T=ES IBM VM /System
===7= Product: EXEC 2
Language
Reference Summary
.SX24—5124-0
First Edition (July 1980)

This card applies to the initial release of IBM Virtual
Machine/System Product, Program Number 5664-167 and to all
subsequent versions and modifications unless otherwise indicated
in new editions. However, the basic document is the authoritative
source and will be the first to reflect changes. Information herein
is extracted from /BM Virtual Machine/System Product:

EXEC 2 Reference, SC24-5219.

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs),
programming, or services that are not announced in your country.
Such references or information must not be construed to mean
that IBM intends to announce such IBM products, programming,
or services in your country.

Publications are not stocked at the address given below; requests
for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

This publication has been produced by IBM Corporation,
Programming Publications, Dept. G60, P.O. Box 6, Endicott,
New York, U.S.A. 13760.

© Copyright International Business Machines Corporation 1980

Control Statements

Control statements begin with a control word, which is usually followed by
one or more additional words. The control words and the rules for their use

follow:
[lwonﬁ lword2 . .. JI 1

" o,

Assign “word1", “word2”, . . ., to the argumants &1, &2, . . ., and
discard any other EXEC 2 arg that were pr ly set. The number
of arguments now set is the number of words given in the &ARGS state-
ment, which may be less or greater than the number of arguments previous-
ly set.

| &ARGS

&BEGPRINT n k
&BEGTYPE . [_'.]
label
1
line1
line2

Print at the console “line1”, “line2”, . . ., truncated if necessary at
column “k”, without removing surplus blanks or replacing any EXEC 2
variables. If the truncation column is not given, or is given as “*”, the lines
are not truncated by the EXEC 2 interpreter. (CMS truncates at 130 charac-
ters.)

The number of lines to be printed is determined by the first argument, as
follows:

n,1 .
Print the given number of lines; or, if there are insufficient lines in the
file, print all lines to the end of the file.

Print all lines to the end of the file.

label
Print down to, but not including, a line that contains the given label and
nothing else; or, if such a line does not exist, print all lines to the end of
the file. The label, to be recognized, must be wholly contained within the
columns that would otherwise be printed, and it must be the only word
within these columns. The first character of a label must be a hyphen.

After the lines have been printed, executlon continues on the line following
the last one printed, or, if printing is terminated by a label, on the line
following the label.

This and “&BEGSTACK” are the only statements that occupy more than one
line, and are the only statements that permit the lines of an EXEC 2 file to be
handled literally, that is without removing surplus blanks or replacing

EXEC 2 variables.

&BEGSTACK n k FIFO
. 2 LIFO
label
1

line1

line2

Place in the console stack “line1™, “line2", . . ., truncated if necessary at
column *‘k”’, without removing surplus blanks or replacing any EXEC 2
variables. If the truncation column is not given, or is given as ““*”, thé lines
are not truncated. The lines are by default stacked FIFO (first in, first out),
but this can be changed by giving *“LIFO” (last in, first out) as the third
argument.

The number of lines to be stacked is determined by the fi-st argument, as
follows:

n1
Stack the given number of lines; or, if there are insufficient lines in the
file, stack all lines to the end of the file.

Stack all lines to the end of the file.

fabel
Stack down to, but not including, a line that contains the given label and
nothing else; or, if such a line does not exist, stack all lines to the end of
the file. The label, to be recognized, must be wholly contained within
the columns which would otherwise be stucked, and it must be the only
word within these columns. The first character of a label must be a
hyphen.

After the lines have been stacked, execution continues on the line following

the last one stacked, or, if stacking is terminated by a label, on the line

following the label.

This and “&BEGPRINT" are the only statements that occupy more than one

line, and are the only statements that permit the lines of an EXEC 2 file to be

handled literally, that is, without removing surplus blanks or replacing

EXEC 2 variables.

&BUFFER n {comment]
L]

Discard the lookaside buffer (if any) together with its contents; and then, if
“n” ig given, and is positive, or if ***"’ is given, create a new lookaside buffer.
If *n” is given, and is zero, a new lookaside buffer is not created. The value
of *“‘n”’ must not be negative. (In CMS the initial buffer size is 32 lines.)

The lookaside buffer is a contrivance that enables the EXEC 2 interpreter to
remember the location of labels to which reference has already been made,
and to keep a private copy of some of the more recently executed lines of
the file. It can thereby improve the performance of EXEC 2 loops, in which
the same labels and lines are used repeatedly.

I1f “n” is given, it defines the maximum number of lines that can be kept in
the buffer; if “®” is given, there is no fixed limit. For maximum effect, the
buffer should be capable of keeping the longest loop in its entirety and
should be set up before entering the loop. An even larger buffer may be
advantageous if user-defined functions or subroutines are invoked from
within a loop.

A lookaside buffer should not be used if the EXEC 2 file is subject to modifi-
cation during execution; if it is, the results are unpredictable.

&CALL line-number [argl [arg2 . . .]|
label

+ A command, the first word of which begins with an asterisk, a hyphen, or
an ampergand can be issued by giving it as the argument to
&COMMAND: otherwise it is interpreted as a comment, a labeled state-

ment, an assignment, or a control t. {Note h: , that these
characters are not acceptable to CMS command mode.)
« &COMMAND overrides any presumption of a sub. d envir
and always issues the command to the host system (CMS).
&DUMP ARGS
VAR([S] [varl [var2 ...]}
Print lines at the console of the form:
var = VALUE
either:
one for each EXEC 2 argument &1, &2, . . . which is set;
or:
one line for each of the variables “var1™, “var2”,
The lines are truncated if their length ds the implemas ion limit for

printed output. (In CMS, the line is truncated if its length exceeds 130.)

l &ERROR action

Set the action which, until further notice, is to be invoked automatically on
return from any ds (and sub ds) that yield an error return
code (that is a return code that is not zero). The action may be any executa-
ble including a null 1.

The action is not inspected at the time the &ERROR statement is executed.
Ingtead, the search for and replacement of any EXEC 2 variables takes place
each time the action is executed. The action is d es if it ied the
same line in the EXEC 2 file as the command (or subcommand) that yielded
the nonzero return code.

What happens after the action depends upon the type and consequences of
the action. If it is itself a d (or d) which also yields an
error return code, execution stops abnormailly with an error message;
otherwise (uniess the action causes a transfer of control), execution resumes
at the line following the d that d the action to be invoked.

Initially, the error action is set to the null statement.

Create a new generation of the EXEC 2 arguments &1, &2, . . ., initialized
to “arg1”, “arg2”, . . ., and invoke the specified subroutine by transfer-
ring control to the given line, or to a line starting with the given label, in such
a way as to allow control to be returned with the &RETURN statement.

The new generation of arguments supersedes the arguments that were
previously set, making the previous values, and the number previously set,
temporarily inaccessible. On entry to the subroutine, the values of the
arguments, and the number set, are as given in the &CALL statement. Their
values, and the number set, can be changed inside the subroutine in the
same way as outside, such as by assignment or with the &ARGS or &READ
statement.

On return, the new generation of arguments 1s discarded, making the previ-
ous values, and the number previously set, again accessible. Execution
resumes on the line following the &CALL statement.

The first character of a label must be a hyphen. The search for a label starts
on the line following the &CALL statement; then, if a match is not found
before the end of the file, the search resumes at the top. |f a matching label
does not exist, execution stops abnormally with an error message.

&CASE [u [comment]]
M

Translate to uppercase any lowercase alphabetic characters that are read in
response to subsequent &READ statements, or do not translate them (allow
“mixed” cases), or (if no argument is given) do not change the setting.
Initially the translation is set to “U”.

[&COMMAND I\wor(ﬂ [word2 . ..]]

Issue to the host system (CMS) the command comprising “‘word1”,
“*word2", . . ., separated from each other by a single blank. When itis
finished, its return code is obtainable from the predefined EXEC 2 variable
&RC. The statement normally has the same effect as:

wordl word2 . ..
There are, however, the following differences:

-

&EXIT [return-code [comment]]

Stop execution of the EXEC 2 file, and yield the given return code, which
must be numeric. If the given return code is not within ths range of return
codes acceptable to the host system, the result is defined by the implemen-
tation. (In CMS the range is -2,147,483,648 to +2,147,483,647.)

&GOTO line-number [comment]
label

Transfer control to the given line, or to the line starting with *“label”.

The first character of a label must be a hyphen. The search for a label starts
on the line following the &GOTO statement; then, if a match has not been
found before the end of the file, the search resumes at the top. !f a match-
ing label does not exist, execution stops abnormally with gn error message.

Loop through the following **n” lines, or down to {and including) the first line

starting with “label”, for ““m” times, or indefinitely (*), or “*WHILE” (or

*“UNTIL") the given condition is satisfied.

The values of **n” and *‘m” (if given) must be numeric: aiso *'n"" must be

positive, and “m’’ must not be negative.

The first character of the label (if given) must be a hyphen, and the label

must be attached, as the first word of the line, to an executable statement

that lies below the &LOOP statement.

The form of the condition (if given) is similar to that of the &F statement

previously described:
word1 =|EQ [word2 [commentl]

~=|NE

<ILT
<=|-~>|LEING
>|GT
>m|~<|GEINL

The condition is evaluated before each iteration of the loop, including the
first. If “word2” is absent, a null string is used in its place. The comparison
is numeric if both comparands are numeric; otherwise, both comparands are
treated as character strings, and the shorter one is (for the purpose of the
comparison) padded on the right with blanks.

If the condition is invalid, execution stops abnormally with an error message
that identifies the line containing the &LOOP statement.

&PRESUME [&4COMMAND]
&SUBCOMMAND environment

Pr that any ble statements that have the syntax of a command
(that is the first word of the statement does not begin with an ampersand)
are to be issued to the host system (CMS); or presume that they are to be
issued to the given subcommand environment.

The name of the subcommand environment is not checked when the
&PRESUME statement is executed. If, when a sub nand is subsequently
issued, the environment does not exist, the only effect is to set a special
return code. (In CMS it's -3.)

The “&PRESUME” control statement with no arguments is equivalent to
“8PRESUME &COMMAND”.

By convention, the presumption is initially set to “&COMMAND” if the
EXEC 2 file has a filetype of EXEC; otherwise it is set to “&SUBCOMMAND
filetype”, where “filetype” is the filetype of the EXEC 2 file.

The presumption has no effect on &COMMAND or &SUBCOMMAND
statements since these do not have the syntax of a command.

&PRINT {word1 [(word2 .. .]]

&TYPE

Print at the console a line containing “word1”, “word2”, . . ., separated
from each other by a single blank, or print a blank line if there are no words
given. The line is truncated if necessary. (In CMS the line is truncated if its
length exceeds 130.)

Unlike &BEGPRINT, surplus blanks are removed and the words to be printed
are searched in the normal way for the names of EXEC 2 variables, which
are replaced by their values.

&IF word1 =|EQ [word2 executable-statement]

~=|NE
<Lt
<=|-~>|LEING
>|GT
>=|~<|GEINL

&READ

o|=>3

ARGS
STRING var
VAR[S][vart {var2. . .]]

If the condition is satisfied, execute the given executable statement; other-
wise proceed to the next statement. The comparative may be given in any
of the forms shown (for example “=""or “EQ"). The comparison is numeric
if both comparands are numeric; otherwise both comparatives are treated as
character strings, and the shorter one is (for the purpose of the comparison)
padded on the right with blanks. If “word2” is absent, a null string is used
in its place.

&LOOP n m
label .

WHILE condition

UNTIL

Read from the stack (if the stack is not empty), or read from the console
(otherwise), and execute or assign what is read according to the following
rules:

n1*
Read “n” lines, or read an indefinite number of lines (*), and execute
them individually as if they had been part of the EXEC 2 file. Reading
stops (and normal execution resumes) when “n” lines have been read, or
when a &BEGPRINT, &BEGSTACK, &EXIT, &GOTO, &LOOP, or &SKIP
statement is encountered. Reading is suspended if a user-defined
function or subroutine is invoked, and continues when control returns
from that invocation.

If a *&READ n" statement is read in response to a previous “*&READ n”

statement, the new value of n is added to the number of lines that
remain from the previous statement. Reading stops if the number
remaining becomes zero or less. The value of *'n"" may be negative.

If a “&READ *" statement is read in response to a previous “&READ n
or “&READ *” statement, or if a “&READ n" statement is read in re-
sponse to a previous “&READ *” statement, an indefinite number of
lines remain to be read.

ARGS
Read a single line, assign the words in it to the EXEC 2 arguments &1,
&2, . . ., and discard any other EXEC 2 arguments that were previous-
ly set. The number of arguments now set is the number of words in the
line, which may be iess or greater than the number of arguments previ-
ously set. (See the description of &ARGS. und the predefined variables
&N and &1, &2, . . .)

STRING
Read a single line and assign it, as a literal string, to ‘“‘var”, without
removing any surplus blanks or replacing any EXEC 2 variables.

VARS
Read a single line and assign the words in it to the variables “var1”,
“var2”, If the number of words in the line read exceeds the
number of variables given in the statement, the surplus words are
discarded; or if the number of variables exceeds the number of words,
the remaining variables are set to the null string. Therefore “&READ
VARS” (without any variables) can be used to read a line and discard it.
Asterisks may be used in lieu of variable names to indicate that the
corresponding words in the line read are to be discarded.

In the case of &READ ARGS and &READ VARS . . ., the line that is read

is scanned for words (leading, trailing, and other surplus blanks are discard-

ed), but the words are treated as literals (there is no replacement of EXEC 2

variables).

The names of the variables in &READ VARS and &READ STRING are

treated in the same way as on the left-hand side of an assignment state-

ment. A variable of the form &j, where *j” is an igned integer with

leading zeros, cannot be set with &READ VARS or &READ STRING if “j”

exceeds the number of EXEC 2 arguments that are currently set.

Lines that are read are not truncated by the EXEC 2 interpreter; they are

unaffected by the setting of &TRUNC.

{In CMS the maximum length of a line read from the console is 130, and the

maximum length of a line read from the console stack is 255.)

I &RETURN l {word] [comment]

Return control to the most recent subroutine inv ion (&CALL)

to which return has not yet been made; or return ** word” (or the null string)
to the most recent user-defined function invocation to which a value has not
yet been returned.

The generation of EXEC 2 arguments that was created at invocation is
discarded; and the previous values, and the ber previously set, b
accessible again. The number of lines (if any) that remain to be read from
the stack or console in response to a previous “&READ n” statement is
reset to the number outstanding at the time of the invocation. Any loops
that have been opened in the subroutine or function, and not closed, are
aborted; and any loops that were open at the time of invocation are reinstat-
ed.

If there is both a subroutine ir ion and a f ion i tion to which
return has not yet been made, return is to the more recent point of invoca-
tion. If there is neither, execution stops abnormally with an error message.

&SKIP [n [commem]]
1

If n > 0, skip the next “n” lines of the EXEC 2 file. if n < O, transfer control
to the line that is “-n” lines above the current line. If n = 0, transfer control
to the next line.

If an attempt is made to transfer control to a line number that is zero or
negative, execution stops abnormally with an error message. |f control is
transferred to a line below the last in the EXEC 2 file, execution stops
normally with a return code of zero.

&STACK FIFO {word! {word2 ...]]
LIFO

Place a line in the console stack containing “word1”’, “word2”,
separated from each other by a single blank, or stack a null line if there are
no words. (In CMS, stacked lines are truncated at 255.) The line is by

default stacked FIFO (first in, first out), but this can be changed by giving
“LIFO” (last in, first out) as the first argument.

Unlike &BEGSTACK, surplus blanks are removed and the words to be
stacked are searched in the normal way for the names of EXEC 2 variables,
which are replaced by their values.

]anvironmont [{word1 [word2 . . .]] l

Issue to the given subcommand environment the subcommand compriging
“word1”, “word2”, . . ., separated from each other by a single blank.
When it is finished, its return code 1s obtainable frcm the predefined EXEC 2
variable &RC.

If the given environment does not exist, the only effect is to set a special
return code. (In CMS it's -3.)

Norﬂ'nally, it is convenient to “presume’’ the environment so that this control
statement does not have to be issued for every subcommand (see the
description of &PRESUME). Note that the statement “&SUBCOMMAND
environment” (without any additional arguments) is the only way of issuing a
null subcommand.

&SUBCOMMAND

&TRACE ON [output-action]
ERR

ALL

OFF

*

where “output-action”, if given, is:
&PRINT [word1 [word2 . . .]]
or:
&COMMAND word1 [word2 . . .]
or:
&SUBCOMMAND environment [word1 [word2 . . .]]
Trace col ds (and sub 1ds) that are issued from the EXEC 2 file;
or trace ds (and sub ds) that yield an error return code (a
return code that is not zero); or trace all executable statements; or do not
trace any statements; or (if “*” is given) do not change the setting. The
setting remains in effect until reset. The initial setting is OFF.
Trace information can be printed at the console, or passed to a command (or
subcommand) for processing. The trace destination is determined by the
output action, as described below.

ON
When tracing is ON, each command is traced before it is executed, and
subsequently the return code is traced if it is not zero. The return code
is traced on a line by itself in the form *+es E(NNN) +0s”.

ERR
When ERR is in effect, commands that yield a nonzero return code are
traced after execution, followed by the return code. The return code is
traced on a line by itself in the form “«ss E(NNN) +4”.

ALL
When ALL is in effect, every executable statement, preceded by its line
number, is traced before it is executed: nonzero return codes are traced
(as for ON and ERR); and loop conditions and lines that are read from
the console are also traced. The statement following an &IF clause, the
action given in an &ERROR statement, and the conditional phrase in a
&LOOP statement are traced as literal words (that is, without replace-
ment of any variables). These statements and phrases are traced again,
with the normal replacement of variables, at the time of their execution.
A statement that is dasa q of a satisfied &IF clause
is preceded in the trace by an ellipsis. Words that exceed 24 characters
in length are truncated in the trace at 21 characters and followed by an
ellipsis. Statements that exceed 80 characters in length (with the line
number and preceding ellipsis, if present) are truncated in the trace at an
integral number of words and followed by an ellipsis.

OFF
Do not trace any statements. This is the initial setting.

Do not change the setting. “&TRACE” without arguments is equivalent
to “&TRACE *”.

output-action
The output action gives the destination of the tracing information. The
words in it are searched in the normal way for the names of EXEC 2
variables, which are replaced by their values, and the resuiting sequence
of words is set aside. When a trace line is produced, it is prefixed with
the sequence of words, and the resulting EXEC 2 statement is executed
without tracing. (See the descriptions of &PRINT, &COMMAND, and

flun]]
[T

-o|
elli

1 Machines C "
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

1BM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9
North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

VST UL pautyd 0-yZLS-vZXS

&SUBCOMMAND). If the return code from the command or subcom
mand is nonzero, execution stops abnormally with an error message.
Initially the output action s set to “&PRINT", which causes the trace to
be printed at the console. If the output action is not given, the previous
action remains n effect.

&TRUNC [k hommmnq
.

Set the truncation column for EXEC 2 statements to “k”, or set it to the
maximum value, or (if no argument is given) do not change it. Initially, it s
set to the maximum value. (In CMS the maximum value 1s 255.)

Thig setting affects only the reading of EXEC 2 statements from a file and
the search for labels; it does not affect lines read from the console (which
are not truncated), or lines appearing within a &BEGPRINT or &BEGSTACK
statement (which are separately controlled); and it does not affect the length
to which a statement can grow during or after replacement of EXEC 2
variables.

Changing the truncation column has the side-effect of purging the lookaside
buffer (if there is one), and may consequently degrade performance if done
within a loop.

&UPPER ARGS
VAR [S] [varl [var2 ...]l

Translate to uppercase any lowercase alphabetic characters in the values of
the EXEC 2 arguments &1, &2, . . . ; or translate to uppercase any lower-
case alphabetic characters in the values of “var1”, “var2”,

A variable of the form &j, where “j”’ is an unsigned integer without leading
zeros, cannot be translated with &UPPER VARS if “j”’ exceeds the number
of EXEC 2 arguments that are currently set.

Predefined Variables

The following EXEC 2 variables are initialized or maintained automatically.

Lo |

Initialized to its own name (the value “&”).

Leo |

Initialized to the first word of the command string that is passed to the
EXEC 2 interpreter. Normally, this variable has the same value as
&FILENAME, but may be different if the EXEC 2 file was invoked via a
synonym.

[]

These are the EXEC 2 arguments. They are initialized to the arguments
‘‘arg1”, “arg2”, . . ., which are passed to the EXEC 2 file. They are reset
by &ARGS or &READ ARGS:; and they are temporarily reset by invocation of
user-defined subroutines and functions. EXEC 2 arguments beyond the last
that is set have an apparent null value, and cannot be set explicitly (for
example, with an assignment statement).

l &ARGSTRING]

Initialized to the command string thar is passed to the EXEC 2 file; treated
as a single literal string starting with the character following the blank that
terminates &0, and including any leading, embedded, or trailing blanks. The
initial value includes the EXEC 2 arguments &1, &2, . . ., but
&ARGSTRING is not affected by changes to them.

[]

A word that has the value of a single blank.

I &COMLINE I

Initialized to zero, and maintained as the number of the hine from which the
last command {or subcommand) was issued from the EXEC 2 file.

I &DATE —I

The true date on the primary meridian (Greenwich Mean Time (GMT)) in the
form YY/MM/DD; evaluated when the statement containing it is executed.

[eoerrn 7
.

Maintained as the number of user-defined function and subroutine invoca-
tions to which return has not yet been made.

[&FILEMODE

Initialized to the fileamode (third qualifier) of the EXEC 2 file.

l &FILENAME

Initialized to the filename (first qualifier) of the EXEC 2 file.

I &FILETYPE J

Initialized to the filetype (second qualifier) of the EXEC 2 file (for example,
“EXEC”).

[&FROM |

Initialized to zero, and maintained as the number of the line in the EXEC 2
file from which the last &GOTO statement was executed.

[&LINE, &LINENUM I

Maintained as the number of the current line in the EXEC 2 file.

L&LINK |

Maintained as the number of the line from which the currently executing
user-defined function or subroutine was invoked, or has the value 0 if there
are no user-defined functions or subroutines in execution.

L&N,&INDEX I

Maintained as the number’of EXEC 2 arguments that are set. Initially this is
the number of arguments that are passed to the EXEC 2 file. Itis reset as a
side effect of &4ARGS and &READ ARGS, and it is temporarily reset by
invocation of user-defined subroutines and functions.

|1RC. &RETCODE l

Initialized to zero, and maintained as the return code from the last command
(or subcommand) issued from the EXEC 2 file.

I &TIME 1

The true time-of-day on the primary meridian (Greenwich Mean Time (GMT))
in the form HH:MM:SS, evaluated when the statement containing it is
executed.

Predefined Functions

A predefined function can be invoked only in the last term on the right- hand
side of an assignment statement. The invocation takes the form:

function-name OF [argl (arg2 ...]]

The names of the predefined functions, and the rules for their use, are as
follows.

&CONCATENATION OF
&CONCAT

[word! [word2 .. .]]

Concatenates “word1”, “word2”, . . ., into a single word, without inter-
vening blanks; or yields the null string if there are no words.

&DATATYPE OF {word)
&TYPE

Yields the value NUM if “word" represems a valid (slgnad or unsigned)
number; otherwise, yields the value CHAR.

&DIVISION OF
&DIVv

dividend divisor

Yields a numeric value which results from dividing the dividend by the-
divigsor. Both the dividend and the divisor must be numeric and the divisor
must not be zero.

If the dividend and divisor are both positive, or if they are both negative, the
result is positive: if the dividend is positive and the divisor is negative, or
vice versa, the result is negative; if the dividend is zero, then the result is
2ero.

In precise terms, the value is the integral part of the division of the absolute
value of the dividend by the absolute value of the divisor, or minus this value
if the dividend is not zero, and the sign of the dividend differs from that of
the divisor.

|jLEFT OF

[word j I

Yields a string of langth “{”” in which “word” is left-justified and either
padded with blanks, or trunemed on the right.

L&LENGT‘H OF

| [word] . |

Yields a numeric value representing the length of the word (that is; the
number of characters in it); or yields zero if the word is absent.

I &LITERAL OF

l [string] '

Yields the literal string that begins with the character following the blank
that terminates ‘‘OF”, and ends with the last nonblank character before or at
the truncation column. Any leading or embedded blanks are retained, and
the search for and replacement of any EXEC 2 variables that may appear in
the string is suppressed.

[&LOCATION OF

I nesdle [haystack] I

Searches “haystack” for the first occurrence of “needle”, and yields a
number indicating its starting position, or yields zero if there is no occur-
rence (or if the length of “needle” exceeds that of “haystack”).

&MULTIPLICATION OF ijlk «..]
&MULT

Yields a numeric value representing the result of multiplying the given
words, all of which must be numeric (signed or unsigned), and of which there

must be at least two.

&PIECE OF word i | j

&SUBSTR | -

Extracts that piece of “word” that starts at character “i”’, with length “j”"; or
that starts at character “i” and runs to the end of the word (*).

The value of “i” (and “j” i given) must be numeric; also “i”’ must be posi-

[

tive, and “j” must not be negative.

If the value of ““i”” exceeds the length of the word, the value of the function
is the null string. If ““j” is given, but exceeds the remaining length of the
word, the remaining length is used instead.

r&POSIT|0N OF J word [word1l [word2 . . .]] I

Compares “word” with “word1”, “word2”, . . ., looking for a match, and
yields a numeric vaiue representing the position of the first matching word,
or yields zero if “‘word” does not match any of the nther words (or if there

are no other words given).

I &RANGE OF

Istem;j I

Yields a string consisting of the words that are composed by appending to
the given stem the numbers i, i+1, . . ., j, the words being separated from
each other by a single blank; or yields the null string if i > j.

The stem is treated as a literal until after the composition is performed. The
numbers that are appended to it are stripped of any plus sign or redundant
leading zeros.

The composed names are searched for any EXEC 2 variables, which are
replaced by their values in the usual way. If, as a result of this, a word is
reduced to the null string, it is discarded from the result, and the next word
is deemed immaediately to follow the previous one.

[' |

Yields a string in which “word” is right-justified and either extended with
blanks, or shortened on the left, to a length of “p.

[&RIGHT OF

| [string] l

Yields the string that begins with the character following the blank that
terminates ‘“OF”’ and ends with the last nonblank character before, or at, the

truncation column, suppressing the r | of any leading or
blanks in the string.

Each word in the string is searched in the usual way for the names of EXEC
2 variables, which are replaced by their values. However, bianks are not
removed from the string, even if they are adjacent to a word that is reduced
to the null string.

| &STRING OF

&TRANSLATION OF
&TRANS

word1 [word2 {word3}]

Makes a copy of “word1”, modifies the characters in it as directed by
“word2” and “word3”, and yields the resulting string.
The rules for modification are as follows. Each character of the copy is
considered in turn, and:
1. If “word2” does not contain a matching character, the character in the
copy is left unchanged; or
2. If “word2” contains a matching character, in position “i” (or if it con-
tains several matching characters, the first of which occupies position
“"’) the character in the copy is replaced by the ith character of
“word3”’, or by a blank if “word3” is not given or contains fewer than
“i” characters.

The result has the same length as “word1”.

l [word] l

Yields a string consisting of “word” with any trailing blanks removed, or
yields the null string if “word” is not given.

I &TRIM OF

L&WORD OF I {word1{word2. . . 1li l

Yields the ith word from the given list of words, or yields the null string if “i”
is zero or exceeds the number of words that are given. The value of “i”
must be numeric, and must not be negative.

User-Defined Functions

A user-defined function can be invoked only in the last term on the right-
hand side of an assignment statement. The invocation takes the form:

line-number OF [argl [arg2 . ..]]
label

The effect is to create a new generation of the EXEC 2 arguments &1, &2,

. . ., initialized to “arg1”, “arg2”, . . . , and to invoke the given func-
tion; that is, to transfer control to the given line, or to a line starting with the
given label, in such a way as to allow a value to be returned with the
&RETURN statement.

The new generation of arguments supersedes the arguments that were
previously set, making the previous values, and the number previously set,
temporarily inaccessible. On entry to the body of the function, the values of
the arguments, and the number set, are as given in the function invocation.
Their values, and the number set, can be changed in the body of the function
in the same way as outside, such as by assignment or with the &ARGS or
&READ statement. On return, the new generation of arguments is discard-

ed, and the previous values, and the number of arguments previously set,
become accessible again.

The first character of a label must be a hyphen. The search for a label starts
on the line following the function invocation; then, if a match 1s not found
before the end of the file, the search resumes at the top. If a matching label
does not exist, execution stops abnormally with an error message.

Types of Executable EXEC 2 Statements

Null statement.

A null statement is an executable statement in which the number of
words is zero.

Commands.

An executable statement is deemed to be a command if it contains at
least one word, and its first word does not start with an ampersand. It s
issued immediately to the host system (CMS), or to a subcommand
environment (for example, XEDIT). When it is finished, control returns to
the EXEC 2 file, and its return code can be obtained from the predefined
EXEC 2 variable &RC.

Assignments.
An executable statement is an assignment if the first word starts with an
ampersand and the second word is an equal sign. The first word is taken
as the name of an EXEC 2 variable, and assigned the value of the expres-
sion that follows the equal sign. The expression may be any of the
following:
- null
- a single word, for example: ABC
an arithmetic expression, consisting of a sequence of words that
represent positive or negative integers, separated by plus or minus
signs, for example: 3-4 +-11-00
a function invocation, for example:

&PIECE OF &1 2 1

an arithmetic expression (as above) in which the last term is replaced
by a function invocation that yields a numeric value, for example:

-1+ &LENGTH OF &1

A variable of the form &j, where “j” is an unsigned integer without
leading zeros, cannot be set with an assignment 1t if 5 d
the number of EXEC 2 arguments that are currently set.

The value of the variable on the left-hand side of the assignment state-
ment is not modified until the expression on the right-hand side has been
evaluated. If an assignment statement is syntactically invalid, or if
evaluation of the expression results in numeric overflow, execution stops
abnormally with an error message, without further evaluation.

Control statements.

An executable statement is a control statement if the first word is an
EXEC 2 control word and the second word either is absent or is not an

equal sign. Examples of control words are &GOTO, &EXIT, &IF, and
&PRINT.

Rules for Interpreting Executable
Statements

Executable statements are interpreted, one at a time, according to the
following general rules.

1. The statement is scanned. This discards leading, trailing, and other
surplus blanks, leaving a sequence of words separated from each other
by a single blank.

2. The words forming the statement are searched for the names of any
EXEC 2 variables, which are replaced by their values; except that if the
variable is the target of an assignment, its name is retained. (A precise
description is given in the section “EXEC 2 Name Substitution.’’) During
this process, the words may grow or shrink in length.

3. If, as a result of step 1, a word is reduced to the null string, it is discard-
ed from the statement so that the next word is deermed immediately to
follow the previous one. With this exception, the words retain their
identity; for example, if the value of a variable contains an embedded
blank, the word containing it is still treated as one word, although when
printed it might appear as two.

4. The statement is analyzed syntactically, and executed. Note that, except
for identifying the targets of assignment, the syntax analysis is done
after steps 1, 2, and 3 above.

A

EXEC 2 Name Substitution \

The words that form an executable statement are searched for the names o
EXEC 2 variables, which are raplaced by their values. This is done according
to the following steps:

1. Each word is ingpected for ampersnnds starting with the rightmost
character of the word, and proceeding to the left.

2. If an ampersand is found, then it, with the rest of the word to the right,
is taken as the name of an EXEC 2 variable, and replaced (in the word)
by its value. This may increase or decrease the length of the word.
Initially, all variables have a null value, except:

a. the variables that represent the EXEC 2 control words and prede-
fined functions, which are initialized to their own names (for exam-
ple, the value of “'&IF’* is “"&IF"’); and

b. the EXEC 2 arguments, and the other predehned variables, which
have the values specified in the ' “‘Predefined Variabl

3. Inspection resumes at the next character to the left, and the procedure
is repeated from step 2 above, until the word is exhausted.

There is an exception if the word is the target of an assignment; in this case,
inspection for ampersands stops on the second character of the word.

Note that any characters that are substituted aiﬁ not themselves i cted

for ampersands. They are, however, included in the name of the noxt
variable if another ampersand is found to the left.

\

EXEC 2 in CMS

Since both CMS EXEC and EXEC 2 files are called in the same way, CMS
examines the first statement of the EXEC file to determine which EXEC
interpreter must handle it. If the first statement of the EXEC file is &TRACE,
CMS calls the EXEC 2 interpreter to handle it. If the first statement is not
&TRACE, CMS calls the CMS EXEC interpreter to handle it.

Some CMS limits that apply to EXEC 2 files are:

EXEC 2 files used as8 CMS command files must have the &TRACE state-
ment in the first record of the file. In subccmmand environments, such
as XEDIT for XEDIT macros, the &TRACE statement is optional.

The maximum length of an EXEC 2 line is 255.

The maximum length of a statement, after replacement of variables, is
511. (This limit is enforced only as needed by the interpreter; some
statements can grow to a greater length.)

The maximum length of a word, after replacement of variables, is 255.

The maximum length of a line read from the console is 130, and from the
console stack is 255.

The maximum length of a printed line is 130.

An EXEC 2 filename can be from one to eight characters long. The valid
characters are A-Z, 0-9, and $, #, @. The filetype must be EXEC for
files that are invoked from CMS command mode and XEDIT for files used
as XEDIT macros.

All EXEC 2 files have an initial lookaside buffer of 32 lines (see the
&BUFFER description in the “Control Statements” section). The
&BUFFER 0 statement must be issued to delete the lookaside buffer if
the file is to be modified while being executed.

« In a context that requires numeric values, numbers must be in the range
-2,147,483,648 10 +2,147,483,647.

« In CMS, return codes for the &EXIT control statement are limited to the
range -2,147,483,648 t0 +2,147,483,647. Attempts to exceed these
limits will cause the EXEC 2 file to stop abnormally with an error mes-
sage (NUMERIC OVERFLOW).

« CMS commands issued from EXEC 2 files are invoked in such a way that
most information and error messages issued by the following CMS
commands will not be typed: ERASE, LISTFILE, RENAME, STATE, and
FILEDEF. This is also true for any other system or user command that
makes a distinction in its operation based on flags passed in register 1.
However, note that a nonzero return code from any of these commands
will be reflected in the predefined variables &RETCODE and &RC.

N

N

\

~

