

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM
© Copyright IBM Corp. 1980, 1986

Virtual Machine/
System Product

System Logic and
Problem Determination
Guide Volume 2 (CMS)

Release 5
LY20-0893-4

Restricted Materials of IBM

Licensed Materials — Property of IBM

Fifth Edition (December 1986)

This edition, LY20-0893-4, is a major revision of LY20-0893-3 and applies to Release
5 of the Virtual Machine/System Product (VM/SP), Program Number 5664-167, and
to all subsequent releases and modifications until otherwise indicated in new
editions or Technical Newsletters. Changes are made periodically to the
information herein; before using this publication in connection with the operation
of IBM systems, consult the latest IBM System/370, 30xx, and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable and current.

Summary of Changes
For a list of changes, see page 299.

Changes or additions to the text and illustrations are indicated by a vertical line
to the left of the change.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or
imply that only IBM’s licensed program may be used. Any
functionally equivalent program may be used instead.

Ordering Publications

Publications are not stocked at the address given below; requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch
office serving your locality.

A form for readers’ comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to IBM Corporation,
Information Development, Dept. G60, P.O. Box 6, Endicott, NY, U.S.A. 13760. IBM
may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 1981, 1982, 1983,
1984, 1986

P

Restricted Materials of IBM

Licensed Materials — Property of IBM

Preface

This manual provides the IBM system hardware and software support
personnel with the information needed to analyze problems that may occur
on the IBM Virtual Machine/System Product (VM/SP) when used in
conjunction with VM/370 Release 6.

How This Manual is Organized

This manual is one of two volumes:

e Volume 1. VM/SP Control Program (CP)
e Volume 2. VM/SP Conversation Monitor System (CMS).

Each volume contains logic descriptions for the designated components of
VM/SP. Each of these volumes is divided into four parts: Introduction,
Method of Operation, Directory, and Diagnostic Aids.

The method of operation and program organization part contains the
functions and relationships of the program routines in VM/SP. They
indicate the program operation and organization in a general way to serve
as a guide in understanding VM/SP. They are not meant to be a detailed
analysis of VM/SP programming and cannot be used as such.

The directory contains a table of the CMS modules and their entry points.

The diagnostic aids part contains additional information useful for
determining the cause of a problem.

Appendix A, located in Volume 2, contains a description of the CMS macro
library.

Appendix B, also located in Volume 2, describes the CMS/DOS macro
library.

Appendix C, also located in Volume 2, describes CMS/DOS support modules.

Information on the Remote Spooling Communication Subsystem
Networking (RSCS), Version 2 is contained in the:

IBM VM|SP Remote Spooling Subsystem Networking, Version 2:
Diagnosis Reference, 1.Y24-5228.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Preface 111

Restricted Materials of IBM
Licensed Materials — Property of IBM

The control blocks supportive of the RSCS Logic are contained in:

VM|SP Data Areas and Control Block Logic Volume 2 (CMS),
LY24-5221.

How to Use this Manual

o Isolate the component of VM/370 in which the problem occurred.

o Use the list of restrictions in VM/SP System Messages and Codes to be
certain that the operation that was being performed was valid.

e Use the directories, VM/SP Data Areas and Control Block Logic
Volume 1 (CP), and VM|SP Data Areas and Control Block Logic Volume
2 (CMS) to help you to isolate the problem.

e Use the method of operation and program organization part, if
necessary, to understand the operation that was being performed.

1V System Logic and Problem Determination (CMS) 1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

Contents

Part 1: IntroductiontoCMSc.c.ccc... 1

Chapter 1. Conversational Monitor System (CMS) 3
The CMS Command Languagec.coiiiiiiniiinnnnnnnn.. 3
The File System e 4
Program Development i 8
Chapter 2. Interrupt HandlinginCMSc.ciienn 11
SVC Interruptions oii ittt et e 11
Internal Linkage SVCs i 11
Other SVCs ..ot e e e e e 12
Input/Output Interruptions it 12
Terminal Interruptionsc. i, 13
Reader/Punch/Printer Interruptions 14
User-Controlled Device Interruptionsccvuuun.... 14
Program Interruptions 15
External Interruptionsttt 15
Machine Check Interruptionsouiitiieineennnnn. 15
Chapter 3. Functional Informationccicteeeens 17
Register Usagettt it ieiinnnnnnnn. 17
Structure of CMS Storage e e e e 18
Structure of DMSNUC i i 23
USERSECT (User ATea)'tiimeneneanannnnnnenss 23
DEVTAB (Device Table), 23
CMS Interface for Display Terminals 24
Chapter 4. OS Simulation Under CMSc00veeeenn 27
OS Data Management Simulation 27
Handling Files that Reside on CMS Disks 27
Handling Files that Reside on OS or DOS Disks 28
OS Macro Simulationiuiitiiinrnnnann. 28
L0 1S T\ 1=) o - 30
Access Method Support 38
BDAM Restrictionsuiiintnineneenennenennns 41
Reading OS Data Sets and DOS Files Using OS Macros 42
CMS QSAM Tape End-of-Volume Exitcuu... 46
TEOVEXIT MACro .. oo ittt ittt ettt ettt e 46
Restrictionsttt e et 50
Return Codesttt iiiiennaennns 51
Successful Completion00t einennnnn. 52
Chapter 5. VSE Support UnderCMS e .. 53

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Contents V

Restricted Materials of IBM
Licensed Materials — Property of IBM

CMS Support for OS and VSE VSAM Functions 54
Hardware Devices Supported 54

Part 2: Method of Operation and Program

Organization ¥ |
Chapter 6. CMS Virtual Machine Initialization 65
Initialization: Loading a CMS Virtual Machine from Card Reader 65

Initializes Storage Contents and System Tables 66
Processes IPL Command Line Parameters 67
Initializing a Named or Saved System 68
Modifying a 3800 Named Systemc0uiuuernn... 69
Processing the IMAGEMOD Command 69
Handling the First Command Line Passed to CMS 71
Setting the Virtual Machine Environment Options 71
DMSSET: Set DOS ON (VSAM) Processing 71
Querying CMS Environment Optionscoiieeun.... 72
Chapter 7. Processing and Executing CMS Files 73
Maintaining an Interactive Console Environment 73
Maintaining an Interactive Command/Response Session 74
Method of Operation for DMSINT - Console Manager 76
Method of Operation for DMSITS - CMS SVC Handling Routine ... 77
Dynamic Linkage/SUBCOM it iiieennnon. 92
Loading and Executing Text Files 94
SLC Card Routinettt 96
Loading and Executing Members of LOADLIBS 111
Chapter 8. Manipulating the File System 113
Chapter 9. Managing the CMS File System 115
Disk Organizationttt eenneennnnnn 115
How CMS Files are Organized in Storage for an 800-Byte Record 115
File Status Tables00t 115
Chain Links i 117
CMS Record Formats 0 iimeinennnnnnnnnn 118
Physical Organization of Virtual Disks 119
The Master File Directory it neen.n. 119
Keeping Track of Read/Write Disk Storage: QMSK and QQMSK .. 122
Dynamic Storage Management: Active Disks and Files 123
CMS Routines Used to Access the File System 124
How CMS Files are Organized in Storage for 512-, 1K-, 2K-, or 4K-byte
Recordson Disk i i e e 125
File Status Tables it 125
Pointer Blocks 128
CMS Block Formatsuittiiiineeinneeeeenn. 131
Physical Organization of Virtual Disks 131
The File Directory, the Allocation Map, and the Disk Label 132
Keeping Track of Read/Write Disk Storage: Allocation Map 133
Dynamic Storage Management: Active Disks and Files 134
CMS Routines Used to Access the File System 138
Chapter 10. Handling I/O Operationsccc0vvvue. 141

vi System Logic and Problem Determination (CMS) L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

Unit Record I/O Processingcouiiiiinininnnnnnnnnn... 141
Reada Card00ttt iiiiiiiinnnnnnnnn 142
PunchaCard0, 143
PrintaFile i e e 144

The SETPRT Commandc..uiiiiiinnennnnanns 146

Disk I/Oin CMS e 147
Read or Write Disk I/O i, 148

CMS Tape Label Processingc.ciuiiiiiininnenannnn... 148

Chapter 11. Handling Interruptionsc00eeeeuen. 149

Chapter 12. Managing CMS Storagecv0eueeeeennn 151

GETMAIN Free Storage Management 151
The STRINIT Macrocouuttiinuneiiiiinieennnnnn 151
Releasing Storagec..iii i, 153

DMSFRE Free Storage Management0ccuouvun.. 154
The DMSFREE Macroc.iiiinnnnnnnnnnnnn 154
Allocating User Free Storage uiiinn... 159
Allocating Nucleus Free Storage 159
Releasing Storagec.ciiuiinteien it 160
The DMSFRET Macroiiiiiiinnnnnenennnnnnns 160
CMS Page Management e 161

DMSFRE Service Routinesoiiiiinneennnnnnennnnn. 162
The DMSFRES Macrociuiniiiiinneennnnnnnn 162

Storage Protection Keyscoiuiiinniinnnennnnnnnnnnn. 164
The SET KEYPROTECT Command 164

CMS Handling of PSW Keyst iinnnnnnnn.. 165
The DMSKEY Macrocciiiiiimeniiinnennnnn. 166
The DMSEXS Macrocoiiiittnniiiennnennnnnnns 167

CP Handling For Saved Systems e e 168
Effects on CMS i e e e 169
Restrictions on CMS 169
Overhead i e 170

Error Codes From DMSFRES, DMSFREE, and DMSFRET 170

Chapter 13. Simulating Non-CMS Environments 171

OS Access Method Support 171

CMS Support for the Virtual Storage Access Method 172
Creating the DOSCB Chain iuiiunonn. 172
Executing an AMSERV Function 173
Executing a VSAM Function fora VSE User 174
Executing a VSAM Function foran OS User 176

Simulating an OS Environment under CMS 180
TSO Service Routine Support0uiiiiineennn.. 181
CMS Simulation of OS Control Block Functions 183
Operating System Simulation Routines 183
Command Flow of Commands Involving OS Access 193
OS Access Method Modules--Logic Description 195
Routines Common to All of DMSROS 200

Simulating a VSE Environment Under CMS 201
Initializing VSE and Processing VSE System Control Commands .. 201
Setting or Resetting System Environment Options 203
Process CMS/DOS Open and Close Functions 205
Contents of the CMSBAM DCSS 208

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Contents Vil

Restricted Materials of IBM
Licensed Materials — Property of IBM

Process CMS/DOS Execution-Related Control Commands 210
Simulate VSE SVC Functionsccuiiiiinn... 211
Process CMS/DOS Service Commands 225
Terminate Processing the CMS/DOS Environment 225
Chapter 14. Performing Miscellaneous CMS Functions 227
CMS Batch Facilitycuiiiiiiiniiiiiiiinnnnn... 227
General Operation of DMSBTB , 227
General Operation of DMSBTP 0iiiiiunnn.. 228
Other CMS Modules Modified in CMS Batch 231
EXEC 2 and System Product Interpreter Processing 232
DM S E XL .ottt e 232
DMSEXE ... e 234
READSUB/READLAB ... i iiiin 236
Line Execution00 iiiiiiinmnninnennnnnnn. 236
Assignment Processing, 237
DM SREX .. e 239

Part 3: CMS Directorycciteeeeeeaea.. 241

Chapter 15. Module Entry Point Directory 243
Part 4: CMS Diagnostic Aids it e e 275
Chapter 16. Supported Devicesittiiiiiennans 277
Chapter 17. DMSFREX ErrorCodes 000ttt vnnanns 279
Error Codes from DMSFREE, DMSFRES, and DMSFRET 279
Chapter 18. Abend Processingceeeteevencnoeean 281
Abend Exit Routine Processing oo, 281
CMS Abend Recoverycoiiiiiniiiiinnneeenans 282
Unrecoverable Termination-The Halt Option of DMSERR 284
Appendixest
Appendix A. CMS MacroLibrary 0., 291
Appendix B. CMS/DOS Macro Librarycc00veun.. 295
Appendix C. CMS/DOS Support Modules 297
Summary of Changesc.ooueiteeeetnncesnsnnnns 299
Glossary of Terms and Abbreviations 305
Bibliographyi ittt ittt toietanstoinaneos 307
Prerequisite Publication 307
Corequisite Publication00ttt 307
Supplementary Publications 308
Miscellaneous Information 308

viil System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

o=

Restricted Materials of IBM
Licensed Materials — Property of IBM

Index

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

oooooooooooooooooo

Contents

1x

‘ Restricted Materials of IBM
Licensed Materials — Property of IBM

X System Logic and Problem Determination (CMS) L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials — Property of IBM

Figures

18.
19.
20.

21.

{
‘ 23.
24.

25,

26.
27.
28.
29.
30.

31.
32.

(k ' 33.

© P N0 o

Module Flow for the VM/SP System Product Editor 6
File System for an 800-Byte Record on Disk 8
CMS Storage Map 1ttt et 20
CMS Storage Map 2 ... oottt ettt ettt 21
CMS Storage Map 8 ittt e 22
Simulated OS Supervisor Calls 28
An Overview of the Functional Areas of CMS 58
Details of CMS System Functions 59
SVC 202 High-Order Byte Values of Register1 79
CMS Command Processingouviiiiiinnnnneennnnnn 86
SVC 202 Processinguuiiei e, 87
Register Contents When Called Routine Starts 88
PSW Fields When Called Routine Starts 89
How 800-Byte CMS File Records are Chained Together 116
Format of a File Status Table Block - Format of a File Status

Table. (for 800-Byte Disk Format) 117
Format of the First Chain Link and Nth Chain Links 118
Arrangement of Fixed-Length Records and Variable-Length

Recordsin Files i, 119
Structure of the Master File Directory 121
Disk Storage Allocation Using the QMSK Data Block 122
How 512-, 1K-, 2K-, or 4K-Byte CMS File Records are Chained
Together e 126
Format of a File Status Table Block - Format of a File Status

Table. (For 512-, 1K-, 2K-, 4K-Byte Disk Format) 127
Format of Level 3 Pointer Block Fixed-Length Record File 129
Format of Level 2 Pointer Block Variable-Length Record File .. 130
File System for 512-, 1K-, 2K-, or 4K-Byte Record on Disk 135
Flow of Control for Unit Record I/O Processing 142
Relationship in Storage between the CMS Interface Module

DMSAMS, the CMSAMS DCSS, and the CMSVSAM DCSS 173
The Relationship in Storage between the User Program, the

CMSDOS DCSS, and the CMSVSAMDCSS 175

Relationship in Storage between the User Program, OS
Simulation and Interface Routines, CMSDOS DCSS, and

CMSVSAM DCSS e e 177
Simulated OS Supervisor Calls, 181
CMS Modules Handling SVC Functions Supported in CMS/DOS 213
SVC Support Routines and their Operation 214
Devices Supported by a CMS Virtual Machine 277
CMS Abend Codes oiiiini it i i 284

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Figures X1

xi1

System Logic and Problem Determination (CMS)

Restricted Materials of IBM
Licensed Materials — Property of IBM

1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

‘ Part 1: Introduction to CMS

This part contains the following information:
e Conversational Monitor System (CMS)
e Interrupt Handling in CMS
{ e Functional Information
e 0S Macro Simulation Under CMS

e VSE Support Under CMS.

1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Part 1: Introduction to CMS 1

Restricted Materials of IBM
Licensed Materials — Property of IBM

2 System Logic and Problem Determination (CMS) L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

Chapter 1. Conversational Monitor System (CMS)

The Conversational Monitor System (CMS), the major subsystem of VM/SP,
provides a comprehensive set of conversational facilities to the user.
Several copies of CMS may run under CP, thus providing several users with
their own time sharing systems. CMS is designed specifically for the
VM/SP virtual machine environment.

Each copy of CMS supports a single user. This means that the storage area
contains only the data pertaining to that user. Likewise, each CMS user
has his own machine configuration and his own files. Debugging is simpler
because the files and storage area are protected from other users.

Programs can be debugged from the terminal. The terminal is used as a
printer to examine limited amounts of data. After examining program data,
the terminal user can enter commands on the terminal that alters the
program. This is the most common method used to debug programs that
run in CMS.

CMS, operating with the VM/SP Control Program, is a time sharing system
suitable for problem solving, program development, and general work. It
includes several programming language processors, file manipulation
commands, utilities, and debugging aids. Additionally, CMS provides
facilities to simplify the operation of other operating systems in a virtual
machine environment when controlled from a remote terminal. For
example, CMS creates and modifies job streams and analyzes virtual printer
output.

Part of the CMS environment is related to the virtual machine environment
created by CP. Each user is completely isolated from the activities of all
other users, and each machine where CMS executes has virtual storage
available to it and virtual storage managed for it by CP. The CP commands
are recognized by CMS. For example, the commands allow messages to be
sent to the operator or to other users and allow virtual devices to be
dynamically detached from the virtual machine configuration.

The CMS Command Language

The CMS command language offers terminal users a wide range of
functions. It supports a variety of programming languages, service
functions, file manipulation, program execution control, and general system
control. For detailed information on CMS commands, refer to the VM/SP
CMS Command Reference.

.Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 1. Conversational Monitor System (CMS) 3

Restricted Materials of IBM
Licensed Materials — Property of IBM

Figure 10 on page 86 describes CMS command processing. ~

The File System

The Conversational Monitor System interfaces with virtual disks, tapes,
and unit record equipment. The CMS residence device is a read-only,
shared system disk. Permanent user files may be accessed from up to 25
active disks. CMS controls the logical access to these virtual disks, while
CP facilities manage the device sharing and virtual-to-real mapping.

User files in CMS are identified with three designators. The first is
filename. The second is filetype. The filetype may imply specific file
characteristics to the CMS file management routines. The third is filemode.
The filemode describes the location and access mode of the file.

The compilers available under CMS default to particular input filetypes,
such as ASSEMBLE, but the file manipulation commands and listing
commands do not default to a specific filetype. Files of a particular filetype
form a logical data library for a user. For example, the collection of all
COBOL source files, all object (TEXT) decks, or all EXEC procedures. This
allows selective handling of specific groups of files with minimum input by
the user.

User files can be created and changed directly from the terminal with the
VM/SP System Product Editor. The VM/SP System Product Editor
provides extensive context editing services. File characteristics such as
record length, record format, tab locations, and serialization options can be
specified. The VM/SP System Product Editor also provides fullscreen
support for 3270 display stations.

The major highlights of this editor include:

Multiple views of the same or different files

Selective column viewing p
Automatic wrapping of lines larger than the screen L
Ability to issue selected commands directly from the displayed line
Ability to define screen format

Extended string search functions

Column pointing for editing within a line

Ability to edit members contained in a CMS library

Ability to manipulate files containing Double-Byte Character Set

(DBCS) strings.

o & 0 06 06 6 0 0 0

Additionally, the VM/SP System Product Editor provides language
expansions and flexibility through the System Product Interpreter and the
EXEC 2 processor. Figure 1 on page 6 describes the modules that perform
the processing for the System Product Editor.

CMS automatically allocates compiler work files at the beginning of

command execution on whichever active disk has the greatest amount of /
available space, and then CMS deallocates them at completion. Compiler N
object decks and listing files are normally allocated on the same disk as the

4 System Logic and Problem Determination (CMS) 1L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

A,

Restricted Materials of IBM
Licensed Materials — Property of IBM

input source file or on the primary read/write disk, and they are identified
by combining the input filename with the filetypes TEXT and LISTING.
These disk locations may be overridden by the user.

CMS disk files contain records stored on disks as 512-, 800-, 1024-, 2048-, or
4096-byte records. For disks with a blocksize of 800 bytes, a single user file
is limited to a maximum of 65,533 records and must reside on one virtual
disk. The file management system limits the number of files on the virtual
disk to 3400. For disks with a blocksize of 512, 1024, 2048, and 4096 bytes, a
single user file is limited to a maximum of 23-1 CMS blocks and must reside
on one virtual disk. The maximum number of data blocks available in a
variable format file on a 512-byte blocksize minidisk is about 15 times less
than 2%-1. This number is the maximum number of data blocks that can be
accessed by the CMS file system due to the 5 level tree structure. The
maximum number of files on any one disk is limited by the file management
system to 23-1. However, the actual number of files is limited by the
available disk space and the size of the user files.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 1. Conversational Monitor System (CMS) 5

Licensed Materials — Property of IBM

Restricted Materials of IBM

DMSXUP & DMSXIN DMSXBG Je— | DMSXWws
Load; process GET
Ur%iz::?n command options ;(nEtPlgoint terminal’s
P 9 Set up Defaults Y characteristics
DMSXDS DMSXMB DMSXTFE |
1
Read 0S MEMBER option| | Filetype
data set processing | descriptor table I
DMSXMA j#——| DMSXDC |- DMSXSU <«—| DMSXI0 le—y DMSXSC
Macro e | .
. Decode Editing . Logical screen
Processing g Terminal 1/0 °
{calls EXEC 2) Subcommands Supervisor | | handiing
1
]] |
! | DMSXSD
DMSXFL |: _ DMSXTB_ _'] DMSXER | Build logical
Subcommand | | and physical
entry point to | Subcommand Format error I screens
STATE/POINT/ 1 table message
READ/WRITE |
files in storage | I
e . DMSXPX
_____ . I._.___.____..._JV_._________._l |
DMSXFC I | DMSXCG DMSXCM DMSXCT I P nand
| | | I processing
Editing functions | | * See Note 1 STACK, CMS, CP * See Note 2 | |
[l ! [
I | | | "DMSXSS
| | | |
DMSXFD | | DMSXGT DMSXPT | | sos
[| | |
Editing functions | GET PUT(D) |
| ! — - —
| I L SCREEN SUPPORT
| — - —
| l
DMSXST | : DMSXMC DMSXMD DMSXML DMSXPO |
BACKWARD,
CFIRST, CLAST, INPUT, ADD, . |
nandting | ! I |cLocaTe, REPLACE, BOTTOM, DOWN,| | NP
Storage handling | - | |LEFT, mIGHT, CREPLACE FORWARD, |
SET VERIFY CINSERT LOCATE, NEXT, |
| | TOP, UP, FIND
| I family |
[I
DMSXCN | | DMSXSE DMSXSF DMSXTR DMSXTE |
|
Arrange ! half hal |
compound | | | SET e hd EXTRACT e tmaeT | 1
characters | | |
| | |
L _—_____ J [
BASIC FUNCTIONS | DMSXQR DMSXED DMSXMS DMSXRE :
|
QUERY, XEDIT SORT RENUM |
TRANSFER |
I
SUBCOMMANDS

*Note 1.

*Note 2.

REPEAT, RESET, RESTORE, SAVE, SET POINT, SET SCREEN, SET TERMINAL, TYPE.

6 System Logic and Problem Determination (CMS)

Figure 1. Module Flow for the VM/SP System Product Editor

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

CDELETE, CHANGE, COMPRESS, COPY, COUNT, COVERLAY, DELETE, DUPLICATE, EXPAND, LOWERCAS,
MERGE, MOVE, OVERLAY, RECOVER, SHIFT, UPPERCAS.

CMSG, CURSOR, EMSG, FILE, LPREFIX, MSG, PFILE, PRESERVE, PSAVE, PURGE, READ, REFRESH, RENUM,

Restricted Materials of IBM
Licensed Materials — Property of IBM |

P,

All CMS disk files are written as 512-, 800-, 1024-, 2048-, or 4096-byte records
chained together by a specific master file entry that is stored in a table
called the file directory. A separate file directory is kept for, and on, each
virtual disk. The data records may be discontiguous, and they are allocated
and deallocated automatically. A subset of the file directory (called the
user file directory) is made resident in virtual storage when the disk
directory is made available to CMS. It is updated on the virtual disk at
least once per CMS command if the status of any file on that disk has been
changed.

Virtual disks may be shared by CMS users. The capability is provided by
VM/SP to all virtual machines, although a user interface is directly
available in CMS commands. Specific files may be spooled between virtual
machines to accomplish file transfer between users. Commands allow such
file manipulations as writing from an entire disk or from a specific disk file
to a tape, printer, punch, or the terminal. Other commands write from a
tape or virtual card reader to disk, rename files, copy files, and erase files.
Special macro libraries and text or program libraries are provided by CMS,
and special commands are provided to update and use them. CMS files can
be written onto and restored from unlabeled tapes via CMS commands.

Caution: Multiple write access under CMS can produce unpredictable
results.

Problem programs that execute in CMS can create files on unlabeled tapes
in any record and block size. The record format can be fixed, variable, or
undefined. Figure 2 on page 8 describes the file system for an 800-byte
record on disk. Figure 24 on page 135 shows the file system for 512-, 1K-,
2K-, and 4K-byte records on disk.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 1. Conversational Monitor System (CMS) 7

Restricted Materials of IBM
Licensed Materials — Property of IBM

! | isk Stora
DMSNUC Area of Storage I Free Storage Disl ge
AFT | |
‘] -
| Pointer to |
current
I chain link
ADTCLB
Nth L
Copy of BA Chain Link
FSTB AFTD
AFTPFST Mth Data Bik
| ousne M+1 Data Blk
M+2 Data BIk
\Data Block M+2
Pointer to current REC1 | REC2
data block
ADT Nth
AFTSECT ADTA
AFT
ADTSECT ADTB continued
ADTC)
‘ Data Data Data Data
ABTD f Block | | Block { | Block | | Block
ADTE FSTB3 M M+1 M+2

ADTMFDA | ADTFDA
ADTQQM | ADTMSK

Header

ADTG
ADTS

For Read/Write
== disks only == A

QMSK

ile Name| File Type

e

There is one FST
FST2p for each file

ADTY
ADTZ

QQMSK

F——— e === —

Figure 2. File System for an 800-Byte Record on Disk

Program Development

The Conversational Monitor System includes commands to create, compile,
modify, and correct source programs; to build test files; to execute test
programs; and to debug from the terminal. The commands of CMS are
especially useful for OS and VSE program development, but the commands
also may be used in combination with other operating systems to provide a
virtual machine program development tool.

CMS uses the OS and VSE compilers via interface modules. The compilers
themselves normally are not changed. To provide suitable interfaces, CMS
includes a certain degree of OS and VSE simulation. For OS, the
sequential, direct, and partitioned access methods are logically simulated.
The data records are physically kept in the chained fixed-length blocks, and
they are processed internally to simulate OS data set characteristics. For
VSE, the sequential access method is supported. CMS supports VSAM
catalogs, data spaces, and files on OS and DOS disks using the Access
Method Services portion of VSE/VSAM. OS supervisor call functions such
as GETMAIN/FREEMAIN and TIME are simulated.

8 System Logic and Problem Determination (CMS) 1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

For more information, about simulation restrictions in CMS see
Chapter 4, “OS Simulation Under CMS” on page 27 and Chapter 5, “VSE
Support Under CMS” on page 53.

1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Chapter 1. Conversational Monitor System (CMS)

9

Restricted Materials of IBM
Licensed Materials — Property of IBM

10 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

Chapter 2. Interrupt Handling in CMS

CMS receives virtual SVC, input/output, machine, program, and external
interruptions and passes control to the appropriate handling program.

SVC Interruptions

The Conversational Monitor System is SVC (supervisor call) driven. SVC
interruptions are handled by the DMSITS resident routines. Two types of
SVCs are processed by DMSITS: internal linkage SVC 202 and 203, and
any other SVCs. The internal linkage SVC is issued by the command and
function programs of the system when they require the services of other
CMS programs. (Commands entered by the user from the terminal are
converted to the internal linkage SVC by DMSINT). The OS SVCs are
issued by the processing programs (for example, the Assembler).

Internal Linkage SVCs

When DMSITS receives control as a result of an internal linkage SVC (202
or 203), it saves the contents of the general registers, floating-point
registers, and the SVC old PSW, establishes the normal and error return
addresses, and passes control to the specified routine. (The routine is
specified by the first 8 bytes of the parameter list whose address is passed in
register 1 for SVC 202 or by a halfword code following SVC 203.)

For SVC 202, if the called program is not found in the internal function
table of nucleus (resident) routines, DMSITS tries to call in a module (a
CMS file with filetype MODULE) of this name via the LOADMOD

command.

If the program was not found in the function table, nor was a module
successfully loaded, DMSITS returns an error code to the caller.

To return from the called program, DMSITS restores the calling program’s

registers, and makes the appropriate normal or error return as defined by
the calling program.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 2. Interrupt Handling in CMS 11

Restricted Materials of IBM
Licensed Materials — Property of IBM

Other SVCs

The general approach taken by DMSITS to process other SVCs supported
under CMS is essentially the same as that taken for the internal linkage
SVCs. However, rather than passing control to a command or function
program, as is the case with the internal linkage SVC, DMSITS passes
control to the appropriate routine. The SVC number determines the
appropriate routine.

In handling non-CMS SVC calls, DMSITS refers first to a user-defined SVC
table (if one has been set up by the DMSHDS program). If the user-defined
SVC table is present, any SVC number (other than 202 or 208) is looked for
in that table. If it is found, control is transferred to the routine at the
specified address.

If the SVC number is not found in the user-defined SVC table (or if the
table is nonexistent), DMSITS either transfers control to the CMSDOS
shared segment (if SET DOS ON has been issued) or DMSITS searches the
standard system table (contained in DMSSVT) of OS calls for that SVC
number. If the SVC number is found, control is transferred to the
corresponding address in the usual manner. If the SVC is not in either
table, the supervisor call is treated as an abend call.

The DMSHDS initialization programs sets up the user-defined SVC table.
Then, the user can provide his own SVC routines.

Input/Output Interruptions

All input/output interruptions are received by the I/O interrupt handler,
DMSITI. DMSITI saves the I/O old PSW and the CSW (channel status
word). It then determines the status and requirements of the device causing
the interruption and passes control to the routine that processes
interruptions from that device.

DMSITI first scans CONSOLE function device entries (CDEV) until it finds
one containing the device address that is the same as the interrupting
device. If a matching device is found and a CONSOLE ‘path’ is waiting for
an interrupt:

1. The wait field is cleared in the device entry,
2. The wait bit is turned off in the I/O old PSW, and

3. DMSITI returns control to the CONSOLE service by loading the I/O old
PSW.

If no path is waiting, the interrupt is considered unsolicited and DMSITI
checks for a user-defined interrupt handling routine. If DMSITI finds one,
it passes control to the routine. Otherwise, if the device also exists in a
console CDEV entry, DMSITI checks if any I/O was done and if an EXIT
routine is specified. If an EXIT can be called, DMSITI turns off the PSW
wait bit, loads the PSW, and exits.

12 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

\k_ v

Restricted Materials of IBM
Licensed Materials — Property of IBM

If no console path performed I/O or no exits were called, the interrupt for
the virtual console is passed to the system routine (DMSCITA) found in the
CMS device table (DEVTAB). For dialed devices, the unsolicited interrupt
is ignored. If fullscreen CMS is on, attention interrupts for the virtual
console are passed to a fullscreen read routine instead of DMSCITA.

The device table (DEVTAB) contains an entry for each device in the
system. Each entry for a particular device contains, among other things,
the address of the program that processes interruptions from that device.

When the appropriate interrupt handling routine completes its processing,
it returns control to DMSITI. At this point, DMSITI tests the wait bit in
the saved I/O old PSW. If this bit is off, the interruption was probably
caused by a terminal (asynchronous) I/O operation. DMSITI then returns
control to the interrupted program by loading the I/O old PSW.

If the wait bit is on, the interruption was probably caused by a non-terminal
(synchronous) I/O operation. The program that initiated the operation most
likely called the DMSIOW function routine to wait for a particular type of
interruption (usually a device end). In this case, DMSITI checks the
pseudo-wait bit in the device table entry for the interruption device. If this
bit is off, the system is waiting for some event other than the interruption
from the interrupting device. DMSITI returns to the wait state by loading
the saved I/O old PSW. (This PSW has the wait bit on.)

If the pseudo-wait bit is on, the system is waiting for an interruption from
that particular device. If this interruption is not the one being waited for,
DMSITI loads the saved I/O old PSW. This again places the machine in the
wait state. Thus, the program that is waiting for a particular interruption
is kept waiting until that interruption occurs.

If the interruption is the one being waited for, DMSITI resets both the
pseudo-wait bit in the device table entry and the wait bit in the I/O old
PSW. It then loads the PSW. This causes control to be returned to the
DMSIOW function routine, which, in turn, returns control to the program
that called it to wait for the interruption.

Terminal Interruptions

Terminal input/output interruptions are handled by the DMSCIT module.
All interruptions other than those containing device end, channel end,
attention, or unit exception status are ignored. If device end status is
present with attention and a write CCW was terminated, its buffer is
unstacked. An attention interrupt causes a read to be issued to the
terminal, unless attention exits have been queued via the STAX macro.
The attention exit with the highest priority is given control at each
attention until the queue is exhausted; then a read is issued.

Device end status indicates that the last I/O operation has been completed.

If the last I/O operation was a write, the line is deleted from the output
buffer and the next write, if any, is started. If the last I/O operation was a

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 2. Interrupt Handling in CMS 13

| Restricted Materials of IBM
Licensed Materials — Property of IBM

normal read, the buffer is put on the finished read list and the next
operation is started.

If the read is caused by an attention interrupt, the line is first checked to

| see if it is an immediate command (user-defined or built-in). If it is a
user-defined immediate command, control is passed to a user specified exit,
if one exists. Upon completion the exit returns to DMSCIT. Ifitis a
built-in immediate command (HX, for example), appropriate processing is
performed by DMSCIT.

Unit exception indicates a canceled read. The read is reissued, unless it
had been issued with ATTREST =NO, in which case unit exception is
treated as a device end.

Reader/Punch/Printer Interruptions

Interruptions from these devices are handled by the routines that actually
issue the corresponding I/O operations. When an interruption from any of
these devices occurs, control passes to DMSITI. The DMSITI passes
control to DMSIOW, which returns control to the routine that issued the
1/O operation. This routine can then analyze the cause of the interruption.

User-Controlled Device Interruptions

Interrupts from devices under user control are serviced the same as CMS
devices except that DMSIOW and DMSITI manipulate a user-created device
table, and DMSITI passes control to any user-written interrupt processing
routine that is specified in the user device table. Otherwise, the processing
program regains control directly.

e Users may now specify the exit parameter for the OPEN function of the
CONSOLE macro instruction to handle unsolicited device interrupts. If
this is specified, users should NOT define an interruption routine via
the HNDINT macro for the same device. Use of the CONSOLE and
HNDINT macros should be mutually exclusive. However, if for some
reason there is both a CONSOLE exit and an HNDINT routine for the
same device, the HNDINT routine overrides a CONSOLE exit only in
the case of an unsolicited interrupt.

CONSOLE supports multiple applications for a single device whereas
HNDINT only allows one application to handle all interrupts from a
specific device. Because it is difficult to tell what application is doing
1/0 last, CONSOLE helps CMS keep track of what application is doing
1/O or what application handled interrupts last.

| o CONSOLE OPEN with EXIT supersedes an HNDINT routine when the
l interrupt is solicited. Therefore, if users want to do I/O to a 3270 device,
| they should use the CONSOLE macro instead of the HNDINT macro.

14 System Logic and Problem Determination (CMS) L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

Program Interruptions

The program interruption handler, DMSITP, receives control when a
program interruption occurs. When DMSITP gets control, it stores the
program old PSW and the contents of registers 14, 15, 0, 1, and 2 into the
program interruption element (PIE). (The routine that handles the SPIE
macro instruction has already placed the address of the program
interruption control area (PICA) into PIE.) DMSITP then determines
whether or not the event that caused the interruption was one of those
selected by a SPIE macro instruction. If it was not, DMSITP passes control
to the DMSABN abend recovery routine.

If the cause of the interruption was one of those selected in a SPIE macro
instruction, DMSITP picks up the exit routine address from the PICA and
passes control to the exit routine. Upon return from the exit routine,
DMSITP returns to the interrupted program by loading the original
program check old PSW. The address field of the PSW was modified by a
SPIE exit routine in the PIE.

External Interruptions

An external interruption causes control to be passed to the external
interrupt handler DMSITE. If CMS IUCV support is active in the virtual
machine and an IUCV external interrupt occurs, control is passed to the
user exit specified on the HNDIUCV or CMSIUCYV macro. If the user has
issued the HNDEXT macro to trap external interrupts, DMSITE passes
control to the user’s exit routine.

If the interrupt was caused by the timer, DMSITE resets the timer and
types the BLIP character at the terminal. The standard BLIP timer setting
is two seconds, and the standard BLIP character is uppercase, followed by
the lowercase (it moves the typeball without printing). Otherwise, control
is passed to the DEBUG routine.

Machine Check Interruptions

Hard machine check interruptions on the real processor are not reflected to
a CMS virtual user by CP. A message prints on the console indicating the
failure. The user is then disabled and must IPL. CMS again in order to
continue.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 2. Interrupt Handling in CMS 15

Restricted Materials of IBM
Licensed Materials — Property of IBM

16 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials — Property of IBM

Chapter 3. Functional Information

Register Usage

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

The most important thing to remember about CMS, from a debugging
standpoint, is that it is a one-user system. The supervisor manages only
one user and keeps track of only one user’s file and storage chains. Thus,
everything in a dump of a particular machine relates only to that virtual
machine’s activity.

You should be familiar with register usage, save area structuring, and
control block relationships before attempting to debug or alter CMS.

When a CMS routine is called, R1 must point to a valid parameter list
(PLIST) for that program. On return, RO may or may not contain
meaningful information. For example, on return from a call to FILEDEF
with no change, RO contains a negative address if a new FCB (file control
block) has been set up; otherwise, RO contains a positive address of the
already existing FCB. R15 contains the return code, if any. The use of
registers 0 and 2 through 11 varies.

On entry to a command or routine called by SVC 202 the following are in
effect:

Register Contents

0 The address of EPLIST, if available

1 The address of the PLIST supplied by the caller

12 The address entry point of the called routine

13 The address of a work area (12 doublewords) supplied by SVCINT
- the SVC handler

14 The return address to the SVC handler

15 The entry point (same as register 12)

On return from a routine, register 15 contains:

Return Code Meaning

0 No error occurred
<0 Called routine not found
>0 Error occurred

Chapter 3. Functional Information 17

Restricted Materials of IBM
Licensed Materials — Property of IBM

If a CMS routine is called by an SVC 202, CMS saves and restores registers
0 through 14.

Most CMS routines use register 12 as a base register.

Structure of CMS Storage

Figure 3 on page 20, Figure 4 on page 21, and Figure 5 on page 22
describes how CMS uses its virtual storage. The pointers indicated
(MAINSTRT, MAINHIGH, and FREELOWE) are all found in NUCON (the
nucleus constant area).

The sections of CMS storage have the the following uses:

DMSNUC (X'00000' to ANUCEND).
This is the nucleus constant area. It contains pointers, flags, and other
data updated by the various system routines.

Low-Storage DMSFREE User Free Storage Area (ANUCEND to
X'0E000').
This area is a free storage area where user requests to DMSFREE are
allocated.

Transient Program Area (X'0E000' to X'10000°').
Since it is not essential to keep all nucleus functions resident in
storage all the time, some of them are made “transient.” This means
that when nucleus functions are needed, they are loaded from the disk
into the transient program area. Such programs may not be longer
than two pages because that is the size of the transient area. (A page is
4096 bytes of virtual storage.) All transient routines must be serially
reusable since they are not read in each time they are needed.

Low-Storage DMSFREE Nucleus Free Storage Area (X'10000' to
X20000°').
This area is a free storage area where nucleus requests to DMSFREE
are allocated. The top part of this area contains the dummy
hyperblocks for the S and Y disks. Each block is 48 bytes long. This
area may be followed by the file status tables for the S2 filemode files of
the system disk.

If there is enough room, the FREETAB table also occupies this area,
just below the file status tables, if they are there. Each entry in the

FREETAB table is one byte long. Each byte represents one page (4K
or 4096 bytes) of defined storage.

User Program Area (X'20000' to Loader Tables or CMS Nucleus,
whichever has the lowest value).
User programs are loaded into this area by the LOAD command for text
decks or by the LOADMOD command for modules. Storage allocated
by means of the GETMAIN macro instruction is taken from this area,
starting from the high address of the user program. In addition, this
storage area can be allocated from the top down by DMSFREE, if there

18 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

e

Restricted Materials of IBM
Licensed Materials — Property of IBM

is not enough storage available in the low DMSFREE storage area.
Thus, the usable size of the user program area is reduced by the
amount of free storage that has been allocated from it by DMSFREE.

Loader Tables (Top pages of storage).
The top of storage is occupied by the loader tables, which are required
by the CMS loader. These tables indicate which modules are currently
loaded in the user program area (and the transient program area after a
LOAD command). The size of the loader tables can be varied by the
SET LDRTBLS command. However, to successfully change the size of
the loader tables, the SET LDRTBLS command should be issued
immediately after IPL. If SET LDRTBLS is not issued immediately,
high storage may be fragmented.

CMS Nucleus.
The CMS nucleus contains the reentrant code for the CMS nucleus
routines and the system S-STAT and Y-STAT. If there is not sufficient
room to contain the S-STAT in this area, it is placed in low DMSFREE
nucleus storage. If there is not sufficient room to contain the Y-STAT
in this area, the Y-disk is accessed using the ACCESS command.

If the size of the user’s virtual machine is defined below the end of the CMS
nucleus (refer to label NUCSIGMA in Figure 4 on page 21), it is not
possible to IPL by device name. You cannot IPL by device name because
the CMS nucleus is too large to be loaded into the user’s virtual storage.
Therefore, the user can only IPL by the system name (such as, IPL. CMS).
The loader table is placed immediately below the CMS nucleus.

On the other hand, if the size of the user’s virtual machine is defined above
the end of the CMS nucleus (see Figure 4 on page 21 and Figure 5 on
page 22), the user may IPL by either device name or system name.

IPLing by device name:

The S-STAT, Y-STAT, and the loader table are placed above the CMS
nucleus. If there is not enough room to contain the S-STAT above the CMS
nucleus (NUCSIGMA), it is placed in low storage. Likewise, if there is not
sufficient room for the loader table above the CMS nucleus NUCSIGMA),
the loader table is placed below the nucleus. Any leftover free space above
the nucleus is placed on the high DMSFREE chain.

IPLing by system name:

The shared copy of the S-STAT, Y-STAT and nucleus is used. If there is
sufficient room, the loader table is placed above the S-STAT and Y-STAT
(NUCOMEGA). If there is not sufficient room to place the loader table
above the S-STAT and Y-STAT, the loader table is placed below the
nucleus. Any leftover free space above the S-STAT and Y-STAT
(NUCOMEGA) is placed on the high DMSFREE chain.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 3. Functional Information 19

Restricted Materials of IBM
Licensed Materials — Property of IBM

VIRTUAL STORAGE e
NUCOMEGA T L
§-STAT and Y-STAT N
(Shalred)
NUCSIGMA
CMS Nucleus J
, & (Shared) &
OS simulation, EXEC, EXEC 2, REXX, XEDIT, CMS
interrupt handlers, file system, free storage management,
loader, device /0, debug.
NUCALPHA Storage Key = X0’
END OF STORAGE
VMSIZE System Loader Table
(Size determined by set LDRTBLS command)
Storage Key = X'F’
IDMSFREE requests when no more low storage is available
Storage Key = X‘E’ or X'F’
FREELOWE Ho — — — — — — — — — — —

Unused portion of User Program Area

3

Storage Key = X'E’ U
MAINHIGH |4 — — — — — — — 2TV] Pr

GETMAIN requests
Storage Key = X‘E’

—if

CONTROL BLOCKS IN FREE STORAGE —1

l DECB JLLDRST] L AFT 1' ADT]

MAINSTRT b — — — — — o — —]
The User’s Program ICMSSAVE] I CMSCBW [FSTB _I
(Program is located via the LOAD command)
Storage Key = X‘E’
X‘20000' e
Low Storage DMSFREE Nucleus Free Storage {
Area, The upper part of this area may contain the N
S-STAT, followed by the FREETAB, if there is)
enough room.
Storage Key = X‘F’
X’10000" -
Transient Program Area
Storage Key = X‘E’
X'E000’ hlindd
Low Storage DMSFREE User Free Storage Area
Storage Key = X'E’
ANUCEND ge Tov /
DMSNUC \\)
System Control Blocks, flags, constants, and pointers. h
X0 Storage Key = X‘F’ *

* The page starting at DMSNUCU containing OPSECT, SUBSECT,
DBGSECT, DMSERL, TSOBLKS, USERSECT, and free storage
has a Storage Key = X‘E’.

Figure 3. CMS Storage Map 1. CMS virtual storage usage when the CMS nucleus is larger than the !
user’s virtual storage. In this case, you must IPL by system name (VMSIZE is less than
NUCSIGMA). The arrows indicate that MAINHIGH is extended upward and FREELOWE is
extended downward.

20 System Logic and Problem Determination (CMS) 1,Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials — Property of IBM

VIRTUAL STORAGE

NUCOMEGA
(VMSIZE)

|
S-STAT and Y~STAT
(Shared — if IPL'd by system name)

NUCSIGMA

[L

CMS Nucleus
(Shared — if IPL’d by system name)

:OS simulation, EXEC, EXEC 2, REXX, XEDIT, CMS b
interrupt handlers, file system, free storage managemant,?
loader, device 1/0, debug.

97

Storage Key = X‘0’

‘ NUCALPHA

System Loader Table
(Size determined by set LDRTBLS command)

Storage Key = X'F’

FREELOWE

fL

MAINHIGH

MAINSTRT

X’20000

DMSFREE requests when no more low storage is available

Storage Key = X’E’ or X'F’

Unused portion of User Program Area

Storage Key = X'E1
GETMAIN requests
Storage Key = X‘E’

The User’'s Program
(Program is located via the LOAD command)

Storage Key = X‘E’

X’10000

Low Storage DMSFREE Nucleus Free Storage
Area. The upper part of this area may contain the
S-STAT, followed by the FREETAB, if there is
enough room.

Storage Key = X'F’

Transient Program Area

Storage Key = X'E’

X‘E000’

Low Storage DMSFREE User Free Storage Area

Storage Key = X'E’

ANUCEND

DMSNUC
System Control Blocks, flags, constants, and pointers

Storage Key = X‘F’ *

. X0’

=

* The page starting at DMSNUCU containing OPSECT, SUBSECT,
DBGSECT, DMSERL, TSOBLKS, USERSECT, and free storage
has a Storage Key = X’E’.

U

» Progl
Area

CONTROL BLOCKS IN FREE STORAGE —-1

rDECB j [LDRST1 r AFT—” ADTj

lCMSSAVE1 I cMmscB]L FSTB J

gure 4. CMS Storage Map 2. Virtual storage usage when the user’s virtual storage is equal to the CMS

is insufficient room to place the loader table above S-STAT and Y-STAT. The arrows indicate
that MAINHIGH is extended upward and FREELOWE is extended downward.

LY20-0893-4

© Copyright IBM Corp. 1980, 1986

I stor

| nucleus. The user may IPL by system name or device. In addition, this figure shows where there
|

|

Chapter 3. Functional Information 21

VMSIZE

NUCOMEGA

NUCSIGMA

NUCALPHA

FREELOWE

MAINHIGH

MAINSTRT

X*20000"

X*10000

X'E000’

ANUCEND

X0 .

Figure 5.

VIRTUAL STORAGE

System Loader Table
(Size determined by set LDRTBLS command)

____________________ =
DMSFREE requests-

|
S-STAT and Y-STAT
(Shared — if IPL'd by system name)
|

[L

CMS Nucleus
(Shared — if IPL'd by system name)

> OS simulation, EXEC, EXEC 2, REXX, XEDIT, CMS b
interrupt handlers, file system, free storage management,
loader, device 1/0, debug.

{L

DMSFREE requests when no more low storage is available

Unused portion of User Program Area

GETMAIN requests

The User's Program
(Program is located via the LOAD command)

Low Storage DMSFREE Nucleus Free Storage
Area, The upper part of this area may contain the
S-STAT, followed by the FREETAB, if there is
enough room.

Transient Program Area

Low Storage DMSFREE User Free Storage Area

DMSNUC
System Control Blocks, flags, constants, and pointers

* The page starting at DMSNUCU containing OPSECT, SUBSECT,

DBGSECT, DMSERL, TSOBLKS, USERSECT, and free storage
has a Storage Kev = X‘E’.

Restricted Materials of IBM
Licensed Materials — Property of IBM

J/)
N
Storage Key = X'F’
Storage Key = X'E’ or X'F’
L
N
Storage Key = X‘0°
Storage Key = X’E’ or X'F’
Storage Key =X‘E"| | o8 CONTROL BLOCKS IN FREE STORAGE
Area
" | DECBj L LDRST I | AFT] I ot |
Storage Key = X‘E’
ICMSSAVE] | CMSCB] | FSTB—I
Storage Key = X‘E’
\
sl
Storage Key = X‘F"
Storage Key = X'E’
Storage Key = X‘E’
Ve
i
Storage Key = X'F* *
CMS Storage Map 3. CMS virtual storage usage when the user’s virtual storage is larger than
the CMS nucleus. The user may IPL by system name or device. In addition, this figure shows
where there is sufficient room to place the system loader table above S-STAT and Y-STAT. The
arrows indicate that MAINHIGH is extended upward and FREELOWE is extended downward.
// V
\.
L\;\ 4

22 System Logic and Problem Determination (CMS)

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

Structure of DMSNUC

DMSNUC is the portion of storage in a CMS virtual machine that contains
system control blocks, flags, constants, and pointers.

The CSECTs in DMSNUC contain only symbolic references. This means
that an update or modification to CMS, which changes a CSECT in
DMSNUC, does not automatically force all CMS modules to be recompiled.
Only those modules that refer to the area that was redefined must be
recompiled.

USERSECT (User Area)

The USERSECT CSECT defines space that is not used by CMS. A
modification or update to CMS can use the 18 fullwords defined for
USERSECT. There is a pointer (AUSER) in the NUCON area to the user
space.

DEVTAB (Device Table)

The DEVTAB CSECT is a table describing the devices available for the
CMS system. The table contains the following entries:

1 console
26 disks

1 reader
1 punch
1 printer
16 tapes

1 dummy.

You can change some existing entries in DEVTAB. Each device table entry
contains the following information:

Virtual device address

Device flags

Device types

Symbol device name

Address of the interrupt processing routine (for the console).

The virtual address of the console is defined at logon time. The ACCESS
command can dynamically alter the virtual address of the user disks in
DEVTAB. The virtual address of a tape can be reassigned to any of the
addresses given in DEVTAB (TAPO - TAPF) by using CMS commands
and/or macros. Changing the virtual addresses of the reader, printer, or
punch in DEVTAB has no effect.

L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 3. Functional Information 23

Restricted Materials of IBM
Licensed Materials — Property of IBM

- CMS Interface for Display Terminals

CMS has an interface allowing it to display large amounts of data in a very
rapid fashion. This interface for 3270 display terminals (also 3138, 3148, and
3158) is much faster and has less overhead than the normal write because it
displays up to 1760 characters in one operation, instead of issuing 22
individual writes of 80 characters each (that is one write per line on a
display terminal). Data displayed in the screen output area with this
interface is not placed in the console spool file.

Use the CONSOLE macro instruction to access CMS fullscreen console
services. The CONSOLE macro performs 3270 I/O operations, including
building the Channel Command Word (CCW), issuing the DIAGNOSE code
X'58' or SIO instruction, waiting for the I/O to complete, and checking any
error status from the device. Applications must construct a valid 3270 data
stream to write to the screen, and a 3270 data stream is returned when a
CONSOLE READ is performed.

The CONSOLE macro allows programs to open ‘paths’ to a display device.
A path is a unique name that distinguishes one application from another
and allows the console facility to coordinate the use of the screen. For
example, if an application is writing to the screen, the CONSOLE macro
tells it that another ‘path’ has updated the screen lastly, and, therefore, the
screen must be reformatted. Because of this, fullscreen applications do not
have to rewrite the entire screen every time a write is done.

Screen coordination can be done only for applications using the console
facility. Because some application still issue their own DIAGNOSE code
X'58', you must reformat the screen. This avoids mixing data from two
different applications on the screen.

The CONSOLE macro provides the following functions:
e OPEN/CLOSE - Opening and closing a specific path to the console.

o READ/WRITE - Reading and writing buffers that have 3270 data
streams built by the application. In order to write to the screen,
applications must construct a valid 3270 data stream. When a read is
performed, the data is returned in the user’s buffer. The CMS console
facility issues the DIAGNOSE code X'58' for the virtual console or a
Start I/O (SIO) for dialed devices, builds the CCW for READ and
WRITE requests, tests conditions after I/O, and gives the result of the
I/O operation to the application.

o EXCP - Performing READ or WRITE I/O operations using CCWs that
applications supply. An application must supply its own CCW if it uses
the EXCP function. This function is intended for use with dialed
devices.

o WAIT : Wait for an I/O interrupt from the console device.

o QUERY - Getting information about the device attributes (DTAGNOSE
code X'24' and DIAGNOSE code X'8C"), or if the path is opened,

24 System Logic and Problem Determination (CMS) L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

getting information about a specific path and its associated device. The
user should provide a buffer for this information and then map the
information using the CQYSECT mapping macro. For information
about the CQYSECT macro, refer to VM/SP Data Areas and Conitrol
Block Logic Volume 2 (CMS).

w

The four formats of the CONSOLE macro instruction are:

Standard format

List format (MF=L1)

Complex List format (MF = (L,addr[,1abel]))
Execute format (MF = (E,addr)).

Note: For the detailed formats of the CONSOLE macro, see VM/SP CMS
Macros and Functions Reference.

Although the CONSOLE macro is the preferred interface for fullscreen I/O,
the DISPW macro may be used to generate a calling sequence for the CMS
display terminal interface module, DMSGIO. DMSGIO creates a channel
program and issues a DIAGNOSE code X'58' to display the data. DMSGIO
is a TEXT file that must be loaded to use DISPW.

The format of the CMS DISPW macro is:

0 1760

[tabel | DISPW | bufad [_LINE ={n H [BYTES ={nnnnH

[,ERASE=YES]

[,CANCEL=YES]

where:

label
is an optional macro statement label.

bufad
is the address of a buffer containing the data to be written to the
display terminal.

LINE= |[n
0
is the number of the line, 0 to 23, on the display terminal that is to be
written. Line number 0 is the default.

BYTES= | nnnn
1760

is the number of bytes (0 to 1760) to be written on the display
terminal. 1760 bytes is the default.

Chapter 3. Functional Information 25

Restricted Materials of IBM
Licensed Materials — Property of IBM

ERASE =YES
specifies that the display screen is to be erased before the current date
is written. The screen is erased regardless of the line or number of
bytes to be displayed. Specifying ERASE = YES causes the screen to
go into “MORE” status.

CANCEL=YES
causes the CANCEL operation to be performed: the output area is
erased.

Note: 1t is advisable for the user to save registers before issuing the
DISPW macro and to restore them after the macro because the modules
called by the DISPW macro do not save the user’s registers. The DISPW
macro saves and restores register 13.

26 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

Chapter 4. OS Simulation Under CMS

When a language processor or a user-written program is executing in the
CMS environment and using OS-type functions, it is not executing OS code.
Instead, CMS provides routines that simulate the OS functions required to
support OS language processors and their generated object code.

CMS functionally simulates the OS macros in a way that presents
equivalent results to programs executing under CMS. The OS macros are
supported only to the extent stated in the publications for the supported
language processors, and then only to the extent necessary to successfully
satisfy the specific requirement of the supervisory function.

OS Data Management Simulation

The disk format and data base organization of CMS are different from those
of OS. A CMS file produced by an OS program running under CMS and
written on a CMS disk has a different format from that of an OS data set
produced by the same OS program running under OS and written on an OS
disk. The data is exactly the same, but its format is different. (An OS disk
is formatted by an OS program, such as Device Support Facility.) CMS
does not support multi-buffering for unit record devices. There is one DCB
per device, not per file.

Handling Files that Reside on CMS Disks
CMS can read, write, or update any OS data that resides on a CMS disk.
By simulating OS macros, CMS simulates the following access methods so

that OS data organized by these access methods can reside on CMS disks:

e BDAM (direct) -- identifying a record by a key or by its relative
position within the data set.

e BPAM (partitioned) -- seeking a named member within data set.

Note: Two BPAM files with the same filetype cannot be
updated at the same time.

e BSAM/QSAM (sequential) -- accessing a record in a sequence in relation
to preceding or following records.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 4. OS Simulation Under CMS 27

Restricted Materials of IBM
Licensed Materials — Property of IBM

e VSAM (direct or sequential) -- accessing a record sequentially or
directly by key or address.

Note: CMS support of OS VSAM files is based on
VSE/VSAM. Therefore, the OS user is restricted to those
functions available under VSE/VSAM.

Refer to Figure 6 and “OS Macros” on page 30, then read “Access Method
Support” on page 38 to see how CMS handles these access methods.

Since CMS does not simulate the indexed sequential access method (ISAM),
no OS program that uses ISAM can execute under CMS. Therefore, no
program can write an indexed sequential data set on a CMS disk.

Handling Files that Reside on OS or DOS Disks

By simulating OS macros, CMS can read, but not write or update, OS
sequential and partitioned data sets that reside on OS disks. Using the
same simulated OS macros, CMS can read DOS sequential files that reside
on DOS disks. The OS macros handle the DOS data as if it were OS data.
Thus, a DOS sequential file can be used as input to an OS program running
under CMS.

However, an OS sequential or partitioned data set that resides on an OS
disk can be written or updated only by an OS program running in a real OS
machine.

CMS can execute programs that read and write VSAM files from OS
programs written in the VS BASIC, COBOL, PL/I, VS/APL, and VS
FORTRAN programming languages. CMS also supports VSAM for use with
DOS/VS SORT/MERGE. This CMS support is based on the VSE/VSAM
program product, and, therefore, the OS user is limited to those VSAM
functions that are available under VSE/VSAM.

OS Macro Simulation

The following figure shows the OS macro functions that are partially or
completely simulated, as defined by SVC number:

Macro SVC

Name ' Number | Function

XDAP 00 Reads or writes direct access volumes

EXCP 00 Executes graphic channel programs for graphic access
method (GAM)

WAIT 01 Waits for an I/O completion

Figure 6 (Part 1 of 3).

Simulated OS Supervisor Calls

28 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials — Property of IBM

Macro SvC

Name Number | Function

POST 02 Posts the I/O completion

EXIT/RETURN 03 Returns from a called phase

GETMAIN 04 Conditionally acquires user storage

FREEMAIN 05 Releases user-acquired storage

GETPOOL Simulates as SVC 10

FREEPOOL Simulates as SVC 10

LINK 06 Links control to another phase

XCTL 07 Deletes, then links control to another load phase

LOAD 08 Reads a phase into storage

DELETE 09 Deletes a loaded phase

GETMAIN/ 10 Manipulates user free storage
FREEMAIN

TIME 11 Gets the time of day

ABEND 13 Terminates processing

SPIE 14 Allows processing program to handle program interrupts

RESTORE 17 Effective NOP

BLDL 18 Builds a directory for a partitioned data set

FIND 18 Locates a member of a partitioned data set

OPEN 19 Activates a data file

CLOSE 20 Deactivates a data file

STOW 21 Manipulates partitioned directories

OPENJ 22 Activates a data file

TCLOSE 23 Temporarily deactivates a data file

DEVTYPE 24 Gets device-type physical characteristics

TRKBAL 25 Effective NOP

FEOV 31 Sets forced EOV error code

WTO/WTOR 35 Communicates with the terminal

EXTRACT 40 Effective NOP

IDENTIFY 41 Adds entry to loader table

ATTACH 42 Effective LINK

CHAP 44 Effective NOP

TTIMER 46 Accesses or cancels timer

STIMER 47 Sets timer interval and timer exit routine

DEQ 48 Effective NOP

SNAP 51 Dumps specified areas of storage

ENQ 56 Effective NOP

FREEDBUF 57 Releases a free storage buffer

Figure 6 (Part 2 of 3).

L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Simulated OS Supervisor Calls

Chapter 4. OS Simulation Under CMS 29

Restricted Materials of IBM
Licensed Materials — Property of IBM ‘

Macro SvC]/ \

Name Number | Function N

STAE 60 Allows processing program to decipher abend conditions

DETACH 62 Effective NOP

CHKPT 63 Effective NOP

RDJFCB 64 Obtains information from FILEDEF command

SYNAD - Handles data set error conditions

SYNADAF 68 Provides SYNAD analysis function

SYNADRLS 68 Releases SYNADAF message and save areas

BSP 69 Backs up a record on a tape or disk

TGET/TPUT 93 Reads or writes a terminal line

TCLEARQ 94 Clears terminal input queue

STAX 96 Updates a queue of CMTAXEs that creates an attention
exit block

PGRLSE 112 Releases storage contents

CALL Transfers control to a control section at a specified entry

SAVE - Saves program registers

RETURN Returns from a subroutine

GET/PUT Reads/Writes system-blocked data (QSAM)

READ - Accesses system-record data

WRITE Write system-record data

NOTE/POINT - Manages data set positioning

CHECK - Verifies READ/WRITE completion

DCB - Constructs a data control block

DCBD - Generates a DSECT for a data control block

Figure 6 (Part 3 of 3).

OS Macros

30 System Logic and Problem Determination (CMS)

Simulated OS Supervisor Calls

Because CMS has its own file system and is a single-user system operating
in a virtual machine with virtual storage, there are certain restrictions for
the simulated OS function in CMS. For example, HIARCHY options and
options that are used only by OS multi-tasking systems are ignored by
CMS.

Due to the design of the CMS loader, an XCTL from the explicitly loaded
phase, followed by a LINK by succeeding phases, may cause unpredictable
results.

Listed below are descriptions of all the OS macro functions that are
simulated by CMS as seen by the programmer. Implementation and
program results that differ from those given in OS Data Management Macro
Instructions and OS Supervisor Services and Macro Instructions are stated. PR
HIARCHY options and those used only by OS multi-tasking systems are {
ignored by CMS. Validity checking is not performed within the simulation

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

routines. The entry point name in LINK, XCTL, and LOAD (S8VC 6, 7, 8)
must be a member name or alias in a LOADLIB directory or in a TXTLIB
directory unless the COMPSWT is set to on. If the COMPSWT is on, SVC
6, 7, and 8 must specify a module name. This switch is turned on and off by
using the COMPSWT macro. See the VM/SP CMS Command Reference for
descriptions of all CMS user macros.

Macro-SVC No. Differences in Implementation

XDAP-SVC 0 The TYPE option must be R or W; the V, I, and K options
are not supported. The BLKREF-ADDR must point to an
item number acquired by a NOTE macro. Other options
associated with V, I, or K are not supported.

EXCP-SVC 0 The EXCP macro is supported by CMS. The EXCP macro
executes graphic channel programs for graphic access
method (GAM).

WAIT-SVC 1 All options of WAIT are supported. The WAIT routine
waits for the completion bit to be set in the specified
ECBs.

POST-SVC 2 All options of POST are supported. POST sets a
completion code and a completion bit in the specified
ECB.

EXIT/RETURN-SVC 3
Depending upon whether this is an exit or return from a
linked or an attached routine, SVC 3 processing does the
following: posts ECB, executes end of task routines,
releases phase storage, unchains and frees latest request
block, and restores registers. Do not use EXIT/RETURN
to exit from an explicitly LOADed phase. If
EXIT/RETURN is used for this purpose, CMS issues
abend code AOA.

GETMAIN-SVC 4
All options of GETMAIN are supported except SP,
BNDRY =, HIARCHY, LC, and LU. SP, BNDRY=, and
HIARCHY are ignored by CMS. LC and LU result in
abnormal termination if used. GETMAIN gets blocks of
free storage.

FREEMAIN-SVC 5
All options of FREEMAIN are supported except SP and
L. SP is ignored by CMS, and L results in abnormal
termination if used. FREEMAIN frees blocks of storage
acquired by GETMAIN.

GETPOOL/FREEPOOL
All the options of GETPOOL and FREEPOOL are
supported. GETPOOL constructs a buffer pool and stores
the address of a buffer pool control block in the DCB.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 4. OS Simulation Under CMS 31

LINK-SVC 6

XCTL-SVC 7

LOAD-SVC 8

DELETE-SVC 9

Restricted Materials of IBM
Licensed Materials — Property of IBM

FREEPOOL frees a buffer pool constructed by
GETPOOL.

The DCB and HIARCHY options are ignored by CMS.
All other options of LINK are supported. LINK loads the
specified program into storage (if necessary) and passes
control to the specified entry point.

The DCB and HIARCHY options are ignored by CMS.

All other options of XCTL are supported. XCTL loads the
specified program into storage (if necessary) and passes
control to the specified entry point.

The DCB and HIARCHY options are ignored by CMS.
All other options of LOAD are supported. LOAD loads
the specified program into storage (if necessary) and
returns the address of the specified entry point in register
0. If loading a subroutine is required when SVC 8 is
issued, CMS searches directories for a TXTLIB member
containing the entry point or for a TEXT file with a
matching filename. An entry name in an unloaded TEXT
file will not be found unless the filename matches the
entry name. After the subroutine is loaded, CMS tries to
resolve external references within the subroutine, and
may return another entry point address. To insure a
correct address in register 0, the user should bring such
subroutines into storage either by the CMS
LOAD/INCLUDE commands or by a VCON in the user
program.

All the options of DELETE are supported. DELETE
decreases the use count by one and, if the result is zero,
frees the corresponding virtual storage. Code 4 is
returned in register 15 if the phase is not found.

GETMAIN/FREEMAIN-SVC 10

TIME-SVC 11

ABEND-SVC 13

All the options of GETMAIN and FREEMAIN are
supported except SP and HIARCHY, which are ignored
by CMS.

CMS supports only the DEC, BIN, TU, and MIC
parameters of the TIME macro instruction. TIME
returns the time of day to the calling program. However,
the time value that CMS returns is only accurate to the
nearest second and 1s converted to the proper unit.

The completion code parameter is supported. The DUMP
parameter is not. If a STAE request is outstanding,
control is given to the proper STAE routine. If a STAE
routine is not outstanding, a message indicating that an
abend has occurred is printed on the terminal along with
the completion code.

32 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

G ,

Restricted Materials of IBM
Licensed Materials — Property of IBM

SPIE-SVC 14

All the options of SPIE are supported. The SPIE routine
specifies interruption exit routines and program
interruption types that cause the exit routine to receive
control.

RESTORE-SVC 17

BLDL-SVC 18

FIND-SVC 18

STOW-SVC 21

The RESTORE routine in CMS is a NOP. It returns
control to the user.

BLDL is an effective NOP for LINKLIBs and JOBLIBs.
For TXTLIBs and MACLIBs, item numbers are filled in
the TTR field of the BLDL list. The K, Z, and user data
fields, as described in OS/VS Data Management Macro
Instructions, are set to zeroes. The “alias” bit of the C
field is supported, and the remaining bits in the C field
are set to zero.

All the options of FIND are supported. FIND sets the
read/write pointer to the item number of the specified
member.

All the options of STOW are supported. The “alias” bit is
supported, but the user data field is not stored in the
MACLIB directory since CMS MACLIBs do not contain
user data fields.

When using the STOW macro’s ADD directory function
without closing and reopening the data set after each new
member is added, the CLOSE macro must be issued
within each multiple of 256 new members. The existing
number of entries does not need to be known before the
ADD function is started.

OPEN/OPENJ-SVC 19/22

All the options of OPEN and OPENJ are supported
except for the DISP, EXTEND, and RDBACK options,
which are ignored. OPEN creates a CMSCB (if
necessary), completes the DCB, and merges necessary
fields of the DCB and CMSCB.

CLOSE/TCLOSE(CLOSE TYPE=T)-SVC 20/23

All the options of CLOSE and TCLOSE are supported
except for the DISP option, which is ignored. The DCB is
restored to its condition before OPEN. If the device type
is disk, the file is closed. If the device type is tape, the
REREAD option is treated as a REWIND. For TCLOSE,
the REREAD option is REWIND, followed by a forward
space file for tapes with standard labels.

DEVTYPE-SVC 24

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

With the exception of the RPS option, which CMS
ignores, CMS accepts all options of the DEVTYPE macro
instruction. In supporting this macro instruction, CMS
groups all devices of a particular type into the same class.

Chapter 4. OS Simulation Under CMS 33

Restricted Materials of IBM
Licensed Materials — Property of IBM

For example, all printers are grouped into the printer
class, all tape drives into the tape drive class, and so
forth. In response to the DEVTYPE macro instruction,
CMS provides the same device characteristics for all
devices in a particular class. Thus, all devices in a
particular class appear to be the same device type.

The device type characteristics CMS returns for each

class are:

Class Device Characteristics
Printer 1403

Virtual reader 2540

Console 1052

Tape drive 2400 (9 track)

DASD 2314

Virtual punch 2540

DUMMY none

unassigned 2314

TRKBAL-SVC 25
The TRKBAL routine in CMS is a NOP. It returns
control to the user.

FEOV-SVC 31 Control is returned to CMS with an error code of 4 in
register 15.

WTO/WTOR-SVC 35
All options of WTO and WTOR are supported except
those options concerned with multiple console support.
WTO displays a message at the operator’s console.
WTOR displays a message at the operator’s console, waits
for a reply, moves the reply to the specified area, sets a
completion bit in the specified ECB, and returns. There
is no check made to determine if the operator provides a
reply that is too long. The reply length parameter of the
WTOR macro instruction specifies the maximum length of
the reply. The WTOR macro instruction reads only this
amount of data.

EXTRACT-SVC 40
The EXTRACT routine in CMS is essentially a NOP. The
user-provided answer area is set to zeroes and control is
returned to the user with a return code of 4 in register 15.

>

IDENTIFY-SVC 41
The IDENTIFY routine in CMS adds a REQUEST block
to the load request chain for the requested name and
address.

ATTACH-SVC 42
All the options of ATTACH are supported in CMS as in
OS PCP. The following options are ignored by CMS:
DCB, LPMOD, DPMOD, HIARCHY, GSPV, GSPL,

34 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

CHAP-SVC 44

TTIMER-SVC 46

STIMER-SVC 47

DEQ-SVC 48

SNAP-SVC 51

ENQ-SVC 56

SHSPV, SHSPL, SZERO, PURGE, ASYNCH, and
TASKLIB. ATTACH passes control to the routine
specified, fills in an ECB completion bit if an ECB is
specified, passes control to an exit routine if one is
specified, and returns control to the instruction following

the ATTACH.

Since CMS is not a multitasking system, a phase
requested by the ATTACH macro must return to CMS.

The CHAP routine in CMS is a NOP. It returns control
to the user.

All the options of TTIMER are supported.

All options of STIMER are supported except for TASK
and WAIT. The TASK option is treated as if the REAL
option had been specified, and the WAIT option is treated
as a NOP; it returns control to the user. The maximum
time interval allowed is X' 7FFFFF00' timer units (or 15
hours, 32 minutes, and 4 seconds in decimal). If the time
interval is greater than the maximum, it is set to the
maximum.,

Note: If running in the CMSBATCH environment,
issuing the STIMER or TTIMER macro affects the
CMSBATCH time limit. Depending on the frequency,
number, and duration of STIMERs and/or TTIMERs
issued, the CMSBATCH limit may never expire.

The DEQ routine in CMS is a NOP. It returns control to
the user.

Except for SDATA, PDATA, and DCB, all options of the
SNAP macro are processed normally. SDATA and
PDATA are ignored. Processing for the DCB option is as
follows. The DBC address specified with SNAP is used to
verify that the file associated with the DCB is open. If it
is not open, control is returned to the caller with a return
code of 4. If the file is open, then storage is dumped
(unless the FCB indicates a DUMMY device type). SNAP
always dumps output to the printer. The dump contains
the PSW, the registers, and the storage specified.

The ENQ routine in CMS is a NOP. It returns control to
the user.

FREEDBUF-SVC 57

1Y20-0893-4 © Copyright IBM Corp. 1980, 1986

All the options of FREEDBUF are supported.
FREEDBUF returns a buffer to the buffer pool assigned
to the specified DCB.

Chapter 4. OS Simulation Under CMS 3b

Restricted Materials of IBM
Licensed Materials — Property of IBM

STAE-SVC 60 All the options of STAE are supported except for the
XCTL option, which is set to XCTL=YES; the PURGE
option, which is set to HALT; and the ASYNCH option,
which is set to NO. STAE creates, overlays, or cancels a
STAE control block as requested. STAE retry is not
supported.

DETACH-SVC 62
The DETACH routine in CMS is a NOP. It returns
control to the user.

CHKPT-SVC 63 The CHKPT routine is a NOP. It returns control to the

user.

RDJFCB-SVC 64 All the options of RDJFCB are supported. RDJFCB
causes a job file control block (JFCB) to be read from a
CMS control block (CMSCB) into real storage for each
data control block specified. FILEDEF commands create
CMSCBs.

Additional information regarding CMS OS Simulation of
RDJFCB follows:

o The DCBs specified in the RDJFCB PARAMETER
LIST are processed sequentially as they appear in the
parameter list.

e On return to the caller, a return code of zero is
always placed in register 15. If an abend occurs,
control is not returned to the caller.

e Abend 240 occurs if zero is specified as the address of
the area into which the JFCB is to be placed.

e Abend 240 occurs if a JFCB EXIT LIST ENTRY
(Entry type X'07"') is not present in the DCB EXIT
LIST for any one of the DCBs specified in the
RDJFCB PARAMETER LIST.

e If a DCB is encountered in the parameter list with
zero specified as the DCB EXIT LIST (‘EXLST’)
address, the RDJFCB immediately returns with return
code zero in register 15. Except for this situation, all
of the DCBs specified in the RDJFCB PARAMETER
LIST are processed, unless an abend occurs.

e For a DCB that is not open, a search is done for the
corresponding FILEDEF or DLBL. If one is not
found, a test is done to determine if a file exists with
a filename of ‘FILE’, a filetype of the DDNAME from
DCB, and a filemode of ‘A1’. If such a file does exist,
then X'40' is placed in the JFCB at displacement
X'57' (FLAG ‘JFCOLD IN FIELD ‘JFCBINDZ2). If

36 System Logic and Problem Determination (CMS) 1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

S
-
ya
[
AT N
N

Restricted Materials of IBM
Licensed Materials — Property of IBM

such a file does not exist then X' C0*' (FLAG
‘JFCNEW’) will be in field ‘JFCBIND2’.

e For a file that is not open, but for which a DLBL has
been specified, X'08" is placed in the JFCB at
displacement X'63' (field ‘'JFCDSORG’ byte 2) to
indicate that it is a VSAM file.

SYNADAF-SVC 68
All the options of SYNADAF are supported. SYNADAF
analyzes an I/O error and creates an error message in a
work buffer.

SYNADRLS-SVC 68
All the options of SYNADRLS are supported.
SYNADRLS frees the work area acquired by SYNAD and
deletes the work area from the save area chain.

BSP-SVC 69 All the options of BSP are supported. BSP decrements
the item pointer by one block.

TGET/TPUT-SVC 93
TGET and TPUT operate as if EDIT and WAIT were
coded. TGET reads a terminal line. TPUT writes a
terminal line.

TCLEARQ-SVC 94
TCLEARQ in CMS clears the input terminal queue and
returns control to the user.

STAX-SVC 96 The only option of STAX that is supported is EXIT
ADDRESS. STAX updates a queue of CMTAXEs each of
which defines an attention exit level.

PGRLSE-SVC 112
Release all complete pages (4K bytes) associated with the
area of storage specified.

CALL The CALL macro is supported by CMS. The CALL macro
transfers control to a control section at a specified entry.

NOTE All the options of NOTE are supported. NOTE returns
the item number of the last block read or written.

POINT All the options of POINT are supported. POINT causes
the control program to start processing the next read or
write operation at the specified item number. The TTR
field in the block address is used as an item number.

CHECK All the options of CHECK are supported. CHECK tests
the I/O operation for errors and exceptional conditions.

DCB The following fields of a DCB may be specified relative to
the particular access method indicated:

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 4. OS Simulation Under CMS 37

Restricted Materials of IBM
Licensed Materials — Property of IBM

Operand BDAM BPAM BSAM QSAM
BFALN F.D F.D F.D FD
BLKSIZE n(number) n n n
BUFCB a(address) a a a

BUFL n n n n
BUFNO n n n n
DDNAME s(symbol) s s S
DSORG DA PO PS PS
EODAD - a a a
EXLST a a a a
KEYLEN! n - n .

LIMCT n - - -
LRECL - n n n
MACRF RW R,W R,W,P G,P,L,M
OPTCD AE,F.R - J d
RECFM F,V,U FV,U, FV,BSAMU F,V,BUAM,S
SYNAD a a a a

NCP - n n -

Access Method Support

An access method governs the manipulation of data. To facilitate the
execution of OS code under CMS, the processing program must see data as
OS would present it. For instance, when the processors expect an access
method to acquire input source cards sequentially, CMS invokes specially
written routines that simulate the OS sequential access method and pass
data to the processors in the format that the OS access methods would have
produced. Therefore, data appears in storage as if it had been manipulated
using an OS access method. For example, block descriptor words (BDW),
buffer pool management, and variable records are updated in storage as if
an OS access method had processed the data. The actual writing to and
reading from the I/O device is handled by CMS file management. Note that
the character string X'61FFFF61' is interpreted by CMS as an end of file
indicator.

The essential work of the volume table of contents (VTOC) and the data set
control block (DSCB) is done in CMS by a master file directory (MFD) that
updates the disk contents and a file status table (FST). A MFD updates the
disk contents, and a FST describes each data file. All disks are formatted
in physical blocks of 512, 800, 1K, 2K, or 4K bytes.

CMS continues to update the OS format, within its own format, on the
auxiliary device for files whose filemode number is 4. That is, the block
and record descriptor words (BDW and RDW) are written along with the
data. If a data set consists of blocked records, the data is written to and
read from the I/O device in physical blocks rather than logical records.
CMS also simulates the specific methods of manipulating data sets.

1 If an input data set is not a BDAM data set, zero is the only value that should
be specified for KEYLEN. This applies to the user exit lines as well as to the
DCB macro instruction.

38 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

- .’af B

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

When the OPEN macro instruction is executed, the CMS simulation of the
OS OPEN routine initializes the data control block (DCB). The DCB fields
are filled in with information from the DCB macro instruction, the
information specified on the FILEDEF command, or, if the data set already
exists, the data set label. However, if more than one source specifies
information for a particular field, only one source is used.

The DCB fields are filled in this order:

1. The DCB macro instruction in your program

2. The fields you had specified on the FILEDEF command
3. The data set label if the data set already exists.

The DCB macro instruction takes precedence over the FILEDEF and the
data set label. This FILEDEF takes precedence over the data set label.
Data set label information from an existing CMS file is used only when the
OPEN is for input or update, otherwise, the OPEN routine erases the
existing file.

You can modify any DCB field either before the data set is opened or
through a data control block open exit. CMS supports only the data
control block exit of the EXIT LIST (EXLST) options.

When the data set is closed, the DCB is restored to its original condition.
Fields that were merged in at OPEN time from the FILEDEF and the data
set label are cleared. ‘

To accomplish this simulation, CMS supports certain essential macros for
the following access methods:

BDAM (direct) - identifying a record by a key or by its relative
position within the data set.

BPAM (partitioned) - seeking a named member within data set.

Note: Two BPAM files with the same filetype cannot be
updated at the same time. The reason for this restriction is
that DMSSVT uses the filetype of the file in the DCB for the
filetype of the temporary BPAM directory file. Therefore,
when opening more than one BPAM file at the same time
could result in MSDMSSOPO036E Error Code 8.

BSAM/QSAM (sequential) - accessing a record in a sequence in relation to
preceding or following records.

VSAM (direct or sequential) - accessing a record sequentially or
directly by key or address.

Note: CMS support of OS VSAM files is based on
VSE/VSAM. Therefore, the OS user is restricted to those
functions available under VSE/VSAM. See “CMS Support
for OS and VSE VSAM Functions” on page 54 for details.

Chapter 4. OS Simulation Under CMS 39

Restricted Materials of IBM
Licensed Materials — Property of IBM

CMS also updates those portions of the OS control blocks that are needed
by the OS simulation routines to support a program during execution.
Most of the simulated supervisory OS control blocks are contained in the
following two CMS control blocks:

CMSCVT simulates the communication vector table. Location 16 contains
the address of the CVT control section.

CMSCB s allocated from system free storage whenever a FILEDEF
command or an OPEN (SVC 19) is issued for a data set. The
CMS control block consists of a file control block (FCB) for the
data file and partial simulation of the job file control block
(JFCB), input/output block (IOB), and data extent block (DEB).

The data control block (DCB) and the data event control block (DECB) are
used by the access method simulation routines of CMS.

Note: The results may be unpredictable if two DCBs access the same data
set at the same time.

The GET and PUT macros are not supported for use with spanned records
except in GET locate mode. READ, WRITE and GET (in locate mode) are
supported for spanned records, provided the filemode number is 4 and the
data set is in physical sequential format.

GET (QSAM)
All the QSAM options of GET are supported. Substitute mode is
handled the same as move mode. When the DCBRECFM is FB, the
filemode number is 4, the last block is a short block, and an EOF
indicator (X'61FFFF61') must be present in the last block after the
last record. Issue an explicit CLOSE prior to returning to CMS to
obtain the last record when LOCATE mode is used with PUT.

GET (QISAM)
QISAM is not supported in CMS.

PUT (QSAM)
All the QSAM options of PUT are supported. Substitute mode is
handled the same as move mode. If the DCBRECFM is FB, the
filemode number is 4, and the last block is a short block. An EOF
indicator is written in the last block after the last record. When
LOCATE mode is used with PUT, issue an explicit CLOSE prior to
returning to CMS to obtain the last record.

PUT (QISAM)
QISAM is not supported in CMS.

PUTX
PUTX support is provided only for data sets opened for
QSAM-UPDATE with simple buffering.

READ/WRITE (BISAM)
BISAM is not supported in CMS.

40 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials — Property of IBM

BDAM Restrictions

READ/WRITE (BSAM and BPAM)
All the BSAM and BPAM options of READ and WRITE are supported
except for the SB option (read backwards).

READ (Offset Read of Keyed BDAM data set)
This type of READ is not supported because it is used only for
spanned records.

READ/WRITE (BDAM)
All the BDAM and BSAM (create) options of READ and WRITE are
supported except for the R and RU options.

When an input or output error occurs, do not depend on OS sense bytes.
An error code is supplied by CMS in the ECB in place of the sense bytes.
These error codes differ for various types of devices and their meaning can
be found in VM/SP System Messages and Codes, under DMS message 1208S.

Note: If OPTCD J is specified in the FILEDEF command, the proper flag is
set in the JFCOPTCD byte of the FCBSECT (simulated OS control block).
During simulation of the OS OPEN macro, the FILEDEF value is merged
into DCBOPTCD. After DCBOPTCD is set, the first data byte of output
lines presented to the PUT (QSAM) and WRITE (BSAM) macros is
interpreted as a table reference character (TRC) byte. CP uses the TRC
byte to select translate tables when printing on a 3800. The translate table
determines the font type at real print time. If the virtual printer is not a
3800, the TRC byte is stripped off and the line is printed in the usual
manner.

The four methods of accessing BDAM records are:

Relative Block RRR

Relative Track TTR

Relative Track and Key TTK
Actual Address MBBCCHHR.

e S

The restrictions on these access methods are as follows:

e Only the BDAM identifiers underlined above can be used to refer to
records since the CMS simulation of BDAM files uses a three-byte
record identifier on 512, 1K, 2K, and 4K format CMS minidisks. For
800-byte disks, only the last two identifiers are used.

o CMS BDAM files are always created with 255 records on the first
logical track and 256 records on all other logical tracks, regardless of
the block size. If BDAM methods 2, 3, or 4 are used and the RECFM is
U or V, the BDAM user must either write 255 records on the first track
and 256 records on every track thereafter, or the BDAM user must not
update the track indicator until a NO SPACE FOUND message is
returned on a write. For method 3 (WRITE ADD), this message occurs
when no more dummy records can be found on a WRITE request. For
methods 2 and 4, this does not occur and the track indicator is updated

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 4. OS Simulation Under CMS 41

Restricted Materials of IBM
Licensed Materials — Property of IBM

only when the record indicator reaches 256 and overflows into the track
indicator.

e The user must create variable length BDAM files (in PL/I they are
regional 3 files) entirely under CMS. Also specify, on the XTENT
option of the FILEDEF command, the exact number of records to be
written. When reading variable length BDAM files, the XTENT and
KEYLEN information specified for the file must duplicate the
information specified when the file was created. CMS does not support
WRITE ADD of variable length BDAM files; that is, the user cannot
add additional records to the end of an already existing variable length
BDAM file.

o Two files of the same filetype, both using keys, cannot be open at the
same time. If a program that is updating keys does not close the file it
is updating for some reason, such as a system failure or another IPL
operation, the original keys for files that are not fixed format are saved
in a temporary file with the same filetype and a filename of
$KEYSAVE. To finish the update, run the program again.

e Variable length BDAM files must be created under CMS in their
entirety, with the XTENT option of FILEDEF specifying the exact
number of records to be written. When reading variable BDAM files,
the XTENT and key length information specified must duplicate what
was created at file creation time. CMS does not support adding
variable length records to BDAM files.

o Once a file is created using keys, additions to the file must not be made
without using keys and specifying the original length.

¢ Note that there is limited support from the CMS file system for BDAM
created files (sparse). Sparse files are manipulated with CMS
commands but are not treated as sparse files by most CMS commands.
The number of records in the FST is treated as a valid record number.

¢ The number of records in the data set extent must be specified using the
FILEDEF command. The default size is 50 records.

¢ The minimum LRECL for a CMS BDAM file with keys is eight bytes.

Reading OS Data Sets and DOS Files Using OS Macros

CMS users can read OS sequential and partitioned data sets that reside on
OS disks. The CMS MOVEFILE command can be used to manipulate those
data sets, and the OS QSAM, BPAM, and BSAM macros can be executed
under CMS to read them.

The CMS MOVEFILE command and the same OS macros can also be used
to manipulate and read DOS sequential files that reside on DOS disks. OS
macros, however, can only be used to read sequential files from DOS
formatted CKD disks. OS macros are not supported for reading sequential
files on DOS formatted FB-512 disks.

42 System Logic and Problem Determination (CMS) 1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

“ S

PN

s,

Restricted Materials of IBM

Licensed Materials — Property of IBM

The ACCESS Command

The FILEDEF Command

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

The following OS Release 20.0 BSAM, BPAM, and QSAM macros can be
used with CMS to read OS data sets and DOS files:

BLDL ENQ RDJFCB
BSP FIND READ
CHECK GET SYNADAF
CLOSE NOTE SYNADRLS
DEQ POINT WAIT

DEVTYPE POST

CMS supports the following disk formats for the OS and OS/VS sequential
and partitioned access methods:

Split cylinders
User labels
Track overflow
Alternate tracks.

As in OS, the CMS support of the BSP macro produces a return code of 4
when trying to backspace over a tape mark or when a beginning of an
extent is found on an OS data set or a VSE file. If the data set or data file
contains split cylinders, an attempt to backspace within an extent, resulting
in a cylinder switch, also produces a return code of 4. When a data set has
been allocated or updated by OS on an OS disk, an OS CLOSE must be
issued before CMS can read or move it. The CLOSE marks the end-of-file
(EOF) and updates the DS1LSTAR field of the Format 1 DSCB. If the
CLOSE is not issued, CMS may read or move residual data that remains
beyond the intended end of the file.

Before CMS can read an OS data set or VSE file that resides on a non-CMS
disk, you must issue the CMS ACCESS command to make the disk available
to CMS.

The format of the ACCESS command is:

ACCESS | cuu mode |fext]

For more details, see the CMS Command Reference. You must not specify
options or file identification when accessing an OS or DOS disk.

You then issue the FILEDEF command to assign a CMS file identification
to the OS data set or VSE file so that CMS can read it.

Chapter 4. OS Simulation Under CMS 43

Restricted Materials of IBM
Licensed Materials — Property of IBM

The format of the FILEDEF command used for this purpose is:

Flledef

ddname

(3
DISK |fn ft fm
FILE ddname | Al
or
‘?
DISK frn ft } [me DSN ?
DSN quall qual? ...
[[FILE ddname | | Al DSN quali.qual? ...
DUMMY
\ J
Related Options: | MEMBER membername
CONCAT

44 System Logic and Problem Determination (CMS)

If you are issuing a FILEDEF for a VSE file, note that the OS program that
will use the VSE file must have a DCB for it. For ddname in the FILEDEF
command line, use the ddname in that DCB. With the DSN operand, enter
the fileid of the VSE file.

Sometimes, CMS issues the FILEDEF command for you. Although the
CMS MOVEFILE command, the supported CMS licensed program
interfaces, and the CMS OPEN routine each issue a default FILEDEF, you
should issue the FILEDEF command yourself to ensure the appropriate file
is defined.

After you have issued the ACCESS and FILEDEF commands for an OS
sequential data set, OS partitioned data set, or VSE sequential file, CMS
commands (such as ASSEMBLE and STATE) can refer to the OS data set or
VSE file just as if it were a CMS file.

Several other CMS commands can be used with OS data sets and DOS files
that do not reside on CMS disks. See the VM/SP CMS Command Reference

for a complete description of the CMS ACCESS, FILEDEF, LISTDS, LKED,

MOVEFILE, OSRUN, QUERY, RELEASE, and STATE commands.

For restrictions on reading OS data sets and DOS files under CMS, see the
VM|SP CMS for System Programming.

The CMS FILEDEF command allows you to specify the I/O device and the
file characteristics to be used by a program at execution time. In
conjunction with the OS simulation scheme, FILEDEF simulates the
functions of the data definition JCL statement.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

FILEDEF may be used only with programs using OS macros and functions.
For example:

filedef filel disk proga data al

After issuing this command, your program referring to FILE1 would access
PROGA DATA on your A-disk.

If you wished to supply data from your terminal for FILE1, you could issue -
the command:

filedef filel terminal

and enter the data for your program without recompiling.

fi tapein tap2 (recfm fb lrecl 50 block 100 9track den 800)

After issuing this command, programs referring to TAPEIN access a tape at
virtual address 182. (Each tape unit in the CMS environment has a
symbolic name associated with it.) The tape must have been previously
attached to the virtual machine by the VM/SP operator.

To maintain OS compatibility in the EOV2/EOF2 label, you must specify
LRECL in the output FILEDEF.

The AUXPROC Option of the FILEDEF Command:

The AUXPROC option can only be used by a program call to FILEDEF and
not from the terminal. The CMS language interface programs use this
feature for special I/O handling of certain (utility) data sets.

The AUXPROC option, followed by a fullword address of an auxiliary
processing routine, allows that routine to receive control from DMSSEB
before any device I/O is performed. At the completion of its processing, the
auxiliary routine returns control to DMSSEB signaling whether or not I/O
has been performed. If it has not been done, DMSSEB performs the
appropriate device I/O.

When control is received from DMSSEB, the general purpose registers
contain the following information:

GPR2 = data control block (DCB address)
GPR3 = base register for DMSSEB

GPR8 = CMS OPSECT address

GPR11 = file control block (FCB) address
GPR14 = return address in DMSSEB
GPR15 = auxiliary processing routine address

all other registers = work registers

1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 4. OS Simulation Under CMS 45

Restricted Materials of IBM
Licensed Materials — Property of IBM

The auxiliary processing routine must provide a save area to save the
general registers. This routine must also perform the save operation.
DMSSEB does not provide the address of a save area in general register 13,
as is usually the case. When control returns to DMSSEB, the general
registers must be restored to their original values. Control is returned to
DMSSEB by branching to the address contained in general register 14.

GPR15 is used by the auxiliary processing routine to inform DMSSEB of
the action that has been or should be taken with the data block as follows:

Register Action

GPR15=0 No I/O performed by AUXPROC routine. DMSSEB
performs I/O.

GPR15<0 I/O performed by AUXPROC routine and error was
encountered. DMSSEB takes error action.

GPR15>0 I/O performed by AUXPROC routine with residual count in
GPR15. DMSSEB returns normally.

GPR15=64K I/O performed by AUXPROC routine with zero residual
count.

CMS QSAM Tape End-of-Volume Exit

TEOVEXIT Macro

A program working with CMS simulation of OS QSAM can set up an exit
that could be entered on the end-of-volume condition on IBM standard label
tapes. This exit receives control after the trailer labels have been processed
and the tape has been rewound and unloaded, provided that OS simulation
is for something other than standard labels. For standard labels
multivolume standard label processing is done before termination. This exit
should not be confused with the OS DCB end-of-volume exit. The OS DCB
end-of-volume exit continues to be unsupported.

Use the TEOVEXIT macro instruction to set up and clear a CMS tape
end-of-volume exit.

The four formats of the TEOVEXIT macro instruction are:

Standard format

List format (MF =L)

Complex List format (MF = (Li,addr[,label]))
Execute format (MF = (E,addr)).

46 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

Standard Format

The standard format of the TEOVEXIT macro is:

[label] TEOVEXIT SET,DDNAME = {"ddname’ |addr} ,EXIT = addr
,RETINFO =qddr | ,ERROR = addr]

CLR,DDNAME = {"ddname’ | addr} | ,ERROR = addr]

where:

addr
is an assembler program label or an address stored in a general
register. If a register is used, it must be enclosed in parentheses.

label
is an assembler program label.

SET
establishes an exit.

CLR
clears an exit.

DDNAME =
is the ddname the tape end-of-volume exit is being established for.
ddname may be from 1 to 8 alphameric characters enclosed in quotes.

EXIT =

label is an assembler program label that is the address of the
program’s end-of-volume processing routine.

(Rn) is a general register. Its value is the address of the program’s
end-of-volume processing routine.

This routine receives control after trailer labels have been processed
and the tape has been rewound and unloaded. This routine receives
control with the same PSW key as the call to CMS QSAM. The
registers passed to the exit are the same as they were at the call to
QSAM except: register 0 points to the DCB: register 1 points to the
FCB; register 14 contains the address the routine branches to upon
completion. If the exit does not return control to the address in
register 14, future options are unpredictable for that file. Register 15
contains the address of the user exit routine.

(This attribute is required for SET. If the EXIT attribute is specified
on CLR, it is ignored. No MNOTE is issued.)

L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 4. OS Simulation Under CMS 47

Restricted Materials of IBM
Licensed Materials — Property of IBM

Note: When control is returned to the program that issued the QSAM
call, the registers are unaffected by changes to registers in the
end-of-volume exit.

RETINFO=

label

(Rn)

is an assembler program label that is the address of a 20-byte
halfword aligned area.

is a general register. Its value is the address of a 20-byte
halfword aligned area.

The program must provide this 20 byte, halfword aligned area for
return information.

(This attribute is required for SET. If the RETINFO attribute is
specified on CLR, it is ignored. No MNOTE is issued.)

ERROR=

label

(Rn)

is an assembler program label that is the address of the error
routine.

is a general register. Its value is the address of the error
routine.

The error routine receives control if an error is found. If this
parameter is not specified and an error occurs, control returns to the
next sequential instruction in the calling program.

List Format (MF=L)

When MF =L is coded, the TEOVEXIT macro has the following format:

[label]

TEOVEXIT MF=L

[,DDNAME = “ddname’ | [,EXIT = label]

[,RETINFO = label |
,SET [,DDNAME ="ddname’ || ,EXIT = label]
,CLR [,DDNAME = ‘ddname’

All parameters have the same meaning as the standard format with the
following difference:

MF=L

indicates that the parameter list is created in-line. No executable
code is generated. Register notation cannot be used for macro
parameter addresses.

48 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

N

Restricted Materials of IBM
Licensed Materials — Property of IBM

(Note: When using the MF = parameter, all other parameters are optional.
When the function is executed, however, a valid combination of parameters
must have been specified by the LIST and EXECUTE formats of the macro.

Complex List Format (MF = (L,addr [,label]))

When MF = (L,addr[,label]) is coded, the TEOVEXIT macro has the
following format:

[label] | TEOVEXIT MF = (L, addr [,label]) [,DDNAME = {*ddname’ | addr }]
[LEXIT = addr | [,RETINFO = addr |

,SET [,DDNAME = {"ddname’ | addr }]
[,EXIT = addr | [,RETINFO = addr]

(,CLR[,DDNAME = {"ddname’ | addr }]

All parameters have the same meaning as the standard format with the
following difference:

MF = (L,addr[,labell])
indicates that the parameter list is created in the area specified by
4 addr. The address may represent an area within your program or an
ﬁ area of free storage obtained by a system service. You can determine
the size of the parameter list by coding the label operand. The macro
expansion equates label to the size of the parameter list. This format
of the macro produces executable code to move the data into the
parameter list specified by addr. However, it does not generate the
instructions to invoke the function. If this version of the LIST format
is used, it must be executed before any related invocation of the
EXECUTE format.

Note: When using the MF = parameter, all other parameters are optional.
When the function is executed, however, a valid combination of parameters
must have been specified by the LIST and EXECUTE formats of the macro.

=,

LY20-0893-4 -© Copyright IBM Corp. 1980, 1986 Chapter 4. OS Simulation Under CMS 49

Restricted Materials of IBM
Licensed Materials — Property of IBM
Execute Format (MF = (E,addr))

When MF = (E,addr) is coded, the TEOVEXIT macro has the following
format:

[label] | TEOVEXIT MF = (E, addr)| | [,DDNAME ={"ddname’ |addr}] [,EXIT = addr]
[,RETINFO = addr | [,ERROR = addr |

,SET [,DDNAME = {"ddname’ |addr}][,EXIT= addr]
[,RETINFO = addr | [,ERROR = addr |

;CLR [,DDNAME = {"ddname’ | addr} |

[,ERROR = addr |

All parameters have the same meaning as the standard format with the
following difference:

MF = (E,addr)
indicates that instructions are generated to execute the TEOVEXIT
function. addr represents the location of the parameter list.
Information in the parameter list may be changed by specifying the
appropriate operands on the macro.

Note: When using the MF = parameter, all other parameters are optional.

When the function is executed, however, a valid combination of parameters
must have been specified by the LIST and EXECUTE formats of the macro.

Restrictions
1. Tape end-of-volume exit only applies to CMS OS QSAM simulation.

2. Only IBM standard label tapes are supported. If other than standard
labels are used, you receive a return code of 16 from TEOVEXIT.

3. The LEAVE option of the FILEDEF command is invalid. If it is used,
" you receive a return code of 20 from TEOVEXIT.

4. The NOEOV processing option of the FILEDEF command is invalid. If
it is used, you receive a return code of 28 from TEOVEXIT.

5. You cannot read backwards. If it is attempted, the results are
unpredictable.

6. The tape end-of-volume exit is not entered if either an OPEN or a
CLOSE is in progress.

7. The exit must not issue I/O requests that might result in the tape

end-of-volume exit being invoked. If it is attempted, the results are
unpredictable.

50 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials — Property of IBM

Return Codes

SET Function

CLR Function

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

8. The exit must not issue additional QSAM requests to the file. If it is
attempted, the results are unpredictable.

9. The exit must not modify or clear the FCB of the file the end-of-volume
condition was encountered on.

10. TEOVEXITSs are cleared whenever a CLOSE or a CLOSE type T is
issued for the file.

If any errors occur during the processing of the TEOVEXIT macro, register
15 contains the error return codes.

Code

0

4

8

12
16
20
24
28
32

Code

24

Meaning

End-of-volume exit is established for the specified DDNAME. This is
the normal return.

The DDNAME specified is not found. (No FILEDEF was found with
the given DDNAME.)

Device specified in the FILEDEF is not a tape device.

Tape identification is invalid. (Must be TAPO-TAPF.)

Tape label type is other than “SL”

“LEAVE” is specified in the FILEDEF (FCB).

Invalid PLIST.

“NOEOV” is specified in the FILEDEF (FCB).

Exit address or RETINFO address is zero.

Meaning

End-of-volume exit is cleared for the specified DDNAME. This is the
normal return. A return code of 0 may also indicate the
end-of-volume exit was not in effect, but it was still cleared.

The DDNAME specified is not found. (No FILEDEF was found with
the given DDNAME.)

Invalid PLIST.

Chapter 4. OS Simulation Under CMS 51

Restricted Materials of IBM
Licensed Materials — Property of IBM

Successful Completion

On successful completion of TEOVEXIT SET (register 15=0), the RETINFO
attribute contains: :

Word Meaning

0 The symbolic tape number associated with the given DDNAME
(character TAPO-TAPF)

The address of the FCB of the given DDNAME

RESERVED

RESERVED

RESERVED

BN

52 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

Chapter 5. VSE Support Under CMS

CMS supports interactive program development for VSE. This includes
creating, compiling, testing, debugging, and executing commercial
application programs. The VSE programs can be executed in a CMS virtual
machine or in a CMS Batch Facility virtual machine.

VSE files and libraries can be read under CMS. VSAM data sets can be
read and written under CMS.

The CMS VSE environment (called CMS/DOS) provides many of the same
facilities that are available in VSE. However, CMS/DOS supports only
those facilities that are supported by a single (background) partition. The
VSE facilities provided by CMS/DOS are:

VSE linkage editor

Fetch support

VSE Supervisor and I/O macros

VSE Supervisor control block support
Transient area support

VSE/VSAM macros.

This environment is entered each time the CMS SET DOS ON command is
issued; VSAM functions are available in CMS/DOS only if the SET DOS
ON (VSAM) command is issued. In the CMS/DOS environment, CMS
supports many VSE facilities, but does not support OS simulation. When
you no longer need VSE support under CMS, you issue the SET DOS OFF
command and VSE facilities are no longer available.

CMS/DOS can execute programs that use the sequential access method
(SAM) and virtual storage access method (VSAM), and CMS/DOS can
access VSE libraries.

CMS/DOS cannot execute programs that have execution-time restrictions,
such as programs that use sort exits, teleprocessing access methods, or
multi-tasking. DOS/VS COBOL, DOS PL/I, DOS/VS RPG II and Assembler
language programs are executable under CMS/DCS.

All of the CP and CMS online debugging and testing facilities (such as the
CP ADSTOP and STORE commands and the CMS DEBUG environment)

are supported in the CMS/DOS environment. Also, CP disk error recording
and recovery is supported in CMS/DOS.

With its support of a CMS/DOS environment, CMS becomes an important
tool for VSE application program development. Because CMS/DOS is a

1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 5. VSE Support Under CMS 53

Restricted Materials of IBM
Licensed Materials — Property of IBM

VSE program development tool, it assumes that a VSE system exists, and
uses it. The following sections describe what is supported and what is not.

CMS Support for OS and VSE VSAM Functions

CMS supports interactive program development for OS and VSE programs
using VSE/VSAM. CMS supports VSAM macros for OS and VSE programs.
The complete set of VSE/VSAM macros and options and a subset of
OS/VSAM macros are supported for execution with Assembler language
programs.

CMS also supports Access Method Services to manipulate OS and VSE
VSAM and SAM data sets.

Under CMS, VSAM data sets can span up to 10 DASD volumes. CMS does
not support VSAM data set sharing. However, CMS already supports the
sharing of minidisks or full pack minidisks.

VSAM data sets created in CMS are not in the CMS file format. Therefore,
CMS commands currently used to manipulate CMS files cannot be used for
VSAM data sets that are read or written in CMS. A VSAM data set
created in CMS has a file format that is compatible with OS and DOS
VSAM data sets. Thus, a VSAM data set created in CMS can later be read
or updated by OS or DOS. This compatibility with OS is limited to VSAM
data sets created with physical record sizes of 512, 1K, 2K, and 4K bytes.
For further information on compatibility between OS/VS VSAM and
VSE/VSAM, please refer to VSE|/VSAM General Information.

Because VSAM data sets in CMS are not a part of the CMS file system,
CMS file size, record length, and minidisk size restrictions do not a apply.
The VSAM data sets are manipulated with Access Method Services
programs executed under CMS instead of with the CMS file system
commands. Also, all VSAM minidisks and full packs used in CMS must be
initialized by the Device Support Facility (DSF); the CMS FORMAT
command must not be used.

CMS supports VSAM control blocks with the GENCB, MODCB, TESTCB,
and SHOWCB macros.

In its support of VSAM data sets, CMS uses rotational position sensing
(RPS) wherever possible. CMS does not use RPS for 2314/2319 devices or
for 3340 devices that do not have the feature.

Hardware Devices Supported

CMS support of VSAM data sets is based on VSE/VSAM. The disks used
for VSAM data sets in CMS are:

e IBM 2314 Direct Access Storage Facility

/("

54 System Logic and Problem Determination (CMS) 1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

e IBM 2319 Disk Storage
e IBM 3310 Direct Access Storage
e IBM 3330 Disk Storage Models 1

e IBM 3330 Disk Storage, Model 11

and 2

e IBM 3340 Direct Access Storage Facility

e IBM 3344 Direct Access Storage
e IBM 3350 Direct Access Storage
e IBM 3370 Direct Access Storage,
e IBM 3375 Direct Access Storage
e IBM 3380 Direct Access Storage.

CMS disk files used as input to or ou

Models A1, A2, B1, and B2

tput from Access Method Services may

reside on any disk supported by CMS.

1Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Chapter 5. VSE Support Under CMS 55

Restricted Materials of IBM
Licensed Materials — Property of IBM

56 System Logic and Problem Determination (CMS) L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

(

Restricted Materials of IBM

Licensed Materials — Property of IBM

Part 2: Method of Operation and Program Organization

This part contains the following information:

Initialization of the CMS virtual machine environment
Processing and executing CMS files

Processing commands that manipulate the file system
Managing the CMS file system

Handling I/O operations

Handling interruptions

Managing CMS storage

Simulating non-CMS operating envifonments

Performing miscellaneous CMS functions.

The CMS description is in two parts. The first part contains figures
showing the functional organization of CMS. The second part contains
general information about the internal structure of CMS programs and
their interaction with one another.

CMS program organization is in two figures. Figure 7 on page 58 is an
overview of the functional areas of CMS. Each block is numbered and
corresponds to a more detailed outline of the function found in Figure 8 on
page 59.

1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Part 2: Method of Operation and Program Organization 57

Restricted Materials of IBM
Licensed Materials — Property of IBM

®
® ®

CMS File
Process System
Commands that Handle 1/0
Manipulate the Operations
File System
Process and
@ Execute cMs ::ﬂgfr'ﬂ tions @
CMS Files P
Initialize the
CMS Virtual Manage the
Machine CMS Storage
Environment .
Simulate
Non-CMS

Operating
@ Environments @
Perform
Miscellaneous
CMS Functions

Figure 7. An Overview of the Functional Areas of CMS

58 System Logic and Problem Determination (CMS) L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

Or— @—!

Initialize and i
Query the CMS Process and
Virtual Machine execute
environment CMS files
Maimai(‘ an Process and Load and Process
interactive execute execute MODULE Perform library
console CMS files TEXT files files support functions
DMSINI DMSINT DMSEXI DMSLOA DMSMOD DMSLBM
Interpret Determine if Process th
Read the CMS commands EXEC, EXEC 2, LOAD ang Generate and 0939'“&;'3_ -
nucleus entered at or System Product INCLUDE :9“‘ a MODULE ;‘Ip late
the console Interpreter commands ile iles
DMSINS DMSINA l I DMSLDR DMSNXL DMSLBT
Initialize DMSEXT DMSEXE
storage constants Handle Begin execution Load a Generate and
and virtual disks synonyms and Process Process of programs in nucleus update TXTLIB
for a virtual abbreviations EXECs written EXECs written storage extension library
machine in CMS EXEC in EXEC 2
I language
DMSHTB DMSRCN, DMSREV
DMSSCN DMSREX. DMSRFN DMSLSB DMSRLD
il MSRIN, DMSRTC
Build hyperblock Process a gMSRVA DMSRXE Load CMS mod-
mapping tables for| command line - Process dules and relocate
the virtual s-disk and create a Process EXECs loader the address con-
and y-disk PLIST written in options stants of CMS
REXX language load modules
. DMSINT DMSCPF l bmsuio DMSNXD
DMSRSF
Delete
Handile first Passa Create 2 specified
command load map
commands = Process the and perform nucleus
entered at line to CP RXSYSFN func- Yoader 1/0 extensions
the console for execution tion REXX
language l I
DMSSET DMSITS DMSMDP DMSNXM
N identify
Set virtual Process isti
machine command it Pucleus
environment functions console extensions
options via SVC calls
DMSSLG DMSGLB
[Changes languages;| Define libraries
(returns address of to be searched
\ LANGBLK for during execution;
N an application release the chain
[DomsaRs, bMsQRT DMSLGT
gMSQHU, DUSQRV
MSQRW, DMSQR X i
; Create chain
DMSQRY, DMSQRZ of TXTLIB
blocks for use
Query the : o
virtual machine d“l”"g et:““':;?:'
environment release the ¢!
option settings
I DMSLIB
DMSIDE
Search TXTLIB
Display libraries for
virtual undefined
machine symbols; close
identification TXTLIB libraries

Figure 8 (Part 1 of 5). Details of CMS System Functions

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Part 2: Method of Operation and Program Organization 59

@ l

Restricted Materials of IBM
Licensed Materials — Property of IBM

Process

commands Manage the CMS

that manipulate file system

the file system

DMSPRT

Rerform general Perform data N Locate data
fiie support manipulation Print a record Manage virtual in the CMS Perform file
functions functions disk data file system update functions

DMSSTT DMSEDC,DMSEDF DMSPUN DMSACC DMSLAD DMSARE

DMSEDI,DMSEDX
Verify the
existence Create and Punch a record Access data on Find an active Clear an active
of a file and update files a virtual disk disk table disk table
return its address)

DMSLST DMSXBG DMSTYP DMSACM DMSLAF DMSFNS
List the names Create and Build an active Find an active Close any open
of fileson a update files Type a record disk table file table files on disk
CMS disk

DMSSYN DMSUPD DMSASM DMSACF DMSLFS DMSALU

Creat Interface with Build file Clear tables and

av:‘eiaa;l:g/?:t‘{g:w Update source file the assembler status table Find a file free storage

for a file name to assemble block for a status table associated with
files virtual disk disk

DMSRNM DMSCPY DMSDSK DMSACG DMSLAF

Reads the
directory into
. : Load card-to~ A Create or
Rename a file Manipulate disk disk, dump contiguous storage delete active
file records N by hyperblocks " .
disk~to-card and sorts, if file table entries
necessary

DMSERS DMSCMP DMSTPI DMSHTB

Compare Process TAPE a‘;‘;l)?)sir:‘gy?:l;ll;l?)ﬁk

Erase a file records in command hash table for a

two files functions virtual disk
DMSSRT DMSMVE

Sort/arrange Move data from

records in one device to

afile another
DMSRDC DMSHLB,DMSHLI,

Read a record

DMSHLD,DMSHLP,
DMSHLE,DMSHLS

Displays HELP
description files

—

Figure 8 (Part 2 of 5).

60 System Logic and Problem Determination (CMS)

DMSSPR DMSGLO DMSNAM
Initialize a Maintain Search a
i named ‘NAMES’
3800 printer variables Privg
DMSEIO DMSDDL
I?eotvlv/e(gn a SEND and
device and ?ECEIVE
the stack iles

L

Details of CMS System Functions

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

®

|

Handle 1/0 Manage CMS
Operations Storage
Handle
Interrupts
Perform Perform Perform Unit Perform VDV{;;;;,O 2 Wait for 1/0
Console /0 Disk 1/0 Record 1/0 Tape 1/0 Terminal to Complete
DMSIMM DMSCIT DMSDIO DMSPIO DMSTPD DMSSCR DMSIOW DMSCIT DMSFRE
Read or Write Load display Allocate
Set up user Start an /O one or more Perform print Read a buffers to be Wait for an Handle release free
immediate Operation blocks of disk 1/0 functions PDS tape displayed on 1/0 event to console system and
commands data a screen take place interrupts user storage
DMSCWT T DMSCIO DMSTIO DMSGIO DMSHDS DMSITS DMSSMN
Allocate and
~ i N release user storage
Wait for a x:::::'a’e Perform read Read or write Issue a display Set up and handle - Handle SVC upon request by
console event management card and punch a tape record to screen yser-defmed svC interrupt 0S GETMAIN/
to complete chains card 1/0 DIAGNOSE interrupts FREEMAIN
macros
BRD,
DMSCAT gmgBWR DMSCWR DMSTMA DMSHDI DMSITI DMSPAG
Stack a line Read or write one Read an unloaded
of console or more items to a Write a line PDS from tape i;u_z:?i:;:ﬂ'%e u Handle 1/0 Manage free pages
input for disk file 800-byte to the console and place it in a interrupts interrupts
DMSCRD record format MACLIB P
DMSCRD DMSERD DMSRDR_ bmMmsiuc DMSITE
Read or write one
Read a line of or more items to Identify Set up CMS ™1 Handle external
console input a disk file 1K, 2K, | characteristics 1UCV external interrupts
or 4K ~byte of a reader file exits
record format
DMSCWR DMSPNT DMSITP
Set the read or
Write a line write pointer Handle program

Figure 8 (Part 3 of 5).

to the console

forafiletoa
given file item

Details of CMS System Functions

check interrupts

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Part 2: Method of Operation and Program Organization 61

Restricted Materials of IBM
Licensed Materials — Property of IBM

Simulate
n-CMS —
operating AN
environments (
Provide access Simulate 05 Simulate DOS
method support functions functions
L
DMSSQS DMSFLD | | | I 1
su asam Interpret Of JcL Initialize DOS
port parameters for and process Process DOS Process DOS Provide DOS Process DOS Terminate the Provide VSE
use by CMS DOS system 1/0 functions execution related SVC simulation service commands DOS environment system functions
control functions
DMSSBS DMSFLE ‘ I : l
Processes the DMSSET DMSBOP DMSDLK DMSDOS DMSSRV DMSBAB DMSLAB
Support BSAM CLEAR and
and BPAM LIST functions Simulate the Link edit Copy books from Pass control to
for the FILEDEF Initialize the VSE OPEN DOS/VSE andle a source statement an abnormal LABEL
command CMS/DOS function phases in CMS/DOS SVC library to an termination macro
i (non disk files) storage requests output device routine via support
l) STXIT AB macro
DMSSBD DMSSVT, DMSSOP, I I | | I I
DMSSCT, DMSSMN,)
DM§§VN, gmgs(lsg. DMSOPT gmggg ; DMSOR2,| | DMSFET, DMSFCH DMSRRV DMSITP DMSCVH
Support BDAM DMSSAB, LOS,
DMSSFF, DMSSVU Copy modules Simulate ‘
Set compiler Locate a Load a phase; froma Process program VvTOoC A\
Simulate OS macros options specified file begin program relocatable interrupt and requests for -
execution library to an SPIE exits CMS disks
I I output device
DMSVIB DMSSEB, DMSSTP l
Load the DMSASN DMSOPL DMSPRV DMSDMP DMSDAS
CMS/VSAM - Perform 1/0
shared system functions for S . Simulate $$DUMP
for OS VSAM Associate system Access a VSE Copy procedures and $$PDUMP: ASSGN
programs or programmer source statement from a procedure issue the CP DUMP macro
logical units with library library to an DIAGNOSE. support
I I physical units output device Simulate IDUMP:
issue the PRINTL
DMSVIP DMSROS I I I macro.
Interface with Allow CMS to
VSAM programs ACCESS, STATE, DMSLLY DMSCLS DMSDSV
to perform VSAM READ, NOTE,
functions for OS and BACKSPAC it s . R
" List assignments Simulate the List the
VSAM programs on OS disks of logical units VSE CLOSE directories
function of libraries
(non disk files)
DMSVSR DMSLDS I T I \
Reset fields set . DMSDLB CMSBAM DCSS DMSDSL
during VSAM List i .
processing and about OS data . Simulate VSE
purge the CMS/ sets Associate a OPEN/CLOSE, Delete, compress,
AM DCSS. DTF table logic module, Jist phases of a
filename with VTOC, and source DOSLIB tibrory
a logical unit statement library
functions
DMSAMS DMSUTL l
DMSVLT
Support VSAM List, copy, or
access method compress
services LOADLIBs Handle return
from CMSBAM
| I DCSS
DMSCCK DMSOSR
Invokes the Invokesaload | I | I l
VSE/VSAM odule from a
catallog check LGADLIB or 03 DMSXCP DMSETR DMSLCK DMSGMF DMSGTM DMSGVE DMSLIC !
service aid module library A J
Handle SVC 0 Handle SVC 98 Handle SVC 110 Handles SVC 107 Handles SVC 34 Handles SVC 99 Handles SVC 50
| (EXTRACT) (LOCK/UNLOCK)* (GETFLD, (GETIME) (GETVCE) (LIOCS ERROR)
MODFLDJ
DMSLKD
Link -edit a CMS
TEXT file or OS
object module into DMSRPG DMSSTX DMSSUB DMSLDF DMSVIS DMSSVL
aCMS LOADLIB
Handles SVC 16,
Handles SVC 85 17,37,95 (STXIT Handiles SVC 105 Handles SVCs 1, Handles SVCs Handles SVC 75
{RELPAG) PC, EXIT PC, (SUBSID) 2,4, 65 (FETCH 61,62 (GETVIS, (SECTVAL)
STXIT AB, FETCH, LOAD, FREEVIS)
DMSSNXL EXIT AB) CDLOAD)
Load a I
nucleus DMSMCM
extension I l
DMSFCH DMSVIS DMSPAG DMSPAG
Handles SVC §
(MCCoM)
Load a phase; Handles SVCs
DMSNXD DMSNXM begin program 61,62, (GETVIS, Manage free pages | | Manage fre pages
execution FREEVIS)
Delete specified [| Identify existing
nucleus extensions nucleus extensions |____

Figure 8 (Part 4 of 5). Details of CMS System Functions

62 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

®

Perform
Miscellaneous
CMS functions

r

DMSIFC DMSBTB DMSDBG DMSGND DMSABN DMSABX DMSRSV
Distributes blocks
Check and passes Load the CMS Perform DEBUG Generate Handle Receives control of a minidisk
CPEREP operands batch virtual . functions an auxiliary abnormal when ABNEXIT between the
to EREP machine directory termination macro is executed directory file,
(IFCEREP1) allocation map
file, and user’s file.
Sets up pointer
blocks.
DMSREA DMSBTP DMSOVR DMSASD DMSERR
Provides records to Perform batch Load the Provide an Generate
EREP from the processing SVCTRACE auxiliary error
VM/370 error functions module, directory messages
recording cylinders| DMSOVS
DMSOVS DMSLAD
Perform Include an
SVCTRACE auxliary
functions directory on
the FST chain

Figure 8 (Part 5 of 5).

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Part 2: Method of Operation and Program Organization

Details of CMS System Functions

63

64 System Logic and Problem Determination (CMS)

Restricted Materials of IBM
Licensed Materials — Property of IBM

L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

Chapter 6. CMS Virtual Machine Initialization

Some steps involved in initializing a CMS virtual machine are:
® Processing the IPL command for a virtual card reader

® Processing the IPL command for a disk device or a named or saved
system

e Processing the first command line entered at the CMS virtual console
e Setting up the options for the virtual machine operating environment.

DMSINI and DMSINS are the two routines that are mainly responsible for
the one-time initialization process in which the virtual card reader is initial
program loaded (IPLed). DMSINS is called by DMSINI if the IPL is by
device address. DMSINS also handles the IPL process when a named or
saved system is loaded. If the IPL is by saved system name, DMSINS
receives control directly from CP at the point immediately following the
SAVESYS instruction.

DMSINS stacks a command to invoke the SYSPROF EXEC, if it exists,
unless the user specifies the NOSPROF parameter or unless the user IPLs a
non-DASD device such as a virtual reader. If it is stacked, it is invoked
before any user disks are accessed. The SYSPROF EXEC contains some of
the same CMS initialization function as in DMSINS, and the SYSPROF
EXEC is responsible for processing the first command line entered at the
CMS virtual console and accessing the user disks.

DMSINS passes control to DMSINT (the CMS command interpreter), but if
the SYSPROF EXEC command is not stacked, DMSINT processes the first
line entered from the console as a special case. The processing performed
by this code is a part of the initialization process. DMSSET sets up the
user-specified virtual machine environment features; DMSQRY allows the
user to query the status of these settings.

Initialization: Loading a CMS Virtual Machine from Card Reader

When a virtual card reader is specified on the IPL command, for example
00C, initialization processing begins. Initialization refers to the process of
loading from a card reader as opposed to reading a nucleus from a cylinder
of a CMS minidisk or reading a named or shared system (description
follows).

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 6. CMS Virtual Machine Initialization 65

Restricted Materials of IBM
Licensed Materials — Property of IBM

IPL 00C invokes DMSINI and DMSINQ. DMSINI and DMSINQ prompt the
user for information used in building the CMS nucleus.

When all questions are answered, the requested nucleus is written to the
DASD.

Once written on the DASD, a copy of the nucleus is read into virtual
machine storage. One track at a time is read from the disk-resident nucleus
into virtual storage. DMSINS is then invoked to initialize storage
constants and to set up the disks and storage space required by this virtual
machine.

DMSINI passes a parameter to DMSINS to indicate whether the IPL was of
a DASD or non-DASD device and whether or not the user wants to save the
system. If DMSINI is entered at the entry point DMSINSW, a flag will be
appended to the parameters currently passed, to indicate that the IPL is of
a non-DASD device, and the SYSPROF EXEC processing should be
bypassed. If the user wants to save the system, this flag will also indicate
this condition and will point to the saved system name.

Some of the functions that DMSINS performs include:
o Initializing storage constants and system tables

e Processing IPL command line parameters (BATCH, NOSPROF, and
AUTOCR).

Initializes Storage Contents and System Tables

DMSINS
Saves the address of this virtual machine in NUCON.

DMSFRE
Allocates free storage to be used during initialization.

DMSIND
Allocates all low free nucleus storage so the system status table
(S-STAT) can be built in high free storage.

Reads the S-disk ADT entry and builds the S-STAT. Reads the Y-disk
ADT entry and builds the Y-STAT.

Releases the low nucleus free storage allocated above (to force SSTAT
into high storage) so it can be used again.

Stores the address of S-STAT into ASSTAT and ADTFDA in NUCON.
DMSINS calls DMSHTB to build hyperblock mapping tables for S- and
Y-disks (if the file status tables (FSTs) span three or more pages).

Sorts the entries in the S-STAT and Y-STAT.

66 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

(: Processes IPL Command Line Parameters

| DMSINS
| Checks for parameters BATCH, INSTSEG, AUTOCR, NOSPROF, and
| SAVESYS.

| If BATCH is specified, DMSINS sets the flag BATFLAGS.

[If INSTSEG is specified, DMSINS checks for parameters YES, NO,

| and name. For YES or name, DMSINS calls DMSEXLSS, which

| accesses the Installation DCSS or the specified DCSS and loads the

l EXECs from it. For NO, the Installation DCSS is not accessed and the
[EXECs are not loaded.

| If AUTOCR is specified, a local flag is set so that the subsequent
B | console read may be bypassed and the null line input simulated. This
(- | action causes a PROFILE EXEC to be executed.

| If the NOSPROF parameter is specified, a local flag is set to indicate
| that the SYSPROF EXEC should not be stacked, and all CMS
| initialization should be done by DMSINS.

| If the SAVESYS parameter is specified with nothing but an associated
| systemname, DMSINS saves the CMS system. Any unrecognized

| parameters are skipped over, and parameter processing continues until
| the end of the line.

{ | Issues DIAGNOSE code X'24' to obtain the device type of the
| console.

| Issues DIAGNOSE code X'60' to get the size of the virtual machine
| and sets up enough storage for this virtual machine. Sets the
| FREELOWE pointer to NUCON.

| Performs time-of-day processing and OS initialization.

DMSIND
A validity check is performed when a saved system is IPLed to ensure
that the saved copy of the S-STAT or Y-STAT is current. This check
is performed only for S-disks and Y-disks formatted in 512-, 1024-,
2048-, or 4096-byte CMS blocks. For 880-byte block disks, the saved
copy of the S-STAT or Y-STAT is used.

A validity check consists of comparing the date that the saved
directory was last updated with the date that the current disk was last
updated. If the dates for the S-STAT are different, the S-STAT is built
in your storage. If the dates for the Y-STAT are different, the Y-disk
is accessed using the CMS ACCESS command:

1 ACCESS 19E Y/S * * y2
This means that even when the S- and Y-disks are accessed in

: |
(| read/write mode and then released, the message DMSINS100W S-STAT
| and/or Y-STAT not available will result.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 6. CMS Virtual Machine Initialization 67

Restricted Materials of IBM
Licensed Materials — Property of IBM

The DASD address of the Y-disk is whatever was specified when CMS N
was generated: For the standard systems it is 19E. \'\,\ P
DMSINS

Issues HNDIUCYV SET to establish CMS as an IUCV user.

Issues DIAGNOSE code X'B0' to determine if this user was
automatically re-IPLed by CP and to retrieve restart information.

If not bypassing the SYSPROF EXEC, then DMSINS stacks the
command to invoke it, and passes the following additional information
to the SYSPROF EXEC:

CMS system id

Parameter to indicate whether S-STATs and Y-STATSs are
available

Indication of whether or not the 192 D disk should be accessed
Restart information from CP if this is a re-IPLed user

Parameters to indicate that SAVESYS parameter was not specified
correctly.

Indication of whether IUCV initialization was completed
successfully or not.

DMSCWR or SYSPROF EXEC
Writes the system id message to the console.

DMSCRD or SYSPROF EXEC
Reads the initial CMS command line from the console.

DMSSCN
Puts the initial CMS command line in PLIST format.

DMSINS or SYSPROF EXEC
Issues ACCESS 195 A to access the batch virtual machine A-disk.

DMSINS or SYSPROF EXEC
If the BATCH virtual machine is not being loaded, it determines (
whether there is a PROFILE EXEC or a first command line to be N
handled. If there is a first command, it is stacked. If thereis a
PROFILE EXEC, DMSINS stacks the command to invoke it and
passes control to DMSINT, the CMS console manager. If the
SYSPROF EXEC finds a PROFILE EXEC, it invokes the user profile
directly, then exits.

Initializing a Named or Saved System

The CMS system is designed to be used as a saved, shared system. A named
system is a copy of the nucleus that has been saved and named with the CP
SAVESYS command. It is faster to IPL a named system than to IPL by disk
address because CP maintains the named system in page format instead of Fa
CMS disk format. The initialization of a saved system is also faster because ““
the SSTAT and YSTAT are already built. -

68 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

The shared system is a variant of the saved system. In the shared system,
reentrant portions of the nucleus are placed in storage pages that are
available to all users of the shared system. Each user has his own copy of
nonreentrant portions of the nucleus. The shared pages are protected by
CP and may not be altered by any virtual machine.

During DMSINI processing, the virtual machine operator is asked if the
nucleus must be written (vis message DMSINI607R). If the operator
answers no, control passes directly to DMSINS to initialize the named or
saved system specified by the operator in his answer to message
DMSINI6O06R.

Modifying a 3800 Named System

The IMAGEMOD command allows an installation to modify an existing
3800 named system without the need for generating from scratch a
completely new one.

The format of the IMAGEMOD command is:

IMAGEMOD| { GEN|ADD |REP |DEI | MAP }
libname

modname | modname | ...

[TERM | PRINT | DISK |

For further information, refer to the VM/SP CP for System Programming.

Processing the IMAGEMOD Command

Module DMSIMA performs the following steps when processing the
IMAGEMOD command:

1. Analyze the input PLIST for syntax. If there is an error, exit with a
return code of 2 and issue the appropriate message:

DMSIMAOOLE = NO MODULE NAME SPECIFIED
DMSIMAOO3E = INVALID OPTION ‘option’
DMSIMAOI4E = INVALID FUNCTION ‘function’
DMSIMAO46E = NO LIBRARY NAME SPECIFIED
DMSIMAO47E = NO FUNCTION SPECIFIED.

2. Obtain maximum storage area (via GETMAIN macro).
3. Unless the GEN function is specified, read the named system into

storage just obtained with DIAGNOSE code X‘74’. Leave the first 10
pages of storage empty. This permits later expansion by 10 members.

L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 6. CMS Virtual Machine Initialization 69

10.

70 System Logic and Problem Determination (CMS)

Restricted Materials of IBM
Licensed Materials — Property of IBM

Determine the type of function requested:

MAP
DEL

GEN
ADD
REP.

If the function requested is MAP, scan the named system directory and
format the following information about each member:

* o Name

o Relative displacement
o Total size.

Determine the option requested. If the option is TERM, PRINT, or
DISK, place the formatted information on the user’s terminal, virtual
printer, or in the CMS file named ‘libname MAP A5’, respectively.

If the function requested is DEL, delete the member from the directory

and the data area of the named system. Compress the named system by
moving up the remaining members to take up the space vacated by the

deletion. If the member is not found, issue message DMSIMAO13E.

If the function requested is GEN, construct a skeleton named system in
virtual storage. This skeleton system has no members initially. Then
proceed as if the function were ADD.

If the function requested is ADD, load the member into the CMS
transient area. If a load error occurs, issue DMSIMAS346E and exit with
return code of 6. Add the new member entry to the end of the named
system directory. If virtual capacity is exceeded by this addition, issue
DMSIMAI109E and exit with return code of 2. During this process, the
directory is moved back in storage one page to prevent new data from
overlaying existing data. Move the new member data to the end of the
named system residing in user virtual storage. Modify the directory
entries after this move takes place. If the member already exists, issue
message DMSIMAT751E and exit with return code of 4.

If the function requested is REP, concatenate the DEL and ADD
functions. In other words, perform the DEL function and the the ADD
function for the specified member.

Scan the input command line for more members to be processed. If
there are no more members or if the number of members has reached
the maximum (10), write the changed named system back to disk via
DIAGNOSE code X'74' (unless this was a MAP function request) and
then exit. Otherwise, process the next member according to the
function requested.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

oA

\

/

AN

Restricted Materials of IBM
Licensed Materials — Property of IBM

(Handling the First Command Line Passed to CMS

DMSINT, the CMS console manager, contains the code to handle
commands stacked by module DMSINS during initialization processing.
DMSINT checks for the presence of a stacked command line, and if there is
one to process, DMSINT processes it just as it would a command entered
during a terminal session. That is, DMSINT calls the WAITREAD
subroutine and issues an SVC 202 to execute the command. When first
command processing completes, DMSINT receives control to handie
commands entered at the console for the duration of the session.

Setting the Virtual Machine Environment Options

DMSSET sets up the virtual machine environment options. This module is
(structured and relatively easy to follow, except for some sections of
" DMSSET.

DMSSET: Set DOS ON (VSAM) Processing

DMSSET
(label DOS) If a disk mode is specified on the command line, ensures
that it is valid.

i DMSLAD
If the disk mode specified is valid, locates and returns the address of
the disk.

DMSSET
Issues DIAGNOSE code X'64' FINDSYS to locate the CMSDOS or
CMSBAM segments. If the segment is not already loaded, issues
DIAGNOSE code X'64' LOADSYS to load it.
‘ DMSSET
1 Sets up the $$B-transient area for use by VSE routines.

DMSSET
Sets up the LOCK/UNLOCK resource table.

DMSSET
If SET DOS OFF has been specified, issues the DIAGNOSE code
X'64' PURGESY function for the CMSDOS and CMSBAM segments
and, if VSAM has been loaded, for the CMSVSAM segment.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 6. CMS Virtual Machine Initialization 71

Restricted Materials of IBM
Licensed Materials — Property of IBM

Querying CMS Environment Options

The QUERY command, which displays CMS environment options, is
handled by eight modules. DMSQRY is the main module. The first time
QUERY is invoked, DMSQRY established QUERY as a nucleus extension.
DMSQRY acquires a work area and uses DMSQRZ to initialize it.

If the option queried is a CMS option and if the command has the correct
syntax, DMSQRY passes control to the module that handles that option:
DMSQRS, DMSQRT, DMSQRU, DMSQRV, DMSQRW, or DMSQRX. The
module called performs the requested QUERY function, then returns
control to the original caller.

72 System Logic and Problem Determination (CMS) 1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

Chapter 7. Processing and Executing CMS Files

As shown in Part 1 of Figure 8 on page 59 five general topics form the
category “Process and Execute CMS Files”. Two of these topics are
discussed in this section: “Maintaining an Interactive Console
Environment” and “Loading and Executing Text Files” on page 94.

Maintaining an Interactive Console Environment

Two levels of information are discussed in the following section. The first
level is a general discussion of how CMS maintains an interactive console
environment. The second level is a more detailed discussion of the methods
of operation mainly responsible for this function.

There are two major functions concerned with maintaining an interactive
terminal environment for CMS: console management and command
processing. The CMS module that manages the virtual machine console is
DMSINT. The module responsible for command processing is DMSITS.
Many CMS modules are called in support of these two functions, but the
modules in the following list are primarily responsible for supporting the
functions:

DMSCRD
Reads a line from the console.

DMSCWR
Writes a line to the console.

DMSSCN
Converts a command line to PLIST format.

DMSPKT
Translates command names.

DMSINA
Converts abbreviated commands to their full names.

DMSCPF
Passes a command line to CP for execution.

L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 73

Restricted Materials of IBM
Licensed Materials — Property of IBM

Maintaining an Interactive Command/Response Session

Three main lines of control maintain the continuity for an interactive CMS
session: (1) handling of commands passed to DMSINT by the initialization
module, DMSINS (2) handling of commands entered at the console during a
session, and (3) handling of commands entered as subset commands. The
following lists show the main logic paths for the first two functions.

Execute Commands Passed via DMSINS

DMSINT
On entry from DMSINS, processes any commands passed via the
console read put on the user’s console by that routine. That is,
processes any commands the user stacks on the line as the first read
that DMSINT processes. In handling the first read, if that read is
null, control passes to the main loop of the program, which is
described in the following section.

DMSINM
Retrieves the current time.

DMSCRD
Branches to the waitread subroutine to read a command line at the
console.

DMSSCN
Waitread then calls DMSSCN to convert the line just read into PLIST
format. Once converted to PLIST format, an SVC 202 is issued (at
label INIT1A) to execute the function. This cycle is repeated until all
stacked commands are executed.

DMSFNS
When command execution completes, calls DMSFNS (at label UPDAT)
to close any files that may have remained open during the command
processing.

DMSVSR
Ensures that any fields set by VSAM processing are reset for CMS.
Also ensures that the VSAM discontiguous shared segment is purged.

DMSINT
Sets up an appropriate status message (CMS, CMS SUBSET,
CMS/DOS, etc.).

DMSCWR
Writes the status message to the console.

74 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

\“‘{ /'

Restricted Materials of IBM
Licensed Materials — Property of IBM

Handle Commands Entered During a CMS Terminal Session

DMSINT
Branches (from label INLOOP2) to the waitread subroutine to read a
line entered at the console.

DMSCRD
Reads a line entered at the console (subroutine waitread).

DMSSCN
Converts the command line to PLIST format (subroutine waitread).

DMSINT
Determines whether the command line is a null line or a comment.

DMSLFS
If the command line is neither a command line nor a comment,
determines whether the command is an EXEC file.

DMSINA (ABBREY)
Determines whether the command is an abbreviation, and if it is,
returns its full name.

DMSITS
Passes the command line to DMSITS via an SVC 202. DMSITS is the
CMS SVC handler. For a detailed description of the SVC handler, see
“Method of Operation for DMSITS - CMS SVC Handling Routine” on
page 77.

DMSCPF
If the command could not be executed by the SVC handler, passes the
command to CP to see if CP can execute it.

DMSFNS
On return from processing the command line (label UPDAT), closes
any files that may have been opened during processing.

DMSSMN
Resets any flags or fields that may have been set during OS
processing.

DMSVSR
Ensures that any fields set for VSAM processing are reset for CMS.
Also ensures that the VSAM discontiguous shared segment is purged.

DMSINT
When the command line has been successfully executed, builds a CMS
ready message for the user (label PRNREADY).

DMSCWR
Writes the ready message to the console.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 75

Restricted Materials of IBM
Licensed Materials — Property of IBM

DMSINT
Returns control to DMSINT at label INLOOP2 to continue monitoring
the CMS terminal session.

Method of Operation for DMSINT - Console Manager

DMSINT, the console manager, maintains the continuity of operation of the
CMS command environment. The main control loop of DMSINT is initiated
by a call to DMSCRD to get the next command. When the command is
entered, DMSINT calls DMSINM to initialize the CPU time for the new
command and then puts it in both a standard tokenized and an extended
parameter list form by calling the scan function program DMSSCN. After
calling DMSSCN, DMSINT checks to see if an EXEC filetype exists with a
filename of the type-in command. (For example, if ABC was typed in, it
checks to see if ABC EXEC exists.) If the EXEC file does exist, DMSINT
adjusts register 1 to point to the same command set up by DMSSCN, but
preceded by CL8‘EXEC’. Then DMSINT issues an SVC 202 to call the
corresponding EXEC procedure (‘(ABC EXEC’ in the example).

If no such EXEC file exists for the first word typed in, DMSINT checks for
a translation via DMSPKT. If no translation or synonym is found,
DMSINT makes a further check using the CMS abbreviation-check routine,
DMSINA. If the translation or synonym is found, substitute it for the
typed-in word. If, for example, the first word typed in had been ‘E’,
DMSINT looks up ‘E’ via DMSPKT. If not found, then DMSINT looks up
‘E’ via DMSINA. If an equivalent is found for ‘E’, DMSINT looks for an
EXEC file with the name of the equivalent word (for example, EDIT EXEC).
If such a file is found, DMSINT adjusts register 1 as described above to call
the EXEC and substitutes the equivalent word, EDIT, for the first word
typed in. Thus, if ‘E’ is a valid abbreviation for ‘EDIT’ and you have an
EXEC file called EDIT EXEC, EDIT EXEC is invoked when you type in ‘E’
from the terminal.

If no EXEC file is found either for the entered command name or for any
equivalent found by DMSINA or DMSPKT, DMSINT leaves the terminal
command as processed by DMSSCN and then issues an SVC 202 to pass
control to DMSITS. DMSITS then passes control to the appropriate
command program. When the command terminates execution, or if
DMSITS cannot execute it, the return code is passed in register 15.

A zero return code indicates successful completion of the command. A
positive return code indicates that the command was completed, but with an
apparent error. A negative code returned by DMSITS indicates that the
typed in command could not be found or executed at all.

In the last case, DMSINT assumes that the command is a CP command and
issues a DIAGNOSE instruction to pass the command line to the CP
environment. If the command is not a CP command, DMSINT calls
DMSCWR to type a message indicating that the command is unknown and
the main control loop of DMSINT is entered at the beginning.

If the return code from DMSITS is positive or zero, DMSINT saves the
return code briefly and calls module DMSAUD to update the master file

76 System Logic and Problem Determination (CMS) 1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

) directory (MFD) on the appropriate user’s disk for the 800-byte records on
(disk, or to update the file directory and the allocation map, or the
appropriate user’s disk for the 512-, 1K-, 2K-, or 4K-byte records on disk.
DMSINT also frees the TXTLIB chain and releases pages of storage if
required.

After updating the file directory, DMSINT checks the return code that was
passed back. If the code is zero, DMSINT types a ready message and the
processor time used by the given command. Control is passed to the
beginning of the main control loop of DMSINT. If the return code is
positive, an error message is typed, along with the processor time used. The
command causes the typing of an error message with the format:
DMSxxxnnnt ‘text’ where DMSxxx is the module name, nnn is the message
identification number, t is the message type, and ‘text’ is the message
explaining the error. Control is then passed to the beginning of the main
control loop.

Method of Operation for DMSITS - CMS SVC Handling Routine

DMSITS (INTSVC) is the CMS system SVC handling routine. The general
operation of DMSITS is as follows:

1. The SVC new PSW (low-storage location X'60') contains, in the
address field, the address of DMSITS1. Thus, the DMSITS routine is
entered whenever a supervisor call is executed.

(: 2. DMSITS allocates a system save area and a user save area. The user
save area is a register save area used by the routine, which is invoked
later as a result of the SVC call.

3. The called routine is invoked (via a LPSW or BALR).
4. Upon return from the called routine, the save areas are released.

: 5. Control is returned to the caller (the routine that originally made the
/\{ SVC call).

Types of SVCs and Linkage Conventions

The types of SVC calls recognized by DMSITS, and the linkage conventions
for each, are as follows:

SVC 201: When a called routine returns control to DMSITS, the user
storage key may be in the PSW. Because the called routine may also have
turned on the problem bit in the PSW, the most convenient way for
DMSITS to restore the system PSW is to cause another interruption, rather
than to attempt the privileged Load PSW instruction. DMSITS does this by
issuing SVC 201, which causes a recursive entry into DMSITS. DMSITS
determines if the interruption was caused by SVC 201, and if so, determines
if the SVC 201 was from within DMSITS. If both conditions are met,

- control returns to the instruction following the SVC 201 with a PSW that

(has the problem bit off and the system key restored.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 77

Restricted Materials of IBM
Licensed Materials — Property of IBM

SVC 202: SVC 202 is the most commonly used SVC in the CMS system. It
is used for calling nucleus-resident routines, nucleus extensions, and
routines written as commands (for example, disk resident modules).

A typical coding sequence for an SVC 202 call is the following:

LA R1PLIST
SVC 202
DC AL4(ERRADD)

The “DC AL4(address)” following the SVC 202 is optional and may be
omitted if the programmer does not expect any errors to occur in the
routine or command being called. If the DC statement is included, an error
return is made to the address specified in the DC, unless the address is
equal to 1. If the address is 1, return is made to the next instruction after
the “DC AL4(1)” instruction. DMSITS determines whether this DC was
inserted by examining the byte following the SVC call inline. If the byte is
nonzero, the statement following the SVC 202 is an instruction. If the byte
is zero, then the statement is a “DC AL4(address)” or “DC AL4(1)”.

If you want to ignore errors, use the following sequence:

LA R1,PLIST
SVC 202
DC AL4(1)

Whenever SVC 202 is called, the contents of Register 0 and Register 1 are
passed intact to the called routine. Register 1 must point to an
eight-character string, which may be the start of a tokenized PLIST. This
character string must contain the symbolic name of the routine or
command being called. The called routine decides whether to use the
tokenized PLIST or the extended PLIST (one of two forms) by examining
the high-order byte of R1. (Both forms of the extended PLIST are discussed
below.) The SVC handler only examines the name and high-order byte of
Register 1.

Note: Although an extended PLIST is provided, the called routine may not
be set up to use it.

78 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials — Property of IBM

Value

Meaning

Extended
PLIST
Pointer in
Register 0?

X'00'

The call did not originate from an EXEC file or a
command typed at the terminal. (The SVC handler
translates the value X'04' to X'00' before entering
the called program.)

No

X'o1!

Either, the call is from an EXEC 2 EXEC or the
System Product Interpreter when “ADDRESS
COMMAND?” is specified, or the call is an IBM
Cooperative Processing for VM/SP call (see
SENDREQ in the VM/SP Programmer’s Guide to the
Server-Requester Programming Interface for VM|SP,
SC24-5291). You can tell by checking the form of the
extended PLIST, see “Extended PLIST” on page 80.
(The SVC handler translates the value X'03' to
X'01' before entering the called program.)

Yes

X'02'

See “Dynamic Linkage/SUBCOM?” in this manual.

Yes

X'05"

Used by the System Product Interpreter for external
function calls.

Yes

X'06'

The command was invoked as an immediate
command. This setting should never occur with SVC
202.

Yes

X'0B'

The command was called as a result of its name
being typed at the terminal, by the CMDCALL
command to invoke the command from EXEC 2, or
from a System Product Interpreter program when
“ADDRESS CMS?” is specified.

Yes

X'0C!

The call is the result of a command invoked from a
CMS EXEC file with “&CONTROL” set to something
other than “NOMSG” or “MSG”.

X'0D'

The call is the result of a command invoked from a
CMS EXEC file with “&CONTROL MSG” in effect
(indicates that messages are to be displayed at the

terminal).

X'0E"

The call is the result of a command invoked from a
CMS EXEC file with “&€CONTROL NOMSG” in
effect.

X'FE'

This is an end-of-command call from DMSINT (CMS
console command handler). See the NUCEXT
function in the VM/SP CMS Macros and Functions
Reference for details.

X'FF!

This is a service call from DMSABN (abend) or from
NUCXDROP. See the NUCEXT function in the
VM|SP CMS Macros and Functions Reference for
details.

No

Figure 9. SVC 202 High-Order Byte Values of Register 1

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Chapter 7. Processing and Executing CMS Files

79

Restricted Materials of IBM
Licensed Materials — Property of IBM

Tokenized PLIST: For a tokenized parameter list, the symbolic name of
the function being called (8 character string, padded with blank characters
on the right if needed) is followed by extra arguments depending on the
actual routine or command called. These arguments must be “tokenized.”
Every parenthesis is considered an individual argument, and each argument
may have a maximum length of eight characters.

Extended PLIST: For an extended parameter list (EPLIST), no restriction
is put on the structure of the argument list passed to the called routine or
command. The first non-blank character, left parenthesis, or right
parenthesis following the command is treated as a delimiter. This delimiter
determines where the pointer to the start of the argument is.

An extended PLIST has two forms, as illustrated below.

In the first form, RO points to the following parameter list:
(a) DC A(COMVERB)
(b) DC A(BEGARGS)

(c) DC A(ENDARGS)
(d) DC A(0)

where the first three addresses are defined by:

COMVERB EQU *

DC C'cmdname' name of command
BEGARGS EQU *
DC C! ' argument list

ENDARGS EQU *
and where:

(a) 1is the beginning address of the command

(b) 1is the beginning address of the argument list.

(c) is the address of the byte immediately following the end of the
argument list.

(d) may be used to pass any additional information required by individual
called programs. If this word is not used to pass additional
information, it should be zero so that programs receiving optional
information via this word may detect that none is provided in this
call.

Notes:

1. These four words can be moved to some location convenient for the
command resolution routines or convenient for some other program
executed between the caller’s SVC 202 and entry to the program that the
parameter list is intended. For this reason, the called program may not
assume additional words following word 4, or the called program may not
assume that the storage address of these 4 words bears any relationship to
other data addresses.

2. For function calls in the System Product Interpreter, two additional
words are available. See the VM|SP System Product Interpreter

80 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

Reference for more information on function calls and the two additional
words.

The second form of an extended PLIST is used by IBM Cooperative
Processing for VM/SP (see SENDREQ in the VM/SP Programmer’s Guide
to the Server-Requester Programming Interface for VM/SP, SC24-5291). In
the second form, RO points to the following parameter list:

(a) DS A(commandname)

(b) DS F (reserved)
(c) DS F (reserved)
(d) DS A(CPRB)

where:

(a) is the address of the name of the program being called

(b) is unused

(c) 1s unused

(d) is the address of the cooperative processing request block (CPRB).

If your routine is being called by another routine, you can verify that your
routine is being called using the second form of an extended PLIST. Check
the contents of A(CPRB) + 4. At this address should contain the
characters CPRB.

If you want to call another routine using the second form of an extended
PLIST, see SENDREQ in the VM/SP Programmer’s Guide to the
Server-Requester Programming Interface for VM|SP, SC24-5291.

Why Use the Second Form of an Extended PLIST?: The second form
provides an architected way for a routine to:

e Pass up to 64K-1 (65,535) bytes of arbitrary data and 32K-5 (32,763) bytes
of parameters to another routine

e Receive up to 64K-1 (65,535) bytes of arbitrary data and 32K-5 (32,763)
bytes of parameters from another routine.

SVC 203: SVC 203 is called by CMS macros to perform various internal
system functions. It defines SVC calls when no parameter list is provided.
For example, DMSFREE parameters are passed in registers 0 and 1.

A typical sequence for an SVC 203 call is:

SvC 203
DC H'code'

The halfword decimal code following the SVC 203 indicates the specific
routine being called. DMSITS examines this halfword code taking the
absolute value of the code using an LPR instruction. The first byte of the
result is ignored, and the second byte of the resulting halfword is used as
an index into a branch table. The address of the correct routine is loaded,
and the control is transferred to it.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 81

Restricted Materials of IBM
Licensed Materials — Property of IBM

It is possible for the address in the SVC 203 index table to be zero. In this Y
case, the index entry contains an 8-byte routine or command name, which is ‘

processed in the same way as the 8-byte name passed in the parameter list
to a SVC 202.

"

The sign of the halfword code indicates whether the programmer expects an
error return. If an error return is expected, the code is negative. If the
code is positive, no error return is made. The sign of the halfword code has
no effect on determining the routine called since DMSITS takes the
absolute value of the code to determine the called routine.

Since only the second byte of the absolute value of the code is examined by
DMSITS, seven bits (bits 1-7) are available as flags or for other uses. For
example, DMSFREE uses these seven bits to indicate such things as
conditional requests and variable requests. Therefore, DMSITS considers
the codes H'3' and H'259' to be identical and handles them the same as
H'-3' and H'-259', except for error returns.

When an SVC 2083 is invoked, DMSITS stores the halfword code into the
NUCON location CODE203 so the called routine can examine the seven bits
made available to it.

All calls made by SVC 203 should be made by macros with the macro
expansion computing and specifying the correct halfword code.

User-Handled SVCS: The programmer may use the HNDSVC macro to

specify the address of a routine that processes any SVC call for SVC 3
numbers 0 through 200 and 206 through 255. If the HNDSVC macro is used, -~
the linkage conventions are as required by the user specified SVC-handling
routine. You cannot specify a normal or error return from a user-handled

SVC routine.

OS Macro Simulation SVC Calls: CMS supports selected SVC calls
generated by OS macros, by simulating the effect of these macro calls.

The proper linkages are set up by the OS macro generations. DMSITS does
not recognize any way to specify a normal or error return from an OS
macro simulation SVC call.

VSE SVC Calls: All SVC functions supported for CMS/DOS are handled
by the CMS module DMSDOS. DMSDOS receives control from DMSITS
(the CMS SVC handler) when that routine intercepts a VSE SVC code and
finds that the DOSSVC flag in DOSFLAGS is set in NUCON.

DMSDOS acquires the specified SVC code from the OLDPSW field of the
current SVC save area. Using this code, DMSDOS computes the address of
the routine where the SVC is to be handled.

Many CMS/DOS routines (including DMSDOS) are contained in a

discontiguous shared segment (DCSS). Most SVC codes are executed

within DMSDOS, but some are in separate modules external to DMSDOS.

If the SVC code requested is external to DMSDOS, its address is computed o0
using a table called DCSSTAB. If the code requested is executed within N

82 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

. DMSDOS, the table SVCTAB is used to compute the address of the code to
handle the SVC.

DOS SVC calls are discussed in more detail in “Simulating a VSE
Environment Under CMS” on page 201.

Invalid SVC Calls: There are several types of invalid SVC calls
recognized by DMSITS:

e Invalid SVC number. If the SVC number does not fit into any of the
classes described above, it is not handled by DMSITS. An error
message is displayed at the terminal, and control is returned directly to
the caller.

e Invalid routine name in SVC 202 parameter list. If the routine named
in the SVC 202 parameter list is invalid or cannot be found, DMSITS
(handles the situation in the same way it handles an error return from a
‘ legitimate SVC routine. The error code is -3.

e Invalid SVC 203 code. If an invalid code follows SVC 203 inline, an
error message is displayed and the ABEND routine is called to
terminate execution.

Search Hierarchy for SVC 202
passes a routine or command name in the parameter list, DMSITS searches

for the specified routine or command. (In the case of SVC 203 with a zero
in the table entry for the specified index, the same logic must be applied.)

(SVC 202 Entered from a Program: When a program issues SVC 202 and

As soon as the routine or command name is found, the search stops and the
routine or command is executed. The search order is as follows:

1. DMSITS determines if the specified name is known dynamically to CMS
through the SUBCOM function. This step is executed only if the
i high-order byte of R1 contains X'02"'.

2. DMSITS searches for a nucleus extension routine with the specified
name.

Note: This step is skipped if the high-order byte of register 1 contains
X'03" or X'04'. X'03' indicates that an extended PLIST is provided.
X'04' indicates that a tokenized PLIST is provided. X'03' and X'04'
are translated to X'01' and X'00', respectively, by the SVC interrupt
handler before the called program is entered.

3. DMSITS searches for a routine with the specified name in the transient
area.

4. DMSITS searches for a nucleus-resident command with the specified
name.

(: 5. DMSITS searches currently accessed disks for a file with the specified
name and a filetype MODULE. CMS uses the standard search order (A

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 83

Restricted Materials of IBM
Licensed Materials — Property of IBM

through Z). If this search is successful, the specified module is loaded
(via the LOADMOD command) and control is passed to the storage
location now occupied by the command. The table of active (open) disk
files is searched first. An open file may be used ahead of a file that
resides on a disk earlier in the search order.

6. DMSITS calls

a. DMSPKT to search the translation tables for the specified name. If
found, DMSITS searches for a routine with the valid translation by
repeating steps 2 through 5.

Note: This step is skipped if this SVC call is not from DMSINT or
DMSCSF.

b. DMSINA to search the synonym tables for the specified name. If
found, DMSITS searches for a routine with the valid synonym by
repeating steps 2 through 5.

If all searches fail, then an error code of -3 is issued.

Commands Entered from the Terminal: When a command is entered
from the terminal, DMSINT processes the command line and calls the scan
routine to convert it into a parameter list consisting of 8-byte entries.

As soon as the command name is found, the search stops and the command
is executed. The search order is as follows:

1. Search for an EXEC with the specified command name:2

a. DMSINT searches for an EXEC in storage. If an EXEC with this
name is found, DMSINT determines whether the EXEC has a USER,
SYSTEM, or SHARED attribute. If the EXEC has the USER or
SYSTEM attribute, it is executed.

If the EXEC has the SHARED attribute, the INSTSEG setting is
checked. When INSTSEG is ON, all accessed disks are searched
and the access mode of the Installation Discontiguous Shared
Segment (DCSS) is compared to the mode of an EXEC with that
name that resides on disk. If the access mode of the DCSS is equal
to or higher than the disk mode, the EXEC is executed. Otherwise,
the EXEC on disk is executed.

b. DMSINT searches accessed disks for a file with the specified name
and filetype EXEC. The table of active (open) disk files is searched
first. An open file may be used ahead of a file that resides on a disk
earlier in the search order.

2. DMSINT calls
a. DMSPKT to search the translation tables for the specified name. If

found, DMSINT searches for a routine with the valid translation by
repeating step 1.

84 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

N

Restricted Materials of IBM
Licensed Materials — Property of IBM

b. DMSINA to search the synonym tables for the specified name. If
found, DMSINT searches for a routine with the valid synonym by
repeating step 1.

3. DMSINT executes SVC 202, passing the scanned tokenized parameter
list, with the command name in the first eight bytes of the PLIST
pointed to by register 1 and the extended PLIST address in register O.
DMSITS performs the search for SVC 202 as described above in “SVC
202 Entered from a Program” on page 83.

4. DMSINT searches for a CP command with the specified name, using the
CP DIAGNOSE function.?

5. If all of these searches fail, DMSINT displays the error message
Unknown CP/CMS Command.

See Figure 10 on page 86 for a description of this search for a command
name.

2 If implied EXEC is not in effect (SET IMPEX OFF), skip steps 1 and 2.

3 If implied CP is not in effect (SET IMPCP OFF), skip step 4.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 85

Restricted Materials of IBM
Licensed Materials — Property of IBM

User enters name
at terminal

Read line from
terminal
("name...")

Implied
EXEC now in

S name aQ
transiation

Expand the line by
inserting EXEC in
front of the
command name;
ie. 'EXEC name’

name is now a
real name from
——" a translation or

synonym table

for some real

Issue SVC 202

(See SVC 202
subroutine)

Notes:

1. If the command SET IMPEX OFF
has been executed, implied EXEC
is not in effect.

IsRC=-3
(Note 3)

Pass line to CP
for processing

2. This EXEC must exist in storage
or on DASD.

3. A -3 return code indicates SVC 202
processing did not find the command.

Display co w;:nd

4. 1f the command SET IMPCP OFF UNKNOWN found and

has been executed, implied CP is CR/CMS executed
not in effect. COMMAND

®

Display Ready
message, with
error code if
RC-=0

SZ

N

()

Figure 10. CMS Command Processing

86 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

Nucleus
extension

No Check

for subcom
chain

Laokaside
buffer

1s

area

Pass control to
the routine (in

name now
in transient

nome now
in transient
area

Is Is name No R Attempt to

te LOADMOD|

a
function Y name module
from disk

Yes

Pass control to
the routine (in
the 1 or
user area) to

execute the cmd

~

Pass control to
M| routine in
transient area

Lvd Have we Is call

the nucleus or
user area) to
execute the cmd

Upon completion
return to SVC
routine

been here
before

or DMSCSF,

'S name’
a synonym
for some real
name

Is name'
a translction
from some
real

No

name is now o
real name from o
translation or
synonym table

<

Figure 11. SVC 202 Processing

User and Transient Program Areas

D SetRC=--3 I

Return to routine
that issued the
SVC 202

Two areas hold programs that are loaded by LOADMOD from the disk.
These areas are called the user program area and the transient program
area. (See Figure 3 on page 20 for a description of CMS storage usage.) A
summary of CMS modules and their attributes, including whether they
reside in the user program area or the transient area, is contained in the

VM|SP CMS Command Reference.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Chapter 7. Processing and Executing CMS Files 87

Restricted Materials of IBM
Licensed Materials — Property of IBM

The user program area starts at location X'20000' and extends upward to
the loader tables. However, the high-address end of that area can be
allocated as free storage by DMSFREE. Generally, all user programs and
certain system commands, such EDIT and COPYFILE, are executed in the
user program area. Because only one program can be executing in the user
program area at one time, it is impossible (without unpredictable results)
for one program executing in the user program area to invoke, by means of
SVC 202, a module that will also be executed the user program area.

The transient program area is two pages, running from location X'E000' to
location X' FFFF'. It provides an area for system commands that may also
be invoked from the user program area by means of an SVC 202 call. When

a transient module is called by an SVC, it is normally executed with the
PSW system mask disabled for I/O and external interrupts.

A program executing in the transient program area may not invoke another
program intended to execute in the transient program area. Thus, for
example, a program executing in the transient program area may not
invoke the TYPE command.

There is one further functional difference between the use of the two
program areas. DMSITS starts a program in the user program area so that
it is enabled for all interruptions. It starts a program in the transient
program area so that it is disabled for all interruptions. Thus, the
individual program may have to use the SSM (Set System Mask) instruction
to change the current status of its system mask.

Called Routine Start-Up Table

Figure 12 shows how registers are set up when the called routine is

entered.
Registers| Register | Registers| Register | Register | Register | Register
Type 0-1 2 3-11 12 13 14 15
SVC 202 | Same as | See note | Not Address | Address | Return Address
caller 1 defined of called | of user address of called
routine save to routine
area DMSITS
SVC 203 | Same as | Not Not Address See note | Return Address
caller defined defined of called |2 address of called
routine to routine
DMSITS
Other Same as | Same as | Same as | Address Address Return Same as
caller caller caller of called | of user address caller
routine save to
area DMSITS

Figure 12.

Register Contents When Called Routine Starts

88 System Logic and Problem Determination (CMS)

LY20-0893-4 © Copyright IBM Corp.

\%‘/ ,.”

1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

Returning to the Caller

1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Notes:

1. If a nucleus extension or subcommand processor, register 2 has address of
SCBLOCK.

v

2. Depends on the function being invoked.

Figure 13 shows how the PSW fields are set up when the called routine is
entered.

Called Type System Mask | Storage Key | Problem Bit
SVC 202 or 203 -- Disabled System Off
Nucleus Resident

SVC 202 -- Nucleus | See note 1 See note 1 Off
Extension Module

SVC 202 or 203 -- Disabled See note 2 Off
Transient Area

Module

SVC 202 or 203 -- Enabled See note 2 Off
User Area Module

User-handled Enabled User Off
OS-VSE - Disabled System Off
Nucleus resident

OS-VSE -- Disabled System Off
Transient area

module

Figure 13. PSW Fields When Called Routine Starts

Notes:
1. User defined by using the NUCEXT function.

2. User defined by using the CMS GENMOD command or the CMS SET
PROTECT command.

When the called routine is finished processing, it returns control to
DMSITS. Then DMSITS returns control to the calling routine.

Return Location: The return is accomplished by loading the original SVC
old PSW (that was saved at the time DMSITS was first entered), after
possibly modifying the address field. The address field modification depends
upon the type of SVC call and on whether the called routine indicated an
error return address.

For SVC 202 and 203, the called routine places a zero in Register 15
indicating a normal return places a nonzero in Register 25 indicating an
error return. lacing a zero in register 15 and an error return by placing a
nonzero in register 15. If the called routine indicates a normal return,
DMSITS makes a normal return to the calling routine. If the called routine
indicates an error return, DMSITS passes the error return to the calling

Chapter 7. Processing and Executing CMS Files 89

Restricted Materials of IBM
Licensed Materials — Property of IBM

routine, if one was specified. If no error return address was specified, P
DMSITS abnormally terminates.

For SVC 202 not followed by “DC AL4(address)” or “DC AL4(1)”, a normal
return is made to the instruction following the SVC instruction and an
error return causes an abend. For an SVC 202 followed by “DC
Al4(address)”, a normal return is made to the instruction following the DC
and an error return is made to the address specified in the DC, unless the
address is equal to 1. If the address is 1, return is made to the next
instruction after the “DC AL4(1)” instruction. In either case, register 15
contains the return code passed by the called routine.

For SVC 203 with a positive halfword code, a normal return is made to the
instruction following the halfword code and an error return causes an
abend. For SVC 203 with a negative halfword code, both normal and error
returns are made to the instruction following the halfword code. In any
case, register 15 contains the return code passed back by the called routine.

For OS macro simulation SVC calls and user-handled SVC calls, no error
return is recognized by DMSITS. As a result, DMSITS always returns to
the calling routine by loading the SVC old PSW that was saved when
DMSITS was first entered.

REGISTER RESTORATION: Upon entry to DMSITS, all registers are
saved as they were when the SVC instruction was first executed. Upon
-exiting from DMSITS, all registers are restored to the values that were
saved at entry.

The exception to this is register 15 for SVC 202 and 203. Upon return to
the calling routine, register 15 contains the value that was in register 15
_ when the called routine returned to DMSITS after it had completed
| processing. If the command invoked by the SVC called the parsing facility,
| any storage allocated by the parsing facility is returned.

Modification of the System Save Area

If the called routine has system status so that it runs with a PSW storage
protect key of 0, it may store new values into the system save area.

If the called routine wishes to modify the location where control is to be
returned, it must modify the following fields:

o For SVC 202 and 203, the called routine must modify the NUMRET and
ERRET (normal and error return address) fields.

o For other SVCs, the called routine must modify the address field of
OLDPSW.

To modify the registers that are returned to the calling routine, the fields
EGPR1, EGPR2 through EGPR15 must be modified.

If this action is taken by the called routine, the SVCTRACE facility may ~
print misleading information, since SVCTRACE assumes that these fields .
are exactly as they were when DMSITS was first entered. Whenever an

90 System Logic and Problem Determination (CMS) L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

SVC call is made, DMSITS allocates two save areas for that particular SVC
call. Save areas are allocated as needed. For each SVC call, a system and
user save area are needed.

When the SVC-called routine returns, the save areas are not released. They
are kept for the next SVC. If the routine invoked by the SVC called the
parsing facility, any storage allocated by the parsing facility for parsing
results is released up on return. At the completion of each command, all
SVC save areas allocated by that command are released.

DMSITS uses the system save area (DSECT SSAVE) to save the value of
the SVC old PSW at the time of the SVC call, the calling routine’s registers
at the time of the call, and any other necessary control information. Since
SVC calls can be nested, there can be several of these save areas at one
time. The system save area is allocated in protected free storage.

The user save area (DSECT EXTUAREA) contains 12 doublewords (24
words) allocated in unprotected free storage. DMSITS does not use this
area at all. It simply passes a pointer to this area (via register 13.) The
called routine can use this area as a temporary work area or as a register
save area. Each system save area has one user save area. The USAVEPTR
field in the system save area points to the user save area.

The exact format of the system save area can be found in VM/SP Data
Areas and Control Block Logic Volume 2 (CMS). The most important fields
and their uses are as follows:

Field Usage

CALLER (Fullword) The address of the SVC instruction that resulted
in this call.

CALLEE (Doubleword) Eight-byte symbolic name of the called routine.
For OS and user-handled SVC calls, this field contains a
character string of the form SVC nnn, where nnn is the SVC
number in decimal.

CODE (Halfword) For SVC 203, this field contains the halfword
code following the SVC instruction line.

OLDPSW (Doubleword) The SVC old PSW at the time that DMSITS
was entered.

NRMRET (Fullword) The address of the calling routine where control
is passed if there is a normal return from the called routine.

ERRET (Fullword) The address of the calling routine where control
is passed if there is an error return from the called routine.

EGPRS (16 Fullwords, separately labeled EGPR0O, EGPR1, EGPR2,

EGPRS3, ..., EGPR15). The contents of the general purpose
registers at entry to DMSITS are stored in these fields.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 91

Restricted Materials of IBM
Licensed Materials — Property of IBM

EFPRS (4 Doublewords, separately labeled EFPR0O, EFPR2, EFPR4, PN

EFPR6) The entry floating-point registers. The contents of
the floating-point registers at entry to DMSITS are stored in

these fields.

SSAVENXT (Fullword) The address of the next system save area in the
chain. This points to the system save area being used, or
will be used, for any SVC call nested in relation to the

current one.

SSAVEPRV (Fullword) The address of the previous system save area in
the chain. This points to the system save area for the SVC
call in relation to which the current call is nested.

USAVEPTR (Fullword) Pointer to the user save area for this SVC call.

Dynamic Linkage/SUBCOM

It is possible for a program that is already loaded from disk to become
dynamically known by name to CMS for the duration of the current
command; such a program can be called via SVC 202. In addition, this
program can also make other programs dynamically known if the first
program can supply the entry points of the other programs.

To become known dynamically to CMS, a program or routine invokes the
create function of SUBCOM. To invoke SUBCOM, issue the following
calling sequence from an assembler language program:

LA R1,PLIST
SVC 202
DC AL4 (ERROR)

PLIST DS OF

DC CL8'SUBCOM'
SUBCNAME DC CL8'name'
SUBCPSW DC XL2'0000"'

DC AL2(0)
SUBCADDR DC A(O)

DC A(0)

COMMAND NAME

SYSTEM MASK, STORAGE KEY, ETC.
RESERVED

ENTRY ADDRESS, -1 FOR QUERY PLIST
USER WORD

SUBCOM creates an SCBLOCK control block containing the information
specified in the SUBCOM parameter list. SVC 202 uses this control block
to locate the specified routine. All non-system SUBCOM SCBLOCKS are
released at the completion of a command (that is, when CMS displays the
ready message). A SUBCOM environment may be defined as a system
SUBCOM by setting a X'80"' in the first byte of the interruption code field
of the PLIST. See VM/SP Data Areas and Control Block Logic Volume 2
(CMS) for a description of the SCBLOCK control block.

When a program issues an SVC 202 call to a program that has become

known to CMS via SUBCOM, it places X'02"' in the high-order byte of

register 1. Control passes to the called program at the address specified by A
the called program when it invoked SUBCOM. e

92 System Logic and Problem Determination (CMS)

1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

The PSW in the SCBLOCK specifies the system mask, the PSW key to be
used, the program mask (and initial condition code), and the starting
address for execution. The problem-state bit and machine-check bit may be
set. The machine-check bit has no effect in CMS under CP. The EC-mode
bit and wait-state bit cannot be set. They are always forced to zero. Also,
one 4-byte, user-defined word can be associated with the SUBCOM entry
point and referred to when the entry point is subsequently called.

When control passes to the specified entry point, the register contents are:
R2 Address of SCBLOCK for this entry point.

R12 Entry point address.

R13 24-word save area address.

R14 Return address (CMSRET).

R15 Entry point address.

You can also use SUBCOM to delete the potential linkage to a program or
routine’s SCBLOCK, or you can use SUBCOM to determine if an
SCBLOCK exists for a program or routine.

To delete a program or routine’s SCBLOCK, issue:
DC CL8'SUBCOM'

DC CL8'program or routine name'
DC 8X'00'

To determine if an SCBLOCK exists for a program or routine, issue:
DC CL8'SUBCOM'
DC CL8'program or routine name'

DC A(0) SCBLOCK addressed as a returned value
DC 4X'FF'

Note that if ‘SUBCOM name’ is called from an EXEC file, the QUERY
PLIST is the form of PLIST that is issued.

To query the chain anchor, issue:

DC CL8'SUBCOM'

DS CL8 (contents not relevant)

DS AL4 Will receive chain anchor
contents from NUCSCBLK

DC AL4(1) Indicates request for anchor

Note that the anchor is equal to F'0' if there are no SCBLOCKs on the
chain.

Note: If you create SCBLOCKS for several programs or routines with the
same name, they are all remembered, but SUBCOM uses the last one
created. A SUBCOM delete request for that name eliminates only the most
recently created SCBLOCK making active the next most recently created
SCBLOCK with the same name.

1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 93

Restricted Materials of IBM
Licensed Materials — Property of IBM

When control returns to CMS after a console input command has
terminated, the entire SUBCOM chain of SCBLOCKS is released. None of
the subcommands established during that command are carried forward to
be available during execution of the next console command.

Return Codes
Return codes from the SUBCOM function are:

Return Meaning

Code
0 Successful completion. A new SCBLOCK was created, the
specified SCBLOCK was deleted, or the specified program or
routine has an SCBLOCK.
1 No SCBLOCK exists for the specified program or routine. This
is the return code for a delete or a query.
25 No more free storage available. SCBLOCK cannot be created for

the specified program or routine.

Loading and Executing Text Files

The CMS loader consists of a nucleus resident loader (DMSLDR), a file and
message handler program (DMSLIO), a library search program (DMSLIB),
and other subroutine programs. DMSLDR starts loading at the user first
location (AUSRAREA) specified in NUCON or at a user specified location.
When performing an INCLUDE function, loading resumes at the next
available location after the previous LOAD, INCLUDE, or LOADMOD.

The loader reads in the entire user’s program, which consists of one or
more control sections, each defined by a type 0 ESD record (“card”). Each
control section contains a type 1 ESD card for each entry point and may
contain other control cards.

Once the user’s program is in storage, the loader begins to search its files
for library subprograms called by the program. The loader reads the library
subprograms into storage, relocating and linking them as required. To
relocate programs, the loader analyzes information on the SLC, ICS, ESD,
TXT, and REP cards. To establish linkages, it operates on ESD and RLD
cards. Information for end-of-load transfer of control is provided by the
END and LDT cards, the ENTRY control card, START command, or RESET
option.

The loader also analyzes the options specified on the LOAD and INCLUDE
commands. In response to specified options, the loader can:

e Set the load area to zeros before loading (CLEAR option).

e Load the program at a specified location (ORIGIN option).

94 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

-

Restricted Materials of IBM
Licensed Materials — Property of IBM

e Suppress creation of the load-map file on disk (NOMAP option).

e Suppress the printing of invalid card images in the load map (NOINV
option).

e Suppress the printing of REP card images in the load map (NOREP
option).

o Load program into “transient area” (ORIGIN TRANS option).

o Suppress TXTLIB search (NOLIBE option).

e Suppress text file search (NOAUTO option).

o Execute the loaded program (START option).

e Type the load map (TYPE option).

e Set the program entry point (RESET option).

e Save the relocation information from the text files (RLDSAVE option).

e Save history information (HIST option). However, you must issue the
GENMOD command after you issue the INCLUDE or LOAD command
with the HIST option.

During its operation, the loader uses a loader table (REFTBL), and external
symbol identification table (ESIDTB), and a location counter (LOCCNT).
The loader table contains the names of control sections and entry points,
their current location, and the relocation factor. (The relocation factor is
the difference between the compiler-assigned address of a control section
and the address of the storage location where it is actually loaded.) The
ESIDTB contains pointers to the entries in REFTBL for the control section
currently being processed by the loader. The loader uses the location
counter to determine where the control section is to be loaded. Initially,
the loader obtains from the nucleus constant area the address (LOCCNT) of
the next location at which to start loading. This value is subsequently
incremented by the length indicated on an ESD (type 0), END, or ICS card,
or it may be reset by an SLC card.

The loader contains a distinct routine for each type of input card. These
routines perform calculations using information contained in the nucleus
constant area, the location counter, the ESIDTB, the loader table, and the
input cards. Other loader routines perform initialization, read cards into
storage, handle error conditions, provide disk and typewritten output,
search libraries, convert hexadecimal characters to binary, process
end-of-file conditions, and begin execution of programs in core. If a card is
not one of the recognized types, it is considered a comment card. As a
comment card, it can be included in the module by specifying the HIST
option on the LOAD or INCLUDE command and then issuing a subsequent
GENMOD command.

Following are descriptions of the individual subprocessors with LDR.

L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 95

SLC Card Routine

Restricted Materials of IBM
Licensed Materials — Property of IBM

Function
This routine sets the location counter (LOCCT) to the address
specified on an SLC card or to the address assigned (in the REFTBL)
to a specified symbolic name.

Entry
The routine is entered at the first instruction when it receives control
from the initial and resume loading routine. It is entered at ORG2
whenever a loader routine requires the current address of a symbolic
location specified on an SLC card.

Operation
This routine determines which of the following situations exists, and
takes the indicated action:

1. The SLC card does not contain an address or a symbolic name.
The SLC card routine branches, via BADCRD in the reference
table search routine, to the disk and type output routine
(DMSLIO), which generates an error message.

2. The SLC card contains an address only. The SLC card routine
sets the location counter (LOCCT) to that address and returns to
RD, in the initial and resume loading routine, to read another
card.

3. The SLC card contains a name only, and there is a reference table
entry for that name. The SLC card routine sets LOCCT to the
current address of that name (at ORG2) and returns to the initial
and resume loading routine to get another card.

4, The SLC card contains a name only, and there is no reference
table entry for that name. The SLC card routine branches via
ERRSLC to the disk and type output routine (DMSLIO), which
generates an error message for that name.

5. The SLC card contains both an address and a name. If there is a
REFTBL entry for the name, the sum of the current address of the
name and the address specified on the SLC card is placed in
LOCCT. Control returns to the initial and resume loading routine
to get another card. If there is no REFTBL entry for the name,
the SLC card routine branches via ERRSLC to the disk and type
output routine, which generates an error message for the name.

ICS CARD ROUTINE - C2AE1

Function
This routine establishes a reference table entry for the
control-segment name on the ICS card if no entry for that name exists,
adjusts the location counter to a fullword boundary, if necessary, and
adds the card-specified control-segment length to the location counter,
if necessary.

96 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials — Property of IBM

Entry

p—

This routine has one entry point, C2AE1. The routine is entered from
the initial and resume loading routine when it finds an ICS card.

Operation

1.

e .

The routine begins its operation with a test of card type. If the
card being processed is not an ICS card, the routine branches to
the ESD card analysis routine. Otherwise, processing continues in
this routine.

The routine tests for a hexadecimal address on the ICS card. If an
address is present, the routine links to the DMSLSBA subroutine
to convert the address to binary. Otherwise, the routine branches
via BADCRD to the disk and type output routine (DMSLIO).

The routine next links to the REFTBL search routine, which
determines whether there is a reference table entry for the
card-specified control-segment name. If such an entry is found, the
REFTBL search routine branches to the initial and resume
loading routine. Otherwise, the REFTBL search routine places
the control-segment name in the reference table and processing
continues.

The routine determines whether the card-specified control-segment
length is zero or greater than zero. If the length is zero, the
routine places the current location counter value in the reference
table entry as the control segment’s starting address (ORG2), and
then it branches to the initial and resume loading routine. If the
length is greater than zero, the routine sets the current location
counter value at a fullword boundary address. The routine then
places this adjusted current location counter value in the
reference table entry, adjusts the location counter by adding the
specified control-segment length to it,.and branches to RD in the
initial and resume loading routine to get another card.

ESD TYPE 0 CARD ROUTINE - C3AA3

Function
This routine creates loader table and ESID table entries for the
card-specified control section.

Entry

This routine has one entry point, C3AA3. The routine is entered from
the ESD card analysis routine.

Operation

1.

2.

If this is the first section definition, its ESDID is proved.

This routine first determines whether a loader table (REFTBL)
entry has already been established for the card-specified control
section. To do this, the routine links to the REFTBL search
routine. The ESD type 0 card routine’s subsequent operation

L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 97

Restricted Materials of IBM
Licensed Materials — Property of IBM

depends on whether there already is a REFTBL entry for this
control section. If there is such an entry, processing continues
with operation 5, below; if there is not, the REFTBL search
routine places the name of this control section in REFTBL and
processing continues with operation 3.

3. The routine obtains the card-specified control section length and
performs operation 4.

4. The routine links to location C2AJ1 in the ICS card routine and
returns to C3AD4 to obtain the current storage address of the
control section from the REFTBL entry, inserts the REFTBL entry
position (N - where this is the Nth REFTBL entry) in the
card-specified ESID table location, and calculates the difference
between the current (relocated) address of the control section and
its card-specified (assembled) address. This difference is the
relocation factor. It is placed in the REFTBL entry for this
control section. If previous ESDs have been waiting for this
CSECT, a branch is taken to SDDEF, where the waiting elements
are processed. A flag is set in the REFTBL entry to indicate a
section definition.

5. The entry found in the REFTBL is examined to determine whether
it had been defined by a COMMON. If so, it is converted from a
COMMON to a CSECT and performs operation 3.

6. If the entry had not been defined previously by an ESD type 0,
processing continues at 3.

7. If the entry had been defined previously as other than COMMON,
DMSLIO is called via ERRORM to print a warning message,
“Duplicate identifier _name.”. The entry in the ESID table is set
to negative so that the CSECT is skipped (that is, not loaded) by
the TXT and RLD processing routines.

ESD TYPE 1 CARD ROUTINE - ENTESD

Function
This routine establishes a loader table entry for the entry point
specified on the ESD card, unless such an entry already exists.

Entry
This routine is entered from the ESD card analysis routine.

Operation

1. Branches and links to REFADR to find loader table entry for first
section definition of the text deck saved by the ESD 0 routine.

2. The routine then adds the relocation factor and the address of the
ESD found in operation 1 or the address in LOCCNT if an ESD
has not yet been encountered. The sum is the current storage
address of the entry point.

98 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

—~

Restricted Materials of IBM
Licensed Materials — Property of IBM

3. The routine links to the REFTBL search routine to find whether
there is already a REFTBL entry for the card-specified entry point
name. If such an entry exists, the routine performs operation 4. If
there is no entry, the routine performs operation 5.

4. Upon finding a REFTBL entry that has been previously defined for
the card-specified name, the routine then compares the
REFTBL-specified current storage address with the address
computed in operation 2. If the addresses are different, the routine
branches and links to the DMSLIO routine (duplicate symbol
warning); if the addresses are the same, the routine branches to
location RD in the initial and resume loading routine to read
another card. Otherwise, it is assumed that the REFTBL entry
was created as a result of previously encountered external
references to the entry. The DMSLSBC routine is called to
resolve the previous external references and adjust the REFTBL
entry. The entry point name and address are printed by calling
DMSLIO.

5. If there is no REFTBL entry for the card-specified entry point
name, the routine makes such an entry and branches to the
DMSLIO routine.

ESD TYPE 2 CARD ROUTINE - C3AH1

Function
This routine creates the proper ESID table entry for the card-specified
external name and places the name’s assigned address (ORG2) in the
reference table relocation factor for that name.

Entry
This routine has two entry points: C3AH1 and ESD00. Location
C3AH]1 is entered from the ESD card analysis routine. This occurs
when an ESD type 2 card is being processed. Location ESDOO is
entered from:

o The ESD card analysis routine, when the card being processed is
an ESD type 2 and an absolute loading process is indicated.

e The ESD type 0 card routine and ESD type 1 card routine, as the
last operation in each of these routines.

Operation

1. When this routine is entered at location C3AH1, it first links to
the REFTBL search routine to determine whether there is a
REFTBL entry for the card-specified external name. If none is
found, the REFTBL search routine sets the undefined flag for the
new loader table entry.

2. The routine resets a possible WEAK EXTRN flag. The routine
next places the REFTBL entry’s position-key in the ESID table. If
the entry has already been defined by means of an ESD type 0, 1,

L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 99

| Restricted Materials of IBM
| Licensed Materials — Property of IBM

5, or 6, processing continues at operation 4. Otherwise, it
continues at operation 3.

3. The relocated address is placed in the RELFAC entry in the
external name’s REFTBL entry.

4. The ESD type 2 card routine then determines (at location ESD00)
whether there is another entry on the ESD card. If there is
another entry, the routine branches to location CA3A1 in the ESD
card analysis routine for further processing of this card.
Otherwise, the routine branches to location RD in the initial
resume loading routine.

Exits
This routine exits to location CA3A1 in the ESD card analysis routine
if there is another entry on the ESD card being processed, and it exits
to location RD in the initial and resume loading routine if the ESD
card requires no further processing.

ESD TYPE 4 ROUTINE - PC

Function
This routine makes loader table and ESIDTAB entries for private code
CSECT.

Operation

1. The routine LDRSYM is called to generate a unique character
string number of the form 00000001, which is left in the external
data area NXTSYM. It is greater in value than the previously
generated symbol.

2. The CSECT is then processed as a normal type 0 ESD with the
above assigned name.

ESD TYPES 5 AND 6 CARD ROUTINE - PRVESD AND COMESD

Function
This routine creates a reference table and ESIDTAB entries for
common and pseudo-register ESDs.

Operation

1. Links to ESIDINC in the ESD type 0 card routine to update the
number of ESIDTB entries.

2. Links to the REFTBL search routine to determine whether a
reference table (REFTBL) entry has already been created. If there
is no entry, the REFTBL search routine places the name of the
item in the REFTBL.

3. If the REFTBL search routine had to create an entry for the item,

the ESD type 5 and 6 card routine indexes it in the ESIDTB,
enters the length and alignment in the entry, indicates whether it

100 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

routine to determine whether the card contains additional ESDs to
be processed. If the entry is a PR, the ESD type 5 and 6 card
routine enters its displacement and length in the REFTBL before
branching to ESDOO.

(’ : is a PR or common, and branches to ESD00 in the ESD type 2 card

4. If the REFTBL already contained an entry, the ESD type 5 and 6
card routine indexes it in the ESIDTB, checks alignment, and
branches to ESDO00.

Note: The PR alignment is coded and placed into the REFTBL. It is an
error to encounter more restrictive alignment PR than previously defined.
A blank alignment factor is translated to fullword alignment.

ESD TYPE 10 ROUTINE - WEAK EXTRN

| ‘ The WEAK EXTRN routine calls the search routine to find the EXTRN
name in the loader table. If not found, set the WEAK EXTRN flag in the
new loader table entry. Exit to ESD0O0.

TXT CARD ROUTINE - C4AA1

Function
This routine has two functions: address inspection and placing text in
storage.

\ (Entry

This routine has three entry points: C4AA1, which is entered from the
ESD card analysis routine, and REPENT and APR1, which are entered
from the REP card routine for address inspection.

Operation

1. This routine begins its operation with a test of card type. If the
card being processed is not a TXT card, the routine branches to
the REP card routine. Otherwise, processing continues in this

:(routine.

2. The routine then determines how many bytes of text are to be
placed in storage and finds whether the loading process is absolute
or relocating. If the loading process is absolute, the routine
performs operation 4, below; if relocating, the routine performs
operation 3.

3. If the ESIDTB entry was negative, this is a duplicate to CSECT
and processing branches to RD. Otherwise, the routine links to
the REFADR routine to obtain the relocation factor of the current
control segment.

4. The routine then adds the relocation factor (0, if the loading
process is absolute) and the card-specified storage address. The
i result is the address at which the text must be stored. This
(routine also determines whether the address is such that the text,
when loaded starting at that address, overlays the loader or the

1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 101

Exits

Restricted Materials of IBM
Licensed Materials — Property of IBM

. reference table. If the loader overlay or a reference table overlay

is found, the routine branches to the LDRIO routine. If neither
condition is detected, the routine proceeds with address inspection.

The routine then determines whether an address has already been
saved for possible use as the end-of-load branch address. If an
address has been saved, the routine performs operation 7. If not,
the routine performs operation 6.

The routine determines whether the text address is below location
128. If the address is below location 128, it should not be saved for
use as a possible end-of-load branch address, and the routine
performs operation 7. Otherwise, the routine saves the address
and then performs operation 7.

The routine then stores the text at the address specified (absolute
or relocated) and branches to location RD in the initial and
resume loading routine to read another card.

The routine exits to two locations:

The routine exits to location RD in the initial and resume loading

- routine if it is being used to process a TXT card.
2. The routine exits to location APRIL in the REP card routine if it
is being used for REP card address inspection.
REP CARD ROUTINE - C4AA3 |
Function

This routine places text corrections in storage.

Entry

This routine has one entry point, C4AA3. The routine is entered from
the TXT card routine.

Operation

1.

This routine begins its operation with a text of card type. If the
card being processed is not a REP card, the routine branches to
the RLD card routine. Otherwise, processing continues in this
routine.

The routine then links to the HEXB conversion routine to convert
the REP card-specified correction address from hexadecimal to
binary.

The routine then links to the HEXB conversion routine again to
convert the REP card-specified ESID from hexadecimal to binary.

The routine then determines whether the 2-byte correction being
processed is the first such correction on the REP card. If it is the

102 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials — Property of IBM

A

Exits

first correction, the routine performs operation 5. Otherwise, the
routine performs operation 6.

When the routine is processing the first correction, it links to
location REPENT in the TXT card routine, where the REP
card-specified correction address is inspected for loader overlay
and for end-of-load branch address saving. In addition, if the
loading process is relocating, the relocated address is calculated
and checked for reference table overlay. The routine then
performs operation 7.

When the correction being processed is not the first such
correction on the REP card, the routine branches to location
APR1 in the TXT card routine for address inspection.

The routine then links to the HEXB conversion routine to convert
the correction from hexadecimal to binary, places the correction in
storage at the absolute (card-specified) or relocated address, and
determines whether there is another correction entry on the REP
card. If there is another entry, the routine repeats its processing
from operation 4, above. Otherwise, the routine branches to
location RD in the initial and resume loading routine.

When all the REP-card corrections have been processed, this routine
exits to location RD in the initial and resume loading routine.

l‘ RLD CARD ROUTINE - C5AA1

Function

This routine processes RLD cards, which are produced by the
assembler when it encounters address constants within the program
being assembled. This routine places the current storage address
(absolute or relocated) of a given defined symbol or expression into the
storage location indicated by the assembler. The routine must

- calculate the proper value of the defined symbol or expression and the

i proper address at which to store that value.

Entry

This routine has two entry points, C5AA1 and PASSTWO.

Operation:

1.

Location C5AA1 writes each RLD card into a work file (DMSLDR
CMSUT1). Exit to RD to process the next card.

Location PASSTWO reads an RLD card from the work file. At
EOF get to C6ABS6 to finish this file.

The routine uses the relocation header (RH ESID) on the card to
obtain the current address (absolute or relocated) of the symbol
referred to by the RLD card. This address is found in the
relocation factor section of the proper reference table entry. If the

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 103

Restricted Materials of IBM
Licensed Materials — Property of IBM

RHESID is 0, the routine branches to the LDRIO routine (invalid
ESD).

3. The routine uses the position header (PH ESID) on the card to
obtain the relocation factor of the control segment in which the
DEFINE CONSTANT assembler instruction occurred. If the PH
ESID is 0, the routine branches to BADCRD in the REFTBL
search routine (invalid ESID). If the ESIDTAB entry is negative
(duplicate CSECT), the RLD entry is skipped.

4, The routine next decrements the card-specified byte count by 4 and
tests it for 0. If the count is now 0, the routine branches to
location RD in the initial and resume loading routine. Otherwise,
processing continues in this routine.

5. The routine determines the length, in bytes, of the address
constant referred to in the RLD card. This length is specified on
the RLD card.

6. The routine then adds the relocation factor obtained in operation
3 (relocation factor of the control segment in which the current
address of the symbol must be stored) and the card-specified
address. The sum is the current address of the location at which
the symbol address must be stored.

7. The routine then computes the arithmetic value (symbol address or
expression value) that must be placed in storage at the address
calculated in operation 6, above, and places that value at the
indicated address. If the value is undefined, the routine branches
to location DMSLSBB, where the constant is added to a string of
constants that are to be defined later.

8. The routine again decrements the byte count of information on the
RLD card and tests the result for zero. If the result is zero, go to
operation 2. Otherwise, processing continues in this routine.

9. The routine next checks the continuation flag, a part of the data
placed on the RLD card by the assembler. If the flag is on, the
routine repeats its processing for a new address only--the
processing is repeated from operation 4. If the flag is off, the
routiné repeats its processing for a new symbol--the processing is
repeated from operation 2.

Exits
This routine exits to location RD in the initial and resume loading
routine.

104 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials — Property of IBM

END CARD ROUTINE - C6AA1

Function
This routine saves the END card address under certain circumstances
and initializes the loader to load another control segment.

Entry

This routine has one entry point, C6AA1. The routine is entered from
the RLD card routine.

Operation

1.

Exits

This routine begins its operation with a test of card type. If the
card being processed is not an END card, the routine branches to
the LDT card routine. Otherwise, processing continues in this
routine.

The routine then determines whether the END card contains an
address. If the card contains no address, the routine performs
operation 7, below. Otherwise, the routine performs operation 3.

The routine next checks the end-address-saved switch. If this
switch is on, an address has already been saved, and the routine
performs operation 7. If the switch is off, the routine performs
operation 4.

The routine determines whether loading is absolute or relocated.
If the loading process is absolute, the routine performs operation
6. Otherwise, the routine performs operation 5.

The routine links to the REFADR routine to obtain the current
relocation factor, and the routine adds this factor to the
card-specified address.

The routine stores the address (absolute or relocated) in area
BRAD for possible use at the end-of-load transfer of control to the
problem program.

Goes to location PASSTWO (in RLD routine) to process RLD
cards.

The routine then clears the ESID table, sets the absolute load flag
on, and branches to the location specified in a general register (see
“Exits”).

This routine exits to the location specified in a general register. This
may be either of two locations:

1.

LY20-0893-4 © Copyright IBM Corp.

Location RD in the initial and resume loading routine. This exit
occurs when the END card routine is processing an END card.

The location in the LDT card routine, that is specified by that
routine’s linkage to the END card routine. This exit occurs when

1980, 1986 Chapter 7. Processing and Executing CMS Files 105

Restricted Materials of IBM
Licensed Materials — Property of IBM

the LDT card routine entered this routine to clear the ESID table
and set the absolute load flag on.

CONTROL CARD ROUTINE - CTLCRD1

Function
This routine handles the ENTRY and LIBRARY control cards.

Entry
This routine has one entry point, CTLCRD1. The routine is entered
from the LDT card routine.

Operations
1. The CMS function SCAN is called to parse the card.

2. If the card is not an ENTRY or LIBRARY card, the routine
determines whether the NOINV option (no printing of invalid
card images) was specified. If printing is suppressed, control
passes to RD in the initial and resume loading routine, where
another card is read. If printing is not suppressed, control passes
to the disk and type output routine (DMSLIO), where the invalid
card image is printed in the load map. If the card is a valid
control card, processing continues.

ENTRY Card

3. If the ENTRY name is already defined in REFTBL, its REFTBL
address is placed in ENTADR. Otherwise, a new entry is made in
REFTBL, indicating an undefined external reference (to be
resolved by later input or library search), and this REFTBL
entry’s address is placed in ENTADR.

4. The control card is printed by calling DMSLIO via CTLCRD; it
then exits to RD.

LIBRARY Card

5. Only nonobligatory reference LIBRARY cards are handled. Any
others are considered invalid.

6. Each entry-point name is individually isolated and is searched for
in the REFTBL. If it has already been loaded and defined, nothing
is done and the next entry-point name is processed. Otherwise, the
nonobligatory bit is set in the flag byte of the REFTBL entry.

7. Processing continues at operation 4.

106 System Logic and Problem Determination (CMS) 1LY20-0893-4 © Copyright IBM Corp. 1980, 1986

-

Restricted Materials of IBM

Licensed Materials — Property of IBM

REFADR ROUTINE (DMSLDRB)

Function
This routine computes the storage address of a given entry in the
reference table.

Entry

This routine has one entry point, REFADR. The routine is entered for
several of the routines within the loader.

Operation

1.

PRSERCH ROUTINE (DMSLDRD)

Checks to see if requested ESDID is zero. If so, uses LOCCNT as
requested location and branches to the return location + 44.
Otherwise, continues this routine.

The routine first obtains, from the indicated ESID table entry, the
position (n) of the given entry within the reference table (where
the given entry is the nth REFTBL entry).

The routine then multiplies n by 16 (the number of bytes in each
REFTBL entry) and subtracts this result from the starting address
of the reference table. The starting address of the reference table
is held in area TBLREF. This address is the highest address in
storage, and the reference table is always built downward from
that address.

The result of the subtraction in operation 2, above, is the storage
address of the given reference table entry. If there is no ESD for
the entry, goes to operation 5. Otherwise, this routine returns to
the location specified by the calling routine.

Adds an element to the chain of waiting elements. The element
contains the ESD data item information to be resolved when the
requested ESDID is encountered.

Function
This routine compares each reference table entry name with the given
name determining (1) whether there is an entry for that name and (2)
what the storage address of that entry is.

Entry

This routine is initially entered at PRSERCH and subsequently at
location SERCH. The routine is entered from several routines within
the loader.

Operation

1.

This routine begins its operation by obtaining the number of
entries currently in the reference table (this number is contained
in area TBLCT), the size of a reference table entry (16 bytes), and

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 107

LOADER DATA BASES

Restricted Materials of IBM ‘
Licensed Materials — Property of IBM

the starting address of the reference table (always the highest
address in storage, contained in area TBLREF). N

N

2. The routine then checks the number of entries in the reference
table. If the number is zero, the routine performs operation 5.
Otherwise, the routine performs operation 3.

3. 'The routine next determines the address of the first (or next)
reference table entry to have its name checked. Increments by one
the count it is keeping of name comparisons, and compares the
given name with the name contained in that entry. If the names
are identical, PRSERCH branches to the location specified in the
routine that linked to it. PRSERCH then returns the address of
the REFTBL entry. Otherwise, PRSERCH performs operation 4.

4. The routine then determines whether there is another reference
table entry to be checked. If there is none, the routine performs
operation 5. If there is another, the routine decrements by one the -
number of entries remaining and repeats its operation starting
with operation 3.

5. If all the entries have been checked, and none contains the given
name for which this routine is searching, the routine increments
by one the count it is keeping of name comparisons, places that
new value in area TBLCT, moves the given name to form a new
reference table entry, and returns to the calling program.

Exits

This routine exits to either of two locations, both of which are
specified by the routine that linked to this routine. The first location
is that specified in the event that an entry for the given name is
found; the second location is that specified in the event that such an
entry is not found.

ESD Card Codes (col. 25...)

Code Meaning

00
01
02
04
05
06
0A

SD (CSECT or START)
LD (ENTRY)

ER (EXTRN)

PC (Private code)

CM (COMMON)

XD (Pseudo-register)
WX (WEAK EXTERN)

108 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

ESIDTB ENTRY

o~

The ESDID table (ESIDTB) is constructed separately for each text deck
processed by the loader. The ESIDTB produces a correspondence between
ESD ID numbers (user on RLD cards) and entries in the loader reference
table (REFTBL) as specified by the ESD cards. Thus, the ESIDTB is
constructed while processing the ESD cards. It is then used to process the
TXT and RLD cards in the text deck.

The ESIDTB is treated as an array and is accessed by using the ID number
as an index. Each ESIDTB entry is 16 bits long.

Bits Meaning

0 If 1, this entry corresponds to a CSECT that has been previously
defined. All TXT cards and RLD cards referring to this CSECT in
o this text deck should be ignored.
(1 If 1, this entry corresponds to a CSECT definition (SDD).
) 2 Waiting ESD items exist for this ESDID.
3 Unused.
4-15 REFTBL entry number (for example 1, 2, 3, etc.)

Bit 1 is very crucial because it is necessary to use the VALUE field of the
REFTBL if the ID corresponds to an ER, CM, or PR; but, the INFO field of
the REFTBL entry must be used if the ID corresponds to an SD.

(REFTBL ENTRY
0(0)
NAME
8(8) 9(9)
FLAG1 INFO
12(C) 13(D)
NOTE1 VALUE
{ 16(10) 17(11)
1 FLAG2 ADDRESS

A REFTBL entry is 20 bytes. The fields have the following uses:

NAME
Contains the symbolic name from the ESD data item.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 109

Restricted Materials of IBM

Licensed Materials — Property of IBM

FLAG1
Loader ESD Routine
Code Code Label Meaning
7C 00 XBYTE PR - byte alighment
7D 01 XHALF PR - halfword alignment
TE 03 XFULL PR - fullword alignment
TF 07 XDBL PR - doubleword alignment
80 05 XUNDEF Undefined symbol
81 04 XCXD Resolve CXD
82 02 XCOMSET Define common area
83 05 WEAKEXT Weak external reference
90 06 CTLLIB TXTLIBs not to be used to

resolve names
INFO

Depends upon the type of the ESD item.

ESD Item Type

INFO Field Meaning

SD (CSECT or START) Relocation factor

LD (ENTRY)
CM (COMMON)
PR (Pseudo Register)

VALUE

Zero
Maximum length

Depends upon the type of the ESD item, as does the INFO field.

ESD Item Type INFO Field Meaning

SD (CSECT or START) Absolute address

LD (ENTRY) Absolute address

CM (COMMON) Absolute address

PR (Pseudo register) Assigned value (starting from 0)

FLAG2

Bit Meaning

0 Unused

1 Unused

2 Unused

3 Unused

4 Unused

5 Name was located in a TXTLIB

6 Section definition entry

7 Name specifically loaded from command line
ADDRESS

Unused.

Entries may be created in the loader reference table prior to the actual

defining of the symbol. For example, an entry is created for a symbol if it is

110 System Logic and Problem Determination (CMS)

L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

_—

Restricted Materials of IBM
Licensed Materials — Property of IBM

referenced by means of an EXTRN (ER) even if the symbol has not yet been
defined or its type known. Furthermore, COMMON (CM) is not assigned
absolute addresses until prior to the start of execution by the START
command.

These circumstances are determined by the setting of the flag byte. If the
symbol’s value has not yet been defined, the value field specifies the address
of a patch control block (PCB).

PATCH CONTROL BLOCK (PCB)

These are allocated from free storage and pointed at from REFTBL entries
or other PCBs.

Byte Meaning

0-3 Address of next PCB
4 Flag byte
5-7 Location of ADCON in storage

All address constant locations in loaded program for undefined symbols are
placed on PCB chains.

LOADER INPUT RESTRICTIONS

All restrictions that apply to object files for the OS linkage editor apply to
CMS loader input files.

Loading and Executing Members of LOADLIBS

The OS relocating loader support consists of two members: the relocating
program (DMSLOS) and the overlay program (DMSSFF). In addition, the
OSRUN command (DMSOSR) allows the user to invoke directly from the

console a program residing in a CMS LOADLIB or an OS module library.

DMSOSR executes in user storage.

When a user program invokes the LINK, LOAD, XCTL, or ATTACH SVC,
DMSSLN calls DMSLOS to search the libraries in the LOADLIB global list
for the specified member name. If found, DMSLOS loads and relocates the
requested program from either an OS module library (for example,
SYS1.LINKLIB) or a CMS LOADLIB (created by the LKED command). If
the member is not found, return is made to DMSSLN to search for a TEXT
file or a member of a TXTLIB by that name.

The program exists in the library as text records, directly followed (when
required) by control, relocation, and position records. DMSLOS obtains,
via the BLDL macro, the information necessary to start loading the
program from the PDS directory entry for the program. Then, text records
and control records are read alternately, the proper addresses are modified,
and return is made to DMSSLN.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 111

Restricted Materials of IBM
Licensed Materials — Property of IBM

The OSRUN command generates a LINK SVC and therefore follows the
same path described in the preceding paragraphs. However, if the
requested member is not found in searching the libraries specified in the
LOADLIB global list, a search is made for a default library ($SYSLIB
LOADLIB); TEXT files and TXTLIB members are not searched.

For detailed information on the library record formats, see the OS/VS
Linkage Editor Logic.

112 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

Chapter 8. Manipulating the File System

Part 2 of Figure 8 on page 59 lists the CMS modules that perform either
general file system support functions or that perform data manipulation.

L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 8. Manipulating the File System 113

114 System Logic and Problem Determination (CMS)

Restricted Materials of IBM
Licensed Materials — Property of IBM

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

“

——~

Restricted Materials of IBM

Licensed Materials — Property of IBM

Chapter 9. Managing the CMS File System

A description of the structure of the CMS file system and the flow of
routines that access and update the file system follows.

Disk Organization

CMS virtual disks (also referred to as minidisks) are blocks of data
designed to externally parallel the function of real disks. Several virtual
disks may reside on one real disk.

A CMS virtual machine may have up to 26 virtual disks accessed during a
terminal session, depending on user specification. Some disks, such as the
S-disk, are accessed during CMS initialization. However, most disks are
accessed dynamically as they are needed during a terminal session.

How CMS Files are Organized in Storage for an 800-Byte Record

File Status Tables

CMS files are organized in storage by three types of data blocks; the file
status table (FST), chain links, and file records. Figure 14 on page 116
shows how these types of data blocks relate to each other. The following
text and figures describe these relationships and the individual data blocks
in more detail.

CMS files consist of 800-byte records whose attributes are described in the
file status table (FST). The file status table is defined by DSECT FSTSECT.
The FST consists of such information as the filename, filetype, and filemode
of the file, the date on which the file was last written, and whether the file
is in fixed-length or variable format. Also, the FST contains a pointer to
the first chain link. The first chain link is a block that contains addresses
of the data blocks that contain the actual data for the file.

The FSTs are grouped into 800-byte blocks called FST blocks (these are
sometimes referred to in listings as hyperblocks). Each FST block contains
20 FST entries, each describing the attributes of a separate file. Figure 15
on page 117 shows the structure of an FST block and the fields defined in
the FST.

1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 115

Restricted Materials of IBM
Licensed Materials — Property of IBM

Note: Programs that modify the fileid of an FST can destroy the integrity
of the file system. Programs that modify any of the fields in the FSTs are
not supported by CMS. These programs can cause a “file not found”
condition for the file until the disk is re-accessed.

File Status
Master Table Block File Status First Chain Nth Chain
File Directory (FSTB) Table Entry Link (FCL) Link (NCL)
Address of xg:li.r /
FSTB
FCL Address of
an 800-byte
CMS Record —,
{L
7
—»1 Record 1 | Record2 | Record 3 e Record n

/)
|<—- 800-byte CMS Record Containing File Data Items '—>|

Figure 14. How 800-Byte CMS File Records are Chained Together

116 System Logic and Problem Determination (CMS) 1L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

Chain Links

Fields in a File Status Table Entry

FILE
NAME
File Status
Table Block
8
FST 1 FILE
FST 2
TYPE
) 16
DATE LAST WRITTEN
20 . . 22 .
Write Pointer Read Pointer
(Number of Item) (Number of Item)
24 26
N Filemode Number of Items in File
28 30 31
Disk Ad f . .
1 slts Chai?lrfj:lc() Fixed Variable Flag Byte

Item Length (F)
Maximum Item Length (V)

Number of

800-Byte Data Blocks Year

Figure 15. Format of a File Status Table Block - Format of a File Status
Table. (for 800-Byte Disk Format)

Chain links are 200- or 800-byte blocks of storage that chain the records of
a file in storage. There are two types of chain links: first chain links and
Nth chain links.

The first chain link points to two kinds of data. The first 80 bytes of the
first chain link contain the halfword addresses of the remaining 40 chain
links used to chain the records of the file. The next 120 bytes of the file are
the halfword addresses of the first 60 records of the file.

The Nth chain links contain only halfword addresses of the records
contained in the file.

Because there are 41 chain links (of which the first contains addresses for
only 60 records), the maximum size for any CMS file is 16,060 800-byte
records.

1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 117

Restricted Materials of IBM
Licensed Materials — Property of IBM

CMS Record Formats

CMS records are 800-byte blocks containing the data that comprises the
file. For example, the CMS record may contain several card images or
print images, each is referred to as a record item. Figure 16 shows how
chain links are chained together.

CMS records can be stored on disk in either fixed-length or variable-length
format. However, the two formats may not be mixed in a single file.

Regardless of their format, the items of a file are stored by CMS in
sequential order in as many 800-byte records as are required to :
accommodate them. Each record (except the last) is completely filled and
items that begin in one record can end on the next record. Figure 17 on
page 119 shows the arrangement of records in files containing fixed-length
records and files containing variable-length records.

Disk Address of 2nd Chain Link)

Disk Address of 3rd Chain Link

° N Chain
T g SN 2 Linkage
® Directory

Disk Address of A + Oth Data Block
Disk Address of'40th Chain Link

Disk Address of A + 1st Data Block

Disk Address of 41st Chain Link J .

£l
fL
1~

Disk Address of 1st Data Block

Disk Address of /A + 398th Data Block

Disk Address of 2nd Data Block
Disk Address of A+ 399th Data Block

dL
97
[N}
JL
2

A=(n-2) < 400 + 61
where n = Chain Link Number

Disk Address of 59th Data Block

Disk Address of 60th Data Block

Figure 16. Format of the First Chain Link and Nth Chain Links

118 System Logic and Problem Determination (CMS) 1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

Data block structure for file Data block structure for file
consisting of fixed~length records consisting of variable-length records
1st record L1
—————————————— 1st record
800 — —~— 800 80 - ——=— 800
_ -2
—————————— — - - - 2nd record
2nd record
L3 | 3rdrecord |L4
3rd record
s b ———-——————— 800 800 800
-—— 4th record
4th record
5th record Ls
80— —— — — — — — —— —— 800 800 5th record 800
L — - I r _________ — i
l 1 1

Figure 17. Arrangement of Fixed-Length Records and Variable-Length Records in Files

The location of any item in a file containing fixed-length records is
determined by the formula:

(item number - 1) x record length

locations = =--==--=—----——-——m———m— e — e

where the quotient is the sequential number of the data block and the
remainder is the displacement of the item into the data block.

For variable-length records, each record is preceded by a 2-byte field
specifying the length of the record.

Physical Organization of Virtual Disks

Virtual disks are physically organized in 800-byte records. Records 1 and 2
of each user disk are reserved for IPL. Record 3 contains the disk label.
Record 4 contains the master file directory. The remaining records on the
disk contain user file-related information such as the FSTs, chain links, and
the individual file records discussed above.

The Master File Directory

The master file directory (MFD) is the major file management table for a
virtual disk. As mentioned earlier, it resides on cylinder 0, track 0, record 4
of each virtual disk. The master file directory contains six types of
information.

e The disk addresses of the FST entries describing user files on that disk.

1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 119

Restricted Materials of IBM
Licensed Materials — Property of IBM

o A 4-byte “sentinel,” which can be either FFFD or FFFF. FFFD .
specifies that extensions of the QMSK (described below) follow. FFFF k\k .
specifies that no QMSK extension follow.

e Extensions to the QMSK, if any.

o General information describing the status of the disk:

— ADTNUM — The total number of 800-byte blocks on the user’s disk.
— ADTUSED — The number of blocks currently in use on the disk.

— ADTLEFT — Number of blocks remaining for use (ADTNUM -
ADTUSED).

— ADTLAST — Relative byte address of the last record in use on the
disk.

— ADICYL — Number of cylinders on the user’s disk.

— Unit Type — A 1-byte field describing the type of the disk: 07 for a
3340, 08 for a 2314, 09 for a 3330, 0B for a 3350, 0C for a 3375, OE for
a 3380, FE for a 3370, and FF for a 3310.

— A bit mask called the QMSK, which keeps track of the status of the
records on disk.

— Another bit map, called the QQMSK, which is used only for 2314
disks and performs a function similar to that of QMSK.

Figure 18 on page 121 shows the structure of the master file directory.
Figure 14 on page 116 shows the relationship of the master file directory,

which resides on disk, to data blocks brought into storage for file
management purposes, for example, FSTs and chain links.

120 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

|e————— 28ytes —|

Disk Address of 1st FST Block

Byte 0 =——p

Disk Address of 2nd FST Block (if any)
L]
.

[]
Disk Address of Nth FST Block (if any)

Sentinel

Disk Address of 1st QMSK extension (if any)
'

Disk Address of Nth QMSK extension (if any)

.
Not used — Zero filled -
[)

d, N
®
e
Byte 364 —»
-
— C

ADTNUM, ADTUSED, ADTLEFT, ADTLAST 1

(4 bytes each)
Byte 380
Not used (zero)
Byte 382
ADTCYL
Byte 384
:_‘ First 215 Bytes of QMSK ‘:
Byte 599 >
| unir-Tvee
Byte 600 —»
oL Entire 200-Byte QQMSK Table o
T (for 2314 only) T

Figure 18. Structure of the Master File Directory

1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 121

Restricted Materials of IBM
Licensed Materials — Property of IBM

QMSK for 2314 or 2319 —" I‘—' 1 bit ->| |<- 1 bit QMSK for 3330
olololololofo]o] * c| # ‘ ofojJolojolo]ofo
olojJojojojo|O]oO]1bit H | 1bit oJojJojojojojo}o
1]2]3|la|ls]l6]7]|8] ¥ R] ¢ 112|3]|4|s5|{6]7]8
ojlojlojJojojo}|jo]|oO where: ojojlojojojojo]o
£ T T T T T I O C = Cylinder olojojo]o|o |1 |1
g|10|11]12|13 1415 |1 H = Head 9 1011|1213 [14]1 |2
o/lolo|jo]lo|lo|oO}|oO R = Record o|lo]Jojo]o|lo]o]o
212121 2(2]12}2]3 Bit Value Meaning 1 1 1 1 1 1 1 1
21 3]4]5]|6]7]8]°9 - 3|4|5|6|7]8]9]10
0 Block available
) hany 1 Block in use :E 5:
Number of QMSK Extensions Number of Cylinders on Disk
Required (if any) 2314 or 2319 3330 3340 3350

0 1—-11 1-6

1 12 — 54 7-30

2 55 — 96 31— 54

3 97 — 139 55 — 78

4 140 — 182 79 — 102

5 183 — 203 103 - 126

6 - 127 — 150

7 — 151 — 174

8 — 175 — 198

9 - 199 — 223

10 - 224 — 246

Figure 19. Disk Storage Allocation Using the QMSK Data Block

Keeping Track of Read/Write Disk Storage: QMSK and QQMSK

Because CMS does not require contiguous disk space, disk space
management needs to determine only the availability of 800-byte blocks and -
to chain them together. The status of the blocks on any read/write disk
(which blocks are available and which are currently in use) is stored in a
table called QMSK. The term QMSK is derived from the fact that a 2311
disk drive has four 800-byte blocks per track. One block is a
“quarter-track”, or QTRK, and a 200-byte area is a “quarter-quarter-track”,
or QQTRK. The bit mask for 2314, 2319, 3310, 3330, 3340, 3350, 3370, 3375,

or 3380 records is called the QMSK, although each 800-byte block

represents less than a quarter of a track on these devices.

On a 2314 or 2319 disk, the blocks are actually grouped fifteen 800-byte
blocks per even/odd pair of tracks. An even/odd pair of tracks is called a
track group. On a 3330 disk, the blocks are grouped fourteen 800-byte

blocks per track. On a 3340 disk, the blocks are grouped into eight 800-byte
blocks per track.

When the system is not in use, a user’s QMSK resides on the master file
directory. During a session it is maintained on disk, but also resides in

122 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

main storage. QMSK is of variable length, depending on how many
cylinders exist on the disk.

Each bit is associated with a particular block on the disk. The first bit in
QMSK corresponds to the first block, the second bit to the second block,
and so forth, as shown in Figure 19 on page 122.

When a bit in QMSK is set to 1, it indicates that the corresponding block is
in use and not available foe allocation. A 0-bit indicates that the
corresponding block is available. The data blocks are referred to by
relative block numbers throughout disk space management, and the disk
I/0O routine, DMSDIO, finally converts this number to a CCHHR disk
address.

A table called QQMSK indicates which 200 byte segments (QQTRK) are
available for allocation and which are currently in use. QQMSK contains
100 entries, which are used to indicate the status of up to 100 QQTRK
records. An entry in QQMSK contains either a disk address, pointing to a
QQTRK record that is available for allocation, or zero. QQMSK is used
only for 2314 files; for 3330, 3340, and 3350, the first chain link occupies the
first 200-byte area of an 800-byte block.

The QMSK and QQMSK tables for read-only disks are not brought into

storage, since no space allocation is done for a disk while it is read-only.
They remain, as is, on the disk until the disk is accessed as a read/write
disk.

Dynamic Storage Management: Active Disks and Files

CMS disks and files contained on disk are physically mapped using the data
blocks described above: for disks, the MFD, the QMSK, and the QQMSK;
for files, the FST, chain links, and 800-byte file records. In storage, all of
this data is accessed by means of two DSECTs whose addresses are defined
in the DSECT NUCON, ADTSECT and AFTSECT.

Managing Active Disks: The Active Disk Table

The ADTSECT DSECT maps information in the active disk table (ADT).
This information includes data contained in the MFD, FST blocks, the
QMSK, and QQMSK. The DSECT comprised of ten “slots,” each
representing one CMS virtual disk. A slot contains significant information
about the disk such as a pointer to the MFD for the disk, a pointer to the
first FST block, and pointers to the QMSK and QQMSK, if the disk is a
R/W disk. ADTSECT also contains information such as the number of
cylinders on the disk and the number of records on the disk.

Managing Active Files: The Active File Table

Each open file is represented in storage by an active file table (AFT). The
AFT (defined by the AFTSECT DSECT) contains data found on disk in
FSTs, chain links, and data records. Also contained in the AFT is
information such as the address of the first chain link for the file, the
current chain link for the file, the address of the current data block and the

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 123

Restricted Materials of IBM
Licensed Materials — Property of IBM

fileid information for the file. Figure 2 on page 8 shows the relationship
between the AFT and other CMS data blocks.

CMS Routines Used to Access the File System

DMSACC is the control routine used to access a virtual disk. In
conjunction with DMSACM and DMSACF, DMSACC, DMSACP, and
DMSACS build, in virtual storage, the tables CMS requires for processing
files contained on the disk. The list below shows the logical flow of the

main function of DMSACC.

Access a Virtual Disk: DMSACC

DMSACC

Scans the command line to determine which disk is specified.

DMSLAD

Looks up the address of the ADT for the disk specified on the

command line.

DMSACC

Determines whether an extension to a disk has been specified on the
command line and ensures that it is correctly specified.

DMSLAD

In the case where an extension has been specified, ensures that the

extension disk exists.

DMSLAD

Ensures that the specified disk is not already accessed as a R/W disk.

DMSFNS

In the case where the specified disk is replacing a currently accessed
disk, closes any open files belonging to the duplicate disk.

DMSACC

Verifies the parameters remaining on the command line.

DMSALU

Releases any free storage belonging to the duplicate disk via a call to
DMSFRE. Also, clears appropriate entries in the ADT for use by the

new disk.

DMSACM

(Called as the first instruction by DMSACF) Reads from the Master
File Directory, the QMSK, and the QQMSK for the specified disk.
Also, DMSACM updates the ADT for the specified disk using

information form the MFD.

DMSACF

Reads into storage all the FST blocks associated with the specified
disk. DMSACEF calls DMSHTB to build hyperblock mapping tables for
read/only disks (if the hyperblocks that are searched span three or

124 System Logic and Problem Determination (CMS)

1.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

more pages). DMSACF also calls DMSHTB to build hash tables for
read/write EDF disks (if the hyperblocks that are searched span two
or more pages).

DMSACF calls DMSACG for EDF disks that are not S- or Y-disks to
read in the directory by hyperblocks and to sort, if necessary.

DMSACG
If sufficient storage is available and if the disk in question is EDF but
not an S- or Y- disk, DMSACG is called by DMSACF. The directory is
read into contiguous storage by hyperblocks and sorted, if necessary,
bypassing the call to DMSALU (SORTFST). Control is then returned
to DMSACEF.

DMSACC
Handles error processing or processing required to return control to
DMSINT.

How CMS Files are Organized in Storage for 512-, 1K-, 2K-, or
4K-byte Records on Disk

CMS files are organized by three types of blocks; the file status table (FST),
pointer blocks, and file records. Figure 20 on page 126 shows how these
types of blocks relate to each other. The following text and figures describe
these relationships and the individual data blocks in more detail.

File Status Tables

CMS files consists of 512-, 1K-, 2K-, or 4K-byte CMS blocks whose
attributes are described in the file status table (FST). The file status table
is defined by DSECT FSTSECT. The FST consists of such information as
the filename, filetype, and filemode of the file, the date on which the file
was last written, and whether the file is in fixed-length or variable format.
Also, the FST contains a pointer to the highest level pointer block or only
data block. If it is a pointer block, this block contains addresses of the next
lower level pointer blocks or the data blocks that contain the actual data
for the file.

The FSTs are grouped into 512-, 1K-, 2K-, or 4K-byte CMS blocks called
FST blocks (these are sometimes referred to in listings as hyperblocks).
Each FST block contains 8, 16, 32, or 64 FST entries respectively (an FST is
64 bytes long), each describing the attributes of a separate file. Figure 21
on page 127 shows the structure of an FST block and the fields defined in
the FST.

Note: Programs that modify the fileid of an FST can destroy the integrity
of the file system. Programs that modify any of the fields in the FSTs are
not supported by CMS. These programs can cause a “file not found”
condition for the file until the disk is re-accessed.

L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 125

Highest Level

Restricted Materials of IBM
Licensed Materials — Property of IBM

File Status Pointer Block Lower Pointer Lower
File Directory Table Entry _ (FOP) _ Block (LPB) Pointer Block
LPB _I
Addr
LPB
FOP Address of a 1K,
o Addr 2K, or 4K record
JL
17
> Item 1 | Item2 | Item 3 Item n
~ f
512-, 1K-, 2K~, or 4K-byte Record, ‘
Containing File Data Items

Figure 20. How 512-, 1K-, 2K-, or 4K-Byte CMS File Records are Chained Together

126 System Logic and Problem Determination (CMS)

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

Fields in a File Status Table Entry

File
Name
File
Type
Reserved
File Status
Table Block 20
Reserved
FST
24 26
FST Filemode Reserved
b= 30 31
Reserved Fixed Variable Flag Byte

Item Length (F)
Maximum Item Length (V)

36
Reserved

[L

40

File Origin Pointer (FOP)

Number of 512, 1K, 2K, 4K Blocks

Number of Items In File

52 53 54

Highest Level Pointer Date Last Written
of Pointer Entry

Blocks Size

56

(YY MM DD HH MM SS)

60
Reserved

Figure 21. Format of a File Status Table Block - Format of a File Status
Table. (For 512-, 1K-, 2K-, 4K-Byte Disk Format)

L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 127

Pointer Blocks

Pointer blocks are 512-, 1K-, 2K-,

Restricted Materials of IBM
Licensed Materials — Property of IBM

or 4K-byte blocks of storage that chain

the records of a file. There are up to five levels of pointer blocks. All but
the first level of pointer blocks contain the fullword disk address of the
next lower level pointer block. The level-one pointer blocks contain the
fullword disk addresses of the data blocks of the file (see Figure 22 on
page 129 and Figure 23 on page 130).

There are two types of pointer blocks: pointer blocks for fixed files which
are as described above, and pointer blocks for variable files. For the
variable files, each pointer block entry is three fullwords long. The first
fullword holds the disk address of the next lower level pointer block, the
next fullword holds the highest item number contained in this lower
corresponding pointer block, and the last fullword holds the displacement,
at the data level, to the first identified item contained in a lower
corresponding pointer block. CMS blocks are not shared by files.

Each entry of a level-one pointer block is composed of one fullword
containing the disk address of the corresponding data block, one fullword
containing the highest item number contained in this data block, and one
fullword containing the displacement, in bytes, of the first identified item (if
any) contained in this data block. This last fullword of the entry may hold
the hexadecimal value X‘FF...F’, indicating that the item is spanned.

The last fullword of a pointer biock holds the displacement, in bytes, of the
last used entry, if one exists, in the block. This structure permits the
creation of very large files. The maximum number of data blocks available
in a variable format file on a 1K-, 2K-, or 4K-byte blocksize minidisk is
about 28! - 1, The maximum number of data blocks available in a variable
format file on a 512-byte blocksize minidisk is about 15 times less than 23! -
1. The maximum number of blocks available in a variable format file is

64K.

Each pointer block or data block is prefixed in virtual storage with a
header. This header holds an entry called DCHTRUNK that points to the
upper level pointer block. Associated with the DCHTRUNK value is a
displacement that indicates the corresponding entry in this upper level

pointer block.

In virtual storage, each level of pointer block and the data block have an
anchor in the corresponding active file table (AFT) and are forward and

backward chained by the prefix.

128 System Logic and Problem Determination (CMS)

L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

P3(0)
Level 3 Pointer Block
Disk Address P2(0)
Disk Address P2(1)
P2(0) P2(1)
Disk Address P1(0) Disk Address P1(256)
‘L 4, Disk Address P1(1) Disk Address P1(257)
™ r
Disk Address P1(258)
. Disk Address P1(259) | peve) 2
. L Blocks
L ~
- L] b)
. 4, &
° Tu *\\
[]
Disk Address P1(255)
* P1(0) P1(1) Y P1(259)
Disk Address DB(0) Disk Address DB(256) Disk Address DB(66304)
Disk Address DB(1) Disk Address DB(257) Disk Address DB(66305)
[A X N NN X N]
Level 1
. ° Pointer
Jd, : N 4 : N sL :L. Blocks
Ny Sy
- o ™ - o B b) P
[] [)
Disk Address DB(255) Disk Address DB(511)

DB(0) * DB(1) DB(2) DB(3) ‘ DB(66305)
item 1 Item n+1 Item Item Item M
ftem 2 Item Item Item 0000000000000

° . .

[]) [] L

L ° ~ ~ ° ~ ~ ~ ~l NL‘
T T TR R TOF S 3

L] [] [

[] L] L

o [] []

item n Item Item Item

Figure 22. Format of Level 3 Pointer Block Fixed-Length Record File

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 129

Restricted Materials of IBM
Licensed Materials — Property of IBM

P2(0)
T Disk Address P1(0)
dp1 124 i Level 2
———————— Pointer
‘ 0 Block
Disk Address P1(1)
——————— -
126
1K +d125
N =
dp1
P1(0) Y P1(1)
Disk Address DB(0) | ' — Disk Address DB(86) t
3 124 dp87
d1=0 X'FFFFFFFF’ ‘
Disk Address DB(1) Disk Address DB(87)
———————— dp85 b= —— — — — — Level 1
6 P 126 Pointer
________________ Blocks
da d125
= <
Y
4)
Disk Address DB(85) b -
24
d112
dp85 dp87
Data Block Data Block Data Block Data Block Data Block
DB(0) DB(1) DB(92) Y DB(86) DB(87)
d1 -1
L1 | [} ')
/? d4 Item 3 d125 | Item 124
Item 1 * ¥
L4 I L125|
Item 6 eeoeoe |tem 124 item 125
Item 4 d7 L126I
4, Jd [Ritem 126 R
- 3
| T |4 Jd,
L2 ~ W‘
Item 2 ::
ﬁ:' I
L5 l
Item 5
s | Lo |
Item 3 Item 6 Y l L7

Figure 23. Format of Level 2 Pointer Block Variable-Length Record File

130 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

CMS Block Formats

CMS blocks are 512-, 1K-, 2K-, or 4K-byte disk records containing the data
that comprises the file. For example, the CMS record may contain several
card images or print images, each of which is referred to a record item.
Figure 22 on page 129 show how pointer blocks are chained together.

CMS file items can be stored on disk in either fixed-length or
variable-length format. However, the two formats may not be mixed in a
single file.

Regardless of their format, the items of a file are stored by CMS in
sequential order in as many 512-, 1K-, 2K-, or 4K-byte records as are
required to accommodate them. Each CMS block (except the last) is
completely filled and items that begin in one CMS block can end in the
next CMS block. Figure 22 on page 129 shows the arrangement of items in
files containing fixed-length items and files containing variable-length
items.

The location of any item in a file containing fixed-length items is
determined by the formula:

(item number - 1) x record length

location = ---=-=-—-—-----—m-——m e

where the quotient is the sequential number of the data block and the
remainder is the displacement of the item into the data block.

For variable-length files, each item is preceded by a 2-byte field specifying
the length of the item.

Physical Organization of Virtual Disks

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Virtual disks are physically organized in 512-, 1K-, 2K-, or 4K-byte disk
records. Records 1 and 2 of each user disk are reserved for IPL. Record 3
contains the disk label. The first block of the file directory is alternately
exchanged between record 4 and record 5 when the directory is rewritten to
disk. The remaining records on the disk contain information such as
allocation map blocks, FSTBs, pointer blocks, and the individual file
records as discussed above.

CMS disk structures that reside on FB-512 devices are 512-, 1024-, 2048-, or
4096-byte CMS block format. The required number of 512-byte physical
FB-512 disk records are logically concatenated together to form each CMS
block. For example; on a 1024-byte format disk, FB-512 physical record
numbers 0 and 1 (origin 0) are used together to form CMS block 1 (origin 1).
The FB-512 label occupies FB-512 block 1 (origin 0) leaving CMS blocks 2
and 3 available for general use.

Chapter 9. Managing the CMS File System 131

Restricted Materials of IBM
Licensed Materials — Property of IBM

The File Directory, the Allocation Map, and the Disk Label

The file directory and the allocation map have the same organization as
files. The directory contains FSTs and the first block resides on cylinder 0,
track 0, record 4 or record 5 of each virtual disk. The record number (4 or
5) is maintained in the field disk origin pointer of the disk label.

The directory itself is described by an FST that is the first FST in the first
block. The filename for the directory is binary zero (except for byte 4
which is binary 1), and the filetype is “DIRECTOR”.

The allocation map is described by an FST that is the second FST in the
first block of the directory. The filename is binary zero (except for byte 4
which is binary 2), and the filetype is “ALLOCMAP”.

The disk label resides on cylinder 0, track 0, record 3. It is 80-byte long and
contains the following information:

ADTIDENT

ADTID

ADTDBSIZ

ADTDOP

ADTCYL

ADTMCYL

ADTNUM

ADTUSED

ADTFSTSZ

ADTNFST

ADTCRED

ADTAMNB

ADTAMND

132 System Logic and Problem Determination (CMS)

CMSI is the label identifier.
Six characters given by the user are the volume identifier.

One fullword; contains the disk block size that the user
chooses at format disk time (512, 1K, 2K, or 4K).

One fullword; contains records 4 or 5 depending upon the
actual directory first data block address.

One fullword; contains the number of formatted cylinders
available for CMS files.

One fullword; contains the maximum number of formatted
cylinders, that is, the size of the disk.

" One fullword; the total number of 512-, 1K-, 2K-, or 4K-byte

blocks on the user’s disk.

One fullword; the number of blocks currently in use on the
disk.

One fullword; the size of the FST (64 bytes).
One fullword; the number of FSTs per block.

Six characters; the disk creation date
(YYMMDDHHMMSS).

One fullword; contains the relative block number of the
current cursor position within the allocation map.

One fullword; contains the relative byte offset of the

current cursor position within the block specified by
ADTAMNB.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

| ADTAMUP One fullword; contains the relative byte address within the
(| allocation map that corresponds to the start of user data
| blocks.

| ADTSFNAM Eight characters; contains the name of the discontiguous

| shared segment (DCSS) if a saved file directory is to be used
| for this disk.

Keeping Track of Read/Write Disk Storage: Allocation Map

In CMS, disk space is composed of 512-, 1K-, 2K-, or 4K-byte blocks chained
together. Because disk space management only determines the availability
of blocks, not extents, it need not allocate disk space contiguously. The
status of the blocks on any read/write disk (which blocks are available and
which are currently in use) is stored in a table called the allocation map.
: The allocation map contains bits, each of which is associated with a

[particular CMS block. The first corresponds to the first CMS block, the

second bit corresponds to the second CMS block, and so forth.

When a bit in the allocation map is set to 1, it indicates that the
corresponding block is in use and not available for allocation. A 0-bit
indicates that the corresponding block is available. The data blocks are
referred to by relative block numbers through disk space management, and
the disk I/O routine, DMSDIO, finally converts this number to a CCHHR
disk address or FB-512 block number.

‘ When the system is not in use, a user’s allocation may reside on the
corresponding disk. During a session, it is maintained on disk but also
resides in real storage. The allocation map is variable in length, depending
on how many cylinders exist on the disk. The CMS disk may reside on the
entire physical disk pack and is limited only by the physical limit of the
disk pack.

A deallocation map exists in real storage when CMS disk blocks are
deallocated. During a terminal session, a block is recorded as deallocated
{ by turning on its corresponding bit in the deallocation map.

When the disk is updated by rewriting the file directory and the allocation
map, the current allocation map is formed by combining the allocation map
and the deallocation map. In fact, a deallocation map block is created only
for those allocation map blocks in which a CMS block is deallocated.

The allocation maps for read-only disks are not brought into storage
because no space allocation is performed for a disk while it is in read-only
status. They remain, as is, on the disk until the disk is accessed as a
read-write disk.

1L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 133

Restricted Materials of IBM
Licensed Materials — Property of IBM

Selective Directory Update

The file directory and the allocation map are built with CMS blocks (512-,
1K-, 2K-, or 4K-bytes). The selective directory update function takes place
when the file directory and the allocation map must be updated on the
corresponding disk. It writes on disk only the modified blocks of the
directory (including required pointer blocks) and the entire allocation map.

Dynamic Storage Management: Active Disks and Files

CMS disks are physically mapped in CMS blocks containing the file
directory and the allocation map. CMS files on disk are mapped using FST
blocks, pointer blocks, and 512-, 1K-, 2K-, or 4K-byte file data blocks.

In real storage all of this data is accessed by means of two DSECTs whose
addresses are defined in DMSNUC, ADTSECT, and AFTSECT. 10
ADTSECTS reside in DMSNUC and the others (11 through 26) reside in free
storage when they are used. Five AFTSs reside in DMSNUC and the others
reside in free storage. (See Figure 24 on page 135).

Managing Active Disks: The Active Disk Table

The ADTSECT DSECT maps information in the active disk table (ADT).
An ADT contains significant information about the CMS disk such as the
anchors for pointer block levels, the data block for the file directory, and
the data block for the allocation map (if the disk is a read-write disk). The
ADTSECT also contains disk label information.

Managing Active Files: The Active File Table

Each open file is represented in storage by an active file table (AFT). The
AFT (defined by AFTSECT DSECT) contains data found on disk in FSTs,
the anchors for pointer block levels and the data block for the file. The
AFT also contains such information as the read pointer and write pointer of
the file, the number of entries in a pointer block, the number of pointer
block levels, and the length of a pointer block entry. Figure 24 on

page 135 shows the relationship between the AFT and other CMS blocks.

134 System Logic and Problem Determination (CMS) L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials — Property of IBM

DMSNUC Area of Storage Free Storage
AFT LEVEL 2
>
POINTER TO HEADER
CURRENT
AFTUFPS LEVEL 2 LEVEL 1 POINTER
AFTUFP4 BLOCK
LEVEL 1 POINTER [~
AFTUFP3
AFTFOP LEVEL 1 POINTER
AFTUFP2
AFTUFP1 POINTER TO
DMSNUC AETDBA CURRENT
- - : LEVEL 1
POINTER TO BLOCK
COPY CURRENT
4 OF FST
DATA BLOCK Y DATA BLOCK n+k LEVEL 1
AFT HEADER HEADER
CONTINUED)
AFTSECT ADT ITEM i DATA BLOCK n+1,
ADTSECT ADTA DT lTEl\f i+1 DATA Buzocx n+2
ADTB CONTINUED : '
ITEM !
ADTC P L
=P~ DATA BLOCK n+k
ADTD .
H
DATA BLOCK 2n+1
ADTF . —
ADTG ADTDFP3
TDFP2
ADTS ADTAMP2) AD
ADTAMP1 / ADTDFP1
ADTY ADTMSK ADTFDA
ADTZ ADTDOP
VOLLABEL |—-—4—|
4 40R5
YLEVEL 1 POINTER ALLOCMAP BLK | ALLOCMAP BLK
HEADER HEADER HEADER
ALLOCMAP BLK 11 1 1 1 11 1 0 0
1 10 0 I
ALLOCMAP BLK X \
| | + #
| 100 0 0 Y
| 0 0 0 0 O A B c
01 1 0 0 0 0 0 0 O

Figure 24 (Part 1 of 3). File System for 512-, 1K-, 2K-, or 4K-Byte Record on Disk

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Chapter 9. Managing the CMS File System 135

Restricted Materials of IBM
Licensed Materials — Property of IBM

LEVEL 2 POINTER
S
HEADER
LEVEL 1 POINTER |~
LEVEL 1 POINTER [
i/eveu POINTER LEVEL 1 POINTER
HEADER \ HEADER
—=| FSTB1POINTER FSTB n+1 POINTER
FSTB2 POINTER FSTB n+2 POINTER|
FSTB n+1 POINTER
H
]
1
1
FSTBn POINTER EsT
FILENAME
FSTB1 ESTB2 +3
- _—— FSTB o FILETYPE
HEADER HEADER HEADER
FST DIRECTOR FSTi+1 USER FST USER
FSTALLOCMAP FSTi+2 USER FST USER FSTFOP
FST1 USER :
FST2 USER !
T ' THERE IS ONE FST
' : FOR EACH FILE
FSTi USER FST USER

Figure 24 (Part 2 of 3). File System for 512-, 1K-, 2K-, or 4K-Byte Record on Disk

136 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

Disk Storage CKD — DEVICE

~
- N\
VOLUME | . e
s : DIRECTORY
cYLO | cvLo
HEAD 0 HEAD 0
REC 3 e \ REC 5
— §~.
_ . : LEVEL 2
FST DIRECTOR |%& , LEVEL 1 POINTER
FST ALLOCMAP | 4 LEVEL 1 POINTER
FSTIUSER | N\
FST2USER | 4
: , ﬁ LEVEL 1 LEVEL 1
. FSTB1 POINTER FSTBn+1 POINTER
FSTi USER :
FSTB2 POINTER FSTBn+2 POINTER
FSTBn+3 POINTER
1
FSTB2 FSTBn :
J [] FSTBn POINTER

FSTBn+3
LEVEL 2 \ l___])
LEVEL 1 POINTER
LEVEL 1 POINTER
LEVEL 1
LEVEL 1 POINTER 2
DATA BLOCK m-2
DATA BLOCK m-~1
LEVEL 1 LEVEL 1 DATA BLOCK m
DATA BLOCK 1 DATA BLOCK n+1
DATA BLOCK 2 DATA BLOCK n+2
'
t
1
DATA BLOCK n DATA BLOCK 2n+1
DATA BLOCK 1 DATA BLOCK 2 DATA BLOCK m
ITEM 1 ITEM ITEM
ITEM 2 ITEM
y 1
1
[} 1
ITEM ITEM

Figure 24 (Part 3 of 3). File System for 512-, 1K-, 2K-, or 4K-Byte Record on Disk

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 137

Restricted Materials of IBM
Licensed Materials — Property of IBM

CMS Routines Used to Access the File System

DMSACC is the control routine used to access a virtual disk. In
conjunction with DMSACM and DMSACF, DMSACC, DMSACP, and
DMSACS build, in virtual storage, the tables CMS requires for processing
files contained on the disk. The list below shows the logical flow of the
main function of DMSACC.

Access a Virtual Disk: DMSACC

DMSACC
Scans the command line to determine which disk is specified.

DMSLAD

Looks up the address of the ADT for the disk specified on the
command line.

DMSACC
Determines whether an extension to a disk has been specified on the
command line, and ensures that it is correctly specified.

DMSLAD .
In the case where an extension has been specified, calls DMSLAD to
ensure that the extension disk exists.

MATQT AT
ULVISLAAU

Ensures that the specified disk is not already accessed as a R/W disk.

DMSFNS
In the case where the specified disk is replacing a currently accessed
disk, closes any open files belonging to the duplicate disk.

DMSACC
Verifies the parameters remaining on the command line.

DMSACP
Sets up control blocks for the remaining access processing.

DMSALU
Releases any free storage belonging to the duplicate disk via a call to
DMSFRE. Also, clears appropriate entries in the ADT for use by the
new disk.

DMSACM
(Called as the first instruction by DMSACF) Reads from the file
directory and the allocation map for the specified disk. Also,
DMSACM updates the ADT for the specified disk using information
from the file directory and disk label.

DMSACF
Reads into storage all the FST blocks associated with the specified
disk. DMSACF calls DMSHTB to build hyperblock mapping tables for
read/only disks (if the hyperblocks that are searched span three or
more pages). DMSACF also calls DMSHTB to build hash tables for

138 System Logic and Problem Determination (CMS) L.Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

The SET HASH Command

read/write disks (if the hyperblocks that are searched span two or
more pages).

DMSACS
Called by DMSACF to load a DCSS containing the FST blocks and
hyperblock mapping tables for the disk if shared storage access is
allowed for the disk.

DMSACG
If sufficient storage is available and if the disk in question is EDF but
not an S- or Y-disk, DMSACG is called by DMSACF. The directory is
read into contiguous storage by hyperblocks and sorted, if necessary,
bypassing the call to DMSALU (SORTFST). Control then returns to
DMSACEF.

DMSACP

Handles error processing or processing required to return control to
DMSINT.

The SET HASH OFF command disables fileid hashing.

SET HASH OFF

Programs that modify the fileid fields in a file status table (FST) when
writing files to a disk can cause a “file not found” condition for the file
until the disk is re-accessed. Disabling fileid hashing can alleviate this
problem if encountered. Programs that modify any of the fields in the FSTs
are not supported by CMS.

Fileid hashing reduces the paging overhead when searching for files on
R/W disks. Disabling fileid hashing may degrade performance for the CMS
user.

Once disabled, fileid hashing can only be re-enabled by re-IPLing CMS.

Use the QUERY HASH command to determine whether fileid hashing is
enabled (set on) or disabled (set off).

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 139

140 System Logic and Problem Determination (CMS)

Restricted Materials of IBM
Licensed Materials — Property of IBM

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM
Licensed Materials — Property of IBM

Chapter 10. Handling I/0 Operations

CMS input/output operations for unit record, disk, and tape devices are
always synchronous.

Input/output operations to a card reader, card punch, or printer are
initiated via a normal START I/O instruction. After starting the operation,
CMS enters the wait state until a device end interruption is received from
the started device. Because the I/O is spooled by CP, CMS does not handle
any exceptional conditions other than not ready, end-of-file, or forms
overflow.

Disk and tape I/O is initiated via a privileged instruction, DTAGNOSE,
whose function code requests CP to perform necessary error recovery.
Control is not returned to CMS until the operation is complete, except for
tape rewind or rewind and unload operations, which return control
immediately after the operation is started. No interruption is ever received
as the result of DIAGNOSE I/O. The CSW is stored only in the event of an
error.

CMS input/output operations to the terminal may be either synchronous or
asynchronous. Output to the terminal is always asynchronous, but a
program may wait for all terminal input/output operations to complete by
calling the console wait routine. Input from the terminal is usually
synchronous but a user may cause CMS to issue a read by pressing the
attention key. A program may also asynchronously stack data to be read
by calling the console attention routine.

Unit Record I/O Processing

Seven routines handle I/O processing for CMS: DMSRDC, DMSPUN, and
DMSPRT handle the READCARD, PUNCH, and PRINT commands and pass
control to the actual I/O processors, DMSCIO (for READCARD and
PUNCH) or DMSPIO (for PRINT). DMSCIO and DMSPIO issue the SIO
instructions that cause I/O to take place. Two other routines, DMSIOW
and DMSITI, handle synchronization processing for I/O operations. '
Figure 25 on page 142 shows the overall flow of control for I/O operations.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 10. Handling I/O Operations 141

Restricted Materials of IBM
Licensed Materials — Property of IBM

DMSRDC
DMSPUN
DMSPRT
Channel
DMSCIO
DMSPIO
s10 7 DMSIOW

DMSITI

Figure 25. Flow of Control for Unit Record I/O Processing

The following are more detailed descriptions of the flow of control for the
read, punch, and print unit record control functions.

Read a Card

DMSRDC
Initializes block length and unit record size.

DMSCIO
Initializes areas to read records.

DMSCIO
Issues an SIO command to read a record.

DMSIOW
Sets the wait bit for the virtual card reader, and loads the I/O old
PSW from NUCON. This causes CMS to enter a wait state until the
read I/O is complete.

DMSITI
Ensures that this interrupt is for the virtual reader. If not, the I/O old
PSW is loaded, returning CMS to a wait state. If the interrupt is for
the reader, DMSITI resets the wait bit in the I/O old PSW and loads it
causing control to return to DMSIOW.

142 System Logic and Problem Determi