter an incorrect value, TSO prompts
you for a correct one. At this time, you may press either PFI or PFl3 to request
syntactical and functional information about the entry field. TSO displays the
appropriate text and, except for the password entry fields, also displays the
incorrect data.

Note: Whenever you can enter data in the USERID, PASSWORD, or RACF
PASSWORD field, pressing PFI or PF13 requests information on all of the logon
operands. In this case, when you are finished reading a panel of information,
press the ENTER key to notify TSO that you are ready to view the next panel.
Any parameter values you have entered are also displayed with the corresponding
HELP text.

Question Mark (?) HELP Key - You may enter a question mark (?) in any entry
field to obtain syntactical and functional information about an entry. When you
enter a question mark in an entry field containing data, TSO erases it. In
addition, whenever you can enter data in the USERID, PASSWORD, or RACF
PASSWORD field, you may enter a question mark for any entry to obtain
information about the entry(ies). If you enter more than one question mark, use
the ENTER key to request the next panel of information.

PF3/PF15 End HELP Key - Press PF3 or PFl5 to notify TSO that you want to
stop viewing the information you requested using PFI or PF13. If TSO is
displaying HELP information for one field only, you may also use the ENTER
key or any PF key to end the HELP display and return to the logon menu.

PF3/PF15 LOGOFF Key - Any time TSO is displaying the logon menu, you may
press either PF3 or PF15 to log off.

Index

A

access
to data sets

on a specific volume 5-7
using the PROTECT password 9-2

to the system I
using the LOGON command 1-3

adding to a data set
using the ALLOCATE command 5-6

ALLOCATE command
examples

allocating a system output data set 5-9
concatenating data sets 5-10
creating a data set 5-4
creating a data set modeled after another data

set 5-5
making specific space requests for a data

set 5-6
requesting access to a data set on a specific

volume 5-7
requesting access to add data to the end of a

data set 5-6
requesting exclusive access to a data set 5-5
requesting non-exclusive access to a data

set 5-5
specifying data sets' disposition when freed 5-8

operands
CATALOG 5-3
DELETE 5-3
KEEP 5-3
LIKE 5-2, 5-5
MOD 5-2,5-6
NEW 5-2,5-4
OLD 5-2,5-5
selecting for specific tasks 5-2
SHR 5-2,5-6
SPACE 5-3, 5-6
specifying data set name 5-2
SYSOUT 5-9
UNCATALOG 5-3
VOLUME 5-7

allocating
a system output data set 5-9
data sets 5-1
list of data sets allocated to a user ID 8-2

AL TCTL tag 4-8
appending characters to a batch job's job name

using the SUBMIT command 15-5
ASM command 12-4
attention interrupt

definition 1-7
authorized commands 3-6

B

background jobs
cancelling 15-12
command processing differences

the CALL command 17-8
the EDIT command 17-9
the LOGOFF command 17-9
the PROFILE command 17-9
the RECEIVE command 17 -10

error condition handling 17 -11
executing commands 17-1
executing programs 15-1
status of 15-10

background restrictions 17 -11
batch job

appending characters to a job name 15-5
ending 15-9
holding output 15-5
password prompting when submitting 15-6
receiving notice when done 15-7
specifying a user ID when submitting 15-6
submit asterisk function 15-7
submitting 15-4

broadcast messages
definition 1-6
receiving using the LISTBC command 1-6

C

CALL command
examples

loading and executing load modules 14-5
passing parameters when loading and executing

load modules 14-5
CANCEL command

examples
cancelling jobs and purging their output 15-13
cancelling specific jobs 15-12

operands
PURGE/NOPURGE 15-13

cancelling
jobs and purging their output 15-13
specific jobs 15-12
using the CANCEL command 15-12

catalog
allocating data sets to a 5-3
allocating to a 5-8
listing data set entries in 8-5
use of, when allocating data sets 5-3

cataloged data sets, use of 5-3
CC tag 4-8
changing a name

of a data set 6-1
of a group of data sets 6-2
of a member 6-2

Index X-I

using the RENAME command 6-1
character deletion 1-9
character deletion character, specifying

using the PROFILE command 1-9
COBOL command 12-4
command processing in the background

differences from foreground processing 17-8
error conditions 17 -11
the CALL command 17-8
the ED IT command 17-9
the LOGOFF command 17-9
the PROFILE command 17-9
the RECEIVE command 17 -10

command's function, requesting information about
using the HELP command 3-8

command's operands, requesting information about
using the HELP command 3-8

command's syntax, requesting information about
using the HELP command 3-8

comments with commands 3-4
communicating with other users 4-1
compiling and assembling code 12-1
compiling source code statements

and passing parameters 12-7
and specifying a subroutine library 12-7
and specifying VSBASIC compiler options 12-8
using the RUN command 12-7

concatenating data sets
using the ALLOCATE command 5-10

CONTINUE subcommand of the OUTPUT command
pausing during output processing for a data

set 16-8
skipping output processing for a checkpointed data

set 16-8
specifying where to continue output

processing 16-7
continuing a line 3-3
continuing output processing

using the CONTINUE subcommand of the
OUTPUT command 16-7

copying data sets 7-1
creating

D

a data set
modelled after other data sets 5-5
using the ALLOCATE command 5-4

a load module
map 13-4
using the LINK command 13-2

an alias name for a member
using the RENAME command 6-3

da ta set copying
data sets

allocated to a specific user ID 8-2
creating 5-4
introduction 2-1
naming

X-2 TSO/E User's Guide

changing names 6-1
conventions 2-1
defaults 2-4
how to enter 2-4
qualifiers 2-1

prefixing
specifying with the PROFILE command 1-11

receiving 4-12
transmitting 4-5

DELETE command
examples

deleting a data set based on its retention
period 11-3

deleting a data set entry from a catalog 11-3
deleting a data set from the system 11-2
deleting an alias entry 11-4
deleting and scratching a data set's VTOC

entry 11-3
operands

ALIAS 11-4
CATALOG 11-3
PURGE/NOPURGE 11-3
SCRATCH/NOSCRATCH 11-3

deleting data sets
alias entries 11-4
based on retention period 11-3
from catalog entries 11-3
from the system 11-2
scratching VTOC entries 11-3

deleting password information for a data set
using the PROTECT password 9-4

delimiters 3-3
descriptive qualifiers, list of 2-2
directing held output based on checkpointing

using the OUTPUT command 16-4
displaying

attributes of data sets 8-9
current user profile 1-9
data sets allocated to a specific user ID 8-2
data sets in a catalog 8-5
message ID's with messages 1-11
password information for a data set 9-4
status of all your jobs 15-10
status of specific jobs 15-lO

disposition for held output, specifying
using the OUTPUT command 16-5

disposition when freed, specifying for a data set 5-8

E

EDIT command 2-5
EDIT subcommands 3-4
END subcommand of the OUTPUT command

terminating the OUTPUT command 16-9
ending a batch job

using the SUBMIT command 15-9
entry point when loading and executing programs,

specifying
using the LOADGO command 14-4

EPILOG tag 4-8
error condition handling

in background jobs 17-11
exclusive access to a data set

requesting using the ALLOCATE command 5-5
executing

foreground commands from a background job
concurren t execution of commands 17-1
submitting commands using the SUBMIT

command 17-2
using a JOB statement 17-5
using JCL 17-5
using the EXEC statement 17-6
using the SYSTSIN DD statement 17-7
using the SYSTSPRT DD statement 17-6

programs
comparing execution commands 12-1
in the background 15-1
using the CALL command 14-5
using the LOADGO command 14-1
using the RUN command 12-6

TSO commands 3-5
external references, resolving

F

using the LINK command 13-3
using the LOADGO command 14-3

FORT command 12-5
FREE command

examples
releasing all your data sets not currently in

use 10-2
releasing data sets and placing them in a HOLD

queue 10-4
releasing data sets and specifying their

disposition 10-4
releasing specific data sets 10-2
releasing SYSOUT data sets and sending them

to a work station 10-3
operands

DATASET or DSNAME 10-3
DELETE 10-5
DEST 10-3
FILE or DDNAME 10-3
FREE 10-1
HOLD 10-4
NOHOLD 10-4

freeing data sets
all of yours not currently in use 10-2
placing them in a HOLD queue 10-4
specific data sets 10-2
specifying their disposition 10-4
SYSOUT data sets and sending them to a work

station 10-3
full screen logon processing

command entry field A-I
error prompting A-3
logon menus A-2

program function keys A-4

G

general TSO functions

H

HELP command
examples

listing all TSO commands 3-7
requesting all available information about a
command 3-8

requesting information about a command's
function 3-8

requesting information about a command's
syntax 3-8

requesting information about a message 3-9
requesting information about a specific

operand 3-9
requesting information about all of a command's

operands 3-8
requesting more information about a command's

operands 3-8
syntax presentation of HELP information 3-7

HELP subcommand of the OUTPUT command
obtaining information about OUTPUT

su bcommands 16-9
holding a batch job's output

using the SUBMIT command 15-5
how to execute TSO commands 3-5

IKJEFTSR reason codes 18-5
IKJEFTSR return codes 18-4
information about a command, requesting all available

using the HELP command 3-8
informational messages 1-6
invoking authorized commands or programs

in a COBOL program 18-12, 18-21
in a FORTRAN program 18-8, 18-16
in a PASCAL program 18-11, 18-19
in a PLI program 18-9, 18-17
in an assembler program 18-7

invoking commands with the TSO service facility 18-1
invoking programs with the TSO service facility 18-1
invoking the TSO service facility 18-6
issuing authorized commands from an unauthorized

environment 3-6

J

JCL
submitting commands in a background job 17-1
writing for command execution

Index X-3

K

EXEC statement 17-6
JOB statement 17-5
SYSTSIN statement 17-7
SYSTSPRT DD statement 17-6

keyboard operation, bibliography 1-2
keyboards, terminal 1-2
keyword operands

L

abbreviating 3-2
definition 3-2

line continuation 3-3
line deletion 1-9
line deletion character, specifying

using the PROFILE command 1-9
LINK command

examples
creating a load module 13-2
creating a map of the load module 13-4
producing a cross reference table 13-5
producing a list of all linkage editor control

statements 13-4
producing a symbol table 13-5
producing output listings 13-3
resolving external references 13-3
sending error messages to your terminal 13-5

operands
LIB 13-3
LOAD 13-3
NOLIST 13-5
NOMAP 13-4
NOPRINT 13-4
NOTEST 13-5
PRINT 13-4
TEST 13-5
XREF 13-5

link edi ting
creating a load module 13-2
creating a map of the load module 13-4
producing a cross reference table 13-5
producing a list of all linkage editor control

statements 13-4
producing a symbol table 13-5
producing output listings 13-3
resolving external references 13-3
sending error messages to your terminal 13-5

link editing programs 13-1
LIST command

operands
LIST 8-1

list of TSO commands 3-9
LIST tag 4-8
LIST ALC command

examples

X -4 TSO IE User's Guide

listing attribute lists and data sets 8-2
listing attribute lists, DDNAMEs, and data set

disposition 8-2
listing the history of a data set 8-3
listing the members of a partitioned data

set 8-3
listing the system-generated data set names 8-4

operands
LISTALC 8-2
STATUS 8-2

LISTBC command, receiving broadcast messages 1-6
LISTCA T command

examples
listing alias entries in a catalog 8-7
listing entries in a catalog by creation and

expiration dates 8-8
listing specific data set information in a

catalog 8-8
listing the entries for specific data sets 8-6
listing the entries from a specific catalog 8-5
listing the entry names in a catalog by level 8-7

operands
ENTRIES 8-7
LEVEL 8-7, 8-8
OUTFILE 8-6

LISTDS command
examples

listing data sets' associated DDNAMEs and
dispositions 8-10

listing data sets' creation and expiration
dates 8-10

listing data sets' password protection 8-10
listing data sets' VOLID, LRECL, BLKSIZE,

RECFM and DSORG 8-10
listing information for commonly owned data

sets 8-12
listing the DSCB for a non-VSAM data

set 8-11
listing the information in a user catalog for a

data set 8-11
listing the members of a partitioned data

set 8-11
operands

listing

CATALOG 8-11
LABEL 8-11
LEVEL 8-12
LISTDS 8-9

alias entries in a catalog
using the LISTCA T command 8-7

attribute.1ists and data sets
using the LIST ALC command 8-2

attribute lists, DDNAMEs, and data set disposition
using the LIST ALC command 8-2

data set information 8-1
data sets allocated to a specific user ID 8-2
data sets in a catalog 8-5
data sets' associated DDNAMEs and dispositions

using the LISTDS command 8-10
data sets' creation and expiration dates

using the LISTDS command 8-10
data sets' password protection 8-10
data sets' VOLID, LRECL, BLKSIZE, RECFM

and DSORG
using the LISTDS command 8-10

DSCB for a non-VSAM data set
using the LISTDS command 8-11

entries
for specific data sets 8-6
from a specific catalog 8-5
in a catalog by level 8-7

history of a data set
using the LIST ALC command 8-3
using the LISTDS command 8-10

information for commonly owned data sets
using the LISTDS command 8-12

information in a user catalog for a data set
using the LISTDS command 8-11

members of a partitioned data set
using the LISTDS command 8-11

specific data set information in a catalog
using the LISTCA T command 8-8

system-generated data set names
using the LISTALC command 8-4

LOADGO command
examples

loading and executing programs with no
operands 14-2

passing parameters when loading and executing
programs 14-2

requesting output listings when loading and
executing programs 14-3

resolving external references when loading and
executing programs 14-3

specifying an entry point when loading and
executing programs 14-4

specifying names when loading and executing
programs 14-4

operands
CALL 14-3
EP 14-4
MAP 14-4
NOMAP 14-4
PRINT 14-3
specifying data-set-list
specifying data-set-name
TERM 14-3

programs

14-2
14-5

and passing parameters 14-2
producing output listings 14-3
resolving external references 14-3
specifying an entry point 14-4
specifying program names 14-4

loading programs 14-1
LOG data set

LOG data set name 4-13
purpose of 4-13
sample LOG data set 4-13

LOG/NO LOG tag 4-8
LOGLST/NOLOGLST tag 4-9

LOGNAME tag 4-8
LOGOFF command

signing off from the system 1-3
LOGON command

accessing the system 1-3
LOGSEL tag 4-8

M

making specific space requests for a data set
using the ALLOCATE command 5-6

maximum characters per line, specifying
using the TERMINAL command 1-12

member name changing 6-2
message sending

sending data sets with an accompanying
message 4-6

to another user on another system 4-5
to specific users 4-2
to the master console operator 4-2

messages
broadcast messages 1-6
error messages 1-6
informational messages 1-6
mode messages 1-4
prompting messages 1-5

mode messages 1-4
modifying held output for specific jobs

using the OUTPUT command 16-2
modifying the line number field
monitoring a background job

using the STATUS command 15-10
multivolume data sets 5-7

N

NAME tag 4-9
NAMES data set

control section 4-7
NAMES data set tags

:AL TCTL.dsname 4-8
:Cc.name,name 4-8
:EPILOG.text 4-8
:LIST.name,name 4-8
:LOG 4-8
:LOGLST 4-9
:LOGNAME.name 4-8
: LOGSEL.name 4-8
:NAME.username 4-9
:NICK.nickname 4-9
:NODE.nodeid 4-9
:NOLOG 4-8
:NOLOGLST 4-9
:NONOTIFY 4-9
:NOTIFY 4-9
:PROLOG.text 4-9
:USERID.userid 4-9

nicknames section 4-7

Index X-5

sample NAMES data set 4-8
names when loading and executing programs, specifying

using the LOADGO command 14-4
naming conventions 2-1
NICK tag 4-9
NODE tag 4-9
non-exclusive access to a data set, requesting

using the ALLOCATE command 5-5
NOTIFY /NONOTIFY tag 4-9

o

obtaining additional diagnostic information while
executing

using the PROFILE command 1-10
obtaining information about OUTPUT subcommands

using the HELP subcommand of the OUTPUT
command 16-9

output class for held output, specifying a new one
using the OUTPUT command 16-6

OUTPUT command
examples

directing held output based on
checkpointing 16-4

modifying held output for specific jobs 16-2
pausing to process held output 16-5
redirecting held output for specific jobs 16-3
routing the held output to a remote work

station 16-6
specifying a disposition for held output 16-5
specifying a new output class for held

output 16-6
operands

CLASS 16-3
NOPAUSE 16-5
OUTPUT 16-2
PAUSE 16-5
PRINT 16-3

subcommands
CONTINUE subcommand 16-7
END subcommand 16-9
examples of SAVE 16-9
HELP subcommand 16-9
obtaining information about OUTPUT

subcommands 16-9
pausing during output processing for a data

set 16-8
SAVE subcommand 16-9
saving the current output data set 16-9
skipping ?utput processing for a checkpointed

data set' 16-8
specifying where to continue output

processing 16-7
terminating the OUTPUT command 16-9

output processing
based on checkpointing 16-4
differences in background jobs 17-1
displaying at the terminal 16-2
for specific jobs 16-2

X -6 TSO /E User's Guide

pausing to process held output 16-5
redirecting for specific jobs 16-3
routing to a remote work station 16-6
specifying a disposition 16-5
specifying a new output class 16-6

OUTPUT subcommands 3-4

P

passing parameters
to load modules 14-5
when compiling

using the RUN command 12-7
when loading and executing load modules

using the CALL command 14-5
when loading and executing programs

using the LOAD GO command 14-2
password for a data set, specifying

using the PROTECT password 9-3
password prompting when submitting a batch job

using the SUBMIT command 15-6
password protection

deleting password information for a data set 9-4
displaying password information for a data set 9-4
replacing a password for a data set 9-3
specifying a password for a data set 9-3
specifying the type of access to a data set 9-2

pausing during output processing for a data set
using the CONTINUE subcommand of the

OUTPUT command 16-8
pausing to process held output

using the OUTPUT command 16-5
PLI command 12-5
positional operand 3-1
producing

cross reference table 13-5
list of all linkage editor control statements 13-4
output listings 13-3
symbol table 13-5

PROFILE command
examples

displaying message ID's with messages 1-11
displaying your current user profile 1-9
obtaining additional diagnostic information while

executing 1-10
receiving all write-to-programmer

messages 1-11
receiving messages from other users 1-10
requesting to be prompted by the system 1-10
specifying a character deletion character 1-9
specifying a data set name prefix 1-11
specifying a line deletion character 1-9

operands
CHAR 1-9
LINE 1-9
LIST 1-9
MSGID/NOMSGID 1-11
PAUSE/NOPAUSE 1-10
PREFIX/NOPREFIX 1-11

PROMPT/NOPROMPT 1-10
WTPMSG/NOWTPMSG 1-11

PROLOG tag 4-9
prompting by the system, requesting

using the PROFILE command 1-10
prompting messages 1-5
prompting, system to user 1-10
PROTECT command

examples
deleting password information for a data

set 9-4
displaying password information for a data

set 9-4
replacing a password for a data set 9-3
specifying a password for a data set 9-3
specifying the type of access to a data set 9-2

operands
DELETE 9-4
LIST 9-4
REPLACE 9-4

protecting a data set

Q

by specifying a password 9-1
by specifying access 9-1
using the ADDSD RACF command 9-5

qualifiers, data set name 2-1

R

RACF commands
examples

listing a data set's RACF protection
attributes 9-5

protecting a data set using RACF 9-5
RACF protection attributes, listing

using the LISTDSD RACF command 9-5
Reason codes-IKIEFTSR 18-5
RECEIVE command

examples
receiving a transmitted data set 4-12

receiving
messages

from other users 1-10
specifying when 4-3

notice when a batch job is done 15-7
starting the receive process 4-11
transmitted data sets 4-12
write-to-programmer messages 1-11

redirecting held output for specific jobs
using the OUTPUT command 16-3

releasing
all data sets not currently in use 10-2
data sets and specifying their disposition 10-4
datasets and placing them in a HOLD queue 10-4
specific data sets 10-2
SYSOUT data sets 10-3

RENAME command
examples

changing a group of data sets' names 6-2
changing a member's name 6-2
creating an alias name for a member 6-3

operands
ALIAS 6-3

renumbering the copied lines of data
replacing a password for a data set

using the PROTECT password 9-3
replacing characters in a translate table
return codes-IKJEFTSR 18-4
routing the held output to a remote work station

using the OUTPUT command 16-6
RUN command

S

examples
compiling source code statements 12-7
passing parameters when compiling 12-7
specifying a subroutine library when

compiling 12-7
specifying VSBASIC compiler options 12-8

SA VE subcommand of the OUTPUT command
saving the current output data set 16-9

saving the current output data set
using the HELP subcommand of the OUTPUT

command 16-9
screen size, specifying your terminal's

using the TERMINAL command 1-13
SEND command

examples
sending a message to specific users 4-2
sending a message to the master console

operator 4-2
sending messages to a specific operator or

operator console 4-3
specifying when to receive a message 4-3

operands
CN 4-4
NOW 4-3
OPERATOR 4-4

sending a message
to specific users 4-2
to the master console operator 4-2
using the TRANSMIT command 4-5

sending error messages to your terminal
using the LINK command 13-5

sending messages to a specific operator or operator
console

to a specific operator or operator console 4-3
session manager 1-4
signing off from the system

using the LOGOFF command 1-3
skipping output processing for a checkpointed data set

using the CONTINUE subcommand of the
OUTPUT command 16-8

SMCOPY command 7-1

Index X-7

space requests for a data set 5-6
specific requests for multivolume data sets

using the ALLOCATE command 5-7
specific volume request, access

using the ALLOCATE command 5-7
status

for all your jobs 15-10
for specific jobs 15-10

STATUS command
examples

displaying the status of all your jobs 15-10
displaying the status of specific jobs 15-10

subcommands
EDIT subcommands 3-4
OUTPUT subcommands 3-4
TEST subcommands 3-4

submit asterisk function
using the SUBMIT command 15-7

SUBMIT command
examples

appending characters to a batch job's job
name 15-5

ending a batch job 15-9
holding a batch job's output 15-5
password prompting when submitting a batch
job 15-6

receiving notice when a batch job is done 15-7
specifying a user ID when submitting a batch
job 15-6

submit asterisk function 15-7
submitting a batch job 15-4

operands
END 15-9
HOLD 15-5
JOBCHAR 15-6
NOHOLD 15-5
NOPASSWORD 15-6
NOTIFY 15-7
NOUSER 15-7
PASSWORD 15-6
PAUSE 15-9
SUBMIT 15-3
USER 15-6

submitting
a batch job 15-4
a number of batch jobs 15-2
commands in a background job 17-2

subroutine library when compiling, specifying
using the RUN command 12-7

syntax presentation of HELP information 3-7

T

TERMINAL command
examples

specifying the maximum characters per
line 1-12

specifying your terminal's screen size 1-13
operands

X-8 TSO/E User's Guide

LINESIZE 1-12
SCRSIZE 1-13

terminal keyboards 1-2
terminal operation, bibliography 1-2
terminal session, conducting a 1-1
terminals, learning about 1-1
terminating the OUTPUT command

using the END subcommand of the OUTPUT
command 16-9

TEST subcommands 3-4
TRANSMIT command

examples
transmitting a data set 4-5
transmitting a data set and a message 4-6
transmitting a message 4-5

transmitting
a data set 4-5
a data set and a message 4-6
a message 4-5

treating line numbers in a data set as data
TSO commands

ALLOCATE command 5-1
ASM command 12-4
CALL command 14-5
CANCEL command 15-12
COBOL command 12-4
DELETE command 11-1
EDIT command 2-5
FORT command 12-5
FREE command 10-1
HELP command 3-7
LINK command 13-1
LIST ALC command 8-2
LISTCA T command 8-5
LISTDS command 8-9
LOADGO command 14-1
LOGOFF command 1-3
LOGON command 1-3
PLI command 12-5
PROFILE command 1-8
PROTECT command 9-1
RECEIVE command 4-11
RENAME command 6-1
RUN command 12-6
SEND command 4-1
STATUS command 15-10
SUBMIT command 15-3
TERMINAL command 1-12
TRANSMIT command 4-5
TSOEXEC command 3-6

TSO service facility
examples of invocation 18-6
introduction 18-1
parameters 18-2

TSOEXEC command 3-6
TSOLNK

Assembler program demonstrating 18-7
COBOL program demonstrating 18-12, 18-21
Fortran program demonstrating 18-8, 18-16
invoking authorized commands and programs 18-6

u

PASCAL program demonstrating 18-11, 18-19
PLI program demonstrating 18-9, 18-17
sample programs 18-6
using with programming languages 18-6

use of cataloged data sets 5-3
user ID when submitting a batch job, specifying

using the SUBMIT command 15-6
user profile 1-9
USE RID tag 4-9

using data sets 4-15
using output listings when loading and executing

programs
using the LOADGO command 14-3

using session manager 1-4
using TSO commands 3-1

v

VSBASIC compiler options, specifying
using the RUN command 12-8

Index X-9

X-IO TSOjE User's Guide

TSO Extensions User's Guide

SC28-1333-1 S370-39

Printed in U.S.A. ---- ------ --------- -- ---- -- -----------,. -®

E
~:
~;S ,
TO
) V
,,(I)
: 0
;-

i8.
~.B
i"U :v
"E :E
':::J Q)
!OI c
: L ::J
::5 g'
10 0

.... <C
o "0

:v ~

:~
! c 0

: ~ :::J

L.~ u
:~
1(1)
IQ)

'a.
i~

:::J

:~
cO
IV ; a:

TSO Extensions
User's Guide

SC28-1333-1

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers,
and operators of IBM systems. You may use this form to communicate your comments about this
publication, its organization, or subject matter, with the understanding that IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to
you.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organiza ti on Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

How do you use this publication?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail directly to the
address in the Edition Notice on the back of the title page.)

TSO Extensions User's Guide

SC28-1333-1 S370-39

Reader's Comment Form

i
Fold and tape Please Do Not Staple Fold and tape I

---1

Fold and tape

--- ------ --------- - ---- -- ----------_ ... -®

IIIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department D58, Building 921-2
PO Box 390
Poughkeepsie, New York 12602

Please Do Not Staple

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

Printed in U.S.A.

SC28-1333-01

