

--- ------ - ---- ---- - ---- - - -~--------_.- Virtual Machine/
System Product

System PIrCQIfBlMuifiHerr'$

Guide

Release 3

Third Edition (August 1983)

This edition, SC19-6203-2, applies to Release 3 of IBM Virtual Machine/System Product
(VM/SP) unless otherwise indicated in new editions or Technical Newsletters. Changes
are continually made to the information contained herein; before using this publication in
connection with the operation of IBM systems, consult the IBM System/370 and 4300
Processors Bibliography, GC20-0001, for the editions that are applicable and current.

Technical changes and additions to the text and illustrations are indicated by a vertical bar
to the left of the change.

Summary of Changes

For a detailed list of changes, see page iii.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any refer­
ence to an IBM program product in this publication is not intended to state or imply that
only IBM's program product may be used. Any functionally equivalent program may be
used instead.

Publications are not stocked at the address given below; request for copies of IBM publi­
cations should be made to your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of this publication; if the form has
been removed, comments may be addressed to IBM Programming Publications, Dept.
G60, P.O. Box 6, Endicott, New York, U.S.A. 13760. IBM may use or distribute any of
the information you supply in any way it believes appropriate without incurring any obli­
gation whatever. You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1980, 1981, 1982, 1983

Summary of Changes

Summary of Changes
for SC19-6203-2
for VM/SP Release 3

Programmable Operator Facility

Several enhancements to the programmable operator facility added are:

Message routing with nicknames

Remote node availability

Enhanced text comparison

EXEC action routines

• LOG recording and error handling

PER

Problem determination capability is greatly extended and enhanced by the new
CP command, PER.

DASD Block I/O System Service

The DASD block I/O system service allows a virtual machine fast,
device-independent asynchronous access to fixed size blocks on CMS format­
ted virtual DASD I/O devices.

IUCV

Inter-User Communication Vehicle (IUCV) extensions provide:

SEND and REPLY extensions

An extended mask capability for control interrupts

An expanded trace capability to record all IUCV operations

A macro option to initialize the parameter list

Support for the DASD block I/O system service.

The IBM 3088 Multisystem Communications Unit

The IBM 3088 Multisystem Communications Unit interconnects multiple sys­
tems using block multiplexer channels. The 3088 uses an unshared sub channel
for each unique address and is fully compatible with existing
channel-to-channel adapter protocol.

Summary of Changes iii

CMS IUCV support

Support for IUCV communication has been introduced into CMS. This sup­
port allows multiple programs within a virtual machine to use IUCV functions.
Included is the ability to initialize a CMS machine for IUCV communication
and to invoke IUCV functions via new CMS macros. These macros also allow
the user to specify path-specific exits for IUCV external interrupts.

CMS ABEND exits

A general CMS abnormal exit capability is provided so that user programs may
specify the address of a routine to get control before CMS ABEND recovery
begins. An exit is established and cleared through a new CMS macro.

Enhanced immediate command support.

The immediate command capability of CMS is extended by allowing users to
define their own immediate commands.

Enhanced VSAMsupport

CMS supports VSE/VSAM Release 3 which includes significant enhancements
designed to improve catalog reliability and integrity while providing additional
serviceability and usability. VSE/VSAM Release 2 is not supported.

Miscellaneous

iv VM/SP System Programmer's Guide

Changes to the DIAGNOSE zero interface provide the time zone differential
from Greenwich Mean Time.

DIAGNOSE X'8C' allows a virtual machine to access device dependent infor­
mation without having to issue a WRITE STRUCTURE FIELD QUERY
REPLY.

CMSSEG has been eliminated and the code was merged into the CMS
Nucleus.

The Remote Spooling Communications Subsystem (RSCS) section of this
manual has been removed as it pertained to RSCS as a component of
VM/370. Now, any reference to RSCS in this manual applies to the RSCS
Networking Programming Product, and information can be found in the
VM / SP Remote Spooling Communications Subsystem Networking Program Ref­
erence and Operations Manual, SH24-5005.

A newly added appendix lists and describes the CMS macros applicable to
VM/SP.

Minor technical and editorial changes have been made throughout this publica­
tion.

Summary of Changes
for SC19-6203-1
as Updated by SN24-5736

Missing Interrupt Handler

The missing interrupt detector has been extended so that CP not only detects
missing interrupt conditions, but also attempts to correct them. CP informs the
system operator whether or not the corrective action was successful.

To help give you optimum system availability, the missing interrupt handler
allows you to vary the time interval allowed for I/O completion for the sup­
ported devices.

3880 Speed Matching Buffer (Feature #6560)

The 3880 Speed Matching Buffer Feature for the IBM 3375 uses a 16K-byte
storage buffer to modify the direct access data transfer path between the 3375
and the mUltiplexer channel. The feature allows attachment of the 3375 Direct
Access Storage Device, with its 1.859 megabytes per second data rate, to block
multiplexer channels with data rates as low as 1.5 megabytes per second, as
well as to high speed multiplexer channels.

Miscellaneous

The Programmable Operator Facility section of this publication has been
rewritten to include minor technical and editorial changes.

Summary of Changes
for SCI 9-6203-1
for VM/SP Release 2

Programmable Operator Facility

This facility provides the capability to: log messages, suppress messages, redi­
rect messages, execute messages, or preprogram message responses. The
capabilities are under control of an editable message routine table in a CMS
file.

Inter-User Communication Vehicle (IUCV) enhancements for message handl­
ing are also included.

CMS Nucleus Restructure, and Removal of the CMS Tokenization Eight-Byte
Restriction

The restructured nucleus provides a CMS system that is more flexible and
extendable for development, serviceability, and maintenance purposes.

The eight-byte tokenizer restriction has been removed for parameter passing.

Trace Table Recording Facility

Summary of Changes v

This facility allows service personnel and system programmers to create a
chronological READER spool file of CP trace entries by type, VMBLOK
address, interrupt code, and device address.

Miscellaneous

vi VM/SP System Programmer's Guide

Minor technical and editorial changes have been made throughout this publica­
tion.

Preface

Terminology

This publication describes how to debug VM/SP and how to modify, extend, or
implement Control Program (CP) and Conversational Monitor System (CMS)
functions. This information is intended for system programmers, system analysts,
and programming personnel.

This publication consists of three parts and three appendixes.

"Part 1. Control Program (CP)" contains an introductory and functional
description of CP as well as guidance in implementing some CP features.

"Part 2. Conversational Monitor System (CMS)" contains an introductory and
functional description of CMS including how eMS handles interrupts and SVCs,
structures its nucleus and its storage, and manages free storage. Information on
saving the CMS system and implementing the Batch Facility is also included.

"Part 3. Debugging with VM/SP" discusses the CP and CMS debugging tools and
procedures to follow when debugging. This part is logically divided into three
sections. The first section, "Introduction to Debugging", tells you how to identify
a problem and lists guidelines to follow to find the cause. The second section
describes the CP debugging commands and utilities, debugging CP in a virtual
machine, the internal trace table, and restrictions. A detailed description of CP
dump reading is also included. The third section, "Debugging with CMS",
describes the CMS debugging commands and utilities, load maps, and restrictions
and tells you what fields to examine when reading a CMS dump.

"Appendix A: System/370 Information" describes the System/370 extended PSW
and extended control register usage.

"Appendix B: VM Monitor Tape Format and Contents" describes the format and
contents of data records for classes and codes of MONITOR CALL.

"Appendix C: CMS Macro Library" lists and describes the CMS macros applica­
ble to VM/SP.

Some of the following convenience terms are used throughout this publication:

Throughout this publication, the term "VM/SP" refers to the VM/SP program
package when you use it in conjunction with VM/370 Release 6. The terms
"CP" and "CMS" refer to the VM/370 components enhanced by the func­
tions included in the VM/SP package. Any reference to "RSCS," unless oth­
erwise noted, is to the RSCS Networking Program Product (5748-XPl). Any
reference to "IPCS," unless otherwise noted, is to the IPCS Extended Program
Product (5748-SAl).

When you install and use VM/SP in conjunction with the VM/SP Release 6
System Control Program (SCP), it becomes a functional operating system that
provides extended features to the Control Program (CP) and Conversational
Monitor System (CMS) components of VM/370 Release 6. VM/SP adds no
additional functions to the Remote Spooling Communications Subsystem
(RSCS) and the Interactive Problem Control System (IPCS) components of
VM/370. However, you can appreciably expand the capabilities of these

Preface vii

components in a VM/SP system by installing the RSCS Networking program
product (5748-XPl) and the VM/IPCS Extension program product
(5748-SAl).

Unless otherwise noted, the term VSE refers to the combination of the
DOS/VSE system control program and the VSE/ Advanced Functions program
product. In certain cases, the term DOS is still used as a generic term. For
example, disk packs initialized for use with VSE or any predecessor DOS or
DOS/VSE system may be referred to as DOS disks.

The DOS-like simulation environment provided under the CMS component of
the VM/System Product, continues to be referred to as CMS/DOS.

Unless otherwise noted, the term "EXEC" refers to EXECs using the System
Product Interpreter, EXEC 2, or CMS EXEC languages.

Unless otherwise noted, the term "System/370" applies to the 4300 and 303X
processors.

The following terms in this publication refer to the indicated support devices:

• "2305" refers to IBM 2305 Fixed Head Storage, Models 1 and 2.

I. "3262" refers to the IBM 3262 Printer, Models 1, 5, and 11.

• "3270" refers to a series of display devices, namely, the IBM 3275, 3276 (re­
ferred to as a Controller Display Station), 3277, 3278, and 3279 Display
Stations. A specific device type is used only when a distinction is required
between device types.

Information about display terminal usage also applies to the IBM 3138, 3148,
and 3158 Display Consoles when used in display mode, unless otherwise noted.

Any information pertaining to the IBM 3284 or 3286 Printer also pertains to
the IBM 3287, 3288, and 3289 printers, unless otherwise noted.

• "3330" refers to the IBM 3330 Disk Storage, Models 1,2, or 11; the IBM
3333 Disk Storage and Control, Models 1 or 11; and the 3350 Direct Access
Storage operating in 3330 compatibility mode.

"3340" refers to the IBM 3340 Direct Access Storage Facility and the 3344
Direct Access Storage.

• "3350" refers to the IBM 3350 Direct Access Storage Device when used in
native mode.

"3375" refers to the IBM 3375 Direct Access Device.

• "3380" refers to the IBM 3380 Direct Access Storage. The Speed Matching
Buffer Feature (No. 6550) for the 3380 supports the use of extended
count-key-data channel programs.

I. "3430" refers to the mM 3430 Magnetic Tape Subsystem.

"370X" refers to IBM 3704 and 3705 Communications Controllers.

yili VM/SP System Programmer's Guide

Prerequisite Publications

Corequisite Publications

"3705" refers to the 3705 I and the 3705 II unless otherwise noted.

• "2741" refers to the IBM 2741 and the IBM 3767, unless otherwise specified.

"3066" refers to the IBM 3066 System Console.

"3800" refers to the IBM 3800 Printing Subsystem.

• "3081" refers to the IBM 3081 Processor Unit model D16.

"3088" refers to the IBM 3088 Multisystem Communications Unit (MCU)
Models 1 and 2.

"4245" refers to the IBM 4245 Line Printer.

• "4250" refers to the IBM 4250 Printer.

An expanded glossary is available in the Virtual Machine/System Product: Library
Guide and Master Index, GC19-6207.

Knowledge of Assembler Language and experience with programming concepts
and techniques are prerequisite to using this publication.

References to a program that produces a standalone dump occur in several places
in this publication. One such program is the BPS Storage Print program, Program
No. 360P-UT-056.

IBM System/360 Principles of Operation, GA22-6821

IBM System/3 70 Principles of Operation, GA22-7000

Virtual Machine/System Product: Operating Systems in a Virtual Machine,
GC19-6212

Knowledge of the commands and system functions of CP, CMS, and RSCS is
corequisite.

Virtual Machine/System Product:

Planning Guide and Reference, SC19-6201

Installation Guide, SC24-5237

CP Command Reference for General Users, SC19-6211

CMS Command and Macro Reference, SC19-6209

CMS User's Guide, SC19-6210

Operator's Guide, SC19-6202

Terminal Reference, SC 19-6206

Preface ix

Supplemental Publications

x VM/SP System Programmer's Guide

OS/VS Data Management Macro Instructions, GC26-3793

OS/VS Supervisor Service and Macro Instructions, GC27-6979

IBM 2821 Control Unit Component Description, GA24-3312

IBM 3211 Printer, 3216 Interchangeable Train Cartridge, and 3811 Printer Control
Unit Component Description and Operator's Guide, GA24-3543

IBM 3262 Printers 1 and 11 Component Description, GA24-3733

IBM 3270 Information Display System Library User's Guide, GA23-0058

OS/VS Linkage Editor and Loader, GC26-3813

Introduction to the IBM 3704 and 3705 Communications Controllers, GA27 -3051

IBM 3704 and 3705 Communications Controllers Operator's Guide, GA27-3055

IBM Virtual Machine Facility/370: Performance/Monitor Analysis Program,
SB21-2101

OLTSEP and Error Recording Guide, SC19-6205

This publication contains a description of CPEREP. CPEREP is a CMS command
that invokes OS/VS EREP operands to produce statistical reports from error
recording data of hardware and software errors.

Environmental Recording Editing and Printing (EREP) Program, GC28-1178

This publication contains a detailed description of the CPEREP operands, and is
required in order to make use of CPEREP.

VM / SP Remote Spooling Communications Subsystem Networking Program Refer­
ence and Operations Manual, SH24-5005

VM / SP Data Areas and Control Block Logic,

Volume 1 Control Program (CP), L Y24-5220

Volume 2 Conversational Monitor System (CMS), LY24-5221

VM / SP System Logic and Problem Determination,

Volume 1 Control Program (CP), L Y20-0892

Volume 2 Conversational Monitor System (CMS), LY20-0893

VM / SP Remote Spooling Communication Subsystem Networking Logic, L Y24-5208

If the IBM 3767 Communication Terminal is used by the system programmer as a
virtual machine console, the IBM 3767 Operator's Guide, GA18-2000 is also a
corequisite publication.

If the IBM 3850 Mass Storage System is attached to the VM/SP system, the fol­
lowing are corequisite publications:

IBM 3850 Mass Storage System (MSS) Introduction and Preinstallation Plan­
ning, GA32-0038

OS/VS Message Library: Mass Storage System (MSS) Messages, GC38-1000

IBM 3850 Mass Storage System (MSS) Principles of Operation: Theory,
GA32-0035

IBM 3850 Mass Storage System (MSS) Principles of Operation: Reference,
GA32-0036

OS/VS Mass Storage System (MSS) Services: General Information, GC35-0016

OS/VS Mass Storage System (MSS) Services: Reference Information,
GC35-0017

Operator's Library: IBM 3850 Mass Storage System (MSS) Under OS/VS,
GC35-0014.

Note: References in text to titles of corequisite VM/SP publications are given in
abbreviated form.

Preface xi

The VM/SP Library

Evaluation

GENERAL
INFORMATION

GC20-1838

Planning
, ..

PLANNING
GUIDE AND
REFERENCE

SC19-6201

• •••

••••
,

.,

.,
,I

INTRODUC-
TION

GC19-6200

.'.

OPERATING
SYSTEMS IN
A VIRTUAL
MACHINE

GC19-6212

i

•••

I
•

~

,

;'

DISTRIBUTED
DATA
PROCESSING
GUIDE

SC24-5241

Installation Administration Operation

INSTALLA­
TION
GUIDE

SC24-5237

End Use

TERMINAL
REFERENCE

GC19-6206

SP EDITOR I
USER'S GUIDE I

SC24-5220

.... . , ...

.,,'

SYSTEM
PROGRAM­
MER'S
GUIDE

SC19-6203

CMS
PRIMER

SC24-5236

./, .. ', ...

SP EDITOR
COMMAND
AND MACRO
REFERENCE

SC24-5221

, . .. ,

I,

,

... ,'

i

•••

'.
SP

"

SP Ii
INTERPRETER Ii INTERPRETER

USER'S GUIDE REFERENCE .. '.
,.

SC24-5238 i SC24-5239

Reference Summaries r---------
I
I F·····,'

I
I
1

I
I
I

QUICK
GUIDE
FOR USERS

SX20-4400

L ___ _

,.

'.

Figure 1 (Part 1 of 2). The VM/SP Library

xii VM/SP System Programmer's Guide

I,

Ii

OPERATOR'S
GUIDE ,,'

SC19-6202

CMS 1:'
USER'S GUIDE I

SC19-6210

./

CP I

COMMAND
REFERENCE

SC19-6211 ,

/

..............

EXEC 2 I
REFERENCE

SC24-5219 I

LIBRARY
" GUIDE AND

MASTER ,:

INDEX
"

GC19-6207 ' ...
.,'
.I

./ .,,:::'<

RELEASE 3
GUIDE

"

SC24-5240
.I

CMS
COMMAND
AND MACRO
REFERENCE

:'

SC19-6209 :/

To order all the Reference Summaries, use order number SBOF 3820.

1

I
I
I _ ____ .J

Program Service

/

SYSTEM
MESSAGES
AND CODES

SC19-6204

PROBLEM
DETERMINA-
TION
VOL. 1 (ep)

LY20-0892
1/

./

OLTSEP
AND ERROR
RECORDING
GUIDE

SC19-6205

DATA AREAS
AND CON-
TROL BLOCKS
VOL. 1 (CP)

L Y24-5220

Auxiliary Service Support
./

DEVICE
SUPPORT
FACILITIES

GC35-0033

EREP
MESSAGES

GC28-1179

./

IPCS
EXTENSION
USER'S GUIDE
AND
REFERENCE

SC34-2020

EREP
PROGRAM

GC28-1178

1/

I'

II

SERVICE
ROUTINES
PROGRAM
LOGIC

LY20-0890

/

PROBLEM
DETERMINA-
TION
VOL. 2 (CMS)

LY20-0893

1

/

DATA AREAS
AND CON­
TROL BLOCKS
VOL. 2 (eMS)

LY24-5221

Device Support Facilities
IPCS Extension 5748-SA 1

Environmental Recording
Editing and Printing
(EREP)

Auxiliary Communication Support

RSCS
NETWORKING .,
GENERAL
INFORMA-
TION

GH24-5004

'/ .. '

VCNA
GENERAL
INFORMA-
TION

GC27-0501

RSCS i
NETWORKING
PROGRAM
REFERENCE
AND
OPERATIONS

SH24-5005

..

VCNA
INSTALLA-
TION
OPERATION
AND
TERMINAL USE

SC27-0502

Figure 1 (Part 2 of 2). The VM/SP Library

p:::::::.===::::::::?1
RSCS
NETWORKING
LOGIC

LY24-5203

..

VCNA
MESSAGES

SC27-0510

i

I

I

.. ,

VCNA
LOGIC

LY38-3033

RSCS Networking
5748-XP1

VTAM Communications
Networking Application
(VCNA) 5735- RC5

Preface xiii

xiv VM/SP System Programmer's Guide

Contents

Part 1. Control Program (CP) ...•....•...•....•••..••..••...••..••..••...•••...••... 1

VM/SP .•...•........•...•....•••..••......••...•••.....•.....•................. 2
Introduction to the VM/SP Control Program .. 2

Virtual Machine Time Management .. 3
Virtual Machine Storage Management .. 3
Virtual Storage Preservation .. 7
Virtual Machine I/O Management ... 9
Spooling Functions .. 11
Spool File Recovery .. 12
CP Commands ... 13

Program States •...•...•.....••.......•...••...•••.••..•••.••..••••...••...••..•• 14

Using Processor Resources•••.....• ',' •••.•••..••.•••.••..•.••••••...••...•.....• 15
Queue 1 ... 15
Queue 2 ... 15
Deadline Priority '.. 16
Queue 3 ... 17

Interruption Handling •• "... 18
I/O Interrupts ... 18
Missing Interrupt Handler .. 18

Using the Missing Interrupt Handler ... 18
Devices Monitored .. 19
Default Time Interval Values ... 19
Changing the Time Interval .. 20
Determining Time Interval Settings .. 21
Diagnostic Aids ... 21
System Messages .. 21
System's Error Recording Area ... 22
Trace Table .. 22

Program Interrupt .. 22
Machine Check Interrupt .. 22
SVC Interrupt ... 23
External Interrupt .. 23
Synchronous Interrupts in an Attached Processor or Multiprocessor System 23
Real I/O Interrupts ... 23

Performance Guidelines ••..•••.••••.•.••..•.....•••..••••••••.••••.••••.•.•••••.••• 24
General Information .. 24
Virtual Machine I/O .. 25
Paging Considerations .. 26

Locked Pages Option ... 27
Reserved Page Frames Option .. 28
Virtual=RealOption ... 28

VM/SP Performance Options ... 29
Favored Execution .. 30
User Priority ... 31
Reserved Page Frames .. 32
Virtual=Real ... 32
Affinity ... 34
Multiple Shadow Table Support .. 35
Shadow Table Bypass .. 35
Queue Drop Elimination .. 36
Virtual Machine Assist Feature ... 37
Using the Virtual Machine Assist Feature ... 38
Restricted Use of the Virtual Machine Assist Feature 38

Extended Control-Program Support:VM/370 (ECPS) 39
Using the Extended Control-Program Support: VM/370 41

Channel Usage .. 41
The Virtual Block Multiplexer Channel Option 41
Multisystem Communications .. 42
Alternate Path Support ... 44

MVS/System Extensions Support .. 45

Contents xv

Low Address Protection Facility .. 46
Common Segment Facility ... 46
Special MVS Instruction Operation Handling Facilities ,. 46
Enabling MVS/System Extensions Support ... 47
Single Processor Mode ... 47
Dynamic System Control Programming (SCP) Transition to or from Native Mode 47

Performance Observation and Analysis •••••••..•••••••••••••••••••••••••••••••••••••.•• 49
Load Indicators .. 49
The INDICATE Command ... 49

The INDICATE FAVORED Command .. 50
Managing Page Migration ... 50

Querying and Setting the System Resource Management Variables 51
Querying and Setting the Paging Variable ... 51

The MONITOR Command ... 52
Implemented Classes ... 54
VM/SP Monitor Response to Unusual Tape Conditions 56
VM/SP Monitor Considerations .. 56
VM/SP Monitor Data Volume and Overhead .. 58
Load Environments of VM/SP ... 59

Trace Table Recording Facility .. 61

Accounting Records ••.•••••••.•••••••••••••••••••••••••••••••••.•••••••••••.••••••• 69
Accounting Records for Virtual Machine Resource Usage 69
Accounting Records for Dedicated Devices and Temporary Disk Space 69
Accounting Records for LOGON, AUTOLOG, and LINK Journaling " .. 70
Accounting Records Created by the User .. 71
User Accounting Options .. 72

Generating Saved Systems ••••••••..••.••• 73
The NAMESYS Macro for Saved Systems ... 73

Coding the NAMESYS Macro ... 73
Example of a DMKSNT Entry ... 73

Using the SA VESYS Command ... 74
Shared Segments ... 75

Special Considerations for Shared Segments ... 75
Discontiguous Saved Segments .. 75

User Requirements .. 76
Loading and Saving Discontiguous Shared Segments 77
How the Interface Works ... 78

Shared Segment Protection ... 79
Virtual Machine Operation .. 80

The NAMENCP Macro for 370X Control Program '" , 81
Coding the NAMENCP Macro ... 81
Example of a NAMENCP Entry .. 81

Using the SA VENCP Command .. 81

The Virtual Machine Communication Facility •••••••••.•••••••••••••••••••••••••••••.•••• 83
Using the Virtual Machine Communication Facility 84

VMCF Applications ... 85
Security and Data Integrity .. 86
Performance Considerations ... 86
General Considerations ... 87

VMCF Protocol .. . 87
The SEND Protocol .. 88
The SEND/RECV Protocol ... 89
The SENDX Protocol .. 90
The IDENTIFY Protocol ... , .. 91

Descriptions of VMCF Subfunctions ... 91
The Control Subfunctions ... 91
The Data Transfer Functions .. 94

Invoking VMCF Subfunctions .. 97
Diagnose Code X'68' .. 98
The VMCP ARM Parameter List .. 98
External Interrupt Code X'4001' .. 103
VMCF User Doubleword .. 106
DIAGNOSE X'68' Return Codes .. 106
Data Transfer Error Codes ... 109

xvi VM/SP System Programmer's Guide

Inter-User Communications Vehicle ••••.•••.•••..•..•••..•.•••.•••..•..•••••••••.•.•• 110
IUCV Paths ... 110
IUCV Messages .. 111
Message Queues ... 111
Message Data Transfer .. 112
Message Identification 113
Pending IUCV Communications ... 114
CP Communications .. 116
Second Level Support ... 117
Trace Table Entries ... 117
Audit Trail .. 118
Restrictions ... 118
Security Considerations .. 118
Performance Considerations .. 119

Using IUCV Functions ... 119
IUCV Communications Using Parameter List Data 125
Invoking IUCV Functions .. 126
Invoking Communications between CP and a Virtual Machine 140
Requests Initiated by the Virtual Machine .. 140
CP Initiated Requests ... 141

IUCV Parameter List Formats ... 142
IUCV External Interrupt Formats .. 159
IUCV Trace Table Entry Formats .. 173

Trace Table Entry Field Definitions .. 174

SNA Virtual Console Communication Services .•..••.•••••••.•••••••••..••..••.••.•••..• 177
System Structure .. 177
Environments Supported .. 179
Frocessing Descriptions .. 179
SNA CCS Entries in CP Internal Trace Table ... 187

Trace Table Entry Formats ... 187
Trace Table. Entry Field Definitions .. 189

The Message System Service ...•.....•....•..•...•..••...••..•.•...•..••..•..•..•.. 192
Establishing Communications .. 192

DASD Block I/O System Service •••....•..••••..••.•••..•••.•••..••..••.••..•..••.• 194
Establishing Communications with DASD Block I/O Service 194

IUCV CONNECT to the DASD Block I/O System Service 194
IUCV SEND to the DASD Block I/O System Service 196

The Special Message Facility ..•..•••••.••.••.••..••••.•..•••.•••.•••.••..••..••.•.. 198

Single Console Image Facility •••.••••.....••••••••.•••.•••.••••.•••.••••••..•...•.•• 200
Using the Single Console Image Facility .. 200

VM/SP Use of the IBM 3850 MSS ••.••.••.••••••.••••.•..••••.••.•••.••.••••••.••. 201
VM/SP Access to the MASS Storage Control ... 201
Asynchronous MSS Mount Processing ... 201
VM/SP Processing of MSS Cylinder Faults ... 202
Backup and Recov~ry of MSS Volumes .. 202

Logical Device Support Facility ••.•••.••.••.•••.•••.••...••••••.••••••••••.••.••.••• 203

Timers in a Virtual Machine •••••••.••.••••••••••••••••••••••••••.•••••••••••••.•••. 205
Interval Timer .. 205
Processor Timer .. 206
TOD Clock .. 206
Clock Comparator .. 206
Pseudo Timer .. 207

Pseudo Timer Start I/O .. 207
Pseudo Timer DIAGNOSE ... 207

CP in Attached Processor and Multiprocessor Modes •.••.••..••••••••..•••.•••••••.•••.•• 208
Multiprocessor Environment .. 208
Attached Processor Environment ... 208
Advantages of the AP /MP Environment ... 209

Contents xvii

Facilitating an AP /MP Environment .. 209
Prefixing 209
Identifying a Processor Address ... 210
Signaling ... 211
Time-of-Day (TOD) Clock Synchronization Check 213
Fetching and Storing .. 213
Locks and Serialization of Functions .. 214
Affinity .. 218
Shared Segments in an AP /MP Environment 218
SWTCHVM Macro .. , .. 219

Configuring and Debugging MP Systems ... 219
Configuring I/O Devices for an MP System .. 219
Debugging an AP /MP System ... 220

DIAGNOSE Instruction in a Virtual Machine •..•••.•••••.•••.•••••••••••••••••••••••••• 222
DIAGNOSE Code X'OO' -- Store Extended-Identification Code 222
DIAGNOSE Code X'04' -- Examine Real Storage 224
DIAGNOSE Code X'08' -- Virtual Console Function 225
DIAGNOSE Code X'OC' -- Pseudo Timer .. 227
DIAGNOSE Code X'10' -- Release Pages .. 228
DIAGNOSE Code X'14' -- Input Spool File Manipulation 228

Subcode X'OOOO' ... 229
Subcode X'0004' .. 229
Subcode X'0008' .. 230
Subcode X'OOOC' .. 230
Subcode X'0010' ... 230
Subcode X'0014' .. 230
Subcode X'0018' .. 231
Subcode X'OOlC' .. 231
Subcode X'0020' .. 231
Subcode X'0024' .. 231
Subcode X'OFFE' .. 231
Subcode X'OFFF' .. 232

DIAGNOSE Code X'18' -- Standard DASD I/O 232
DIAGNOSE Code X'lC' -- Clear Error Recording Cylinders 235
DIAGNOSE Code X'20' -- General I/O ... 235
DIAGNOSE Code X'24' -- Device Type and Features 236
DIAGNOSE Code X'28' -- Channel Program Modification 239
DIAGNOSE Code X'2C' -- Return DASD Start of LOGREC 240
DIAGNOSE Code X'30' -- Read One Page of LOGREC Data 241
DIAGNOSE Code X'34' -- Read System Dump Spool File 241
DIAGNOSE Code X'38' -- Read System Symbol Table 242
DIAGNOSE Code X'3C' -- VM/SP Directory .. 242
Diagnose Code X'40' -- Clean-Up after Virtual IPL by Device 243
DIAGNOSE Code X'48' -- Issue SVC 76 from a Second Level VM/370 or VM/SP Virtual

Machine ... 243
DIAGNOSE Code X'4C' -- Generate Accounting Records for the Virtual User 243
DIAGNOSE Code X'50' -- Save the 370X Control Program Image 245
DIAGNOSE Code X'54' -- Control The Function of the PA2 Function Key , 246
DIAGNOSE Code X'58' -- 3270 Virtual Console Interface 246

Displaying Data .. 247
Full Screen Mode .. 248

DIAGNOSE Code X'5C' -- Error Message Editing 253
DIAGNOSE Code X'60' - Determining the Virtual Machine Storage Size 253
DIAGNOSE Code X'64' - Finding, Loading, and Purging a Named Segment 253
DIAGNOSE Code X'68' -- Virtual Machine Communication Facility (VMCF) 256
DIAGNOSE Code X'6C' -- Special Diagnose for Shadow Table Maintenance 257
DIAGNOSE Code X'70' -- Activating the Time-of-Day (TOD) Clock Accounting Interface 257
DIAGNOSE Code X'74' -- Saving or Loading a 3800 Named System 258
DIAGNOSE Code X'78' -- MSS Communication 259
DIAGNOSE Code X'7C' -- Logical Device Support Facility 260

Descriptions of Logical Device Support Facility Sub functions 262
External Interrupt Code X'2402' .. 264
Logical Device Restrictions ... 264

DIAGNOSE Code X'80' -- MSSFCALL ... 265
MSSF COMMAND WORDS .. 265

DIAGNOSE Code X'84' -- Directory Update-In-Place 267
DIAGNOSE Code X'8C' -- Access Certain Device Dependent Information 274

xviii VM/SP System Programmer's Guide

CP Conventions •••••..••••...••••••••••..••••..•••..•...•......••...•.....•..... 276
CP Coding Conventions .. 276
CP Loadlist Requirements .. 278

How to Add a Console Function to CP ••.•.••.••••..•••••.•••••..••.•..•••••.•••.•..•• 280

Print Buffers and Forms Control •••••.•••••.•••••••••••••••••.•••••.•••••..••••..••• 281
Adding New Print Buffer Images ... 283

UCS Buffer Images for the 1403 Printer ... 283
UCSB Buffer Images for the 3211 Printer .. 285
FOB Buffer Images for the 3289 Model 4 Printer 288
UCC Buffer Images for the 3203 Printer .. 289
PIB Buffer Images for the 3262 Model I and II Printers 2.91

Forms Control Buffer .. 292

IBM 3800 Printing Subsystem •••••••.•••••••••••••••..•••.•••••.•••••.••••••••.•••• 295
Using the 3800 Printer as a Dedicated Device ... 295
Using the 3800 Printer as a Real Spooling Device 295

Specifying Printer Options .. 296
Creating Control Tables ... 296
Storing and Loading Control Tables .. 297
Recovering from I/O Errors .. 297
Displaying Printer Control Information .. 297

Using the 3800 Printer as a Virtual Spooling Device 297
Defining a Virtual 3800 Printer .. 298
Loading the Virtual 3800 and Printing Virtual 3800 Spool Files 298
Recovering from I/O Errors .. 299
Displaying Control Information 299

Journaling Logon, Autolog, and Link Commands ..••••••••.••••••••••••..••••••..••••••.. 300

Suppressing Passwords Entered on the Command-Line ••••.•••••••••••••.••••..••••••..•.• 301

Part 2. Conversational Monitor System (CMS) .•••••••.••••••••••••.••••••.••••••.••••• 302

Introduction To CMS •••••••••.•.•..••••••••••••••••••••.•••.••..•••••••.•.•.•••. 303
The CMS Command Language ... 303
The File System .. 303
Migration from the 800-byte File System to the Extended File System 304

Migration Considerations .. 305
Coexistence of VM/SP CMS and Earlier Versions of CMS 308
Converting CMS Files ... 309

Program Development .. 309
ABEND Processing ... 310

ABEND Exit Routine Processing .. 310
CMS Abend Recovery ... 311

Interrupt Handling In CMS ••••••.••.••••.•••••••••••••.•••••••••••••.••••••••..••• 312
SVC Interruptions ... 312

Internal Linkage SVCs .. 312
Input/Output Interruptions .. 313
Terminal Interruptions ... 313
Reader/Punch/Printer Interruptions .. 314
User-Controlled Device Interruptions .. 314
Program Interruptions .. 314
External Interruptions .. 314
Machine Check Interruptions .. 314

Functional InC ormation •••••.••••.••.•••••.•••••••••••••••••••••.•••••••••.••••.••. 315
Register Usage ... 315
Structure of DMSNUC ... 315

USERSECT (User Area) .. 315
DEVTAB (Device Table) ... 316

Structure of CMS Storage ... 317
Free Storage Management .. 323

GETMAIN Free Storage Management .. 323
DMSFREE Free Storage Management .. 324

Contents xix

Releasing Allocated Storage .. 329
DMSFRE Service Routines ... 330
Error Codes from DMSFREE, DMSFRES, and DMSFRET 332

CMS Handling of PSW Keys .. 332
The DMSKEY Macro ... 333
The DMSEXS Macro ... 334

CiviS SVC Handling ... 334
SVC Types and Linkage Conventions ... 335
Search Hierarchy for SVC 202 .. 339
User and Transient Program Areas ... 343
Called Rouq.ne Start-Up Table .. 343
Returning to the Calling Routine ... 344

Dynamic Linkage--Subcom .. 346
System Product Editor Interface to Access Files in Storage 348
CMS Interface for Display Terminals .. 350

Using the DASD Block I/O System Service from eMS •.••••••••••••••••••••••••••••••••• 352

eMS IUCV Support ..••••.••..•.•••••••••••.••.••••••••••••••••••••••••••.•••••• 355
HNDIUCV Macro .. 355
CMSIUCV Macro .. 359
Exits ... 364
Using CMS IUCV to Communicate Between Two Virtual Machines 365
Guidelines and Limitations of the CMS IUCV Support 367

OS Macro Simulation Under CMS •••••••••.•••.•.••••..••••••••••••••••••••••••••.. 370
OS Data Management Simulation ... 370

Handling Files that Reside on CMS Disks .. 370
Handling Files that Reside on OS or DOS Disks 370
Simulation Notes ... 372
Access Method Support .. 379

Reading OS Data Sets and VSE Files Using OS Macros 383

VSE Support Under eMS ••••••••.•• 386
Hardware Devices Supported .. 387
CMS Support of VSE Functions .. 387

Logical Unit Assignment ... 389
VSE Supervisor and I/O Macros Supported by CMS/DOS 391

Supervisor Macros .. 391
Sequential Access Method -- Declarative Macros 400
Sequential Access Method -- Imperative Macros 409

VSE Transient Routines .. 409
EXCP Support in CMS/DOS .. 410
VSE Supervisor Control Blocks Simulated by CMS/DOS 411
User Considerations and Responsibilities ... 411
VSE System Generation and Updating Considerations 411
VM/SP Directory Entries ... 412
When the VSE System Must Be Online .. 413
Performance ' .. 413
Execution Considerations and Restrictions .. 413

eMS Support for OS and VSE/VSAM Functions ••••••••••••••••••••••••••••.•••••••••• 415
Hardware Devices Supported•.................................... 415
VSE Supervisor Macros and Logical Transients Support for VSAM 416
Data Set Co~npatibility Considerations ... 416
ISAM Interface Program (lIP) ... 416

Saving the eMS System •••.••••••• 417
Saved System Restrictions for CMS ... 417

The eMS Batch Facility •• 418
Installing the CMS Batch Machine .. 418
Resetting the CMS Batch Facility System Limits 419
Writing Routines To Handle Special Installation Input 419

BATEXIT1: Processing User-Specified Control Language 419
BATEXIT2: Processing the Batch Facility /JOB Control Card 420

EXEC Procedures for the Batch Facility Virtual Machine 420
Data Security under the Batch Facility ... 420

xx VM/SP System Programmer's Guide

Improved IPL Performance Using a Saved System 420

The Programmable Operator Facility .••.••••..•••.•..•..••.•••....••.•.•.••..•.•.•.•. 422
Overview .. 422
The Routing Table .. 425

How the Programmable Operator Facility Uses the Routing Table 425
Routing Table Entry Formats ... 425
Tailoring the Routing Table ... 432

Action Routines .. 438
Description of Supplied Action Routines ... 438

The Log File ... 441
Ensuring a Complete Log .. 442

The Feedback File .. 443
Installing the Programmable Operator Facility ... 443
Routing Table Conversion .. 444
Invoking the Programmable Operator Facility ... 445

Manual Invocation .. 445
Automatic Invocation ... 447

Communications Checking .. 448
How the Programmable Operator Establishes Communications with IUCV 449
Message Output Format .. 450
Exit EXECs ... 451

Exit EXEC Interface .. 451
Communication Error Exit ... 451
LOG Error Exit .. 451

Problem Determination - Debug Mode ... 452
The Action Routine Interface .. 453

Action Routine Call Interface ... 453
Action Routine Parameter Interface .. 453
EXEC Action Routines .. 455
Writing Action Routines ... 455
Handling Console I/O in an Action Routine .. 456

Auxiliary Directories ••...•..•.•.•.•.•.•••..•.•••••••..•.••...••.•.•••.•..••.•..•• 458
How To Add an Auxiliary Directory ... 458

Generation of the Auxiliary Directory ... 458
Initializing the Auxiliary Directory ... 458
Establishing the Proper Linkage ... 459

An Example of Creating an Auxiliary Directory .. 460

Assembler Virtual Storage Requirements •.•••...•..••••••.•..•..•..•...•.•.••...•••••. 462
Overlay Structures .. 462

Pre structured Overlay ... 462
Dynamic Load Overlay .. 464

Part 3. Debugging with VM/SP ••.•••..•••....•••...••..•..•••.•.•..•.••.••••••...•• 465

Introduction to Debugging ..••.••.••••....••••...•...•..•••.••••.•••..••.••..•••.•• 466
How To Start Debugging ... 466

Does a Problem Exist? ... 466
Identifying the Problem .. 469
Analyzing the Problem .. 470

How To Use VM/SP Facilities To Debug .. 475
Abend ... 475
Unexpected Results ... 482
Loop .. 483
Wait ... 485

Summary of VM/SP Debugging Tools ... 488
Comparison of CP and CMS Facilities for Debugging 495
An Overview of VM/SP Commands that Can Be Used for Debugging 497

Commands that Display or Dump Virtual Machine Data 497
Commands that Set and Query System Features, Conditions, and Events 498
Commands to Collect and Analyze System Information 499
Commands that Trace Events in Virtual Machines 500
Commands that Alter the Contents of Storage 500

Debugging CP in a Virtual Machine ... 501
CP Internal Trace Table .. 501
Abend Dumps .. 506

Contents xxi ,

How to Print a CP Abend Dump from Tape .. 506
Reading CP Abend Dumps .. 506

Reason for the Abend ... 507
Collect Information ... 508
Register Usage ... 508
Save Area Conventions .. 509
Virtual and Real Control Block Status ... 511
Identifying and Locating a Pageable Module .. 522
VMDUMP Records: Format and Content .. 522

Debugging With CMS ••.••.•••.•.••...••.••.•••.••••.•••••..•.•••...•••...••.•••• 525
CMS Debugging Commands ... 525

DEBUG ... 526
&CRASH ... 527

Nucleus Load Map .. 529
Load Map ... 529
Reading CMS Abend Dumps .. 529

Reason for the Abend ... 532
Collect Information ... 532
Register Usage ... 534

Appendixes •..•........•••...•.•••..•••..••••.•••....•••...•••...•••...••..•••• 536

Appendix A. System/370 Information•......•....•.....•••.•••••.••..••• 537
Control Registers ... 537

Appendix B. VM/SP Monitor Tape Format and Content .•.....•.••.••...•.••..••••..•••• 542
Header Record ... 542
Data Records .. 543

Class Zero - Codes for Tape Header, Trailer, and Data Suspension Records 543
Class Zero - PERFORM .. 544
Class One - RESPONSE .. 550
Class Two - SCHEDULE ... 551
Class Four - USER .. 553
Class Five - INSTSIM .. 553
Class Six - DASTAP ... 555
Class Seven - SEEKS ... 556
Class Eight - SYSPROF -- Additional data for system profile class 556

Appendix C. CMS Macro Library ••.••...•••••••.•••.•••..••••...•••••...•••..••.••• 558

Index •..•...•.•.•.••.•...•••..•.••.....••••.••.••••.••••••••.••••.••••..••..•. 563

xxii VM/SP System Programmer's Guide

Figures

1. The VM/SP Library .. xii
2. 2K Storage Protection Key .. 6
3. Storage Layout in a Virtual=Real Machine ... 33
4. Functions and Instructions that ECPS Supports 40
5. CP commands and 3088 Support ... 43
6. Virtual Machine Communication Facility (VMCF) Subfunctions 84
7. The SEND Protocol ... 88
8. The SEND/RECV Protocol .. 89
9. The SENDX Protocol ... 90

10. The IDENTIFY Protocol ... 91
11. VMCF Subfunctions, Parameters, and Return Codes 102
12. DIAGNOSE Code X'68' Return Codes ... 106
13. DIAGNOSE Code X'68' Data Transfer Error Codes 109
14. IUCV Queues .. 112
15. IUCV Data Transfer ... 112
16. Sequence of Functions .. 123
17. IUCV Macro Instruction Format .. 128
18. IUCV Function and IUCV Macro Parameter Relationships 139
19. Pending Connection External Interrupt Format 159
20. Connection Complete External Interrupt Format 159
21. Incoming Message External Interrupt Format 160
22. Message Complete External Interrupt Format 160
23. SEVER, QUIESCE, RESUME External Interrupt Format 160
24. IUCV Return Codes and Completion Codes 171
25. Virtual Console Support in CP .. 178
26. SNA Virtual Console Support Interfaces .. 181
27. Summary of Logical Device Support Facility Sub functions 204
28. Formats of Pseudo Timer Information ... 207
29. Storage Layout in a Virtual=Real Machine .. 210
30. Sample of the Correct Way to Set a Flag in an AP/MP Environment 214
31. Hierarchy of VM/SP Locks " 215
32. Addressable Storage Before and After a LOADSYS Function 254
33. UCSB Associative Field Chart .. 287
34. Devices Supported by a CMS Virtual Machine 316
35. CMS Storage Map 1 ... 320
36. CMS Storage Map 2 ... 321
37. CMS Storage Map 3 ... 322
38. CMS Command (and Request) Processing .. 341
39. PSW Fields When Called Routine Starts .. 343
40. Register Contents When Called Routine Starts 344
41. Sequence of Instructions in Virtual Machine to Virtual Machine Communication 366
42. Simulated OS Supervisor Calls .. 371
43. Summary of Changes to CMS Commands to Support CMS/DOS 388
44. Physical 10CS Macros Supported by CMS/DOS 392
45. SVC Support Routines and Their Operation 392
46. CMS/DOS Support of DTFCD Macro ... 401
47. CMS/DOS Support of DTFCN macro ... 402
48. CMS/DOS Support of DTFDI Macro .. 402
49. CMS/DOS Support of DTFMT Macro ... 404
50. CMS/DOS Support of DTFPR Macro .. 405
51. CMS/DOS Support of DTFSD Macro .. 406
52. The Programmable Operator Facility in a Distributed System 429
53. Partial routing table .. 431
54. Example of Entries to Filter Responses to Routine Commands 436
55. Example of Uncontrolled Authorization .. 437
56. Example of Restricting Authorization by Nodeid 437
57. Example of Restricting Authorization by Userid and Nodeid 438
58. Register Conventions for Invoking an Action Routine 454
59. An Overlay Structure ... 463
60. Abend Messages .. 467
61. VM/SP Problem Types ... 471
62. Does a Problem Exist? .. 472
63. Debug Procedures for Waits and Loops ... 473
64. Debug Procedures for Unexpected Results and an Abend 474
65. Summary of VM/SP Debugging Tools .. 489
66. Comparison of CP and CMS Facilities for Debugging 495

Figures xxiii

67. CP Trace Table Entries ... 504
68. CP Control Block Relationships ... , ... 512
69. CP Device Classes, Types, Models, and Features 517
70. VMDUMP Record Format .. 524
71. CMS Control Blocks ... 531
72. Control Register Allocation .. 537
73. Control Register Assignments .. 538
74. The Extended Control PSW (Program Status Word) 541

xxiv VM/SP System Programmer's Guide

Part 1. Control Program (CP)

Part 1 contains the following information:

Introduction to VM/SP
Program States
Using Processor Resources
Interruption Handling
Functional Information
Performance Guidelines
Virtual Machine Assist Feature
VM/370 Extended Control-Program Support
VM/VS Handshaking
Performance Observation and Analysis
Accounting Information
Generating Named Systems and Saving Systems
The Virtual Machine Communication Facility
The Inter-User Communications Vehicle
SNA Virtual Console Support
The Message System Service
The DASD Block I/O System Service
The Special Message Facility
The Single Image Consol Facility
VM/SP Use of the IBM 3850 MSS
The Logical Device Support Facility

• Timers
CP in Attached Processor and Multiprocessor Modes
DIAGNOSE Instruction
CP Conventions
How To Add a Console Function
How To Add a New Print or Forms Buffer Image
The IBM 3800 Printing Subsystem
J ournaling Logon, Autolog, and Link Commands
Suppressing Passwords

Part 1. Control Program (CP)

VM/SP

The VM/SP Control Program manages the resources of a single computer in such a
manner that multiple computing systems appear to exist. Each "virtual" computing
system, or virtual machine, is the functional equivalent of an IBM System/370.

A virtual machine is configured by recording appropriate information in the
VM/SP directory. The virtual machine configuration includes counterparts of the
components of a real IBM System/370:

A virtual operator's console
Virtual storage
A virtual processor
Virtual I/O devices

CP makes these components appear real to whichever operating system is control­
ling the work flow of the virtual machine.

The virtual machines operate concurrently via multiprogramming techniques. CP
overlaps the idle time of one virtual machine with execution in another.

Each virtual machine is managed at two levels. The work to be done by the virtual
machine is scheduled and controlled by some System/360 or System/370 operat­
ing system. The concurrent execution of multiple virtual machines is managed by
the Control Program.

VM/SP performs some functions differently when running in attached processor or
multiprocessor mode. For a description of the additional processing performed, see
the VM / SP System Logic and Problem Determination Guide.

Introduction to the VM/SP Control Program

2 VM!SP System Programmer's Guide

A virtual machine is created for a user when he logs on VM/SP, on the basis of
information stored in his VM/SP directory entry. The entry for each user identifi­
cation includes a list of the virtual input/output devices associated with the partic­
ular virtual machine.

Additional information about the virtual machine is kept in the VM/SP directory
entry. Included are the VM/SP command privilege class, accounting data, normal
and maximum virtual storage sizes, dispatching priority, and optional virtual
machine characteristics such as extended control mode.

The Control Program supervises the execution of virtual machines by permitting
only problem state execution except in its own routines, and receiving control after
all real computing system interrupts. CP intercepts each privileged instruction and
simulates it if the current program status word of the issuing virtual machine indi­
cates a virtual supervisor state; if the virtual machine is executing in virtual prob­
lem state, the attempt to execute the privileged instruction is reflected to the virtual
machine as a program interrupt. All virtual machine interrupts (including those
caused by attempting privileged instructions) are first handled by CP, and are
reflected to the virtual machine if a similar interrupt would have occurred on a real
machine.

Virtual Machine Time Management

The real processor simulates multiple virtual processors. Virtual machines that are
executing in a conversational manner are given access to the real processor more
frequently than those that are not; these conversational machines are assigned the
smaller of two possible time slices. CP determines execution characteristics of a
virtual machine at the end of each time slice on the basis of the recent frequency of
its console requests or terminal interrupts. The virtual machine is queued for sub­
sequent processor use according to whether it is a conversational or nonconversa­
tional user of system resources.

A virtual machine can gain control of the processor only if it is not waiting for
some activity or resource. The virtual machine itself may enter a virtual wait state
after an input/output operation has begun. The virtual machine cannot gain con­
trol of the real processor if it is waiting for a page of storage, if it is waiting for an
input/ output operation to be translated and started, or if it is waiting for a CP
command to finish execution.

A virtual machit:le can be assigned a priority of execution. Priority is a parameter
affecting the execution of a particular virtual machine as compared with other vir­
tual machines that have the same general execution characteristics. Priority is a
parameter in the virtual machine's VM/SP directory entry. The system operator
can reset the value with the privilege class A SET PRIORITY command.

Virtual Machine Storage Management

The normal and maximum storage sizes of a virtual machine are defined as part of
the virtual machine configuration in the VM/SP directory. You may redefine vir­
tual storage size to any value that is a multiple of 4K and not greater than the max­
imum directory-defined value. VM/SP implements this storage as virtual storage.
The storage may appear as paged or unpaged to the virtual machine, depending
upon whether or not the extended control mode option was specified for that virtu­
al machine. This option is required if operating systems that control virtual storage,
such as OS/VS1, VM/370 or VM/SP are run in the virtual machine.

Storage in the virtual machine is logically divided into 4096-byte areas called pages.
A complete set of segment and page tables is used to describe the storage of each
virtual machine. These tables are updated by CP and reflect the allocation of vir­
tual storage pages to blocks of real storage. These page and segment tables allow
virtual storage addressing in a System/370 machine. Storage in the real machine is
logically and physically divided into 4096-byte areas called page frames.

Only referenced virtual storage pages are kept in real storage, thus optimizing real
storage use. Further, a page can be brought into any available page frame; the
necessary relocation is done during program execution by a combination of VM/SP
and dynamic address translation on the System/370. The active pages from all
logged on virtual machines and from the pageable routines of CP compete for
available page frames. When the number of page frames available for allocation
falls below a threshold value, CP determines which virtual storage pages currently
allocated to real storage are relatively inactive and initiates suitable page-out oper­
ations for them.

CP keeps track of where each virtual machine's page zero resides. The normal way
CP does this is to issue a TRANS macro, that checks for page residency (LRA)
and demands a page-in if the page is not in real storage. CP checks an in-storage

VM/SP 3

Storage Protection

4 VM/SP System Programmer's Guide

pointer in the VMBLOK; the pointer contains the address of the virtual machine's
page zero if the page is resident. If the page is resident, CP bypasses issuing the
TRANS macro, thus eliminating unnecessary LCTL and LRA instructions.

Inactive pages are kept on a direct access storage device. If an inactive page has
been changed at some time during virtual machine execution, CP assigns it to a
paging device, selecting the fastest such device with available space. If the page
has not changed, it remains allocated in its original direct access location and is
paged into real storage from there the next time the virtual machine references that
page. A virtual machine program can use the DIAGNOSE instruction to tell CP
that the information from specific pages of virtual storage is no longer needed; CP
then releases the areas of the paging devices which were assigned to hold the speci­
fied pages.

Paging is done on demand by CPo This means that a page of virtual storage is not
read (paged) from the paging device to a real storage block until it is actually
needed for virtual machine execution. CP makes no attempt to anticipate what
pages might be required by a virtual machine. While a paging operation is per­
formed for one virtual machine, another virtual machine can be executing. Any
paging operation initiated by CP is transparent to the virtual machine.

If the virtual machine is executing in extended control mode with translate on, then
two additional sets of segment and page tables are kept. The virtual machine oper­
ating system is responsible for mapping the virtual storage created by it to the stor­
age of the virtual machine. CP uses this set of tables and the page and segment
tables created for the virtual machine at logon time to build shadow page tables for
the virtual machine. These shadow tables map the virtual storage created by the
virtual machine operating system to the storage of the real computing system. The
tables created by the virtual machine operating system may describe any page and
segment size permissible in the IBM System/370.

Storage keys protect information in real storage from unauthorized use. A storage
key contains a four bit control field that is associated with an area of real storage.
When VM/SP is executing natively, each 2K area of storage is protected by one
storage key.

VM/SP contains support that allows it to execute as a guest virtual machine on a
processor that uses single key real storage frames. Single key storage frames asso­
ciate one storage key for each 4K area of storage. VM/SP does not run natively
on processors that have single key storage frames; however, under control of the
VM/SP High Performance Option program product, VM/SP executes as a guest
virtual machine operating system.

When VM/SP High Performance Option (Release 2 or subsequent release) is con­
trolling the processor equipped with single key storage frames, the program product
simulates for the guest, virtual storage that resembles the type of real storage
installed on the processor. If the storage simulated for the VM/SP guest requires
4K storage protection keys, VM/SP issues two key instructions to the referenced
storage frame.

VM/SP provides both fetch and store protection for real storage. The contents of
real storage are protected from destruction or misuse caused by erroneous or un au-

thorized storing or fetching by the program. Storage is protected from improper
storing or from both improper storing and fetching, but not from improper fetching
alone.

When protection applies to a storage access, the key in storage is compared with
the protection key associated with the request for storage access. A store or fetch
is permitted only when the key in storage matches the protection key.

When a store access is prohibited because of protection, the contents of the pro­
tected location remain unchanged. On fetching, the protected information is not
loaded into an addressable register, moved to another storage location, or provided
to an I/O device.

When a processor access is prohibited because of protection, the operation is sup­
pressed or terminated, and a program interruption for a protection exception takes
place. When a channel access is prohibited, a protection-check condition is indi­
cated in the channel status word (CSW) stored as a result of the operation.

When the access to storage is inhibited by the processor, and protection applies, the
protection key of the processor occupies bit positions 8-11 of the PSW. When the
reference is made by a channel, and protection applies, the protection key associ­
ated with the I/O operation is used as the comparand. The protection key for an
I/O operation is specified in bit positions 0-3 of the channel-address word (CAW)
and is recorded in bit positions 0-3 of the channel status word (CSW) stored as a
result of the I/O operation.

To use fetch protection, a virtual machine must execute the Set Storage Key (SSK)
instruction referring to the data areas to be protected, with the fetch protect bit set
on in the key. VM/SP subsequently:

1. Checks for a fetch protect violation in handling privileged and nonprivileged
instructions.

2. Saves and restores the fetch protect bit (in the virtual storage key) when writ­
ing and recovering virtual machine pages from the paging device.

3. Checks for a fetch protection violation on a write CCW (except for spooling or
console devices).

The CMS nucleus resides in a shared segment. This presents a special case for
storage protection since the nucleus must be protected and still shared among many
CMS users. In order to protect the CMS nucleus in the shared segment, user pro­
grams and disk-resident CMS commands run with a different key than the nucleus
code.

VM/SP 5

Real
Storage

Storage Key

2K 2K 2K

Key

3

Key - 4-bit protect key

2K 2K

Addressable Storage

Storage and Processor Utilization

6 VM/SP System Programmer's Guide

Figure 2. 2K Storage Protection Key

The system operator may assign the reserved page frames option to a single virtual
machine. This option, specified by the SET RESERVE command, assigns a specif­
ic amount of the storage of the real machine to the virtual machine. CP dynam­
ically builds up a set of reserved real storage page frames for this virtual machine
during its execution until the maximum number "reserved" is reached. Since the
pages of other virtual machines are not allocated from this reserved set, the effect is
that most of the active pages of the selected virtual machine remain in real storage.

During CP system generation, the installation may specify an option called
virtual = real. With this option, the virtual machine's storage is allocated directly
from real storage at the time the virtual machine logs on (if it has the
VIRT=REAL option in its directory entry). All pages except page zero are allo­
cated to the corresponding real storage locations. In order to control the real com­
puting system, real page zero must be controlled by CP. Consequently, the real
storage size must be large enough to accommodate the CP nucleus, the entire virtu­
al=real virtual machine, and the remaining pageable storage requirements of CP
and the other virtual machines.

The virtual=real option improves performance in the selected virtual machine since
it removes the need for CP paging operations for the selected virtual machine. The
virtual=real option is necessary whenever pJ;ograms that contain dynamically modi­
fied channel programs (excepting those of OS ISAM and OS/VS TCAM LevelS)
are to execute under control of CP.

Virtual Storage Preservation

VMSA VE Option

During CP system generation, the installation can specify an option called the
"Small CP Option". The Small CP option removes some of the normally resident
CP nucleus functions that support remote CPo This effectively reduces the size of
the resident CP nucleus, making more storage available for the area where virtual
machine pages reside.

The Small CP option improves performance in environments where the real
processor storage size is 512K bytes or less.

Virtual storage preservation support is designed to preserve the contents of a virtu­
al machine if the system operator forces the machine off the system, if VM/SP
abnormally terminates it, or if VM/SP itself abnormally terminates.

The user can specify at VM/SP system generation time which virtual machines are
to be saved. The contents of these virtual machines are saved in DASD space that
the VM/SP system programmer must previously allocate via the NAMESYS
macro. The user can force a priority for the order in which multiple virtual
machines are saved; he does this through the SA VESEQ operand of the
NAMESYS macro. The saved virtual machine is restored to the user via the IPL
command. Normal recovery procedures or problem analysis for the saved virtual
machine may then be initiated by the user. To preserve its privacy and security, the
automatically saved virtual machine is made available only to previously specified
users. This saved virtual machine can be loaded into either a V =R or a normal
non-V =R machine.

Subject to certain restraints, the user can dynamically control the option to save or
not to save the contents of the virtual machine (VMSAVE), and in which DASD
area to save them (if there is more than one DASD area). If the user has a single
DASD area defined, VMSA VE can be enabled either by the VMSA VE directory
option or by the SET VMSA VE ON command. A single VMSA VE area can be
designated for use by multiple virtual machines. However, the area is allocated to
only one user at a time; the user who first enables VNISA VE has priority. Normal
logoff, or invoking the SET VMSA VE OFF command relinquishes this VMSA VE
area.

The user with multiple DASD areas allocated must issue the SET VMSA VE name
command to enable the VMSA VE option. The SET VMSA VE OFF command
disables the VMSA VE option. Also, to relinquish the VMSA VE area, the user
may issue the SET VMS AVE OFF command, or logoff, or issue the SET
VMSA VE name command specifying another area. The DASD save area can only
be relinquished by the owner of the data of the save area if data is stored in it. If
there is a saved system in the DASD area, the way to relinquish the area is for the
owner of the saved area to logon and issue the SET VMSA VE name command for
that area, then issue SET VMSA VE OFF command or LOGOFF.

The current status of the VMSAVE option (ON or OFF) can be obtained from the
QUERY SET command. The QUERY VMSA VE command displays the current
status of the VMSAVE option, the names of the areas allocated for the user, the
page frames of each area, and the date and time that their contents were saved.

VM/SP 7

Termination

IPL

Priority

VMSA VE Areas

Target Areas

8 VM/SP System Programmer's Guide

If the VMSA VE option is enabled when conditions of termination other than
normal LOGOFF occur (such as a VM/SP abend and restart), the pages of the vir­
tual machine specified are saved in the previously allocated DASD area in the order
specified at system generation time by NAMESYS macro values in DMKSNT.

After a virtual machine termination or a VM/SP abend in which virtual machine
contents were saved by the VMSA VE option, the IPL command initiated for the
designated VMSA VEd system by a logged-on user brings a page image copy of a
saved virtual machine into an active virtual machine, but does not give the saved
virtual machine control. The copy can always be dumped; however, it mayor may
not be executable.

The V=R area (if active) of the real machine is preserved if the system is perform­
ing a warm start. The V =R area is cleared if the system terminates to a hard wait
state or if a different V =R user logs on.

The SA VESEQ operand of the NAMESYS macro allows the user to force a priori­
ty in the saving order of multiple virtual machines. (The NAMESYS macro is
described in detail in the VM/SP Planning Guide and Reference.) The priority is
determined by number. The lower the number, the higher the priority. If two vir­
tual machines have the same priority, and both have the VMSA VE option enabled,
they are saved in the order in which they enabled VMSA VE. A sequence of
VMSA VE disable followed by a VMSA VE enable causes a virtual machine to be
the last one on the chain -- that is, last among the other virtual machines that have
the same SA VESEQ priority value.

If a high priority of SA VESEQ is specified for the production virtual machine, and
lower or equal priorities are specified for other virtual machines, the production
machine is saved first; other virtual machines are saved in the order in which the
virtual machines logged onto the system.

If different values of SAVESEQ are specified for each user (the range is 0-255),
the priority of saving order for each virtual machine is predictable, depending on
which users are logged on when an abend occurs.

The VM/SP FORMAT/ALLOCATE program must format DASD space used for
VMSAVE areas before any user can store into the area. Detailed information on
using the FORMAT/ALLOCATE program is contained in the VM / SP Operator's
Guide.

You can specify multiple VMSA VB target areas for a single user; you do this by
including in the DMKSNT module more than one NAMESYS macro with the same
USERID=operand. Different target areas are required if a user wishes to IPL a
VMSA VE system and have the VMSA VE option enabled at the same time. Once
the VMSA VE is enabled, the area referred to cannot be referenced by the IPL
command until a recovery operation has been effected. Similarly, if a VMSA VE
area currently contains a saved system, it can be released only by the user who

/'

Overlapping Areas

Other Saved Systems

caused the system to be stored there. That area cannot be the VMSA VE target
area referred to by a VMSA VE enable from another user until the stored system
has been released.

The system programmer, at his option, can specify overlapping DASD areas for
VMSA VE target areas through NAMESYS macro specifications. However, if two
areas overlap, they must start at the same physical cylinder and page. They can
end at different locations if the areas are of different lengths. Overlapping areas
are useful for different environments of the same user, and they are also valid as
VMSAVE target areas for different users.

Only one user can be using the area (for IPL or for a VMSA VE target area) at any
one time. In addition, if one user has caused a virtual machine to be stored into an
area, no other user can access that area. The user also cannot issue the SET
VMSA VE command with that area as the VMSA VE target area, until the user who
caused the virtual machine to be stored does the following:

Enables VMSA VE to that area via the SET command, which effectively clears
the area.

Releases the area by issuing a SET VMSA VE command to another area, a SET
VMSA VE OFF, a DEFINE STORAGE, or a normal LOGOFF process.

Only when the area has been cleared and released in this manner is it available for
other users.

For overlapping target areas, the user must load a system that has the same name
that it was saved under. This ensures that the page range returned with the load is
the same as the one stored by VMSA VE.

Only when the complete page range specified has been saved does the area become
valid and available. If an error occurs in the middle of a save operation, the area is
not valid, and therefore is not retrievable.

The user cannot force a save directly. The MESSAGE command may be used to
ask the operator to force the user off the system. The FORCE command causes an
automatic save, assuming that VMSA VE is enabled. The user can also disconnect
with a READ pending. After 15 minutes the system logs off the user, causing an
automatic save if VMSA VE is enabled.

Systems loaded by name under VM/SP must be saved by the SA VESYS command
under VM/SP. Because of control block changes, systems saved under other
releases of VM/370 are not loaded properly on VM/SP. Conversely, systems
saved on VM/SP will not load properly on a system that does not have this product
installed.

Virtual Machine I/O Management

A real disk device can be shared among multiple virtual machines. Virtual device
sharing is specified in the VM/SP directory entry or by a user command. If speci­
fied by the user, an appropriate password may have to be supplied before gaining
access to the virtual device. A particular virtual machine may be assigned

VM/SP 9

read-only or read/write access to a shared disk device. CP checks each virtual
machine input/output operation against the parameters in the virtual machine con­
figuration to ensure device integrity.

Virtual Reserve/Release support can be used to further enhance device integrity
for data on shared minidisks. Reserve/Release operation codes are simulated on a
virtual basis for minidisks, including full-extent minidisks. For details on
Reserve/Release support, refer to the VM / SP System Logic and Problem Determi­
nation Guide, Volume 1.

The virtual machine operating system is responsible for the operation of all virtual
devices associated with it. These virtual devices may be defined in the VM/SP
directory entry of the virtual machine, or they may be attached to (or detached
from) the virtual machine's configuration, dynamically, for the duration of the ter­
minal session. Virtual devices may be dedicated, as when mapped to a fully equiv­
alent real device; shared, as when mapped to a minidisk or when specified as a
shared virtual device; or spooled by CP to intermediate direct access storage.

In a real machine, input/output operations are normally initiated when a problem
program requests the operating system to issue a START I/O instruction to a spe­
cific device. Device error recovery is handled by the operating system. In a virtual
machine, the operating system can perform these same functions, but the device
address specified and the storage locations referenced are both virtual. It is the
responsibility of CP to translate the virtual specifications to real.

In addition, the interrupts caused by the input/ output operation are reflected to the
virtual machine for its interpretation and processing. If input/output errors occur,
CP records them but does not initiate error recovery operations. The virtual
machine operating system must handle error recovery, but does not record the error
(if SVC 76 is used).

In an attached processor environment, virtual I/O can be initiated by either
processor; however, all real I/O requests must be executed by the main processor,
and all I/O interrupts must be received on the main processor (the processor with
I/O capability). Any I/O requests by the attached processor (the processor with­
out I/O capability) are transferred to the main processor.

In a multiprocessor environment, both processors have real I/O capability. If
either processor receives an I/O request, that processor attempts to initiate I/O
operations. If none of the online paths from the executing processor to the
required device are available, that processor queues the I/O request on all busy and
scheduled paths to the device; both its own and the alternate paths to the device
from the second processor. If there is no online path from the executing processor,
that processor queues the I/O request on the first online and available path for the
second processor, as well as on all busy or scheduled paths from that processor.

Input! output operations initiated by CP for its own purposes (paging and
spooling), are performed directly and are not subject to translation.

Virtual machines may access data on MSS mass storage volumes using that virtual
machine's standard 3330 device support. MSS cylinder faults, and associated asyn­
chronous interruptions, are transparent to the virtual machine in this situation.

10 VM/SP System Programmer's Guide

Dedicated Channels

Spooling Functions

In most cases, the I/O devices and control units on a channel are shared among
many virtual machines as minidisks and dedicated devices, and shared with CP sys­
tem functions such as paging and spooling. Because of this sharing, CP has to
schedule all the I/O requests to achieve a balance between virtual machines. In
addition, CP must reflect the results of the subsequent I/O interruption to the
appropriate storage areas of each virtual machine.

By specifying a dedicated channel (or channels) for a virtual machine via the Class
B ATTACH CHANNEL command, the CP channel scheduling function is
bypassed for that virtual machine. A virtual machine assigned a dedicated channel
has that channel and all of its devices for its own exclusive use. CP translates the
virtual storage locations specified in channel commands to reallocations and per­
forms any necessary paging operations, but does not perform any device address
translations. The virtual device addresses on the dedicated channel must match the
real device addresses; thus, a minidisk cannot be used.

A virtual unit record device, which is mapped directly to a rea] unit record device, is
said to be dedicated. The real device is then controlled completely by the virtual
machine's operating system.

CP facilities allow multiple virtual machines to share unit record devices. Since vir­
tual machines controlled by CMS ordinarily have modest requirements for unit
record input/output devices, such device sharing is advantageous, and it is the
standard mode of system operation.

Spooling operations cease if the direct access storage space assigned to spooling is
depleted, and the virtual unit record devices appear in a not-ready status. The sys­
tem operator or the spooling operator may make additional spooling space available
by purging existing spool files or by assigning additional direct access storage space
to the spooling function. The spooling operator can use the class D SPT APE com­
mand to retrieve spool files from tape for output processing when spooling space
requirements are not critical. See the description of the SPT APE command in the
VM / SP Operator's Guide for further information.

Specific files can be transferred from the spooled card punch or printer of a virtual
machine to the card reader of the same or another virtual machine. Files trans­
ferred between virtual unit record devices by the spooling routines are not phys­
ically punched or printed. With this method, files can be made available to multiple
virtual machines, or to different operating systems executing at different times in
the same virtual machine.

Files may also be spooled to remote stations via the Remote Spooling Communi­
cations Subsystem (RSCS), a program product of VM/SP.

CP spooling includes many desirable options for the virtual machine user and the
real machine operator. These options include printing multiple copies of a single
spool file, backspacing any number of printer pages, and defining spooling ,classes
for the scheduling of real output. Each output spool file has, associated with it, a
136-byte area known as the spool file tag. The information contained in this area
and its syntax are determined by the originator and receiver of the file. For exam­
ple, whenever an output spool file is destined for transmission to a remote location

VM/SP 11

Spool File Recovery

Warm Start

Checkpoint Start

via the Remote Spooling Communications Subsystem, RSCS expects to find the
destination identification in the file tag. Tag data is set, changed, and queried using
the CP TAG command.

It is possible to spool terminal input and output. All data sent to the terminal,
whether it be from the virtual machine, the control program or the virtual machine
operator, can be spooled. Spooling is particularly desirable when a virtual machine·
is run with its console disconnected. Console spooling is usually started via the
command

SPOOL CONSOLE START

An exception to this is when a system operator logs on using a graphics device. In
this instance, console spooling is automatically started and continues in effect even
if the system operator should disconnect from the graphics device and log on to a
nongraphic device. In order to stop automatic console spooling, the system opera­
tor must issue the command

SPOOL CONSOLE STOP

If the system should suffer an abnormal termination, there are three degrees of
recovery for the system spool files; warm start (WARM), checkpoint start (CKPT),
and force start (FORCE). Warm start is automatically invoked if SET DUMP
AUTO is in effect. Otherwise, the choice of recovery method is selected when the
following message is issued:

hh:rnm:ss START ((COLDIWARMICKPTIFORCE) (DRAIN)) I (SHUTDOWN):

Note that a cold (COLD) start does not recover any spool files.

After a system failure, the warm start procedure copies spool file, accounting, and
system message data to the warm start area on the IPLed system residence volume.
When the system is reloaded, this information is retrieved and the spool file chains
and other system data are restored to their original status. If the warm start proce­
dure cannot be implemented because certain required areas of storage are invalid,
the operator is notified to take other recovery procedures.

Any new or revised status of spool file blocks, spooling devices, and spool hold
queue blocks is dynamically copied to the checkpoint area on the IPLed system res­
idence volume as it occurs. When a checkpoint (CKPT) start is requested, this is
the information that is used to recreate the spool file chains. It differs from warm
start data in that only spool file data is restored; accounting and system messages
information is not recovered. Also, the order of spool files on any particular
restored chain is not the original sequence but a random one.

12 VM/SP System Programmer's Guide

Force Start

CP Commands

A force start is required when checkpoint start encounters I/O errors while reading
files, or invalid data. The procedure is the same as for checkpoint start except that
unreadable or invalid files are bypassed.

The CP commands allow you to control the virtual machine from the terminal,
much as an operator controls a real machine. Virtual machine execution can be
stopped at any time by using the 3066 terminal's attention key or the 3270 termi­
nal's ENTER or PAl key. Execution can be restarted by entering the appropriate
CP command. External, attention, and device ready interrupts can be simulated on
the virtual machine. Virtual storage and virtual machine registers can be inspected
and modified, as can status words such as the PSW and the CSW. Extensive trace
facilities are provided for the virtual machine, as well ~s a single-instruction mode.
Commands are available to invoke the spooling and disk sharing functions of CP.

CP commands are classified by privilege classes. The VM/SP directory entry for
each user assigns one or more privilege classes. The classes are primary system
operator (class A), system resource operator (class B), system programmer (class
C), spooling operator (class D), system analyst (class E), service representative
(class F), and general user (class G). Commands in the system analyst class may
be used to inspect real storage locations, but may not be used to make modifica­
tions to real storage. Commands in the operator class provide real resource control
capabilities. System operator commands include all commands related to virtual
machine performance options, such as assigning a set of reserved page frames to a
selected virtual machine. For descriptions of all the CP commands, see the VM / SP
CP Command Reference for General Users and the VM / SP Operator's Guide.

VM/SP 13

Program States

When instructions in the Control Program are being executed, the real computer is
in the supervisor state; at all other times, when running virtual machines, the real
computer is in the problem state. Therefore, privileged instructions cannot be exe­
cuted by the virtual machine. Programs running on a virtual machine can issue
privileged instructions; but such an instruction either (1) causes an interruption that
is handled by the Control Program, or (2) is intercepted and handled by the
processor, if the virtual machine assist feature or VM/370 Extended
Control-Program Support is enabled and supports that instruction. CP examines
the operating status of the virtual machine PSW. If the virtual machine indicates
that it is functioning in supervisor mode, the privileged instruction is simulated
according to its type. If the virtual machine is in problem mode, the privileged
interrupt is reflected to the virtual machine.

Only the Control Program may operate in the supervisor state on the real machine.
All programs other than CP operate in the problem state on the real machine. All
user interrupts, including those caused by attempted privileged operations, are han­
dled by either the control program or the processor (if the virtual machine assist
feature or VM/370 Extended Control-Program Support is available). Only those
interrupts that the user program would expect from a real machine are reflected to
it. A problem' program executes on the virtual machine in a manner identical to its
execution on a real System/370 processor, as long as the problem program does
not violate the CP restrictions. CP restrictions are documented in the VM / SP
Planning Guide and Reference.

14 VM/SP System Programmer's Guide

Using Processor Resources

Queue 1

Queue 2

CP allocates the processor resource to virtual machines according to their operating
characteristics, priority, and the system resources available.

Virtual machines are dynamically categorized at the end of each time slice as inter­
active or noninteractive, depending upon the frequency of operations to or from
either the virtual system console or a terminal controlled by the virtual machine.

Virtual machines are dispatched from one of three queues, called Queue 1, Queue
2, and Queue 3. In order to be dispatched from a queue, a virtual machine must be
considered executable (that is, not waiting for some activity or for some other sys­
tem resource). Virtual machines are not considered dispatchable if the virtual
machine:

Enters a virtual wait state after an I/O operation has begun.
Is waiting for a page frame of real storage.

• Is waiting for an I/O operation to be translated by CP and started.
Is waiting for CP to simulate its privileged instructions.
Is waiting for a CP console function to be performed.

Virtual machines in Queue 1 (Q 1) are considered conversational or interactive
users, and enter this queue when an interrupt from a terminal is reflected to the vir­
tual machine. The Q 1 virtual machines are ordered by their deadline priorities in
the dispatch list. A deadline priority is a value calculated by the fair share schedul­
er every time a user is dropped from a queue (queue drop time). This value is
based on paging activity, processor usage, the load on the system, and user priority.
Deadline priority is used to determine when the user receives his next time slice.

A particular virtual machine's deadline priority for Q1 is better (earlier) than its
corresponding priority for Q2. The deadline priorities for all Q1 virtual machines
are not necessarily better than the deadline priorities for all Q2 virtual machines.

Virtual machines are dropped from Q 1 when they complete their time slice of
processor usage, and are placed in an "eligible list". Virtual machines entering CP
command mode are also dropped from Q 1.

Virtual machines are selected to enter Q2 from a list of eligible virtual machines
(the eligible list). The ordering of virtual machines on the eligible list and the dis­
patch list is determined on the basis of each virtual machine's deadline priority.

There are two lists of virtual machines in Q2; those in the eligible list and those in
the dispatch list. Both lists are sorted by deadline priority. A particular deadline
priority depends on many factors:

The time-of-day the virtual machine last dropped from the dispatch list

The virtual machine's user priority

Using Processor Resources 15

Deadline Priority

• The current load and number of virtual machines on the system

• The current resource utilization of the virtual machine

A virtual machine enters Q2 only if its working set size is not greater than the
number of real page frames available for allocation at the time. The working set of
a virtual machine is calculated and saved each time a user is dropped from Q2. The
working set size is a function of the number of virtual pages referred to by the vir­
tual machine during its stay in Q2, and the number of its virtual pages that are resi­
dent in real storage at the time it is dropped from the queue.

If the calculated working set of the highest priority virtual machine in the eligible
list is greater than the number of page frames available for allocation, CP continues
to search the eligible list, in deadline priority order, for a virtual machine whose
working set does not exceed the number of available page frames.

When a virtual machine completes its time slice of processor usage, it is dropped
from Q2 and placed in the eligible list according to its deadline priority. When a
virtual machine in Q2 enters CP command mode, it is removed from Q2.

To leave CP mode and return his virtual machine to the eligible list for Q2, a user
can issue a CP command that transfers control to the virtual machine operating sys­
tem for execution (for example, BEGIN, IPL, EXTERNAL, and RESTART).

Virtual machines in Q2 are considered to be noninteractive. In CP, interactive vir­
tual machines (those in Q1), if any, are normally considered for dispatching before
noninteractive virtual machines (Q2). This means that CMS users entering com­
mands that do not involve disk or tape I/O operations should get fast responses
from the VM/SP system even with a large number of active virtual machines. All
virtual machines (01 and Q2) on the dispatch list are ordered by their deadline pri­
ority. There can be many instances where some virtual machines in Q2 are consid­
ered for dispatching before virtual machines in Q1 because of their user priority,
current resource utilization level, or for other reasons.

The deadline priority is calculated at queue drop time by:

deadline priority = TOD + user bias factor

where:

TOD
is the current time of day.

User bias factor
is the user bias ratio * Q2 delay factor

User bias ratio
is less than 1, equal to 1, or greater than 1, depending on the whether the par­
ticular virtual machine is currently receiving less than, equal to, or more than its
specified amount of resources.

16 VM/SP System Programmer's Guide

Queue 3

eMS BLIP Facility

Q2 delay factor
is calculated dynamically based on configuration and load, and is the average
elapsed time required by a virtual machine to receive an amount of processor
time equal to one Q2 time slice.

For Q 1 virtual machines, the scaled bias is divided by 8 (since the Q 1 processor
usage time slice is 1/8th the Q2 time slice). The difference between scheduling a
virtual machine in Q1 instead of Q2 is that it receives 1/8th the amount of
processor,8 times as often. Operating constantly in either queue, a virtual machine
should receive the same amount of processor resources over an extended period of
time. The only preference given Q 1 virtual machines is when they are being moved
from the eligible list to the dispatch list. They are moved ahead of Q2 virtual
machines with the same or even slightly better deadline priorities.

Q3 is an extension of Q2 scheduling. It helps to distinguish between
non-interactive virtual machines and those that are frequently switching back and
forth between Q2 and Q 1. Virtual machines that have cycled through at least eight
consecutive Q2 processor time slices without a Q 1 interaction are labeled Q3. Q3
virtual machines are kept in the same lists (or queues) as Q2 virtual machines and
for most purposes are treated identically. The differences between Q2 and Q3 vir­
tual machines are reflected in their deadline priority calculations and the amounts
of such processor time they are allowed in queue. Q3 virtual machines are allowed
eight consecutive Q2 processor time slices before they are dropped from queue.
Because of the eight-fold increase in processor time allowed each time in queue,
the scaled bias is multiplied by eight before adding to the current time-of-day to
form the deadline priority. Q3 virtual machines should receive eight times as much
processor time each time in queue as Q2 virtual machines, but only 1/8th as often.

To reiterate the Ql/Q2 statement, which is also true for Q2/Q3: Operating con­
stantly in any queue, a virtual machine should receive the same amount of process­
or resources over an extended period of elapsed time. This does not necessarily
mean that a virtual machine performs the same when operating in Q3 mode as
when operating in standard Q2 mode. An amount of overhead (roughly propor­
tional to the small number of resident pages) is used for each virtual machine when
it drops from queue. When operating in Q3 mode, a virtual machine may perform
much better than in normal Q2 mode because it is undergoing fewer queue drops.
For some very large virtual storage programs, the total processor resources used
has been cut in half by operating in Q3 mode as compared to standard Q2 mode.

The CMS BLIP facility causes CMS to perform a write operation to the terminal
after every 2 seconds of virtual processor use. This feature effectively cancels
Queue 3 use for normal, connected CMS virtual machines, regardless of what types
of programs they are running. The CMS BLIP facility can be turned off with the
CMS SET BLIP OFF command or it can be disabled with the CP SET TIMER
OFF command.

Using Processor Resources 17

Interruption Handling

i/O interrupts

Missing Interrupt I-Iandler

Input/ output interrupts from completed I/O operations initiate various completion
routines and the scheduling of further I/O requests. The I/O interrupt handling
routine also gathers device sense information.

An I/O operation, such as a minidisk operation or a paging operation, that does
not complete in a specified time period causes a missing interrupt condition. An
incomplete minidisk operation can lock out a virtual machine user or an incomplete
paging I/O operation can degrade the performance of the system. The missing
interrupt handler detects incomplete I/O conditions by monitoring I/O activity
and, in addition, it takes action to correct incomplete I/O conditions without opera­
tor intervention. The missing interrupt handler, therefore, is designed to improve
the availability 'of the system by preventing user lockout and system degradation.

The missing interrupt handler scans the real device blocks (RDEVBLOKs) at spec­
ified time intervals. If the device is busy (RDEVBUZY flag is on) a bit
(RDEVMID) is set that indicates a possible missing interrupt condition. The first
level interrupt handler, DMKIOT, resets RDEVBUZY and RDEVMID when the
device causes an interrupt at the completion of an I/O operation. Therefore, if
RDEVMID is on at the end of the next time interval, a missing interrupt condition
exists.

The installation may use the default time interval for each distinct device category
or may specify a time value. For example, if the default time interval value of ten
minutes for tape devices is not appropriate for an installation's configuration, the
installation may change this value. See "Default Time Interval Values" and
"Changing the Time Interval" for a list of the default time interval values and how
you can change these values.

Using the Missing Interrupt Handler

To use the Missing Interrupt Handler, DMKDID must be included in the loadlist
during system generation. MIH can be set on either by including it as an option in
the directory or by issuing the SET command. The default is MIH OFF. With
MIH is on, when a missing interrupt is detected, CP simulates the interrupt. With
MIH off, when a missing interrupt is detected, message DMKDID546I is issued but
CP does not simulate the interrupt. If DMKDID is deleted from the load list during
system generation, support for the Missing Interrupt Handler is removed and no
messages are written to notify the operator of a missing interrupt.

If you want to change the interval time value, you must include the optional macro
SYSMIH in the system control file (DMKSYS). You must place this macro before
the SYSLOCS macro.

When a missing interrupt occurs, the control program attempts to correct the condi­
tion and issues a message that either:

The condition is cleared

18 VM/SP System Programmer's Guide

Devices Monitored

Default Time Interval Values

- or-

• The condition is pending

This message warns the system operator or system programmer that a problem may
exist. The system operator or the system programmer can reset the hardware and
schedule maintenance for the device that caused the missing interrupt condition. If
the same device class caused frequent interruptions, the system programmer may
want to set a larger time interval for that particular device class.

The class G SET command can be used to turn MIH on and off. Use either

SET MIH ON or SET MIH OFF

To determine the status of MIH use

QUERY SET

The system responds either

MIH ON or MIH OFF

Each device group has an expected time interval during which an I/O operation
should be completed. This interval varies widely among devices. Therefore, the
missing interrupt handler provides a means to specify a time interval for the follow­
ing distinct categories of I/O devices:

• Count-key-data devices (CLASDASD) and FB-512 devices (CLASFBA)

Tape devices (CLASTAPE)

• Graphic devices (CLASGRAF) except TYPI053 and TYP328X

• Unit record devices (CLASURI and CLASURO) except TYP3800 and
TYP3289E

• Miscellaneous devices (MISC) include: Mass storage system (MSS) devices
(specified at system generation as CLASSPEC TYP3851, and CLASDASD
FEATURE = VIRTUAL or FEATURE=SYSVIRT), graphics devices
TYPI053 and TYP328X, and UR output devices TYP3800 and TYP3289E.

Note: The missing interrupt handler does not support terminal devices, remote
graphic devices, SNA devices, pass-through virtual machine (logical) devices, and
special class devices (with the exception of MSS).

Default time interval values are assembled in DMKSYS. The following table gives
the default time interval values for the devices monitored:

Interruption Handling 19

Changing the Time Interval

Device Class Default
Class Parameter Time Interval

CLASDASD or CLASFBA DASD 15 seconds

CLASGRAF GRAF 30 seconds

CLASTAPE TAPE 10 minutes

CLASURI/ CLASURO DR 1 minute

MISCELLANEOUS MISC 12 minutes

An installation may want to change the default time intervals because of their par­
ticular configuration. For example, an installation that generates a large number of
devices might want to set the time interval value to a larger number to prevent fre­
quent timer interruptions.

The system programmer or the system operator can change the time interval in the
following ways:

Regenerate the system and, using the SYSMIH macro, specify a time interval
value in the system control file (DMKSYS) for the specific device class to be
changed. Specify the time interval value in minutes and seconds:

SYSMIH GRAF=00:15,UR=00:00,TAPE=05:00

This example changes the time interval for graphic devices from the default
value of thirty seconds to fifteen seconds. In this example, no further monitor­
ing takes place for unit record devices since the user specified a time value of
zero for that class. In addition, the example changes the time interval value for
tape devices from ten minutes to five minutes. This example does not change
the time interval value for DASD and MISC devices. If you do not specify a
device class, or if you do not include the SYSMIH macro in DMKSYS, the
missing interrupt handler uses the default value for that class.

• To change the value specified in DMKSYS for a particular device class, issue
the class B CP command specifying the new time interval value for that class in
minutes and seconds:

SET MITIME GRAF 00:10

This example changes the time interval for graphic devices to ten seconds.
This change is in effect until the system is reinitialized, or until a class Buser
issues another SET MITIME command. If the user specifies a time value of
zero for a specific device class, no further monitoring takes place for that
device class.

Note: If you set the time interval for a device class below its default value, be
careful not to shorten the time interval too much. This may cause unnecessary
missing interruption handler processing for devices that are functioning proper­
ly.

• To set all time values to zero and to prevent any monitoring for missing inter­
rupts for any devices, issue the class B CP command:

SET MITIME OFF

20 VM/SP System Programmer's Guide

Monitoring for missing interrupts does not take place until the system is reini­
tialized, or until the class B user issues another SET MITIME command.

Detennining Time Interval Settings

Diagnostic Aids

System Messages

The class B user can determine the current missing interrupt handler time intervals
by issuing the following CP command:

QUERY MITIME

The system issues:

The time interval setting for each device group in minutes and seconds

• The response MITIME OFF

An error message if the user specified an invalid parameter.

• The response that the missing interrupt handler is not available if DMKDID is
not in the loadlist during system generation.

Missing interrupt handler support provides aids so that the system programmer can
determine the frequency and status of interrupts and also know when he has made
an error in using the support. Diagnostic aids available when using the missing
interrupt handler include:

• System messages
Macro notes
VM/SP system's error recording area
Trace table

Messages inform the system operator when a missing interrupt occurs and indicate
if the condition has been cleared or if the interrupt is still pending. Other messages
indicate that the module DMKDID is not in the loadlist or that the user specified an
invalid parameter on the QUERY or SET MITIME command. See VM / SP System
Messages and Codes for a complete discussion of messages that the missing inter­
rupt handler issues.

The system programmer can use message information to increase the availability of
the system. If a particular device class causes frequent interrupts even if the system
clears the condition, the system programmer may want to change the time interval.
Changing the time interval prevents the overhead of frequent timer interrupts, fre­
quent trips through the detector routine, and rescheduling of timer request queues.
On the other hand, if the control program did not clear the condition, the messages
make the system programmer or system operator aware of the condition and one of
them can reset the hardware either physically or using CP commands.

Macro notes (MNOTES) inform the user that SYSMIH is not present in DMKSYS
or that the user specified an invalid time value in the SYSMIH macro. The system
uses the default interval time values and informs the user.

Interruption Handling 21

System's Error Recording Area

Trace. Table

Program Interrupt

Machine Check Interrupt

Whether or not CP succeeds in correcting a missing interrupt situation, it creates a
record of the event in the system's error recording area (LOGREC).

CP also traces the simulated interrupt and records it as trace table entry X' 19'.
Refer to Figure 67 on page 507, "CP Trace Table Entries", for the format of the
entry. The system programmer uses the trace table to determine the events that
preceded a CP system failure.

Program interrupts can occur in two states. If the processor is in supervisor state,
the interrupt indicates a system failure in the CP nucleus and causes the system to
abnormally terminate. If the processor is in problem state, a virtual machine is exe­
cuting. CP takes control to perform any required paging operations to satisfy the
exception, or to simulate the instruction. The fault is transparent to the virtual
machine execution. Any other program interrupt is a result of the virtual machine
processing and is reflected to the machine for handling.

When a machine check occurs, the CP Recovery Management Support (RMS)
gains control to save data associated with the failure for the Field Engineer. RMS
analyzes the failure to determine the extent of damage.

Damage assessment results in one of the following actions being taken:

• System termination (CP disabled wait state)

• Attached processor disabled (system continues in uniprocessor mode)

One processor of a multiprocessor configuration disabled (system continues in
uniprocessor mode)

• One or more failing channels disabled (system continues in same mode as at
time of the error)

• Selective virtual user termination

Selective virtual machine reset

Refreshing of damaged information with no effect on system configuration

Refreshing of damaged information with the defective storage page removed
from further system use

Error recording only for certain soft machine checks

The system operator is informed of all actions taken by the RMS routines. When a
machine check occurs during VM/SP startup (before the system is sufficiently ini­
tialized to permit RMS to operate successfully), the processor goes into a disabled
wait state and places a completion code of X'OOB' in the leftmost bytes of the cur­
rent PSW.

22 VM/SP System Programmer's Guide

SV C Interrupt

~xternalInterrupt

When an SVC interrupt occurs, the SVC interrupt routine is entered. If the
machine is in problem mode, the type of interrupt (if it is other than an SVC 76 or
ADSTOP SVC) is reflected to the pseudo-supervisor (that is, the supervisor operat­
ing in the user's virtual machine). Control is transferred to the appropriate inter­
rupt handler for ADSTOP SVCs and all SVC 76s.

If the machine is in supervisor mode, the SVC interrupt code is determined, and a
branch is taken to the appropriate SVC interrupt handler.

If a timer interrupt occurs, CP processes it according to type. The interval timer
indicates time slice end for the running user. The clock comparator indicates that a
specified timer event occurred, such as midnight, scheduled shutdown, or user
event reached.

The external console interrupt invokes CP processing to switch from the 3210 or
3215 to an alternate operator's console.

A service signal is a class 24 external interrupt that is generated when either a log­
ical device or the Maintenance and Service Support Facility (MSSF) signals com­
pletion of an operation initiated by a program (in the case of the logical device
DIAGNOSE X'7C') or CP, (in the case of the MSSFCALL DIAGNOSE X'80').

See the expanded descriptions of DIAGNOSE codes X'7C' and X'80' in "Part 1.
Control Program (CP)". Also refer to IBM System I 3 70 Principles of Operation,
GA22-7000 for a general description of external interrupts.

Synchronous Interrupts in an Attached Processor or Multiprocessor System

Real 110 Interrupts

Generally, when synchronous interrupts (such as program and SVC interrupts)
occur in an attached processor or multiprocessor system, the processing of the
interrupt can proceed without the global system lock for mainline, nonerror paths.
Otherwise, the global system lock is required. If the global system lock is needed
and it is already in use, the processing of the interrupt is deferred until the global
system lock is available. In this case, the interrupted processor attempts to run
another user.

In an attached processor configuration, only the main processor can receive real
110 interrupts. To ensure this, the channel masks in control register 2 on the main
processor are initialized to ones to enable interruptions from any available channel.
On the attached processor, the channel masks in control register 2 are initialized to
zeros. In a multiprocessor configuration, both processors can receive real 1/0
interruptions. The channel masks in control register 2 on both processors are ini­
tialized to ones to enable interruptions from any available channel.

Interruption Handling 23

Performance Guidelines

General Information

The performance characteristics of an operating system, when it is run in a virtual
machine environment, are difficult to predict. This unpredictability is a result of
several factors:

The System/370 model used.

The total number of virtual machines executing.

The type of work being done by each virtual machine.

The speed, capacity, and number of the paging devices.

The amount of fixed head paging storage (drum, 3340, 3344, 3350, 3380)

The amount of real storage available.

• The degree of channel and control unit contention, as well as arm contention,
affecting the paging device.

• The type and number of VM/SP performance options in use by one or more
virtual machines.

The degree of MSS 3330 volume use.

The order in which devices are selected for preferred paging and spooling.

Performance of any virtual machine may be improved by the choice of hardware,
operating system, and VM/SP options. The topics discussed in this section
address:

1. The performance options available in VM/SP to improve the performance of a
particular virtual machine.

2. The system options and operational characteristics of operating systems run­
ning in virtual machines that affect their execution in the virtual machine envi­
ronment.

The performance of a specific virtual machine may never equal that of the same
operating system running standalone on the same System/370, but the total
throughput obtained in the virtual machine environment may equal or better that
obtained on a real machine.

When executing in a virtual machine, any function that cannot be performed wholly
by the hardware causes some degree of degradation in the virtual machine's per­
formance. As the control program for the real machine, CP initially processes all
real interrupts. A virtual machine operating system's instructions are always exe­
cuted in problem state. Any privileged instruction issued by the virtual machine
causes a real privileged instruction exception interruption. The amount of work to
be done by CP to analyze and handle a virtual machine-initiated interrupt depends
upon the type and complexity of the interrupt.

24 VM/SP System Programmer's Guide

Virtual Machine 1/0

The simulation effort required of CP may be trivial, as for a supervisor call (SVC)
interrupt (which is generally reflected back to the virtual machine), or may be more
complex, as in the case of a Start I/O (SIO) interrupt, which initiates extensive CP
processing.

When planning for the virtual machine environment, consideration should be given
to the number and type of privileged instructions to be executed by the virtual
machines. Any reduction in the number of privileged instructions issued by the vir­
tual machine's operating system reduces the amount of extra work CP must do to
support the machine.

To support I/O processing in a virtual machine, CP must translate all virtual
machine channel command word (CCW) sequences to refer to real storage and real
devices and, in the case of minidisks, real cylinders. When a virtual machine issues
an SIO, CP must:

1. Intercept the virtual machine SIO interrupt.

2. Allocate real storage space to hold the real CCW list to be created.

3. Translate the virtual data addresses to real data addresses.

4. Translate the virtual device addresses referred to in the virtual CCWs to real
device addresses.

5. Page into real storage and lock, for the duration of the I/O operation, all virtu­
al storage pages required to support the I/O operation.

6. Generate a new CCW sequence building a Channel Indirect Data Address list
if the real storage locations cross page boundaries.

7. If the real device is a 3330V, append an MSS cylinder fault prefix to the CCW
prefix to prevent the channel from doing channel command retry.

8. Schedule the I/O request.

9. Present the SIO condition code to the virtual machine.

10. Recognize an MSS cylinder fault, queue the I/O request, and reschedule the
request when the subsequent interruption is received (indicating staging is
complete).

11. Intercept, retranslate, and present the channel end and device end interrupts to
the appropriate virtual machine, where they must then be processed by the vir­
tual machine operating system.

CP's handling of SIOs for virtual machines can be one of the most significant
causes of reduced performance in virtual machines.

The number of SIO operations required by a virtual machine can be significantly
reduced in several ways:

Use of large blocking factors (up to 4096 bytes) for user data sets to reduce
the total number of SIOs needed.

Performance Guidelines 25

Paging Considerations

Use of preallocated data sets.

Use of virtual machine operating system options (such as chained scheduling in
OS) that reduce the number of SIO instructions.

Substitution of a faster resource (virtual storage) for I/O operations, by build­
ing small temporary data sets in virtual storage rather than using an I/O device.

Frequently, there can be a performance gain when CP paging is substituted for vir­
tual machine I/O operations. The performance of an operating system such as OS
can be improved by specifying as resident as many frequently used OS functions
(transient subroutines, ISAM indexes, and so forth) as are possible. In this way,
paging I/O is substituted for virtual machine-initiated I/O. In this case, the only
work to be done by CP is to place into real storage the page that contains the
desired routine or data.

Three CP performance options are available to reduce the CP overhead associated
with virtual machine I/O instructions or other privileged instructions used by the
virtual machine's I/O Supervisor:

1. The virtual=real option removes the need for CP to perform storage reference
translation and paging before each I/O operation for a specific virtual
machine.

2. The virtual machine assist feature reduces the real supervisor state time used by
VM/SP. For a detailed description of the feature, see "Virtual Machine Assist
Feature" later in this section. For a list of processors on which the feature is
available, see the VAI/ SP Planning Guide and Reference.

3. VM/370 Extended Control-Program Support (ECPS) further reduces the real
supervisor state time used by VM/SP. For a detailed description of ECPS, see
"VM/370 Extended Control-Program Support (ECPS)" later in this section.
For a list of processors on which ECPS is available, see the VM / SP Planning
Guide and Reference.

Assignment and use of these options is discussed in "VM/SP Performance
Options".

When virtual machines refer to virtual storage addresses that are not currently in
real storage, they cause a paging exception and the associated CP paging activity.

The addressing characteristics of programs executing in virtual storage have a sig­
nificant effect on the number of page exceptions experienced by that virtual
machine. Routines that have widely scattered storage reference tend to increase
the paging load of a particular virtual machine. When possible, modules of code
that are dependent upon each other should be located in the same page. Reference
tables, constants, and literals should also be located near the routines that use
them. Exception or error routines that are infrequently used should not be placed
within main routines, but located elsewhere.

When an available page of virtual storage contains only reenterable code, paging
activity can be reduced, since the page, although referred to, is never changed, and

26 VM/SP System Programmer's Guide

Locked Pages Option

thus does not cause a write operation to the paging device. The first copy of that
page is written on the paging device when that frame is needed for some other
more active page. Only inactive pages that have changed must be paged out.

Virtual machines that reduce their paging activity by controlling their use of
addressable space improve resource management for that virtual machine, the
VM/SP system, and all other virtual machines. The total paging load that must be
handled by CP is reduced, and more time is available for productive virtual
machine use.

Additional dynamic paging storage may be gained by controlling free storage allo­
cation. The amount of free storage allocated at VM/SP initialization time can be
controlled by the installation. When the System is being generated, the FREE
operand of the SYSCOR macro statement may be used to specify the number of
free storage pages to be allocated at system load time.

If, at IPL time, the amount of storage that these pages represent is greater than 25
percent of the VM/SP storage size (not including the V=R area, if any), a default
number of pages is used. The default value is 3 pages for the first 256K bytes of
storage plus 1 page for each additional 64K bytes (not including the V =R size, if
any).

The SYSCOR macro definition can be found in VM / SP Planning Guide and Refer­
ence.

CP provides three performance options, locked pages, reserved page frames, and a
virtual=real area, to reduce the paging requirements of virtual machines.
Generally, these facilities require some dedication of real storage to the chosen vir­
tual machine and, therefore, improve its performance at the expense of other virtu­
al machines.

The LOCK command, which is available to the system operator (with privilege
class A), can be used to permanently fix or lock specific pages of virtual storage
into real storage. In so doing, all paging I/O for these page frames is eliminated.

Since this facility reduces total real storage resources (real page frames) that are
available to support other virtual machines, only frequently used pages should be
locked into real storage. Since page zero (the first 4096 bytes) of a virtual machine
storage is referred to and changed frequently (for example, whenever a virtual
machine interrupt occurs or when a CSW is stored), it should be the first page of a
particular virtual machine that an installation considers locking. The virtual
machine interrupt handler pages might also be considered good candidates for lock­
ing.

Other pages to be locked depend upon the work being done by the particular virtu­
al machine and its usage of virtual storage.

The normal CP paging mechanism selects unreferenced page frames in real storage
for replacement by active pages. Page frames belonging to inactive virtual
machines are all selected eventually and paged out if the real storage frames are
needed to support active virtual machine pages.

When virtual machine activity is initiated on an infrequent or irregular basis, such
as from a remote terminal in a teleprocessing inquiry system, some or all of its vir-

Performance Guidelines 27

Reserved Page Frames Option

Virlual=RealOption

tual storage may have been paged out before the time the virtual machine begins
processing. Some pages then have to be paged in so that the virtual machine can
respond to the teleprocessing request compared with running the same teleprocess­
ing program on a real machine. This paging activity may cause an increase in the
time required to respond to the request compared with running the teleprocessing
program on a real machine. Further response time is variable, depending upon the
number of paging operations that must occur.

Locking specific pages of the virtual machine's program into real storage may ease
this problem, but it is not always easy nor possible to identify which specific pages
will always be required.

Once a page is locked, it remains locked until either the user logs off or the system
operator (privilege class A) issues the UNLOCK command for that page. If the
"locked pages" option is in effect and the user loads his system again (via IPL) or
loads another system, the locked pages are refreshed and the virtual machine's
locked pages are unlocked by the system. The SYSTEM CLEAR command, when
invoked, clears virtual machine storage, including the user's locked pages.

Note: In a system generated for attached processor or multiprocessor operation, no
shared pages are locked. If the system operator attempts to lock a shared page or
an address range containing one or more shared pages, he receives the message

DMKCPV1651 PAGE (hexloc) NOT LOCKED, SHARED PAGE

for each of the shared pages within the range.

A more flexible approach than locked pages is the reserved page frames option.
This option provides a specified virtual machine with an essentially private set of
real page frames, the number of frames being designated by the system operator
when he issues the CP SET RESERVE command. Pages are not locked into these
frames. They can be paged out, but only for other active pages of the same virtual
machine. When a temporarily inactive virtual machine having this option is reacti­
vated, these page frames are immediately available. If the program code or data
required to satisfy the request was in real storage at the time the virtual machine
became inactive, no paging activity is required for the virtual machine to respond.

This option is usually more efficient than locked pages in that the pages that remain
in real storage are those pages with the greatest amount of activity at that moment,
as determined automatically by the system. Although multiple virtual machines
may use the LOCK option, only one virtual machine at a time may have the
reserved page frames option active. Assignment of this option is discussed further
in "VM/SP Performance Options".

The reserved page frames option provides performance that is generally consistent
from run to run with regard to paging activity. This can be especially valuable for
production-oriented virtual machines with critical schedules, or those running tele­
processing applications where response times must be kept as short as possible.

The VM/SP virtual=real option eliminates CP paging for the selected virtual
machine. All pages of virtual machine storage, except page zero, are locked in the
real storage locations they would use on a real computer. CP controls real page

28 VM/SP System Programmer's Guide

zero, but the remainder of the CP nucleus is relocated and placed beyond the virtu­
al=real machine in real storage. This option is discussed in more detail in '··'VM/SP
Performance Options".

Since the entire address space required by the virtual machine is locked, these page
frames are not available for use by other virtual machines except when the
virtual=real machine is not logged on. This option often increases the paging activ­
ity for other virtual machine users, and in some cases for VM/SP. (Paging activity
on the system may increase substantially, since all other virtual machine storage
requirements must be managed with fewer remaining real page frames.)

The virtual=real option may be desirable or mandatory in certain situations. The
virtual=real option is desirable when running a virtual machine operating system
(like DOS/VS or OS/VS) that performs paging of its own because the possibility
of double paging is eliminated. The option must be used to allow programs that
execute self-modifying channel programs or have a certain degree of hardware tim­
ing dependencies to run under VM/SP.

VM/SP Performance Options

VM/SP provides a number of options an installation may use to improve the per­
formance of virtual machines and VM/SP. Several options improve the perform­
ance of installation specified virtual machines; other options improve the
performance of all virtual machines and VM/SP. The options, described in the fol­
lowing discussion are:

Favored execution
User priority

• Reserved page frames
• Virtual=real

Affinity
Multiple shadow table support
Shadow table bypass
Single processor mode
Dynamic SCP transition to or from native mode
Queue drop elimination

• Virtual machine assist
• Extended Control-Program Support

Specifying a performance option may mean making a performance trade-off;
improving the performance of one virtual machine at the expense of VM/SP and
other virtual machines. For example, after an operator specifies favored execution
for a virtual machine, that virtual machine receives more processor time than other
virtual machines. Therefore, before specifying any performance option, identify
the option's performance trade-offs and assess their impact on system performance.

The favored execution option and user priority option both alter the normal sched­
uler algorithm. The user priority option tends to take precedence over the favored
execution option even when you specify a percentage. For example, suppose virtu­
al machine A has favored execution nn % specified and has been given a low priori­
ty~ while virtual machine B has been given a higher priority. Virtual machine A
may not get the actual percentage of the CPU that was specified with the favored
option.

Performance Guidelines 29

Favored Execution

The favored execution options allow an installation to modify the normal CP dead­
line priority calculations in the fair share scheduler to force the system to devote
more of its processor resources to a given virtual machine than would ordinarily be
the case. The options provided are:

The basic favored execution option
• The favored execution percentage option

The basic favored execution option means that the virtual machine so designated is
to remain in the dispatch list at all times, unless it becomes nonexecutable. When
the virtual machine is executable, it is to be placed in the dispatchable list at its
normal priority position. However, any active virtual machine represents either an
explicit or implicit commitment of main storage. An explicit storage commitment
can be specified by either the virtual=real option or the reserved page frames
option. An implicit commitment exists if neither of these options is specified, and
the scheduler recomputes the virtual machine's projected work-set at what it would
normally have been at queue-drop time. Multiple virtual machines can have the
basic favored execution option set. However, if their combined main storage
requirements exceed the system's capacity, performance can suffer because of
thrashing; the system can do little useful work because of excessive paging.

If the favored task is highly compute bound and must compete for the processor
with many other tasks of the same type, an installation should define the processor
allocation to be made. In this case, the favored execution percentage option can be
selected. This option specifies that the selected virtual machine, in addition to
remaining in queue, is requesting a specified minimum percentage (from 1 to 100
percent) of the total processor time, if it can use it. If a virtual machine requests
100 percent of the processor time, CP keeps that virtual machine at the top of the
dispatch list. This ensures that the virtual machine always has first priority when
CP dispatches a virtual machine to the processor. To select the favored execution
option, specify the FAVORED operand on the class A, B, or F SET command.
After the option is invoked, VM/SP provides processor time for the selected virtual
machine as follows:

1. The in-queue time slice is multiplied by the specified percentage to arrive at the
virtual machine's requested processor time.

2. The scheduler attempts to place the virtual machine, when it is executable, at
the top of the dispatchable list until it has obtained its requested processor
time.

3. If the virtual machine obtains its requested processor time before the end of its
in-queue time slice, it is placed in the dispatchable list according to its calcu­
lated dispatching priority.

4. In either case (2 or 3), at the end of the in-queue time slice the requested per­
centage is recomputed as in step 1 and the process is repeated.

For a description of the SET command, see the VM / SP Operator's Guide.

If a percentage is not specified, a virtual machine with the favored execution option
active is kept in the dispatch list except under the following conditions:

• Entering CP console function mode

30 VM/SP System Programmer's Guide

Loading a disabled PSW
Loading an enabled PSW with no active 110 in process
Logging on or off.

When the virtual machine becomes executable again, it is put back on the dispatch
list in Q 1. If dropped from Q 1, the virtual machine is placed directly in the Q2 dis­
patch list. If the percentage option of the SET FAVORED command is specified,
the deadline priority is calculated at queue drop time by:

current time-of-day + length of allowed processor in-queue time slice
favored percentage

User Priority

For example, if the processor in-queue time slice is 1 second, and the specified per­
centage is 10 percent, then the value added to the current time-of-day is 10 sec­
onds. The virtual machine should receive one processor time slice (1 second) once
every 10 seconds.

Note, however, that these options can impact the response times of other virtual
machines. To provide a virtual machine with both options, basic and percentage,
both forms of the command for that virtual machine must be issued. The percent­
age form of the SET FAVORED command can be used to specify any number of
logged-on virtual machines.

Although the SET FAVORED command prevents specifying more than 100% for
a particular virtual machine, nothing is done to prevent allocating more than 1 00%
to a number of virtual machines. Where more than 1 00% has been allocated, the
favored virtual machines compete for the available resources on a pro-rata basis.
An individual virtual machine's allocation is, roughly, proportional to the percent­
age allocated to it, divided by the total percentage allocated to all virtual machines.
The effect of allocating more than 1000/0 of the system on interactive (Ql)
responses is unpredictable.

Note: The percentage of the processor time actually received by the favored usc
normally remains relatively close to the percentage specified in the command.
However, it is not an absolute value, and varies depending on the total load on the
system and the type of load on the system. If, for example, there are multiple vir­
tual machines on the runlist that are compute bound (That is, are not queue
dropped before the end of their in-queue time slice), then the favored user may not
receive its requested percentage of the total processor time.

The VM/SP operator can assign specific priority values to different virtual
machines. In so doing, the virtual machine with a higher priority is allocated a larg­
er share of the system resources before a virtual machine with a lower priority.
User priorities are set by the following class A command:

SET PRIORITY userid nn

where userid is the user's identification and nn is an integer value from 1 to 99.
The value of nn affects the user's dispatching priority in relation to other users in
the system. The priority value (nn) is one of the factors considered in the calcu­
lation of the deadline priority. The deadline priority is the basis on which all virtual
machines in the system are ordered on both the eligible list and the dispatch list.
The deadline priority calculation is based on the assumption that the average or
normal (default) user priority is 64.

Performance Guidelines 31

Reserved Page Frames

Virtual=Real

VM/SP uses chained lists of available and pageable pages. Pages for users are
assigned from the available list, which is replenished from the page able list.

Pages that are temporarily locked in real storage are not available or pageable. The
reserved page function gives a particular virtual machine an essentially "private"
set of pages. The pages are not locked; they can be swapped, but only for the spec­
ified virtual machine. Paging proceeds using demand paging with a "reference bit"
algorithm to select the best page for swapping. The number of reserved page
frames for the virtual machine is specified as a maximum. The page selection algo­
rithm selects an available page frame for a reserved user and marks that page frame
"reserved" if the maximum specified for the user has not been reached. If an
available reserved paRe frame is encountered for the reserved user selection, it is
used whether or not the maximum has been reached.

The maximum number of reserved page frames is specified by a class A command
of the following format:

SET RESERVE userid xxx

where xxx is the maximum number required. If the page selection algorithm cannot
locate an available page for other users because they are all reserved, the algorithm
forces the use of reserved pages. This function can be specified in only one virtual
machine at anyone time.

Note: xxx should never approach the total available pages, since CP overhead is
substantially increased in this situation, and excessive paging activity is likely to
occur in other virtual machines.

For this option, the VM/SP nucleus must be reorganized to provide an area in real
storage large enough to contain the entire virtual=real machine. In the virtual
machine, each page from page 1 to the end is in its true real storage location; only
its page zero is relocated. The virtual machine is still run in dynamic address trans­
lation mode, but since the virtual page address is the same as the real page address,
no CCW translation is required. Since CCW translation is not performed, no
check is made to ensure that I/O data transfer does not occur into page zero or any
page beyond the end of the virtual=real machine's storage.

For information about generating a virtual=real system, see the VM / SP Installa­
tion Guide.

Figure 3 on page 33 is an example of a real storage layout with the virtual=real
option. The V =R area is 128K and real storage is 512K.

32 VM/SP System Programmer's Guide

Virtual storage
Addresses

ABSOLUTE PAGE 0 (MODULE DMKPSA)
4K~--------------------------------------~

/
/

Virtual Page 1

VIRTUAL=REAL AREA

SIZE = 128K BYTES
/
/

(Minimum size is 32K bytes.)
128K~------------------------------------~

OK Virtual Page 0
4K~------------------------------------~

132K
/ Remainder of CP Resident Nucleus /
/ /

Real storage
Addresses

OK

4K

128K

132K (DMKSLC)

r--~I End of CP Nucleus (DMKCPE)
/ Dynamic Paging Area /
/ and /

Free Storage

PSA for Attached or non-IPL Processor

PSA for MAIN or IPL Processor

Figure 3. Storage Layout in a VirtuaI=ReaI Machine

<-------,
< ____ ~r___ DMKPSA

512K (End of real
storage)

There are several considerations for the virtual=real option that affect overall sys­
tem operation:

1. The area of contiguous storage built for the virtual=real machine must be large
enough to contain the entire addressing space of the largest virtual=real
machine. The virtual=real storage size that a VM/SP system allows is defined
during system generation when the option is selected.

2. The storage reserved for the virtual=real machine can only be used by a virtual
machine with that option specified in the VM/SP directory. It is not available
to other users for paging space, nor for VM/SP usage until released from vir­
tual=real status by a system operator via the CP UNLOCK command. Once
released, VM/SP must be loaded again before the virtual=real option can
become active again.

3. The virtual machine with the virtual=real option operates in the preallocated
storage area with normal CCW translation in effect until the CP SET
NOTRANS ON command is issued. At that time, with several exceptions, all
subsequent I/O operations are performed from the virtual CCWs in the
virtual=real space without translation. The exceptions occur under any of the
following conditions:

• SIO tracing active
• First CCW not in the V =R region

I/O operation is a sense command
• I/O device is a dial-up terminal
• I/O is for a nondedicated device
• (spooled unit record console virtual CTCA or minidisks that are less than a

full volume)
I/O device has an alternate path

Performance Guidelines 33

Affinity

Pending device status

Any of the above conditions force CCW translation. Since minidisks are non­
dedicated devices, they may be used by programs running in the V=R region
even though CP SET NOTRANS ON is in effect.

4. If the virtual=real machine performs a virtual reset or IPL, then the normal
CCW translation goes into effect until the CP SET NOTRANS ON command
is again issued. This permits simulation of an IPL sequence by CP. Only the
virtual=real virtual machine can issue the command. A message is issued if
normal transiation mode is entered.

5. A virtual=real machine is not allowed to IPL a named or shared system. It
must IPL by device address.

6. When NOTRANS is in effect for a virtual=real machine, no meaningful SEEK
data is collected by MONITOR operations.

7. If an installation defines a V=R area on a 3081 processor, the reliability and
availability of the V=R machine can be improved if the V=R machine issues
the TEST BLOCK instruction to validate storage in the V=R area. Note that
the only two SCPs that issue TEST BLOCK are MVS/SP and VM/SP. The
HSA area on a 3081 processor may reside in the middle of the V =R area;
these two control programs mark the HSA segment as invalid and continue val­
idating storage. Any other system control program, such as OS/VS, validates
storage via the MVCL instruction. When OS/VS encounters the beginning of
the HSA, it assumes that it has reached the end of storage. Therefore, such a
control program running in the V =R area of VM/SP on a 3081 processor may
not have access to the full V =R area.

8. If an installation intends to run in single processor mode on a 3081 processor,
the system operator must issue a VARY OFF PROCESSOR nn VLOG com­
mand.

This option allows virtual machines that operate on attached processor or multi­
processor systems to select the processor of their choice for program execution. To
select the affinity option, use the directory OPTION statement, or specify the
AFFINITY operand on the class A, B, F, or G SET command. The directory
OPTION statement is described in the VM / SP Planning Guide and Reference. The
class A, B, and F SET commands are described in the VM / SP Operator's Guide
and the class G SET command is described in the VM / SP CP Command Reference
for General Users.

In application, the affinity setting of a virtual machine implies a preference of oper­
ation to either (or neither) processor. Affinity of operation for a virtual machine
means that the program of that virtual machine will be executed on the selected or
named processor. It does not imply that supervisory functions and the CP house­
keeping functions associated with that virtual machine will be handled by the same
processor.

In attached processor systems, all real I/O operations and associated interrupts are
handled by the main processor. Virtual I/O initiated on the attached processor
that is mapped to real devices must transfer control to the main processor for real
I/O execution. Therefore, benefits may be realized in a virtual machine "mix" by

34 VM/SP System Programmer's Guide

relegating those virtual machines that have a high I/O-to-compute ratio to the main
processor, and those virtual machines that have a high compute-to-I/O ratio to the
attached processor. Such decisions should be carefully weighed as every virtual
machine is in contention with other virtual machines for resources of the system.

A system programmer can improve a virtual machine's performance on a multi­
processor where the path(s) to a user's primary minidisks exist from one processor
only. In such cases, the system programmer could set the user's affinity to that
processor.

A more important use of the affinity setting would be in applications where there
are virtual machine program requirements for special hardware features that are
available on one processor and not the other. Such features could be a perform­
ance enhancement such as virtual machine assist (described later in the text) or a
special RPQ that is a requirement for a particular program's execution.

Multiple Shadow Table Support

Shadow Table Bypass

To reduce the number of purges when the virtual machine changes control register
1 (CRl) values, VM/SP maintains a queue of segment table origins (STO) and
associated shadow tables for the virtual machine. Thus, each time an MVS or SVS
system dispatches a new address space (changes CRl), VM/SP can dispatch the
proper shadow table.

Multiple shadow table support adds one control block to VM/SP, the segment
table origin control block (STOBLOK) pointed to by the ECBLOK. The
STOBLOK, created by DMKVAT, contains all information pertaining to the shad­
ow segment table, the shadow segment table itself and the virtual CRl value. It
also provides forward and backward queue pointers to the next STOBLOK on the
queue. The first STOBLOK on the queue always contains the shadow STO to be
loaded into CRl when the virtual machine is dispatched in translation mode. The
queue of STOBLOKs is maintained by DMKV AT in the following manner:

1. If a new CRl value is loaded by the virtual machine, then the queue of
STOBLOKs is searched for the virtual CRl value.

2. If the proper STO is found, then the STOBLOK is ordered first on the queue.

3. If the proper STO is not found, then the maximum STO count is checked.

4. If the number of STOBLOKs equals the maximum STO count, then the last
STOBLOK is stolen, the shadow tables are purged, and the STOBLOK is reini­
tialized and reused by being chained first on the queue with the new virtual
CRl value.

5. If the number of STOBLOKs is less than the maximum STO count, then free
storage is obtained from VM/SP, and the STOBLOK is reinitialized and
chained first on the queue.

Multiple shadow table support is controlled by the SET STMUL TI command. The
default shadow table count is 3 and the maximum is 6 per virtual machine.

Shadow table bypass is controlled by the SET STBYP ASS command.

Performance Guidelines 35

Nott:: If virtual machine assist is enabled on the system, the virtual machine must
have the STFIRST directory option to be allowed to issue the SET STBYP ASS
nnM/ nnnnK command.

Shadow Table Bypass for the V=V User

This technique is based on several characteristics of VS systems:

1. VS systems have a large area of addressing space starting with location zero
where the virtual address is equal to the real address.

2. This addressing space is common to each segment table when multiple segment
tables are used (MVS or SVS address space).

3. The VS system never pages within this fixed area.

Thus, an area starting with location zero can be established where the second-level
address equals the third-level address or virtual-virtual = virtual-real (VV = VR).
This allows a high-water mark, the highest VV = VR address, for a VS system to be
established. Because the second-level address is the same as the third-level
address, a reverse translation allows the shadow tables to be indirectly indexed.
Then, whenever VM/SP steals a page from the VV = VR area, it invalidates the
shadow page table entry and executes a real PTLB before redispatching the VS
system's virtual machine.

In addition, whenever a shadow table is purged because a page frame is stolen from
above the high-water mark or the virtual machine executed a PTLB or LCTL, the
invalidation starts above the high-water mark, thus reducing purge and revalidation
time.

Shadow Table Bypass for the V=R User

Queue Drop Elimination

By the use of a V =R shadow table bypass technique, both the shadow tables and
the overhead associated with maintaining them can be eliminated. This can be
accomplished by VM/SP modifying the virtual operating system's page table to
relocate virtual page zero to the highest real address within the V =R area. It is
then possible to dispatch the virtual machine pointing to its own page and segment
tables.

VM/SP attempts to optimize system throughput by monitoring the execution status
of virtual machines. When a virtual machine becomes idle, VM/SP drops it from
the active queue. The virtual machine's page and segment tables are scanned, and
resident pages are invalidated and put on the flush list.

VM/SP determines that a virtual machine is idle when it voluntarily suspends exe­
cution (by loading a virtual PSW with the wait state bit on, for example), and no
high-speed I/O operation is active. Normally, this is an adequate procedure.

However, in certain special cases, a virtual machine is determined to be idle and is
queue dropped, but it becomes active again sooner than expected. If this cycle of
queue dropping and reactivation is repeatedly executed, the overhead involved in
invalidating and revalidating the virtual machine's pages may become large.

The SNA VTAM service machine is an example of this special case. The VTAM
service machine operates by processing an IUCV message (or queue of messages),

36 VM/SP System Programmer's Guide

and then suspending execution until the next message arrives. VM/SP queue drops
the VT AM service machine when it suspends execution. When the next message
arrives, all the VT AM service machine's pages must be revalidated. If the message
rate is moderate to high, the overhead of repeated queue dropping exceeds the
benefit.

The CP class A command "SET QDROP userid ON/OFF [USERS]" allows the
installation to control this situation. If SET QDROP OFF is in effect for a virtual
machine, the virtual machine remains active in the queue and its pages are not
scanned or flushed. The page stealing mechanism is the only way the pages can be
removed from storage. (Page stealing is invoked only if the flush list is empty.)

Specifying SET QDROP OFF for a service virtual machine may improve system
performance and throughput when queue dropping would otherwise occur rapidly.
But applying SET QDROP OFF indiscriminately may degrade system throughput
by defeating the page flush mechanism and forcing page stealing to take place.

There can also be a relatively large overhead associated with a virtual machine
being queue dropped during communications with a service machine for which the
QDROP OFF specification is in effect. This can occur in small systems in which
there is a high degree of virtual machine intercommunications. Specifying SET
QDROP userid OFF USERS addresses this problem by providing for the tempo­
rary extension of the QDROP OFF status to any virtual machine communicating
via VMCF or IUCV to the service virtual machine specified. The QDROP status
for the "served" virtual machine remains in effect only while messages are out­
standing between it and the service machine. Thus performance gains can be real­
ized in systems with heavy usage of products such as IFS or PVM (invoked via the
CMS PASSTHRU command). No additional performance gains will be realized in
systems in which PVM is invoked via CP DIAL or with the SNA VTAM service
machine, since the communication is with CP rather than another virtual machine.

The QUERY QDROP command (CP class A and E) may be used to list the userids
for which SET QDROP OFF and the USERS parameter have been specified.

Virtual Machine Assist Feature

The Virtual Machine Assist Feature is a processor hardware feature that improves
the performance of VM/SP. Virtual storage operating systems, which run in prob­
lem state under the control of VM/SP, use many privileged instructions and SVCs
that cause interrupts that VM/SP must handle. When the virtual machine assist
feature is used, many of these interrupts are intercepted and handled by the
processor. Consequently, VM/SP performance is improved.

The Virtual Machine Assist Feature intercepts and handles interruptions caused by
SVCs (other than SVC 76), invalid page conditions, and several privileged
instructions. An SVC 76 is never handled by the assist feature; it is always handled
by CPo The processing of the following privileged instructions is handled by this
feature:

LRA
STCTL
RRB
ISK
SSK
IPK
STNSM

(load real address)
(store control)
(reset reference bit)
(insert storage key)
(set storage key)
(insert PSW key)
(store then AND system mask)

Performance Guidelines 37

STOSM
SSM
LPSW
SPKA

(store then OR system mask)
(set system mask)
(load PSW)
(set PSW key from address)

Although the assist feature was designed to improve the performance of VM/SP,
virtual machines may see a performance improvement because more resources are
available for virtual machine users. For a list of processors on which the Virtual
Machine Assist Feature is available, see the VM / SP Planning Guide and Reference.

, Using the Virtual Machine Assist Feature

Whenever you IPL VM/SP on a processor with the virtual machine assist feature,
the feature is available for all VM/SP virtual machines. However, the system
operator's SET command can make the feature unavailable to VM/SP and, subse­
quently, available again for all users. If you do not know whether or not the virtual
machine assist feature is available to VM/SP, use the class A and E QUERY com­
mand. For a complete description of the Class A and E QUERY and SET com­
mands, see the VM / SP Operator's Guide.

If the virtual machine assist feature is available to VM/SP when you log on your
virtual machine, it is also supported for your virtual machine unless you are running
a second level VM/370 or VM/SP system in your virtual machine. If your VM/SP
directory entry has the SVCOFF option, the SVC handling portion of the assist
feature is not available when you log on. The class G SET command can disable
the assist feature (or only disable SVC handling). It can also enable the assist fea­
ture, or if the assist feature is available, enable the SVC handling. You can use the
class G QUERY SET command line to find whether you have full, partial, or none
of the assist feature available. For a complete description of the Class G QUERY
and SET commands, see the VM / SP CP Command Reference for General Users.

Restricted Use of the Virtual Machine Assist Feature

Certain interrupts must be handled by VM/SP. Consequently, the assist feature is
not available under certain circumstances. VM/SP automatically turns off the
assist feature in a virtual machine that:

Has set an instruction address stop
Is tracing SVC and program interrupts

Since an address stop is recognized by an SVC interrupt, VM/SP must handle SVC
interrupts while address stops are set. Whenever you issue the ADSTOP command,
VM/SP automatically turns off the SVC handling portion of the assist feature for
your virtual machine. The assist feature is turned on again after the instruction is
encountered and the address stop removed. If you issue the QUERY SET com­
mand line while an address stop is in effect, the response indicates that the SVC
handling portion of the assist feature is off.

Whenever a virtual machine issues a TRACE command with the SVC, PRIV,
BRANCH, INSTRUCT, or ALL operands, the virtual assist feature is automat­
ically turned off for that virtual machine. The assist feature is turned on again
when the tracing is completed. If the QUERY SET command line is issued while
SVCs or program interrupts are being traced, the response indicates the assist fea­
ture is off.

38 VM/SP System Programmer's Guide

The Virtual Machine Assist Feature is not available to a second-level virtual
machine, that is, a virtual machine that is running in a virtual machine.

Extended Control-Program Support:VM/370 (ECPS)

Extended Control-Program Support:VM/370 (ECPS) extends, for specific privi­
leged instructions, the hardware assistance that the virtual machine assist feature
provides. ECPS also provides hardware assistance for frequently used VM/SP
functions. The use of ECPS improves VM/SP performance beyond the perform­
ance gains that the virtual machine assist feature provides.

ECPS consists of three functions:

CP assist
Expanded virtual machine assist
Virtual interval timer assist

CP assist provides hardware assistance for frequently used paths of specific CP
functions.

Expanded virtual machine assist extends the hardware assistance that the virtual
machine assist feature provides for the instructions LPSW, STNSM, STOSM, and
SSM. In addition, expanded virtual machine assist provides hardware assistance for
certain other privileged instructions.

Virtual interval timer assist provides hardware updating of the virtual interval timer
at virtual address X'SO'. Timer updating occurs only while the virtual machine is in
control of the real processor. Virtual interval timer assist updates the virtual timer
at the same frequency hardware updates the real timer, 300 times per second.
Thus, virtual interval timer assist updates the virtual timer more frequently than CP
updates it. Because the timer is updated more frequently, accounting routines may
be able to provide accounting data that is more accurate.

ECPS does not support the same functions and instructions on all processors.
Figure 4 lists the processors on which ECPS is available, and identifies, by process­
or, the functions and instructions ECPS supports.

Performance Guidelines 39

135-3, 138, 145-3 3031
Functions and Instructions 148,4341 3031AP 4331

CP Assist X X

• Get free space (DMKFRE) X X
• Release free space (DMKFRE) X X
• Lock a page (DMKPTR) X X
• Unlock a page (DMKPTR) X X
• Test page status (DMKCCW) X X
• Test page status and

lock (DMKCCW) X X
• Store ECPS identification X X X

• SVC 8 (LINK) X X X
• SVC 12 (RETURN) X X X
• Scan for changed shared

pages (DMKVMA) X X X
• Locate virtual 110 control

block (DMKSCN) X X
• Invalidate page table (DMKV AT) X X
• Invalid segment

table (DMKV AT) X X
• Untranslate CSW (DMKUNT) X
• Free CCW storage (DMKUNT) X
• Locate real 110 control

block (DMKSCN) X
• Common CCW command

processing (DMKCCW) X
• Decode first CCW (DMKCCW) X
• Decode following CCW (DMKCCW) X
• Main entry to dispatch (DMKDSP) X
• Dispatch a block or a virtual

machine (DMKDSP) X

Expanded Virtual Machine Assist

• LPSW X
• STNSM X
• STOSM X
• SSM X
• PTLB X
• SIO X
• SPT
• SCKC X
• STPT
• TCH X X

· DIAGNOSE X X

Virtual Interval Timer Assist X X X

Figure 4. Functions and Instructions that ECPS Supports

4'0 VM/SP System Programmer's Guide

Usillg tile Extended Control-Program Support: VM/3 70

Restricted Use of ECPS

I Channel Usage

Extended Control-Program Support: VM/370 (ECPS) is controlled at two levels:
the VM/SP system and the virtual machine.

At the VM/SP system level, ECPS is automatically enabled when the system is
loaded. The class A command:

set cpassist off

disables both CP assist and expanded virtual machine assist. The class A
command:

set sassist off

disables only the expanded virtual machine assist part of ECPS as well as the virtu­
al machine assist. CP assist is the only part of ECPS that is truly independent.

At the virtual machine level, whenever ECPS is enabled on the system, both
expanded virtual machine assist and virtual interval timer assist are automatically
enabled when you log on. If you issue the class G command:

set assist off

both assists as well as the existing virtual machine assist are disabled. If you issue:

set assist notmr

only the virtual interval timer assist is disabled. If CP assist is disabled for the sys­
tem, the class A command:

set sassist on

enables the virtual machine assist. You can then enable virtual machine assist and
virtual interval timer assist for your virtual machine by issuing the class G
command:

set assist on tmr

The restrictions on the use of ECPS are the same as those described for the virtual
machine assist feature with one addition. Whenever a virtual machine traces
external interrupts, the virtual interval timer assist is automatically disabled. When
external interrupt tracing is completed, virtual interval timer assist is reenabled.

The Virtual Block Multiplexer Channel Option

Virtual machine SIO operations are simulated by CP in three ways:

byte-multiplexer
• selector

block mUltiplexer channel mode.

Virtual byte-multiplexer mode is reserved for I/O operations that apply to devices
allocated to channel zero.

Performance Guidelines 41

Multisystem Communications

In virtual selector channel operations, CP reflects a busy condition (condition code
2) to the virtual machine's operating system if the system attempts a second SIO to
the same device, or another device on the same channel, before the first SIO is
completed.

Block multiplexer channel mode is a CP simulation of real block multiplexer opera­
tion; it allows the virtual machine's operating system to overlap SIO requests to
multiple devices connected to the same channel. The selection of block multiplexer
mode of operation may increase the virtual machine's throughput, particularly for
those systems or programs that are designed to use the block multiplexer channels.

Note: CP simulation of block multiplexer processing does not reflect channel
available interruptions (CAIs) to the user's virtual machine.

Selecting the channel mode of operation for the virtual machine can be accom­
plished by either a DIRECTORY OPTION operand or by use of the CP DEFINE
command.

The IBM 3088 Multisystem Channel Communication Unit (MCU) is an
input! output device that interconnects as many as eight systems using block
multiplexer channels. The 3088 Modell interconnects up to four systems, while
the 3088 Model 2 interconnects up to eight systems.

The 3088 supports the PREPARE channel command which can be used in certain
situations to prevent attention interrupts on the side issuing the PREP ARE com­
mand. See "Channel Command Words" later in this discussion for a description of
3088 channel command words.

The 3088 is compatible with existing channel-to-channel usage. In addition, 3088
support extends existing CTCA addressing and scheduling by:

Allowing multiple unit addresses per control unit

Implementing block multiplexer channel scheduling for both real and virtual
CTCAs and 3088.

System Programmer Considerations

At system generation time, the system programmer must code parameters in the
RDEVICE macro and the RCTLUNIT macro to define the 3088 to the control
program. See the VM / SP Installation Guide for the format of these macros.

RDEVICE MACRO: When you code the RDEVICE macro, specify the address
and device type. For example, to define a maximum of 32 sequential unit
addresses at AOO, code the RDEVICE macro as follows:

RDEVICE ADDRESS=(AOO,32),DEVTYPE=3088

RCTLUNIT MACRO: When you code the RCTLUNIT macro, you must indicate
the address and the control unit type. In addition, since the 3088 supports a maxi­
mum of 32 or 64 devices, you must also specify the number of sequential unit
addresses using the FEATURE=xxx-DEVICE operand. For example, if you want
to generate 32 devices at channel address AOO, code the RCTLUNIT macro as fol­
lows:

42 VM/SP System Programmer's Guide

I Virtual 3088 Support

RCTLUNIT ADDRESS=AOO,CUTYPE=3088,FEATURE=32-DEVICE

SPECIAL DIRECTORY CONTROL STATEMENT: The 3088 is a valid device for
the SPECIAL directory control statement. For example, to specify a 3088 at virtu­
al address AOO, code the SPECIAL directory control statement as follows:

SPEcial AOO 3088

Use the class G DEFINE command to define a virtual 3088 device. The class G
user can define a virtual 3088 device with or without a real equivalent. The system
simulates all functions of the real 3088, except for the online testing functions, for
each virtual 3088 that you define. You must define each virtual 3088 unit address
with a single DEFINE command. Defining each virtual unit address is different
from the dedicated 3088 support where you can define mUltiple unit addresses
using a single RDEVICE macro. Refer to VM / SP Operating Systems in a Virtual
Machine for examples of virtual machine usage of channel-to-channel devices.

Command Usage and 3088 Support

I Channel Command Words

Support for the 3088 recognizes the 3088 as a valid device. Figure 5 outlines
commands affected by 3088 support. See the VM/SP Operator's Guide and the
VM / SP CP Command Reference for General Users for the format and complete
discussion of these commands.

Command Class 3088 Support

DEFINE G The 3088 is a valid device type on
this command. The control unit
address for a CTCA and a 3088 need
not end in zero. Once you define the
control unit, you may define other vir-
tual devices for the same CTCA or
3088.

ATTACH B The response to these commands is
COUPLE G the same for channel-to-channel
DETACH G,B adapters (CTCAs) and 3088s.
QUERY B

Figure 5. CP commands and 3088 Support

In addition to the channel commands supported in System/360 and System/370
modes, the 3088 supports the following two channel commands:

PREP ARE -- the PREP ARE channel command is used to receive a channel
program without causing an attention interrupt to the side issuing the
command.

• SENSE ID -- the SENSE ID channel command transfers model and control
unit identification to the system issuing the command.

Performance Guidelines 43

I Diagnostic Aids

Alternate Path Support

3088 support offers online testing facilities, and messages and MNOTES as diag­
nostic aids when using the support. See VM/SP System Message and Codes for the
complete text of the messages.

ONLINE TESTING: The last address in the group of 32 or 64 addresses for each
interface attached to the 3088 is available as a dedicated diagnostic unit address.
The diagnostic unit address provides a communication path between diagnostic
programs and the 3088 microprocessor for online testing. For example, a system
attached to the 3088 may use the diagnostic unit address to read the 3088 logout
and error information.

MESSAGES AND MNOTES TO SUPPORT 3088 DEVICES: The system issues a
message or MNOTE in the following situations:

If you attempt to define a 3088 for a unit address that has previously been
defined

• If the virtual channel-to-channel device specified in the COUPLE command is
busy on the receiving userid's virtual machine

• If you attempt to couple a 3088 to a channel-to-channel adapter

If you specify a model on the RDEVICE macro.

Through the use of the Two-Channel Switch and Two-Channel Switch Additional
Features, alternate path support for DASD or tape provides for up to four channels
on one control unit to be attached to VM/SP (up to 2 channels per control unit in
multiprocessing configurations). In addition, one device may be attached to two
logical control units, providing support for the String Switch feature. This allows
the control program up to eight paths to a given device when the maximum number
of alternate channels and alternate control units are specified.

When an I/O request is received for a device that has alternate paths defined, and
the primary path is unavailable, VM/370 searchs for the first available path begin­
ning with the first alternate path. Successive alternate paths are examined if
required until an available path is found. In the case where no available path to the
device exists, alternate path I/O scheduling is implemented to queue the request on
multiple busy/scheduled paths, and the first path to become available is the path
the I/O request is started on.

The VM/370 I/O Scheduler determines that a path is available by analyzing the
busy and 8cheduled software indicators in the RDEVBLOK, RCUBLOK, and
RCHBLOK as well as the chains of pending I/O requests that are queued from the
RCUBLOK and RCHBLOK. This processing is performed prior to issuing the
SIO.

The search for an available path begins with the RDEVBLOK. If the
RDEVBLOK is marked busy or scheduled, the I/O request is queued on the
RDEVBLOK. No alternate path scheduling is performed at the device level. If the
RDEVBLOK is not busy or scheduled, the IOBLOK for this I/O request is pro­
moted upward to the RCUBLOK. If the RCUBLOK is marked busy, the 10BLOK
is queued on the RCUBLOK and a search is made for an alternate control unit

44 VM/SP System Programmer's Guide

path. If the RCUBLOK is marked scheduled and the present request will not
release the control unit (example: TAPE FSF and TAPE BSF), the IOBLOK is
queued off the RCUBLOK and a search is made for an alternate control unit path.
If the RCUBLOK is marked scheduled and the present request will release the con­
trol unit, the search continues for a channel path. If the RCUBLOK is not marked
scheduled or busy but there are other I/O requests queued on the RCUBLOK, the
check is again made to see if the present request will release the control unit. If the
present request will not release the control unit, the request is queued and a search
is made for an alternate control unit path. Otherwise, the search continues for a
channel path.

The RCUBLOK "busy" and "scheduled" indicators are only turned on for shared
control units. The busy and scheduled indicators are turned on in the RCUBLOK
for tape and 2314 DASD control units. The non-shared DASD RCUBLOKS never
have the busy and scheduled indicators in the "on" status. For this reason, alter­
nate control unit path selection rarely takes place for non-shared control units. The
one exception occurs when the channel path through the first control unit appears
busy (because a real channel busy condition was encountered). If an alternate path
exists through a second control unit, the control blocks associated with the second
control unit path are examined.

Finding an available channel path is the final step prior to issuing the SIO. If the
RCHBLOK is marked busy, a search is made for an alternate channel path. If the
RCHBLOK has other requests queued on the RCHBLOK, a search for an alter­
nate channel path is made. VM/370 never marks a byte multiplexor RCHBLOK
busy. The only time a block multiplexor is marked busy is after a condition code 2
has been encountered. The I/O load on block multiplexor channels must be suffi­
cient to cause channel busy conditions before path selection on an alternate chan­
nel can take place.

MVS/System Extensions Support

The MVS/System Extensions support in VM/SP allows an MVS system running in
a virtual machine to exploit the enhancements available in the MVS/System Exten­
sions Program Product (Program No. 5740-XEl) if the System/370 Extended
Facility or System/370 Extended Feature is present on the hardware.

Included in the MVS/System Extensions Program Product enhancement is the use
of:

1. The System/370 Extended Facility for the 303x and the 308x processors, or

2. The System/370 Extended Feature for the System/370 Model 158 and 168
processors, or

3. ECPS:MVS for the 4341.

Note: An RPQ (MK3272) is available for the 158-3 processor that allows the
coexistence of virtual machine assist and System/370 Extended Facility (S370E)
and VM/370 Extended Feature. Thus, an MVS/SE virtual machine can run under
VM/SP with virtual machine assist active on a 158-3 processor. ECPS:MVS and
ECPS:VM/370 are mutually exclusive in the 4341 Model Group 1 and 4341 Mod­
el Group 2. The control storage expansion feature of the Model Group 2 allows
coexistence of ECPS:MVS and ECPS:VM/370.

Performance Guidelines 45

The System/370 Extended Facility and System/370 Extended Feature, and
ECPS:MVS are enabled by the MVS/System Extensions support as defined by the
directory OPTION statement or via the CP SET command. For details, refer to the
VM/SP Operator's Guide, and the VM/SP CP Command Reference For General
Users, respectively.

MVS/System Extensions support includes:

Low address protection facilityl
Common segment facilityl
Special MVS instruction operation facilities

Low Address Protection Facility

Common Segment Facility

The low address protection facility provides protection against improper storing by
instructions using logical storage addresses in the range 0-511. This facility pre­
vents inadvertent program destruction of those storage locations that the processor
uses to fetch new PSWs during interruption processing. Low address protection
does not apply to the storing of status by the processor (for example, old PSWs,
logout data), nor does it apply to any channel stores (for example, CSW or LCL).

Bit 3 of control register 0 is defined as the low address protection bit, and is used
to control whether or not stores using logical addresses in the range 0 to 511 are
permitted. When this bit is zero in real control register zero, stores are permitted;
when this bit is one, stores are not permitted. When an instruction attempts a store
using an address in the range 0 to 511 and low address protection applies, the con­
tents of the storage area addressed by the instruction are not modified. The exe­
cution of the current instruction is terminated or suppressed, and a protection
exception o~~urs.

The common segment facility allows addressing segments to be classified as private
or common. If bit 30 of the segment table entry for a given segment is 1, the seg­
ment is a common segment; otherwise it is private. A private segment table entry
and the page table it designates may be used only in association with the segment
table origin (STO) that designates the segment table in which the segment table
entry resides. A common segment table entry and the page table it designates may
continue to be used for translating addresses even though a different STO is speci­
fied by changing control register 1.

Special MVS Instruction Operation Handling Facilities

Special operations and instructions in the MVS/System Extensions Program Prod­
uct that enhance MVS operations are handled by System/370 Extended Facility or
System/370 Extended Feature, and are described in the IBM publication
System/370 Extended Facility, GA22-7022. Invalidate Page Table Entry (IPTE)
and Test Protection (TPROT) instructions described in this publication are simu­
lated in VM/SP.

46 VM/SP System Programmer's Guide

ECPS:MVS is identical to the Extended Facility, except that the Low Address Protection Facility
and the Common Segment Facility are not included.

Enabling MVS / System ExtensiollS Support

Sillgle Processor Mode

Using the class A SET S370E ON command, the system operator enables the
MVS/System Extensions support for all virtual machines. Using the class G SET
370E ON command (or 370E option on the directory OPTION control statement),
the general user enables the support for a particular virtual machine.

When an OS/VS2 MVS Attached Processor (AP) system or an OS/VS2 MVS
tightly-coupled Multiprocessing (MP) system runs on a multiprocessor under
VM/SP, without using single processor mode, MVS runs in uniprocessor mode.
That is, MVS programs do not execute simultaneously on both processors. There­
fore, MVS does not attain the level of throughput it could attain were it running in
multiprocessor mode.

To improve the throughput of an OS/VS2 MVS AP system or OS/VS2 MVS MP
system, run MVS in the V =R machine and use single processor mode. Running in
this mode, MVS has exclusive use of one processor while VM/SP and the V =R
machine (running MVS) use the other processor. In other words, MVS runs on
two processors instead of one. This improves MVS's throughput.

The throughput of an OS/VS2 MVS AP or OS/VS2 MVS MP system running
under VM/SP and using single processor mode is higher than the throughput would
be were single processor mode not used. However, single processor mode may
reduce the throughput of VM/SP and virtual machines not using the V =R area.

Single processor mode cannot improve the throughput of a VM/SP attached
processor or multiprocessor system. A VM/SP AP or MP system initialized (by
IPL) in the V =R machine with single processor mode on runs in uniprocessor
mode.

Two commands provide operator control of single processor mode. SPMODE, a
class A command, turns single processor mode on or off. QUERY, a class A or G
command, indicates whether single processor mode is on or off.

For detailed instructions on how to turn single processor mode on or off, see
VM / SP Operating Systems in a Virtual Machine.

Dynamic Systeln Control Programming (SCP) Transition to or from Native Mode

There are times when an installation benefits from switching an SCP to or from
native mode. For example, when it is important to obtain the best possible per­
formance from an SCP, switch it to native mode. When there is a need to do dif­
ferent kinds of work simultaneously, switch the SCP from native mode to the
VM/SP environment.

Installations have always had the capability to switch an SCP to or from native
mode, but to do so has been time consuming. Switching an SCP to native mode
meant quiescing the SCP and VM/SP and then initial program loading the SCPo
To return the SCP to the VM/SP environment meant quiescing the SCP and then
initial program loading VM/SP and the SCPo

Dynamic SCP transition to or from native mode enables an operator to dynamically
switch an SCP to or from native mode. Switching to native mode, there is no long-

Performance Guidelines 47

er a need to quiesce or reinitialize (via IPL) the SCPo The SCP continues to run
and can do productive work. Switching back to the VM/SP environment, there is
no longer a need to quiesce the SCP or IPL VM/SP or the SCPo

Before switching an SCP to or from native mode, an operator must prepare
VM/SP and the SCP for the switch: for example, all users except the VM/SP
operator and the operator on the V=R machine must logoff VM/SP. Detailed
instructions on preparing the systems and on switching to or from native mode are
in VM/SP Operating Systems in a Virtual Machine. The following discussion high­
lights the switching process and defines precautions that must be observed.

To switch an SCP to native mode, it must be running in the V =R machine. The
VM/SP operator then prepares VM/SP and the SCP for the switch. To complete
the switch, the operator issues the QVM command (quiesce VM).

After the switch to native mode is completed, there are two areas of real storage
that must not be altered. Addresses 0-7 contain the restart PSW (program status
word) used to make the transition back to the VM/SP environment. Storage above
the upper limit of the V =R area contains the VM/SP nucleus. Altering either area
may make it impossible to return to the VM/SP environment.

To return the SCP to the VM/SP environment, an operator uses the System/370
restart facility. After stopping the processor, the operator stores the value X'FF'
into the real storage address located eight bytes prior to the address pointed to by
the restart PSW. To complete the switching process, the operator restarts the
processor. Caution: This process does not work unless the SCP was switched to
native mode via the QVM command.

The performance of an SCP switched to native mode depends on the size of the
V =R area. The SCP's performance will be identical to the performance it would
attain were it initialized (via IPL) directly on a hardware configuration identical to
the V =R machine's configuration with a real storage size equal to the storage size
of the V =R area. In other words, the larger the V =R area, the better the SCP per­
forms.

You can can switch to or from native mode using the procedures just described for:

OS/VSl running without VM VSl Handshaking

OS/VS2 SVS

• OS/VS2 MVS

48 VM/SP System Programmer's Guide

Performance Observation and Analysis

Load Indicators

The INDICATE Command

Three commands, INDICATE, QUERY SRM, and MONITOR, provide a way to
dynamically measure system performance.

Indicate: Provides the system analyst and general user with a method to observe the
load conditions on the system while it is running.

QUERY SRM: Provides the system operator with expanded observation facilities
for analyzing internal activity counters and parameters.

Monitor: Provides the system analyst and the system operator with a data collection
tool designed for sampling and recording a wide range of data. The collection of
data is divided into functional classes. The different data collection functions can
be performed separately or concurrently. Keywords in the MONITOR command
enable the collection of data and identify the various data collection classes. Other
keywords control the recording of collected data on tape for later examination and
reduction.

The INDICATE command allows the system operator to check the system for
persistently heavy loads. The operator can, therefore, judge when it is best to
apply additional scheduling controls (if appropriate) or call a system analyst to per­
form an analysis of the condition by using the INDICATE, QUERY SRM, and
MONITOR commands.

The system analyst has a set of operands in the INDICATE command that displays
the basic uses of and contentions for major system resources (possible bottleneck
conditions) and identifies the userids and characteristics of the active users and the
resources that they use.

Virtual machine users can use the INDICATE command to observe the basic
smoothed conditions of contention and utilization of the primary resources of
processor and storage. The INDICATE command allows them to base their use of
the system on an intelligent guess of what the service is likely to be. Over a period
of time, virtual machine users relate certain conditions of service to certain utiliza­
tion and contention figures, and know what kind of responses to expect when they
start their terminal session.

The INDICATE command allows general users and the system analyst to display at
their consoles at any time, the usage of and contention for major system resources.

General users can display usage of and contention for the major system resources
of processor and storage. They can also display the total amount of resources used
during the terminal session and the number of I/O requests. If they use the INDI­
CATE command before and after the execution of a program, users can determine
the execution characteristics of that program in terms of resource usage.

The system analyst can identify active users, the queues they are using, their I/O
activity, their paging activity, and many other user characteristics and usage data.

Performance Observation and Analysis 49

The system analyst can use the data on system resource usage and contention to
monitor the performance of the system. The analyst can thus be aware of heavy
load conditions or low performance situations that may require the use of more
sophisticated data collection, reduction, and analysis techniques for resolution.

The VM/SP Scheduler maintains exponentially smoothed values for data provided
by the LOAD option. Specifically, at intervals (in seconds) depending on the
processor model, the scheduler calculates the total activities for variables such as
CP and storage usage for the most recent interval, and factors them into a
smoothed wait value in the following way:

New smoothed wait value
(3 * old smoothed wait

value + current interval wait)
4

Thus, only 1/4 of the most recent interval wait is factored into the new smoothed
wait which makes it predominantly the old smoothed wait value.

The remaining INDICATE components are sampled prior to a user being dropped
from a queue. Because of the frequency of this event, the remaining components
are subject to a heavier smoothing than the wait time. A general expression for the
smoothing follows:

nsv = «rate - int) (osv) / rate) + civ

where:

nsv = new smoothing value

osv = old smoothing value

civ = current interval value (results found during the current interval (int))

int = current interval (time period being tested)

rate = either history interval (hrate) of 8 minutes, or data interval (drate) of 75
seconds

Other operands of the command allow users to obtain other performance informa­
tion that enables them to understand the reasons for the observed conditions. For
the format of the class G INDICATE command, see the VM / SP CP Command
Reference for General Users. For the format of the class E INDICATE command,
see the VM/SP Operator's Guide.

Tile INDICATE FAVORED Command

A~anaging Page Migration

I
The section "Preferred Virtual Machine Options" in this publication contains
detailed information on favored execution. For information on the setting of
favored execution options, refer to the VM / SP Operator's Guide.

In order to keep· 120/0 of the preferred paging area available, CP migrates inactive
pages from preferred to nonpreferred paging areas. The preferred paging area
includes a fixed-head area and a moveable-head area. The fixed-head paging area
is paging space on a drum and/or space under the fixed heads of a DASD volume

50 VM/SP System Programmer's Guide

that has the fixed head feature installed. The moveable-head paging area is paging
space on a DASD volume that is accessed by a moveable arm. Normally, CP
dynamically invokes page migration, based on calculated load levels, once every ten
minutes.

Inactive pages in the fixed-head preferred paging area are migrated every time CP
invokes migration. For pages in the moveable head preferred paging area, the
installation can decide at what point inactive pages are selected for migration. The
system programmer can use the SET SRM MHFULL command to set moveable
head page migration limits.

If a percentage for MHFULL has been specified, CP migrates pages from move­
able head preferred paging areas only when that percentage is reached and the time
interval has elapsed, rather than whenever fixed head areas are full. Thus,
migration from moveable head preferred paging areas and fixed head preferred
paging areas can take place separately.

In addition, the system operator can use the MIGRATE command to immediately
invoke page and swap table migration. Page migration can also be invoked only for
a specific virtual machine.

The format of the MIGRATE command is described in the VM/SP Operator's
Guide.

Querying and Setting the System Resource Management Variables

The QUERY SRM and SET SRM commands allow the system analyst to query
and/ or change internal system activity counters or parameters. Formats for the
QUERY SRM and SET SRM commands are contained in the VM/SP Operator's
Guide.

The system analyst can use the Class E QUERY SRM command to display the fol­
lowing information:

• Current number of pageable pages
Size of the dispatching time slice
Setting of the maximum working set estimate
Maximum drum page allocation limit
Current page migration counters
Unused segment elapsed time as criteria for page migration
Current PCI flag setting mode for 2305 page requests
Maximum page bias value
Current interactive shift bias value
Moveable head page migration limit

The class E SET SRM command allows the system analyst to set some of the sys­
tem variables that can affect the values displayed by the QUERY SRM command.

Queryillg and Setting the Pagillg Variable

The paging variable is used in the working set size algorithm. The current paging,
load is constantly compared with the paging variable. Adjustments are then made
in the working set size estimates, based on how well the actual load compares with
the paging load variable.

Performance Observation and Analysis 51

The MONITOR Command

The QUERY PAGING command displays the paging variable used in the working
set size estimate control algorithm. Information on the paging rate per second is
available as a response to the INDICATE LOAD command.

The SET PAGING command is used to change the paging variable used in the
working set size estimate.

Information about the formats of the QUERY PAGING and SET PAGING com­
mands is contained in the VM / SP Operator's Guide.

VM/SP Monitor collects data in two ways:

1. By handling interruptions caused by executing MONITOR CALL (MC)
instructions.

2. By using timer interruptions to give control periodically to sampling routines.

MONITOR CALL instructions with appropriate classes and codes are presently
embedded in strategic places throughout the main body of VM/SP code (CP).
When a MONITOR CALL instruction executes, a program interruption occurs if
the particular class of MONITOR CALL is enabled. The classes of MONITOR
CALL that are enabled are determined by the mask in control register 8. For the
format and function of the MONITOR CALL instruction, refer to the System/3 70
Principles of Operation. The format of control register 8 is as follows:

I xxxx I xxxx I xxxx I xxxx I 0123 I 4567 I 89AB I CDEF I

where:

x

O-F (hexadecimal)

indicates unassigned bits.

indicates the bit associated with each class of the MONI­
TOR CALL.

When a MONITOR CALL interruption occurs, the CP program interruption han­
dler (DMKPRG) transfers control to the VM/SP Monitor interruption handler
(DMKMON) where data collection takes place.

Sixteen classes of separately enabled MONITOR CALL instructions are possible,
but only eight are implemented in the VM/SP Monitor.

Monitor output consists of event data and sampled data. Event data is obtained via
MONITOR CALL instructions placed within the VM/SP code. Sampled data is
collected following timer interruptions. All data is recorded as though it were
obtained through a MONITOR CALL instruction. This simplifies the identifica­
tion of the records.

The following table indicates the type of collection mechanism for each Monitor
class:

2 There is no class name for monitor class 3, but it is reserved.

52 VM/SP System Programmer's Guide

Monitor Class Collection
Class Name Mechanism

0 PERFORM Timer requests
1 RESPONSE MC instructions
2 SCHEDULE MC instructions
32

4 USER Timer requests
5 INSTSIM MC instructions
6 DASTAP Timer requests
7 SEEKS MC instructions
8 SYSPROF Collected via class 2

Another function, separate from the VM/SP Monitor, is also handled by the
MONITOR command. The MONITOR command can stop and start CP internal
trace table data collection, which is not initiated by MONITOR CALLs.

Note: The VM/SP Monitor record format and the contents of the record are
shown in "Appendix B. Monitor Tape Format and Content."

The class A and E MONITOR command:

• Stops and starts CP internal trace table data collection.

Displays the status of the internal trace table and each implemented class of
VM/SP Monitor data collection. Displays the specifications for automatic
monitoring defined by the SYSMON macro in DMKSYS. In addition, it dis­
plays those specifications for automatic monitoring that are overridden by
Monitor commands. It also displays whether the tape or spool file is the
recording medium.

Starts and stops VM/SP data collection using tape or spool file. It also closes
the spool file, if desired.

Specifies VM/SP monitor classes of data collection enabled, number of buffers
used, and time of data collection. It also specifies other options which override
the specifications for automatic monitoring on the SYSMON macro contained
inDMKSYS.

• Specifies the interval to be used for timer driven data collection.

Specifies direct access devices that are to be included or excluded from a list of
devices. The list defines direct access devices for which CP is to collect data
for the SEEKs class.

See the VM / SP Operator's Guide for the format and details of the MONITOR
command.

Performance Observation and Analysis 53

Implemented Classes

Monitor
Class

o

1

2

3

3

5

Keyword

PERFORM

RESPONSE

SCHEDULE

USER

INSTSIM

The following MONITOR CALL classes correlate with the corresponding classes
in control register 8. Refer to the System/3 70 Principles of Operation for details of
the MC instruction and the bits in control register 8.

Data Collection Function

Samples system resource usage data by accessing system
counters of interest to system performance analysts.

Collects data on terminal I/O. Simplifies analyses of com­
mand usage, user, and system response times. It can relate
user activity to system performance. This class is invalid and
no data can be collected for it unless the system programmer
changes the LOCAL COpy file and reassembles
DMKMCC.

Collects data about scheduler queue manipulation, monitors
flow of work through the system, and indicates the resource
allocation strategies of the scheduler.

Reserved.

Periodically scans the chain of VMBLOKs in the system, and
extracts user resource utilization and status data.

Records every virtual machine privileged instruction handled
by the control program (CP) standard simulation routines
(DMKPRV, DMKPRW). Because simulation of privileged
instructions is a major source of overhead, this data may lead
to methods of improving performance.

The fast path simulation routines (DMKFPS) result in signif­
icantly less control program overhead than the standard
paths. Therefore, privileged instructions simulated by
DMKFPS are not recorded.

If the VMA feature is active, the number of privileged
instructions that are handled by the control program is
reduced for those virtual machines that are running with the
feature activated.

54 VM/SP System Programmer's Guide

Monitor
Class

6

7

Keyword

DASTAP

SEEKS

Data Collection Function

Periodically samples device I/O activity counts (SIOs), for
tape and DASD devices only. DASTAP samples only those
tapes and DASD devices that are online when the MONI­
TOR START command is issued.

It is possible that the number of DASD and tape devices
defined in DMKRIO may exceed 291 (the maximum number
of MONITOR DASTAP records that fit in a MONITOR
buffer). The following algorithm determines which devices
are monitored:

1. If the total number of DASD and tape devices that are
online is less than or equal to 291, all online DASD and
tape devices are monitored.

2. If the total number of online DASD devices is less than
or equal to 291, all online DASD devices are monitored.

3. Otherwise, the first 291 online DASD devices are moni­
tored.

Collects data for every I/O request to DASD. Reveals
channel, control unit, or device contention and arm move­
ment interference problems.

Note: When NOTRANS is in effect for a virtual=real
machine, no meaningful data is collected.

No data is collected for TIO or HIO operations. For SIO
operations, data is collected when the request for the I/O
operation is initially handled and again when the request is
satisfied.

This means that a single SIO request could result in two
MONITOR CALLs. For example, if the request gets queued
because the device is already busy, then a MONITOR CALL
would be issued as the request is queued. Later, when the
device becomes free and is restarted, a second MONITOR
CALL is issued.

In general, the data collected is the same except that in the
first case nonzero counts are associated with queued
requests.

If the request for I/O is satisfied when it is initially handled
without being queued, only one MONITOR CALL results.
In both this case and the second of the two data collections
mentioned above, the count of I/O requests queued for the
device is zero.

Performance Observation and Analysis 55

Monitor
Class

8

Keyword

SYSPROF

Data Collection Function

Collects data complementary to the DAST AP and SCHED­
ULE classes in order to provide a more detailed "profile" of
system performance through a closer examination of DASD
utilization.

VM/SP Monitor Response to Unusual Tape Conditions

Suspension

Unrecoverable Tape Error

End-of-Tape Condition

When I/O to the tape is requested, the device may still be busy from the previous
request. If this occurs, two data pages are full and data collection must be tempo­
rarily suspended. Control register 8 is saved and then set to zero to disable MON-
1ToR CALL program interruptions and timer data collection. A running count is
kept of the number of times suspension occurs. The current Monitor event is dis­
regarded. When the current tape I/O operation ends, the next full data page is
scheduled for output. MONITOR CALL interruptions are reenabled (control reg­
ister 8 is restored), a record containing the time of suspension, the time of
resumption, and the suspension count is recorded and data collection continues.
The suspension count is reset to zero when the MONITOR STOP TAPE is issued.
If a MONITOR command is issued at the time monitor is suspended, a message is
displayed to the invoker of the command stating,

SEEK, STOP, OR CLOSE CMD IS IN PROGRESS, RETRY

When an unrecoverable error occurs, DMKMON receives control and attempts to
write two tape marks, rewind, and unload the tape. The use of the tape is discon­
tinued and data collection stops. The operator is informed of the action taken.
Whether or not the write-tape-marks, rewind, and unload are successful, the tape
drive is released.

When an end-of-tape condition occurs, DMKMON receives control. A tape mark
is written on the tape and it is rewound and unloaded. The VM/SP Monitor is
stopped and the operator is informed of the action taken.

VM/SP Monitor Considerations

Initial Program Load

The system programmer may want to set the TRACE (1) bit to a 1 in the LOCAL
COpy file and reassemble DMKMCC to allow RESPONSE data (MONITOR
class 1) to be collected. See the information about security exposure in
"MONITOR ENABLE Restrictions" in the MONITOR command description.

MONITOR START CPTRACE is active after real system IPL (manual or automat­
ic). The VM/SP Monitor tape data collection is off after IPL. If automatic per­
formance monitoring is specified in the SYSMON macro and IPL occurs within the
range of the TIME operand of the SYSMON macro, VM/SP monitor data col­
lection to a spool file is started.

56 VM/SP System Programmer's Guide

System Shutdown

System Failure

I/O Devices

If the VM/SP Monitor data collection to a spool file is taking place, a system shut­
down causes closing of the file and termination of monitoring. If data collection is
to tape, a system shutdown implies a MONITOR STOP TAPE command. Normal
command processing for the MONITOR STOP TAPE function is performed by the
system.

If the VM/SP system fails and data collection to a spool file is active, the spool file
is closed and preserved, except for the last buffer. If the VM/SP system fails and
data collection is active on tape, an attempt is made to write two tape marks,
rewind, and unload the tape. If the tape drive fails to rewind and unload, be sure to
write a tape mark before rewinding and unloading the tape. VM/SP Monitor data
collection is terminated by the system failure.

If VM/SP monitor data collection is active using tape, a supported tape drive must
be dedicated to the system for the duration of the monitoring. For accounting pur­
poses, all I/O is charged to the system.

Performance Observation and Analysis 57

VM/SP Monitor Data Volume and Overhead

Use of the VM/SP Monitor usually requires that three pages be locked in storage
for the entire time the VM/SP Monitor is active; however, only two pages are
required if the single buffer option is used with only the PERFORM class of data
collection enabled. This reduces by three the number of page frames available for
paging. This significantly affects the performance of the rest of the system when
there is a limited number of page frames available for paging.

PERFORM This class of data collection is activated once every 60 seconds (or as
defined by the MONITOR INTERVAL command), and records sys­
tem counters relevant to performance statistics. It is, therefore, a very
low overhead data collection option.

RESPONSE This class collects terminal interaction data and, because of the human
factor, has a very low rate of occurrence relative to processor speeds.
Consequently, this class causes negligible overhead and produces a
low volume of data.

SCHEDULE This class records the queue manipulation activity of the scheduler
and generates a record every time a user is added to the eligible list,
added to queue 1 or queue2, or removed from queue. The recording
overhead is very low.

USER This class of data collection is active once every 60 seconds (or as
defined by the MONITOR INTERVAL command). Data is extracted
from each user's VMBLOK, including the system VMBLOK. The
overhead incurred is comparable with that of the statistical data of the
PERFORM class; however, it increases with the number of users
logged onto the system.

INSTSIM This class of data collection can give rise to large volumes of data
because of the frequency of privileged instructions in some virtual
machines. This may incur significant overhead. It should be activated
for short periods of time and preferably, though not necessarily, when
other classes of data collection are inactive. If the Virtual Machine
Assist feature is active for the virtual machine, the data volume and,
consequently, the CP overhead may be reduced.

DAST AP This class of data collection samples device activity counts once every
60 seconds (or as defined by the MONITOR INTERVAL command)
and is a very low source of overhead, similar to the PERFORM and
USER classes.

SEEKS This class of data collection can give rise to large volumes of data
because every start I/O request to DASD is recorded via a MONI­
TOR CALL.

SYSPROF This class of data collection is complementary to the SCHEDULE and
DAST AP classes and results in a small amount of additional overhead.
It obtains more refined data on DASD resource usage.

58 VM/SP System Programmer's Guide

Perf onnance for Time-Shared Multibatch Virtual Machines

Monitoring Recommendations

First you must determine how many similar users can be run concurrently on a giv­
en configuration before the throughput of individual users becomes unacceptable.

Every installation should use the automatic monitoring facilities to simplify and
automate the collection of performance data. A virtual machine should also be set
up to analyze and report the collected data. The VM/370 Performance/Monitor
Analysis Program (VMAP) does such a task. For more information about the
capabilities of this program and for details about ordering it, see the publication
Virtual Machine Facility/370 Performance/Monitor Analysis Program. This pro­
gram or user-written analysis programs should be run on a daily basis to analyze
the collected data. Data reduction should preferably be run at off-peak hours to
minimize the effect on the performance of the system that is doing data reduction.
Initially, the data collected with MONITOR default options should be analyzed to
establish a familiarity with the load environment and performance profile of each
virtual machine system and its effect on CPo

Once a performance profile is established for each system and associated virtual
machines, the analyst should be able to detect points of contention between
processor(s) storage, I/O, and paging subsystems.

Normally the spool file monitoring options should be used. However, if large vol­
umes of trace data are to be collected, then monitoring to tape should be used.
Tape is also useful if benchmarking is frequently done and all of the new monitor
trace and sampled data must be archived for possible future use. The default mode
of operation of the Performance/Monitor Analysis Program is to keep the con­
densed ACUM files and not the raw data.

If SEEKs data is needed, a sampling technique is suggested. A simple implementa­
tion might be to use a CMS EXEC procedure to enable SEEKs for ten seconds
every ten minutes. This would produce SEEKs data while limiting the volume of
data collected. An alternative is to create a list of devices for which data for the
SEEKs class is to be collected. CP collects data for only those devices in the list.
To create the list, use the INCLUDE or EXCLUDE options of the MONITOR
command's SEEK operand. If data is collected for only a few devices, consider col­
lecting data for longer periods of time.

Load Environments of VM/SP

Two distinct uses of VM/SP can be readily identified and, consequently some dif­
ferences in criteria for acceptable performance may occur. The system may be
required to time share multiple batch-type virtual machines with interactive
machines performing minor support roles; or, the system may be primarily required
to provide good interactive time-sharing services in the foreground, with a batch
background absorbing spare resources of real storage and processor.

After determining the minimum acceptable performance, perform external observa­
tions of turnaround time on benchmarks and specify a point beyond which the
addition of more users would be unacceptable. However, when that point is
reached, more sophisticated internal measurement is required to determine the
scarcest resource and how the bottleneck can be relieved by additional hardware.

Several possible conditions can be identified resulting from different bottlenecks.
They are:

Performance Observation and Analysis 59

Real storage levels of multiprogramming are low compared with the number of
contending users. Hence, each user is dispatched so infrequently that running
time or response time may become intolerable.

Storage may be adequate to contain the \vorking sets of contending users, but
the processor is being shared among so many users that each is receiving inad­
equate attention for good throughput.

• Real storage space may be adequate for the processor, and a high speed drum
is used for paging; however, some virtual storage pages of some users have
spilled onto slower paging devices because the drum is full. With low levels of
multiprogramming, user page wait can become a significant portion of system
wait time. Consequently, processor utilization falls and throughout deteri­
orates.

• Storage, processor, and paging resources are adequate, yet several users are
heavily I/O-bound on the same disk, control unit, or channel. In these circum­
stances, real storage may be fully committed because the correct level of multi­
programming is selected, yet device contention is forcing high I/O wait times
and unacceptable processor utilization.

Estimates of typical working set sizes are needed to determine how well an applica­
tion may run in a multiprogramming environment on a given virtual storage system.
A measure of the application's processor requirements may be required for similar
reasons. Measurements may be required on the type and density of privileged
instructions a certain programming system may execute, because, in the virtual
machine environment, privileged instruction execution may be a major source of
overhead. If the virtual machine environment is used for programming develop­
ment, where the improvement in programmer productivity outweighs the disadvan­
tages of extra overheads, the above points may not be too critical. However, if
throughput and turnaround time are important, then the converse is true, and the
points need close evaluation before allocating resources to a virtual machine opera­
tion.

High levels of multiprogramming and overcommitment of real storage space lead to
high paging rates. High paging rates can indicate a healthy condition; but be con­
cerned about page stealing and get evidence that this rate is maintained at an
acceptable level. A system with a high rate of page stealing is probably thrashing.

Performance -- Mixed Mode Foreground/Background Systems with Emphasis on
Good Interactive Response

Most of the conditions for good performance, established for the time-shared batch
systems, apply equally well to mixed mode systems. However, two major factors
make any determination more difficult to make. First, get evidence to show that, in
all circumstances, priority is given to maintaining good interactive response, and
that nontrivial tasks truly take place in the background. Second, background tasks,
no matter how large, inefficient, or demanding should not be allowed to dominate
the overall use of the time-sharing system. In other words, in mixed mode opera­
tion, get evidence that users with poor characteristics are discriminated against for
the sake of maintaining a healthy system for the remaining users.

A number of other conditions are more obvious and straightforward. You need to
measure response and determine at what point it becomes unacceptable and why.
Studies of time-sharing systems have shown that a user's rate of working is closely

60 VM/SP System Programmer's Guide

correlated with the system response. When the system responds quickly, the user is
alert, ready for the next interaction, and thought processes are uninterrupted.
When the system response is poor, the user becomes sluggish.

For interactive environments, a need exists to analyze command usage. Average
execution time of the truly interactive commands can provide data for validation of
the Queue 1 execution time.

Trace Table Recording Facility

The Trace Table Recording Facility provides Field Engineering and system pro­
grammers with problem determination capability. The facility, using the CPTRAP
command, creates a READER spool file of selected trace table entries, CP data
entries, and virtual machine data entries in the order they happen. A CMS data
reduction program, TRAPRED, is also provided to examine the data collected.
Output can be either a spooled print file or an interactive terminal display.

Recording CP Trace Table Entries in the CPTRAP File

The current CP internal trace table is a 'wrap' table that continuously overlays pre­
viously stored information. The trace table recording facility continues to store
trace table entries in the trace table and, in addition, to the spool under command
control. The trace records are selectable by trace type with the CPTRAP com­
mand.

Current trace record types are:

01 - External interrupt OE - Test I/O

02 - SVC interrupt OF - Halt device

03 - Program interrupt 10 - Unstack 10BLOK or TRQBLOK

04 - Machine check interrupt 11 - NCP BTU

05 - I/O interrupt 12 - Spinning on lock

06 - Free storage 13 - SIGP issued

07 - Return storage 14 - Clear Channel issued

08 - Enter scheduler 15 - IUCV Communication

09 - Queue drop 16 - SNA Console Comm. Services

OA - Run user 17 - MSSF Support

OB - Start I/O 18 - Start I/O Fast Release

OC - Unstack I/O interrupt 19 - Simulated I/O interrupt

OD - Virtual CSW store IB - Clear I/O

The trace table recording facility allows selection of input by trace table type
(typenum) and further selection based on a field in the trace table entry. The three
allowed fields are VMBLOK address, device address (DEV ADDR) , and code

Performance Observation and Analysis 61

(CODE). Selectivity by typenum is allowed up to X'3F', inclusive, to allow for
future trace types. Further selectivity using VMBLOK, DEV ADDR, and CODE,
is only defined for the CP trace types. Selected CP trace table entries are moved to
the spool file without change to their format or length.

Passing Virtuall\1achine Data to the CPTRAP File

This interface allows the virtual machine to enter data into the CPTRAP spool file.
The virtual machine interface is inserted into a problem area by a FE or system
programmer using the STORE CP command. When enabled, via the CPTRAP
ALLOWID subcommand, the data area is paged in by the CPTRAP facility, but
must be an address within the virtual machine's storage. The data length can be
variable up to a maximum of 264 bytes. Longer requests are honored only for the
first 264 bytes with no indication that data length has been truncated.

The interface is via a class 10 monitor call instruction. The user should use monitor
code 0 with this instruction. Therefore, any virtual machine running user written
programs that use a class 10 monitor call should not use the CPTRAP virtual
machine interface facility because of unpredictable results.

A monitor call instruction can be executed in virtual supervisor or virtual problem
state, BC mode or EC mode, and in multi-level environments. Multi-level is
defined as VM/SP running a guest virtual machine (GVM) of a VM/SP system.
There is no restriction on the number of interfaces that can be active at once, or
the number of virtual machines that can use them. Within VM/SP, the trace facili­
ty maintains an ordered file of the virtual interface information and selected
VM/SP control program (CP) information.

The first byte of a virtual interface record is assigned a type X'3E', for virtual
machine records. The second byte is reserved. The third and fourth bytes contain
the user-defined code to individualize this record. The fifth and sixth bytes contain
the length. The length is the full record including the type indicator, reserved
bytes, two code bytes, the two length bytes, and the data itself. The seventh and
eighth bytes are reserved. The data starts on the ninth byte of the record to supply
doubleword alignment. The total record length is a multiple of 16 bytes to keep
incore trace record alignment. This facilitates reading the nontransferred records
from a dump. A time stamp is put on every 4K spool block.

Register 1 must contain a pointer to a P ARM field that contains a pointer to the
data, the length of the data, and the individualizing code. The data must be 264
bytes or less, and reside in the virtual machine. If the length is greater than 264
bytes, only the first 264 are taken.

The individualizing code exists so that interface data may be identified at data
reduction time. It is the user's responsibility to make it a unique indication of
where the interface was inserted. To use the virtual machine interface, each virtual
machine must be enabled via the ALLOWid operand of the class C CPTRAP
command. For a complete description of the CPTRAP command and its operands,
see the VM / SP Operator's Guide.

The interface is:

MC 0,10 with Register 1 set as follows:

R1 is a pointer to an 8-byte parameter list whose format is:

62 VM/SP System Programmer's Guide

I LLLL CODE I DATA ADDR

where:

LLLL is a two byte field containing the length of the data field

CODE is a two byte field containing the individualizing code

DATA ADDR is a four byte pointer to the data field to be included on the
spool file.

Note: There are no boundary requirements for the 8-byte parameter list.

An example of acceptable logic: where '3' is the individualizing code, and
DATAFLD is the address of the data.

BAL

*
DC
DC
DC

AROUND DS
MC

Passing CP Data to the CPTRAP File

R1,AROUND

AL2(L'DATAFLD)
AL2(3)
AL4(DATAFLD)
OH
0,10

PARM DEFINITION
2 BYTES OF LENGTH FIELD
2 BYTES OF CODE ... THIS IS CODE 3
4 BYTES OF DATA POINTER

VIRTUAL MACHINE INTERFACE

To insert the CP interface into the problem area, insert the code into the source,
reassemble the particular source module, and regenerate the system. You can also
use the STCP command to insert the CP interface into a problem area. There are
no restrictions on the number of interfaces that may be active at the same time.

The interface is via a BALR RI4,RI5. Register 15 must be loaded with the
address of PSA(TRAPOK); this is the address of logic within module DMKPSA.
This logic determines if CPTRAP is active. If active, a branch is taken to the
CPTRAP logic via PSA(TRAPCP); if not, a return is immediately taken to the
caller.

Register 1 must contain a pointer to the parameter list that contains the length of
the data, an individualizing code, and a pointer to the data. The data must be 264
bytes or less, and reside in real storage. If the length is greater than 264 bytes,
only the first 264 are taken with no indication that the data length was truncated.

The individualizing code exists so that CP interface data may be identified at data
reduction time. It is the user's responsibility to make it a unique indication of
where the zap was inserted.

Eight bytes of data are added by CP as a header for the CP interface record. The
first byte is set to X'3F' to indicate CP interface data, the second is reserved. The
third and fourth bytes contain the individualizing code, the fifth and sixth bytes
contain the total length (data length plus 8), the seventh and eighth bytes are
reserved and are immediately followed by data.

Care must be taken where the trap is inserted. If a condition code is set which has
not yet been interrogated, the inserted interface logic must assure that the condi­
tion code is saved or unchanged. The CP interface logic within CPTRAP does pre­
serve the condition code setting.

Performance Observation and Analysis 63

CPTRAP READER File

CMS Data Reduction Program

The interface is:

Rl a pointer to an 8-byte parameter list whose format is:

I LLLL I CODE I DATA ADDR

where:

LLLL is a two byte field containing the length of the data field.

CODE is a two byte field containing the individualizing code.

DATA ADDR is a four byte pointer to the data field to be included on the
spool file.

R15 must contain the address of TRAPOK in the PSA

R14 contains the return address.

Note: There are no boundary requirements for the 8-byte parameter list.

The following is an example of acceptable logic where '3' is the individualizing
code, and DAT AFLD is the address of the data.

USING PSA,RO
BAL R1,AROUND

* DATA STRUCTURE
DC AL2(L'DATAFLD) 2 BYTES OF LENGTH FIELD
DC AL2(3) 2 BYTES OF CODE ... THIS IS
DC AL4(DATAFLD) 4 BYTES OF DATA POINTER

AROUND DS OH
LA R15,TRAPOK

* CP INTERFACE
BALR R14,R15 * METHOD

PSA

The spool file created by the trace table recording facility has a filename of
CPTRAP and a filetype of FILE. It is made up of noncontiguous 4K spool

CODE 3

records. The records are all data; there are no CCWs within them. The file has the
SFBDUMP bit on, and the SFBMISC+ 1 byte is C'P'. The file may be accessed
with DIAGNOSE X'14'.

A reduction program, which runs on CMS, is included with the facility to allow the
data collected by CPTRAP to be useable. Input is the spool file created by the
CPTRAP command. Output can be either a spooled print file or an interactive
terminal display. The program allows:

• Selectivity of output

• Positioning within the file

• Displaying on the terminal in a forward or backward direction

64 VM/SP System Programmer's Guide

Printing

Stopping

The data is unblocked into logical records and printed in hexadecimal. Each logical
record starts on a new line. The interface data, the only data that can be longer
than one print line, is indented to improve its readability. The program,
TRAPRED, is a CP module shipped with the CMS modules, and exists on the CMS
S disk with an S2 filemode. TRAP RED writes CP error messages to the terminal,
and writes line mode data to the terminal, and to the printer. Although TRAPRED
issues CP messages, the program runs in the CMS user area.

I TRAPRED I filenum

In CMS mode enter: .

TRAPRED filenum

where:

TRAP RED
is the name of the CPTRAP data reduction program.

filenum
is the number of the READER file that is the output of CPTRAP processing.
The filename and filetype are 'CPTRAP FILE'.

The spool file specified must belong to the user invoking the program, and must be
of a class which can be read and must not be held.

After you enter 'TRAPRED filenum', the CPTRAP READER file is accessed and
interactive processing may begin. The CMS immediate commands HT and HX
work with this program.

There are three categories of interactive subcommands:

All [ON]

All [OFF]

typenum [Vrnblok nnnnnn]
[DEVaddr nnnn]
[COde nnnn]
[OFF]

These subcommands control which trace table types are to be viewed on the termi­
nal or spooled to the printer. The specification of X'3F' or X'3E' for typenum
causes selectivity of CP or virtual machine interface records respectively. Remem­
ber that the records on the file were selectively chosen at CPTRAP invocation, so
this may be looked at as a second level of selectivity.

All [ON] All selectivity is desired at this time (data reduction time). All
records on the READER file are processed. This is the default
setting at invocation time if selectivity is not modified. OFF
turns off all selectivity definitions. ALL or ALL ON turns on
all typenum general selectivity.

Performance Observation and Analysis 65

File Processor Subcommands

All [OFF] No selectivity, no records will be processed.

typenum Vmblok nnnnnnnn
DEVaddr nnnn
COde nnnn
OFF

These have the same meaning as during CPTRAP selectivity definition. In
addition, typenums X'3F' and X'3E' may be specified for CP interface data and
virtual machine interface data, respectively.

When the first typenum is entered after invoking the program or "ALL[ON]", all
other typenums are reset to off.

When the TRAPRED program is invoked, the message 'ENTER SELECTIVITY
OPTION(S) OR SUBCOMMAND' is issued.

TOP
BOTtom
Up
DOwn
Type
TYPEBack
Printer

nnnnnnnn
nnnnnnnn
nnnnnnnn
nnnnnnnn
nnnnnnnn

TOP /BOTtom Use these commands for positioning within the CPTRAP READER
file. TOP positions to the first record of the file; BOTtom at the last
record.

Up/Down nnnnnnnn

Use these commands to move data around within the READER file.
The amount of movement is controlled by the number following the
command. The number indicates how many logical records are to be
skipped; counting is selective. DOWN is toward the end of the file,
UP is toward the start of the file. The nnnnnnnn may be any decimal
value between 1 and 99999999. Wrapping of the file is not allowed,
and the subcommand ends prematurely if either the end of file or start
of file is encountered.

Type nnnnnnnn

Type indicates that selective output is to be displayed on the terminal.
nnnnnnnn is the number of selective lines desired. If unspecified, one
line, the current line, is displayed. nnnnnnnn may be any decimal val­
ue between 1 and 99999999. The command ends prematurely if the
end of file is encountered.

For CP and virtual machine interface records (types X'3F' and X'3E'
respectively), the indicated number of logical records is displayed.
Each logical record may be more than one line.

66 VM/SP System Programmer's Guide

/

End Program Commands

I Lost Data

Checkpointing

AP and MP Support

TYPEBack nnnnnnnn

This is the same as TYPE except instead of proceeding in a forward
direction, records are selectively displayed in a backward direction
within the file, that is, toward the top of the file. The command ends
prematurely if the start of file is encountered.

For CP and virtual machine interface records (types X'3F' and X'3E'
respectively), the indicated number of logical records is displayed.
Each logical record may be more than one line.

Printer nnnnnnnn

QUIT

1 Use this command to spool selected records to the printer. nnnnnnnn
is the number of records to print. 1 is the default, but you may specify
any decimal value up to 99999999. The command ends prematurely if
the end of file is encountered. It proceeds toward the bottom of the
file.

The subcommand to end data reduction. The accessed reader file is kept.

STOP
Used to end data reduction. The file is purged unless the reader is held.

A data lost message is issued when the system creates output faster than it can be
transferred to the spool. When this happens, the output file also indicates that data
has been lost. The amount of data lost can be 4K of CP trace table and/or
CP /virtual data records. The possibility of a data lost situation is:

1. Directly proportional to the rate of transfer of trace table data to spool

2. Directly proportional to the frequency and size of interface data

3. Inversely proportional to speed of the spool DASD. This is a potential problem
with the faster CPUs and/or with heavy use of the interface support. A
reduced selection of trace types and CP or virtual interface data is the solution.

Closed CPTRAP reader files are checkpointed just like any other spool files.

AP and MP processors are supported by the trace table recording facility. When
the facility is actively processing the CP trace table, the AP /MP lock becomes
active. The control method is a word within the module which is tested with a TS
(TEST and SET) instruction. This word also holds the CPU identification of the
latest CPU through the CPTRAP logic.

Performance Observation and Analysis 67

Running with Microcode Assist Active

Logoff Considerations

The trace table recording facility requires the dispatcher assists in ECPS:VM/370
to be deactivated to support the monitor call interface for virtual machines. These
assists exist in DMKDSP. Deactivation is required only when the facility is active,
and is accomplished automatically by tests just in front of the assist instructions.

The trace table recording facility is stopped if the user who invoked CPTRAP logs
off.

68 VM/SP System Programmer's Guide

Accounting Records

The accounting data gathered by VM/SP can help in analysis of overall system
operation. Also, accounting data can be used to bill VM/SP users for time and
other system resources they use.

There are three types of accounting records: the virtual machine user records,
records for dedicated devices as well as T -disk space assigned to virtual machine
users, and accounting records generated as a result of user initiated DIAGNOSE
X'4C'instruction. A CMS batch virtual machine creates an accounting record with
the userid and account number of the user who sent his job to the batch machine.
Accounting records are prepared as 80-character card images and spooled to disk.

When the user wishes, the data can be sent to the punch for punched output, or
spooled to the virtual machine's reader for additional processing. By using the
SYSACNT macro, the user can do this when a specified number of records are
accumulated. By invoking the ACNT CLOSE command, the user does it imme­
diately.

Accounting Records for Virtual Machine Resource Usage

The information stored in the accounting record in card image form when a user
ends his terminal session (or when the ACNT command is invoked) is as follows
(columns 1-28 contain character data; all other data is in hexadecimal form, except
as noted):

Column
1- 8
9-16
17-28
29-32
33-36

37-40
41-44
45-48
49-52
53-56
57-60

61-64

65-78
79-80

Contents
Userid
Account number
Date and Time of Accounting (mmddyyhhmmss)
Number of seconds connected to VM/SP System
Milliseconds of processor time used, including time for VM/SP
supervisor functions
Milliseconds of virtual processor time used
Number of page reads
Number of page writes
Number of virtual machine SIO instructions for nonspooled I/O
Number of spool cards to virtual punch
Number of spool lines to virtual printer (This includes one line for
each carriage control command)
Total number of spool records from virtual reader
(This is not the number of records read, rather it is the total number
of records in the spool file (SFBRECNO) when the file is open for
processing.)
Reserved
Accounting record identification code (01)

Accounting Records for Dedicated Devices and Temporary Disk Space

Accounting records are recorded and spooled to disk when a previously dedicated
device and temporary disk space is released by a user via DETACH, LOGOFF, or
releasing from DIAL (dedicated device only). A dedicated device is any device
assigned to a virtual machine for that machine's exclusive use. These include
devices dedicated by the ATTACH command, those being assigned at logon by
directory entries, or by a user establishing a connection (via DIAL) with a system

Accounting Records 69

that has virtual 2702 or 2703 lines. The information on the accounting record in
card image form is as follows (columns 1-28 contain character data; all other data
is in hexadecimal form, except as noted):

Column
1- 8
9-16
17-28
29-32

33
34
35
36

37-38

39-78
79-80

Contents
Userid
Account number
Date and Time of Accounting (mmddyyhhmmss)
Number of seconds connected to VM/SP system
Device class
Device type
Model (if any)
Feature (if any)
Number of cylinders of temporary disk space used (if any) or number
of blocks used (columns 37-40) for fixed-block devices. This infor­
mation appears only in a code 03 accounting record.
Unused (columns 41-78 unused for fixed-block devices)
Accounting record identification code (02, 03)

The device class, device type, model, and feature codes in columns 33-36 are
shown in Figure Figure 69 on page 521.

Accounting Records for LOGON, AUTOLOG, and LINK Journaling

When LOGON, AUTOLOG, and LINK journaling is on, VM/SP may write type
04, type OS, type 06, or type 07 records to the accounting data set. These records
are written under the following circumstances:

Type 04 records are written when VM/SP detects that a user has issued
enough LOGON or AUTOLOG commands with an invalid password to reach
or exceed an installation defined threshold value.

Type 05 records are written when VM/SP detects that a user has successfully
issued a LINK command to a protected mini disk not owned by that user.

Type 06 records are written when VM/SP detects that a user has issued
enough LINK commands with an invalid password to reach or exceed an instal­
lation defined threshold value.

Type 07 records are written when a user logs off a device controlled by the
VCNA. The records indicate the user's share of the VCNA resource used.

These records have the following formats:

Type 04

Column
1- 8
9-16
17-28
29-32
33-40
41-48
49-51
52-53

70 VM/SP System Programmer's Guide

Contents
USERID specified on the command
Reserved for IBM use
Date and time of accounting (mmddyyhhmmss)
Terminal address
Invalid password
USERID that issued the AUTOLOG command
Reserved for IBM use
Current invalid password count

/

54-55
56-78
79-80

Type 05

Column
1- 8
9-16
17-28
29-32
33-40
41-48
49-51
52-78
79-80

Type 06

Column
1- 8
9-16
17-28
29-32
33-40
41-48
49-51
52-53
54-55
56-78
79-80

Type 07

Column
1- 8
9-16
17-78
79-80

Accounting record limit (JPSLOGAR)
Reserved for IBM use
Accounting card identification code (04)

Contents
USERID that issued the command
Account number
Date and time of accounting (mmddyyhhmmss)
Terminal address
Reserved for IBM use
USERID of user that owns the minidisk
Minidisk address for which the LINK command was issued
Reserved for IBM use
Accounting card identification code (05)

Contents
USERID that issued command
Account number
Date and time of accounting (mmddyyhhmmss)
Terminal address
Invalid password
USERID of user that owns the minidisk
Minidisk address for which the LINK command was issued
Invalid password count
Invalid password limit (JPSLNKAR)
Reserved for IBM use
Accounting card identification code (06)

Contents
USERID or terminal identification
Accounting number or 0000
VM/VCNA accounting data
Accounting card identification (07)

Accounting Records Created by the User

A virtual machine user can initiate the creation of an accounting record that con­
tains up to 70 bytes of information of his own choosing. To do this, he issues a
DIAGNOSE code X'4C' instruction with the following operands:

• The address of a data area in virtual storage containing the information, in the
actual format, that he wishes to have recorded in columns 9 through 78 of the
card image record.

A hexadecimal function code of X' 1 0'

The length of the data area in bytes

The information on the accounting record is as follows:

Accounting Records 71

User Accounting Options

Column
1- 8
9-78

79-80

Contents
Userid
User formatted data
Accounting record identification code (CO)

For information on using DIAGNOSE code X'4C' see "DIAGNOSE Instruction in
a Virtual Machine" in this section.

For SNA users, VM/VT AM Communications Services (VCNA) uses the VM/SP
user accounting record. See the VeNA Installation and Terminal Use Guide for the
format of this record.

You may insert your own accounting procedures in the accounting routines. See
the "CP Conventions" section for information on CP coding conventions and
loadlist requirements. Operator responsibilities in such cases should be defined by
the installation making the additions. When designing such accounting procedures,
you should understand that:

1. The accounting routines are designed to be expanded. The entry point pro­
vided in the accounting module for installation use is called DMKACON. If
you want to perform additional accounting functions, you should modify the
following copy files:

ACCTON (account on) -- for action at logon time. This is provided as a null
file. It can be expanded to provide additional functions at logon time. The
ACCTON routine can request the system to force the user off by returning a
nonzero value in SA VER2. However, if the operator is automatically logged
on during system initialization, the nonzero return code has no effect.

Note: The ACCTON COpy file distributed with VM/SP contains the basic
logic required to enhance system security based on the 3277 Operator Identifi­
cation Card Reader feature. Additional checking may be added to examine or
validate the data read from the identification card.

ACCTOFF (account off) -- for action at logoff time. This section contains the
code that fills in the account card fields. It does not reset any internal data.
This file exists in both DMKACO and DMKCKP (checkpoint). If the
ACCTOFF copy file is changed, both modules should be reassembled.

2. In addition to CP accounting, your installation can use the accounting routines
to supply virtual machine operating system accounting records. This provides a
means of job accounting and operating system resource usage accounting.

3. If you specify, in the SYSACNT system generation macro, that your spooled
accounting records are to be sent to the reader of a virtual machine, you can
process the accounting data directly with your own accounting routines.

72 VM/SP System Programmer's Guide

Generating Saved Systems

By taking advantage of the SA VESYS command, system resources are not commit­
ted to perform an IPL each time a system is loaded. Instead, the saved system is
located and page tables are initialized according to its system name table entry.
The saved system is not automatically loaded at IPL time; however, its pages are
brought into storage on demand as the virtual machine operating system executes.

In addition to saving time by avoiding an IPL, a saved system can share segments
of reenterable code, thus making more efficient use of real storage. This technique
is especially valuable when using CMS. However, a shared segment cannot be ini­
tialized in the virtual=real machine, by an IPL.

To generate a saved system:

Add the appropriate NAMESYS or NAMENCP macro and operands to the
DMKSNT file
Assemble this new version of DMKSNT
Create and load a new control program nucleus
IPL the new CP system
Load the system to be saved and then issue the SA VESYS command.

When allocating DASD space for named systems, provide an extra page for infor­
mation purposes; do not overlay this area with subsequent named systems. See the
VM / SP Planning Guide and Reference and the VM / SP Installation Guide for fur­
ther information on generating and saving saved systems.

The NAMESYS Macro for Saved Systems

The NAMESYS macro is assembled by the installation system programmer and is
used to describe the location of the saved system. Shared segments may be speci­
fied, but they must consist of reenterable code.

When making additions, changes, or deletions to the system name table, the
DMKSNT module must be reassembled. The GENERATE EXEC procedure has
the facility to reassemble only the DMKSNT module. See the description of the
GENERATE EXEC procedure in the VM/SP Installation Guide.

A DMKSNT ASSEMBLE sample supplied with the system contains workable CMS
segments. Either edit or update this module to include the NAMESYS macros
describing your installation's named systems. Note that this module may contain a
PUNCH SPB card, which is used by the loader to force this module to a 4K
boundary when the CP system is built (a 12-2-9 multipunch must be specified in
column 1 of an SPB).

Coding the NAMESYS Macro

The NAMESYS macro describes the name and location of the saved system or dis­
contiguous saved segment. Shared segments may be specified, but they must con­
sist of reenterable code, with no alteration of its storage space permitted. See the
VM / SP Planning Guide and Reference for the format of the NAMESYS macro.

Example 0/ a DMI(SNT Entry

I A DMKSNT entry to create a named CMS system could be coded as follows:

Generating Saved Systems 73

DMKSNTBL CSECT
FSTNAME NAMESYS SYSNAME=CMS,SYSVOL=VMSRES,SYSSTRT=(001,1), X

SYSPGNM=(O-4,14-33,400-511) ,SYSPGCT=137, X
SYSHRSG=(25,26,27,28,29,30,31),SYSSIZE=256K, X
VSYSADR=190,SYSCYL=98,VSYSRES=VMSRES X

END

In the above example, VMSRES is a count-key-data volume (IBM 3330 Disk Stor­
age).

A similar example in which the device is a fixed-block volume follows:

DMKSNTBL CSECT
FSTNAME NAMESYS SYSNAME=CMS,SYSVOL=VMSRES,SYSSTRT=(2), X

SYSPGNM=(O-4,14-33,400-511) ,SYSPGCT=137, X
SYSHRSG=(25,26,27,28,29,30,31),SYSSIZE=256K, X
VSYSADR=190,SYSBLOK=46912,VSYSRES=VMSRES X

END

If the segment resides on one volume and the virtual 190 minidisk resides on a dif­
ferent volume, it is possible for one of the devices to be fixed-block and the other
to be count-key-data. In that case, the parameters pertaining to each device are
selected based on the type of that particular device.

Using the SA VESYS Command

The system to be saved must first be loaded by device address in the traditional
manner. Before its page-format image can be saved, the system to be saved must
have its execution stopped. The point at which the operating system is stopped
should be determined by the installation system programmer. The SA VESYS
command must then be issued; its format is:

I SAVESYS systemname

where:

systemname corresponds to the identification of the saved system. This is iden­
tical to the SYSNAME entry in the NAMESYS macro.

The user must have a CP privilege class of E to issue the SA VESYS command.
Next, he should IPL the saved system. The virtual machine will attempt to resume
execution and immediately encounter a page fault. The required page is brought
into storage and execution continues. As execution continues, subsequent page
faults bring the required pages into storage.

A system should be saved as soon after IPL as possible. All pages to be saved must
be resident at the time the SAVESYS command is issued. Also, before issuing the
SA VESYS command, be sure that the system is stopped.

CMS was designed to run under CP and it was also designed so that it could easily
be saved by CPo See "Saving the CMS System" in "Part 2. Conversational Moni­
tor System (CMS)" of this publication.

Note: The system being saved should not exceed X'79COOO' bytes. Unpredictable
results may occur if you save a larger system.

74 VM/SP System Programmer's Guide

Shared Segments

If one or more segments of a saved system are designated as being "shared," a sin­
gle copy of these segments in real storage can be used by any virtual machine that
loads the saved system by name. (In attached processor or multiprocessor mode,
there are two sets of pages, page tables, and swap tables maintained for each
shared segment.) A shared segment must be reenterable and the segment number
must be included in the SYSHRSG operand of the NAMESYS macro for the saved
system.

If, for example, you code the SYSHRSG= operand of the NAMESYS macro for
the system to be saved as

SYSHRSG=(29,30,31)

then segments 29, 30, and 31 of the system are to be shared. When CMS is saved,
via the SA VESYS command, the pages in segments 29, 30, and 31 are set up so
that any user loading the saved system by name shares the same set of these pages
in real storage. This results in a saving of both real and external page storage.
Also, the more virtual machines using the shared segment, the more likely it is that
these pages will be frequently referenced and, thereby, kept in real storage. As a
result, the number of page faults and the corresponding time and resources
expended in page swapping is reduced.

Special Considerations for Shared Segments

When a saved system containing one or more shared segments is again saved, a
problem can occur if the previous system has been loaded by name and is still in
use. If users of the "old" system continue to reference pages that have already
been brought into paging storage, no problems will occur. However, if after the
new system has been saved, users of the old system reference pages that had not
previously been referenced, they receive the new version of the referenced page.

Any users who IPL the newly saved system share only the new copy of the shared
segment.

Also, the entire segment is saved by the SA VESYS command, not just that portion
occupied by the program (for example, CMS), so that unwanted data may also be
contained in the segment.

The use of shared segments is not allowed in a virtual=real machine.

The maximum number of shared segments that may be defined is 78.

Discontiguous Saved Segments

With discontiguous saved segment support, you can attach and detach segments of
storage to and from your virtual machine. These segments contain reenterable
code that can be shared by many users. Thus, programs that are required some­
times, but not all the time, can be shared and only loaded when they are needed.

Segments that are to be shared in this manner must be loaded at an address beyond
the normal end of your virtual machine and then must be saved. The procedure for
loading and saving discontiguous segments is similar to the procedure that already
exists for loading and saving systems. Also, discontiguous saved segments can be
attached to your virtual machine in nonshared mode for testing and debugging. In
summary, a discontiguous saved segment is a segment that:

Generating Saved Systems 75

User Requirements

Has a name associated with it
Contains only reenterable code
Was previously loaded and saved
Can be shared by multiple virtual machines
Can be loaded by a particular virtual machine in nonshared mode for testing
and debugging

Note: A discontiguous saved segment must not be attached by a virtual machine
executing in the virtual=real area.

An example of a discontiguous saved segment is the segment of CMS that supports
DOS program development and testing under CMS. This segment is reenterable
and is named CMSDOS. The VM/SP starter system includes an EXEC procedure
that helps you load and then save this segment. CMS contains all the necessary
linkage to load the CMSDOS segment when it is needed.

In order to use discontiguous saved segments, you must:

Allocate permanent space on a CP-owned volume to contain the saved seg­
ment.

Assign a name to the segment and specify where it is to be stored on disk by
defining an entry in the system name table (DMKSNT) with the NAMESYS
macro.

Load and save the segment. The VM/SP starter system has EXEC procedures
to help you load and save the discontiguous saved segments for CMS (one
EXEC procedure to load and save CMS/DOS, one for CMS/BAM, and one
for CMS/VSAM and AMSERV).

Be sure that the proper linkage for attaching and detaching discontiguous saved
segments is in the operating system that needs the segment. CMS contains the
linkage necessary to attach and detach the discontiguous saved segments it
supports.

I · Save a discontiguous saved system that is moved to a new DASD extent.

Usually, the direct access storage space is allocated and the system name table
entries are created during system generation. You allocate DASD space as perma­
nent (PERM) by executing the Format/Allocate program. This program is exe­
cuted during system generation, but it is a standalone program that can be executed
at any time. During system generation, you designate the CP-owned volumes by
coding the SYSOWN macro of the DMKSYS file. The system name table
(DMKSNT) is also created during system generation. If, at some time after system
generation, you wish to change the DMKSYS or DMKSNT files, you can do a par­
tial system generation and reassemble those files using the GENERATE EXEC
procedure. GENERATE is described in the VM/SP Installation Guide. You can
also load and save a discontiguous saved segment any time after system generation.

76 VM/SP System Programmer's Guide

Notes:

1. For each shared segment specified, 64K of virtual storage is reserved. The
number of pages actually saved (via the SAVESYS command) can be less than
a segment. However, only one saved system name can be associated with each
64K request.

2. For each shared named system specified, page zero of the first shared segment
should always be saved via a SA VESYS command.

Loading and Saving Discolltiguous Shared Seglnents

Before a discontiguous saved segment can be attached and detached by name, it
must be loaded and saved. The discontiguous saved segment must be loaded at an
address that is beyond the highest address of any virtual machine to which it will be
attached. It is the system programmer's responsibility to make sure the name seg­
ment is loaded at an address that does not overlay the defined virtual machine or
any other named segment that may be attached at the same time.

The load address for the discontiguous saved segment should be just beyond the
largest virtual machine that uses it. If the load address is unnecessarily high, real
storage is wasted because CP must have segment table entries for storage that is
never used.

For example, assume you have five CMS virtual machines in your installation. Also
assume that all five use the CMS support for DOS program development and test­
ing which is in a 32K segment named CMSDOS. If each of your five CMS virtual
machines has a machine size of 320K you should load the CMSDOS segment just
beyond 320K. If you load CMSDOS at a much higher address, for example 512K,
you are wasting real storage. In this case, whenever one of your eMS virtual
machines attaches the CMSDOS segment, CP creates segment table entries for a
544K (512K + 32K) virtual machine. Although the virtual machine cannot refer
to storage addresses beyond 320K or below 512K, CP still must have segment
table entries in nonpageable real storage for those virtual addresses.

Once the named segment is loaded at the correct address, you can save it by issuing
the CP SA VESYS command. To be sure that the CMS discontiguous saved seg­
ment has segment protection, set the storage key for the segment, via the CMS
SETKEY command, to something other than X'F' before you save it.

The format of the CMS SETKEY command is:

I SETKEY

where:

key

key systemname [startadr]

is the storage protection key, specified in decimal. The valid keys
are 0-15.

systemname is the name of the saved system or segment for which the storage
protection is being assigned.

startadr is the starting address (in hexadecimal) at which the keys are to be
assigned. The address must be within the address range defined for
the saved system or discontiguous saved segments. Using the

Generating Saved Systems 77

How the Interface Works

startadr operand, you can issue the SETKEY command several
times and, thus, assign different keys to various portions of the
saved system or segment.

The linkage to attach and detach discontiguous saved segments is supported via
several CP DIAGNOSE codes.

Since the virtual machine is responsible for insuring that the discontiguous saved
segment that it is attaching does not overlay other programming code, it must know
how much virtual storage it has. By issuing DIAGNOSE code X'60' during its
initialization process, the virtual machine can determine its virtual machine storage
size.

When the virtual machine needs to attach a discontiguous saved segment, it must
first ensure that the segment is available and that it does not overlay existing stor­
age. By issuing the DIAGNOSE code X'64' with a subcode of X'OC', it can verify
that a loadable copy of the discontiguous shared segment exists on a CP-owned
volume. This DIAGNOSE code is called the FINDSYS function. FINDSYS
returns the starting address of the segment. The virtual machine should compare
the starting address of the segment to its own ending address; if the segment does
not overlay existing storage, it can be loaded.

A LOADSYS function is provided by the CP DIAGNOSE code X'64' and sub­
codes X'OO' and X'04'. The section "Diagnose Instruction in a Virtual Machine"
contains a complete description of the Diagnose codes used in the discontiguous
saved segment interface. If you want CMS to load the named segment in non­
shared mode, you may do so by issuing the CMS command:

SET NONS HARE segmentname

before CMS attaches the named segment. If the segment is loaded in nonshared
mode you can test and debug it using the CP TRACE, STORE, and ADSTOP
commands and the CMS DEBUG sub commands BREAK and STORE.

When CMS loads a named segment in shared mode, it issues the CP DIAGNOSE
code X'64' with subcode X'OOOO'. CMS also issues the same code with sub code
X'0004' to load the named segment in nonshared mode.

When a discontiguous saved segment is loaded (or attached) to a virtual machine,
CP expands its segment table entries for that virtual machine to reflect the highest
address of the virtual machine.

When a named segment is successfully loaded, all of its storage is addressable by
the virtual machine. For example, when CMS attaches a named segment, it can
execute the routines contained in that segment. All of the commands that are exe­
cutable for CMS are also executable for the attached named segment, with the fol­
lowing exceptions:

• The response for the CP QUERY VIRTUAL STORAGE command does not
reflect the storage occupied by the named segment.

If you execute a command that alters storage (such as STORE), you are given
a nonshared copy of the named segment.

78 VM/SP System Programmer's Guide

Shared Segment Protection

When the named segment is no longer needed, it can be detached. The CP
DIAGNOSE code X'64' subcode X'0008', is called the PURGESYS function; it
detaches named segments. 'Nhen a named segment is detached, its storage is no
longer addressable by the virtual machine and CP updates its segment tables. The
entries for segments beyond the original virtual machine size are deleted and the
associated real storage is released.

Installations may optionally protect or not protect shared segments. When seg­
ments are protected, CP ensures that a virtual machine does not access a shared
segment that another virtual machine has modified. When segments are not pro­
tected, CP does not provide this service.

If a virtual machine modifies an unprotected shared segment, other virtual
machines sharing the segment may be affected by the modification. Therefore,
before running without shared segment protection, ensure that none of the virtual
machines modify shared segments.

Shared segments modified by the CP commands TRACE, ADSTOP, or STORE
are handled differently by CP. In this case, CP gives exclusive use of the modified
segment to the virtual machine that modified it. CP provides an unmodified copy
of the segment for other virtual machines.

The VM/SP default is to protect shared segments. To turn off segment protection,
use the NAMESYS macro instruction. This macro instruction can also turn on
segment protection. Instructions for using the NAMESYS macro instruction are in
the section "The NAMESYS Macro for Saved Systems".

When segment protection is on, CP protects segments in the following way. Before
dispatching a virtual machine, CP determines if the current virtual machine altered
any pages within the shared segments. If a page was altered, CP sends a message
to the current virtual machine to identify the altered page, makes the altered page
inaccessible, and stops the current virtual machine by placing it into console func­
tion mode. CP then dispatches another virtual machine. To resume execution on
the virtual machine that CP stopped, the operator of that machine must issue the
class G BEGIN command.

To make an altered page inaccessible, CP frees the storage the page occupied.
Later, when a virtual machine references the page, CP brings a fresh copy of the
page into storage.

Shared segment protection supports:

• The virtual machine assist feature and Extended Control-Program Support for
named shared systems.

The execution of all options of the CP STORE command in shared segments,
including branch and instruction tracing.

The execution of the CP STORE and ADSTOP commands in shared segments.

The execution of the STORE and BREAK subcommands of the CMS DEBUG
command.

CP's handling of storage keys includes the following:

Generating Saved Systems 79

Virtual Machine Operation

• No distinction is made between shared and nonshared systems for storage key
fetch instruction simulation, DISPLAY command execution, and page key
handling.

• A mask in control register 6 prevents the ISK (insert storage key) and SSK (set
storage key) instructions from being handled by the VMA feature. This is nec­
essary because VMA updates the key on SSK instructions (including the
SWPTABLE fields), but the new value is not detected by the hardware change
bit monitoring.

CP does not permit a user of shared systems to set storage keys via the Set Storage
Key (SSK) instruction. Thus, one user cannot prevent other users from accessing
shared storage.

110 activity into shared segments is monitored by channel program translators. A
channel protection error occurs if a virtual machine attempts to read data into a
shared segment.

The STCP command may be used to alter shared segments. When the STCP
command is used to alter shared segments, the change is reflected to all users of the
shared segments; the altered shared system is not assigned to the user issuing the
STCP command. Whenever the STCP command is issued for a shared segment,
storage is updated and the page that changed is written to the paging volume, thus
reflecting the change to all users of the shared segment.

If you issue a STORE, ADSTOP, or TRACE command that alters a storage
location within a shared segment, you receive the following message:

DMKVMA181E SHARED COPY SYSTEM name REPLACED WITH NON-SHARED COPY

Execution continues in your virtual machine; however, you are now executing your
own copy of the shared system in nonshared mode. The nonshared system you are
executing includes the change you just made; all other users of the shared system
continue to execute in shared mode and are not affected by your change.

If you alter a shared page by any means other than the TRACE, ADSTOP, or
STORE command, you receive the following message:

DMKVMA456W CP ENTERED; name SHARED PAGE hexloc ALTERED

You must enter the BEGIN command to continue execution. The altered page is
returned to free storage by CP, and you may continue with an unaltered system in
shared mode.

If you issue an STCP command that alters the storage of a shared segment, storage
is altered and the page altered is written to the paging volume. All users, including
you, remain in shared mode and the change becomes part of the shared system. If
operations overlap and you issue a STCP command for a shared page that is about
to be assigned to a particular user as nonshared (because he just altered it), you
receive the following message:

DMKCDS161E SHARED PAGE hexloc ALTERED BY userid

You should check that you issued the STCP command correctly and then wait until
the fresh copy of the saved system is loaded before reissuing the STCP command.

80 VM/SP System Programmer's Guide

In attached processor systems it is invalid to issue the STCP command to a shared
segment. The STORE function is not performed, and the user receives the follow­
ing message:

DMKCDS004E INVALID HEXLOC - xxxxxx

The NAMENCP Macro for 370X Control Program

The NAMENCP macro is assembled by the installation system programmer and is
used to describe the location of the 370X control program. Shared segments may
be specified, but they must consist of reenterable code.

When making additions, changes, or deletions to the system name table, the
DMKSNT module must be reassembled. The GENERATE EXEC procedure has
the facility to reassemble only the DMKSNT module. See the description of the
GENERATE EXEC procedure in the VM / SP Installation Guide.

You must create an entry in the system name table (DMKSNT) for each unique
3704/3705 control program that you generate. If you can foresee generating
several versions of the 3704/3705 control program, define extra entries in the sys­
tem name table when you generate VM/SP. Use the NAMENCP macro to define
3704/3705 program entries in the system name table. See the VM/SP Installation
Guide for information on generating the 3704/3705 control program.

Coding the NAMENCP Macro

The NAMENCP macro describes the name and location of the 3704/3705 control
program. See the VM / SP Planning Guide and Reference for the format of the
NAMENCP macro.

Example of a NAMENCP Entry

A DMKSNT entry to create a 3704/3705 control program could be coded as fol­
lows:

DMKSNTBL CSECT
EPNAME NAMENCP CPSIZE=128K,CPNAME=EPNAME,CPTYPE=EP, X

SYSPGCT=10,SYSVOL=VMSRES,SYSSTRT=(010,36) X
END

In the above example, VMSRES is a count-key-data volume (IBM 3330 Disk Stor­
age).

Using the SAVENCP Command

Use the CMS SAVENCP command to read a 3704/3705 control program load
module created by the LKED command, and to load it into virtual storage in the
CMS user area. Once the load is performed, SA VENCP scans the control program
image and extracts the control information required by CPo The control informa­
tion is accumulated in one or more 4096-byte pages in the CMS user area. When
all of the necessary control information is extracted, SA VENCP builds the Com­
munications Controllers Parameter List (CCPARM) and issues the DIAGNOSE
X'50' instruction to create the page-format copy of the control program on a
CP-owned volume. The format of the SA VENCP is:

Generating Saved Systems 81

I SAVENCP fname (ENTRY CYASTART

where:

fname
in this case, is the filename of the LOADLIB file where the 3704/3705 control
program load resides. This name is used as the ncpname for the DIAGNOSE
instruction.

ENTRY symbol
is the external symbol of the entry point in the 3704/3705 control program
load module. The standard entry for the Emulation Program is CY ASTART.

The user must have a CP privilege class of A, B, or C to use the SAVENCP com­
mand. See the VM / SP Installation Guide for more detail of the SA VENCP com­
mand.

82 VM/SP System Programmer's Guide

The Virtual Machine Communication Facility

The Virtual Machine Communication Facility (VMCF) is part of the CP compo­
nent of VM/SP. VMCF provides virtual machines with the ability to send data to
and receive data from any other virtual machine.

VMCF is made up of five data transfer subfunctions, seven control subfunctions, a
special external interrupt (code X'4001 ') to asynchronously alert virtual machines
to pending messages, and an external interrupt message header to pass control
information (and data, at times) to another user.

VMCF is implemented by means of subfunctions invoked using the DIAGNOSE
instruction with a code of X'68' and a special 40-byte parameter list called
VMCP ARM. A VMCF subfunction is indicated by a particular subfunction code
in the VMCPFUNC field in the parameter list.

Note: Before you can use any other VMCF subfunction, you must use the
AUTHORIZE subfunction for communications. Before you can communicate with
another user, that user must also have used the AUTHORIZE sub function.

A special external interrupt (code X'4001 ') is used by module DMKVMC to notify
one virtual machine of a pending transfer of data. This interrupt is also used to
synchronize sending and receiving of data.

Along with this interrupt, the virtual machine receives a message header that is
logged into a preassigned virtual storage area. This message header is used to
define the type of request and to provide data transfer information, such as length
of data. The message header is also used to notify the originator of a transaction
of the success or failure of the transaction. In this case, the message header
includes such information as residual counts and data transfer return codes.

Figure 6 on page 84 lists the VMCF sub functions and gives a brief description of
each. The subfunctions are described in detail in the section "Descriptions of
VMCF Subfunctions".

Messages and data are directed to other virtual machines logically via the userid.
Data is transferred in up to 2048-byte blocks from the sending virtual machine's
storage to the receiving virtual machine's storage. The amount of data that can be
moved in a single transfer is limited only by the sizes of virtual machine storage of
the respective virtual machines. Use of real storage is minimal. Only one real stor­
age page per virtual machine (a total of two pages, one for the sender and one for
the receiver) need to be locked during the data transfer.

The special message facility uses VMCF to send messages from one virtual
machine storage area to another virtual machine storage area. For a description of
the special message facility and how it uses VMCF, see "Special Message Facility"
in this section.

The Virtual Machine Communication Facility 83

Function Code Comments

AUTHORIZE Control Initializes VMCF for a given virtual machine. Once AUTHOR-
IZE is executed, the virtual machine can execute other VMCF
subfunctions and receive messages or requests from other users.

UNAUTHORIZE Control Terminates VMCF activity.

SEND Data Directs a message or block of data to another virtual machine.

SEND/RECV Data Directs a message or block of data to another virtual machine,
and requests notification of a reply.

SENDX Data Directs data to another virtual machine on a faster but more
restrictive protocol than the SEND subfunction.

RECEIVE Data Allows you to accept selective messages or data sent via a
SEND or SEND /RECV subfunction.

CANCEL Control Cancels a message or data transfer directed to another user but
not yet accepted by that user.

Allows you to direct data back to the originator of a
REPLY Data SEND /RECV subfunction, simulating full duplex communi-

cation.

QUIESCE Control Temporarily rejects further SEND, SENDX, SEND/RECV, or
IDENTIFY requests from other users.

RESUME Control Resets the status set by the QUIESCE subfunction and allows
execution of subsequent requests from other users.

IDENTIFY Control Notifies another user that your virtual machine is available for
VMCF communication.

REJECT Control Allows you to reject specific SEND or SEND/RECV requests
pending for your virtual machine.

Figure 6. Virtual Machine Communication Facility (VMCF) Subfunctions

IThe word "Data" in this column indicates a data transfer sub function whereas the
word "Control" indicates a VMCF control subfunction.

Using the Virtual Machine Communication Facility

The following discussion presents ideas and suggestions for using the Virtual
Machine Communication Facility (VMCF).

84 VM/SP System Programmer's Guide

VMCF Applicatiolls

Multitasking Pro!,rramming

Resource Sharing

Virtual Extensions to VM/ SP

Program Testing

The VM/SP system with VMCF provides the user with the potential to apply new
and different techniques to current applications.

The VMCF functions may be used to multitask virtual machines. Each virtual
machine can become a subtask (parallel or otherwise) of another virtual machine.
A virtual machine task can be a simple program or a large processor. The VMCF
functions provide the WAIT/POST, serialization and communication facilities to
control such an environment. The existing VM/SP functions provide efficient
scheduling, dispatching and basic resource controls. The advantage of such an
environment is that a user is less restricted by operating system (software) limita­
tions and gains the flexibility of machine languages and hardware.

VMCF provides a clear and concise method for sharing and serializing resources
between virtual machines. The resources can range from multi-write minidisks to
entire processors. The control functions for resource sharing (such as, resource
management, serialization) can be contained in a virtual machine.

It is conceivable that functions could be added to VM/SP without altering the con­
trol program (CP). A special privilege class virtual machine could be used to pro­
vide additional functions to non-privilege class users using the VMCF interface.
Similarly, CMS capabilities could be expanded (or at least appear to be expanded)
by linking CMS with other virtual machines.

The program testing capabilities offered by VMCF can range from device simu­
lation to teleprocessing network simulation. In particular, VMCF can be used to
provide external interactions from one virtual machine to another. A simulated
teleprocessing network could be constructed with virtual machines. Each virtual
machine would effectively become a node within the network. The network struc­
ture could range from a simple tree type structure to a complicated mUlti-path mesh
type structure. The program logic within each node virtual machine would be the
same logic as required for a real teleprocessing node. In theory, a reasonably com­
plicated structure could be simulated without requiring the physical hardware.

The significant testing capability provided by VMCF is the ability to link the test
system with test/simulation routines in another virtual machine.

INTRA Virtual Machine Communication

Virtual Multiprocessing

Although the VMCF interface is intended for communication from one virtual
machine to another it can also be used to communicate within a single virtual
machine (wrap connection). The VMCF interface could conceivably be used to
link one or more operating system tasks that are logically separated by the
software. This would allow task to task communication rather than virtual machine
to virtual machine communication.

The VMCF interface could possibly be used to simulate a virtual multiprocessing
environment.

The Virtual Machine Communication Facility 85

Security and Data Integrity

Performance Considerations

The VMCF interface provides the following security aids:

The user doubleword in the external interrupt message header can be used to
contain a security code to prevent unwarranted users from accessing a shared
data base or other confidential information.

The AUTHORIZE SPECIFIC option allows a user to restrict messages sent to
his virtual machine. This option is useful when slave machines are to commu­
nicate only with a host machine. The slave machines can AUTHORIZE SPE­
CIFIC with the host and prevent unwarranted users from clogging their
message queues.

The design of VMCF prevents malicious users from intercepting transactions
in process for other users (for example, user D cannot execute a RECEIVE,
REPLY, REJECT or CANCEL to a message sent to user B from user A).

The VMCF support module is designed such that a user is always informed of con­
ditions that could threaten the integrity of his own data. The user is notified either
with a DIAGNOSE X'68' return code or data transfer error code. There is no
internal buffering of user data within the control program (CP), a·message is
always retained by either the SOURCE or SINK virtual machine. If a SEND type
request fails, the SOURCE still has a copy of the original message. If a SINK
REPLY fails, the SINK user still has a copy of the REPLY data. The Diagnose
return code or data transfer error code can indicate to a user that a transaction
failed. It is up to the user to preserve the associated transaction data. The follow­
ing are considerations which should be noted by a VMCF user:

1. The buffer used for SOURCE data in a SEND, SENDX or SEND/RECV
request should not be freed or reused until the final response external interrupt
is received by the SOURCE.

2. The buffer used for SINK data in a REPLY function can be reused by the
SINK after the DIAGNOSE instruction (REPLY) has successfully completed.

3. The user parameter list (VMCPARM) may be re-used upon completion of the
Diagnose instruction. At that point the VMCP ARM data has been copied to a
VMCF control block (VMCBLOK) by the control program. A user should,
however, maintain queues of VMCPARM data in order to associate an
external interrupt message header (VMCMHDR) with a particular request.

4. A user should always interrogate the DIAGNOSE return code or data transfer
error code for possible error conditions. It is the user's responsibility to deter­
mine the types and extent of error recovery. The DIAGNOSE return code 19
for a SOURCE SEND, SEND/RECV or SENDX request indicates that an
error was associated with the SINK user and for a SINK RECEIVE or REPLY
request indicates that an error was associated with the SOURCE user. The
user who, receives this return code does not have to invoke error recovery for
himself but only be aware that the transaction did not complete successfully
because of an error associated with the other user.

There are several factors that can effect the performance of VMCF:

86 VM/SP System Programmer's Guide

General Considerations

VMCF Protocol

The VMCF support module, DMKVMC, is a pageable CP module. If a user
has significant paging activity, it may be advantageous to either lock the mod­
ule in real storage (CP LOCK command) or alter the CP LOADLIST to make
DMKVMC resident.

It is t<;> a user's benefit to have the user parameter list, VMCP ARM, in the
same 4K page as the DIAGNOSE X'68' instruction. This may eliminate a pag­
ing operation.

User support modules using the VMCF interface should be written as reentrant
modules and be contained within a CP shared segment whenever possible.
This helps reduce CP paging overhead.

For applications that involve serial message processing, the SENDX function is
the most efficient. The SENDX function eliminates the need for the SINK to
do a RECEIVE operation.

Note: Overall system VM/SP performance is not affected when VMCF is not
being used by an installation.

The SENDX function is a fast way to transfer messages or data and can be used in
place of the CP MSG command where the message length exceeds the capacity of
the terminal input line. Its use is somewhat restricted in that the maximum data
length must be agreed upon by all VMCF users and then remains fixed unless
renegotiated.

The SEND and SEND/RECV functions are better suited to transfer high volume
data base type information. This type of data transfer requires the flexibility of a
wide range of data lengths along with rigorous management and control techniques.

The QUIESCE function allows a virtual machine to discontinue receiving messages.
The virtual machine can process those messages already stacked and then use the
RESUME function to continue reception. The QUIESCE function also allows a
virtual machine to process all queued messages prior to terminating VMCF opera­
tion.

The user parameter list, VMCPARM, is designed such that it can be used for any
sub function by simply varying the contents of its fields.

Users should keep copies of VMCPARMs for all requests made via the SEND,
SEND /RECV, or SENDX functions. When a final response interrupt is received
and the interrupt message header indicates no data transfer errors, the correspond­
ing VMCP ARM copy can be released. If a data transfer error is indicated, the
copy can be used to reinitiate the transaction.

VMCF provides four types of protocol: SEND, SEND/RECV, SENDX, and
IDENTIFY. The protocol used to communicate between two virtual machines
depends on the application of VMCF and conventions established by virtual
machine users authorized to use VMCF. A virtual machine must invoke the
AUTHORIZE subfunction before it is allowed to use any of the other
subfunctions.

The Virtual Machine Communication Facility 87

The SEND Protocol

The types of transactions that virtual machines can be involved in are described by
a series of VMCF protocols. In these protocols the originating virtual machine is
called the "source" virtual machine. The destination virtual machine is called the
"sink" virtual machine.

The protocol for a transaction remains in effect for the duration of the transaction.

The SEND protocol defines a one-way transfer of data from source virtual machine
storage to sink virtual machine storage. The SEND protocol uses the SEND and
RECEIVE subfunctions, as described in Figure 7 . The source virtual machine first
transfers data to the sink virtual machine. This is done by executing the SEND
subfunction which specifies the userid of the sink virtual machine, a message ID,
and the address and length of the data being sent. The sink virtual machine
receives an external interrupt from CP notifying it of the data transfer request.
The sink virtual machine can then respond via the RECEIVE subfunction. The
RECEIVE request specifies the address and the length of the SINK buffer that is
to receive the data and causes the data to be transferred from source virtual
machine storage to sink virtual machine storage. When the data transfer is com­
plete, the source virtual machine receives an external interrupt from CP, indicating
that the transaction is complete and that the sink virtual machine has received the
data.

All virtual machines authorized to use VMCF can send data using this protocol.

The amount of data transferred is limited only by virtual machine storage size.
Data is transferred in blocks of up to 2K (when necessary) and only one real page
frame is locked during the data transfer operation.

CONTROL PROGRAM

DMKVMC

VNCF
Interface

f10dule

Source Sink
Virtual Virtual
Machine Machine

SEND > >

External Interrupt >

< < RECEIVE

>Data Transfer >

<-External Interrupt-
(Final Response)

Figure 7. The SEND Protocol

88 VM/SP System Programmer's Guide

The SEND / RECV Protocol

The SEND/RECY protocol defines a transaction calling for two-way transfer of
data, as described in Figure 8 The SEND/RECY protocol uses the SEND/RECY,
RECEIYE, and REPLY subfunctions.

The source virtual machine initiates the transaction using the SEND /RECY sub­
function. Using an external interrupt, CP notifies the sink virtual machine that
there is a message waiting. The sink virtual machine uses the RECEIYE subfunc­
tion to cause the data to be transferred from the source virtual machine's storage to
the sink virtual machine storage. The sink virtual machine now uses the REPLY
subfunction to cause data to be transferred from its storage to the source virtual
machine's storage. When the REPLY sub function completes processing, CP causes
an external interrupt in the source virtual machine, notifying it that the transaction
is complete.

The SEND /RECY request requires that the source virtual machine specify the
address and length of the data to be transferred and the address where data is
expected from the REPLY subfunction. (Both addresses are in source virtual
machine storage.) These addresses, along with the length of the data to be trans­
ferred, are specified via the YMCP ARM parameter list, described below.

When RECEIYE is issued by the sink virtual machine in response to the
SEND/RECY request, YMCPARM contains the address in sink virtual machine
storage where data is to be received. Finally, when the REPLY request is issued,
YMCP ARM contains the address in the sink virtual machine storage from which
data is to be transferred.

Source
Virtual
Machine

CONTROL PROGRAM

DMKVMC

vr1CF
Interface

Module

SEND/RECV-->---------------->

Sink
Virtual
Machine

-Extern al Interrupt >

<

>Data Transfer

<------------------
<--External Interrupt

(Final Response)

Figure 8. The SEND /RECV Protocol

1 1<
Data Transfer

< RECEIVE

>

< REPLY

<

The Virtual Machine Communication Facility 89

The SENDX Protocol

The SENDX protocol defines a transaction calling for an expedited one-way trans­
fer of data. Figure 9 shows the SENDX protocol graphically. SENDX differs from
the SEND protocol in that the sink virtual machine need not issue the RECEIVE
subfunction; data is transferred from source virtual machine storage to sink virtual
machine storage at the same time the external interrupt from CP notifies the sink
virtual machine of the transaction. Data sent by the source virtual machine is
placed in the external interrupt buffer of the sink virtual machine.

Virtual machines using the SENDX protocol are responsible for specifying the
userid for the sink virtual machine, a message ID, the address and length of the
data being sent, and the external interrupt buGer address and data length for the
sink virtual machine. A virtual machine to be used as a sink virtual machine with
the SENDX protocol must specify this information via VMCPARM when that vir­
tual machine issues the AUTHORIZE subfunction. The data length specified must
be at least as long as the maximum amount of data to be transferred during a trans­
action; it need not be limited to the usual 40-byte external interrupt buffer. Effec­
tive use of the SENDX protocol requires that VMCF users agree on a maximum
size for SENDX data and then issue the AUTHORIZE sub function with the
appropriate external interrupt buffer size.

If the sink virtual machine has not provided enough SENDX buffer area in the
external interrupt buffer, CP notifies the source virtual machine that the trans­
action was not completed.

When a SENDX data transfer is complete, CP directs a response external interrupt
to the source virtual machine, notifying it that the transaction is complete.

CONTROL PROGRAM

Source
Virtual
Machine

SENDX--->--

DMKvr1C

VMCF
Interface
~lodu 1 e

>

Sink
Virtual
Machin~

------------------->Data Transfer--------------------->

<--External Interrupt
(Final Response)

Figure 9. The SENDX Protocol

External Interrupt----->
(Buffer Contains Data>

90 VM/SP System Programmer's Guide

Tile IDENTIFY Protocol

The IDENTIFY protocol defines a means for virtual machines to identify them­
selves to other virtual machines by passing user-defined control information via a
standard VMCF message header. Figure &vmcf4 shows the IDENTIFY protocol
graphically.

When the IDENTIFY subfunction is issued, CP directs an external interrupt to the
sink virtual machine. Along with the external interrupt, the sink virtual machine
receives a standard VMCF message header that contains user-defined information.
The IDENTIFY protocol does not cause a response external interrupt to be
directed to the source virtual machine.

Source
Virtual
Machine

CONTROL PROGRAM

DMKVMC

VMCF
Interface
~lodule

Sink
Virtual
Machine

IDENTIFY->----->

~External Interrupt >
(IDENTIFY Sequence Complete)

Figure 10. The IDENTIFY Protocol

Descriptions of VMCF Subfunctions

The Control Sub/unctions

There are two types of VMCF subfunctions: data transfer and control.

The VMCF control subfunctions allow efficient management of data transfer oper­
ations from your virtual machine console. The control subfunctions are:
AUTHORIZE, UNAUTHORIZE, CANCEL, QUIESCE, RESUME, IDENTIFY,
and REJECT.

AUTHORIZE: DIAGNOSE Code X'68' Subfunction Code X'OOOO'

AUTHORIZE enables VMCF for a virtual machine; once AUTHORIZE has been
executed, the virtual machine can execute other VMCF subfunctions and receive
messages and data from other authorized VMCF virtual machines. It is possible to
specify three options with the AUTHORIZE subfunction: SPECIFIC, PRIORITY,
and VMCPSMSG.

The SPECIFIC option authorizes communication with a specific virtual machine.
Any messages sent to the virtual machine from other than the specified virtual
machine will be rejected. The SPECIFIC option can be used in an application
where virtual machines desire to communicate with a master controller but not

The Virtual Machine Communication Facility 91

among themselves. Under the special message facility, CP is authorized with every
virtual machine that is to receive messages sent via the SMSG command. Virtual
machines that are to receive messages must authorize themselves.

The PRIORITY option allows a virtual machine to authorize the receipt of priority
messages. A virtual machine is allowed to send priority messages to another virtual
machine only if the other virtual machine is authorized to receive priority messages.
A priority message is one that is queued ahead of non priority messages and there­
fore accepted first.

When you execute the AUTHORIZE subfunction, you must specify the address
and length of the external interrupt buffer for your virtual machine. The buffer
must be large enough to contain a fixed message header (40 bytes). The message
header identifies messages sent by other virtual machines or responses to messages
you might send to your own virtual machine.

If you are going to accept SENDX-type communications, you must specify the size
of the external interrupt buffer as 40 plus the maximum size of SENDX data that
you plan to accept. This has the effect of authorizing SENDX protocol. That is, a
virtual machine may receive data along with the external interrupt in its external
interrupt buffer. When a virtual machine sends data to another virtual machine via
the SENDX subfunction the data must fit in that virtual machine's external inter­
rupt buffer or the subfunction is rejected. Messages sent via the special message
facility require a buffer length of 169 bytes.

Any AUTHORIZE options in effect can be reset or changed by reexecuting the
AUTHORIZE subfunction. If there are errors during execution of the AUTHOR­
IZE subfunction, a virtual machine's authorization status is not changed.

UNAUTHORIZE: DIAGNOSE Code X'68' Subfunction Code X'OOOl'

UNAUTHORIZE terminates VMCF activity for a virtual machine. The UNAU­
THORIZE subfunction causes any stacked or queued messages associated with the
virtual machine to be purged. A virtual machine should execute the QUIESCE
subfunction before executing UNAUTHORIZE if messages that are already
queued are to be handled. When a virtual machine executing UNAUTHORIZE
has pending final response external interrupts, the interrupts are purged. If a virtu­
al machine has pending SEND external interrupts from another source virtual
machine, a RESPONSE interrupt is reflected to the source indicating that the virtu­
al machine is no longer available.

CANCEL: DIAGNOSE Code X'68' Subfunction Code X'0006'

CANCEL cancels a message or data transfer pending for but not accepted by
another VMCF virtual machine. A virtual machine can CANCEL messages it orig­
inates with SEND, SENDX, or SEND/RECV subfunctions. A message cannot be
canceled if any of the following conditions exist:

• The request was SENDX or IDENTIFY and the sink had already received the
SEND external interrupt.

• The request was SEND and the sink had already executed the RECEIVE or
REJECT subfunctions.

92 VM/SP System Programmer's Guide

The request was SEND /RECV and the sink had already executed the REPLY
or REJECT subfunctions.

If the original request was SEND /RECV and the sink virtual machine had exe­
cuted the RECEIVE subfunction but not the REPLY, the REPLY can be canceled.
A virtual machine is notified of this condition with a DIAGNOSE return code. (For
a description of the return codes, see Figure lIon page 101 .)

QUIESCE: DIAGNOSE Code X'68' Subfunction Code X'0008'

QUIESCE temporarily rejects SEND, SENDX, SEND/RECV, or IDENTIFY
requests from other virtual machines. QUIESCE allows a virtual machine to
receive any stacked or queued messages but reject further SEND, SENDX, IDEN­
TIFY, or SEND/RECV requests from other virtual machines. QUIESCE can be
used to indicate to other virtual machines that the virtual machine is in QUIESCE
status, authorized for communication but not able to accept messages at this time
(e.g., entering slowdown, my buffers are full, try again later). The IDENTIFY sub­
function could be used to inform other virtual machines that a particular user is no
longer in QUIESCE status. You should execute the QUIESCE subfunction before
executing the UNAUTHORIZE subfunction to avoid losing messages (see
"UNAUTHORIZE: DIAGNOSE Code X'68' Subfunction Code X'OOOI "'.) A
virtual machine can reset the QUIESCE status (exit slowdown) by executing the
RESUME subfunction. (See "RESUME: DIAGNOSE Code X'68' Subfunction
Code X'0009"'). A virtual machine in QUIESCE status may continue to send
messages to other virtual machines. QUIESCE status for a virtual machine only
affects messages sent from other virtual machines.

RESUME: DIAGNOSE Code X'68' Subfunction Code X'0009'

RESUME cancels the QUIESCE status, allowing your virtual machine to resume
reception of VMCF requests from other virtual machines. You can use the IDEN­
TIFY subfunction to inform other virtual machines that your virtual machine is no
longer in QUIESCE status. (See "IDENTIFY: DIAGNOSE Code X'68' Subfunc­
tion Code X'OOOA"'.)

IDENTIFY: DIAGNOSE Code X'68' Subfunction Code X'OOOA'

IDENTIFY notifies another virtual machine that your virtual machine is available
for VMCF communication. Use the IDENTIFY subfunction after issuing the
AUTHORIZE subfunction or after your virtual machine has been in the VMCF
QUIESCE state and you have issued the RESUME sub function. IDENTIFY
causes an external interrupt to be stacked for a specified virtual machine. The vir­
tual machine executing the IDENTIFY subfunction specifies the userid of the user
to receive the external interrupt. The external interrupt identifies the virtual
machine executing the IDENTIFY subfunction. The IDENTIFY subfunction is
provided to inform a host or controller virtual machine that a virtual machine is
activated (logged on) and ready for VMCF communication. The IDENTIFY sub­
function can also be used to inform other virtual machines that your virtual
machine has exited QUIESCE state. There is no response external interrupt asso­
ciated with the IDENTIFY subfunction.

The IDENTIFY subfunction can also be used to pass virtual machine defined con­
trol information. The fields in the VMCF parameter list (VMCP ARM) not used
by the IDENTIFY subfunction may be used to contain additional virtual machine
data.

REJECT: DIAGNOSE Code X'68' Subfunction Code X'OOOB'

REJECT selectively rejects pending SEND or SEND/RECV requests from other
VMCF virtual machines. REJECT causes a response external interrupt to be
reflected to the originator of a message. The external interrupt indicates to the

The Virtual Machine Communication Facility 93

The Data Transfer Functions

originator that the message was rejected. The user doubleword within the external
interrupt header may tell a user why the message was rejected. When the user of a
virtual machine executes the REJECT subfunction, he specifies within the VMCF
parameter list (VMCPARM) the message ID of the message to be rejected. A vir­
tual machine cannot reject a message sent with the SENDX subfunction since the
message is received at the same time the external interrupt is received. The
REJECT subfunction can be executed as response to either SEND or
SEND /RECV requests.

The data transfer operations are SEND, SEND/RECV, SENDX, RECEIVE, and
REPLY. These operations involve the movement of data from one virtual machine
storage to another virtual machine storage.

SEND: DIAGNOSE Code X'68' Subfunction Code X'0002'

SEND directs a message or block of data to another virtual machine. Specify the
virtual address and length of data to be sent within the user parameter list
(VMCPARM). Also, specify in the parameter list a message ID to be associated
with the message and the userid of the user to receive the message (data). You can
also send a doubleword of data to be transmitted within the external interrupt mes­
sage header (refer to the section "VMCF User Doubleword"). If the SEND sub­
function is executed with a data length of zero, only the user doubleword is
transmitted to the sink virtual machine. The sink virtual machine can then respond
with a RECEIVE sub function (zero length) and pass back a doubleword of data to
the source virtual machine. The external interrupt message header identifies the
SEND request. When the sink virtual machine executes a RECEIVE subfunction,
the message is transmitted from the source virtual machine storage to the sink vir­
tual storage. There is no internal buffering of data within the control program
(CP). All data is transferred in 2K blocks from virtual storage to virtual storage.
Data is transferred in 2K blocks to test for STORE/FETCH protection violations.
When the data transfer subfunction is complete, the source virtual machine receives
a response external interrupt indicating that the SEND request is complete. The
sink virtual machine receives a DIAGNOSE X'68' return code indicating that the
RECEIVE subfunction is complete. The return code can indicate error conditions
associated with the RECEIVE function or normal completion.

The sink virtual machine has the option to reject a message rather than execute the
RECEIVE subfunction (See "REJECT: DIAGNOSE Code X'68' Subfunction
Code X'OOll "'.) The source virtual machine may cancel a SEND request before
the sink virtual machine has executed a RECEIVE subfunction or REJECT func­
tion (See "CANCEL: DIAGNOSE Code X'68' Subfunction Code X'0006"'.)

If you are executing the SEND subfunction, you may specify the PRIORITY
option. The PRIORITY option causes the external interrupt for the sink virtual
machine to be queued ahead of all other nonpriority external interrupts. If there
are other PRIORITY external interrupts pending for the sink virtual machine, the
queuing is done in a first in first out manner. That is, PRIORITY interrupts are
queued FIFO among themselves but ahead of all nonpriority interrupts.

SEND/RECV: DIAGNOSE Code X'68' Subfunction Code X'0003'

SEND /RECV provides the capability to both send and receive data in a single
VMCF transaction. The SEND/RECV subfunction causes an external interrupt to
be queued for the sink virtual machine. When the sink virtual machine receives the
external interrupt, it can respond with the RECEIVE subfunction. The RECEIVE

94 VM/SP System Programmer's Guide

/

subfunction causes data to be transferred from the source virtual storage to sink
virtual storage. The sink virtual machine can then respond with a REPLY subfunc­
tion. The REPLY subfunction causes data to be transferred from specified sink
virtual storage to a REPLY buffer in the source virtual storage. The source virtual
machine then receives a response external interrupt indicating that the
SEND /RECV request is complete.

When the source virtual machine executes the SEND /RECV function it specifies
the address and length of both the SEND buffer and REPLY buffer. The address
and length specifications are contained within the user parameter list
(VMCPARM). The user parameter list also contains a message ID and userid of
the user to receive the data (See the "VMCPARM Parameter List".)

The source virtual machine can cancel a previously executed SEND /RECV request
provided the sink virtual machine has not yet executed the REPLY or REJECT
subfunction. If the sink virtual machine has already executed the RECEIVE sub­
function, only the REPLY can be canceled (see "CANCEL: DIAGNOSE Code
X'68' Subfunction Code X'0006"').

The sink virtual machine can execute the REJECT subfunction in response to the
SEND /RECV request and cause the entire operation to be terminated (See
"REJECT: DIAGNOSE Code X'68' Subfunction Code X'OOll "'.)

The sink virtual machine can respond to a SEND /RECV request with the REPLY
subfunction without executing the RECEIVE subfunction. This has the effect of
informing the source virtual machine that the sink virtual machine cannot accept
data but that it can send data. The source virtual machine could have executed the
SEND /RECV subfunction only as a means to solicit data from the sink virtual
machine. The application of this protocol is up to VMCF users. The user
doubleword can be used as a means to control such an application (See "VMCF
User Doubleword".)

You can execute a SEND /RECV request using the PRIORITY option. The PRI­
ORITY option causes the sink external interrupt for the SEND /RECV request to
be queued ahead of any other nonpriority external interrupts. Response external
interrupts directed to the source of a PRIORITY message are also queued in priori­
tyorder.

SENDX: DIAGNOSE Code X'68' Subfunction Code X'0004'

SENDX directs data to another virtual machine via a faster but more restrictive
protocol than the SEND subfunction. SENDX subfunction data reaches the sink
virtual machine at the same time the SEND external interrupt reaches the sink. In
order to use the SENDX subfunction, the sink virtual machine must have an
external interrupt buffer large enough to contain both the standard message header
and the data. The size of the external interrupt buffer is specified when you exe­
cute the AUTHORIZE subfunction. Attempts to execute SENDX are rejected
when the sink virtual machine's external interrupt buffer is not large enough to con­
tain the data. After the sink virtual machine receives the SEND external interrupt
and data, a response external interrupt is directed to the source virtual machine.
The SENDX subfunction eliminates the need for a sink virtual machine to execute
a RECEIVE subfunction.

A SENDX request can be canceled by the source virtual machine provided the
SENDX external interrupt has not yet been reflected to the sink virtual machine
(See "CANCEL: DIAGNOSE Code X'68' Subfunction Code X'0006"'.)

The Virtual Machine Communication Facility 95

Specify the SENDX buffer address and length in the user parameter list
(VMCPARM). The message ID and userid of the sink virtual machine are also
specified in VMCPARM.

The SENDX subfunction can be executed with the PRIORITY option allowing the
SEND external interrupt to be queued ahead of all nonpriority external interrupts
for the sink virtual machine.

A SENDX request cannot be rejected by the sink virtual machine since the mes­
sage is received at the same time the external interrupt is received.

You can execute the SENDX subfunction with a zero data length causing only the
message header and user doubleword to be transmitted.

RECEIVE: DIAGNOSE Code X'68' Subfunction Code X'0005'

RECEIVE allows you to selectively accept messages or data sent via the SEND or
SEND /RECV subfunctions. You must specify in the user parameter list
(VMCP ARM) the virtual address and length of the RECEIVE buffer. The param­
eter list also contains the message ID of the message to be received and userid of
the virtual machine that originated the SEND or SEND /RECV request. When a
virtual machine has more than one message pending, the RECEIVE function can
be executed to select messages in any order by message ID.

You can execute the REJECT function in order to reject messages sent by other
virtual machines. The REJECT sub function terminates the SEND or
SEND/RECV request (see "REJECT: DIAGNOSE Code X'68' Subfunction
Code X'OOOB"'.)

You can execute the RECEIVE subfunction in response to a SEND /RECV
request and then execute a REJECT subfunction rather than a REPLY. The user
doubleword passed back with the REJECT sub function could indicate "RESEND",
for example, if the original data was not received correctly (depending on how you
want to use the protocol).

REPLY: DIAGNOSE Code X'68' Subfunction Code X'0007'

REPLY allows you to direct data back to the sender of a SEND /RECV subfunc­
tion. (This simulates full duplex communication.) The REPLY subfunction is used
with the SEND /RECV subfunction. A user who receives a SEND /RECV external
interrupt normally responds by executing the RECEIVE sub function. The
RECEIVE sub function causes data to be transferred from the source virtual stor­
age to the sink virtual storage. The sink virtual machine can then respond with the
REPLY subfunction causing data to be transferred from specified sink virtual stor­
age to the source virtual storage. The REPLY subfunction causes a response
external interrupt to be reflected to the source virtual machine.

The user parameter list (VMCP ARM) identifies the virtual buffer address and
length of reply data. When the REPLY subfunction is executed, the user parame­
ter list (VMCPARM) also contains the message ID and the userid of the virtual
machine to receive the reply.

The REPLY subfunction can be executed with a zero data length indicating no
response. You can transmit a reply (zero length or otherwise) using the user
doubleword.

96 VM/SP System Programmer's Guide

A reply can be executed in response to a SEND /RECY request without executing
the RECEIYE subfunction. This indicates that you do not want to receive the
message but may want to send a reply. A reply of zero length could be executed
simply to terminate the SEND /RECY request. The application of the REPLY
subfunction is a user decision. It must be used to terminate a SEND/RECY
request, however, unless the REJECT sub function is executed (See "REJECT:
DIAGNOSE Code X'68' Subfunction Code X'OOll "'.) The reply is complete
when the source virtual machine receives the external interrupt response.

A REPLY subfunction cannot be executed in response to a SEND request (this is a
protocol violation).

Invoking VMCF Subfunctions

YMCF sub functions are invoked by means of:

DIAGNOSE code X'68' subfunction codes
The YMCP ARM parameter list
External interrupt code X'4001'
The external interrupt message header

The Virtual Machine Communication Facility 97

Diagnose Code X'68'

All VMCF subfunctions are invoked from within assembler language programs by
means of DIAGNOSE code X'68':

<--------------- 4 bytes --------------->
83 Rx Ry CODE

where:

83 is X'83' and interpreted by the assembler as the DIAGNOSE instruc­
tion.

Rx

Ry

CODE

Note: There is no mnemonic for DIAGNOSE.

specifies a register containing the address of the VMCPARM parame­
ter list.

is a register that contains a return code.

is X'0068' and specifies that you are requesting execution of a VMCF.

The. VMCPARM Parameter List

The Rx register of DIAGNOSE X'68' contains the address of a parameter list
(VMCPARM). This parameter list is used to specify the VMCF subfunction to be
executed, along with other information required by VMCF to execute that
function. The address of VMCP ARM must be doubleword-aligned. The following
is the format of the VMCP ARM parameter list and a description of each of the
fields in that list.

o

8

10

18

20

28

where:

V*l I V*2 I VMCPFUNC

VMCPUSER

Vr1CPVADA

Vt1CPVADB

VMCPUSE

VMCPMID

VMCPLENA

VMCPLENB

V*l
(VMCPFLGl)

98 VM/SP System Programmer's Guide

is a flag byte used to specify options associated with a particular sub­
function.

This flag byte can be set to the following values:

VMCPAUTS (X'80')
Indicates, for the AUTHORIZE subfunction, an AUTHORIZE
SPECIFIC request. When this bit is set, the VMCPUSER field

must contain the userid of the sink virtual machine. The status of
the specified sink virtual machine is not checked by the control
program (CP) at this time.

VMCPPRTY (X'40')
Indicates, for SEND, SEND/RECV, SENDX, and IDENTIFY
requests, a PRIORITY message request. For an AUTHORIZE
request, it indicates an AUTHORIZE PRIORITY request. You
cannot send PRIORITY messages to another virtual machine
unless that virtual machine has been authorized for PRIORITY
messages. The SEND and RESPONSE external interrupts for a
PRIORITY message are queued ahead of pending non priority
external interrupts.

VMCPSMSG (X'20')
Indicates that the virtual machine accepts messages sent via the
SMSG command.

Bits 3 through 7 are reserved for IBM use.

V*2
(VMCPFLG2)

Reserved for IBM use.

VMCPFUNC
Contains the halfword DIAGNOSE X'68' subfunction code that
defines the VMCF subfunction being requested as follows:

Hexadecimal
Command Code Subfunction

VMCPAUTH X'OOOO' AUTHORIZE
VMCPUAUT X'OOOl' UNAUTHORIZE
VMCPSEND X'OOO2' SEND
VMCPSENR X'OOO3' SEND/RECV
VMCPSENX X'OOO4' SENDX
VMCPRECV X'OOOS' RECEIVE
VMCPCANC X'OOO6' CANCEL
VMCPREPL X'OOO7' REPLY
VMCPQUIE X'OOO8' QUIESCE
VMCPRESM X'OOO9' RESUME
VMCPIDEN X'OOOA' IDENTIFY
VMCPRJCT X'OOOB' REJECT

VMCPMID Contains a unique message identifier associated with a transaction.
The source virtual machine must originate the message ID for SEND,
SEND /RECV, and SENDX requests. The message ID is used by the
sink virtual machine (along with VMCPUSER) to respond to the
source request with a RECEIVE, REPLY, or REJECT request. The
message ID allows the sink virtual machine to selectively RECEIVE,
REPLY, or REJECT messages when more than one message is
enqueued. The message ID is used by both the source and sink as a
unique identification for all messages. You may send messages with
the same message ID to multiple users; you cannot send multiple mes­
sages with the same message ID to one user. Once a transaction is
completed, however, the message ID may be reused.

The Virtual Machine Communication Facility 99

VMCPUSER
Specifies the userid of the sink virtual machine for SEND,
SEND/RECV, SENDX, IDENTIFY, and CANCEL requests and the
userid of the source virtual machine for RECEIVE, REPLY, and
REJECT requests. The sink virtual machine uses this field in combi­
nation with the message ID (VMCPMID) to respond to source
requests. When the original source parameter list VMCP ARM is
passed to the sink as themessage header VMCMHDR, the userid is
changed from sink to source.

This field is also used to specify the SPECIFIC userid for an
AUTHORIZE SPECIFIC request.

VMCPVADA
Contains one of four addresses, depending upon which VMCF sub­
function is requested:

For SEND, SEND/RECV, and SENDX requests, VMCPVADA con­
tains the address of the source virtual machine data. For RECEIVE
requests, VMCPV ADA contains the address of a sink virtual machine
RECEIVE buffer. For REPLY requests, VMCPV ADA contains the
address in sink virtual machine storage where REPLY data is located.
For an AUTHORIZE request, VMCPV ADA specifies the address of
the virtual machine external interrupt buffer.

The length of the associated data or buffer is specified in the
VMCPLENA field.

VMCPLENA
Contains the length of the data sent by a user, the length of a
RECEIVE buffer, or the length of an external interrupt buffer, which­
ever is specified in the field VMCPV ADA. The size of the value spec­
ified in VMCPLENA is restricted only by virtual machine storage size.

The sink virtual machine can use the value in this field as the data
length for RECEIVE operations.

VMCPVADB
Contains the address of a source virtual machine's REPLY buffer for
a SEND /RECV request. When the sink virtual machine issues a
REPLY in response to a SEND /RECV from the source virtual
machine, the REPLY data is moved in this buffer. The length of the
REPLY buffer is contained in the field VMCPLENB.

VMCPLENB
Specifies the length of the source virtual machine's REPLY buffer.
The sink virtual machine uses this field to determine the maximum
length of the REPLY. A corresponding field within the response mes­
sage header contains a residual data count. The source virtual
machine uses this residual count to determine the length of the sink
reply. The original REPLY buffer length (less the residual count) is
the length of the REPLY from the sink virtual machine.

VMCPUSE Contains the VMCF user doubleword. The user double word is trans­
mitted to the sink virtual machine in the SEND message header for
SEND, SEND/RECV, SENDX, and IDENTIFY requests. For

100 VM/SP System Programmer's Guide

RECEIVE, REPLY, and REJECT requests, the user doubleword is
transmitted to the source virtual machine within the RESPONSE mes­
sage header. The sink virtual machine can transmit the user
doubleword to the source virtual machine with REJECT or REPLY
requests only if the original request was a SEND/RECV. The user
doubleword is transmitted only with requests that result in SEND or
RESPONSE external interrupts.

The following chart summarizes the VMCP ARM fields required for
execution of each of the VMCF subfunctions. Possible return codes
associated with each subfunction are also listed. A discussion of the
return codes and their meanings can be found in the section
"DIAGNOSE X'68' RETURN CODES".

The Virtual Machine Communication Facility 101

VMCF
Subfunction Applicable VMCPARM Parameters Return Codes

AUTHORIZE VMCPFLG1 - SPECIFIC/PRIORITY option 0,1,2,6,15
VMCPFUNC - X'OOOO' - subfunction code
VMCPUSER - SPECIFIC userid
VMCPV ADA - external interrupt buffer address
VMCPLENA - external interrupt buffer length

UNAUTHORIZE VMCPFUNC - X'0001' - subfunction code 0,2,4,15

SEND VMCPFLG 1 - PRIORITY option 0,1,2,4,5,8
VMCPFUNC - X'0002' - subfunction code 9,10,15,18
VMCPMID - message identifier
VMCPUSER - sink userid
VMCPV ADA - SEND data address
VMCPLENA - SEND data length
VMCPUSE - user double word

(See Note)

SEND/RECV VMCPFLG 1 - PRIORITY option 0,1,2,4,5,8,9,
VMCPFUNC - X'0003' - subfunction code 10,15,18
VMCPMID - message identifier
VMCPUSER - sink userid
VMCPV ADA - SEND data address
VMCPLENA - SEND data length
VMCPV ADB - REPL Y buffer address
VMCPLENB - REPL Y buffer length
VMCPUSE - user double word

SENDX VMCPFLG 1 - PRIORITY option 0,1,2,4,5,7,8,
VMCPFUNC - X'0004' - subfunction code 9,10,15,18
VMCPMID - message identifier
VMCPUSER - sink userid
VMCPVADA - SEND data address
VMCPLENA - SEND data length
VMCPUSE - user doubleword

(See Note)

RECEIVE VMCPFUNC - X'0005' - subfunction code 0,1,3,2,4,5,6,
VMCPMID - message identifier 12,13,15,16,17
VMCPUSER - source userid
VMCPV ADA - RECEIVE buffer address
VMCPLENA - RECEIVE buffer length
VMCPUSE - user doubleword

CANCEL VMCPFUNC - X'0006' - subfunction code 0,2,3,4,5,11,
VMCPMID - message identifier 12,14,15,20
VMCPUSER - sink userid

Figure 11 (Part 1 of 2). VMCF Subfunctions, Parameters, and Return Codes

102 VM/SP System Programmer's Guide

VMCF
Subfunction Applicable VMCPARM Parameters Return Codes

REPLY VMCPFUNC - X'OOO7' - subfunction code 0,1,2,3,4,5,6,
VMCPMID - message identifier 12,13,15,16,17,19
VMCPUSER -. source use rid
VMCPV ADA - REPL Y data address
VMCPLENA - REPLY data length
VMCPUSE - user doubleword

QUIESCE VMCPFUNC - X'0008' - subfunction code 0,2,4,15

RESUME VMCPFUNC - X'0009' - 8ubfunction code 0,2,4,15

IDENTIFY VMCPFLG 1 - PRIORITY option 0,2,4,5,9,10
VMCPFUNC - X'OOOA' - subfunction code 15,18
VMCPUSER - sink userid
VMCPUSE - user doubleword

(See Note)

REJECT VMCPFUNC - X'OOOB' - subfunction code 0,2,3,4,12,13,15
VMCPMID - message identifier
VMCPUSER - source userid
VMCPUSE - user doubleword

Figure 11 (Part 2 of 2). VMCF Subfunctions, Parameters, and Return Codes

Note: Fields within the user parameter list that are not used by a particular sub­
function may be used to contain additional user data. The data, however, can only
be passed to the sink virtual machine by the source virtual machine. The REPLY
buffer address and length fields (VMCPV ADB+ VMCPLENB) may be used to
transmit additional user data for SEND and SENDX requests. All fields except
VMCPFLG1, VMCPFLG2, VMCPFUNC, and VMCPUSER may be used to pass
control information with an IDENTIFY request.

External Interrupt Code X'4001'

External interrupt code X'4001' is a special interrupt code recognized by CP as
part of a VMCF transaction. Just as virtual machines use the DIAGNOSE instruc­
tion to communicate with CP, so too CP uses this interrupt code to communicate
with virtual machines. External interrupt code X'4001' and DIAGNOSE code
X'68' provide the mechanism VMCF uses to synchronize message processing.

The External Interrupt Message Header

Associated with external interrupt code X'4001' is a storage area referred to as the
external interrupt message header. The external interrupt message header
(VMCMHDR) contains the control information required to SEND and RECEIVE
messages. The fields within the message header are, for the most part, a copy of
VMCPARM parameter list fields.

Before the receiving virtual machine can receive special messages via VMCF, it
must

Enable itself to receive external interrupts

Set bit 31 of control register 0 to a value of 1

Authorize itself.

The Virtual Machine Communication Facility 103

It authorizes itself by issuing DIAGNOSE Code X'68', AUTHORIZE. The
parameter list, VMCPARM, specified with DIAGNOSE Code X'68' must

• Contain a pointer to an external-interrupt buffer

Specify a buffer length of 169 bytes

Have the special message flag (VMCPSMSG) turned on.

The receiving virtual machine may turn on this flag by setting VMCPSMSG to a
value of B' 1 '. Optionally, the receiving virtual machine may turn on the special
message flag by issuing the class G command, SET SMSG ON. For information on
using DIAGNOSE Code X'68', see "Description of VMCF Subfunctions" and
"Invoking VMCF Subfunctions."

CP passes the external interrupt buffer (containing the external interrupt message
header) to the user's interrupt handler for processing. The user must specify the
address and length of this buffer when he executes the AUTHORIZE subfunction.
Then, when the user sends or receives messages, CP knows the address of the
buffer and passes it to the appropriate interrupt handler routine.

Fields VMCMFUNC through VMCMUSE correspond to the fields VMCPFUNC
through VMCPUSE in the VMCP ARM parameter list transmitted by the source
virtual machine. The format of the message header and optional SENDX data
buffer is:

o

8

10

18

20

28
=

where:

V*l I V*2 I vr1cr1FUNC VMCMMID

VMCMUSER

VMCMVADA VNCMlENA

VMCMVADB vr1CNl ENB

vr1CMUSE

VMC~'BUF
Optional Message Buffer =

V*l
(VMCMSTAT)

104 VM/SP System Programmer's Guide

is a status byte associated with the message header. The bits within
the status byte are defined as follows:

VMCMRESP (X'80')
Indicates final external interrupt (transaction complete). This bit
is set for all RESPONSE external interrupts and the SEND
external interrupt resulting from an IDENTIFY request.

VMCMRJCT (X'40')
This bit is set in a RESPONSE external interrupt to indicate that
the sink virtual machine rejected the message via the REJECT
subfunction.

V*2

VMCMPRTY (X'20')
This bit is set in both SEND and RESPONSE external interrupts
to indicate a priority message. A virtual machine must be author­
ized for priority messages before it can receive them.

(VMCMEFLG)
Contains a data transfer error code indicating success or errors associ­
ated with a data transfer operation. (Refer to the section "Data Trans­
fer Error Codes".)

VMCMFUNC
Contains the subfunction code of the original request. The sink virtual
machine uses this field to determine the type of request. The possible
subfunction codes are:

VMCPSEND X'0002' - SEND
VMCPSENR X'0003' - SEND/RECV
VMCPSENX X'0004' - SENDX
VMCPIDEN X'OOOA' - IDENTIFY

VMCMMID
Contains the message ID associated with the original source request.

VMCMUSER
Contains the userid of the source virtual machine for SEND external
interrupts and the userid of the sink virtual machine for RESPONSE
external interrupts. If a SMSG command was issued, "SYSTEM"
appears in this field.

VMCMVADA
Contains the address of the original SEND data for SEND requests.
This field would normally have no meaning to the sink virtual
machine.

VMCMLENA
Indicates the length of SEND data for SEND external interrupts. It
indicates a data transfer residual count for RESPONSE external inter­
rupts.

VMCMVADB
Contains the virtual address of the REPLY buffer for SEND /RECV
requests. This field has no meaning to the sink virtual machine.

VMCMLENB

VMCMUSE

Contains the length of the source virtual machine REPLY buffer for
SEND /RECV external interrupts; contains the residual REPLY count
for RESPONSE external interrupts. The sink virtual machine uses this
field to determine the maximum length of the REPLY; the source vir­
tual machine uses this field to determine the length of the sink virtual
machine REPLY data.

Contains the user doubleword, which is transmitted to the sink virtual
machine with SEND external interrupts and to the source virtual

The Virtual Machine Communication Facility 105

VrvfCMBUF

machine with RESPONSE external interrupts. If a SMSG command
was issued, this field contains the virtual machine identifier of the
issuer of that command.

This is the optional data buffer used by the SENDX subfunction. The
data sent with the SENDX subfunction is moved into this buffer. The
buffer size is specified when a virtual machine executes the VMCF
AUTHORIZE subfunction.

VMCF User Doubleword

VMCF provides a doubleword for user data that can be transmitted within the
external interrupt message header. A user supplies the doubleword of data within
the parameter list (VMCPARM) for certain VMCF requests (that is, SEND,
SENDX, SEND/RECV, RECEIVE, REPLY, IDENTIFY, and REJECT). You
can use the user doubleword in any manner you desire. The doubleword is trans­
mitted within the external interrupt message header for both SEND and
RESPONSE type external interrupts.

The user doubleword can be used for control information in a user-defined higher
level protocol. That is, you could have your own message headers defined within
the data transmitted from one virtual machine to another. The user doubleword
could be used to control such a protocol.

The user doubleword can also be used as a security code or provide additional
information for subfunctions such as IDENTIFY and REJECT. You can specify a
zero data length for any VMCF transaction. The effect of this is that only the
external interrupt message header with user doubleword is transmitted or received.

DIAGNOSE X'68 , Return Codes

Return
Code

0

The virtual machine initiating a VMCF request receives a return code in the gener­
al register specified as "Ry" in the DIAGNOSE instruction. The return code indi­
cates successful completion of the request or error conditions associated with the
request. Figure 12 is a description of all possible return codes returned to a virtual
machine executing the DIAGNOSE X'68' subfunction.

Meaning

The normal response. Indicates successful completion of a request or successful
initiation of a request. For example, for an AUTHORIZE request, 0 indicates that
the AUTHORIZE function is complete; for a SEND request, 0 indicates that the
SEND was successfully initiated. The SEND request, of course, would not be
complete until the final RESPONSE external interrupt was received by the source
virtual machine.

Figure 12 (Part 1 of 3). DIAGNOSE Code X'68' Return Codes

106 VM/SP System Programmer's Guide

Return
Code

1

Meaning

Invalid virtual buffer address or length. A virtual machine attempted to execute a
VMCF sub function but specified an invalid address or length:

• External interrupt buffer n,ot within virtual storage.
• External interrupt buffer address not doubleword aligned.
• Message data or buffer not within virtual storage.
• External interrupt buffer less than the standard message header length.

2 Invalid sub function code. A virtual machine attempted to execute a VMCF sub­
function but specified an unsupported subfunction code.

3 Protocol violation. A virtual machine attempted to execute a sub function which
would violate the defined protocol:

• Cancel a message it did not originate.
• Reply to a message not sent via SEND /RECV.
• Executed more than one RECEIVE to a SEND or SEND /RECV request.

4 Source virtual machine not authorized. A virtual machine attempted to execute a
subfunction (other than AUTHORIZE) but was not authorized to use VMCF (had
not successfully executed the AUTHORIZE subfunction).

5 User not available. A virtual machine attempted to execute a function and speci­
fied a virtual machine currently not available for VMCF communication:

• Not logged on.
• Not authorized for VMCF communication.
• Virtual machine authorized SPECIFIC for some other virtual machine.

6 Protection violation. A virtual machine attempted to execute a VMCF function
that would result in a STORE or FETCH protection violation. The virtual
machine specified a data or buffer address that contained a storage key other than
its current PSW key (assume key was nonzero). This return code is also set if a
virtual machine attempts to receive data in a CP-owned shared segment.

7 SENDX data too large. A virtual machine attempted to execute a SENDX request
but specified a SENDX data length larger than the sink virtual machine external
interrupt buffer.

8 Duplicate message. A virtual machine attempted to execute a SEND-type function
and specified a message ID and virtual machine userid for which there was already
an active message.

9 Target virtual machine in QUIESCE status. A virtual machine attempted to exe­
cute a SEND-type function and specified a sink virtual machine userid of a virtual
machine in QUIESCE status.

10 Message limit exceeded. A virtual machine attempted to execute a SEND subfunc­
tion but already had 50 messages active. The virtual machine should clear any
pending RESPONSE external interrupts or CANCEL previously sent messages in
order to continue processing.

Figure 12 (Part 2 of 3). DIAGNOSE Code X'68' Return Codes

The Virtual Machine Communication Facility 107

Return
Code Meaning

11 REPLY canceled. The source virtual machine executed a CANCEL to a previous
SEND /RECV request. The sink virtual machine had already RECEIVED the
message but had not yet executed a REPLY. The sink virtual machine REPLY in
this case is canceled. The sink virtual machine receives return code 12 (message
not found) when it executes the REPL Y subfunction.

12 Message not found. A virtual machine attempted to execute a sub function and
specified a message ID and virtual machine userid for a message that does not
exist. The message may have existed at one time but could have been cancelled by
the originator.

13 Synchronization error. The sink virtual machine attempted to respond to a mes-
sage for which it had not yet received the SEND external interrupt. This condition
can occur if the sink virtual machine is anticipating certain messages but does not
wait for the SEND external interrupt.

14 CANCEL too late. A virtual machine attempted to CANCEL a message that had
already been processed. The sink virtual machine had already responded with
RECEIVE or REJECT (SEND request) or REPLY or REJECT (SEND/RECV
request). This return code is also set if a virtual machine attempts to CANCEL a
SENDX request for which the sink virtual machine had already received the SEND
external interrupt.

15 Paging I/O error. A virtual machine attempted to execute a subfunction which
resulted in an uncorrectable paging I/O error. This is a hardware failure.

16 Incorrect length. A virtual machine executed a RECEIVE or REPL Y function and
specified a RECEIVE buffer length less than the source virtual machine SEND
data length or a REPL Y data length larger than the source virtual machine REPL Y
buffer length. The source virtual machine receives a data transfer return code
identifying the condition.

17 Destructive overlap. A virtual machine executed a RECEIVE or REPL Y function
and specified a RECEIVE buffer address which overlapped the source virtual
machine SEND data address or a REPL Y data address that overlapped the source
virtual machine REPL Y buffer address. This condition can occur only when a vir-
tual machine is sending messages to itself (a "wrap connection").

18 User not authorized for PRIORITY messages. A virtual machine attempted to
send a PRIORITY message to a virtual machine that was not authorized to accept
PRIORITY messages (that is, had not executed the AUTHORIZE function with
the PRIORITY option).

19 Data transfer error. A virtual machine executed a request that resulted in a data
transfer error condition associated with the other virtual machine. The return code
is returned to the sink virtual machine to indicate that the transaction did not com-
plete successfully.

20 CANCEL - busy. A virtual machine attempted to cancel a message being proc-
essed. If this is a SEND /RECV request and the RECEIVE sub function is in
process, repeated retries may cancel the REPL Y subfunction.

Figure 12 (Part 3 of 3). DIAGNOSE Code X'68' Return Codes

108 VM/SP System Programmer's Guide

Data Transfer Error Codes

Error
Code

0

1

5

6

7

15

16

17

19

When a virtual machine executes a SEND, SENDX, or SEND/RECV subfunction,
the normal DIAGNOSE return code is zero, indicating that the request was suc­
cessfully initiated. However, when the actual data transfer takes place, errors can
occur. All errors occurring at data transfer time are communicated to the source
virtual machine in the RESPONSE external interrupt message header,
VMCMHDR. Figure &diag32. shows error codes indicating conditions that are
possible after the SENDX, SEND, or SEND/RECV request is initiated. The error
codes correspond to DIAGNOSE return code numbers.

Meaning

The normal response (no errors).

Invalid buffer address or length. The SEND and/or RECEIVE buffers used for a
data transfer operation are not within the virtual machine's virtual storage. The
beginning and ending addresses were valid when a request was initiated but all
addresses are not valid.

User not available. The sink virtual machine executed the UNAUTHORIZE func-
tion, reexecuted the AUTHORIZE SPECIFIC subfunction, or implicitly reset his
virtual machine after the source virtual machine request was initiated.

Protection violation. The storage key for a virtual machine's SEND or RECEIVE
buffer did not match its PSW key at the time the transfer was initiated. (Assume
the key was nonzero.) This error code is also set if a virtual machine attempts to
RECEIVE data into a CP-owned shared segment.

SENDX data is too large. The sink virtual machine reexecuted AUTHORIZE and
specified an external interrupt buffer size less than the buffer size at the time a
SENDX subfunction was executed. The SENDX data no longer fits in the sink
virtual machine buffer.

Paging I/O error. An uncorrectable paging I/O error occurred during the data
transfer operation attempting to fetch a virtual machine SEND or RECEIVE buff-
er. This is a hardware failure.

Incorrect length. The sink virtual machine executed a RECEIVE subfunction with
a data length (VMCPLENA) smaller than the original SEND data length or a
REPL Y subfunction with a REPL Y data length larger than the source virtual
machine REPL Y buffer length.

Destructive overlap. A virtual machine was communicating with itself in a "wrap
connection" and his SEND or RECEIVE buffers overlapped one another
(intra-virtual machine communication).

Data transfer error. A data transfer error occurred which was associated with the
other virtual machine. The transaction did not complete successfully.

Figure 13. DIAGNOSE Code X'68' Data Transfer Error Codes

The Virtual Machine Communication Facility 109

Inter-User Communications Vehicle

IUCV Paths

The Inter-User Communications Vehicle (IUCV) is a communications facility that
allows users to pass any amount of information. IUCV enables a program running
in a virtual machine to communicate with other virtual machines, with a CP system
service, and with itself.

An IUCV communication takes place between a source communicator and a target
communicator. The communication takes place over a predefined linkage called a
path. Each communicator can have multiple paths, and each communicator can
receive or send multiple messages on the same path simultaneously.

IUCV provides functions, through the IUCV macro instruction, to:

Create and dismantle paths
Send and reply to messages
Determine if messages are pending and describe a pending message
Selectively receive or reject messages.

Each message is represented to CP by a control block called a MSGBLOK. This
MSGBLOK is moved among different queues at different stages in a communi­
cation. Communicators can receive information about pending messages either by
interrogating the queues of MSGBLOKs or by receiving an external interruption
for each message.

The IUCV directory control statement authorizes the establishment of a path
between one virtual machine and another, or between a virtual machine and a CP
system service. The number of possible paths for a communicator is limited to
65,535 (via the MAXCONN keyword of the OPTION directory statyment). If a
maximum number of paths is not specified in the directory, a communicator can
establisll, a maximum of four paths. For CP system services, the maximum possible
paths is 4096.

Once authorized, users establish a path when the source communicator invokes the
CONNECT function and the target communicator invokes the ACCEPT function.
Either communicator can terminate an established path via the SEVER function.
The target communicator can also prevent the establishment of a path by invoking
the SEVER function. In addition, communication over a path can be temporarily
suspended when a communicator invokes the QUIESCE function; the quiesced
path can be reactivated when a communicator invokes RESUME.

A single communicator can have multiple paths defined, and two virtual machines
may have multiple paths between them. The communicator could be a source
communicator on some of its defined paths, a target communicator on other paths,
and both a source and a target communicator on still other paths. Communication
over any and all paths can occur simultaneously.

Every path has two ends: the source communicator's end and the target commu­
nicator's end. Each end of a path is described by a path description. There are two
path descriptions for each defined path. The source communicator has a
description of the path from the source's perspective and the target communicator
has a description of the same path from the target's perspective.

110 VM/SP System Programmer's Guide

IUCV Messages

Message Queues

Each of the two path descriptions for a path has a path identification that is unique
for each communicator. Path identifications are assigned by IUCV when commu­
nicators invoke the CONNECT and ACCEPT functions. When invoking IUCV
functions, the source communicator identifies the path by using the source's path
identification. The target communicator identifies the same path to IUCV by using
the target's path identification. The only relationship that exists between a path's
identifications is that the two identifiers are names for the two descriptions of the
same path.

IUCV groups path descriptions for all the paths defined for a communicator into a
single construct called a Communication Control Table.

An IUCV communication is called a message. Communication is initiated and a
message created when the source communicator invokes the SEND function. The
target communicator acknowledges and accepts the message by invoking the
RECEIVE function.

The target communicator can optionally request information about messages sent
to it by invoking the DESCRIBE function, and can refuse a message sent to it by
invoking the REJECT function. The target communicator can respond to a mes­
sage via the REPLY function.

Communication is terminated and the message is destroyed when the source com­
municator issues the TEST COMPLETIQN function or handles an IUCV message
complete external interrupt.

An IUCV message is represented within CP by a control block called a
MSGBLOK. IUCV creates a MSGBLOK when a communication is initiated and
destroys the MSGBLOK when a communication is terminated.

During its lifetime, an IUCV message (~GBLOK) moves among three IUCV
queues. The IUCV queues are:

• Send queue - contains information about messages sent to a target communica­
tor that the target communicator has not yet received.

Receive queue - contains information about messages received by a target
communicator that the target communicator has not yet replied to.

Reply queue - contains information about messages replied to by a target
communicator that the source communicator has not yet terminated.

IUCV moves the messages among the queues when a user issues the SEND,
RECEIVE, REPLY, or TEST COMPLETION function. When a source commu­
nicator issues the SEND function, IUCV creates a message (MSGBLOK) and
moves it to the target communicator's SEND queue. When the target invokes the
RECEIVE function, the message is moved to the target's own RECEIVE queue.
IUCV moves the message to the source communicator's REPLY queue when the
target communicator invokes the REPLY function. When the source communica­
tor issues the TEST COMPLETION function, IUCV removes the message from
the REPLY queue, destroys the message, and completes the communication.

Inter-User Communications Vehicle 111

Source
Communicator

1) SEND moves a
message to the-

Figure 14 illustrates the movement of messages between the IUCV queues:

s
o P
U A I
R T D
C H
E

PATH

T
A
R
G
E
T

P
A I
T D
H

Target
Communicator

-> SEND QUEUE

I
2) RECEIVE moves a

message to the

I
RECEIVE QUEUE

REPLY QUEUE<- ------------------------ -3) REPLY moves a

I
4) TEST COMPLETION

terminates the
communication

Figure 14. IUCV Queues

Message Data Transfer

message to the

While a message (MSGBLOK) moves among the IUCV queues, IUCV moves the
actual data associated with the message only twice during a complete communi­
cation. IUCV moves data when the target communicator issues the RECEIVE and
REPLY functions.

IUCV moves data among four data areas during a complete communication. When
the target communicator issues the RECEIVE function, IUCV moves the message
data from the source communicator's SEND area to the target communicator's
RECEIVE area. When the target communicator issues the REPLY function,
IUCV moves data from the target communicator's REPLY area to the source
communicator's ANSWER area.

Figure 15 illustrates the movement of message data during an IUCV communi­
cation.

SOURCE COMMUNICATOR
VIRTUAL MACHINE

RECEIVE
SEND -+----------------->
AREA

REPLY
<----------------+-

ANSWER
AREA

Figure 15. IUCV Data Transfer

TARGET COMMUNICATOR
VIRTUAL MACHINE

REPLY
AREA

RECEIVE
AREA

The MSGBLOK representing the message contains the addresses and lengths of
the source communicator's SEND and ANSWER areas. These locations may over­
lap.

112 VM/SP System Programmer's Guide

Message Identification

CP performs storage protection checking for all data moved during an lUCY com­
munication. IUCV stores the source communicator's PSW key in the MSGBLOK.
When the target communicator executes a RECEIVE or REPLY function, lUCY
uses the PSW key for protection checking in the source virtual machine.

lUCY uses the target communicator's PSW key at the time of the RECEIVE or
REPLY to check data accesses in the target virtual machine.

A message is fully identified to a virtual machine by values that are recorded in the
MSGBLOK.

Message identification - a single fullword value that identifies a message.
lUCY assigns a message id when the source communicator invokes the SEND
function. The message identification is generated by a sequential counter value
and is unique for the system IPL.

Message class - identifies the source message class and target message class.
The message classes are arbitrary fullword values that the source communica­
tor specifies when invoking the SEND function. The meaning of the message
classes is agreed to in advance by the two communicators. lUCY places no
restrictions on the values specified for message class. The communicators can
use the message class to selectively dequeue messages.

Path description and the target path description. lUCY assigns these path ids
when a path is established via the CONNECT and ACCEPT functions.

There is no defined relationship between the values of the source and target path
ids lUCY assigns, or between the message classes the source and the target com­
municators use. None of these values need be the same although they refer to the
same message. Only the message identification has the same value for both target
and source communicators.

Thus, when invoking lUCY functions, the source communicator refers to a mes­
sage by a combination of its source path id, source message class, and message id.
The target communicator refers to the same message by a combination of its target
path id, target message class, and message id. When the target communicator
issues the DESCRIBE function, lUCY provides the target's identifiers.

In addition, lUCY provides another message identifier for the source communica­
tor. When invoking the SEND function, the source communicator may specify a
message tag. lUCY does not assign a value or meaning to the tag; its use is deter­
mined solely by the source communicator. For example, the source communicator
can use the message tag to tie a completed message to the original SEND request.
lUCY presents the tag to the source communicator when the message completes.

Finally, a message can be identified as a priority message when the source commu­
nicator invokes the SEND function. lUCY enqueues a priority message ahead of
any nonpriority messages on the target communicator's SEND queue and behind
any earlier priority messages. The installation must authorize a path to handle pri­
ority messages in the lUCY directory control statement.

Inter-User Communications Vehicle 113

Pending IUCV Communications

IV CV External Interrupts

A communicator can receive notification of pending IUCV messages in two ways:
by receiving external interruptions or by interrogating the SEND and REPLY
queues.

To enable IUCV external interruptions, communicators must:

Invoke the DECLARE BUFFER function to indicate to IUCV where to store
data associated with an external interruption.

Set to one Bit 7 in the virtual machine's PSW; set to one submask bit 30 of
control register O.

In addition, communicators can invoke the SET MASK function to selectively ena­
ble the virtual machine to receive external interruptions for IUCV messages,
replies, and functions.

IUCV functions generate a type X'4000' external interruption. When a virtual
machine in EC mode receives an IUCV external interruption, IUCV places the
interruption code in locations X'86' and X'87' of the virtual machine's storage. For
a virtual machine in BC mode, IUCV places the code in the external old PSW. In
addition, IUCV stores an external interrupt buffer containing information about
the message or IUCV function at the address specified when the communicator
invoked the DECLARE BUFFER function. One field of this buffer is an external
interrupt subtype that indicates why the external interrupt OCCUlTed. The possible
values of this field are:

01 - Connection pending
02 - Connection complete
03 - Path severed
04 - Path quiesced
05 - Path resumed
06 - Incoming priority reply
07 - Incoming nonpriority reply
08 - Incoming priority message

• 09 - Incoming nonpriority message

See "IUCV External Interrupt Buffers" for the formats of the buffers.

A virtual machine can use the SET MASK function to selectively enable or disable
external interrupts for IUCV communications. The SET MASK function has mask
bits that enable or disable external interruptions for:

Priority messages
• Nonpriority messages

Priority replies
Nonpriority replies
IUCV control functions

To further divide and handle the control type interrupts, the SET CONTROL
MASK function may be used on the IUCV macro. The types of control interrupt~
may be separately enabled and disabled. These control type interrupts are:

114 VM/SP System Programmer's Guide

Interrogating IUCV Queues

• Connection pending
• Connection complete

Path severed
• Path quiesced
• Path resumed

The SET MASK function is interrogated before the SET CONTROL MASK func­
tion. If you specify that all control interrupts are disabled using the SET MASK
function, then the SET CONTROL MASK settings are not interrogated. If you
specify that all control interrupts are enabled using the SET MASK function, then
the SET CONTROL MASK settings will be interrogated to determine how to han­
dle the individual types of control interrupts.

After IUCV initialization and until you issue the SET MASK or SET CONTROL
MASK functions, all IUCV sub mask bits are on, enabling all IUCV external inter­
rupts.

A virtual machine can only be notified of pending CONNECT, ACCEPT, SEVER,
QUIESCE, and RESUME functions by receiving an external interruption. Howev­
er, a virtual machine can field incoming messages or replies either by being enabled
for external interruptions, or by interrogating the SEND queue (via the DESCRIBE
function) or the REPLY queue (via the TEST COMPLETION function).

IUCV also provides the TEST MESSAGE function to determine the presence of
any messages on a communicator's SEND queue or REPLY queue. If no messages
are present, the virtual machine goes into a wait state until a message comes in.

For example, if a source communicator sends a priority message, IUCV queues an
external interruption (subtype 08) for the target communicator. If the target virtu­
al machine is both enabled for external interruptions (bit 7 in the virtual PSW and
submask bit 30 in control register zero are set to one), and enabled for priority
messages (via the SET MASK function), then the target virtual machine receives
an external interruption. If the target virtual machine is not enabled for external
interruptions or is not enabled for priority messages, the message remains queued
on the target's SEND queue. If the target virtual machine is not enabled for
external interrupts or priority messages, it can issue the DESCRIBE function to
obtain information about the message, and the pending external interrupt for that
message is cleared. The target virtual machine can store the information and can
later RECEIVE or REJECT the message.

Note: If a communicator is enabled for external interruptions and issues the
DESCRIBE or TEST COMPLETION function, results are unpredictable. It can
not be determined whether information about a particular message is received via
external interruption or by the completion of DESCRIBE or TEST COM­
PLETION. However, IUCV supplies information about a message only once.

When a communicator has completed all communications, the virtual machine may
invoke the RETRIEVE BUFFER to

Cause IUCV to stop using the external interruption buffer created by the
DECLARE BUFFER function

Prevent further IUCV communication.

Inter-User Communications Vehicle 115

CP Communications

Note: IUCV external interruptions are not reflected to CP system code. See the
section, "CP Communications" for details.

IUCV communications with CP system services treat CP as a single virtual
machine. For this reason, a distributing mechanism in IUCV (the communication
processor) gathers initial information about a message and routes it to the proper
module in CP for processing.

Thus, IUCV provides:

Routing of connections from virtual machines to CP system services

Routing of messages received via IUCV to CP system services

Routing of REPLY s received via IUCV to the CP system service that issued
the SEND

Severing of virtual machines from system services

External interrupts are not reflected to CP system code. For communications to
CP services, external interrupts are replaced with one of two possible linkages
depending on whether the function was initiated outside CP or whether it was initi­
ated from within CPo For data targeted for a CP service that was initiated in a vir­
tual machine, there is a table of entry points which tell IUCV where to pass
control. For replies targeted for a CP system service, virtual machines use a con­
trol block called an IXBLOK. The structure and use of an IXBLOK is similar to a
CPEXBLOK.

Each CP system service that interfaces with virtual machines is uniquely defined to
the IUCV communication processor. For each CP service defined to use IUCV
communications, there are five entry points that can gain control from IUCV:

One to get control for incoming connections

• One to get control for incoming messages

• One to get control when a connection to the particular service is severed

• One to get control when a QUIESCE is issued for a path

One to get control when a RESUME is issued for a path

When anyone of these entry points is given control, Register 1 points to a buffer.
This buffer contains the same information in the same format as an IUCV external
interrupt buffer used in virtual machine to virtual machine communications.

The CP system services that lUCY supports at this time are Console Communi­
cations Services, the Message System Service, and the DASD Block I/O System
Service. To establish communications with the Console Communications Services
facility, specify *CCS when invoking the CONNECT function of IUCV. To estab­
lish communications with the Message System Service, specify *MSG when invok-
ing the CONNECT function. To establish communications with the DASD Block / .
I/O System Service, specify *BLOCKIO when invoking the CONNECT function
of IUCV. The name of a CP system service id must begin with an asterisk (*).

116 VM/SP System Programmer's Guide

Second Level Support

Trace Table Entries

An SCP that supports lUCY communications functions correctly in a virtual
machine generated by a CP system that supports lUCY.

The lUCY macro instruction generates an operation exception in the real
hardware.

When a virtual machine invokes an lUCY function, it must be in a virtual supervi­
sor state.

A virtual machine must invoke the DECLARE BUFFER function before other
lUCY functions except the QUERY function. Failure to do so causes an operation
exception to be reflected to the virtual machine.

Thus, an SCP can support lUCY in a virtual machine exactly as it does on real
hardware.

CP system code invokes lUCY functions through a CALL linkage rather than the
lUCY macro instruction.

lUCY support generates a trace table entry for each lUCY function. There is one
trace table entry type for lUCY entries (X'lS'). Each entry contains a subtype
field to indicate the exact lUCY function a communicator invoked.

Whether invoked from a virtual machine or from CP system code, all uses of lUCY
are recorded in the CP trace table. The address portion of the old PSW is recorded
as part of the entry. A bit in the flags byte indicates whether this address is a real
address (when invoked from CP) or a virtual address (when invoked from a virtual
machine). For virtual machine addresses, the address of the associated VMBLOK
can be obtained from preceding trace table entries.

The lUCY trace facilities can be suppressed at assembly time by setting
&TRACE(9) to 0 or at execution time by setting the X'80' bit to 0 in TRACFLG3
in PSA.

lUCY functions invoked by other functions are also recorded as if they had been
invoked from CPo These secondary functions include:

The RETRIEVE BUFFER function generates a SEVER for all established
paths.

The SEVER function generates a REJECT for each incoming outstanding
message and a PURGE for each outgoing outstanding message.

A CONNECT issued to a CP system service passes control to that service.
The selected CP system service usually invokes the ACCEPT function.

The CP dispatcher invokes the DESCRIBE and TEST COMPLETION func­
tions to dequeue messages intended for the CP system.

Inter-User Communications Vehicle 117

Audit Trail

Restrictipns

Security Considerations

IUCV maintains an audit trail for each message. The audit trail is a bit significant
value that records the status of the message. The value is maintained in the
MSGBLOK that represents the message. The audit trail is presented to the source
communicator during execution of the PURGE and TEST COMPLETION func­
tions and when the source receives a message-complete IUCV external interrupt.

The audit trail for a message indicates:

If the message caused a protection or addressing exception on the source com­
municator's send or answer buffer

If the message caused a protection or addressing exception on the target's
receive or reply buffer

If a reply was too long for the source's reply buffer

If a message was rejected by the target

If a path was severed

The following areas of IUCV are limited:

The use of IUCV is supported for a second level CP system. The IUCV func­
tions are not simulated, but are reflected to the second level system.

Each virtual machine is limited to less than 65,536 outstanding connections at
one time.

lUCY does not recognize anything smaller than a virtual machine. If two
communicators choose to establish mUltiple communication paths, it is the
responsibility of these communicators to manage these paths.

A CP system service cannot establish communication with itself.

CP system services are limited to a total of 4,096 outstanding connections.

Installations control the use of IUCV through the virtual machine directory entries.
If the installation has not authorized a user for IUCV communications in the direc­
tory, all requests for IUCV communications to virtual machines other than his own
are denied. The installation must specifically authorize each virtual machine which
is to communicate with a CP system service.

IUCV moves data from one virtual machine address space to another. At no time
does a virtual machine have access to the storage or registers of CP or another vir­
tual machine. When the user invokes the RECEIVE or REPLY functions, the data
to be moved is described by a starting address and a length. The exact length spec­
ified is the maximum amount of data moved. There are no requirements placed on
a virtual machine as to the location of these buffers.

118 VM/SP System Programmer's Guide

Performance ConsideratiollS

Using IUCV Functions

IUCV assigns path ids and records the path id in each communicator's communi­
cation control table (CCT). IUCV sets up one CCT for each virtual machine and
one for the CP system. A given communicator can reference only the paths
recorded in its own CCT. Other references are not possible.

IUCV assigns the message id for each message. Although this message identifier
may be reused, at any given time, it identifies only one message. IUCV does not
use this identifier as a direct reference, but only as an operand in a comparison. It
is conceivable that a virtual machine could generate a valid message identifier and
use this to request a message. However, when a message id is used to request a
message, a user must also specify a message class and a path id. If the specified
message is not associated with the specified path id, and message class, the user
cannot access the messages. If the message id, path id, and message class do
match, the user could legitimately access it by specifying simply path id and/or
message class without the generated message id.

The installation can limit the number of connections for a particular virtual
machine in the virtual machine directory.

The overhead involved in reflecting IUCV external interrupts to the virtual
machine can be reduced if the buffer declared on the DECLARE BUFFER func­
tion is entirely within one page. Overhead can be reduced further if the buffer is
entirely within page 0 of the virtual machine.

Modules DMKIUA and DMKIUE can be made resident to improve the perform­
ance of IUCV.

Communicators invoke all IUCV functions through the IUCV macro instruction.
When using the IUCV macro instruction, communicators specify which function
they wish to perform. Most functions also require the address of a parameter list to
contain inputs to and outputs from the requested function. Communicators can
store inputs directly in the parameter list or they can specify inputs with keyword
parameters. IUCV moves the values specified on the keyword parameters into the
specified parameter list. For details on how to use the IUCV macro, see the sec­
tion "Invoking IUCV Functions".

The following list describes the IUCV functions in the order that they might be
used in a typical communication.

QUERY - Use the QUERY function to determine how large a buffer IUCV
requires to store external interrupt information. IUCV returns the number of
bytes required in general register zero. In addition, use the QUERY function
to determine the maximum number of communication paths that can be estab­
lished for your virtual machine. IUCV returns the maximum number of paths
in general register one. The QUERY function does not use a parameter list.
CP system code cannot use the QUERY function.

DECLARE BUFFER - Use the DECLARE BUFFER function to specify the
address of a buffer into which IUCV can store external interrupt information.
If a virtual machine receives an IUCV external interruption, IUCV stores in

Inter-User Communications Vehicle 119

this buffer information about the message, reply, or control function that
caused the the interruption. Each virtual machine must declare a buffer prior
to establishing any connections.

Note: When a communicator invokes the DECLARE BUFFER function,
IUCV automatically enables the virtual machine for all five types of IUCV
external interrupts. Use the SET MASK function to change these initial set­
tings. CP system code does not declare a buffer.

• CONNECT - Use the CONNECT function to request the establishment of a
communications path with another communicator. When a source communica­
tor invokes the CONNECT function, IUCV establishes a pending connection.
The path is not complete until the target communicator invokes the ACCEPT
function.

120 VM/SP System Programmer's Guide

ACCEPT - Use the ACCEPT function to respond to a pending connection.
When a target communicator invokes the CONNECT function, IUCV com­
pletes the connection and enables the path for use. A target communicator can
refuse a pending connection by invoking the SEVER function.

SEND - Use the SEND function to initiate a communication with another vir­
tual machine or CP system service. When a source communicator invokes the
SEND function, IUCV creates a MSGBLOK for the message and enqueues it
on the target communicator's SEND queue. The message text is not transmit­
ted to the target virtual machine until the target communicator invokes the
RECEIVE function. If the installation has authorized the path for priority
messages, you may indicate that the message is a priority message. IUCV
queues priority messages ahead of nonpriority messages on the target commu­
nicator's SEND queue (and after any priority messages that have not yet been
received). In addition, you may specify that a message is a one-way communi­
cation. When the target communicator receives a one-way communication, he
cannot send a reply.

DESCRIBE - Use the DESCRIBE function to determine the presence of any
messages on the SEND queue that have not been previously described or
reflected in a message-pending IUCV external interruption. If a previously
undescribed and unreflected MSGBLOK is on the SEND queue, IUCV returns
pertinent information about the MSGBLOK in the parameter list. The
MSGBLOK description stored by IUCV consists of the path id, the target mes­
sage class, the message id, the message flags, the length of the message, and
the length of the source's answer area. This information allows the target
communicator to receive the message using the RECEIVE function. IUCV
describes a particular message once. It is the responsibility of the target com­
municator to remove described messages from the SEND queue. Messages can
be removed by invoking the RECEIVE or REJECT function. The DESCRIBE
function clears the pending-message external interruption for the described
message. CP system code (outside of IUCV support) cannot use the
DESCRIBE function.

RECEIVE - Use the RECEIVE function to accept messages sent via the
SEND function. When a target virtual machine issues the RECEIVE function,
IUCV moves the actual message data from the source virtual machine's send
area to the target virtual machine's receive area. If the complete message has
been moved from the send area to the specified receive area, IUCV moves the
MSGBLOK for the specified message from the SEND queue to the RECEIVE
queue. If the receive area cannot completely contain the message, the

MSGBLOK remains on the SEND queue and the length of the remaining data
is stored in the parameter list. The target virtual machine can obtain the
remainder of the message with a subsequent RECEIVE. The RECEIVE func­
tion completes a one-way communication. When invoking the RECEIVE
function, you can identify the message you wish to receive. Identify the mes­
sage completely by specifying the message id, path id, and target message class.
If you do not specify the message id, you can identify the message by path id,
target message class, or both. If you do not specify any identifiers when invok­
ing the RECEIVE function, you receive the first message that has not been
partially received. Note that if a message has been partially received, you must
identify the message completely to receive the remainder.

REPLY - Use the REPLY function to respond to a message sent by a source
communicator. When a target virtual machine invokes the REPLY function,
IUCV moves the MSGBLOK for the specified message from the target com­
municator's RECEIVE queue to the source communicator's REPLY queue.
Data in the target's reply area is moved to the source communicator's answer
area. The target communicator can specify that a reply is a priority reply.
IUCV queues a priority reply ahead of any nonpriority replies and after any
earlier priority replies. When invoking the REPLY function, you must identify
completely the message to which you wish to reply. Identify the message com­
pletely by specifying the message id, path id, and target message class.

TEST COMPLETION - Use the TEST COMPLETION function to determine
if any messages have been completed. When a source virtual machine invokes
the TEST COMPLETION function, IUCV removes the MSGBLOK represent­
ing the specified message from the REPLY queue and destroys that
MSGBLOK. When invoking the TEST COMPLETION function, you may
identify which message you wish to complete. You can identify the message
completely by message id, path id, and source message class. If you do not
specify the message id, you can identify the message by path id, source mes­
sage class, or both. If you do not specify any identifiers when invoking the
TEST COMPLETION function, IUCV completes the first message on the
REPLY queue. CP system code (outside of IUCV support) cannot use the
TEST COMPLETION function.

TEST MESSAGE - Use the TEST MESSAGE function to determine whether
any messages or replies are pending on a communicator's SEND queue or
REPLY queue. When a virtual machine invokes the TEST MESSAGE func­
tion, the virtual machine enters a wait state if neither messages nor replies are
pending. If an IUCV message or reply becomes pending while the virtual
machine is in the wait state, the virtual machine begins execution by
re-executing the TEST MESSAGE function (which returns a condition code).
By using the TEST MESSAGE function, a virtual machine avoids the necessity
of external interrupt handling.

REJECT - Use the REJECT function to refuse a specified message sent by a
source communicator. After invoking the DESCRIBE or RECEIVE function,
a target communicator can choose not to process a message. The REJECT
function moves the MSGBLOK representing the specified message from the
target's SEND queue or RECEIVE queue to the source communicator's
REPLY queue. IUCV updates the message's audit trail to indicate that the
message has been rejected. No message data is moved when the REJECT
function is invoked. When invoking the REJECT function, you must identify
which message you wish to reject. You can identify the message completely by

Inter-User Communications Vehicle 121

specifying the message id, path id, and target message class. If you do not
specify the message id, you must identify the message by path id, target mes­
sage class, or both.

• PURGE - Use the PURGE function to terminate a specified message sent to a
target virtual machine. If the source virtual machine purges a message before
the target has described or received it, the target is never aware that the mes­
sage was sent. If the message is already on the source's REPLY queue, IUCV
terminates the message immediately. If the message has been described to the
target, IUCV notifies the target that the message has been purged. IUCV indi­
cates that the message has been purged when the target issues the RECEIVE
or REPLY function for the message. IUCV then destroys the message. When
invoking the PURGE function, you must identify which message you wish to
purge. You can specify only a path identifier, or a path id, message identifier,
and message class. If you do not specify a message identifier, the message
class is optional.

122 VM/SP System Programmer's Guide

SET CONTROL MASK - Use the SET CONTROL MASK function to enable
or disable external interrupts for the IUCV control functions: connection
pending, connection complete, path severed, path quiesced, and path resumed.
A virtual machine must first be enabled for external interruptions by setting
both bit 7 in the virtual PSW and submask bit 30 in control register zero to
one. The SET MASK IUCV control bit must also be set on or the SET CON­
TRoL MASK settings are ignored. The SET CONTROL MASK function
cannot be used from CP system code.

SET MASK - Use the SET MASK function to enable or disable IUCV external
interruptions for priority messages, nonpriority messages, priority replies, non­
priority replies, and IUCV control functions. A virtual machine must also be
enabled for external interruptions by setting both bit 7 in the virtual PSW and
submask bit 30 in control register zero to one. The SET MASK function can­
not be used from CP system code.

QUIESCE - Use the QUIESCE function to temporarily suspend incoming mes­
sages on an IUCV path. A communicator may reactivate a path by invoking
the RESUME function or may leave the path quiesced, making it a one-way
path.

RESUME - Use the RESUME function to restore communications over a pre­
viously quiesced path.

SEVER - Use the SEVER function to reject a pending connection or to termi­
nate a completed IUCV path. If the path is complete, both communicators
must issue the SEVER function for the path to be terminated. After one com­
municator invokes the SEVER function, all messages outstanding on the path
are terminated and IUCV notifies the communicating partner (via a SEVER
external interruption). The communicating partner then can dequeue and
process the terminated messages if it chooses. The communicating partner
invokes the SEVER function when it finishes processing messages on the path.
If the path is a pending connection, either communicator may invoke the SEV­
ER function. If the originator of the connection invokes SEVER and the tar­
get has received the pending-connection external interruption, the target must
also invoke the SEVER function. If the target invokes SEVER first, the origi­
nator must do so as well.

RETRIEVE BUFFER - Use the RETRIEVE BUFFER function to terminate
all outstanding messages and communications paths, and to end IUCV com­
munications. CP system code (outside IUCV support) cannot use the
RETRIEVE BUFFER function.

Virtual Machine to Virtual Machine Communication

Figure 16 illustrates the sequence of functions invoked when a virtual machine
communicates with another virtual machine. The functions include initialization,
connection to another virtual machine, sending and receiving messages, replying to
and waiting for messages, severing communications with the other virtual machine,
and termination.

Virtual Machine X Communicating to Virtual Machine Y

(VIRTUAL MACHINE X)

1 DECLARE BUFFER
2 CONNECT to Y

5 Get External Interrupt
6 SEND to Y

8 TEST COMPLETION

11 Get External Interrupt
fori

TEST COMPLETION
12 SEVER

15 RETRIEVE BUFFER

Figure 16. Sequence of Functions

(VIRTUAL MACHINE Y)

1 DECLARE BUFFER

3 Get External Interrupt
4 ACCEPT

7 Get External Interrupt
fori

DESCRIBE

9 RECEIVE
10 REPLY

13 Get External Interrupt
14 SEVER
15 RETRIEVE BUFFER

1. Virtual machine X wishes to communicate with virtual machine Y. Both virtual
machines must independently invoke the DECLARE BUFFER function. The
buffer is used to provide the virtual machine with information about incoming
external interrupts concerning IUCV functions.

2. Virtual machine X invokes the CONNECT function, indicating Y as the target.
IUCV checks the directory to determine if this connection is authorized. If it
is, IUCV queues an external interrupt for Y indicating that there is a pending
connection for it. IUCV returns control to X at the next instruction after the
CONNECT; a return code indicates that a partial connection has been estab­
lished.

Inter-User Communications Vehicle 123

3. The external interrupt queued by step 2 is reflected to Y indicating a pending
connection. IUCV places the external interrupt information in the buffer that
Y provided in step 1. IUCV passes control to the external interrupt handler of
Y.

4. Virtual machine Y interprets the external interrupt and responds with an
ACCEPT to complete the connection. IUCV then completes the connection
and queues a connection-complete external interrupt for X. IUCV returns
control to Y at the next instruction after the ACCEPT; a return code indicates
that the connection is complete.

5. The external interrupt queued by step 4 is reflected to X, indicating that the
connection is complete and the communication path is available for use. IUCV
places the external interrupt information in the buffer that X provided in step
1.

6. Virtual machine X issues a SEND. The SEND function queues an external
interrupt for Y indicating that there is a message pending. Control returns in X
at the next instruction after the SEND; areturn code indicates that the m~s-, '
sage has been sent.

7. If virtual machine Y is enabled for external interrupts and for IUCV messages
(via SET MASK), the external interrupt queued by step 6 is reflected to Y,
indicating that a message is pending. IUCV places external interrupt informa­
tion in the buffer specified in step 1. IUCV passes control to the external
interrupt handler of Y. If virtual machine Y is disabled for external interrupts
or IUCV messages and invokes the DESCRIBE function, IUCV places the
information identifying the message in the DESCRIBE parameter list and the
pending-message external interrupt for this message is cleared. IUCV passes
control to the next instruction after the DESCRIBE.

8. While virtual machine Y is processing the message, virtual machine X can
decide to check if the communication has been completed by issuing the TEST
COMPLETION function. The condition code indicates that (in this example)
the communication is not complete.

9. With the message description from step 7, virtual machine Y starts to process
the message and issues a RECEIVE. The parameter list associated with
RECEIVE specifies where the message data is stored in virtual machine Y.

10. When processing the message is complete, virtual machine Y responds to X by
invoking the REPL Y function. The REPLY function queues an external inter­
rupt for X indicating that there is a reply pending. Control returns to Y at the
next instruction after the REPLY; a return code indicates that the reply has
been transferred.

11. If virtual machine X is both enabled for external interrupts and enabled for
IUCV replies, the external interrupt queued by step 10 is reflected to X, indi­
cating a reply pending. To identify the reply, the external interrupt information
is placed in the buffer specified in step 1. IUCV passes control to the external
interrupt handler of X. If virtual machine X is disabled for external interrupts
and issues a TEST COMPLETION, IUCV places the information identifying
the reply in the TEST COMPLETION parameter list and clears the queued
external interrupt concerning this reply. IUCV passes control to the next
instruction after the TEST COMPLETION.

124 VM/SP System Programmer's Guide

12. Virtual machine X has now completed its communications with virtual machine
Y and issues a SEVER to break the communications path. The SEVER func­
tion queues an external interrupt for Y indicating that the communication link
has been broken. Control returns in X at the next instruction after the
SEVER; a return code indicates the path has been broken.

13. The external interrupt queued by step 12 is reflected to Y indicating that the
path has been broken by virtual machine X. Virtual machine Y can now do
any clean up needed in its storage.

14. After virtual machine Y has completed processing, the virtual machine issues a
SEVER to notify LUCY that is also is finished with the communication link.
LUCY can then clean up the control blocks.

15. When all communications are complete and all communication paths have been
severed, both virtual machines independently invoke the RETRIEVE BUFFER
function.

IUCV Communications Using Parameter List Data

To better understand how data specified in the parameter list is handled, the LUCY
functions are covered in a typical user scenario:

1. The lUCV DECLARE BUFFER, CONNECT, and ACCEPT sequence must
be invoked to establish the user's external interrupt buffer and a path to the
target virtual machine (or CP). If you expect to receive data in the parameter
list, you must authorize such communication on the CONNECT or ACCEPT
by specifying PRMDAT A= YES. The external interrupt information to the
target communicator includes a bit indicating if PRMDAT A= YES was chosen.

2. Issue an LUCY SEND request. When the data is to be passed in the parameter
list, the DAT A=PRMMSG option is used on the LUCY macro, and the
PRMMSG= option is used to move the data into the parameter list. Or you
can avoid using the macro options by initializing the parameter list yourself.
The sender of the message should be prepared to handle a return code indicat­
ing that DATA=PRMMSG is not allowed if the target communicator has not
specified PRMDAT A= YES at connection time. A message block
(MSGBLOK) is created to represent the message within CP and contains the
message data until presented to the target. The message is queued on the target
send queue.

3. If the target is enabled for IUCV pending-message external interrupts, the tar­
get virtual machine receives an LUCY pending-message external interrupt as a
result of the SEND request in the previous step. The message data is stored in
the external interrupt buffer. A flag is set in the IPFLAGS1 field of the buffer
to indicate that the data is in the parameter list. Since the message data has
been presented to the target, the target does not have to issue an IUCV
RECEIVE for this message. If the message was a one-way message, the
MSGBLOK is destroyed and the communication is complete. There is no
asynchronous return of message completion given to the source (sending) vir­
tual machine on a one-way message.

4. If the target is disabled for LUCY pending-message external interrupts and
issues the IUCV DESCRIBE or RECEIVE functions, the message data is
stored in the parameter list. A flag is set in the IPFLAGS 1 field of the parame-

Inter-User Communications Vehicle 125

Invoking IUCV Functions

ter list to indicate that the data is in the parameter list. Since the message data
is presented to the target on a DESCRIBE, the target does not have to issue an
IUCV RECEIVE for this message. If the message was a one-way message, the
MSGBLOK is destroyed, and the communication is complete. There is no
asynchronous return of message completion given to the source (sending) vir­
tual machine on a one-way message.

5. If the communication in the previous steps was a two-way message, a REPLY
is issued by the target virtual machine. When the REPLY data is to be passed
in the parameter list, the DATA=PRMMSG option is used on the IUCV mac­
ro, and the PRMMSG= option is used to move the data into the parameter list.
Or, you can avoid using the macro options by initializing the parameter list
yourself. The REPL Y er of the message should be prepared to handle a return
code indicating that DATA=PRMMSG is not allowed if the source commu­
nicator has not specified PRMDAT A= YES at connection time. The message
block (MSGBLOK) contains the message data until presented to the source
communicator. The message block is queued on the sender's reply queue.

6. If the source communicator is enabled for IUCV message complete external
interrupts, the source virtual machine receives an IUCV message-complete
external interrupt as a result of the REPLY in the previous step. The message
data is stored in the external interrupt buffer. A flag is set in the IPFLAGS 1
field of the buffer to indicate that the data is in the parameter list. The
MSGBLOK is destroyed and the communication is complete.

7. If the target is disabled for IUCV message-complete external interrupts, and
issues the IUCV TEST COMPLETE function, the message data is stored in
the parameter list. A flag is set in the IPFLAGS 1 field of the parameter list to
indicate that the data is in the parameter list. The MSGBLOK is destroyed,
and the communication is complete.

8. SEVER and RETRIEVE BUFFER cause any pending messages (MSGBLOK)
to be destroyed for that virtual machine. Since no asynchronous
message-complete interrupt is returned to the source communicator, for
one-way messages using the DAT A=PRMMSG option, the source communica­
tor must realize upon receiving an IUCV SEVER external interrupt from the
target communicator, that messages may not have been received by the target.

Invoke all IUCV functions through the IUCV macro instruction. In general, speci­
fy the name of the IUCV function you wish to perform, the address of a parameter
list to contain input to the function, and keyword parameters. IUCV moves the
values specified on the keyword parameters into the specified parameter list. Most
functions require a parameter list as input to the IUCV macro instruction. Use the
PRMLIST = parameter to specify the address of the parameter list. The parameter
list must begin on a doubleword boundary or a specification exception results.
When invoked from a virtual machine, specify the address of the parameter list as a
guest real address (that is, it must be an address that is real to the virtual machine).
When invoked from CP system code, the address of the parameter list must be a
real address.

Supply input to IUCV functions in two ways:

• By coding keyword parameters on the IUCV macro instruction. IUCV stores
values in the function parameter list based on values you specify on the macro.

126 VM/SP System Programmer's Guide

,/

By storing required input to the function in the function parameter list before
invoking the lUCY macro instruction. To store input in an lUCY parameter
list, use labels generated by the IP ARML mapping macro.

You may use a combination of these methods to supply input to a single lUCY
function. If you specify any optional parameters on the lUCY macro, you are
responsible for providing the USING for the IP ARML DSECT when the macro is
invoked. If you do not specify an optional parameter to initialize the parameter
list, the macro assumes that you have stored a value in the parameter list prior to
invoking the lUCY macro.

One advantage of using the lUCY macro instruction is that lUCY provides exten­
sive error checking of parameter combinations when input is supplied on the macro.
Many invalid parameter combinations can be detected by lUCY when you assem­
ble the program.

You can specify several parameters either as relocatable labels or a register specifi­
cation. Specify these parameters in one of the following ways:

An addressable label in a program
A label in the IP ARML DSECT

• A register number in parentheses - (register)
• An explicit base-displacement notation -- displacement (register).

Figure 17 shows the format of the lUCY macro:

Inter-User Communications Vehicle 127

label IUCV ACCEPT,

CONNECT,

DClBFR,

DESCRIBE,

PURGE,

QUIESCE,

RECEIVE,

REJECT,

REPLY,

RESU~'E ,

SEND,

SETC~'ASK ,

SETMASK,

SEVER,

TESTC~1PL,

[RTRVBFR,]

[QUERY]
[TESTMSG]

Figure 17. IUCV Macro Instruction Format

where:

ACCEPT
, CONNECT

DCLBFR
DESCRIBE

. PURGE
QUIESCE
RECEIVE
REJECT
REPLY
RESUME
RTRVBFR
SEND

128 VM/SP System Programmer's Guide

ALL=
CP=
PRTY=
PRMDATA=
QUIESCE=

ANSBUF=
BUFFER=

MSGID=
MSGLIM=
MSGTAG=
PRMMSG=

PRMLIST= ~label'~ PATHID=
(reg) . SRCCLS=

TRGCLS=
USERDTA=
USERID=

ASNLEN=
BUFLEN=

FCNCD=
MASK=

TYPE=

VMBLOK=

MF=

DATA=
\ rp

:
VMBLOK=

is the ACCEPT function
is the CONNECT function
is the DECLARE BUFFER function
is the DESCRIBE function
is the PURGE function
is the QUIESCE function
is the RECEIVE function
is the REJECT function
is the REPLY function
is the RESUME function
is the RETRIEVE BUFFER function
is the SEND function

{~5S~

~label~ (reg)

r
abe1

\

(reg)
Clabel,2)
((reg),2)
(label,4)
((reg),4)

1
term
(reg) ~
~lWAY
2t~AY ~
~USER ~ SYSTEM

L

~BUFFER
PR~1MSG ~
~YES ~

I
NO

~USER ~ SYSTEM

SETCMASK
SETMASK
SEVER
TESTCMPL
QUERY
TESTMSG

ALL =

ANSBUF=

ANSLEN=

is the SET CONTROL MASK function
is the SET MASK function
is the SEVER function
is the TEST COMPLETION function
is the QUERY function
is the TEST MESSAGE function

(Used on QUIESCE, RESUME, SEVER)

ALL= YES specifies that the function requested is to be applied to
all paths for this virtual machine.

The valid values for ALL= are YES and NO. If not specified, the
default is NO.

If ALL= YES is specified, P ATHID= is not allowed.

(Used on REPLY, SEND)

This parameter specifies the area to contain the reply text of the
message.

Specify either the relocatable label of the buffer or the number of a
register that contains the address of the buffer. lUCY stores the
address of the buffer in the function parameter list.

For SEND, this parameter identifies the area into which lUCY
places the reply text.

For REPLY, this parameter identifies the area from which lUCY
takes the reply text.

ANSBUF= is not valid on SEND if TYPE = 1 WAY is specified.

If this parameter is not specified, the macro assumes that either the
parameter is not needed (such as a SEND with TYPE = 1 WAY) or
the invoker has stored a value in the parameter list prior to invoking
the lUCY macro.

(Used on REPLY, SEND)

This parameter specifies the length of the area specified on the
ANSBUF parameter.

Specify either (1) the relocatable label of the location containing
the buffer length, or (2) the number of a register that contains the
length of the buffer. The macro assumes a halfword value for the
length at the storage location specified, or in the low-order halfword
of the register specified. If a length modifier of 4 is used, the macro
uses the fullword value for the length at the storage location or in
the register specified. lUCY stores the buffer length in the function
parameter list. If this parameter is not specified, the macro assumes
that either the parameter is not needed (such as on a SEND with
TYPE= 1 WAY) or the invoker has stored a value in the parameter
list prior to invoking the lUCY macro.

Inter-User Communications Vehicle 129

BUFFER =

ANSLEN = may be specified even though ANSBUF = is not. If
ANSBUF = has not been specified, the macro assumes that the
invoker has moved the address of the answer buffer into the param­
eter list prior to invoking the IUCV macro.

ANSLEN = is not valid on SEND if TYPE= 1 WAY is specified.

(Used on DCLBFR, RECEIVE, SEND)

When you invoke DCLBFR, this parameter identifies the external
interrupt buffer. When an external interrupt is reflected to the vir­
tual machine, IUCV stores information concerning the IUCV mes­
sage or a control interrupt in this buffer.

When you invoke SEND, this parameter identifies the area from
which IUCV takes the message text.

When you invoke RECEIVE, this parameter identifies the area into
which IUCV places the message text.

Specify either the relocatable label of the buffer or the number of a
register that contains the address of the buffer. IUCV stores the
address of the buffer in the function parameter list.

If this parameter is not specified, the macro assumes that the
invoker has stored a value in the parameter list prior to invoking the
IUCV macro.

BUFLEN= (Used on RECEIVE, SEND)

130 VM/SP System Programmer's Guide

This parameter specifies the length of the area specified on the
BUFFER= parameter.

Specify either (1) the relocatable label of the location containing
the buffer length, or (2) the number of a register that contains the
length of the buffer. The macro assumes a halfword value for the
length at the storage location specified, or in the low-order half word
of the register specified. If a length modifier of 4 is used, the macro
uses the full word value for the length at the storage location or in
the register specified. IUCV stores the buffer length in the function
parameter list.

If this parameter is not specified, the macro assumes that the
invoker has stored a value in the parameter list prior to invoking the
IUCV macro.

BUFLEN = may be specified even though BUFFER= is not. If
BUFFER= has not been specified, the macro assumes that the
invoker has moved the address of the buffer into the parameter list
prior to invoking IUCV macro.

Do not use BUFLEN = for the DECLARE BUFFER function. By
default, the buffer declared on the DECLARE BUFFER is 40 bytes
long. /-

CP= (Used on ACCEPT, CONNECT, DESCRIBE, PURGE,
QUIESCE, RECEIVE REJECT, REPLY, RESUME, RTRVBFR,
SEND, SEVER, TESTCMPL)

DATA=

Specify CP=NO when invoking an lUCY function from a virtual
machine. lUCY generates the IUCV instruction. The code gener­
ated when you specify CP=NO modifies general register zero. The
virtual machine must be in supervisor state when the lUCY macro
executes.

CP= YES specifies that the function is being invoked from the CP
system code. A CALL linkage to CP module DMKIUACP is gen­
erated instead of the lUCY instruction. The macro modifies gener­
al registers 0, 1, and 15. The invoker is responsible for providing an
EXTRN statement for module DMKIUACP. General register 11 is
assumed to contain the address of the VMBLOK on whose behalf
the specified function is to be performed. See the section "Com­
munication Between CP and a Virtual Machine" for details on
IUCV communications initiated from CP system code.

The valid values for CP= are YES and NO. If not specified, the
default is NO.

CP= YES is required to invoke lUCY functions from CP system
code.

If CP=YES is specified, MSGTAG= is not allowed.

The DESCRIBE and TEST COMPLETION functions cannot be
used in CP outside of lUCY support.

(Used on SEND, REPLY)

This parameter specifies the location of your message data for this
lUCY communication.

If you specify DATA=PRMMSG, your message or reply data is
contained in the parameter list. You may use the PRMMSG=
parameter to have the message or reply data moved into the param­
eter list. When DATA= is specified, the lUCY macro parameters
BUFFER and BUFLEN may not be used on the SEND function
and the parameters ANSBUF and ANSLEN may not be used on the
REPLY function.

If you specify DATA=BUFFER, your messages or reply is con­
tained in a buffer. The lUCY macro parameter of PRMMSG= may
not be used when DATA=BUFFER.

The DATA= option on SEND and REPLY are independent of each
other. The protocol used is at the discretion of the communicators.
You may define a protocol such that:

A message specified in the parameter list using the DAT A=
option is REPL Yed to via a message in the answer buffer speci­
fied on the SEND.

Inter-User Communications Vehicle 131

FCNCD=

I MASK=

A message sent in a buffer may be REPL Yed to by the target
via a message in the parameter list using the DAT A= option.

(Used on CONNECT)

This parameter indicates which CP system service is invoking the
CONNECT function. Each supported CP service is identified by a
one-byte numerical code. VM/SP presently supports IUCV com­
munication for only one CP Service, SNA Console Communication
Services. CCS has a code of O.

Specify either the code itself or the number of a register that con­
tains the code in its low-order byte. IUCV moves the code into the
function parameter list.

If this parameter is not specified, the macro assumes that the
invoker has stored a value in the parameter list prior to invoking the
IUCV macro.

This parameter is valid only if CP= YES is specified.

(Used on SETMASK and SETCMASK)

This parameter specifies the mask byte to determine which, if any,
of the IUCV external interrupts a virtual machine is to be enabled
for. Specify either the relocatable label of a byte containing the
mask, or the number of a register that contains the mask in its
low-order byte. IUCV moves the mask into the function parameter
list.

If this parameter is not specified, the macro assumes that the
invoker has stored a value in the parameter list prior to invoking the
IUCV macro.

The MASK= parameter is valid only if you have specified CP.=NO.
The SET MASK and SET CONTROL MASK functions cannot be
invoked from CP system code.

MF= (Used on ACCEPT, CONNECT, DCLBFR, DESCRIBE, PURGE,
QUESCE, RECEIVE, REJECT, REPLY, RESUME, SEND,
SETMASK, SETCMASK, SEVER, TESTCMPL)

132 VM/SP System Programmer's Guide

The MF=L option is allowed as a keyword parameter on any IUCV
function that uses a parameter list.

This paramater lets you initialize an IUCV parameter list without
issuing the IUCV instruction (from a virtual machine) or the SVC
(from CP system code). This parameter allows programs to initial­
ize an IUCV parameter list and to pass that parameter list to an
operating system which provides an IUCV interface (for example,
CMS).

MSGID=

MSGLIM=

(Used on PURGE, RECEIVE, REJECT, REPLY, TESTCMPL)

This parameter specifies the message identifier of the message to
search for. The message identifier uniquely identifies a particular
message. IUCV generates the message id and returns it in the
SEND parameter list when a message is created.

Specify either the relocatable label of a fullword containing the
message identifier, or the number of a register that contains the
message identifier. IUCV stores the message identifier in the func­
tion parameter list.

If this parameter is not specified, the IUCV macro assumes that
either the parameter is not needed (for example, when you specify a
message by path id only), or the invoker has stored a value in the
parameter list prior to invoking the IUCV macro.

MSGID= is an optional input to the functions listed above. When a
MSGID is specified, you must also supply the path id, and message
class (SRCCLS for PURGE and TESTCMPL, TRGCLS for
RECEIVE, REJECT and REPLY).

If you specify the MSGID= parameter on the IUCV macro, the
IPFGMID flag in IPFLAGS 1 is set when you invoke the PURGE,
RECEIVE, REJECT or TEST COMPLETION functions.

(Used on ACCEPT, CONNECT)

This parameter specifies the limit of outstanding messages to be
allowed on the path established by this CONNECT. A message
limit can also be specified on the lUCY directory control statement.
If a message limit has been specified in the directory, the value you
specify with this parameter of the lUCY macro must not exceed
that limit.

Specify either the relocatable label of a halfword containing the
message limit, or the number of a register that contains the message
limit in the low-order halfword. lUCY stores the message limit in
the function parameter list.

If this parameter is not specified, the macro assumes that either the
parameter is not needed (the value from the directory or the default
is to be used) or the invoker has stored a value in the parameter list
prior to invoking the lUCY macro.

If the message limit is not specified on the lUCY macro or directory
control statement, or if the value has not been stored is the function
parameter list, ten is the default message limit.

The maximum value that can be specified for the message limit is
255. For CP system code, (CP= YES specified), there is no overrid­
ing directory value. If MSGLIM is not specified, a default of 10 is
assumed by IUCV.

The originator of the connection sets up the message limit for the
path.

Inter-User Communications Vehicle 133

MSGTAG= (Used on SEND)

PATHID=

134 VM/SP System Programmer's Guide

This parameter specifies the tag of the message created by invoking
the SEND function. lUCY returns the message tag when the mes­
sage completes.

Specify either a relocatable label for a fullword containing the tag or
the number of a register that contains the tag. lUCY stores the tag
in the function parameter list.

If you specify CP=YES, MSGTAG= is not needed. CP system
code uses the MSGTAG field in the parameter list for internal link­
age.

If this parameter is not specified, the macro assumes that either it is
not valid (for example, if CP= YES is specified) or that the invoker
has stored a value in the parameter list prior to invoking the lUCY
macro.

(Used on ACCEPT, PURGE, QUIESCE, RECEIVE, REJECT,
REPLY, RESUME, SEND, SEYER, TESTCMPL)

This parameter specifies the path identification associated with a
message. lUCY assigns a path identification and returns the value
in the CONNECT parameter list.

All further communications on a path must specify the path id that
was returned from CONNECT. Path ids are sequential from
X'OOOO' to the maximum number of connections allowed for this
virtual machine. As paths are severed, the lUCY reuses vacated
path ids.

Specify either the relocatable label of a halfword that contains the
path id or the number of a register that contains the path id in the
low-order halfword. lUCY stores the path identifier in the lUCY
parameter list.

If this parameter is not specified, the macro assumes that either the
parameter is not needed (for example, if you invoke the SEVER
function with ALL = YES) or the invoker has stored a value in the
parameter list prior to invoking the lUCY macro.

If you specify MSGID on the PURGE, RECEIVE, REJECT,
REPLY, or TEST COMPLETION functions, lUCY requires that
you specify path id and message class (SRCCLS or TRGCLS, as
appropriate).

PATHID= is not valid if ALL=YES is also specified.

If you specify the PATHID= parameter on the lUCY macro, the
IPFGPID flag in IPFLAGSI is set for PURGE, RECEIVE,
REJECT and TEST COMPLETION functions.

PRMDATA= (Used on ACCEPT, CONNECT)

This parameter specifies whether the communicator wishes to allow
messages that contain the message data in the parameter list (for
example, messages sent via the DATA=PRMMSG option).

Specify PRMDAT A= YES if you are willing to receive messages via
the DATA=PRMMSG option in your parameter list.

Specify PRMDATA=NO if you are not willing to receive messages
sent into your parameter list and only accept messages sent using a
buffer. NO is the default if the PRMDATA parameter is not used.

PRMLIST= (Used on ACCEPT, CONNECT, DCLBFR, DESCRIBE
PURGE, QUIESCE, RECEIVE, REJECT, REPLY, RESUME,
SEND, SETMASK, SEVER, TESTCMPL)

This parameter identifies the IUCV parameter list, which is input to
the actual IUCV instruction or CALL to DMKIUACP. This
parameter list must be a real address if CP= YES (invoked from CP
system code) or a guest real address (real to the virtual machine) if
invoked from a virtual machine. The parameter list must be on a
doubleword boundary.

Specify either a relocatable label or the number of a register. If a
label is specified, the macro assumes it is the label of the parameter
list. The address of the parameter list is loaded into general register
1 if CP= YES, or the IUCV instruction is generated to reference the
label if CP=NO. If a register is specified, the macro assumes it
contains the address of the parameter list; the address is loaded into
general register 1 if CP= YES, or the IUCV instruction is generated
to reference the register if CP=NO.

This parameter is required for all IUCV functions except QUERY,
and TEST MESSAGE.

If CP system code issues a SEND or CONNECT, the area specified
on this parameter must be the address of an IXBLOK instead of a
parameter list. See the section, "Invoking Communications
between CP and a Virtual Machine" for details.

PRMMSG= (Used on SEND, REPLY)

PRTY=

This parameter specifies the eight bytes of message data that are
moved into the parameter list.

Specify either the relocatable label of the eight bytes of message
data or the number of a register that contains the address of the
data.

(Used on ACCEPT, CONNECT, REPLY, SEND)

When you invoke the CONNECT function, PRTY = YES indicates
that you want to establish a path that can handle priority communi-

Inter-User Communications Vehicle 135

cations. When invoked from a virtual machine, PRIORITY must be
authorized in the IUCV directory entry. When invoked from CP
system code (CP= YES), PRTY = YES is always valid.

When you invoke the SEND and REPLY functions, PFTY = YES
indicates that this message or reply is a priority message.
PRTY = YES is only valid if this path can handle priority communi­
cations.

Valid values for PRTY = are YES and NO. If not specified, the
default is NO.

The originator of the connection sets up the priority for both ends
of the path.

QUIESCE= (Used on ACCEPT, CONNECT)

SRCCLS=

136 VM/SP System Programmer's Guide

QUIESCE= YES indicates that you want to quiesce the path being
established; the other communicator cannot send messages on a
quiesced path.

The valid values for QUIESCE= are YES and NO. If not specified,
the default is NO.

You can restore the path to full communication capability by invok­
ing the RESUME function.

(Used on PURGE, SEND, TESTCMPL)

This parameter specifies the source message class associated with a
message.

When you invoke the PURGE function, this parameter optionally
specifies the source message class of the message to be purged. If
omitted, IUCV does not use the source message class in the search
for the message.

When you invoke the SEND function, this parameter specifies the
source message class that IUCV stores in the MSGBLOK that
represents the message.

When you invoke the TEST COMPLETION function, this parame­
ter optionally specifies the source message class of the message to
be dequeued. If omitted, IUCV dequeues the first message
encountered on the specified path regardless of its source message
class.

Specify either the relocatable label of a full word containing the
source message class or the number of a register containing the
source message class. IUCV stores the source message class in the
function parameter list.

If this parameter :~ .i.l0t specified, the macro assumes either that the
parameter is not needed (for example, if you invoke a PURGE by
path id alone), or that the invoker has stored a value in the parame­
ter list prior to invoking the IUCV macro.

TRGCLS=

TYPE=

If you specify the SRCCLS= parameter on the IUCV macro for the
PURGE and TEST COMPLETION functions, the IPFGMCL flag
in IPFLAGS 1 is set.

(Used on RECEIVE, REJECT, REPLY, SEND)

This parameter specifies the target message class associated with
this message.

When you invoke the RECEIVE and REJECT functions, this
parameter optionally specifies the target message class of the mes­
sage to be received for rejected. If omitted, IUCV does not use the
target message class in the search for the message.

When you invoke the SEND function, this parameter specifies the
target message class that IUCV stores in the MSGBLOK that
represents the message.

When you invoke the REPLY function, this parameter specifies the
target message class of the message being responded to.

Specify either the relocatable label of a fullword containing the tar­
get message class, or the number of a register containing the target
message class. IUCV stores the target message class in the function
parameter list.

If this parameter is not specified, the macro assumes that either the
parameter is not needed (for example if you issue a RECEIVE by
path id alone) or the invoker has stored a value in the parameter list
prior to invoking the IUCV macro.

If you specify the TRGCLS= parameter on the IUCV macro for
the RECEIVE and REJECT functions, the IPFGMCL flag in
IPFLAGS 1 is set.

(Used on SEND)

TYPE= 1 WAY specifies that this is a one-way transaction. No
REPLY by the receiver is needed or valid. IUCV moves the
MSGBLOK representing the message to the source communicator's
REPLY queue when the target communicator issues a RECEIVE
for the message. TYPE=2WAY specifies that this is a two-way
transaction. IUCV moves the message to the source's REPLY
queue only when the target invokes a REPLY for this message.
Two way transactions are useful for returning data in response to a
specific request.

The valid values for TYPE= are 1 WAY and 2W A Y. If not speci­
fied, the default is 2W A Y.

USERDTA= (Used on ACCEPT, CONNECT, QUIESCE, RESUME, SEVER)

This parameter specifies the 16-byte user data area that is to be
reflected to the target.

Inter-User Communications Vehicle 137

USERID=

Specify either (1) the relocatable label of the storage area, or (2)
the number of a register that contains the address of the user data
storage area. IUCV moves the address of the ston;.ge area into the
function parameter list.

If this parameter is not specified, the macro assumes that the
invoker has stored a value in the parameter list prior to invoking the
IUCV macro.

(Used on CONNECT)

This parameter specifies the eight-character userid of the virtual
machine or CP system service to which you want to establish this
path.

Specify either the relocatable label of the storage area containing
the userid, or the number of a register that contains the address of
the userid. IUCV stores the userid in the function parameter list.

If this parameter is not specified, the IUCV macro assumes that the
invoker has stored a value in the parameter list prior to invoking the
IUCV macro.

VMBLOK= (Used on ACCEPT, CONNECT, DESCRIBE, PURGE, QUI­
ESCE, RECEIVE, REJECT, REPLY, RESUME, RTRVBFR,
SEND, SEVER, TESTCMPL)

VMBLOK= USER specifies that the IUCV control blocks associ­
ated with the current VMBLOK are to be used for this IUCV
request.

VMBLOK=SYSTEM specifies that the IUCV control blocks asso­
ciated with the system VMBLOK are to be used for this IUCV
request.

The valid values for VMBLOK= are USER and SYSTEM. If not
specified, the default is SYSTEM.

VMBLOK= is only valid if CP=YES is specified.

See Figure 18 on page 139 for a reference to the relationships between the IUCV
functions the IUCV macro instruction keyword parameters.

138 VM/SP System Programmer's Guide

A C D D P Q R R R R R S S S S T
C 0 C E U U E E E E T E E E E E
C N L S R I C J P S R N T T V S
E N B C G E E E L U V D C M E T

IUCV P E F R E S I C Y ~1 B M A R C
r1acro T C R I C V T E F A S M
Param- T B E E R S K P
eters E K L

ALL X X X

ANSBUF X X

ANSLEN X X

BUFFER X X X

BUFLEN X X

CP X X X X X X X X X X X X X

DATA X X

FCNCD X

MASK X X

MF X X X X X X X X X X X X X X X

MSGID X X X X X

~1SGL 1M X X

MSGTAG X

PATHID X X X X X X X X X X

PRMDATA X v
A

PRMLIST X X X X X X X X X X X X X X X

PRMf1SG X X

PRTY X X X X

QUIESCE X X

SRCCLS X X X

TRGCLS X X X X

TYPE X

USERDTA X X X X X

USERID X

Vt'1B LOK X X X X X X X X X X X X X

Notes:

1. PRMLIST is a required parameter (others are optional).

2. The QUERY and TEST MESSAGE functions do not use parameters.

Figure 18. IUCV Function and IUCV Macro Parameter Relationships

Inter-User Communications Vehicle 139

Invoking Communications between CP and a Virtual Machine

Specify CP=NO when invoking an IUCV function from a virtual machine. The
IUCV instruction is generated. If a label is specified for the parameter list, it must
be relocatable and addressable. The code generated by CP=NO modifies general
register 0. When the function is executed, the virtual machine must be in supervi­
sor state. CP=NO is the default.

CP system services invoke the IUCV macro instruction specifying CP= YES.
CP= YES generates a CALL linkage directly to the IUCV processing module
(DMKIUACP). If a label is specified for the parameter list, it must be relocatable
and addressable. The code generated by CP= YES modifies general registers 0, 1
and 15. The invoker must supply an EXTRN statement for the entry point
DMKIUACP.

If VMBLOK= USER is specified with CP= YES, then a CALL linkage is generated
directly to the IUCV processing module (DMKIUACU). The invoker must supply
an EXTRN statement for the entry point DMKIUACU.

Requests Initiated by the Virtual Machine

When a virtual machine wishes to establish communications with a CP system ser­
vice, it invokes the CONNECT function specifying the name of the desired CP
service as the target virtual machine ID.

The IUCV communication processor receives control from the CONNECT func­
tion, gathers the external interrupt information and determines which service is
desired. The communication processor then locates the CONNECT entry point for
that service and, using CALL linkage, passes control to that entry point.

The CONNECT entry point for the requested CP system service inspects the
external interrupt data. It must either accept the connection or reject the con­
nection. To accept the connection, it invokes the ACCEPT function, specifying
CP= YES. To reject the connection, it invokes the SEVER function specifying
CP= YES. When the service module has finished responding to the incoming con­
nection request, it issues an EXIT (SVC 12) to return control to the communi­
cations processor.

When an incoming message for a CP system service is encountered, the communi­
cations processor gathers the external interrupt information and determines which
service is desired. The communication processor locates the entry point that proc­
esses incoming messages for the desired service and, using CALL linkage, passes
control to it.

The message processing module of the CP service then inspects the external inter­
rupt data. The CP service module must invoke the RECEIVE function, specifying
CP= YES, to obtain the actual message. When the RECEIVE function completes,
the message data will have been moved to the address specified in the RECEIVE
parameter list. The CP service module then interprets the message data and ser­
vices the request. When the request has been satisfied, the CP service module
invokes the REPL Y function to satisfy the two-way message protocol. When the
REPLY function completes, the reply has beer. queued back to the source commu­
nicator. When the CP service module cGi.iipletes processing of the message, it
issues an EXIT (SVC 12) to return to the communications processor.

140 VM/SP System Programmer's Guide

,/

CP .Initiated Requests

When a virtual machine wishes to terminate a communications path, it invokes the
SEVER function via the IUCV macro. The communication processor receives con­
trol from the SEVER function, gathers the external interrupt information, and
determines which service was connected. The communication processor locates the
SEVER entry point for that service and, using CALL linkage, passes control to it.

The SEVER entry point for that CP system service then inspects the external inter­
rupt data. The CP system service module issues a SEVER if the connection was
complete. When the CP service module finishes processing, it issues an EXIT
(SVC 12) to return control to the communication processor.

If a virtual machine wishes to quiesce a communications path, it invokes the QUI­
ESCE function of the IUCV macro. The communications processor receives con­
trol from the QUIESCE function, gathers the external interrupt information, and
determines which service was connected. The communications processor locates
the QUIESCE entry point for that service and, using CALL linkage, passes control
to it.

The QUIESCE entry point for the CP system service then inspects the external
interrupt data. The CP service records the fact that the path has been quiesced.
When the CP service module has finished processing, it issues an EXIT (SVC 12)
to return control to the communication processor.

After invoking QUIESCE for a path, the virtual machine may eventually invoke the
RESUME function for the path.

The communication processor receives control from the RESUME function, gath­
ers the external interrupt information, and determines which service was connected.
The communication processor locates the RESUME entry point for that service
and, using CALL linkage, passes control to it.

The RESUME entry point for that CP system service then inspects the external
interrupt data. The CP service records the fact that the path has been RESUMEd.
When the CP service module has finished processing, it issues an EXIT (SVC 12)
to return control to the communication processor.

When a CP module initiates a CONNECT or SEND to a virtual machine, it must
do the following:

Get storage (via DMKFREE) in which to build an IXBLOK.

• Build the parameter list in the IXBLOK for the function that it wishes to
invoke.

• Store the general registers in the IXBLOK.

Store the address of the routine that gets control when a connection completes
or when a reply is received. The CP module must store the routine's address in
the "interrupt return address" field of the IXBLOK (label IXlRA).

Invoke the CONNECT or SEND function via the IUCV macro, specifying
CP= YES and specifying the address of the IXBLOK or the
PRMLIST =parameter.

Inter-User Communications Vehicle 141

When the function has been initiated, control returns to the next sequential instruc­
tion after the IUCV macro instruction. When the function completes (that is, when
the target communicator invokes the ACCEPT or REPLY function), the communi­
cations processor gets control. The communications processor loads the general
registers from the IXBLOK and passes control to the routine at the "interrupt
return addresscdq .. The communications processor restores all registers except reg­
ister 15 from the IXBLOK. Register 15 is used in passing control and is loaded
with the interrupt return address.

The CP module that builds the IXBLOK is responsible for the following:

Restoring the base register for the module that invoked the function (pass the
base register in general register 12 following CP conventions).

Releasing (via DMKFRET) the IXBLOK upon completion of the asynchro­
nous portion of the function (pass the address of the IXBLOK in one of the
general registers).

Lock the processing module in real storage if it is not resident. In addition,
when the routine at the interrupt return address gets control, the processing
module must be unlocked.

IV CV Parameter List Formats

o

8

10

18

20

o

This section illustrates the formats of the parameter lists required for IUCV func­
tions. Descriptions of the parameter list fields are included in the section,
"Parameter List and External Interrupt Fields."

ACCEPT Function

ACCEPT Parameter List Format

1 2 3 4 5 6 7

IPPATHID \IPFLAGS1 \IPRCODE \ IPMSGLIM 1 ///////////
////////////////////////////////////~//////////////////////////

IPUSER

IPUSER

///

INPUTs to this function (built in the parameter list by the IUCV macro or by
the invoker):

IPFLAGS 1 IPMSGLIM IPP ATHID IPUSER

OUTPUTs from this function returned in the parameter list:

IPMSGLIM IPRCODE

142 VM/SP System Programmer's Guide

o
8

10

18

20

o

Input flags for this function (set by the IUCV macro or by the invoker in
IPFLAGSl):

IPQUSCE

IPPRTY

IPRMDATA

Connect in quiesce mode (the originator of the connection
will be unable to issue SENDs).

The connection established can handle priority messages.

The communicator is prepared to handle message data in
his parameter list.

Output flags for this function (returned by IUCV in IPFLAGSl):

IPPRTY Priority messages are allowed for this connection.

Exceptions generated by this function (ABENDs generated for CP system
code):

Specification

Operation

Addressing

Protection

Parameter list not on a doubleword boundary.

An external interrupt buffer has not been declared via the
DCLBFR function, or the invoker is not in supervisor
state. When the function is invoked by CP system code,
an operation exception cannot occur because an external
interrupt buffer has not been declared.

Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an
invalid real address.

Invalid parameter list address. The storage key of the spec­
ified address does not match the key of the user.

CONNECT Function

CONNECT Parameter List Format

1 2 3 4 5 6 7

IPPATHID IIPFlAGSl IIPRCODE I IPMSGLIM IIPFCNCD I //////
IPVMID

IPUSER

IPUSER

//

INPUTs to this function (built in the parameter list by the IUCV macro or by
the invoker):

IPFCNCD IPFLAGS 1 IPMSGLIM IPUSER IPVMID

Inter-User Communications Vehicle 143

o
8

10

18

20

o

• OUTPUTs from this function returned in the parameter list:

IPMSGLIM IPPATHID IPRCODE

• Input flags for this function (set by the IUCV macro or by the invoker in
IPFLAGSl):

IPPRTY

IPQUSCE

IPRMDATA

The connection established can handle priority messages.

Connect in Quiesce mode. (The target communicator can­
not issue SENDs).

The communicator is prepared to handle message data in
his parameter list.

Output flags for this function (returned by IUCV in IPFLAGS 1):

IPPRTY This is a priority message.

IPPRTY Priority messages are allowed for this connection.

Exceptions generated by this function (ABENDs generated for CP system
code):

Specification

Operation

Addressing

Protection

Parameter list not on a doubleword boundary.

An external interrupt buffer has not been declared via the
DCLBFR function, or the invoker is not in supervisor
state. When the function is invoked by CP system code,
an operation exception cannot occur because an external
interrupt buffer has not been declared.

Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an
invalid real address.

Invalid parameter list address. The storage key of the spec­
ified address does not match the key of the user.

DECLARE BUFFER Function

DCLBFR Parameter List Format

1 2 3 4 5 6 7

///////////////////// lIPRCODE /////////////////////////////

////////////////////////////// IPBFADR1

//

//

//

144 VM/SP System Programmer's Guide

o

8

10

18

20

o

INPUTs to this function (built in the parameter list by the IUCV macro or by
the invoker):

IPBFADRI

OUTPUTs from this function returned in the parameter list:

IPRCODE

Exceptions generated by this function (ABENDs generated for CP system
code):

Specification

Addressing

Operation

Protection

DESCRIBE Function

Parameter list not on a doubleword boundary.

Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an
invalid real address.

Invalid buffer address.

Invoker not in supervisor state.

Invalid parameter list address. The storage key of the spec­
ified address does not match the key of the user.

DESCRIBE Parameter List Format

1 2 3 4 5 6 7

IPPATHID IIPFLAGS1 IIPRCODE IPMSGID

IPTRGCLS IPR~lMSGl

IPBFLNIF / IPRMMSG2 ////////////////////////////

//

IPBFLN2F ////////////////////////////

INPUTs to this function (built in the parameter list by the IUCV macro or by
the invoker):

NONE

OUTPUTs from this function returned in the parameter list:

IPBFLNI IPPATHID IPRCODE IPBFLNIF IPRMMSGI
IPBFLN2 IPMSGID IPTRGCLS IPBFLN2F IPRMMSG2
IPFLAGSI

Output flags for this function (returned in IPFLAGS 1):

Inter-User Communications Vehicle 145

o

8

10

18

20

o

IPFGMCL

IPFGMID

IPFGPID

IPNORPY

IPPRTY

IPRMDATA

Always returned as 1 so that the resulting parameter list is
valid input to the next function (normally RECEIVE or
REPLY).

Always returned as 1 so that the resulting parameter list is
valid input to the next function (normally RECEIVE or
REPLY).

Always returned as 1.

This is a one-way type message.

This is a priority message.

The message data is in the IPRMMSGx fields of the
parameter list.

Exceptions generated by this function (ABENDs generated for CP system
code):

Specification

Operation

Addressing

Protection

Parameter list not on a doubleword boundary.

An external interrupt buffer has not been declared via the
DCLBFR function, or the invoker is not in supervisor
state. When the function is invoked by CP system code,
an operation exception cannot occur because an external
interrupt buffer has not been declared.

Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an
invalid real address.

Invalid parameter list address. The storage key of the spec­
ified address does not match the key of the user. .

PURGE Function

PURGE Parameter List Format

1 2 3 4 5 6 7

IPPATHID IPFlAGSl IIPRCODE IPMSGID

IPAUDIT //

//////////////////////////////// IPSRCClS

IPt'lSGTAG //////////////////////////////

///

INPUTs to this function (built in the parameter list by the IUCV macro or by
the invoker):

146 VM/SP System Programmer's Guide

IPFLAGSI IPMSGID IPPATHID IPSRCCLS

OUTPUTs from this function returned in the parameter list:

IPAUDIT IPMSGID IPPATHID IPRCODE IPSRCCLS
IPFLAGSI IPMSGTAG

Input flags for this function (set by the IUCV macro or by the invoker in
IPFLAGSl):

IPFGMCL

IPFGMID

IPFGPID

A message class identifier (SRCCLS) has been supplied in
the parameter list.

A message identifier has been supplied in the parameter
list.

A path identifier has been supplied in the parameter list.

Output flags for this function (returned by IUCV in IPFLAGS 1):

IPNORPY This is a one-way type message.

IPPRTY This is a priority message.

Exceptions generated by this function (ABENDs generated for CP system
code):

Specification

Operation

Addressing

Protection

QUERY Function

Parameter list not on a double word boundary.

Invalid search flags. Either the path id has not been speci­
fied, or the message id has been specified without a mes­
sage class.

An external interrupt buffer has not been declared via the
DCLBFR function, or the invoker is not in supervisor
state. When the function is invoked by CP system code,
an operation exception cannot occur because an external
interrupt buffer has not been declared.

Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an
invalid real address.

Invalid parameter list address. The storage key of the spec­
ified address does not match the key of the user.

The QUERY function does not take a parameter list.

The QUERY function is used to obtain IUCV information about a virtual machine.

QUERY RESULTS:

Inter-User Communications Vehicle 147

o

8

10

18

20

o

The size of the lUCY external interrupt buffer is returned in general register O.

The maximum number of connections that can be outstanding for this virtual
machine is returned in general register 1.

Exceptions generated by this function:

Operation Invoker not in supervisor state.

QUIESCE Function

QUIESCE Parameter List Format

1 2 3 4 5 6 7

IPPATHID IIPFLAGSI \IPRCODE 1////////////////1/////////////

//

IPUSER

IPUSER

//

INPUTs to this function (built in the parameter list by the lUCY macro or by
the invoker):

IPFLAGS1 IPPATHID IPUSER

OUTPUTs from this function returned in the parameter list:

IPRCODE

Input flags for this function (set by the lUCY macro or by the invoker in
IPFLAGS1):

IPALL Quiesce all paths for this virtual machine.

• Exceptions generated by this function (ABENDs generated for CP system
code):

Specification

Operation

Addressing

Parameter list not on a doubleword boundary.

An external interrupt buffer has not been declared via the
DCLBFR function, or the invoker is not in supervisor
state. When the function is invoked by CP system code,
an operation exception cannot occur because an external
interrupt buffer has not been declared.

Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an
invalid real address.

148 VM/SP System Programmer's Guide

o

8

10

18

20

o

Protection Invalid parameter list address. The storage key of the spec­
ified address does not match the key of the user.

RECEIVE Function

RECEIVE Parameter List Format

1 2 3 4 5 6 7

IPPATHID \IPFLAGSI \ IPRCODE IPMSGID

IPTRGCLS IPBFADRI / IPRMMSGI

IPBFLNIF / IPRMMSG2 /////////////////////////////

//

IPBFLN2F /////////////////////////////

INPUTs to this function (built in the parameter list by the IUCV macro or by
the invoker):

IPBFADRI IPFLAGSI IPMSGID IPPATHID IPTRGCLS
IPBFLNI IPBFLNIF IPBFLN2F

OUTPUTs from this function returned in the parameter list:

IPBFLNI IPBFADRI IPMSGID IPRCODE IPTRGCLS
IPBFLN2 IPFLAGS 1 IPP ATHID IPRM~lSG 1 IPRMMSG2

Input flags for this function (set by the IUCV macro or by the invoker in
IPFLAGSl):

IPFGMCL

IPFGMID

IPFGPID

A message class identifier (TRGCLS) has been supplied in
the parameter list.

A message id has been supplied in the parameter list.

A path id has been supplied in the parameter list.

Output flags for this function (returned in IPFLAGS 1):

IPNORPY

IPPRTY

IPRMDATA

This is a one-way type message.

This is a priority message

The message data is in the IPRMMSGx fields of the
parameter list.

• Exceptions generated by this function (ABENDs generated for CP system
code):

Specification Parameter list not on a doubleword boundary.

Inter-User Communications Vehicle 149

o
8

10

18

20

o

Operation

Addressing

Protection

Invalid search flags. Message id has been specified without
path id and message class.

An external interrupt buffer has not been declared via the
DCLBFR function, or the invoker is not in supervisor
state. When the function is invoked by CP system code,
an operation exception cannot occur because an external
interrupt buffer has not been declared.

Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an
invalid real address.

Invalid buffer address.

Invalid parameter list address. The storage key of the spec­
ified address does not match the key of the user.

REJECT Function

REJECT Parameter List Format

1 2 3 4 5 6 7

IPPATHID IIPFLAGSI IIPRCODE IPMSGID

IPTRGCLS /////////////////////////////

//

//

//

INPUTs to this function (built in the parameter list by the lUCY macro or by
the invoker):

IPFLAGSI IPMSGID IPPATHID IPTRGCLS

• OUTPUTs from this function returned in the parameter list:

IPMSGID IPP ATHID IPRCODE IPTRGCLS

• Input flags for this function (set by the lUCY macro or by the invoker in
IPFLAGSl):

IPFGMCL A message class id has been supplied in the parameter list.

IPFGMID A message id has been supplied in the parameter list.

IPFGPID A path id has been supplied in the parameter list.

• Exceptions generated by this function (ABENDs generated for CP system
code):

150 VM/SP System Programmer's Guide

o
8

10

18

20

o

Specification

Operation

Addressing

Protection

Parameter list not on a doubleword boundary.

Invalid search flags. Message id has been specified without
path id and message class.

An external interrupt buffer has not been declared via the
DCLBFR function, or the invoker is not in supervisor
state. When the function is invoked by CP system code,
an operation exception cannot occur because an external
interrupt buffer has not been declared.

Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an
invalid real address.

Invalid parameter list address. The storage key of the spec­
ified address does not match the key of the user.

REPLY Function

REPLY Parameter List Format

1 2 3 4 5 6 7

IPPATHID IIPFLAGSI I IPRCODE IPMSGID

IPTRGCLS IPRMMSGI

IPRMMSG2 /////////////////////////////

//////////////////////////////// IPBFADR2

IPBFLN2F /////////////////////////////

INPUTs to this function (built in the parameter list by the IUCV macro or by
the invoker):

IPBFADR2 IPBFLN2 IPFLAGSI IPMSGID IPPATHID
IPTRGCLS IPBFLN2F IPRMMSG 1 IPRMMSG2

OUTPUTs from this function returned in the parameter list:

IPRCODE

Input flags for this function (set by the IUCV macro or by the invoker in
IPFLAGSl):

IPPRTY

IPRMDATA

This is a priority reply.

The message data is in the IPRMMSGx fields of the
parameter list.

• Exceptions generated by this function (ABENDs generated for CP system
code):

Inter-User Communications Vehicle 151

o

8

10

18

20

o

Specification

Operation

Addressing

Protection

Parameter list not on a doubleword boundary.

An external interrupt buffer has not been declared via the
DCLBFR function, or the invoker is not in supervisor
state. When the function is invoked by CP system code,
an operation exception cannot occur because an external
interrupt buffer has not been declared.

Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an
invalid real address.

Invalid buffer address.

Invalid parameter list address. The storage key of the spec­
ified address does not match the key of the user.

RESUME Function

RESUME Parameter List Format

1 2 3 4 5 6 7

IPPATHID IIPFLAG51 /IPRCODE I //////////////////////////////

//

IPU5ER

IPU5ER

//

• INPUTs to this function (built in the parameter list by the IUCV macro or by
the invoker):

IPFLAGS 1 IPP ATHID IPUSER

• OUTPUTs from this function returned in the parameter list:

IPRCODE

Input flags for this function (set by the IUCV macro or by the invoker in
IPFLAGSl):

IPALL Resume all paths for this virtual machine.

• Exceptions generated by this function (ABENDs generated for CP system
code):

Specification

Operation

Parameter list not on a doubleword boundary.

An external interrupt buffer has not been declared via the
DECLARE BUFFER function, or the invoker is not in

152 VM/SP System Programmer's Guide

,~ -

o

8

10

18

20

o

Addressing

Protection

supervisor state. When the function is invoked by CP sys­
tem code, an operation exception cannot occur because an
external interrupt buffer has not been declared.

Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an
invalid real address.

Invalid parameter list address. The storage key of the spec­
ified address does not match the key of the user.

RETRIEVE BUFFER Function

The Retrieve Buffer function does not take a parameter list.

Exceptions generated by this function (ABENDs generated for CP system
code):

Operation An external interrupt buffer has not been declared via the
DECLARE BUFFER function.

Invoker not in supervisor state.

SEND Function

SEND Parameter List Format

1 2 3 4 5 6 7

IPPATHID IIPFLAGSI /IPRCODE IPMSGID

IPTRGCLS IPBFADRI / IPRMMSGI

IPBFLNIF / IPRMMSG2 IPSRCCLS

IPMSGTAG IPBFADR2

IPBFLN2F //////////////////////////////

INPUTs to this function (built in the parameter list by the IUCV macro or by
the invoker):

IPBFADRI IPBFLNI IPPATHID IPBFLNIF IPRMMSGI
IPBFADR2 IPBFLN2 IPMSGTAG IPBFLN2F IPRMMSG2
IPTRGCLS IPFLAGS 1 IPSRCCLS

OUTPUTs from this function returned in the parameter list:

IPMSGID IPRCODE

Inter-User Communications Vehicle 153

o

Input flags for this function (set by the IUCV macro or by the invoker in
IPFLAGSl):

IPNORPY

IPPRTY

IPRMDATA

This is a one-way type message.

This is a priority message.

The message data is in the IPRMMSGx fields of the
parameter list.

Exceptions generated by this function (ABENDs generated for CP system
code):

Specification

Operation

Addressing

Protection

Parameter list not on a doubleword boundary.

An external interrupt buffer has not been declared via the
DECLARE BUFFER function, or the invoker is not in
supervisor state. When the function is invoked by CP sys­
tem code, an operation exception cannot occur because an
external interrupt buffer has not been declared.

Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an
invalid real address.

Invalid buffer address.

Invalid parameter list address. The storage key of the spec­
ified address does not match the key of the user.

SET CONTROL MASK Function

SETCMASK Parameter List Format

1 2 3 4 5 6 7

o IPCMASK I //
8 ///

10 ///

18 ///

20 ///

154 VM/SP System Programmer's Guide

INPUTs to this function (built in the parameter list by the IUCV macro or by
the invoker):

IPCMASK

OUTPUTs from this function returned in the parameter list:

NONE

o

8

10

18

20

o

The bits defined in the IPCMASK field are:

IPCLPC - X'80' - Enable for Type 01 - Pending connection

IPCLCC - X'40' - Enable for Type 02 - Connection complete

IPCLPS - X'20' - Enable for Type 03 - Path severed

IPCLPQ - X'lO' - Enable for Type 04 - Path quiesced

IPCLPR - X'08' - Enable for Type 05 - Path resumed

X'04' - Reserved (Should be set to zero)

X'02' - Reserved (Should be set to zero)

X'Ol' - Reserved (Should be set to zero)

Exceptions generated by this function (ABENDs generated for CP system
code):

Operation

Protection

An external interrupt buffer has not been declared via the
DECLARE BUFFER function.

Invoker not in supervisor state.

Invalid parameter list address. The storage key of the spec­
ified address does not match the key of the user.

SET MASK Function

SETMASK Parameter List Format

1 2 3 5 6 7

IPMASK I //
//

//

//

//

INPUTs to this function (built in the parameter list by the lUCY macro or by
the invoker):

IPMASK

OUTPUTs from this function returned in the parameter list:

NONE

Inter-User Communications Vehicle 155

o

8

10

18

20

o

Mask bits defined in the IPMASK field are:

IPSNDN - X'80' - Enable for nonpriority message interrupts.

IPSNDP - X'40' - Enable for priority message interrupts.

IPRPYN - X'20' - Enable for nonpriority reply interrupts.

IPRPYP - X'lO' - Enable for priority reply interrupts.

IPCTRL - X'08' - Enable for IUCV control interrupts.

X'04' - RESERVED (Should be set to zero)

X'02' - RESERVED (Should be set to zero)

X'Ol' - RESERVED (Should be set to zero)

• Exceptions generated by this function (ABENDs generated for CP system
code):

Operation

Protection

SEVER Function

An external interrupt buffer has not been declared via the
DCLBFR function.

Invoker not in supervisor state.

Invalid parameter list address. The storage key of the spec­
ified address does not match the key of the user.

SEVER Parameter List Format

1 2 3 4 5 6 7

IPPATHID IIPFLAGSI IIPRCODE1 //////////////////////////////

//

IPUSER

IPUSER

//

• INPUTs to this function (built in the parameter list by the IUCV macro or by
the invoker):

IPFLAGS 1 IPP ATHID IPUSER

• OUTPUTs from this function returned in the parameter list:

IPRCODE

156 VM/SP System Programmer's Guide

o

8

10

18

20

o

Input flags for this function (set by the lUCY macro or by the invoker in
IPFLAGSl):

IPALL Sever all paths for this virtual machine.

Exceptions generated by this function (ABENDs generated for CP system
code):

Specification

Operation

Addressing

Protection

Parameter list not on a doubleword boundary.

An external interrupt buffer has not been declared via the
DCLBFR function, or the invoker is not in supervisor
state. When the function is invoked by CP system code,
an operation exception cannot occur because an external
interrupt buffer has not been declared.

Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an
invalid real address.

Invalid parameter list address. The storage key of the spec­
ified address does not match the key of the user.

TEST COMPLETION Function

TESTCMPL Parameter List Format

1 2 3 4 5 6 7

IPPATHID IPFlAGSl /IPRCODE IPMSGID

IPAUDIT //////////////// IPR~H1SGI

IPRMt1SG2 IPSRCCLS

IPNSGTAG //////////////////////////////

IPBFlN2F //////////////////////////////

• INPUTs to this function (built in the parameter list by the lUCY macro or by
the invoker):

IPFLAGSI IPMSGID IPPATHID IPSRCCLS

OUTPUTs from this function returned in the parameter list:

IPAUDIT IPFLAGSI IPMSGTAG IPRCODE
IPBFLN2 IPMSGID IPP ATHID IPBFLN2F
IPSRCCLS IPRMMSGI IPRMMSG2

Input flags for this function (set by the lUCY macro or by the invoker in
IPFLAGSl):

IPFGMCL A message class has been supplied in the parameter list.

Inter-User Communications Vehicle 157

IPFGrvHD A message id has been supplied in the parameter list.

IPFGPID A path id has been supplied in the parameter list.

Output flags for this function (returned in IPFLAGS 1):

IPNORPY

IPPRTY

IPRMDATA

This is a one-way message.

This is. a priority message.

The message data is in the IPRMMSGx fields of the
parameter list.

Exceptions generated by this function (ABENDs generated for CP system
code):

Specification

Operation

Addressing

Protection

Parameter list not on a doubleword boundary.

Invalid search flags. Message id has been specified without
path id and message class.

An external interrupt buffer has not been declared via the
DCLBFR function, or the invoker is not in supervisor
state. When the function is invoked by CP system code,
an operation exception cannot occur because an external
interrupt buffer has not been declared.

Invalid parameter list address. The specified address is
outside the virtual machine or, for CP system code, is an
invalid real address.

Invalid parameter list address. The storage key of the spec­
ified address does not match the key of the user.

TEST MESSAGE Function

The TEST MESSAGE function does not use a parameter list.

Exceptions generated by this function:

Operation Buffer has not been declared via the DCLBFR function.

Invoker not in supervisor state.

158 VM/SP System Programmer's Guide

IUCV External Interrupt Formats

The following figures represent the content and format of the data presented on
each of the lUCY external interrupts.

External Interrupt for Pending Connection

o

8

10

18

20

o 1

IPPATHID

2

When a virtual machine or CP system service invokes the CONNECT function, an
external interrupt is reflected to the target virtual machine or passed by the lUCY
communications processor to the CONNECT entry point of the requested CP sys­
tem service.

The format and content of the external interrupt data is:

3 4 5 6 7

IIPFLAGSI !IPTYPE I IPMSGLIM IIPFCNCD ! //////

IPvtlID

IPUSER

IPUSER

///

Figure 19. Pending Connection External Interrupt Format

External Interrupt for Complete Connection

o

8

10

18

20

o 1

IPPATHID

2

When CONNECT invoked by a virtual machine or CP system service has been
responded to by the target virtual machine or CP system service, the external inter­
rupt data has the following format:

3 4 5 6 7

IIPFLAGSI !IPTYPE ! IPMSGLIM I ////////////
//

IPUSER

IPUSER

//

Figure 20. Connection Complete External Interrupt Format

External Interrupt for Pending Messages

When a message is pending for a communicator, the external interrupt data has the
following format. Note that the format of this data is the same as the output of the
DESCRIBE function.

Inter-User Communications Vehicle 159

o

8

10

18

20

o 1 2 3 4 5 6 7

IPPATHID IIPFLAGSI I IPTYPE IPMSGID

IPTRGCLS I PR~1~1SGI

IPBFLN1F / IPRMMSG2 //////////////////////////////

//

IPBFLN2F //////////////////////////////

Figure 21. Incoming Message External Interrupt Format

External Interrupt for Complete Messages

o

8

10

18

20

o 1

IPPATHID

IPAUDIT

2

When a message is complete for a communicator, the external interrupt data has
the following format. Note that the format of this data is the same as the output of
the TEST COMPLETION function.

3 4 5 6 7

IPFLAGSI I IPTYPE IPMSGID

///////////////// IPRMMSGI

IpRr1MSG2 IPSRCCLS

IPi'1SGTAG /////////////////////////////

IPBFLN2F /////////////////////////////

Figure 22. Message Complete External Interrupt Format

External Interrupt from SEVER, QUIESCE, RESUME

o

8

10

18

20

o 1

IPPATHID

2

When a SEVER, QUIESCE, or RESUME function has been invoked for a path to
a virtual machine or CP system service, an external interrupt is generated. No
action need be taken by a virtual machine or CP system service on a QUIESCE or
RESUME. The interrupt is reflected so that the status of the path can be recorded.

When the SEVER function has been invoked by the communicating partner, this
communicator must also invoke SEVER.

3 4 5 6 7

I /////// \IPTYPE I //////////////////////////////

//

IPUSER

IPUSER

//

Figure 23. SEVER, QUIESCE, RESUME External Interrupt Format

160 VM/SP System Programmer's Guide .

Parameter List and External Interrupt Fields

The following paragraphs define the fields of the IUCV parameter lists and
external interrupts. Not every field has meaning for every function. This section
explains, for each field, the functions for which this field is valid, and the meaning
or use of the field.

IPAUDIT (Output from PURGE, TESTCMPL)

(Reflected in the message-complete IUCV external interrupt)

IUCV returns the audit trail of the message in this field. If no message
was found, this field is not modified. One output of the TEST COM­
PLETION function, occurs when this field contains any nonzero bits.
In this case, a condition code of 3 is set. This indicates that lUCY has
stored a nonzero audit trail.

The meanings of the bits in the audit trail are:

IPADRPLE
IPADSNPX
IPADSNAX
IPADANPX
IPADANAX
IPADRJCT
IPADPRMD

X'8000'
X'4000'
X'2000'
X'lOOO'
X'0800'
X'0400'
X'0200'

Reply too long for buffer
Protection exception on send buffer
Addressing exception on send buffer
Protection exception on answer buffer
Addressing exception on answer buffer
Message was rejected
Reply data was specified using DAT A=PRMMSG
and originator did not allow this option.

IPADRCPX
IPADRCAX
IPADRPPX
IPADRPAX
IPADSVRD

X'OlOO'
X'0080'
X'0040'
X'0020'
X'OOlO'
X'0008'
X'0004'
X'0002'
X'OOOl'

Reserved
Protection exception on receive buffer
Addressing exception on receive buffer
Protection exception on reply buffer
Addressing exception on reply buffer
Path was severed
Reserved
Reserved
Reserved

IPBFADRI (Input to DCLBFR, RECEIVE, SEND)

(Output from RECEIVE)

This field specifies the address of the area to contain the text of the
message or the area to be used for storing IUCV external interrupt
information.

As input to SEND, this field identifies the area from which IUCV
takes the message text.

As input to RECEIVE, this field identifies the area into which IUCV
places the message text.

As input to DCLBFR, this field identifies the area into which lUCY
stores information concerning an IUCV external interrupt.

Inter-User Communications Vehicle 161

The contents of this field are updated by the RECEIVE function.
When the function is finished, the address has been increased by the
length of the data received.

IPBFADR2 (Input to REPLY, SEND)

IPBFLNI

IPBFLN2

162 VM/SP System Programmer's Guide

(Output from REPLY)

This field specifies the address of the area to contain the reply text of
the message.

As input to SEND, this field identifies the area into which IUCV
places the reply text.

As input to REPLY, this field identifies the area from which IUCV
takes the reply text.

The REPLY function updates the contents of this field. REPLY
increases the buffer address by the length of the REPLY moved.

IPBFLNIF (Input to RECEIVE, SEND)

(Output from DESCRIBE, RECEIVE)

(Reflected in the pending-message IUCV external interrupt)

As an input, this field specifies the length of the input buffer
(IPBFADRI field). The label IPBFLNI is used by the IUCV macro
whenever a halfword value is desired, and IPBFLNIF is used whenev­
er a fullword value is desired. The high-order halfword of the
IPBFLNIF field is cleared to zeros by the IUCV macro when
halfword values are desired. If the macro is not used, it is the user's
responsibility to clear this field when using halfword lengths.

As an output, this field indicates the length of the message as follows:

For DESCRIBE, IUCV stores the actual length of the message in
this field.

For RECEIVE, if the buffer was exactly the correct length, IUCV
stores a zero in this field. If the buffer was too long, IUCV stores
the number of bytes remaining in the buffer (that is, the amount
that the buffer exceeded the length of the data) in this field;
IUCV sets a return code of O. If the buffer was too short, IUCV
stores the residual count in this field (that is, the number of bytes
remaining in the message that would not fit into the buffer) and
IUCV sets a nonzero return code.

When an external interrupt occurs, this field contains the actual length
of the message.

IPBFLN2F (Input to REPLY, SEND)

(Output from DESCRIBE, RECEIVE, REPLY, TESTCMPL)

(Reflected in these IUCV external interrupts: pending message, mes­
sage complete.)

As an input, this field specifies the length of the input buffer
(IPBFADR2 field). The label IPBFLN2 is used by the IUCV macro
whenever a halfword value is desired, and IPBFLN2F is used whenev­
er a fullword value is desired. The high-order half word of the
IPBFLN2F field is cleared to zeros by the IUCV macro when
halfword values are desired. If the macro is not used, it is the user's
responsibility to clear this field when using halfword lengths.

As an output, this field indicates the length of the message as follows:

For DESCRIBE, IUCV stores the actual length of the reply area
in this field.

For RECEIVE, IUCV stores the actual length of the reply area in
this field.

For REPLY, if the buffer was exactly the correct length, IUCV
stores a zero in this field. If the buffer was too long, IUCV stores
the number of bytes remaining in the buffer (the amount that the
buffer exceeded the length of the data) in this field and IUCV sets
a return code of O. If the buffer was too short, the IUCV stores
the residual count in this field (that is, the number of bytes
remaining in the message that would not fit into the buffer).

For TEST COMPLETION, if the buffer was exactly the correct
length, IUCV stores a zero in this field. If the buffer was too
long, IUCV stores the number of bytes remaining in the buffer
(the amount that the buffer exceeded the length of the data) in
this field and IUCV sets a return code of O. If the buffer was too
short, IUCV stores the residual count in this field (the number of
bytes remaining in the message that would not fit into the buffer)
and sets the IP ADRPLE bit in the audit trail.

On an external interrupt, this field contains the actual length of the
reply or reply area.

For a complete message external interrupt, if the buffer was exactly
the correct length, IUCV stores a zero in this field. If the buffer was
too long, IUCV stores the number of bytes remaining in the buffer
(the amount that the buffer exceeded the length of the data) in this
field and IUCV sets a return code of O. If the buffer was too short,
IUCV stores a residual count in this field (that is, the number of bytes
remaining in the message that would not fit into the buffer) and sets
the IP ADRPLE bit in the audit trail.

IPFCNCD (Input to CONNECT)

(Reflected in the pending-connection IUCV external interrupt.)

As an input, this field indicates which CP system service is invoking
the CONNECT function. Each supported CP service is identified by

Inter-User Communications Vehicle 163

a one-byte numerical code. VM/SP presently supports IUCV com­
munication for only one CP service, SNA virtual console communi­
cation services. SNA has a code of zero.

On an external interrupt, this field is valid only when the IUCV func­
tion is invoked from CP system code. (The IPVMID field contains
'SYSTEM'.)

IPFLAGSI (Input to ACCEPT, CONNECT, PURGE, QUIESCE, RECEIVE,
REJECT, REPLY, RESUME, SEND, SEVER, TESTCMPL)

(Output from ACCEPT, CONNECT, DESCRIBE, SEND,
RECEIVE, REPLY, PURGE, TESTCMPL)

(Reflected in these IUCV external interrupts: pending connection,
connection complete, pending message, message complete.)

As an input, this field specifies options for the function requested. As
output or on an external interrupt, this field returns specific inform a-

. tion about the message or connection. Each bit is treated separately.

Bits not defined as input for a particular function are reserved for that
function and should be set to zero.

IPRMDATA (X'80')

(Input to ACCEPT, CONNECT, SEND, REPLY)

(Output from DESCRIBE, RECEIVE, TESTCMPL)

As an input, or a connection-pending or connection-complete external
interrupt, this bit set to 1 indicates the communicator is prepared to
handle messages using the DAT A=PRMMSG option.

When used with a SEND, a REPLY, a message-pending external
interrupt, or message-complete external interrupt, this bit set to 1 indi­
cates that the buffer/parmlist contains the message data in the
IPRMMSGx fields.

IPFGMCL (X'OI ')

164 VM/SP System Programmer's Guide

(Input to PURGE, RECEIVE, REJECT, TESTCMPL)

(Output from DESCRIBE, RECEIVE)

As an input, .this bit indicates that a message class (source message
class for PURGE and TESTCMPL, target message class for
RECEIVE and REJECT) has been specified in field IPSRCCLS or
IPTRGCLS. This bit is set by the IUCV macro when the SRCCLS=
or TRGGCLS= parameter is specified on the macro.

IUCV sets this bit to 1 as output from the DESCRIBE function so the
resulting parameter list is valid input to the next function (normally
RECEIVE or REJECT).

When only part of the message data could be received, IUCV sets this
bit to 1 as output from the RECEIVE function. IUCV sets this bit so
that the resulting parameter list is valid input to a subsequent
RECEIVE.

IPFGPID (X'02')

(Input to PURGE, RECEIVE, REJECT, TESTCMPL)

(Output from DESCRIBE, RECEIVE)

As an input, this bit indicates that a path ID has been specified in field
IPPATHID. This bit is set by the IUCV macro when the PATHID=
parameter is specified on the macro.

IUCV sets this bit to 1 as output from the DESCRIBE function so the
resulting parameter list is valid input to the next function (normally
RECEIVE OR REJECT).

IUCV sets this bit to 1 as output from the RECEIVE function when
only part of the message data could be received. IUCV sets this bit so
that the resulting parameter list is valid input to a subsequent
RECEIVE.

IPFGMID (X'04')

(Input to PURGE, RECEIVE, REJECT, TESTCMPL)

(Output from DESCRIBE, RECEIVE)

As an input, this bit indicates that a message id has been specified in
field IPMSGID. This bit is set by the IUCV macro when the
MSGID= parameter is specified on the macro.

IUCV sets this bit to 1 as output from the DESCRIBE function so the
resulting parameter list is valid input to the next function (normally
RECEIVE or REJECT).

When only part of the message data could be received, IUCV sets this
bit to 1 as output from the RECEIVE function. IUCV sets this bit so
that the resulting parameter list is valid input to a subsequent
RECEIVE.

IPNORPY (X' 10')

(Input to SEND)

(Output from DESCRIBE, PURGE, RECEIVE)

(Reflected in the pending-message IUCV external interrupt.)

As an input, this bit indicates, when set to one, that this is a one-way
transaction. When the target invokes the RECEIVE function for this
message, IUCV queues the MSGBLOK representing this message on
the source communicator's reply queue. No reply by the target is

Inter-User Communications Vehicle 165

IPPRTY

allowed. If this bit is zero, it indicates a two-way transaction. The
message is queued on the source's reply queue only when the target
invokes the REPLY function for this message.

As an output or on an external interrupt, this bit indicates, when set to
one, that this message does not take a reply.

(X'20')

(Input to ACCEPT, CONNECT, REPLY, SEND)

(Output from DESCRIBE, PURGE, RECEIVE, TESTCMPL)

(Reflected in these IUCV external interrupts: pending connection,
pending message, message complete.)

As an input to CONNECT, this bit indicates, when set to one, that the
source wishes to establish a path that can handle priority communi­
cations. When invoked from a virtual machine, priority must also be
authorized in the IUCV directory control statement. When invoked
from CP system code, this bit is always set to one.

As an input to SEND and REPLY, this bit indicates, when set to one,
that this message or reply, is a priority message or reply. If this path
was established to handle priority communications, the message is
handled as a priority message. If the path cannot handle priority mes­
sages, IUCV generates a nonzero return code.

As an output or on an external interrupt for pending message or mes­
sage complete, this bit indicates that the message is a priority message.

IPQUSCE (X'40')

IPALL

166 VM/SP System Programmer's Guide

(Input to ACCEPT, CONNECT)

(Reflected in these IUCV external interrupts: pending connection,
connection complete.)

As an input, this bit indicates, when set to one, that the communicator
wishes to establish a quiesced path. The other communicator is not
able to send messages on a quiesced path. The path can be restored to
full communication capability by invoking the RESUME function.

On an external interrupt, this bit indicates, when set to one, that the
path is quiesced. The path must be resumed by the communicating
partner before messages can be initiated by this user.

(X'80')

(Input to QUIESCE, RESUME, SEVER)

When this bit is 1, IUCV performs the specified function on all paths
for this virtual machine.

If this bit is specified, IUCV ignores the IPP ATHID field.
,/0-

IPMASK (Input to SETMASK)

IPSNDN
IPSNDP
IPRPYN
IPRPYP
IPCTRL

This field specifies the mask byte to determine which, if any, of the
IUCV interrupts a virtual machine is enabled for.

The SETMASK function cannot be invoked from CP system code.

The bits defined for IUCV are:

X'80'
X'40'
X'20'
X'10'
X'08'

Enable for nonpriority messages
Enable for priority messages
Enable for nonpriority replies
Enable for priority replies
Enable for IUCV control interrupts (CON­
NECT, SEVER, ACCEPT, QUIESCE,
RESUME)

IPMSGID (Input to PURGE, RECEIVE, REJECT, REPLY, TESTCMPL)

(Output from DESCRIBE, PURGE, RECEIVE, REJECT, SEND,
TESTCMPL)

(Reflected in these IUCV external interrupts: pending message, mes­
sage complete.)

As an input, this field specifies the message identifier of the message
to search for. The message identifier uniquely identifies a particular
message. It is generated by IUCV and returned by the SEND function
when the message is created.

This field is an optional input to the functions listed above. When this
field is specified, the path id and message class (IPSRCCLS for
PURGE and TESTCMPL, IPTRGCLS for RECEIVE, REJECT and
REPLY) must also be supplied.

When this field is used for the above functions, the bit IPFGMID field
of IPFLAGS 1 must be set to 1.

As an output or on an external interrupt, this field indicates the mes­
sage id of the message associated with this function or interrupt.

IPMSGLIM (Input to ACCEPT, CONNECT)

(Output from ACCEPT, CONNECT)

(Reflected in the pending-connection IUCV external interrupt.)

As an input, this field specifies the limit of outstanding messages to be
allowed on the path established by this CONNECT. A message limit
can also be specified on the IUCV directory control statement. If
message limit has been specified in the directory for this user, you may
not specify a value larger than the directory specification with this
parameter of the IUCV macro.

Inter-User Communications Vehicle 167

The maximum value that can be specified is 255. For CP system code,
there is no overriding directory value. If this field contains a zero,
IUCV assumes a default of 10.

As an output or on an external interrupt, this field contains the mes­
sage limit for this path.

IPMSGTAG (Input to SEND)

(Output from PURGE, TESTCMPL)

(Reflected in the message-complete IUCV external interrupt.)

This field specifies the tag data of the message created by invoking the
SEND function. IUCV returns the message tag when the message
completes. The source communicator can use this field to tie an
incoming message-complete interrupt or output of TESTCMPL to the
original SEND request.

As an output or on an external interrupt, this field indicates the mes­
sage tag of the message associated with this function or interrupt.

IPPATHID (Input to ACCEPT, PURGE, QUIESCE, RECEIVE, REJECT,
REPLY, RESUME, SEND, SEVER, TESTCMPL)

168 VM/SP System Programmer's Guide

(Output from CONNECT, DESCRIBE, PURGE, RECEIVE,
REJECT, TESTCMPL)

(Reflected in these IUCV external interrupts: pending connection,
connection complete, pending message, message complete, sever, qui­
esce, resume.)

This field specifies the path identifiers associated with a message.
IUCV assigns a path identification and returns the value in the CON­
NECT parameter list. All further communications on a path must
specify the P ATHID that was returned from CONNECT. P A THIDs
are sequential from X'OOOO' to the maximum connections allowed for
this virtual machine. As paths are severed, IU CV reuses the vacated
PATHIDs.

If you specify MSGID on the PURGE, RECEIVE, REJECT, or
TESTCMPL functions, IUCV requires that you specify PATHID and
message class (IPSRCCLS or IPTRGCLS, as appropriate).

This field is ignored if the IP ALL bit in IPFLAGS 1 is set to one.

When this field is used on the PURGE, RECEIVE, REJECT, and
TESTCMPL functions, the IPFGPID bit must be set to 1 in the
IPFLAGSI field. This bit is set by the IUCV macro when the
P ATHID= function is specified on the macro.

As an output or on an external interrupt, this field indicates the pathid
of the message associated with this function or interrupt.

IPRCODE (Output from ACCEPT, CONNECT, DCLBFR, DESCRIBE,
PURGE, QUIESCE RECEIVE, REJECT, REPLY, RESUME,
SEND, SEVER, TESTCMPL)

IUCV places a value in this field only when an error is encountered in
processing a function. The contents of this field are function depend­
ent. The possible values for this field are listed in Figure 24 on page
171, "IUCV Return Codes and Completion Codes."

Only one error is returned from any function. IUCV terminates the
function when the first error is encountered.

IPRMMSGx (Input to SEND, REPLY)

(Output from DESCRIBE, RECEIVE, TESTCMPL)

(Reflected in these IUCV external interrupts: message-pending, mes­
sage complete.)

For SEND and REPLY, these fields specify the parameter list data.
IPRMMSG is two full words in length, shown as IPRMMSG 1 and
IPRMMSG2.

IPSRCCLS (Input to PURGE, SEND, TESTCMPL)

(Output from PURGE, TESTCMPL)

(Reflected in the message-complete IUCV external interrupt.)

This field specifies the source message class associated with a message.

For PURGE and TESTCMPL, this field optionally specifies the
source message class of the message to be purged or completed. If
omitted, IUCV does not use the source message class in the search for
the message.

For SEND, this field specifies the source message class that IUCV
stores in the MSGBLOK that represents the message.

As an input to the PURGE and TESTCMPL functions, the IPFGMCL
bit must be set in the IPFLAGS 1 field. This bit is set by the IUCV
macro when the SRCCLS= parameter is specified on the macro.

As an output or on an external interrupt, this field indicates the source
message class of the message associated with this function or interrupt.

IPTRGCLS (Input to RECEIVE, REJECT, REPLY, SEND)

(Output from DESCRIBE, RECEIVE, REJECT)

(Reflected in the pending-message IUCV external interrupt.)

This field specifies the target message class associated with this mes­
sage.

Inter-User Communications Vehicle 169

IPTYPE

IPUSER

170 VM/SP System Programmer's Guide

For RECEIVE and REJECT, this field optionally specifies the target
message class of the message to be received or rejected. If omitted,
IUCV does not use the target message class in the search for the mes­
sage.

For SEND, this field specifies the target message class that IUCV
stores in the MSGBLOK representing the message.

For REPLY, this field specifies the target message class of the mes­
sage being responded to.

As input to the RECEIVE or REJECT functions, the IPFGMCL bit
in the IPFLAGSI field must be set to 1. This bit is set by the IUCV
macro when the TRGCLS= parameter is specified on the macro.

As an output or on an external interrupt, this field indicates the target
message class of the message associated with this function or interrupt.

(Reflected in these IUCV external interrupts: pending connection,
connection complete, pending message, message complete, sever,
quiesce, resume.)

This field indicates the type of external interrupt that is being
reflected. The values that are found in this field and their meanings
are:

01 - Pending connection

02 - Connection complete

03 - Path has been severed

04 - Path has been quiesced

05 - Path has been resumed

06 - Pending priority message completion

07 - Pending nonpriority message completion

08 - Pending priority message

09 - Pending nonpriority message

(Input to ACCEPT, CONNECT, QUIESCE, RESUME, SEVER)

(Reflected in these IUCV external interrupts: pending connection,
connection complete, sever, quiesce, resume.)

As an input, this field specifies the 16 byte user data IUCV reflects to
the target.

On an external interrupt, this field contains the data specified by the
communicating partner.

IUCV
FUNCTION

ACCEPT

CONNECT

DECLARE
BUFFER

DESCRIBE

IPVMID (Input to CONNECT)

(Reflected in the pending connection IUCV external interrupt.)

As an input, this field specifies the eight-character userid of the virtual
machine or CP system service to which you want to establish this path.

On an external interrupt, this field contains the ID of the virtual
machine that issued the CONNECT. This field contains 'SYSTEM' if
the CONNECT was issued by CP system code.

RETURN CODES CONDITION CODES
(Returned in IPRCODE) CC=

00 - Normal return 0- Normal completion-
01 - Invalid path id - not a external interrupt

pending connection queued to notify
18 - Value in IPMSGLIM originator

exceeds 255 1 - Nonzero value stored at
20 - Connection cannot be IPRCODE

completed - originator
has invoked SEVER

00 - Normal return 0- Normal completion-
11 - Target communicator is partial connection

not logged on established. External
12 - Target communicator has interrupt queued to

not invoked the DECLARE notify target of pending
BUFFER function connection

13 - Maximum number of con- I - Nonzero value stored at
nections for this IPRCODE
communicator exceeded

14 - Maximum number of con-
nections for target
exceeded

15 - No authorization found
16 - Invalid CP system

service name
17 - Invalid function code

in IPFCNCD
18 - Value in IPMSGLIM

exceeds 255

00 - Normal return 0- Normal completion
1 - Nonzero value stored

19 - A buffer has been at IPRCODE
previously declared 3 - Errors encountered in

reading directory

00 - Normal return o - Normal completion
2 - No message found

Figure 24 (Part 1 of 3). IUCV Return Codes and Completion Codes

Inter-User Communications Vehicle 171

IUCV RETURN CODES CONDITION CODES
FUNCTION (Returned in IPRCODE) CC=

PURGE 00 - Normal return 0- Normal completion
01 - Invalid path id 1 - Nonzero value stored

) 08 - Message found but at IPRCODE
message class invalid 2 - No message found

QUERY None o - Normal completion
3 - Errors were encountered

reading directory

QUIESCE 00 - Normal return 0- Normal completion
01 - Invalid path id 1 - Nonzero value stored at

specified IPRCODE

RECEIVE 00 - Normal return o - Normal completion
01 - Invalid path id
05 - Receive buffer too short 1 - Nonzero value stored at

to contain message IPRCODE
06 - Fetch protection excep-

tion on send buffer 2 - No message found
07 - Addressing exception on

send buffer
08 - Message id found but

message class or path id
invalid

09 - Message has been purged
10 - Message length is

negative

REJECT 00 - Normal return o - Normal completion
01 - Invalid path id
08 - Message id found but 1 - Return code stored

message class or path
id invalid 2 - No message found

REPLY 00 - Normal return o - Normal completion
01 - Invalid path id
05 - Answer buffer too short 1 - Nonzero value stored in

to contain message IPRCODE
06 - Storage protection ex-

ception on answer buffer 2 - No message found
07 - Addressing exception on

answer buffer
08 - Message id found but

message class or path
id invalid

09 - Message has been purged
10 - Message length is

negative
21 - Parameter list data not

allowed on this path

Figure 24 (Part 2 of 3). IUCV Return Codes and Completion Codes

172 VM/SP System Programmer's Guide

IUCV RETURN CODES CONDITION CODES
FUNCTION (Rcturncd in IPRCODE) CC=

RESUME 00 - Normal return 0- Normal completion
01 - Invalid path id 1 - Nonzero value stored at

specified IPRCODE

RETRIEVE None 0- Normal completion
BUFFER

SEND 00 - Normal return 0- Normal completion
01 - Invalid path id
02 - Path quiesced - no sends 1 - Nonzero value stored at

allowed IPRCODE
03 - Message limit exceeded
04 - Priority message not

~llowed on this path
10 - Message length is

negative
21 - Parameter list data not

allowed on this path

SET MASK 00 - Normal return 0- Normal completion

SET CONTROL 00 - Normal return 0- Normal completion
MASK

SEVER 00 - Normal return 0- Normal completion
01 - Invalid path id 1 - Nonzero value stored at

specified IPRCODE

TEST 00 - Normal return 0- Normal completion
COMPLETION 01 - Invalid path id 1 - Nonzero value stored at

08 - Message id found but IPRCODE
message class or path 2 - No message found
id invalid 3 - Nonzero audit trail

stored

TEST None 1 - Messages queued on the
MESSAGE Send queue

2 - Messages queued on the
Reply queue

3 - Both messages and
replies are queued

Figure 24 (Part 3 of 3). IUCV Return Codes and Completion Codes

IUCV Trace Table Entry Formats

ACCEPT, CONNECT, DESCRIBE, PURGE, QUIESCE, RECEIVE, REJECT,
REPLY, RESUME, SEND, SEVER, TESTCMPL

o
8

o 1

X'15'

RCODE

2 3

FCODE I PATH

MSGBLOK

4 5 6 7

IUCVBLOK

FLAGS I INSTRUCTION

Inter-User Communications Vehicle 173

o

8

o

8

o

8

o

8

o

o

o

o

DCLBFR, RTRVBFR

1 2 3 4 S

X'IS' FCODE I /////////////
RCODE BUFFER FLAGS I

QUERY

1 2 3 4 S

X'IS' I FCODE PARMSIZE

///////////// MAXCONN ///// I

SETMASK, SETCMASK

1 2 3 4 S

X'IS' FCODE I MASK I /////
RCODE ////////////////////// FLAGS I

TESTMSG

1 2 3 4 S

X'IS' I FCODE I CCODE I /////1

///////////////////////////////////// I

6 7

IUCVBLOK

INSTRUCTION

6 7

IUCVBLOK

INSTRUCTION

6 7

IUCVBLOK

INSTRUCTION

6 7

IUCVBLOK

INSTRUCTION

Trace Table Entry Field Definitions

This section explains, for each IUCV trace table field, the functions for which this
field is valid, and the meaning of the field.

BUFFER

CCODE

FCODE

174 VM/SP System Programmer's Guide

(Used on DCLBFR, RTRVBFR)

This field contains the virtual buffer address specified by the
user for IUCV external interrupt information.

(U sed on TESTMSG)

This field contains the condition code returned to the invoker
of the TEST MESSAGE function if a message was pending at
the time the TEST MESSAGE function was issued. If no mes­
sage is pending when the TEST MESSAGE is issued, this field
contains zero. Bits 6 and 7 of this CCODE field are used for
the condition code;

(Used on all entries)

FLAGS

This field indicates the exact function executed. One of the
following function codes is found in this field.

X'OO' - QUERY X'09' - PURGE
X' 01 ' - TESTMSG X'OA' - ACCEPT
X'02' - RTRVBFR X'OB' - CONNECT
X'03' - DESCRIBE X'OC' - DCLBFR
X'04' - SEND X'OD' - QUIESCE
X'05' - RECEIVE X'OE' - RESUME
X'06' - REPLY X'OF' - SEVER
X'07' - TESTCMPL X' 10' - SETMASK
x'08' - REJECT X' 11 ' - SETCMASK

(Used on ACCEPT, CONNECT, DCLBFR, DESCRIBE,
PURGE, QUIESCE, RECEIVE, REJECT, REPLY,
RESUME, SEND, SETCMASK, SETMASK, SEVER,
TESTCMPL)

This field is a copy of the input flags specified by the user in
the field IPFLAGS 1 of the parameter list. Note that the use of
these flags varies by function and that the user may have set
flags that are not used by the function.

INSTRUCTION (Used on all entries)

IUCVBLOK

MASK

MAXCONN

MSGBLOK

PARMSIZE

This field contains the address of the instruction following
where the function was invoked. This address is a real address
if the IPCPENTY (X'08') bit in the field FLAGS is set to one.
Otherwise, the address is an address in a virtual machine.

(Used on all entries)

This field contains the address of the IUCVBLOK associated
with the invoker. For the QUERY function, this field may be
zero if no IUCVBLOK currently exists for the invoker. For
the DECLARE BUFFER function, this field contains the
address of the IUCVBLOK created by this function.

(Used on SETMASK, SETCMASK)

This field contains a copy of the mask field that was specified
by the virtual machine.

(Used on QUERY)

This field contains the maximum number of connections
allowed by the virtual machine issuing this request.

(Used on DESCRIBE, PURGE, RECEIVE, REJECT,
REPLY, SEND, TESTCMPL)

This field contains the real address of the MSGBLOK proc­
essed by this request.

(Used on QUERY)

Inter-User Communications Vehicle 175

PATH

RCODE

176 VM/SP System Programmer's Guide

This field contains the size of IUCV parameter list returned to
the invoker of the QUERY function.

(Used on ACCEPT, CONNECT, DESCRIBE, PURGE,
QUIESCE, RECEIVE, REJECT, REPLY, RESUME, SEND,
SEVER, TESTCMPL)

This field contains the path id of the path associated with this
request. For the CONNECT function, this is the path id asso­
ciated with the path being created. For the other functions, this
is the path id used to process the request.

(Used on ACCEPT, CONNECT, DCLBFR, DESCRIBE,
PURGE, QUIESCE, RECEIVE, REJECT, REPLY,
RESUME, SEND, SETCMASK, SETMASK, SEVER,
TESTCMPL)

This field contains the code returned in the field IPRCODE of
the parameter list. If this return code field is non-zero, only
the TYPE, FCODE, INSTRUCTION, FLAGS, and
IUCVBLOK fields are valid. The other fields may be invalid
due to the nature of the return code. Invalid fields always con­
tain zeroes.

SNA Virtual Console Communication Services

System Structure

SNA Virtual Console Support provides full VM/SP console capabilities to terminal
operators on SNA terminal devices and allows the VM/SP user to use SNA termi­
nals as virtual operator consoles.

SNA Virtual Console Communications Services support the following console func­
tions:

• CP / CMS command processing capabilities

System product or CMS editor processing mode

Full screen support for 3270 type terminal devices

This support is provided through a virtual service machine (VSM) and the SNA
Console Communications Services (SNA CCS) in CPo The VM/VTAM Commu­
nications Network Application (VM/VCNA) program product (program number
5735-RC5) running in the virtual service machine acts as the interface between CP
and the SNA network. Similarly, the SNA Console Communications Services pro­
vides the necessary interface between the existing CP system's console services and
the VM/VTAM Communications Network Application (VM/VCNA).

The screen management services are divided between the VM/VT AM Communi­
cations Network Application (VM/VCNA) and the SNA Console Communi­
cations Services (SNA CCS). VM/VCNA is responsible for the physical screen
management and therefore, the device dependent characteristics. Thus,
VM/VCNA handles such things as screen size and redisplay of the input line at the
terminal. SNA CCS is responsible for logical screen management and thus remains
relatively device independent. SNA CCS also passes the terminal input to CP and
reflects status and actions to and from the rest of the CP system.

Figure 25 on page 178 illustrates a VM/SP system with the SNA virtual console
support. The VT AM service machine (VSM) consists of an SCP, either VS 1 or
DOS with External Interrupt Services (EIS), VTAM, and VM/VCNA.

SNA Virtual Console Communication Services 177

Guest
Virtual
Machine

A

OP SYS
or

Cr1S

Guest
Virtual
Machine

B

OP SYS
or

CMS

(3)

VT Ar'l Serv ice
Machine

I ACF/
VM/VCNA(2) VTAM

X
(11)

(10)
~*--~--------X----

E I OP SYS
I DOS

or (12)
S VS/1 I

r------x----~------X--~--------4-~--*~---------X---

(5)1(6) I 1 I
(9) (1)

r---X X---- r-*--------~
CP CONSOLE ----*

SERVICES I
~(4)-* IUCV

SNA CONSOLE (7) (3) (8)
COMMUNICATIONS * *
SERVICES (SNA CCS) I I

'--------1

CP

~--X----

X EXISTING INTERFACE
* - SNA VIRTUAL CONSOLE

SUPPORT INTERFACE

Figure 25. Virtual Console Support in CP

LUI
LU2

370X I -wNCP
X --X
X

PEP

1. SNA CCS supports the SNA terminals (LUI, LU2) as virtual consoles. These
SNA terminals are attached to a 370X dedicated to the VT AM service
machine. Data entered at the terminal goes through its normal path of the
NCP, CP, the SCP and VT AM. The guest virtual machine interface to CP is
the S/370 architecture provided by virtual machine simulation.

2. VM/VCNA interfaces to VT AM via the standard Application Program Inter­
face (API) in order to perform physical I/O to/from the SNA devices.

3. The terminal input is communicated to the SNA CCS via the Inter-User Com­
munication Vehicle (lUCV) SEND, RECEIVE, and REPLY protocols.

4. SNA CCS receives the interface control block (Work Element Block) with the
terminal input data. It interprets the control information that describes the
screen environment and the user's actions, and determines the action to be
reflected to CPo SNA CCS edits the input line, and passes it to CP along with
the action required.

5. SNA CCS either processes the line or sends it to the guest virtual machine for
processing.

6. Guest virtual machines request console I/O via the Start I/O interface (SIO)
or via the VM/SP Diagnose X'58' facility.

178 VM/SP System Programmer's Guide

Environments Supported

Processing Descriptions

7. SNA CCS intercepts the I/O request and performs logical screen management.
A Work Element Block is built to inform VM/VCNA of the action to be initi­
ated on the screen and to hold the output line.

8. SNA CCS uses the IUCV SEND, RECEIVE, and REPLY protocols to com­
municate the work transaction to VM/VCNA.

9. The IUCV request from SNA CCS to VM/VCNA in the VTAM Service
Machine is intercepted by the External Interrupt Services (EIS) in the guest
SCP (OS/VS1 with Basic Programming Extensions, or DOS/VSE with the lat­
est release of VSE/ AF).

10. EIS notifies VM/VCNA of the incoming message.

11. VM/VCNA receives the Work Element Block, interprets the orders, and per­
forms the physical screen management for the SNA terminal.

12. VM/VCNA causes VTAM to perform the I/O and the output once again goes
through its normal path of VTAM, the SCP, CP, and the NCP to get to the
SNA user terminal.

SNA CCS and the VM/VTAM Communications Network Application
(VM/VCNA) handle three 'environments' for the purposes of screen management:
console mode, CMS mode, and full screen support mode. These environments rep­
resent the interfaces that CP supports for console services to a virtual user terminal
and a guest virtual machine (G VM).

1. Console mode is communications between a display operator and either CP or
an operating system in a virtual machine (CMS or another operating system).
In this mode, the screen is divided into three areas, (input, output, and status),
and data to the output area is always directed to the next available line. Con­
sole mode I/O is generated when a guest virtual machine issues an SIO to the
3215 user console or CP generates console I/O requests internally in response
to CP commands.

2. CMS mode is DIAGNOSE X'58', CCW op code X'19' transactions. In this
mode, the CMS editor or an application program directs output to specific lines
on the screen. As with console mode, the screen is divided into three areas
(input, output, and status).

3. Full screen support mode (FSSM) is the environment where the display screen
is under control of a full screen application program. In this mode, the format
of the screen is under application program control and the application program
provides all 3270 orders. The interface to CP from a guest virtual machine is
DIAGNOSE X'58', CCW op code X'29' or X'2A', for a full screen write or
read.

The following sections describe SNA CCS processing.

SNA Virtual Console Communication Services 179

Screen Management

Communication Interfaces

In non-SNA processing, DMKGRF handles the console support for local 327X and
3066 devices. DMKRGA and DMKRGB contain the support for remote devices.
These modules perform both the logical and physical screen management needed
for the graphic display and printer keyboard terminals.

In SNA processing, in order to support a virtual console for a VT AM service
machine terminal user, virtual console support has been divided between the
VM/VTAM Communications Network Application (VM/VCNA) and SNA Con­
sole Communications Services (SNA CCS)

SNA CCS handles this SNA environment for CP via modules DMKVCP,
DMKVCR, DMKVCT, DMKVCV, and DMKVCX. VM/VCNA handles the
physical, device-dependent characteristics of the screen, setting up the I/O, and
maintaining the current state of the screen. VM/VCNA uses VTAM to perform
the I/O. SNA CCS handles the logical control of the screen, directs the
VM/VCNA actions, and serves as the interface between the VT AM machine and
the existing CP console function support. SNA CCS and VM/VCNA communi­
cate via IUCV.

Modules DMKVCP, DMKVCR, DMKVCT, DMKVCV, and DMKVCX perform
the logical functions for CP that are described above. As with non-SNA
processing, DMKGRF processes the local 327X/3066 devices, and DMKRGA and
DMKRGB support the remote devices.

Note that the logical units supported by VM/VCNA are independent of CP; they
cannot be mapped to any real device defined to CP (that is, they are not defined in
the RDEVICE macro). SNA CCS provides the necessary interface to make the
SNA terminal appear to be a real CP device.

To communicate, VM/VCNA and SNA CCS pass a work element block
(WEBLOK) between themselves. The WEBLOK contains the transaction orders
for the other component (SNA CCS or VM/VCNA), the environment, and the
data for the CP system or the user's terminal. See the section "Work Element
Block" that follows or see VM/SP Data Areas and Control Block Logic, Volume 1
for a detailed description of the WEBLOK.

SNA CCS and VM/VCNA communicate via the Inter-User Communication Vehi­
cle (IUCV). Figure 26 on page 181 illustrates the interfaces used in SNA process­
ing. DMKQCN presents requests from CP, CMS or, a guest virtual machine for
terminal writes to SNA CCS via CONT ASKS. DMKQCO presents requests from
CP, CMS or, a guest virtual machine for terminal reads to SNA CCS via
CONTASKS. SNA CCS passes input from the SNA terminal to CP and the virtual
machines via DMKCFM and DMKVCN. This is the same way DMKGRF handles
local terminal support.

In SNA processing, CP handles terminal input and interfaces normally with one
exception: CP must use logical unit names, instead of real addresses, to reference
SNA terminals.

180 VM/SP System Programmer's Guide

<
<

SNA user
terminuls

>
>

VM/VTAM
Communications

Network Application
(VM/VCNA)

Inter User Communications
Vehicle (IUCV)

THE

SNA Console
Communications

Services
(SNA CCS)

REST OF VM/SP

Virtual Machine

CP

Figure 26. SNA Virtual Console Support Interfaces

Functions

SNA CCS handles the following functions in support of the console, CMS, and full
screen mode environments for SNA terminals:

Connect VTAM service machine and Logical Units
Logon a Logical Unit
Request a read
Request a write
Process an enter key
Process a PAl key
Process a P A2 key
Process a P A3 key
Process a PF key
Process an Attention Interrupt
Process a Cursor Back One
Logoff a Logical Unit
Process error conditions
Quiesce and Resume processing for a given logical unit
Sever a communications path

SNA Virtual Console Communication Services 181

Enabling SNA Terminals

CP operator must issue the ENABLE SNA command. The SNA parameter on the
ENABLE command enables all SNA devices and has no effect on non-SNA
devices. The ENABLE ALL command enables both non-SNA and SNA devices.

In the multiple VT AM service machine environment, the operator may selectively
enable or disable any given VT AM service machine by using the userid option on
the ENABLE/DISABLE SNA command. The operator cannot enable and disable
individual logical units.

Establishing Communications Links

The VTAM service machine issues an IUCV CONNECT under two separate con­
ditions:

182 VM/SP System Programmer's Guide

VTAM Service Machine CONNECT

VM/VCNA issues a CONNECT via IUCV to establish an initial global con­
nection between VM/VCNA and SNA CCS. This CONNECT notifies SNA
CCS that a new VT AM service machine has logged on and is ready to service
logical units. If the VM/SP operator has issued the ENABLE SNA or ENA­
BLE ALL command, SNA CCS accepts the CONNECT, and authorizes
VM/VCNA to allow users to logon to SNA terminals. SNA CCS creates a
VT AM Service Machine Block (VSMBLOK) for that VTAM service machine.
In a multiple VT AM service machine environment, the VSMBLOK allows
SNA CCS to associate the logged on SNA user with the correct VM/VTAM
Communications Network Application (VM/VCNA). See VM / SP Data Areas
and Control Block Logic, Volume 1 for a detailed description of the
VSMBLOK.

Logical Unit CONNECT

To logon to VM/SP, the SNA terminal user must first logon to VM/VCNA
running in the VTAM service machine. To logon to VM/VCNA, the user
issues the ACV /VT AM LOGON command. When logging on to VM/VCNA,
the terminal user may optionally specify the userid (or the userid and
password) of his virtual machine in the DATA portion of the ACF/VTAM
LOGON command. The following forms of the LOGON command are valid:

LOGON APPLID (VCNA)

LOGON APPLID (VCNA) DATA (userid [password])

If you specify VCNA in the APPLID field, ACF /VTAM queues a logon
request to VM/VCNA.

If no logon data (VM/SP userid and password) is specified, the system
writes a VM/370 logo to the terminal under the control of VM/VCNA.
From this point on, the user logs on to VM much the same as he does with
a local terminal. The attention interrupt generated when the user clears the
logo from the screen causes VM/VCNA to issue an IUCV CONNECT
SVC on behalf of the terminal. If 'SNA' is still enabled, CCS builds an
RDEVBLOK and a SNA Resource Block (SNARBLOK) and chains them
to the VSMBLOK built during the VM/VCNA connect described above.
This ties the user's control block (SNARBLOK) to the VTAM service

Real Device Simulation

machine the user is logged onto. The system must tie these blocks together
since the logical unit's 'LUNAME', which is represented by the
SNARBLOK, is unique only to its own VTAM service machine. That is, it
is possible to have duplicate lunames among two or more VT AM service
machines.

After the connection is established, VM/VCNA and SNA CCS exchange
initialization information. VM/VCNA sends luname, device class, device
type, line length, pace value (for controlling the number of writes to the
screen), model number, and its IUCV path ID for this logical unit and then
waits for LOGON processing to complete. SNA CCS initializes the
SNARBLOK and RDEVBLOK with the data supplied by VM/VCNA.

If the user specified a userid and password on the ACF/VTAM LOGON,
the VM/370 logo is not displayed. VM/VCNA sends the logon data to
SNA CCS in response to the first CP read request to enter userid. If the
user specified only the userid, CP prompts the terminal user for the pass­
word.

AUTOMATIC LOGON

The installation may specify "automatic" logon to VM/VCNA for SNA
terminals. This can be accomplished in two ways:

1. The installation can specify LOGAPPL= (VCNA) in the logical unit
definition. This causes ACF /VT AM to queue a logon request to
VM/VCNA when the logical unit is activated.

2. The ACF/VTAM operator may issue a VARY ACTIVATE command
for the logical unit, specifying VCNA on the LOGON = parameter.

For further information concerning ACF /VT AM LOGON refer to the IBM
ACF/VTAM System Programmer's Guide.

When VM/VCNA connects to SNA CCS for a logical unit, VM/VCNA identifies
the SNA logical unit to SNA CCS. In addition, VM/VCNA identifies any device
characteristics that CP or CMS need to perform their functions. SNA CCS simu­
lates a real device by dynamically building a Real Device Block (RDEVBLOK) and
assigning this RDEVBLOK to the SNA user's virtual machine.

SNA CCS initializes the fields for the RDEVBLOK instead of DMKRIO. In addi­
tion, SNA CCS builds a control block for SNA, a SNARBLOK. The SNARBLOK
contains the status and control fields for SNA CCS. See VM / SP Data Areas and
Control Block Logic, Volume 1 for a detailed description of the SNARBLOK.

The RDEVBLOK is chained to the VSMBLOK belonging to the VSM that issued
the IUCV connect for it, and the RDEVBLOK points to the SNARBLOK for that
LU. The RDEVBLOK and SNARBLOK are, however, contiguous in storage. CP
references to the RDEVBLOK are still valid in the SNA environment.

As in non-SNA processing, the VMTERM field qf the VMBLOK and the
VDEVREAL field of the VDEVBLOK point to the RDEVBLOK.

SNA Virtual Console Communication Services 183

Command Handling

Work Element Block

Work Element Indicator Block

SNA I/O Processing

Redisplay of Input Line

When special SNA processing is necessary, an indicator in the RDEVBLOK
(RDEVSNA) denotes that this is a SNA type RDEVBLOK. The RDEVSNA field
is an alternate definition for the current RDEV ADD field. The real device address
has no meaning for SNA logical units.

After VM/VCNA completes the initial processing for the SNA logical unit, it
passes the user's LOGON request to SNA CCS. SNA CCS edits the LOGON
command and all subsequent commands and passes them to CP console services
using CP interfaces. CP processes the commands the same way it processes
non-SNA commands. However, VM/VCNA, rather than CP, manages redisplay
of the input line.

The work element block serves as the interface between SNA CCS and
VM/VCNA. Both SNA CCS in CP and VM/VCNA in the VTAM service
machine create work element blocks. In SNA CCS, the work element block is
known as the WEBLOK. In VM/VCNA, the work element block is known as the
DTIWEB. SNA CCS and VM/VCNA pass the WEBLOK between them and use
it as the interface for all requests for work from the other component. The data
portion of the work element block contains input or output lines to be passed and
the control portion contains transaction orders and environment data. See VM / SP
Data Areas and Control Block Logic, Volume 1 for a detailed description of the
WEBLOK.

SNA CCS creates the work element indicator block (WEIBLOK) as a header for
the WEBLOK. Its function is to identify a unit of work that is in progress or that
has not yet been processed. The WEIBLOK points to the WEBLOK and
CONT ASK associated with a given user. See VM / SP Data Areas and Control
Block Logic, Volume 1 for a detailed description of the WEIBLOK.

For non-SNA processing, CP console services build channel programs, lOBs, and
use DMKIOS to perform their I/O. SNA processing moves the physical device
management to VM/VCNA. Instead of calling DMKIOS, CP then passes control
to SNA CCS. SNA CCS does not build any channel programs or lOBs. It deter­
mines what action must be taken for the console and sends the transaction to
VM/VCNA instead of to DMKIOS. VM/VCNA and VTAM set up the I/O
operations to the terminal and issue an SIO. CP intercepts this SIO and performs
the I/O the same way it does for non-SNA processing.

Input line redisplay for SNA terminals is handled by VM/VCNA.

VM/VCNA Redisplay of input line

To reduce the number of VT AM SENDs to the terminal, VM/VCNA does not
immediately redisplay the input line. Instead, it holds the I/O operation until
SNA CCS requests more I/O to that terminal; for example, the response to the
input or a message. When VM/VCNA receives a write to the device, it sends
the input line to be redisplayed and the information from SNA CCS to be writ­
ten to the device in one VT AM send.

184 VM/SP System Programmer's Guide

TRQBLOK

I/O REQUESTS

VM/VCNA clears the input area, updates the status field, and redisplays the
line using the same VTAM SEND.

CCS Redisplay Timer

VM/VCNA passes a timer variable to SNA CCS when it invokes the IUCV
CONNECT function. This value indicates to SNA CCS how long it should
wait for a command to complete before SNA CCS issues an IUCV SEND to
the VT AM service machine to request input line redisplay.

SNA CCS sets a timer to tell it how long to wait before requesting redisplay of
the line. This is necessary since some commands do not produce any output,
and CP or CMS might require a significant amount of time to finish the com­
mand processing. If the timer expires before CP has output to write to that
terminal, SNA CCS issues an IUCV SEND to VM/VCNA requesting a write
for the redisplay.

In non-SNA processing, DMKGRF builds a Timer Request Block (TRQBLOK)
that it uses (1) for its status flags (2) for an interrupt return address after an I/O
operation (3) after a timer expires and (4) as a header to chain CONT ASKS when
in FSS mode.

In SNA processing, SNA CCS does not use TRQBLOK for the above functions
because: (1) status fields are kept by the VCNA for each SNA terminal user, (2)
IUCV mechanisms are used to return control after SEND requests to the
VM/VCNA, (3) the timer support for the alarm, MORE/HOLDING state, and
NOT ACCEPTED has been moved to VM/VCNA, and (4) SNA CCS has its own
control block structure to associate a user with its related CONT ASKS, IUCV con­
trol blocks, and the work element block. Since the processing of CONT ASKs has
been streamlined to help performance, the TRQBLOK is no longer needed for
queueing CONT ASKs.

However, in SNA processing, a TRQBLOK is still created, since a timer is required
for the input line redisplay processing described above.

DMKGRF, the module that manages I/O to a real 3270, performs requests for I/O
from DMKQCN synchronously. When DMKQCN requests a response, DMKGRF
schedules an lOB for the I/O operation and waits for the I/O to complete before
sending the response. SNA CCS takes the virtual machine out of SIO wait state as
soon as the I/O to the real device is started. In the case of a write, SNA CCS
sends the write request to VM/VCNA, takes the virtual machine out of the SIO
wait state, and returns immediately to the caller with a successful completion
response as if the I/O had completed successfully.

In some situations, SNA CCS waits for a response from VM/VCNA before
responding with a return code to the CP system. This is governed by a 'pacing
value' equivalent to the number of lines for a full screen. In this way, VM/VCNA
can reach SNA CCS with a PAl key indicator to stop processing; SNA CCS does
not flood IUCV and VM/VCNA with output from some commands (for example,
DISPLAY). SNA CCS always waits for a response from VM/VCNA for DIAG­
NOSE X'58' writes for CMS and full screen support modes before returning to the
caller with a response.

SNA Virtual Console Communication Services 185

VT AM I/O Reduction

MORE/HOLDING Condition

SNA Accounting

NCP and PEP Sharing

User Termination

SNA CCS queues a CONTASK if it is waiting for a response on either a write or a
read request. It does not split CONT ASKs for mUltiple line writes but passes the
entire write buffer to VM/VCNA, thus reducing IUCV SENDs and RECEIVEs.

SNA CCS batches console function and virtual machine SIO output lines in a lK
byte buffer. The batch lines are sent to VCNA when the buffer is full, a read is ini­
tiated by a virtual machine or CP to a SNA terminal, the pace value reaches zero,
the redisplay timer expires, a Diagnose X'58' operation takes place, or the virtual
machine is dropped from the dispatch queue.

The batching technique and priority structure ensures that either a full screen of
information is presented to VM/VCNA for each CP or CMS console transaction
or the transaction is complete (for those transactions with less than a full screen of
data) prior to control being given to the VSM.

To reduce the number of IUCV transactions, VM/VCNA resolves the
MORE/HOLDING condition when it occurs on the screen. VM/VCNA takes
whatever action is appropriate and avoids notifying SNA CCS of the screen status
in most cases. In cases when a mode change may take place (PAl key) or an inter­
rupt must be reflected to a user's virtual machine (PAl or PA2 key), VM/VCNA
resolves the MORE/HOLDING condition, then notifies SNA CCS of which key
was pressed and the screen status at the time. VM/VCNA resolves pressing of the
clear key or enter key in MORE/HOLDING status without notifying SNA CCS.

VM/VCNA records accounting data on a terminal user basis. When the SNA user
logs off, VM/VCNA passes a maximum of 62 bytes of accounting data, in the
WEBLOK, to SNA CCS. SNA CCS uses the CP accounting module, DMKACO
to write a VTAM accounting record (type X'07') in the CP accounting file. Nei­
ther SNA CCS nor DMKACO are aware of the contents of the VT AM accounting
record.

SNA CCS accrues processor time for a terminal user while it is processing for that
user. This time is added to the time CP already accumulated for the user. The time
appears in the accounting record produced when the user logs off.

Note: Refer to VM/VCNA Installation, Operation, and Terminal Use, SC27-0502
for details of the accounting records.

Since CP supports only a back level of NCP that does not support SNA and
VTAM loads ACF/NCP, you must prevent CP from loading/reloading the back­
level NCP at initialization and at restart. Refer to VM / SP Planning Guide and
Reference for information on how to accomplish this.

When a user issues the VM/SP LOGOFF or a ACF/VTAM LOGOFF, the con­
trol blocks related to the user's virtual machine and SNA terminal are released to
free storage. When VM/VCNA issues the SEVER indicating that a user has
logged off, SNA CCS need only issue a SEVER for its path. If a SEVER reaches
SNA CCS and there is a SNARBLOK that indicates the user is disconnected, the

186 VM/SP System Programmer's Guide

Shut Down

path is severed. The control blocks are released when the user is eventually logged
off. If SNA CCS gets the SEVER and there is a SNARBLOK but the user is not
disconnected, then SNA CCS disconnects the virtual machine associated with the
SNARBLOK.

To shut down the system, the VM/SP system operator should notify users that the
system is shutting down. If the SNA operator has the proper class, he can force off
any SNA user that did not log off. In this way, VM/VCNA can collect accounting
data for its users and record it in CPo The DISABLE SNA (userid) command can
be used to prevent additional users from logging on. In this way, VM/VCNA can
be stopped without bringing down the VT AM service machine that it is running in.
Any other application in the VTAM service machine may continue to run unaf­
fected.

VM/VCNA Operator Considerations

While it is possible for the operator of the VT AM service machine to disconnect
from a 'local' terminal, extreme care must be exercised. The VM/VCNA operator
must 'SET RUN ON' prior to disconnecting from the 'local' terminal. If the opera­
tor does not do this, unpredictable results occur and a deadlock of the VM/VCNA
is likely.

The operator of the VT AM service machine should never disconnect from the ser­
vice machine and then reconnect from a SNA logical unit, using the same operator
userid that was used for the service machine. That is, the operator must not logon
at a terminal that is managed by the VCNA as the VCNA Operator.

SNA CCS Entries in CP Internal Trace Table

Trace Table Entry Formats

SNA Console Communications Services (SNA CCS) creates trace table entries in
the CP Internal Trace Table to leave an audit trail of its activities.

SNA CCS places an entry in the CP trace table for each inbound transaction; SNA
CCS creates a trace table entry for each outbound transaction after going to the
Inter-User Communication Vehicle (lUCV) to communicate the entry to the
VM/VTAM Communications Network Application (VM/VCNA).

The entry identifies the type of lUCY transaction, the SNA user that initiated the
transaction, and the pertinent characteristics of the transaction environment itself.
The transaction can be correlated throughout the system by the use of the CCS and
VCNA path id's and the IUCV message id. These fields can be matched with cor­
responding or similar fields in the IUCV trace elements in CP and VCNA trace
elements in VT AM.

For an error trace, SNA CCS places an entry in the CP trace table for logical errors
and errors on IUCV transmissions. If the WEBLOK that is passed between SNA
CCS and VM/VCNA is invalid, the data in the trace element pertains to the inval­
id WEBLOK.

The following tables show the formats of trace table entries created by SNA CCS.

SNA Virtual Console Communication Services 187

o
8

o

8

o

o

o

ACCEPT (00) (VTAM service machine and Logical Unit) CONNECT for Logical
Unit (12)

1 2 3 4 5 6 7

X'16' !TRATNTypl / / / / / / / / ! TRAVCSPA I / / / / / /
TRAUDATA

RECEIVE (04), REPLY (06), SEND lWAY (08), SEND 2WAY (09), LOGIC
ERROR in CCS WEBLOK (OB), LOGIC ERROR in VCNA WEBLOK (13)

1 2 3 4 5 6 7

X'16' TRATNTYP TRAMODE TRALGAID TRAVCSPA I TRAVSAPA

TRAFUNCT TRACPSAF TRAEDCHR TRACHAR TRAMSGID

SEVER (OA)

1 2 3 4 5 6 7

o X'16' ITRATNTypITRAUSER11/ / / / I TRAVCSPA I / / / / / /
8 TRAUDATA

o

8

o

REPLY from VCNA (OC)

1 2

X' 16' TRATNTYP TRAMODE

TRAFUNCT TRACPSAF TRAUDITI

3

TRALGAID

TRAUDIT2

4 5 6 7

TRAVCSPA f TRAVSAPA

TRAMSGID

QUIESCE from VCNA (OD), RESUME from VCNA (OF)

o
8

o

X'16'

188 VM/SP System Programmer's Guide

1 2 3 4

ITRATNTypl / / / / / / / / I
TRAUDATA

5 6 7

TRAVCSPA I TRAVSAPA

CONNECT for VTAM service machine (OE)

012 3 4 5 6 7

o X'16' ITRATNTypl TRATIMER I TRAVCSPA I TRAMSGLM

8

o

8

o

8

o
8

o

o

o

TRAUDATA

SEVER from VCNA (10)

1 2 3 4 5 6 7

X'16' \TRATNTypITRAUSERl!/ / / / I TRAVCSPA I TRAVSAPA

TRAUDATA

MESSAGE COMPLETE (11)

1 2 3 4 5 6 7

X'16' ITRATNTYP / / / / / / / / TRAVCSPA \ TRAVSAPA

/ / / / / / / / TRAUDITI TRAUDIT2 TRflMSGID

ABEND 02 (15)

1 2 3 4 5 6 7

X'16' ITRATNTYP! /

TRAINSTR I TRAVMADR

Trace Table Entry Field Definitions

TRATNTYP Indicates the type of transaction that the trace table entry is for.

Note: If the high-order bit is on, this indicates that there was a nonzero
return code from IUCV on this transaction. DMKVCXFU writes the trace
table entry. The IUCV return code (IPRCODE) is in TRAIPRCD, a
one-byte field in the fourth byte of the trace entry.

SNA Virtual Console Communication Services 189

Values Defined for TRA TNTYP

TRACCEPT
TRACNECT
TRAQUISC
TRAPURGE
TRARCEIV
TRAREJCT
TRAREPLY
TRARESUM
TRASENDI
TRASEND2
TRASEVER
TRAVCSLE
TRAVSARP
TRAVSAQS
TRAVSMCN
TRAVSARM
TRAVSASV
TRAVSAMC
TRALUCON
TRAVSALE
TRAERRSV

TRACTLBK

X'OO'
X'Ol'
X'02'
.X'03'
X'04'
X'OS'
X'06'
X'07'
X'08'
X'09'
X'OA'
X'OB'
X'OC'
X'OD'
X'OE'
X'OF'
X'lO'
X'll'
X'12'
X'13'
X'14'

X'IS'

ACCEPT
CONNECT (not used)
QUIESCE (not used)
PURGE (not used)
RECEIVE
REJECT (not used)
REPLY
RESUME
SEND 1 WAY
SEND 2 WAY
SEVER
LOGIC ERROR IN CCS WEBLOK
REPLY FROM VCNA
QUIESCE FROM VCNA
CONNECT FOR VT AM service machine
RESUME FROM VCNA
SEVER FROM VCNA
MESSAGE COMPLETE FROM VCNA - 1 WAY SEND
CONNECT FROM VCNA FOR LU
LOGIC ERROR IN VCNA WEBLOK
ERROR IN USER ENVIRONMENT-SEVER USER (not
used)
SNA CONTROL BLOCK CHAIN INVALID

TRAMODE Mode for the transaction (see WEBLOK (WEBMODE)).

TRALGAID Logical mapping of the Attention Identifier (AID) for inbound trans­
actions to CCS (see WEBLOK (WEBLAID)). The field does not have
meaning for outbound transactions to VCNA.

TRAUSERI First byte from the IUCV user data field

TRATIMER Two bytes of timer value from the VSM CONNECT

TRA VCSP A The IUCV path id that identifies the CCS side of the IUCV path for
this transaction.

TRA VSAPA The IUCV path id that identifies the VCNA side of the IUCV path
for this transaction.

TRAFUNCT Transaction to be performed (see WEBLOK (WEBFUN))

TRACPSAF This field is WEBSAFLG on inbound transactions to CCS and
WEBCPFLG on outbound transactions to VCNA. (see WEBLOK
(WEBFUN)).

TRAEDCHR Editing characteristics (see WEBLOK (WEBEDIT))

TRACHAR Character set (see WEBLOK (WEB CHAR))

TRAMSGID Message identifier from IUCV IXBLOK

TRAIPRCD IPRCODE from IUCV IPARML for IUCV return code processing

190 VM/SP System Programmer's Guide

TRAMSGLM lUCY message limit to be specified for CONNECT

TRAUDAT A IPUSER from lUCY external interrupt buffer
For inbound: QUIESCE, RESUME, CONNECT for LU
For outbound: ACCEPT

YM userid
For inbound: CONNECT for YTAM service machine
For outbound: SEYER

LUNAME
For inbound: SEYER

TRAUDITl lUCY IPAUDITl flags from IXBLOK (used for
TRAYSARP,TRAYSAMC)

TRAUDIT2 lUCY IPAUDIT2 flags from IXBLOK (used for
TRAYSARP,TRAYSAMC)

TRAINSTR Addr of last instruction issued before invoking abend routine
(TRACTLBK)

TRA YMADR Current YlvfBLOK address-used for abend situations
(TRACTLBK)

SNA Virtual Console Communication Services 191

The Message System Service

The Message System Service is a CP system service. It allows a virtual machine to
read incoming messages and responses from CP, as opposed to displaying them on
the terminal.

Establishing Communications

"*MSG" is the assigned Message System Service userid. Communications are
established with the Message System Service (*MSG) via IUCV. The IUCV
DECLARE BUFFER function is invoked by the virtual machine to allow commu­
nications with IUCV, and the IUCV CONNECT function is invoked to establish
the communications path to the *MSG system service.

The types of messages that the virtual machine can receive are controlled by speci­
fying the IUCV parameter on the CP SET command. For example, if a user has
specified "CP SET MSG IUCV", all messages received via the CP MESSAGE
command are sent to the virtual machine via IUCV. IUCV signals the receiving
virtual machine with an external interrupt. The message may be retrieved by using
the IUCV RECEIVE function and may be used by a program running in the virtual
machine.

Note: For a complete list of the CP SET commands that can use the IUCV param­
eter, see VM/SP CP Command Reference for General Users.)

The Message System Service identifies the source of the message it intercepts by a
code in the IUCV message class field. The message source is interpreted as
follows:

Class Message Source

1 Message sent using CP MESSAGE (MSG) or CP MSGNOH

2 Message sent using CP WARNING (WNG)

3 Asynchronous CP messages and CP responses to a CP command exe­
cuted by a virtual machine using *MSG

4 Message sent using CP SMSG command

5 Any data directed to the virtual console by the virtual machine
(WRTERM, LINEDIT, etc.)

6 Error message from CP (EMSG)

7 Information messages for CP (IMSG)

8 Single Console Image Facility (SCIF) message from CPo

Error and information messages (classes 6 and 7) are types of CP messages and are
included in class 3 when EMSG and IMSG are not specifically set to IUCV via the
CP SET commands.

The format of the data received from IUCV is as follows:

192 VM/SP System Programmer's Guide

colI col 9

I I
V V
userid text

The userid portion of the data identifies the sender. If the data is not received by
means of a MSG, WNG, SMSG, or using SCIF, then the userid is that of the recip­
ient.

If a virtual machine has both a valid path to the *IvISG system service and a sec­
ondary user specified in the CONSOLE directory control statement (enabling that
virtual machine to use SCIF), then incoming messages (except for SMSGs, which
are not console messages) are directed to the secondary user instead of the lUCY
*MSG system service. If the secondary user is not available, the message is queued
on the *MSG system service path.

Note: The following types of data are not placed in the console spool file for the
indicated conditions:

• CP command output -- if this is being received in a buffer via DIAGNOSE
X'08'.

Messages and Warnings -- if they are being trapped via the lUCY and *MSG
System Service.

The Message System Service 193

DASD Block I/O System Service

The DASD Block I/O System Service is a CP system service. It provides a virtual
machine with device-independent access to its virtual DASD devices. Device types
supported are the Count Key Data (CKD) devices: 2314,2319,3330,3333,
3340, 3344, 3350, 3375, and 3380, and the Fixed Block Architecture (FBA)
devices: 3310 and 3370. (Device 2319 is formatted as a 2314, device 3333 is
formatted as a 3330, and device 3344 is formatted as a 3340.) This service sup­
ports logical block sizes of 512, 1024,2048, and 4096 bytes.

Note: The CMS 4K block structure on the first track of a 3340 disk is formatted
differently than the other tracks of a 3340 CMS disk. The first track of the
mini-disk contains three blocks. The first block has a length of 80 bytes, the sec­
ond, 4096 bytes, and the third, 80 bytes. The remainder of the mini-disk is format­
ted as usual, two 4096-byte blocks on each track.

Establishing Communications with DASD Block I/O Service

The CMS RESERVE command and the CMS DISKID function should be issued
before using the DASD Block I/O System Service. These two facilities enable you
to create a uniquely organized CMS file on a DASD and obtain information about
the file needed to use the DASD Block I/O System Service. For further informa­
tion, see "Using the DASD Block I/O System Service from CMS" in Part 2 of this
manual, or see the VM/SP CMS Command and Macro Reference.

DASD Block I/O uses IUCV to set up communication between itself and a virtual
machine. The IUCV macro checks the validity of all the IUCV parameters. Any
lUCY errors are handled according to lUCY specifications. The DASD Block I/O
System Service checks the validity of all the parameters it requires. Any errors
resulting from this check are handled as described in the following sections.

lUCY requires that the virtual machine issues a DECLARE BUFFER command to
initialize the virtual machine for IUCV communication. This command also speci­
fies a buffer where IUCV can store external interrupt information. After commu­
nications is established with lUCY, the virtual machine must issue a CONNECT.
command to establish a path between itself and the target communicator. The tar­
get communicator, in this case, is the DASD Block I/O System Service. Only one
CONNECT may be issued to userid *;BLOCKIO for each virtual device that is
intended to receive I/O requests.

No special authorization is required for a virtual machine to use DASD Block I/O.
The MAXCONN (maximum connection) limit in the directory can be enlarged to
satisfy the user's requirements. The DASD Block I/O System Service allows con­
nections from any user.

IUCV CONNECT to the DASD Block I/O System Service

An lUCY CONNECT is issued by the virtual machine with USERID= *BLOCKIO
and PRMDATA=YESspecified in the IUCV CONNECT parameter list. In this
case, IPUSER, the user data field in the IUCV parameter list, must have the follow­
ing format. These values are obtained by the CMS DISKID function.

194 VM/SP System Programmer's Guide

o 1 2 3 5 6 7

o BLKSIZE I OFFSET

8 VDEVADDR I //

where:

BLKSIZE

OFFSET

VDEVADDR

is the block size of the specified disk. The block size may be
512, 1K, 2K, or 4K bytes.

associates a physical block number to the first user data block
of on the disk. Note that this number represents the number
of sequential blocks used on the disk by the CMS file system
to implement its structure. The DASD Block I/O System Ser­
vice does not check the validity of this number. Therefore, the
application may change this number if desired, but you could
overlay files used by CMS.

is the virtual device address of the disk where the Block I/O is
to be performed.

All reserved fields must be set to zero.

If all the parameters required by DASD Block I/O are valid, DASD Block I/O
issues an IUCV ACCEPT on the path specifying PRMDAT A= YES. The follow­
ing information. is returned in the IPUSER field of the IUCV Connection-Complete
external interrupt buffer:

o 1 2 3 4 5 6 7

o START BLOCK I END BLOCK

8 FLAGS I //
where:

START BLOCK 1 minus the OFFSET specified on the IUCV CONNECT.
This value along with END BLOCK is the range of block
numbers allowable on the DASD Block I/O request.

END BLOCK The number of blocks on the specified virtual device minus the
OFFSET specified on the IUCV CONNECT. This value
along with START BLOCK is the range of block numbers
allowable on the DASD Block I/O request.

FLAGS A set of bits defining the status of the virtual device. One bit
is defined and the others are reserved.

RDONLY X'0001'
Unused X'FFFE'

All reserved fields are returned as zero.

Virtual device is read only
Zero

DASD Block I/O System Service 195

If any of the parameters passed to DASD Block I/O are invalid, DASD Block I/O
issues an IUCV SEVER on the path and flags the error. The first byte of the
IPUSER field contains one of the following error codes:

X'Ol' Virtual device is not defined
X'02' Virtual device is not supported
X'03' Block size is not supported
X'04' IUCV path already exists for this device
X'05' Connection is not using PRMDATA=YES
X'06' Reserved field is not set to zero

IUCV SEND to the DASD Block I/O System Service

When the connection to the device is ACCEPTed by DASD Block I/O, you can
start sending I/O requests to DASD Block I/O. You can specify TRGCLS=,
DATA=PRMMSG, and the PRMMSG= options on the IUCV SEND or you can
move the necessary data into the IUCV parameter list yourself. The TRGCLS=
option sets the type of I/O requested, read or write. The DAT A=PRMMSG
option sets a flag in IPFLAGSl, and the PRMMSG= option moves the block
number and virtual buffer address into the IUCV parameter list. The following list
defines the input necessary for the DASD Block I/O System Service on an IUCV
SEND command:

IPRMMSGI
IPRMMSG2
IPTRGCLS

F'Ol'
F'02'

Block number
Virtual buffer address

Block I/O service requested
Write request (CMS formatted)
Read request (CMS formatted)

If you have misused IUCV protocol set up for this system service, DASD Block
I/O issues an IUCV SEVER on the path and flags the error. The first byte of the
IPUSER field contains one of the following error codes:

X'07' IUCV communication was not sent using DAT A=PRMMSG
X'08' No one-way messages are allowed on the path

Otherwise, DASD Block I/O tries to perform the request. It issues an IUCV
REPLY to return the results of the I/O requests. One of the following return
codes is returned in the IPRMMSG 1 field of the IUCV parameter list:

F'OO' I/O completed successful
F'O l' Invalid block number
F'02' Invalid data buffer address
F'03' Write on read/only DASD
F'04' Incorrect block size - format error
F'05' Unrecoverable I/O error
F'06' Invalid service requested
F'07' Protection exception on virtual buffer

If the device is reset, the path is QUIESCEd and no more requests are allowed.
When there are no I/O requests outstanding, DASD Block I/O issues an IUCV
SEVER on the path and flags the error. The first byte of the IPUSER field con­
tains the following return code:

X'09' Virtual device has been reset

196 VM/SP System Programmer's Guide

/'

When all communications with the DASD Block I/O System Service are
completed, you can terminate communications by issuing either an IUCV SEVER
or/and IUCV RETRIEVE BUFFER.

DASD Block I/O System Service 197

The Special Message Facility

The Special Message Facility enables a virtual machine to send messages to another
virtual machine by issuing the CP SMSG command. The. Special Message Facility
may be used. with the Virtual Machine Communication Facility (VMCF) or with
the Inter-User Communication Vehicle (lUCV). However, the sending virtual
machine does not need to perform the initialization required by VMCF or IUCV.
Initialization is handled by CP and is described later in this topic.

To send a message, a virtual machine need only prepare the message text -- up to
129 bytes -- and issue the class G command, SMSG. Parameters on the SMSG
command identify the USERID of the receiving virtual machine and specify the
message text. The format of the message text must be acceptable to the receiving
virtual machine. The SMSG command is described in the VM / SP CP Command
Reference for General Users.

Before the receiving virtual machine can receive special messages via VMCF, it
must:

• Enable itself to receive external interrupts.

Set bit 31 of control register 0 to a value of 1.

Authorize itself by issuing DIAGNOSE Code X'68', AUTHORIZE. The
parameter list, VMCPARM, specified with DIAGNOSE Code X'68' must con­
tain a pointer to an external-interrupt buffer, must specify a buffer length of
169 bytes, and must have the special message flag (VMCPSMSG) turned on.

Turn on this special message flag (VMCPSMSG) by setting VMCPSMSG to a
value of B' l' or by issuing the class G command, SET SMSG ON. For infor­
mation on using DIAGNOSE Code X'68', see "Description of VMCF
Subfunctions" and "Invoking VMCF Subfunctions."

To understand how a special message is presented to the receiving virtual machine
via VMCF, see "The SENDX Protocol" in the section "VMCF Protocol".

Before the receiving virtual machine can receive special messages via IUCV, it must
do the following:

• Enable itself to receive external interrupts

Set bit 30 of control register 0 to a value of 1

• Issue the IUCV DECLARE BUFFER function

Issue the IUCV CONNECT function to the CP Message System Service

Turn on the special message flag by issuing the class G command SET SMSG
IUCV.

When a virtual machine no longer wishes to accept special messages, it may turn
off the special message flag by issuing the command SET SMSG OFF. To resume
receiving messages, the virtual machine may issue the command SET SMSG ON or

198 VM/SP System Programmer's Guide

SET SMSG IUCV. CP sends an error message to any virtual machine that
attempts to send a special message to another virtual machine that is not accepting
special messages.

CP handles VMCF /IUCV initialization and special message processing as follows.
When the SMSG command is issued, CP verifies that no invalid options were speci­
fied and that a valid USERID was specified. CP also verifies that the receiving vir­
tual machine is accepting special messages. CP then obtains storage for the
message, builds the appropriate parameter list, and sends the message to the receiv­
ing virtual machine.

The Special Message Facility 199

Single Console Image Facility

The Single Console Image Facility allows one user logged on to a single virtual
machine to control mUltiple disconnected virtual machines. CP prefixes any output
coming to the controlling virtual machine, from or on behalf of the originating vir­
tual machine, with the userid of the originating virtual machine. The controlling
virtual machine communicates with the virtual machines it is controlling via the CP
class G SEND command.

The user whose virtual machine is being controlled is the primary user. The user
whose virtual machine controls the primary user's virtual machine is the secondary
user. The secondary user may run disconnected if he has a valid path to the IUCV
Message System Service. Refer to "The Message System Service" in Part 1 of this
publication for more information.

Using the Single Console Image Facility

To enable a virtual machine to use the single console image facility, the installation
must specify the userid of the secondary user on the CONSOLE directory control
statement of the primary user. See VM / SP Planning Guide and Reference for a
description of the CONSOLE directory control statement.

When the primary user disconnects his virtual machine and the secondary user is
logged on, the secondary user receives control of the primary user's virtual
machine. Even if the secondary user is not logged on when the primary user dis­
connects, the secondary user receives control of the disconnected virtual machine
whenever he does logon. The primary user can regain control of his virtual
machine at his own terminal by entering the LOGON command.

After the primary user disconnects, all console output from the disconnected virtual
machine appears on the console of the secondary user if he is logged on. Output
from the primary user's disconnected virtual machine is prefixed with the userid of
the primary user.

The secondary user uses the CP SEND command to communicate with the primary
user's disconnected virtual machine. See VM / SP CP Command Reference for Gen­
eral Users for a description of the SEND command.

Notes:

1. When the message, 'DMKQC0150A USER userid HAS ISSUED A CP
READ' is received by the secondary user, the secondary user must reply with a
SEND command, sending a CP command to the disconnected user named in
the message.

2. When the message, 'DMKQCO 150A USER userid HAS ISSUED A VM
READ' is received by the secondary user, the secondary user must reply with a
SEND command, sending a virtual machine command or a virtual machine
reply to the disconnected user named in the message.

3. The console attributes of the secondary user are used for the display of mes­
sages. For example, if the primary user console is spooled TERM and the sec­
ondary user console is spooled NOTERM, only the messages that would
normally be displayed with the NOTERM option are displayed at the second­
ary user's console.

200 VM/SP System Programmer's Guide

VM/SP Use of the IBM 3850 MSS

Virtual machines operating CMS, OS/VS 1, or OS/VS2 (MVS) may access mass
storage volumes containing VM/SP minidisks or entire mass storage volumes dedi­
cated to the virtual machine. These volumes appear to the virtual machine as 3330
volumes and are accessed using 3330 device support in the virtual machine.
VM/SP controls allocation, volume mounting, and volume demounting. Virtual
machines that run OS/VS 1 or OS/VS2 (MVS) with MSS support can also access
mass storage volumes using dedicated device support.

VM/SP Access to the MASS Storage Control

Whenever an MSS 3330V volume must be mounted or demounted, the VM/SP
control program first selects an appropriate device address. If a volume mount is
required, the device is selected from the pool of available 3330V devices created at
system generation time. If a volume must be demounted, CP selects the address of
the device on which the volume is currently mounted. .

To pass mount and demount orders, the virtual machine must have an MSC port
dedicated to it via the ATTACH command or the DEDICATE directory statement.
An application program named DMKMSS is distributed as part of VM/SP; it acts
as an interface between CP and the MSC. After DMKMSS is started in an
OS/VSl or OS/VS2 (MVS) virtual machine, it uses a special virtual I/O device
and the VM/SP DIAGNOSE interface to communicate with the VM/SP control
program.

If the MSC request was for a volume mount, the MSC ending status indicated that
the MSC was processed. If the MSC accepts the mount order, the MSC orders the
staging adapter to generate a pack change interrupt (an unsolicited device end) on
the device when that device has been mounted. CP receives the pack change inter­
rupt, the RDEVBLOK is set to indicate that the volume is mounted, and any
VM/SP task waiting for the volume is marked dispatchable. If the mount order
was rejected, no further processing of the mount occurs. The previously allocated
RDEVBLOK is marked free and processing continues with the next MSS request.

Asynchronous MSS Mount Processing

When an MSS volume mount is required to satisfy a LINK or ATTACH command
or an MDISK or DED directory statement, CP returns control to the virtual
machine as soon as MSC accepts the mount requestJ. The virtual machine may
continue to execute before the virtual device specified on the MDISK, DED, LINK,
or ATTACH is available.

The reasons for asynchronous MSS mount processing are the relatively long time
required to complete the mount, and the chance that an error may occur in the
MSS after the mount order is accepted. The virtual device to be mounted may not
be vital to the specific task to be accomplished. Also, if an error occurs in the MSS
(such as a permanent read error on a cartridge) after the mount is accepted, the
error indication is passed from the MSC to the virtual machine. VM/SP cannot

3 However, the central server cannot issue these CP commands. The central server is the MSS
communicator virtual machine which acts as an interface between CP and the MSC. CP com­
mands issued to the central server are ignored and a message is issued.

Single Console Image Facility 201

determine that an error has occurred and that the mount will not complete. If the
virtual machine were not dispatchable until the mount completed, it would be
locked out until the MSS error was corrected.

With asynchronous mount processing, the virtual machine has the flexibility to
either continue processing without the affected virtual device, or wait until the MSS
mount completes. If the virtual machine issues an SIO instruction to a virtual
device that is defined on the volume being mounted, VM/SP queues the I/O
request until the mount completes. The virtual machine is marked I/O wait
nondispatchable until the mount completes and the SIO is started.

VM/SP'Processing of MSS Cylinder Faults

VM/SP supports 3330V cylinder fault processing in two ways: real channel pro­
grams directed to 3330Vs are constructed so that cylinder faults can be recognized
and the channel program restarted; and the attention interruption (indicating that
the cylinder fault has been satisfied) is recognized and any I/O for that device
restarted.

When the VM/SP processor issues a seek CCW to a 3330V device, the staging
adapter must translate the seek argument to the correct cylinder of staging space.
If the cylinder referenced in the seek is staged, then the SIO is passed to the associ­
ated staging DASD drive. If the referenced cylinder is not staged, the staging
adapter initiates cylinder fault processing. The staging adapter first passes a cylin­
der fault indication to the MSC, requesting the cylinder of data to be staged. It
then returns a status modifier to the channel in response to the seek, which causes
the channel to skip one CCW in its CCW fetch processing. That is, the channel
does not fetch the next CCW after the seek.

As a result of the cylinder fault, the MSC allocates staging space for the requested
data and causes it to be staged. The staging adapter then generates a channel
end/ device end interruption to indicate that the cylinder has been staged .

.It is possible in error situations that the attention interruption may not be received.
Each time an I/O request is queued by VM/SP as a result of a cylinder fault, a
timer is set. If the timer expires before the interruption is received, a message
(DMKSSS0741) is written to the VM/SP system operator and the request is
retried.

Backup and Recovery of MSS Volumes

The process of creating backup copies of MSS volumes, and restoring from those
backup copies, can be controlled through the OS/VS access methods services
COPYV command. This command can operate without system operator inter­
vention.

For each active volume in the MSS, there may be one or more copy volumes. At
any time, the active volume may be copied to a copy volume with the access meth­
od services COPYV command. All volume mounts and data transfer are controlled
by this command. If at any time it is necessary to restore the level of a volume to
that of a copy, the OS/VS access methods services RECOVERV command is used.

All the OS/VS access methods services commands can be run from either a real
processor or a VS virtual machine. If the MSS communicator virtual machine is in
operation, these commands can be run from that virtual machine while it is acting
as the communicator.

202 VM/SP System Programmer's Guide

Logical Device Support Facility

The Logical Device Support Facility allows an application running in a virtual
machine to create within CP one or more non-extended (i.e. no extended color,
extended highlighting, or programmed symbols) logical 3270 display devices.
Except for the logical device facility, CP is unaware of the fact that this terminal
has no real existence and is driven by the application program. In particular, the
CP display terminal support sees it as a local 3270. Any output directed to a log­
ical device is redirected to the virtual machine for which the device was created.
The virtual machine can also transfer data to CP to be entered as input from a spe­
cific logical device, as if it were interactively produced on a real terminal.

The Logical Device Support Facility is made up of two data transfer subfunctions,
three control subfunctions, a special external interrupt (code X'2402'), and an
external control word for passing control information with the external interrupt.

To implement this facility, subfunctions are invoked using the DIAGNOSE instruc­
tion (code X'7C'). Registers Rx, Rx+ 1, Ry, and Ry+ 1 are used to indicate the
subfunction, logical device identification, and other subfunction-dependent infor­
mation.

A special interrupt code (X'2402') is used by module DMKHPS to notify a virtual
machine of pending logical device status for a logical device created for that virtual
machine. Along with this interrupt, the virtual machine receives a control word at a
virtual storage location indicating the ID of the associated logical device and the
reason for the interrupt.

Figure 27 on page 204 is a summary of Logical Device Support Facility subf­
unctions. More complete information about each of these sub functions is included
under "Descriptions of Logical Device Support Facility Subfunctions."

Data is directed to a logical device using the logical device ID. This ID is assigned
by CP during execution of the INITIATE subfunction. Data transfer takes place
within CP at a channel command level. I/O directed to a logical device proceeds
within CP via the normal path for a local 3270 terminal up to the point that
DMKIOS is normally called to start I/O. At that point, control passes to
DMKHPS to process the CCW string. Channel commands requiring interaction
cause external interrupts to the virtual machine for which the associated logical
device was created.

The format of data from the virtual machine must conform to 3270 architecture for
local display stations. Extended data streams are not supported.

Up to eight virtual machines may simultaneously create logical devices, and each
virtual machine can create up to 512 of these devices.

Logical Device Support Facility 203

Subfunction Description

INITIATE Initiate logical device communications

ACCEPT Transfer data written to logical device to virtual machine
storage.

PRESENT Transfer data from virtual machine to CP as input from
logical device.

TERMINATE Drop a specific logical device.

TERMINATE ALL Drop all logical devices created for this virtual machine.

Figure 27. Summary of Logical Device Support Facility Subfunctions

VM!Pass-Through Facility program product is an example of an application using
the Logical Device Support Facility. Through the combined support of these two
facilities, a VM/SP user attached to system A via a 3270 Display Station can
access VM/SP system B as though the display station were locally attached to sys­
temB.

204 VM/SP System Programmer's Guide

Timers in a Virtual Machine

Interval Timer

Virtual Interval Timer Assist

This section describes the results obtained in using timers in a virtual machine cre­
ated by CPo

Virtual location 80 (X'50'), the interval timer, contains different values than would
be expected when operating in a real machine. On a real machine, the interval tim­
er is updated 300 times per second when enabled and when the real machine is not
in manual state. The interval timer on a real machine thus reflects system time and
wait state time. In a virtual machine, the interval timer reflects only virtual
processor time, and not wait time. It is updated Qy CP whenever a virtual machine
passes control to CP, and this one updating reflect~ the entire time the virtual
machine had control. Note that during the time a virtual machine has control, the
virtual interval timer does not change; the virtual processor time used is added to
the virtual interval timer when CP regains control. For some privileged
instructions, CP may be able to simulate the instruction and still return control to
the virtual machine before the end of that virtual machine's time slice. In such
cases, the virtual interval timer is updated but only for those privileged instructions
that require normal or fast reflect entry into the dispatcher. For those privileged
instructions that do not require entry into the dispatcher, the virtual interval timer
is not updated until CP gets control at the end of the time slice.

If the virtual machine assist feature or Extended Control - Program Support is ON,
more time is charged to the virtual interval timer than if the feature is OFF. When
the virtual machine assist feature is OFF, the time spent by CP to simulate privi­
leged instructions is not charged to the virtual interval timer; whereas, with the fea­
ture ON, the time spent is charged to the virtual interval timer.

The virtual interval timer assist feature is the updating of the virtual interval timer
and presentation of timer interrupts to the virtual machine by the hardware. When
the software simulates the interval timer, updating occurs only when CP takes over
control. This usually results in an update frequency of once per time slice and
repeatability of timed intervals suffers greatly under these conditions. When the
virtual interval timer assist feature is active, the update frequency is the same for
both virtual and real interval timers, 300 times a second.

In order for the virtual interval timer assist feature to be active, the following
conditions must be met:

VM/SP must be running on a Model 135-3, 138, 145-3, 148,3031, 3031AP,
4331, or 4341.

The virtual machine must have enabled the virtual machine assist and the virtu­
al interval timer (SET TIMER {ON I REAL}).

The virtual machine must have enabled both the virtual machine assist and the
virtual interval timer assist (SET ASSIST ON TMR).

VM/SP provides an option, called the REALTIMER option, which causes the vir­
tual interval timer to be updated during virtual wait state as well. With the
REAL TIMER option in effect, a virtual interval timer reflects virtual processor
time and virtual wait time, but not CP time used for services for that virtual

Timers in a Virtual Machine 205

Processor Timer

TOD Clock

Clock COlllparator

machine, such as privileged instruction execution. The more services a virtual
machine requires from CP, the greater the difference between the time represented
by the interval timer and the actual time used by and for the virtual machine. The
larger the number of active virtual machines contending for system resources, the
greater the difference between virtual machine time and actual elapsed (wall clock)
time.

A virtual machine must have the ECMODE directory option to use the
System/370 processor timer.

The processor timer is supported in a virtual machine in much the same way as is
rihe interval timer. That is, the processor timer in a virtual machine records only
'virtual processor time, and it is updated when the virtual machine passes control
back to CPo

If the real timer option is specified, the virtual processor timer reflects all actual
elapsed time except CP time used for services, such as privileged instruction exe­
cution, for that virtual machine.

The method of sampling the value in the virtual processor timer causes it to appear
to a virtual machine to be updated more often than an interval timer. The privi­
leged instructions Set processor Timer (SPT) and Stbre processor Timer (STPT)
are used to set a doubleword value in the virtual processor timer and to store it in a
doubleword location of virtual storage. When a virtual machine samples the value
in the virtual processor timer by issuing a STPT instruction, CP regains control to
execute the privileged instruction, and updates the time. The act of sampling the
processor timer from a virtual machine causes it to be brought up to date.

The System/370 time-of-day (TOD) clock does not require simulation in a virtual
machine. The System/370 in which CP is operating may have one real TOD clock
for each processor, and all virtual machines can interrogate the real TOD clock.
The Store Clock (STCK) instruction is nonprivileged; any virtual machine can exe­
cute it to store the current value of the TOD clock in its virtual storage. The Set
Clock (SCK) instruction, which is used to set the TOD Clock value, can be issued
from a virtual machine, but CP always returns a condition code of zero and does
not actually set the clock. Note that the TOD clock is the only true source of actu­
al elapsed time information for a virtual machine. The base value for the TOD
clock in VM/SP is 00:00:00 GMT, January 1,1900.

In an attached processor or multiprocessor environment, the TOD clocks are syn­
chronized using the procedure described in the IBM System/3 70: Principles of
Operation.

The clock comparator associated with the TOD clock is used in virtual machines for
generating interrupts based on actual elapsed time. The ECMODE option must be
specified for a virtual machine to use the clock comparator feature. The Set Clock
Comparator (SCKC) instruction specifies a doubleword value that is placed in the
clock comparator. When the TOD clock passes that value, an interrupt is gener­
ated.

206 VM/SP System Programmer's Guide

Pseudo Timer

Pseudo Timer Start I/O

Pseudo Timer DIAGNOSE

The pseudo timer is a special VM/SP timing facility. It provides 24 or 32 bytes of
time and date information in the format shown in Figure 28.

Start I/O Diagnose
<------ 8 bytes -------> <--- 8 bytes >

~lM/DD/YY M~VDD/YY

HH:MM:SS HH:MM:SS
or

VIRTCPU I TOTCPU VIRTCPU

TOTCPU

Figure 28. Fonnats of Pseudo Timer Infonnation

The first eight-byte field is the date, in EBCDIC, in the form
Month/Day-of-Month/Year. The next eight-byte field is the Time of Day in
Hours:Minutes:Seconds. The VIRTCPU and TOTCPU fields contain virtual
processor and total processor time used. The units in which the processor times are
expressed and the length of the fields depend upon which of two methods is used
for interrogating the pseudo timer.

The pseudo timer can be interrogated by issuing a START I/O to the pseudo timer
device, which is device type TIMER, and is usually at device address OFF. No I/O
interrupt is returned from the SIO. The address in virtual storage where the timer
information is to be placed is specified in the data address portion of the CCW
associated with the SIO. This address must not cross a page boundary in the user's
address space. If this method is used, the virtual processor and the total processor
times are expressed as full words in high resolution interval timer units. One unit is
13 microseconds.

The pseudo timer can also be interrogated by issuing DIAGNOSE with an opera­
tion code of C, as described under "DIAGNOSE Instruction in a Virtual Machine."
If this method is used, the virtual and total processor times are expressed as
doublewords in microseconds.

Timers in a Virtual Machine 207

CP in Attached Processor and Multiprocessor Modes

Multiprocessor Environment

This chapter enables you to:

• Define attached processor (AP) mode

Define multiprocessor (MP) mode

• Understand the use of the channel set switching instructions when available

• Understand the use of the privileged instructions that set and inspect the
processor's prefix register

Understand the use of the privileged instruction that determines the address of
the processor that is executing

Understand the use of hardware signaling to communicate between processors

• Understand the use of a TOD clock synchronization check

Code fetch and store sequences that can be safely used in the AP /MP envi­
ronment

• Use locks for serialization of functions

Set processor affinity

Change processors using the SWTCHVM macro

Configure I/O devices to obtain maximum availability and recovery potential

Debug an AP/MP system.

In a tightly coupled multiprocessor (MP) environment two processors share real
storage under the control of a single control program. Both processors have I/O
capability in an MP environment. See the section "Configuring I/O Devices" for a
discussion on how to configure I/O devices for maximum availability and recovery
potential.

In a dyadic environment two processors share real storage under the control of a
single control program. Both processors have I/O capability. However, unlike an
MP complex, a dyadic processor cannot be partitioned into two distinct
uniprocessor systems.

Attached Processor Environment

In an attached processor (AP) environment two processors share real storage under
the control of a single control program. However, unlike a multiprocessing envi­
ronment, only one processor in an AP environment has I/O capability. If you are
running on a 3033 or a 3081, the channel set switching feature is available. If a
severe hardware error occurs on the first processor in an AP environment, the con­
trol program may be able to use the channel set switching feature to dynamically

208 VM/SP System Programmer's Guide

switch the channels of one processor to the other processor. The channel set
switching instructions that the control program can use to connect and disconnect a
channel set to a processor are:

CONCS
DISCS

connect channel aet
disconnect channel set

Note: When you generate VM/SP as an MP system it does not use the channel set
switching facility even if the facility is installed on the hardware.

Advantages of the AP IMP Environment

An AP IMP environment provides additional processing capability when compared
to a uniprocessor environment. An AP IMP environment also provides increased
availability. In case of hardware malfunction on one processor, the other processor
can frequently continue operating. Serviceability is enhanced because it is possible
to use the VARY ON/OFF PROCESSOR command to vary a processor offline for
system repair or to upgrade the system.

Facilitating an AP IMP Environment

I Prefixing

In an AP or MP environment, two processors share main storage. To facilitate this
sharing, VM/SP provides for the unique features and requirements of this envi­
ronment: prefixing, processor address identification, processor signaling,
time-of-day clock synchronization, interlocks on certain fetch and store
instructions, locks, and affinity setting. The system programmer should be familiar
with the instructions used to accomplish these tasks.

When VM/SP is executing in an AP IMP environment both processors cannot use
absolute page zero for status information. Instead, each processor has its own pre­
fixed storage area (PSA) in the high end of real storage. However, if the system
operator varies a processor online after CP initialization completes, the processor's
PSA may be located in any page of the dynamic paging area. See Figure 29 on
page 210 for a storage map of the V=R machine after CP initialization.

CP in Attached Processor and Multiprocessor Modes 209

Virtual storage
Addresses

Real Storage
Addresses

OK
ABSOLUTE PAGE 0

4K~--------------------------------------~ 4K
Virtual Page 1

VIRTUAL=REAL AREA

SIZE = 128K BYTES

128K-l (Minimum size ;s 32K bytes.)
OKr---------------------------------------~ 128K

Virtual page 0
4K-l~--------------------------------------4 132K (DMKSLC)

REMAINDER OF CP Resident Nucleus

~-----D-Y-N-A-M-I-C--P-A-GI-N-G--A-R-E-A--------------~I 1
End of CP Nucleus

(DMKCPE)

and

FREE STORAGE
<---.

PSA FOR ATTACHED OR NON-IPL PROCESSOR

PSA FOR MAIN OR IPL PROCESSOR

< ____ ~t__ DMKPSA

512K End of
real storage

Figure 29. Storage Layout in a Virtual = Real Machine

I Prefix Registers

The control program puts the addresses of the PSAs in the prefix registers of the
two processors during system initialization. The control program can set and
inspect the contents of the processor's prefix register by using the privileged
instructions:

SPX - set prefix

• STPX - store prefix

If you are operating in AP /MP mode, VM/SP uses the prefix registers. When
code executing on either processor references an address from 0 to 4095, the refer­
enced address is added to the contents of the prefix register for that processor to
produce the absolute address that will be accessed. In this way, each processor can
independently control its operations with separate channel address words and
channel status words. Prefixing is described in detail in System/3 70 Principles of
Operation.

Identifying a Processor Address

The hardware assigns the processor address during system installation. To deter­
mine the address of the processor that is executing, the control program issues the
privileged instruction:

ST AP store CPU address

VM/SP stores both processor addresses in both PSAs in the following fields:

210 VM/SP System Programmer's Guide

I Signaling

I SIGNAL Macro

IPUADDR CPU address of this processor

IPUADDRX CPU address of the other processor

The system uses this information for interprocessor communication.

During certain critical periods, such as when a processor malfunctions or when a
processor synchronization must occurs, one processor must signal the other
processor. There are three types of program-controlled signals possible under
VM/SP. They are:

Emergency signals

Direct signals

External call signals

Use the SIGNAL macro to issue the signal processor (SIGP) instruction. If you
have generated the system as an AP IMP system, the control program expands the
macro. The macro expansion code destroys the contents of registers 0, 1, 14, and
15. The macro expansion loads register 0 with the signalled processor address,
loads register 1 with the function code, and uses registers 14 and 15 for linkage.

Note: If you have not generated the system as an AP IMP system, the control pro­
gram treats the SIGNAL macro as a no-operation.

The SIGNAL macro causes all signaling requests to be sent to the external inter­
ruption handler so that error analysis and recovery attempts are centralized.

The format of the SIGNAL macro and the functions that you can perform using
each type of signal are:

label SIGNAL CLKCHK , [,CONTROL=SERIAL]
EXTEND
QUIESCE
SHUTDOWN
SYNC
XTNDEXIT

1------- -----------------------
APR [,CONTROL=[PARALLEL]]
DISPATCH = AUTO
RESUME
WAKEUP

:-------- ----------------------
RESTART [,CONTROL=[PARALLEL]]
START = AUTO
STOP

\ SSS

where:

label
is any desired label.

CP in Attached Processor and Multiprocessor Modes 211

is the function to be performed and is a required positional parameter. This
parameter can be an emergency signal, an external call signal, or a direct
signal.

Emergency Signals

When one processor wants the other processor to perform an action imme­
diately, it executes an emergency signal instruction. Since emergency signals
can only be serial, control is not returned to the issuing processor until the oth­
er processor pericrms the function. The emergency signals are:

CLKCHK - indicates that the high order bits of the time-of-day clocks are not
synchronized

EXTEND - indicates that free storage extend processing is to take place

QUIESCE - indicates that the receiving processor is to halt all execution until a
RESUME signal is received

SHUTDOWN - indicates that the system is about to shutdown

SYNC - indicates that the low order bits of the time of day clocks are no long­
er synchronized

XTNDEXIT - indicates that free storage extend process is complete and virtual
machines can be dispatched again

External Call Signals

When one processor wants to call the other processor's attention to an event or
condition, it executes an external call order. The external call functions are:

APR - causes automatic processor recovery to be invoked to attempt to remove
a failing processor from the configuration

DISPATCH - indicates that a CPEXBLOX is on the dispatcher's queue for the
receiving processor

RESUME - cancels a previous QUIESCE signal

WAKEUP - indicates that the processor is to resume operations after having
stopped processing

Direct Signals

212 VM/SP System Programmer's Guide

Direct signals correspond to physical buttons on the real processor. These
signals are controlled by the hardware, and cannot be masked off. The direct
signals are: RESTART, START, STOP, and SSS (stop and store status).

CONTROL=
is the second operand.

CONTROL=SERIAL - specifies that control returns to the sender
after the function is complete. CONTROL=SERIAL is the only
parameter that you can use with the emergency signals. You cannot
specify CONTROL=SERIAL for the external calls and direct signals.

CONTROL=SERIAL - specifies that control returns to the sender
after the function is complete. CONTROL=SERIAL is the only
parameter that you can use with the emergency signals. You cannot
specify CONTROL=SERIAL for the external calls and direct signals.

CONTROL=P ARALLEL - specifies that control returns to the sender
even though the function may not be complete. You can use CON­
TROL=P ARALLEL with the external calls and direct signals; it is the
default for these signals.

CONTROL=AUTO - specifies that the signal is sent to the issuing
processor. You can use CONTROL=AUTO with the external calls and
direct signals.

Time-oj-Day (TOD) Clock Synchronization Check

I Fetching and Storing

If more than one TOD clock exists in a tightly-coupled configuration, the clocks
must be synchronized. If the time-of-day (TOD) clocks are not in high order
synchronization during system initialization of an AP IMP system, the system issues
a message to the system operator to enable the TOD clock set key. If the clocks
are out of low order synchronization, that is bits 32 to 63 of the two clocks do not
match, the system receives a time-of-day-clock-sync-check when external inter­
ruptions are enabled. Then the system synchronizes the clocks.

Since main storage is shared, there is a possibility that both processors may be
accessing the same location in storage simultaneously. The control program must
prevent simultaneous updates to the same storage location. In a tightly-coupled
multiprocessor environment certain instructions cannot safely execute if there is a
chance that their execution might change storage that the other processor is also
using. Fetch and store instructions such as 01, NI, and NC could cause one
processor to update storage that the other processor is also using. To prevent this
type of error in a multiprocessing environment, the following fetch and store
instructions have interlocks:

CDS - compare double and swap

CS - compare and swap

TS - test and set

The following example shows how you could use the compare and swap instruction
to set a flag in a multiprocessing environment.

CP in Attached Processor and Multiprocessor Modes 213

Processor A

LA RX,FLAGS load Rx with address of FLAGS byte
LA Ry,X'80' load Ry with byte to set FLAGS
SLL Ry,24 line up fields
L Rz,O(Rx) load Rz with FLAGS byte .

RETRY LR RW,Rz load Rw with contents of Rz
OR Rw,Ry load Rw with reset value of FLAGS
CS Rz,Rw,O(Rx) reset FLAGS byte if =; otherwise load Rz from FLAGS
BNE RETRY if contents of Rz ~ FLAGS, branch to RETRY

FLAGS DC X'20' initial setting of field

Processor B

LA Ra,FLAGS load Ra with address of FLAGS byte
LA Rb,X'40' load Rb with byte to set FLAGS
SLL Rb,24 line up fields
L Rc,O(Ra) load Rc with FLAGS byte

RETRY LR Rd,Rc load Rd with contents of Rc
OR Rd,Rb load Ra with reset value of FLAGS
CS Rc,Rd,O(Ra) reset FLAGS byte if =; otherwise load Rc from FLAGS
BNE RETRY if contents of Rc ~ FLAGS, branch to RETRY

FLAGS DC X'20'

Figure 30. Sample of the Correct Way to Set a Flag in an AP/MP Environment

Locks and Serialization of Functions

Locking Hierarchy

If VM/SP is executing in AP /MP mode, critical sections of code must be
serialized. A critical section of code is code that is executing on one processor and
must appear as one indivisible operation to the other processor. An example of a
critical section of code would be code that updates a queue. The other processor
should not have access to the queue until the element is either added or deleted and
all pointers are updated. VM/SP uses locks to accomplish serialization of critical
functions. A lock is an area of storage. It is initialized to a value, usually zero, to
signify that the lock is not held. Before entering a critical section of code, the
processor requests the lock to serialize the operation. The operating system deter­
mines if a lock is free and gives it to the processor requesting the lock by means of
a hardware interlocked update operation such as compare and swap (CS). When
exit is made from the critical section of code, the system releases the lock by chang­
ing its value back to zero.

The introduction of a locking structure makes the avoidance of processor deadlock
a prime concern. A deadlock occurs if both processors each have a different lock
and want to obtain the lock that the other processor holds. VM/SP uses a locking
hierarchy to avoid these deadlock situations. A locking hierarchy provides for the
ordering of the set of locks. If a processor holds a given lock, it can only request a

214 VM/SP System Programmer's Guide

lock that is lower in the locking hierarchy. For example if a processor holds the free
storage lock, the processor cannot perform input/output. On the other hand, if a
processor holds the I/O lock, the processor can obtain free storage.

Figure 31 shows the hierarchy of locks under VM/SP where the global system lock
is the highest lock. The real storage management lock and the I/O lock are on the
same level. There are no situations which require simultaneous ownership of the
I/O lock and the real storage management lock. If such a need arises, the system
will define a hierarchy between these locks.

Global SystQm Lock

Real Storage Management Lock I I/O Lock

Note:

V
Run List Lock

I
V

Timer Request Queue Lock
I
V

Dispatcher Stack lock

RDEVBLOK Lock I
V

Private locks

Free Storage lock

Spin Locks

The VMBLOK is a defer lock and is not shown in this h;erarchy

Figure 31. Hierarchy of VM/SP Locks

Types of Locks

Locking Structure

There are two basic types of locks:

Defer locks

Spin locks

If a function requests a defer lock and it is not available, control is returned to the
caller with a condition code that indicates that the lock is not available. However,
if a function -requests a spin lock and it is not available, the lock manager loops
until the lock becomes available.

To provide system integrity, VM/SP attached processor and multiprocessor sup:­
port is designed around one global lock, a VMBLOK local lock, and several system
local locks for specifically identified queues or modules.

Global System Lock: Much of CP runs under the global system lock, which is a
defer lock. For example, all command processing requires the global system lock.
Also, all code executed via an IOBLOK, TRQBLOK, or CPEXBLOK is protected

CP in Attached Processor and Multiprocessor Modes 215

by the global system lock. Certain basic system functions, however, are able to
execute without the global system lock on the mainline, non-error paths. These
functions include virtual page fault processing, the simulation of virtual 1/0
requests and some other privileged operations, and the processing of a real 1/0
interruption.

If a processor needs the global system lock and cannot obtain it, the processor
must defer the function until the global system lock is available. The function is
deferred by either stacking the VMBLOK appendage (called the deferred interrupt
block) or a CPEXBLOK for later processing. The processor that could not obtain
the global system lock then uses the unlocked dispatcher entry to dispatch a new
virtual machine.

In some situations, a function cannot be deferred even though the global system
lock is not available. In these cases, the dispatcher spins on the global system lock
until it becomes available. The dispatcher requires the system lock to unstack
CPEXBLOKs, IOBLOKs, and TRQBLOKs.

To ensure system integrity along the paths that do not require the global system
lock, other local locks have been defined. With the exception of the VMBLOK
lock, these locks are all spin locks and are held for relatively short periods of time.

VMBLOK Lock: The VMBLOK lock, which is a defer lock, is obtained by the dis­
patcher before dispatching a virtual machine in problem program state or before
performing any system service for that virtual machine. This lock prevents a virtual
machine from being serviced by CP while it is running in problem program state.

ReDl Storage Management Lock (RM Lock): The real storage management lock
(called the RM lock) is a spin lock that serializes functions within the paging sub­
system. This lock controls all accesses to the free and flush lists, the page read and
write request queues, the deferred allocation queue, the active paging queue,
CPEXBLOKs chained via CPEXMISC, and certain nonreentrant fields within
DMKPTR and DMKPAG.

I/O Lock: The I/O lock is a spin lock that serializes access to I/O devices by seri­
alizing access to fields in the real I/O control blocks: RCHBLOK, RCUBLOK,
and RDEVBLOK.

Run List Lock: The run list lock is a spin lock that controls all additions to and
deletions from the run list.

Timer Request Queue Lock: The timer request queue lock is a spin lock that allows
the external first-level interruption handler to process a timer interruption without
the global system lock.

Dispatcher Stack Lock: The dispatcher stack lock is a spin lock that controls all
additions to or deletions from the IOBLOK/TRQBLOK queue or the CPEXBLOK
queue.

RDEVBLOK Lock: The RDEVBLOK lock is a private spin lock that the paging
subsystem uses to serialize the IOBLOK queue.

Free Storage Lock: The free storage lock is a spin lock obtained by DMKFRE for
all FREE and FRET requests for free storage. All of the locks that CP uses are
described in further detail in VM / SP System Logic and Problem Determination
Guide.

216 VM/SP System Programmer's Guide

LOCK Macro

label LOCK

Use the LOCK macro to obtain or release a lock. The format of the LOCK macro
is:

{OBTAIN ~,TYPE= SYS [, SPIN= '{ ~~S P [, SAVE]
RELEASE VMBLOK

[,OPTion=NOUPDT] FREE
RL
TR
DS
10
RM
PRIVATE

where:

label
is any desired label

OBTAIN

RELEASE
is a required positional operand indicating whether the lock is to be
obtained or released.

TYPE=
is a required positional operand. The possible parameters are:

SYS for the global system lock

VMBLOK for the VMBLOK

FREE for the free storage lock

RL for the runlist lock

TR for the timer request queue lock

DS for the dispatch lock

10 for the 110 lock

RM for the real storage management lock

PRIVATE for a private user-defined lock If you have user-defined areas
that are used by more than one virtual machine, you will need to
define your own locking conventions. You can use the LOCK
macro to obtain and release a private lock.

The system programmer must specify the address of the
lockword in register 1 and the lockword must be a full word
aligned on a fullword boundary. Spin time for private locks is
kept in the DMKLOKSI timer value for all non-DMKLOK
locks.

CP in Attached Processor and Multiprocessor Modes 217

I Affinity

I How to Set Afrmity

SPIN = {YES I NO}

SAVE

specifies whether control is to be returned without the lock being held. The
default is SPIN = YES.

is an optional keyword that indicates register 0, 1, 14, and 15 are to be
saved before the rest of the macro expansion. These registers are saved in
the PSA of the processor that is executing this macro. The registers are
restored before exit from the macro expansion.

OPTION =NOUPDT
indicates that the VMBLOK should be locked without checking for shared
segments.

Condition Codes

The condition code (cc) is set as a result of the invocation of the LOCK macro.

Condition
Code
cc=O

cc=l

Parameter

OBTAIN
RELEASE
OB'rAIN, SPIN=NO

Meaning

lock obtained
lock released
lock owned by another
processor

For various abend codes related to lock usage, see VM/SP System Messages and
Codes.

When you specify the affinity option for a virtual machine, the program of that vir­
tual machine is executed only on the specified processor. You might want to speci­
fy affinity in the following cases:

If one processor has a special hardware feature or a special RPQ that is
required for a particular program, set affinity to this processor.

• If a virtual machine has a high I/O-to-compute ratio, you might want to set
affinity to the I/O processor. On the other hand, if a virtual machine has a
high compute-to-I/O ratio, you could set affinity to the attached processor.

You request affinity either in the directory or with a SET AFFINITY command.
See the VM / SP CP Command Reference for General Users for details on the class
G SET AFFINITY command. See the VM / SP Operator's Guide for other privilege
classes of the SET AFFINITY command.

Shared Segments in an AP / MP Environment

When two processors are executing simultaneously, it is necessary to know when a
user changes a shared page. In attached processor or multiprocessor mode, there
are two sets of page tables and swap tables maintained for each shared segment
unless a user is running unprotected. If a user is running unprotected shared seg­
ments, there is only one copy.

218 VM/SP System Programmer's Guide

I SWTCHVM Macro

Routines that must lock a virtual machine other than the current virtual machine
use the SWTCHVM macro. The SWTCHVM macro unlocks the VMBLOK speci-.
fied in register 11 and locks the VMBLOK specified in register 1. Time charging is
also switched. The format of the SWTCHVM macro is:

SWTCHVM OPT=~ [STAY] [NOUPDT]t
~UNLOCK \

where:

label is any desired label

STAY indicates that if the VMBLOK lock is not available, a CPEXBLOK will
be stacked for the current processor.

NOUPDT indicates that the VMBLOK should be locked without checking for
shared segments.

UNLOCK indicates that the current VMBLOK is unlocked, register 11 is updated
to point to VMBLOK specified in register 1, the timer is switched to start
charging supervisor time to the new VMBLOK, but the new VMBLOK
is not locked. Note: The UNLOCK option cannot be specified with
either of the other options.

Configuring and Debugging MP Systems

I
The user should keep the following things in mind when configuring I/O devices
for an MP system and when debugging an AP /MP System.

Configuring I/O Devices for an MP System

When you configure I/O devices, you should consider the following:

The possibility of a hardware failure

Smooth transition when you reconfigure between MP and uniprocessor (UP)
modes for maintenance.

In either of these cases to ensure maximum system availability, you should provide
paths from both processors to I/O devices. You can do this in several ways:

Configure symmetrically as many channels and I/O devices as possible.

Install channel-switching and string-switching features on control units where
possible. A channel switch is a feature on a control unit that enables two real
processors to share a symmetric device. A symmetric device is a device that
can be accessed by both processors, while an asymmetric device cannot be
shared. A string switch enables you to attach a symmetric I/O device to two
separate control units. These features provide access to I/O devices from both
processors. This increased access reduces the possible loss of access to critical
I/O devices because of hardware malfunctioning.

CP in Attached Processor and Multiprocessor Modes 219

Configure asymmetric devices through a manual switching unit. Then the
operator can physically attach these devices to either processor, one processor
at a time. Asymmetric devices include printers, card readers, punches, and
information display systems.

Provide redundant control units for critical I/O devices.

Debugging an AP / MP System

IpSA

I Trace Table

I Lockwords

I
Wh~n you debug an AP /MP problem, the following areas provide pertinent infor­
matIOn:

A dump for a program operating in AP or MP mode contains three PSAs -- the
absolute PSA, one for the IPL processor and one for the other processor. In a
formatted dump the PSA for the IPL processor is displayed first and the PSA for
the other processor is displayed second. The PSA contains important information
about the status of each processor. See VM / SP Data Areas and Control Block Log­
ic, Volume 1 for an explanation of the fields in the PSA.

In an AP /MP system, the trace table entries for both processors are intermixed.
However, you can identify which processor made a particular entry by looking at
the trace code in the first byte of the trace table entry. If bit 1 of the trace code
contains a zero, the entry was made by the IPLed processor; while if bit 1 of the
trace code contains aI, the entry was made by the other processor. Processor
identification information is implemented for an AP /MP system at system initial­
ization when the system assigns each processor a trace identifier. The system
assigns the IPLed processor a trace identifier of X'OO' and the non- IPLed process­
or a trace identifier of X'40'. The identifier is ORed with the trace code when an
entry is made in the trace table thus providing an easy way of determining which
processor made a particular entry.

The following trace table entries appear in an AP /MP environment:

X'12' indicates that the processor is spinning on a lock
X'13' indicates that a processor issued a signal processor

(SIGP) instruction
X'01' may reflect multiprocessing-related external interruption

codes (also appears in a uniprocessor environment)

When you are debugging an AP /MP system, you must relate the entries made by
one processor to the entries made by the other processor in the same time period.
For example, a signal processor (code X'13') entry by one processor should be fol­
lowed closely by an external interruption (code X'OI ') for the other processor. See
the "CP Internal Trace Table" section and Figure 67 on page 499 earlier in this
publication. Trace table pointers (the address of trace table start, the address of
trace table end, and the address of the next available trace entry) are in absolute
page zero.

You can look in the DMKLOK module to find the status of the various VM/SP
locks except the VMBLOK lock and the RDEVBLOK lock. Each of the locks in
DMKLOK contains four fullwords of information. The first fullword contains the
logical processor address of the owning processor. This will be zero if the lock is

220 VM/SP System Programmer's Guide

not held. The second full word contains the value in the lock owner's register 12.
The third and fourth fullwords contain the total amount of time spent spinning on
this lock and the total number of spins respectively.

The VMBLOK lock is located in the VMBLOK at VMLOCK. When the
VMBLOK lock is held, VMLOCK contains the logical processor address of the
owning processor.

The RDEVBLOK lock is located in the RDEVBLOK at RDEVIOBL. \Vhen the
lock is held, RDEVIOBL contains the logical processor address of the owning
processor.

CP in Attached Processor and Multiprocessor Modes 221

DIAGNOSE Instruction in a Virtual Machine

The DIAGNOSE instruction cannot be used in a virtual machine for its normal
function. If a virtual machine attempts to execute a DIAGNOSE instruction, a
program interrupt returns control to CPo Since a DIAGNOSE instruction issued in
a virtual machine results only in returning control to CP and not in performing
normal DIAGNOSE functions, the instruction is used for communication between
a virtual machine and CPo The machine language format of DIAGNOSE is:

<--------------4-bytes-------------->

83 Rx Ry CODE

where:

83 is X'83' and interpreted by the assembler as the DIAGNOSE instruc­
tion.

RX,Ry

CODE

Note: There is no mnemonic for DIAGNOSE.

are general purpose registers that contain operand storage addresses or
return codes passed to the DIAGNOSE interface. If the registers con­
tain addresses, those addresses must be real to the virtual machine
issuing the DIAGNOSE.

is a two-byte hexadecimal value that CP uses to determine what
DIAGNOSE function to perform. The codes defined for the general
VM/SP user are described in this section. The code must be a multi­
ple of four. Codes X'OO' through X'FC' are reserved for IBM use,
and codes X'lOO' through X'lFC' are reserved for users. The privi­
lege class for each code is indicated.

Because DIAGNOSE operates differently in a virtual machine than it does in a real
machine, a program should determine that it is operating in a virtual machine
before issuing a diagn~e instruction, and prevent execution of a DIAGNOSE
when in a real machine. The Store Processor ID (STIDP) instruction provides a
program with information about the processor in which it is executing, including
the processor version number. If STIDP is issued from a virtual machine, the ver­
sion number will be X'FF' in the first byte of the CPUID field.

A virtual machine issuing a diagnose instruction should run with interrupts disabled.
This prevents loss of status information pertaining to the diagnose operation such
as condition codes and sense data.

Note: A DIAGNOSE instruction with invalid parameters may in some cases result
in a specification exception or protection exception.

DIAGNOSE Code X'OO' -- Store Extended-Identification Code

Privilege class G

Execution of DIAGNOSE code X'OO' allows a virtual machine to examine the
VM/SP extended-identification code. For example, an OS/VS 1 virtual machine
issues a DIAGNOSE code X'OO' instruction to determine if the version of VM/SP

222 VM/SP System Programmer's Guide

under which it is executing supports the VM/VS Handshaking feature. If the
extended-identification code is returned to VS 1, VM/SP supports handshaking;
otherwise, it does not.

Entry Values: The register specified as Rx contains the doubleword aligned virtual
storage address where the VM/SP extended-identification code is to be stored.
The Ry register contains the number of bytes to be stored entered as an unsigned
binary number.

Exit Values: If the VM/SP system currently executing does not support the
DIAGNOSE code X'OO' instruction, no data is returned to the virtual machine. If
it does support the DIAGNOSE code X'OO' instruction, the following data is
returned to the virtual machine (at the location specified by Rx):

Field
System
Name

Version
Number

Version
Code

MCEL

Processor
Address

Userid

Program
Product Bit
Map

Descri,etion
"VM/SP"

The first byte is the version number, the
second byte is the level, and the third byte is
the PLC (Program Level Change) number.

VM/SP executes the STIDP (Store Process-
or ID) instruction to determine the version
code.

VM/SP executes the STIDP instruction to
determine the maximum length of the
MCEL (Machine Check Extended Logout)
area.

VM/SP executes the ST AP (Store Processor
Address) instruction to determine the
processor address.

The userid of the virtual machine issuing the
DIAGNOSE.

Identifies the program products that are
installed. Valid values and the program
products each identifies are:

Characteristics
8 bytes, EBCDIC

3 bytes, hexadecimal

1 byte, hexadecimal

2 bytes, hexadecimal

2 bytes, hexadecimal

8 bytes, EBCDIC

8 bytes, hexadecimal

Value
X'SOOOOOOOOOOOOOOO'
X'COOOOOOOOOOOOOOO'
X'EOOOOOOOOOOOOOOO'
X'FOOOOOOOOOOOOOOO'
X'FSOOOOOOOOOOOOOO'

Program Product
Basic System Extensions 2
System Extensions, Release 2
VM/System Product, Release 1
VM/System Product, Release 2
VM/System Product, Release 3

DIAGNOSE Instruction in a Virtual Machine 223

Time Zone
Value

Represents the time zone differential in sec- 4 bytes, hexadecimal
onds from Greenwich Mean Time.

UNUSED 4 bytes, zeroes

Note: The Time Zone Value is a signed hexadecimal fullword value in seconds.
Negative values represent differentials west of Greenwich Mean Time and positive
values represent differentials east of Greenwich Mean Time. If VM/SP is execut­
ing in a virtual machine, another 40 bytes, or less, of extended identification data is
appended to the first 40 bytes described above. Up to five nested levels of VM/SP
virtual machines are supported by this diagnose instruction resulting in a maximum
of 200 bytes of data that can be returned to the virtual machine that initially issued
the DIAGNOSE instruction.

Upon return, Ry contains its original value less the number of bytes that were
stored.

Completion and Condition Codes: No completion code is returned, and the condition
code remains unchanged.

DIAGNOSE Code X'04' -- Examine Real Storage

Privilege class C or E

Entry Values: Execution of a DIAGNOSE Code X'04' allows a user to examine
real storage. The register specified as Rx contains the virtual address of a list of
CP (real) addresses to be examined. The R~" register contains the count of entries
in the list. Ry+ 1 contains the virtual address of the result field. The result field
contains the values retrieved from the specified reallocations.

Exit Values: For each address in the list of CP addresses, VM/SP provides a
fullword of data obtained from the specified address in real storage. VM/SP stores
this data into the result field identified by the Ry + 1 register.

There is a one-to-one correspondence between entries in the list of addresses and
entries in the result field. For example, data obtained from the address in the first
entry of the address list is stored in the entry of the result field, data obtained from
the second entry of the address list is stored in the second entry of the result field,
and so forth.

Usage Notes: The request and result tables must be in the same page of virtual stor­
age, and that page must be resident in real storage, at the time the DIAGNOSE is
executed. This is guaranteed if the instruction itself is also in the same page.

In the attached processor or multiprocessor environment, each processor has a pre­
fix register to relocate addresses between 0 and 4095 to another page frame in
main storage. The prefix register enables each processor to use a different page
frame in order to avoid conflict with the other processor for such activity as inter­
rupt code recording. Thus, the range 0 through 4095 refers to different areas of
storage, depending upon which processor generates the address.

In attached processor mode, all references to main storage from either processor
are handled as if they were made on the main processor. In multiprocessor mode,

224 VM/SP System Programmer's Guide

references to main storage from either processor are handled as if they were made
on the IPL processor. Existing user programs remain valid for performance data;
they receive the statistics for the main (or IPL) processor.

References to the PSA of the attached processor (or non-IPL processor, in multi­
processor mode) may be made as follows: first, retrieve the value of PREFIXB,
the value of the prefix register for the other processor (the attached processor in
this case). Next, specify addresses that are the sum of the value of PREFIXB and
the PSA displacement. References to 0 through 4095 are made by summing the
value of PREFIXA and the PSA displacement to form the request address. Several
system values that are processor independent are maintained in 0 through 4095,
such as the restart PSW and the trace table vectors.

Note: If a reference is made to a real page frame that CP has determined to be
disabled, results cannot be predicted. The CaRET ABLE entry corresponding to
the real page address is checked and, if a disabled condition is found, the operation
is terminated and a program check for a specification exception is presented to the
virtual machine.

DIAGNOSE Code X'08' -- Virtual Console Function

Privilege class G

DIAGNOSE Code X'08' enables a virtual machine running in supervisor state to
issue CP commands. The virtual machine must specify the command, the com­
mand parameters, and whether CP is to return the command response to the user's
terminal or to a buffer. In addition to returning the command response, CP sets a
completion code in the Ry register and may set a condition code.

Entry values: When DIAGNOSE Code X'08' is issued, the Rx and Ry registers
must be set up as follows:

Rx -- Rx must point to the character string in virtual storage that contains the
CP commands and parameters. If the character string contains multiple com­
mands, each command and its associated parameters must be separated from
adjacent commands by the value X'15'.

Ry -- The high-order byte contains flag bits; the other three bytes specify, in
bytes, the length of the CP commands and parameters. The maximum allow­
able length is 240 characters.

Set the flag bits as follows. If CP is to reject a password entered on the same line
as a LINK command, set the high-order bit to a value of one (X'80'). CP rejects
passwords only if the installation specified password suppression during system
generation. If CP is to return the command response in a buffer, set the second
flag bit to a value of one (X'40').

Exit values: If the Ry register contains the value X'OOOOOOOO', the DIAGNOSE
Code acts as a no-operation (NaP) instruction. As a consequence, the issuing vir­
tual machine is placed into a CP-READ state.

If the command response is to be returned in a buffer, Rx and Ry cannot be con­
secutive registers nor can either be register 15. In addition, the Rx+ 1 and Ry+ 1
registers must be setup as follows:

DIAGNOSE Instruction in a Virtual Machine 225

Rx+ 1 -- Rx+ 1 must point to the buffer in virtual storage where CP is to return
the command response.

Ry+ 1 -- Ry+ 1 must specify, in bytes, the length of the buffer. This value
must not exceed 8192.

Condition C~es: If the command response is to be returned in a buffer, CP sets a
condition code and returns information as follows:

condition code 0

condition code 1

The request was successful. The Rx+ 1 register points
to the buffer that contains the command response.
The Ry + 1 register specifies the length of the response.

The request was unsuccessful. The response does not
fit into the buffer. The Ry+ 1 register contains a value
that specifies how many bytes of the response would
not fit into the buffer.

Completion Codes: When CP returns to a program executing a DIAGNOSE Code
X'08' instruction, the length value that was supplied in register Ry is replaced by
the CP completion code value. This value is zero if the CP console function was
successfully executed. If an error occurred, the completion code is the numeric
value expressed in the message describing the error. For example, if error message
DMKCFM045E is issued, CP sets a completion code of 45.

If the user has not specified a command response buffer, error messages and
informational messages are generated according to the current values established
by SET EMSG, SET IMSG, and SET MSG commands.

If a command response buffer is used, error and informational messages are always
put into the buffer instead of being written to the console. Each line of the
response is followed by a new line character (X'15'). If the buffer is not long
enough to contain all of the response lines, only as many complete lines as can fit
into the buffer are supplied, so the last character written into the response buffer
by CP is always a new line character. Any unused portion of the response buffer is
not changed. The setting of IMSG is ignored (it is considered always to be ON)
and the setting of EMSG determines only whether the error message code is
retained. (SET EMSG OFF is treated the same as SET EMSG ON; SET EMSG
TEXT suppresses error message codes.) Messages controlled by SET MSG (such
as "PUN file nnnn to ... ") are not put into the command response buffer unless
SET MSG ON is in effect.

The completion code values returned by CP are not affected by the values of
EMSG and IMSG, or by the use of a command response buffer.

If CP is executing multiple commands and encounters an invalid command, proc­
essing stops and CP ignores the remaining commands.

Following are two examples showing how to specify DIAGNOSE Code X'08'. The
first example shows how a program issues the QUERY FILES command. In this
example the response is returned to the user's terminal. Note that in virtual storage
environment, a load real address (LRA) instruction must be used to load the Rx
register.

226 VM/SP System Programmer's Guide

CMMD
CMMDL

LA* 6,CMMD
LA 10,CMMDL
DC X'83',X'6A' ,XL2'0008'

DC
EQU

C'QUERY FILES'
*-CMMD

The second example shows how to specify a string of commands when multiple
commands are to be issued.

CMMD

CMMDL

Notes:

LA* 6,CMMD
LA 10 ,CMMDL
DC X'83',X'6A' ,XL2'0008'

DC
DC
DC
EQU

C'QUERY FILES'
X'lS'
C'PURGE PRINTER'
*-CMMD

1. If you are in EC mode you must code a LRA instruction instead of a LA
instruction if you are running a virtual storage system (for example, MVS) in a
virtual machine and want to specify the address of the CMMD parameter.

2. The logical line editing characters (described in the VM / SP Terminal Reference
and under the TERMINAL command in the CP Command Reference for Gen­
eral Users) are only recognized by CP when entered from a terminal, not when
passed to CP via DIAGNOSE X'08'. Therefore a command such as #CP is not
recognized by CP when issued via DIAGNOSE X'08' and results in error mes­
sage "DMKCFC001E ?CP: COMMAND".

DIAGNOSE Code X'OC' -- Pseudo Timer

Privilege class G

Execution of DIAGNOSE Code X'OC' causes CP to store four doublewords of
time information in the user's virtual storage.

Entry Values: The register specified as Rx contains the address of the 32 byte area
where the time information is to be stored. The address must be on a doubleword
boundary. The information returned is in the format shown in Figure 28 on page
207.

The first eight bytes contain the Month/Day-of-Month/Year. The next eight
bytes contain the time of day in Hours:Minutes:Seconds. The last 16 bytes contain
the virtual and total processor time used by the virtual machine that issued the
DIAGNOSE. The last 16 bytes are expressed as a doubleword, unsigned integer.
The time is expressed in microseconds.

Completion and Condition Codes: No completion code is returned, and the condition
code remains unchanged.

DIAGNOSE Instruction in a Virtual Machine 227

DIAGNOSE Code X'lO' -- Release Pages

I Privilege class G

Pages of virtual storage can be released by issuing a DIAGNOSE Code X'10'.
When a page is released, it is considered all zero.

Entry values: The register specified by Rx contains the address of the first page to
be released, and the Ry register contains the address of the last page to be released.
Both addresses must be on page boundaries. A page boundary is a storage address
whose low order three digits, expressed in hexadecimal, are zero.

Completion and Condition Codes: No completion code is returned, and the condition
code remains unchanged.

Note: Do not use DIAGNOSE Code X'10' to release noncontiguous storage; use
DIAGNOSE Code X'64' for this purpose.

DIAGNOSE Code X'14' -- Input Spool File Manipulation

Privilege class G

Execution of DIAGNOSE Code X'14' causes DMKDRDER to perform input spool
file manipulation.

Entry Values: Depending upon the value of the function specified as Rx contains a
buffer address, a copy count, or a spool file identifier. The Ry register, which must
be an even register, contains either the virtual address of a spool input card reader
or, if Ry+ 1 contains X'OFFF', a spool file ID number. Ry+ 1 contains a
hexadecimal code indicating the file manipulation to be performed, and a flag with
the optional size of the spool file block. The codes are:

Code
0000
0004
0008
OOOC
0010
0014
0018
001C
0020
0024
OFFE
OFFF

Notes:

Function
Read next spool buffer (data record)
Read next print spool file block (SFBLOK)
Read next punch spool file block (SFBLOK)
Select a file for processing
Repeat active file nn times
Restart active file at beginning
Backspace one record
Read next monitor spool file block
Read next monitor spool record
Read last spool buffer (active file)
Select next file not previously selected
Retrieve subsequent file descriptor

1. Subcodes X'OOlC' and X'0020' are the only subcodes of DIAGNOSE X'14'
that can be used for monitor files.

2. For subcodes X'OOOO', X'0004', X'0008', X'OOOC', X'OOlC', and X'0020',
held files are skipped.

Condition Codes: On return Ry + 1 may contain error codes that further define a
returned condition code of 3.

228 VM/SP System Programmer's Guide

Subcode X'OOOO'

Subcode X'0004'

Condition
Code

o
1

2
3
3
3

3
3
3

Ry+l

4
8
12

16
20
24

Error
Data transfer successful
End of file or if subcode X'OOI8' and file is
at first record
File not found
Device address invalid
Device type invalid
Device busy, reader not ready, or device is a
real device
Fatal paging I/O error
Page already locked for I/O
File in use by system; probable paging or
spooling error.

Rx = start address of fuUpage virtual buffer
Ry = virtual spool reader address
Ry + 1 = function subcode

The specified device is checked for a file activated via DIAGNOSE. If one is
found, the next fullpage buffer is made available to the virtual machine via a call to
DMKRP AGT. If a file is not found, the chain of reader files is searched for a file
for the calling user and connected to the virtual device for further reading. If no file
is found, virtual condition code 2 is set. When the end of an active file is reached,
the device status settings are tested for "spool continuous." If not set, virtual con­
dition code 1 is set, indicating end of file. If the device is set for continuous input,
the active file is examined to determine whether or not it is a multiple-copy file. If it
is, reading is restarted at the beginning of the file. If it is not, the file is closed via
DMKVSUCR and the reader chain is searched for another input file. If no other
file is found, virtual condition code 1 is set. A specific DIAGNOSE X'14' Subcode
X'OOOO' must be issued to get the first spooled page again.

Notes:

1. Subcode X'OOOO' returns a 3 condition code if an active monitor file or CP
dump file is found.

2. Issuing DIAGNOSE X'14' subcode X'OOOO' against a locked page causes the
page to become unlocked.

Rx = virtual address of an SFBLOK buffer
Ry = virtual spool reader address
Ry+ 1 = flag, optional size of SFBLOK in doublewords, and function subcode.

If the specified device is in use via DIAGNOSE, theVSPLCTL block is checked to
see whether or not this is a repeated call for printer SFBLOKs. If it is, then the
chain search continues from the point where the last SFBLOK was given to the vir­
tual machine. In this case, cc = 1 is set when there are no more print files. If this is

DIAGNOSE Instruction in a Virtual Machine 229

Sllbcode X'0008'

Subcode X'OOOC'

Subcode X'0010'

Subcode X'OO 14 '

the first call for an SFBLOK, or if there have been intervening calls for file reading,
the spool input chain is searched from the beginning, and cc=2 is set if no files are
found.

If the high-order byte of the sub code register (Ry+ 1) is zero, then only 13
doublewords of the SFBLOK are returned and the rest could be truncated. How­
ever, if bit zero of the register is on, then bits 2 to 7 specify the amount of data to
be returned (in doublewords). If the actual SFBLOK is shorter, the extra space is
filled with zeros.

Note: The virtual buffer specified via Rx must not cross a page boundary or a spec­
ification exception results.

Rx = virtual address of an SFBLOK buffer
Ry = virtual spool reader address
Ry+ 1 = flag, optional size of SFBLOK in doublewords, and function subcode.

Processing for subcode X'0008' is the same as for subcode X'0004', except that
only punch files are processed.

Note: For both subcode X'0004' and subcode X'0008', the format definition for a
VM!SP SFBLOK can be found in the system macro library.

Rx = file identifier of requested file
Ry = virtual spool reader address
Ry+ 1 = function subcode

The spool input chain is searched for the file specified. If it is not found, cc=2 is
set. If it is found, the file is moved to the head of the chain so that it is the next file
processed by any of the other functions.

Rx = new copy count for the active file
Ry = virtual spool reader address
Ry + 1 = function subcode

The specified device is checked for an active file. If no file is active, cc=2 is set.
Otherwise, the copy COUNT for the file is set to the specified value, with a maxi­
mum of 255. If the specified count is not positive, a specification exception is gen­
erated.

Rx = start address of virtual fullpage buffer
Ry = virtual spool reader address
Ry + 1 = function subcode

The specified device is checked for an active file. If no active file is found, cc=2 is
set. Otherwise, the VSPLCTL pointers are reset to the beginning of the file.

230 VM/SP System Programmer's Guide

Subcode X'OO 18'

Subcode X'OOI C'

Subcode X'0020'

Subcode X'0024 '

Subcode X'OFFE'

Rx = start address of virtual fullpage buffer
Ry = virtual spool reader address
Ry+ 1 = function subcode

The specified device is checked for an active file. If no active file is found, cc=2 is
set. Otherwise, the file is backspaced one record and the record is given to the user
as in subcode X'OOOO'. If the file is already positioned at the first record, the first
record is given to the user.

Rx = virtual address of an SFBLOK buffer
Ry = virtual spool reader address
Ry+ 1 = flag, optional size of SFBLOK in doublewords, and function subcode.

Processing is the same as Subcode X'0008', except that only monitor spool files, as
identified by the SFBMON flag is SFBFLAG2, can be handled.

Rx = start address of virtual fullpage buffer
Ry = virtual spool reader address
Ry+ 1 = function sub code

Processing is the same as Subcode X'OOOO', except that only monitor spool files, as
identified by the SFBMON flag in SFBFLAG2, can be handled.

Rx = start address of virtual fullpage buffer
Ry = virtual spool reader address
Ry+ 1 = function sub code

The specified device is checked for an already active file. If there is one, the last
fullpage buffer is made available to the virtual machine via a call to DMKRPAGT.
If there is no active file, CC=2 is set.

Rx = virtual address of a 252 byte buffer
Ry = code to further determine function
Ry+ 1 = flag, optional size of SFBLOK in doublewords, and function subcode.

If Ry code = 0, the next reader spool file that was not previously seen is selected
and returns data4 to the user's buffer.

If Ry code is not zero, the bit in the SFBLOK is be reset to indicate that the spool
file was previously selected and data4 from the first spool file is returned to the
user. CC= 1 is returned if no file is found.

4 The data for the X'OFFE' and X'OFFF' sub codes of the DIAGNOSE X'14' are SFBLOK, 40
bytes of the 3800 data from the first SPUNK (if requested), the first CCW, the following TIC,
and up to 136 bytes of associated data.

DIAGNOSE Instruction in a Virtual Machine 231

Subcode X'OFFF'

Subcode X'OFFE' waits for a file being used by a system function. If, however, the
file is not available within the 250 millisecond time limit, a condition code of 3, RC
of 24 is returned. This condition indicates system problems due to performance or
errors in the spooling area.

Rx = virtual address of a 252 byte buffer
Ry = spool file ID number
Ry+ 1 = flag, optional size of SFBLOK in doublewords, and function subcode.

If Ry is nonzero, the spool input chain is searched for a file with a matching ID
number: If none is found or if one is found that is owned by a different virtual
machine, cc=2 is set. The chain search is continued from the file that was found,
or from the anchor if Ry is zero, for the next file owned by the caller, independent
of file type, class, etc. If none is found, cc= 1 is set. If a file is found but it has the
INUSE flag on, cc = 3 (rc = 12) is returned. Otherwise, the data4 is returned to
the user's buffer.

As with subcode X'OFFE', subcode X'OFFF' also waits for a file being used by a
system function. If, however, the file is not available within the 250 millisecond
time limit, a condition code of 3, RC of 24 is returned. This condition indicates
system problems due to performance or errors in the spooling area.

Note: Data chaining may occur when 3800 load CCW's are present in a spool file.
If the data following a 3800 load CCW is more than 4080 bytes long, that data
cannot be contained in one DASD spool file buffer. Instead, the CCW is
data-chained to succeeding DASD buffers until all the data has been entered into
the spool file. If the file contains 3800 load CCW's, either the SFBLDBEG or the
SFBLDMID flags are set in the SFBLOK.

The amount of SFBLOK data returned is calculated as described under subcode
X'0004'. In addition, if bit zero of the subcode register (Ry+ 1) is on, 40 bytes of
3800 data is returned immediately following the SFBLOK and preceding the TAG
data. The data returned is described in the SPLINK DSECT starting at label
SPCHAR.

DIAGNOSE Code X'18' -- Standard DASD I/O

Privilege class G

Input/ output operations to a direct access device, of the type used by CMS, can be
performed from a virtual machine using DIAGNOSE Code X'18'. No I/O inter­
rupts are returned by CP to the virtual machine; the DIAGNOSE instruction is
completed only when the READ or WRITE commands associated with the DIAG­
NOSE are completed5•

Entry Va/lies: The Rx register contains the virtual device address of the direct
access device. The Ry register contains the address of a chain of CCWs. The user
must load Register 15 with the number of READs or WRITEs in the CCW chain.
The CCW chain must be in a standard format that CP expects when DIAGNOSE
Code X'18' is used, as shown below.

5 For non-standard channel programs (more than one consecutive READ or WRITE CCWs
chained together), no extended CCW is transformed if this is directed to a 3380 with the Speed
Matching Buffer.

232 VM/SP System Programmer's Guide

Usage: Diagnose X'18' checks that the byte count from the user's read or write
CCW does not exceed 4096 bytes. If the byte count exceeds 4096 bytes, CP flags
it as an error. If the byte count is less than or equal to 4096 bytes, Diagnose X'18'
makes an additional check for valid CMS standard blocksizes. The standard CMS
blocksizes are 512,800, 1K, 2K, or 4K bytes. The latter check is necessary and
only pertinent in the event that the user's channel program is directed to a device
that is capable of executing extended count-key-data channel commands (for
example, a 3380 attached to a 3880 Control Unit equipped with the Speed Match­
ing Buffer Feature).

CP converts user's channel programs to the extended count-key-data (CKD) for­
mat when they:

Are directed to a 3380 attached to a 3880 Control Unit equipped with the
Speed Matching Buffer (Feature #6550)

Or are directed to a 3375 attached to a 3880 Control Unit equipped with the
Speed Matching Buffer (Feature #6560)

And contain READ or WRITE CCW's with valid CMS blocksizes

And contain no READs chained to READs or WRITEs which are, themselves,
chained to WRITEs.

An example of a channel program converted to an extended count-key-data chan­
nel program is shown below.

DIAGNOSE X'18' must not be used to read or write record-overflow-formatted
data.

A typical CCW string to read or write two 800-byte records is as follows:

SEEK,A,CC,6
SET SECTOR (not used for 2314/2319)
SRCH,A+2,CC,5
TIC,*-S,O,O
RD or WRT,DATA,CC+SILI,SOO
SEEK HEAD,B,CC,6 (omitted if HEAD number unchanged)
SET SECTOR
SRCH,B+2,CC,5
TIC,*-S,O,O
RD or WRT,DATA+SOO,SILI,SOO

A SEEK and SRCH arguments for first RD/WRT
B SEEK and SRCH arguments for second RD/WRT

If you are reading from or writing to either a 3380 or 3375 attached to a 3880
Control Unit equipped with the respective Speed Matching Buffer, the above sam­
ple channel program would be converted to the following extended count-key-data
CCWs:

DIAGNOSE Instruction in a Virtual Machine 233

DEFINE EXTENT,C,CC,16
LOCATE RECORD,D,CC,16
RD OR WRT,DATA,CC+SILI,SOO
LOCATE RECORD,E,CC,16
RD OR WRT,DATA+SOO,SILI,SOO

C DEFINE EXTENT argument
D LOCATE RECORD argument for first RD/WRT
E LOCATE RECORD argument for second RD/WRT

Note: The second LOCATE RECORD CCW shown in this example is not gener­
ated in all cases. That is, LOCATE RECORD CCWs, after the first one, are gen­
erated only when one of the following is encountered:

• A READ is followed by a WRITE, or vice versa, with the normal SEEK, SET
SECTOR, SRCH in between them.

The length of a READ or WRITE is not the same as the length of the preced­
ing READ or WRITE.

The READ or WRITE that follows a previous READ or WRITE is not for the
next sequential record on the track.

Condition and Completion Codes: The codes returned are as follows:

cc=o I/O complete with no errors

cc= 1 Error condition. Register 15 contains one of the following:

R 15 = 1 Device not attached

R15=2 Device not 2319,2314,3330,3340,3350,3375, or 3380

R15=3 Attempt to write on a read-only disk

R15=4 Cylinder number not in range of user's disk

R 15 = 5 Virtual device is busy or has an interrupt pending

R15=6 Device halted; I/O mayor may not have completed.

cc=2 Error condition. Register 15 contains one of the following:

234 VM/SP System Programmer's Guide

R15=5 Pointer to CCW string not doubleword-aligned.

R15=6 SEEK/SEARCH arguments not within range of user's storage.

R15=7 CCW is not a SEEK, SEEK HEAD, SET SECTOR, SEARCH
ID, TIC*-8, READ, or WRITE or an invalid CCW string was
submitted.

R15=8 READ/WRITE byte count=O

R15=9 READ/WRITE byte count greater than 4096

R15=10 READ/WRITE buffer not within user's storage /"

R15= 11 The value in R15, at entry, was not a positive number from 1
through 15, or was not large enough for the given CCW string.

R15= 12 Cylinder number on seek head was not the same number as on
the first seek.

cc=3 Uncorrectable I/O error:

R15= 13 CSW (8 bytes) returned to user Sense bytes are available if the
user issues a SENSE command.

Note: This code does not support fixed-block DASD devices. If a program issues a
DIAGNOSE Code X' 18' to a fixed-block DASD device, CP sets cc= 1 and places a
return code of 2 in register 15.

DIAGNOSE Code X'l C' -- Clear Error Recording Cylinders

Privilege class F

Execution of DIAGNOSE Code X' 1 C' allows a user to clear the error recording
data on disk. The DMKIOEFM routine performs the clear operation.

Entry Values: The register specified as Rx contains a one-byte code value in the
low-order byte as follows:

Code Function

X'Ol' Clear and reformat all error recording, leaving any frame records intact

X'02' Clear and reformat all error recording cylinders, erasing both frame
records and error records

DIAGNOSE Code X'20' -- General I/O

I Privilege class G

With DIAGNOSE Code X'20', a virtual machine user can specify any valid CCW
chain to be performed on a tape, disk (including FBA) or unit record device. (An
exception: DIAGNOSE must not be used to read or write
record-overflow-formatted data on DASD devices.) No I/O interrupts are
reflected to the virtual machine; the DIAGNOSE instruction is completed only
when all I/O commands in the specified CCW chain are finished.

Entry Values: The register specified as Rx contains the virtual device address. The
Ry register contains the address of the CCW chain, and CP uses the high-order
byte of the register as a storage key for accessing the user's virtual storage.

The CCWs are processed via DMKCCWTR through DMKGIOEX, providing full
virtual I/O in a synchronous fashion (self-modifying CCWs are not permitted,
however) to any virtual machine specified. Control returns to the virtual machine
only after completion of the operation or detection of a fatal error condition.
EREP support is provided for tape and DASD devices only; all other devices pres­
ent an error condition in the PSW to the virtual user. Condition codes and error
codes are returned to the virtual system.

DIAGNOSE Instruction in a Virtual Machine 235

Completion and Condition Codes: The condition codes and error codes returned are
as follows:

cc=O I/O completed with no errors

cc= 1 Error condition. Register 15 contains the following:

R 15 = 1 Device is either not attached or the virtual channel is dedicated.

R 15 = 5 Virtual device is busy or has an interrupt pending.

R15=6 Device halted; I/O mayor may not have completed.

cc=2 Exception conditions. Register 15 contains one of the following:

R15=2 Unit exception bit in device status byte= 1

R15=3 Wrong length record detected.

cc= 3 Error Condition:

R15= 13 A permanent I/O error occurred or an unsupported device was
specified. The user's Ry register contains four sense bytes.
Sense bytes 2 and 3 are in the two leftmost positions in the Ry
register; sense byte 0 and 1 are in the two rightmost positions in
the Ry register.

Ry Register

Sense Byte
2

Sense Byte
3

DIAGNOSE Code X'24' -- Device Type and Features

I Privilege class G

Sense Byte
o

Sense Byte
1

DIAGNOSE Code X'24' requests CP to provide a virtual machine with identifying
information and status information about a specified virtual device. The virtual
machine must specify the virtual device for which information is requested. CP
returns information about the virtual device and associated real device in the Rx,
Ry, and Ry+ 1 registers. CP also provides a condition code identifying the specific
device information returned to the virtual machine.

Entry Values: When a virtual machine issues DIAGNOSE Code X'24', the Rx reg­
ister must contain the virtual device address for which information is requested or
the value negative 1 (-1). Specify -1 when the device is a virtual console whose
address is unknown to the virtual machine.

Exit Values: When CP returns control to the virtual machine, the Ry, Ry+ 1, and
Rx registers contain device information. The Ry register contains information
about the virtual device and the Ry+ 1 register information about the real device.
If -1 was specified and CP located the virtual console, the Rx register contains
information about the virtual console.

236 VM/SP System Programmer's Guide

CP obtains device information from three control blocks: virtual device information
from the virtual device block (VDEVBLOK), and real device information from the
real device block (RDEVBLOK) and from NICBLOK. The following diagrams
identify specific information returned by CP and show how to locate this informa­
tion in the Rx, Ry, and Ry+ 1 registers. The symbolic names used in these dia­
grams are the symbolic names used with VDEVBLOK, RDEVBLOK, and
NICBLOK in VM / SP Data Areas and Control B lock Logic, Volume 1.

Note: For a DIAGNOSE X'24' to an SNA device though VCNA, the model
(RDEVMDL) information is correct, however, the RDEVTYPE may not be reli­
able.

Rx Register

Byte 0

RDEVTMCD
- or -

NICTMCD

Symbolic Name

RDEVTMCD

- or-

NICTMCD

RyRegister

Byte 0

VDEVTYPC

Symbolic Name

VDEVTYPC

VDEVTYPE

VDEVSTAT

VDEVFLAG

Byte 1 Byte 2 I Byte 3

virtual
device
address

l~feaning

Terminal code bits defining the type of console and the translate
table the console is using. RDEVTMCD is for a local virtual
console; NICTMCD for a remote 3270 virtual console.

Byte 1 Byte 2 Byte 3

VDEVTYPE VDEVSTAT VDEVFLAG

Meaning

Virtual device type class

Virtual device type

Virtual device status

Virtual device flags

DIAGNOSE Instruction in a Virtual Machine 237

Ry+ 1 Register

Byte 0

RDEVTYPC

Symbolic Name

RDEVTYPC

RDEVTYPE

RDEVMDL

RDEVFTR

RDEVLLEN

NICDTYPE

NICMDL

NICLLEN

Byte 1 Byte 2 Byte 3

RDEVTYPE RDEVMDL RDEVFTR
- or- - or- - or-

NICDTYPE NICMDL RDEVLLEN
- or-

NICLLEN

Meaning

Real device type class

Real device type

Real device model number. To determine if the speed matching
buffer for the 3380 or 3375 is' present, check if bits 0 and 1 are
set on.

Real device feature code for a device other than a virtual con­
sole

Current device line length for a local virtual console

Real device type for a remote 3270 virtual console

Real device model number for a remote 3270 virtual console

Current device line length for a remote virtual console

Condition Codes: The following chart lists the condition codes CP can return for
DIAGNOSE Code X'24', the meaning of each condition code, and the registers
where data is returned.

This register
contains information

If the condition
code equals RXI Ry Ry+12 Comments

0 X X X Normal completion

1 Undefined

2 X X The virtual device
exists but is not
associated with a
real device

3 Invalid device
address or the
virtual device
does not exist

IThe Rx register contains information only when DIAGNOSE Code
X'24' specifies a virtual console whose address is unknown.

2If Ry is register 15, CP returns only virtual device infor-
mation; no information i 5 returned in register Ry+l.

238 VM/SP System Programmer's Guide

DIAGNOSE Code X'2S' -- Channel Program Modification

I Privilege class G

DIAGNOSE Code X'28' allows a virtual machine to correctly execute some chan­
nel programs modified after the Start I/O (SIO) instruction is issued and before the
input/ output operation is completed. The channel command word (CCW) modifi­
cations allowed are:

A Transfer in Channel (TIC) CCW modified to a No Operation (NOP) CCW

A TIC CCW modified to point to a new list of CCWs

A NOP modified to a TIC CCW.

When a virtual machine modifies a TIC CCW, it is modifying a virtual channel
program. CP has already translated that channel program and is waiting to execute
the real CCWs. The DIAGNOSE instruction, with Code X'28', must be issued to
inform CP of the change in the virtual channel program, so that CP can make the
corresponding change to the real CCW before it is executed. In addition, when a
NOP CCW is modified to point to a new list of CCWs, CP translates the new
CCWs.

To be sure that the DIAGNOSE instruction is recognized in time to update the real
CCW chain, the virtual machine issuing the DIAGNOSE instruction should have a
high favored execution value and a low dispatching priority value. The CP SET
command should be issued:

SET FAVORED xx

SET PRIORITY nn

where xx has a high numeric value and nn has a low numeric value. The virtual
machine issuing the DIAGNOSE Code X'28' must be in the supervisor mode at the
time it issues the DIAGNOSE instruction.

Entry Values: When DIAGNOSE Code X'28' is issued, the Rx register contains the
address of the TIC or NOP CCW that was modified by the virtual machine. The
Ry register contains the device address in bits 16 through 31. Rx and Ry cannot be
the same register. The addresses specified in the Rx register, the new address in
the modified TIC CCW, and the new CCW list to which the modified TIC CCW
points must all be addresses that appear real to the virtual machine: CP knows
these addresses are virtual, but the virtual machine thinks they are real.

Condition and Completion Codes: The condition codes (cc) and completion codes
are as follows:

cc=O The real channel program was successfully modified; register 15 contains
a zero.

cc= 1 There was probably an error in issuing the DIAGNOSE instruction. Reg­
ister 15 (RI5) contains one of the following completion codes:

R15= 1 The same register was specified for Rx and Ry.

R15=2 The device specified by the Ry register was not found.

DIAGNOSE Instruction in a Virtual Machine 239.

R15=3 The address specified by the Rx register was not within the user's
storage space.

R15=4 The address specified by the Rx register was not doubleword
aligned.

R15=5 A CCW string corresponding to the device (Ry) and address
(Rx) specified was not found.

R15=6 The CCW at the address specified by the Rx register is not a TIC
nor a NOP, or the CCW in the channel program is not a TIC nor
a NOP.

R15=7 The new address in the modified TIC CCW is not within the
user's storage space.

R15=8 The new address in the modified TIC CCW is not double word
aligned.

R15= 11 The modified CCW may not be a NOOP with command chaining
if it is the last CCW in the real chain program.

cc=2 The real channel program cannot be modified because a channel end or
device end already occurred. Register 15 contains a 9. The virtual
machine should restart the modified channel program.

DIAGNOSE Code X'2C' -- Return DASD Start of LOGREC

I Privilege class C, E, or F

Execution of DIAGNOSE Code X'2C' allows a user to find the location on the
disk of the error recording area, the number of error recording cylinders, and the
location of the first error record.

Entry Values: The register specified as Rx contains a one-byte code in the
low-order byte, indicating the function to be performed:

X'OI' Return the DASD location of the start of the error recording area, and
the number of error recording cylinders.

X'02' Return the HDRSTART value (DASD location of first error record).

X'04' Return indication of whether there are frame records on the error
recording cylinders.

Exit Values: On return to the issuer of DIAGNOSE Code X'2C':

240 VM/SP System Programmer's Guide

If code '01' is specified: Register Rx contains the DASD location (in VM/SP
control program internal format) of the start of the error recording area. Ry
contains, in the low-order halfword, the number of error recording cylinders.

If code '02' is specified: Register Rx contains the DASD location of the first
error record (in CCPD format). The value actually points to the last frame
record written, or record 2 if no frame records present.

If code '04' is specified: Register Ry contains a X'02' in the low-order byte if
frame records are present on the error recording cylinders; X'OO' if no frame
records present.

Note: Codes '02' and '04' may both be specified (code '06') on invoking DIAG­
NOSE. Both an Rx and Ry value must be specified.

iGNOSE Code X'30' -- Read One Page of LOGREC Data

Privilege class C, E, or F

Execution of DIAGNOSE Code X'30' allows a user to read one page of the system
error recording area.

Entry Values: The register specified as Rx contains the DASD location (in VM/SP
control program internal format) of the desired record. The Ry register contains
the virtual address of a page-size buffer to receive the data. The DMKRP AGT
routine supplies the page of data.

Condition Codes: The condition codes returned are:

Condition
Code

o
1
2
3

Meaning
Successful read, data available
End of area, no data
I/O error
Invalid location, outside recording area

Note: Issuing DIAGNOSE X'30' against a locked page causes the page to become
unlocked.

DIAGNOSE Code X'34' -- Read System Dump Spool File

Privilege class C or E

A user can read the system spool file by issuing a DIAGNOSE Code X'34' instruc­
tion. However, this Diagnose Code cannot read spool files that contain VMDUMP
records -- use DIAGNOSE Code X'14' for this purpose. If a program attempts to
use DIAGNOSE Code X'34' to read VMDUMP records, CP returns a condition
code of 2.

Entry Values: The register specified as Rx contains the virtual address of a
page-size buffer to receive the data. The Ry register, which must not be register
15, contains the virtual address of the spool input card reader.

Condition Codes: Ry+ 1, on return, may contain error codes as follows:

Condition
Code
o
1
2
3

Ry+l
Error Code

4

Meaning
Data transfer successful
End of file
File not found
Device address invalid

DIAGNOSE Instruction in a Virtual Machine 241

Condition Ry+l
Code Error Code Meaning

3 8 Device type invalid
.., 12 Device busy J

3 16 Fatal paging I/O error

The DMKDRDMP routine searches the system chain of spool input files for the
dump file belonging to the user issuing the DIAGNOSE instruction. The first (or
next) record from the dump file is provided to the virtual machine via
DMKRPAGT and the condition code is set to zero. The dump file is closed via
VM/SP console function CLOSE.

Note: Issuing DIAGNOSE X'34' against a locked page causes the page to become
unlocked.

DIAGNOSE Code X'38' -- Read System Symbol Table

I Privilege class C or E

Execution of DIAGNOSE Code X'38' causes the routine DMKDRDSY to read the
system table into storage.

Entry Vailles: The register specified as Rx contains the address of the page buffer
to contain the symbol table.

Condition Codes: When complete, the Ry register, which must not be register 15,
contains a condition code. On return, Ry+ 1 may contain an error code.

Condition
Code
o
1
3
3

Notes:

Ry+l
Error Code

16

Meaning
Full page of data available to virtual machine
No symbol table is available
Page buffer is locked for an I/O operation
Fatal paging I/O error

1. The format of the symbol table entries is described in CP macro SYM.

2. Issuing DIAGNOSE X'34' against a locked page causes the page to become
unlocked.

DIAGNOSE Code X'3C' -- VM/SP Directory

I Privilege class A, B, or C

Execution of DIAGNOSE Code X'3C' allows a user to dynamically update the
VM/SP directory. The register specified as Rx contains the first 4 bytes of the
volume identification. The first two bytes of Ry contain the last two bytes of the
volume identification. The last two bytes of Ry contain the volume address. The
routine DMKUDRDS dynamically updates the directory.

Condition Codes: The PSW condition code is set depending on the success of the
operation or the meaning of the condition code. The condition codes are set as fol­
lows:

242 VMjSP System Programmer's Guide

Condition
Code
o
2

3

Meaning
Operation is successful.
Volume not found, not mounted, or not a valid directory
volume.
Fatal I/O error trying to read the directory

Diagnose Code X'40' -- Clean-Up after Virtual IPL by Device

I Privilege class G

This code is valid only during virtual IPL. Clean-up restores the user's page and
frees the real page if it is not in the V =R machine. If the real page is in the V =R
machine, the real page is not freed. The PSW from location zero of the virtual
machine is loaded and made the current PSW.

Entry Values: Register Rx must contain a zero. Register Ry must point to the vir­
tual machine registers to be loaded.

Usage: If the user issues a DIAGNOSE code X'40' outside of its use in DMKVMI,
a specification exception is returned.

DIAGNOSE Code X'48' -- Issue SVC 76 from a Second Level VM/370 or VM/SP Virtual
Machine

Privilege class G

A second level VM/370 or VM/SP operating system issues SVC 76 using this
DIAGNOSE. SVC 76 handles I/O error recording for virtual operating systems.
For instance, a virtual machine issues SVC 76 to record data about hardware errors
that occur on devices dedicated to it.

Entry Values: Rl is the Rx register. The Ry register is not used in this
DIAGNOSE. Rl must contain either of two values:

X'04' -indicates an SVC 76 request from a VM/370 or VM/SP virtual machine

X'OS' -indicates that a VM/370 or VM/SP virtual machine issued DIAGNOSE
X'4S'.

Usage: CP checks first for the X'04' value. If it is present, CP sets VMSPMFLG
in the virtual machine's VMBLOK to X'04' and processes the SVC 76 request on
behalf of the virtual machine.

If Rl contains a X'OS' value, CP sets VMSPMFLG in the virtual machine's
VMBLOK to X'OS'. It then reflects the SVC 76 back to the virtual machine. The
virtual machine then handles its own error recording.

For more information on SVC 76 and I/O error recording procedures, refer to
VM / SP OLTSEP and Error Recording Guide.

DIAGNOSE Code X'4C' -- Generate Accounting Records for the Virtual User

I Privilege class G

DIAGNOSE Instruction in a Virtual Machine 243

This code can be issued only by a user with the account option (ACCT) in his
directory.

Entry Values: Rx contains the virtual address of either a 24-byte parameter list
identifying the "charge to" user, or a variable length data area that is to be stored
in the accounting record. The interpretation of the address is based on a
hexadecimal code supplied in Ry. If the virtual address represents a parameter list,
it must be double word aligned; if it represents a data area, the area must not cross
a page boundary. If Rx is interpreted as pointing to a parameter list and the value
in Rx is zeros, the accounting record is spooled with the identification of the user
issuing the DIAGNOSE instruction.

Ry contains a hexadecimal code interpreted by DMKHVC as follows:

Code Rx points to:

0000 a parameter list containing only a userid.

0004 a parameter list containing a userid and account number.

0008 a parameter list containing a userid and distribution number.

oooe a parameter list containing a userid, account number, and distribution
number.

0010 a data area containing up to 70 bytes of user information to be transferred
to the accounting card starting in column 9.

Notes:

1. For code X'0010', the only valid accounting record identification code
(ACNTCODE field of the ACNTBLOK) is "CO". For the other four codes
listed above, the accounting record identification code can be "C 1", "C02",
etc. For more information on accounting record identification codes, see
VM/SP Data Areas and Control Block Logic, Volume 1.

2. If Ry contains X'OO 1 0', Ry cannot be register 15.

Ry+ 1 contains the length of the data area pointed to by Rx. If Rx points to a
parameter list (Ry not equal to X'0010'), Ry+ 1 is ignored.

DMKHVC checks the VMACCOUN flag in VMPST AT to verify that the user has
the account option and if not, returns control to the user with a condition code of
one.

If Ry contains a code of X'0010', DMKHVC performs the following checks:

• If the address specified in Rx is negative or greater than the size of the user's '
virtual sturage, an addressing exception is generated.

• If the combination of the address in Rx and the length in Ry + 1 indicates that
the data area crosses a page boundary, a specification exception is generated.

• If the value in Ry+ 1 is zero, negative, or greater than 70, a specification excep­
tion is generated.

244 VM/SP System Programmer's Guide

When Ry contains a code of X'OO 1 0', and if both the virtual address and the length
are valid, DMKFREE is called to obtain storage for an account buffer
(ACNTBLOK) which is then initialized to blanks. The userid of the user issuing
the DIAGNOSE instruction is placed in columns 1 through 8 and an accounting
record identification code of "CO" is placed in columns 79 and 80. The user data
pointed to by the address in Rx is moved to the accounting record starting at col­
umn 9 for a length equal to the value in Ry+ 1. A call to DMKACOQU collects
the accounting records on the system accounting chain (DMKRSP AC) and puts
them in spool format. DMKHVC then returns control to the user with a condition
code of zero.

If Ry contains other than a X'OOlO' code, control is passed to DMKCPV to gener­
ate the record. DMKCPV passes control to DMKACO to complete the "charge
to" information; either from the User Accounting Block (ACCTBLOK), if a point­
er to it exists, or from the user's VMBLOK. DMKCPV passes control back to
DMKHVC to release the storage for the ACCTBLOK, if one exists. DMKHVC
then checks the parameter list address for the following conditions:

If zero, control is returned to the user with a condition code of zero.

If invalid, an addressing exception is generated.

If not aligned on a doubleword boundary, a specification exception is gener­
ated.

For a parameter list address that is nonzero and valid, the userid in the parameter
list is checked against the directory list and if not found, control is returned to the
user with a condition code of two. If the function hexadecimal code is invalid, con­
trol is returned to the user with a condition code of three. If both userid and func-

. tion hexadecimal code are valid, the User Accounting Block (ACCTBLOK) is built
and the userid, account number, and distribution number are moved to the block
from the parameter list or the User Machine Block belonging to the userid in the
parameter list. Control is then passed to the user with a condition code of zero.

DIAGNOSE Code X'50' -- Save the 370X Control Program Image

I Privilege class A, B, or C

DIAGNOSE Code X'50' invokes the CP module DMKSNC to validate the param­
eter list and write the page-format image of the 370X control program to the
appropriate system volume.

When a 370X control program load module is created, the CMS service program
SAVENCP builds a communications controller list (CCPARM) of control informa­
tion. It passes this information to CP via a DIAGNOSE Code X'50'.

Entry Values: The register specified as Rx contains the virtual address of the
parameter list (CCPARM). The Ry register is ignored on entry.

Exit Values: Upon return, the Ry register contains the following error codes:

DIAGNOSE Instruction in a Virtual Machine 245

Code Meaning

044 'ncpname' was not found in system name table.

171 System volume specified not currently available.

178 Insufficient space reserved for program and system control information.

179 System volume specified is not a CP-owned volume.

435 Paging error while writing saved system.

DIAGNOSE Code X'54' -- Control The Function of the PA2 Function Key

I Privilege class G

DIAGNOSE Code X'54' controls the function of the PA2 function key. The PA2
function key can be used either to simulate an external interrupt to a virtual
machine or to clear the output area of a display screen.

Entry Values: The function performed depends upon how Rx is specified when
DIAGNOSE Code X'54' is issued. If Rx contains a nonzero value, the PA2 key
simulates an external interrupt to the virtual machine. If Rx contains a value of
zero, the P A2 key clears the output area of the display screen.

Usage: The external interrupt is simulated only when the display screen is in the
VM READ, HOLD, or MORE status and the TERMINAL APL ON command has
been issued.

DIAGNOSE Code X'58' -- 3270 Virtual Console Interface

Privilege class G

DIAGNOSE Code X'58' enables a virtual machine to communicate with 3270 dis­
play stations. Using DIAGNOSE Code X'58', a virtual machine may:

• Display up to a full screen of data using only one write operation.

• Provide attribute characters along with data that is sent to the display station.
An attribute character provides control information for the data, for example, a
request to intensify the data when it is displayed.

Place a 3270 display station under control of the virtual machine (full screen
mode).

Entry Values: When a virtual machine issues DIAGNOSE Code X'58', the virtual
machine must provide one or more channel command words (CCWs). These
CCWs specify the 3270 operation to be performed, provide control information for
the display station, and specify the address of data to be displayed during a write
operation or the address of a buffer where data is to be stored during a read opera­
tion. If only one CCW is used, the Rx register must contain its address. If CCWs
are chained, the Rx register must contain the address of the first CCW in the chain.
The Ry register must contain the virtual address of the display station where the
operation is to be performed. This value must be right-justified.

246 VM/SP System Programmer's Guide

Displaying Data

To display up to a full screen of data, code a CCW using the following assembler
language instructions:

DS OD
DC ALl (CCWCODE) ,AL3(DATADDR) ,AL1 (FLAGS) ,AL1 (CTL) ,AL2(COUNT)

where:

CCWCODE is the command code X'19'.

DAT ADDR is the virtual storage address of the first byte of data to be displayed.

FLAGS

CTL

COUNT

are standard CCW flags. The suppress-incorrect-Iength indicator, bit
34, must be set to a value of one. Set other bits as needed.

is a control byte defined as follows:

The high-order bit (0), if set on, enables the screen "MORE" sta­
tus to be active before the displaying of data.

Bits 2-7 identify the line on the display screen where the display is
to start. A value of 0 (B'xxOO 0000') corresponds to the first or
top line, a value of 1 (B'xxOO 0001 ') corresponds to the second
line and so forth.

If the control byte contains the value X'FF', CP erases the display
station's screen. No new data is displayed.

CCW's may be command chained to combine several operations in
one DIAGNOSE. When CP builds the real CCW string, it will
data chain as many CCW's as possible to reduce the number of
real IIO operations. If the control byte contains a value of X'FE',
CP will:

Not data chain this operation to any previous CCW in the real
CCW string.

Erase the entire screen.

Rewrite the attribute bytes for the CP screen format.

Reset the cursor to the beginning of the input area.

specifies the number of bytes of data to be displayed. The maximum
that can be specified for this command code is 2032 bytes. The max­
imum amount of data that can be displayed at one time depends upon
the 3270 model of the display station:

A model 2 can display up to 1760 bytes
A model 3 can display up to 2400 bytes
A model 4 can display up to 3280 bytes
A model 5 can display up to 3300 bytes

DIAGNOSE Instruction in a Virtual Machine 247

Full Screen Mode

To provide attribute characters for the data, place the attribute character in the
data stream immediately following a 3270 start-field order. The start-field order, a
one-byte value, notifies the 3270 display system that the next byte in the data
stream is an attribute character. For a description of how the 3270 display system
uses attribute characters, and to determine the values to specify for attribute char­
acters and the start-field order, see the IBM 3270 Information Display System
Library User's Guide.

Note: Through the use of the attribute character, it is possible to define a display
field as selector-pen detectable. However, when the selector pen is used to select
the field, CP does not return data from the field to the virtual machine. After
processing DIAGNOSE code X'58', CP sets a condition code. If the operation was
successful - that is, no I/O errors occurred - CP sets a condition code of zero. If
an I/O error occurred, CP sets a condition code of one.

If an I/O error occurred, the application program can check the I/O status and the
error type by:

Issuing a TEST I/O (TIO) instruction
Examining the returned condition code
Examining the virtual CSW

The returned condition codes and CSW status are the standard condition codes and
status defined in the IBM System/3 70 Principles of Operation.

You must also make sure that the interrupt for the virtual device is enabled by set­
ting the appropriate bit and channel mask in the PSW. For example, if the virtual
address of your console is 009, bit 0 in the channel mask must be set to one (that
is, bit 0 must be on). This may be the case if you are loading programs in the tran­
sient area.

DIAGNOSE X'58' provides a means by which a virtual machine may share, with
CP, control of a 3270 display station. Two CCW operations, X'29' and X'2A', in
addition to performing the requested I/O, notify CP that the display station is
operating under the control of the virtual machine.

CCW code X'29' performs a WRITE, ERASE/WRITE, ERASE/WRITE
ALTERNATE, or WRITE STRUCTURED FIELD operation, depending on the
value of the control field. For the WRITE, ERASE/WRITE, and ERASE/WRITE
ALTERNATE, the virtual machine must provide appropriate control information
beginning with the Write Control Character (WCC) and including 3270 orders fol­
lowing the WCC. Data may be written anywhere on the screen. The virtual
machine must provide the address where the write is to begin; it uses a SET
BUFFER ADDRESS (SBA) order to do this. Writing can also start at the current
cursor address.

CCW code X'29' performs a WRITE STRUCTURED FIELD operation when the
value of the control field is X'20'. The WRITE STRUCTURED FIELD instruc­
tion sends control information to a 3274 controller. The application program must
provide the control information in the data stream in the format required by the
instruction. (See the 3270 Component Description for more information on WRITE
STRUCTURED FIELD operation.)

248 VM/SP System Programmer's Guide

Full Screen Interactions

CCW code X'2A' performs a READ BUFFER or a READ MODIFIED operation,
depending on the value of the control field.

To specify the full screen mode CCW, use the following assembler language
instructions:

DS OD
DC AL1 (CCWCODE),AL3(DATADDR) ,AL1(FLAGS) ,AL1 (CONTROL) ,AL2(COUNT)

where:

CCWCODE is a CCW code (X'29' or X'2A')

DAT ADDR for a write operation, specifies the first byte of the data stream
(WCC) to be written. For a read operation, specifies the address of
the read buffer.

FLAGS is the standard CCW flag field.

CONTROL for a write operation, an ERASE/WRITE is performed by specifying
a ccwcode of X'29', if the high-order bit (X'80') is on. If the two
high-order bits (X'CO') are on, an ERASE/WRITE ALTERNATE is
performed. If bit 2 (X'20') is on, a WRITE STRUCTURED FIELD
is performed.

COUNT

If the high-order bit (X'80') is on for a read operation, a READ
MODIFIED is performed; otherwise, a READ BUFFER is performed.
The addition of X' 10' to the CONTROL field values for
ERASE/WRITE or ERASE/WRITE ALTERNATE, making them
X'90' or X'DO' respectively, causes the PAl key interrupt to be
reflected to the virtual machine. This replaces the normal PAl key
function of returning the virtual machine to CP mode. This allows a
virtual machine to have full control of the keyboard. Normal PAl key
function is restored when full screen mode is reset.

for a write operation, specifies the number of bytes to be displayed
plus the number of bytes of control information. For a read operation,
specifies the number of display characters to be read plus the number
of bytes of control information. The maximum number of bytes that
can be specified is 65503. The maximum number of displayable posi­
tions for the supported devices is:

3277 and 3275 Model 2 - 1920 bytes
3278,3276 and 3279 Model 2 - 1920 bytes
3278, 3276 and 3279 Model 3 - 2560 bytes
3278 and 3276 Model 4 - 3440 bytes
3278 ModelS - 3564 bytes

The virtual machine console exists in either of two modes, CP mode and full screen
mode. CP mode is the default screen mode and is indicated by the screen status
field in the lower right-hand corner of the screen. When in CP mode, the screen
format is controlled by CP, and the data that appears on the screen is provided by
CP and the programs running in the virtual machine. Full screen mode is initiated

DIAGNOSE Instruction in a Virtual Machine 249

by the application program running in the virtual machine. When in full screen
mode, the screen format and data are under complete control of the program run­
ning in the virtual machine.

If TERMINAL BREAKIN GUESTCTL is specified, the screen mode changes only
when the break-in key is used. An audible alarm is sounded when CP messages are
queued. Priority CP messages and DIAGNOSE X'08' output take over the full
screen.

CP mode is terminated and full screen mode is initiated when the application pro­
gram issues an ERASE/WRITE instruction. Full screen mode may be terminated
by a CP mode type I/O to the screen any time the keyboard is in a locked state.

Interactions between CP and the application program in the virtual machine using
full screen support are listed below. The application programmer must be familiar
with the operation of the IBM 3270 display station. For detailed information on its
operation, see the appropriate 3270 Information Display System Description and
Programmer's Guide listed in the Preface. Also listed below are general program­
ming considerations that must be followed to effectively use the DIAGNOSE X'58'
instruction for full screen I/O.

1. A full screen ERASE/WRITE or ERASE/WRITE ALTERNATE operation
establishes full screen mode.

2. The application program is responsible for all I/O status and error checking,
just as if START I/O (SIO) were being used instead of DIAGNOSE. This is
done by using the TEST I/O (TIO) instruction and examining the returned
condition code, and by examining the virtual CSW. The returned condition
codes and CSW status are the standard condition codes and status as defined
in the IBM System/3 70 Principles of Operation, with one exception noted
below in number 5.

3. When in full screen mode, all CP messages are queued. The entire queue of
CP messages is processed after each of the following operations:

a. A full screen READ operation (any READ operation that locks the key­
board).

b. A full screen WRITE operation that does not place the keyboard in the
active status.

c. The expiration of a 60 second timer for CP priority messages.

4. If a priority CP message (such as a warning message from the system operator)
is to be displayed while in full screen mode, an attention interruption is posted
to the application program and a 60 second timer is set. This informs the
application program that a READ operation should be initiated. If a READ is
not issued before the 60 seconds have expired, CP erases the screen and dis­
plays all queued messages.

The only exception is if the application program has issued a Full Screen Sup­
port WRITE STRUCTURED FIELD instruction. CP does not take over the
screen if the user has issued a WRITE STRUCTURED FIELD.

5. When a mode switch has occurred and the screen is in CP mode, the applica­
tion program is notified by an X'8E' in the CSW unit status byte following a

250 VM/SP System Programmer's Guide

full screen I/O operation. An ERASE/WRITE or ERASE/WRITE ALTER­
NATE instruction should be issued to reestablish full screen mode and refor­
mat the screen. If control of the PAl key interrupt had been transferred to the
virtual machine via the CONTROL option, it must be respecified to return
PAl key control back to the virtual machine. Otherwise, depression of the
PAl k.ey places the display in CP mode.

An X'8E' in the CSW unit status byte following an ERASE/WRITE or
ERASE/WRITE ALTERNATE instruction indicates that non-full screen data
(CP mode) is waiting to be read. The application program should issue a
non-full screen READ and then reissue the ERASE/WRITE instruction.

6. Other non-full screen virtual machine messages are displayed immediately
when in full screen mode.

7. The application program must establish an environment to handle attention
interruptions. This could be done using the CMS macros HNDINT and
W AITD. There are two conditions when CP posts an attention interruption to
the application program:

a. When CP receives an attention interruption indicating that the virtual
machine console operator has caused an interruption. (For example,
depressed the ENTER or a PF key on the display keyboard).

b. When a CP priority message is to be displayed. In either case the applica­
tion program should respond by issuing a READ.

8. The application program must also establish an environment to handle I/O
interruptions and must ensure that channel end and device end have been
received before processing continues.

9. If the test request key is depressed from a local 3270 when in full screen mode,
X'604040' is returned to the application program in the read buffer. The test
request key is not supported for remote 3270 terminals.

10. If you press the PAl key in full screen mode, CP posts an attention interrupt to
your virtual machine. If the virtual machine does not respond with a READ
and you press the PAl key a second time, your virtual machine is put in CP
mode and "CP READ" is displayed in the screen's status area. However, if
you set bit X'lO' of the control option on before the initial ERASE/WRITE or
ERASE/WRITE ALTERNATE, and press the PAl key, the interrupt is
reflected to your virtual machine for handling. If you have not set bit X'lO' of
the CONTROL option on and you press the PAl key, your virtual machine is
put in CP mode and "CP READ" is displayed in the screen's status area.

11. The application programmer must be aware that long data streams may result
in very high CP storage use and possible system degradation. In addition, long
data streams sent over BSC lines may cause degradation of response time on
other terminals on the same BSC line.

Full Screen Interactions (3270 SIO)

Full screen console (3270 SIO) support enables a guest virtual machine and CP to
share a locally attached display terminal controlled by CP. The virtual machine can
use the display terminal as a graphics device in full screen mode; CP can use the
same terminal as a line device. When the terminal is in full screen mode, the screen

DIAGNOSE Instruction in a Virtual Machine 251

format, data checking, and error checking are under the complete control of the
application program running in the virtual machine. A guest virtual machine can
use either the DIAGNOSE X'58' or the SIO instruction to initiate full screen mode,
but not both.

Before the guest virtual machine can issue 3270 SIO commands, it must first issue
the CP TERMINAL command with the CONMODE 3270 option to be able to
issue 3270 SIO commands. In addition, the SCRNSAVE ON option of the CP
TERMINAL command gives a virtual machine (that has also specified
CONMODE 3270) the ability to save the full screen display when the screen
enters CP mode. If SCRNSA VE ON is specified, the screen is automatically redis­
played when the console returns to full screen mode. If SCRNSA VE OFF has
been specified by a virtual machine that has specified CONMODE 3270 and CP
takes over a screen, CP presents a CLEAR attention interrupt to the virtual
machine when CP is ready to give up control of the screen. It is the responsibility
of the application program to issue an ERASE/WRITE to refresh the screen. If
the virtual machine issues only a WRITE that does not cover the entire screen,
information that CP displayed can remain on the screen. To use the CP TERMI­
NAL SCRNSA VE OFF:

1. Always issue a WRITE after a READ.

2. CP can break into a CCW chain containing WRITEs (with the WCC byte
making the keyboard locked) and take over the screen. Upon return to full
screen mode, the next CCW in the chain is processed as if it is the first CCW.
The guest system must provide a means to handle this situation.

3. Refresh the screen with an ERASE/WRITE when CP issues a CLEAR atten­
tion interrupt.

4. When ATTENTION from the console is received, the guest program must
issue a READ.

The TERMINAL BREAKIN GUESTCTL option allows a guest operator to
control break-ins (when CP takes over the full screen). Each time a CP
request is received, it is put on a defer queue and an audible alarm sounds. The
guest operator can switch to CP mode by hitting the break-in key.

The TERMINAL BRKKEY option allows the user to specify a PF key as the
break-in key in full screen mode. The default break-in key is PAL PAl atten­
tions are sent to the virtual machine when PAl is not defined as the BRKKEY.
Some applications may interpret this PAl attention as a user request to enter
the CP environment.

Notes:

1. DIAGNOSE X'58' is a 3215 command and causes command rejects if exe­
cuted with CONMODE 3270.

2. DIAGNOSE X'58' can be used with BREAKIN and BRKKEY.

3. CONMODE must be 3215 to run CMS. If CMS sets CONMODE to 3270
while CMS is running, results are unpredictable.

4. SCRNSA VE ON must be specified if running a guest SCP such as MVS with
CONMODE 3270. Otherwise results are unpredictable.

252 VM/SP System Programmer's Guide

5. CONMODE 3270 is not supported for disconnected users.

DIAGNOSE Code X'5C' -- Error Message Editing

I Privilege class G

Execution of DIAGNOSE Code X'5C' causes the editing of an error message
according to the user's setting of the EMSG function.

Entry Values: Rx contains the address of the message to be edited. Ry contains the
length of the message to be edited.

Exit Values: DMKHVC tests the VMMLEVEL field of the VMBLOK and returns
to the caller with Rx and Ry modified as follows:

VMMLEVEl Registers on Return

VMMCODE V~lMTEXT Rx Ry

ON ON no change no change

ON OFF no change 10 (length of
code)

OFF ON pointer to text length of text
part of message alone

OFF OFF N/A 0

Note: DIAGNOSE Code X'5C' does not write the message; it merely rearranges
the starting pointer and length. For CMS error messages, a console write is per­
formed following the DIAGNOSE unless Ry is returned with a value of O.

DIAGNOSE Code X'60' - Determining the Virtual Machine Storage Size

I Privilege class G

Execution of DIAGNOSE Code X'60' allows a virtual machine to determine its
size. On return, the register specified as Rx contains the virtual machine storage
size.

DIAGNOSE Code X'64' - Finding, Loading, and Purging a Named Segment

I Privilege class G

Execution of DIAGNOSE Code X'64' controls the linkage of discontiguous saved
segments.

Entry Values: The type of linkage that is performed depends upon the function sub­
code in the register specified as Ry.

DIAGNOSE Instruction in a Virtual Machine 253

The LOADSYS Function

Subcode Function

X'OO' LOADSYS -- Loads a named segment in shared mode

X'04' LOADSYS -- Loads a named segment in nonshared mode

X'08' PURGESYS -- Releases the named segment from virtual storage

X'OC' FINDSYS -- Finds the starting address of the named segment

The register specified as Rx must contain the address of the name of the segment.
The segment name must be 8 bytes long, on a doubleword boundary, left justified,
and padded with blanks.

When the LOADSYS diagnose function is executed, CP finds the system name
table entry for the segment and builds the necessary page and swap tables (two sets
one for each processor, when running in attached processor mode). CP releases all
the virtual pages of storage that are to contain the named segment and then loads
the segment in those virtual pages. When the LOADSYS function is executed, CP
expands the virtual machine size dynamically, if necessary. CP also expands the
segment tables to match any expansion of virtual storage.

When LOADSYS executes successfully, the address of where the named segment
was loaded is returned in the register specified as Rx. When the LOADSYS func­
tion loads a segment in shared mode, it resets instruction and branch tracing if
either was active.

After a LOADSYS function executes, the storage occupied by the named segment
is addressable by the virtual machine, even if that storage is beyond the storage
defined for the virtual machine. However, any storage beyond that defined for the
virtual machine and below that defined for the named segment is not addressable.
Figure 32 shows the virtual storage that is addressable before and after the
LOADSYS function executes.

Before the LOADSYS
Function Executes

320Kr---------------------------------~

I
All Storage
Addressable by
Virtual\Machine

OK~----------------~
CMS Virtual Machine
without a Named Segment
Attached

After LOADSYS Function
Executes

448K~---~
Discontiguous Storage
Addressable by Virtual

Machine
384K~---~

.///////////////////////// .

. /Storage Not Addressable/ .

. ///by Virtual Machine//// . . /////////////////////////.
320K~--------------------------------------~

I
Storage Still
Addressable by
Virtual Machine

I
OK~------------------------~

CMS Virtual Machine with
a Named Segment Attached

Figure 32. Addressable Storage Before and Mter a LOADSYS Function

254 VM/SP System Programmer's Guide

The PURGESYS Function

The FINDSYS Function

When you save a named segment that is later loaded by the LOADSYS function,
you must be sure that the addresses at which segments are saved are correct and
that they do not overlay required areas of storage in the virtual machine. This is
crucial because the LOADSYS function invokes the PURGESYS function before it
builds the new page and swap tables. CP purges all saved systems that are over­
layed in any way by the saved system it is loading.

Condition Codes: A condition code of 0 in the PSW indicates that the named seg­
ment was loaded successfully; the Rx register contains the load address.

A condition code of 1 in the PSW indicates the named segment was loaded success­
fully within the defined storage of the virtual machine. The Rx register contains
the address at which the named segment was loaded. The Ry register contains the
ending address of the storage released before the named segment was loaded.

Note: CMS only allows named segments to be attached beyond the defined size of
the virtual machine. A condition code of 2 in the PSW indicates the LOADSYS
function did not execute successfully. Examine the return code in the Ry register
to determine the cause of the error.

Return Code
44
177

Meaning
Named segment does not exist
Paging 110 errors

When the PURGESYS function is executed; CP releases the storage, and associ­
ated page and swap tables, that were acquired when the corresponding LOADSYS
function was executed. If the storage occupied by the named segment was beyond
the defined virtual machine storage size, that storage is no longer addressable by
the virtual machine.

When a PURGESYS function is executed for a segment that was loaded in non­
shared mode, the storage area is cleared to binary zeros. If PURGESYS is invoked
for a named segment that was not previously loaded via LOADSYS, the request is
ignored.

Condition Codes: A condition code of 0 in the PSW indicates successful
completion.

A condition code of 1 in the PSW indicates that the named segment was not found
in the virtual machine.

A condition code of 2 in the PSW and a return code of 44 in the Ry register indi­
cate that the named segment either does not exist or was not previously loaded via
the LOADSYS function.

When the FINDSYS function is executed, CP checks that the named segment exists
and that it has not been loaded previously.

Condition Codes: A condition code of 0 in the PSW indicates that the named seg­
ment is already loaded. The address at which it was loaded is returned in the regis­
ter specified as Rx and its highest address is returned in the Ry register.

DIAGNOSE Instruction in a Virtual Machine 255

A condition code of 1 in the PSW indicates that the named segment exists but has
not been loaded. In this case, the address at which the named segment is to be
loaded is returned in the register specified as Rx and the highest address of the
named segment is returned in the Ry register.

A condition code of 2 in the PSW indicates the FINDSYS function did not execute
successfully. Examine the return code in the Ry register to determine the error that
occurred.

Return Code
44
177

Meaning
Named segment does not exist
Paging 110 errors

DIAGNOSE Code X'68' -- Virtual Machine Communication Facility (VMCF)

Privilege class G

The DIAGNOSE Code X'68' is used by a virtual machine to initiate a sub function
of the Virtual Machine Communication Facility (VMCF).

Entry Values: The general register specified as Rx contains the virtual address,
doubleword aligned, of a parameter list (VMCP ARM). One of the entries in this
parameter list is a subfunction code, specifying the particular request being
initiated. The sub functions and their codes are:

Subfunction
AUTHORIZE
UNAUTHORIZE
SEND
SEND/RECV
SENDX
RECEIVE
CANCEL
REPLY
QUIESCE
RESUME
IDENTIFY
REJECT

Code
X'OOOO'
X'OOOl'
X'0002'
X'0003'
X'0004'
X'OOOS'
X'0006'
X'0007'
X'0008'
X'0009'
X'OOOA'
X'OOOB'

A description of all the fields of the VMCPARM is contained in the section
"Virtual Machine Communication Facility."

The general purpose register specified as the Rx register contains the address of the
VMCP ARM list.

The general register specified as Ry contains the return code upon completion of
DIAGNOSE X'68' or the detection of an error condition. The return codes are
contained in the section "Virtual Machine Communication Facility."

Rx and Ry can be any general register, RO through R1S. They may also be the
same register.

256 VM/SP System Programmer's Guide

DIAGNOSE Code X'6C' -- Special Diagnose for Shadow Table Maintenance

I Privilege class G

DIAGNOSE Code X'6C' is an internal DIAGNOSE instruction issued by MVS to
VM/SP that is used only to pass the virtual address of a page table entry that maps
to real page zero for the low storage protection facility.

Entry Values: The virtual address passed in the Rx register is stored in the
EXTVPORL field of the ECBLOK. The VMVPOREL flag in the VMBLOK is set
on. The Ry register is not used.

Usage: The DIAGNOSE X'6C' information is used when a V=R user issues a SET
STBYP ASS VR command, and also when a V = V user sets a high-water mark.

Condition Codes: If a BC mode virtual machine attempts to issue a DIAGNOSE
X'6C' a condition code of 3 is reflected in the BC mode PSW.

DIAGNOSE Code X'70' -- Activating the Time-of-Day (TOD) Clock Accounting Interface

I Privilege class G

Diagnose Code X'70' enables an operating system that is running in a virtual
machine to request timing information from CPo Each time the virtual machine is
dispatched, CP provides the accumulated processor time the virtual machine has
used and the TOD the virtual machine was dispatched. Programs that are running
in the virtual machine may use the timing information to calculate the amount of
processor time used by each job, by each job step, and so forth.

DIAGNOSE Code X'70' should be used by operating systems that use the store
clock (STCK) instruction to obtain the TOD in order to calculate processor usage.
Because there is no virtual TOD clock, calculations that use multiple STCK
instructions may not reflect the time used by just one virtual machine. They may
also include the time used by all virtual machines and by CP.

A virtual machine should issue DIAGNOSE Code X'70' only one time. Once
issued, it is effective until the virtual machine is reset.

Entry Values: When DIAGNOSE Code X'70' is issued, the Rx register must con­
tain the address of a 16-byte area, the communication area. The Ry register is not
used.

The communication area must be aligned on a double word boundary and must be
in the virtual machine's real storage, preferably in page zero. Page zero is pre­
ferred because CP always locks page zero and must also lock the page that contains
the communication area. Thus, when page zero is used, CP does not have to lock
an additional page.

Usage: After DIAGNOSE Code X'70' is issued, CP updates the communication
area each time the virtual machine is dispatched. The first eight bytes of the com­
munication area contain the total processor time the virtual machine has used. The
last eight bytes contain the TOD CP last dispatched the virtual machine. Programs
running in the virtual machine should not alter the communication area.

To use the information that CP has stored in the communication area, perform the
following steps: .

DIAGNOSE Instruction in a Virtual Machine 257

1. Obtain the current TOD by issuing the STCK instruction.

2. Compute the difference between the TOD obtained in step 1 and the TOD
stored in the communication area. This difference is the amount of processor
time the virtual machine has used since it was last dispatched.

3. To calculate the total amount of processor time the virtual machine has used up
to the present time, add the processor time that is stored in the communication
area to the difference obtained in step 2.

4. Ensure that the TOD value stored in the communication area has not changed
since step 2 was performed. If it has changed, repeat the procedure from step
1.

Specification Exception: CP returns a specification exception if DIAGNOSE Code
X'70' is issued and:

The virtual machine does not have the ECMODE option.

The communication area is not aligned on a doubleword boundary.

The address in the Rx register is not within the virtual machine's real address
range.

DIAGNOSE Code X'70' has already been issued for the virtual machine.

DIAGNOSE Code X'74' -- Saving or Loading a 3800 Named System

Privilege class A, B, or C

DIAGNOSE Code X'74' is invoked to save an image library as a 3800 named sys­
tem or to load a named system into virtual storage when that named system is
required by the 3800 printer.

Entry Values: When the DIAGNOSE Code X'74' is invoked, the Rx, Rx+l, Ry,
and Ry+ 1 registers must contain the following:

Registers Rx and Rx + 1 - must contain the eight-character name of the system
to be saved or loaded, left-justified and padded with blanks.

Register Ry - must contain the virtual address at which to start saving or load­
ing the named system.

Register Ry+ 1 - must contain a X'OO' in the high order byte if a LOAD opera­
tion is required, and a X'04' for a SAVE operation. The remainder of the reg­
ister must contain the number of bytes to be saved or loaded into virtual
storage.

Error Conditions: A specification exception occurs if Register 15 is specified in
either Rx or Ry, or if the virtual address specified in Ry is not on a page boundary.
If the area to be saved or loaded extends beyond the user's virtual storage, an
addressing exception occurs. Finally, a privileged operation exception results if the
user does not have privileged class A, B, or C. These exceptions cause abnormal
termination (abend) and the user is notified. /'

258 VM/SP System Programmer's Guide

ConditiOil Codes: When DIAGNOSE Code X'74' processing completes, one of the
following condition codes is placed into register Ry and returned to CP:

Return Code
X'OO'
X'04'
X'OS'
X'OC'
X'lO'
X'14'
X'lS'
X'lC'

Meaning
Load/ save successfully performed
Named system not found
Named system currently active
Volid for system not CP owned
Volid for system not mounted
Too many bytes to load/save; residual byte count is in Ry+ 1
Paging error during load/save
Too few bytes to LOAD/SAVE. Needed byte count is in Ry+ 1.

DIAGNOSE Code X'78' -- MSS Comnlunication

Privilege class G

DIAGNOSE Code X'7S' is used to communicate with the VM/SP control program
about MSS volume mounts and demounts.

Entry Values: The Ry register contains a subfunction code. The valid subfunction
codes and their meanings are:

X'OO' - The virtual machine issuing the DIAGNOSE instruction is running
OS/VS with MSS support and the DMKMSS program for MSS
communication. The Rx register contains the device address of the virtual
machine's MSS communicator virtual device.

X'04' - The virtual machine is ready to process an MSS request. The
MSSCOM block representing the request should be placed at the virtual
machine address indicated by the Rx register.

X'OS' - An MSS request represented by the MSSCOM block located at the vir­
tual machine address indicated by the Rx register has been accepted by the
MSC.

• X'OC' - An MSS request represented by the MSSCOM block located at the vir­
tual machine address indicated by the Rx register has been rejected by the
MSC.

X' 10' - The DMKMSS program is no longer available to process MSS requests.

X'14' - The DMKMSS program has created a list of all VUAs associated with
this processor (cpuid) and requests CP to build its shared and non-shared SDG
tables from that list.

Error Conditions: If the DIAGNOSE Code X'7S' is specified incorrectly, CP ter­
minates the user program with one of the following exceptions:

DIAGNOSE Instruction in a Virtual Machine 259

Error Return (DMKHVC)

Protection Exception No DMKSSS module exists

Specification Exception MSSCOM crosses a page boundary

DIAGNOSE Code X'78' condition codes and return codes are:

CONDITION CODE=O Successful completion.

CONDITION CODE= 1 (DMKSSS) Error Condition. Register 15 contains one of
the 'following:

RC=12

RC=16

Subfunction code was either less than zero or
greater than 16.

Subfunction code was within the valid range,
but not a multiple of 4.

Addressing exception trying to bring in the
buffer page.

Issuer is not the issuer of subfunction zero.

DIAGNOSE Code X'7C' -- Logical Device Support Facility

I Privilege class G

DIAGNOSE Code X'7C' allows an application running in a virtual machine to
drive a logical 3270 as if it were a real display station locally attached to the
VM/SP system. Communication between the application and the logical device is
done via the DIAGNOSE interface and a new external interrupt code.

Entry Values: Rx is a user-specified register (not GR15) containing the logical
device number that is used to coordinate CP and local system operations. It is not
used for the INITIATE function.

Rx+ 1, for the INITIATE function, this register contains in the low-order three
bytes the device model, class, and type for the logical device to be created. For
example, a 3277 Model 2 is represented as X'00024004'. Valid device types are:
3277 Model 2, and 3278 Models 2, 3, 4, and 5.

For the ACCEPT function, this is a register that contains the address of a data
buffer.

For the PRESENT function, this is a register that contains either an address or a
complemented address. If an address, it is the address of a single buffer of data
4096 bytes or less in length. If a complemented address, it is the address of a list
that describes a data stream occupying multiple data buffers and/or greater than
4096 bytes in length.

Ry is a user-specified register (not GR15) containing the code of the logical device
subfunction to be executed:

260 VM/SP System Programmer's Guide

X'OOOl' INITIATE
X'0002' ACCEPT
X'0003' PRESENT
X'0004' TERMINATE
X'0005' TERMINATE (all)

On completion of an ACCEPT function, this register contains the length of the
data.

Ry+1
For the ACCEPT and PRESENT functions, this is a register that contains the
length of the data buffer when Rx+ 1 specifies a buffer address. On completion of
any DIAGNOSE operation, this register contains the return code.

Completion and Condition Codes: Return codes are returned from this facility in reg­
ister Ry+ 1. PSW completion codes and return codes are described below. Subf­
unctions that apply specifically to given combinations of completion and return
codes are shown in parentheses.

CC=O Subfunction completed with no errors.

RC=O (any) Normal completion.

RC= 1 (ACCEPT) Indicates another ACCEPT required for another data
stream.

RC=2 (ACCEPT) Indicates another ACCEPT required for next segment
of current data stream.

CC= 1 Error condition.

RC=l (any) Invalid function used in register Ry.

RC=2 (ACCEPT) No data available.

RC=3 (ACCEPT) Buffer too short. No data transferred. Another
ACCEPT is required to retrieve the data. Register Ry
contains the required data length.

RC=4 (ACCEPT or PRESENT) One of the following:

Buffer is greater than 4096 bytes.
Buffer length is not positive.
Buffer not in user's address space.
Paging 110 error.

RC=5 (INITIATE) Already have eight virtual machines that have created
logical devices. Logical devices can be created for a
maximum of eight concurrently active virtual machines
in a VM/SP system.

RC=9 (INITIATE) Max of 512 logical devices per virtual machine
reached.

DIAGNOSE Instruction in a Virtual Machine 261

RC= 10 (ACCEPT or PRESENT) FETCH or STORE protection violation.

CC=2 Busy condition

CC=3

RC= 1 (PRESENT) CP has pending data that must be accepted first. The
PRESENT is not performed.

RC=2 (PRESENT) A previous PRESENT has not completed execution.
The current PRESENT is not performed. An external interrupt is
issued to indicate when this PRESENT should be reissued.

RC=3 (PRESENT) CP has an active READ BUFFER command. The
PRESENT issued is for READ MODIFIED data.

RC=4 (PRESENT) The data presented is from a READ BUFFER. No CP
READ is outstanding, or the READ is a READ MODIFIED.

a. (INITIATE) Logical device type, class, or model is invalid.

b. (Other functions) Logical device number in register Rx is invalid.

RC= 1 (ACCEPT, PRESENT, TERMINATE) CP is in the process of ter­
minating the logical device.

RC=2 (ACCEPT, PRESENT, TERMINATE) The logical device number
does not exist.

RC=3 (INITIATE) The logical device class, type,
or model is invalid.

Descriptions 0/ Logical Device Support Facility Sub/unctions

Logical device subfunctions manage communications and the transfer of data
between CP and the virtual machine for which the logical device was created.

INITIATE: DIAGNOSE CODE X'7C' SUBFUNCTION CODE X'OOOI'

The INITIATE subfunction opens a logical communications path between the call­
ing virtual machine issuing the DIAGNOSE and the VM/SP Control Program. It
causes a logical device to be created and the VM/370 logo to be directed to it.
This results in an external interrupt to the issuing virtual machine to indicate that
CP has data to be processed.

Register Rx + 1 must contain the model number in byte 1, and the device class and
type in bytes 2 and 3. Register Rx is not used for input.

The address of the logical device is placed in register Rx. This value is used on
subsequent DIAGNOSE operations to indicate the logical device being used. This
address is also provided with the external interrupt so that the issuing virtual
machine can associate the interrupt with a specific logical device.

ACCEPT: DIAGNOSE CODE X'7C' SUBFUNCTION CODE X'0002'

262 VM/SP System Programmer's Guide

The ACCEPT subfunction reads data that CP has directed to a logical device. It is
invoked after the virtual machine that created the logical device is notified via
external interrupt that output data is to be processed. Upon invocation register
Rx+ 1 must contain the data buffer address and register Ry+ 1 the buffer length. If
the data buffer supplied was too short to contain the data, the subfunction returns
the required buffer size in register Ry and no data is moved. This action can be
overridden by setting an indicator in the length register (bit zero in Ry+ 1 set to 1)
when the subfunction is invoked. In this case, the data is be moved to the short
buffer and a CC=O, RC=2 is sent. The system moves the next portion of the data
on the next ACCEPT. Upon successful completion of subfunction processing, the
data length is returned in Ry, and the data buffer contains the CCW OP code in its
first byte and data in the remaining buffer space.

PRESENT: DIAGNOSE CODE X'7C' SUBFUNCTION CODE X'0003'

The PRESENT subfunction passes input data to CP. The location of the data is
described by an address or a complemented address in register Rx+ 1. If the regis­
ter contains an address, it is the address of a data buffer 4096 bytes or less in
length. In this case, register Ry+ 1 contains the length of that data buffer. If regis­
ter Rx + 1 contains a complemented address, it is the address of a list that describes
a data stream occupying multiple data buffers and/or greater than 4096 bytes in
length. In this case, register Ry+ 1 is not used to describe the data length. Howev­
er, in either case, a high-order bit of 1 in register Ry+ 1 indicates that the response
is to a READ BUFFER command. Data format is the same as that produced by a
local display control unit in response to a READ MODIFIED channel command.

If a list is used to describe the data, the list must be in the format:

Length SEGI Address SEGI

Length SEG2 Address SEG2

Length SEGn1(Address SEGn

*Last entry indicated by a 1 in bit zero of its length field.

The list must start on a fullword boundary. Each entry consists of two full word
fields that describe the length and location of sequential segments of a data stream.
A single entry list may be used to describe a single data buffer greater than 4096
bytes in length. Neither the list nor the data may be modified before transfer of
the data has completed. -An external interrupt signals completion of data transfer.

TERMINATE: DIAGNOSE CODE X'7C' SUBFUNCTION X'0004'

The TERMINATE subfunction notifies CP to drop a specific logical device. If the
logical device is the console of a virtual machine, the virtual machine is placed in
FORCE DISCONNECT state. If the logical device is DIALed to a virtual
machine, it is detached from that virtual machine. If an input or output operation is
being processed, it is terminated with a unit check and intervention required.

TERMINATE (ALL): DIAGNOSE CODE X'7C' SUBFUNCTION X'0005'

DIAGNOSE Instruction in a Virtual Machine 263

The TERMINATE (all) subfunction notifies CP to terminate all logical devices
created for the issuing virtual machine.

External Interrupt Code X'2402'

Logical Device Restrictions

The logical device support uses a service signal interrupt, (class 24 external inter­
rupt) to notify the virtual machine of a change in status for a specific logical device.
The external interrupt code is X'2402'. This interrupt causes a full word of data to
be stored at location 128 (decimal) in the virtual machine. The interrupt is masked
on and off by bit 22 of control register O.

The format of the stored fullword is:

128-129

130

131

logical device address

flag byte
bit zero - PRESENT subfunction purged
bit one - error in transmission or list

interrupt reason code

The logical device address is returned to the user after an INITIATE, and must be
specified by the user for an ACCEPT, PRESENT, or TERMINATE.

Flag byte, bit zero is set to 1 if the data from the last PRESENT has been dis­
carded by the system (subsequent I/O to the logical device was a WRITE instead
of a READ). Flag byte, bit one is set to 1 if an error was encountered in the
address list describing mUltiple buffers of a data stream, or one of the specified
addresses in the list was not accessible. Otherwise, the flag byte remains zero.

The reason codes are:

01 - CP is terminating the connection

02 - A WRITE has been issued, so an ACCEPT must be done. (External
interrupt flag byte, bit zero also indicates whether previous PRESENT
data has been discarded.)

03 - A previous PRESENT is now finished (user received CC=2 and RC=2
after a PRESENT).
- A PRESENT has been suspended because of a transmission error. (Ex­
ternal interrupt flag byte, bit one indicates this.)

04 - A READ BUFFER has been issued.

05 - A READ MODIFIED has been issued.

Reason code 1 indicates that the logical device no longer exists. The user receives
a condition code 3 if he attempts to perform another function with this device.

The only devices supported are the local 3277 Model 2, and the local 3278 Models
2,3,4, and 5.

264 VM/SP System Programmer's Guide

DIAGNOSE Code X'80' -- MSSFCALL

I Privilege class G

DIAGNOSE code X'80' is the VM/SP interface for communicating between CP
and the Monitoring and Service Support Facility (MSSF). MSSF is a hardware
component of the processor controller of the 3081 processor complex; it provides
system configuration and storage information for the 3081 processor complex.

Entry Values: Rx is a user-specified register that contains the address of the MSSF
data block (MSFBLOK). MSFBLOK is defined in increments of 8 bytes to a max­
imum of 2048 bytes. It must be aligned on a 2K boundary. MSFBLOK is locked
in storage during the MSSFCALL request.

Ry is a user-specified register that contains the MSSF command word representing
the function that MSSF is to perform. (See MSSF command words below.)

Usage: The CP module DMKMHC issues a real DIAGNOSE X'80' and services all
MSSF external interruptions. DMKMHC issues a real DIAGNOSE X'80' when:

1. The operator issues a V AR Y ONLINE PROCESSOR nn command or a
VARY OFFLINE PROCESSOR nn VPHY command. (These commands
modify the real processor configuration to bring the processor physically online
or offline.)

2. A V=R virtual machine running in EC mode issues the MSSF command word
SCPINFO.6 (Operating systems running in a virtual machine use the MSSF
SCPINFO command to get information about a system configuration and stor­
age allocation.

3. A user with privilege class C or E runs the IOCP program to read from or write
to the Input/Output Configuration Data Set (IOCDS).

When CP ISSUES DIAGNOSE X'80', the hardware call block that is created
(HCBLOK) contains the MSFBLOK address, the MSSF command word, and the
address to return to after the MSSF has processed the request. See VM / SP Data
Areas and Control Block Logic, Volume 1 for the format of the MSFBLOK and
HCBLOK.

MSSF COMMAND WORDS

X'0011nn01 ' VARY ONLINE PROCESSOR nn where nn is the ID of the
processor to be varied online. CP use only.

X'0010nn01' V AR Y OFFLINE PROCESSOR nn VPHY where nn is the ID
of the processor to be physically varied offline. CP use only.

X'00020001' SCPINFO command. Virtual machine use only.

6 When a V = V virtual machine issues SCPINFO, DMKMHV does not pass control to DMKMHC.
CP does not issue the DIAGNOSE X'80' but simulates the MSSF response and returns prede­
fined data and status codes to the user. See VM/SP System Logic and Problem Determination
Guide, Volume 1 - CP for a description of the pre-defined data.

DIAGNOSE Instruction in a Virtual Machine 265

X'00400002'

X'00400102'

X'00410002'

X'00410102'

IOCP special command to obtain or release the IOCP write
lock.

IOCP WRITE to Level 1 IOCDS.

IOCP READ from Level 0 IOCDS.

IOCP READ from Level 1 IOCDS.

Completion and Condition Codes: Two possible condition codes returned for
DIAGNOSE X'80' are:

cc=O MSSF is processing the MSSFCALL request.

cc=2 MSSF is busy.

Note: If CP issued the MSSFCALL request, and MSSF was already processing a
previous MSSFCALL request, abend MHC001 occurs. If a V=R user issued the
request, CP reflects the condition code (2) to the virtual machine's PSW.

At the completion of an MSSFCALL, the following actions occur:

• MSSF generates a service signal interrupt, external interrupt X'240 l' (class 24
external interrupt). This interrupt stores the absolute address of the MSSF
data block (MSFBLOK) at decimal locations 128-131 in the virtual machine's
PSA. Bit 22 of control register 0 controls masking of the service signal.

• MSSF passes a completion status code back in the MSFBLOK.

• CP returns control to the address specified in HCBLOK.

• If tracing is on, trace table entry X'17' traces all MSSFCALL requests. Refer
to "Figure 8. CP Trace Table Entries" for the format and content of the entry.
In addition, trace table entry X'O l' reflects external interrupt X'240 l' when
the MSSF generates the service signal interrupt to CP.

Successful MSSF completion status codes are:

0010 - SCPINFO complete.

0020 - The processor is varied online/offline.

0120 - The processor is already varied online/offline. IOCP operation com­
plete.

8020 - An IOCP READ is invalid because the file is open for writing.

4020 - The IOCP read or write operation was performed on the active IOCDS.

2020 - The active IOCDS has been written to.

Reject status codes are:

01FO - Invalid command code or identification byte.

41FO - Attempt to read closed IOCDS.

266 VM/SP System Programmer's Guide

/'

0100 - Data block not aligned on a 2K boundary.

0200 - Data block length not a mUltiple of 8.

0300 - The data block length is not adequate for the amount of information
requested.

DIAGNOSE Code X'84' -- Directory Update-In-Place

I Privilege class B

DIAGNOSE Code X'84' enables a class B user to replace certain data in any entry
of the VM/SP directory. The user must specify the directory entry and may
replace the following data:

Logon password
Virtual machine storage size
Maximum virtual machine storage size
Privilege classes
Dispatching priority
Logical editing symbols
Initial program load (IPL) system
IPL parameter data
Account number
Distribution word
User options
Minidisk access mode
Minidisk read, write, or multiple password
Options of the SCREEN directory control statement

With the exception of the account number, all changes to the entry take effect the
next time the USERID associated with the entry logs onto VM/SP. The account
number may be updated such that the change (1) takes effect immediately, (2)
takes effect immediately but is temporary lasting only until the USERID is logged
off, or (3) takes effect the next time the USERID associated with the entry is
logged on.

DIAGNOSE Code X'84' cannot add new entries to the directory, cannot delete
existing entries, nor can it alter directory user-description statements. It can only
replace existing directory data. Data is replaced in the form of the directory cre­
ated by the directory service program, that is, in VM/SP control blocks.

For a detailed description of the directory data, see the VM / SP Planning Guide and
Reference.

Entry Values: When DIAGNOSE Code X'84' is issued, the Rx register must point
to a variable length parameter list and the Ry register must specify, in bytes, the
length of the list. The list cannot be greater than 112 bytes long or less than zero
bytes. The parameter list contains an area of fixed length followed by an area of
variable length. Data in the fixed-length area identifies the directory entry to be
updated, the password of the USERID associated with the entry, and the data field
to be replaced in the directory entry. The variable-length area contains replace­
ment data for the directory entry. All entries in the parameter list must contain
unpacked, EBCDIC data.

The parameter list is organized as follows:

DIAGNOSE Instruction in a Virtual Machine 267

Operation
Field
Value
LOGPASS

STORAGE

Date

USERID

password fixed-length area

operation

/ /
variable-length area

/ /

I I

Fixed-length area

USERID

password

operation

The USERID of the user whose directory entry is updated. This is an
eight-character, left-justified value and must be padded with blanks.

The current password of the USERID whose directory entry is
updated. This is an eight-character, left-justified value and must be
padded with blanks.

If this field is blank, the update-in-place function is processed in
'testmode'. When the DIAGNOSE is issued in this fashion, the direc­
tory is not updated. 'Testmode' lets you check the syntax of the direc­
tory statements without accessing the directory disk.

An eight-byte, left-justified character string that identifies the data in
the directory entry that is to be replaced. Valid values and the data
that each identifies for replacement are defined in the description of
the variable-length area which follows.

Variable-length area

The following diagram shows for each value of the operation field, (1) the data that
must be in the variable-length area of the parameter list, and (2) the format and
characteristics of the data.

Characteristics/Format
logon password An eight-byte, left-justified value padded with

virtual machine storage
size

blanks.

An eight-byte, left-justified decimal value followed
by the letter K. Pad with blanks following the let­
ter K.

268 VM/SP System Programmer's Guide

Operation
Field
Value
MAXSTOR

PRIVLEGE

PRIORITY

EDIT CHAR

IPL

Date
maximum virtual
machine storage size

privilege classes

dispatching priority

logical editing symbols

system name or virtual
device address and vari­
able data

Characteristics/Format
An eight-byte, left-justified decimal value followed
by the letter K. Pad with blanks following the let­
ter K.

An eight-byte value where each byte represents a
privilege class. Valid values for each byte are A
through H .. All existing classes in the directory
entry are replaced. Therefore, specify existing
classes that are to be retained as well as classes
that are to be changed. The data must be
left-justified and padded with blanks.

An eight-byte, left-justified value where the first
two bytes, counting from the left, specify the dis­
patching priority. Valid values for these bytes are
1 - 99. Values 1 through 9 must be padded with a
blank. The other six bytes are reserved for IBM
use.

An eight-byte value where the first four bytes,
counting from the left, are line edit symbols. The
first or high-order byte is the "line-end" symbol,
the second byte is the "line-delete" symbol, the
third byte is the "character-delete" symbol, and
the fourth byte is the "escape-character" symbol.
All existing symbols in the directory are replaced.
Therefore, specify existing symbols that are to be
retained as well as symbols that are to be changed.
Unspecified symbols must contain blanks. The last
four bytes of the eight-byte value are reserved for
IBM use.
A one-to-eight character value, left-justified and
padded with blanks, followed by the keyword
P ARM and up to 48 characters of variable data.
All existing values are replaced in the directory
entry; therefore, specify values that are to be
retained as well as values that are to be changed.
Trailing blanks are not truncated but passed.

DIAGNOSE Instruction in a Virtual Machine 269

Operation
Field
Value
ACCOUNT

IACCOUNT

TACCOUNT

DISTRIB

OPTIONS

Date
account number

account number

account number

distribution identification
word

user options

270 VM/SP System Programmer's Guide

Characteristics/Format
A one-to-eight character value, left justified and
padded with blanks. (This change takes effect the
next time the USERID is logged on.)

A one-to-eight character value left-justified and
padded with blanks. (This change takes effect
immediately.)

A one-to-eight character value, left-justified and
padded with blanks. (This change takes effect
immediately but is temporary, lasting only until the
USERID is logged off.)

A one-to-eight character value, left-justified and
padded with blanks.

An eighty-byte, left-justified value padded with
blanks. Specify each option as a character string
with a blank character between options. For a
description of each option and a list of valid
values, see VM / SP Planning Guide and Reference.
All existing options are replaced in the directory
entry. Therefore, specify existing options that are
to be retained as well as options that are to be
changed. The options field must be followed by
the value X'FFFFFFFF'.

Operation
Field
Value
MDISK

Date
minidisk address, access
mode, read password,
write password, and mul­
tiple password

Characteristics/Format
A thirty-byte field defined as follows. All values
must be left justified and padded with blanks. Val­
id values for the access mode and for passwords
are defined in VM / SP Planning Guide and Refer­
ence.

Bytes 1-3, counting from the left, specify a mini­
disk address. This is the minidisk whose mode and
passwords will be changed. The address must
already exist in the directory entry.

Bytes 4-6 specify the access mode.

Bytes 7-14 specify the read password.

Bytes 15-22 specify the write password.

Bytes 23-30 specify the multiple password.

The access mode, the read password, the write
password, and the multiple password are replaced
in the directory entry. Therefore, specify existing
values that are to be retained as well as values that
are to be changed.

DIAGNOSE Instruction in a Virtual Machine 271

Operation
Field
Value
SCREEN

Date Characteristics/Format·
display screen options An eighty-byte area composed of ten doubleword

fields. The ten fields are p·aired into five sets cor­
responding to the five display areas of the screen.
You must specify these areas in the following
order:

CP output
VM output
input redisplay
input area
status area.

Each of the five doubleword sets has a color field
and an extended highlight field. (See the
SCREEN option description in the VM / SP Plan­
ning Guide and Reference for the valid color and
extended highlight values.) Within each
double word set you must specify the color first fol­
lowed by the extended highlight value. You must
specify all fields, including those you don't want to
change. All of the options you specify must also
be left justified in their eight-byte field.

Before control is returned to the virtual machine, DIAGNOSE Code X'84' sets a
condition code and, if errors were detected, a return code in the Ry register. The
condition codes and return codes are defined as follows:

Condition Code

°
1

Return Code

10,11

20 thru 27, 90, 112, 113

26

28

Meaning

The directory was successfully updated.

DIAGNOSE Code X'84' detected an error. The
directory is unchanged. The return code defines
the error.

Meaning

An error occurred writing the directory to a direct
access device. To update the directory, use the
directory service program described in the VM / SP
Planning Guide and Reference.

DIAGNOSE Code X'84' encountered a processing
error. To update the directory, use the directory
service program described in the VAI/ SP Planning
Guide and Reference.

Specified mini disk address does not exist in directo­
ry entry, or specified userid does not have any
devices defined in the directory entry.

The value in the OPERATION field of the parame­
ter list is invalid.

272 VM/SP System Programmer's Guide

30

31

40,41

42,43

50,51

52,53

60,61,62

63

65,66

70

71

72

80

81

82,83

91

92

The specified USERID could not be found.

The password specified in the fixed-length area of
the parameter list does not match the current pass­
word of the USERID being updated.

The value specified for the virtual machine storage
size or for the maximum virtual machine storage
size is too large. The maximum allowable size is 16
megabytes.

The value specified for the virtual machine storage
size or for the maximum virtual machine storage
size contains a syntax error or an invalid character.

The specified privilege classes are invalid.

The specified privilege classes contain a syntax
error or an invalid character.

The specified priority contains a syntax error or an
invalid character.

The priority value is too large. The maximum
allowable value is 99.

Parameter list size error; if return code = 65, the
list exceeds 112 bytes; if return code = 66, the list
size is less than zero bytes long.

A specified option is invalid. The invalid options
are VMSA VE, STFIRST, 370E, and MAXCONN
nnnnn.

The value X'FFFFFFFF' was not coded after the
list of options.

The option value contains a syntax error or an
invalid character.

The parameter list contains an invalid minidisk
address.

The parameter list specifies an invalid access mode
for a minidisk.

The minidisk read, write, or multiple password
specified in the parameter list requires a change in
the size of the directory entry ..

No attributes were found on the SCREEN com­
mand.

Invalid attributes were found on the SCREEN
command.

DIAGNOSE Instruction in a Virtual Machine 273

101

102

110

111

The parameter list is too large.

The parameter list is less than 1.

No parameter data currently exists in the directory
entry.

The parameter length is invalid.

DIAGNOSE Code X'8C' -- Access Certain Device Dependent Information

Privilege' class G

DIAGNOSE X'8C' allows a virtual machine to obtain certain device-dependent
information without issuing a WRITE STRUCTURE FIELD QUERY REPLY.
DIAGNOSE X'8C' retrieves this information from the RDEVBLOK or NICBLOK
and creates a diagnose interface to enable the virtual machine to access it. Because
the information is obtained only at power-on time, if the characteristics of the ter­
minal are altered dynamically, those changes are not reflected in the data returned
by DIAGNOSE X'8C'. If a NETWORK ENABLE is issued to a device with
advanced features and a NETWORK ATTACH is issued prior to turning on the
device, the advanced features are non-operational. The data returned by DIAG­
NOSE X'8C' reflects this status.

Note: Devices for which the write structure field is not applicable return all zeroes
from the DIAGNOSE X'8C'.

Entry Values: DIAGNOSE X'8C' is invoked as follows:

Rx is the address of user-provided data buffer
Ry is the length of user-provided data buffer
Rx + 1 is the virtual device address.

Specification Exception: If the length specified is negative, the virtual machine
receives a specification exception from CPo If the length specified is greater than 6,
the user receives six bytes of information and the Ry contains the residual count
(length specified minus 6).

The user receives a specification exception if

• The length specified is negative
• The virtual device address specified is invalid
• The buffer address is not on a doubleword boundary.

The user receives an addressing exception if

• An invalid buffer address is specified.

274 VM/SP System Programmer's Guide

r"

Exit Values: The data returned by DIAGNOSE X'8C' is in the following format:

Byte 0 Byte 1 Byte 2 and 3

Flags Number of Screen width
partitions in cells

Flags
80 = ext color
40 = ext highlight
20 = Programmable Symbol Sets (PSS) available
01 = 14-bit addressing

Upon completion, Rx contains:

A 4 if an 110 error occurs
A 0 if the DIAGNOSE completes successfully.

Byte 4 and 5

Screen height in
cells

DIAGNOSE Instruction in a Virtual Machine 275

CP Conventions

CP Coding Conventions

The following are coding conventions used by CP modules. This information
should prove helpful if you debug, modify, or update CPo

1.

2.

FORMAT:

Column Contents
1 Labels

10 Op Code
16 Operands
31,36,41, etc. Comments (see Item 2)

COMMENT:

Approximately 75 percent of the source code contains comments. Sections of
code performing distinct functions are separated from each other by a com­
ment section.

3. CONSTANTS:

Constants follow the executable code and precede the copy files and/or
macros that contain DSECTs or system equates. Constants are defined in a
section followed by a section containing initialized working storage, followed
by working storage. Each of these sections is identified by a comment. Wher­
ever possible for a module that is greater than a page, constants and working
storage are within the same page in which they are referenced.

4. No program modifies its own instructions during execution.

5. No program uses its own unlabeled instructions as data.

6. REGISTER USAGE:

For CP, in general

Register
6
7
8
10
11
12
13
14
15

Use
RCHBLOK,VCHBLOK
RCUBLOK,VCUBLOK
RDEVBLOK,VDEVBLOK
IOBLOK
VMBLOK
Base register for modules called via SVC
SA VEAREA for modules called via SVC
Return linkage for modules called via BALR
Base address for modules called via BALR

For Virtual-to-Real address translation

276 VM/SP System Programmer's Guide

Register
1
2

Use
Virtual address
Real address

7. When describing an area of storage in mainline code, a copy file, or a macro,
DSECT is issued containing DS instructions.

8. Meaningful names are used instead of self-defining terms: for example,
5,X'02',C'I' to represent a quantity (absolute address, displacement, length,
should be symbolic and defined by an equate (EQU) listing. For example:

VMSTATUS EQU X'02'

To set a bit, use:

01 BYTE,BIT

where BYTE = name of field, BIT is an EQU symbol.

To reset a bit, use:

NI BYTE,255-BIT

To set multiple bits, use:

01 BYTE,BIT1+BIT2

etc

All registers are referred to as:

RO, R1, ... , R15.

All lengths of fields or control blocks are symbolic, that is, length of VMBLOK
is:

VMBLOKSZ EQU *-VMBLOK

9. Avoid absolute relative addressing in branches and data references, (that is,
location counter value (*) or symbolic label plus or minus a self-defining term
used to form a displacement).

10. When using a single operation to reference multiple values, specify each value
referenced, for example:

LM R2,R4,CONT SET R2=CONI
SET R3=CON2
SETR4=CON3

CONI DC F'I'
CON2 DC F'2'
CON3 DC F'3'

CP Conventions 277

CP Loadlist Requirements

11. Do not use PRINT NOGEN or PRINT OFF in source code.

12. MODULE NAMES:

Control Section Names and External References are as follows:

Control Section or Module Name

The first three letters of th~ module name are the assigned component code.

Example: DMK

The next three letters of the module name identify the module and must be
unique.

Example: DSP

This three-letter, unique module identifier is the label of the TITLE card.

Each entry point or external reference must be prefixed by the six letter unique
identifier of the module.

Example: DMKDSPCH

13. TITLE CARD:

DSP TITLE 'DMKDSP VM/SP DISPATCHER VERSION v LEVEL l'

14. ERROR MESSAGES:

There should be no insertions into the message at execution time and the
length of the message should be resolved by the assembler. If insertions must
be made, the message must be assembled as several DC statements, and the
insert positions must be individually labeled.

15. For all RX instructions use a comma (,) to specify the base register when
indexing is not being used, that is:

L R2,AB(,R4)

16. To determine whether you are executing in a virtual machine or in a real
machine, issue the Store Processor ID (STIDP) instruction. If STIDP is issued
from a virtual machine, the version number (the first byte of the CPUID field)
returned will be X'FF'.

The CP loadlist EXEC contains a list of CP modules used by the VMFLOAD pro­
cedures when punching the text decks that will make up the CP system. All mod­
ules following DMKCPE in the list are pageable CP modules. Each 4K page in this
area may contain one or more modules. The module grouping is governed by the
order in which they appear in the loadlist. An SPB7 (Set Page Boundary) card, a
loader control card placed in the text file, forces the loader to start this module at

7 A 12-2-9 multipunch must be in column 1 of an SPB card and the characters SPB in columns 2,3,
and 4 respectively.

278 VM/SP System Programmer's Guide

the next higher 4K boundary. The loader automatically moves a module to the
next higher 4K boundary if it cannot fit in with its predecessors on the load list. In
this case a message is placed on the load map:

"SPB INSERTED"

as part of the line

_____ ._.~X-1'ERNAL SYMBOL DICTIONARY FOR DMKXXX"
~ .. - _ .. _--_ ..•.. _-.. _ _ - .. _---

An SPB card is required only for the first module following DMKCPE. If more
than one module is to be contained in a 4K page, only the first can be assembled
with an SPB card. The second and subsequent modules for a mUltiple module 4K
page must not contain SPB cards.

The position of two modules in the loadlist is critical. All modules following
DMKCPE must be reenterable and must not contain any address constants refer­
ring to anything in the pageable CP area. DMKCKP must be the last module in
the loadlist. It is also recommended that DMKPSA be the first module in the CP
resident nucleus.

No change should be made to the sequence of modules in the resident or page able
portion of the loadlist.

I
I
I

/

\ ------------=:::=::::::---------_._---_ ... --------.. -.---::---... -----~
"-- I.

CP Conventions 279

How to Add a Console Function to CP

Installations may add their own commands to their VM/SP system. First, code the
module to handle the command processing. Follow the CP coding conventions out­
lined in an earlier section of this book.

Second, add an entry for the command in the CP DMKCFC module. DMKCFC
has two entry points: one for logged-on users and another for nonlogged-on users.
If the command is for logged-on users, be sure its entry is beyond the label
COMNBEG1.

To place an entry for the command in the DMKCFC module, insert a line with the
following format:

[label] COMND commandname,class,min,entrypt[,NCL= 1]

where:

commandname is a 1- to 8-character name.

class

min

entrypt

NCL=l

is the command privilege class (up to four classes are allowed). 0 is
coded for nonlogged-on user commands or when NCL= 1.

is the number of characters allowed as the minimum truncation.

is the entry point of the module you write to process the new com­
mand.

is specified if the command is to be allowed before the user logs on.
When NCL= 1, the class is not checked.

After the above entry has been inserted in the DMKCFC module, reload
DMKCFC as a pageable module ensuring that it does not cross a page boundary.
You must also load your own module which mayor may not be a resident module.

280 VM/SP System Programmer's Guide

Print Buffers and Forms Control

The Forms Control Buffer for the 3203,3262,3289 Model 4, and 4245, is exactly
like the 3211 Forms Control Buffer. Please note that the FCB loaded in a virtual
3203, 3211, or 3262 should be compatible with the FCB loaded in the real
counterpart. Otherwise, the results can be unpredictable. The 3203 and 3262 use
the Universal Character Set (UCS) used by the 1403 Printer.

The 3203 and 3262 attach a 64-byte associative field to the end of the UCS to
check, during print line buffer (PLB) loading, that each character loaded into the
PLB for printing is also on the print train. The 3203 associative field is exactly like
the 3211 associative field described in Figure 33 on page 287, with the exception
that the addresses begin at 240. You also need an associative field when making
use of of the UCC buffer. Refer to your printer's Components Description Manual
for a detailed layout of the associative field.

Buffer images are supplied for the UCS (Universal Character Set) buffer, the
UCSB (Universal Character Set Buffer), the FOB (Font Offset Buffer), and the
FCB (Forms Control Buffer). The VM/SP-supplied buffer images are:

UCS - for the 1403 and 3203 Printers

Name
AN
HN
PCAN
PCHN
QN
QNC
RN
YN
TN
PN
SN

Meaning
Normal AN arrangement
Normal HN arrangement
Preferred character set, AN
Preferred character set, HN
PL/I - 60 graphics
PL/I - 60 graphics
FORTRAN, COBOL commercial
High speed alphanumeric
Text printing 120 graphics
PL/I - 60 graphics
Text printing 84 graphics

UCSB - for the 3211 Printer

Name
All
H11
GIl
P11
TIl

Meaning
Standard Commercial
Standard Scientific
ASCII
PLI
Text Printing

UCSB - for the 3262 Printer

Name
P48
P52
P63
P64
P96
Pl16
P128

Meaning
48 character print image
52 character print image (Austria/Germany)
63 character print image, optimized
64 character print image
96 character print image
116 character print image (French/ Canadian)
128 character print image (Katakana)

Print Buffers and Forms Control 281

FOB - for the 3289 Model 4 printer

Name
F48
F64
F94
F127

Meaning
Font Offset Buffer for the 48-character print belt
Font Offset Buffer for the 64-character print belt
Font Offset Buffer for the 94-character print belt
Font Offset Buffer for the 127-character print belt

I. FCB - for the 3203,3211,3262,3289 Model 4, and 4245 Printers

Two names are provided for an FCB image.

Name

FCBl

Name

FCB8

Meaning

Space 6 lines/inch
Length of page 66 lines

Line
Represented

1
3
5
7
9
11
13
15
19
21
23
64

Meaning

Channel
Skip

Specification
1
2
3
4
5
6
7
8
10
11
12
9

Space 8 lines/inch
Length of page 68 lines

Line
Represented

1
4
8
12
16
20
24
28
32
36
63
66

Channel
Skip

Specification
1
2
3
4
5
6
7
8
10
11
12
9

For the exact contents of the buffer images, see the

282 VM/SP System Programmer's Guide

IBM 2821 Control Unit Component Description

IBM 3211 Printer

IBM 3216 Interchangeable Train Cartridge

IBM 3811 Printer Control Unit Component Description and Operator's Guide

IBM 3289 Line Printer Model 4 and Component Description

IBM 3262 Printers I and II Component Description.

The following table indicates in what module the images for each printer should be
coded:

Data Module
DMKFCB
DMKUCS
DMKUCC
DMKPIA
DMKPIB
DMKUCB

Printer
All 3211 type printers
UCS image for the 1403 printer
UCS image for the 3203 printer
UCS image for the 3289E printer
UCS image for the 3262-1/11 printer
UCS image for the 3211 printer

For further information refer to the Component Description of the printer for
which the image is being coded.

If you find that the supplied buffer images do not meet your needs, you can alter a
buffer image or create a new buffer image. Be careful not to violate the VM/SP
coding conventions if you add a new buffer image; buffer images must not cross
page boundaries.

Adding New Print Buffer Images

In order to add a new print buffer image to VM/SP, you must:

1. Provide a buffer image name and 12 byte header for the buffer load.

2. Provide the exact image of the print chain.

3. Provide a means to print the buffer image if VER is specified on the
LOADBUF command.

4. Reload the changed CP modules.

Macros are available that make the process of adding buffer images relatively easy
and should be used to avoid errors.

UCS Buffer Images for the 1403 Printer

The Universal Character Set (UCS) buffer contains up to 240 characters and sup­
ports the 1403 printer. To add a new UCS buffer image, first code the UCS
macro. This creates a 12-byte header for the buffer load that is used by CPo The
format of the UCS macro is:

Print Buffers and Forms Control 283

C== __ ~I~u __ e_s _____ I~u_c_sn_a_m_e ____________________________ ~

where:

ucsname is a 1- to 4-character name that is assigned to the buffer load.

Next, supply the exact print image. The print image is supplied by coding Des in
hexadecimal or character format. The print image may consist of several Des, the
total length of the print image cannot exceed 240 characters.

The ueseew macro must immediately follow the print image. This macro creates
a eew string to print the buffer load image when VER is specified by the operator
on the LOADBUF command. The format of the ucseew macro is:

ueseew ucsname[,(print1,print2, ... ,print12)]

where:

ucsname is a 1- to 4-character name that is assigned to the buffer load by the
ues macro.

[(print 1 , ... ,print12)]
is the line length (or number of characters to be printed by the corre­
sponding eeW) for the verify operation. Each count specified must
be between 1 and 132 (the length of the print line on a 1403 printer)
and the default line length is 48 characters. Up to 12 print fields may
be specified. However, the total number of characters to be printed
may not exceed 240.

Finally, insert the macros just coded, ues and ueseew, into the DMKUeS
module. This module must be reloaded. DMKues is a pageable module with no
executable code. DMKUeS must be on a page boundary and cannot exceed a full
page in size. If DMKUeS exceeds a page boundary (4K), an error message is
issued.

Examples of New ues Buffer Images

Example 1: You do not have to specify the line length for verification of the buffer
load. Insert the following code in DMKUCS:

UCS EXOl
DC 5CL'1234567890A ... Z1234567890*/'
UCSCCW EXOl

The buffer image is 5 representations of a 48-character string containing:

The alphabetic characters
The numeric digits, twice
The special characters: * and /

Since the line length for the print verification is not specified on the ucsecw
macro, it qefaults to 48 characters per line for 5 lines.

Example 2: Insert the following code in DMKUeS:

284 VM/SP System Programmer's Guide

UCS NUM1
DC 24CL'1234567890'
UCSCCW NUM1, (60,60,60,60)

The NUM1 print buffer consists of twenty-four 10-character entries. If, after
DMKUCS is reloaded, the command

LOADBUF OOE UCS NUM1 VER

is specified, 4 lines of 60 characters (the 10-character string repeated 6 times) are
printed to verify the buffer load).

Example 3: The print image can be specified in character or hexadecimal notation,
or a combination of the two. The code in DMKUCS to support the preferred char­
acter set, AN, is as follows:

UCS
DC
DC
DC
DC
DC
DC
DC
DC
UCSCCW

PCAN
C'1234567890,-PQR
C' .*1234567890,-JKLMNOABCDEFGHI+.*'
C'1234567890,-PQR&&$%/STUVWXYZ' ,'9C'
C' .*1234567890,-JKLMNOABCDEFGHI+.*'
C'1234567890,-PQR
C' .*1234567890,-JKLMNOABCDEFGHI+.*'
C'1234567890,-PQR&&$%/STUVWXYZ' ,'9C'
C' .*1234567890,-JKLMNOABCDEFGHI+.*'
PCAN, (60,60,60,60)

The DCs are coded in both character and hexadecimal notation. The hexadecimal
code for the lozenge ('9C') follows the character notation on 4 of the DCs. The
DCs, when taken in pairs, represent 60 characters. When print verification of a
buffer load is requested, 4 lines of 60 characters are printed.

UCSB Buffer Images for the 3211 Printer

The Universal Character Set Buffer (UCSB) contains up to 512 characters and
supports the 3211 printer. To add a new UCSB image, first code the UCB macro.
This macro creates a 12-byte header record for the buffer load that is used by CPo
The format of the UCB macro is:

I UCB I ucbname

where:

ucbname is a 1- to 4-character name that is assigned to the buffer load.

Next, supply the exact print image. The print image is supplied by coding DCs in
hexadecimal or character notation. The total length of the print image cannot
exceed 512 characters.

The format of the UCSB is:

Position

1-432

433-447

448-511

Contents

Print train image.

Reserved for IBM use. Must be all zeros.

Associative field. See Figure 33 on page 287 for an explanation of
the contents of this field. The associative field is used to check

Print Buffers and Forms Control 285

Examples of UCSB Images

(during print line buffer (PLB) loading) that each character loaded
into the PLB for printing also appears in the train image field of the
UCSB and, therefore, is on the print train. Any character loaded
into the PLB without its associated code in the train image field of
the UCSB is nonprintable, and causes a "print data check" to be set
immediately. The associative field also contains dual control bits.

512 Reserved for IBM use. Must be zero.

The UCBCCW macro must immediately follow the print image. This macro cre­
ates a CCW string to print the buffer load image when the operator specifies VER
on the LOADBUF command. The format of the UCBCCW macro is:

I UCBCCW I ucbname['(print1,print2, ... print12)]

where:

ucbname is 1- to 4-character name that is assigned to the buffer load by the
UCB macro.

[(print 1, ... ,print 12)]
specifies the line length of each line (up to 12) printed to verify the
buffer load. The line length must be between 1 and 150 (the length of
a print line on a 3211 printer). The default specification for verifica­
tion is 48 characters per line for nine lines. The total number of char­
acters to be printed must not exceed the size of the print train image,
432 characters.

Finally, insert the two macros just coded, UCB and UCBCCW, into the DMKUCB
module. This module must be reloaded before the new buffer image can be used.
DMKUCB is a page able module with no executable code. DMKUCB must be on a
page boundary and cannot exceed a full page in size. If DMKUCB exceeds a page
boundary (4K), an error message is issued.

The code for the All UCSB is as follows:

* A11 STANDARD COMMERCIAL 48 GRAPHICS 3211
UCB A 11
DC 9C'1<.+IHGFEDCBA*$-RPQONMLKJ%,&&ZYXWVUTS/@098765432'
DC X'OOOOOO' 433-435
DC X'000000000000000000000000101010' 436-450
DC X'101010101010100040404240004010' 451-465
DC X'101010101010101000404041000040' 466-480
DC X'401010101010101010004040000000' 481-495
DC x'101010101010101010100040404448' 496-510
DC X'OOOO' 511-512
UCBCCW A11, (48,48,48,48,48,48,48,48,48)
EJECT

Note that the DC specification contains 49 characters and the UCBCCW macro
specifies 48 characters. The ampersand (&) must be coded twice in order to be
accepted by the assembler. The single quote (') must also be specified twice in
order to be accepted.

It would have been acceptable to code the UCBCCW as:

286 VM/SP System Programmer's Guide

UCBCCW A 11

since the default is what was coded.

Bit 0 Bit 1 Bit 2 Bit 3

UCSB Hexa· Graphic & Control Hexa· Graphic & Control Hexa· Graphic & Control Hexa· Graphic & Control
Address decimal Symbols EBCDIC decimal Symbols EBCDIC decimal Symbols EBCDIC decimal Symbols EBCDIC

448 00 NUL 40 SP 80 CO ~
449 01 41 81 a C1 A
450 02 42 82 b C2 B
451 03 43 83 c C3 C
452 04 PF 44 84 d C4 D

453 05 HT 45 85 e C5 E
454 06 LC 46 86 f C6 F
455 07 DEL 47 87 9 C7 G
456 08 48 88 h C8 H
457 09 49 89 i C9 I

458 OA 4A f- 8A { CA
459 OB 4B 8B CB
460 OC 4C < 8C $. CC J1
461 OD 4D (8D (CD
462 OE 4E + 8E + CE Y

463 OF CU1 4F I 8F CF } 464 10 50 & 90 DO
465 11 51 91 j D1 J

466 12 52 92 k D2 K
467 13 53 93 I D3 L

468 14 RES 54 94 m D4 M
469 15 NL 55 95 n D5 N
470 16 BS 56 96 0 D6

.~
0

471 17 IL 57 97 p D7 P
472 18 58 98 q D8 Q

473 19 59 99 r D9 R
474 1A CC 5A I 9A } DA
475 1B 5B $ 9B DB
476 1C 5C * 9C 0 DC
477 10 5D) 9D) DO

478 1E 5E ; 9E ± DE
479 1F CU2 5F ..., 9F II DF
480 20 60 - AO

2:
EO \

481 21 61 I A1 E1
482 22 62 A2 s E2 S

483 23 63 A3 t E3 T
484 24 BYP 64 A4 u E4 U
485 25 LF 65 A5 v E5 V

486 26 EOB 66 A6 w E6 W
487 27 PRE 67 A7 x E7 X

488 28 68 A8 y E8 Y
489 29 69 A9 z E9 Z
490 2A SM 6A I AA EA I

491 2B 6B AB L EB
492 2C 6C % AC r EC rl

493 2D 60 :> AD [ED
494 2E 6E AE 2- EE
495 2F CU3 6F ? AF 0 EF
496 30 70 BO 0 FO 0
497 31 71 B1 1 F1 1

498 32 72 B2 2 F2 2
499 33 73 B3 3 F3 3
500 34 PN 74 B4 4 F4 4
501 35 RS 75 B5 5 F5 5
502 36 UC 76 B6 6 F6 6

503 37 EOT 77 B7 7 F7 7
504 38 78 B8 8 F8 8
505 39 79 \ B9 9 F9 9
506 3A 7A I BA FA
507 3B 7B # BB .J FB

508 3C 7C @ BC ""'1 FC
509 3D 7D BO] FO
510 3E 7E = BE 1= FE
511 3F 7F " BF - FF

Figure 33. UCSB Associative Field Chart

Print Buffers and Forms Control 287

FOB Buffer Images for the 3289 Model 4 Printer

The Font Offset Buffer (FOB) contains 256 font offset bytes and supports the
3289 Model 4 printer. A font offset byte defines a character by specifying its
location on a print belt. The location of the character is specified in terms of its
distance (offset) from a fixed reference point.

To add a new FOB, create a header for the buffer, supply the contents of the new
buffer, and provide a means to print the buffer image if the operator must verify its
contents.

First, code the FOB macro instruction to create a 12-byte header record to be used
by the CPo The format of the FOB macro instruction is:

I fobname

where:

fobname is a 1- to 4-character name that is assigned to the buffer.

Next supply the exact contents of the Font Offset Buffer by coding DCs in
hexadecimal format. Several DCs can be coded, but the total buffer length must be
256 bytes. (If the buffer does not contain 256 bytes, the load check bit is set.)

The FOBCCW macro instruction must be coded immediately following the DCs
that define the buffer contents. This macro instruction creates a CCW string to
print the buffer data when the operator specifies VER on the LOADBUF com­
mand. The format of the FOBCCW macro instruction is:

where:

fobname

I FOBCCW I fobname [(printl,print2, ... print12)]

is the 1- to 4-character name assigned to the buffer by the FOB macro
instruction.

[(print1 , ... print12)]
specifies the length of each line (up to 12 lines) printed to verify the
buffer contents. The line length must be between 1 and 132 (the line
length of a 3289 Model 4 printer). The default specification for ver­
ification is eight 64-byte lines of hexadecimal formatted data. The
total number of hexadecimal bytes to be printed must not exceed 512.
(There are two printed bytes for each of the 256 bytes of data in the
buffer.)

Finally, insert the two macros just coded, FOB and FOBCCW, into the DMKPIA
module. This module must be reloaded before the new buffer image can be used.
DMKPIA is a pageable module with no executable code. DMKPIA must be on a
page boundary and cannot exceed a full page in size. If DMKPIA exceeds a page
boundary (4K), an error message is issued.

Example: The F64 Buffer

288 VM/SP System Programmer's Guide

FOB
DC
DC
DC
DC
DC
DC
DC
DC
DC
FOBCCW

F64
X'7F' ,63X'80'
X'7F' ,9X'80' ,X'302E31322D3315'
9X'80' ,X'342223353637210C' ,9X'80'
X'1617393A3B',9X'80', '3F3COAOB2F303E'
65X'80' ,X'2425262728292A2B2C'
7X'80' ,X'18191A1B1C1D1E1F20'
6X'80' ,X'38800DOEOF1011121314'
6X'80' ,X'09000102030405060708'
6X'80'
F64, (64,64,64,64,64,64,64,64)

UCC Buffer Images for the 3203 Printer

The uee buffer contains up to 240 characters and supports the 3203 printer. To
add a new uee buffer image, first code the uee macro. This creates a 12-byte
header for the buffer load that is used by ep. The format of the uee macro is:

I uee I uccname

where:

uccname is a 1- to 4-character name that is assigned to the buffer load.

Next, supply the exact print image. The print image is supplied by coding Des in
hexadecimal or character format. The print image may consist of several DCs, the
total length of the print image cannot exceed 240 characters.

The ucecew macro must immediately follow the 64-byte associative field, which
must follow the print image. (See Note 3.) This macro creates a eew string to
print the buffer load image when VER is specified by the operator on the
LOADBUF command. The format of the ueeeew macro is:

where:

uccname

I ueeeew I uccname[,(print1,print2, ... ,print12)]

is a 1- to 4-character name that is assigned to the buffer load by the
uee macro.

[(print1 , ... ,print 12)]
is the line length (or number of characters to be printed by the corre­
sponding eeW) for the verify operation. Each count specified must
be between 1 and 132 (the length of the print line on a 3203 printer)
and the default line length is 48 characters. Up to 12 print fields may
be specified. However, the total number of characters to be printed
may not exceed 240.

Finally, insert the macros just coded, uee and ueeeew, into the DMKUCe
module. This module must be reloaded. DMKUee is a page able module with no
executable code. DMKUee must be on a page boundary and cannot exceed a full
page in size. If DMKUeC exceeds a page boundary (4K), an error message is
issued.

Examples of New uee Buffer Images

Example 1: You do not have to specify the line length for verification of the buffer
load. Insert the following code in DMKUee:

Print Buffers and Forms Control 289

UCC
DC
[)C
DC
DC
DC
UCCCCW

EX01
5CL'1234567890A ... Z1234567890*/'
X'00101010101010101010004000404000'
X'40101010101010101010004040400000'
X'40401010101010101010004000000000'
X'10101010101010101010000000404000'
EX01

240-255
256-271
272-287
288-303

The buffer image is 5 representations of a 48-character string containing:

• The alphabetic characters
The numeric digits, twice
The special characters: * and /

Since the line length for the print verification is not specified on the ueeeew
macro, it defaults to 48 characters per line for 5 lines.

Example 2: Insert the following code in DMKUee:

UCC
DC
DC
DC
DC
DC
uceccw

NUM1
24CL'1234567890'
X'00101010101010101010004000404000'
X'40101010101010101010004040400000'
X'40401010101010101010004000000000'
X'10101010101010101010000000404000'
NUM1, (60,60,60,60)

240-255
256-271
272-287
288-303

The NUM1 print buffer consists of twenty-four 10-character entries. If, after
DMKUee is reloaded, the command

LOADBUF OOE uec NUM1 VER

is specified, 4 lines of 60 characters (the 10-character string repeated 6 times) are
printed to verify the buffer load.

Note: The ues buffer for the 3203 MODEL 4 and MODEL 5 printers is pro­
grammed essentially the same as for the 1403 printer. You should follow the same
procedures for programming this buffer, noting the differences listed below.

1. Instead of the ues macro, code the uee macro (which is equivalent to the
ues macro for the 1403).

2. The print train image should be 240 bytes long.

3. Immediately after the print image, the DUAL and UNeOMPARABLE
TABLE (DUCT) should appear. The DUCT should be 64 bytes long and start
at byte 240 in the ues buffer.

4. Following the DUCT should be the ueeeew macro (which is equivalent to
the ueseew macro).

5. Finally, the completed macros and ues data should be inserted into the
DMKUee module.

Note that when the ueeeew macro is coded, you may specify that a maximum of
240 bytes is to be printed.

Also, the ues buffer for the 3203 MODEL 5 printer must be 304 bytes long,
while the ues buffer for the 3203 MODEL 4 printer may be less (however, if the

290 VM/SP System Programmer's Guide

LOADBUF command is issued, the buffer must be 304 bytes long). For informa­
tion on the effects of the lower UCS buffer length, you should consult the 3203
Component Description and Operator's Guide, GS33-1515.

For more information on coding the DUCT, consult the 3203 MODEL 5 Compo­
nent Description and Operator's Guide, (GA33-1529), or the 3203 Component
Description and Operator's Guide, (GA33-1515).

PIB Buffer Images for the 3262 Model I and II Printers

The PIB buffer contains up to 132 characters and supports the 3262 printer. To
add a new PIB buffer image, first code the PIB macro. This creates a 12-byte
header for the buffer load that is used by CPo The format of the PIB macro is:

I PIB I pibname

where:

pibname is a 1- to 4-byte character name that is assigned to the buffer load.

Next, supply the exact print image. The print image is supplied by coding DCs in
hexadecimal or character format. The print image may consist of several DCs, the
total length of the print image cannot exceed 288 characters.

The PIBCCW macro must immediately follow the print image. This macro creates
a CCW string to print the buffer load image when VER is specified by the operator
on the LOADBUF command. The format of the PIBCCW macro is:

I PIBCCW I pibname [,(printl,print2, ... , printl2)]

where:

pibname is a 1- to 4-character name that is assigned to the buffer load.

[,(print1,print2, ... ,print12)]
specifies the length of each line (up to 12 lines) printer to verify the
buffer contents. The line length must be between 1 and 132 (the
length of the print line on a 3262 printer) and the default line length is
24 characters. Up tQ 12 print fields can be specified. However, the
total number of characters to be printed may not exceed 288.

Finally, insert the macros just codes, PIB and PIBCCW, into the DMKPIB module.
This module must be reloaded. DMKPIB is a pageable module with no executable
code. DMKPIB must be on a page boundary and cannot exceed a full page in size.
If DMKPIB exceeds a page boundary (4K), an error message is issued.

Examples of New PIB Buffer Images

Example 1: You do not have to specify the line length for verification of the buffer
load. Insert the following in DMKPIB:

PIB EX01
DC 8CL36'1234567890 ... WXYZ'
PIBCCW EX01

The buffer image is 8 representations of a 24-character string containing:

Print Buffers and Forms Control 291

Forms Control Buffer

The numeric digits
The alphabetic characters

Since the line length for the print verification is not specified on the PIBCCW mac­
ro, it defaults to 24 characters per line for 8 lines.

Example 2: Insert the following code in DMKPIB:

PIB EX02
DC 8CL36'1234567890 ... WXYZ'
PIBCCW EX02, (36,36,36,36,36,36,36,36)

The EX02 print buffer consists of eight 36-character entries. If, after DMKPIB is
reloaded, the command:

LOADBUF OOE PIB EX02 VER

is specified, 8 lines of 36 characters are printed to verify the buffer load.

It is possible to have a forms control buffer with both a virtual and real 3211-type
(3203,3211,3262-1/5/11,3289 Model 4, 4245) printer. A virtual 3211-type
printer file can be printed on a real 1403; in fact, one way to provide forms control
for a 1403 is to define it as a virtual 3211.

There is an FCB macro to support 3211-type forms control. The format of the
FCB macro is:

where:

fcbname

space

length

fcbname,space,length, (line,channel. ..) ,index

is the name of the forms control buffer. "fcbname" can be one to
four alphameric characters.

is the number of lines/inch. Valid specifications are 6 or 8. This
operand may be omitted: the default is 6 lines/inch. When the space
operand is omitted, a comma (,) must be coded. Spacing has no mean­
ing for a virtual printer.

is the number of print lines per page or carriage tape (1 to 255).

(line,channel. ..)
shows which print line (line) prints in each channel (channeL.).
"channel" values range from 1 to 12. Refer to the previous "Print
Buffers and Forms Control" section for the VM/SP supplied buffer
images for the FOB. The entries can be specified in any order.

index is an index value (from 1 to 31). "index" specifies the print position
that is to be the first printed position. "index" is valid only for the
3211 printer. The "index" specification is not accepted for other
printers. (The "index" specification can be overridden with the
LOADBUF command).

292 VM/SP System Programmer's Guide

/

VM/SP provides two real FCB images, FCB1 and FCB8. These FCBs are in
pageable module DMKFCB. Installations may add additional FCB images to
DMKFCB as long as the size of DMKFCB does not exceed the size of two pages.

A default virtual FCB image is provided for virtual 3211-type printers (3211, 3203,
3262-1/5/11,3289 Model 4, and 4245). The image is used for the virtual printer
if no FCB has been previously loaded for that virtual device. The image (66 bytes
long with a channel 1 code at FCB position 1 with all other channels defined) is
not stored in the spool file but only used for virtual processing of the print com­
mands.

Notes:

1. The Forms Control Buffers must have compatibility of channel one; that is,
channel one and line one must be the same physical line for all FCB's that are
built, or forms misalignment results.

2. If the FCB macro is coded to have more than one channel designated for one
print line, the macro includes only the last channel in the buffer for that print
line. This is because a buffer byte can only be loaded with one channel code.

3. When an operator loads a default FCB, it is recommended that all channels be
defined to prevent an undefined channel error.

Example 1: If you wanted your printer to print:

8 lines/inch
60 lines/page
print line 3 in channel 1
print line 60 in channel 9
print line 40 in channel 12
print position 10 the first print position

you would code the FCB macro (with a name, SPEC) as:

FCB SPEC,8,60, (3,1,40,12,60,9) ,10

If you want another forms control buffer, called LONG, to be exactly the same as
SPEC (except that only 6 lines print per inch) you could code either of the follow­
ing:

FCB LONG,6,60, (3,1,40,12,60,9) ,10

FCB LONG,,60, (3,1,40,12,60,9) ,10

Example 2: You could have your special forms control buffer (SPEC) loaded for
either a virtual or real 3203, 3211, 3262, 3289 Model 4, or 4245 printer. The
LOADVFCB command is for the virtual printer and the LOADBUF command is
for the real printer.

The INDEX parameter is only valid for a 3211 printer. If INDEX is not specified
for the 3211 printer, no indexing is done. If INDEX is specified without a value,
the value coded in the FCB macro is used and if INDEX is specified with a value,
the specified value overrides the value coded in the FCB macro.

Print Buffers and Forms Control 293

If you specify INDEX for the virtual 3211 printer and again for the real 3211
printer, the output is indexed using the sum of the two specifications minus 1. For
example, the command

LOADVFCB OOF FCB SPEC INDEX

indexes the virtual print file 10 positions because 10 was specified in the FCB mac­
ro for the SPEC forms control buffer. When this file is sent to the real printer, the
operator issues the command

LOADBUF OOE FCB SPEC INDEX 20

which indexes the file an additional 20 positions. The value specified on the com­
mand line (20) overrides the value in the FCB macro (10). The output starts print­
ing in print position 29 (10+20-1=29).

Because the 3203, 3262, 3289 Model 4, and 4245 printers do not have indexing
capabilities, the LOADVFCB and LOADBUF commands with the INDEX option
cause an invalid option error message from CPo

294 VM/SP System Programmer's Guide

IBM 3800 Printing Subsystem

The IBM 3800 Printing Subsystem is a high-speed, nonimpact printer that com­
bines electro-photographic and laser technology. The 3800 printer can achieve
speeds of up to 20,040 lines/minute, while several unique features give the user the
ability to control the characteristics of printed output.

The features of the 3800 printer include:

Forms control buffer - controls the amount of vertical space between printed
lines. The user can specify vertical spacing of 6, 8, or 12 lines/inch.

Multiple copy printing - allows the user to request multiple copies without the
use of carbon paper. The 3800 uses its high speed to repeat-print the specified
number of originals.

Copy modification - allows the user to print or suppress predefined information
on specified copies of a page. For example, a different name and address can
be printed on each copy of a page.

Forms overlay - allows the user to specify a form or grid to be printed (flashed)
from a negative while output is being printed inside the form.

Character arrangement tables - allow the user to specify which predefined
character set to use for printing a data set. Each character set contains up to
64 printable characters.

Character modification - allows character sets to be modified or extended to
meet the user's needs.

For detailed information on the 3800 Printing Subsystem see:

Introducing the IBM 3800 Printing Subsystem and Its Programming

Concepts of the IBM 3800 Printing Subsystem

IBM 3800 Printing Subsystem Programmer's Guide, OS/VSl, OS/VS2

Reference Manual for the IBM 3800 Printing Subsystem.

VM/SP supports the 3800 printer as a dedicated device, as a real sp00ling device,
and as a virtual spooling device.

Using the 3800 Printer as a Dedicated Device

VM/SP allows a virtual machine that is configured to support a real 3800 to attach
the 3800 for that machine's exclusive use. When used as a dedicated device,
VM/SP supports all of the facilities of the 3800.

Using the 3800 Printer as a Real Spooling Device

VM/SP allows users of spool files to print their files on an IBM 3800 Printing Sub­
system. The copy modification, forms overlay, character modification, and multiple
copy features are fully supported. However, when the 3800 is used as a real spool-

IBM 3800 Printing Subsystem 295

Specifying Printer Options

Creatin~ Control Tables

ing device, only one character arrangement table may be specified for each spool
file. In addition, the entire spool file must be printed with the same line spacing on
each page.

Parameters on five commands enable the user to take advantage of the 3800 print­
er's capabilities. The CHANGE, SPOOL, and START commands allow the user to
specify the character arrangement table, copy modifications, forms overlay, and
FCB to be used for printing. The BACKSPAC and QUERY commands also sup­
port the 3800 printer.

Three utilities, GENIMAGE, IMAGELIB, and IMAGEMOD, construct and modi­
fy the character arrangement tables, graphic modifications, copy modifications, and
FCBs used by the 3800. DIAGNOSE Code X'74' is invoked by IMAGELIB and
IMAGEMOD to load and save this control information as a named system.

Finally, the NAME3800 macro instruction allows the user to create the named sys­
tem that contains the control information needed to print a spool file.

Five parameters on the SPOOL and CHANGE commands support the 3800 printer
as a real spooling device. (See the CP Command Reference for General Users for
detailed coding information.)

FLASH - identifies the form overlay, if any, to be used when printing the file

CHARS - names the character arrangement table to be used to print the file

MODIFY - indicates the copy modification module, if any, to be used when
printing the file

• FCB - specifies the name of the forms control buffer to be used for the file

COpy - indicates the number of copies to be printed.

The START command includes parameters that enable the VM/SP operator to
name the character arrangement table and the FCB to be used for the separator
page. The operator can also identify, via the FLASH operand of the START
command, the forms overlay currently loaded in the 3800. In addition, the opera­
tor uses the IMAGE parameter to specify the named system to be used to print the
spool file. Finally, by specifying the PURGE parameter, the operator can purge all
spool files that cause errors when loaded into the 3800. See the VM/SP Operator's
Guide for further information on the START command.

VM/SP uses the OS/VS utility IEBIMAGE to create and dynamically modify
character arrangement tables, copy modifications, graphic modifications, and
FCBs. Three service programs, GENIMAGE, IMAGELIB, and IMAGEMOD,
interface with IEBIMAGE.

GENIMAGE creates or modifies text files on a CMS disk. These text files contain
the images to be used by the 3800 Printing Subsystem.

296 VM/SP System Programmer's Guide

IMAGE LIB loads the new or changed text files created by GENIMAGE into vir­
tual storage. When all the files are loaded, DIAGNOSE Code X'74' is invoked to
save these files as a named system.

IMAGEMOD makes selective modifications to an existing 3800 named system
without completely regenerating the named system. While IMAGELIB creates a
new named system each time it is invoked, IMAGEMOD allows users to add,
delete, replace, and list members of a 3800 named system. IMAGEMOD uses
DIAGNOSE X'74' to load and save the named system.

See the VM I SP Planning Guide and Reference for more information on
IMAGELIB, GENIMAGE and IMAGEMOD.

Storing and Loading Control Tables

Recovering from I/O Errors

As part of VM/SP support of the 3800 printer, character arrangement tables, copy
modifications, graphic modifications, and FCBs are stored in a named system.

Prior to printing a spool file, the VM/SP operator specifies a named system on the
IMAGE parameter of the START command. The control tables specified for the
file (via the SPOOL and CHANGE commands) are loaded into the 3800 from that
named system and the file is printed.

The NAME3800 macro instruction establishes the named system at system gener­
ation. See the VM I SP Planning Guide and Reference for further information.

Because the actual printing of lines on the page is slower than the output of lines
from the processor, spool files are placed into a delayed purge queue to await print­
ing by the 3800. Only when the maximum number of files are in the queue will the
first one actually be purged. The size of the queue can be specified at system gen­
eration time via the DPMSIZE parameter on the RDEVICE macro instruction.
DPMSIZE can have a maximum value of nine.

Because spool files are queued, the BACKSP AC command may be used for the
3800 printer to restore pages that are lost when an 110 error occurs. In addition,
the operator may specify the EOF parameter, which indicates that backspacing
should begin at the end of the file and continue for the number of pages specified.
See the VM I SP Operator's Guide for more information on the BACKSP AC com­
mand.

Displaying Printer Control Information

The QUERY command enables G-, B-, and D-privilege users to display the names
of the character arrangement table, copy modification, and FCB currently in effect
for a spool file or a virtual printer. In addition, the VM/SP operator can use the
QUERY command to determine the image library used and the forms loaded on a
real 3800.

See the VMISP Operator's Guide for details on the QUERY command.

Using the 3800 Printer as a Virtual Spooling Device

VM/SP enables a user to create printer spool files on a virtual 3800 printer defined
for his virtual machine. VM/SP provides full support for the copy modifications,
forms overlay, character modifications, and multiple copy features. In addition,

IBM 3800 Printing Subsystem 297

when the 3800 is defined as a virtual spooling device, the user can specify that up
to four different Writable Character Generation Modules (WCGM's) are available
for defining characters to print on a line or page. Each WCqM holds 64 charac­
ters. Finally, the user can vary the vertical spacing of lines o'n· a page.

VM/SP makes these 3800 features available both to CMS users and to virtual
machines running an operating system with full 3800 support. When a virtual
machine running an operating system with full 3800 support issues commands that
generate 3800 load commands, the virtual machine operating system passes these
load commands and their associated data to CP. CP includes these load commands
in the virtual spool file.

Four commands and macros make it possible for CMS users to load a virtual 3800
printer and to print virtual 3800 spool files. The SETPRT command and parame­
ters on the PRINTL macro, and PRINT and FILEDEF commands make it possible
to use the features of a 3800 printer.

Parameters on the CP START command allow the VM/SP operator to control the
printing of virtual 3800 spool files. The QUERY command enables a user to
determine the characteristics of his virtual 3800 printer or spool file.

Defining a Virtual 3800 Printer

To use the features of the 3800 printer as a virtual spooling device, the installation
or user must define a virtual 3800 for the user's virtual machine. The class G
DEFINE command enables a user to specify virtual 3800 characteristics, including
how many WCGMs the virtual printer has, and whether or not CP will reflect all
data checks to the virtual machine. (See the VM / SP CP Command Reference for
General Users for details on the DEFINE command.)

The SPOOL control statement of the DIRECT command allows an installation to
define a virtual 3800 in a user's directory. (See the VM/SP Planning Guide and
Reference for details on the SPOOL control statement.)

Loading the Virtual 3800 and Printing Virtual 3800 Spool Files

The CMS SETPRT command allows a CMS user to include 3800 control informa­
tion at the beginning of a spool file. When the file prints on a real 3800, the real
printer uses this control information to determine which character sets, copy mod­
ifications, and FCB to load and which copies to print with the forms overlay. The
SETPRT command also allows a user to specify copy groups and the number of
copies to print. (See the VM / SP CMS Command and Macro Reference for details
on the SETPR T command.)

Once the SETPR T command has been issued, CMS allows a user to select the
character set used to print each line of a virtual 3800 spool file. The TRC option
of the CMS PRINT command and the PRINTL macro indicates that each line in
the file has a TRC (Table Reference Character) as the first byte of data. The TRC
bytes correspond to the order in which character sets have been loaded by the
SETPRT command. When the file prints on the real 3800 printer, the value of the
TRC byte determines which character set the 3800 selects to print each line.

For CMS users running OS programs, coding the OPTCD J parameter of the
FILEDEF command indicates to the QSAM PUT macro and the BSAM WRITE
macro that each output line contains a TRC byte.

298 VM/SP System Programmer's Guide

"

Recovering from I/O Errors

Note that files created on a virtual 3800 can print on any real spooling device sup­
ported by VM/SP. However, if a file that was created on a virtual 3800 is printed
on another real printer (for example, a 1403 or a 3211) all 3800 unique control
information is ignored by the real printer. Further, while print lines of 204 bytes
are allowed by the 3800, lines will be truncated if printed on a real printer with a
smaller maximum line length (for example, a 1403 or a 3211).

When an I/O error occurs while a virtual 3800 spool file is printing on a real 3800,
the VM/SP operator can specify the BACKSP AC command with the FILE param­
eter to recover from the error. The BACKSP AC command with the FILE parame­
ter restarts the spool file at the beginning and reloads the real 3800 with the control
information originally specified in the SETPRT command.

Displaying Control Information

The CP QUERY command enables G-, B-, and D-privilege users to display the
names of the character arrangement tables, copy modifications, and FCB currently
in effect for a spool file or virtual printer. In addition, the QUERY command dis­
plays the characteristics of the virtual 3800 that were established when the virtual
device was defined. Finally, the user can determine where 3800 load commands
are found in a file (not at all, at the beginning, or throughout).

The VM/SP operator can use the QUERY command to determine the image
library and form loaded on the real 3800. Further, the VM/SP operator can
determine which virtual 3800 spool files are being accepted for printing by the real
printer: those containing no 3800 load commands, those with 3800 load com­
mands only at the beginning, or those with 3800 load commands throughout (as
long as the class and FORMS match). The VM/SP operator specifies on the CP
START command which spool files the real 3800 accepts for printing.

IBM 3800 Printing Subsystem 299

Joumaling Logon, Autolog, and Link Commands

LOGON, AUTOLOG, and LINK Journaling attempts to detect and record certain
occurrences of the LOGON, AUTOLOG, or LINK commands. Using the
recorded information, an installation may be able to identify attempts to logon to
VM/SP by users that issue invalid passwords. Also, the installation may be able to
identify users that successfully issue the LINK command to protected minidisks not
owned by that user.

Briefly, LOGON, AUTOLOG, and LINK journaling works like this. While jour­
naling is turned on, CP monitors all occurrences of the LOGON, AUTOLOG, and
LINK commands. CP keeps count of the number of times a user issues one of
these commands with an invalid password. When this count exceeds an installation
defined threshold value, CP optionally:

Writes a record to the accounting data set to record the incident

Rejects subsequent LOGON, AUTOLOG, or LINK commands issued by the
user

• Sends a message to an installation-defined user identification to alert the instal­
lation to the incident

Also, each time CP detects that a user has successfully issued a LINK command to
a protected minidisk not owned by that user, CP optionally records the incident by
writing a record to the accounting data set. A protected minidisk is a minidisk
whose password is anything but ALL for the type of LINK attempted.

For a description of the accounting records that CP writes for LOGON,
AUTOLOG, and LINK journaling, see the section "Accounting Records."

The SYSJRL macro instruction, the SET command, and the QUERY command
enable an installation to control LOGON, AUTOLOG, and LINK journaling. To
make journaling available and to specify options, code the SYSJRL macro instruc­
tion in module DMKSYS. Instructions for coding this macro instruction are in the
VM I SP Planning Guide and Reference. To turn journaling on or off, use the class
A SET command. To determine whether journaling is on or off, use the class A
QUERY command.

300 VM/SP System Programmer's Guide

Suppressing Passwords Entered on the Command-Line

CP optionally rejects LOGON or LINK commands that have the password entered
on the same line as the command. Rejecting these commands prevents passwords
from being displayed or from being printed without masking -- masking a password
means overprinting the password so it cannot be read.

This capability is also available to virtual machines that issue LINK commands via
DIAGNOSE Code X'08'. For a description of DIAGNOSE Code X'08', see the
section "DIAGNOSE Instruction in a Virtual Machine."

To request password suppression, specify it as an option on the SYSJRL macro
instruction in module DMKSYS during system generation of VM/SP. Once
requested, password suppression is always on; an operator cannot turn it off. Refer
to the VM / SP Planning Guide and Reference for information on how to use and
code SYSJRL in DMKSYS.

Suppressing Passwords Entered on the Command-Line 301

Part 2. Conversational Monitor System (eMS)

Part 2 contains the following information:

Introduction to CMS

Interrupt Handling

Functional Information (How CMS Works)

Register usage
DMSNUC structure
Storage structure
Free storage management
SVC handling

• CMS IUCV Support

Using the DASD Block I/O System Service from CMS

• OS Macro Simulation

VSE Support Under eMS

eMS Support for OS and DOS VSAM Functions

• Saving the CMS system

• Batch Monitor

I. The Programmable Operator Facility

• Auxiliary Directories

Assembler Virtual Storage Requirements

302 VM/SP System Programmer's Guide

Introduction To eMS,

The Conversational Monitor System (CMS), the major subsystem of VM/SP, pro­
vides a comprehensive set of conversational facilities to the user. Several copies of
CMS may run under CP, thus providing several users with their own time sharing
system. eMS is designed specifically for the VM/SP virtual machine environment.

Each copy of CMS supports a single user. This means that the storage area con­
tains only the data pertaining to that user. Likewise, each CMS user has his own
machine configuration and his own files. Debugging is simpler because the files
and storage area are protected from other users.

Programs can be debugged from the terminal. The terminal is used as a printer to
examine limited amounts of data. After examining program data, the terminal user
can enter commands on the terminal that will alter the program. This is the most
common method used to debug programs that runin CMS.

CMS, operating with the VM/SP Control Program, is a time sharing system suit­
able for problem solving, program development, and general work. It includes
several programming language processors, file manipulation commands, utilities,
and debugging aids. Additionally, CMS provides facilities to simplify the operation
of other operating systems in a virtual machine environment when controlled from
a remote terminal. For example, CMS capabilities are used to create and modify
job streams, and to analyze virtual printer output.

Part of the CMS environment is related to the virtual machine environment created
by CP. Each user is completely isolated from the activities of all other users, and
each machine in which CMS executes has virtual storage available to it and man­
aged for it. The CP commands are recognized by CMS. For example, the com­
mands allow messages to be sent to the operator or to other users, and virtual
devices to be dynamically detached from the virtual machine configuration.

The CMS Command Language

The File System

The CMS command language offers terminal users a wide range of functions. It
supports a variety of programming languages, service functions, file manipulation,
program execution control, and general system control. The CMS commands that
are useful in debugging are discussed in the "Debugging with CMS" section of
"Part 3. Debugging with VM/SP". For detailed information on all other CMS
commands, refer to the VM/SP CMS Command and Macro Reference.

Figure 35 describes CMS command processing.

The Conversational Monitor System interfaces with virtual disks, tapes, and unit
record equipment. The CMS residence device is kept as a read-only, shared, sys­
tem disk. Permanent user files may be accessed from up to 25 active disks. Log­
ical access to those virtual disks is controlled by CMS, while CP facilities manage
the device sharing and virtual-to-real mapping.

User files in CMS are identified with three designators. The first is filename. The
second is a file type designator that may imply specific file characteristics to the
CMS file management routines. The third is a filemode designator that describes
the location and access mode of the file.

Introduction To eMS 303

User files can be created directly from the terminal with the System Product Editor
(XEDIT). XEDIT provides extensive context editing services. File characteristics
such as record length and format, tab locations, and serialization options can be
specified. The system includes standard definitions for certain filetypes. The size
of user files is determined by the BLKSIZE. When a BLKSIZE of 800 bytes is
specified, a single user file is limited to a maximum of 65533 records and must
reside on one virtual disk. The file management system limits the number of files
on the virtual disk to 3400. When a BLKSIZE of 1024,2048, or 4096 bytes is
specified, a single user file is limited to a maximum of 231-1 CMS records and must
reside on one virtual disk. The maximum number of data blocks available in a vari­
able format file on a 512-byte blocksize minidisk is about 15 times less than 231-1.

The file management system does not limit the number of files on the disk. The
number of files on a disk is limited by the capacity of the disk.

The compilers available under CMS default to particular input filetypes, such as
ASSEMBLE, but the file manipulation and listing commands do not. Files of a
particular filetype form a logical data library for a user; for example, the collection
of all COBOL source files, or of all object (TEXT) decks, or of all EXEC proce­
dures. This allows selective handling of specific groups of files with minimum input
by the user.

CMS automatically allocates compiler work files at the beginning of command exe­
cution on whichever active disk has the greatest amount of available space, and
deallocates them at completion. Compiler object decks and listing files are
normally allocated on the same disk as the input source file or on the primary
read/ write disk, and are identified by combining the input filename with the
filetypes TEXT and LISTING. These disk locations may be overridden by the
user.

Virtual disks may be shared by CMS users; the facility is provided by VM/SP to all
virtual machines, although a user interface is directly available in CMS commands.
Specific files may be spooled between virtual machines to accomplish file transfer
between users. Commands allow such file manipulations as writing from an entire
disk or from a specific disk file to a tape, printer, punch, or the terminal. Other
commands write from a tape or virtual card reader to disk, rename files, copy files,
and erase files. Special macro libraries and text or program libraries are provided
by CMS, and special commands are provided to update and use them. CMS files
can be written onto and restored from unlabeled tapes via CMS commands.

Caution: Multiple write access under CMS can produce unpredictable results.

Problem programs that execute in CMS can create files on unlabeled tape in any
record and block size; the record format can be fixed, variable, or undefined.

Migration from the 800-byte File System to the Extended File System

This section discusses the points to consider when migrating to the VM/SP file sys­
tem from VM/370 Release 6 or earlier versions of CMS. Note that the VM/SP file
system is directly compatible with the VM/370 System Extensions and the Basic
System Extensions, Release 2 file system. The VM/SP file system provides greater
file capacities, four disk blocksizes for minidisks, and improved performance over
most earlier versions of CMS.

The VM/SP file system contains support for the traditional CMS disk format and
for an enhanced format of CMS disk. It is with this enhanced or extended format
that additional functions and capacities are available. The VM/SP extended file

304 VM/SP System Programmer's Guide

Migration Considerations

Disk Formats

format has a completely revised internal file structure. The extended format struc­
ture is highly compatible with previous versions of eMS and retains the strengths
of earlier eMS file systems.

The VM!SP file system provides the following for extended format disks:

The logical disk capacity has been increased. There is no effective limit to the
size of a eMS minidisk except for the size of the physical device.

The logical file capacity has been increased. There is no effective limit on the
size of a file except for the amount of space on the minidisk. (The record
number must be less than 231_1.)

Performance when randomly accessing variable length records has been
improved.

The number of minidisks that can be accessed at anyone time by a single user
has been increased from 10 to 26.

In VM/370, the number of files per minidisk was limited to 3400. With the
VM/SP file system extensions, there is no effective limit except for the con­
straints of storage and disk space.

In VM/370, the minimum number of physical disk blocks needed to hold very
small files was two; it is now one. Note that this mayor may not cause a sav­
ing of disk space depending on the physical blocksize chosen and the exact size
of the small file.

Internal algorithms controlling the updating of blocks on disk when files are
closed have been redesigned. The redesign provides a significant increase in
performance for most eMS users.

The physical blocksize of the VM/370 file system was 800. The VM/SP file
system supports four additional sizes:

512 bytes
1024 bytes
2048 bytes
4096 bytes

The in-storage control structures of the VM/SP file system are considerably differ­
ent than those of the VM/370 800-byte file system. However, because backward
compatibility has been maintained in the VM/SP file system, disks that are format­
ted under earlier versions of eMS can be used with VM/SP. Disks that are for­
matted with a blocksize of 800-bytes under VM/SP can be used with earlier
versions of eMS. Note, however, that the default blocksize for VM/SP is 1024
bytes when minidisks are formatted using the VM/SP FORMAT command.

Although the internal block size is transparent to most users and programs, installa­
tion utilities that dump and restore disks may depend upon the physical disk
blocksize and the internal disk control block structure.

Introduction To eMS 305

MACLIB and TXTLIB Files

TAPE Command

DISK Command

Program I/O

The internal format of MACLIB and TXT LIB files has been augmented by the
addition of a new format to allow larger libraries. Earlier CMS library formats are
supported by VM/SP whether they exist on 800-byte or extended format disks.
Updating an old format MACLIB or TXT LIB on an extended disk does not change
the internal format. The creation of a library on an extended format disk causes
the construction of a library with the new format.

Under VM/SP, new format libraries are supported on 800-byte format disks. This
condition can only occur if a new format library is copied (via COPYFILE,
MOVEFILE, and so on) from an extended format disk to an 800-byte format disk.
Note, however, that the new format libraries are not supported by earlier versions
of CMS even if on 800-byte disks.

The format of tapes created by the TAPE command has been augmented by the
addition of a larger blocksize of 4096-bytes. Tapes created by earlier versions of
CMS are properly read onto any disk format by VM/SP. Tapes created by
VM/SP are not readable by earlier versions of CMS unless they are dumped with
blocksize of 800. The default blocksize is 4096 when minidisks are dumped using
the VM/SP TAPE command.

The format of spool files created by the DISK command differs slightly from earlier
versions of CMS. However, files dumped by previous versions of CMS are proper­
ly read by VM/SP and files dumped by VM/SP are properly read by earlier ver­
sions of CMS provided that the file meets the size constraints of the 800-byte disk
(especially, the dumped file must not be greater than 65,533 records).

Programs that do I/O to CMS disks fall into three categories:

Those that do CMS I/O (for example, FSOPEN, FSREAD, FSWRITE)

Those that do OS I/O (for example, OPEN DCB, READ, GET)

• Those that do VSE I/O (for example, OPEN DTF, READ, GET)

Only programs that do CMS disk I/O directly have any compatibility or migration
considerations. Programs that issue OS or VSE I/O calls can immediately take
advantage of the capacity of the extended file system as soon as the files are put on
a VM/SP extended format disk.

Programs that issue CMS I/O macros or calls continue to work on both the
800-byte and the VM/SP extended file systems but are not able to take advantage
of all of the VM/SP file capabilities without conversion. This includes the use of
the FSST ATE macro, which returns the correct format File Status Table (FST)
whatever the disk format.

However, it should be noted that, in general, programs that deal with internal sys­
tem control blocks, (such as File Status Table (FST) blocks, Active Disk Table
(ADT) blocks, or Active File Table (AFT) blocks) should not be used under
VM/SP without careful examination of the program, and conversion or elimination
of program references to the internal blocks.

306 VM/SP System Programmer's Guide

See the VM / SP CMS Command and Macro Reference for information on how to
use file system macros with the extended file system. See the VM / SP System Logic
and Problem Determination Guide, Volume 2, to learn about the structure of the
VM/SP file system.

Programs That Reference System Information

Existing programs that reference internal CMS file system control information will
probably ·not function correctly under VM/SP.

Note: Unconverted programs that run with the SYSTEM attribute (privileged) or
do direct I/O (DIAGNOSE) can destroy data on (or the logical structure of) a
minidisk, making part or all of the data on that minidisk inaccessible.

Before running them on VM/SP examine any programs that perform functions sim­
ilar to the TAPE and DISK commands, programs that copy files, programs that
copy minidisks, and programs that are used to dump and restore files for backup.

Areas to be examined include:

• The format of the File Status Table (FST) has been changed in several ways
including its length. Programs that reference FST copies returned by the
STATE command or FSST ATE/FSOPEN macros continue to function
because new format FSTs are converted to old formats in the copy returned to
the user.

Programs that reference fields in real FSTs (those in the FST hyperblocks or
AFTs) may not function properly. Programs that change fields in FSTs can
destroy the integrity of the file system.

Note that careful evaluation of both the program and CMS file system internal
processes may be necessary to determine what must be done with such pro­
grams.

• The format and contents of the Active File Table (AFT) control block have
been significantly changed for extended format disks. The order of fields in
the AFT for 800-byte block disks has been changed. Programs referencing the
AFT should be carefully examined and must at least be reassembled before
running them even with 800-byte format disks.

The format of the Active Disk Table (ADT) has been significantly altered.
Many fields with new meaning have been added, and many existing fields have
been relocated. One such field is the disk volume label VOLID, which has
moved.

• The format of most other VM/370 file system control information is different
from the VM/SP format file system. Programs that reference such data should
be carefully examined and altered before running them.

Programs that install auxiliary directories by changing the SST AT field in
NUCON will not function properly if the S-disk is an extended format disk.
The CMS routine DMSLADAD should be used to install all auxiliary directo­
ries.

All programs that reference VM/370 CMS control block macros should be
reassembled under VM/SP. If the only control block referenced is NUCON,

Introduction To eMS 307

the assembly is not necessary. The DMSSP and CMSLIB MACLIBs should be
specified as the macro libraries to be searched for CMS macro references with
the CMS GLOBAL command. The DMSSP MACLIB should precede the
CMSLIB MACLIB, followed by any other MACLIBs needed for the
assembly.

Auxiliary Directories (AUXDIRTS)

LISTFILE Command

QUERY DISK Command

Other Command Changes

Auxiliary directories are logical extensions of file system directories that reside as a
part of certain programs. User programs containing auxiliary directories continue
to function on extended format disks provided that the module containing the auxil­
iary directory is regenerated in the manner normal for any movement of such a
module. CMS correctly converts internal formats so that auxiliary directories func­
tion properly as long as they are installed by calling the CMS routine
DMSLADAD.

The LISTFILE command is compatible with previous versions except that the col­
umns in which information is placed have been moved. Programs that use the CMS
EXEC file produced by LISTFILE should be examined, especially, those that sort
CMS EXEC files by data or file size.

The QUERY DISK command has been completely changed. See the QUERY
command in the VM/SP eMS Command and Macro Reference manual for more
information.

Several other commands have been changed. Programs that examine spooled con­
sole output for the typed results of certain commands might require changes.

Coexistence of VM/SP CMS and Earlier Versions of CMS

During conversion from an earlier version of CMS to VM/SP it might be desirable,
depending on local conditions, to run both versions of CMS for a period of time.
However, it is important to remember that system modules from earlier systems
should never be executed on the VM/SP system and vice-versa. Such modules are
incompatible and will damage system and/or user data if run in the incorrect envi­
ronment. Among others, consider the following points to allow easier switching
back and forth between versions:

308 VM/SP System Programmer's Guide

All disks should be formatted with earlier versions of CMS or by specifying a
blocksize of 800. No extended format disks should be used.

All use of the TAPE command should be from the earlier version of CMS or
should specify a blocksize of 800.

Programs or EXEC files that reference eMS EXEC files, or programs that ref­
erence or change system control blocks, require special handling. One of the
following actions should be taken:

Segregate such programs or EXEC files onto separate disks (one per CMS
version) and access the one that corresponds to the CMS version you are
currently using, or

Converting CMS Files

Converting Disk Formats

Make the programs or EXEC files aware of the difference in format so that
they can properly execute under either system.

Although VM/SP can be run with only the 800-byte file system, as previously dis­
cussed, CMS disk formats and files must be converted to take advantage of the
performance and capacity enhancements of VM/SP.

The conversion of disk formats can be achieved in several ways. The two main
ones are:

Allocate a second minidisk, format it under VM/SP using the FORMAT com­
mand with the desired blocksize, and use the COpy command to copy files
from the old format disk to the extended format disk. The old format disk can
then be deallocated.

Dump the files from the old format disk to tape using the TAPE DUMP com­
mand. Format the disk under VM/SP with the desired blocksize. Load the
files from the tape using the TAPE LOAD command.

Converting MACLIB and TXTLIB Files

Program Conversions

Auxiliary Directories

Program Development

MACLIB and TXTLIB files must be re-created to get them into the new library
formats. Under VM/SP, use the VMFMAC EXEC procedure as described in the
VMISP Installation Guide. However, there is no need to do so unless the library
needs the expanded capacity provided by the new format.

Programs that do CMS 110 do not need to be converted (except, as previously dis­
cussed, for those referencing internal control blocks) to be run against files on
extended format disks. All performance advantages are achieved by merely moving
the files to an extended format disk. In addition, the maximum size of the file is
limited only by the 65,533 record limit and not by the old 16,060 block limit.

Existing programs that need to access files larger than 65,533 records must be con­
verted to take advantage of the greater capabilities of the VM/SP file system. See
the VM I SP eMS User's Guide for more information.

Programs that use auxiliary directories must be regenerated when moved to an
extended format disk. This regeneration would be required anyway because of
movement from one disk to another.

The Conversational Monitor System includes commands to create and compile
source programs, to modify and correct source programs, to build test files, to exe­
cute test programs and to debug from the terminal. The commands of CMS are
especially useful for OS and VSE program development, but also may be used in
combination with other operating systems to provide a virtual machine program
development tool.

CMS uses the OS and VSE compilers via interface modules; the compilers them­
selves normally are not changed. In order to provide suitable interfaces, CMS

Introduction To eMS 309

I ABEND Processing

includes a certain degree of as and VSE simulation. For as, the sequential, direct,
and partitioned access methods are logically simulated; the data records are phys­
ically kept in the chained fixed-length blocks, and are processed internally to simu­
late as data set characteristics. For VSE, the sequential access method is sup­
ported. CMS supports VSAM catalogs, data spaces, and files on as and DOS
disks using the Access Method Services portion of the VSE/VSAM program prod­
uct. as Supervisor Call functions such as GETMAIN/FREEMAIN and TIME are
simulated. The simulation restrictions concerning what types of as object pro­
grams can be executed under CMS are primarily related to the as/pcP, MFT, and
MVT Indexed Sequential Access Method (ISAM) and the telecommunications
access methods, while functions related to multitasking in as and VSE are ignored
by eMS. For more information, see "aS Macro Simulation under CMS" and
"VSE Support under CMS".

When CMS abnormally terminates, the following steps are taken:

1. After checking for any SPIE, STXIT PC, STAE, or STXIT AB exits that apply,
CMS calls DMSABN, the abend recovery routine.

2. Before typing out any abend message at the terminal, DMSABN checks for
any ABEND exit routines, set via the ABNEXIT macro.

3. If a list of exit routines exists, the current ABEND exit routine (that is, the last
one set) gains control. If no ABEND exit routines exist, CMS abend recovery
occurs.

ABEND Exit Routine Processing

An ABEND exit routine may be establishec ~o intercept abends before CMS abend
recovery begins. An ABEND exit routine receives control with the nucleus protect
key and is disabled for interrupts. Information about the abend is available to the
exit routine in the DMSABW CSECT in DMSNUC. The address of this area is
passed to the exit routine via register 1.

An ABEND exit routine may choose to avoid CMS ABEND recovery and continue
processing normally. To do this, the exit must issue the ABNEXIT RESET macro.
This tells CMS to clear the ABEND condition. The exit routine may also return to
CMS to continue ABEND processing.

If the exit routine returns to CMS and another ABEND exit routine exists, it is giv­
en control next. Each exit on the list is given control in sequence until all the exits
have been given control or until an exit chooses to avoid CMS ABEND recovery,
by issuing ABNEXIT RESET, and continues processing.

If a program check occurs in an exit routine, and ABNEXIT RESET was not issued
in this exit routine, DMSABN gives control to the next exit routine on the list. If
no other exit routine exists, CMS abend recovery occurs.

You cannot set or clear ABEND exit routines in an ABEND exit routine. You can
reset an ABEND exit routine only in an exit routine.

310 VM/SP System Programmer's Guide

, eMS Abend Recovery

If no ABEND exit routine exists, or if the ABEND exit routine returns to eMS to
continue ABEND processing, DMSABN types out the abend message followed by
the line:

CMS

This line indicates to the user that the next command can be entered.

Now, there are two options available:

• Type in the DEBUG command. DMSABN passes control to DMSDBG to
make the facilities of DEBUG available. DEBUG's PSW and registers are as
they were at the time the recovery routine was invoked. In DEBUG mode, you
may alter the PSW or registers. Then, type GO to continue processing, or type
RETURN to return to DMSABN. DMSABN continues the abend recovery.

• Type in any command (other than DEBUG). DMSABN performs its abend
recovery function, and then passes control to DMSINT to execute the com­
mand that was typed in.

Introduction To CMS 311

Interrupt Handling In eMS

SV C Interruptions

Internal Linkage SVCs

Other SVCs

CMS receives virtual SVC, input/output, program, machine, and external inter­
ruptions and passes control to the appropriate handling program.

The Conversational Monitor System is SVC (supervisor call) driven. SVC inter­
ruptions are handled by the DMSITS resident routines. Two types of SVCs are
processed by DMSITS: internal linkage SVC 202 and 203, and any other SVCs.
The internal linkage SVC is issued by the command and function programs of the
system when they require the services of other CMS programs. (Commands
entered by the user from the terminal are converted to the internal linkage SVC by
DMSINT). The OS SVCs are issued by the processing programs (for example, the
Assembler).

When DMSITS receives control as a result of an internal linkage SVC (202 or
203), it saves the contents of the general registers, floating-point registers, and the
SVC old PSW, establishes the normal and error return addresses, and passes con­
trol to the specified routine. (The routine is specified by the first 8 bytes of the
parameter list whose address is passed in register 1 for SVC 202, or by a halfword
code following SVC 203.)

For SVC 202, if the called program is not found in the internal function table of
nucleus (resident) routines, then DMSITS attempts to call in a module (a CMS file
with filetype MODULE) of this name via the LOADMOD command.

If the program was not found in the function table, nor was a module successfully
loaded, DMSITS returns an error code to the caller.

To return from the called program, DMSITS restores the calling program's
registers, and makes the appropriate normal or error return as defined by the call­
ing program.

The general approach·taken by DMSITS to process other SVCs supported under
CMS is essentially the same as that taken for the internal linkage SVCs. However,
rather than passing control to a command or function program, as is the case with
the internal linkage SVC, DMSITS passes control to the appropriate routine. The
SVC number determines the appropriate routine.

In handling non-CMS SVC calls, DMSITS refers first to a user-defined SVC table
(if one has been set up by the DMSHDS program). If the user-defined SVC table
is present, any SVC number (other than 202 or 203) is looked for in that table. If
it is found, control is transferred to the routine at the specified address.

If the SVC number is not found in the user-defined SVC table (or if the table is
nonexistent), DMSITS either transfers control to the CMSDOS shared segment (if
SET DOS ON has been issued), or the standard system table (contained in
DMSSVT) of OS calls is searched for that SVC number. If the SVC number is
found, control is transferred to the corresponding address in the usual manner. If
the SVC is not in either table, then the supervisor call is treated as an abend call.

312 VM/SP System Programmer's Guide

Input/Output Interruptions

Terminal Interruptions

The DMSHDS initialization program sets up the user-defined SVC table. It is pos­
sible for a user to provide his own SVC routines.

All input/output interruptions are received by the I/O interrupt handler, DMSITI.
DMSITI saves the I/O old PSW and the CSW (channel status word). It then
determines the status and requirements of the device causing the interruption and
passes control to the routine that processes interruptions from that device.
DMSITI scans the entries in the device table until it finds the one containing the
device address that is the same as that of the interrupting device. The device table
(DEVTAB) contains an entry for each device in the system. Each entry for a par­
ticular device contains, among other things, the address of the program that proc­
esses interruptions from that device.

When the appropriate interrupt handling routine completes its processing, it returns
control to DMSITI. At this point, DMSITI tests the wait bit in the saved I/O old
PSW. If this bit is off, the interruption was probably caused by a terminal (asyn­
chronous) I/O operation. DMSITI then returns control to the interrupted program
by loading the I/O old PSW.

If the wait bit is on, the interruption was probably caused by a nonterminal (syn­
chronous) I/O operation. The program that initiated the operation most likely
called the DMSIOW function routine to wait for a particular type of interruption
(usually a device end). In this case, DMSITI checks the pseudo-wait bit in the
device table entry for the interrupting device. If this bit is off, the system is waiting
for some event other than the interruption from the interrupting device; DMSITI
returns to the wait state by loading the saved I/O old PSW. (This PSW has the
wait bit on.)

If the pseudo-wait bit is on, the system is waiting for an interruption from that par­
ticulardevice. If this interruption is not the one being waited for, DMSITI loads
the saved I/O old PSW. This again places the machine in the wait state. Thus, the
program that is waiting for a particular interruption is kept waiting until that inter­
ruption occurs.

If the interruption is the one being waited for, DMSITI resets both the pseudo-wait
bit in the device table entry and the wait bit in the I/O old PSW. It then loads that
PSW. This causes control to be returned to the DMSIOW function routine, which,
in turn, returns control to the program that called it to wait for the interruption.

Terminal input/output interruptions are handled by the DMSCIT module. All
interruptions other than those containing device end, channel end, attention, or unit
exception status are ignored. If device end status is present with attention and a
write CCW was terminated, its buffer is unstacked. An attention interrupt causes a
read to be issued to the terminal, unless attention exits have been queued via the
ST AX macro. The attention exit with the highest priority is given control at each
attention until the queue is exhausted, then a read is issued. Device end status indi­
cates that the last I/O operation has been completed. If the last I/O operation was
a write, the line is deleted from the output buffer and the next write, if any, is
started. If the last I/O operation was a normal read, the buffer is put on the fin­
ished read list and the next operation is started. If the read is caused by an atten­
tion interrupt, the line is first checked to see if it is an immediate command
(user-defined or built-in). If it is a user-defined immediate command, control is

Interrupt Handling In eMS 313

passed to a user specified exit, if one exists. Upon completion, the exit returns to
DMSCIT. If it is a built-in immediate command (HX, for example), appropriate
processing is performed by DMSCIT. Unit exception indicates a canceled read.
The read is reissued, unless it had been issued with ATTREST=NO, in which case
unit exception is treated as device end.

Reader /Punch/Printer Interruptions

Interruptions from these devices are handled by the routines that actually issue the
corresponding 110 operations. When an interruption from any of these devices
occurs, control passes to DMSITI. Then DMSITI passes control to DMSIOW,
which returns control to the routine that issued the 110 operation. This routine can
then analyze the cause of the interruption.

User-Controlled Device Interruptions

. i

Program Interruptions

External Interruptions

Interrupts from devices under user control are serviced the same as CMS devices
except that DMSIOW and DMSITI manipulate a user-created device table, and
DMSITI passes control to any user-written interrupt processing routine that is spec­
ified in the user device table. Otherwise, the processing program regains control
directly.

The program interruption handler, DMSITP, receives control when a program
interruption occurs. When DMSITP gets control, it stores the program old PSW
and the contents of the registers 14, 15, 0, 1, and 2 into the program interruption
element (PIE). (The routine that handles the SPIE macro instruction has already
placed the address of the program interruption control area (PICA) into PIE.)
DMSITP then determines whether or not the event that caused the interruption was
one of those selected by a SPIE macro instruction. If it was not, DMSITP passes
control to the DMSABN abend recovery routine.

If the cause of the interruption was one of those selected in a SPIE macro instruc­
tion, DMSITP picks up the exit routine address from the PICA and passes control
to the exit routine. Upon return from the exit routine, DMSITP returns to the
interrupted program by loading the original program check old PSW. The address
field of the PSW was modified by a SPIE exit routine in the PIE.

An external interruption causes control to be passed to the external interrupt han­
dler DMSITE.

If CMS IUCV support is active in the virtual machine and an IUCV external inter­
rupt occurs, control is passed to the user exit specified on the HNDIUCV or
CMSIUCV macro. If the user has issued the HNDEXT macro to trap external
interrupts, DMSITE passes control to the user's exit routine. If the interrupt was
caused by the timer, DMSITE resets the timer and types the BLIP character at the
terminal. The standard BLIP timer setting is two seconds, and the standard BLIP
character is uppercase, followed by the lowercase (it moves the typeball without
printing). Otherwise, control is passed to the DEBUG routine.

Machine Check Interruptions

Hard machine check interruptions on the real processor are not reflected to a CMS
virtual user by CP. A message prints on the console indicating the failure. The
user is then disabled and must IPL CMS again in order to continue.

314 VM/SP System Programmer's Guide

Functional Information

Register Usage

Structure of DMSNUC

USERSECT (User Area)

The most important thing to remember about CMS, from a debugging standpoint,
is that it is a one-user system. The supervisor manages only one user and keeps
track of only one user's file and storage chains. Thus, everything in a dump of a
particular machine relates only to that virtual machine's activity.

You should be familiar with register usage, save area structuring, and control block
relationships before attempting to debug or alter CMS.

When a CMS routine is called, Rl must point to a valid parameter list (PLIST) for
that program. On return, RO mayor may not contain meaningful information. For'
example, on return from a call to FILEDEF with no change, RO contains a negative
address if a new FCB (File Control Block) has been set up; otherwise, a positive
address of the already existing FCB. R15 contains the return code, if any. The use
of Registers 0 and 2 through 11 varies.

On entry to a command or routine called by SVC 202 the following are in effect:

Register
1

12
13
14
15

Contents
The address of the PLIST supplied by the caller.
The address entry point of the called routine.
The address of a work area (12 doublewords) supplied by SVCINT.
The return address to the SVCINT routine.
The entry point (same as register 12).

On return from a routine, Register 15 contains:

Return
Code
o
<0
>0

Meaning
No error occurred
Called routine not found
Error occurred

If a CMS routine is called by an SVC 202, registers 0 through 14 are saved and
restored by CMS.

Most CMS routines use register 12 as a base register.

DMSNUC is the portion of storage in a CMS virtual machine that contains system
control blocks, flags, constants, and pointers.

The CSECTs in DMSNUC contain only symbolic references. This means that an
update or modification to CMS, which changes a CSECT in DMSNUC, does not
automatically force all CMS modules to be recompiled. Only those modules that
refer to the area that was redefined must be recompiled.

The USERSECT CSECT defines space that is not used by CMS. A modification
or update to CMS can use the 18 fullwords defined for USERSECT. There is a
pointer (AUSER) in the NUCON area to the user space.

Functional Information 315

DEVTAB (Device Table)

Virtual
IBM Device Type

3210, 3215, 1052,
3066,3270

The DEVT AB CSECT is a table describing the devices available for the eMS sys­
tem. The table contains the following entries:

1 console
• 26 disks

1 reader
1 punch
1 printer
4 tapes

You can change some existing entries in DEVT AB. Each device table entry con­
tains the following information:

Virtual device address
Device flags

• Device types
Symbol device name
Address of the interrupt processing routine (for the console)

The virtual address of the console is defined at logon time. The symbolic names of
the user disks can be altered dynamically with the ACCESS command. Figure 34
describes the devices supported by CMS.

Virtual Symbolic
Address' Name (default) Device Use

cuu2 CONI System console

Figure 34 (Part 1 of 2). Devices Supported by a eMS Virtual Machine

316 VM/SP System Programmer's Guide

Virtual Virtual Symbolic
IBM Device Type Add:ess1 Name (default) Device Use

2314,2319,3310, 190 DSKO CMS System disk (read-only)
3330, 3340, 3350, 19J3 DSKI Primary disk (user files)
3370,3375,3380 cuu DSK2 Minidisk (user files)

cuu DSK3 Minidisk (user files)
192 DSK4 Minidisk (user files)
cuu DSK5 Minidisk (user files)
cuu DSK6 Minidisk (user files)
cuu DSK7 Minidisk (user files)
19E DSK8 Minidisk (user files)
cuu DSK9 Minidisk (user files)
cuu DSKH Minidisk (user files)
cuu DSKI Minidisk (user files)
cuu DSKJ Minidisk (user files)
cuu DSKK Minidisk (user files)
cuu DSKL Minidisk (user files)
cuu DSKM Minidisk (user files)
cuu DSKN Ivlinidisk (user files)
cuu DSKO Minidisk (user files)
cuu DSKP Minidisk (user files)
cuu DSKQ Minidisk (user files)
cuu DSKR Minidisk (user files)
cuu DSKT Minidisk (user files)
cuu DSKU Minidisk (user files)
cuu DSKV Minidisk (user files)
cuu DSKW Minidisk (user files)
cuu DSKX Minidisk (user files)

2540,2501,3505 OOC RDRI Virtual reader

2540,3525 OOD PCHI Virtual punch

1403, 1443, 3203, OOE PRNI Line printer
3211, 3262, 3800,
4245, 3289-4

2401, 2402, 2403, 181-4 TAPI-TAP4 Tape drives
2415, 2420, 3410,
3411, 3420, 3430,
8809

Figure 34 (Part 2 of 2). Devices Supported by a eMS Virtual Machine

Structure of eMS Storage

IThe device addresses shown are those that are preassembled into the CMS resi­
dent device table. These need only be modified and a new device table made resi­
dent to change the addresses.

2The virtual address of the system console may be any valid multiplexer address.

3191 is the def aul t user-accessed A-disk unless it is dynamically changed by an
ACCESS at CMS initial program load (IPL).

Figure 35 , Figure 36 , and Figure 37 describe how CMS uses its virtual storage.
The pointers indicated (MAINSTRT, MAINHIGH, and FREELOWE) are all
found in NUCON (the nucleus constant area).

Functional Information 317

The sections of eMS storage have the following uses:

I ·

I ·

•

I ·

318 VM/SP System Programmer's Guide

DMSNUC (X'OOOOO' to X'05000'). This area contains pointers, flags, and oth­
er data updated by the various system routines.

Low-Storage DMSFREE User Free Storage Area (X'05000' to X'OEOOO'). This
area is a free storage area, from which user requests to DMSFREE are allo­
cated.

Transient Program Area (X'OEOOO' to X'J 0000 '). Since it is not essential to
keep all nucleus functions resident in storage all the time, some of them are
made "transient". This means that when they are needed, they are loaded
from the disk into the transient program area. Such programs may not be
longer than two pages, because that is the size of the transient area. (A page is
4096 bytes of virtual storage.) All transient routines must be serially reusable
since they are not read in each time they are needed.

Low-Storage DMSFREE Nucleus Free Storage Area (X'JOOOO' to X'20000').
This area is a free storage area from which nucleus requests to DMSFREE are
allocated. The top part of this area contains the dummy hyperblocks for the
"S" and "Y" disk with each block 48 bytes long. This area may be followed
by the file status tables for the "S2" filemode files of the system disk and/or
the "Y2" filemode files of the system disk extension. Note that if the system
disk is formatted as 512, 1K, 2K, or 4K blocks, each FST is 64 bytes (X'40')
long, and holds approximately 318 FSTs. If the system disk is formatted for
800 byte blocks, each FST is 40 bytes (X'28 ') long and holds approximately
509 FSTs. If there is enough room, the FREET AB table also occupies this
area, just below the file status tables, if they are there. Each entry in the
FREETAB table is one byte long and each byte represents one page (4K or
4096 bytes) of defined storage.

User Program Area (X'20000' to Loader Tables or CMS Nucleus, whichever has
the lower value). User programs are loaded into this area by the LOAD com­
mand. Storage allocated by means of the GETMAIN macro instruction is tak­
en from this area, starting from the high address of the user program. In
addition, this storage area can be allocated from the top down by DMSFREE,
if there is not enough storage available in the low DMSFREE storage area.
Thus, the usable size of the user program area is reduced by the amount of free
storage that has been allocated from it by DMSFREE.

Loader Tables (top pages of storage). The top of storage is occupied by the
loader tables, which are required by the eMS loader. These tables indicate
which modules are currently loaded in the user program area (and the transient
program area after a LOAD command). The size of the loader tables can be
varied by the SET LDRTBLS command. However, to successfully change the
size of the loader tables, the SET LDRTBLS command must be issued imme­
diately after IPL.

CMS Nucleus (suggested location: X'700000' to 'X'MB). Segments 29, 30 and
31 of storage contain the reentrant code for the eMS Nucleus routines, shared
copies of the system S-ST A T and Y -STAT, and the S-disk and Y -disk FST
tables. If there is not sufficient room to contain these tables in this area, they
are placed in low-storage DMSFREE Nucleus free storage area. In shared
eMS systems, these are the "protected segments," which must consist only of
reentrant code, and may not be modified under any circumstances.

If the size of the user's virtual machine is defined below the end of the CMS nucle­
us (refer to label NUCSIGMA in Figure 35 CMS Storage Map 1), it is not possible
to IPL by device name. This is because the CMS nucleus is too large to be loaded
into the user's virtual storage. Therefore, the user can only IPL by system name (e.
g. IPL CMS). The loader table is placed immediately below the CMS nucleus.

On the other hand, if the size of the user's virtual machine is defined above the
ending location of the CMS nucleus (refer to Figure 36 CMS Storage Map 2 and
Figure 37 CMS Storage Map 3), the user may IPL by either device name or system
name.

IPLing by device name:

The Sand Y-STAT, and the loader table are placed above the CMS nucleus.
If there isn't enough room to contain the Sand Y -STAT, they are placed in low
storage. Likewise, if there is insufficient room for the loader table above the
CMS nucleus (NUCSIGMA), it is placed below the nucleus. Any leftover free
space above the nucleus is placed on the high DMSFREE chain.

IPLing by system name:

The shared copy of the Sand Y -STAT and nucleus is used. The loader table is
placed above the Sand Y -STAT (NUCOMEGA) if there is sufficient room. If
there is insufficient room to place the loader table above the Sand Y-STAT, it
is placed below the nucleus. Any leftover free space above the Sand Y -STAT
(NUCOMEGA) is placed on the high DMSFREE chain.

Functional Information 319

'X'MB
NUCOMEGA

NUCSIGM/\

'X'MB­
X'70000'
NUCALPHA

VIRTUAL STORAGE

I
S-STAT and Y-STAT

(Shared)

CMS Nucleus
(Shared)

OS Simulation, EXEC, EXEC 2, REXX, XEDIT, CMS
interrupt handlers, file system, free storage
management, loader, device I/O, debug.

Storage Key ~ X'F' or X'O'

END OF STORAGE
VMSIZE

System Loader Table
(Size determined by set LDRTBLS command)

Storage Key ~ X'F'

DMSFREE requests when no more low storage is available

FREELOWE
Storage Key ~ X'E' or X'F' --------------

Unused portion of User Program Area
!:~

MAINHIGH
Storage Key ~ X'E' - ----------- ---

GETMAIN requests

Storage Key ~ X'E'
MAINSTRT - - - - - - - - - - - - - -

X'20000'

I X'10000'

X'EOOO'

I X'5000'

X'O'

The User's Program
(Program is located via the LOAD command)

Storage Key ~ X'E'

Low Storage DMSFREE Nucleus Free Storage
Area. The upper part of this area may contain the
S-STAT and/or the Y-STAT, followed by the
FREETAB, if there is enough room.

Storage Key ~ X'F'

Transient Program Area

Storage Key ~ X'E'

Low Storage DMSFREE User Free Storage Area

Storage Key ~ X'E'

DMSNUC

System Control Blocks, flags constants, and pointers

Storage Key ~ X'F' *

* The page starting at X'4000' containing OPSECT, SUBSECT,
DBGSECT, DMSERL, TSOBLKS, USERSECT, and free
storage has a Storage Key ~ X'E'.

User
Program
Area

CONTROL BLOCKS IN FREE STORAGE

DECB II LDRST II AFT II ADT

I CMSSAVE II CMSCB II FSTB I

Figure 35. eMS Storage Map 1. CMS virtual storage usage when the CMS nucleus is larger than the user's virtual storage. In this case, you must
IPL by system name (VMSIZE is less than NUCSIGMA).

Note: MAINHIGH is extended upward and FREEL OWE is extended downward.

·320 VM/SP System Programmer's Guide

VM SIZE
'X'MB
NUCOMEGA

NUCSIGMA

'X'MB­
X'70000'
NUCALPHA

FREELOWE

MAINHIGH

..

"'"

VIRTUAL STORAGE
I

S-STAT and V-STAT
(Shared - if IPL'd by system name)

I
CMS Nucleus

(Shared - if IPL'd by system name)

as simulation, EXEC, EXEC 2, REXX, XEDIT, CMS ... "
interrupt handlers, file system, free storage
management, loader, device I/O, debug.

Storage Key = X'F' or X'O'

System Loader Table
(Size determined by set LDRTBLS command)

Storage Key = X'F'

DMSFREE requests when no more low storage is available

Storage Key = X'E' or X'F'

.. ~
Storage Key = X'E'

[--::~~~:~~~:::--~
- -------------------

GETMAIN requests

Storage Key = X'E'
MAINSTRT ~ - - - - - - - - -- - - - - - - - - --

X'20000'

X'10000'

X'EOOO'

I X'5000'

X'O'

The User's Program
(Program is located via the LOAD command)

Storage Key = X'E'

Low Stor<~ge DMSFREE Nucleus Free Storage
Area. The upper part of this area may contain the
S-STAT and/or the V-STAT, followed by the
FREETAB, if there is enough room.

Storage Key = X'F'

Transient Program Area

Storage Key = X'E'

Low Storage DMSFREE User Free Storage Area

Storage Key = X'E'

DMSNUC
System Control Blocks, flags, constants, and pointers

Storage Key = X'F' *

* The page starting at X'4000' containing OPSECT,
SUBSECT, DBGSECT, DMSERL, TSOBLKS,
USERSECT, and free storage has a Storage Key =
X·E'.

CONTROL BLOCKS IN FREE STORAGE
User
Program
Area DECB II LDRST II AFT II ADT

I CMSSAVE II CMSCB II FSTB I

Figure 36. eMS Storage Map 2. Virtual storage usage when the user's virtual storage is larger than the eMS nucleus. The user may IPL by sys­
tem name or device. In addition, this figure shows the case where there is insufficient room to place the loader table above S-STAT and
Y-STAT.

Note: MAINHIGH is extended upward and FREELOWE is extended downward.

Functional Information 321

VM SIZE

'X'MB
NUCOMEGA

NUCSIGMA

'X'MB­
X'70000'
NUCALPHA

FREELOWE

MAINHIGH

MAINSTRT

X'20000'

X'10000'

X'EOOO'

I ?<'SOOO'

X'O'

VIRTUAL STORAGE

System Loader Table
(Size determined by set LDRTBLS command)

______________ ~~0~~!~
DMSFREE request\

Storage Key = X'E' or X'F'

I
S-STATand V-STAT

(Shared - if IPL'd by system name)

I
CMS Nucleus

(Shared - if IPL'd by system name)

OS simulation, EXEC, EXEC 2, REXX, XEDIT CMS
interrupt handlers, file system, free storage
management, loader, device I/O, debug.

Storage Key = X'F' or X'O'

DMSFREE requests when no more low storage is available

Storage Key = X'E' or X'F' -----------------
Unused portion of User Program Area

Storage Key = X'E' - - - - - - - - - - - - - - --
GETMAIN requests

_____________ ~to~ag..:. K...:y.: X':'E:"

The User's Program
(Program is located via the LOAD command)

Storage Key = X'E'

Low Storage DMSFREE Nucleus Free Storage
Area. The upper part of this area may contain the
S-STAT and/or the V-STAT, followed by the
FREETAB, if there is enough room.

Storage Key = X'F'

Transient Program Area

Storage Key = X'E'

Low Storage DMSFREE User Free Storage Area

Storage Key = X'E'

DMSNUC
System Control Blocks, flags, constants, and pointers

Storage Key = X'F' *

* The page starting at X'4000' containing OPSECT,
SUBSECT, DBGSECT, DMSERL, TSOBLKS,
USERSECT, and free storage has a Storage Key =
X'E'.

User
Program
Area

CONTROL BLOCKS IN

DECB II LDRST II
!CMSSAVE I

!
CMSCB II

FREE STORAGE

AFT II ADT

FSTB I

Figure 37. eMS Storage Map 3. CMS Virtual storage usage when the user's virtual storage is larger than the CMS nucleus. The user may IPL by
system name or device. In addition, this figure shows the case where there is sufficient room to place the loader table above S-ST A T
and Y-STAT.

Note: MAINHIGH is extended upward and FREELOWE is extended downward.

322 VM/SP System Programmer's Guide

Free Storage Management

Free storage can be allocated by issuing the GETMAIN or DMSFREE macros.
Storage allocated by the GETMAIN macro is taken from the user program area,
beginning after the high address of the user program.

Storage allocated by the DMSFREE macro can be taken from several areas.

If possible, DMSFREE requests are allocated from the low address free storage
area. Otherwise, DMSFREE requests are satisfied from the storage above the user
program area.

There are two types of DMSFREE requests for free storage: requests for USER
storage and NUCLEUS storage. Because these two types of storage are kept in
separate 4K pages, it is possible for storage of one type to be available in low stor­
age, while no storage of the other type is available.

GETMAIN Free Storage Management

All GETMAIN storage is allocated in the user program area, starting after the end
of the user's actual program. Allocation begins at the location pointed to by the
NUCON pointer MAINSTRT. The location MAINHIGH in NUCON is the "high
extend" pointer for GETMAIN storage.

The STRINIT function initializes pointers used by CMS for simulation of OS
GETMAIN/FREEMAIN storage management. In the usual CMS environment,
that is, when execution is initiated by the LOAD and START commands, CMS
calls the STRINIT macro as part of the LOAD preparation for execution. In an OS
environment established by CMS, such as OSRUN, the STRINIT function has
been performed by CMS and should not be done by the user program. In any case,
the STRINIT macro should be issued only once in the OS environment, preceding
the initial GETMAIN request. The format of the STRINIT macro is:

[label]

where:

TYPCALL= [SVC J
BALR.

STRINIT

indicates how control is passed to DMSSTG, the routine that processes the
STRINIT macro. Since DMSSTG is a nucleus-resident routine, other
nucleus-resident routines can branch directly to it (TYPCALL=BALR) while
routines that are not nucleus-resident must use linkage SVC
(TYPCALL=SVC). If no operands are specified, the default is
TYPECALL=SVC.

When the STRINIT macro is executed, both MAINSTRT and MAINHIGH are ini­
tialized to the end of the user's program, in the user program area. The end of the
user's program is the upper boundary of the load module created by the CMS
LOAD and INCLUDE commands. This upper boundary value is stored in the
NUCON field LOCCNT. When execution of the user's program is started and the

Functional Infonnation 323

and MAINHIGH. During execution of the user's program the LOCCNT field is
used within CMS to pass starting and ending addresses of files loaded by OS simu­
lation (see Notes below). As storage is allocated from the user program area to sat­
isfy GETMAIN requests, the MAINHIGH pointer is adjusted upward. Such
adjustments are always in multiples of doublewords, so that this pointer is always
on a doubleheader boundary. As the allocated storage is returned, the
MAINHIGH pointer is adjusted downward.

The pointer MAINHIGH can never be higher than FREELOWE, the "low extend"
pointer for DMSFREE storage allocated in the user program area. If a GETMAIN
request cannot be satisfied without extending MAINHIGH above FREELOWE,
then GETMAIN takes an error exit, indicating that insufficient storage is available
to satisfy the request.

The area between MAINSTRT and MAINHIGH may contain blocks of storage
that are not allocated and that are, therefore, available for allocation by a
GETMAIN instruction. These blocks are chained together, with the first one
pointed to by the NUCON location MAINLIST. Refer to Figure 35, Figure 36 ,
and Figure 37 for a description of CMS virtual storage usage.

Notes:

1. Reissuing the STRINIT macro during execution of an OS program, or issuing
the STRINIT macro without having done a CMS LOAD is not advised because
the value in LOCCNT will not have been appropriately set, possibly causing a
subsequent storage management failure.

2. A high level language may issue a STRINIT. In this case, a user should not
issue an additional STRINIT.

The format of an element on the GETMAIN free element chain is as follows:
I I I

FREPTR -- pointer to next free
0(0) element in the chain, or 0

if there is no next element
---------I 1 1------------

FRELEN -- length, in bytes, of
4(4) this element

----------I 1--------- ----------
Remainder of this free elem2nt

When CMS issues the GETMAIN macro instruction for a variable amount of stor­
age, the following formula determines the amount of storage obtained:

Amount of storage = 6 pages + 1 additional page for each 256K bytes obtained in
excess of 512K bytes.

DMSFREE Free Storage Management

The DMSFREE macro allocates CMS free storage. The format of the DMSFREE
macro is:

324 VM/SP System Programmer's Guide

[label] DMSFREE DWORDS= ~ n ~ [, MIN= ~(~)f]
(0)

[, TYPE=[~US~LREUS]] [, ERR= [la~dr]]

[,AREA=[~~~H]] [,TYPCALL=[i:{R]]

where:

label
is any valid assembler language label.

DWORDS= ~ n l
1(O)~

is the number of doublewords of free storage requested. DWORDS=n
specifies the number of doublewords directly and DWORDS=(O) indicates
that register 0 contains the number of doublewords requested. Do not
specify any register other than register O.

CMS returns, in register 0, the number of doublewords allocated and, in
register 1, the address of the first byte of allocated storage.

MIN= 5 n t
l(1 H

indicates a variable request for free storage. If the exact number of
doublewords indicated by DWORDS operand is not available, then the
largest block of storage that is greater than or equal to the minimum is
requested. MIN =n specifies the minimum number of doublewords of free
storage directly while MIN = (1) indicates that the minimum is in register 1.
Do not specify any register other than register 1.

TYPE=[USER]
NUCLEUS

indicates the type of CMS storage with which this request for free storage
is filled: USER or NUCLEUS.

ERR=[la~drJ

is the return address if any error occurs. "laddr" is any address that can be
referred to in an LA (load address) instruction. The error return is taken if
there is a macro coding error or if there is no enough free storage available
to fill the request. If the asterisk (*) is specified for the return address, the
error return is the same as a normal return. There is no default for this
operand. If it is omitted and an error occurs, the system abends.

AREA=[LOW]
HIGH

indicates the area of CMS free storage from which this request for free
storage is filled. LOW indicates any free storage below the user areas,

Functional Information 325

depending on the storage requested. HIGH indicates DMSFREE storage
above the user area. If AREA is not specified, storage is allocated wherev­
er it is available.

TYPCALL=[SVC]
BALR

indicates how control is passed to DMSFREE. Because DMSFREE is a
nucleus-resident routine, other nucleus-resident routines can branch direct­
ly to it (TYPCALL=BALR) while routines that are not nucleus-resident
must use linkage SVC (TYPCALL=SVC).

The FREELOWE pointer in NUCON indicates the amount of storage that
DMSFREE has allocated from the high portion of the user program area. These
pointers are initialized to the beginning of the loader tables.

The pointer FREEL OWE is the "low extend" pointer of DMSFREE storage in the
user program area. As storage is allocated from the user program area to satisfy
DMSFREE requests, this pointer is adjusted downward. Such adjustments are
always in mUltiples of 4K bytes, so that this pointer is always on a 4K boundary.
As the allocated storage is returned, this pointer is adjusted upward and the freed
pages are released by issuing a DIAGNOSE X'10' to CPo

The pointer FREEL 0 WE can never be lower than MAINHIGH, the "high extend"
pointer for GETMAIN storage. If a DMSFREE request cannot be satisfied with­
out extending FREELOWE below MAINHIGH, then DMSFREE takes an error
exit, indicating that storage is insufficient to satisfy the request. Figure 35 on page
320 ,Figure 36 on page 321, and Figure 37 on page 322 show the relationship of
these storage areas.

The FREET AB free storage table is usually kept in nucleus low FREE storage.
However, the FREETAB may be located at the top of the user program area. This
table contains a code indicating the use of that page of virtual storage. The codes
in this table are as follows:

USERCODE (X'Ol ') The page is assigned to user storage.

NUCCODE (X'02') The page is assigned to nucleus storage.

TRNCODE (X'03') The page is part of the transient program area.

USARCODE (X'04') The page is an unassigned page in the user program area.

SYSCODE (X'05') The page is none of the above. The page is assigned to sys­
tem storage, system code, or the loader tables.

Other DMSFREE storage pointers are maintained in the DMSFRT CSECT, in
NUCON. The four chain header blocks are the most important fields in DMSFRT.
The four chains of unallocated elements are:

326 VM/SP System Programmer's Guide

The low storage nucleus chain
The low storage user chain
The high storage nucleus chain
The high storage user chain

For each of these chains of unallocated elements, there is a control block consisting
of four words, with the following format:

I I I
POINTER -- pointer to the first

0(0) free element in the chain, or
zero, if the chain is empty.

----------I 1 1-----------
NUM -- the number of elements on

4(4) the chain.

8(8)

12(C)

where:

--------I 1 1---------
MAX -- a value equal to or

greater than the size of the
largest element.

----------I 1 1---------
FLAGS
Flag
byte

-I SKEY - ITCODE- 1 Unused
IStorage /FREETAB/
/ key I code /

1--___ -11 1 1 ____ ---'

POINTER points to the first element on this chain of free elements. If there are no
elements on this free chain, then the POINTER field contains all zeros.

NUM

MAX

contains the number of elements on this chain of free elements. If there
are no elements on this free chain, then this field contains all zeros.

is used to avoid searches that will fail. It contains a number not exceed­
ing the size, in bytes, of the largest element on the free chain. Thus, a
search for an element of a given size is not made if that size exceeds the
MAX field. However, this number may actually be larger than the size
of the largest free element on the chain.

FLAGS The following flags are used:

SKEY

FLCLN (X'80') -- Clean-up flag. This flag is set if the chain must be
updated. This is necessary in the following circumstances:

If one of he two high storage chains contains a 4K page to which
FREELOWE points, then that page can be removed from the
chain, and FREEL OWE can be increased.

• All completely unallocated 4K pages are kept on the user chain, by
convention. Thus, if one of the nucleus chains (low storage or high
storage) contains a full page, then this page must be transferred to
the corresponding user chain.

FLCLB (X'40') -- Destroyed flag. Set if the chain has been destroyed.

FLHC (X'20') -- High storage chain. Set for both the nucleus and user
high storage chains.

FLUN (X' 1 0') -- Nucleus chain. Set for both the low storage and high
storage chains.

FLPA (X'08') -- Page available. This flag is set if there is a fu1l4K
page available on the chain. This flag may be set even if there is no
such page available.

contains the one-byte storage key assigned to storage on this chain.

Functional Information 327

Allocating User Free Storage

Allocating Nucleus Free Storage

Releasing Storage

TCODE contains the one-byte FREET AB table code for storage on this chain.

When DMSFREE with TYPE=USER (the default) is called, one or more of the
following steps are taken in an attempt to satisfy the request. As soon as one of
the following steps succeeds, then the user free storage allocation processing termi­
nates.

1. Search the low storage chain for a block of the required size.

2. Search the high storage user chain for a block of the required size.

3. Extend high storage user storage downward into the user program area, modi­
fying FREELOWE in the process.

4. For variable request, put all available storage in the user program area into the
high storage user chain, and then allocate the largest block available on either
the high storage user chain or the low storage user chain. The allocated block
is not satisfactory unless it is larger than the minimum requested size.

When DMSFREE with TYPE=NUCLEUS is called, the following steps are taken
in an attempt to satisfy the request, until one succeeds:

1. Search the low storage nucleus chain for a block of the required size.

2. Search the high storage nucleus chain for a block of the required size.

3. Get free pages from the high storage user chain, if they are available, and put
them on the high storage nucleus chain.

4. Extend high storage nucleus downward into the User Program Area, modifying
FREELOWE in the process.

5. For variable requests, put all available pages from the user chain and the user
program area onto the high storage nucleus chain, and allocate the largest
block available on either the low storage nucleus chain, or the high storage
nucleus chain.

The DMSFRET macro releases free storage previously allocated with the
DMSFREE macro. The format of the DMSFRET macro is:

[label] DMSFRET DWORDS=~ n ~ ,LOC=~laddr~
, (0) (1) ,

[, ERRta~dr]] [- TYPCALL=] ~~~R]]

where:

label
is any valid assembler language label.

328 VM/SP System Programmer's Guide

Releasing Allocated Storage

DWORDS= ~ n t
((0) \

is the number of doublewords of storage to be released. DWORDS=n
specifies the number of doublewords directly and DWORDS=(O) indicates
that register 0 contains the number of doublewords being released. Do not
specify any register other than register O.

LOC=~laddrt
1 (1) \

is the address of the block of storage being released. "laddr" is any
address that can be referred to in an LA (load address) instruction.
LOC=laddr specifies the address directly while LOC= (1) indicates the
address is in register 1. Do not specify any register other than register 1.

ERR= [la~dr]

is the return address if any error occurs. "laddr" is any address that can be
referred to in an LA (load address) instruction. The error return is taken if
there is a macro coding error or if there is not enough free storage available
to fill the request. If the asterisk (*) is specified for the return address, the
error return is the same as a normal return. There is no default for this
operand. If it is omitted and an error occurs, the system abends.

TYPCALL= [SVC]
BALR

indicates how control is passed to DMSFRET. Since DMSFRET is a
nucleus-resident routine, other nucleus-resident routines can branch direct­
ly to it (TYPCALL=BALR), while routines that are not nucleus-resident
must use SVC linkage (TYPCALL=SVC).

When DMSFRET is called, the block being released is placed on the appropriate
chain. At that point, the final update operation is performed, if necessary, to
advance FREELOWE, or to move pages from the nucleus chain to the correspond­
ing user chain.

Similar update operations are performed, when necessary, after calls to
DMSFREE, as well.

Storage allocated by the GETMAIN macro instruction may be released in either of
the following ways:

1. A specific block of such storage may be released by means of the FREEMAIN
macro instruction.

2. Whenever any user routine or CMS command abends (so that the routine
DMSABN is entered), and the ABEND recovery facility of the system is
invoked, all GETMAIN storage pointers are reset.

Functional Information 329

DMSFRE Service Routines

Storage allocated by the DMSFREE macro instruction may be released in either of
the following ways:

1. A specific block of such storage may be released by means of the DMSFRET
macro instruction.

2. Whenever any user routine or CMS command abnormally terminates (so that
the routine DMSABN is entered), and the abend recovery facility of the system
is invoked, all DMSFREE storage with TYPE= USER is released
automatically.

Except in the case of abend recovery, storage allocated by the DMSFREE macro is
never released automatically by the system. Thus, storage allocated by means of
this macro instruction should always be released explicitly by means of the
DMSFRET macro instruction.

The DMSFRES macro instruction is used by the system to request certain free
storage management services.

The format of the DMSFRES macro is:

[label]

where:

label

INIT1

DMSFRES INIT1
INIT2 [, TYPCALL= [~~~R]]
CHECK
CKON
CKOFF
UREC
CALOC

is any valid Assembler language label.

invokes the first free storage initialization routines, so that free storage
requests can be made to access the system disk. Before INIT1 is
invoked, no free storage requests may be made. After INIT1 has been
invoked, free storage requests may be made, but these are subject to
the following restraints until the second free storage management
initialization routine has been invoked:

All requests for USER type storage are changed to requests for
NUCLEUS type storage.

• Error checking is limited before initialization is complete. In par­
ticular, it is sometimes possible to release a block that was never
allocated.

All requests that are satisfied in high storage must be of a tempo­
rary nature, since all storage allocated in high storage is released
when the second free storage initialization routine is invoked.

When CP's saved system facility is used, the CMS system is saved at
the point just after the A-disk has been made accessible. It is neces­
sary for DMSFRE to be used before the size of virtual storage is
known, since the saved system can be used on any size virtual

330 VM/SP System Programmer's Guide

INIT2

CHECK

CKON

CKOFF

UREC

CALOC

machine. Thus, the first initialization routine initializes DMSFRE so
that limited functions can be requested, while the second initialization
routine performs the initialization necessary to allow the full functions
of DMSFRE to be exercised.

invokes the second initialization routine. This routine is invoked after
the size of virtual storage is known, and it performs initialization nec­
essary to allow all the functions of DMSFRE to be used. The second
initialization routine performs the following steps:

Releases all storage that has been allocated in the high storage
area.

Allocates the FREET AB free storage table. This table contains
one byte for each 4K page of virtual storage, and so cannot be
allocated until the size of virtual storage is known.

The FREET AB table is initialized, and all storage protection keys
are initialized.

invokes a routine that checks all free storage pointer chains for con­
sistency and correctness. Thus, it checks to see whether or not any
free storage pointers have been destroyed. The option can be used at
any time for system debugging.

turns on a flag that causes the CHECK routine to be invoked each
time a call is made to DMSFREE or DMSFRET. This can be useful
for debugging purposes (for example, when you wish to identify the
routine that destroyed free storage management pointers). Care
should be taken when using this option, since the CHECK routine is
coded to be thorough rather than efficient. Thus, after the CKON
option has been invoked, each call to DMSFREE or DMSFRET will
take much longer to be completed than before.

turns off the flag that was turned on by the CKON option.

is used by DMSABN during the abend recovery process to release all
user storage.

is used by DMSABN after the abend recovery process has been com­
pleted. It invokes a routine which returns, in register 0, the number of
doublewords of free storage that have been allocated. This number is
used by DMSABN to determine whether or not the abend recovery
has been successful.

TYPCALL= [SVC]
BALR

indicates how control is passed to DMSFRES. Since DMSFRES is a
nucleus-resident routine, other nucleus-resident routines can branch
directly to it (TYPCALL=BALR), while routines that are not
nucleus-resident must use SVC linkage (TYPCALL=SVC).

Functional Information 331

Error Codes from DMSFREE, DMSFRES, and DMSFRET

A nonzero return code upon return from DMSFREE, DMSFRES, or DMSFRET
indicates that the request could not be satisfied. Register 15 contains this return
code, indicating which error occurred. The following codes apply to the
DMSFREE, DMSFRES, and DMSFRET macros.

Code Error

1 (DMSFREE) Insufficient storage space is available to satisfy the request
for free storage. In the case of a variable request, even the minimum
request could not be satisfied.

2 (DMSFREE or DMSFRET) User storage pointers destroyed.

3 (DMSFREE, DMSFRET, or DMSFRES) Nucleus storage pointers
destroyed.

4 (DMSFREE) An invalid size was requested. This error is taken if the
requested size is not greater than zero. In the case of variable requests, this
error exit is taken if the minimum request is greater than the maximum
request. (However, the latter error is not detected if DMSFREE is able to
satisfy the maximum request.)

5 (DMSFRET) An invalid size was passed to the DMSFRET macro. This
error exit is taken if the specified length is not positive.

6 (DMSFRET) The block of storage that is being released was never allo­
cated by DMSFREE. Such an error is detected if one of the following
errors is found:

The block does not lie entirely inside either the low storage free storage
area or the user program area between FREELOWE and FREEUPPR.

The block crosses a page boundary that separates a page allocated for
USER storage from a page allocated for NUCLEUS type storage.

The block overlaps another block already on the free storage chain.

7 (DMSFRET) The address given for the block being released is not
doubleword aligned.

8 (DMSFRES) An invalid request code was passed to the DMSFRES routine.
Since all request codes are generated by the DMSFRES macro, this error
code should never appear.

9 (DMSFREE, DMSFRET, or DMSFRES) Unexpected and unexplained
error in the free storage management routine.

eMS Handling of PSW Keys

The CMS nucleus protection scheme protects the CMS nucleus from inadvertent
destruction by a user program. This mechanism, however, does not prevent you
from writing in system storage intentionally. Because you can execute privileged
instructions, you can issue a LOAD PSW (LPSW) instruction and load any PSW
key you wish. If this occurs, there is nothing to prevent your program from:

332 VM/SP System Programmer's Guide

I The DMSKEY Macro

Modifying nucleus code
Modifying a table or constant area
Losing files by modifying a CMS file directory

In general, user programs and disk-resident CMS commands are executed with a
PSW key of X'E', while nucleus code is executed with a PSW key of X'D'.

There are, however, some exceptions to this rule. Certain disk-resident CMS
commands run with a PSW key of X'D', since they have a constant need to modify
nucleus pointers and storage. The nucleus routines called by the GET, PUT,
READ, and WRITE macros run with a user PSW key of X'E', to increase efficien­
cy.

Two macros, DMSKEY and DMSEXS, are available to any routine that wishes to
change its PSW key for some special purpose.

The DMSKEY macro may be used to change the PSW key to the user value or the
nucleus value. The format of the DMSKEY macro is:

[label]

where:

NUCLEUS

USER

LASTUSER

NOSTACK

RESET

DMSKEY [NUCLEUS [,NOSTACK] I
USER [, NOSTACK] I
LASTUSER[,NOSTACK] I
RESET}

causes the nucleus storage protection key to be placed in the
PSW, and the old contents of the second byte of the PSW are
saved in a stack. This option allows the program to store into
system storage, which is ordinarily protected.

causes the user storage protection key to be placed in the
PSW, and the old contents of the second byte of the PSW are
saved in a stack. This option prevents the program from inad­
vertently modifying nucleus storage, which is protected.

The SVC handler traces back through its system save areas for
the active user routine closest to the top of the stack. The
storage key in effect for that routine is placed in the PSW.
The old contents of the second byte of the PSW are saved in a
stack. This option should be used only by system routines that
should enter a user exit routine. (aS macro simulation rou­
tines use this option when they want to enter a user-supplied
exit routine. The exit routine is entered with the PSW key of
the last user routine on the SVC system save area stack.)

This option may be used with any of the above options to pre­
vent the system from saving the second byte of the current
PSW in a stack. If this is done, then no DMSKEY RESET
need be issued later.

The second byte of the PSW is changed to the value at the top
of the DMSKEY stack, and removed from the stack. Thus, the
effect of the last DMSKEY NUCLEUS, DMSKEY USER, or
DMSKEY LASTUSER request is reversed. However, if the

Functional Information 333

I The DMSEXS Macro

CMS SVC Handling

NOST ACK option was specified on the DMSKEY macro, the
RESET option should not be used. A DMSKEY RESET mac­
ro must be executed for each DMSKEY NUCLEUS,
DMSKEY USER, or DMSKEY LASTUSER macro that was
executed and that did not specify the NOST ACK option.
Failure to observe this rule results in program abnormal termi­
nation. CMS requires that the DMSKEY stack be empty when
a routine terminates.

Note: The DMSKEY key stack has a current maximum depth of seven for each
routine. In this context, a "routine" is anything invoked by an SVC call.

The DMSEXS, "execute in system mode", macro allows a routine executed with a
user PSW key, to execute a single instruction with a nucleus PSW key. The single
instruction may be specified as the argument to the DMSEXS macro, and that
instruction is executed with a nucleus PSW key. This macro can be used instead of
two DMSKEY macros. The format of the DMSEXS macro is:

I [label] I DMSEXS lop-code, operands

The op-code and the operands of the Basic Assembler Language instruction to be
executed must be given as arguments to the DMSEXS macro.

For example, execution of the sequence,

USING NUCON,O
DMSEXS OI,OSSFLAGS,COMPSWT

causes the 01 instruction to be executed with a zero protect key in the PSW. This
sequence turns on the COMPSWT flag in the nucleus. It is reset with

DMSEXS NI,OSSFLAGS,255-COMPSWT

The instruction to be executed may be an EX instruction.

Note: Programs that modify or manipulate bits in CMS control blocks, however,
may hinder the operation of CMS, causing it to function ineffectively.

Register 1 cannot be used in any way in the instruction being executed.

Whenever possible, CMS commands are executed with a user protect key. This
protects the CMS nucleus in cases where there is an error in the system command
that would otherwise destroy the nucleus. If the command must execute a single
instruction or small group of instructions that modify nucleus storage, then the
DMSKEY or DMSEXS macros are used, so that the system PSW key is used for as
short a period of time as is possible.

DMSITS (INTSVC) is the CMS system SVC handling routine. The general opera­
tion of DMSITS is as follows:

1. The SVC new PSW (low storage location X'60') contains, in the address field,
the address of DMSITS 1. The DMSITS module is entered whenever a supervi­
sor call is executed.

334 VM/SP System Programmer's Guide

2. DMSITS allocates a system and user save area. The user save area is used as a
register save area (or work area) by the called routine.

3. The called routine is called (via a LPSW or BALR).

4. Upon return from the called routine, the save areas are released.

5. Control is returned to the caller (the routine that originally made the SVC
call).

SVC Types and Linkage Conventions

SVC 202

SVC conventions are important to any discussion of CMS because the system is
driven by SVCs (supervisor calls). SVCs 202 and 203 are the most common CMS
SVCs.

SVC 202 is used for calling nucleus-resident routines, and for calling routines writ­
ten as commands (for example, disk resident modules). SVC 202 can also be used
for calling nucleus extensions.

A typical coding sequence for an SVC 202 call is the following:

LA R1, PLIST
SVC 202
DC AL4(ERRADD)

The "DC AL4(address)" instruction following the SVC 202 is optional, and may
be omitted if the programmer does not expect any errors to occur in the routine or
command being called. If included, an error return is made to the address specified
in the DC unless the address is equal to 1. If the address is 1, return is made to the
next instruction after the "DC AL4(1)" instruction. DMSITS determines whether
this DC was inserted by examining the next byte following the SVC call. A nonze­
ro byte indicates an instruction, a zero value indicates that "DC AL4(address)" or
"DC AL4(1)" follows.

If you want to ignore errors, you can use the following sequence:

LA R1,PLIST
SVC 202
DC AL4(1)

Whenc ver an SVC 202 is issued, the contents of general purpose register 0 and 1
(GPR0 and GPRl) are passed intact to the called routine. GPR1 must point to an
eight-character string, which may be the start of a tokenized plist. This character
string must contain the symbolic name of the routine or command being called.
The SVC handler only examines the name and the high-order byte of GPRl. The
called routine decides whether to use the extended PLIST or the tokenized PLIST
by examining the high-order byte of GPR1.

Note: Although an extended PLIST is provided, the called routine might not be set
up to use the extended PLIST.

The following values may be found in the high-order byte of register 1:

Functional Information 335'

Value

X'OO'

X'Ol'

X'02'

X'05'

X'06'

X'OB'

X'OC'

X'OD'

X'OE'

X'FE'

X'FF'

Meaning
eMS supplied
extended PLIST
pointer in
register O?

The call did not originate from an EXEC file or a command No
typed at the terminal.

The call is from an EXEC 2 exec or the System Product Yes
Interpreter when "ADDRESS COMMAND" is specified.

See "Dynamic Linkage/SUBCOM" in this manual. Yes

Used by the System Product Interpreter for external function Yes
calls.

The command was invoked as an immediate command. This Yes
setting should never occur with SVC 202.

The command was called as a result of its name being typed Yes
at the terminal, by the "CMDCALL" command to invoke
the command from EXEC 2, or from a System Product
Interpreter EXEC when "ADDRESS CMS" is specified.

The call is the result of a command invoked from an CMS No
EXEC file with "&CONTROL" set to something other than
"NOMSG" or "MSG".

The call is the result of a command invoked from an CMS No
EXEC file with "&CONTROL MSG" in effect (indicates
that messages are to be displayed at the terminal).

The call is the result of a command invoked from an CMS No
EXEC file with "&CONTROL NOMSG" in effect.

This is an end-of-command call from DMSINT (CMS con- No
sole command handler). See the NUCEXT function in the
VM/SP CMS Command and Macro Reference for further
details.

This is a service call from DMSABN (ABEND) or from No
NUCXDROP. See the NUCEXT function in the VM/SP
CMS Command and Macro Reference for details.

Tokenized PLIST: For a tokenized parameter list, the symbolic name of the func­
tion being called (8 character string, padded with blank characters on the right if
needed) is followed by extra arguments depending on the actual routine or com­
mand being called. These arguments must be "tokenized"; that is, every parenthe­
sis is considered an individual argument, and each argument may have a maximum
length of eight characters.

336 VM/SP System Programmer's Guide

Extended PLIST: For an extended parameter plist, no restriction is put on the
structure of the argument list passed to the called routine or command. Register 0
points to the following consecutive words:

(a) DC A (CMDBEG)
(b) DC A (ARGBEG)
(c) DC A(ARGEND)
(d) DC A(O)

where the first three addresses are defined as in the following example:

CMDBEG EQU *
DC C'testprog'

ARGBEG EQU *
DC C' (file 2)'

ARGEND EQU *
CMDBEG EQU *
ARGBEG EQU *
ARGEND EQU *

-indicates the beginning of the command name.
-indicates the beginning of the argument list.
-indicates the end of the argument list.

a. The first word is the beginning address of the command.

b. The second gives the beginning address of the argument list.

c. The third gives the address of the byte immediately following the end of
the argument list.

d. The fourth word may be used to pass any additional information required
by individual called programs. If not used to pass additional information,
this word should be zero so that programs which can receive optional
information via this word may detect that none is provided in this call.

Notes:

1. It is specifically allowed that these four words be moved to some location con­
venient for the command resolution routines, or convenient for some other
program executed between the caller's SVC 202 and entry to the program for
which the parameter list is intended. For this reason, the called program may
not assume additional words follow word 4, or that the storage address of these
4 words bears any relationship to other data addresses.

2. For function calls in the System Product Interpreter, two additional words are
available. See the VM / SP System Product Interpreter Reference, SC24-5239,
for more information on function calls and the two additional words.

SVC 203

SVC 203 is called by CMS macros to perform various internal system functions. It
is used to define SVC calls for which no parameter list is provided. For example,
DMSFREE parameters are passed in registers 0 and 1.

A typical calling sequence for an SVC 203 call is as follows:

SVC 203
DC H'code'

The halfword decimal code following the SVC 203 indicates the specific routine
being called. DMSITS examines this halfword code, taking the absolute value of

Functional Information 337

User-Handled SVCs

the code by an LPR instruction. The first byte of the result is ignored, and the sec­
ond byte of the resulting halfword is used as an index to a branch table. The
address of the correct routine is loaded, and control is transferred to it.

It is possible for the address in the SVC 203 index table to be zero. In this case,
the index entry contains an 8-byte routine or command name, which is handled in
the same way as the 8-byte name passed in the parameter list to an SVC 202.

The programmer indicates an error return by the sign of the half word code. If an
error return is desired, then the code is negative. If the code is positive, then no
error return is made. The sign of the halfword code has no effect on determining
the routine that is to be called, since DMSITS takes the absolute value of the code
to determine the routine called.

Since only the second byte of the absolute value of the code is examined by
DMSITS, seven bits (bits 1-7) are available as flags or for other uses. Thus, for
example, DMSFREE uses these seven bits to indicate such things as conditional
requests and variable requests.

When an SVC 203 is invoked, DMSITS stores the halfword code into the NUCON
location CODE203, so that the called routine can examine the seven bits made
available to it.

All calls made by means of SVC 203 should be made by macros, with the macro
expansion computing and specifying the correct halfword code.

The programmer may use the HNDSVC macro to specify the address of a routine
that will handle any SVC call other than for SVC 202 and SVC 203.

In this case, the linkage conventions are as required by the user-specified
SVC-handling routine:

OS and VSE Macro Simulation SVC Calls

CMS supports selected SVC calls generated by OS and VSE macros, by simulating
the effect of these macro calls. DMSITS is the initial SVC interrupt handler. If the
SET DOS command has been issued, a flag in NUCON indicates that VSE macro
simulation is to be used. Control is then passed to DMSDOS. Otherwise, OS mac­
ro simulation is assumed and DMSITS passes control to the appropriate OS simu­
lation routine.

Invalid SVC Calls

There are several types of invalid SVC calls recognized by DMSITS.

1. Invalid SVC number. If the SVC number does not fit into any of the four
classes described above, then it is not handled by DMSITS. An appropriate
error message is displayed at the terminal, and control is returned directly to
the caller.

2. Invalid routine name in SVC 202 parameter list. If the routine named in the
SVC 202 parameter list is invalid or cannot be found, DMSITS handles the sit­
uation in the same way as it handles an error return from a legitimate SVC rou­
tine. The error code is -3.

338 VM/SP System Programmer's Guide

3. Invalid SVC 203 code. If an invalid code follows SVC 203 inline, then an
error message is displayed, and the abend routine is called to terminate exe­
cution.

Search Hierarchy for SVC 202

When a p~ogram issues SVC 202, passing a routine or command name in the
parameter list, then DMSITS searches for the specified routine or command. (In
the case of SVC 203 with a zero in the table entry for the specified index, the same
logic must be applied.)

Figure 38 , Part 2, shows the search logic following and SVC 202 call.

The search algorithm is as follows:

1. A check is made to determine if the specified name is known dynamically to
CMS through the SUBCOM function.

2. A check is made to see if the specified name is a nucleus extension routine. If
this is the case, the control goes to the specified nucleus extension routine.

Note: This step is skipped if the high-order byte of register 1 contains X'03.' or
X'04'. X'03' indicates that an extended plist is provided. X'04' indicates that
a tokenized plist is provided. For both X'03' and X'04', values are translated
to X'01' and X'OO', respectively, by the SVC interrupt handler before the
called program is entered.

3. A check is made to see if there is a routine with the specified name currently
occupying the system transient area. If this is the case, then control is trans­
ferred there.

4. The system function name table is searched, to see if a command by this name
is a nucleus-resident command. If the search is successful, control goes to the
specified nucleus routine.

5. A search is then made for a disk file with the specified name as the filename,
and MODULE as the filetype. The search is made in the standard disk search
order. If this search is successful, then the specified module is loaded (via the
LOADMOD command), and control passes to the storage location now occu­
pied by the command.

6. If all searches so far have failed, then DMSINA (ABBREV) is called, to see if
the specified routine name is a valid system abbreviation for a system com­
mand or function. User-defined abbreviations and synonyms are also checked.
If this search is successful, then steps 2 through 5 are repeated with the full
function name.

7. If all searches fail, then an error code of -3 is issued.

Commands Entered from the Terminal

When a command is entered from the terminal, DMSINT processes the command
line, and calls the scan routine to convert it into a parameter list consisting of
eight-byte entries.

Functional Information 339

See Figure 38 for a description of this search for a command name. The following
search is performed:

1. DMSINT searches for a disk file whose filename is the command name, and
whose filetype is EXEC. If this search is successful, EXEC is invoked to proc­
ess the EXEC file.

If not found, the command name is considered to be an abbreviation and the
appropriate tables are examined. If found, the abbreviation is replaced by its
full equivalent and the search for an EXEC file is repeated.

2. If there is no EXEC file, DMSINT executes SVC 202, passing the scanned
parameter list, with the command name in the first eight bytes. DMSITS per­
forms the search described for SVC 202 in an effort to execute the command.

3. If DMSITS returns to DMSINT with a return code of -3, indicating that the
search was unsuccessful, then DMSINT uses the CP DIAGNOSE facility to
attempt to execute the command as a CP command.

4. If all of these searches fail, then DMSINT displays the error message
UNKNOWN CP/CMS COMMAND.

340 VM/SP System Programmer's Guide

Notes:

Name is now the
real name from a
Synonym Table

1. If the terminal line was actually
from an EXEC file, or if the
command SET IMPEX OFF has
been executed, implied EXEC
is not in effect.

2. A -3 return code indicates
SVC 202 processing did not find
the command.

3. If the terminal line was actually
from an EXEC file, or if the
command SET IMPEX OFF has
been executed, implied CP is not
in effect.

User enters name
at terminal

Read line from
terminal
(.. name)

Issue SV E 202
(See the SVC 202
Subroutine

No

Figure 38 (Part 1 of 2). CMS Command (and Request) Processing

Expand Line by
inserting the com­
mand name EXEC
to: EXEC name

No

Display
UNKNOWN
CP/CMS
COMMAND

Display Ready
message, with error
code if RCi'O

No

Pass Line to CP
for processing

Yes

Functional Information 341

Name is now the Yes
name from the
Synonym Table

Attempt to execute
LOADMOD name
module from disk

Figure 38 (Part 2 of 2). CMS Command (and Request) Processing

342 VM/SP System Programmer's Guide

Pass control to
routine in
transient area

Upon completion
return to SVC
routine

Pass control to the
routine (In the
nucleus or user area)
to execute the
command

382/2

User and Transient ProgralH Areas

Two areas hold programs that are loaded from disk. These areas are called the user
program area and the transient program area. (See Figure 35 , Figure 36 , and
Figure 37 on page 322 for a description of CMS storage usage.)

The user program area starts at location X'20000' and extends upward to the load­
er tables. Generally, all user programs and certain system commands (such as
EDIT, and COPYFILE) are executed in the user program area. Since only one
program can be executing in the user program area at anyone time, it is impossible
(without unpredictable results) for one program being executed in the user program
area to invoke, by means of SVC 202, a module that is also intended to be exe­
cuted in the user program area.

The transient program area is two pages long, extending from location X'EOOO' to
location X'FFFF'. It provides an area for system commands that may also be
invoked from the user program area by means of an SVC 202 call. When a tran­
sient module is called by an SVC, it is normally executed with the PSW system
mask disabled for I/O and external interrupts.

A program being executed in the transient program area may not invoke another
program intended for execution in the transient program area.

DMSITS starts the programs to be executed in the user program area enabled for
all interrupts but starts the programs to be executed in the transient program area
disabled for all interrupts. The individual program may have to use the SSM (Set
System Mask) instruction to change the current status of its system mask.

Called Routine Starl-Up Table

"Called" Type

SVC 202 or 203 -
Nucleus resident

SVC 202 - Nucleus
Extension Module

SVC 202 or 203 -
Transient area MOD-
ULE

SVC 202 or 203 -
User area

User-handled

OS - VSE Nucleus res-
ident

Figure 39 and Figure 40 on page 344 show how the PSW and registers are set up
when the called routine is entered.

System Mask Storage Key Problem Bit

Disabled System Off

User Defined User Defined Off

Disabled User Off

Enabled User Off

Enabled User Off

Disabled System Off

Figure 39 (Part 1 of 2). PSW Fields When Called Routine Starts

Functional Information 343

"Called" Type System Mask Storage Key Problem Bit

as - VSE Transient Disabled System Ofr
area module

Figure 39 (Part 2 of 2). PSW Fields When CaUed Routine Starts

Registers Registers Register Register R~gister Register
Type 0-1 2 - 11 12 13 14 15

SVC Same as Unpredictable Address User save Return Address of
202 or caller of called area Address called rou-
203 routine to tine

DMSITS

Other Same as Same as caller Address User save Return Same as
caller of caller area address to caller

DMSITS

Figure 40. Register Contents When CaUed Routine Starts

Returning to the Calling Routine

Return Location

When the called routine finishes processing, control is returned to DMSITS, which
in turn returns control to the calling routine.

The return is accomplished by loading the original SVC old PSW (which was saved
at the time DMSITS was first entered), after possibly modifying the address field.
The address field modification depends upon the type of SVC call, and upon
whether or not the called routine indicated an error return.

For SVC 202 and 203, the called routine indicates a normal return by placing a
zero in register 15 and an error return by placing a nonzero code in register 15. If
the called routine indicates a normal return, then DMSITS makes a normal return
to the calling routine. If the called routine indicates an error return, DMSITS
passes the error return to the calling routine, if one was specified, and abnormally
terminates if none was specified.

For an SVC 202 not followed by "DC AL4(address)" or "DC AL4(1)," a normal
return is made to the instruction following the SVC instruction, and an error return
causes an abend. For an SVC 202 followed by "DC AL4(address)", a normal
return is made to the instruction following the DC, and an error return is made to
the address specified in the DC, unless the address is equal to 1. If the address is 1,
both normal and error, return is made to the next instruction after the "DC
AL4(l)" instruction. In either case, register 15 contains the return code passed
back by the called routine.

For an SVC 203 with a positive halfword code, a normal return is made to the
instruction following the halfword code, and an error return causes an abend. For
an SVC 203 with a negative halfword code, both normal and error returns are
made to the instruction following the halfword code. In any case, register 15 con­
tains the return code passed back by the called routine.

344 VM/SP System Programmer's Guide

Register Restoration

For macro simulation SVC calls, and for user-handled SVC calls, no error return is
recognized by DMSITS. As a result, DMSITS always returns to the calling routine
by loading the SVC old PSW, which was saved when DMSITS was first entered.

Upon entry to DMSITS, all registers are saved as they were when the SVC instruc­
tion was first executed. Upon exiting from DMSITS, all registers are restored from
the area in which they were saved at entry.

The exception to this is register 15 in the case of SVC 202 and 203. Upon return
to the calling routine, register 15 always contains the value that was in register 15
when the called routine returned to DMSITS after it had completed processing.

Called Routine Modifications to System Area

If the called routine has system status, so that it runs with a PSW storage protect
key of 0, then it may store new values into the System Save Area.

If the called routine wishes to modify the location to which control is to be
returned, it must modify the following fields:

For SVC 202 and 203, it must modify the NUMRET and ERRET (normal and
error return address) fields.

For other SVCs, it must modify the address field of OLDPSW.

To modify the registers that are to be returned to the calling routine, the fields
EGPRl, EGPR2, through EGPR15 must be modified.

If this action is taken by the called routine, then the SVCTRACE facility may print
misleading information, since SVCTRACE assumes that these fields are exactly as
they were when DMSITS was first entered. Whenever an SVC call is made,
DMSITS allocates two save areas for that particular SVC call. Save areas are allo­
cated as needed. For each SVC call, a system and user save area are needed.

When the SVC-called routine returns, the save areas are not released, but are kept
for the next SVC. At the completion of each command, all SVC save areas allo­
cated by that command are released.

The System Save Area is used by DMSITS to save the value of the SVC old PSW
at the time of the SVC call, the calling routine's registers at the time of the call, and
any other necessary control information. Since SVC calls can be nested, there can
be several of these save areas at one time. The system save area is allocated in pro­
tected free storage.

The user save area contains 12 double words (24 words), allocated in unprotected
free storage. DMSITS does not use this area at all, but simply passes a pointer to
this area (via register 13.) The called routine can use this area as a temporary work
area, or as a register save area. There is one user save area for each system save
area. The USAVEPTR field in the system save area points to the user save area.

The exact format of the system save area can be found in the VM / SP Data Areas
and Control Block Logic, Volume 2. The most important fields, and their uses, are
as follows:

Functional Information 345

Dynamic Linkage--Subcom

Field

CALLER

CALLEE

CODE

OLDPSW

NRMRET

ERRET

EGPRS

EFPRS

SSAVENXT

SSAVEPRV

USAVEPTR

Usage

(Fullword) The address of the SVC instruction that resulted in
this call.

(Doubleword) Eight-byte symbolic name of the called routine.
For OS and user-handled SVC calls, this field contains a charac­
ter string of the form SVC nnn, where nnn is the SVC number in
decimal.

(Halfword) For SVC 203, this field contains the halfword code
following the SVC instruction line.

(Doubleword) The SVC old PSW at the time that DMSITS was
entered.

(Fullword) The address of the calling routine to which control is
to be passed in the case of a normal return from the called rou­
tine.

(Fullword) The address of the calling routine to which control is
to be passed in the case of an error return from the called
routine.

(16 Fullwords, separately labeled EGPRO, EGPRl, EGPR2,
EGPR3, ... , EGPR15) The entry registers. The contents of the
general registers at entry to DMSITS are stored in these fields.

(4 Doublewords, separately labeled EFPRO, EFPR2, EFPR4,
EFPR6) The entry floating-point registers. The contents of the
floating-point registers at entry to DMSITS are stored in these
fields.

(Fullword) The address of the next system save area in the
chain. This points to the system save area that is being used, or
will be used, for any SVC call nested in relation to the current
one.

(Fullword) The address of the previous system save area in the
chain. This points to the system save area for the SVC call in
relation to which the current call is nested.

(Fullword) Pointer to the user save area for this SVC call.

It is possible for a program that has already been loaded from disk to become
known by name to CMS for the duration of the current command; such a program
thus can be called via SVC 202. In addition, a program that has become known
dynamically can make other programs known dynamically (if the first program can
supply the entry points of the other programs).

To become known dynamically to CMS, a program or routine invokes the create
function of SUBCOM. To invoke SUBCOM, issue the following calling sequence
from an assembler language program:

346 VM/SP System Programmer's Guide

LA R1,PLIST
SVC 202
DC AL4(ERROR)

PLIST DS OF
DC CLB'SUBCOM'

SUBCNAME DC CLB'name' COMMAND NAME
SUBCPSW DC XL2'0000' SYSTEM MASK, STORAGE KEY, ETC.

DC AL2(O) RESERVED
SUBCADDR DC A (*-*) ENTRY ADDRESS, -1 FOR QUERY

DC A(O) USER WORD

SUBCOM creates an SCBLOCK control block containing the information speci­
fied in the SUBCOM parameter list. SVC 202 uses this control block to locate the
specified routine. The SUBCOM chain of SCBLOCKs is released at the com­
pletion of a command (that is, when CMS displays the Ready message). See
VM/SP Data Areas and Control Block Logic, Volume 2 for a description of the
SCBLOCK control block.

When a program issues an SVC 202 call to a program that has become known to
CMS via SUBCOM, it places X'02' in the high-order byte of register one. Control
passes to the called program at the address specified by the called program when it
invoked SUBCOM.

The PSW specifies the system mask, the PSW key to be used, the program mask
(and initial condition code), and the starting address for execution. The
problem-state bit and machine-check bit may be set. The machine-check bit has
no effect in CMS under CPo The EC-mode bit and wait-state bit cannot be set;
they are always forced to zero. Also, one 4-byte user-defined word can be associ­
ated with the SUBCOM entry point, and referred to when the entry point is subse­
quently called.

Note: When control passes to the specified entry point, the register contents are:

R2 Address of SCBLOCK for this entry point.

R 12 Entry point address.

R13 24-word save area address.

R 14 Return address (CMSRET).

R15 Entry point address.

You can also use SUBCOM to delete the potential linkage to a program or rou­
tine's SCBLOCK, or to determine if an SCBLOCK exists for a program or routine.
To delete a program or routine's SCBLOCK, issue:

DC CLB'SUBCOM'
DC CLB'program or routine name'
DC BX'OO'

To determine if an SCBLOCK exists for a program or routine, issue:

DC CLB'SUBCOM'
DC CLB'program or routine name'
DC A(O) SCBLOCK addressed as a returned value
DC 4X'FF'

Functional Information 347

Note that if 'SUBCOM name' is called from an EXEC file, the Query PLIST is the
form of PLIST which will be issued.

To query the chain anchor issue:

DC CL8'SUBCOM'
DS CL8
DS AL4

DC AL4 (1)

(contents not relevant)
Will receive chain anchor
contents from NUCSCBLK.
Indicates request for anchor.

Note that the anchor will be equal to F'O' if there are no SCBLOCKs on the chain.

Return codes from SUB COM are:

o - Successful completion. A new SCBLOCK was created, the specified
SCBLOCK was deleted, or the specified program or routine has an
SCBLOCK.

1 - No SCBLOCK exists for the specified program or routine. This is the
return code for a delete or a query.

25 - No more free storage available.· SCBLOCK cannot be created for the spec­
ified program or routine.

Note: If you create SCBLOCKS for several programs or routines with the same
name, they will all be remembered, but only the last one to be created will be used.
A SUBCOM delete request for that name will eliminate only the most recently cre­
ated SCBLOCK, making active the next most recently created SCBLOCK with the
same name.

When control returns to CMS after a console input command has terminated, the
entire SUBCOM chain SCBLOCKs is released; none of the subcommands estab­
lished during that command are carried forward to be available during execution of
the next console command.

System Product Editor Interface to Access Files in Storage

CMS uses the SUBCOM facility to allow a number of CMS commands to use an
XEDIT interface to access files in storage. Applications can read or write specific
records without having to go to disk or use the program stack to transfer the data
to or from XEDIT. This improves performance.

This interface is used internally by CMS for processing the FILELIST, HELP,
PEEK, and SEND FILE commands. The interface is invoked by specifying the
XEDIT option on the LISTFILE or NAMEFIND commands. This option may
only be specified from the XEDIT environment.

When using this interface from an application program, only the extended Parame­
ter List can be used, and the high-order byte of of Register 1 must contain X'02' to
indicate SUBCOM is being used.

The application can invoke this interface via SVC 202 or via a BALR instruction.
Because XEDIT is a nucleus-resident routine, other nucleus-resident routines can
branch directly to it while routines that do not resides in the nucleus use SVC link­
age. When using an SVC 202, register 1 must point to the FSCB where the name
of the routine being invoked is the first token. The high-order byte of register 1

348 VM/SP System Programmer's Guide

must also be X'02'. When using BALR, the calling program can determine the
entry point it wants by using SUBCOM. In this case, register 1 points to the FSCB
and register 2 points to the SCBLOCK. The address of the the SCBLOCK has
been returned from SUB COM.

The routines available, their entry point names, and error return codes are:

DMSXFLST - This routine returns the characteristics of a file (RECFM,
LRECL, etc). It also ensures that the file is in the XED IT ring. The return
codes are:

o File is in the XED IT ring
24 Incomplete fileid specified
28 File is not in the XEDIT ring

Note: Return codes are similar to those for ESTATE.

DMSXFLRD - This routine transfers one record from XEDIT storage to the
calling program. If RECFlVI=F, it may transfer more than one record. The
return codes are:

o READ performed
1 File is not in the XEDIT ring
2 Invalid buffer address
5 Number of items equals zero
7 RECFM is not 'F' or 'V'
8 Buffer is too small (Records truncated)
11 Number of items is not equal to one for V-file
12 End of file

Note: Return codes are similar to those for FSREAD.

DMSXFL WR - This routine transfers one record from the calling program to
XEDIT storage. If RECFM=F, it may transfer more than one record. The
return codes are:

o WRITE performed
2 User buffer address equals zero
7 Skip over unwritten records
8 Number of bytes is not specified
11 RECFM is not 'F' or 'V'
13 No more space is available
14 Number of bytes is not integrally divisible by the number of item
15 Item length is not the same as previous
16 RECFM of 'F' or 'V' is not the same as previous
18 Number of items is not equal to one for V-file
28 File is not in the XEDIT ring

Note: Return codes are similar to those for FSWRITE.

DMSXFLPT - This routine moves the current line pointer to a record specified
by the calling program. The return codes are:

o POINT performed
1 File not found
2 Invalid FSCB

Functional Infonnation 349

Note: Return codes are similar to those for FSPOINT.

When the interface is used, XED IT determines if a file is in the XEDIT ring (active
in storage) and does the processing required. The files in the XED IT ring are
always open. New files may be added to the ring with the XEDIT subcommand.
Files in the ring may be closed with the FILE or QUIT subcommands.

The current line pointer serves the function of both the read and write pointers of
the CMS file system. If RECNO=O is specified in a call to DMSXFLRD, then the
data will be transferred to the calling program starting at the current line pointer.
Transfer is stopped when the specified number of lines has been transferred or
when end-of-file is reached. The current line pointer is advanced by one for each
record transferred to the calling program. If the current line pointer was at the
end-of-file when DMSXFLRD was called, no data is transferred and an end-of-file
condition is returned.

If RECNO=O is specified in a call to DMSXFLWR, the new records are written
starting at the line pointed to by the current line pointer, replacing any existing
records, or adding new records if at the end-of-file. The current line pointer is
advanced to the line following the last line written at the end of the operation.
Note that writing to a record in the middle of a V-format file does not result in
truncation of the file from that point, as it would in the CMS file system.

eMS Interface for Display Terminals

CMS has an interface that allows it to display large amounts of data in a very rapid
fashion. This interface for 3270 display terminals (also 3138, 3148, and 3158) is
much faster and has less overhead than the normal write because it displays up to
1760 characters in one operation, instead of issuing 22 individual writes of 80
characters each (that is one write per line on a display terminal). Data that is dis­
played in the screen output area with this interface is not placed in the console
spool file.

The DISPW macro allows you to use this display terminal interface. It generates a
calling sequence for the CMS display terminal interface module, DMSGIO.
DMSGIO creates a channel program and issues a DIAGNOSE instruction (Code
X'58') to display the data. DMSGIO is a TEXT file which must be loaded in order
to use DISPW. The format of the CMS DISPW macro is:

[label]

where:

label

bufad

350 VM/SP System Programmer's Guide

DISPW bufad ['LINE=n] [,BYTES=bbbbJ
,LINE=O ,BYTES=1760

[ERASE=YES] [CANCEL=YES]

is an optional macro statement label.

is the address of a buffer containing the data to be written to the dis­
play terminal.

[
LINE=nJ
LINE=O

is the number of the line, 0 to 23, on the display terminal that is to be
written. Line number 0 is the default.

[
BYTES=bbbb]
BYTES=1760

is the number of bytes (0 to 1760) to be written on the display termi­
nal. 1760 bytes is the default.

[ERASE=YES] specifies that the display screen is to be erased before the current
data is written. The screen is erased regardless of the line or number
of bytes to be displayed. Specifying ERASE= YES causes the screen
to go into "MORE" status.

[CANCEL=YES] causes the CANCEL operation to be performed; the output area
is erased.

Note: It is advisable for the user to save registers before issuing the DISPW macro
and to restore them after the macro, because the modules called by DISPW macro
do not save the user's registers. The DISPW macro saves and restores register 13.

Functional Information 351

Using the DASD Block I/O System Service from eMS

The DASD Block I/O System Service provides a virtual machine with
device-independent access to its virtual DASD devices. Programs using the DASD
Block I/O System Service bypass the CMS file system, and they read or write
directly from CP.

Before using the DASD Block I/O System Service, you should issue the CMS
RESERVE command and the CMS DISKID function.

The CMS RESERVE command allocates all available blocks of a 512-, 1K-, 2K-,
or 4K-byte block formatted minidisk to a unique CMS file. The file created has the
following format:

filename, filetype, and filemode letter the user specified

filemode number 6, if the filemode number was not specified in the command

logical record length equal to the CMS disk block size

fixed (F) record format

the number of records is the total number of blocks available on the disk minus
the number of blocks used by CMS. The number of blocks used by CMS is
referred to as the offset. This CMS overhead varies with the size of the mini­
disk. The data blocks physically follow the blocks used by CMS.

The file created can be read or written via the DASD Block I/O System Service or
the CMS file system. Because a CMS file structure has been created on the disk,
the file may be accessed using the CMS file system. Let's consider the following
example:

Suppose you have a 3330 device with one cylinder formatted with 1024-byte block
size. There will be 209 blocks available. After you issue the RESERVE command,
the file created has the following format:

1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 110 III I ... 120712081209

where:

Physical block
number(s)

1 and 2
3
4 or 5
6
7
8
9 through 209

Description

Contain the IPL records
Contains the volume label
Contain the CMS directory file
Contains the allocation map
Contains the alternate allocation map
CMS level 1 pointer block
Data blocks

Physical blocks 1 through 8 are the blocks used by the CMS file system. Physical
blocks 9 through 209 are the data blocks. Next, issue the following format of the
FILEDEF command:

352 VM/SP System Programmer's Guide

FILEDEF ddname DISK vaddr

This command associates the name of the virtual minidisk referred to in your pro­
gram, "ddname", to the virtual address of the minidisk, "vaddr". The "ddname" is
input to the DISKID function.

The DISKID function obtains the necessary information on the physical organiza­
tion of the RESERVEd mini disk that will be used by the DASD Block I/O Service.
The DISKID function obtains the virtual address, the block size, and the offset of
this minidisk. (In the above example, the block size is 1024 bytes and the offset is
8.)

Before using the DASD Block I/O System Service, you must initialize your virtual
machine for IUCV communications. IUCV enables a program running in your vir­
tual machine to communicate with DASD Block I/O. Use the IUCV DECLARE
BUFFER function or the CMS HNDIUCV SET macro to initialize your virtual
machine for IUCV communications. You should use the CMS IUCV support since
this support allows other programs running in the virtual machine to use IUCV.

To establish a path between your virtual machine and the DASD Block I/O System
Service, your program must issue either the IUCV CONNECT function or the
CMSIUCV CONNECT macro. The USERID parameter on the IUCV CON­
NECT macro must be "*BLOCKIO" and the PRMDATA parameter must be
"YES". PRMDATA=YES indicates, in this case, that the your program will
receive messages in its parameter list. Information about the minidisk returned by
the DISKID function - the virtual address, blocksize, and offset - must be moved
into the IPUSER field of the IUCV CONNECT parameter list.

If all the parameters required by DASD Block I/O are valid, DASD Block I/O
issues the IUCV ACCEPT function with the PRI\1DAT A= YES parameter speci­
fied. In this case, PRMDAT A= YES indicates that the DASD Block I/O System
Service will receive messages in its parameter list. If invalid parameters are passed
from the CONNECT to DASD Block I/O, DASD Block I/O issues an IUCV
SEVER on the path.

If DASD Block I/O issued an IUCV ACCEPT, your virtual machine receives an
IUCV Connection Complete external interrupt. The IPUSER field of the Con­
nection Complete external interrupt buffer contains the starting and ending block
numbers allowable on the DASD Block I/O requests, and contains flags describing
the status of the virtual device. The starting block number (START BLOCK) is 1
minus the offset. The ending block number (END BLOCK) is the total number of
available blocks minus the offset.

Since DASD Block I/O bypasses the CMS file system, START BLOCK can con­
tain a negative value (1 - OFFSET) and these blocks can be used by DASD Block
I/O. In the example above, START BLOCK would be -7 (1 - 8) and END
BLOCK would be 201 (209 - 8). The range -7 to 201 equals 209 - the number of
available blocks on the device. Data block 1 is actually physical block 9, data block
2 is actually physical block 10, ... , and the last block (data block 201) is actually
physical block 209. Programs using DASD Block I/O should only write data
blocks; therefore, a block number less than 1 should never be written. This would
destroy a block that was used to implement the CMS file structure.

Using the DASD Block I/O System Service from eMS 353

You can now start sending I/O requests to DASD Block I/O by issuing the IUCV
SEND function. You must specify the block number, virtual buffer address, and
type of request desired in the IUCV SEND parameter list. Blocks are read or writ­
ten randomly as requested.

If no error occurred in the IUCV SEND, DASD Block I/O issues an IUCV
REPLY to return the results of the I/O requests. If an error occurred in the IUCV
SEND, DASD Block I/O issues an IUCV SEVER.

When you want to terminate communications with the DASD Block I/O System
Service, issue the IUCV SEVER function, CMS CMSIUCV SEVER macro, IUCV
RETRIEVE BUFFER function, or CMS HNDIUCV CLR macro.

(For a further description of the DASD Block I/O System Service, see "DASD
Block I/O System Service".)

354 VM/SP System Programmer's Guide

I CMS IUCV Support

I HNDIUCV Macro

Standard Format

[label] HNDIUCV ,

The Inter-User Communications Vehicle (lUCV) is a communications facility. It
enables a program running in a virtual machine to communicate with other virtual
machines, with a CP system service, and with itself. (See "Inter-User Communi­
cation Vehicle" in "Part 1: Control Program (CP)".) CMS support of IUCV
makes it easier for mUltiple programs, operating within one virtual machine, to use
IUCV functions.

You can invoke IUCV functions via the CMS macros, HNDIUCV and CMSIUCV.
These macros enable you to:

• Initialize and terminate a program's IUCV environment

Begin or terminate communications with another virtual machine or with CP

Specify specific exits for IUCV external interrupts.

Use the HNDIUCV macro to identify an IUCV program to CMS. HNDIUCV ini­
tializes or terminates the virtual machines IUCV communications. No CMS IUCV
function is permitted by a particular program unless the program has first issued the
HNDIUCV macro and identified itself to CMS.

The four formats of the HNDIUCV macro are:

standard,

MF=L

MF = (L,addr[,label])

MF=(E,addr).

The standard format of the HNDIUCV macro is:

SET,NAME=addr,EXIT=addr[,UWORD=addr] [,ERROR=addr]

~ ,EXIT~addr !
REP,NAME=addr[,ERROR=addr] ,UWORD=addr >

,EXIT=addr,UWORD=addr ,

CLR,NAME=addr[,ERROR=addr]
,

CMS IUCV Support 355

where:

addr is an assembler program label or an address stored in a general register.
If a register is used, it must be enclosed in parentheses. Also, the register
must contain a non-zero value. A zero value is treated as though the
parameter was not specified, and any defaults are used. If the parameter
is required by the macro function, a non-zero return code is generated.

label is an assembler program label.

SET identifies the program to CMS. It must be issued before doing any CMS
lUCY communications. Upon error free completion, register 0 contains
the maximum number of possible connections for the virtual machine.

CLR removes the program from the list of active CMS lUCY programs. This
function should be issued when the program no longer wishes to do any
more CMS lUCY communications. Any paths associated with this pro­
gram are SEVERed when this function is requested (the IPUSER field of
the IUCV SEVER parameter list is set to binary ones to indicate the
SEVER was done by CMS).

REP replaces the currently defined exit address and/or UWORD field for a
specified program. Only the parameters specified are replaced.

NAME=

EXIT=

356 VM/SP System Programmer's Guide

label is an assembler program label that is the address of an 8 char­
acter symbolic name.

(Rn) is a general register. Its value is the address of an 8 character
symbolic name.

This symbolic name is used as the CMS lUCY program's identity. When
this program issues the CMSIUCV macro to perform an lUCY function,
the NAME parameter specified on the CMSIUCV macro must be the
same as the one specified here. This parameter is required to execute the
HNDIUCV function.

label is an assembler program label that is the address of the exit
routine.

(Rn) is a general register. Its value is the address of the exit routine.

The exit routine receives control whenever an lUCY external interrupt of
the type "PENDING CONNECT" occurs for this program. In order for
this exit to be activated, the connecting virtual machine must specify the
same symbolic name in the first 8 bytes of the IPUSER field of its
CONNECT parameter list as the NAME parameter here. This exit
address is the default address associated with any path owned by this
program. If an IU CV external interrupt occurs on a path where no spe­
cific exit has been established (a pending connect external interrupt has
previously occurred on this path and no CMSIUCV ACCEPT has been
issued yet, or the EXIT parameter was not specified on the CMSIUCV

MF=L Format

[label] HNDIUCV MF=L

I MF=(L,addr/,label]) Format

UWORD=

ERROR=

CONNECT or ACCEPT that established the path), this address receives
control. This parameter must be specified on the SET function, but it is
optional on the REP function.

label is an assembler program label that is the address stored as the
UWORD.

(Rn) is a general register. Its contents are stored as the UWORD.

UWORD is an optional fullword that can be specified by the invoker for
any purpose desired. When the exit routine receives control, register 0
contains either an address if a label was used or the value of the register
if a register was used. If this parameter is not specified, the UWORD is
set to zero. (If the UWORD value is not specified when a CMSIUCV
ACCEPT or CONNECT is issued, it defaults to the UWORD value
specified on this HNDIUCV macro.)

labe 1 is an assembler program label that is the address of the error
routine.

(Rn) is a general register. Its value is the address of the error rou­
tine.

The error routine receives control if an error is found. If this parameter
is not specified and an error occurs, control returns to the next sequential
instruction in the calling program.

When MF=L is coded, the format of the HNDIUCV macro is:

[[,NAME=labell [,EXIT=labell [,UWORD=labell]
,SET[,NAME=label] [,EXIT=label] [,UWORD=label]
,REP[,NAME=label] [,EXIT=label] [,UWORD=label]
,CLR[,NAME=label]

All parameters have the same meaning as the standard format with the following
difference:

MF=L indicates that the parameter list is created in-line. No executable code is
generated. Register notation cannot be used for macro parameter
addresses.

Note: When using the MF= parameter, all other parameters are optional. When
the function is executed, however, a valid combination of parameters must have
been specified by the LIST and EXECUTE formats of the macro.

I When MF=(L,addr[,label]) is coded, the format of the HNDIUCV macro is:

CMS lUCY Support 357

[label] HNDIUCV MF=(L,addr[label]) ,SET[,NAME=addr] [,EXIT=addr] [,UWORD=addr]
[[,NAME=addr] [,EXIT=addr] [,UWORD=addr]]

MF=(E,addr) Format

,REP [,NAME=addr] [,EXIT=addr] [,UWORD=addr]
, CLR [, NAME=addr]

All parameters have the same meaning as the standard format with the following
difference:

MF = (L,addr[,label])
indicates that the parameter list is created in the area specified by
"addr". The address may represent an area within your program or an
area of free storage obtained by a system service. You can determine the
size of the parameter list by coding the "label" operand. The macro
expansion equates "label" to the size of the parameter list. This format
of the macro produces executable code to move the data into the param­
eter list specified by "addr". However, it does not generate instructions
to invoke the function. If this version of the LIST format is used, it must
be executed before any related invocation of the EXECUTE format.

Note: When using the MF= parameter, all other parameters are optional. When
the function is executed, however, a valid combination of parameters must have
been specified by the LIST and EXECUTE formats of the macro.

When MF=(E,addr) is coded, the format of the HNDIUCV macro is:

[,NAME=addr] [,EXIT=addr] [,UWORD=addr]
[, ERROR=addr]

, SET [, NAME=addr] [, EXIT=addr] [, UWORD=addr]
[label] HNDIUCV MF=(E,addr)

r -
[, ERROR=addr

I Error Conditions

, REP [, NAME=addr] [, 'EXIT=addr] [, UWORD=addr] L [, ERROR=addr]
,CLR[,NAME=addr] [,ERROR=addr]

All parameters have the same meaning as the standard format with the following
difference:

MF=(E,addr)
indicates that instructions are generated to execute the HNDIUCV func­
tion. "addr" represents the location of the parameter list. Information in
the parameter list may be changed by specifying the appropriate oper­
ands on the macro.

Note: When using the MF= parameter, all other parameters are optional. When
the function is executed, however, a valid combination of parameters must have
been specified by the LIST and EXECUTE formats of the macro.

I If an error occurs, register 15 contains one of the following return codes:

358 VM/SP System Programmer's Guide

CMSIUCV Macro

Standard Format

[label] CMSIUCV

Code Meaning

4 A program with this name has previously issued a HNDIUCV
SET (SET)

8 No HNDIUCV SET has been issued for this program
(REP,CLR)

16 The NAME parameter was not specified or its address is equal
to zero (SET,REP,CLR)

20 The EXIT parameter was not specified or its address is equal to
zero (SET)

32 An lUCY DECLARE BUFFER has already been issued by a
non-CMS lUCY program. CMS lUCY support cannot be ini­
tialized (SET)

36 Errors were encountered reading the directory for the virtual
machine during CMS lUCY initialization (SET)

40 Unrecognized function
2xx An error was encountered in getting CMS free storage. "xx" =

the return code from DMSFREE. (SET)

1 xxx While trying to SEVER all of the program's paths, an lUCY
SEVER error occurred. "xxx" is the IPRCODE field that was
returned by lUCY to aid in diagnosing the error. (CLR)

Use the CMSIUCV macro to begin or terminate lUCY communications with
another lUCY program or with CPo

The four formats of the CMSIUCV macro are:

standard,

MF=L

MF = (L,addr[,label])

MF=(E,addr).

The standard format of the CMSIUCV macro is:

CONNECT,NAME=addr,PRMLIST=addr[,EXIT=addr]
[,UWORD=addr] [,ERROR=addr]

ACCEPT,NAME=addr,PRMLIST=addr[,EXIT=addr
[, UWORD=addr] [, ERROR=addr]

SEVER,NAME=addr,PRMLIST=addr[,ERROR=addr
[CODE=ALLONE]

where:

CMS lUCY Support 359

addr is an assembler program label or an address stored in a general register.
If a register is used, it must be enclosed in parentheses. Also, the register
must contain a non-zero value. A zero value is treated as though the
parameter was not specified, and defaults are used. If the parameter was
required by the macro function, a non-zero return code is generated.

labe 1 is an assembler program label.

CONNECT requests CMS to perform an lUCY CONNECT. A CONNECT parame­
ter list must be set up by the program and passed to CMS.

ACCEPT requests CMS to perform an lUCY ACCEPT. An ACCEPT parameter
list must be set up by the program and passed to CMS.

SEVER requests CMS to perform an lUCY SEVER. A SEVER parameter list
must be set up by the program and passed to CMS. Any EXIT estab­
lished for the path being SEVERed is terminated. A SEVER with the
IP ALL bit turned on, which would cause a SEVER of all paths for the
virtual machine, is not permitted.

EXIT=

UWORD=

label is an assembler program label that is the address of the exit
routine.

(Rn) is a general register. Its value is the address of the exit routine.

The exit routine receives control whenever an lUCY external interrupt
occurs on this lUCY path. If this parameter is not specified, the exit
address defaults to the address specified in the HNDIUCV macro for this
program. Any time an lUCY external interrupt occurs for the specific
lUCY path, the address is given control.

label is an assembler program label that is the address that is stored
as the UWORD.

(Rn) is a general register. Its contents are stored as the UWORD.

UWORD is an optional fullword that can be specified by the invoker for
any purpose desired. When the exit routine receives control, register 0
contains the value of the UWORD associated with the path on which the
lUCY external interrupt occurred. Register 0 contains the address if a
label was used, or the value of the register if a register was used. If this
parameter is not specified, the UWORD value defaults to the value speci­
fied on the HNDIUCV macro for this program.

PRMLIST=

360 VM/SP System Programmer's Guide

label is an assembler program label. It is the address of the pro­
gram's lUCY PRMLIST.

(Rn) is a general register. Its value is the address of the program's
lUCY PRMLIST.

MF=L Format

[label] CMSIUCV MF=L

This address is the block of storage that contains the IUCV parameter
list for the IUCV function desired. This parameter list must be previous­
ly prepared by the program. It is suggested that the program use the
LIST form of the IUCV macro to prepare the parameter list. By using
this form, the program may set up the IUCV parameter list by using
KEYWORD parameters on the IUCV macro instead of storing informa­
tion using the IPARML DSECT. This parameter is required.

CODE= is only valid when the SEVER function is requested. If CODE=ALL,
all paths owned by the program are SEVERed. If CODE=ONE, only
the one path specified via the pathid is SEVERed. If this parameter is
not specified, CODE=ONE is used as the default.

NAME=

label is an assembler program label. It is the address of an 8 charac­
ter symbolic name.

(Rn) is a general register. Its value is the address of an 8 character
symbolic name.

This symbolic name identifies the program associated with this path. A
program with this name must have previously issued an HNDIUCV mac­
ro to identify itself as a CMS IUCV program to CMS. This parameter
must be specified.

ERROR=

label is an assembler program label that is the address of the error
routine.

(Rn) is a general register. Its value is the address of the error rou­
tine.

The error routine receives control if an error is found. If this parameter
is not specified and an error occurs, control returns to the next sequential
instruction in the calling program.

When MF=L is coded, the format of the CMSIUCV macro is:

r-
[,NAME=label] [,PRMLIST=label] [,EXIT=label]

-
[,UWORD=label] [,CODE=ALLONE]

,CONNECT[,NAME=label] [,PRMLIST=label] [,EXIT=label]
[, UWORD=label]

,ACCEPT[,NAME=label] [,PRMLIST=label] [,EXIT=label]
[, UWORD=label]

,SEVER[,NAME=label] [,PRMLIST=label] [,CODE=ALLONE]
~ --- -

All parameters have the same meaning as the standard format with the following
difference:

CMS IUCV Support 361

MF=(L,addr[,label]) Format

MF=L indicates that the parameter list is created in-line. No executable code is
generated. Register notation cannot be used for macro parameter
addresses.

Note: When using the MF= parameter, all other parameters are optional. When
the function is executed, however, a valid combination of parameters must have
been specified by the LIST and EXECUTE formats of the macro.

When MF = (L,addr[,label]) is coded, the format of the CMSIUCV macro is:

- -
[,NAME=addr] [,PRMLIST=addr] [,EXIT=addr]

[,UWORD=addr] [,CODE=ALLONE]
,CONNECT[,NAME=addr] [,PRMLIST=addr]

[label] CMSIUCV MF=(L,addr[,label]) [,EXIT=addr] [,UWORD=addr]

MF=(E,addr) Format

,ACCEPT[,NAME=addr] [,PRMLIST=addr]
[,EXIT=addr] [,UWORD=addr]

,SEVER[,NAME=addr] [,PRMLIST=addr]
[CODE=ALLONE]

'- -

All parameters have the same meaning as the standard format with the following
difference:

MF=(L,addr ,label)
indicates that the parameter list is created in the area specified by
"addr". The address may represent an area within your program or an
area of free storage obtained by a system service. You can determine the
size of the parameter list coding the "label" operand. The macro expan­
sion equates "label" to the size of the parameter list. This format of the
macro produces executable code to move the data in the parameter list
specified by "addr". However, it does not generate instructions to
invoke the function. If this version of the LIST format is used, it must be
executed before any related invocation of the EXECUTE format.

Note: When using the MF= parameter, all other parameters are optional. When
the function is executed, however, a valid combination of parameters must have
been specified by the LIST and EXECUTE formats of the macro.

When MF=(E,addr) is coded, the format of the CMSIUCV macro is:

r- -
[,NAME=addr] [,PRMLIST=addr] [,EXIT=addr]

[,UWORD=addr] [,ERROR=addr] [,CODE=ALLONE]
,CONNECT[,NAME=addr] [,PRMLIST=addr] [,EXIT=addr]

[label] CMSIUCV MF=(E,addr) [,UWORD=addr] [,ERROR=addr]
,ACCEPT[,NAME=addr] [,PRMLIST=addr] [,EXIT=addr]

[,UWORD=addr] [,ERROR=addr]
,SEVER[,NAME=addr] [,PRMLIST=addr] [CODE=ALLONE]

[, ERROR=addr] - -

All parameters have the same meaning as the standard format with the following
difference:

362 VM/SP System Programmer's Guide

I Usage Notes:

I Error Conditions:

MF=(E,addr)
indicates that instructions are generated to execute the CMSIUCV func­
tion. "addr" represents the location of the parameter list. Information in
the parameter list may be changed by specifying the appropriate oper­
ands on the macro.

Note: When using the MF= parameter, all other parameters are optional. When
the function is executed, however, a valid combination of parameters must have
been specified by the LIST and EXECUTE formats of the macro.

1. To insure that no program tries to SEVER a path that another program estab­
lished, each individual IUCV path has a NAME associated with it. When a
program requests a CONNECT or ACCEPT function, the NAME specified
becomes the owner of this path. If the program requests a SEVER or an
ACCEPT for a specific path and the NAME specified does not correspond
with the owner of that path, the SEVER or ACCEPT is not permitted.

2. The HNDIUCV macro must be issued to identify the program to CMS before
issuing the CMSIUCV macro.

3. If the program requests a SEVER function with CODE=ALL, all IUCV paths
owned by that program are SEVERed. The IPUSER field of the IUCV SEV­
ER PRMLIST is set to binary ones.

4. The IUCV communication facility generates exceptions for some error condi­
tions. If IUCV generates an operation, specification, or addressing exception
while a HNDIUCV or CMSIUCV macro is executing, control does not directly
return to the next sequential instruction. Instead, a program check is
generated.

5. The HNDIUCV REP function will only replace the general exit address and/or
UWORD set up by your program via the HNDIUCV SET function. If your
program had previously issued any CMSIUCV CONNECTs and had the EXIT
address or UWORD default to the HNDIUCV SET's EXIT and UWORD, the
HNDIUCV REP function does not replace the path specific EXIT or UWORD
set up via the CMSIUCV function. The EXIT and UWORD remain as estab­
lished when the CMSIUCV function was issued.

If an error occurs, register 15 contains one of the following return codes:

Code Meaning

8 No HNDIUCV SET has been issued for this program (CON­
NECT,ACCEPT,SEVER)

12 The program doesn't own the path (ACCEPT ,SEVER)
16 The NAME parameter was not specified or its address is equal

to zero (CONNECT,ACCEPT,SEVER)
24 The PRMLIST parameter was not specified or its address is

equal to zero (CONNECT,ACCEPT,SEVER)

CMS IUCV Support 363

I Exits

\ Usage Notes

Code Meaning

28 An IUCV SEVER with the IP ALL bit on is not allowed
(SEVER)

40 Unrecognized function
lxxx Indicates that an IUCV error occurred. "xxx" is the IPRCODE

field that was returned by IUCV to aid in diagnosing the error.
(CONNECT ,ACCEPT ,SEVER)

When the program's IUCV external interruption routine is given control, all inter­
ruptions are disabled. The exit routine is responsible for providing proper entry
and exit linkage for its IUCV external interruption handling routine. The exit rou­
tine has the following requirements:

The routine should not enable itself for any type of interrupts.

The routine should not perform any I/O operations, since all interruptions are
disabled.

The routine must return control to the address in register 14.

When the routine receives control, the significant registers contain:

Register

o
1

2
13

14
15

Contents

UWORD Field
Points to a SA VEAREA in the format:

Label

GRS
FRS
PSW
UAREA
END

Displacement
Dec Hex

o 0
64 40
96 60

104 68
176 80

Address of the IUCV External Interrupt Buffer
Points to the save area at label UAREA for use by the exit rou­
tine
Return address
Entry point address

1. If the CMS IUCV support is active, the external interrupt handler recognizes
two error conditions.

An IUCV pending-connect external interrupt occurs and the first eight
bytes of the IPUSER field does not match any currently active CMS IUCV
program's identity.

364 VM!SP System Programmer's Guide

Any other type of IUCV external interrupts occurs and the path that it
occurs on is not owned by any active CMS IUCV programs in the virtual
machine.

In either condition, CMS issues an IUCV SEVER for the path in error. The 16
bytes in the IPUSER field contain binary ones (X'F').

2. If a CMS abend occurs, the CMS lUCY environment is terminated. An IUCV
RETRIEVE BUFFER is issued, and any exits set up by the CMSIUCV or
HNDIUCV macros are cancelled.

3. CMS IUCV clean up does not occur at end-of-command processing.

4. A program must be ready to handle any incoming external interrupts as soon as
a HNDIUCV or CMSIUCV macro has finished execution. A program may
even be interrupted before the next sequential instruction after the macro in
the program is executed.

Using CMS IUCV to Communicate Between Two Virtual Machines

Figure 41 on page 366 illustrates the sequence of macro instructions issued when a
virtual machine communicates with another virtual machine using CMS IUCV.

The functions performed by these instructions include:

initializing IUCV communications

connecting to another virtual machine

sending and receiving messages

replying to and waiting for messages

severing connections with the other virtual machine

terminating IUCV communications.

CMS IUCV Support 365

Virtual Machine X virtual Machine Y

1. HNDIUCV SET,NAME=ONE,EXIT=A 1. HNDIUCV SET,NAME=TWO,EXIT=1
2. Set up the IUCV parameter list
3. CMSIUCV CONNECT,NAME=ONE,EXIT=B

4. CONNECT-pending external
interrupt

5. EXIT 1 receives control
6. CMSIUCV ACCEPT,NAME=TWO,EXIT=2

7. CONNECT-complete external
interrupt

B. EXIT B receives control

9. CMSIUCV SEVER,NAME=ONE
10. SEVER external interrupt
11 . EXIT 2 receives control
12. CMSIUCV SEV~,NAME=TWO

13. HNDIUCV CLR,NAME=ONE 13. HNDIUCV CLR,NAME=TWO

14. ONE DC CLB'RED'
15. TWO DC CLB'BLUE'

Figure 41. Sequence of Instructions in Virtual Machine to Virtual Machine Communication

The following list is an explanation of the sequence of instructions used above.

1. A program running in virtual machine X wishes to communicate with a pro­
gram running in virtual machine Y. Each program must independently issue
the HNDIUCV macro to begin IUCV communications. By issuing HNDIUCV
SET, CMS invokes the IUCV DECLARE BUFFER function. The EXIT
parameter establishes a general exit to handle IUCV CONNECT PENDING
external interrupts.

2. Before issuing a CMSIUCV CONNECT, an IUCV CONNECT parameter list
must be set up by the program. The IPVMID field of the IUCV parameter list
contains the userid of the virtual machine you are connecting to (virtual
machine Y). The first 8 bytes of the IPUSER field of the IUCV parameter list
contains the eight-character identifying name of the program that issued a
HNDIUCV SET in virtual machine Y. This name must match the name speci­
fied on the HNDIUCV macro issued by the program in virtual machine Y. In
this example, the first eight bytes of the IPUSER field equals BLUE.

3. The program in virtual machine X issues a CMSIUCV CONNECT to initiate a
communication link with virtual machine Y. By issuing CMSIUCV CON­
NECT, CMS invokes the IUCV CONNECT function. This associates the exit
address, "B", with the IUCV pathid.

4. Virtual machine Y receives a CONNECT -pending external interrupt as a result
of the CMSIUCV CONNECT issued by the program in virtual machine X.

5. "EXIT 1" receives control as a result of the external interrupt. ("EXIT 1"
receives control because it was specified on the EXIT parameter of the
HNDIUCV macro.)

366 VM/SP System Programmer's Guide

6. To complete the connection, the program in virtual machine Y issues a
CMSIUCV ACCEPT. By issuing CMSIUCV ACCEPT, CMS invokes the
IUCV ACCEPT function. This completes the IUCV communication link with
virtual machine X. The CMSIUCV ACCEPT also associates the exit address,
"2", with the pathid.

7. Virtual machine X receives a connection-complete external interrupt as a result
of the CMSIUCV ACCEPT issued by the program in virtual machine Y.

8. "EXIT B" receives control as a result of the external interrupt. ("EXIT B"
receives control because it is specified on the EXIT parameter of the
CMSIUCV macro.)

9. Virtual machine X completed its communications with virtual machine Y and
terminates the lUCY communication link. The program in virtual machine X
issues an CMSIUCV SEVER to terminate this link. By issuing CMSIUCV
SEVER, CMS invokes the IUCV SEVER function and clears the exit associ­
ated with the communication link.

10. Virtual machine Y receives a SEVER external interrupt as a result of the
CMSIUCV SEVER issued by virtual machine X.

11. "EXIT 2" receives control as a result of the external interrupt. ("EXIT 2"
receives control because it was specified on the EXIT parameter of the
CMSIUCV macro.)

12. The program in virtual machine Y issues a CMSIUCV SEVER to terminate the
communication link. By issuing CMSIUCV SEVER, CMS invokes the IUCV
SEVER function and clears the exit associated with the communication link.

13. After all communications are complete and all communication paths have been
SEVERed, the program in virtual machine X and the program in virtual
machine Y independently issue HNDIUCV CLR. HNDIUCV CLR terminates
IUCV communications and clears the general exit for IUCV PENDING
CONNECTs. CMS invokes the IUCV RETRIEVE BUFFER function if there
are no other programs in the virtual machine using IUCV.

14. This is the label specified in the NAME parameter. This location contains the
identifying name of the program in virtual machine X. The name of this pro­
gram is RED.

15. This is the label specified in the NAME parameter. This location contains the
identifying name of the program in virtual machine Y. The name of this pro­
gram is BLUE.

Guidelines and Limitations of the CMS IV CV Support

Some of the existing IUCV functions affect the IUCV environment of the entire
virtual machine. Since CMS cannot intercept any IUCV functions directly issued
by a program, any program using the CMS IUCV support has certain limitations on
its use of IUCV functions. The program must not issue any IUCV function that
alters the virtual machine's IUCV environment.

The following is a list of IUCV functions. The list describes their relationship to
the CMS IUCV support and some guidelines for their usage. If any functions listed

CMS IUCV Support 367

as "Should not be used" are indeed used, other programs using CMS IUCV func­
tions in the virtual machine may be affected. For information on coding the follow­
ing functions, see the "Inter-User Communications Vehicle" earlier in this manual.

ACCEPT
is invoked by a program via the CMSIUCV macro. It should not be issued
directly by a program.

CONNECT
is invoked by a program via the CMSIUCV macro. It should not be issued
directly by a program.

DECLARE BUFFER
is used by HNDIUCV to initialize the virtual machine's IUCV environment.
It should not be issued directly by a program.

DESCRIBE
should not be used because this function clears the pending-message external
interruption for the described message. This interrupt may not belong to the
issuer of the DESCRIBE function. Thus, other programs running in the
same virtual machine may be affected since the message is lost and never
reflected to the true target.

PURGE
is issued directly by a program.

QUERY
is used by HNDIUCV to determine the size of the external interrupt buffer
and the maximum number of connections for this virtual machine. It may be
issued directly by an application program.

QUIESCE
is issued directly by a program to quiesce a specific path. However, the
issuer must be careful that the IP ALL bit is not turned on in the IPFLAGS 1
byte of the parameter list. This would quiesce all paths in the virtual
machine.

RECEIVE
is issued directly by the application program. However, the issuer must be
careful that a specific message id or path id is specified in the IUCV parame­
ter list. If it is not, IUCV RECEIVEs the first message that has not yet been
partially received for the entire virtual machine. This message may not
belong to the program that issued the IUCV RECEIVE.

REJECT
is issued directly by a program.

REPLY
is issued directly by a program.

RESUME

368 VM/SP System Programmer's Guide

is issued directly by a program in order to resume a specific path. However,
the issuer must be careful that the IP ALL bit is not turned on in the
IPFLAGS 1 byte of the parameter list. This would resume all paths in the
virtual machine.

RETRIEVE BUFFER

SEND

is used by HNDIUCV and CM:S ABEND processing to terminate the virtual
machine's lUCY environment. It should not be issued directly by a program.

is issued directly by a program.

SETMASK
should not be used because this function disables certain lUCY external
interrupts for the entire virtual machine. Thus, other programs running in
the same virtual machine may be affected.

SETCMASK
should not be used because this function disables certain lUCY external
interrupts for the entire virtual machine. Thus, other programs running in
the same virtual machine may be affected.

SEVER
is invoked by a program via the CMSIUCV macro. This lUCY function may
be invoked to SEVER all existing paths for the CMS lUCY program that has
issued the HNDIUCV CLR macro. This lUCY function should not be
issued directly by a program.

TEST COMPLETION
is issued directly by a program. However, the issuer must be careful that a
specified message id or path id is specified in the lUCY parameter list. If it
is not, lUCY completes the first message on the REPLY queue for the entire
virtual machine. This message may not belong to the application that issued
the TEST COMPLETION.

TEST MESSAGE
should not be used because this function places the entire virtual machine in
a wait state if no incoming messages or replies are pending. Thus, other pro­
grams running in the same virtual machine may be affected.

CMS lUCY Support 369

OS Macro Simulation Under eMS

When a language processor or a user-written program is executing in the eMS
environment and using OS-type functions, it is not executing as code. Instead,
eMS provides routines that simulate the as functions required to support as lan­
guage processors and their generated object code.

eMS functionally simulates the as macros in a way that presents equivalent results
to programs executing under eMS. The as macros are supported only to the
extent stated in the publications for the supported language processors, and then
only to the extent necessary to successfully satisfy the specific requirement of the
supervisory function.

The restrictions for COBOL and PL/I program execution, listed in "Executing a
Program that Uses as Macros" in the VM / SP Planning Guide and Reference, exist
because of the limited CMS simulation of the as macros.

Figure 42 on page 371 shows the as macro functions that are partially or com­
pletely simulated, as defined by SVC number.

OS Data Management Simulation

The disk format and data base organization of CMS are different from those of
as. A CMS file produced by an as program running under CMS and written on a
CMS disk, has a different format from that of an as data set produced by the same
as program running under as and written on an as disk. The data is exactly the
same, but its format is different. (An as disk is one that has been formatted by an
as program, such as the Device Support Facility.)

Handling Files that Reside on eMS Disks

CMS can read, write, or ulJdate any as data that resides on a CMS disk. By simu­
lating as macros, CMS simulates the following access methods so that as data
organized by these access methods can reside on CMS disks:

direct

partitioned

sequential

identifying a record by a key or by its relative position within
the data set.

seeking a named member within the data set.

accessing a record in a sequence in relation to preceding or fol­
lowing items in the data set.

Refer to Figure 42 on page 371 and the "Simulation Notes," then read "Access
Method Support" to see how eMS handles these access methods.

Since eMS does not simulate the indexed sequential access method (ISAM), no OS
program that uses ISAM can execute under CMS. Therefore, no program can
write an indexed sequential data set on a eMS disk.

Handling Files that Reside on OS or DOS Disks

By simulating as macros, CMS can read, but not write or update, as sequential
and partitioned data sets that reside on as disks. Using the same simulated OS

370 VM/SP System Programmer's Guide

Macro SVC
Name Number

XDApI 00

WAIT 01

POST 02

EXIT /RETURN 03

GETMAIN 04

FREEMAIN 05

GETPOOL -

FREEPOOL -
LINK 06

XCTL 07

LOAD 08

DELETE 09

GETMAIN/ 10
FREEMAIN

TIME I 11

ABEND 13

SPIEl 14

RESTORE1 17

BLDL/FIND1 18

OPEN 19

CLOSE 20

STOWI 21

OPEN] 22

macros, CMS can read VSE sequential files that reside on DOS disks. The OS
macros handle the VSE data as if it were OS data. Thus, a VSE sequential file can
be used as input to an OS program running under CMS.

However, an OS sequential or partitioned data set that resides on an OS disk can
be written or updated only by an OS program running in a real OS machine.

CMS can execute programs that read and write VSAM files from OS programs
written in the VS BASIC, COBOL, PL/I, VS/ APL, and VS FORTRAN pro­
gramming languages. CMS also supports VSAM for use with DOS/VS
SORT /MERGE. This CMS support is based on the VSE/VSAM program product
and, therefore, the OS user is limited to those VSAM functions that are available
under VSE/VSAM.

Function

Read or write direct access volumes

Wait for an I/O completion

Post the I/O completion

Return from a called phase

Conditionally acquire user storage

Release user-acquired storage

Simulate as SVC 10

Simulate as SVC 10

Link control to another phase

Delete, then link control to another load phase

Read a phase into storage

Delete a loaded phase

Manipulate user free storage

Get the time of day

Terminate processing

Allow processing program to handle program interrupts.

Effective NOP

Manipulate simulated partitioned data files

Activate a data file

Deactivate a data file

Manipulate partitioned directories

Activate a data file

Figure 42 (Part 1 of 2). Simulated OS Supervisor Calls

as Macro Simulation Under eMS 371

Macro SVC
Name Number Function

TCLOSE 23 Temporarily deactivate a data file

DEVTYPEl 24 Get device-type physical characteristics
" TRKBAL 25 NOP

FEOV 31 Set forced EOV error code

WTO/WTORI 35 Communicate with the terminal

EXTRACTl 40 Effective NOP

IDENTIFYl 41 Add entry to loader table

ATTACHI 42 Effective LINK

CHApl 44 Effective NOP

TTIMERI 46 Access or cancel timer

STIMERI 47 Set timer

DEQl 48 Effective NOP

SNApl 51 Dump specified areas of storage

ENQl 56 Effective NOP

FREEDBUF 57 Release a free storage buffer

STAE 60 Allow processing program to decipher abend conditions

DETACHl 62 Effective Nap

CHKPTl 63 Effective Nap

RDJFCBl 64 Obtain information from FILEDEF command

SYNADI 68 Handle data set error conditions

BSpl 69 Back up a record on a tape or disk

GET/PUT - Access system-blocked data

READ/WRITE - Access system-record data

NOTE/POINT - Manage data set positioning

CHECK - Verify READ/WRITE completion

TGET/TPUT 93 Read or write a terminal line

TCLEARQ 94 Clear terminal input queue

STAX 96 Update a queue of CMTAXs

PGRLSEl 112 Release storage contents

Figure 42 (Part 2 of 2). Simulated OS Supervisor CaUs

Simulation Notes

lSimulated in the routine DMSSVT. Other simulation routines reside in the
nucleus.

Because CMS has its own file system and is a single-user system operating in a vir­
tual machine with virtual storage, there are certain restrictions for the simulated as
function in CMS. For example, HIARCHY options and options that are used only
by as multitasking systems are ignored by CMS.

372 VM/SP System Programmer's Guide

Due to the design of the CMS loader, an XCTL from the explicitly loaded phase,
followed by a LINK by succeeding phases, may cause unpredictable results.

Listed below are descriptions of all the as macro functions that are simulated by
CMS as seen by the programmer. Implementation and program results that differ
from those given in as Data Management Macro Instructions and as Supervisor
Services and Macro Instructions are stated. HIARCHY options and those used only
by as multitasking systems are ignored by CMS. Validity checking is not per­
formed within the simulation routines. The entry point name in LINK, XCTL, and
LOAD (SVC 6, 7, 8) must be a member name or alias in a TXTLIB directory
unless the COMPSWT is set to on. If the COMPSWT is on, SVC 6, 7, and 8 must
specify a module name. This switch is turned on and off by using the COMPSWT
macro. See the VM / SP CMS Command and Macro Reference for descriptions of
all CMS user macros.

Macro-SVC No. Differences in Implementation

XDAP-SVCO The TYPE option must be R or W; the V, I, and K options are
not supported. The BLKREF-ADDR must point to an item
number acquired by a NOTE macro. Other options associated
with V, I, or K are not supported.

WAIT -SVC 1 All options of WAIT are supported. The WAIT routine waits
for the completion bit to be set in the specified ECBs.

POST -SVC2 All optiot;ls of POST are supported. POST sets a completion
code and a completion bit in the specified ECB.

EXIT /RETURN-SVC3

GETMAIN-SVC4

Post ECB, execute end of task routines, release phase storage,
unchain and free latest request block, and restore registers
depending upon whether this is an exit or return from a linked
or an attached routine. Do not use EXIT/RETURN to exit
from an explicitly LOADed phase. If EXIT/RETURN is used
for this purpose, CMS issues abend code AOA.

All options of GETMAIN are supported except SP, BNDRY=,
and HIARCHY, which are ignored by CMS, and LC and LU,
which result in abnormal termination if used. GETMAIN gets
blocks of free storage.

FREEMAIN -SVC5

LINK-SVC6

All options of FREEMAIN are supported except SP, which is
ignored by eMS, and L, which result in abnormal termination if
used. FREEMAIN frees blocks of storage acquired by
GETMAIN.

The DCB and HIARCHY options are ignored by CMS. All
other options of LINK are supported. LINK loads the specified
program into storage (if necessary) and passes control to the
specified entry point.

as Macro Simulation Under eMS 373

XCTL-SVC7

LOAD-SVC8

The DCB and HIARCHY options are ignored by CMS. All
other options of XCTL are supported. XCTL loads the speci­
fied program into storage (if necessary) and passes control to
the specified entry point.

The DCB and HIARCHY options are ignored by CMS. All
other options of LOAD are supported. LOAD loads the speci­
fied program into storage (if necessary) and returns the address
of the specified entry point in register zero. If loading a subrou­
tine is required when SVC8 is issued, CMS searches directories
for a TXTLIB member containing the entry point or for a
TEXT file with a matching filename. An entry name in an
unloaded TEXT file will not be found unless the filename
matches the entry name. After the subroutine is loaded, CMS
attempts to resolve external references within the subroutine,
and may return another entry point address. To insure a correct
address in register zero, the user should bring such subroutines
into storage either by the CMS LOAD/INCLUDE commands
or by a VCON in the user program.

GETPOOL/FREEPOOL
All the options of GETPOOL and FREEPOOL are supported.
GETPOOL constructs a buffer pool and stores the address of a
buffer pool control block in the DCB. FREEPOOL frees a
buffer pool constructed by GETPOOL.

DELETE-SVC9 All the options of DELETE are supported. DELETE decreases
the use count by one and, if the result is zero, frees the corre­
sponding virtual storage. Code 4 is returned in register 15 if the
phase is not found.

GETMAIN /FREEMAIN -SVC 1 0
All the options of GETMAIN and FREEMAIN are supported
except SP and HIARCHY, which are ignored by CMS.

TIME-SVCll CMS supports only the DEC, BIN, ~U, and MIC parameters of
the TIME macro instruction. However, the time value that
CMS returns is only accurate to the nearest second, and is con­
verted to the proper unit.

ABEND-SVCI3 The completion code parameter is supported. The DUMP
parameter is not. If a ST AE request is outstanding, control is
given to the proper ST AE routine. If a ST AE routine is not
outstanding, a message indicating that an abend has occurred is
printed on the terminal along with the completion code.

SPIE-SVCI4 All the options of SPIE are supported. The SPIE routine speci­
fies interruption exit routines and program interruption types
that cause the exit routine to receive control.

RESTORE-SVCI7

BLDL-SVCI8

374 VM/SP System Programmer's Guide

The RESTORE routine in CMS is a NOP. It returns control to
the user.

BLDL is an effective NOP for LINKLIBs and JOBLIBs. For
TXTLIBs and MACLIBs, item numbers are filled in the TTR

FIND-SVC18

STOW-SVC21

field of the BLDL list; the K, Z, and user data fields, as
described in OS/VS Data Management Macro Instructions, are
set to zeros. The "alias" bit of the C field is supported, and the
remaining bits in the C field are set to zero.

All the options of FIND are supported. FIND sets the
read/write pointer to the item number of the specified member.

All the options of STOW are supported. The "alias" bit is sup­
ported, but the user data field is not stored in the MACLIB
directory since CMS MACLIBs do not contain user data fields.

OPEN/OPENJ-SVC19/22
All the options of OPEN and OPENJ are supported except for
the DISP, EXTEND, and RDBACK options, which are ignored.
OPEN creates a CMSCB (if necessary), completes the DCB,
and merges necessary fields of the DCB and CMSCB.

CLOSE/TCLOSE-SVC20/23
All the options of CLOSE and TCLOSE are supported except
for the DISP option, which is ignored. The DCB is restored to
its condition before OPEN. If the device type is disk, the file is
closed. If the device type is tape, the REREAD option is
treated as a REWIND. For TCLOSE, the REREAD option is
REWIND, followed by a forward space file for tapes with
standard labels.

DEVTYPE-SVC24

FEOV-SVC31

With the exception of the RPS option, which CMS ignores,
CMS accepts all options of the DEVTYPE macro instruction.
In supporting this macro instruction, CMS groups all devices of
a particular type into the same class. For example, all printers
are grouped into the printer class, all tape drives into the tape
drive class, and so forth. In response to the DEVTYPE macro
instruction, CMS provides the same device characteristics for all
devices in a particular class. Thus, all devices in a particular
class appear to be the same device type.

The device type characteristics CMS returns for each class are:

Class
Printer
Virtual reader
Console
Tape drive
DASD
Virtual punch
DUMMY
unassigned

De'lice Characteristics
1403
2540
1052
2400 (9 track)
2314
2540
2314
2314

Control is returned to CMS with an error code of 4 in register
15.

WTO/WTOR-SVC35
All options of WTO and WTOR are supported except those
options concerned with multiple console support. WTO displays

OS Macro Simulation Under eMS 375

a message at the operator's console. WTOR displays a message
at the operator's console, waits for a reply, moves the reply to
the specified area, sets a completion bit in the specified ECB,
and returns. There is no check made to determine if the opera­
tor provides a reply that is too long. The reply length parameter
of the WTOR macro instruction specifies the maximum length
of the reply. The WTOR macro instruction reads only this
amount of data.

EXTRACT -SVC40
The EXTRACT routine in CMS is essentially a NOP. The
user-provided answer area is set to zeros and control is returned
to the user with a return code of 4 in register 15.

IDENTIFY -SVC41

ATTACH-SVC42

CHAP-SVC44

The IDENTIFY routine in CMS adds a RPQUEST block to the
load request chain for the requested name and address.

All the options of ATTACH are supported in CMS as in OS
PCP. The following options are ignored by CMS: DCB,
LPMOD, DPMOD, HIARCHY, GSPV, GSPL, SHSPV,
SHSPL, SZERO, PURGE, ASYNCH, and TASKLIB.
ATTACH passes control to the routine specified, fills in an
ECB completion bit if an ECB is specified, passes control to an
exit routine if one is specified, and returns control to the instruc­
tion following the ATTACH.

Since CMS is not a multitasking system, a phase requested by
the ATTACH macro must return to CMS.

The CHAP routine in CMS is a NOP. It returns control to the
user.

TTIMER-SVC46 All the options of TTl MER are supported.

STIMER-SVC47 All options of STIMER are supported except for TASK and
WAIT. The TASK option is treated as if the REAL option had
been specified, and the WAIT option is treated as a NOP; it
returns control to the user. The maximum time interval allowed
is X'7FFFFFOO' timer units (or 15 hours, 32 minutes, and 4
seconds in decimal). If the time interval is greater than the max­
imum, it is set to the maximum.

DEQ-SVC48

SNAP-SVC51

376 VM/SP System Programmer's Guide

Note: If running in the CMSBATCH environment, issuing the
STIMER or TTIMER macro affects the CMSBATCH time
limit. Depending on the frequency, number, and duration of
STIMER and/or TTIMERS issued, the CMSBATCH limit may
never expire.

The DEQ routine in CMS is a NOP. It returns control to the
user.

Except for SDATA, PDATA, and DCB, all options of the
SNAP macro are processed normally. SDATA and PDATA are
ignored. Processing for the DCB option is as follows. The

ENQ-SVC56

DBC address specified with SNAP is used to verify that the file
associated with the DCB is open. If it is not open, control is
returned to the caller with a return code of 4. If the file is open,
then storage is dumped (unless the FCB indicates a DUMMY
device type). SNAP always dumps output to the printer. The
dump contains the PSW, the registers, and the storage specified.

The ENQ routine in CMS is a NOP. It returns control to the
user.

FREEDBUF-SVC57

STAE-SVC60

DETACH-SVC62

All the options of FREEDBUF are supported. FREEDBUF
returns a buffer to the buffer pool assigned to the specified
DCB.

All the options of ST AE are supported except for the XCTL
option, which is set to XCTL= YES; the PURGE option, which
is set to HALT; and the ASYNCH option, which is set to NO.
ST AE creates, overlays, or cancels a ST AE control block as
requested. ST AE retry is not supported.

The DETACH routine in CMS is a NOP. It returns control to
the user.

CHKPT-SVC63 The CHKPT routine is a NOP. It returns control to the user.

RDJFCB-SVC64 All the options of RDJFCB are supported. RDJFCB causes a
Job File Control Block (JFCB) to be read from a CMS Control
Block (CMSCB) into real storage for each data control block
specified. CMSCBs are created by FILEDEF commands.

Additional information regarding CMS 'OS Simulation' of
RDJFCB follows:

The DCBs specified in the RDJFCB PARAMETER LIST
are processed sequentially as they appear in the parameter
list.

On return to the caller, a return code of zero is always
placed in register 15. If an abend occurs, control is not
returned to the caller.

Abend 240 occurs if zero is specified as the address of the
area into which the JFCB is to be placed.

• Abend 240 occurs if a JFCB EXIT LIST ENTRY (Entry
type X'07') is not present in the DCB EXIT LIST for any
one of the DCBs specified in the RDJFCB PARAMETER
LIST.

If a DCB is encountered in the parameter list with zero
specified as the DCB EXIT LIST ('EXLST') address, the
RDJFCB immediately returns with return code zero in reg-

OS Macro Simulation Under eMS 377

ister 15. Except for this situation, all of the DCBs specified
in the RDJFCB PARAMETER LIST are processed, unless
an abend occurs.

For a DCB that is not open, a search is done for the corre­
sponding FILEDEF or DLBL. If one is not found, a test is
done to determine if a file exists with a filename of 'FILE',
a filetype of the DDNAME from DCB, and a filemode of
'AI '. If such a file does exist, then X'40' is placed in the
JFCB at displacement X'57' (FLAG 'JFCOLD IN FIELD
'JFCBIND2'). If such a file does not exist then X'CO'
(FLAG 'JFCNEW') will be in field 'JFCBIND2'.

For a file that is not open, but for which a DLBL has been
specified, X'08' is placed in the JFCB at displacement X'63'
(FIELD 'JFCDSORG' BYTE 2) to indicate that it is a
VSAM file.

SYNADAF-SVC68
All the options of SYNADAF are supported. SYNADAF ana­
lyzes an 110 error and creates an error message in a work buff­
er.

SYNADRLS-SVC68

BSP-SVC69

All the options of SYNADRLS are supported. SYNADRLS
frees the work area acquired by SYNAD and deletes the work
area from the save area chain.

All the options of BSP are supported. BSP decrements the item
pointer by one block.

TGET ITPUT -SVC93
TGET and TPUT operate as if EDIT and WAIT were coded.
TGET reads a terminal line. TPUT writes a terminal line.

TCLEARQ-SVC94

STAX-SVC96

PGRLSE-SVCI12

NOTE

POINT

378 VM/SP System Programmer's Guide

TCLEARQ in CMS clears the input terminal queue and returns
control to the user.

The only option of STAX that is supported is EXIT ADDRESS.
ST AX updates a queue of CMT AXEs each of which defines an
attention exit level.

Release all complete pages (4K bytes) associated with the area
of storage specified.

All the options of NOTE are supported. NOTE returns the rela­
tive position of the last block read or written.

All the options of POINT are supported. POINT causes the con­
trol program to start processing the next read or write operation
at the specified item number. The TTR field in the block
address is used as an item number.

Accen' Method Support

CHECK

DCB

Operand
B ALN
BLKSIZE
BUFCB
BUFL
BUFNO
DDNAME
DSORG
EODAD
EXLST
KEYLEN8
LIMCT
LRECL
MACRF
OPTCD
RECFM
SYNAD
NCP

All the options of CHECK are supported. CHECK tests the
110 operation for errors and exceptional conditions.

The following fields of a DCB may be specified, relative to the
particular access method indicated:

BDAM BPAM BSAM ~SAM
F,D F,D F,D ,D
n(number) n n n
a(address) a a a
n n n n
n n n n
s(symbol) s s s
DA PO PS PS

a a a
a a a a
n n
n

n n n
R,W R,W R,W,P G,P,L,M
A,E,F,R J J
F,V,U F,V,U F,V,B,S,A,M,U F,V,B,U,A,M,S
a a a a

n n

The manipulation of data is governed by an access method. To facilitate the exe­
cution of as Code under CMS, the processing program must see data as as would
present it. For instance, when the processors expect an access method to acquire
input source cards sequentially, CMS invokes specially written routines that simu­
late the OS sequential access method and pass data to the processors in the format
that the as access methods would have produced. Therefore, data appears in stor­
age as if it had been manipulated using an as access method. For example, block
descriptor words (BDW), buffer pool management, and variable records are
updated in storage as if an as access method had processed the data. The actual
writing to and reading from the 110 device is handled by CMS file management.
Note that the character string X'61FFFF61' is interpreted by CMS as an end of
file indicator.

The essential work of the volume table of contents (VTOC) and the data set con­
trol block (DSCB) is done in CMS by a master file directory (MFD) which updates
the disk contents, and a file status table (FST) (one for each data file). All disks
are formatted in physical blocks of 800 bytes.

CMS continues to update the as format, within its own format, on the auxiliary
device, for files whose filemode number is 4. That is, the block and record descrip­
tor words (BDW and RDW) are written along with the data. If a data set consists
of blocked records, the data is written to, and read from, the 110 device in physical
blocks, rather than logical records. CMS also simulates the specific methods of
manipulating data sets.

8 If an input data set is not a BDAM data set, zero is the only value that should be specified for
KEYLEN. This applies to the user exit lists as well as to the DCB macro instruction.

OS Macro Simulation Under CMS 379

When the OPEN macro instruction is executed, the CMS simulation of the OS
OPEN routine initializes the Data Control Block (DCB). The DCB fields are filled
in with information from the DCB macro instruction, the information specified on
the FILEDEF command, or, if the data set already exists, the data set label. How­
ever, if more than one source specifies information for a particular field, only one
source is used.

The DCB fields are filled in in this order:

1. The DCB macro instruction in your program.

2. The fields you had specified on the FILEDEF command.

3. The data set label if the data set already exists.

The DCB macro instruction takes precedence over the FILEDEF and the data set
label. Data set label information from an existing CMS file is used only when the
OPEN is for input or update, otherwise the OPEN routine erases the existing file.

You can modify any DCB field either before the data set is opened or through a
Data Control Block open exit. CMS supports only the Data Control Block exit of
the EXIT LIST (EXLST) options.

When the data set is closed, the Data Control Block is restored to its original condi­
tion. Fields that were merged in at OPEN time from the FILEDEF and the data
set label are cleared.

To accomplish this simulation, CMS supports certain essential macros for the fol­
lowing access methods:

• BDAM (direct) -- identifying a record by a key or by its relative posi­
tion within the data set.

• BP AM (partitioned) -- seeking a named member within data set.

• BSAM/QSAM (sequential) -- accessing a record in a sequence in relation to
preceding or following records.

• VSAM (direct or sequential) -- accessing a record sequentially or
directly by key or address.

Note: CMS support of OS VSAM files is based on
VSE/VSAM. Therefore, the OS user is restricted to those
functions available under VSE/VSAM. See the section "CMS
Support for OS and VSE/VSAM Functions" for details.

CMS also updates those portions of the OS control blocks that are needed by the
OS simulation routines to support a program during execution. Most of the simu­
lated supervisory OS control blocks are contained in the following two CMS con­
trol blocks:

380 VM/SP System Programmer's Guide

CMSCVT
simulates the communication vector table. Location 16 contains the
address of the CVT control section.

CMSCB
is allocated from system free storage whenever a FILEDEF command or
an OPEN (SVC 19) is issued for a data set. The CMS Control Block
consists of a file control block (FCB) for the data file, and partial simu­
lation of the job file control block (JFCB), input/output block (lOB),
and data extent block (DEB).

The data control block (DCB) and the data event control block (DECB) are used
by the access method simulation routines of CMS.

Note: The results may be unpredictable if two DCBs access the same data set at
the same time. The GET and PUT macros are not supported for use with spanned
records except in GET locate mode. READ, WRITE, and GET (in locate mode)
are supported for spanned records, provided the filemode number is 4 and the data
set is in physical sequential format.

GET (QSAM)
All the QSAM options of GET are supported. Substitute mode is handled
the same as move mode. If the DCBRECFM is FB, the filemode number is
4, and the last block is a short block, an EOF indicator (X'61FFFF61') must
be present in the last block after the last record. Issue an explicit CLOSE
prior to returning to CMS to obtain the last record when LOCATE mode is
used with PUT.

GET (QISAM)
QISAM is not supported in CMS.

PUT (QSAM)
All the QSAM options of PUT are supported. Substitute mode is handled
the same as move mode. If the DCBRECFM is FB, the filemode number is
4, and the last block is a short block, an EOF indicator is written in the last
block after the last record. When LOCATE mode is used with PUT, issue
an explicit CLOSE prior to returning to CMS to obtain the last record.

The GET and PUT macros are not supported for use with spanned records
except in GET locate mode. READ, WRITE, and GET (in locate mode) are
supported for spanned records, provided the filemode number is 4, and the
data set is physical sequential format. .

PUT (QISAM)
QISAM is not supported in CMS.

PUTX
PUTX support is provided only for data sets opened for QSAM-UPDATE
with simple buffering. READ/WRITE (BISAM) BISAM is not supported in
CMS.

READ/WRITE (BSAM and BPAM)
All the BSAM and BP AM options of READ and WRITE are supported
except for the SE option (read backwards). READ (Offset Read of Keyed
BDAM dataset) This type of READ is not supported because it is used only
f or spanned records.

READ/WRITE (BDAM)
All the BDAM and BSAM (create) options of READ and WRITE are sup­
ported except for the Rand RU options.

OS Macro Simulation Under eMS 381

BDAM Restrictions

When an input or output error occurs, do not depend on OS sense bytes. An error
code is supplied by CMS in the ECB in place of the sense bytes. These error codes
differ for various types of devices and their meaning can be found in VM / SP Sys­
tem Messages and Codes, under DMS message 120S.

The four methods of accessing BDAM records are:

1. Relative Block RRR

2. Relative Track TTR

3. Relative Track and Key TTK

4. Actual Address MBBCCHHR

The restrictions on these access methods are as follows:

Only the BDAM identifiers underlined above can be used to refer to records,
since CMS files have a two-byte record identifier.

CMS BDAM files are always created with 255 records on the first logical
track, and 256 records on all other logical tracks, regardless of the block size.
If BDAM methods 2, 3, or 4 are used and the RECFM is U or V, the BDAM
user must either write 255 records on the first track and 256 records on every
track thereafter, or he must not update the track indicator until a NO SPACE
FOUND message is returned on a write. For method 3 (WRITE ADD), this
message occurs when no more dummy records can be found on a WRITE
request. For methods 2 and 4, this does not occur, and the track indicator is
updated only when the record indicator reaches 256 and overflows into the
track indicator.

The user must create variable length BDAM files (in PL/I they are Regional 3
files) entirely under CMS. He must also specify, on the XTENT option of the
FILEDEF command, the exact number of records to be written. When reading
variable length BDAM files, the XTENT and KEYLEN information specified
for the file must duplicate the information specified when the file was created.
CMS does not support WRITE ADD of variable length BDAM files; that is,
the user cannot add additional records to the end of an already existing vari­
able length BDAM file.

Two files of the same filetype, both of which use keys, cannot be open at the
same time. If a program that is updating keys does not close the file it is updat­
ing for some reason, such as a system failure or another IPL operation, the ori­
ginal keys for files that are not fixed format are saved in a temporary file with
the same filetype and a filename of $KEYSA VE. To finish the update, run the
program again.

Variable length BDAM files must be created under CMS in their entirety, with
the XTENT option of FILEDEF specifying the exact number of records to be
written. When reading variable BDAM files, the XTENT and key length
information specified must duplicate that created at file creation time. CMS
does not support adding variable length records to BDAM files.

382 VM/SP System Programmer's Guide

Once a file is created using keys, additions to the file must not be made without
using keys and specifying the original length.

Note that there is limited support from the CMS file system for BDAM-created
files (sparse). Sparse files are manipulated with CMS commands but are not
treated as sparse files by most CMS commands. The number of records in the
FST are treated as a valid record number.

The number of records in the data set extent must be specified using the
FILEDEF command. The default size is 50 records.

The minimum LRECL for a CMS BDAM file with keys is eight bytes.

Reading OS Data Sets and VSE Files Using OS Macros

The ACCESS Command

CMS users can read as sequential and partitioned data sets that that reside on as
disks. The CMS MOVEFILE command can be used to manipulate those data sets,
and the as QSAM, BP AM macros can be executed under CMS to read them.

The CMS MOVEFILE command can be used to manipulate and read VSE sequen­
tial files that reside on DOS disks. as macros, however, can only be used to read
sequential files from DOS formatted CKD disks. as macros are not supported for
reading sequential files on DOS formatted FB-512 disks.

The following as Release 20.0 BSAM, BP AM, and QSAM macros can be used
with CMS to read as data sets and DOS files:

BLDL
BSP
CHECK
CLOSE
DEQ
DEVTYPE

ENQ
FIND
GET
NOTE
POINT
POST

RDJFCB
READ
SYNADAF
SYNADRLS
WAIT

CMS supports the following disk formats for the as and OS/VS sequential and
partitioned access methods:

Split cylinders
User labels
Track overflow
Alternate tracks

As in as, the CMS support of the BSP macro produces a return code of 4 when
attempting to backspace over a tape mark or when a beginning of an extent is
found on an as data set or a VSE file. If the data set or file contains split
cylinders, an attempt to backspace within an extent, resulting in a cylinder switch,
also produces a return code of 4.

Before CMS can read an as data set or VSE file that resides on a non-CMS disk,
you must issue the CMS ACCESS command to make the disk on which it resides
available to CMS. The format of the ACCESS command can be found in the
VMjSP CMS Command and Macro Reference. You must not specify options or
file identification when accessing an as or DOS disk.

as Macro Simulation Under eMS 383 .

The FILEDEF Command

You then issue the FILEDEF command to assign a CMS file identification to the
as data set or VSE file so that CMS can read it. The complete format of the
FILEDEF command is found in the VMISP CMS Command and Macro Reference.
If you are issuing a FILEDEF for a VSE file, note that thc as program that will
use the VSE file must have a DCB for it. For "ddname" in the FILEDEF com­
mand line, use the ddname in that DCB. With the DSN operand, enter the file-id
of the VSE file.

Sometimes, CMS issues the FILEDEF command for you. Although the CMS
MOVEFILE command, the supported CMS program interfaces, and the CMS
OPEN routine each issue a default FILEDEF, you should issue the FILEDEF
command yourself to ensure the appropriate file is defined.

After you have issued the ACCESS and FILEDEF commands for an as sequential
or partitioned data set or as sequential file, CMS commands (such as ASSEMBLE
and STATE) can refer to the as data set or VSE file just as if it were a CMS file.

Several other CMS commands can be used with as data sets and VSE files that do
not reside on CMS disks. See the VMISP CMS Command and Macro Reference
for a complete description of the CMS ACCESS, FILEDEF, LISTDS,
MOVEFILE, QUERY, RELEASE, and STATE commands.

For restrictions on reading as data sets and VSE files under CMS, see the VM I SP
Planning Guide and Reference.

The CMS FILEDEF command allows you to specify the 110 device and the file
characteristics to be used by a program at execution time. In conjunction with the
as simulation scheme, FILEDEF simulates the functions of the data definition
JCL statement.

FILEDEF may be used only with programs using as macros and functions. For
example:

filedef file 1 disk proga data a 1

After issuing this command, your program referring to FILE 1 would access
PROGA DATA on your A-disk.

If you wished to supply data from your terminal for FILEl, you could issue the
command:

filedef file 1 terminal

and enter the data for your program without recompiling.

fi tape in tap2 (recfm fb Irecl50 block 100 9track den 800)

After issuing this command, programs referring to T APEIN will access a tape at
virtual address 182. (Each tape unit in the CMS environment has a symbolic name
associated with it.) The tape must have been previously attached to the virtual
machine by the VM/SP operator.

384 VM/SP System Programmer's Guide

The AUXPROC Option of the FILEDEF Command

The AUXPROC option can only be used by a program call to FILEDEF and not
from the terminal. The CMS language interface programs use this feature for spe­
cial I/O handling of certain (utility) data sets.

The AUXPROC option, followed by a fullword address of an auxiliary processing
routine, allows that routine to receive control from DMSSEB before any device
I/O is performed. At the completion of its processing, the auxiliary routine returns
control to DMSSEB signaling whether or not I/O has been performed. If it has not
been done, DMSSEB performs the appropriate device I/O.

When control is received from DMSSEB, the general-purpose registers contain the
following information:

GPR2 = Data Control Block (DCB) address

GPR3 = Base register for DMSSEB

GPR8 = CMS OPSECT address

GPR11 = File Control Block (FCB) address

GPR14 = Return address in DMSSEB

GPR15 = Auxiliary processing routine address

all other registers = Work registers

The auxiliary processing routine must provide a save area in which to save the gen­
eral registers; this routine must also perform the save operation. DNISSEB does
not provide the address of a save area in general register 13, as is usually the case.
When control returns to DMSSEB, the general registers must be restored to their
original values. Control is returned to DMSSEB by branching to the address con­
tained in general register 14.

GPR15 is used by the auxiliary processing routine to inform to DMSSEB of the
action that has been or should be taken with the data block as follows:

Register
Content Action

GPR15=O No I/O performed by AUXPROC routine; DMSSEB will perform
I/O.

GPR15<O I/O performed by AUXPROC routine and error was encountered.
DMSSEB will take error action.

GPR15>O I/O performed by AUXPROC routine with residual count in
GPR15; DMSSEB returns normally.

GPR15=64K I/O performed by AUXPROC routine with zero residual count.

OS Macro Simulation Under eMS 385

VSE Support Under eMS

CMS supports interactive program development for VSE. This includes creating,
compiling, testing, debugging, and executing commercial application programs.
The VSE programs can be executed in a CMS virtual machine or in a CMS Batch
Facility virtual machine.

VSE files and libraries can be read under CMS. VSAM data sets can be read and
written under CMS.

The CMS/DOS environment (called CMS/DOS) provides many of the same facili­
ties that are available in VSE. However, CMS/DOS supports only those facilities
that are supported by a single (background) partition. The VSE facilities supported
by CMS/DOS are:

VSE linkage editor

Fetch support

VSE Supervisor and I/O macros

VSE Supervisor control block support

Transient area support

VSE/VSAM macros

This environment is entered each time the CMS SET DOS ON command is issued;
VSAM functions are available in CMS/DOS only if the SET DOS ON (VSAM)
command is issued. In the CMS/DOS environment, CMS supports many VSE
facilities, but does not support OS simulation. When you no longer need VSE sup­
port under CMS, you issue the SET DOS OFF command and VSE facilities are no
longer available.

CMS/DOS can execute programs that use the sequential access method (SAM)
and virtual storage access method (VSAM), and can access VSE libraries.

CMS/DOS cannot execute programs that have execution-time restrictions, such as
programs that use teleprocessing access methods or multitasking. DOS/VS
COBOL, DOS PL/I, DOS/VS RPG II, and Assembler language programs are exe­
cutable under CMS/DOS.

All of the CP and CMS online debugging and testing facilities (such as the CP
ADSTOP and STORE commands and the CMS DEBUG environment) are sup­
ported in the CMS/DOS environment. Also, CP disk error recording and recovery
is supported in CMS/DOS.

With its support of a CMS/DOS environment, CMS becomes an important tool for
VSE application program development. Because CMS/DOS is designed as a VSE
program development tool, it assumes in many cases that a VSE system exists, and
uses it. The following sections describe what is supported, and what is not.

386 VM/SP System Programmer's Guide

Hardware Devices Supported

CMS/DOS routines can read real DOS disks containing VSE data files and VSE
private and system libraries. This read support is limited to the following disks
supported by VSE:

IBM 2314 Direct Access Storage Facility
IBM 2319 Disk Storage
IBM 3310 Direct Access Storage
IBM 3330 Disk Storage, Models 1 and 2
IBM 3330 Disk Storage, Model 11
IBM 3340 Direct Access Storage Facility
IBM 3344 Direct Access Storage
IBM 3350 Direct Access Storage
IBM 3370 Direct Access Storage
IBM 3375 Direct Access Storage

The following devices, which are supported by VSE, are not supported by
CMS/DOS:

Card Readers: 1442, 2560P, 2560S, 2596, 3504, 5425P, and 5425S

Printers: 2560P, 2560S, 3203 Models 1 and 2, 3525,5203, 5425P, and 5425S

Disks: 2311

Also, CMS uses the CP spooling facilities and does not support dedicated unit
record devices. Each CMS virtual machine supports only one virtual console, one
reader, one punch, one printer, four tapes, and 26 disks. Programs that are exe­
cuted in CMS/DOS are limited to the number of devices supported by CMS.

eMS Support of VSE Functions

In addition to the CMS SET command used to invoke the CMS/DOS environment,
there are a number of CMS/DOS commands and CMS commands with special
CMS/DOS operands that provide CMS support of the following VSE functions:

Assignment of logical units to particular physical devices.

Associating VSE files with particular logical units.

VSE librarian services.

Compilation and testing of DOS/VS COBOL, DOS PL/I and RPGII
programs.

Execution of DOS/VS COBOL, DOS PL/I, and RPGII programs.

Figure 43 on page 388 summarizes these commands and operands. A detailed
description and command format can be found in the VM / SP CMS Command and
Macro Reference.

VSE Support Under eMS 387

Command Operand Comments

ASSGN Executable only in the C~1S/DOS en\! ; ,·-onment.
Assigns Ct'1S/DOS system or programmer logi-
cal units to a virtual device.

DlBl D8fines a VSE or VSA~1 ddname and relates
the ddname to a disk file.

DOSlIB Deletes, compacts, or lists information
about the phases in a Ci1S/DOS phase
library.

DOSlKED Executable only in the Cf'1S/DOS environmE:!nt.
link-edits Cr'1S text file, or object modules
from a VSE relocatuble library, and
places them in executable forms in a
Cr"S/DOS phase library.

DOSPlI Executable only in the:! C~lS/DOS environment.
Compiles DOS PL/I source programs.

DSERV Executable only in the CNS/DOS environm~nt.
Displays information about VSE core
image, relocatable, source statement, and
procedure and/or transient directories.

ESERV Executable only in the Ci·1S/DOS environment.
Displays, updates, puncnC!s, or prints
edited (E sublibrary) VSE source statement
books.

FCOBOL Executable only in th8 CMS/DOS environment.
Compiles DOS/VS COnOl source programs.

FETCH Ex(!cutable only in the C~1S/ DO S environment.
Fetches a CnS/DOS executable phase.

GENMOD OS Specifies the type of macro SllPPOI~t needed
DOS to execute a module. The All operand is
All intended for cns internal use.

GLOBAL DOSlIB The GLOBAL command can nOL.J specify CNS/DOS
phase libraries, as well as text and macro
libraries.

lISTIO Executable only in the C~lS/DOS environment.
Display information about Ci'iS/DOS system
and programmer logical units.

lOADMOD Checks that a module gC!nerated to
execute in a specific macro simulation
environment (Ci'lS/DOS or cr'jS) is in the
correct env i ronr,1ent.

Figure 43 (Part 1 of 2). Summary of Changes to CMS Commands to Support CMS/DOS

388 VM/SP System Programmer's Guide

Command Operund Comments

OPTION Executable only in the Cr'lS/DOS environment.
Sets compilGr options for DOS/VS COBOL.

PSERV Executable only in the Ci'1S/DOS environment.
CopiGS and displays procedures in the
VSE procedure libraries and/or spools the
procedures to the CMS virtual printer und/
or punch.

QUERY UPSI Executable only in the C~lS/DOS environment.
Displays current setting of Cr1S/DOS UPSI
byte.

OPTION Executable only in the Ct'lS/DOS environment.
Displuys Cf1S/DOS compiler options.

DOSLNCNT Displays the current number of
SYSlST lines per page.

DOS Displuys the current stutus (active or not
uctive) of C~1S/DOS .

DOSlIB Displays the names of ull CMS/DOS phase
libraries currently being searched for
executable phases.

LIBRARY Displays the names of all Ci1S·/DOS phase
libraries to be search2d~ in addition to
the text and mucro libruries.

RSERV Executable only in the CMS/DOS environment.
Copies and/or displays modul2s in a VSE
relocatable library. Output can also be
directed to the virtual printer or punch.

SET DOS Makes the C~1S/DOS environment active or not
active.

DOSLNCNT nn Specifies the number of SYSLST lines
per page.

UPSI Executable only in the Ct'lS/DOS environment.
Sets the Ct'lS/DOS UPS! byte.

SSERV Executable only in the CNS/DOS environment.
Copies or displays books from the VSE
source statement library. Output can also
be directed to the virtual printer or
punch.

Figure 43 (Part 2 of 2). Summary of Changes to CM~ Commands to Support CMS/DO~

Logical Unit Assignment

A logical unit is a symbolic name by which a program may refer to a real I/O
device without knowing the device address. Two examples of logical units are
SYSRDR and SYSPCH.

The VSE supervisor uses two control blocks, the logical unit block (LUB) and the
physical unit block (PUB), to map the symbolic name to the real device address.
An entry in the LUB table for a particular logical unit, such as SYSRDR, contains a
pointer to a PUB table entry. The PUB entry contains the address of the reader,
X'OOC'. Thus, all programs that read from the logical unit SYSRDR actually read
from the device at address X'OOC'.

VSE Support Under eMS 389

On a real VSE machine, logical unit assignments are made dynamically via the
ASSGN job statement or the ASSGN operator command. When using CMS/DOS,
the CMS ASSGN command performs a similar function.

The ASSGN command in CMS/DOS assigns (or unassigns) a system or program­
mer logical unit to (or from) a virtual I/O device. If a disk is being assigned to a
logical unit, the disk must have been previously accessed via the ACCESS com­
mand. As in VSE, you are not allowed to assign the system residence volume via
the ASSG N command.

SYSLOG is the default value assigned to the terminal when SET DOS ON is
issued.

The valid system logical units that can be assigned are:

SYSRDR
SYSIPT
SYSPCH
SYSLST

SYSLOG
SYSIN
SYSOUT
SYSSLB

SYSRLB
SYSCAT
SYSCLB

Other VSE system logical units cannot be assigned. The following VSE system log­
ical units cannot be assigned to a VSE formatted FB-S12 device:

SYSIN SYSIPT SYSRDR SYSLST SYSPCH

An error message is issued and the command terminated if any of the unsupported
system logical units are specified in the ASSGN command. If SYSIN is specified,
both the SYSIPT and SYSRDR LUB and PUB entries are filled in. If SYSOUT is
specified, both the SYSLST and SYSPCH LUB and PUB entries are filled in.

If you wish to use VSE private relocatable, core image or source statement
libraries, you must assign SYSRLB, SYSCLB or SYSSLB, respectively.

You can assign programmer units SYSOOO through SYS241 with the ASSGN com­
mand. This deviates from VSE where the number of programmer logical units
varies according to the number of partitions.

ASSGN creates a VSE Logical Unit Block (LUB) and Physical Unit Block (PUB)
entry if the device is unassigned or alters the existing LUB/PUB relationship if the
device is already assigned. ASSGN fills in a one-byte index in the LUB, which
points to the proper PUB entry. This PUB entry contains the channel, unit, and
device type information.

When a system or programmer logical unit is assigned to READER, PUNCH, or
PRINTER, the reference is to a spooled unit record device. Card reader and ter­
minal I/O data must not be blocked.

The ASSGN command is also used to ignore (IGN) or unassign (UA) alogical
unit. An I/O operation for a logical unit that is in IGN status is effectively a NOP.
When a logical unit is unassigned, its pointer to the PUB table is removed.

Compiler Input/Output Assignments

The compilers supported by CMS/DOS expect input/output to be assigned to the
following devices:

390 VM/SP System Programmer's Guide

Interrogating I/O Assignments

SYSIN/SYSIPT must be assigned to the device where the input source file
resides. Valid device types are reader, tape, or disk.

The user should assign the following logical units to any of the indicated device
types:

SYSPCH to tape, punch, disk, or IGN

SYSLST to tape, printer, disk, or IGN

SYSLOG to terminal

SYSOO 1, SYS002, and SYS006 to disk.

SYS003-SYS005 to tape or disk.

The maximum number of work files is six for DOS/VS COBOL Compiler
(FCOBOL) and two for DOS PL/I Optimizing Compiler (DOSPLI).

You must assign SYSIN/SYSIPT. If it is unassigned at compilation time, an error
message is issued and the FCOBOL or DOSPLI command is terminated.

If SYSPCH or SYSLST are unassigned at compilation time, the FCOBOL or
DOSPLI EXEC file directs output to the disk where SYSIN resides if SYSIN is
assigned to a read/write eMS disk. Otherwise, output is directed to the CMS
read/write disk with the most read/write space. If SYSLOG is unassigned, it is
assigned to the terminal. If SYSOO 1 through SYSnnn are unassigned, output is
directed to the CMS disk with the most read/write space.

The current I/O assignments may be displayed on the terminal by entering the
CMS/DOS LISTIO command. You can selectively display the system and/or pro­
grammer logical units as a group or as a specific unit. With the EXEC option of
the LISTIO command you can create a disk file containing the list of assignments.

VSE Supervisor and I/O Macros Supported by eMS/DOS

Supervisor Macros

CMS/DOS supports the VSE Supervisor macros and the SAM and VSAM I/O
macros to the extent necessary to execute the DOS/VS COBOL Compiler, the
DOS PL/I Optimizing Compiler, and DOS/VS RPG II Compiler under
CMS/DOS. CMS/DOS supports VSE Supervisor macros described in the publica­
tion VSE Macro Reference.

Since CMS is a single-user system executing in a virtual machine with virtual stor­
age, VSE operations, such as multitasking, that cannot be simulated in CMS are
ignored.

The following information deals with the type of support that CMS/DOS provides
in the simulation of VSE Supervisor and Sequential Access Method I/O macros.
For a discussion of VSAM macros, see the section "CMS Support for OS and
VSE/VSAM Functions."

CMS/DOS supports physical 10CS macros and control program function macros
for VSE. Figure 44 on page 392 lists the physical IOCS macros and describes their

VSE Support Under eMS 391

Macro

CCB (command control
block)

IORB (Input/Output
Request Block)

EXCB (execute channel
program)

WAIT

SECTV AL (sector
value)

OPEN/OPENR

LBRET (label processing
return)

FEOV (forced end of
volume)

SEOV (system end of
volume)

CLOSE/CLOSER

support. Figure 45 on page 392 lists the control program function macros and their
support. Refer to VM / SP System Logic and Problem Determination Guide, Volume
2 for details of the macros' operation.

Support

The CCB is generated.

Supported for DASD I/O.

The REAL operand is not supported; all other operands are
supported.

Supported. Issued whenever your program requires an I/O
operation (started by an EXCP macro) to be completed before
execution of program continues.

Supported for VSAM. See Figure 50

Supported. Activates a data file.

Not supported.

Not supported.

Not supported.

Supported. Deactivates a data file.

Figure 44. PhysicallOCS Macros Supported by CMS/DOS

Function/ SVC. No.
Macro Dec Hex Support

EXCP 0 0 Used to read from CMS or DOS/OS formatted
Disks.

FETCH 1 1 Used to bring a problem program phase into user
storage and to start execution of the phase if the
phase was found. Operand SYS= YES is not sup-
ported.

FETCH 2 2 Used to bring a $$B-transient phase into the CMS
transient area (or if the phase is in the CMSDOS
segment, not to load it), and start execution of the
phase if the phase was found. Operand SYS= YES
is not supported.

FORCE DEQUEUE 3 3 Not supported, see note 2.

Figure 45 (Part 1 of 9). SVC Support Routines and Their Operation

392 VM/SP System Programmer's Guide

Function/ SVC. No.
I\lacro Dec Hex Support

LOAD 4 4 Used to bring a problem program phase into user
storage, and return the caller the entry point
address of the phase just loaded. Operand
SYS= YES is not supported.

MVCOM 5 5 Provides the user with a means of altering posi-
tions 12 through 23 of the partition communi-
cations region (BGCOM).

CANCEL 6 6 Cancels a VSE session either by a VSE program
request, or by request from any of the CMS rou-
tines handling CMS/DOS.

WAIT 7 7 Used to wait on a CCB, IORB, ECB, or TECB.
(Note that CMS/DOS does not support ECB's or
TECB's). In the case of CCB's, they are always
posted by the DMSXCP routine before returning
to the caller.

The WAIT support under CMS/DOS will effec-
tively be a branch to the CMS/DOS POST
routine.

CONTROL 8 8 Temporarily return control from a $$B-transient to
the problem program.

LBRET 9 9 Return to the $$B-transient after an SVC 8 was
issued to give control to the problem program.

SET TIMER 10 A No operation, successful return code of 0 is given
in R15. See note 1.

TRANS. RETURN 11 B Return from a $$B-transient to the calling problem
program.

JOB CONTROL 12 C Resets flags to 0 in the linkage control byte in
'AND' BGCOM (communication region). If Rl = 0,

SVC 12 has another meaning. Bit 5 of JCSW4
(CONREG byte 59) is turned off.,

JC FLAGS 13 D Not supported, see note 2.

EOJ 14 E Normally terminates execution of a problem pro-
gram.

SYSIO 15 F Not supported, see note 2.

PC STXIT 16 10 Establish or terminate linkage to a user's program
check routine.

PC EXIT 17 11 Used to provide supervisory support for the EXIT
macro. SVC 17 provides a return from the user's
PC routine to the next sequential instruction in the
program that was interrupted due to a program
check.

Figure 45 (Part 2 of 9). SVC Support Routines and Their Operation

VSE Support Under eMS 393

Function/ SVC. No.
Macro Dec Hex Support

IT STXIT 18 12 No operation, successful return code of 0 is given
in R15. See note l.

IT EXIT 19 13 Not supported, see note 2.

OC STIXIT 20 14 No operation, successful return code of 0 is given
in R15. See note l.

OCEXIT 21 15 Not supported, see note 2.

SIEZE 22 16 No operation, successful return code of 0 is given
in R15. See note l.

LOAD HEADER 23 17 Not supported, see note 2.

SETIME 24 18 No operation, successful return code of 0 is given
in R15. See note l.

HALT I/O 25 19 Not supported, see note 2.

26 lA Validate address limits. The upper address must
be specified in general register 2 and the lower
address must be specified in general register 1.

TP HALT I/O 27 IB Not supported, see note 2.

MREXIT 28 Ie Not supported, see note 2.

WAITM 29 ID I Not supported, see note 2.

QWAIT 30 IE Not supported, see note 2.

QPOST 31 IF Not supported, see note 2.

32 20 Reserved

COMRG 33 21 U sed to provide the caller with the address of the
partition communications region.

DMSDOS provides the caller with the address of
the partition communications region, in the user's
register 1.

GETIME 34 22 Provides support for the GETIME macro. SVC
34 updates the date field in the communications
region. The GMT operand is not supported.

HOLD 35 23 No operation, successful return code of 0 is given
in R15. See note l.

FREE 36 24 No operation, successful return code of 0 is given
in R15. See note l.

AB STXIT 37 25 Establish or terminate linkage to a user's abnormal
termination routine. Supported for
OPINION=DUMP or NODUMP.

ATTACH 38 26 Not supported, see note 2.

DETACH 39 27 Not supported, see note 2.

Figure 45 (Part 3 of 9). SVC Support Routines and Their Operation

394 VM/SP System Programmer's Guide

Function/ SVC. No.
Macro Dec Hex Support

POST 40 28 Used to post an ECB, IORB, TECB, or CCB.
Byte 2, bit 0 of the specified control block are
.turned 'on' by DMSDOS.

DEQ 41 29 No operation, successful return code of 0 is given
in R15. See note 1.

ENQ 422A No operation, successful return code of 0 is given
in R15. See note 1.

43 2B Reserved

UNIT CHECKS 442C Not supported, see note 2.

EMULATOR INTERF. 45 2D Not supported, see note 2.

OLTEP 46 2E Not s1;lpported, see note 2.

WAITF 47 2F Not supported, see note 2.

CRT TRANS 48 30 Not supported, see note 2.

CHANNEL PROG. 49 31 Not supported, see note 2.

LIOCS DIAG. 50 32 Issued by a logical IOCS routine when the LIOCS
is called to perform an operation for which the
LIOCS was not generated to perform.

The error message "unsupported function in a
LIOCS routine" is issued, and the session is then
terminated.

RETURN HEADER 51 33 Not supported, see note 2.

TTIMER 52 34 No operation, successful return code of 0 is given
in R15. See note 1. RO is also cleared.

VTAMEXIT 53 35 Not supported, see note 2.

FREEREAL 54 36 Not supported, see note 2.

GETREAL 55 37 Not supported, see note 2.

POWER 56 38 Not supported, see note 2.

POWER 57 39 Not supported, see note 2.

SUPVR. INTERF. 58 3A Not supported, see note 2.

EO] INTERF. 59 3B Not supported, see note 2.

GETADR 60 3C Not supported, see note 2.

GETVIS 61 3D Used to obtain free storage for scratch use or for
obtaining an area into which a relocatable program
may be loaded. The PAGE, POOL, and SV A
GETVIS options are ignored.

FREEVIS 62 3E Used to return the free storage obtained via an
earlier GETVIS call.

Figure 45 (Part 4 of 9). SVC Support Routines and Their Operation

VSE Support Under eMS 395

Function/ SVC. No.
Macro Dec Hex Support

USE 63 3F The USE/RELEASE function has been replaced
by SVC 110 (LOCK/UNLOCK) for serially con-
trolling system resources. All SVC 63 and 64
requests are mapped into SVC 110 requests
respectively. Return codes previously associated
with USE/RELEASE under CMS/DOS are main-
tained.

RELEASE 64 40 Reference SVC 63.

CDLOAD 65 41 Used to load a relocatable phase into storage,
unless the program has already been loaded.

RUNMODE 66 42 Used by a problem program to find out if the pro-
gram is running in real or virtual mode. The call-
er's register 0 is zeroed to indicate that the
program is running in virtual mode.

PFIX 67 43 No operation, successful return code of 0 is given
in R15. See note 1.

PFREE 68 44 No operation, successful return code of 0 is given
in R15. See note 1.

REALAD 69 45 Not supported, see note 2.

VIRTAD 70 46 Not supported, see note 2.

SETPFA 71 47 No operation, successful return code of 0 is given
in R15. See note 1.

GETCBUF/FREECBUF 72 48 Not supported, see note 2.

SETAPP 73 49 Not supported, see note 2.

PAGE FIX 744A Not supported, see note 2.

SECTVAL 75 4B Used by I/O routines to obtain a sector number
for a 3330, 3330-11, 3340, or 3350 device.

SYSREC 76 4C Not supported, see note 2.

TRANSCCW 77 4D Not supported, see note 2.

CHAP 78 4E Not supported, see note 2.

SYNCH 79 4F Not supported, see note 2.

SETT 80 50 Not supponed, see note 2.

TESTT 81 51 Not supported, see note 2.

LINKAGE 82 52 Not supported, see note 2.

ALLOCATE 83 53 Not supported, see note 2.

SET LIMIT 84 54 Not supported, see note 2.

Figure 45 (Part 5 of 9). SVC Support Routines and Their Operation

396 VM/SP System Programmer's Guide

Function/ SVC. No.
Macro Dec Hex Support

RELPAGE 85 55 Provides support for the RELP AG macro. At
entry register 1 points to a list of 8-byte area.
Each entry contains the beginning address and the
length-l of an area to be released. A non-zero
byte following an entry indicates the end of the
list. An area is released only if it contains at least
a full CP page (4k bytes). Pages are released
when the virtual machine calls CP via DIAGNOSE
code X'lO'. On return R15 holds return code as
follows:
R 15 = 0 all areas have been released
R15 = 2 one or more negative area

lengths were specified
R 15 = 4 one or more pages to be

released were outside the user
storage area

R 15 = 16 at least one entry contains a
beginning address outside the
user storage area.

FCEPGOUT 86 56 No operation, successful return code of 0 is given
in R15. See note 1.

PAGEIN 87 57 No operation, successful return code of 0 is given
in R15. See note 1.

TPIN 88 58 Not supported, see note 2.

TPOUT 89 59 Not supported, see note 2.

PUTACCT 90 5A Not supported, see note 2.

POWER 91 5B Not supported, see note 2.

XECBTAB 92 5C Not supported, see note 2.

XPOST 93 5D Not supported, see note 2.

XWAIT 94 5E Not supported, see note 2.

AB EXIT 95 5F Exit from abnormal task termination routine and
continue the task.

TT EXIT 96 60 Not supported, see note 2.

TT STXIT 97 61 Not supported, see note 2.

EXTRACT 98 62 Support for EXTRACT macro of VSE. The caller
requests PUB information, CPUID, or storage
boundary information. Register 1 on entry points
to a parameter list. Output is placed in an area
provided by caller.

Figure 45 (Part 6 of 9). SVC Support Routines and Their Operation

VSE Support Under eMS 397

Function/ SVC. No.
Macro Dec Hex Support

GETVCE 99 63 Support for GETVCE macro. Caller requests
device information about specific DASD. Infor-
mation is returned in an output area pointed to
from the parameter list. Register 1 contains a
pointer to the parameter list on entry.

100 64 Reserved

MODVCE 101 65 No operation, successful return code of 0 is given
in R15. See note 1.

102 66 Reserved.

SYSFIL 103 67 Not supported, see note 2.

EXTENT 104 68 No operation, successful return code of 0 is given
in R15. See note 1.

SUBSID 105 69 SUBSID .. the 'INQUIRY' function is supported
for the supervisor sub-system. Information
returned is described by the SUPS SID control
block. The SUB SID 'NOTIFY' and 'REMOVE'
functions are not supported.

LINKAGE 106 6A Not supported, see note 2.

Figure 45 (Part 7 of 9). SVC Support Routines and Their Operation

398 VM!SP System Programmer's Guide

Function/ SVC. No.
Macro Dec Hex Support

TASK INTERF. 107 6B Provides macro interface support for system
information retrieval. The parameters supported
are:
GETFLD:

Field=ppsavar returns problem program
save area address.

=savar returns current save area
address.

=maintask returns main task TID in R 1.

=aclose return in R1 1 if in process,
o if not.

=pcexit returns the pcexit routine
address and save area in RO
and R1 respectively. If the
exit routine is currently
active, bit 0 in RO is set ON.
If no exit is defined, it
returns a 0 in both RO and
Rl.

MODFLD:

=vsamopen set bit X'08' in tab tabflags
byte if R1.., =0

=aclose set bit X' 10' in tab tab flags
byte if R1.., =0

The MODFLD requests for fields CNCLALL and
OPENSV A are treated as a NOP with a return
code of O.

All other GETFLD/MODFLD requests as well as
all other SVC 107 macro calls are unsupported.
The error message DMSGMF121S is issued and
the request cancelled. See note 2.

DATA SECURE 108 6C Not supported, see note 2.

PAGESTAT 109 6D Not supported, see note 2.

Figure 45 (Part 8 of 9). SVC Support Routines and Their Operation

VSE Support Under eMS 399

Function/ SVC. No.
Macro Dec Hex Support

LOCK/UNLOCK 110 6E Used to control access to resources. Access is
maintained in either a 'shared' or 'exclusive' con-
trol environment. Counters are maintained as well
as the type of control for each resource in a table
(LOCKTAB) built in free storage when DOS is
SET ON. All entries not unlocked by the program
are cleared at both normal and abnormal
end-of-job.
All requests for resource control are passed to
SVC 110 through the DTL macro (Define the
Lock). SVC 63 requests are mapped into a dum-
my DTL and processed by SVC 110.

Figure 45 (Part 9 of 9). SVC Support Routines and Their Operation

Notes:

1. No operation:
In each case, register 15 is cleared to simulate successful operation, and all oth­
er registers are returned unchanged, unless otherwise noted.

2. Not supported:
For unsupported SVCs, an error message is given, and the SVC is treated as a
"cancel" .

Sequential Access Method -- Declarative Macros

CMS/DOS supports the following declarative macros:

DTFCD - Types X'02' and X'04'
DTFCN - Types X'03'
DTFDI - Types X'33'
DTFMT - Types X'10', X'll', X'12', and X'14'
DTFPR - Types X'08'
DTFSD - Types X'20'

The CDMOD, DIMOD, MTMOD, and PRMOD, macros generate the logical
IOCS routines that correspond with the declarative macros. For files on disk, the
logical IOCS routines used during program execution reside in the CMSBAM
DCSS and are not generated within the program. The operands that CMS/DOS
supports for the DTF are also supported for the xxMOD macro. In addition,
CMS/DOS supports three internal macros that the COBOL and PL/I compilers
require: DTFCP (types X'31' and X'32'), CPMOD, and DTFSL.

DTFCD Macro -- Defines the File for a Card Reader

CMS/DOS does not support the ASOCFLE, FUNC, TYPEFILE=CMBND, and
OUBLKSZ operands of the DTFCD macro. CMS/DOS ignores the SSELECT
operand and any mode other than MODE=E. Figure 46 describes the DTFCD
macro operands and their support under CMS/DOS. An asterisk (*) in the status
column indicates that CMS/DOS support differs from VSE support.

400 VM!SP System Programmer's Guide

Operand Status Description

DEV ADDR=SYSxxx Symbolic unit for reader-punch used for this file.

IOAREA 1 = xxxxxxxx * Name of the first I/O area.

ASOCFLE=xxxxxxxx * Not supported.

BLKSIZE=nnn * Length of one I/O area, in bytes. If omitted, 80 is
assumed. If CTLCHR= YES is specified, BLKSIZE
defaults to 81.

CONTROL= YES CNTRL macro used for this file. Omit CTLCHR for
this file. Does not apply to 2501.

CRDERR=RETRY * Retry if punching error is detected. Applies to 2520
and 2540 only. However, this situation is never
encountered under CMS/DOS because hardware errors
are not passed to the LIOCS module.

CTLCHR=xxx (YES or ASA). Data records have control character.
YES for S/370 character set; ASA for American
National Standards Institute character set. Omit CON-
TROL for this file.

DEVICE=nnnn * (2501,2520,2540,3505, or 3525). If omitted, 2540 is
default.

EOF ADDR=xxxxxxxx Name of your end-of-file routine.

ERROPT =xxxxxx * IGNORE, SKIP, or name. Applies to 3505 and 3525
only.

FUNC=xxx * Not supported.

IOAREA2=xxxxxxxx * If two output areas are used, name of second area.

10REG=(nn) Register number if two I/O areas were used and GET
or PUT does not specify a work area. Omit WORKA.

MODE=xx * Only MODE=E is supported.

MODNAME=xxxxxxxx N arne of the logic module that is used with the DTF
table to process the file.

OUBLKSZ=nn * Not supported.

RDONLY=YES * Causes a read-only module to be generated.

RECFORM =xxxxxx (FIXUNB, VARUNB, UNDEF). If omitted, FIXUNB
is default.

RECSIZE= (nn) * Register number if RECFORM=UNDEF.

SEPASMB=YES DTFCD is to be assembled separately.

SSELECT=n * Ignored.

TYPEFLE= * Input or output.

WORKA=YES I/O records are processed in work areas instead of the
I/O areas.

Figure 46. CMS/DOS Support of DTFCD Macro

VSE Support Under eMS 401

DTFCN Macro - Define the File for a Console

Operand

DEV ADDR=SYSxxx

IOAREA 1 = xxxxxxxx

BLKSIZE=nnn

INPSIZE=nnn

MODN AME =xxxxxxxx

RECFORM=xxxxxx

RECSIZE= (nn)

TYPEFLE= xxxxxx

WORKA=YES

CMS/DOS supports all of the operands of the DTFCN macro. Figure 47 describes
the operands of the DTFCN macro and their support under CMS/DOS. The sta­
tus column is blank because the CMS/DOS and VSE support of DTFCN are the
same.

Status Description

Symbolic unit for the console used for this file.

Name of I/O area.

Length in bytes of I/O area (for PUTR macro usage,
length of output part of I/O area). If
RECFORM=UNDEF, maximum is 256. If omitted,
80 is default.

Length in bytes for input part of I/O area for PUTR
macro usage.

Logic module name for this DTF. If omitted, IOCS
generates a standard name.

The logic module is generated as part of the DTF.

(FIXUNB or UNDEF). If omitted, FIXUNB is
default.

Register number if RECFORM=UNDEF. General
registers 2 through 12, enclosed in parentheses.

(INPUT, OUTPUT, or CMBND). Input processes
both input and output. CMBND must be specified
for PUTR macro usage. If omitted, INPUT is default.

GET or PUT specifies work area.

Figure 47. CMS/DOS Support of DTFCN macro

DTFDI MACRO - Define the File for Device Independence for System Logical Units

DEV ADDR=SYSxxx

IOAREA 1 =xxxxxxxx

CMS/DOS supports most operands of the DTFDI macro. Figure 48 describes the
operands of the DTFDI macro and their support under CMS/DOS. An asterisk
(*) in the status column indicates that CMS/DOS support differs from VSE sup­
port.

(SYSIPT, SYSLST, SYSPCH, or SYSRDR). System
logical unit. CMS/DOS issues an error message if
the logical unit specified on the DTF does not match
the logical unit specified on the corresponding DLBL
command.

N arne of the first I/O area.

Figure 48 (Part 1 of 2). CMS/DOS Support of DTFDI Macro

402 VM/SP System Programmer's Guide

CISIZE=n * This operand specifies the control interval size for a
DOS formatted FB-S12 device assigned to a nonsys-
tern file logical unit. This operand is ignored for
count-key-data devices and CMS formatted disks.

EOFADDR=xxxxxxxx Name of your end-of-file routine.

FBA=YES This operand is not required and is ignored if speci-
fied.

ERROPT =xxxxxxxx (IGNORE, SKIP, or name of your error routine).
Prevents termination on errors.

IOAREA2= xxxxxxxx If two I/O areas are used, name of second area.

IOREG2= (nn) Register number. If omitted and two I/O areas are
used, register 2 is default. General registers 2
through 12, enclosed in parentheses.

MODNAME=xxxxxxxx DIMOD name for this DTF. If omitted, IOCS gener-
ates a standard name. This operand is ignored with
DASD. The SAM OPEN routines within the
CMSBAM DCSS always load an IBM supplied logic
module and link it to the DTF.

RDONLY=YES Generates a read-only module. Requires a module
save area for each routine using the module.

RECSIZE=nnn Number of characters in record. Default values: 121
(SYSLST), 81 (SYSPCH), 80 (other).

SEPASMB=YES DTFDI to be assembled separately.

TRC=YES * Not supported.

WLRERR=xxxxxxxx Name of your wrong-length record routine.

Figure 48 (Part 2 of 2). eMS/DOS Support of DTFDI Macro

'DTFMT Macro -- Define the File for a Magnetic Tape

CMS/DOS does not support the ASCII, BUFOFF, HDRINFO, LENCHK, and
READ=BACK operands of the DTFMT macro. Tape I/O operations are limited
to reading in the forward direction.

You may use the FILABL operand in the DTFMT macro to specify that you have a
standard tape label file, a nonstandard tape label file, or an unlabeled tape. The
type of tape label processing depends on the option selected. See "Tape Labels in
CMS" in the VM / SP eMS User's Guide for a complete description of tape label
processing in CMS/DOS.

Figure 49 describes the DTFMT macro operands and their support under
CMS/DOS. An asterisk (*) in the status column indicates that CMS/DOS support
differs from VSE support.

VSE Support Under eMS 403

Operand Status Description

BLKSIZE=nnnnn Length of one I/O area in bytes (maximum =
32,767.

DEV ADDR=SYSxxx Symbolic unit for tape drive used for this file.

EOFADDR=xxxxxxxx Name of your end-of-file routine.

FILABL=xxxx (NO, STD, or NSTD). If NSTD specified, include
LABADDR.

10AREA 1 =xxxxxxxx Name of first I/O area.

ASCII=YES * Not supported.

BUFOFF=nn * Not supported.

CKPTREC=YES Checkpoint records are interspersed with input data
records. 10CS bypasses checkpoint records.

ERREXT=YES Additional errors and ERET are desired.

ERROPT=xxxxxxxx (IGNORE, SKIP, or name of error routine). Pre-
vents job termination on error records.

HDRINFO= YES * Not supported.

IOAREA2=xxxxxxxx If two I/O areas are used, the name of the second
area.

10REG=(nn) Register number. Use only if GET or PUT does not
specify a work area or if two I/O areas are used.
Omit WORKA. General registers 2 through 12,
enclosed in parentheses.

LABADDR=xxxxxxxx Name of your label routine if FILABL=NSTD, or if
FILABL=STD and user-standard labels are proc-
essed.

LENCHK=YES * Not supported.

MODNAME=xxxxxxxx Name of MTMOD logic module for this DTF. If
omitted, 10CS generates standard name.

NOTEPNT =xxxxxx (YES or POINTS). YES if NOTE, POINTW,
POINTR, or POINTS macro used. POINTS if only
POINTS macro used.

RDONLY=YES Generate read-only module. Requires a module save
area for each routine using the module.

READ = xxxxxxx * CMS/DOS only supports READ=FORWARD.

RECFORM=xxxxxx (FIXUNB, FIXBLK, V ARUNB, V ARBLK,
SPNUNB, SPNBLK, or UNDEF). For work files
use FIXUNB or UNDEF. If omitted, FIXUNB is
assumed.

Figure 49 (Part 1 of 2). eMS/DOS Support of DTFMT Macro

404 VM/SP System Programmer's Guide

Operand Status Description

RECSIZE=nnnn If RECFORM=FIXBLK, number of characters in
the record. If RECFORM= UNDEF, register num-
ber. Not required for other records. General regis-
ters 2 through 12, enclosed in parentheses.

REWIND=xxxxxx (UNLOAD or NORWD). Unload on CLOSE or
end-of-volume, or prevent rewinding. If omitted,
rewind only.

SEPASMB=YES DTFMT is to be assembled separately.

TPMARK=NO Prevent writing a tapemark ahead of data records if
FILABL=NSTD or NO.

TYPEFLE=xxxxxx (INPUT, OUTPUT, or WORK). If omitted, INPUT
is default.

V ARBLD= (nn) Register number, if RECFORM= VARBLK and
records are built in the output area. General registers
2 through 12 are enclosed in parentheses.

WLRERR= xxxxxxxx Name of wrong-length record routine.

WORKA=YES GET or PUT specifies a work area. Omit IOREG.

Figure 49 (Part 2 of 2). CMS/DOS Support of DTFMT Macro

DTFPR Macro - Define the File for a Printer

Operand

DEV ADDR=SYSxxx

IOAREA 1 =xxxxxxxx

ASOCFLE=xxxxxxxx

BLKSIZE=nnn

CONTROL= YES

CTLCHR=xxx

CMS/DOS does not support the ASOCFLE, ERROPT=IGNORE, and FUNC
operands of the DTFPR macro. Figure 50 describes the operands of the DTFPR
macro and their support under CMS/DOS. An asterisk (*) in the status column
indicates that CMS/DOS support differs from VSE support.

Status Description

Symbolic unit for the printer used for this file.

Name for the first output area.

* Not supported.

* Length of one output area, in bytes. If omitted, 121
is default.

CNTRL macro used for this file. Omit CTLCHR for
this file.

(YES or ASA). Data records have control character.
YES for S/370 character set; ASA for American
National Standards Institute character set. Omit
CONTROL for this file.

Figure 50 (Part 1 of 2). CMS/DOS Support of DTFPR Macro

VSE Support Under eMS 405

Operand Status Description

DEVICE=nnnn * (1403, 1443, 3203, or 3211). If omitted, 1403 is
default.

ERROPT =xxxxxxxx * RETRY or the name of your error routine for 3211.
Not allowed for other devices. IGNORE is not sup-
ported.

FUNC=xxxx * Not supported.

IOAREA2= xxxxxxxx If two output areas are used, name of second area.

IOREG=(nn) Register number; if two output areas used and GET
or PUT does not specify a work area. Omit
WORKA.

MODNAME= xxxxxxxx Name of PRMOD logic module for this DTF. If
omitted, IOCS generates standard name.

PRINTOV=YES PRTOV macro used for this file.

RDONLY=YES Generate a read-only module. Requires a module
save area for each routine using the module.

RECFORM=xxxxxx (FIXUNB, VARUNB, or UNDEF). If omitted,
FIXUNB is default.

RECSIZE= (nn) Register number if RECFORM= UNDEF.

SEPASMB=YES DTFPR is to be assembled separately.

STLIST=YES Use 1403 selective tape listing feature.

TRC=YES * Not supported.

UCS=xxx (ON) process data checks. (OFF) ignores data
checks. Only for printers with the UCS feature or
3203 or 3211. If omitted, OFF is default.

WORKA=YES PUT specifies work area. Omit IOREG.

Figure 50 (Part 2 of 2). CMS/DOS Support of DTFPR Macro

DTFSD Macro - Define the File for a Sequential DASD

Operand

BLKSIZE=nnnn

CMS/DOS does not support the FEOVD, HOLD, and LABADDR operands of
the DTFSD macro. Figure 51 describes the operands of the DTFSD macro and
their support under CMS/DOS. An asterisk (*) in the status column indicates that
CMS/DOS support differs from VSE support.

Status Description

Length of one I/O area, in bytes.

Figure 51 (Part 1 of 4). CMS/DOS Support of DTFSD Macro

406 VM/SP System Programmer's Guide

Operand Status Description

CISIZE=n * This operand specifies the control interval size for a
DOS formatted FB-512 device assigned to a nonsys-
tern file logical unit. This operand is ignored for
count-key-data devices and CMS formatted disks.

EOFADDR=xxxxxxxx Name of your end-of-file routine.

IOAREA 1 =xxxxxxxx Name of first I/O area.

CONTROL= YES This operand is ignored. CONTROL= YES is always
included.

DELETFL=NO * If DELETFL=NO is specified, the work file is not
erased. Otherwise, when the work file is closed,
CMS/DOS erases it.

DEV ADDR=SYSnnn * Symbolic unit. This operand is optional. If
DEVADDR is not specified, all I/O requests are
directed to the logical unit identified on the corre-
sponding CMS/DOS DLBL command.

If a valid logical unit is specified with the
DEV ADDR operand of the DTF and a different, but
also valid, logical unit is specified on the DLBL
command, the unit specified on the DLBL command
overrides the unit specified in the DTF. However,
CMS/DOS issues an error message if a valid logical
unit is specified in the DTF and no logical unit is
specified on the corresponding DLBL command.

DEVICE=nnnn * This operand is ignored. The actual device type is
determined by OPEN.

ERREXT=YES Additional error facilities and ERET are desired.
This operand is ignored. ERREXT= YES is always
included.

ERROPT=xxxxxxxx (IGNORE, SKIP, or name of error routine.) Pre-
vents job termination on error records. Do not use
SKIP for output files.

FEOVD=YES * Not supported.

HOLD=YES * Not supported. HOLD= YES is specified for DTFSD
update or work files to provide a track hold
capability. However, the CMS/DOS open routine
sets the track hold bit off and bypasses track hold
processing.

Figure 51 (Part 2 of 4). eMS/DOS Support of DTFSD Macro

VSE Support Under eMS 407

Operand Status Description

IOAREA2=xxxxxxxx If two 110 areas are used, name of second area.

IOREG=(nn) Register number. Use only if GET or PUT docs not
specify work area or if two 110 areas are used. Omit
WORKA.

LABADDR=xxxxxxxx * Not supported.

MODNAME=xxxxxxxx This operand is not required. If specified, it is
ignored. The SAM OPEN routines within the
CMSBAM DCSS always load an IBM supplied logic
module and link it to the DTF.

NOTEPNT=xxxxxxxx Indicates that NOTE, POINTR, POINTW, and
POINTS are used. This operand is ignored.
NOTEPNT=YES is always included.

RDONLY=YES This operand is not required and is ignored if speci-
fied. RDONL Y = YES is always included.

PWRITE=YES * For a DOS formatted FB-512 disk, this operand
specifies that for output operations a physical write
occurs for every logical block. This operand is
ignored for count-key-data devices and CMS format-
ted disks. DOS formatted FB-512 disks are not sup-
ported for output.

RECFORM=xxxxxx (FIXUNB, FIXBLK, V ARUNB, SPNUNB,
SPNBLK, V ARBLK, or UNDEF). If omitted,
FIXUNB is assumed.

For work files use FIXUNB or UNDEF. Although
work files contain fixed-length unblocked records,
the CMS file system handles work UNDEF files as
variable-Ierigth record files. If you specify FIXBLK,
V ARBLK, or UNDEF when creating a CMS file on
a CMS CMS disk, CMS writes the file in
variable-length format. The LISTFILE command
would show the file as V format. If you specify
FIXUNB when creating a CMS file on a CMS disk,
CMS writes the file in fixed-length format.

RECSIZE=nnnnn If RECFORM=FIXBLK, number of characters in
record. If RECFORM=SPNUNB, SPNBLK, or
UNDEF, register number. Not required for other
records.

SEPASMB=YES DTFSD is to be assembled separately.

Figure 51 (Part 3 of 4). eMS/DOS Support of DTFSD Macro

408 VM/SP System Programmer's Guide

Operand Status Description

TRUNCS=YES RECFORM=FIXBLK or TRUNC macro used for
this file.

TYPEFLE =xxxxxx (INPUT, OUTPUT, or WORK). If omitted, INPUT
is assumed.

UPDATE=YES h~put file or work file is to be updated.

V ARBLD= (nn) Register number if RECFORM= V ARBLK and
records are built in the output area. Omit if
WORKA=YES.

VERIFY=YES Check disk records after they are written.

WLRERR=xxxxxxxx Name of your wrong-length record routine.

WORKA=YES GET or PUT specifies work area. Omit IOREG.
Required for RECFORM=SPNUNB or SPNBLK.

Figure 51 (Part 4 of 4). eMS/DOS Support of DTFSD Macro

Sequential Access Method -- Imperative Macros

VSE Transient Routines

CMS/DOS supports the following imperative macros:

Initialization macros: OPEN and OPENR

Processing macros: GET, PUT, PUTR, RELSE, TRUNC, CNTRL, ERET,
and PRTOV.

Note: No code is generated for the CHNG macro.

Work file macros for tape and disk: READ, WRITE, CHECK, NOTE,
POINTR, POINTW, and POINTS.

Completion macros: CLOSE and CLOSER

CMS/DOS supports workfiles containing fixed-length unblocked records and
undefined records. Disk work files are supported as single volume, single pack
files. Normal extents and split extents are both supported.

CMS/DOS simulates the VSE transients that are fetched by macro expansion or by
the LIOCS modules. These simulation routines contain enough of the transient's
function to support the DOS/VS COBOL compiler and DOS PL/I Optimizing
compiler. These routines that simulate the VSE transients execute in the
CMS/DOS discontiguous shared segment.

The following VSE transients are simulated by CMS/DOS.

VSE Support Under eMS 409

Transient Function under eMS/DOS

$$BOPEN Fetched by the VSE OPEN macro expansion or by the VSE LIOCS
modules. $$BOPEN performs DTF initialization, dependent upon the
device type, to ready the file for I/O operations. At entry to
$$BOPEN, register 0 points to a list of fullword addresses containing
a pointer to the DTFs. $$BOPEN checks for supported DTF types,
and initializes DTFs in accordance with the device type. In the case of
tape data files, default DLBLs with the NOCHANGE option are
issued. (The CMS STATE command is issued to verify the existence
of the input files on disk.)

If a VSAM file is being opened (Byte 20 = X'28' in the ACB), control
is passed to the VSAM OPEN routine. When opening DTFSD files
for output or DTFCP /DTFDI disk files for output, if a file exists on a
CMS disk with the same filename, filetype, and filemode, the file is
erased. If a SA!vl disk file is being opened, DTF initialization is per­
formed by involving the simulated VSE OPEN routines that reside in
the CMSBAM DCSS.

$$BOPNLB Fetched by COBOL Compiler Phase 00 to read the appropriate sys­
tem or private source statement library directory record and to deter­
mine whether or not active members are present for the library.

$$BCLOSE Fetched by VSE CLOSE macro expansion to deactivate a file.

$$BDUMP Fetched when an abnormal termination condition is encountered.
Control is not passed to a STXIT routine. CMS/DOS performs a CP
dump to a virtual printer. The routine is canceled.

$$BOPENR Fetched by a VSE OPENR macro expansion. The function of
$$BOPENR is to relocate all DTF table address constants from the
assembled addresses to executable storage addresses. At entry to
$$BOPENR, register 0 points to an assembled address constant fol­
lowed by a list of DTF addresses tables that require address modifica­
tion.

$$BOPNR3 Fetched by $$BOPENR to relocate all DTF table address constants
for unit record DTFs.

$$BOPNR2 Fetched by $$BOPNR3 to relocate all DTF table address constants
for DTFDI or DTFCP.

$$BOSVLT Fetched via SVC 2 by the simulated VSE OPEN/CLOSE routines in
the CMSBAM DCSS. $$BOSVL T performs clean-up and transition
functions upon completion of processing by the simulated VSE rou­
tines in the CMSBAM DCSS.

EXCP Support in CMS/DOS

CMS/DOS simulates the EXCP (execute channel program) routines to the extent
necessary to support the LIOCS routines described in the preceding section, "VSE
Supervisor and I/O Macros Supported by CMS/DOS."

Because CMS/DOS uses the VSE LIOCS routines, it must simulate all I/O at the
EXCP level. The EXCP simulation routines convert all the I/O that is in the CCW

410 VM/SP System Programmer's Guide

format to CMS physical I/O requests. That is, CMS macros (such as
RDBUF/WRBUF, CARDRD/CARDPH, PRINTIO, and WAITRD/TYPLIN)
replace the CCW strings. If CMS/DOS is reading from DOS disks, I/O requests
are handled via the DIAGNOSE interface.

When an I/O operation completes, CMS/DOS posts the CCB or IORB with the
CMS return code. Partial RPS (rotational position sensing) support is available for
I/O operations to CMS disks because CMS uses RPS in its channel programs.
However, RPS is not supported when real DOS disks are read.

VSE Supervisor Control Blocks Simulated by CMS/DOS

CMS/DOS supports VSE program development and execution for a single parti­
tion: the background partition. Because CMS/DOS does not support foreground
partitions, it also does not simulate the associated control blocks and fields for
foreground partitions. CMS/DOS does simulate the following VSE supervisor con­
trol blocks:

ABT AB--Abnormal Termination Option Table
BBOX--Boundary Box
BGCOM--Background Partition Communication Region
EXCPW--Work area for module DMSXCP
FICL--First in Class
LUB--Logical Unit Block
NICL--Next in Class
PCT AB--Program Check Option Table
PIBTAB--Program Information Table
PIB2TAB--Program Information Block Table Extension
PUB--Physical Unit Block
PUBOWNER--Physical Unit Block Ownership Table
SYSCOM--System Communication Region
TCB--Task Control Block
LOCT AB--LOCK/UNLOCK Resource Table
DIB--Disk Information Block

For detailed descriptions of CMS/DOS control blocks, refer to the VAI/ SP Data
Areas and Control B lock Logic, Volume 2.

User Considerations and Responsibilities

A critical design assumption of CMS/DOS is that installations that use CMS/DOS
for VSE program development also use and have available a VSE system. There­
fore, if you want to use CMS/DOS for VSE program development, you should
order and install a VSE system. Also, if you want to use the DOS/VS COBOL
and DOS PL/I Optimizing compilers under CMS/DOS, you must order them and
install them on your VSE system.

You should consider several other facts if you plan to use CMS/DOS. The follow­
ing sections describe some of the user considerations and responsibilities.

VSE System Generation and Updating Considerations

The CMS/DOS support in CMS may use a real VSE system pack. CMS/DOS
provides the necessary path and then fetches VSE logical transients and system
routines directly as well as the DOS/VS COBOL and DOS PL/I Optimizing com-

. pilers directly from the VSE system or private core image libraries.

VSE Support Under eMS 411

VM/SP Directory Entries

It is your responsibility to order a VSE system and then generate it. Also, if you
plan to use DOS compilers, you must order the current level of the DOS/VS
COBOL compiler and DOS PL/I Optimizing compiler and install them on the
same VSE system.

When you install the compilers on the VSE system, you must link-edit all the com­
piler modules as relocatable phases using the following linkage editor control
statement:

ACTION REL

You can place the link-edited phases in either the system or the private core image
library.

When you later invoke the compilers from CMS/DOS, the library (system or pri­
vate) containing the compiler phases must be identified to CMS. You identify all
the system libraries to CMS by coding the filemode letter that corresponds to that
VSE system disk on the SET DOS ON command when you invoke the CMS/DOS
environment. You identify a private library by coding ASSGN and DLBL com­
mands that describe it. The VSE system and private disks must be linked to your
virtual machine and accessed before you issue the commands to identify them for
CMS.

CMS/DOS has no effect on the update procedures for VSE, COBOL, or DOS
PL/I. Normal update procedures for applying IBM-distributed coding changes
apply.

For detailed information on how to generate VM/SP with CMS/DOS, refer to the
publication VM / SP Planning Guide and Reference and the VM / SP Installation
Guide.

The VSE system and private libraries are accessed in read-only mode under
CMS/DOS. If more than one CMS virtual machine is using the CMS/DOS envi­
ronments you should update the VM/SP directory entries so that the VSE system
residence volume and the VSE private libraries are shared by all the CMS/DOS
users.

The VM/SP directory entryfor one of the CMS virtual machines should contain
the MDISK statements defining the VSE volumes. The VM/SP directory entries
for the other CMS/DOS users should contain LINK statements.

For example, assume the VSE system libraries are on cylinders 0 through 149 of a
3330 volume labeled DOSRES. And, assume the VSE private libraries are on cyl­
inders 0 through 99 of a 2314 volume labeled DOSPRI. Then, one CMS machine
(for example, DOSUSER1) would have the MDISK statements in its directory
entry.

USER DOSUSER1 password 320K 2M G

MDISK 331 3330 0 150 DOSRES R rpass
MDISK 231 2314 0 100 DOSPRI R rpass

All the other CMS/DOS users would have links to these disks. For example

412 VM/SP System Programmer's Guide

LINK DOSUSER1 331 331 R rpass
LINK DOSUSER1 231 231 R rpass

When the VSE System Must Be Online

Performance

Most of what you do in the CMS/DOS environment for VSE program develop­
ment requires that the VSE system pack and/or the VSE private libraries be avail­
able to CMS/DOS. In general, you need these VSE volumes whenever:

You use the DOS/VS COBOL compiler or DOS/PLI Optimizing compiler.
The compilers are executed from the system or private core image libraries.

Your source programs contain COPY, LIBRARY, %INCLUDE, or CBL
statements. These statements copy books from your system or the private
source statement library.

You invoke one of the library programs: DSERV, RSERV, SSERV, PSERV,
or ESERV.

You execute VSE programs that use LIOCS modules. CMS/DOS fetches most
of the LIOCS routines for non-disk files directly from VSE system or private
libraries.

A VSE system pack is usable when it is:

Defined for your virtual machine
Accessed
Specified, by mode letter, on the SET DOS ON command.

A VSE private library is usable when it is:

Defined for your virtual machine
Accessed
Identified via ASSGN and DLBL commands.

Although you can use the CMS/DOS library services to place the DOS/VS
COBOL compiler, DOS PL/I compiler, and ESERV program in a CMS DOSLIB,
it is recommended that you do not use this method with 800-byte format CMS
disks. CMS/DOS can fetch these directly from the VSE system or private libraries
faster than from a DOSLIB on 800-byte format CMS disks. Fetch time from
DOSLIBs on 512, 1K-, 2K-, or 4K-byte format CMS disks is approximately equiv­
alent to that of VSE system or private libraries.

Execution Considerations and Restrictions

The CMS/DOS environment does not support the execution of VSE programs that
use:

• Teleprocessing or indexed sequential (ISAM) access methods. CMS/DOS
supports only the sequential (SAM) and virtual storage (VSAM) access meth­
ods.

Multitasking. CMS/DOS supports only a single partition, the background par­
tition.

VSE Support Under eMS 413

CMS/DOS can be executed in a CMS Batch Facility virtual machine. If any of the
VSE programs that are executed in the batch machine read data from the card
reader, you must ensure that the end-of-data indication is recognized. Be sure that
(1) the program checks for end of data and (2) a /* record follows the"last data
record.

If there is an error in the way you handle end of data, the VSE program could read
the entire batch input stream as its own data. The result is that jobs sent to the
batch machine are never executed and the VSE program reads records that are not
part of its input file.

414 VM/SP System Programmer's Guide

eMS Support for OS and VSE/VSAM Functions

CMS supports interactive program development for OS and VSE programs using
VSAM. CMS supports VSAM macros for OS and VSE programs. The complete
set of VSE/VSAM macros and options and a subset of OS/VSAM macros are
supporte.d.

CMS also supports Access Method Services to manipulate OS and VSE VSAM and
SAM data sets.

Under CMS, VSAM data sets can span up to 10 volumes. CMS does not support
VSAM data set sharing; however, CMS already supports the sharing of minidisks
or full pack minidisks.

VSAM data sets created in CMS are not in the CMS file format. Therefore, CMS
commands cu~rently used to manipulate CMS files cannot be used for VSAM data
sets that are read or written in CMS. A VSAM data set created in CMS (using
VSE/VSAM) has a file format that is compatible with OS VSAM data sets as long
as the physical record size of the data set is .5K, lK, 2K, or 4K. For complete
information on OS/VS VSAM and VSE/VSAM data set compatibility, see the
VSE/VSAM General Information Manual.

Because VSAM data sets in CMS are not a part of the CMS file system, CMS file
size, record length, and minidisk size restrictions do not apply. The VSAM data
sets are manipulated with Access Method Services programs executed under CMS,
instead of with the CMS file system commands. Also, all VSAM minidisks and full
packs used in CMS must be initialized with the Device Support Facility; the CMS
FORMAT command must not be used.

CMS supports VSAM control blocks with the GENCB, MODCB, TESTCB, and
SHOWCB macros.

In its support of VSAM data sets, CMS uses RPS (rotational position sensing)
wherever possible. CMS does not use RPS for 2314/2319 devices, or for 3340
devices that do not have the feature.

Hardware Devices Supported

CMS support of VSAM data sets is based on VSE/VSAM. Except for the 3380,
only disks supported by VSE can be used for VSAM data sets in CMS. These
disks are:

I ·

IBM 2314 Direct Access Storage Facility
IBM 2319 Disk Storage
IBM 3310 Direct Access Storage
IBM 3330 Disk Storage, Models 1 and 2
IBM 3330 Disk Storage, Model 11
IBM 3340 Direct Access Storage Facility
IBM 3344 Direct Access Storage
IBM 3350 Direct Access Storage
IBM 3370 Direct Access Storage
IBM 3375 Direct Access Storage
IBM 3380 Direct Access Storage (OS/VSAM environment of CMS only).

eMS Support for as and VSE/VSAM Functions 415

CMS disk files used as input to or output from Access Method Services may reside
on any disk supported by CMS.

VSE Supervisor Macros and Logical Transients Support for VSAM

CMS supports VSAM for as and VSE users. However, the CMS support of
VSAM is based on VSE/VSAM. VSE supervisor macros required by VSE/VSAM
are supported by CMS. See Figure 45 on page 392 for a complete list of supervisor
macros supported.

CMS distributes the VSE transients that are needed in the VSAM support. Thus,
as users do not need to have the VSE system pack online when they are compiling
and executing VSAM programs.

CMS uses all of the VSE B-transients except those that build and release extent
blocks. The extent block is not supported in CMS and, thus, neither are the
B-transients that control extent blocks.

The CMSDOS shared segment contains the B-transients that are simulated for VSE
support in CMS. The B-transients that pertain only to VSAM are included in the
VSAM saved segment. Other VSE routines required by VSE/VSAM are con­
tained in the CMSBAM shared segment. This includes the common VTOC han­
dler routines, SAM data management, and the VSAM look-aside function.

Data Set Compatibility Considerations

CMS can read and update VSAM data sets that were created under VSE or
OS/VS. In addition, VSAM data sets created under CMS can be read and updated
by VSE or OS/VS as long as the physical record size of the data set is .5K, lK,
2K, or 4K.

However, if you perform allocation on a minidisk in CMS, you cannot use that
minidisk in an as virtual machine in any manner that causes further allocation.
VSE/VSAM (and, thus, CMS) ignores the format-5, free space, DSCB, on VSAM
disks when it allocates extents. If allocation later occurs in an as machine, as
attempts to create a format-5 DSCB. However, the format-5 DSCB created by as
does not correctly reflect the free space on the minidisk. In CMS, allocation occurs
whenever data spaces or unique data sets are defined. Space is released whenever
data spaces, catalogs, and unique data spaces are deleted.

For complete information on OS/VS VSAM and VSE/VSAM data set compatibili­
ty, see the VSE/VSAM General Information.

ISAM Interface Program (lIP)

CMS does not support the VSAM ISAM Interface Program (lIP). Thus, any pro­
gram that creates and accesses ISAM (indexed sequential access method) data sets
cannot be used to access VSAM key sequential data sets. There is one exception
to this restriction. If you have (1) as PL/I programs that have files declared as
ENV(INDEXED) and (2) if the library routines detect that the data set being
accessed is a VSAM data set, your programs will execute VSAM I/O requests.

416 VM/SP System Programmer's Guide

Saving the eMS System

Only named systems can be saved. The NAMESYS macro must be used to name a
system. A discussion on creating a named system is found under "Generating
Saved Systems" in "Part 1: Control Program (CP)."

The DMKSNT module must have been configured (by coding the NAMESYS mac­
ro) when CP was generated. The DMKSNT module contains the system name, size
of the system, and its real disk location. The CMS system may be saved by entering
the command "SA VESYS name" as the first command after the IPL command
(that is, after the CMS version identification is displayed), where "name" is the
name to be assigned to the saved system.

The CMS Sand Y -disks (if the Y -disk is defined) must be mounted and attached to
the virtual machine, creating the saved system before the SA VESYS command is
issued. This ensures that CMS file directories are saved correctly.

Any updates to the CMS S-disk or Y -disk requires resaving the CMS system.

The IPLing of the saved CMS system is similar to IPLing by device except that the
directories for the Sand Y -disk are part of the nucleus instead of being built in
DMSFREE storage.

In VM/SP, the CMS system is designed to be used as a saved system. Its location
may be modified by an installation for its particular requirements, but should be
shared among CMS users.

Saved System Restrictions for eMS

There are several coding restrictions that must be imposed on CMS if it is to run as
a saved system.

If the key specified in the CAW for a SIO instruction is zero, then the data area for
input may not cross the boundary between two pages with different storage keys.

If you intend to modify a shared CMS system, be sure that all code that is to be
shared resides in the shared segments of the CMS Nucleus (suggested location:
X'lDOOOO' to X'200000'). You can use the USERSECT area of DMSNUC to
contain nonshared instructions.

CP does not permit a user of a shared system to set storage keys via the Set Storage
Key (SSK) instruction. Thus, one user cannot prevent other users from accessing
shared storage.

Saving the eMS System 417

The eMS Batch Facility

The CMS Batch Facility is a VM/SP programming facility that runs under the
CMS subsystcm. It allows VM/SP uscrs to run their jobs in batch mode by send­
ing jobs either from their virtual machines or through the real (system) card reader
to a virtual machine dedicated to running batch jobs. The CMS Batch Facility then
executes these jobs, freeing user machines for other uses.

If both CMS Batch Facility and the Remote Spooling Communications Subsystem
(RSCS) are being executed under the same VM/SP system, job input streams can
be transmitted to the batch facility from remote stations via communication lines.
Also, the output of the batch processing can be transmitted back to the remote sta­
tion.

The CMS Batch Facility virtual machine is generated and controlled on a userid
dedicated to execution of jobs in batch mode. The system operator generates the
"batch machine" by loading (via IPL) the CMS subsystem, and then issuing the
CMSBATCH command. The CMSBATCH module loads the DMSBTP TEXT S2
file, which is the actual batch processor. After each job is executed, the batch facil­
ity IPLs itself, thereby providing a continuously processing batch machine. The
batch processor IPLs itself by using the P ARM option of the CP IPL command,
followed by a character string that CMS recognizes as peculiar to a batch virtual
machine performing its IPL. Jobs are sent to the batch machine's virtual card read­
er from users' terminals and executed sequentially. When there are no jobs waiting
for execution, the CMS Batch Facility remains in a wait state ready to execute a
user job. See the VM / SP Operator's Guide for more information about controlling
the batch machine.

The CMS Batch Facility is particularly useful for compute-bound jobs such as
assemblies and compilations and for execution of large user programs, since inter­
active users can continue working at their terminals while their time-consuming
jobs are run in another virtual machine.

The system programmer controls the batch facility virtual machine environment by
resetting the CMS Batch Facility machine's system limits, by writing routines that
handle special installation input to the batch facility, and by writing EXEC proce­
dures that make the CMS Batch Facility facility easier to use.

Inst~lIling the eMS Batch Machine

Before using the CMS Batch Facility, an entry must exist in the users directory.
This entry specifies the userid of the CMS Batch machine.

Following is an example of a user directory entry granting authorization to use the
CMS Batch Facility.

418 VM/SP System Programmer's Guide

USER CMSBATCH BATCH 1M 2M BG
ACCOUNT 13 SYSTEM
OPTION ACCT
IPL CMS
CONSOLE 009 3215
SPOOL OOC 2540 READER *
SPOOL OOD 2540 PUNCH A
SPOOL OOE 1403 A
LINK MAINT 190 190 RR
MDISK 195 3330 xxx 010 I paswrd I W 'rdpswd ' 'wrtpswd ' 'allpswd '

Consult VM I SP Planning Guide and Reference the proper coding of the directory
macro parameters.

Note: There is no 191 MDISK for the CMS Batch Machine.

In order to have the CMS Batch Machine autologed, you should have the following
entry in the autolog virtual machine's PROFILE EXEC:

AUTOLOG CMSBATCH BATCH CMSBATCH

Otherwise, the operator logs on to the CMS Batch Machine and enters
"CMSBATCH" followed by "DISCONNECT" (if the CMS Batch Machine is to
run in DISCONNECT status).

Note: Refer to VM I SP CP Command Reference for General User's for more
information on the AUTOLOG command.

Resetting the eMS Batch Facility System Limits

Each job running under the CMS Batch Facility is limited by default to the maxi­
mum value of 32,767 seconds of virtual processor time, 32,767 punched cards out­
put, and 32,767 printed lines of output. You can reset these limits by modifying
the BATLIMIT MACRO file, which is found in the CMSLIB macro library, and by
reassembling DMSBTP.

Writing Routines To Handle Special Installation Input

The CMS Batch Facility can handle user-specified control language and special
installation batch facility 110B control cards. These handling mechanisms are built
into the system in the form of user exits from batch; you are responsible for gener­
ating two routines to make use of them. These routines must be named
BATEXIT1 and BATEXIT2, respectively, and must have a filetype of TEXT and a
filemode number of 2 if placed on the system disk or an extension of the system
disk. (See the VM I SP CMS User's Guide for information on how to write and use
CMS Batch Facility control cards.) The routines you write are responsible for sav­
ing registers, including general register 12, which saves address ability for the batch
facility. These routines (if made available on the system disk) are included with the
CMS Batch Facility each time it is loaded.

BATEXITl: Processing User-Specified Control Language

BATEXIT 1 is an entry point provided so that users may write their own routine to
check non-CMS control statements. For example, a routine could be written to
scan for the OS job control language needed to compile, link edit, and execute a
FORTRAN job. BATEXIT1 receives control after each read from the CMS Batch
Facility virtual card reader is issued. General register 1 contains the address of the

The CMS Batch Facility 419

batch facility read buffer, which contains the card image to be executed by the
batch facility. This enables BATEXITI to scan each card it receives as input for
the type of control information you specify.

If, after the card is processed by BA TEXIT 1, general register 15 contains a nonze­
ro return code, the CMS Batch Facility flushes the card and reads the next card. If
a zero is returned in general register 15, the batch facility continues processing by
passing the card to CMS for execution.

BATEXIT2: Processing the Batch Facility / JOB Control Card

BA TEXIT2 is an entry point provided so that users can code their own routine to
use the 110B card for additional information. BATEXIT2 receives control before
the VM/SP routine used to process the batch facility 110B card begins its process­
ing, but after CMS has scanned the 110B card and built the parameter list. When
BATEXIT2 is processing, general register 1 points to the CMS parameter list buff­
er. This buffer is a series of 8-byte entries, one for each item on the 110B card. If
the return code found in general register 15 resulting from BATEXIT2 processing
of this card is nonzero, an error message is generated and the job is flushed. If gen­
eral register 15 contains a zero, normal checking is done for a valid userid and the
existence of an account number. Finally, execution of this job begins.

EXEC Procedures for the Batch Facility Virtual Machine

You can control the CMS Batch Facility virtual machine using EXEC procedures.
For example, you can use an EXEC:

To produce the proper sequence of CP I CMS commands for users who do not
know CMS commands and controls.

To provide the sequence of commands needed to execute the most common
jobs (assemblies and compilations) in a particular installation.

For information on how to use the EXEC facility to control the batch facility virtu­
al machine, see the VMjSP eMS User's Guide.

Data Security under the Batch Facility

After each job, the CMS Batch Facility loads (via IPL) itself, destroying all nucleus
data and work areas. All disks to which links were established during the previous
job are detached.

At the beginning of each job, the batch facility work disk is accessed and then
immediately erased, preventing the current user job from accessing files that might
remain from the previous job. Because of this, execution of the PROFILE EXEC
is disabled for the CMS Batch Facility machine. You may, however, create an
EXEC procedure called BATPROF EXEC and store it on any system disk to be
used instead of the ordinary PROFILE EXEC. The batch facility then executes
this EXEC at each job initialization time.

Improved IPL Performance Using a Saved System

Since the CMS Batch processor goes through an IPL procedure after each user job,
an installation may experience a more efficient IPL procedure by using a saved
CMS system when processing batch jobs.

420 VM!SP System Programmer's Guide

ThiS can be accomplished by passing the name of the saved system to the CMS
Batch Facility via the optional "sysname" operand in the CMSBATCH command
line.

The batch facility saves the name of the saved system until the end of the first job,
at which time it stores the name in the IPL command line both as the "device
address" and as the P ARM character string. The latter entry informs the CMS
initialization routine (DMSINS) that a saved system has been loaded and that the
name is to be saved for subsequent IPL procedures.

Note: When using the CMS SET command, the BLIP operand is ignored when
issued from the CMS batch machine.

The eMS Batch Facility 421

The Programmable Operator Facility

Overview

I Use in a Single System

I Use in Distributed Systems

The Programmable Operator Facility is designed to increase the efficiency of sys­
tem operation and to allow remote operation of systems in a distributed data proc­
essing environment. It does this by intercepting all messages/requests directed to
its virtual machine and by handling them according to pre programmed actions. It
determines whether a message is to be simply recorded for future reference, wheth­
er the message is to be acted upon, or whether the message is to be sent on to the
operator to handle.

When the programmable operator facility is operational in a single-system envi­
ronment, it can:

Ease message traffic to the system operator, by:

Filtering (logging) non-essential, information-only messages

Routing messages (for example, I/O intervention requests) to someone else
for specialized action.

Increase productivity, by freeing the system operator from certain routine
responses or tasks. Such responses (whether they consist of one or a series of
commands, whether VM/SP or guest operating system) may be prepro­
grammed to execute automatically upon receipt of a given message.

Thus, only essential, non-routine messages (that is, those requiring the skill and
experience of a system operator to handle) are sent on to the operator for
response or action.

The capabilities of the programmable operator, outlined above, also allow for the
remote operation of systems in a distributed environment. When the programma­
ble operator facility is operational in a distributed system, it can:

Issue responses and perform tasks that do not require an on-site operator

Filter (log) non-essential, information-only messages

Route messages requiring on-site (that is, manual) intervention to someone,
not necessarily an operator, at the distributed site for action

Route messages that require the skill and experience of a system operator to
handle to the operator at the host system. The operator at the host site can
also send commands to the programmable operator facility to control its opera­
tion, as well as commands to execute on the distributed system to control the
system itself.

By running the programmable operator facility on VM/SP systems distributed at
several different locations (network nodes), one operator at a host site can control
a network of systems.

422 VM/SP System Programmer's Guide

\ The Logical Operator

I How it Works

Flow of Operation

Occasionally the programmable operator must send messages to another virtual
machine. To ensure that the programmable operator will function properly, a user
(a virtual machine other than the programmable operator virtual machine on the
local system or in a distributed system) is identified to the programmable operator
to receive these messages. This user is called the logical operator, as opposed to the
CP system ·operator. When the programmable operator is started (in the CP sys­
tem operator virtual machine, for example), the logical operator virtual machine
receives an initiation message. The logical operator also receives error messages
for severe errors, such as logging errors, and receives all messages routed to the log­
ical operator explicitly or by default.

The programmable operator facility runs in a CMS virtual machine. Although it
can run in any virtual machine, because of its programmed capability to log, handle,
or redirect messages, it is most commonly run in the CP system operator's virtual
machine.

The programmable operator facility compares all messages directed to it against
entries listed in a routing table (a CMS file). When a match occurs, the prescribed
action is performed. Any messages that require a real operator's response or action
are sent on to the defined operator (system, network, etc.) at another virtual
machine console, a "logical" operator's console. If the logical operator's virtual
machine is in the same system, the programmable operator sends the messages with
either the CP MESSAGE or CP MSGNOH command. If the logical operator's vir­
tual machine is in a different system (network node), a host system for example, it
sends the messages via RSCS Networking.

Consider this example:
The SYSOPR macro in DMKSYS specifies the userid OPERI for the CP system
operator. Set up the programmable operator to run in the OPERI virtual machine
and establish another virtual machine with userid OPERX. In the routing table
file(s), specify OPERX as the logical operator. Now any CP or user messages sent
to the system operator virtual machine can be handled or filtered by the program­
mable operator or routed to userid OPERX.

When the programmable operator facility is running in a virtual machine, CP inter­
cepts all messages intended for that virtual machine console. CP then passes these
messages to the programmable operator facility via IUCV. The messages are
logged in a CMS file. The programmable operator facility then uses the active rout­
ing table to analyze the message and determine if further action is needed. Based
on the contents of the routing table (such as message texts, message types, and user
authorizations), the message can be passed to some specified action routine for fur­
ther action. If the message is to be routed to the logical operator, and that person
is on another virtual machine in the same physical machine, the programmable
operator facility routes the message directly to the logical operator via the CP
MSGNOH command or the CP MESSAGE command depending on the classifica­
tion of the programmable operator virtual machine. If the logical operator is on a
different physical machine, the programmable operator facility prefaces the mes­
sage with the appropriate tag information and sends the message to RSCS Net­
working via the CP SMSG command.

The Programmable Operator Facility 423

Relationship to RSCS Networking

Routing Table Information

Initialization

The programmable operator facility usually operates in a disconnected virtual
machine. If someone logs on to this disconnected virtual machine with the pro­
grammable operator facility running, no messages are displayed (unless the pro­
grammable operator facility is running in DEBUG mode). All messages are being
intercepted or received by the programmable operator program from IUCV. If that
person should enter a command, the programmable operator facility gets control
and reads the command entered. Only two commands are accepted from this envi­
ronment; the STOP command and the SET command. The programmable operator
facility rejects any other commands.

If a CMS abend occurs while the programmable operator facility is executing, all
files are closed and abend error messages are sent to the logical operator. A dump
of the virtual machine storage is taken using the CP VMDUMP command and the
last system or device that was IPLed is re-IPLed. If the abend occurs while an
action routine is executing, abend error messages are sent to the logical operator
and the requester (if any). Control is returned to the point in the programmable
operator facility immediately following the action routine call.

When the programmable operator facility is running in a network environment, it
is a normal user of RSCS Networking. This means that the programmable operator
facility communicates to RSCS via the CP SMSG command. Any configuration of
systems and networks that are supported by RSCS Networking can use the pro­
grammable operator facility. The time needed for a message to go from the system
at a distributed site to the logical operator at the host system, or vice versa,
depends on the number and type of communications links between the message
sources and destinations.

A programmable operator can check on its ability to communicate with a host or
distributed system. See "Communications Checking" later in this section.

The programmable operator routing table identifies the programmable operator
facility environment, including the logical operator's virtual machine id and nodeid.
It also specifies the action to take for each message, and authorizes certain users to
invoke specific programmable operator commands. For a complete description of
the information contained in a routing table, see "The Routing Table" later in this
section.

The routing table is a separate CMS file that must be tailored for a specific use.
The first routing table to be used is specified when the programmable operator
facility is invoked. If no routing table name is specified, the default filename
"PROP" is used.

The installation may define mUltiple routing tables to cover varying situations. For
example, multiple routing tables can be defined to cover shift changes. Only one
routing table can be active at a time. The active routing table may be replaced by
issuing the LOADTBL command. Any person authorized in the active routing
table may issue this command.

The programmable operator facility is initiated by IPLing a CM:S virtual machine of
at least 512K in size and invoking the programmable operator facility. When the
programmable operator facility gets control, it locates the specified or default rout-

424 VM/SP System Programmer's Guide

The Routing Table

ing table and loads it into virtual storage. For each action routine specified in the
routing table, an EXEC file or a corresponding member in a CMS simulated OS
load library named PROPLIB LOADLIB must exist. If an EXEC does not exist,
the LOADLIB member is loaded as a nucleus extension-via the NUCXLOAD
command. If both exist, the EXEC takes precedence.

If upon invocation, the programmable operator facility cannot find an action rou­
tine named in the routing table, an error message is issued, and the programmable
operator facility terminates operation. Otherwise, the programmable operator facil­
ity is fully initialized, and writes a message to the programmable operator's console,
to the logical operator, and to the LOG file, indicating that the programmable
operator facility has started. The programmable operator facility then waits for
either an interrupt indicating an incoming message or an interrupt from the console.

Note: If the user enters a nodeid into the SYSTEM NETID file that is invalid as a
CMS file type, the programmable operator cannot start because it is not be able to
open the log file.

The routing table is a CMS file that contains the information used to control the
operation of the programmable operator facility. The routing table enables the
programmable operator facility to recognize a message as a command, to determine
the action to take when a message comes in, and to recognize the authorized users
of programmable operator functions.

How tile Programmable Operator Facility Uses tile Routing Table

Routing Table Entry Formats

When the programmable operator facility receives an lUCY interrupt with an
incoming message, the active routing table is searched to find a matching entry.
When the routing table is searched, all fields are checked. In order for a match to
occur, each field must either match or be blank. If a matching entry is found, that
entry contains information pertaining to any action to be taken. The action routine
name tells the programmable operator facility which action routine to invoke when
a routing table entry matches the incoming message. If no matching entry is found
in the active routing table, no action is taken besides logging the message.

The order that the entries are placed in the routing table affects the way the pro­
grammable operator facility performs. The routing table is searched from top to
bottom until a match is found. As the table is searched, lines that begin with an
asterisk (*) in column 1 are ignored, and therefore may be used to place comments
in the routing table. Also, lines that are completely blank are ignored in the routing
table search and can be used to separate lines of text for easier reading. All entries
must be made in upper case.

Note: The routing table format is changed from the initial version of the program­
mable operator facility in VM/SP Release 2. The original format from Release 2 is
not compatible with later versions of the programmable operator facility. The rout­
ing tables must be converted to reflect this change. See "Routing Table
Conversion" later in this section.

I
Every routing table must have specific configuration information in the first records
of the routing table file (filetype RTABLE) that are not comments or blank lines.

The Programmable Operator Facility 425

These statements are in free format, meaning that they need not be positioned in
any particular columns. See Figure 53 on page 431 for an example of a partial
routing table. The statements and their parameters are as follows:

1. The LGLOPR statement identifies the logical operator.

I LGLQPR Ilwo;erid [nodeidJt
tnlckname }

where:

userid is a valid userid on the specified node.

nodeid is a valid id of a system in the network. If no nodeid is specified,
the local system's nodeid is used.

nickname is a nickname defined in the programmable operator facility virtual
machine eMS NAMES file.

Note: If a nickname is used to identify the logical operator, the
nickname cannot be a list of nicknames. The programmable oper­
ator must have one nodeid to associate with the logical operator.

Either a nickname or a use rid must be specified. If a userid is specified, a
nodeid may be specified. If both a userid and a nodeid are specified, they must
be separated by one or more blanks. If the name specified is both a local
userid and a nickname, the programmable operator regards it as a nickname.

IMPORTANT NOTE: The programmable operator virtual machine should not
be identified as the logical operator. This causes the programmable operator to
go into a loop in the event it tries to do the routing. This includes specifying a
userid of OPERATOR (or any abbreviation thereof). This also causes the
message to be sent to the system operator virtual machine, even if the system
operator virtual machine has a different userid.

2. The optional TEXTSYM statement specifies the characters that the program­
mable operator facility interprets as special symbols in the text field of the rout­
ing table entries. All three parameters must be specified if the statement is
specified.

I TEXTSYM

where:

blank-sep

arbchar-sep

426 VM/SP System Programmer's Guide

I blank-sep arbchar-sep not-symbol

is a separator character indicating that blanks are to be
skipped over when scanning the message. A message is
scanned for the next non-blank character string. This
non-blank character string is then compared to the text in the
routing table entry following this separator character. The
default character is "I".

is a separator character indicating that aU non-matching char­
acters are to be skipped over when scanning the message. A
message is scanned for the text specified in the routing table
entry until it is found or until the end of the message is
reached. The default character is "$".

not-symbol when it immediately follows a separator is the character indi­
cating that the text should not be found in the message. If
the text following the not-symbol is found in the message,
then the message does not match that routing table entry.
The default character is "...,".

See "Filtering Messages" for the use of TEXTSYM characters in routing table
entries:

3. The optional PROPCHK statement identifies the distributed nodes that the
host system is to check on. The RSCS nodeids of these distributed systems
must be specified in this statement. A programmable operator must be running
in the system operator virtual machine on the distributed systems being
checked. As many nodes may be specified on one statement as fit in an
80-column record. The programmable operator facility only reads the first 80
columns. Any number of PROPCHK statements may be entered to specify
different checking or response wait intervals for different RSCS nodes. The
PROPCHK statement must be after the LGLOPR statement.

Note: Nodes to be checked with PROPCHK must be systems running VM/SP
Release 3, with a programmable operator in the system operator virtual
machine.

I PROPCHK

where:

ccc

ww

nodeid

Notes:

ccc ww nodeid [nodeid ...]

is the checking interval. This interval, in minutes, indicates how
often acknowledgment requests are sent out to the specified nodes.

is the response wait interval. This interval is the number of min­
utes permitted to pass before a response must be received from the
specified node(s).

is a valid id of a system in the network.

a. The checking interval specified must be greater than the response wait
interval.

b. The nodeid of the logical operator must not be specified as a nodeid on this
statement.

4. The optional HOSTCHK statement specifies the time interval for checking
communication with the RSCS virtual machine at the logical operator node and
the wait time for a response. The HOSTCHK statement must be after the
LGLOPR statement.

I HOSTCHK ccc ww

where:

The Programmable Operator Facility 427

ccc is the checking interval. This interval, in minutes, indicates how
often acknowledgment requests are sent out to the specified nodes.

ww is the response wait interval. This interval is the number of min­
utes permitted to pass before a response must be received from the
specified node(s).

Note: The checking interval specified must be greater than the response wait
interval.

5. The optional LOGGING statement specifies whether messages or messages
and command responses are to be logged or not logged. If the LOGGING
statement is not in the routing table, messages are logged and LOGGING is
ON. If the LOGGING statement is in the routing table, one of the three oper­
ands must also be specified, because there is no default operand.

I LOGGING

1 ~~L t OFF ~

where:

ON indicates that messages are to be logged while this RTABLE is
active, unless it is explicitly turned off using the SET LOGGING
command.

ALL indicates that messages and programmable operator command
responses are to be logged while this R TABLE is active, unless it
is explicitly turned off using the SET LOGGING command.

OFF indicates that messages are not to be logged while this RTABLE is
active, unless it is explicitly turned on using the SET LOGGING
command.

6. The ROUTE statement indicates the end of the configuration statements and
the start of the routing entries.

ROUTE

This statement must follow the other statements specified in this section.

The LGLOPR and ROUTE statements are required in every routing table. An
example of these statements in a routing table is as follows:

LGLOPR OPERATNS HOSTNODE
TEXTSYM / $ --,
PROPCHK S 1 NODE1 NODE2 NODE3
PROPCHK 3 1 NODE4 NODES
HOSTCHK 2 1
LOGGING ALL
ROUTE

These special statements may be specified for each routing table in any order (as
long as LGLOPR is first and ROUTE is last) and with at least one blank separating
each parameter. The statements depend on the installation and, therefore, must be

428 VM/SP System Programmer's Guide

supplied by the installation for each routing table. These entries are processed only
when the routing table is loaded, so they are not searched during programmable
operator message handling.

The configuration shown in Figure 52 can be described in a routing table with the
first few lines like those in Figure 53 on page 431.

Local System
Nodel d = tWDEl

Distributed System
Nodeid = NODE2

RSCS Virtual
Muchine

ID = NETI

Logical
User Operator
Virtual Virtual
f1achi ne Machine

Userid = Userid =
USERll LGLOPR

RSCS Virtual
Machine

ID = NET2

Pro9rammuble
User Operator
Virtual Virtual
Machine ~'ach i ne

Userid = Userid =
USER21 OPERATOR

Figure 52. The Programmable Operator Facility in a Distributed System. The logical operator is situated at the Host system and the programmable
operator is running in a different system at a distributed site.

The routing table entries to be searched must be in the following fixed format.

Note: The words in parentheses correspond to the vertically aligned words in the
comment records in Figure 53 on page 431 through Figure 57, and also in the IBM
sample routing table file.

FIELD

COMPARISON TEXT (TEXT)
STARTING COLUMN (SCOL)
ENDING COLUMN (ECOL)
IUCV MESSAGE CLASS (TYPE)
USERID (USER)
NODEID (NODE)
ACTION ROUTINE NAME (ACTN)
PARAMETER TO ACTION ROUTINE
(PARM)

where:

EXAMPLE

/FEEDBACK/
1
9
1
USER21
NODE2
DMSPOR
TOFB

COMPARISON TEXT

FIELD
COLUMNS

1-25
27-29
31-33
35-36
38-45
47-54
56-63
65-72

LENGTH
OF FIELD

25
3
3
2
8
8
8
8

is a particular character string that the programmable operator facility is to
search for in the incoming message. If this field is left blank, any text com­
pared with this field is considered a match. Multiple texts may be specified,
with the capability to skip over intervening blank or non-blank characters.

The Programmable Operator Facility 429

STARTING COLUMN
is the column in the incoming message where the programmable operator facili­
ty starts looking for the character string mentioned in the COMPARISON
TEXT field. If this field is left blank, the programmable operator facilllY starts
scanning at the beginning of the message.

ENDING COLUMN
is the column in the incoming message where the programmable operator facili­
ty stops looking for the character string(s) mentioned in the COMPARISON
TEXT field. If this field is left blank, the programmable operator facility con­
tinues scanning until the end of the message.

IUCV MESSAGE CLASS
identifies the origin of the incoming message according to the IUCV message
type. For more details on message types, see the Message System Service sec­
tion of this manual. If this field is left blank, any value compared with this field
is considered a match.

The IUCV message types are:

Class Message Types

1 Message sent using CP MESSAGE and CP MSGNOH.
2 Message sent using CP WARNING.
3 Asynchronous CP messages and CP responses to a CP command

executed by the programmable operator facility virtual machine.
4 Message sent using CP SMSG command.
5 Any data directed to the virtual console by the virtual machine

(WRTERM, LINEDIT, etc.).
6 Error messages from CP (EMSG).
7 Information messages from CP (IMSG).
8 Single Console Image Facility (SCIF) message from CP.

Note: CP responses that are trapped in a buffer using the extended DIAG­
NOSE X'08' do not become type-3 messages. For example, CP responses
from the programmable operator CMD command are not type 3-messages, and
therefore are not logged when LOGGING is set to "ON".

USERID
is the character string that is compared to the VM userid of the user that sent
the incoming message to the programmable operator facility. It determines the
authority of the user to cause an action to be performed. If this field is left
blank, all userids compared with this field are assumed to match.

NODEID
is the character string that is compared to the VM nodeid of the user that sent
the incoming message to the programmable operator facility. Again, it deter­
mines the authority of the user to cause an action to be performed. If this field
is left blank, all node ids compared with this field are assumed to match.

ACTION ROUTINE NAME

430 VM/SP System Programmer's Guide

is the name of the LOADLIB member (a Basic Assembler Language routine)
that the programmable operator facility is to NUCXLOAD when the
LOADTBL function is performed, or the name of an EXEC, and subsequently,

the routine that the programmable operator is to call when a match occurs on
the entry in which the name is specified. If this field is left blank, no action is
performed.

PARAMETER TO ACTION ROUTINE
is a character string of up to eight bytes that is passed as a parameter to the
action routine by way of the programmable operator P ARMLIST for a Basic
Assembler Language routine or by way of a program stack for an EXEC.
Often, this is used to specify a particular subroutine in the action routine. If
this field is left blank, no parameter is passed.

Column 73 and beyond are reserved for future use.

* THIS IS THE DEFINITION OF THE PROP CONFIGURATION.
* LOGICAL OPERATOR IS NICKNAME "LOP". SEE "OPERATOR NAMES" FILE.
* LOGICAL OPERATOR (NICKNAME "LOP") IS "OPERATOR" AT NODEID "NODE1".
LGLOPR LOP
* THE TEXT SEPARATOR CHARACTERS.
TEXTSYM / $,
* WHICH NODES TO CHECK, AND AT WHAT INTERVAL.
HOSTCHK 5 1
* THE ROUTING ENTRIES START
ROUTE
*------------------------
*T S E
*E C C
*x 0 0
*T L L
*------------------------

T
Y
P
E

U
S
E
R

N
0
D
E

* SEND PROP FEEDBACK COMMAND TO FEEDBACK ACTION ROUTINE
*------------------------
/FEEDBACK / 9 1 USER21 NODE2

-------- --------
A P
C A
T R
N M
-------- --------

DMSPOR TOFB
*------------------------ -- -------- -------- -------- --------
* FILTER OUT LOGON AND LOGOFF MESSAGES SO OPERATOR NEEDN'T SEE THEM
* BUT LET "FORCED" LOGOFF MESSAGES THROUGH
*------------------------
$LOGON
$ LOGOFF$....,FORCED
*------------------------

18 24 3
18 3

* FILTER OUT COMMANDS THAT WE DON'T WANT ISSUED.
*------------------------
/CMD/SYSTEM
/CMD/SET/EC
*------------------------
* ALLOW ONLY OPERATOR ON HOST TO ISSUE SHUTDOWN.
*------------------------

WARNING
WARNING

/CMD/SHUTDOWN OPERATOR NODE1 DMSPOR TOVM
*------------------------
* ROUTE ALL MESSAGES ABOUT DEVICE OOE TO THE SPOOL OPERATOR.
*------------------------
$ OOE 3

where:

"WARNING" represents a user action routine which may send a warning
message to the user issuing that command.

"SPOOLOP" represents a nickname or userid of the spool operator.

Figure 53. Partial routing table

DMSPOS SPOOLOP

The Programmable Operator Facility 431

Tailoring tile Routing Table

I Specifying Routing Texts

Routing table entries determine what messages the programmable operator facility
ignores (filtering), who is authorized to issue a particular command (authorization),
and what action routines to invoke for a given circumstance. The routing table is
tailored to suit an installation's individual needs by adding or changing entries in
the routing table.

The programmable operator facility comes with a general purpose routing table
named "PROP RTABLE". (See the section on "Installing the Programmable
Operator Facility" to locate the "PROP RTABLE".) This supplied routing table
can only be used after the LGLOPR, HOSTCHK, and PROPCHK statements are
modified. The routing table entries may also have to be modified. These changes
can be made by using the VM/SP System Product Editor. The programmable
operator facility operates satisfactorily with no further changes. However, if an
installation chooses, the supplied routing table can be modified to change the oper­
ation of the programmable operator facility. Different routing tables can also be
created to cover varying circumstances. These tables can be dynamically loaded
using the LOADTBL command. Only one routing table may be active at a time.

Here are more examples of text comparisons for the programmable operator
facility. "$" is the arbitrary character separator, "I" is the blank separator, and
".., " is the not-symbol. In all of these examples, it is assumed that the starting and
ending columns do not interfere with the matching.

1. The RTABLE entry

$LOGOFF

is matched by any message containing the word "LOGOFF". If one text is
preceded by the arbitrary character separator ($), the text can appear any­
where in the message to be a match.

2. The R TABLE entry

/LOGOFF

matches the message

LOGOFF USER1 IN 5 minutes

as there are no non-blank characters preceding the word "LOGOFF", but the
entry does not match the message

11:20:15 GRAF OAO LOGOFF AS USER1 USERS = 020

If only one text is preceded by the blank character separator (I), the text must
be the first non-blank string in the message order to be a match.

3. The R T ABLE entry

$AUTO$LOGON$AUTOLOG

matches the message

432 VM/SP System Programmer's Guide

11:09:02 AUTO LOGON *** USER2 USERS 021 BY AUTOLOG1

and the message

11:09:02 AUTO LOGON *** AUTOLOG2 USERS 021 BY SYSTEM

but not the message

11:09:02 GRAF OAO LOGON AS AUTOLOG1 USERS 023

or the message

AUTOLOG WON'T LOGON TOMORROW

A text with two or more texts preceded by arbitrary character separators ($), is
matched by a message with all those texts appearing in that order.

The texts in the message are scanned in the order that they appear in the routing
table entry. One text is searched for at a time. If the arbitrary character separator
($) precedes the text in the entry, a message is scanned until a match is found or
the end of the message is reached. If the blank character separator (I) precedes
the comparison text, blanks are skipped over and the first non-blank string of char­
acters is compared to the comparison text, which mayor may not match.

Routing table entries and messages are also affected if the text is preceded by a
not-symbol (...,). The not symbol is always used with one of the other separator
characters; it never stands alone. If a matching text is found and the text in the
routing table is preceded only by a "$" or a "I", the position following the last
matched text is remembered. If there are no more RTABLE texts to be searched
for, the entry is a match. If there is another text in that RTABLE entry to be
searched for, the scan continues from the position following the last matched text.
A match depends on the rest of the message text and the routing table entry. If a
matching text is found but the text in the routing table is preceded by the
not-symbol (...,), the entry is not a match and checking goes no further. Similarly, if
a matching text is not found but the text in the routing table is not preceded by the
not-symbol, the entry is not a match. If a match is not found and the text is pre­
ceded by the not-symbol (...,), and if there are no more texts, the entry matches the
message. If there are more texts to scan for, the scan continues as above starting
with the character following the last match. A match depends on the rest of the
message text and the routing table entry.

Consider the following example:

4. The RTABLE entry

$--,AUTO$LOGON

does match the message

12:04:28 GRAF OAO LOGON AS USER1 USERS = 027

Because the first text in the RTABLE entry (AUTO) is preceded by the arbi­
trary character separator ($), the entire text is searched for "AUTO". No
match is found. Because the text is preceded by the not-symbol (...,), the text is
still a match at this point. The scan for the next text (LOGON) begins at the
end of the last match. Because there was no previous match, the scan begins
again at the start of the message. The LOGON text is preceded by the arbi-

The Programmable Operator Facility 433

trary character separator ($), so the search proceeds through the message until
"LOGON" is matched. Because "LOGON" appears in the message, this
R TABLE entry and message do match.

Now consider this example:

5. The RTABLE entry

$..,AUTO/LOGON

does not match the same message

12:04:28 GRAF OAO LOGON AS USER1 USERS = 027

The message is scanned for "AUTO" as above. The s!arch for "LOGON"
again begins at the beginning of the message. In this case, however, the
LOGON text is preceded by the blank separator (I), so only blanks are
skipped prior to the comparison. No blanks are found, so the comparison is
made at the beginning of the text and "LOGON" is compared with "12:04:".
This is not a match. Because this text was not preceded by the not-symbol,
this R TABLE entry and message do not match.

Another example:

6. The R TABLE entry

$..,AUTO/LOGON

does not match the message

12:04:28 AUTO LOGON *** USER1 USERS = 027 BY AUTOLOG1

Because "AUTO" is found in the message and is preceded in the RTABLE
entry by the arbitrary character separator ($) and the not-symbol (...,), the
RTABLE entry and message do not match.

Here is another example:

7. The R TABLE entry

434 VM/SP System Programmer's Guide

$LOGOFF$..,030/FORCED

does not match the message

12:04:28 USER DSC LOGOFF AS USER1 USERS = 026 FORCED

The first text, "LOGOFF", is preceded by the arbitrary character separator
($) and is scanned for through the text. "LOGOFF" is found. Because
"LOGOFF" is not preceded by the not-symbol, the next text is scanned. The
scan continues from the end of the previous match, which is the character fol­
lowing the LOGOFF text. Since the arbitrary character separator ($), pre­
cedes "030", the entire remaining text is searched for "030". It is not found
but because "030" is preceded by the not-symbol, the message and RT ABLE
entry still match. Finally, "FORCED" is scanned for. It is preceded by the
blank separator (I). Blanks are skipped, and starting with the character fol­
Imving the last matchcd string (which was "LOGOFF"), "FORCED" is com-

Filtering Messages

pared to "AS USE". This is not a match. Because "FORCED" is not matched
and is not preceded by the not-symbol, this RTABLE entry and message do not
match.

Here are routing table entries that do match this message:

$LOGOFF$.030$FORCED

would match because arbitrary characters would be skipped before comparison
for "FORCED" and

$LOGOFF$.030/.FORCED

would match because the first non blank string after "LOGOFF" is not
"FORCED" .

This is the simplest application of the programmable operator facility. Entries can
be placed in the routing table to filter informational messages. The messages are
filtered because no action routine is specified in the routing table entries. For
example, when the programmable operator facility is running in the system opera­
tor's virtual machine, informational messages resulting from commands such as,
LOGON, LOGOFF, and DISeONN, can be prevented from being displayed at the
logical operator's console. Although the messages are not displayed at the opera­
tor's console, they can be logged in the current day's log file. The routing table
entries must identify the text(s) in the message that makes it unique and identify
the columns between which the text(s) should be found in the message. With sin­
gle or multiple texts, TEXTSYM characters should be selected accordingly.
Figure 54 shows an example of how entries may be placed in the routing table to
filter unwanted responses directed to the logical operator. For example, using
Figure 54 below as the routing table, the message

12:04:50 GRAF 055 LOGON AS USER1

would match the second routing table entry (/ ...,AUTO$LOGON). This RTABLE
specification means that, starting in column 9 (SeOL) of the message, "AUTO"
cannot be the first non-blank string and that "LOGON" must appear somewhere
in the message. The message would be filtered out but logged in the current day's
log file.

However, the message

12:04:28 AUTO LOGON *** USER BY AUTOLOG1

would not match the second routing table entry (/ ...,AUTO$LOGON) because
"AUTO" is the first non-blank string in the message appearing in the columns
between the SCOL and ECOL fields. Thus, the message would not be filtered out
and would be routed to the logical operator, as specified in the last entry in
Figure 54.

The Programmable Operator Facility 435

* THIS IS THE DEFINITION OF THE PROP CONFIGURATION.
* LOGICAL OPERATOR IS NICKNAME "LOP". SEE "OPERATOR NAMES" FILE.
LGLOPR LOP
* THE TEXT SEPARATOR CHARACTERS.
TEXTSYM / $ -,
* WHICH NODES TO CHECK, AND AT WHAT INTERVAL.
PROPCHK 5 1 NODE2A NODE2B
PROPCHK 2 1 NODE1A NODE1B
* THE ROUTING ENTRIES START
ROUTE
*------------------------
*T
*E
*X
*T
*------------------------

S
C
o
L

E
C
o
L

T U
Y S
P E
E R

-------- -------- --------
N A P
0 C A
D T R
E N M
-------- -------- --------

* FILTER OUT LOGON AND LOGOFF MESSAGES SO OPERATOR NEEDN'T SEE THEM
*------------------------
$OUTPUT/OF
/-,AUTO$LOGON
$LOGOFF
$DSCONNECT
$RECONNECT
$DIAL
$DROP
*------------------------

19 36 3
9 33 3

19 34 3
19 36 3
19 36 3
19 32 3
19 32 3

* SEND REMAINING ASYNCHRONOUS CP MESSAGES TO LOGICAL OPERATOR
*------------------------ ---

3 DMSPOS LGLOPR

Figure 54. Example of Entries to Filter Responses to Routine Commands

Controlling Authorization

In Figure 54, the entries that appear in the "TEXT" field (OUTPUT OF, LOGON,
etc.) are the texts contained in the messages that are to be trapped by the pro­
grammable operator facility when they are issued by CPo

No userids and nodeids are specified for these entries because they are issued by
CPo Because no action routine is specified, the only action taken is the logging of
the messages in the current day's log file.

Looking at the last line in Figure 54, you can see that if a type-3 IUCV message is
received that does not have a corresponding entry in the routing table, action rou­
tine DMSPOS together with the LGLOPR parameter routes the message to the log­
ical operator. In this case, this entry has to be placed after the specific text entries
that you want filtered from the message stream. If this entry appeared before the
text entries in Figure 54, all type-3 IUCV messages would be routed to the logical
operator.

The routing table determines who is authorized to issue specific commands in the
programmable operator facility. Programmable operator authorization is based
entirely on the contents of the routing table. Therefore, controlling authorization is
a relatively simple procedure. Authorization checking is done using either the
userid, nodeid, the command text, or any combination thereof. This means that a
change to any of these entries can result in a change in authorization. This allows
an installation to easily tailor the authorization structure to their particular needs
because only the entries in the routing table need to be changed, and not the action
routines.

When a userid and nodeid are not specified for a routing table entry, all users are
authorized to match that entry and to use the function that it describes. Figure 55

436 VM/SP System Programmer's Guide

*------------------------
*T
*E
*x
*T
*------------------------

shows an example of unrestricted authorization for the FEEDBACK command. A
message sent with the FEEDBACK command is passed to module DMSPOR,
which supports most of the programmable operator commands. The TOFB param­
eter invokes the proper action routine contained in module DMSPOR that writes
the message to the FEEDBACK file. (See "The Feedback File" later in this sec­
tion or the VM jSP Operator's Guide for more information on the FEEDBACK
command.)

Note: In the following examples, the TYPE (lUCY message class) field is left
blank to allow the FEEDBACK (or FB) command to be issued with any class of
lUCY message. The ECOL fields are 9 and 3 because the character string being
looked for is FEEDBACK or FB followed by a blank, for example, "FEEDBACK
" or "FB " would match.

S
C
o
L

E
C
o
L

T
Y
P
E

U
S
E
R

-------- -------- --------
N A P
0 C A
D T R
E N M
-------- -------- --------

* PLACE A FEEDBACK MESSAGE IN THE PROP FEEDBACK FILE
*------------------------
/FEEDBACK /
/FB /

9 DMSPOR TOFB
3 DMSPOR TOFB

Figure 55. Example of Uncontrolled Authorization

*------------------------
*T
*E
*x
*T
*------------------------

Authorization can be restricted to users at a particular network node by specifying
only the nodeid. In Figure 56, only users at NODEl are authorized to issue the
FEEDBACK command.

S
C
o
L

E
C
o
L

T
Y
P
E

U
S
E
R

N
0
D
E

-------- --------
A P
C A
T R
N M
-------- --------

* PLACE A FEEDBACK MESSAGE IN THE PROP FEEDBACK FILE
*------------------------
/FEEDBACK /
/FB /

9 NODE1 DMSPOR TOFB
3 NODE1 DMSPOR TOFB

Figure 56. Example of Restricting Authorization by Nodeid

When a userid and nodeid are specified, only that user at the specified node is
authorized to match that entry. In Figure 57, only JOHNDOE at NODEl and
JANEDOE at NODE2 are authorized to place messages in the feedback file.

The Programmable Operator Facility 437

*------------------------ -------- -------- -------- --------
*T S E T U N A P
*E C C y S 0 C A
*x 0 0 P E D T R
*T L L E R E N M
*------------------------ -------- -------- -------- --------
"." PLACE A FEEDBACK IvlESSAGE IN THE PROP FEEDBACK FILE
*------------------------ -------- -------- -------- --------
/FEEDBACK / 9 JOHNDOE NODE1 DMSPOR TOFB
/FEEDBACK / 9 JANEDOE NODE2 DMSPOR TOFB
/FB / 3 JOHNDOE NODE1 DMSPOR TOFB
/FB / 3 JANEDOE NODE2 DMSPOR TOFB

*------------------------
* SEND REMAINING REQUESTS AND COMMANDS TO THE LOGICAL OPERATOR
*------------------------ --- -- -------- -------- --------

DMSPOS LGLOPR

Figure 57. Example of Restricting Authorization by Userid and Nodeid

Action Routines

Since the user must explicitly issue the FEEDBACK or FB command to have a
message placed in the feedback file, action routine DMSPOR TOFB must be speci­
fied in the routing table to carry out the required action. Any user attempting to
issue the FEEDBACK command that is not authorized by the routing table in
Figure 57 will have their command sent to the logical operator as a message via
action routine DMSPOS LGLOPR, as specified by the last record of the routing
table.

Additional userids and nodeids may be added to the table to grant authorization to
issue these commands. Conversely, userids and nodeids may be removed to revoke
authorization.

Action routines, programs that receive control in response to the match of a mes­
sage and a routing table entry, handle a particular type of message or command
intercepted by the programmable operator facility. A set of action routines is pro­
vided with the programmable operator facility. These need no tailoring to provide
the installation with the control and function needed to operate the programmable
operator facility. Other action routines may be written by the installation as
desired to perform specific functions. Thus, the programmable operator facility
may be extended simply by the addition of a new action routine.

If an action routine abends, abend error messages are sent to the logical operator
and the requester (if any). Control is returned to the point in the programmable
operator facility immediately following the action routine call.

Note: Programs written in Basic Assembler Language can access the parameter list
built by the programmable operator facility. The programmable operator parame­
ters are available in a different fashion for EXEC action routines9• For information
on the action routine interface, see "The Action Routine Interface" later in this
section.

Description of Supplied Action Routines

The action routines supplied with the programmable operator facility are
DMSPOR, D?v!SPOS, and Dr-.1SPOL. A parameter must be supplied for module

9 EXECs may be written using the System Product Interpreter, EXEC 2, or CMS EXEC languages.

438 VM/SP System Programmer's Guide

DMSPOR. This parameter is the name of the subroutine contained within the
module that is invoked to perform an action. DMSPOS may be invoked along with
a parameter, which, in this case, is a userid or nickname. DMSPOL may be
invoked with a parameter, which is a routing table name.

Note that new action routines are not required to be in this format. The program­
mable operator facility supports any desired number of action routines. Each one
is loaded separately when the programmable operator facility is initialized, or when
a LOADTBL command is issued.

The following sections describe the action routines that are supplied with the pro­
grammable operator facility. These action routines (or subroutines in the case of
DMSPOR) correspond to the programmable operator commands described in the
VM / SP Operator's Guide.

DMSPOR - Miscellaneous supplied action routines

GET - Send the indicated file to an authorized user

This routine sends programmable operator files, such as the log and feedback
files, to the user who requested the file via the CMS DISK DUMP command.

QUERY - Return a response to a user query

This routine returns the fileid of the currently active routing table or returns
the status of programmable operator node-checking or logging to the user who
issued the command.

SET - Change the status of specific functions

This routine stops or resumes the periodic checking of the distributed systems
or the host system, or the logging of messages in the log file.

STOP - Stop the programmable operator facility

This routine stops the programmable operator operation after processing cur­
rently queued messages. The programmable operator virtual machine returns
control to CMS.

TOFB - Write a message to the feedback file

This routine attaches the date and time received to the head of the incoming
message and writes it to the feedback file. See "The Feedback File" below for
more information.

TOVM - Execute a CP/CMS command

This routine is invoked when the programmable operator CMD command is
issued. The text following "CMD" is regarded as the CP or CMS command to
be executed in the programmable operator machine, according to the CMS
IMPCP and IMPEX settings. The response to the executed CP or CMS com­
mand is returned to the authorized user who invoked the CMD command.

Authorized users of the CMD command should be aware of the following:

The Programmable Operator Facility 439

I DMSPOS - Route a message

Issuing commands that alter or overlay CMS storage, such as CP DEFINE
STORAGE, CP IPL CMS, CP SHUTDOWN, and so on, has an adverse
effect on the operation of the programmable operator facility.

Reissuing the PROP command once the programmable operator facility is
running causes the programmable operator facility to stop operating cor­
rectly. The user must re-IPL CMS and restart the programmable operator
facility using the procedure described under "Invoking the Programmable
Operator Facility".

Issuing commands that cause a VM READ or CP READ (interactive
commands such as the DDR command) stop the operation of the pro­
grammable operator facility. The programmable operator facility must
then be restarted in the manner described under "Invoking the Program­
mable Operator Facility".

Line editing characters (pound sign (#), for example), as defined by the CP
TERMINAL command, are not recognized as line editing characters by the
programmable operator facility.

The CMS immediate commands (e.g. HB, HI, HO, HT, HX, RO, RT, SO,
TE, and TS) are not recognized by the programmable operator facility. If a
user issues any of these commands, he receives an "UNKNOWN CP /CMS
COMMAND" response from the programmable operator facility.

System and user synonyms for EXECs are not recognized by the pro­
grammable operator facility.

In general, the programmable operator facility does no checking to ensure or
prevent any of the above circumstances from occurring.

DMSPOS sends (routes) a message to the user specified in the RTABLE
PARAMETER field. The user is identified by a nickname from the CMS userid
NAMES file or by a userid. If the user is on another system, identification must be
through a nickname. LGLOPR may be specified as a keyword in the P ARAME­
TER field of the RTABLE, which would indicate that DMSPOS should take the
value specified in the LGLOPR statement in the RTABLE. This is the default if
the parameter field is left blank.

A message longer than 94 characters (including the 19-character programmable
operator origin id) is split and sent as multiple messages. The first piece is no more
than 94 characters. The remaining pieces are no longer than 91 characters, and
preceded by a continuation mark (" .. "). This splitting ensures that the message is
small enough to be sent through an RSCS network.

If an error occurs because of an invalid target id, for example, the nickname was
not in the "userid NAMES" file, the programmable operator attempts to send the
message to the logical operator.

Messages are sent with the CMS TELL facility. If the programmable operator vir­
tual machine is authorized (class B), the CP MSGNOH command is used. If the
virtuai machine is not authorized to use the CP lviSGNOH command, then the CP
MESSAGE command is used. For more information on the CMS TELL facility,
see the VM/SP CMS Command and Macro Reference.

440 VM/SP System Programmer's Guide

I DMSPOL - Load a routing table

The Log File

Notes:

1. Using the CMS TELL facility requires the user to have a SYSTEM NETID file
set up.

2. DMSPOS must not be invoked if the logical operator virtual machine is the
same as the programmable operator virtual machine. Also, a parameter should
not be specified that directs the message to the programmable operator virtual
machine.

If the LGLOPR routine tries to send a message to the the logical operator, but for
some reason the logical operator's network node is unavailable, LGLOPR detects
this condition and stop any further attempts to send that message. The unsent
message, although logged in the current day's log file, is not displayed at the logical
operator's console.

This routine dynamically loads the routing table indicated by the programmable
operator LOADTBL command. The routing table name must be "filename
RTABLE", where "filename" can be any name that conforms to CMS file naming
conventions. Although the routing table name specified with the LOADTBL com­
mand takes precedence, it is also possible to specify in a routing table the filename
of the table to be loaded as a parameter to the action routine. (This can be used as
a default.) Therefore, any message selected by the system programmer can cause a
new RTABLE to be loaded. Also, the programmer can change the LOADTBL
default of "PROP" to whatever is desired without changing the LOADTBL action
routine.

Note: With the loading of the routing table done by a separate action routine, it is
possible for the other routines, DMSPOR and DMS~OS and any user-written rou­
tines, to be replaced when a LOADTBL occurs. 'T'bs permits changes to action
routines other than DMSPOL to be made dynamically without stopping the pro­
grammable operator.

Every incoming message that the programmable operator facility receives from CP
or other virtual machines is put into a CMS disk file referred to as the log file if
LOGGING is not OFF. All error messages and command responses generated by
the programmable operator facility are also put in the log file if LOGGING is set to
ALL. Each message is identified by the date and time received. The userid and
nodeid appear only if the text was sent via a CP MSG, SMSG, WNG or sent using
SCIF (Single Console Image Facility). Log entries generated and logged by the
programmable operator have a userid of PROP. The log file has the following for­
mat:

col 1 col 10 col 19
I I I
V V V
yy/mm/dd hh:mm:ss[userid

col 28
I
V
nodeid] :

col 39
I
V
text

The log file contains variable length records. The maximum record length that the
programmable operator facility can place in the log file is 132 characters. Because
the prefix uses 38 of the 132 characters, the text can be only 94 characters long.
Therefore if the text of a message exceeds the maximum length of 94 characters
the overflow is continued on the next record. This continued record has the same
prefix as the preceding record, with no colon preceding the text.

The Programmable Operator Facility 441

Ensuring a Complete Log

A separate log file is started for each day. The name of the file is:

LGyymmdd nodeid AS

where:

yy

mm

dd

nodeid

is the current year

is the current month

is the current day

is the current RSCS nodeid of the system on which the programmable
operator facility is running.

When the programmable operator facility is started, stopped or the debug mode is
changed, a record is written to the log file. The messages written to the file have
the normal log prefix and a text corresponding to the changed function. Generally,
responses to the programmable operator console commands are written to the log
file when LOGGING is set to ON or ALL. It is also possible to have responses
from the programmable operator commands written to the log file. See the LOG­
GING statement of the routing table or the programmable operator SET command
for more information. Note that when LOGGING is set to ALL, the log file may
be used as an alternative to spooling the virtual console. When node-checking is in
effect, by having PROPCHK or HOSTCHK statements in the RTABLE, if a node
changes status from UP to DOWN or vice versa, a message is also written to the
log file.

If a virtual machine resource limit is reached, such as "disk-full", it may not be pos­
sible to write another record to the programmable operator facility log file. If this
happens, a user-written EXEC is invoked to perform whatever recovery action the
user thinks is desirable or necessary. The user EXEC must have the filename of
PROPLGER. See "LOG Error Exit" later in this section.

Any user authorized in the active routing table can obtain the log file as a reader
spool file by using the programmable operator GET LOG command. Messages can
be placed in the log file by authorized users by using the programmable operator
LOG command with no other action being taken. (See the VM / SP Operator's
Guide for information on the programmable operator facility commands.)

An old log file can be purged by any user authorized in the active routing table to
use the programmable operator CMD command by issuing the CMS ERASE com­
mand.

When the programmable operator facility routes a message to the logical operator,
the message contains the userid of the sender. The operator, in responding to the
message, may choose to send a message directly to the user without going through
the programmable operator facility. However, if this is done, the message is not
logged in the log file. To ensure that these messages are logged, the operator
should send the message to the user through the programmable operator facility by
using the programmable operator facility CMD command. See the "Programmable
Operator Pacility Commands" section of the VAI/ SP Opeiatoi's Guide for informa­
tion on the programmable operator facility commands.

442 VM/SP System Programmer's Guide

The Feedback File

Whether the message was sent through the programmable operator or not has little
significance to the user. However, so that the messages received by the user always
have the same id (the programmable operator facility id), the message should
always be sent from the logical operator through the programmable operator facili­
ty.

The feedback file is another CMS disk file (named FEEDBACK nodeid AS) that
the programmable operator facility manages. The feedback file, unlike the log file,
is not automatically written by the programmable operator facility. Authorized
users can write time stamped notes and complaints about the operation of the sys­
tem to this feedback file. To write a notice to the feedback file, you, as a user,
must explicitly use the FEEDBACK (or FB) command. An example of such a
message is

M OP FEEDBACK RESPONSE TIME WAS SLOW DURING MORNING SHIFT.

Because the feedback file is normally smaller than the log file, it is easier for the
personnel in charge of the programmable operator facility's maintenance to review
the users' comments and identify when and where particular problems occurred.

Each record in the feedback file is prefixed with the date and time the message .was
logged along with the sender's userid and nodeid. The feedback file has the follow­
ing format:

col 1 col 10 col 19
I I I
V V V
yy/mm/dd hh:mm:ss userid

col 28
I
V
nodeid:

col 39
I
V
text

The feedback file contains variable length records. The maximum record length
that the programmable operator facility can place in the feedback file is 132 char­
acters. Because the prefix uses 38 of the 132 characters, the text can be only 94
characters long. Therefore if the text of a message exceeds the maximum length of
94 characters the overflow is continued on the next record. This continued record
has the same prefix as the preceding record, with no colon preceding the text.

Any user authorized in the active routing table can obtain the feedback file as a
spool file by using the the programmable operator facility GET FB or GET
FEEDBACK command. (See the VM / SP Operator's Guide for information on the
programmable operator commands.)

An old feedback file can be purged by any user authorized by the active routing
table to use the programmable operator CMD command by issuing the CMS
ERASE command.

Installing the Programmable Operator Facility

The VM/SP product contains the file PROPLIB LOADLIB which is the basis for
the programmable operator facility. After receiving and installing VM/SP, take the
following steps before running the programmable operator facility.

1. Reserve enough mini-disk space to contain the log file(s) and feedback file for
the virtual machine that the programmable operator facility will be running in.
The amount of space needed depends on the amount of message traffic that
will be going through the programmable operator facility, and on the number
of comments you expect users to place in the log and feedback files.

The Programmable Operator Facility 443

I Routing Table Conversion

The amount of space needed depends on the amount of message traffic that
will be going through the programmable operator facility, and on the number
of comments you expect users to place in the log and feedback files.

2. The sample routing table is located on the CMS 190 mini-disk. In order to use
the sample PROP RTABLE, take the following steps:

ACCESS 190 CiA
COPYFILE PROP RTABLE C = = A

This places the sample routing table on a read/write mini-disk accessed by the
virtual machine. Edit the sample routing table (PROP RTABLE) to include
the functions and authorizations to meet the various needs of the installation as
described in the previous section, "The Routing Table". Place the edited file
on a mini-disk accessed by the programmable operator facility virtual machine.

3. Optionally, if you have made any changes to the supplied action routines, link
the TEXT file to the PROPLIB LOADLIB. The CMSGEND EXEC, using the
CMSGEND PROP function, allows user-modified routines to be replaced in
the PROPLIB LOADLIB.

If you have written any additional action routines, use the CMS LKED com­
mand to add these routines to the PROPLIB LOADLIB. Copy the PROPLIB
LOADLIB from the CMS system disk to a read/write disk because any
changes would invalidate the directory entry on the system disk. For example,
to link a user-written action routine named ACTIONA to the PROPLIB
LOADLIB, you would issue:

LKED ACTIONA (LET LIBE PROPLIB

Action routines written in Basic Assembler Language must be put in the
PROPLIB LOAD LIB. EXEC action routines need not be put in the
PROPLIB LOADLIB, but can reside on any minidisk accessible to the pro­
grammable operator.

The format of the routing table is changed from the initial version of the program­
mable operator facility documented in VM/SP Release 2. The new format makes
the specifications easier and the information clearer. VM/SP Release 2 routing
tables are not compatible with the current format and must either be re-generated
by hand or converted using PROPRTCV. PROPRTCV is a utility provided to
convert old routing tables to the current format. This utility is written using the
System Product Interpreter. Using an old RTABLE as input, PROPRTCV creates
a new RTABLE, leaving the old one unchanged. When you issue the PROPRTCV
command, the conversion proceeds as follows:

1. Generates the appropriate configuration statements at the beginning of the
new routing table file. See "Routing Table Entry Formats" earlier in this sec­
tion.

A LGLOPR statement is added using the existing logical operator userid
and nodeid. PROPRTCV prompts you to change this information, if you
wish.

A TEXTSYM statement is added. Select the TEXTSYM characters to be
used. The text fields of the file are scanned for these characters. If any of

444 VM/SP System Programmer's Guide

these characters are found, PROPRTCV informs you and then prompts
you for different characters. You can also exit and change the texts that
caused the conflict.

PROPCHK statements are added, if desired. PROPRTCV prompts you
for this information.

A HOSTCHK statement is added, if desired. PROPRTCV prompts you
for this information.

A ROUTE statement is placed after all the above statements have been
completed.

An entry for the new SET command is added with text" ISET I", message
type 1, action routine DMSPOR, and parameter SET. PROPRTCV
prompts you for any authorization desired for this entry. See "DMSPOR -
Miscellaneous supplied action routines" for more information on the SET
command.

Note: The SET entry is simply placed after the ROUTE statement. This is
probably not where you want it. Move the entry when the routing table
conversion is completed.

For each routing table entry, PROPRTCV

2. Encloses the specified text with the blank-separator, (I), for the specified
length of the text.

3. Generates a starting column value and an ending column value from the exist­
ing displacement and length values.

4. Converts an entry with action routine DMSPOR and parameter TOLGLOPR
to the action routine name DMSPOS. PROPRTCV prompts you for the rout­
ing target information to be used as the parameter.

5. Converts an entry with action routine DMSPOR and parameter LOADTBL to
the action routine name DMSPOL and no parameter.

Invoking the Programmable Operator Facility

Manual Invocation

Before loading and invoking the programmable operator facility, load CMS in the
virtual machine that will be running the programm~ble operator facility.

Use the PROPST EXEC to manually invoke the programmable operator facility.
The PROPST EXEC drops any IBM-supplied programmable operator routines that
are currently loaded as a nucleus extension, and loads the programmable operator
as a nucleus extension. It then invokes the programmable operator facility with the
specified RTABLE. If you do not specify a routing table, the RTABLE name
defaults to "PROP". You may specify a disconnect parameter to disconnect the
programmable operator before it is invoked. The format of the invocation EXEC
is as follows:

The Programmable Operator Facility 445

I ~_P_R_O_P_S_T ____ ~ __ [_~_~_~_~_l_e_-_n_a_m_e_J ____ [__ D_I_S_C_o_n_n __] __________________ ~
Optionally, you can take the following steps each time you invoke the programma­
ble operator facility:

1. Issue a FILEDEF command to assign a CMS filename to the PROPLIB
LOADLIB file so CMS can read and load from it. This is done with the fol­
lowing command:

FILEDEF PROPLIB DISK PROPLIB LOADLIB *

2. N ext, load the programmable operator program as a CMS nucleus extension
via the NUCXLOAD command. Issue the command as follows:

NUCXLOAD PROP DMSPOP PROPLIB

(See the VM/SP CMS Command and Macro Reference for more details on the
NUCXLOAD command.) These first two steps may be omitted for subse­
quent invocations as long ~.S JOU do not:

IPL CMS or

Have a CMS abend from which the programmable operator does not
automatically recover.

Following its loading as a CMS nucleus extension, invoke the programmable opera­
tor facility as if it were a CMS command. The format of the invocation is:

PROP [rtable-nameJ
PROP

where:

rtable-name is the filename of the routing table that is to be used for the pro­
grammable operator facility. "PROP" is the default filename of
the routing table if no other is specified at invocation.

The action routines named in the default or specified routing table are in turn
loaded as CMS nucleus extensions. If the programmable operator facility cannot
find an action routine that is named in the routing table, the user receives an error
message and is informed of all detectable routing table errors before the program­
mable operator facility terminates operation. When all of the required action rou­
tines have been loaded, a message is typed on the programmable operator's console
indicating that the programmable operator facility has started. The programmable
operator facility then waits for either an incoming message or a programmabie
operator console command (STOP and SET are the only valid commands). The
operator can disconnect at this point by having specified the DIS Conn parameter
for the PROPST EXEC or by entering CP (pressing the PAl key or equivalent)
and typing CP DIS CONN. After the DISCONNECTED message has been written
to the console, indicating that the system operator virtual machine is disconnected,
the operator can log on to whatever virtual machine hel she is normally supposed to
use, for example, the logical operator virtual machine specified in the routing table.

446 VM/SP System Programmer's Guide

Automatic Invocation

If you wish, you can set up the programmable operator facility to start running
when the system is IPLed and to restart automatically in the event of CP system
restart. This can be done as follows:

Place an "IPL CMS PARM AUTOCR" entry for programmable operator's vir­
tual machine in the CP directory. This can be done even if the programmable
operator virtual machine is the CP system operator.

Place the following entry in the PROFILE EXEC of the programmable opera­
tor's virtual machine:

EXEC PROPST rtable-name [DISConn]

You can precede or follow the invocation of the PROPST EXEC by the invo­
cation of any virtual machine commands that you wish to have executed before
or after the programmable operator facility is invoked. Virtual machine com­
mands'that are placed after the invocation of the PROPST EXEC are not exe­
cuted until the programmable operator facility is stopped.

If you want the programmable operator to run in other than the operator's vir­
tual machine, place an AUTOLOG entry for the programmable operator's vir­
tual machine in the PROFILE EXEC of the system operator or the
AUTOLOG user.

Once this is complete, if the logical operator is not already logged on, he/she
should do so on the appropriate system.

The following example shows how to place entries in the CP Directory and the
PROFILE EXEC of operator's virtual machine. These entries automatically
invoke the programmable operator facility in the operator's virtual machine when
the system is IPLed. The userid of the programmable operator virtual machine is
"OPERATOR". The default, "PROP RTABLE", is the name of the routing table
being used.

CP directory entries:

USER OPERATOR password 512K 1024K ABCDEFG
IPL CMS PARM AUTOCR

Entries in the PROFILE EXEC of the Operator's virtual machine:

EXEC PROPST DISCONN

Once these changes (or similar ones) have been made, IPLing the system causes
the programmable operator to be automatically invoked in the disconnected system
operator virtual machine. After the DISCONNECTED message has been written
to the console, indicating that the system operator virtual machine is disconnected,
the operator can log on to whatever virtual machine he/she is normally supposed to
use, for example, the logical operator virtual machine specified in the routing table.

The Programmable Operator Facility 447

I Communications Checking

The programmable operator facility can operate either from the host system or
from a distributed system in a network or from both sides. Special functions can be
performed depending on the ability of the programmable operators to communicate
through RSCS Networking. The purpose of these functions is:

To provide the host operator (logical operator) with timely information and/or
action in the event of a break in communication with the programmable opera­
tor on one of the network's distributed systems.

• To provide a distributed system with timely information and/or capability for
action in the event of a break in communication with the host system.

A programmable operator can periodically check on the link with another system to
determine whether it is possible to communicate with that system. The systems to
be checked must be identified in the routing table of the programmable operator
doing the checking. This may be either the programmable operator at the host sys­
tem checking on specified distributed systems or a distributed programmable opera­
tor checking on communications with its host system. When the programmable
operator at the host system is checking on the distributed systems, the programma­
ble operator needs another programmable operator running in the system operator
virtual machine on the distributed system. This is not required when a distributed
system is checking on the host system. In other words, for "host checking", no
programmable operator is required at the host system, but for "distributed system
checking" programmable operators must be running at the distributed systems.
These various types of checking may be collectively referred to as
"node-checking" .

Note that the roles of the 'host' and 'distributed' systems need not be strictly
defined. For example, a programmable operator may use the PROPCHK function
to check communication with any other system (node) running a programmable
operator in it's system operator virtual machine in the network. With the
HOSTCHK function, the system being checked is simply the system defined as the
checking system's logical operator, and not necessarily 'the' host system for the
network.

The programmable operator facility that has been instructed to check on its distrib­
uted system(s) periodically attempts to communicate with those systems by sending
a message that causes a response. The programmable operator then waits a speci­
fied time for a response. For checking the host system (HOSTCHK), the
acknowledgement request goes to the RSCS on the logical operator node. For
checking the distributed systems (PROPCHK), it goes to the programmable opera­
tor on the distributed system. No response indicates that something has prevented
communication between the host and the distributed system(s). Getting a response
after being delinquent for a time indicates that communication between the pro­
grammable operators has been restored. With the SET command, the user is able
to set the checking function ON or OFF.

Any time that the programmable operator detects that a node has exceeded the
time allowed for responding, that fact is recorded in the programmable operator
log. Also logged is the fact that a node has resumed responding.

448 VM/SP System Programmer's Guide

When one of these conditions, no response or a late response, is detected, the pro­
grammable operator facility invokes one of two EXECs supplied by IBM for this
purpose. For checking a distributed system, the PROPPCHK EXEC is invoked.
For checking of the host, the PROPHCHK EXEC is invoked.

The programmable operator doing the checking invokes the EXEC. For example,
if a programmable operator on a distributed system has a HOSTCHK statement in
its routing table, the PROPHCHK EXEC would be invoked if communication with
the host system were lost for a long enough period that the request or the response
were prevented from getting through. Similarly, if a programmable operator on a
host system has a PROPCHK statement in its routing table, that programmable
operator would invoke the PROPPCHK EXEC if communication with one of the
specified distributed nodes were lost for such a period. These EXECs are supplied
as samples only and may be modified or replaced with user-written EXECs, allow­
ing the user to tailor the resulting action(s).

The IBM-supplied PROPHCHK EXEC operates as follows:

When the logical operator's node fails to respond or resumes responding, type
a message on the programmable operator console and send a message to the
userid MAINT indicating that communication with the host system has been
broken or restored.

The IBM-supplied PROPPCHK EXEC operates as follows:

For each node that has failed to respond, notify the logical operator that the
programmable operator facility is unable to communicate with that particular
node (distributed system).

For each node that has resumed responding from a failed state, notify the log­
ical operator that communication with that node (distributed system) has been
reestablished.

How the Programmable Operator Establishes Communications with IV CV

The programmable operator facility automatically establishes communications with
CP through the Inter-User Communications Vehicle (lUCV). When the program­
mable operator facility is initialized, a CMSIUCV CONNECT, specifying *MSG
and an application id of PROP, is issued to establish the communications path with
the Message System Service (See the "Message System Service" section earlier in
this manual). This allows the programmable operator program to read and evaluate
messages directly from CPo

Several CP command settings determine the types of messages that the program­
mable operator facility can receive. The programmable operator facility issues
these SET commands when initializing, and resets them when terminating. The
commands issued during initialization are:

SET MSG IUCV
SET WNG IUCV
SET SMSG IUCV
SET EMSG IUCV
SET IMSG IUCV
SET CPCONIO IUCV
SET VMCONIO OFF

The Programmable Operator Facility 449

Message Output Format

VMCONIO is set OFF so that any messages produced by CMS or the programma­
ble operator during initialization of the programmable operator facility are typed on
its virtual machine console. If VMCONIO was set to IUCV, such data would be
trapped by IUCV and not displayed.

When the programmable operator STOP command is issued, the following SET
commands are issued:

SET MSG ON
SET WNG ON
SET SMSG OFF
SET EMSG ON
SET IMSG ON
SET CPCONIO OFF
SET VMCONIO OFF

Then, after the existing messages are handled, the IUCV connection is severed
using the IUCV SEVER function.

Some other virtual machine settings that the programmable operator facility modi­
fies are "SET RUN ON", "SET TIMER REAL", and "TERMINAL MODE VM"
at initialization, and "SET RUN OFF" and "SET TIMER ON" at termination.
"SET RUN ON" is issued to ensure that the programmable operator is not held up
in CP console function mode for excessive periods of time, either because of some
operator command entry or because of logging on to a disconnected programmable
operator virtual machine. "TERMINAL MODE VM" is to ensure that program­
mable operator console commands are handled correctly.

Note: SCIF (Single Console Image Facility) operation supersedes IUCV Message
System Service operation. If the programmable operator virtual machine has a
SCIF secondary user, messages would be sent via SCIF to the secondary user rath­
er than handled by the programmable operator virtual machine through the IUCV
Message System Service. However, the programmable operator facility may be a
SCIF secondary user for another virtual machine. For example, this can be used to
control the operation of a guest operating system running in another virtual
machine. In this case, SCIF messages is presented to the programmable operator
virtual machine as IUCV message-type 8.

The messages and responses from the programmable operator facility are sent via
the CP MSGNOH command if the programmable operator virtual machine has user
class B authorization. Otherwise, the CP MESSAGE command is used. Regard­
less of which message command is used the messages from another user that are
routed to the logical operator are prefixed with the userid and nodeid of the origi­
nating user.

The format of these messages appears as follows:

col 1
I
v
userid

col 10
I
V
nodeid:

col 20
I
v
text

Messages that the programmable operator facility sends as responses to the issuer
of a programmable operator command Of an asynchronous message to the CP
operator originating at the programmable operator virtual machine have no such
prefix.

450 VM/SP System Programmer's Guide

Exit EXECs

Exit EXEC Interface

I Communication Error Exit

I LOG Error Exit

The programmable operator facility exit EXECs have the same parameter list pro­
vided as an EXEC action routine, with the exception that no RT ABLE parameter
field value and no message text are stacked for the EXEC. When an exit EXEC is
called, contents of the program stack depend upon which exit is being invoked.
Descriptions of the stack contents for the different types of exits follow:

Notes:

1. Some of the parameter values have no meaning for a particular exit EXEC and
their use is left to the discretion of the EXEC writer. For example, requester's
userid and nodeid have no meaning for the communication error EXECs,
PROPPCHK and PROPHCHK.

2. The programmable operator facility does not trap VMCONIO-type or CP
EMSGs produced by exit EXECs as it does for action routines.

The PROPPCHK EXEC is invoked when the programmable operator facility
determines that communication with a node that is being checked has changed sta­
tus. When this occurs, the following information is stacked, LIFO, for the EXEC.

1. Entries having the format

"nodeid up" or "nodeid DOWN"

where:

nodeid is the RSCS nodeid of a node that has changed communication
status.

UP indicates that the node had not been responding and has resumed
responding to acknowledgement requests.

DOWN indicates that the node had been responding and has ceased respond­
ing.

2. Total number of nodeid entries stacked.

The PROPHCHK EXEC is invoked when the programmable operator determines
that communication with the logical operator node (if it is being checked) has
changed status. If the status has changed, a line is stacked LIFO for the EXEC.
The line is either "nodeid UP" or "nodeid DOWN", where "nodeid" is the RSCS
nodeid of the logical operator and "UP" and "DOWN" have the same meaning as
for PROPPCHK.

If a virtual machine resource limit is reached, such as "disk-full", it may not be pos­
sible to write another record to the programmable operator facility log file. If this
happens, a user-written EXEC is invoked to perform whatever recovery action the
user thinks is desirable or necessary. The user EXEC must have the filename of

The Programmable Operator Facility 451

PROPLGER. The programmable operator facility stacks (LIFO) the error code
received from the CMS FSWRITE function. The programmable operator performs
the following actions depending on the return code from the EXEC.

RC = 0 recovered from error. The programmable operator facility should retry
logging. If it is still unable to log, an error message is sent.

RC = 4 unable to do recovery. The programmable operator facility should send
an error message.

The error message is sent to the logical operator. If the PROPLGER EXEC can­
not be found, the programmable operator facility acts as if RC = 4 has been
returned thus, an error message is sent to the logical operator. Whatever action is
taken, the programmable operator facility continues operation. The IBM-supplied
sample PROPLGER EXEC:

Closes the current log file

• Sends the last two log files to the logical operator

Erases the last two log files.

If the same logging error occurs on two successive logging attempts, (for example,
two consecutive incoming messages cause the same logging error) the programma­
ble operator sets LOGGING to "OFF". This prevents unpredictable looping in
some situations. Note, though, that the logical operator may receive only two error
messages when logging errors occur.

Problem Determination - Debug Mode

Debug mode is used to perform problem determination on the programmable oper­
ator program itself. It allows responses to commands issued from the programma­
ble operator virtual machine console to be returned back to the console without
being intercepted by the programmable operator program. This permits any CP
command (for example, CP TRACE and ADSTOP commands), to be issued with­
out having its response trapped by the programmable operator program.

SET DEBUG ON may be used after the programmable operator facility responds
with the message:

PROP RUNNING - ENTER ' STOP , TO TERMINATE

indicating that the programmable operator facility is running and operational. The
programmable operator facility then responds with the message:

PROP IS. RUNNING IN DEBUG MODE

which is also written to the log file. Once in debug mode, the programmable opera­
tor facility waits to receive messages from another virtual machine, or for the sys­
tem programmer to enter input from the console. Since only two commands are
accepted from the programmable operator virtual machine console (STOP and
SET), to issue any CP commands the System Programmer must enter the CP envi­
ronment (using the PAl key). Otherwise, the commands are intercepted and
rejected as invalid prograrrmlable operator commands.

452 VM/SP System Programmer's Guide

Conversely, pressing the PAl key or issuing the "BEGIN" command returns con­
trol to the programmable operator facility. From this environment, issuing SET
DEBUG OFF causes the programmable operator facility to return to its normal
function of trapping messages.

The Action Routine Interface

Action Routine Call Interface

Action routines are loaded by the programmable operator facility as CMS nucleus
extensions. As a result, they must be invoked by the programmable operator facili­
ty as CMS commands via SVC 202. Also, addresses cannot be resolved between
separate nucleus extensions; they must be passed dynamically if they are desired.

Action Routine Parameter Interface

An installation can write additional action routines in Basic Assembler Language.
Action routines may also be written as EXECs. Programs written in Basic Assem­
bler Language can access the parameter list built by the programmable operator
facility. (The programmable operator parameters are available in a different fash­
ion for EXEC action routines--see below.) The parameter list contains a list of
addresses pointing to data that may be significant to the action routine invoked.
The programmable operator facility then passes the address of the list as a parame­
ter when it invokes the required action routine. See VM / SP Data Areas and Con­
trol Block Logic, Volume 2 for descriptions of the DSECTs mentioned below.

The register conventions used for invoking an action routine are:

Register 1 points to a list of eight-byte tokens (CMS PLIST) containing the
following information:

TOKEN 1 Contains the command name (action routine name).

TOKEN 2 Contains two fullwords. These fullwords contain the
following:

Fullword 1 -

Fullword 2-

Contains the address of the PROP common
area as described by the PROPCOM DSECT.

Contains the address of a list of addresses that
point to data that may be needed by the
action routine. This list is described by the
PARMLIST DSECT.

TOKEN 3 Contains eight X'FF's to mark the end of the parameter list.

Register 13 points to a standard as eighteen word save area.

Register 14 points to the address that receives control when the action rou­
tine completes processing, i.e. the address to which the action routine must
return control.

Register 15 points to the action routine entry point and may be used as a
base register.

The Programmable Operator Facility 453

Figure 58 offers a graphic representation of the previous discussion. It illus­
trates the data areas that can be accessed through Register 1.

o <-TOKEN 1
Register 1 >

Command Name
(Action
Routine Name)

Fullword 1 ----> 8 '----------' <-TOKEN 2

Fullword 2 ----> C

10

programmable
operator

common area
pointer

address list
pointer

~-------------->

<-TOKEN 3

programmable
operator

common
area

8X'FF'

I
Described by PROPCOM DSEeT

18
PLIST of three
8-byte tokens

Data Item Length
0 V

L> I Message text 240 bytes
4

L> I Message length 4 bytes
8

L>lMessage I text (tokenized) 256 bytes
C

L> I ID of network machine 8 bytes
10

L> I Requester's userid 8 bytes
14

L> Requester's nodeid 8 bytes
18

L> Programmable operator's userid 8 bytes
lC

L> Programmable operator's nodeid 8 bytes
20

L> Logical operator's userid 8 bytes
24

L> Logical operator's nodeid 8 bytes
28

L>
f>filename

Routing table fileid 18 bytes >filetype
2C

L>
>filemode

Parameter from Routing Table 8 bytes
30 I

L-> Message type (IUCV msg. class) 1 byte
34 I

L->2Action routine name 8 bytes
38 J

Address List described by PARMLIST DSECT

lIn addition to the original message text, the message text is also
provided in CMS tokenized form (eight-byte tokens followed by 8X'FF').

2The high order bit (X'80') of the last fullword of this list of
addresses is set to one to indicate that it is the last entry
in the list according to standard as linkage conventions.

Figure 58. Register Conventions for Invoking an Action Routine

454 VM/SP System Programmer's Guide

8
8
2

bytes
bytes
bytes

I EXEC Action RoutiIU!S

Writing Action Routines

10

Action routines may also be written as EXECslo. The programmable operator
parameters are available in a different fashion for EXEC action routines. The
method is described below.

1. Having determined that the action routine is an EXEC, the programmable
operator facility calls the action routine accordingly.

2. The following information is passed as parameters (arguments) on the
EXEC invocatio.l1, in this order:

Requester's userid

Requester's nodeid

Logical operator's userid

Logical operator's nodeid

Message type code

The programmable operator facility's userid

• The programmable operator facility's nodeid

Networking machine userid

RT ABLE filename

3. The following parameters are stacked LIFO for the EXEC in this order:

RTABLE PARAMETER field contents

• Message text

In order to facilitate handling by an EXEC, if the requester is CP, the request­
er's userid and nodeid are "CP".

How an action routine is written using Basic Assembler Language depends on
the function(s) that the action routine performs and the conditions under which
it runs. Since the programmable operator can use message content and mes­
sage origin to determine which action routine to call, it may not be necessary
for the action routine to check any further conditions. However, by using the
PARMLIST supplied by the programmable operator facility, the action routine
may obtain additional information about the message. Each entry in the
P ARMLIST points to some item of data about the message just received or
about the programmable operator environment.

As described in the preceding section, "Action Routine Parameter Interface,"
the information initially provided to the action routine is in the form of a CMS

EXECs may be written using the System Product Interpreter, EXEC 2, or CMS EXEC languages.

The Programmable Operator Facility 455

tokenized PLIST. By loading the second fullword of the second token of that
PLIST into a register, the user can establish addressability to the PROP
PARMLIST. For example,

SAVE (14,12)
LR R12,R15
USING ROUTINEX,R12
L R2 , 1 2 (, R 1)
USING PARMLIST,R2

SAVE REGISTERS
LOAD BASE REGISTER
ESTABLISH ADDRESSABILITY
LOAD PROP PARMLIS~ ADDRESS
PARM ADDRESSABILITY

These instructions would be sufficient for many action routines to establish
addressability for the action routine and the PROP PARMLIST. The following
instructions could then be used to obtain the addresses of the requester's (mes­
sage originator's) userid and nodeid.

L
L

R4,PARMRUSR
R6,PARMRNOD

GET REQUESTER'S USERID ADDRESS
GET REQUESTER'S NODEID ADDRESS

The PROP DSECTs, such as PARMLIST, define the above labels. To include
the PROP DSECT in the action routine insert the following assembler instruc­
tion in the source file for the routine:

COPY PROP

In addition, it may be desirable to include the CMS REGEQU macro instruc­
tion for register equates. When the action routine is complete, it is necessary to
restore registers and branch to the address in register 14, or use the OS
RETURN macro.

Handling Console I/O in an Action Routine

456 VM/SP System Programmer's Guide

The installation must determine how an action routine is to handle console 1/0
generated by the virtual machine and CPo Normal operation of the program­
mable operator facility sets VMCONIO to IUCV (by default) before calling an
action routine and sends the VMCONIO to the message originator (requester).
If it is desired that console I/O (VMCONIO) produced by the action routine
be typed on the programmable operator virtual machine console, the action
routine must SET VMCONIO OFF. However, because there would not
normally be an operator at the programmable operator virtual machine console,
an installation can code an action routine to receive and handle VMCONIO
instead of allowing the programmable operator to receive it and send it to the
requester (message originator). To accomplish this, the action routine can
receive the VMCONIO that was generated by using the IUCV RECEIVE
function with message type 5 specified as the IUCV target class (TRGCLS).
For details on using IUCV, refer to the section on IUCV earlier in this manual.

An example of this may be found in the subroutine CALLARTN of the
IBM-supplied module DMSPOP. In order to use IUCV it is necessary to
include the CP COpy files IPARML and EQU.

CP generated console I/O (CPCONIO) should be handled differently than
above. The CPCONIO setting should not be changed because this could cause
the programmable operator facility to miss some asynchronous CP messages.

If the action routine is to receive the responses from CP commands that it
issues, it should use the CP Diagnose X'08' support with a command response
buffer, rather than attempting to receive it with IUCV. (See "Diagnose Code

X'08' - Virtual Console Function".) The reason for this is that other CP mes­
sages can be mixed in with the command response, and therefore the program
cannot be assured of receiving its response in consecutive IUCV messages.

If the CP command response is to be typed on the programmable operator's
virtual machine console, the action routine should use a CMS function, such as
WRTERM, to write the lines in the program's CP command response buffer to
the terminal.

The Programmable Operator Facility 457

Auxiliary Directories

When a disk is accessed, each module that fits the description specified on the
ACCESS command is included in the resident directory. An auxiliary directory
is an extension of the resident directory and contains the name and location of
certain CMS modules that are not included in the resident directory. These
modules, if added to the resident directory, would significantly increase its size,
thus increasing the search time and storage requirements. An auxiliary directo­
ry can reference modules that reside on the system (S) disk; or, if the proper
linkage is provided, reference modules that reside on any other read-only CMS
disk. To take advantage of the saving in search time and storage, modules that
are referenced via an auxiliary directory should never be in the resident directo­
ry. The disk on which these modules reside should be accessed in a way that
excludes these modules.

How To Add an Auxiliary Directory

To add an auxiliary directory to CMS, the system programmer must generate
the directory, initialize it, and establish the proper linkage. Only when all three
tasks are completed, can a module described in an auxiliary directory be proper­
ly located.

Generation of the Auxiliary Directory

An auxiliary directory TEXT deck is generated by assembling a set of DMSFST
macros, one for each module name. The format of the DMSFST macro is:

DMSFST

where:

lfilename l
(filename [,filetype]) [,aliasname [, FORM=E]

,MODULE

filename, filetype is the name of the module whose File Status Table
(FST) information is to be copied.

aliasname is another name by which the module is to be known.

FORM=E specifies that 64-byte FST entries are to be generated
rather than 40-byte entries. Either length FST entry
will operate correctly on basic CMS. However, the
40-byte form will not contain such information as
date/time after initialization by GENDIRT.

Initializing the Auxiliary Directory

458 VM/SP System Programmer's Guide

After the auxiliary directory is generated via the DMSFST macro, it must be
initialized. The CMS GENDIRT command initializes the auxiliary directory
with the name and location of the modules to reside in an auxiliary directory.
By using the GENDIRT command, the file entries for a given module are
loaded only when the module is invoked. The format of the GENDIRT com-

. mand is:

I GENDIRT directoryname [targetmode [sourcemode]]

where

Establishing the Proper Linkage

directoryname
is the entry point of the auxiliary directory.

targetmode
is the mode of the disk containing the modules referenced in the auxil­
iary directory. The letter is the mode of the disk containing the mod­
ules at execution time, not the mode of the disk at the initialization of
the directory. At directory creation, all modules named in the directory
being generated must be on either the A-disk on a read-only extension
or on the disk specified in the sourcemode parameter. The default val­
ue for targetmode is S, the system disk. It is your responsibility to
determine the usefulness of this operand at your installation and to
inform users of programs using auxiliary directories of the proper
methodes) of access.

sourcemode
is the mode of the disk that contains the modules or files when the
GENDIRT command is issued. If not specified, 'A' is the default.

The CMS module, DMSLAD, entry point DMSLADAD, must be called by a
user program or interface to initialize the directory search order. The subrou­
tine, DMSLADAD, must be called via an SVC 202 with register 1 pointing to
the appropriate PLIST. The disk containing the modules listed in the auxiliary
directory must be accessed as the mode specified, or implied, by the GENDIRT
command before the call is issued. If the GENDIRT command has not been
used, the user receives the message: "File not found" or "Error reading file."

The coding necessary for the call is:

LA R1,PLIST
SVC 202
DC AL4(error return)

This call must be executed before the call to any module that is to be located
via an auxiliary directory.

The PLIST should be:

PLIST DS
DC
DC
DC

OF
CL8'DMSLADAD'
V (directoryname)
F'O'

The auxiliary directory is copied into nucleus free storage. The Active Disk
Table (ADT) for the targetmode expressed or implied by the GENDIRT com­
mand is found and its file directory address chain (ADTFDA) is modified to
include the nucleus copy of the auxiliary directory. A flag, ADTPSTM, in
ADTFLG2 is set to indicate that the directory chain has been modified.

The address of the nucleus copy of the auxiliary directory is saved in the third
word of the input parameter list and the high order byte of the third word is set
to X'80' to indicate that the directory search chain was modified and that the
next call to DMSLADAD is a clear request.

Auxiliary Directories 459·

Error Handling and Return Codes

To reset the directory search chain, a second call is made to DMSLADAD
using the modified PLIST. DMSLADAD removes the nucleus copy of the aux­
iliary directory from the chain and frees it. DMSLADAD does not, however,
restore the caller's PLIST to it initial state.

An error handling routine should be coded to handle nonzero return codes in
register 15. When register 15 contains 1 and the condition code is set to 2, the
disk specified by the targetmode operand of the GENDIR T command was not
accessed as that mode.

When register 15 contains 2 and the condition code is set to 2, the disk speci­
fied by the targetmode operand of the GENDIRT command has not previously
had its file directory chains modified; therefore, a call to DMSLADAD to
restore the chain is invalid.

An Example of Creating an Auxiliary Directory

460 VM/SP System Programmer's Guide

Consider an application called PAYROLL consisting of several modules. It is
possible to put these modules in an auxiliary directory rather than in the resi­
dent directory. It is further possible to put the auxiliary directory on a disk oth­
er than the system disk. In this example, the auxiliary directory is placed on the
Y-disk.

First, generate the auxiliary directory TEXT deck for the payroll application
using the DMSFST macro:

PAYDIRT

DIRTBEG

DIRTEND

START
DC
DC
EQU
DMSFST
DMSFST
DMSFST
DMSFST
DMSFST
DMSFST
DMSFST
DMSFST
DMSFST
DMSFST
DMSFST
DC
EQU
END

o
F'40' LENGTH OF FST ENTRY
A (DIRTEND-DIRTBEG) SIZE OF DIRECTORY

* PAYROLL 1
PAYROLL2
PAYROLL3
PAYFICA
PAYFEDTX
PAYSTATE
PAYCITY
PAYCREDU
PAYOVERT
PAYSICK
PAYSHIFT
2A(O) POINTER TO NEXT FST BLOCK

*

lNote: F'64' should be used if FORM=E is specified on DMSFST macro.

In this example, the payroll control program (PAYROLL), the payroll auxiliary
directory (P A YDIRT), and all the payroll modules reside on the 194 disk.

In the payroll control module (PAYROLL), the subroutine DMSLADAD must
be called to establish the linkage to the auxiliary directory. This call must be
executed before any call is made to a payroll module that is in the PA YDIRT
auxiliary directory.

LA R1, PLIST
SVC 202
DC AL4(ERRTN)

PLIST DS OF
DC CL8'DMSLADAD'
DC V (PAYDIRT)
DC F'O'

Next, all payroll modules must have their absolute core-image files generated
and the payroll auxiliary directory must be initialized. In the example, the pay­
roll control module (PAYROLL) is given a mode number of 2 while the other
payroll modules are given a mode number of 1. When the PAYROLL program
is finally executed, only the files on the 194 disk with a mode number of 2 are
accessed. This means only the PAYROLL control program (which includes the
payroll auxiliary directory) will be referenced from the resident directory. All
the other payroll modules, because they have mode numbers of 1, are refer­
enced via the payroll auxiliary directory.

The following sequence of commands create the absolute core-image files for
the payroll modules and initialize the payroll auxiliary directory.

ACCESS 194 A
LOAD PAYROLL PAYDIRT
GENMOD PAYROLL

LOADMOD PAYROLL
INCLUDE PAYROLL 1
GENMOD PAYROLL 1

LOADMOD PAYROLL
INCLUDE PAYSHIFT
GENMOD PAYSHIFT

LOADMOD PAYROLL
GENDIRT PAYDIRT Y

(now the auxiliary directory is included
in the payroll control module, but it is
not yet initialized.)

(this sequence of three commands is
repeated for each payroll module called
by PAYROLL.)

GENMOD PAYROLL MODULE A2

When it is time to execute the PAYROLL program, the 194 disk must be
accessed as the Y-disk (the same mode letter as specified on the GENDIRT
command). Also, the 194 disk is accessed in a way that includes the PAY­
ROLL control program in the resident directory but not the other payroll mod­
ules. This is done by specifying a mode number of 2 on the ACCESS
command.

ACCESS 194 y/s * * Y2

Now, a request for a payroll module, such as PAYOVERT, can be successfully
fulfilled. The auxiliary directory will be searched and PAYOVERT will be
found on the Y -disk.

Note: A disk referred to by an auxiliary directory must be accessed as a
read-only disk.

Auxiliary Directories 461

Assembler Virtual Storage Requirements

Overlay Structures

Prestructured Overlay

462 VM/SP System Programmer's Guide

The minimum size virtual machine required by the assembler is 256K byt~s.
However, better performance is generally achieved if the assembler is run in
320K bytes of virtual storage. This size is recommended for medium and large
assemblies.

If more virtual storage is allocated to the assembler, the size of buffers and
work space can be increased. The amount of storage allocated to buffers and
work space determines assembler speed and capacity. Generally, as more stor­
age is allocated to work space, larger and more complex macro definitions can
be handled.

You can control the buffer sizes for the assembler utility data sets (SYSUTl,
SYSUT2, and SYSUT3), and the size of the work space used during macro
processing, by specifying the BUFSIZE assembler option. Of the storage given,
the assembler first allocates storage for the ASSEMBLE and CMSLIB buffers
according to the specifications in the DD statements supplied by the FILEDEF
for the data sets. It then allocates storage for the modules of the assembler.
The remainder of the virtual machine is allocated to utility data set buffers and
macro generation dictionaries according to the BUFSIZE option specified:

BUFSIZE(STD):
37 percent is allocated to buffers, and 63 percent to work space. This is the
default if you do not specify any BUFSIZE option.

BUFSIZE(MIN) :
Each utility data set is allocated a single 790-byte buffer. The remaining
storage is allocated to work space. This allows relatively complex macro
definitions to be processed in a given virtual machine size, but the speed of
the assembly is substantially reduced.

An overlay structure can be created in CMS in two different ways, although
CMS has no overlay supervision. For descriptions of all the CMS commands
mentioned, see the VM/SP CMS Command and Macro Reference.

A prestructured overlay program is created using the LOAD, INCLUDE, and
GENMOD commands. Each overlay phase or segment is a nonrelocatable
core-image module created by GENMOD. The phases may be brought into
storage with the LOADMOD command.

A (Root Phase)

~--------~--------~<------------Location xxx xxx

c
B

,:-------Location yyyyyy

Figure 59. An Overlay Structure

The overlay structure shown in Figure 59 could be prestructured using the fol­
lowing sequence of commands (Programs A, B, C" D, and E are the names of
TEXT files; the overlay phases will be named Root, Second, Third, etc.):

LOAD A B
GENMOD ROOT (FROM A TO B STR)
GENMOD SECOND (FROM B)
LOADMOD ROOT
INCLUDE C D
GENMOD THIRD (FROM C TO D)
GENMOD FOURTH (FROM D)
LOADMOD THIRD
INCLUDE E
GENMOD FIFTH (FROM E)

The programmer need not know the storage address where each phase begins.
A TEXT file can be made to load at the proper address by reloading earlier
phases. In the foregoing example, the command sequences, "LOADMOD
ROOT /INCLUDE C D" and "LOADMOD THIRD/INCLUDE E," cause
TEXT files C, D, and E to load at the proper addresses.

If the root phase contains address constants to the other phases, one copy of
the root must be kept in storage while each of the other phases is brought in by
the LOAD or INCLUDE commands without an intervening GENMOD. The
root phase is then processed by GENMOD after all address constants have
been satisfied. In this case, the programmer must know the address where non­
root phases begin (in Figure 59, locations xxxxxx and yyyyyy). The following
sequence of commands could be used:

LOAD A B
GENMOD SECOND (FROM B)
INCLUDE C D (ORIGIN xxxxxx)
GENMOD THIRD (FROM C TO D)
GENMOD FOURTH (FROM D)
INCLUDE E (ORIGIN yyyyyy)
GENMOD FIFTH (FROM E)
LOAD A B
INCLUDE C D (ORIGIN xxxxxx)
INCLUDE E (ORIGIN yyyyyy)
GENMOD ROOT (FROM A TO C STR)

The ORIGIN option of the INCLUDE command is used to cause the included
file to overlay a previously loaded file. The address at which a phase begins
must be a doubleword boundary. For example, if the root phase were X'2BD'
bytes long, starting at virtual storage location X'20000', then location xxxxxx
would be the next double word boundary, or X'202CO'.

Assembler Virtual Storage Requirements 463

Dynamic Load Overlay

464 VM/SP System Programmer's Guide

The STR option, which is specified in the GENMOD of the root phase, speci­
fies that whenever that module is brought into storage with the LOADMOD
command, the Storage Initialization routine should be invoked. This routine
initializes user free storage pointers.

At execution time of the prestructured overlay program, each phase is brought
into storage with the LOADMOD command. The phases can call LOADMOD.
The OS macros LINK, LOAD, and XCTL normally invoke the INCLUDE
command, which loads TEXT files. These macros will invoke LOAD MOD if a
switch, called COMPSWT, in the CMS Nucleus Constant area, NUCON, is
turned on.

With COMPSWT set, overlay phases that use LINK, LOAD, and XCTL must
be prestructured MODULE files.

The dynamic load method of using an overlay structure is to have all the phases
in the form of relocatable object code in TEXT files or members of a TEXT
library, filetype TXTLIB. The OS macros, LINK, LOAD, and XCTL may then
be used to pass control from one phase to another. The XCTL macro causes
the calling program to be overlayed by the called program except when it is
issued from the root phase. When issued from the root phase, CMS treats
XCTL as it would a LINK macro, adding the new code at the end of the root
phase.

The COMPSWT flag in OSSFLAGS must be off when the dynamic load meth­
od is used.

Part 3. Debugging with VM/SP

Part 3, the debugging section, contains the following information:

Introductory Information

How to start debugging
How to use VM/SP facilities to debug abends, unexpected results, loops,
and waits
Summary of VM/SP debugging tools
Comparison of CP and eMS debugging tools

Program Product Information

Debugging CP on a virtual machine
Commands useful in de bugging
Internal trace table
Restrictions
Abend dumps
Reading CP abend dumps
Control block summary

Conversational Monitor System Information

Debugging commands
Nucleus load map
Reading CMS abend dumps
Control block summary

Part 3. Debugging with VM/SP 465

Introduction to Debugging

How To Start Debugging

Does a Problem Exist?

466 VM/SP System Programmer's Guide

The VM/SP Program Product manages the resources of a single computer such
that multiple computing systems appear to exist. Each "virtual computing
system&ocq., or virtual machine, is the functional equivalent of an IBM
System/370. Therefore, the person trying to determine the cause of a VM/SP
software problem must consider three separate areas:

1. The Control Program (CP), which controls the resources of the real
machine.

2. The virtual machine operating system running under the control of CP,
such as CMS, RSCS, OS, or DOS.

3. The problem program, which executes under the control of a virtual
machine operating system.

Information explaining how to debug CP or CMS is contained in this book;
information explaining how to debug applications programs is in the VM / SP
CMS User's Guide. For information that explains how to use the VM/370
Interactive Problem Control System (IPCS) for debugging, refer to the
VM /370 Interactive Problem Control System (IPCS) User's Guide.

If an IPCS problem is caused by a virtual machine operating system (other than
CMS and RSCS), refer to the publications pertaining to that operating system
for specific information. However, use the CP debugging facilities, such as the
CP commands, to perform the recommended debugging procedures discussed
in the other publication.

If it becomes necessary to apply a PTF (Program Temporary Fix) to a compo­
nent of VM/370 or VM/SP, refer to the VM/SP Installation Guide for
detailed information on applying PTFs.

Before you can correct any problem, you must recognize that one exists. Next,
you must identify the problem, collect information, and determine the cause so
that the problem can be fixed. When running VM/SP, you must also decide
whether the problem is in CP, the virtual machine, or the problem program.

A good approach to debugging is:

1. Recognize that a problem exists.

2. Identify the problem type and the area affected.

3. Analyze the data you have available, collect more data if you need it, then
isolate the data that pertains to your problem.

4. Finally, determine the cause of the problem and correct it.

There are four types of problems:

1. Loop
2. Wait state
3. Abend (abnormal end)
4. Incorrect results

The most obvious indication of a problem is the abnormal termination of a pro­
gram. Whenever a program abnormally terminates, a message is issued.
Figure 60 lists the possible abend messages and identifies the type of abend for
these messages.

Message
(Alarm rings)
DMKDMP908I SYSTEM FAILURE CODE xxxxxx

DMKCKP900W SYSTEM RECOVERY FAILURE;
PROGRAM CHECK

DMKCKP901W SYSTEM RECOVERY FAILURE;
MACHINE CHECK, RUN SEREP

DMKCKP902W SYSTEM RECOVERY FAILURE;
FATAL I/O ERROR - NUCL AREA

- WARM AREA
DMKCKP922W SYSTEM RECOVERY FAILURE;

INVALID SPOOLING DATA
DMKCKP910W SYSTEM RECOVERY FAILURE;

INVALID WARM START CYLINDER
DMKCKP911W SYSTEM RECOVERY FAILURE;

WARM START AREA FULL

DMKCKT903W SYSTEM RECOVERY FAILURE;
VOLID xxxxxx ALLOCATION ERROR
CYLINDER xxx

DMKCKT912W SYSTEM RECOVERY FAILURE;
VOLID xxxxxx NOT MOUNTED

DMKCKV912W SYSTEM RECOVERY FAILURE;
VOLID xxxxxx NOT MOUNTED

DMKCKS915E PERMANENT I/O ERROR ON
CHECKPOINT AREA

DMKCKT916E ERROR ALLOCATING SPOOL FILE
BUFFERS

DMKCKV916E ERROR ALLOCATING SPOOL FILE
BUFFERS

DMKCKV917E CHECKPOINT AREA INVALID;
CLEAR STORAGE AND COLD START

DMKWRM921W SYSTEM RECOVERY FAILURE;
UNRECOVERABLE I/O ERROR

DMKWRM903W SYSTEM RECOVERY FAILURE;
VOLID xxxxxx ALLOCATION ERROR
CYLINDER xxx OR PAGE xxx xxx

DMKWRM904W SYSTEM RECOVERY FAILURE;
INVALID WARM START DATA

DMKWRM912W SYSTEM RECOVERY FAILURE;
VOLID xxxxxx NOT MOUNTED

DMKWRM920W NO WARM START DATA; CKPT
START FOR RETRY

Figure 60 (Part 1 of 3). Abend Messages

Type of Abend

CP abend, system dumps to disk. Restart is
automatic.

If the checkpoint program encounters a pro­
gram check, a machine check, a fatal I/O
error, or an error relating to a certain warm
start area or warm start data conditions, a
message is issued indicating the error and CP
enters the wait state with code 007 in the
PSW.

If the checkpoint start program encounters a
severe error, a message is issued indicating
the error and CP enters the wait state with
code OOE in the PSW.

If the warm start program encounters a
severe error, a message is issued indicating
the error and CP enters the wait state with
code 009 in the PSW.

Introduction to Debugging 467

Message
DMKDMP908I SYSTEM FAILURE, CODE xxxxxx
DMKCKP960I SYSTEM WARM START DATA SAVED
DMKCKP961W SYSTEM SHUTDOWN COMPLETE

Optional Messages:

DMKDMP905W SYSTEM DUMP FAILURE;
PROGRAM CHECK

DMKDMP906W SYSTEM DUMP FAILURE;
MACHINE CHECK, RUN SEREP

DMKDMP907W SYSTEM DUMP FAILURE; FATAL
I/O ERROR

DMKMCH610W MACHINE CHECK SUPERVISOR
DAMAGE

DMKMCT610W MACHINE CHECK SUPERVISOR
DAMAGE

DMKMCH611W MACHINE CHECK SYSTEM
INTEGRITY LOST

DMKMCT611W MACHINE CHECK SYSTEM
INTEGRITY LOST

Figure 60 (Part 2 of 3). Abend Messages

468 VM/SP System Programmer's Guide

Type of Abend

CP abend, system dumps to tape or printer.
The system stops; the operator must IPL the
system to start again.

If the dump program encounters a program
check, a machine check, or a fatal I/O error,
a message is issued indicating the error. CP
enters the wait state with code 003 in the
PSW.

If the dump cannot find a defined dump
device and if no printer is defined for the
dump, CP enters a disabled wait state with
code 004 in the PSW.

CP termination with wait state.

The machine check handler encountered an
unrecoverable error with the VM/SP control
program.

The machine check handler encountered an
error that cannot be diagnosed; system integ­
rity, at this point, is not reliable.

Message
DMKMCH612W MACHINE CHECK; TIMING

FACILITIES DAMAGE; RUN SEREP

DMKMCT620I MACHINE CHECK; ATTACHED
PROCESSOR NOT BEING USED

DMKMCH622W MACHINE CHECK; MULTIPLE
CHANNEL ERRORS

DMKACR622W MACHINE CHECK; MULTIPLE
CHANNEL ERRORS

DMKCCH603W CHANNEL ERROR, RUN SEREP,
RESTART SYSTEM

DMKACR603W CHANNEL ERROR, RUN SEREP,
RESTART SYSTEM

DMKCPI955W INSUFFICIENT STORAGE FOR
VM/SP

DMKMCH622W MACHINE CHECK; MULTIPLE
CHANNEL ERRORS

DMSABN148T SYSTEM ABEND xxx
CALLED FROM xxxxxx

Others
Refer to OS and DOS publications
for the abnormal termination messages.

Figure 60 (Part 3 of 3), Abend Messages

Type of Abend

An error has occurred in the timing facilities.
Probable hardware error.

A malfunction alert, clock error or instruction
processing error occurred on the attached
processor. The system continues to run in
uniprocessor mode.

CP termination without automatic restart.

On a 303x processor, an error affecting one
or more channels in a channel group has
occurred. CP enters a disabled wait state
with code 001 in the PSW.

There was a channel check condition from
which the channel check handler could not
recover. CP enters the wait state with code
002 in the PSW.

The generated system requires more real
storage than is available. CP enters the disa­
bled wait state with code OOD in the PSW.

There was a group error machine check from
which the machine check handler could not
recover. CP enters a wait state with code
001 in the PSW.

CMS abend, system will accept commands
from the terminal. Enter the. DEBUG com­
mand and then the DUMP subcommand to
have CMS dump storage on the printer.

When OS or DOS abnormally terminates on a
virtual machine, the message issued and the
dumps taken are the same as they would be if
OS or DOS abnormally terminated on a real
machine.

Another obvious indication of a problem is unexpected output. If your output
is missing, incorrect, or in a different format than expected, some problem
exists.

Identifying the Problem

Unproductive processing time is another symptom of a problem. This problem
is not easily recognized, especially in a timesharing environment.

Two types of problems are easily identified: abnormal termination is indicated
by an error message, and unexpected results become apparent once the output
is examined. The looping and wait state conditions are not as easily identified.

Introduction to Debugging 469

Identifying the Problem

Analyzing the Problem

470 VM/SP System Programmer's Guide

Unproductive processing time is another symptom of a problem. This problem
is not easily recognized, especially in a timesharing environment.

Two types of problems are easily identified: abnormal termination is indicated
by an error message, and unexpected results become apparent once the output
is examined. The looping and wait state conditions are not as easily identified.

When using VM/SP, you are normally sitting at a terminal You may have a
looping condition if your program takes longer to execute than you anticipated.
Also, check your output. If the number of output records or print lines is
greater than expected, the output may really be the same information repeated
many times. Repetitive output usually indicates a program loop.

Another way to identify a loop is to periodically examine the current PSW. If
the PSW instruction address always has the same value, or if the instruction
address has a series of repeating values, the program probably is looping.

The wait state is also difficult to recognize when at the terminal. If your pro­
gram is taking longer than expected to execute, the virtual machine may be in a
wait state. Display the current PSW on the terminal. Periodically, issue the CP
command

QUERY TIME

and compare the elapsed processing time. When the elapsed processing time
does not increase, the wait state probably exists.

Figure 61 helps you to identify problem types and the areas where they may
occur.

Once the type of problem is identified, its cause must be determined. There are
recommended procedures to follow. These procedures are helpful, but do not
identify the cause of the problem in every case. Be resourceful. Use whatever
data you have available. If the cause of the problem is not found after the
recommended debugging procedures are followed, it may be necessary to
undertake the tedious job of desk-checking.

The section "How To Use VM/SP Facilities To Debug" describes procedures
to follow in determining the cause of various problems that can occur in the
Control Program or in the virtual machine. See the VM / SP eMS User's Guide
for information on using VM/SP facilities to debug a problem program.

If it becomes necessary to apply a Program Temporary Fix (PTF) to a VM/370
or VM/SP component, refer to the VM / SP Installation Guide for detailed
information on applying PTFs. Figure 62 , Figure 63, and Figure 64 summa­
rize the debugging process from identifying the problem to finding the cause.

Problem
Type

Abend

Unexpected
Results

Wait

Loop

Where
Abend Occurs

CP abend
CMS abend

Virtual
machine
abend (other
than CMS)

CP

Virtual
machine

CP
LOADER
RSCS

CP disabled
loop

Virtual
machine dis­
abled loop

Virtual
machine ena­
bled loop

Figure 61. VM/SP Problem Types

Distinguishing Characteristics

For a complete discussion of reasons for abends and system pro­
grammer's actions, see the CP and CMS abend codes charts in
VM/SP System Messages and Codes.

When OS or DOS abnormally terminates on a virtual machine, the
messages issued and the dumps taken are the same as they would be if
OS or DOS abnormally terminated on a real machine.

VM/SP may terminate or reset a virtual machine if a nonrecoverable
channel check or machine check occurs in that virtual machine. One
of the following messages:

DMKMCH616I MACHINE CHECK; USER userid TERMINATED
DMKCCH604I CHANNEL ERROR; DEV xxx; USER

userid; MACHINE RESET

is sent to the system operator at the processor console. Also, the vir­
tual user is notified by one of the following messages that his virtual
machine was terminated or reset:

DMKMCH619I MACHINE CHECK; OPERATION TERMINATED
DMKCCH606I CHANNEL ERROR; OPERATION TERMINATED

If an operating system, other than CMS, executes properly on a real
machine, but not properly with CP, a problem exists. Inaccurate data
on disk or system files (such as spool files) is an error.

If a program executes properly under the control of a particular oper­
ating system on a real machine, but does not execute correctly under
the same operating system with VM/SP, a problem exists.

For a complete discussion of CP, loader, and RSCS wait state codes,
see VM/SP System Messages and Codes.

The processor console wait light is off. The problem state bit of the
real PSW is off. No I/O interrupts are accepted.

The program is taking longer to execute than anticipated. Signaling
attention from the disabled loop terminal does not cause an interrupt
in the virtual machine. The virtual machine operator cannot commu­
nicate with the virtual machine's operating system by signalling atten­
tion.

Excessive processing time is often an indication of a loop. Use the
CP QUERY TIME command to check the elapsed processing time.
In CMS, the continued typing of the blip characters indicates that
processing time is elapsing. If time has elapsed, periodically display
the virtual PSW and check the instruction address. If the same
instruction, or series of instructions, continues to appear in the PSW,
a loop probably exists.

Introduction to Debugging 471

Is there an ABEND condition?

If the message DMKDMP9081 SYSTEM
FAI LURE, CODE XXXXXX appears on
the console and the alarm rings, this is a
CP ABEND. The system dumps to disk
or to the printer if the set dump E
command has been issued, a~
automatically performs IPL. ~

~ If the messages DMKDMP9081 SYSTEM
Y FAI LURE CODE XXXXXX DMKCKP9601

SYSTEM WARMSTART DATA SAVED
DMKCKP961W SYSTEM SHUTDOWN
COMPLETE appear on the console, this is
a CP ABEND. The system dumps to ~
or printer and stops. Pi V

~ If the message DMSABN148T SYSTEM
I!:B ABEND XXX, CALLED FROM YYYYYY

appears on the terminal, this is a CMS ~
ABEND. ~ 50

R If an ABEND message from the virtual
iii machine appears on the terminal, this is

an ABEND in the operating Syst~
controlling this virtual machine. ~

R Otherwise, an ABEND condition does not
~ exist. GO TO

Does a problem exist?

START
DEBUGGING

No problem exists

Unexpected Results?

f!iR1llf an operating system which executes
liY:iJ properly on a real machine fails to execute

Figure 62. Does a Problem Exist?

properly under VM/SP, there are ~
unexpected results in CPo .. ~

~ If a program which executes under the
~ control of an operating system on a real

machine fails to execute correctly with
the same operating system under VM/SP
there are unexpected results in the I5:l
virtual machine. lt ~

r;;:;;J If the program's output is inaccurate or
r!::!.] missing, there are unexpected results in

the problem program.

If the output is redundant check
for a loop.----------~

Fall Otherwise, check for a wait or loop

472 VM/SP System Programmer's Guide

Excessive time has elapsed.

~ If pressing the REQUEST key on the
EY3 operator's console leaves the REQUEST

PENDING light on, a CP disabled wait

will be on.- .. 4A
state exists. The CPU console light ~

~ If the CPU console wait light is on t~
~ system is in a CP enabled wait state. ~

If the real PSW problem bit is OFF, r4':l
there is a CP loop. .. 0

r:rlr If any of the following messages
~ DMKDSP450W CP ENTERED;

DISABLED WAIT PSW, DMKDSP451W
CP ENTERED; INVALID PSW,
DMKDSP452W CP ENTERED;
EXTERNAL INTERRUPT LOOP
DMKPRG453W CP ENTERED;
PROGRAM INTERRUPT LOOP
appears on the terminal, there is a
disabled wait or an interrupt loop f4::l
in the virtual machine. .. ~

rm If pressing the ATTN key once does not
IlY cause an interrupt, there is ~

loop in the virtual machine. . ~

~ If processing has ceased in the virtual
~ machine without reaching end of job,

the virtual machine is in an enabled
wait state and no I/O interrupt ~
has occurred. ~~

[61 If processing time exceeds normal
~ expectations the virtual ma~

may have an enabled loop. . V
1m Otherwise,

Debug Procedures for a Wait

EI

CP Disabled Wait

Use ALTER/DISPLAY console mode (if available), to display real PSW.
Also, display general and extended control registers and storage
locations X'OO'- X'1 0'.

Force a SYSTEM RESTART to cause a CP ABEND dump to be taken.

IPL.

CP Enabled Wait

Force a SYSTEM RESTART to cause a CP ABEND dump to be taken.

Use the dump to check the status of each VMBLOK. Also, check
RCHBLOK, RCUBLOK, and RDEVBLOK for each device.

Virtual Machine Disabled Wait

Use CP commands (CMS users may use the CMS DEBUG command) to
display the PSW, CSW, general registers, and control registers.

Use the CP DUMP or CP VMDUMP command (or CMS DUMP subcommand)
to take a dump.

Virtual Machine Enabled Wait

Take a dump using the CP DUMP or CP VMDUMP command.

Debug Procedures for a Loop

CP Loop

Use ALTER/DISPLAY console mode (if available) to display real PSW.
general registers, control registers, and storage locations X'OO- X'10'

II Force a SYSTEM RESTART to cause a CP ABEND dump to be tab".

II Examine the CP internal trace table to see where the loop is.

II
II
II

Virtual Machine Disabled Loop

Use the CP TRACE or CP PER command to trace the loop.

Display the general registers and control registers via the CP DISPLAY
command.

Take a dump using the CP DUMP or CP VMDUMP command.

Examine the source code.

Virtual Machine Enabled Loop

~---+-..a Trace the loop, using CP TRACE or CP PER.

Figure 63. Debug Procedures for Waits and Loops

II Display the PSW, general registers, and extended control registers.

II Take a dump, using CP DUMP or CP VMDUMP command.

II Examine the source code.

Introduction to Debugging 473

Debug Procedures for Unexpected Results

Unexpected Results in CP

Check that the program is not violating and CP restrictions.

Check that the program and operating system running on the virtual
machine are exactly the same as those that ran on the real machine.

Use the CP TRACE command to trace CCWs, SIOs, and interrupts. Look
for an error in CCW translation or interrupt reflection.

If disk I/O error, use the CP DDR (DASD Dump Restore) program to
print the contents of any disk.

Unexpected results in a virtual machine

Check that the program executing on the virtual machine is exactly the
same as the one that ran on the real machine.

Make sure that operating system restrictions are not violated.

Use CP TRACE to trace all I/O operations.

Debug Procedures for an ABEND

CP ABEND

1I
II

Find out why CP abnormally terminated. Examin the PROPSW, I NTPR,
SVCOPSW, and CPABEN D fields in the PSA from the dump.

Identify the module that caused the ABEND. Examine the SAVEAREA,
BALRSAVE, and FREESAVE areas of the dump.

If I/O operation, examine the real and virtual I/O control blocks.

CMS ABEND

Determine reason for ABEND from code in ABEND message DMSABN148T.

Enter debug environment or CP console function mode to use the
commands, to display the PSW, and to examine low storage areas:

LASTLMOD and LASTTMOD
LASTCMND and PREVCMND
LASTEXEC and PREVEXEC and DEVICE

Look at the last instruction executed. Take dump if need be.

Virtual Machine ABEND(other than CMS)

Examine dump, if there is one.

Use CP commands to examine registers and control words.

Use CP TRACE or CP PER to trace the processing up to the point where
the error occurred.

Figure 64. Debug Procedures for Unexpected Results and an Abend

474 VM/SP System Programmer's Guide

How To Use VM/SP Facilities To Debug

Abend

CP Abend

Once the problem and the area where it occurs are identified, you can gather
the information needed to determine the cause of the problem. The type of
information you want to look at varies with the type of problem. The tools
used to gather the information vary depending upon the area in which the prob­
lem occurs. For example, if the problem is a loop condition, you will want to
examine the PSW. For a CP loop, you have to use the operator's console to
display the PSW, but for a virtual machine loop you can display the PSW via
the CP DISPLAY command.

The following sections describe specific debugging procedures for the various
error conditions. The procedures tell you what to do and what debug tool to
use. For example, the procedure may say dump storage using the CP DUMP
command. The procedure does not tell you how to use the debug tool. Refer
to "An Overview of VM/SP Commands That Can Be Used for Debugging"
and "CMS Debugging Commands" sections for a detailed description of each
debug tool, including how to invoke it.

Three types of abnormal terminations (ABEND) can occur on VM/SP: CP
abends, CMS abends, or virtual machine abends. The following description
provides guidelines for debugging each type of ABEND.

When the VM/SP Control Program abnormally terminates, a dump is taken.
This dump can be directed to tape or printer, or dynamically allocated to a
direct access storage device. The output device for a CP abend dump is speci­
fied by the CP SET DUMP command. See the "Abend Dumps" section for a
description of the SET DUMP command.

Use the dump to determine why the control program terminated and then
determine how to correct the condition. See the "Reading CP Abend Dumps"
discussion for detailed information on reading a CP abend dump.

Reason for the Abend: CP will terminate and take an abnormal termination
dump under three conditions:

1. Program Check in CP

Examine the PROPSW and INTPR fields in the prefix storage area (PSA)
to determine the failing module.

2. Module Issuing an SVC 0

Examine the SVC old PSW (SVCOPSW) and abend code (CPABEND)
fields in the Prefix Storage Area to determine the module that issued the
SVC 0 and the reason it was issued.

CP ABEND contains an abnormal termination code. The first three charac­
ters identify the failing module (for example, abend code TRC001 indi­
cates DMKTRC is the failing module).

Introduction to Debugging 475

eMS Abend

476 VM/SP System Programmer's Guide

3. Operator forcing a CP system restart on Processor Console

Examine the old PSW at location X'08' to find the location of the instruc­
tion that was executing when the operator forced a CP system restart. The
operator forces a CP system restart when CP is in a disabled wait state or
loop. (Refer to your processor manual for the appropriate method to force
a CP system restart.)

Note: The same conditions that cause an abnormal termination on a
uniprocessor configuration cause an abnormal termination on an attached
processor.

Examine Low Storage Areas: The information in low storage specifies the status
of the system at the time CP terminated. Status information is stored in the
PSA. You should be able to tell the module that was executing by looking at
the PSA. Refer to the appropriate save area (SA VEAREA, BALRSA VE, or
FREESA VE) to see how that module started to execute. The PSA is described
in VM / SP Data Areas and Control Block Logic, Volume 1.

Examine the real and virtual control blocks to find the status of I/O operations.
Figure 67 on page 504 shows the relationship of CP Control Blocks.

Examine the CP internal trace table. This table can be extremely helpful in
determining the events that preceded the abend. The "CP Internal Trace
Table" description tells you how to use the trace table.

The values in the general registers can help you to locate the current 10BLOK
and VMBLOK and the save area. Refer to "Reading CP Abend Dumps" for
detailed information on the contents of the general registers.

If the program check old PSW (PROPSW) or the SVC old PSW (SVCOPSW)
points to an address beyond the end of the resident nucleus, the module that
caused the abend is a pageable module. Refer to "Reading CP Abend Dumps"
to find out how to identify that pageable module. Use the CP load map that
was created when the VM/SP system was generated to find the address of the
end of the resident nucleus.

When CMS abnormally terminates, any ABEND exit routines established via
the ABNEXIT macro receive control. These exit routines allow you to bypass
CMS abend recovery and continue processing elsewhere. If no routine exists or
the exit routine returns to eMS, the following error message appears on the
terminal:

DMSAEN148T SYSTEM ABEND xxx CALLED FROM yyyyyy

where xxx is the abend code and yyyyyy is the address of the instruction caus­
ing the abend. The DMSABN module issues this message. Then, CMS waits
for a command to be entered from the terminal.

Because CMS is an interactive system, you will probably want to use its debug
facilities to examine status. You may be able to determine the cause of the
abend without taking a dump.

The debug program is located in the resident nucleus of CMS and has its own
save and work areas. Because the debug program itself does not alter the sta-

tus of the system, you can use its options knowing that routines and data can­
not be overlaid unless you specifically request it. Likewise, you can use the CP
commands in debugging knowing that you cannot inadvertently overlay storage
because the CP and CMS storage areas are completely separate.

Reason for the Abend: First determine the reason CMS abnormally terminated.
There are four types of CMS abnormal terminations:

1. Program Exception

2.

Control is given to the DMSITP routine whenever a hardware program
exception occurs. If a routine other than a SPIE exit routine is in control,
DMSITP issues the message

DMSITP141T xxxxxxxx EXCEPTION OCCURRED AT xxxxxx IN
ROUTINE xxxxxxxx

and invokes DMSABN (the abend routine). The abend code is OCx, where
x is the program exception number (0 through F). The possible program­
ming exceptions are:

Code Meaning
0 Imprecise
1 Operation
2 Privileged operation
3 Execute
4 Protection
5 Addressing
6 Specification
7 Decimal data
8 Fixed-point overflow
9 Fixed-point divide
A Decimal overflow
B Decimal divide
C Exponent overflow
D Exponent underflow
E Significance
F Floating-point divide

ABEND Macro

Control is given to the DMSSAB routine whenever a user routine executes
the ABEND macro. The abend code specified in the ABEND macro
appears in the abnormal termination message DMSABN148T.

3. Halt Execution command (HX)

Whenever the virtual machine operator signals attention and types HX,
CMS terminates and types "CMS".

4. System Abend

Introduction to Debugging 477

478 VM/SP System Programmer's Guide

A CMS system routine can abnormally terminate by issuing the DMSABN
macro. The first three hexadecimal digits of the system abend code appear
in the CMS abend message, DMSABN148T. The format of the DMSA.BN
macro is:

[label] DMSABN code [, TYPCALL=[~~~RJ] (reg)

Where:

label
is any valid Assembler language label.

code
is the abnormal termination code (0 through FFF) that appears in
the DMSABN148T system termination message.

(reg)
is the register containing the abnormal termination code.

TYPCALL= [SVC]
BALR

specifies how control is passed to the abnormal termination routine,
DMSABN. Routines that do not reside in the nucleus should use
TYPCALL=SVC to generate CMS SVC 203 linkage.
Nucleus-resident routines should specify TYPCALL=BALR so
that a direct branch to DMSABN is generated.

If a CMS SVC handler abnormally terminates, that routine can set an abend
flag and store an abend code in NUCON (the CMS nucleus constant area).
After the SVC handler has finished processing, the abend condition is recog­
nized. The DMSABN abend routine types the abend message, DMSABN148T,
with the abend code stored in NUCON.

What to do when eMS Abrnorally Terminates: After an abend, two courses of
action are available in CMS. In addition, by signalling attention, you can enter
the CP command mode and use CP's debugging facilities.

Two courses of action available in CMS are:

1. Issue the DEBUG command and enter the debug environment. After using
all the DEBUG sub commands that you wish, exit from the debug environ­
ment. Then, either issue the RETURN command to return to DMSABN so
that abend recovery will occur, or issue the GO command to resume proc­
essing at the point the abend occurred.

2. Issue a CMS command other than DEBUG, and the abend routine,
DMSABN, performs its abend recovery and then passes control to the
DMSINT routine to process the command just entered.

The abend recovery function performs the following functions, in sequence:

1. Clears the console input buffer and program stack.

2. Terminates all VMCF activity.

3. Reinitializes the SVC handler, DMSITS, and frees all stacked save areas.

4. Clears the auxiliary directories, if any. Invokes "FINIS * * *", to close all
files, and to update the master file directory.

5. Zeroes out EXECFLAG and frees CMS EXEC global storage.

6. Zeroes out the maclib directory pointers.

7. Frees the eMS work area, if the CMS subset was active.

8. Issues the STAE, SPIE, TTIMER9 and STAX macros to cancel any out­
standing OS exit routines. Frees any TXTLIB, MACLIB, or LINK tables.

9. Calls with a purge plist, all nucleus extensions that have the "SERVICE"
attribute defined.

10. Drops all nucleus extensions that do not have the "SYSTEM" attribute.
Also drops any nucleus extensions that are in type user storage.

11. Frees all SCBLOCKs associated with SUBCOM.

12. Clears all immediate commands that are not nucleus extensions with the
"SYSTEM" attribute. Returns all associated free storage.

13. Frees all storage of type user.

14. Zeroes out all interrupt handler pointers in IOSECT.

15. Turns the SVCTRACE command off.

16. Closes the virtual punch and printer. Closes the virtual reader with the
HOLD option.

17. Zeroes out all FCB, DOSCB, and LABSECT pointers.

18. Reinitializes the VSE lock table used by CMS/DOS and CMS/VSAM.

19. Zeroes out all OS loader blocks, and frees the FETCH work area.

20. Disables the CMS IUCV environment, and frees CMS IUCV system stor­
age.

21. Clears all ABNEXIT set and frees storage.

22. Computes the amount of system free storage that should be allocated and
compares this amount with the amount of free storage actually allocated.
Types a message to the user if the two amounts are unequal.

23. Issues a STRINIT if all storage is accounted for.

After abend recovery has been completed, control passes to DMSINT at entry
point DMSINT AB to process the new command that was typed in.

Introduction to Debugging 479

480 VM/SP System Programmer's Guide

When the amount of storage actually allocated is less than the amount that
should be allocated, the message

DMSABN149T xxxx DOUBLEWORDS OF SYSTEM STORAGE
HAVE BEEN DESTROYED

appears on the terminal. If the amount of storage actually allocated is greater
than the amount that should be allocated, the message

DMSABN150W nnn (HEX xxx) DOUBLEWORDS OF SYSTEM STORAGE
WERE NOT RECOVERED

A Debugging Procedure: When a CMS abend occurs, use the DEBUG subcom­
mands or CP commands to examine the PSW and specific areas of low storage.
For instructions on how to use the CMS debug commands, see "CMS Debug­
ging Commands" in this section. For instructions on how to use the CP com­
mands, see "An Overview of VM/SP Commands that can be Used for
Debugging" in this section. See Figure 66 for a comparison of the CP and
CMS debugging facilities.

The following procedure may be useful in determining the cause of a CMS
abend:

1. Display the PSW. (Use the CP DISPLAY command or CMS debug PSW
subcommand.) Compare the PSW instruction address with the current
CMS load map trying to determine the module that caused the abend. The
CMS storage-resident nucleus routines reside in fixed storage locations.

Also check the interruption code in the PSW.

2. Examine areas of low storage. The information in low storage can tell you
more about the cause of the abend.

Field

LASTLMOD

LASTTMOD

LASTCMND

PREVCMND

Contents

Contains the name of the last module loaded into stor­
age via the LOAD MOD command.

Contains the name of the last module loaded into the
transient area.

Contains the name of the last command issued from the
CMS or XEDIT command line. If a command issued in
a CMS EXEC abnormally terminates, this field contains
the name of the command. When a CMS EXEC com­
pletes, this field contains the name 'EXEC'. EXEC 2
and System Product Interpreter do not update this field.

Contains the name of the next-to-Iast command issued
from the CMS or XED IT command line. If a command
issued in a CMS EXEC abnormally terminates, this field
contains the name 'EXEC'. When a CMS EXEC com­
pletes, this field contains the last command issued from
the CMS EXEC. EXEC 2 and System Product Inter­
preter do not update this field.

LASTEXEC

PREVEXEC

DEVICE

Contains the name of the last CMS EXEC procedure.
EXEC 2 and System Product Interpreter do not update
this field.

Contains the name of the next-to-Iast CMS EXEC pro­
cedure. EXEC 2 and System Product Interpreter do not
update this field.

Identifies the device that caused the last I/O interrupt.
The low storage areas examined depend on the type of
abend.

3. Once you have identified the module that caused the abend, examine the
specific instruction. Refer to the listing.

4. If you have not identified the problem at this time, take a dump by issuing
the debug DUMP subcommand. Refer to "Reading CMS Abend Dumps"
for information on reading a CMS dump. If you can reproduce the prob­
lem, try the CP or CMS tracing facilities.

Virtual Machine Abend (Other than eMS)

The abnormal termination of an operating system (such as OS or DOS) running
under VM/SP appears the same as termination of the operating system on a
real machine. Refer to publications for that operating system for debugging
information. However, all of the CP debugging facilities may be used to help
you gather the information you need. Because certain operating systems
(OS/VSl, OS/VS2, and DOS/VS) manage their virtual storage themselves,
CP commands that examine or alter virtual storage locations should be used
only in virtual=real storage space with OS/VSl, OS/VS2, and DOS/VS.

If a dump was taken, it was sent to the virtual printer. Issue a CLOSE com­
mand to the virtual printer to have the dump print on the real printer.

The VMDUMP command dumps virtual storage to a specified virtual machine's
reader spool file. Installations that have installed the VM/Interactive Problem
Control System (IPCS) Extensions program product may use it to process the
dump. Other installations may process the dump with a user-written program.

If you choose to run a stand-alone dump program tobdump the storage in your
virtual machine, be sure to specify the NOCLEAR option when you issue the
CP IPL command. At any rate, a portion of your virtual storage is overlaid by
CP's virtual IPL simulation.

If the problem can be reproduced, it may be helpful to trace the processing
using the CP TRACE or CP PER commands. Also, you can set address stops,
and display and alter registers, control words (such as the PSW), and data
areas. The CP commands can be very helpful in debugging because you can
gather information at various stages in processing. A dump is static and repres­
ents the system at only one particular time. Debugging on a virtual machine
can often be more flexible than debugging on a real machine.

VM/SP may terminate or reset a virtual machine if a non-recoverable machine
check occurs in that virtual machine. Hardware errors usually cause this type
of virtual machine termination. The following message:

DMKMCH616I MACHINE CHECK; USER userid TERMINATED

Introduction to Debugging 481

Unexpected Results

Unexpected Results in CP

appears on the processor console.

If the message:

DMKMCT621I AFFINITY SET OFF

appears, then a machine check has occurred on the attached processor, and the
attached processor is no longer being used. The virtual machine is placed into
console function mode and can be made to continue processing on the main
processor by the entry of a BEGIN command.

Channel checks no longer cause the virtual machine to be reset as they did in
early releases of VM/370. If the problem appears to be associated with
attempts to recover from a channel check, see the channel model-dependent
functions described in the VM / SP Planning Guide and Reference.

The type of errors classified as unexpected results vary from operating systems
improperly functioning under VM/SP to printed output in the wrong format.

If an operating system executes properly on a real machine but does not exe­
cute properly with VM/SP, a problem exists. Also, if a program executes
properly under control of a particular operating system on a real machine but
does not execute correctly under the same operating system with VM/SP, a
problem exists.

First, there are conditions (such as time-dependent programs) that CP does not
support. Be sure that one of these conditions is not causing the unexpected
results in CPo Refer to the VM/SP Planning Guide and Reference for a list of
the restrictions.

Next, be sure that the program and operating system running on the virtual
machine are the same as those that ran on the real machine. Check for:

The same job stream
The same copy of the operating system (and program)
The same libraries

If the problem still is not found, look for an I/O problem. Try to reproduce the
problem, while tracing all CCWs, SIOs, and interrupts via the CP TRACE or
CP PER commands. Compare the real and virtual CCWs from the trace. A
discrepancy in the CCWs may indicate that one of the CP restrictions was vio­
lated, or that an error occurred in the Control Program.

Unexpected Results in a Virtual Machine

482 VM/SP System Programmer's Guide

When a program executes correctly under control of a particular operating sys­
tem on a real machine but has unexpected results executing under control of
the same operating system with VM/SP, a problem exists. Usually you will
find that something was changed. Check that the job stream, the operating sys­
tem, and the system libraries are the same.

If unexpected results occur (such as TEXT records interspersed in printed out­
put), you may wish to examine the contents of the system or user disk files.
Non-CMS users may execute any of the utilities included in the operating sys-

Loop

CP Disabled Loop

tern they are using to examine and rearrange files. Refer to the utilities publica­
tion for the operating system running in the virtual machine for information on
how to use the utilities.

CMS users should use the DASD Dump Restore (DDR) service program to
print or move the data stored on direct access devices. The VM/SP DASD
Dump Restore (DDR) program can be invoked by the CMS DDR command in
a virtual machine controlled by CMS. The DDR program has the following
functions:

DUMP -- dumps part, or all, of the data from a DASD device to magnetic
tape.

RESTORE -- transfers data from tapes created by DDR DUMP to a direct
access device. The direct access device to which the data is being restored
must be the same type of device as the direct access device originally con­
taining that data.

COpy -- copies data from one device to another device of the same type.
Data may be reordered by cylinder (or by block number for fixed-block
DASDs) when copied from disk to disk. In order to copy one tape to anoth­
er, the original tape must have been created by the DDR DUMP function.

PRINT -- selectively prints the hexadecimal and EBCDIC representation of
DASD and tape records on the virtual printer.

TYPE -- selectively displays the hexadecimal and EBCDIC representation of
DASD and tape records on the terminal.

CMS users should refer to the VM/SP CMS Command and Macro Reference for
instructions on using the DDR command.

The real cause of a loop usually is an instruction that sets or branches on the condi­
tion code incorrectly. The existence of a loop can usually be recognized by the
ceasing of productive processing and a continual returning of the PSW instruction
address to the same address. If I/O operations are involved, and the loop is a very
large one, it may be extremely difficult to define, and may even comprise nested
loops. Probably, the most difficult case of looping to determine is entry to the loop
from a wild branch. The problem in loop analysis is finding either the instruction
that should open the loop or the instruction that passed control to the set of looping
instructions.

The processor operator should perform the following sequence when gathering
information to find the cause of a disabled loop.

1. Use the alter/display console mode to display the real PSW, general registers,
control registers and storage locations X'OO' - X'lOO'.

On an attached processor or multiprocessor system, you must add the prefix
value for the PSA of the other processor (that is, the processor whose console
you are not using) to display, dump, or alter low core storage for the other
processor, or use the M or N operand prefixes described under the DCP,
DMCP, and STCP commands.

Introduction to Debugging 483

Virtual Machine Disabled Loop

Virtual Machine Enabled Loop

2. Force a CP system restart to cause an abend dump to be taken.

3. Save the information collected for the system programmer or system support
personnel.

After the processor operator has collected the information, the system programmer
or system support personnel examine it.

1. If the cause of the loop is not apparent, examine the CP internal trace table to
determine the modules that may be involved in the loop.

2. If the cause is not yet determined, assume that a wild branch caused the loop
entry and search the source code for this wild branch.

When a disabled loop in a virtual machine exists, the virtual machine operator can­
not communicate with the virtual machine's operating system. That means that
signalling attention does not cause an interrupt.

Enter the CP console function mode.

1. Use the CP TRACE or CP PER commands to trace the entire loop. Display
general and extended control registers via the CP DISPLAY command.

2. Take a dump via the CP DUMP or CP VMDUMP command.

3. Examine the source code.

Use the information just gathered, along with listings, to try to find the entry into
the loop.

If the operating system in the virtual machine itself manages virtual storage, it is
usually better to use that operating system's dump program. CP does not retrieve
pages that exist only on the virtual machine's paging device.

The virtual machine operator should perform the following sequence when attempt­
ing to find the cause of an enabled loop:

1. Use the CP TRACE or CP PER commands to trace the entire loop. Display
the PSW and the general registers.

2. If your virtual machine has the Extended Control (EC) mode and the EC
option, also display the control registers.

, 3. Use the CP DUMP or CP VMDUMP command to dump your virtual storage.
CMS users can use the debug DUMP subcommand.

4. Consult the source code to search for the faulty instructions, examining previ­
ously executed modules if necessary. Begin by scanning for instructions that
set the condition code or branch on it.

5. If the manner of loop entry is still undetermined, assume that a wild branch has
occurred and begin a search for its origin.

484 VM/SP System Programmer's Guide

Wait

CP Disabled Wait

No processing occurs in the virtual machine when it is in a wait state. When the
wait state is an enabled one, an I/O interrupt causes processing to resume. Like­
wise, when the Control Program is in a wait state, its processing ceases.

A disabled wait state usually results from a hardware malfunction. During the IPL
process, normally correctable hardware errors may cause a wait state because the
operating system error recovery procedures are not accessible at this point. These
conditions are recorded in the current PSW.

CP may be in an enabled wait state with channel a disabled when it is attempting
to acquire more free storage. Examine EC register 2 to see whether or not the
multiplexer channel is disabled. A severe machine check could also cause a CP dis­
abled wait state.

Three types of severe machine checks can cause the VM/SP Control Program to
terminate or cause a CP disabled wait state.

An unrecoverable machine check in the control program
• A machine check that cannot be diagnosed

Timing facilities damage

A machine check error cannot be diagnosed if either the machine check old PSW or
the machine check interrupt code is invalid. These severe machine checks cause
the control program to terminate.

If a severe machine check or channel check caused a CP disabled wait state, one of
the following messages appears:

DMKCCH603 CHANNEL ERROR, RUN SEREP, RESTART SYSTEM

DMKMCH612W MACHINE CHECK TIMING FACILITIES DAMAGE; RUN SEREP

DMKMCT612W MACHINE CHECK TIMING FACILITIES DAMAGE; RUN SEREP

If an unrecoverable machine check occurs in the control program, the message

DMKMCH610W MACHINE CHECK SUPERVISOR DAMAGE

--or--

DMKMCT610W MACHINE CHECK SUPERVISOR DAMAGE

appears on the processor console. The control program is terminated and enters a
wait state 001 or wait state 013.

If the machine check handler cannot diagnose a certain machine check, the integri­
ty of the system is questionable. The message

DMKMCH611W MACHINE CHECK SYSTEM INTEGRITY LOST

--or--

DMKMCT611W MACHINE CHECK SYSTEM INTEGRITY LOST

Introduction to Debugging 485

appears on the processor console. The control program is terminated and enters
wait state 001 or wait state 013.

Hardware errors are probably the cause of these severe machine checks. The sys­
tem operator should run the CPEREP program and save the output for the installa­
tion hardware maintenance personnel.

If the generated system cannot run on the real machine because of insufficient
storage, CP enters the disabled wait state with code OOD in the PSW. The insuffi­
cient storage condition occurs if:

The generated system is larger than the real machine size

--or--

A hardware malfunction occurs which reduces the available amount of real
storage to less than that required by the generated system

The message

DMKCPI955W INSUFFICIENT STORAGE FOR VM/SP

appears on the processor console.

If CP cannot continue because consecutive hardware errors are occurring on one or
more VM/SP paging devices, the message

DMKPAG415E CONTINUOUS PAGING ERRORS FROM DASD xxx

appears on the processor console and CP enters the disabled wait state with code
OOF in the PSW.

If more than one paging device is available, disable the device on which the hard­
ware errors are occurring and IPL the system again. If the VM/SP system is
encountering hardware errors on its only paging device, move the paging volume to
another physical device and IPL again.

Note: This error condition may occur if the VM/SP paging volume was not proper­
ly formatted.

The following procedure should be followed by the processor operator to record
the needed information.

1. Using the alter/display mode of the processor console, display the real PSW
and CSW. Also, display the general registers and the control registers.

2. Force a CP system restart in order to get a system abend dump.

3. IPL the system.

Examine this information and attempt to find what caused the wait. If you cannot
find the cause, attempt to reconstruct the situation that existed just before the wait
state was entered.

486 VM/SP System Programmer's Guide

CP Enabled Wait

Virtual Machine Disabled Wait

Virtual Machine Enabled Wait

If you determine that CP is in an enabled wait state, but that no I/O interrupts are
occurring, there may be an error in the CP routine or CP may be failing to get an
interrupt from a hardware device. Force a CP system restart at the operator's con­
sole to cause an abend dump to be taken. Use the abend dump to determine the
cause of the enabled (and noninterrupted) wait state. After the dump is taken, IPL
the system.

Using the dump, examine the VMBLOK for each user and the real device, channel,
and control unit blocks. If each user is waiting because of a request for storage and
no more storage is available, there is an error in CP. There may be looping in a
routine that requests storage. Refer to "Reading CP Abend Dumps" for specific
information on how to analyze a CP dump.

The VM/SP Control Program does not allow the virtual machine to enter a disa­
bled wait state or certain interrupt loops. Instead, CP notifies the virtual machine
operator of the condition with one of the following messages:

DMKDSP450W CP ENTERED; DISABLED WAIT PSW

DMKDSP451W CP ENTERED; INVALID PSW

DMKDSP452W CP ENTERED; EXTERNAL INTERRUPT LOOP

DMKPRG453W CP ENTERED; PROGRAM INTERRUPT LOOP

and enters the console function mode. Use the CP commands to display the fol­
lowing information on the terminal.

PSW
CSW
General registers
Control registers

Then use the CP DUMP or VMDUMP command to take a dump.

If you cannot find the cause of the wait or loop from the information just gathered,
try to reproduce the problem, this time tracing the processing via the CP TRACE
or CP PER commands.

If CMS is running in the virtual machine, the CMS debugging facilities may also be
used to display information, take a dump, or trace the processing. The CMS
SVCTRACE, CP TRACE, and CP PER commands record different information.
Figure 66 compares the CP and CMS facilities for debugging.

If the virtual machine is in an enabled wait state, try to find out why no I/O or
external interrupts have occurred to allow processing to resume.

The Control Program treats one case of an enabled wait in a virtual machine the
same as a disabled wait. If the virtual machine does not have the "real timer"
option, CP issues the message

DMKDSP450W CP ENTERED; DISABLED WAIT STATE

Introduction to Debugging 487

Since the virtual timer is not decreased while the virtual machine is in a wait state,
it cannot cause the external interrupt. A "real timer" runs in both the problem
state and wait state and can cause an external interrupt which allows processing to
resume. The clock comparator can also cause an external interrupt.

Summary of VM/SP Debugging Tools

Figure 65 summarizes the VM/SP commands that are useful for debugging pro­
grams in a virtual machine. The CP and CMS commands are classified by the func­
tion they perform.

488 VM/SP System Programmer's Guide

Function Comments CP Command CMS Command

Stop exe- Set the ADSTOP hexloc DEBUG

cution at address stop PER Instruct Range single-addr BREAK id ~ Symbol} a speci- before the hexloc
fied program
location reaches the

specified
address. For
CP, ADSTOP
allows 1
active address
stop; PER
allows multi-
ple address
stops. CMS
allows 16
active address
stops.

Resume Resume exe- BEGIN DEBUG

execution cution where GO

program was
interrupted

Continue BEGIN hexloc DEBUG

execution at a
GO ~Symbol} specific hexloc

location

Dump Dump the ~ - DEBUG

data contents of DUMP {hexloc1 } ~ ~ f[~~~lOC2J
specific stor- Lhexloc1 DUMP [SYmbOl'] [SYmb012] hexloc1 hexloc2
age locations o *

{.} [bytecountJ - 176

END
"- -- - [identJ

[*dumpid]

Figure 65 (Part 1 of 6). Summary of VM/SP Debugging Tools

Introduction to Debugging 489

Function Comments CPCommand CMS Command

Dump VMDUMP ,..... -
data provides the VMDUMP {heX~OC1} t}[~~~lae2J

same infor-
mation that
DUMP pro- {. 1 [byteeaunt]
vides but in a END
different '-- -- -
format; the
format is [TO *]
compatible TO userid

with the
SYSTEM

VM/Inter-
active Prob- [FORMAT vrntype]

lem Control [DSS]

System [*durnpid]
Extensions
program
product.

Display Display con- DEBUG

data tents of stor- DISPLAY hexlae1 [{~}[~~~loe2J] X l SYmbal[n] !
age locations

length

(in (. l[by tee aunt] hexlae [~] hexadecimal END

and
EBCDIC)

Display con-
DISPLAY TheXloee1[{~}[~~~lae2J ~ tents of stor-

age locations
(in (.l byteeount]
hexadecimal END

and
EBCDIC)

Display stor- DISPLAY Khexloe1 ~~}[~~~lae2J]
age key of
specific stor- { . 1 [byteeaunt]
age locations END
in
hexadecimal

Figure 65 (Part 2 of 6). Summary of VM/SP Debugging Tools

490 VM/SP System Programmer's Guide

Function Comments CP Command CMS Command

Display gen- DEBUG

eral registers DISPLAY Gregl[1:t[~~g2] 1 GPR reg1 [reg2]

{.} [regcount]
END

Display float-
DISPLAY Yregt:H~~g2] 1 lng point reg-

isters
{ . } [regcount]

END

Display con-
DISPLAY Xregl [n[~~g2] 1 trol registers

{.} [regcountJ
END

Display con- DISPLAY PSW DEBUG

tents of cur- PSW

rent virtual
PSWin
hexadecimal
format

Display con- DISPLAY CAW DEBUG

tents of CAW CAW

Display con- DISPLAY CSW DEBUG

tents of CSW CSW

Store data Store speci-
fied informa- STORE Shexloc hexdata ... DEBUG

tion into
STORE ~ symbol f

hexloc
consecutive
storage hexinfo[hexinfo[hexinfo]]

locations
without
alignment

Figure 65 (Part 3 of 6). Summary of VM/SP Debugging Tools

Introduction to Debugging 491

Function Comments CPCommand CMS Command

Store speci-
fied words of STORE {hexloc f
information

Ihexloc

into consec- {hexword1 [hexword2 ...]}
utive full word
storage
locations

Store speci- STORE Greg hexword1 DEBUG

fied words of [hexword2 ...] SET GPR reg

information
hexinfo[hexinfo]

into consec-
utive general
registers

Store speci- STORE Yreg hexword1

fied words of [hexword2 ...]

information
into consec-
utive floating-
point regis-
ters

Store speci- STORE Xreg hexword1

fied words of [hexword2 ...]

data into con-
secutive con-
trol registers

Store infor- STORE [PSW hexword1] hexword2 DEBUG

mation into SET PSW hexinfo [hexinfo]

PSW

Store infor- DEBUG

mation in SET CSW hexinfo [hexinfo]

CSW

Store infor- DEBUG

mationin SET CAW hex info

CAW

Figure 65 (Part 4 of 6). Summary of VM/SP Debugging Tools

492 VIv.J./SP System Programmer's Guide

Function Conunents CP Conunand CMS Conunand

Trace Trace all TRACE ALL

execution instructions,
interrupts,
and branches

Trace SVC TRACE SVC SVCTRACE ON
interrupts PER Instruct DATA OAxx

Trace I/O TRACE I/O

interrupts

Trace pro- TRACE PROGRAM

gram inter-
rupts

Trace TRACE EXTERNAL

external
interrupts

Trace privi- TRACE PRIV

leged PER Instruct DATA xx
(PER can trace specific privi-

instructions leged instructions.)

Trace all user TRACE SIO

I/O oper- PER Instruct DATA xx

ations

Trace virtual TRACE SIO

and real TRACE CCW

CCWs

Trace all user TRACE BRANCH

interrupts and
successful
branches

Trace suc- PER BRANCH [[INTO]

cessful into-addr-range]

branches

Trace TRACE INSTruct

instructions PER Instruct
[Range instruction-addr-range]

Trace PER STORE

instructions
[[INTO] storage-addr-range]

that alter [INTO] addr [DATA] hex-data
storage

Figure 65 (Part 5 of 6). Summary of VM/SP Debugging Tools

Introduction to Debugging 493

Function

Trace
execution
(cont.)

Trace real
machine
events

Comments

Trace
instructions
that alter
general regis-
ters

Trace
instructions
that alter
specific bits
at specific
storage
locations

End tracing
activity

Trace events
in real
machine

Stop tracing
events in the
real machine

Enable a vir­
tual machine
to enter data
in CPTRAP
file

Specify selec­
tivity in col­
lecting
CPTRAP
data

CP Command

PER G[re
g lT t}

{.}

[reg2]]

[regcount]

PER MASK
[INTO] addr [DATA] mask-field

TRACE END

PER END1ALL l CUrrent
element-number
event-type
traceset name

MONITOR START CPTRACE

MONITOR STOP CPTRACE

CPTRAP ALLOWid userid

CPTRAP ALL [ON]
OFF

CPTRAP typenum [vmblOk
DEVaddr
COde
OFF

nnnnnJ nnnn
nnnn

Figure 65 (Part 6 of 6). Summary of VM/SP Debugging Tools

494 VM/SP System Programmer's Guide

CMS Command

SVCTRACE OFF

Comparison of CP and CMS Facilities for Debugging

Function

Setting address
stops

Dumping stor-
age contents to
the printer

Displaying the
contents of
storage and
control regis-
ters at the ter-
minal

Storing infor-
mation

If you are debugging problems while running CMS, you can choose the CP or CMS
debugging tools. Refer to Figure 66 for a comparison of the CP and CMS debug­
ging tools.

CP CMS
The CP ADSTOP command can set only Can set up to 16 address stops at a time.
one address stop at a time. The PER com-
mand can be used to set up multiple address
stops.

The dump is printed in hexadecimal format The dump is printed in hexadecimal
with EBCDIC translation. The storage format. The storage address of the first
address of the first byte of each line is iden- byte of each line is identified at the left.
tified at the left. The control blocks are The contents of general and
formatted. floating-point registers are printed at the

beginning of the dump.

The display is typed in hexadecimal format The display is typed in hexadecimal for-
with EBCDIC translation. The CP com- mat. The CMS commands do not dis-
mand displays storage keys, floating-point play storage keys, floating-point
registers and control registers. registers, or control registers, as the CP

command does.

The amount of information stored by the The CMS command stores up to 12
CP command is limited only by the length of bytes of information. CMS stores data
the input line. The information can be in the general registers but not in the
fullword aligned when stored. CP stores floating-point or control registers. CMS
data in the PSW, but not in the CA W or stores data in the PSW, CA W, and
CSW. However, data can be stored in the CSW.
CSW or CA W by specifying the hardware
address in the STORE command. CP also
stores the status of the virtual machine in
the extended log out area.

Figure 66 (Part 1 of 2). Comparison of CP and CMS Facilities for Debugging

Introduction to Debugging 495

Function CP CMS
Tracing infor- CP TRACE traces: CMS traces all SVC interrupts. CMS
mation displays the contents of general and

• All interrupts, instructions, and floating-point registers before and after
branches a routine is called. The parameter list is

• SVC interrupts recorded before a routine is called.
• 110 interrupts
• Program interrupts
• External interrupts
• Privileged instructions
• All user 110 operations
• Virtual and real CCWs
• All instructions.

CP PER provides increased selectivity in
tracing the execution of instructions that:

• Cause successful branches
• Alter specific storage locations
• Alter specific general registers
• Are fetched and executed.

The CP tracing is interactive. You can stop
and display other fields.

Figure 66 (Part 2 of 2). Comparison of CP and CMS Facilities

496 VM/SP System Programmer's Guide

An Overview of VM/SP Commands that Can Be Used for Debugging

The VM/SP Control Program provides interactive commands that control the
VM/SP system and enable the user to control his virtual machine and associated
control program facilities. The virtual machine operator using these commands can
gather much the same information about his virtual machine as the operator of a
real machine gathers using the processor console.

Several of these commands (for example, STORE or DISPLAY) examine or alter
virtual storage locations. When CP is in complete control of virtual storage (as in
the case of DOS, MFT, MVT, PCP, CMS, and RSCS) these commands execute as
expected. However, when the operating system in the virtual machine itself manip­
ulates virtual storage (as in the case of OS/VSl, OS/VS2, or DOS/VS) these CP
commands should not be used.

This section presents an overview of the VM/SP commands used for debugging. It
supplements the preceding section which discussed debugging procedures and tech­
niques. Instructions for using the commands discussed in this section are in the fol­
lowing publications:

• VM/SP CP Command Reference for General Users
• VM/SP Operator's Guide
• VM/SP CMS Command and Macro Reference

The following categories of commands are discussed:

Commands that display VM/SP control information
Commands that set and query system features, conditions, and events
Commands that collect and analyze system information
Commands that trace events in virtual machines
Commands that alter the contents of storage

Commands that Display or Dump Virtual Machine Data

Commands that display or dump virtual machine data are: DUMP, VMDUMP,
DISPLAY, DCP, and DMCP.

The DUMP and DISPLAY commands of CP are privilege class G commands and
are used to display control information describing the status of virtual machines.

The DUMP command spools the following information to your virtual printer:

• Virtual program status word (PSW)
• General registers

Floating-point registers
• Control registers (if your VM/SP directory has the ECMODE option)

Storage keys
Virtual storage locations (first-level storage only)

The DISPLAY command displays at your terminal the following kinds of control
information:

Virtual storage locations (first-level storage only)
• Storage keys .

General registers
Floating-point registers

Introduction to Debugging 497

Control registers
Program status word (PSW)

• Channel address word (CAW)
Channel status word (CSW)

The DCP and DMCP commands of CP are privilege class C and E commands and
are used to display real storage locations. The DMCP command spools the con­
tents of real storage to your virtual printer. The DCP command displays at your
terminal the contents of real storage locations.

The class G VMDUMP command dumps virtual storage to a specified reader spool
file. VMDUMP provides the same dump information that the DUMP command
provides but in a different format. For example, if a byte of storage contains
X'OO', DUMP records it in printable format, X'FOFO'; VMDUMP records it as it
appears in storage, X'OO' The VM/Interactive Problem Control System Extensions
program product can process records written by VMDUMP. For a description of
the format and contents of the VMDUMP records, see "VMDUMP Records:
Format and Content" in this section.

Commands that Set and Query System Features, Conditions, and Events

The SYSTEM and SET commands set system-controlled functions and events; the
QUERY command allows you to determine the status of those settings.

The SYSTEM command is a privilege class G command that simulates the RESET
and REST ART buttons on a real computer console. It can also be used to clear
storage.

The functions of the SET command are described in detail in the VM / SP CP
Command Reference for General Users. For debugging, the SET command provides
the MSG, WNG, and EMSG operands. These provide messages that may be useful
while you are debugging.

The SET MSG function determines whether you receive messages sent by other
users via the MSG command. Also, the MSG operand determines whether you
receive messages from CP when other users spool reader, printer, or punch files to
your virtual machine.

The SET SMSG command turns on or off a virtual machine's special message flag.
If the virtual machine has issued DIAGNOSE Code X'68' (Authorize), this flag
determines whether the virtual machine accepts or rejects messages sent via the
SMSG command -- when the flag is on, messages are accepted.

The SET WNG function determines whether you receive warning messages from
the system operator.

The SET EMSG function controls error message handling. The EMSG operand
gives you the ability to specify that you want message code, message text, or both
to be displayed at your terminal. You can also specify that no messages be dis­
played (except in the case where you have spooled your console output).

When you are debugging, it is useful to have all messages displayed at your termi­
nal.

The QUERY command displays the status of features and conditions set by the
SET command for your virtual machine. When you logon, the MSG and WNG

498 VM/SP System Programmer's Guide

operands of the SET command are set ON; the EMSG operand is set to TEXT;
and the SMSG operand is set OFF. To verify these settings, use the QUERY SET
command.

Commands to Collect and AIlaiyze Systeln Infonnatioll

This section discusses six commands to collect and analyze system information
when you are debugging. These are the ADSTOP and BEGIN commands and the
LOCATE, MONITOR, PER, and TRACE commands.

Stopping Virtual' Machine Execution at a Specific Address

The ADSTOP command stops the execution of a virtual machine at a specific
address; BEGIN causes the virtual machine to resume execution.

Execution halts when the instruction at the address specified in the ADSTOP
command is reached. At this point, you may invoke other CP debugging com­
mands.

The address stop should be set after the program is loaded but before it executes.
When the specified location is reached during program execution, execution halts
and the CP command environment is entered. You may then enter other CP com­
mands to examine and alter the status of the program.

Set an address stop at a location where you suspect the error in the program. You
can then display the registers, control words, and data areas to check the program
at that point in its execution. This procedure helps you locate program errors. You
may be able to alter the contents of storage in such a way that the program will
execute correctly. You can then correct the error you have detected and, if neces­
sary, compile and execute the program again.

To successfully set an address stop, the virtual instruction address must be in real
storage at the time the ADSTOP command is issued.

The RANGE keyword of the CP PER command can be used to set multiple
address stops. However, unlike the CP ADSTOP command, the program execution
halts after the execution of the instruction at the given address. Note also that
address stops set using the PER command remain in effect until you turn off the
trace element set up by the PER command. There is no need for the program to
already be in storage before setting address stops with the CP PER command.

Setting up mUltiple address stops with PER is accomplished by using RANGE as an
option to the INSTRUCT keyword. The instruction-addr-range, in this case, is a
single value corresponding to the address of the instruction where program exe­
cution is to be halted.

For example,

PER INSTRUCT RANGE 20000

causes program execution to halt after the instruction at location 20000 executes.

PER INSTRUCT RANGE 20000 RANGE 20400

causes a program to halt after an instruction at either location 20000 or 20400 exe­
cutes.

Introduction to Debugging 499

Note: Although output is produced only after the instruction at 20000 or 20400
executes, the hardware causes a PER interrupt for every instruction executed in the
range 20000 to 20400. This may degrade the performance of the virtual machine.

Locating CP Control Blocks in Storage

Use the LOCATE command to find the address of CP control blocks associated
with a particular user, a user's device, or a real system device. The control blocks
and their functions are described in the VM / SP Data Areas and Control Block Log­
ic, Volume 1.

Once you know the location of the control blocks, you can examine the block you
want to look at. When you want to examine specific control blocks, use the
LOCATE and the DCP command to display or the DMCP command to print the
control blocks. A discussion of the most important fields of the VMBLOK,
VCUBLOK, VDEVBLOK, RCHBLOK, RCUBLOK, and RDEVBLOK are
included in "Reading CP Abend Dumps."

Commands that Trace Events in Virtual Machines

Use the TRACE command to trace the following virtual machine events:

SVC interruption
I/O interruption
Program interruption
External interruption
Non-I/O privileged instructions
SIO, SIOF, TIO, CLRIO, HIO, HDV, and TCH instructions.
Branch instructions
CCW and CSW instructions

The results collected by the TRACE command are spooled to your virtual printer
and to your terminal and/or real printer.

Use the PER command to selectively trace the execution of the instructions that
cause specific events. The specific events that can be traced are:

Successful branches
The fetching and execution of instructions

• The execution of instructions in the virtual machine that alter storage
The execution of instructions that alter general purpose registers.

The trace output produced by the PER command can be recorded on the terminal,
the virtual printer, or on both the terminal and the printer.

Commands that Alter the Contents of Storage

You can use the STORE, STCP, and ZAP commands to alter the contents of stor­
age.

Altering the Contents of Virtual Machine Storage

Use the STORE command to alter the contents of specified registers and locations
in virtual machine storage. The contents of the following can be altered:

500 VM/SP System Programmer's Guide

Virtual machine storage locations (first-level virtual storage only)
General registers
Floating-point registers

Control registers (if available)
Program Status Word

The STORE STATUS command can save certain information contained in low
storage.

When debugging, you may find it advantageous to alter storage, registers, or the
PSW and then continue execution. This is a good procedure for testing a proposed
change. Also, you can make a temporary correction and then continue to ensure
that the rest of execution is trouble-free. A procedure for using the STORE ST A­
TUS command when debugging is as follows:

Issue the STORE STATUS command before entering a routine you wish to
debug.
When execution stops (because an address stop was reached or because of
failure), display the extended logout area. This area contains the status that
was stored before entering the routine.
Issue STORE STATUS again and display the extended logout area again. You
now have the status information before and after the failure. This information
should help you solve the problem.

Altering the Contents of Real Storage

Use the STCP command to alter the contents of real storage. The STCP command
cannot alter the real PSW or real registers.

Modifying or Dumping CMS MODULE, LOADLIB, or TXTLIB Files

Use the ZAP command to modify or dump MODULE, LOADLIB, or TXTLIB
files. ZAP can be used to modify either fixed- or va~able-Iength MODULE files.

ZAP makes use of control records to control processing. These records can be
submitted either from the terminal or from a disk file. Using the VER and REP
control records, you can verify and replace records or instructions in a control sec­
tion (CSECT). Using the DUMP control record, you can dump all or part of a
CSECT, an entire member of a LOAD LIB or TXTLIB file, or an entire module
file. For a complete description of the ZAP command, see the VM / SP Operator's
Guide.

Debugging CP in a Virtual Machine

CP Internal Trace Table

Many CP problems can be isolated without standalone machine testing. It is possi­
ble to debug CP by running it in a virtual machine. In most instances, the virtual
machine system is an exact replica of the system running on the real machine. To
set up a CP system on a virtual machine, use the same procedure that is used to
generate a CP system on a real machine. However, remember that the entire pro­
cedure of running service programs is now done on a virtual machine. Also, the
virtual machine must be described in the real VM/SP directory. See VM / SP Oper­
ating Systems in a Virtual Machine for directions on how to set up the virtual
machine.

CP has an internal trace table that records events that occur in the real machine.
The events that are traced are:

External interruptions
SVC interruptions

Introduction to Debugging 501

Program interruptions
• Machine check interruptions

I/O interruptions
• Free storage requests

Release of free storage
• Entry into scheduler

Queue drop
Run user requests
Start I/O
Unstack I/O interruptions
Storing a virtual CSW
Test I/O
Halt Device

• Unstack 10BLOK or TRQBLOK
NCP BTU (Network Control Program Basic Transmission Unit)

• Spinning on a lock (attached processor or multiprocessor environment)
SIGP (X'13')

I ·

Clear Channel instruction
IUCV communications
SNA console communication services
DIAGNOSE X'80'
Start I/O fast release
Simulated I/O interruptions
Clear I/O

An installation may optionally specify the size of the CP trace table. To do so, use
the SYSCOR macro instruction in module DMKSYS. Information on using this
macro instruction is in the VM / SP Planning Guide and Reference.

If an installation does not specify the trace table size or the size specified is smaller
than the default size, CP assigns the default size.

For each 256K bytes (or part thereof) of real storage available at IPL time, one
page (4096 bytes) is allocated to the CP trace table. Each entry in the CP trace
table is 16 bytes long. There are trace table entries for each type of event
recorded. The first byte of each trace table entry, the identification code, identifies
the type of event being recorded. Figure 67 on page 504 describes the format of
each type of trace table entry. The entry shown in Figure 67 for IUCV communi­
cations illustrates the general format of an IUCV entry. See the section "IUCV
Trace Table Formats" for the formats of trace table entries for each IUCV func­
tion, and for a description of each field in the trace table entry.

In addition, some trace table entries are generated by ECPS:VM/370. The first bit
of these entries is set to 1 to indicate the entry was generated by the hardware
assist. For example, a trace table entry of type X'86' (FREE) is the same as an
entry of type X'06'. The only difference is that the first entry was generated by the
hardware assist.

The trace table is allocated by the main initialization routine, DMKCPI. The first
event traced is placed in the lowest trace table address. Each subsequent event is
recorded in the next available trace table entry. Once the trace table is full, events
are recorded at the lowest address (overlaying the data previously recorded there).
Tracing continues with each new entry replacing an entry from a previous cycle.

Use the trace table to determine the events that preceded a CP system failure. An
abend dump contains the CP internal trace table and the pointers to it. The

502 VM/SP System Programmer's Guide

address of the start of the trace table, TRACSTRT, is at location X'OC'. The
address of the byte following the end of the trace table, TRACEND, is at location
X'10'. And the address of the next available trace table entry, TRACCURR, is at
location X'14'. Subtract 16 bytes (X'10') from the address stored at X'14'
(TRACCURR) to obtain the trace table entry for the last event completed.

The CP internal trace table is initialized during IPL. If you do not wish to record
events in the trace table, issue the MONITOR STOP command to suppress record­
ing. iref refid=debugm. The pages allocated to the trace table are not released
and recording can be restarted at any time by issuing the MONITOR START
command. If the VM/SP system should abnormally terminate and automatically
restart, the tracing of events on the real machine will be active. After a VM/SP
IPL (manual or automatic), CP internal tracing is always active.

Introduction to Debugging 503 .

Type of Event

External Interrupt

SVC Interrupt

Program Interrupt

Machine Check
Interrupt

I/O Interrupt

Free Storage
(FREE)

Return Storage
(FRET)

Enter Scheduler

Queue Drop

Run User

Start I/O

Unstack I/O
Interrupt

Virtual CSW store

Test I/O

Halt Device

Module

DMKPSA

DMKSVC

DMKPRG

DMKMCH

DMKIOS

DMKFRE

DMKFRE

DMKSCH

DMKSCH

DMKDSP

DMKCNS
DMKIOS
DMKCPI

DMKDSP

DMKVSI

DMKCPI
DMKIOS

DMKCNS
DMKIOS
DMKVSI
DMKCPI

Identification
Code
(hexadecimal)
(See Note 1)

01

02

03

04

05

06

07

OS

09

OA

OB

OC

00

OE

OF

X'OOOOOOOOOO'

GR140rGR15
(See Note 2)

First 3 Bytes of VMPSW

Address of VMBLOK

Address of VMBLOK

Address of VMBLOK

Address of VMBLOK

Address of VMBLOK

X'OOOOOO'

Format of Trace Table Entry

First 4 bytes of S-byte
Interrupt Code

I/O Old PSW + 4

GR 0 at entry

GR 0 at entry

Value of VMRSTAT,
VMDSTAT, VMOSTAT,
and VMQSTAT

RUN USER Value
from PSA

Address of 10BLOK

Address of VMBLOK

Address of VMBLOK

Address of 10BLOK

Address of 10BLOK

External Old PSW

SVC Old PSW

Program Old PSW

Machine Check Old PSW

CSW

GR 1 at exit

GR 1 at entry

ser. Queue Recent History U

I
Dispatching

Priority Priority User CPU Utilization
9 VMUPRIOR 10 VMQPRIOR 12 VMUHS

RUNPSW Value from PSA

CAW

Virtual CSW

Virtual CSW

CAW

CAW

For CC = 1, CSW + 4
otherwise this field is

12 not used

For CC = 1, CSW + 4
otherwise this field is

12 not used

For CC = 1, CSW + 4
otherwise this field is

12 not used

Notes: 1. If the installation is running in attached processor mode, the identification code will be OR'd with an X'40' if the activity occurred on the attached processor.
If the installation is running ECPS, the identification code is OR'd with an X'SO' if the activity occurred in microcode.

2. If the interrupt code (bytes 6 and 7) is OC, the contents of GR 14 are displayed. For all other interrupt codes, the contents of GR 15 are displayed.

3. Bytes 2 through 15 of a code 11 trace record represent a Basic Transmission Unit, sent or received by a 3704/3705. If CONSYSR/CONEXTR are zero, the
BTU was transmitted to the 3704/3705. If they are non-zero, the BTU was received. If CONTCMD equals X'7700', this is an unsolicited BTU response.

Figure 67 (Part 1 of 2). CP Trace Table Entries

504 VM/SP System Programmer's Guide

Type of Event

Unstack 10BLOK
or TROBLOK

NCP BTU
(See Note 31

Spinning on lock

SIGP issued

Clear Channel
issued

IUCV
Communication

SNA CCS

DIAGNOSE X'80'

Start I/O Fast
Release

Simulated I/O
Interrupt

CLEAR I/O

Identification

Module Code
(hexadecimal)
(See Note 11

-- -----

DMKDSP 10 Address of VMBLOK

DMKRNH 11

DMKLOK 12 Address of VMBLOK

DMKEXT 13 Return Address

DMKVSI 14

DMKIUA 15

DMKVCV 16

DMKMHC 17

DMKIOS 18

DMKIOT 19

>A I R,,,,"", '0' "'0 ""

DMKIOS 1B

Format of Traco Table Entry

Value of VMI~STAT,
VMDSTAT, VMOSTAT,
and VMOSTAT

Address of VMBLOK

Address of 10BLOK
or Tf~OBLOK

Virtual CSW

Usage varies by function code

12

Interrupt fleturn Address

Lockword Contents

Status of Condition
Code = 1

Address of IUCVBLOK (See "IUCV Trace Table Formats" for detailsl

HCBLOK Address

Address of 10BLOK

Address of either
DMKDID or DMKACR
in GR 12 at entry

Address of 10BLOK

MSSF Command Word

CAW

CSW

CAW

MSFBLOK Address

12

For CC = 1, CSW + 4
otherwise this field is

12 not used

For CC = 1, CSW + 4
otherwise this field is

12 not used.
15

Notes: 1. If the installation is running in attached processor mode, the identification code will be OR'd with an X'40' if the activity occurred on the attached processor.
If the installation is running ECPS, the identification code is OR'd with an X'80' if the activity occurred in microcode.

2. If the interrupt code (bytes 6 and 71 is OC, the contents of GR 14 are displayed. For all other interrupt codes, the contents of GR 15 are displayed.

3. Bytes 2 through 15 of a code 11 trace record represent a Basic Transmission Unit, sent or received by a 3704/3705. If CONSYSR/CONEXTR are zero, the
BTU was transmitted to the 3704/3705. If they are non-zero, the BTU was received. If CONTCMD equals x'noo', this is an unsolicited BTU response.

Figure 67 (Part 2 of 2). CP Trace Table Entries

Introduction to Debugging 505

Abend Dumps

There are three kinds of abnormal termination dumps possible when using CPo If
the problem program cannot continue, it terminates and in some cases attempts to
issue a dump. Likewise, if the operating system for your virtual machine cannot
continue, it terminates and, in some cases, attempts to issue a dump. In the
VM/SP environment, the problem program dump always goes to the virtual
printer. Depending on installation operating procedures, the virtual machine oper­
ating system dump may also go to the virtual printer. A CLOSE must be issued to
the virtual printer to have either dump print on the real printer.

The third type of dump occurs when the CP system cannot continue. The CP
abnormal termination dumps can be directed to a printer or tape or be dynamically
allocated to DASD. If the dump is directed to a tape, the dumped data must fit on
one reel of tape. Multiple tape volumes are not supported by VM/SP. The histor­
ical data on the tape is in print line format and can be processed by user-created
programs or via CMS commands. Specify the output device for CP abend dumps
with the CP SET DUMP command. Refer the VM / SP Operator's Guide for the
format of the SET DUMP command.

How to Print a CP Abend Dunlp from Tape

Reading CP Abend Dumps

When the CP abend dump is sent to a tape, the records are 131 characters long,
unblocked, and contain carriage control characters.

To print the tape, first make sure the tape drive is attached to your system. Next,
define the printer and tape file.

FILEDEF ddname1 PRINTER (RECFM FM LRECL 131)

FILEDEF ddname2 {TAP2} (DEN 1600 RECFM U LRECL 132)
{TAP1}

Then use the MOVEFILE command to print the tape:

MOVEFILE ddname2 ddname1

Two types of printed dumps occur when CP abnormally ends, depending upon the
options specified in the CP SET DUMP command. When the dump is directed to a
direct access device, IPCS (Interactive Problom Control Service) must be used to
format and print the dump. IPCS commands format and print:

• Control blocks
General registers
Floating-point registers
Control registers
TOD (Time-of-Day) Clock
Processor Timer
Storage
If in attached processor or multiprocessor mode, formats and prints both PSAs'
storage

Storage is printed in hexadecimal notation, eight words to the line, with EBCDIC
translation at the right. The hexadecimal address of the first byte printed on each
line is indicated at the left.

506 VM/SP System Programmer's Guide

Re(lSOIl for tlte Abend

If the CP SET DUMP command directed the dump to tape or the printer, the
printed format of the printed dump will not contain formatted control blocks. If
the system was an attached processor or multiprocessor, all of the registers, etc.,
are printed for the abending processor. Also, each PSA is printed before printing
main storage.

When the Control Program can no longer continue and abnormally terminates, you
must first determine the condition that caused the abend, and then find the cause of
that condition. You should know the structure and function of the Control Pro­
gram. "Part 1: Control Program (CP)" contains information that will help you
understand the major functions of CPo The following discussion on reading CP
dumps includes many references to CP control blocks and control block fields.
Refer to VM/SP Data Areas and Control Block Logic, Volume 1 for a description
of the CP control blocks. Figure 68 on page 512 shows the CP control block
relationships. Also, you will need the current load map for CP to be able to identi­
fy the modules from their locations. The load map is created at initial CP gener­
ation time. See the VM / SP Installation Guide for obtaining the original copy of the
CP load map.

Determine the immediate reason for the abend. You need to examine several fields
in the PSA (Prefix Storage Area), to find the reason for the abend. In a
uniprocessor system, the PSA is in locations 0 to 4095. In an attached processor or
multiprocessor system, each processor has its own PSA in addition to the absolute
PSA in locations 0 to 4095.

1. Examine the program old PSW and program interrupt code to find whether or
not a program check occurred in CPo The program old PSW (PROPSW) is
located at X'28' and the program interrupt code (INTPR) is at X'8E'. If a
program check has occurred in supervisor mode, use the CP system load map
to identify the module. If you cannot find the module using the load map, refer
to "Identifying a Pageable Module." Figure 74 on page 542 in "Appendix A:
System/370 Information" describes the format of an Extended Control PSW.

2. Examine the SVC old PSW, the SVC interrupt code, and the abend code to
find whether or not a CP routine issued an SVC O. The SVC old PSW
(SVCOPSW) is located at X'20', the SVC interrupt code (INTSVC) is at
X'8A', and the abend code (CPABEND) is at X'374'.

The abend code (CP ABEND) is a fullword. The first three bytes identify the
module that issued the SVC 0 and the fourth byte is a binary field whose value
indicates the reason for issuing an SVC O.

Use the CP system load map to identify the module issuing the SVC O. If you
cannot find the module using the CP system load map, refer to "Identifying a
Pageable Module". Figure 74 on page 542 in Appendix A describes the format
of an Extended Control PSW.

Examine the old PSW at X'08'. If an abnormal termination occurs because the
operator caused a system restart, the old PSW at location X'08' points to the
instruction that was executing when CP recognized the abnormal termination.
Figure 74 on page 542 in Appendix A describes the format of an Extended
Control PSW.

Introduction to Debugging 507

Coiieci Injormaiion

Register Usage

4. For a machine check, examine the machine check old PSW and the logout area.
The machine check old PSW (MCOPSW) is found at X'30' and the fixed
logout area is at X' 100'. Also examine the machine check interrupt code
(INTMC) at X'ES'.

Examine several other fields in the PSA to analyze the status of the system. As you
progress in reading the dump, you may return to the PSA to pick up pointers to
specific areas (such as pointers to the real control blocks) or to examine other sta­
tus fields. For specific fields within the PSA control block, refer to VM / SP Data
Areas and Control Block Logic, Volume 1.

The following areas of the PSA may contain useful debugging information.

1. CP Running Status Field

The CP running status is stored in CPSTAT at location X'34S'. The value of
this field indicates the running status of CP since the last entry to the dispatch­
er.

2. Current User

The PSW that was most recently loaded by the dispatcher is saved in
RUNPSW at location X'330', and the address of the dispatched VMBLOK is
saved in RUNUSER at location X'33S'. Also, examine the contents of control
registers 0 and 1 as they were when the last PSW was dispatched. See
RUNCRO (X'340') and RUNCR1 (X'344') for the control registers.

Also, examine the CP internal trace table to determine the events that preceded the
abnormal termination. Start with the last event recorded in the trace table and read
backward through the trace table entries. The last event recorded is the last event
that was completed.

The TRACSTRT field (location X'OC') contains the address of the start of the
trace table. The TRACEND field (location X'10') contains the address of the byte
following the end of the trace table. The address of the next available trace table
entry is found in the TRACCURR field (location X'14'). To find the last recorded
trace table entry, subtract X'lO' from the value at location X'14'. The result is the
address of the last recorded entry. Figure 67 on page 504 describes the format of
each type of trace table entry.

Note: If the system was in attached processor or multiprocessor mode, the trace
table pointers are in absolute page zero.

In order to trace control blocks and modules, it is necessary to know the CP regis­
ter usage conventions.

The 16 general registers have many uses that vary depending upon the operation.
The following table shows the use of some of the general registers.

508 VM/SP System Programmer's Guide

Save Area Conventions

Register

GR 1
GR2
GR 6,7,8

GR 10
GR 14, 15

Contents

The virtual address to be translated.
The real address or parameters.
The virtual or real channel, control unit, and device
control blocks.
The address of the active IOBLOK.
The external branch linkage.

The following general registers usually contain the same information.

Register

GR 11
GR 12
GR 13

Contents

The address of the active VMBLOK.
The base register for the module executing.
The address of the current save area if the module
was called via an SVC.

Use these registers along with the CP control blocks and the data in the prefix stor­
age area to determine the error that caused the CP abend.

There are three save areas that may be helpful in debugging CPo If a module was
called by an SVC, examine the SA VEAREA storage area. SA VEAREA is not in
the PSA; the address of the SA VEAREA is found in general register 13. If a mod­
ule was called by a branch and link, the general registers are saved in the PSA in an
area called BALRSAVE (X'240'). The DMKFRE save area and work area is also
in the PSA: these areas are used only by the DMKFREE and DMKFRET routines.
The DMKFRE save area (FREESA VE) is at location X'280' and its work area
(FREEWORK) follows at location X'2CO'.

Save areas used by attached processor and multiprocessor support are
DUMPSAVE, SIGSAVE, LOKSA VE, MFASA VE, SWTHSAVE, LOCKSA VE,
and SVCREGS. These save areas are all in the PSA. All except LOCKSA VE and
SVCREGS are 16 words in size.

Use the save areas to trace backwards and find the previous module executed.

1. SAVEAREA

An active save area contains the caller's return address in SA VERETN (dis­
placement X'OO'). The caller's base register is saved in SAVER12 (displace­
ment X'04'), and the address of the save area for the caller is saved trace
backwards again.

2. BALRSAVE

All the general registers are saved in BALRSA VE after branching and linking
(via BALR) to another routine. Look at BALR14 for the return address
saved, BALR13 for the caller's save area, and BALR12 for the caller's base
register, and you can trace module control backwards.

3. FREESAVE

All the general registers are saved in FREESA VE before DMKFRE executes.
Use this address to trace module control backwards.

Introduction to Debugging 509

Field Contents

FREERIS
FREERI4
FREERI3

The entry point (DMKFREE or DMKFRET).
The saved return address.
The caller's save area (unless the caller was called via
BALR).

FREERI2
FREER 1

The caller's base register.
Points to the block returned (for calls to
DMKFRET).

FREERO Contains the number of doublewords requested or
returned.

4. DUMPSAVE

All the general registers at the time of the error are saved in DUMPSA VE
(displacement X'SOO') before DMKDMP is called. They are saved by
DMKPSA after a restart, by DMKSVC after an SVC 0, and by DMKPRG.
The registers are stored in DUMPSA VE in the order GRO through GRIS.
GRI2 usually contains the base register for the module executing at the time of
the error.

S. SIGSAVE

SIGSA VE (displacement X'S40') is used as a save/work area by DMKEXT, a
multiprocessor/attached processor-only module that handles all signaling
requests. When a signal request is issued, DMKEXTSP is called. On entry,
DMKEXTSP stores GRI2 through GRIS, and GRO through GR6. GR7
through GRII are not saved. The remainder of SIGSA VE is used as a work
area. GRI4 contains the caller's return address.

6. LOKSAVE

All the general registers are stored in LOKSAVE (displacement X'S80') before
DMKLOK executes. DMKLOK is a multiprocessor/attached processor-only
module that manipulates certain locks. The registers are stored in the order
GRO through GRIS. GRI4 contains the caller's return address.

7. MFASAVE

All the general registers are stored in MFASAVE (displacement X'SCO')
before DMKMCTMA executes. DMKMCTMA is the entry into DMKMCT, a
multiprocessor / attached processor-only module, that handles malfunction alert
interrupts. The registers are stored space in the order GRO through GRIS.
GRI4 and GRIS contain the caller's return address.

8. SWTHSAVE

All the general registers are stored in SWTHSAVE (displacement X'600') by
DMKSTK and DMKVMASW. DMKVMASW is an entry that is used only in
multiprocessor / attached processor systems to switch a user's page table point­
ers. The registers are stored in the order GRO through GRIS. GRI4 contains
the caller's return address. All entries to DMKSTK store registers GRO
through GRIS in SWTHSAVE.

9. LOCKSAVE

510 VM/SP System Programmer's Guide

LOCKSAVE (displacement X'640') is a four-word save area used by the
LOCK macro to save GR14, GR15, GRO, and GR1 if the SAVE option of the
LOCK macro is specified.

10. SVCREGS

SVCREGS (displacement X'650') is a four-word save area used to save GR12
through GR15 at the time of an SVC interrupt.

Virtual and Real Control Block Status

Examine the virtual and real control blocks for more information on the status of
the CP system. Figure 68 on page 512 describes the relationship of the CP control
blocks; several are described in detail in the following paragraphs. For even more
detail on the following control blocks, refer to VM / SP Data Areas and Control
B lock Logic, Volume 1.

Introduction to Debugging 511

VI

i PSA (Prefix Storage Are.) -IV

I ARama,

ASYSVM

~

~ ="
SlO

.......... n
(,Il "= "'C n (,Il 0
'< = ~ [(II

a
"'C t:=
"'"I 0'
0 t)

(JQ lI':"
"'"I
til ::c a ~

a S"
(II ~
"'"I 0
vt ~

I j RDCBLOK

II ~ 0 e:
= 'C

0.: '"
(II

RCHFIOB I II

PERBLOK

CCRTABLE

CORSWPNT
CORPGNT

.. ---

VMBLOK

VM~ I VM~

VDEVBLOKs § B r ECBLOK

VDEVIOER

~a I VDEVRRB

VDEVEXTN
VSPXBLOK

VDEVCON

VDEVSPL ~
STOPBLOK

VSPLCTL CONBUF

VSPSFBLK CCWs

TROBLOK SFBLOK

TROBGPQ

...... A""'" ~._ =r--r-l I L_

ALOTBLOK .--- ALOSBLOK

VMBLOK

VCHBLOK

VCUBLOK

The address of the VMBLOK is in general register 11.

Examine the following VMBLOK fields:

1. The virtual machine running status is contained in VMRSTAT (displacement
X'5S'). The value of this field indicates the running status.

2. The virtual machine dispatching status is contained in VMDSTAT (displace­
ment X'59'). The value of this field indicates the dispatching status.

3. Examine the virtual PSW and the last virtual machine privileged instruction.
The virtual machine PSW is saved in VMPSW (displacement X'AS') and the
virtual machine privileged or tracing instruction is saved in VMINST (dis­
placement X'9S').

4. Find the name of the last CP command that executed in VMCOMND (dis­
placement X'14S').

5. Check the status of I/O activity. The following fields contain pertinent infor­
mation.

a. VMPEND (displacement X'63') contains the interrupt pending summary
flag. The value of VMPEND identifies the type of interrupt.

b. VMFSTAT (displacement X'6S') contains the virtual machine features.

c. VMIOINT (displacement X'6A') contains the I/O interrupt pending flag.
Each bit represents a channel (0 through 15). An interrupt pending is indi­
cated by a 1 in the corresponding bit position.

d. VMIOACTV (displacement X'36') is the active channel mask. An active
channel is indicated by a 1 in the corresponding bit position.

The address of the VCHBLOK table is found in the VMCHSTRT field (displace­
ment X'IS') of the VMBLOK. General register 6 contains the address of the
active VCHBLOK. Examine the following fields:

1. The virtual channel address is contained in VCHADD (displacement X'OO').

2. The status of the virtual channel is found in the VCHSTAT field (displacement
X'06'). The value of this field indicates the virtual channel status.

3. The value of the VCHTYPE field (displacement X'07') indicates the virtual
channel type.

The address of the VCUBLOK table is found in the VCUSTRT field (displacement
X' 1 C') of the VMBLOK. General register 7 contains the address of the active
VCUBLOK. Useful information is contained in the following fields:

1. The virtual control unit address is found in the VCUADD field (displacement
X'OO').

Introduction to Debugging 513

VDEVBLOK

RCHBLOK

2. The value of the VCUSTAT field (displacement X'06') indicates the status of
the virtual control unit.

3. The value of the VCUTYPE field (displacement X'OT) indicates the type of
the virtual control unit.

The address of the VDEVBLOK table is found in the VMDVSTRT field (dis­
placement X'20') of the VMBLOK. General register 8 contains the address of the
active VDEVBLOK. Useful information is contained in the following fields:

1. The virtual device address is found in the VD EV ADD field (displacement
X'OO').

2. The value of the VDEVSTAT field (displacement X'06') describes the status
of the virtual device.

3. The value of the VDEVFLAG field (displacement X'07') indicates the
device-dependent information.

4. The VDEVCSW field (displacement X'08') contains the virtual channel status
word for the last interrupt.

5. The VDEVREAL field (displacement X'24') contains the pointer to the real
device block, RDEVBLOK.

6. The VDEVIOB field (displacement X'34') contains the pointer to the active
IOBLOK.

7. For console devices, the value of the VDEVCFLG field (displacement X'26')
describes the virtual console flags.

8. For spooling devices, the value of the VDEVSFLG field (displacement X'2T)
describes the virtual spooling flags.

9. For output spooling devices, the VDEVEXTN field (displacement X'10') con­
tains the pointer to the virtual spool extension block, VSPXBLOK.

10. The value of the VDEVFLG2 field (displacement X'38') describes the
Reserve/Release flags and other miscellaneous conditions.

11. For Reserve/Release minidisks, VDEVRRB (displacement X'3C') contains
the address of the VRRBLOK.

The address of the first RCHBLOK is found in the ARIOCH field (displacement
X'3B4') of the PSA (Prefix Storage Area). General register 6 contains the address
of the active RCHBLOK. Examine the following fields:

1. The real channel address is found in the RCHADD field (displacement X'OO').

2. The value of the RCHSTAT field (displacement X'04') describes the status of
the real channel.

514 VM/SP System Programmer's Guide

RCUBLOK

RDEVBLOK

3. The value of the RCHTYPE field (displacement X'05') describes the real
channel type.

I 4. The RCHFIOB field (displacement X'OS') is the pointer to the first IOBLOK
in the queue and the RCHLIOB field (displacement X'OC') is the pointer to
the last IOBLOK in the queue.

The address of the first RCUBLOK is found in the ARIOCU field (displacement
X'3BS') of the PSA. General register 7 points to the current RCUBLOK. Examine
the following fields:

1. The RCUADD field (displacement X'OO') contains the real control unit
address.

2. The value of the RCUSTAT field (displacement X'04') describes the status of
the control unit.

3. RCUCHA (displacement X'10') points to the Primary RCHBLOK.

4. RCUCHB (displacement X'14') points to the first alternate RCHBLOK.

5. RCUCHC (displacement X'lS') points to the second alternate RCHBLOK.

6. RCUCHD (displacement X'lC') points to the third alternate RCHBLOK.

7. The value of the RCUTYPE field (displacement X'05') describes the type of
the real control unit.

I 8. The RCUFIOB field (displacement X'OS') points to the first IOBLOK in the
queue and the RCULIOB field (displacement X'OC') points to the last
IOBLOK in the queue.

The address of the first RDEVBLOK is found in the ARIODV field (displacement
X'3BC') of the PSA. General register S points to the current RDEVBLOK. Also,
the VDEVREAL field (displacement X'24') of each VDEVBLOK contains the
address of the associated RDEVBLOK. Examine the following fields of the
RDEVBLOK:

1. The RDEVADD field (displacement X'OO') contains the real device address.

2. The values of the RDEVSTAT (displacement X'04'), RDEVSTA2 (displace­
ment X'45'), and RDEVSTA4 fields describe the status of the real device.

3. The value of the RDEVFLAG field (displacement X'05') indicates device
flags. These flags are device-dependent.

4. The value of the RDEVTYPC field (displacement X'06') describes the device
type class and the value of the RDEVTYPE field (displacement X'07')
describes the device type. Refer to Figure 69 on page 517 for the list of possi­
ble device type class and device type values.

5. The RDEVAIOB field (displacement X'24') contains the address of the active
IOBLOK.

Introduction to Debugging 515

6. The RDEVUSER field (displacement X'28') points to the VMBLOK for a ded­
icated user.

7. The RDEVATT field (displacement X'2C') contains the attached virtual
address.

8. The RDEVIOER field (displacement X'48') contains the address of the
IOERBLOK for the last CP error.

9. For spooling unit record devices, the RDEVSPL field (displacement X'18')
points to the active RSPLCTL block.

10. For real 370X Communications Controllers, several pointer fields are defined.
The RDEVEPDV field (displacement X'lC') points to the start of the free
RDEVBLOK list for EP lines. The RDEVNICL field (displacement X'38')
points to the network control list and the RDEVCKPT field (displacement
X'3C') points to the CKPBLOK for re-enable. Also, the RDEVMAX field
(displacement X'2E') is the highest valid NCP resource name and the
RDEVNCP field (displacement X'30') is the reference name of the active
3705 NCP.

11. For terminal devices, additional flags are defined. The value of the
RDEVTFLG field (displacement X'3A') describes the additional flags.

12. For terminals, an additional flag is defined. The value of the RDEVTMCD
field (displacement X'34') describes the line code translation to be used.

516 VM/SP System Programmer's Guide

DEVICE CLASS CODES

Code
X'80'
X'40'
X'20'
X'lO'
X'08'
X'04'
X'02'
X'Ol'

Device Class
Terminal Device
Graphics Device
Unit Record Input Device
Unit Record Output Device
Magnetic Tape Device
Direct Access Storage Device
Special Device
Fixed-Block Storage

DEVICE TYPE CODES

For Terminal Device Class

Code
X'80'
X'40'
X'40'
X'20'
X'20'
X'lC'
X'18'
X'18'
X'14'
X'10'
X'01'
X'OO'
X'OO'
X'OO'
X'OO'

Device Type
Binary Synchronous Line for Remote
2700 Binary Synchronous Line
2955 Communication Line
Telegraph Terminal Control Type II
Teletype Terminal
Undefined Terminal Device
IBM 2741 Communication Terminal
IBM 3767 Communication Terminal
IBM 1050 Data Communication System
IBM Terminal Control Type I
Dial Feature
IBM 3210 Console
IBM 3215 Console
IBM 2150 Console
IBM 1052 Console

Figure 69 (Part 1 of 5). CP Device Classes, Types, Models, and Features

Introduction to Debugging 517

For Graphics Device Class

Corl{! D{!.icc Typ~
X'80' IBM 2250 Display Unit
X'40' IBM 2260 Display Station
X'20' IBM 2265 Display Station
X'10' IBM 3066 Console
X'08' IBM 1053 Printer
X'04' IBM 3138 System Console
X'04' IB:LvI 3148 System Console
X'04' IBM 3158 System Console
X'04' IBM 3277 Display Station
X'Ol' IBM 3278 Display Station
X'Ol' IBM 3279 Display Station
X'02' IBM 3230 Printer
X'02' IBM 3268 Printer
X'02' IBM 3284 Printer
X'02' IBM 3286 Printer
X'02' IBM 3287 Printer
X'02' IBM 3288 Printer
X'02' IBM 3289 Printer
X'02' IBM 4250 Printer

• For Unit Record Input Device Class

Code Device Type
X'90' IBM 2520 Card Reader/Punch
X'88' IBM 1442 Card Reader/Punch
X'84' IBM 3505 Card Reader
X'82' IBM 2540 Card Reader
X'81' IBM 2501 Card Reader
X'80' Card Reader
X'40' Timer
X'24' IBM 1017 Paper Tape Reader
X'22' IBM 2671 Paper Tape Reader
X'21' IBM 2495 Magnetic Tape Cartridge Reader
X'20' Tape Reader

Figure 69 (Part 2 of 5). CP Device Classes, Types, Models, and Features

518 VM/SP System Programmer's Guide

For Unit Record Output Device Class

Code Device Type
X'90' IBM 2520 Card Punch
X'88' IBM 1442 Card Punch
X'84' IBM 3525 Card Punch
X'82' IBM 2540 Card Punch
X'80' Card Punch
X'4A' IBM 4245 Printer
X'47' IBM 3262 Printer
X'46' IBM 3289 Printer
X'45' IBM 3800 Printing Subsystem
X'44' IBM 1443 Printer
X'43' IBM 3203 Printer
X'42' IBM 3211 Printer
X'41' IBM 1403 Printer
X'40' Printer
X'24' IBM 1018 Paper Tape Punch
X'20' Tape Punch

For Magnetic Tape Device Class

Code Device Tape
X'80' IBM 2401 Tape Drive
X'40' IBM 2415 Tape Drive
X'20' IBM 2420 Tape Drive
X'10' IBM 3420 Tape Drive
X'08' IBM 3410/3411 Tape Drive
X'04' IBM 8809 Tape Drive
X'02' IBM 3430 Tape Drive

For Direct Access Storage Device Class

Code Device Type
X'80' IBM 2301 Parallel Drum
X'80' IBM 2303 Serial Drum
X'80' IBM 2311 Disk Storage Drive
X'80' IBM 2321 Data Cell Drive
X'40' IBM 2314 Disk Storage Facility
X'40' IBM 2319 Disk Storage Facility
X'20' IBM 3380 Disk Storage Facility
X'10' IBM 3330 Disk Storage Facility
X'10' IBM 3333 Disk Storage and Control
X'08' IBM 3350 Disk Storage Facility
X'04' IBM 3375 Disk Storage Facility
X'02' IBM 2305 Fixed Head Storage Device
X'01' IBM 3340 Disk Storage Facility

Figure 69 (Part 3 of 5). CP Device Classes, Types, Models, and Features

Introduction to Debugging 519

For Special Device'Class

Code
X'80'
X'40'
X'20'
X'04'
X'01'

Device Type
Channel-to-Channel Device (CTCA or 3088)
370X Programmable Communications Controller
3851 Mass Storage Controller
SRF (7443) device
Device unsupported by VM/SP

For Fixed-Block Storage Device Class

Code
X'02'
X'01'
X'OO'

Note:

Device Type
3370
3310
Generic Fixed-Block ~see Note)

Code X'OO' applies to a device whose specific type CP has
not yet determined. The proper bit value is assigned when
a 'Read Device Characteristics' command is issued at IPL.

MODEL CODES (Column 35 in Accounting Card)

As specified in the RDEVICE macro at system generation.

FEATURE CODES (Column 36 in Accounting Card)

• For Printer Devices

Code
X'01'

Feature
UCS

Figure 69 (Part 4 of 5). CP Device Classes, Types, Models, and Features

520 VM/SP System Programmer's Guide

For Magnetic Tape Devices

Code Feature
X'80' 7 Track
X'40' Dual Density
X'20' Translate
X'10' Data Conversion

For Direct Access Storage Devices

Feature
Rotational Position Sensing (RPS)
Extended Sense Bytes (24 bytes)
Top Half of 2314 Used as 2311
Bottom Half of 2314 Used as 2311
35MB Data Module (mounted)
70MB Data Module (mounted)

Code
X'80'
X'40'
X'20'
X'10'
X'08'
X'04'
X'02'
X'01'

Reserve/Release are valid CCW operation codes
3330V Virtual MSS volume

For special devices

Code Feature
X'20' Type II channel adapter for 370X
X'10' Type I channel adapter for 370X

Figure 69 (Part 5 of 5). CP Device Classes, Types, Models, and Features

Introduction to Debugging 521

Identifying and Locating a Pageable Module

If a program check PSW or SVC PSW points to an address beyond the end of the
CP resident nucleus, the failing module is a page able module. The CP system load
map identifies the end of the resident nucleus. .

Go to the address indicated in the PSW. Backtrack to the beginning of that page
frame. The first eight bytes of that page frame (the page frame containing the
address pointed to by the PSW) contains the name of the first pageable module
loaded into the page. If multiple modules exist within the same page frame, identi­
fy the module using the load map and failing address displacement within the page
frame. In most cases, register 12 points directly to the name.

To locate a pageable module whose address is shown in the load map, use the sys­
tem VMBLOK segment and page tables. For example, if the address in the load
map is 55000, use the segment and page tables to locate the module at segment 5,
page 5.

VMDUMP Records: Format and Content

When a user issues the VMDUMP command, CP dumps virtual storage of the
user's virtual machine. CP stores this dump on the reader spool file of a virtual
machine that the user specified as an operand on the VMDUMP command.

CP writes the storage dump to the spool file as a series of logical records. Each
spool file record and each logical dump record is 4096-bytes long. However,
because each spool file record contains a header, one logical dump record does not
fit into one spool file record. For this reason, CP splits a logical dump record into
two parts. CP writes one part to one spool file record and the other part to an
adjacent spool file record. The size of each part varies depending upon the amount
of space remaining in the spool file record that CP is currently using. Thus, each
logical dump record spans two spool file records. -- Fig 'fI1' unknown -- shows
the format of spool file records, the format of logical dump records, and how log­
ical dump records span spool file records.

The first spool file record contains a spool page buffer linkage block (SPLINK) fol­
lowed by a TAG area followed by dump information. All other spool file records
contain only a SPLINK followed by dump information.

A SPLINK, which contains data needed to locate information in the associated
spool file record, has the following format:

hexadecimal
offset

o

4

8
C

length

4 bytes

4 bytes

4 bytes
4 bytes

content

the DASD location (DCHR) of the next page
buffer
the DASD location (DCHR) of the previous
page buffer
binary zeros
the number of data records in the buffer

The TAG area contains either binary zeros or user supplied data. If a virtual
machine program or the user has issued the TAG command, the TAG area contains
the information provided via this command. Otherwise it contains binary zeros.

522 VM/SP System Programmer's Guide

Locating Logical Dump Records

The first logical dump record contains a dump file information record
(DMPINREC). The second and third logical dump records each contain a dump
file key storage record, DMPKYRECI and DMPKYREC2 respectively. The dump
file key storage records contain the value of the storage keys assigned to each page
of virtual storage. The remaining logical dump records contain the virtual machine
storage dump.

CP records the storage dump sequentially starting with the lowest address dumped
and ending with the highest address dumped. CP records each byte as an untrans­
lated 8-bit binary value.

For a description of the format and contents of DMPINREC, see VM / SP Data
Areas and Control Block Logic, Volume 1. For a description of DMPKYRECI and
DMPKYREC2, see DMPKYREC also in VM / SP Data Areas and Control Block
Logic, Volume 1.

To locate a specific logical dump record, use the algorithm:

loc = 240+16n+4096n
4096

where:

Q is a number that identifies the dump record. For example, to locate the first
dump record, assign Q a value of 1; to locate the second record, assign Q a value of
2, and so forth.

loc is the quotient and remainder of the algorithm. Together these values specify a
spool file record and an offset into that record where logical dump record Q begins.
The quotient specifies the spool file record, and the remainder specifies the offset
into the spool file record.

The following example shows how to locate the third logical dump record:

loc 240+(16x3)+(4096x3)

loc = 12576
4096

quotient = 3

4096

remainder = 288

Thus, the third dump record starts 288 bytes into the third spool file record.

Introductiort to Debugging 523

header

first spool
1

0
SPUNK 1

16
file record TAG

second spool
file record

third spool
file record

fourth spool
file record

fifth logical
dump record

0

16
bytes

header

SPLINK

16
bytes

header

0
SPLINK

16
bytes

header

0
SPLINK

16
bytes

header

0
SPLINK

16
bytes

Figure 70. VMDUMP Record Format

524 VM/SP System Programmer's Guide

240
bytes

first logical
dump record
(continued)

16
DMPINREC
(continued)

256
bytes

second logical
dump record
(continued)

16
DMPKYREC1
(continued)

272
bytes

third logical
dump record
(continued)

16
DMPKYREC2
(continued)

288
bytes

fourth logical
dump record
(continued)

16
virtual
storage

304
bytes

machine
dump

1

256

272

288

304

320

first logical
dump record

4095
DMPINREC

3840
bytes

second logical
dump record

DMPKYRECI

3824
bytes

4095

third logical
dump record

4095
DMPKYREC2

3808
bytes

fourth logical
dump record

4095
virtual machine
storage dump

3792
bytes

fifth logical
dump record

virtual
storage

3776
bytes

4095
machine
dump

Debugging With eMS

CMS Debugging Commands

This section describes the debug tools that CMS provides. These tools can be used
to help you debug CMS or a problem program. In addition, a CMS user can use
the CP commands to debug. Information that is often useful in debugging is also
included. The following topics are discussed in this section:

CMS debugging commands
Load maps

• Reading CMS dumps
• Control block summary

CMS provides two commands that are useful in debugging: DEBUG and
SVCTRACE. Both commands execute from the terminal.

The debug environment is entered whenever:

The DEBUG command is issued
A breakpoint is reached
An external or program interrupt occurs

CMS will not accept other commands while in the debug environment. However,
while in the debug environment, subcommands of the DEBUG command can be
used to:

• Set breakpoints (address stops) that stop program execution at specific
locations.

Display the contents of the CAW (channel address word), CSW (channel sta­
tus word), old PSW (program status word), or general registers at the terminal.

Change the contents of the control words (CAW, CSW, and PSW) and general
i

registers.

• Dump all or part of virtual storage at the printer.

• Display the contents of up to 56 bytes of virtual storage at the terminal.

• Store data in virtual storage locations.

Allow an origin or base address to be specified for the program.

Assign symbolic names to specific storage locations.

Close all open files and I/O devices and update the master file directory.

Exit from the debug environment.

The SVCTRACE command records information for all SVC calls. When the trace
is terminated, the information recorded up to that point is printed at the system
printer.

Debugging With eMS 525

DEBUG

In addition, several CMS commands produce or print load maps. These load maps
are often used to locate storage areas while debugging programs.

The DEBUG command provides support for debugging programs at a terminal.
The virtual machine operator can stop the program at a specified location in order
to examine and alter virtual storage, registers, and various control words. Once
CMS is in the debug environment, the virtual machine operator can issue the vari­
ous DEBUG subcommands. However, in the debug environment, all of the other
CMS commands are considered invalid.

Any DEBUG subcommand may be entered if eMS is in the debug environment
and the keyboard is unlocked. The following rules apply to DEBUG
subcommands:

1. No operand should be longer than eight characters. All operands longer than
eight characters are left-justified and truncated on the right after the eighth
character.

2. The DEFINE subcommand must be used to create all entries in the DEBUG
symbol table.

3. The DEBUG subcommands can be truncated. The following is a list of all val­
id DEBUG subcommands and their minimum truncation.

Subcommand

BREAK
CAW
CSW
DEFINE
DUMP
GO
GPR
HX
ORIGIN
PSW
RETURN
SET
STORE
X

Minimum
Truncation

BR
CAW
CSW
DEF
DU
GO
GPR
HX
OR
PSW
RET
SET
ST
X

One way to enter the debug environment is to issue the DEBUG command. The
message

DMSDBG728I DEBUG ENTERED

appears at the terminal. Any of the DEBUG sub commands may be entered. To
continue normal processing, issue the RETURN subcommand. Whenever a pro­
gram check occurs, the DMSABN routine gains control. Issue the DEBUG com­
mand at this time if you wish CMS to enter the debug environment.

Whenever a breakpoint is encountered, a program check occurs. The message

DMSDBG728I DEBUG ENTERED
BREAKPOINT YY AT XXXXX

526 VM/SP System Programmer's Guide

& CRASH

appears on the terminal. Follow the same procedure to enter subcommands and
resume processing as with a regular program check.

An external interrupt, which occurs when the CP EXTERNAL command is issued,
causes CMS to enter the debug environment. The message

DMSDBG728I DEBUG ENTERED
EXTERNAL INTERRUPT

appears on the console. Any of the DEBUG sub commands may be issued. To exit
from the debug environment after an external interrupt, use GO.

While CMS is in the debug environment, the control words and low storage
locations contain the debug program values. The debug program saves the control
words and low storage contents (X'OO'. through X' 100'.) of the interrupted routine
at location X'CO' ..

The &CRASH command is used as an aid in debugging the EXEC 2 interpreter
DMSEXE and is intended to be used by system support people only. It is generally
only useful when used in conjunction with a current listing of module DMSEXE.

Note: The &CRASH command is not used for debugging programs or EXEC files
written in the EXEC 2 language. For information on debugging programs and
EXECs written in the EXEC 2 language, see the &TRACE command in VM / SP
EXEC 2 Reference.

The format of the &CRASH command is:

&CRASH [text]

where:

text if specified, is the character string contained in memory just
prior to the instruction that caused the &CRASH command to
be executed.

WARNING: Unless this command is used as described, abnormal termination of
CMS and loss of data may occur.

Usage Notes:

1. &CRASH should be used only after the CP TRACE PROG command is
issued.

2. Execution of the &CRASH command causes entry to CP command mode.
One of the following statements should be issued to continue execution:

BEGIN intaddr+2 to continue execution

where:

intaddr+2 is the address of the interrupt plus two

-or-

Debugging With eMS 527

BEGIN r14addr

where:

r14addr

to terminate the EXEC file with a return code as given
in register 15

is the address in register 14

Simply issuing the BEGIN command causes abnormal termination of CMS.

3. The registers contain the following information when CP command mode is
entered:

R I = address of the unsubstituted &CRASH arguments.

RIO, Rl1 = main base registers (the address of the label "MAIN" and
"MAIN +4096")

R12 = the address of the label "EXEC"

R 13 = the address of DSECT "AREA"

R14 = the address of where to resume if termination is needed

R15 = 0

If execution is resumed at the next instruction in memory, the EXEC file will
continue execution at the next EXEC statement.

If execution is resumed at the location addressed by register 14, the EXEC file
will terminate and yield a return code given by the value of register 15.

Example of use:

&ERROR &IF &RC < 0 &IF &LINENUM > 50 &CRASH UNKNOWN COMMAND

This statement causes the &CRASH command to execute when a command error
occurs that returns a return code less than zero and on a line above line 50. If the
&CRASH command is executed, the results might look like this:

*** 2CF158 PROG 0001 ==> 01F1C8

D G
GPR 0
GPR 4
GPR 8
GPR 12

«<-- Show all the registers
FFFFD798 001BAE48 00000006 00000038
00006885 001BAF57 002CC8EC 002CCF8C
001BAF57 001BAF5E 002CC8E2 002CD8E2
002CC690 001BACE8 002CF162 00000000

D T1BAE48.20 «<-- Display the &CRASH arguments
1BAE40 E20F50C3 D9C1E2C8 4050D3C9 D5C5D5E4 *S.&CRASH UNKNOWN*
1BAE50 D44000C5 40C1D3D3 40004040 40404040 * COMMAND sse.<> *
1BAE60 40404040 40404040 40404040 40404040 * *

D T1BACE8.10 «<-- Display which EXEC file was interrupted
1BACEO 00011618 12E81BFF C1C2C3C3 40404040 * ABCD *
1BACFO 40404040 C5E9C5C3 40404040 40404040 * EXEC *

528 VM/SP System Programmer's Guide

Nucleus Load Map

Load Map

D T2CF158.10 «<-- Display where the interrupt happened
2CF150 C01858CO DOF81BFF 000007F6 50C3D9C1 * 8 6&CRA*
2CF160 E2C8189F 47FOC1E2 45EOAAB8 078745EO *SH ... OAS *
B 2CF15A «<-- Continue as if no interrupt happened

Each time the eMS resident nucleus is loaded on a DASD and an IPL can be per­
formed on that DASD, a load map is produced as a printer spool file. Save this
load map. It lists the virtual storage locations of nucleus-resident routines and
work areas. Transient modules are not included in this load map. When debugging'
eMS, you can locate routines using this map. For information on obtaining a load
map, see "Generating a eMS Nucleus" in the VM/SP Installation Guide.

The load map of a disk-resident command module contains the location of control
sections and entry points loaded into storage. It may also contain certain messages
and card images of any invalid cards or replace cards that exist in the loaded files.
The load map is contained in the third record of the MODULE file.

This load map is useful in debugging. When using the Debug environment to ana­
lyze a program, use the program's load map to help in displaying information.

There are two ways to get a load map.

1. When loading relocatable object code into storage, make sure that the MAP
option is in effect when the LOAD command is issued. Since MAP is the
default option, just be sure that NOMAP is not specified. A load map is then
created on the primary disk each time a LOAD command is issued.

2. When generating the absolute image form of files already loaded into storage,
make sure that the MAP option is in effect when the GENMOD command is
issued. Since MAP is the default option, just be sure that NOMAP is not spec­
ified. Issue the MODMAP command to type the load map associated with the
specified MODULE file on the terminal. The format of the MODMAP com­
mand is:

I MODmap

where:

filename

filename

is the module whose map is to be displayed. The file type must be
MODULE.

Reading eMS Abend Dumps

If an abend dump is desired when eMS abnormally terminates, the terminal opera­
tor must enter the DEBUG command and then the DUMP subcommand. The
dump formats and prints:

General registers

Debugging With eMS 529

Extended control registers
Floating-point registers
Storage boundaries with their corresponding storage protect key
Current PSW
Selected storage

Storage is printed in hexadecimal representation, eight words to the line, with
EBCDIC translation at the right. The hexadecimal storage address corresponding
to the first byte of each line is printed at the left.

When CMS can no longer continue, it abnormally terminates. To debug CMS, first
determine the condition that caused the abend and then find why the condition
occurred. In order to find the cause of a CMS problem, you must be familiar with
the structure and functions of CMS. Refer to "Part 2: Conversational Monitor
System (CMS)" for functional information. The following discussion on reading
CMS dumps refers to several CMS control blocks and fields in the control blocks.
Refer to the VM / SP Data Areas and Control Block Logic, Volume 2 for details on
CMS control blocks. Figure 71 on page 531 shows the eMS control block
relationships. You also need a current CMS nucleus load map in order to analyze
the dump.

530 VM/SP System Programmer's Guide

600

608

610

618

620

628

630

638

640

648

650

658

660

668

670

678

680

688

690

698

6AO

6A8

6BO

6B8

6CO

6C8

6DO

6D8

6EO

6E8

6FO

6F8

SYSREF

V(FVS) V(OPSECT)

V(DEVTAB) V(FSTLKP)

V(DMSINM) V(FSTLKW)

V(PIE) V(lADT)

V(USERSECT) V(DMSDIOR)

V(DMSSCNN) A(O)

V(TABEND) V(SUBSECT)

A(O) V(DMSDIOW)

V(DMSSTGST) V(ADTSECT)

V(FREE) V(FRET)

V(DMSPIOCC) V(PGMSECT)

V(lOSECT) V(DMSDBD)

V(DIOSECT) V(DMSABNUA)

V(DMSERL) V(DMSCRD)

V(DMSFREB) V(SVCSECT)

V(ADTLKP) V(DMSAUDUP)

A(O) V(OSRET)

V(CMSRET) V(DMSSCNO)

V(DMSEXC) V(DMSLDRA)

V(ADTLKW) V(USABRV)

V(EXTSECT) V(SCBPTR)

A(O) H'O' I H'O'

V(DMSLAF) V(DMSLAFNX)

V(DMSLAFFE) V(DMSLAFFT)

V(ADTNXT) V(DMSTRK)

V(DMSTRKX) V(DMSTOO)

V(DMSTOOX) V(DMSERS)

V(TYPSRCH) V(DMSUAD)

V(KILLEX) V(DMSFNST)

V(DMSBRD) V(DMSBWR)

V(DMSFNS) V(DMSSTTE)

V(DMSSTTW) V(POINT)

Figure 71. CMS Control B1ocl{S

::

.•. :

:

\ ::::

)
(

>

)

/

)

>:

:<
<

;:...

:::.:::
)

I

I

DMSNUC
F S :-- ree torage

USERSECT

SUBSECT
rj).~ CMSCB

TSOBLKS

DMSERL

I/O I FCBIO ~ 'OBDCBPTlIOBECBPT

DBGSECT ~~ 10SECT

CMSCVT
DCB I DECB

PGMSECT

DMSABW

EXTSECT

DMSERT
r\\

DIOSECT AFT I
USABRV

I continued

SYSNAMES

DMSFRT

FVS

SVCSECT

AFTSECT - -'"

ADTSECT
,,-
I'.. ~

DEVTAB

ICMSAVEI B ~ DOSCON
...... ~

AVSAMSYS

Terminal Buffer and Saveareas

SYSREF

/> FREELIST

MAINLIST
NUCON

TXTDIRC (See Legend)
MACDIR

PRECMND

SYSNAME Legend:
INSTALID The projection of SYSREF is a
SYSEMID sampling of areas within NUCON.

Debugging With eMS 531

Reason for the Abelld

Collect Illformation

Determine the immediate reason for the abend and identify the failing module.
The abend message DMSABN148T contains an abend code and failing address.
The VM /SP System Messages and Codes manual lists all the CMS abend codes,
identifies the module that caused the abend, and describes the action that should be
taken whenever CMS abnormally terminates.

You may have to examine several fields in the nucleus constant area (NUCON) of
low storage.

1. Examine the program old PS\Y (PGMOPS\Y) at location X'28'. Using the
PSW and current CMS load map, determine the failing address.

2. Examine the SVC old PSW (SVCOPSW) at location X'20'.

3. Examine the external old PSW (EXTOPSW) at location X'18'. If the virtual
machine operator terminated CMS, this PSW points to the instruction execut­
ing when the termination request was recognized.

4. For a machine check, examine the machine check old PSW (MCKOPSW) at
location X'30'. Refer to Figure 74 on page 541 in "Appendix A: System/370
Information" for a description of the PSW.

Examine several other fields in NUCON to analyze the status of the CMS system.
As you proceed with the dump, you may return to NUCON to pick up pointers to
specific areas (such as pointers to file tables) or to examine other status fields. The
complete contents of NUCON and the other CMS control blocks are described in
the VM/SP Data Areas and Control Block Logic, Volume 2. The following areas of
NUCON may contain useful debugging information.

Save Area for Low Storage

Before executing, DEBUG saves the first 160 bytes of low storage in a
NUCON field called LOWSA VE. LOWSA VE begins at X'CO'.

Register Save Area

DMSABN, the abend routine, saves the user's floating-point and general regis­
ters.

Field

FPRLOG
GPRLOG
ECRLOG

Device

Location

X'160'
X'180'
X'lCO'

Contents

User floating-point registers
User general registers
User extended control registers

The name of the device causing the last I/O interrupt is in the DEVICE field
atX'26C'.

• Last Two Commands or Procedures Executed

532 VIyI/SP System Programmer's Guide

Field Location

LASTCMND X'2AO'

PREVCMND X'2A8'

LASTEXEC X'2BO'

PREVEXEC X'2B8'

Contents

Last command issued from the CMS
or XEDIT command line. If a com­
mand issued in a CMS EXEC abnor­
mally terminates, this field contains
the name of the command. When a
CMS EXEC completes, this field con­
tains the name 'EXEC.' EXEC 2 and
System Product Interpreter do not
update this field.

Next-to-Iast command issued from
the CMS or XEDIT command line. If
a command issued in a CMS EXEC
abnormally terminates, this field con­
tains the name 'EXEC'. When a
CMS EXEC completes, this field con­
tains the last command issued from
the CMS EXEC. EXEC 2 and Sys­
tem Product Interpreter do not update
this field.

Last EXEC procedure invoked.
EXEC 2 and System Product Inter­
preter do not update this field.

Next to last EXEC procedure
invoked. EXEC 2 and System Prod­
uct Interpreter do not update this
field.

• Last Module Loaded into Free Storage and the Transient Area

The name of the last module loaded into free storage via a LOADMOD is in
the field LASTLMOD (location X'2CO'). The name of the last module loaded
into the transient area via a LOADMOD is in the field LASTTMOD (location
X'2C8').

• Pointer to CMSCB

The pointer to the CMSCB is in the FCBTAB field located at X'5CO'.
CMSCB contains the simulated OS control blocks. These simulated OS con­
trol blocks are in free storage. The CMSCB contains a PLIST for CMS I/O
functions, a simulated Job File Control Block (JFCB), a simulated Data Event
Block (DEB), and the first in a chain of I/O Blocks (lOBs).

• The Last Command

The last command entered from the terminal is stored in an area called
CMNDLINE (X'7 AO'), and its corresponding PLIST is stored at CMNDLIST
(X'848').

Debugging With eMS 533

Register Usage

External Interrupt Work Area

EXTSECT is a work area for the external interrupt handler. It contains:

The PSW, EXTPSW
Register save areas, EXSA VE 1
Separate area for timer interrupts, EXSA VE

I/O Interrupt Work Area

IOSECT is a work area for the I/O interrupt handler. The oldest and newest
PSW and CSW are saved. Also, there is a register save area.

Program Check Interrupt Work Area

PGMSECT is a work area for the program check interrupt handler. The old
PSW and the address of register 13 save area are stored in PGMSECT.

SVC Work Area

SVCSECT is a work area for the SVC interrupt handler. It also contains the
first four register save areas assigned. The SFLAG indicates the mode of the
called routine. Also, the SVC abend code, SVCAB, is located in this CSECT.

Simulated CVT (Communications Vector Table)

The CVT, as supported by CMS, is CVTSECT. Only the fields supported by
eMS are filled in.

Active Disk Table and Active File Table

For file system problems, examine the ADT (Active Disk Table), or AFT (Ac­
tive File Table) in NUCON.

See a CMS nucleus map for the location of these CSECTs.

In order to trace control blocks and modules, it is important to know the CMS reg­
ister usage conventions.

Register

GR1
GR12
GR13
GR14
GR15

Contents

Address of the PLIST
Program's entry point
Address of a 12-doubleword work area for an SVC call
Return address
Program entry point or the return code

The preceding information should help you to read a CMS dump. If it becomes
necessary to trace file system control blocks, refer to Figure 71 on page 531 for
more information. With a dump, the control block diagrams, and a CMS load map,
you should be able to find the cause of the abend.

Tips for debugging after receiving a program check abend (e.g. DMSITP141) are
as follows:

534 VM/SP System Programmer's Guide

DMSITP, the CMS program interrupt handler, issues error messages when a
program check occurs. If a SPIE or a ST AE has been issued, control is passed
to the specified routine; otherwise control passes to DMSABN to attempt to
recover from the error. If the message DMSITP144T is issued, the UFDBUSY
byte is not zero and control is halted after the message is typed. If the wait
state bit is turned off in the PSW, control continues as above. Also, if the error
occurred during the execution of a system routine, control is halted until the
wait state bit is turned off or CMS is re-IPLed.

To determine the registers and PSW at the time of the abend, get the address
of PGMSECT in the nucleus constant area (NUCON X'654'). The old PSW is
stored 12 (X'C') bytes into the DSECT, immediately followed by registers 14,
15,0, 1, and 2. The program interrupt element (PIE), needed by SPIE, prima­
rily uses these areas. Registers 0 through 15 are stored at location X'3 C' into
the DSECT. The SPIE/ST AE routine or the DMSSAR routine uses the other
areas within the DSECT.

Another aid to debugging is the SVC save area (SVCSA VE) for the virtual
machine. Location X'528' in NUCON points to these areas. The save areas
are easily recognizable by the check words 'ABCD' and 'EFGH' contained
within them. The address of the SVC caller is stored at location 4 and the
name of the routine being called is saved at location 8. At location X'10', the
old PSW is stored, followed by the addresses for the normal return and the
error return. The registers 0 through 15 are stored at location X'20', followed
by the floating point register at X'60'. After the first check word ('ABCD'),
the address of the next SVCSAVE area is stored, followed by the address of
the previous SVCSAVE area and the address of the user's area. If the address
of the next or previous SVCSAVE area is zero, the chain is terminated.

Debugging With eMS 535

Appendixes

• Appendix A: System/370 Information

536 VM/SP System Programmer's Guide

Appendix B: VM Monitor Tape Format and Content

Appendix C: CMS Macro Library

Appendix A. System/370 Information

Control Registers

o
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

The control registers are used to maintain and manipulate control information that
resides outside the PSW. There are sixteen 32-bit registers for control purposes.
The control registers are not part of addressable storage.

At the time the registers are loaded, the information is not checked for exceptions,
such as invalid segment-size or page-size code or an address designating an una­
vailable or a protected location. The validity of the information is checked and the
errors, if any, indicated at the time the information is used.

Figure 72 is a summary of the control register allocation and Figure 73 on page
538 lists the facility associated with each control register.

Figure 74 on page 541 is a description of the Ee (Extended Control) PSW.

(--------------------------- 32 bits -------------------------->
SYSTEM CONTROL TRANSL. CONTROL EXTERNAL-INTERRUPTION NASKS

SEGM-TBL LENGTH SEGMENT-TABLE-ORIGIN-ADDRESS!

CHANNEL MASKS

HARDWARE ASSIST CONTROLS

MONITOR MASKS

PER EVENT MASKS PER GR ALTERATION MASKS

PER STARTING ADDRESS

PER ENDING ADDRESS

ERROR-RECOVERY CONTROL & MASKS

MCEL ADDRESS

Figure 72. Control Register Allocation

Appendix A. System/370 Information 537

Word Bits Name of Field Associated with lnitiaLllalue

0 0 Block-Multiplex Mode Block-Multiplex Control 1
0 1 SSM Suppression Extended Control 0
0 2 TOD Clock Synchronous Ctrl. Attached Processing 0
0 8-9 Page Size1 Dynamic Addr. Translation 10
0 10 Reserved Dynamic Addr. Translation 0
0 11-12 Segment size1 Dynamic Addr. Translation 00
0 16 Malfunction Alter Mask Attached Processing 1
0 17 Emergency Signal Mask Attached Processing 1
0 18 External Call Mask Attached Processing 1
0 19 TOD Synchronous Check Mask Attached Processing 1
0 20 Clock Comparator Mask Clock Comparator 1
0 21 Processor Timer Mask Processor Timer 0
0 22 MSSF Mask External Interruption 1
0 24 Interval Timer Mask External Interruption 1
0 25 Interrupt Key Mask External Interruption 1
0 26 External Signal Mask External Interruption 0
0 30 IUCV External Interruption 0
0 31 VMCF External Interruption 0

IThe initial value varies depending
upon whether virtual storage is
supported in the virtual machine.

1 0-7 Segment Table Length Dynamic Addr. Translation Set by CP. Value
1 8-25 Segment Table Address Dynamic Addr. Translation varies with the

type of virtual
machine.

2 0-31 Channel Masks 110 Interruptions FFFFFFFF. Set to
zero on the
attached processor
in attached
processor systems.

Figure 73 (Part 1 of 3). Control Register Assignments

538 VM/SP System Programmer's Guide

V/ord Bits Name of Field Associated with Initial Value

6 0 VM Assist Hardware Assist Value depends
upon virtual
machine

6 1 VM Problem State Hardware Assist Value depends
upon virtual
machine

6 2 lSI(& SSK Hardware Assist Value depends
upon virtual
machine

6 3 S/360 or S/370 instructions Hardware Assist Value depends
upon virtual
machine

6 4 Virtual SVC Interrupts Hardware Assist Value depends
upon virtual
machine

6 5 Shadow Table Fixup Hardware Assist Value depends
upon virtual
machine

6 6 CP Assist Hardware Assist Value depends
upon virtual
machine

6 7 Virtual Interval Timer Hardware Assist Value depends
upon virtual
machine

6 8-28 Real address of VM pointer list Hardware Assist Value depends
upon virtual
machine

8 16-31 Monitor Masks Monitoring Value depends
upon virtual
machine

9 0-3 PER 1 Event Masks Program-Event Recording Value depends upon
9 16-31 PER GPR Alteration Masks Program-Event Recording virtual machine.

lPER means program-event
recording.

10 8-31 PER Starting Address Program-Event Recording Value depends upon
virtual machine.

11 8-31 PER Ending Address Program-Event Recording Value depends upon
virtual machine.

Figure 73 (Part 2 of 3). Control Register Assignments

Appendix A. System/370 Information 539

Word Bits Name of Field Associated with Initial Value

14 0 Check-Stop Control Machine-Check Handling Value depends upon
14 1 Synchronous MCEL2 Control Machine-Check Handling machine check
14 2 110 Extended Logout Control Channel-Check Handling handler for the
14 4 Recovery Report Mask Machine-Check Handling virtual machine.
14 5 Degradation Report Mask Machine-Check Handling
14 6 External Damage Report Mask Machine-Check Handling
14 7 Warning Mask Machine-Check Handling
14 8 Asynchronous MCEL Control Machine-Check Handling
14 9 Asynchronous Fixed Log Ctrl. Machine-Check Handling

2MCEL means machine-check
extended logout.

15 8-28 MCEL Address Machine-Check Handling Points to extend
110 logout area

Figure 73 (Part 3 of 3). Control Register Assignments

Explanation:

The fields not listed are unassigned.
The initial value of unassigned register posiUions is unpredictable.

540 VM!SP System Programmer's Guide

System Mask Program
r1ask

o

o 7 8 11 12 15 16 17 18 19 20 23 24 31

o Instruction Address

32 39 40 63

The fields of the PSW are:

Bits

o
1
2-4
5
6
7
8-11

12
13

14
15

16-17
18-19

20-23

24-39
40-63

contents

Must be zero.
PER (Program Event Recording) enabled.
Must be zero.
Address translation.
Summary I/O mask.
Summary extension.
The protection key determines if information can be stored
or fetched from a particular location.
Extended control mode.
The machine check flag is set to 1 if machine check
interruptions are enabled.
The wait state flag is set to 1 when the CPU is in the wait state.
The problem state flag is set to 1 when the CPU is
operating in the problem rather than the supervisor state.
Must be zero.
The condition code reflects the result of a previous
arithmetic, logical, or I/O operation.
The program mask indicates whether or not various program
exceptions are allowed to cause program interrupts.
~lu st be zero.
The instruction address gives the location of the next
instruction to be executed for program interrupts or of
the instruction last executed for external interrupts.

Figure 74. The Extended Control PSW (Program Status Word)

Appendix A. System/370 Information 541

Appendix B. VM/SP Monitor Tape Fornlat and Content

Header Record

Each time a monitor call interrupt occurs, VM/SP Monitor receives control and
collects data appropriate for the particular class and code of MONITOR CALL.
(Or, for USER, PERFORM, or DASTAP classes, VM/SP Monitor gets control at
periodic intervals to collect data.) The data is formatted into records that are col­
lected sequentially in the order that each interrupt occurred. The tape data format
is standard Variable Blocked (VB) format. Data is written at the default tape drive
density. Maximum block and record lengths are 4096 bytes. The formats and con­
tents of all the kinds of data records for the currently implemented classes and
codes of MONITOR CALL are listed below.

All values described in the following records are binary unless otherwise noted.

lindicates that the field is EBCDIC.

2Indicates that the field is in special timer format described below.

3See VM/SP Data Areas and Control Block Logic, Volume 1 for field format defi­
nition.

Every data record is preceded by the following 12-byte header:

Number DSECT
of Variable

Data Item Bytes Name

Total bytes in record 2 MNHRECS7.
Zeros (standard V format record) 2
MONITOR CALL class number 1 MNHCLASS
MONITOR CALL code number 2 MNHCODE
Time of Day -5 MNHTOD

Note: Time of day occupies 2 fullwords in storage, with the rightmost 12 bits
zeros. The rightmost 2 bytes and the leftmost byte are ignored, giving
16-microsecond accuracy instead of 1-microsecond.

The first 4 bytes of this header are the standard variable-format record field.

542 VM/SP System Programmer's Guide

Data Records

Class Zero - Codes for Tape Header, Trailer, and Data Suspension Records

Number CP DSECT
Monitor Data of Variable Variable
Code Item Bytes Name Name

97 Tape header record
CPU serial/model number 8 CPUID MN097CPU
Software version number1 8 DMKCPEID MN097LEV
Date of data collection session 1 8 TOD clock MN097DAT
Time of data collection session 1 8 TOD clock MN097TIM
Userid of monitor controller 1 8 VMUSER MN097UID
CR8 mask of enabled classes 4 DMKPRGC8 MN097CR8
Size of CP nucleus 4 Derived by CP MN097NUC
Size of Free/Fret pools 4 Derived by CP MN097FSS
Size of dynamic paging area 4 Derived by CP MN097DPA
Size of trace table 4 Derived by CP MN097TTS
Size of V =R area (if any) 4 Derived by CP MN097VR
CPU logical address 2 LPUADDR MN097CPL
APU logical address 2 LPAUDDRX MN097APL
Generated system mode 2 DMKSYSAP MN097MOD
Unused 2
PPmap 8 DMKCPEPP MN097CPP

98 Tape trailer record
Userid of user shutting down monitor1 8 VMUSER MN098UID

99 Tape write suspension record
TOD at suspension2 5 MN099TOD
Count of write suspensions 4 MN099CNT

Appendix B. VM/SP Monitor Tape Format and Content 543

Class Zero - PERFORM

Number CP DSECT
Monitor Data of Variable Variable
Code item Bytes Name Name

00 Interval statistics
Total main processor idle time3 8 IDLEWAIT MNOOOWID
Total main processor page waiP 8 PAGEWAIT MNOOOWPG
Total main processor time I/O waiP 8 10NTWAIT MNOOOWIO
Total main processor problem time3 8 PROBTIME MNOOOPRB
Total paging start I/Os 4 DMKPAGPS MNOOOPSI
Total page I/O requests 4 DMKPAGCC MNOOOCPA
Current page frames on free list 4 DMKPTRFN MNOOONFL
Pages being written, due for free list 4 DMKPTRSW MNOOOPSN
Total pages flushed, but reclaimed 4 DMKPTRPR MNOOOPRC
Number of reserved pages 4 DMKPTRRC MNOOORPC
Number of shared system pages 4 DMKPTRSC MNOOOSPC
Total number of times free list empty 4 DMKPTRFO MNOOOFLF
Total number of calls to DMKPTRFR 4 DMKPTRFC MNOOOCPT
Total pages stolen from in-queue users 4 DMKPTRSS MNOOOSS
Number of pages swapped from the flush

list 4 DMKPTRFF MNOOOPFF
Number of pages examined in stealing pages 4 DMKPTRRF MNOOOPRF
Number of full scans done in stealing

pages 4 DMKPTRCS MNOOOPCS
Total real external interrupts to main

processor 4 DMKPSANX MNOOONXR
Total calls to DMKPR VLG 4 DMKPRVNC MNOOOCPR
Total calls to DMKVIOEX 4 DMKVSICT MNOOOCVI
Total calls to CCWTRANS from DMKVIO 4 DMKVSICW MNOOOCCW
Total virtual interval timer interrupts

reflected 4 DMKDSPIT MNOOOITI
Total virtual CPU timer interrupts

reflected 4 DMKDSPPT MNOOOPTI

544 VM/SP System Programmer's Guide

Number CP DSECT
Monitor Data of Variable Variable
Code Item Bytes Name Name

00 Total virtual clock comparator interrupts
reflected 4 DMKDSPCK MNOOOCKI

Total virtual SVC interrupts simulated
by main processor 4 PSASVCCT MNOOOCSV

Total virtual program interrupts handled 4 DMKPRGCT MNOOOCPG
Total 110 interrupts handled 4 DMKIOSCT MNOOOCIO
Total calls to dispatch (main) 4 DMKDSPCC MNOOOCDS
Total fast reflects in dispatch 4 DMKDSPAC MNOOOCDA
Total dispatches for new PSW 4 DMKDSPBC MNOOOCDB
Total calls to schedule 4 DMKSCHCT MNOOOCSC
Count of virtual machine SSK simulated 4 DMKPRVEK MNOOOEK
Count of virtual machine ISK simulated 4 DMKPRVIK MNOOOIK
Count of virtual machine SSM simulated 4 DMKPRVMS MNOOOMS
Count of virtual machine LPSW simulated 4 DMKPRVLP MNOOOLP
Count of virtual machine diagnose

instructions 4 DMKPRVDI MNOOODI
Count of virtual machine SIO simulated 4 DMKVSISI MNOOOSI
Count of virtual machine SIOF simulated 4 DMKVSISF MNOOOSF
Count of virtual machine TIO simulated 4 DMKVSITI MNOOOTI
Count of virtual machine CLRIO simulated 4 DMKVSICI MNOOOCI
Count of virtual machine HIO simulated 4 DMKVSIHI MNOOOHI
Count of virtual machine HDV simulated 4 DMKVSIHD MNOOOHD
Count of virtual machine TCH simulated 4 DMKVSITC MNOOOTC
Count of virtual machine STNSM simulated 4 DMKPRVMN MNOOOMN
Count of virtual machine STOSM simulated 4 DMKPRVMO MNOOOMO
Count of virtual machine LRA simulated 4 DMKPRVLR MNOOOLR
Count of virtual machine STIDP simulated 4 DMKPRVCP MNOOOCP
Count of virtual machine STIDC simulated 4 DMKPRVCH MNOOOCH
Count of virtual machine SCK simulated 4 DMKPRVTE MNOOOTE
Count of virtual machine SCKC simulated 4 DMKPRVCE MNOOOCE
Count of virtual machine STCKC simulated 4 DMKPRVCT MNOOOCT
Count of virtual machine SPT simulated 4 DMKPRVPE MNOOOPE
Count of virtual machine STPT simulated 4 DMKPRVPT MNOOOPT
Count of virtual machine SPKA simulated 4 DMKPRVEP MNOOOEP
Count of virtual machine IPK simulated 4 DMKPRVIP MNOOOIP
Count of virtual machine PTLB simulated 4 DMKPRVPB MNOOOPB
Count of virtual machine RRB simulated 4 DMKPRVRR MNOOORR
Count of virtual machine STCTL simulated 4 DMKPRVTC MNOOOTCL
Count of virtual machine LCTL simulated 4 DMKPRVLC MNOOOLCL
Count of virtual machine CS simulated 4 DMKPRVCS MNOOOCS
Count of virtual machine CDS simulated 4 DMKPRVCD MNOOOCD
Count of virtual machine diagnose disk 1/0 4 DMKHVCDI MNOOOHDI
Number of users dialed to virtual machines 4 DMKSYSND MNOOONDU
Number of users logged on 4 DMKSYSNM MNOOONAU
Number of page reads by main processor 4 PGREAD MNOOOPRD
Number of page writes by main processor 4 PGWRITE MNOOOPWR
Number of system page able pages 4 DMKDSPNP MNOOONPP
Sum of working sets of in-queue users 4 DMKSCNPU MNOOOSWS
Number of users in interactive queue (Ql) 4 DMKSCHNI MNOOOQIN
No. of users in compute-bound queue (Q2) 4 DMKSCHN2 MNOOOQ2N
Number of users eligible to enter Ql 2 DMKSCHWI MNOOOQIE
N umber of users eligible to enter Q2 2 DMKSCHW2 MNOOOQ2E

Appendix B. VM/SP Monitor Tape Fonnat and Content 545

Number CP DSECT
Monitor Data of Variable Variable
Code Item Bytes Name Name

Monitor sampling interval (seconds) 2 DMKPRGTI MNOOOINT
Count of cylinders allocated on primary

paging device 2 ALOCUSED MNOOOPPA
Cylinder capacity of primary paging device 2 ALOCMAX MNOOOPPC
Reserved 2 MNORSVI
Count of mini lOB stack depletes 2 DMKIOSNM MNOOOISD
Count of mini lOB enqueues 4 MNOOOGTM
Count of mini lOB dequeues 4 MNOOODQM
Count of SIOs on alternate paths 4 MNOOOSWP
Count of FREE/FRET extends 4 DMKFRENP MNOOOEXT
Count of FREE/FRET unextends 4 MNOOONXT
Count of attempts to split subpool 4 MNOOOATT
Count of SUBPOOL SPLITS 4 MNOOOCNT

4

546 VM/SP System Programmer's Guide

Number CP DSECT
Monitor Data of Variable Variable
Code Item Bytes Name Name

01 Internal statistics for attached processor
Total attached processor idle wait time 8 IDLEWAIT MNOO1WID
Total attached processor page wait time 8 PAGEWAIT MN001\VPG
Total attached processor I/O wait time 8 10NTWAIT MNOO1WIO
Total attached processor problem time 8 PROBTIME MN001PRB
Total real external interrupts for

attached processor 4 DMKPSANX MN001NXR
Total SVCs reflected by attached

processor 4 PSASVCCT MN001CSV
Page reads by attached processor 4 PGREAD MN001PRD
Page writes by attached processor 4 PGWRITE MNOO1PWR
Total time spin on system lock 4 DMKLOKSY+8 MNOO1SSY
Number of spins on system lock 4 DMKLOKSY+12 :tvINOO 1 NSY
Total time spin on DMKFRE lock 4 DMKLOKFR+8 MNOO1SFR
Number of spins on DMKFRE lock 4 DMKLOKFR+12 MN001NFR
Total time spin on RUNLIST lock 4 DMKLOKRL+8 MNOO1SRN
Number of spins on RUNLIST lock 4 DMKLOKRL+12 MN001NRN
Total time spin on timer request lock 4 DMKLOKTR+8 MNOO1STM
Number of spins on timer request lock 4 DMKLOKTR+12 MN001NTM
Total time spin on dispatcher queue lock 4 DMKLOKDS+8 MNOO1SDP
Number of spins on dispatcher queue lock 4 DMKLOKDS+12 MNOO1NDP
Number of times CPFRELK set 4 MNOO1NFL
Number of times CPFRESW set 4 MN001NFS
Number of times system lock deferred 4 LOKSYSCT MNOO1NSD
Number of times VMBLOK lock deferred 4 LOKVMCT MNOO1NVD
Number of DMKDSPRU entries 4 MNOO1NRU
Total time spin on I/O lock 4 DMKLOKIO MN001SIO
Total no. spins for I/O lock 4 DMKLOKIO MN001NIO
Total time spin on RM lock 4 DMKLOKRM MN001SRM
Total no. spins for RM lock 4 DMKLOKRM MNOOINRM
No. quiesce ems on IPL proc 4 DMKEMSCT MN001NQ1
No. quiesce ems on non-IPL proc 4 DMKEMSCT MN001NQ2
No. extend ems on IPL proc 4 DMKEMSCT MNOO1NE1
No. extend ems on non-IPL proc 4 DMKEMSCT MN001NE2
No. resume XC on IPL proc 4 DMKXCCTS MNOOINRI
No. resume XC on non-IPL proc 4 DMKXCCTS MN001NR2
No. dispatch XC on IPL proc 4 DMKXCCTS MN001NDl
No. dispatch XC on non-IPL proc 4 DMKXCCTS MNOO1N02
No. dispatch XC on non-IPL proc 4 DMKXCCTS MNOOIND2
No. wakeup XC on IPL proc 4 DMKXCCTS MN001NW1
No. wakeup XC on non-IPL proc 4 DMKXCCTS MN001NW2

Appendix B. VM/SP Monitor Tape Format and Content 547

Number CP DSECT
Monitor Data of Variable Variable
Code Item Bytes Name Name

02 Average queue delay 4 DMKSCHQT MN002SQT
Average eligible list time 4 DMKSCHET MNOO2SET
Average utilization 4 DMKSCHFS MN002SFS
Average resident page request 4 DMKSCHAP MN002SAP
Average desired processor/page read 4 DMKSCHKA MNOO2SKA
Average processor overhead/page read 4 DMKSCHUC MNOO2SUC
Calculated paging bias 4 DMKSCHPB MNOO2SPB
Paging bias limit 4
Interactive bias 4 DMKSCHIB MN002SIB
Count of Q3 users 4 DMKSCHQ3 MNOO2SQ3
Q 1 in-queue count 8 VMQTOD MNOO2Qll
Ql in-queue time 8 VMQELP MNOO2Q12
Q 1 eligible list time 8 VMQWT MNOO2Q13
Ql in-queue processor time 8 VMQCPU MNOO2Q14
Q 1 estimated average pages per second 8 VMQPGS MNOO2Q15
Q 1 count of queue drops 4 VMQCNT MNOO2Q16
Q 1 in-queue page reads 4 VMQPRD MNOO2Q17
Ql in-queue page steals 4 VMQSTL MNOO2Q18
Reserved 4 MNOORSVI
Q2 in-queue time stamp 8 VMQTOD MNOO2Q21
Q2 in-queue time 8 VMQELP MNOO2Q22
Q2 eligible list time 8 VMQWT MNOO2Q23
Q2 in-queue processor time 8 VMQCPU MNOO2Q24
Q2 estimated average pages per second 8 VMQPGS MNOO2Q25
Q2 count of queue drops 4 VMQCNT MNOO2Q26
Q2 in-queue page reads 4 VMQPRD MNOO2Q27
Q2 in-queue page steals 4 VMQSTL MNOO2Q28
Reserved 4 MNOORSV2

548 VM/SP System Programmer's Guide

Number CP DSECT
Monitor Data of Variable Variable
Code Item Bytes Name Name

03 No. of calls to migrate 4 DMKSCHQl MN003CMG
Times migration limit halved 4 DMKSCHQl MN003TLH
Times limit was quartered 4 DMKSCHNI MN003TLQ
Times a user was selected 4 DMKSCHWI MN003TUS
No. migrations by command 4 MN003MBC
No. calls resulting in migration 4 MN003CRM
No. users moved 4 MNOO3NUM
No. segments moved 4 MN003NSM
No. pages moved 4 MN003NPM
No. full disks moved 4 MN003NDM
Calls to restore swap table 4 MN003CSR
Calls to migrate swaptable 4 MN003CSM
No. of tables migrated 4 MNOO3NTM
No. of tables restored 4 MN003NTR
Calls to pseudo translator 4 MNOO3CPT
Reserved 4 MN003RSV
Total test protect ins simulated 4 DMKPRVTP MN003CTP
Total IPTE instructions simulated 4 DMKPIPTE MN003CIP
No. preferred FH pages available 4 DMKPGTDM MN003CDM
No. preferred MH pages available 4 DMKPGTDK MN003CDK
No. preferred MH pages allocated 4 DMKPGTPC MN003CPC
Limit of preferred MH pages 4 DMKPGTPL MN003CPL
010 value for SET SRM MHFULL 4 DMKPGTPN MN003CPN
Unused 4 MN003CUN

Note: Privileged instructions simulated by the fast path simulation routines
(DMKFSP) are not recorded.

Appendix B. VM/SP Monitor Tape Format and Content 549

Class One - RESPONSE

Monitor
Code

00

01

02

03

04

05

Data
Item

Read command sent to terminal
Userid
Line address

Terminal output line
userid
Line address
Byte count
Line of data

Edited terminal input line
Userid
Line address
Byte count
Line of data l

Sleep issued with time out
Userid
Line address

Terminal logged on
Userid
Line address

Terminal logged off
Userid
Line address

Number
of
Bytes

8
2

8
2
1
Variable

8
2
1
Variable

8
2

8
2

8
2

CP
Variable
Name

VMUSER

VMUSER

VMUSER

VMUSER

VMUSER

VMUSER

DSECT
Variable
Name

MNI0XUID
MNI0XADD

t-YiNI0XUID
MNI0YADD
MNI0YCNT
MNI0YIO

MNI0XUID
MNI0XADD
MNI0YCNT
MNI0YIO

MNIOXUID
MNI0XADD

MNI0XUID
MNI0XADD

MNI0XUID
MNI0XADD

Note that the line addresses for the 370X in NCP mode appear as the base address.

These records are created at the time that DMKQCN handles the console 1/0
request. This may reflect a slightly different time than that of the SIO or the 1/0
interrupt. If DMKQCN is called to write a line that is longer than Terminal line
size, more than one MC is issued, resulting in more than one record. Input and
output terminal data collected is limited to 128 bytes. Longer lines are truncated.

550 VM/SP System Programmer's Guide

Class Two - SCHEDULE

Number CP DSECT
Monitor Data of Variable Variable
Code Item Bytes Name Name

02 User dropped from dispatch queue
Userid1 8 VMUSER MN20XUID
Number of system page able pages 4 DMKDSPNP MN20XNPP
Sum of working sets of in-queue users 4 DMKSCHPU MN20XSWS
No. of users in interactive queue (Ql) 4 DMKSCHNI MN20XQIN
No. of users in compute-bound queue (Q2) 4 DMKSCHN2 MN20XQ2N
Number of users eligible for Ql 2 DMKSCHWI MN20XQIE
Number of users eligible for Q2 2 DMKSCHvV2 MN20XQ2E
User new projected working set size 2 VMWSPROJ MN20XWSS
Queue being dropped from (lor 2) 1 QIDROP MN20XQNM
Processor address 1 MN20XPRC

Accumulated user CP simulation time3 8 VMTTIME MN20YTTI
Accumulated user virtual time3 8 VMVTIME MN20YVTI
Eligible list priority 4 VMQPRIOR MN204PRI
Pages read while in queue 2 VMPGREAD MN202PGR
Sum of pages resident at all reads 2 VMPGRINQ MN202APR
No. of pages referenced while in queue 2 MN202REF
Current number of pages resident 2 VMPAGES MN202RES
Number of pages stolen while in queue 2 VMSTEALS Iv1N202PST
User total virt non-spool device SIO 4 VMIOCNT MN202IOC
count

User total virtual cards punched 4 VMPNCH MN202PNC
User total virtual lines printed 4 VMLINS MN202LIN
User total virtual cards read 4 VMCRDS MN202CRD
User last executed on this processor 1 VMLSTPRC MN202LPR

03 User added to dispatch queue
Userid 8 VMUSER MN20XUID
Number of system pageable pages 4 DMKDSPNP MN20XNPP
Sum of working sets of in-queue users 4 DMKSCHPU MN20XSWS
Number of users in interactive queue (Ql) 4 DMKSCHNI MN20XQIN
No. of users in compute-bound queue (Q2) 4 DMKSCHN2 MN20XQ2N
Number of users eligible for Q 1 2 DMKSCHWI MN20XQIE
Number of users eligible for Q2 2 DMKSCHW2 MN20XQ2E
User's projected working set size 2 VMWSPROJ MN20XWSS
Queue being added to 1 gen reg 15 MN20XQNM
Processor address (main or attached) 1 MN20XPRC

Appendix B. VM/SP Monitor Tape Fonnat and Content 551

Number CP DSECT
Monitor Data of Variable Variable
Code Item Bytes Name Name

04 User added to eligible list
Userid 8 VMUSER IvlN20XUID
Number of system pageable pages 4 DMKDSPNP MN20XNPP
Sum of working sets of in-queue users 4 DMKSCHPU MN20XSWS
Number of users in interactive queue (Ql) 4 DMKSCHNI MN20XQIN
No. of users in compute-bound queue (Q2) 4 DMKSCHN2 MN20XQ2N
Number of users eligible for Q 1 2 DMKSCHWI MN20XQIE
Number of users eligible for Q2 2 DMKSCHW2 MN20XQ3E
User's projected working set size 2 VMWSPROJ MN20XWSS
Queue being added to 1 VMQl MN20XQNM
Processor address (main or attached) 1 MN20XPRC
Accumulated user CP simulation time 8 VMTTIME MN20YTTI
Accumulated user virtual time 8 VMVTIME MN20YVTI
Eligible list priority 2 VMEPRIOR MN20YPRI

,/

552 VM/SP System Programmer's Guide

Class Four - USER

Number CP DSECT
Monitor Data of Variable Variable
Code Item Bytes Name Name

00 Interval user resource utilization
statistics

Userid1 8 VMUSER MN400UID
Accumulated user CP simulation time 8 VMTTIME MN400TTI
Accumulated user virtual time 8 VMVTIME MN400VTI
Total page reads 4 VMPGREAD MN400PGR
Total page writes 4 VMPGWRIT MN400PGW
Total non-spooled I/O requests 4 VMIOCNT MN400IOC
Total cards punched 4 VMPNCH MN400PNC
Total lines printed 4 ~LINS MN400LIN
Total cards read 4 CRDS MN400CRD
User running status 1 VMRSTAT MN400RST
User dispatch status 1 VMDSTAT MN400DST
User operating status 1 VMOSTAT MN4000ST
User queuing status 1 VMQSTAT MN400QST
User processing status 1 VMPSTAT MN400PST
User control status 1 VMESTAT MN400EST
User tracing control 1 VMTRCTL MN400TST
User message level 1 VMMLEVEL MN400MLV
User queue level 1 VMQLEVEL MN400QLV
User command level 1 VMCLEVEL MN400CLV
User timer level 1 VMTLEVEL MN400TLV
Interrupt pending summary 1 VMPijND MN400PND
User's externally assigned priority 1 VMUPRIOR MN400UPR
Reserved 1 MN4RSVI

00 Current number of pages resident 2 VMPAGES MN400RES
Current working set size estimate 2 VMWSPROJ MN400WSS
Page frames allocated on drum 2 VMPDRUM MN400PDR
Page frames allocated on disk 2 VMPDISK MN400PDK
Monitor sampling interval (seconds) 2 DMKPRGTI MN400INT
User last executed on this processor 1 VMLSTPRC MN400LPR

Appendix B. VM/SP Monitor Tape Fonnat and Content 553

Class Five - INSTSIM

Number CP DSECT
Monitor Data of Variable Variable
C~rl~ !t~!!! Bytes Nume Num~

00 Start of PRIVOP simulation
Userid1 8 VMUSER MN500UID
The privileged instruction 4 VMINST MN500INS
Virtual storage address of PRIVOP 4 VMPSW MN500VAD
Total user CP simulation time at start

of simulation 8 CPU timer MN5000VH

Note: Privileged instructions simulated by the fast path simulation routines
(DMKFSP) are not recorded.

SS4 VM/SP System Programmer's Guide

C~S!x-DASTAP

Number CP DSECT
Monitor Dntu of Variable Variable
Code Item Bytes Name Name

00,01 Device activity data for all Tape and
DASD devices

Number of device blocks recorded 2 MN600NUM

For each device -
Device address RDEVADDR

RCUADDR
2 RCHADDR MN600ADD

Type codes 2 RDEVTYFC MN600TY
Volume serial number1 6 RDEVSER MN600SER
Device accumulated 110 count 4 RDEVIOCT MN600CNT

Note:

The monitor code ° record is collected when the MONITOR START TAPE com-
mand is entered. Thereafter, all DASTAP records are collected with a monitor
code of 1.

Number CP DSECT
Monitor Data of Variable Variable
Cede Item Bytes Name Name

02 No. samples for interval IPL proc 2 MNCHSAMI MN602SAM
No. samples for interval non-IPL proc 2 MNCHSAM2 MN602SA2
Device address 2 RDEVADD MN602ADD
No. times control unit busy ·2 MNCUBSY MN602CUB
No. times device busy IPL proc 2 MNDVBSY MN602DVB
110 tasks queued on control unit 2 RCUQCNT MN602CUQ
110 tasks queued on device 1 RDEVQCNT MN602DVQ
No. times device busy non-IPL proc 1 MDVBSY2 MN602DV2

03 Channel busy counts IPL proc 32 MCHDATI MN603CBI
110 tasks queued on channel IPL proc 32 RCHQCNT MN603CQI
Channel busy counts non-IPL proc 32 MCHDAT2 MN603CB2
I/O tasks queued on channel non-IPL 32 RCHQCNT MN603CQ2

proc

Appendix B. VM/SP Monitor Tape Format and Content 555

Class Seven - SEEKS

Monitor
Code

00

Data
item

DASD I/O request record
Userid1

Device address

Seek cylinder address
Current arm position
Number of queued I/O tasks on device
Number of queued I/O tasks on control

unit
Number of queued I/O tasks on channel
Current seek direction
Processor address

Note:

Current seek direction value is

X'OO' seeking to lower cylinder address
X'Ol' seeking to higher cylinder address

556 VM/SP System Programmer's Guide

Number
of
Bytes

8

2
2
2
1

1
1
1
2

CP DSECT
Variable Variable
Name Name

VMUSER MN700UID
RDEVADDR
RCUADDR
RCHADDR MN700ADD
IOBCYL MN700CYL
RDEVCYL MN700CCY
RDEVQCNT MN700QDV

RCUQCNT MN700QCU
RCHQCNT MN700QCH
RDEVFLAG MN700DIR
RCHPROC MN700PRO

Class Eight - SYSPROF -- Additional data for system profile class

Number CP DSECT
Monitor Data of Variable Variable
Code Item Bytes Name Name

02 Additional data at add queue, drop queue
times

Number of 4-byte device block counts
which follow 2 MN802NUM

For each device ... count of I/O's 4 RDEVIOCT

After device counts ...
Current number of users logged on 4 DMKSYSNM MN802NAU
Total system page reads 4 PGREAD MN802PGR
Total system page wdtes 4 PGWRITE MN802PGW
Current number of pageable pages 4 DMKDSPNP MN802NPP
Total system idle time 8 IDLEWAIT MN802WID
Total system page wait time 8 PAGEWAIT MN802WPG
Total system I/O wait time 8 IONTWAIT MN802WIO
Total system problem time 8 PROBTIME MN802PRB

Appendix B. VM/SP Monitor Tape Format and Content 557

Appendix c. eMS Macro Library

eMS Macro

*ADT

*ADTGEN

*ADTSECT

*AFT

*AFTSECT

BATLIMIT

BBOX

BGCOM

BGTCB

*CMSAVE

*CMSCB

*CMSCVT

*CMSLEVEL

COMPSWT

*CORG

*DBGSECT

DESTYP

*DEVGEN

*DEVSECT

*DEVTAB

*DIAG

DIB
*nT("")C'"Dr''T'

LJ.I.'-'U.L.Jv.l.

DISPW

DMSABN

*DMSCCB

*DMSABW

*DMSDM

The following is a list and brief description of the CMS macros applicable to
VM/SP.

Asterisk (*) indicates that the macro is reserved for IBM use.

Function

Generates a CSECT or DSECT for an active disk table.

Generates an active disk table (ADT) for a disk; used by ADTSECT.

Generates all the ADTs for CMS.

Generates a DSECT for an active file table.

Generates all the AFTs for CMS.

Table of CPU, punch, and printer limits for user jobs running under CMS batch.

DSECT of boundary box; contains beginning and ending addresses of background
communication region.

DSECT of background communication region.

Task Control Block.

Equivalent to SVCSA VE macro.

Generates a list of simulated OS control blocks.

Generates the communication vector table as supported by CMS.

Defines the value of 'release number' of the feature or program product returned by
QUERY CMSLEVEL. Refer to the CMSLEVEL macro for more information.

Sets the compiler switch on or off. Refer to VM!SP eMS Command and Macro
Reference.

Sets the origin for CSECT.

Generates a CSECT or DSECT for DEBUG environment variables.

Used by the XEDIT module DMSXIN to determine filetype default settings. The
DESTYP block is defined in DMSXTF.

Generates a device table for a given device; used by the DEVT AB macro.

DSECT for a device table.

Generates the device tables for the CMS nucleus.

Issues a specified CP Diagnose instruction.

Disk Information Blocks.

Generates a CSECT or DSECT for all I/O information.

Generates the calling sequence for the display terminal interface. Refer to the
VM / SP System Programmer's Guide.

ABEND the virtual machine. Refer to the V}J / SP System Programmer's Guide.

DSECT describes field of DOS command control block (CCB). Refer to VM/SP
Data Areas and Control Block Logic, Volume 2 (CMS).

Allocates a work area for DMSABN.

Reserved for IBM use.

558 VM/SP System Programmer's Guide

eMS Macro Function

*DMSERR Sets up parameter list to type out a CMS error message; Refer to the LINEDIT
macro.

*DMSERT DMSERR work area DSECT.

DMSEXS Execute an instruction without nucleus protection. Refer to VM/SP System Logic
and Problem Determination Guide-- Volume 2.

DMSFREE Gets free storage. Refer to the VM / SP System Programmer's Guide.

*DMSFRES Calls system free storage service routines.

DMSFRET Releases free storage. Refer to the VM / SP System Programmer's Guide.

*DMSFREX Calls system free storage service routines.

*DMSFRT Generates a DSECT for free storage management work area.

*DMSFRX Sub macro called by DMSFRET.

DMSFST Sets up a file status table for a given file. Refer to the VM / SP System Program-
mer's Guide.

DMSKEY Sets nucleus protection on or off. Refer to VM / SP System Logic and Problem
Determination Guide--Volume 2.

*DMSLN Called by DMSERR, LINED IT macros.

*DMSLNC Called by DMSERR, LINED IT macros.

*DMSLND Called by DMSERR, LINED IT macros.

*DMSLNP Called by DMSERR, LINED IT macros.

*DMSLNU Called by DMSERR, LINED IT macros.

*DMSLNY Called by DMSERR, LINEDIT macros.

*DMSLNZ Called by DMSERR, LINED IT macros.

*DMSPID Passes a fileid in quotes into separate filename, filetype, filemode, used by FSCB,
and FSPOINT.

*DMSTMS Used by RDTAPE, WRTAPE, and TAPECTL.

DOSAVE DSECT, describes fields in the logical transient area (LTA).

DOSCB DOS simulation control block used for simulation of the CMS file control block
(FCB).

DOSCON Creates CMS/DOS control blocks for DMSNUC.

D1!FSD DTFSD DSECT.

DTFX DTF extension DSECT.

*EDCB Frees storage control blocks initialized by DMSEDX for CMS edit modules.

*EPLIST DSECT to map extended plist passed in register O.

*EQUATES Generates CMS equates for symbolic names.

*EXCP Issues an SVC O.

*EXTSECT Defines storage for the timer interrupt.

*FCB Generates a file control block (FCB) DSECT.

FSCB Sets up a file system control block. Refer to the VM / SP CMS Command and Mac-
ro Reference.

*FSCBD DSECT that describes fields in CMS PLIST for related commands.

Appendix C. CMS Macro Library 559

.,

eMS Mucro Function

FSCLOSE Closes a file. Refer to the VM/SP CMS Command and Macro Reference.

*FSENTR Used by CMS file system routines at entry.

FSERASE Erases a file. Refer to the V},!/SP CA1S Command and lrfacro R.eference.

FSOPEN Opens a file. Refer to the VM/SP CMS Command and Macro Reference.

*FSPOINT Executes the CMS POINT function.

FSREAD Reads a record from a file. Refer to the VM/SP CMS Command and Macro Refer-
ence.

FSSTATE Checks for an existing file. Refer to the VMjSP CMS Command and Macro Refer-
ence.

*FSTB Generates a file status table (file directory) block.

*FSTD Entry to the file status table (file directory) block.

FSWRITE Writes a record into a disk file. Refer to the VM/SP CMS Command and Macro
Reference.

*FVS Defines storage for file system variables.

*GETADT Gets a specified active disk table.

*GETFST Gets a specified file status table.

HNDEXT Handles external and timer interrupts. Refer to the VM / SP CMS Command and
Macro Reference.

HNDINT Handles interrupt on devices. Refer to the VM/SP CMS Command and Macro
Reference.

HNDSVC Handles SVCs. Refer to the VM/SP CMS Command and Macro Reference.

IJJHCPL Common VTOC handler input PLIST.

IJJHDLST Common VTOC handler descriptor list DSECT.

IJJHMFTI Format 1 VTOC label DSECT.

*10 Contains PLISTs needed to access CMS I/O routines.

*IOSECT Defines miscellaneous I/O variables.

*KEYSECT Contains variables necessary for storage key handling.

*KXCHK Checks to see if HX has been entered by the user.

LABREC DLBL/EXTENT record.

*LDM Loads double multiple (for floating point registers).

*LDRST CMS Loader work area.

LINED IT Types a line to the terminal. Refer to the VM/SP CMS Command and Macro Ref-
erence.

LOCKTAB LOCK/UNLOCK resource table.

LPLDCT LABEL macro PLIST.

LSCREEN Used by XEDIT modules to describe the layout of a logical screen on the physical
screen. LSCREEN is built by module DMSXSD.

*NUCON Generates a DSECT CMS nucleus constant area.

OCTS OPEN/CLOSE transient SVA PLIST.

*OVSECT DMSOVS work area.

560 VM/SP System Programmer's Guide

eMS Macro Function

*OSFST Defines an OS file status table for OS ACCESS.

*PDSSECT DSECT used for processing MACLIB files.

*PGMSECT Defines work area for DMSITP.

PIBTAB DSECT, program information block.

PIB2TAB DSECT, program information block extension.

PRINTL Prints a line on the printer. Refer to the VM / SP CMS Command and Macro Refer-
ence.

PRSCB Used by the XEDIT sub commands PRESERVE and RESTORE. It is built by
module DMSXCT.

PUNCHC Punches a card. Refer to the VM / SP CMS Command and Macro Reference.

RDCARD Reads a card from the reader. Refer to the VM/SP CMS Command and Macro
Reference.

RDTAPE Reads a record from tape. Refer to the VM/SP CMS Command and Macro Refer-
ence.

RDTERM Reads a record from the terminal. Refer to the VM/SP CMS Command and Macro
Reference.

RECSAVE Used by XEDIT modules to describe the address list for nested macro calls. It is
built by DMSXMA.

REGEQU Generates symbolic register equates. Refer to the VM / SP CMS Command and
Macro Reference.

*RELPAGES Sets the release pages flag.

REQDES Used by XEDIT modules to describe all XEDIT sub commands and their operands
and syntax. The REQDES block is defined in DMSXTB.

SAVEREG Used by XEDIT modules to save register contents during subroutine calls.

*STDM Storage for multiple floating-point registers.

STRINIT Initializes storage. Refer to the VM / SP CMS Command and Macro Reference.

*SUBSECT CSECT or DSECT for CMS SUBSET use.

*SVCENT Issues a DMSKEY macro before calling an instruction.

*SVCSAVE System save area.

*SVCSECT Defines work area for DMSITS.

SYNSUB Used by XEDIT modules to describe the synonyms defined for XEDIT subcom-
mands. A SYNSUB block is built dynamically by DMSXDC each time a synonym
is defined.

SYSCOM DSECT of system communication region.

*SYSLOAD Puts in a specified register the address of a specified routine in NUCON.

*SYSNAMES Saves system names table loaded via CMS routines.

TAPECTL Positions a tape. Refer to the VM / SP CMS Command and Macro Reference.

*TSOBLKS Contains CPPL, UPT, PSCB, and the ECT for TSO service routines.

*TSOGET Gets the address of the TSO command processor parameter list (CPPL).

*USE Generates assembler USING and DROP instructions, as needed.

*USERSECT Creates user work area.

Appendix C. CMS Macro Library 561

CMSMacro Function

WAITD Waits until the next interrupt occurs for the specified device. Refer to the VM/SP
CMS Command and Macro Reference.

WAITT Waits until all pending I/O to the terminal has completed. Refer to the VM/SP
CMS Command and Macro Reference.

WRTAPE Writes a record to tape. Refer to the VM / SP CMS Command and MacrQ
Reference.

WRTERM Writes a record to the terminal. Refer to the VM/SP CMS Command and Macro
Reference.

ZDESC Used by XEDIT modules to describe file characteristics.

ZFONC Used by XEDIT modules as a common work area. It is built by DMSXBG only
once in an editing session.

ZMACST Used by XEDIT modules to describe an XEDIT macro in storage. A ZMACST
block is built dynamically by DMSXMA each time a macro is invoked.

ZPACK Used by XED IT modules when a file is being packed or unpacked. It is built by
DMSXIN or DMSXFD.

562 VM/SP System Programmer's Guide

Index

Special Characters

&CRASH command 527
$$BCLOSE transient 410
$$BDUMP transient 410
$$BOPEN transient 410
$$BOPENR transient 410
$$BOPNLB transient 410
$$BOPNR2 transient 410
$$BOPNR3 transient 410
$$BOSVLT transient 410

A

abend
See abnormal termination (abend)

ABEND macro 374
abnormal temlination (abend)

See also problem, types
CMS abend

debugging 476
reason for 532
reasons for 477
recovery 478

collect information 508, 532
CP abend

debugging 475
reason for 475,507
recovery 507

CP dump 506
CP system restart 476
dump 506, 529

See also CMS (Conversational Monitor System),
dump

See also CP (Control Program), dump
attached processor 506
mUltiprocessor 506

in CMS 469
in CP 467
in DOS 469
in OS 469
internal trace table 508
messages 467
of system routine 477
OS (operating system), debugging 481
program check in CP 475
program interrupt 22
programmable operator facility 424, 438
reason for 475,477,532
register usage 508
SVC 0 475,507
system 477
virtual machine abend, debugging 481

ACCEPT
IUCV function 110

parameter list format 142
using 120

logical device support facility subfunction 204, 260, 262
ACCESS command, accessing OS data sets 383
access method, OS, support of 379
account number, replacing directory entry 270
accounting

ACCTOFF routine 72
ACCTON routine 72
records

created by user 71
for AUTOLOG, LOGON, and LINK journaling 70
format for dedicated devices 69
format for virtual machines 69
generating 243
when to punch 69

user options 72
VM/SP SNA support 186

action routines
See programmable operator facility

activating the TOD-clock accounting interface 257
Active Disk Table (ADT) 459, 534
Active File Table (AFT) 534
address, stop 499
ADSTOP command 499

summary 489
ADT

See Active Disk Table (ADT)
affinity 218

in attached processor or multiprocessor mode 34
AFT

See Active File Table (AFT)
allocating storage 328
altering storage 500
alternate path support 44
assembler virtual storage requirements 462-464
ASSGN command 390
assigning, dedicated channels to virtual machine 11
ATTACH macro 376
attached processor mode (AP)

abnormal termination, dump 506
advantages 209
affinity 34,218
debugging

lockwords 220
PSA 220
trace table 220

fetching and storing 213
identify processor address 210
improving performance of 47
locking 214
locks
prefixing 209
real 1/ 0 interrupts 23
shared segments 218
signaling 211

SIGNAL macro 211
special code in CP 208
storage 209
synchronous interrupts 23
time-of-day clock 213
TOD clock 206
virtual machine 110 management 10

attaching, virtual devices 10
audit trail, IUCV 118
AUTHORIZE, VMCF subfunction 91
AUTOLOG command, journaling 300
auxiliary directories 458-461

adding 458
creating 459
DMSLADAD, entry for auxiliary directories 459
establishing linkage 459
GENDIRT command 458
generating 458
initializing 458

Index 563

r

saving resources 458

B

BACKS PAC command, 3800 printer support 296
BALRSA VB (BAL register save area) 476, 509
batch, facility ,

See CMS Batch Facility
BATEXITI 419
BATEXIT2 420
BATLIMIT MACRO file 419
BDAM

restrictions on 382
support of 380

BEGIN conimand 499
summary 489

BLDL macro 374
blocks, control

CMS 531
CP 512

BPAM, support of 380
BSAM/QSAM, support of 380
BSP macro 378
buffers

c

forms control 281
print 281

calculating, dispatching priority 16
CANCEL, VMCF subfunction 92
CAW (Channel Address Word)

displaying 491
operand, of DISPLAY command 491
subcommand, of DEBUG command 491

CHANGE command, 3800 printer support 296
Channel Address Word

See CAW (Channel Address Word)
channel check 482
channel program, modification 239
Channel Status Word

See CSW (Channel Status Word)
channel usage 41
CHAP macro 376
character arrangement tables, 3800 printer 295
character modification, 3800 printer 295
CHECK macro 378
CHKPT macro 377
class

privilege 13
clock, comparator 206
CLOSE

command 506
usage 481

CLOSE/TCLOSE macro 375
CMNDLINE (command line) 533
CMS (Conversationall'.ionitor System)

See also virtual machines
ABEND macro 477
abnormal termination 310,471,476

collect information 532
exit routine processing 310
messages 469
procedure 476,478,532
processing 310
reason for 532
recovery 311,478

564 VM/SP System Programmer's Guide

auxiliary directories 458
Batch Facility 418

See also CMS Batch Facility
blip facility 17
called routine modifications to system area 345
called routine table 343
command language 303
command processing 340
commands

See CMS commands
control blocks, relationships 531
devices supported 316
DEVTAB (Device Table) 316
display PSW 480
DISPW macro 350
DMSABN macro description 478
DMSEXS 334
DMSFREE 318

free storage management 324
macro description 324
service routines 330

DMSFRES macro description 330
DMSFRET macro description 328
DMSFST macro description 458
DMSINA 339
DMSINT 339
DMSIOW 313
DMSITE 314
DMSm 313
DMSnp 314
DMSITS 312,334
DMSKEY 333
DMSNUC 318
dump 529

at abnormal termination 529
examine low storage 532
format 530
message 532

examine low storage 480
file system 303

migration from 800-byte to VM/SP 304
free storage management 323

DMSFREE macro 324
GETMAIN 323

functional information 315
GETMAIN macro instruction 318
halt execution (HX) 477
how to approach problems 466
how to save it 417
interface with display terminals 350
interrupt handling 312
introduction 303
IUCV support 355

between two virtual machines 365
CMSIUCV 359
guidelines and limitations 367
HNDIUCV 355

load map 480, 529
loader tables 318
low storage 480
macro library 558
nucleus 318
nucleus load map 529
program development 309
program, exception 477
PSW keys 332
register restoration 345
register usage 315,534
releasing allocated storage 329
releasing storage 328

returning to called routine 344
saved system restrictions 417
simulation of VSE functions 386
storage

dump 481, 529
map 319
structure 317

STRINIT macro 323
structure of DMSNUC 315
SUBCOM 346
SVC handling 334
symbol references 315
system save area modification 345
system, abend 477
transient area 318
transient program area 343
user

area 315
program area 318

USERSECT (User Area) 315
XEDIT interface to access files in storage 348

CMS Batch Facility 418-421
/JOB control cards 419,420
BATEXIT1 419
BATEXIT2 420
BATLIMIT MACRO file 419
data security 420
EXEC procedures 420
installation input 419
IPL Performance 420
system limits 419

resetting 419
user-specified control language 419

eMS BLIP facility 17
CMS commands

ACCESS 383
ASSGN command 390
DDR 483
DEBUG 478,525
FILEDEF 384, 506
GENDIRT 458
MODMAP 529
MOVEFILE 506
PRINT

TRC option 298
RESERVE 352
SETPRT,loading a virtual 3800 printer 298
SVCTRACE 487, 493, 525
ZAP 501

CMS macro library 558
CMS/DOS

command summary 387
considerations for execution 413
control blocks used by 411
environment, defined 386
generating 411
libraries 411
library volume d'irectory entries 412
performance 413
restrictions 413
support

for declarative macros 400
for DTFCD macro 400
for DTFCN macro 402
for DTFDI macro 402
for DTFMT macro 403
for DTFPR macro 405
for DTFSD macro 406
for EXCP 410
for imperative macros 409

for transient routines 409
hardware devices 386
of physical laCS macros 391,392
of VSE supervisor and I/O macros 391
SVC support routines 392-400
VSE macros under CMS 391

user responsibilities 411
VSE volumes needed 413

CMSCB (aS control blocks) 533
CMSDOS discontiguous saved segment 76
CMSIUCV 359

MF=(E,addr) Format 362
MF=(L,addr[,labeID Format 362
MF=L Format 361
standard format 359

coding conventions
addressing 277
constants 276
CP 276
error messages 278
format 276
loadlist requirements 278
module names 278
register usage 276
title card 278

command
language

CMS 303
commands

See CMS commands, and CP commands
common segment facility 46
communication

between virtual machines 83, 110
IUCV 116

example 123
with CP system services 116
with CP system services, CP entry points 140
with CP system services, initiated by CP 141
with CP system services, initiated by virtual

machine 140
with CP system services, invoking 140

COMND macro 280
compiler input/output assignments 390
completion code X'OOB 22
completion codes, IUCV 171
CONNECT

IUCV function 110
parameter list format 143
using 120

console, function
See CP (Control Program)

control
block

locating 500
used by CMS/DOS routines 411

registers, displayed by DISPLAY command 491
Control Program

See CP (Control Program)
control tables

3800 printer
creating and modifying 296
displaying current values 297
storing and loading 297

Conversational Monitor System
See CMS (Conversational Monitor System)

copy modification, 3800 printer 295
COPYV command, for MSS volumes 202
CP (Control Program)

abnormal termination
messages 467

Index 565

r
l

I
I

procedure 475,476,506
attached processor mode 20S
coding conventions 276
commands

See CP commands
concurrent execution of virtual machines 2
cO!1~o!e fu!!ctio!!~, ho·~.' to :!dd en: 280
control block relationships 512
debugging CP on a virtual machine 501
disabled loop 471

procedure 483
disabled wait

procedure 474,476,485
dump 506

at abnonnal termination 506
attached processor 506
examine abend code 507
examine low storage 506
fonnat 506
multiprocessor 506
on printer 506
on tape 506
printing tape dump 506

enabled wait
procedure 474,485,487

errors encountered by wannstart program 467
examine low storage 476
how to approach problems 466
identifying and locating page able module 522
internal trace table 53,61,476,501,508

See also CP trace table
load map 476
loadlist requirements 278
looping condition 474
low storage 476
machine check 481
multiprocessor mode 208
page zero handling 6
privileged instruction simulation 2
problem state execution 2
program check 475

in checkpoint program 467
in dump program 467

PSA, Prefix Storage Area 476
real control blocks 476
register usage 508
restrictions 482
RMS (Recovery Management Support) 22
save areas 509
small CP option .,
spooling 11
storage dump 475,506
SVC 0 475
system restart 476,487
trace record types 61
trace table entries 502, 503

See also CP trace table
unexpected results 471,473

procedure 482
virtual control blocks 476
virtual machine interrupt handling 2
wait state status messages 467

CP assist 39
CP commands 484

ADSTOP 489; 499
CLOSE 481, 506
DCP 498
DISPLAY 480, 497
DMCP 498
DU}AP 484,487,489,497

566 VM/SP System Programmer's Guide

how to add a command 280
INDICATE 49
INDICATE FAVORED, E privilege class 50
LOCATE 500
MIGRATE 51
MONITOR 52
PER 481,482,484,487
QUERY 499
QUERY PAGING 52
QUERYSRM 51
SEND, use with single console image facility 200
SET 498,506
SETMIH 19
SET PAGING 52
SET SRM MHFULL 51
STCP 501
STORE 491,500
SYSTEM 498
TERMINAL DREAKIN GUESTCTL 252
TERMINAL DRKKEY 252
TERMINAL CONMODE 3270 252
TERMINAL SCRNSA VE OFF 252
TERMINAL SCRNSA VE ON 252
TRACE 481,482,484,487,493,500
~~P 484,487,498

CP trace table 476
allocation 502
entries 502
restarting tracing 503
size 502
terminating tracing 503
usage 502, 508

CPABEND (abend code) 507
CPEREP program 486
CPSTAT (CP running status) 508
CPTRAP 61,68

AP and MP support 67
checkpointing 67
CMS data reduction program 64
end program commands 67
file processor sub commands 66
lost data 67
passing CP data to the CPTRAP file 63
passing virtual machine data to CPTRAP file 62
reader file 64
recording trace table entries in CPTRAP file 61
running with microcode assist active 68
trace type 61
TRAPRED program 65

CSW (Channel Status Word)
displaying 491
operand, of DISPLAY command 491
subcommand, of DEBUG command 491

CVTSECT (CMS Communications Vector Table) 534
cylinder faults, MSS, YM/SP processing 202

D

DASD Block I/O System Service 194,352
establishing communications 194
from CMS 352
IUCV communication 353
lUCV CONNECT 194
IUCV SEND 196

DASD Dump Restore (DDR) program 483
DASD I/O function 232
data

records, VM Monitor 543

security, batch 420
data set control block (DSCB) 379
data sets

OS
accessing 383
defining 384
reading 383

VSAM, compatibility considerations 416
DCB macro 379
DCP command 498
DDR command, usage 483
deadline priority 15

definition 15
dispatch list 15
eligible list 15

DEBUG command
BREAK subcommand, summary 489
CAW subcommand, summary 491
CSW subcommand, summary 491
DUMP subcommand 484

summary 489
usage 484

GO subcommand, summary 489
GPR subcommand, summary 491
messages 526
rules for using 526
SET CAW subcommand, summary 492
SET CSW subcommand, summary 492
SET GPR subcommand, summary 492
SET PSW subcommand, summary 492
STORE subcommand, summary 491
usage 478
X (Examine) subcommand, summary 490

debugging
analyzing problem 470
applying PTF 470
comparison of CP and CMS facilities 495
how to start 466
identifying

abnonnal termination 474
looping condition 473
looping condition in virtual machine 470
problem 469
unexpected results 474
wait 473
wait state in virtual machine 470

introduction 466
on virtual machine 481
procedure

for abnonnal termination 475
for CMS abend without dump 476
for CMS abnonnal termination 476
for CP abnonnal termination 475
for CP disabled loop 483
for CP disabled wait 485
for CP enabled wait 487
for CP unexpected results 482
for looping condition 474
for unexpected results 474
for virtual machine abnonnal termination 481
for virtual machine disabled loop 484
for virtual machine disabled wait 487
for virtual machine enabled loop 484
for virtual machine enabled wait 487
for virtual machine unexpected results 482
for wait 474

recognizing problem 467
summary of VM/SP debugging tools 488
unproductive processing time 469
VM/SP commands for debugging 497

ADSTOP 499
DCP 498
DISPLAY 497
DMCP 498
DUMP 497
LOCATE 500
MONITOR 499
QUERY 499
SET 498
STOP 501
STORE 500
SYSTEM 498
TRACE 500
VMDUMP 498
ZAP 501

with VM/SP facilities 475
declarative macros 400
DECLARE BUFFER

IUCV function
parameter list fonnat 144
using 119

dedicated, channel, assigning to virtual machine 11
DELETE macro 374
demand paging 4
DEQ macro 376
DESCRIBE

IUCV function 111
parameter list fonnat 145
using 120

DETACH macro 377
detaching, virtual devices 10
determining, virtual machine storage size 253
DEVICE (last I/O interrupt) 481
devices

CMS supported 316
feature codes 520
I/O 19

changing the time interval 20
default time intervals 19
determining time interval settings 21

model codes 520
sense infonnation 18
supported, for VSAM under CMS 415
type codes 517

DEVTAB (Device Table) 316
DEVTYPE macro 375
DIAGNOSE code

X'OC', pseudo timer 227
X'OO', store extended-identification code 222
X'04', examine real storage 224
X'08', virtual console function 225
X' 1 C', clear error recording cylinders 235
X'10', release pages 227
X'14', input spool file manipulation 228
X'18', standard DASD I/O 232
X'2C', start of LOGREC area 240
X'20', general I/O 235
X'24', device type and features 236
X'28', channel program modification 239
X'3C', VM/SP directory 242
X'30', read LOGREC data 241
X'34', read system dump spool file 241
X'38', read system symbol table 242
X'4C', generate accounting records for the virtual

user 243
X'40', clean-up after virtual IPL by device 243
X'48', issue SVC 76 from a second level machine 243
X'5C', error message editing 253
X'50', save the 370X control program image 245
X'54', control function of the PA2 function key 246

Index 567

X'58' 246
display data on 3270 console screen 246'
3270 virtual console interface, full screen

interactions 249
3270 virtual console interface, full screen inter­

actions (3270 SIO) 251
3270 virtual console interiace, iull screen

mode 248
X'6C', special diagnose for shadow table

maintenance 257
X'60', determine virtual machine storage size 253
X'64', finding, loading, purging named segments 253

FINDSYS function 255
LOADSYS function 254
PURGESYS function 255

X'64', FINDSYS function 255
X'64', LOADSYS function 254
X'64', PURGESYS function 255
X'68', VMCF function 256
X'7C', logical device support facility 260
X'70', activating TOD-c1ock accounting interface 257
X'74', saving or loading a 3800 named system 258
X'78', MSS communication 259
X'8C', access device dependent information 274
X'80', MSSFCALL 265
X'84', directory update in-place 267

DIAGNOSE instruction
access device dependent information 274
activating the TOD-c1ock accounting interface 257
channel program modification 239
clean-up after virtual IPL by device 243
clear error recording 235
control function of the PA2 function key 246
determine virtual machine storage size 78,253
device type and features 236
directory update in-place 267
display data on 3270 console screen 246
error message editing 253
examine real storage 224
find address of discontiguous saved segment 78
finding, loading, purging n~med segments 253
FINDSYS function 78,255
format 222
general I/O 235
generate accounting records for the virtual user 243
input spool file manipulation 228
issue SVC 76 from a second level virtual machine 243
load discontiguous saved segment 78
LOADSYS function 78,254
logical device support facility 260
MSS communication 259
MSS mount and demount processing 201
MSSFCALL 265
page release function 227
pseudo timer 227
purge discontiguous saved segment 78
PURGESYS function 78, 255
read LOGREC data 241
read system dump spool file 241
read system symbol table 242
save the 370X control program image 245
saving or loading a 3800 named system 258
special diagnose for shadow table maintenance 257
standard DASD I/O 232
start of LOGREC area 240
store extended-identification code 222
update VM/SP directory 242
virtual console function 225
VMCF function 83,97,256

data transfer error codes 109

568 VM/SP System Programmer's Guide

return codes 106
VMCPARM parameter list 98

3270 virtual console interface

directory

full screen interactions 249, 260
full screen interactions (3270 SIO) 251
full screen mode 248

authorization for IUCV 118
control statement for IUCV 110, 113, 123, 133
entries for CMS/DOS library volumes 412
entries in IUCV 118, 136
replacing entries 267
update in-place 267

discontiguous saved segments 75
loading 254
purging 255

discontiguous shared segments 76
user requirements 76

dispatch list, use in deadline priority 15
dispatcher stack lock 216
dispatching

interactive users 15
noninteractive users 15
priority, calculating 16
scheme, for virtual machines 15
virtual machines 15

from queue 2 15
dispatching priority, replacing directory entry 269
DISPLAY

command 484,497
summary 490
usage 480

PSW subcommand
usage 480

summary 491
display terminals, CMS interface 350
displaying

data on a 3270 console screen 246
"floating-point registers, DISPLAY command 491
general registers

DISPLAY command 491
GPR subcommand of DEBUG command 491

PSW
DISPLAY command 491
PSW subcommand of DEBUG command 491

storage
DISPLAY command 490
X subcommand of DEBUG command 490

DISPW macro display terminals, DISPW macro 350
distribution word, replacing directory entry 270
DMCP command 498
DMKCFC (console function) support 280
DMKDDR

See DASD Dump Restore (DDR) program
DMKSNT (system name table) 73,81
DMSABN (abend routine) 532
DMSABN macro 478

operands 478
DMSEXS macro 334
DMSFREE 318

allocating nucleus free storage 328
allocating user free storage 328
error codes 332
service routines 330
storage management 324

DMSFRES macro 330
error codes 332
format 330
operands 330

DMSFRET macro 328

error codes 332
operands 328
releasing storage 328

DMSFST macro 458
DMSINA 339
DMSINT 339
DMSIOW 313
DMSITE 314
DMSITI 313
DMSITP 314
DMSITS 312, 345
DMSITS module 334
DMSKEY macro 333
DMSNUC 315,318
DOS (Disk Operating System)

abnormal tennination
messages 469
procedure 481

DSCB (data set control block) 379
DTFCD macro 400
DTFCN macro 400, 402
DTFDI macro 400, 402
DTFMT macro 400, 403
DTFPR macro 400, 405
DTFSD macro 400, 406
DUMP

See also CP (Control Program), dump and CMS (Con­
versational Monitor System), dump

command 487
summary 489
usage 484

dump, used in problem detennination 475
dumping

storage
at printer 495
at tenninal 495

to real printer 506
DUMPSAVE (DMKDMP save area) 510
dynamic linkage, SUBCOM function 346
dynamic load overlay 464
dynamic SCP transition to or from native mode

advantages of 47
command used for 48
overview of how to use 48
performance impact of 48
precautions when using 48
purpose of 47
systems supported 48

E

EC (Extended Control) mode 484
EC (Extended Control) PSW 537
ECMODE option 206
ECPS (Extended Control-Program Support) 39

CP assist 39
expanded virtual machine assist 39
restricted use 41
using 41
virtual interval timer assist 39,205

ECRLOG (control registers) 532
editing, error messages 253
efficiency, of VM/SP performance options 24
eligible list, use in deadline priority 15
ENQ macro 377
environment, of VM/SP, system load 59
error codes

DMSFREE 332
DMSFRES 332

DMSFRET 332
error messages, editing 253
error recording cylinders, clear 235
EXCP, CMS/DOS support for 410
EXIT/RETURN macro 373
expanded virtual machine assist 39
Extended Control mode

See EC (Extended Control) mode
Extended Control-Program Support (ECPS)

See ECPS (Extended Control-Program Support)
extended PLIST, SVC 202 337
extended-identification code 222
external interrupt

BLIP character 314
external console interrupt 23
HNDEXT macro 314
in CMS 314
in VMCF 83, 103

message header 103
interval timer 23
IUCV 114

field definitions 161
formats 159

timer 314
EXTOPSW (external old PSW) 532
EXTRACT macro 376
EXTSECT (external interrupt work area) 534

F

faults, MSS cylinder, VM/SP processing 202
favored execution option 30
FCB

See forms control buffer, FCB
FCB (File Control Block) 315
FCBTAB (file control block table) 533
features, device 520
feedback file

See programmable operator facility
FEOV macro 375
fetch storage protection 5
file

management
CMS 303

file control block 315
File Status Table 458
file system, CMS, migrating from 800-byte to VM/SP . 14
FILEDEF command 384

AUXPROC option 384
defining OS data sets 384
to invoke the programmable operator 446
usage 506

files, OS format, support of 379
FIND macro 375
finding

address of discontiguous saved segment 78
saved systems 255

fixed-head preferred paging area, migration 51
flashing, forms overlay, 3800 printer 295
FOB (font offset buffer)

FOBCCW macro instruction 288
3289 Model 4 281,288

adding FOBs 288
macro instruction 288
purpose 288

FOBCCW macro instruction 288
font offset buffer

Index 569

1
I

See FOB (font offset buffer)
fonns control buffer

FCB 281
examples 293
index feature 292
macro 292
3203,3211,3262,3289 Model 4 282

3800 printer 295
forms overlay (flashing), 3800 printer 295
FPRLOG (floating-point registers) 532
free storage

management
CMS 323

free storage lock 216
FREEDBUF macro 377
FREEMAIN macro 373
FREESA VE (DMKFRE register save area) 476,509

G

GENDIRT
creating auxiliary directories 460
format 458

generating, CMS/DOS 411
GENIMAGE utility program 296
GET macro 381
GETMAIN

free element chain 324
GETMAIN/FREEMAIN macros 374
macro 373
simulation 323
storage management 323

GETPOOL/FREEPOOL macro 374
GPRLOG (general registers) 532

H

handling
OS files

on CMS disks 370
on OS or DOS disks 370

hardware assist 39
header record, VM Monitor 542
HNDIUCV macro 355

MF==(E,addr) Format 358
MF=(L,addr[,labeI]) Format 357
MF ... L format 357
standard format 355

HOSTCHK statement

I

I/O

See programmable operator facility

assignments
compiler 390
interrogating 391

function
DASD 232
general 235

interrupt 18
in CMS 313

lock 216
management 9
overhead in CP, reducing 26
refid-cp.l/O management on virtual machine 9

570 VM/SP System Programmer's Guide

virtual machines 25
VM/SP SNA support

processing 184, 185
I/O errors, recovery from 297, 299
mM 3800 Printing Subsystem

See 3800 printer
identification bits for program piOducts 223
IDENTIFY

VMCF protocol 91
VMCF subfunction 93

IDENTIFY macro 376
identify processor address

AP /MP environment 210
IEBIMAGE utility program 296
lIP (ISAM Interface Program) 416
IMAGELm utility program 297
IMAGEMOD utility program 297
imperative macros 409
INDICATE command 49

described 49
INDICATE FAVORED command,format, E privilege

class 50
indicators, of system load 49
INITIATE, logical device support facility subfunction 204,

260,262
input/output

See I/O
Inter-User Communications Vehicle

SeelUCV
interrogating input/output assignments 391
interrupt handling

attached processor
real I/O interrupts 23
synchronous interrupts 23

CMS 312
input/output CMS 313
SVC interrupts 312
terminal interrupts 313

DMSITS 312
external interrupts 23,314
I/O interrupts 10
machine check interrupts 22, 314
missing interrupt handler 18
multiprocessor

real I/O interrupts 23
synchronous interrupts 23

program interrupts 22,314
reader/punch/printer interrupts 314
SVC interrupts 22
user-controlled device interrupts 314

interval timer 39,205
INTSVC 334
invoking, IUCV functions 126
IOBLOK 476
10SECT (I/O interrupt work area) 534
IPL device, replacing directory entry 269
IUCV

audit trail 118
CMS, between two virtual machines 365
communication using parameter list data 125
communication with CP system services 116

CP entry points 140
initiated by CP 141
initiated by virtual machine 140
invoking 140
IXBLOK 141

communication with DASD Block I/O 353
communication, example 123
external interrupt 114

field definitions 161

formats 159
functions

See IUCV functions
introduction 110
invoking 126
macro instruction 126

format 128
messages 1I 0, 111

data transfer 1I2
identification 113
one-way 120
priority 120
queues 111

MSGBLOK, definition 111
one-way messages 120
parameter list

field definitions 161
formats 142

parameters, specifying 126
paths 110
priority messages 120
queues, interrogating 115
restrictions 118
return codes and completion codes 171
security considerations 118
support, CMS 355
trace table entries 117

field definitions 174
formats 173
suppressing 117

using 119
VM/SP use in SNA environment 180

IUCV functions
ACCEPT 110

parameter list format 142
using 120

CONNECT 110
parameter list format 143
using 120

DECLARE BUFFER, using 119
parameter list format 144

DESCRIBE 111
parameter list format 145
using 120

iucvftc.TEST COMPLETION 111
PURGE

parameter list format 146
using 122

QUERY, using 119
QUIESCE 1I0

parameter list format 148
using 122

RECEIVE 111
parameter list format 149
using 120

REJECT 111
parameter list format 150
using 121

REPLY 1I1
parameter list format 151
using 121

RESUME 110
parameter list format 152
using 122

RETRIEVE BUFFER, using 123
SEND 111

parameter list format 153
using 120

SET CONTROL MASK
parameter list format 154

using 122
SET MASK

parameter list format 155
using 122

SEVER 110
parameter list fonnat 156
using 122

TEST COMPLETION 121
parameter list format 157
using 121

TEST MESSAGE, using 121
IXBLOK, for IUCV communication with CP system

services 141

J

journaling
accounting records 70
LOGON, AUTOLOG, LINK commands 300

L

LASTCMND (last command) 480, 533
LASTEXEC (last exec procedure) 481,533
LASTLMOD (last module loaded) 480, 533
LASTTMOD (last transient loaded) 480
LGLOPR statement

See programmable operator facility
library volumes, CMS/DOS, directory entries 412
LINK command

journaling 300
password suppression 301

LINK macro 373
LIOCS routines supported by CMS/DOS 409
load 49

environments of VM/SP 59
indicators 49

LOAD macro 374
load map 529

CMS 529
how to get a load map 529

loader tables, CMS 318
loading 77

and saving discontiguous saved segments 77
discontiguous saved segments 78, 254

loadlist
requirements

CP 278
SPB card 278

LOCATE command 500
LOCK macro 217
locked pages option 27
locks

dispatcher stack 216
free storage 216
I/O 216
RDEVBLOK 216
real storage management (RM Lock) 216
run list 216
timer request queue 216
user-defined 217
VMBLOK 216

LOCKSA VE (LOCK macro save area) 510
log file

See programmable operator facility
LOGGING statement

See programmable operator facility

Index 571

I logicnl device support facility
description 203
implementing via DIAGNOSE 260

logical editing symbols, replacing directory entry 269
logical operator

See programmable operator facility
logical ,units

aSsignment of 389
defined 389
programmer assigned 390
system assigned 390

LOGON command
journaling 300
password suppression 301

LOGREC area
getting starting address 240
reading 241

LOKSA VE (DMKLOK save area) 510
loop 483

See also problem, types
disabled

CP 483
virtual machine 484

enabled, virtual machine 484
low address protection 46
LOWSA VE (debug save area) 532
LUB (Logical Unit Block) 390

M

machine check
CP 481
during start-up 22
interrupt 22

in CMS 314
not diagnosed 481
on attached processor 482
unrecoverable 481

macro instruction
IUCV 126

format 128
macro library

CMS 558
macros

CMS 318

CP

DISPW 350
DMSEXS 334
DMSFREE 324
DMSFRES 330
DMSFRET 328
DMSFST 458
DMSKEY 333
GETMAIN 318

FCB 292
FOB 288
FOBCCW 288
IUCV 128
LOCK 217
pm 291
pmccw 291
SIGNAL 211
SWITCHVM 219
UCB 285
UCBCCW 286
UCC 289
UCCCCW 289
UCS 283
UCSCCW 284

572 VM/SP System Programmer's Guide

declarative 400
imperative 409
OS

See OS (Operating System), macros
supervisor 391
VSAM, supported under CMS 416
VSE macros supported by CMS/DOS 391

Mass Storage System
See MSS (Mass Storage System)

MCKOPSW (CMS machine check old PSW) 532
Message System Service 192

establishing communications 192
messages

controlling 498
data transfer, IUCV 112
identification, IUCV 113
IUCV 110, 111

one-way 120
priority 120

queues, lUCY 111
MFASAVE (DMKMCT save area) 510
MIGRATE command 51
migration

from 800-byte to VM/SP 304
page, managing 50

minidisk link mode, replacing directory entry 271
minidisk multiple password, replacing directory entry 271
minidisk read password, replacing directory entry 271
minidisk write password, replacing directory entry 271
minidisks 10
missing interrupt handler 18

description 18
devices monitored 19
diagnostic aids 21
error recording area 22
messages 21
use of 18

model, device 520
modifying modules 501
MODMAP command 529
MONITOR CALL instruction 52
MONITOR command 52

format 53
implemented classes 54

monitoring, recommendations 59
moveable head preferred paging area, managing

migration 51
MOVEFILE command, usage 506
MSGBLOK, lUCY, definition 111
MSS (Mass Storage System)

communication 259
cylinder faults, VM/SP processing 202
mount and demount processing 201,259
mount processing, asynchronous 201
VM/SP access 201
volumes 10, 24

backup copies 202
I/O management 10

MSSF SCPINFO command 265
MSSFCALL 265

SCPINFO command 265
multiple channel errors 469
multiple copy printing, 3800 printer 295
multiple shadow table support 35
multiprocessing systems, improving performance of 47
multiprocessor

examine real storage 225
virtual machine I/O management 9

multiprocessor mode (MP)

abnormal termination, dump 506
advantages 209
affinity 34,218
configuring I/O 219
debugging 219

lockwords 220
PSA 220
trace table 220

fetching and storing 213
identify processor address 210
locking 214
locks
prefixing 209
real I/O interrupts 23
shared segments 218
signaling 211

SIGNAL macro 211
special code in CP 208
storage 209
synchronous interrupts 23
time-of-day clock 213
virtual machine I/O management 10

mUltisystem communication 42
MVS/system extensions support 45

common segment facility 46
enabling 47
low address protection 46
special operations and instructions 46

N

named system
allocating DASD space 73
generating 73

SPB card 73
using NAMESYS macro 73

saved system 73
SA VESYS command 74
saving or loading a 3800 258
shared segments 75
system name table (DMKSNT) 73

NAMENCP macro
for 370X control program 81

NAMESYS macro
for saved systems 73

native mode, switching to or from 47
NOTE macro 378
nucleus (CMS) 318
NUCON (nucleus constant area) 532

o
OPEN/OPENJ macro 375
options

performance
affinity 34
favored execution 30
locked pages 27
multiple shadow table support 35
priority 31
queue drop elimination 36
reserved page frames 28,32
shadow table bypass 35
small CP 7
virtual machine 29
virtual machine assist feature 37
virtual=real 6, 28, 32

OS (Operating System)
abnormal termination

messages 469
procedure 481

access method, support of 379
data management simulation 370
data sets

accessing 383
defining 384
reading 383

formatted files 379
GET 381
handling

files on CMS disks 370
files on OS or DOS disks 370

macros 370
ABEND 374
ATTACH 376
BLDL 374
BSP 378
CHAP 376
CHECK 378
CHKPT 377
CLOSE/TCLOSE 375
DCB 379
DELETE 374
DEQ 376
descriptions of 373
DETACH 377
DEVTYPE 375
ENQ 377
EXIT/RETURN 373
EXTRACT 376
FEOV 375
FIND 375
FREEDBUF 377
FREEMAIN 373
GETMAIN 373
GETMAIN/FREEMAIN 374
GETPOOL/FREEPOOL 374
IDENTIFY 376
LINK 373
LOAD 374
NOTE 378
OPEN/OPENJ 375
PGRLSE 378
POINT 378
POST 373
RDJFCB 377
RESTORE 374
SNAP 376
SPIE 374
STAE 377
STAX 378
STIMER 376
STOW 375
SYNADAF 378
SYNADRLS 378
TCLEARQ 378
TGET/TPUT 378
TIME 374
TTIMER 376
under CMS 370
WAIT 373
WTO/WTOR 375
XCTL 373
XDAP 373

PUT 381
PUTX 381
READ 381

Index 573

simulated OS supervisor calls 371
WRITE 381

overhead, CP, reducing for I/O 26
overlay structures in CMS 462
overlaying

p

page

dynamic load 464
example 463
prestructured 462

contiguous storage
discontiguous storage 255

exceptions, effects of 26
frames 3

reserved 6, 28
locking 27
SPB (Set Page Boundary) card 278
table 3
zero, restrictions 6

page migration, managing 50
pageable module

identifying 522
locating 522

paging 4
by demand 4
considerations 26

parameter list
fonnats, IUCV 142
IUCV, field definitions 161

parameters, IUCV, specifying 126
password

replacing directory entry 267, 268
suppressing on command line 301

paths,IUCV 110
PAl program function key 13,252

with DIAGNOSE '58' 252
with DIAGNOSE X'58' 249, 250
with the programmable operator facility 446, 452
with VCNA 185

PA2 program function key, defining function of 246
PER

command 482,484,487
summary 493
usage 481

description 496
perfonnance 24

avoiding IPL 73
CMS/DOS 413
dynamic SCP transition to or from native mode 47
for mixed mode foreground/background systems 60
fer tLYlle-shared multi-batch virtu,,} wncrJncs ~9
High Perfonnance Option 4
measurement 49
options

affinity 34
favored execution 30
locked pages 27
multiple shadow table support 35
priority 31
queue drop elimination 36
reserved page frames 28,32
shadow table bypass 35
small CP 7
virtual machine 29
virtual machine assist feature 37
virtual=real 6, 28, 32

single processor mode 47

574 VM/SP System Programmer's Guide

PGMOPSW (program old PSW) 532
PGMSECT (program check interrupt work area) 534
PGRLSE macro 378
pm buffer images

examples 291
macro format 291
pmccw macro fonnat 291

pmccw macro 291
PLIST (parameter list) 315
POINT macro 378
POST macro 373
Prefix Storage Area

See PSA (Prefix Storage Area)
prefixing in an AP /MP environment 209
PRESENT, logical device support facility sub function 204,

260,263
prestructured overlays 462
PREVCMND (previous command) 480, 533
PREVEXEC (previous exec procedure) 481,533
print buffers

adding new images 283
LOADBUF command 283
pm buffer images 291
pmccw macro 291
print chain image 283
UCB macro 285
UCBCCW macro 286
UCC examples 289
UCC macro 289
UCCCCW macro 289
UCS

examples 284
macro. 283
1403 and 3203 281

UCSB
associative field 285
examples 286
3211 281,285
3262 181

UCSCCW macro 284
printer

mM3800
See 3800 printer

interruptions 314
printing, virtual 3800 spool files 298
priority 3

messages 92,95
of execution 3
perfonnance option 31

privilege classes 13
replacing directory entry 269

privileged instructions 24
problem

programs, unexpected results 474
types

abnonnal termination 471
loop 471
unexpected results 471
wait 471

processor
attached

machine check 482
resources 15
timer 206
utilization 15

program
check

in checkpoint program
in dump program

interruption 22
in CMS 314
problem state 22
supervisor state 22

states 14
program product identification bits 223
Program Status Word

See PSW (Program Status Word)
programmable operator facility 422-457

abend 424,438
action routine interface

call interface 453
parameter interface 453

action routines 438
DMSPOL 441
DMSPOR 439
DMSPOS 440
EXEC 438, 455
supplied 438
writing 455

authorization 436
communication

checking 448
with the network 424

Debug mode 452
exit EXECs

communication error 451
interface 451
log error 451
PROPHCHK EXEC 449, 451
PROPLGER 452
PROPPCHK EXEC 449, 451

feedback file 443
initialization 424
installing 443

CMSGEND PROP function 444
invoking

automatically 447
manually 445
PROPST EXEC 445

log file 441
logical operator 423
message output format 450
overview 422

flow of operation 423
how it works 423
in a distributed system 422
in a single system 422
the logical operator 423

routing table 425, 429
conversion 444
tailoring 432

routing table (RTABLE) 424
routing table entries 429

specifying routing texts 432
routing table statements

HOSTCHK 427
LGLOPR 426
LOGGING 428
ordering of 428
PROPCHK 427
ROUTE 428
TEXTSYM 426

with IUCV 449
programmer logical units 390
PROPCHK statement

See programmable operator facility
PROPSW (program old PSW) 507
protection keys 5
protection of shared segments 79

PSA (Prefix Storage Area) 476
ARlOCH (address of first RCHDLOK) 514
ARlOCU (address of first RCUBLOK) SIS
ARlODV (address of fimt RDEVBLOK) SIS
in attached processor mode 220
in multiprocessor mode 220

pseudo timer 207, 227
PSW (Program Status Word) 507

interruption code 480
keys, CMS 332

PTFs (program temporary fixes), applying 466,470
PUB (Physical Unit Block) 390
punch, interruptions 314
PURGE

IUCV function
parameter list format 146
using 122

purging, discontiguous saved segment 78,255
PUT macro 381
PUTX macro 381

Q

QUERY 498
IUCV function, using' II ~

QUERY command, 3800 printer I)Jlpport 296,297,299
QUERY PAGING command 52
QUERY SRM command 51
querying and setting paging variables 51
querying and setting SRM variables 51
queue drop elimination 36
queue 1 15
queue 2 15
queue 3 17
QUIESCE 93

Ql

Q2

Q3

R

IUCV function 110
parameter list format 148
using 122

VMCF subfunction 93

See queue 1

See queue 2

See queue 3

RCHBLOK 514
RCHADD (address) 514
RCHFIOB (first IOBLOK pointer) 515
RCHLIOB (last IOBLOK pointer) 515
RCHSTAT (status) 514
RCHTYPE (type) 515

RCUBLOK 515
RCUADD (address) 515
RCUCHA (primary RCHBLOK) 515
RCUCHB (first alternate RCHBLOK) SIS
RCUCHC (second alternate RCHBLOK) SIS
RCUCHD (third alternate RCHBLOK) 'SIS
RCUFIOB (first IOBLOK pointer) 515
RCULIOB (last IOBLOK pointer) 515
RCUSTAT (status) 515
RCUTYPE (type) 515

RDEVBLOK 515
RDEVADD (address) 515
RDEVAIOB (IOBLOK pointer) 515

Index 575

I:,:,.,','.',
j~

'.
~'

;:
<

RDEVATI (attached virtual address) 516
RDEVCKPT (address of enable CKPBLOK) 516
RDEVEPDV (address of EP free list) 516
RDEVFLAG (device dependent flags) 515
RDEVIOER (address of 10ERBLOK) 516
RDEVMAX (hieh~st v3lid NCP name) 516
RDEVNCP (reference name of active 3705 NCP) 516
RDEVNICL (address of network control list) 516
RDEVSPL (RSPLCTL pointer) 516
RDEVSTAT (status) 515
RDEVTFLG (flags) 516
RDEVTMCD (terminal flags) 516
RDEVTYPC (class) 515
RDEVUSER (dedicated user) 516

RDEVBLOK lock 216
RDJFCB macro 377
READ macro 381
reader, interruptions 314
reading, OS data sets 383
real device simulation, VM/SP SNA support 183
real printer, dumping to 506
real storage

examine 224
in attached processor environment 224
in multiprocessor environment 225

optimizing use of 3
real storage management lock (RM Lock) 216
REAL TIMER option 205
RECEIVE

IUCV function 111
parameter list format 149
using 120

VMCF sub function 96
recording, real machine system events 500
records, accounting

created by user 71
for AUTOLOG, LOGON, and LINK joumaling 70
format for dedicated devices 69
format for virtual machines 69

RECOVERV command, for MSS volumes 202
reduction

of CP overhead, for virtual machine I/O 26
of paging activity 27
of SID operation 25

reenterable code, usage 27
register usage in CMS 315
REJECT 93

IUCV function 111
parameter list format 150
using 121

VMCF subfunction 93
releasing

allocated storage 329
storage 328

REPLY
IUCV function 111

parameter list format 151
using 121

VMCF subfunction 96
RESERVE command 352
RESERVE, operand 6
reserved page frames 6

performance option 28,32
resources,processor 15
responses, VM Monitor, to unusual tape conditions 56
responsibilities, user, for CMS/DOS 411
RESTORE macro 374
restrictions

BDAM 382
CMS/DOS 413

576 VM/SP System Programmer's Guide

CMS, saved system 417
IUCV 118

RESUME 93
execution

BEGIN command 489
GO ~ubcomm:!nd of DEBUG comm:md 439

IUCV function 110
parameter list format 152
using 122

VMCF subfunction 93
RETRIEVE BUFFER, IUCV function, using 123
return codes, IUCV 171
RM lock (real storage management lock) 216
ROUTE statement

See programmable operator facility
RSCS (Remote Spooling Communications Subsystem)

programmable operator facility relationship 424, 448
RTABLE or routing table

See programmable operator facility
run list lock 216
RUNUSER (current user) 508

s
save area

BALRSAVE 476,509
CMS system 345
CMS system save area format 345
DUMPSAVE 510
FREESAVE 476,509
LOCKSAVE 510
LOKSAVE 510
MFASAVE 510
SAVEAREA 476,509
SIGSAVE 510
SVCREGS 511
SWTHSA VE 510
user save area 345

SA VEAREA (active save area) 476,509
saved system

described 73
restrictions for CMS 417
SA VESYS command 74
when to save systems 73

SA VENCP command 81
for 370X control program 81

SA VESEQ priority value 8
SA VESYS command 74
saving, storage information 501
SCBLOCK, created by SUBCOM 347
SCPINFO command 265
screen management, VM/SP SNA support 180
security considerations, HJCV 118
segment table 3
segments, shared

See shared segments
SEND

IUCV function 111
parameter list format 153
using 120

VMCF protocol 88
VMCF subfunction 94

SEND/RECV
VMCF protocol 89
VMCF subfunction 94

SENDX
VMCF protocol 90
VMCF subfunction 95

SET command 498
usage 506

SET CONTROL MASK
IUCV function

parameter list format 154
using 122

SET MASK
. IUCV function

parameter list format 155
SET Mill command 19
SET PAGING command 52
SET SRM command 51
SET SRM MHFULL, CP command 51
SETKEY command, described 77
SETPRT, loading a virtual 3800 printer 298
setting, address stops 495
SEVER

IUCV function 110
parameter list format 156
using 122

shadow table bypass 35
shared segments

described 75
discontiguous 75
protected 79
special considerations 75
unprotected 79
virtual machine operation 80

SIGNAL macro 211
signaling in an AP /MP environment 211
SIGSA VE (DMKEXT save area) 510
simulation 25

of VSE functions by CMS 386
single image console facility 200

controlling multiple virtual machines 200
using 200

single processor mode
advantages of 47
commands used with 47
performance impact of 47
purpose of 47
systems supported 47
use of the V=R machine 47

single-instruction mode 13
SIO

See Start I/O (SIO) instruction
SIO instruction, initiating full screen mode 251
small CP option

effect on performance 7
purpose of 7

SMSG command 198
SNA

console communication services 177
~/SPsupport 177

accounting 186
CMS mode 179
command handling 184
communication interfaces 180
console mode 179
environments supported 179
establishing connections 182
full screen support mode 179
I/O processing 184, 185
NCP and PEP sharing 186
real device simulation 183
screen management 180
system structure 177
trace table entries 187
TRQBLOK 185
WEBLOK 180, 184

WEmLOK 184
VM/SP virtual console support 177
VT AM service machine 177

SNAP macro 376
spanned records, usage 381
SPB (Set Page Boundary) card 278
special diagnose for shadow table maintenance 257
Special Message Facility 198

buffer length 198
description 198
introduction 198
receiving messages 198
sending messages 198
SMSG command 198

special message flag (VMCPSMSG) 198
turning on or off 198

SPIE macro 374
SPOOL command, 3800 printer support 296
spool file

manipulation 228
recovery

spooling

after checkpoint start 12
after force start 13
after warm start 12

described 11
terminal input 12
terminal output 12
via RSCS 11

ST AE macro 377
START command, 3800 printer support 296
Start I/O (SIO) instruction

handling 25
reducing 25

STAX macro 378
STCP command 501
STIMER macro 376
stop execution

ADSTOP command 489
BREAK subcommand of DEBUG command 489

stop tracing
SVCTRACE command 494
TRACE command 494

storage
allocation, CMS 328
AP /MP environment 209
dump

CMS 481
CP 475

dynamic paging 27
map, CMS 319
protection 5

fetch 5
storing 5

releasing 328
requirements, assembler 462-464

storage size
maximum, replacing directory entry 269
virtual machine, replacing directory entry 268

STORE command 500
summary 491

storing
data

into CAW, SET CAW subcommand of DEBUG
command 492

into control registers, STORE command 492
into CSW, SET CSW subcommand of DEBUG

command 492
into floating-point registers, STORE command 492

Index 577

,I

I
',;-

·if

~

into general registers, SET GPR subcommand of
DEBUG command 492

into general registers, STORE command 492
into PSW, SET PSW subcommand of DEBUG

command 492
into PSW, STORE command 492
STORE command 491
STORE subcommand of DEBUG command 491

information 495
storage protection 5

STOW macro 375
STRINIT macro 323
structure

of CMS storage 317
SUBCOM function 335

calling routines dynamically 346
SVC

handling
by user 338
commands entered from terminal 339
invalid SVCs 338
linkage 335
OS and VSE SVC simulation 338
types of SVC 335

interrupt
CMS internal linkage SVC 312
other CMS SVCs 312
problem state 23
supervisor 23

support routines, CMS/DOS supported 392
SVC 202 335

extended PLIST 337
search hierarchy 339
tokenized PLIST 336

SVC 203 337
SVCOPSW (SVC old PSW) 532
SVCREGS (SVC interrupt save area) 511
SVCSECT (SVC interrupt work area) 534
SVCTRACE command 525

summary 493
usage 487

SWITCHVM macro 219
SWTHSAVE (DMKSTK save area) 510
SYNADAF macro 378
SYNADRLS macro 378
SYSJRL macro instruction 300
system

abend 477
dump spool file, reading 241
logical units 390
performance 49

for mixed mode foreground/background
systems 60

measurement 49
routine, abnormal termination of 477
symbol table, reading 242

SYSTEM command 498
system name table (DMKSNT) 73,81
System Network Architecture

See SNA
System/370

control registers
allocation 537
assignments 538

extended control (EC) PSW 537
information 537

I 578 VM/SP System Programmer's Guide

T

TCLEARQ macro 378
terminal interruptions, in CMS 313
TERMINATE ALL, logical device support facility

subfunction 204,261,263
TERMINATE, logical device support facility

subfunction 204,261,263
TEST COMPLETION

IUCV function 111
parameter list format 157
using 121

TEST MESSAGE, IUCV function, using 121
TEXTSYM statement

See programmable operator facility
TGET /TPUT macro 378
TIME macro 374
time management 3
time slice 15
time-of-day (TOD) clock 206

in attached processor environment 206
timer request queue lock 216
timers

clock comparator 206
interval timer 39,205
processor timer 206
pseudo timer 207
Time of Day (TOD) clock 206

TOD-clock accounting interface 257
tokenized PLIST, SVC 202 336
TRACCURR (current trace table entry) 508

refid=abend.save area conventions 509
TRACE

command 482,484,487,500
summary 493
usage 481

trace table
CP 22

IUCV entry formats 173
IUCV field definitions 174
trace table entries 22, 504

entries, SNA CCS entries 187
trace table recording facility 61
TRACEND (end of trace table) 508
tracing 500

&12@tr
interrupts, TRACE command 493

all user I/O operations, TRACE command 493
branches, TRACE command 493
CCWs, TRACE command 493
clear channel instruction 502
CP trace table 501
external interrupts, TRACE command 493
halt device 502
I/O 502
information 496
instructions, TRACE command 493
interrupts 501

TRACE command 493
IUCV 502
IUCV functions 117
NCPBTU 502
privileged instructions, TRACE command 493
program interrupts, TRACE command 493
queue drop 502
real machine events, MONITOR command 494
run user requests 502
scheduling 502
SIGP instruction 502

SNA Console Communication services 187,502
spinning on a lock 502
storage management 502
storing a virtual CSW 502
SVC interrupts

SVCTRACE command 493
TRACE command 493

unstacking 10BLOK or TRQBLOK 502
user operations, TRACE command 493

TRACSTRT (start of trace table) 508
transient area (CMS) 318
transient program area 343
transient routines supported by CMS/DOS 409
TRQBLOK, VM/SP SNA support 185
TrIMER macro 376
type (device) 517
types of locks

u

defer 215
spin 215

UCS (Universal Character Set)
adding buffer images 283
supplied images 281

UCSB (Universal Character Set Buffer)
supplied images 281

UNAUTHORIZE, VMCF sub function 92
unexpected results 469

See also problem, types
reason for 482

unit record, devices, sharing 11
Universal Character Set

See UCS (Universal Character Set)
unproductive processing time 469
user directory

reading 242
updating 242

user doubleword, VMCF function 106
user options, replacing directory entry 270
user-controlled device interrupts 314
user-defined lock 217
USERSECT (User Area) 315

v

V=R machine, used with single processor mode 47
VCHBLOK 513

VCHADD (virtual channel address) 513
VCHSTAT (status) 513
VCHTYPE (type) 513

VCUBLOK 513
VCUADD (virtual channel address) 513
VCUSTAT (status) 514
VCUTYPE (type) 514

VDEVBLOK 514
VDEVADD (virtual device address) 514
VDEVCFLG (virtual console flags) 514
VDEVCSW (virtual CSW) 514
VDEVEXTN (virtual spool extension) 514
VDEVFLAG (device dependent information) 514
VDEVFLG2 (Reserve/Release flags) 514
VDEVIOB (active 10BLOK pointer) 514
VDEVREAL (real device block address) 514
VDEVRRB (address of VRRBLOK) 514
VDEVSFLG (virtual spooling flags) 514
VDEVSTAT (status) 514

. verifying e;ustence of saved systems 255
virtual

block multiplexer channel option 41
console functions, DIAGNOSE instruction 225
operator's console 2
processor 2

virtual console, operator 2
virtual devices, I/O 2
virtual interval timer assist 39, 205
virtual machine assist feature

described 37
restrictions for use of 38
usage 38

Virtual Machine Communication Facility (VMCF)
See also VMCF (Virtual Machine Communication Facil­

ity)
introduction to 83

Virtual Machine Facility/370 (VM/370)
using ECPS 41

virtual machine storage size
maximum, replacing directory entry 269
replacing directory entry 268

Virtual Machine/System Product (VM/SP)
CMS 303
control program 2
device types in 236
DIAGNOSE instruction in 222
directory 2
load environment 59
program states 14

virtual machines
abend dump 481
abnormal termination 471,475,481
creation 2
described 2
DIAGNOSE instruction usage 222
directory 2
disabled loop 471,473

procedure 484
disabled wait

procedure 474,487
dispatching scheme 15
enabled loop 471, 473

procedure 484
enabled wait

procedure 474,487
with real timer option 487
without real timer option 487

I/O management
attached processor 10
dedicated devices 10
directory 10
mass storage volumes 10
multiprocessor 10
shared devices 10
spooled devices 10

I/O operation 25
interrupt, handled by CP 2
multiple, controlling from a single console 200
operating system 2
performance

for time-shared multi-batch virtual machines 59
Monitor Analysis Program (VMAP) 59
options 29

PSW 14
shared segment operation 80
storage management 3

directory 3
virtual storage 3

time management 3

Index 579

I
\.,

!

I
I
L.

conversational user 3
non conversational user 3
priority of execution 3

timers 205
unexpected results 471,473

procedure 482
Virtual Reserve/Release support, virtual machine I/O

management 10
virtual storage 3

management
CP 3

virtual storage preservation
purpose of 7
SA VESEQ priority value 8
VMSA VE option 7

virtual=real option 6, 28, 32
VM Monitor 49

collection mechanism 52
considerations 56
data records 543
data volume and overhead 58
header record 542
monitor classes 52
responses to unusual tape conditions 56
tape format and contents 542

VM/SP
See Virtual Machine/System Product (VM/SP)

VM/VCNA, VM/SP SNA support 177
VM/370

See Virtual Machine Facility/370 (VM/370)
VMBLOK 476,487,513

VCUSTRT (address of VCUBLOK table) 513
VMCHSTRT (address of VCHBLOK table) 513
VMCOMND (last command) 513
VMDSTAT (dispatching status) 513
VMDVSTRT (address of VDEVBLOK table) 514
VMFSTAT (virtual machine features) 513
VMIOACTV (active channel mask) 513
VMIOINT (I/O interrupts) 513
VMPEND (interrupts pending) 513
VMPSW (virtual PSW) 513
VMRSTAT (running status) 513

VMBLOK lock 216
VMCF (Virtual Machine Communication Facility) 83

DIAGNOSE instruction 83, 97, 256
data transfer error codes 109
return codes 106

external interrupt 103
invoking sub functions 97
protocol 87

IDENTIFY 91
SEND 88
SEND/RECV 89
SENDX 90

return codes 106
special message facility 83
subfunctions 91

AUTHORIZE 91
CANCEL 92
IDENTIFY 93
PRIORITY option 92, 95
QUIESCE 93
RECEIVE 96
REJECT 93
REPLY 96
RESUME 93
SEND 94
SEND/RECV 94
SENDX 95
special message facility 91

580 VM/SP System Programmer's Guide

SPECIFIC option 91
UNAUTHORIZE 92

table of subfunctions 84
user doubleword 106
using 84

applications 85
general considerations 87
performance considerations 86
security 86

VMCP ARM parameter list 98
VMDUMP command 498
VMDUMP command, summary 490
VMSA VE areas 8
VMSA VE option 7 .
Volume Table of Contents (VTOC) 379
VSAM

CMS support for 415
data sets, compatibility considerations 416
devices supported under CMS 415
macros supported under CMS 416
support of 380

VSE CMS support
control blocks simulated 411
functions simulated by CMS 386
functions supported 387
hardware supported 387
macros, supervisor 391
supervisor and I/O macros supported 391
VSAM macros supported 416

VSE transient routines 409
VSE, macros, supported under CMS 391
VT AM, service machine, VM/SP SNA support 177

w
WAIT macro 373
wait state 485

CP
disabled wait 485
enabled wait 487

virtual machine
disabled wait messages 487
enabled wait procedure 487

WEBLOK, VM/SP SNA support 180, 184
WEmLOK, SNA, VM/SP support 184
WRITE macro 381
WTO/WTOR macro 375

x
XCTL macro 373
Y.DAP macro 373
XEDIT interface to access files in storage 348

z
ZAP command 501

1

1403 USC buffer images 281,283

3

3081 processor, MSSFCALL - DIAGNOSE X'80' 265
3088 multisystem channel communication unit 42
3203

forms control and print buffer 281
3211 USCB buffer images 281, 285
3262

FCB 292
pm buffer images 291
UCSB buffer images 281

3270
logical, creating via logical device support facility 203
virtual console interface

attribute bytes, how to supply 247
. full screen interactions 249
full screen interactions (3270 SIO) 251
full screen mode 248
selector-pen limitations 248

3289
font offset buffer

adding FOBs 288
FOB macro instruction 288
purpose of 288

370X Control Program
system name table 81
using the NAMENCP macro 81
using the SA VENCP command 81

370X control program, saving 245
3800 printer

as a dedicated device 295
as a real spooling device 295

CHANGE command 296
creating and modifying control tables 296
loading control tables 297
SPOOL command 296
START command 296
storing control tables 297

as a virtual spooling device 297
features

character arrangement tables 295
character modification 295
copy modification 295
forms control buffer 295
forms overlay (flashing) 295
multiple copy printing 295

load CCWs in spool file 232
printing a spool file 298
SETPRT command 298
virtual

defining 298
displaying control information 299
loading via SETPRT command 298
recovery from I/O errors 299

Index 581

!
I

I
I
I
r

SC19-6203-2

--- ------ --------- - ----=- -----------,-®

< s:
..........
en
"'tJ

en
-<
C/l
.-+
CD
3
"'tJ ..,
o
co ..,
OJ

3
3
CD
..,~

C/l

G>
c
c.:
CD

:n
ro
z
~
en
CAl
.......
o
..........
~
CAl
o o
I

CAl
$

en
(")
~

co
I

0)
~ o
CAl
I
~

-= E c 0
Q) -E en

.9- :c
~ -
g~
Cl en .= 0 t­
o Q)
en c.. _ co .- -E13

"'C E .s E
co ~

E Cl
o

- Q) ~ ..r:::::
co'Ej

:E 0
('..)

>
~

oJ .c;;;
:c lii e en
c..~
CI) ~
en en
~ en co CI)
Co) Co
c co Q)

Co) rg
en
CI) CI)

-a~
co OJ

Ci5a:

.s
o

;;::::

VM/SP
System Progralnmer's Guide
SC 19-6203-2

READ~~'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if
any, are deemed appropriate. Comments may be written in your own language; English is
not required.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

• Does the publication meet your needs?

• Did you find the material:

Easy to read and understand?

Organized for convenient use?

Complete?

Well illustrated?

Written for your technical level?

• What is your occupation?

• How do you use this publication:

As an introduction to the subject?

For advanced knowledge of the subject?

To learn about operating procedures?

Your comments:

Yes

o

o
o
o
o
o

o
o
o

No

o

o
o
o
o
o

As an instructor in class?

As a student in class?

As a reference manual?

o
o
o

If you would like a reply, please supply your name and address on the reverse side of this form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or
you may mail directly to the address in the Edition Notice on the back of the title page.)

SC19-6203-2

Fold and Tape Please Do Not Staple Fold and Tape
... " .. ~ '" ... , " ... " . " .

Fold

1111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

I nternational Business Machines Corporation
Department G60
P. O. Box 6
Endicott, New York 13760

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I.

t : ,PJ • ,

'.L"!

I'r
i U

't"

, '" ~ '.

Fold

If you would like a reply, please print:

Your Name __ _

Company Name ______________________ _ Department ______ _
Street Address ___________________ _
City _________________________________ __

State ________________ Zip Code _____ _

------- IBM Branch Office serving you _________________________ _ - - ---- ----- - ---c:II I:I1II -= __ _ -------_.
®

0
~
~
Tt
2.
C1

~
0
::l
\C

r
:;
~ <

$
.........
en
""'C

en
-< en -CD

3
""'C
"'" 0

CO
"'" Q)

3
3
CD

"'" en'
G)
c:
~
CD

::!!
CO
z
!J
en
w
'-.I
0
.........
~
w
0
0
I

W
~

""'C
::::!.
::J -CD
c..
::J

C
en
~

en
(")
~

(,0
I

0')
N
0
W
I

N

SC19-6203-2

