

--------- - ------- - ---- - - -----_.---_.-

(~-

(

Virtual Machine/Extended Architecture
System Product

EXEC 2 Reference

VM/XA SP Release 1 and Release 2

SC23-0361-Q

First Edition (March 1988)

This edition applies to Release I of the Virtual Machine/Extended Architecture System Product (VM/XA SP)
Licensed Program 5664-308. Changes are made periodically to the information herein; before using this pub­
lication in connection with the operation of IBM systems, consult the latest IBM System/370. 30xx. 4300. and
9370 Processors Bibliography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed program in
this publication is not intended to state or imply that only IBM's licensed program may be used. Any func­
tionally equivalent program may be used instead.

Publications are not stocked at the address given below. Requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to International Business Machines, Department 52Q/MS 458, Neighborhood
Road, Kingston, N.Y. 12401. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988

--~~~ ~~~~~~~~~~~~~- -~~~~~~--~~~~~

c

Preface

(

The purpose of this publication is to define the EXEC 2 language. It is to be used
primarily as a reference manual; it contains all of the formats, syntax rules, and
descriptions of the arguments for EXEC 2 statements.

For tutorial information on using the EXEC 2 language, refer to "Appendix C:
EXEC 2 Primer for New Users." The material contained therein may be used in
conjunction with the reference section.

The reference section of this publication contains these parts:

• "Chapter I: Introduction" summarizes what the EXEC 2 language is and what it
is capable of. It introduces and defines some of the terminology used
throughout this manual. EXEC 2 statements and the rules for interpreting them
are also discussed.

• "Chapter 2: EXEC 2 Statements" discusses in detail the different types of EXEC
2 statements. This discussion is followed by illustrations of the syntax of each
EXEC 2 statement and a description of the function of each statement. "User­
Defined Functions" are also discussed.

• "Chapter 3: Notes on EXEC 2" contains detailed discussions on particular
aspects of EXEC 2 that do not fit into a category by themselves.

• "Chapter 4: BNF Description of the EXEC 2 Syntax" contains a description of
the main features of the EXEC 2 syntax in Backus-Naur Form (BNF). This
section presents an alternative description of the EXEC 2 syntax for those
familiar with this type of notation. This is not essential reading.

• "Chapter 5: EXEC 2 Errors" lists the error messages and return codes issued by
the EXEC 2 interpreter.

This publication also has these appendixes:

• "Appendix A: Sample EXEC 2 Files" gives two examples of EXECs written in
the EXEC 2 language.

• "Appendix B: EXEC 2 in CMS." This appendix discusses how CMS identifies
EXEC 2 files, the limits CMS imposes on using EXEC 2, examples of using
EXEC 2 with assembler language programs, and the execution of XEDIT
macros in EXEC 2. Appendix B also contains a discussion of variable sharing
through the EXECCOMM interface.

• "Appendix C: EXEC 2 Primer for New Users" provides a tutorial aid for users
who are unfamiliar with the EXEC 2 language. This primer is intended for the
person who has a modest amount of CMS experience and enough familiarity
with a text editor so that the mechanics of creating a disk file present no serious
difficulty. Users who have already mastered a command programming language
for some other system, or who have experience with the earlier CMS EXEC
facility, may prefer to read the EXEC 2 reference material instead of the primer.

• "Appendix D: Writing Editor Macros" describes how to write XEDIT macros
and XEDIT prefix macros. This Appendix also contains examples of XEDIT
macros and XEDIT prefix macros.

• "Appendix E: Useful EXEC 2 Techniques" shows some solutions to some
common EXEC 2 programming problems.

Preface iii

..

If you are unfamiliar with writing EXEC files or need tutorial information, you may
find it helpful to read "Appendix C: EXEC 2 Primer for New Users" before reading
the reference section of this manual.

Note: Although EXEC 2 is designed to be system independent, the implementation
requirements of CMS (the host system) impose certain limits on using EXEC 2. See
Appendix B for details.

Note: EXEC2 runs in 370jXA mode virtual machine below the 16 Mb line only. All
data that EXEC 2 accesses must also reside below the 16 Mb line.

Notational Conventions Used In this Book
The conventions used in this publication to illustrate EXEC 2 statements follow:

• Uppercase letters and punctuation marks (except as described below) represent
information that must be given exactly as shown.

• Lowercase letters represent information that must be supplied by the user.

• Information contained within brackets 0 represents an option that can be
included or omitted.

• Vertical lists that are not enclosed in brackets represent alternatives, one of
which must be given. For example:

A
B

• Vertical lists that are enclosed in brackets represent alternatives, one of which
may be given. For example:

[~J
• An ellipsis (...) indicates that a variable number of items may be included.

• 'Underlined elements represent an assumed (default) value in the event a param­
eter is omitted.

iv VM/XA Sf. EXEC 2 Reference

;1'
lrl i "'--/

(... Contents

(

(

Chapter 1. Introduction
Executing EXEC 2 Programs
Introduction to the EXEC 2 Language
Types of Executable Statements
Rules for Interpreting Executable Statements

Chapter 2. EXEC 2 Statements
Predefined Variables
Control Statements
Predefined Functions
User-Defined Functions

Chapter 3. Notes on EXEC 2
Name Substitution
Recursive Execution
Termination of an EXEC 2 File
Program Stack
Assignment Statement
Evaluation of &DATE and &TIME
Size and Treatment of Numbers .,
Removing Plus Signs and Leading Zeros
Syntax of Conditional Phrases
Embedded Blanks
&LOOP Statement
Closing of Loops .
Search for Labels
Performance of Label Searches
EXEC 2 Words are Not Reserved Words
Example of &TRACE ALL
Truncation Column

Chapter 4. BNF Description of the EXEC 2 Syntax

Chapter 5. EXEC 2 Errors .. _ . .

1
1
1
2
3

5
5
8

37
54

57
57
58
59
59
59
59
60
60
60
61
61
62
62
62
63
63
64

65

69

Appendix A. Sample EXEC 2 Files 71

Appendix B. EXEC 2 in CMS ... 73
Identifying EXEC 2 Files 73
Calling EXEC 2 Programs from CMS Command Level . 73
Summary of Limits for EXEC 2 Files in CMS 73
Using EXEC 2 Parameter Lists with Assembler Language Programs 75
Executing XEDIT Macros in EXEC 2 _ 78
EXECCOMM - Sharing EXEC 2 Variables with Assembler Language Programs 78

Appendix C. EXEC 2 Primer for New Users
EXEC 2 Variable Names
Return Codes and EXEC 2 Variables
EXEC 2 File Arguments
Conditional Interpretation of Statements
Statement Labels
Assignment Statements

83
84
85
86
86
87

...... 88

Contents V

Figures

EXEC 2 Variable Evaluation 88
An Example of Generating EXEC 2 Variable Names

The &LOOP Control Statement
Making EXEC 2 Files Interact with Users·
Using the &CASE Control Statement

89
90
91
94

Appendix D. Writing Editor Macros 95
What is an XEDIT Macro? 95
Creating a Macro File 95
Using XEDIT Subcommands in a Macro 96
Handling Embedded Blanks 97
Avoiding Name Conflicts 98
Walking Through An XED IT Macro 98

Using the XEDIT EXTRACT Subcommand 103
Writing Prefix Macros 103

What Information is Passed to the Macro? 103
Creating a Sample Prefix Macro 104

Appendix E. Useful EXEC 2 Techniques

Bibliography
Description of VMfXA System Product Release 1 Publications

Evaluation and Introduction: Understanding Basic System Concepts
Planning, Installation, Service, and Administration: Generating and

Maintaining the System
Operations and End Use: Making the System Work for You
Application Programming: Using Programming Interfaces
Diagnosis: Understanding System Design
Reference: Retrieving Information Quickly

Index

107

111
111
113

114
114
115
115
116

119

1. A Sample Macro: GLOBCHG 100
2. A Sample Prefix Macro: U 104
3. Publications that Support the VM/XA System Product 112

vi VMjXA SP EXEC 2 Reference

\
\ ~-

· -----~ ---------.--------.---~

Introduction

(.. Chapter 1. Introduction

(

EXEC 2 is intended for manipulating English-like words as they appear in computer
command languages. It is also capable of performing integer arithmetic and simple
string manipulation.

The notational conventions used in this publication to illustrate EXEC 2 statements
are discussed in the Preface.

Executing EXEC 2 Programs
EXEC 2 programs reside in EXEC files, and are executed by the EXEC 2 inter­
preter. The EXEC 2 interpreter can be invoked by issuing a command such as:

EXEC filename [argl [arg2 ...]]

where "filename" is the name of the EXEC 2 file to be executed and "argl", "arg2",
... , are arguments that are passed to it. In some command environments (such as
XED IT) the word "EXEC" is omitted, and in others (such as CMS console
command mode) it is optional. (See Appendix B, "EXEC 2 in CMS" on page 73
for the rules on how EXEC 2 files are distinguished from other EXEC files in CMS.)

EXEC 2 files can have any filename. EXEC 2 files have the filetype EXEC for files
that are invoked from CMS command mode, and the filetype XEDIT for files used
as XEDIT macros. Other filetypes may be used for EXEC 2 files that are invoked
from other environments.

EXEC 2 files can have either "F" (fixed) or "V" (variable) format.

Introduction to the EXEC 2 Language
EXEC 2 files contain EXEC 2 statements. An EXEC 2 statement occupies one line,
and may be a comment or an executable statement. A comment is a line in which the
first nonblank character is an asterisk. This line is ignored during execution. An
executable statement consists of a sequence of words, the first of which does not
begin with an asterisk. A word is a string of contiguous nonblank characters.
Words are separated from each other by one or more blanks. (Refer to
Appendix B, "EXEC 2 in CMS" on page 73 for implementation limits on EXEC 2
statements and words.)

An executable statement ~ay be:

• A null statement (which has no effect),

• A command (which is issued to a command interpreter),

• An assignment (which manipulates EXEC 2 variables), or

• A control statement (which manipulates EXEC 2 variables, controls execution or
flow through the file, or performs console input or output).

Assignments start with the name of an EXEC 2 variable, and control statements start
with an EXEC 2 control word. EXEC 2 variables and control words begin with an
ampersand. Variables are local to the current EXEC 2 file. Most variables are ini­
tially unset, and they have an apparent null value. The variables &1 &2 ... , are

Chapter 1. Introduction 1

Introduction

special and are initialized to the arguments "argl", "arg2''; .. ;, that are passed to the
EXEC 2 file. For example, if an EXEC named "TEST" was invoked as "TEST X Y ,~
Z", &0 would contain "TEST" and the arguments &1, &2, and &3 would contain X, U
Y, and Z, respectively.

The following are examples of variables:

&X
&3.1415927
&UPPER LIMIT
&(X)

The following are examples of control words:

&TYPE
&LOOP
&EXIT

A label, appearing as the first word of a line, may be attached to an executable state­
ment (including a null statement) but does not form part of the statement. A label is
distinguished by its first character, which is a hyphen.

The following are examples of labels:

-x

-&A
- (TYPE)

When an EXEC 2 file is invoked, execution starts at line number 1 and proceeds
sequentially, except when otherwise directed by control statements.

Types of Executable Statements
• Null statement

A null statement is an executable statement in which the number of words is
zero.

• Commands

An executable statement is deemed to be a command if it contains at least one
word, and its first word does not start with an ampersand. It is issued imme­
diately to the host system (CMS) or to a subcommand environment (for
example, XED IT). When it is finished, control returns to the EXEC 2 file, and
its return code can be obtained from the predefined EXEC 2 variable &RC.
(See the section "EXECCOMM - Sharing EXEC 2 Variables with Assembler
Language Programs" on page 78 for possible side-effects· of command exe­
cution.)

• Assignments

An executable statement is an assignment statement if the first word starts with
an ampersand and the second word is an equal sign. The first word is taken as
the name of an EXEC 2 variable, and it is assigned the value of the expression
that follows the equal sign.

2 VM/XA SP EXEC 2 Reference

(

(

· ... ~ ... ~ ~ .. ~~ .. --------

Introduction

The expression may be any of the following:

Null

A single word, for example:

ABC

An arithmetic expression, consisting of a sequence of words that represent
positive or negative integers, separated by plus or minus signs, for example:

3 - 4 + -11 - ee
A function invocation, for example:

&PIECE OF &1 2 1

An arithmetic expression (as above) in which the last term is replaced by a
function invocation that yields a numeric value, for example:

-1 + &LENGTH OF &1

A variable of the form &j, where "j" is an unsigned integer without leading
zeros, cannot be set with an assignment statement if "j" exceeds the number of
EXEC 2 arguments that are currently set.

The value of the variable on the left-hand side of the assignment statement is not
modified until the expression on the right-hand side has been evaluated. If an
assignment statement is syntactically invalid, or if evaluation of the expression
results in numeric overflow, execution stops abnormally with an error message,
without further evaluation.

• Control statements

An executable statement is a control statement if the first word is an EXEC 2
control word and the second word either is absent or is not an equal sign.
Examples of control words are &GOTO, &EXIT, &IF, and &PRINT.

Rules for Interpreting Executable Statements
Executable statements are interpreted, one at a time, according to the following
general rules (There are a few explicit exceptions, which are noted elsewhere.):

1. The statement is scanned. This discards leading, trailing, and other surplus
blanks, leaving a sequence of words separated from each other by a single blank.

2. The words forming the statement are searched for the names of any EXEC 2
variables. These variables are replaced by their values, unless the variable is the
target of an assignment. Then its name is retained. (A precise description is
given later in "Name Substitution" on page 57.) During this process, the words
may grow or shrink in length.

3. If, as a result of step 1, a word is reduced to the null string, it is discarded from
the statement so that the next word is deemed immediately to follow the pre­
vious one. With this exception, the words retain their identity. For example, if
the value of a variable contains an embedded blank, the word containing it is
still treated as one word, although when printed it might appear as two. For
more details, see Chapter 3, "Notes on EXEC 2" on page 57 on embedded
blanks.

4. The statement is analyzed syntactically. Note that, except for identifying the
targets of assignment, the syntax analysis is done after steps 1, 2, and 3 above.

Chapter 1. Introduction 3

c

EXEC 2 Statements

(, Chapter 2. EXEC 2 Statements

(

(

(

Predefined Variables
The following EXEC 2 variables are initialized or maintained automatically:

& is initialized to its own name (the value "&").

&0 is initialized to the first word of the command string that is passed to the EXEC
2 interpreter. The first word may be delimited according to the parsing rules of the
host system. In CMS, &0 may be delimited by a blank or a parenthesis. Normally,
this variable has the same value as &FILENAME, but it may be different if the
EXEC 2 file is invoked via a synonym.

&1 &2 ... are the EXEC 2 arguments. They are initialized to the arguments "argl",
"arg2", ... that are passed to the EXEC 2 file. EXEC 2 identifies individual argu-
ments passed to it by the presence of a blank character which delimits each argu­
ment. The arguments are reset by the control statement &ARGS and &READ
ARGS. The arguments are temporarily reset by invocation of user-defined subrou­
tines and functions. EXEC 2 arguments beyond the last that is set have an apparent
null value, and they cannot be set explicitly (for example, with an assignment state­
ment). (See the description of &N and &INDEX.)

&ARGSTRING is initialized to the argument string that is passed to the EXEC 2
file. It is treated as a single literal string starting with the character immediately
following the blank used to delimit &0 (see above), or if the delimiter is a character
rather than a blank, &ARGSTRING starts with the delimiter character itself. It
includes any leading, embedded, or trailing blanks. The initial value includes the
EXEC 2 arguments &1 &2 ... , but &ARGSTRING is not affected by changes to
them.

Chapter 2. EXEC 2 Statements 5

EXEC 2 Statements

&BLANK is a word that has the value of a single blank.

&CMDSTRING is initialized to the untranslated command string that is passed to
the EXEC 2 file. It is treated as a single literal string starting with the first word of
the command string and including any embedded or trailing blanks.

&COMLINE is maintained as the number of the line from which the last command
(or subcommand) was issued from the EXEC 2 file. &COMLINE is initialized to \~, /
zero.

&DATE is the true date on the primary meridian (Greenwich Mean Time (GMT» in
the form YY/MM/DD. &DATE is evaluated when the statement containing it is
executed. (See the description of &TIME.)

&DEPTH is maintained as the number of user-defined functions and subroutine inv­
ocations to which return has not yet been made.

&FILEMODE is initialized to the filemode (third qualifier) of the EXEC 2 file.

&FILENAME is initialized to the filename (first qualifier) of the EXEC 2 file.

&FILETYPE is initialized to the filetype (second qualifier) of the EXEC 2 file (for
example, "EXEC").

6 VM,/XA SP EXEC 2 Reference

--~ -- ------- .. -------------------------.. ~--

c

(

EXEC 2 Statements

&FROM is maintained as the number of the line in the EXEC 2 file from which the
last &GOTO statement was executed. &FROM is initialized to zero.

&LINE or &LINENUM is maintained as the number of the current line in the
EXEC 2 file. If &LINE or &LINENUM is the target of an assignment statement,
the value of the other variable is not affected.

&LINK is maintained as the number of the line from which the currently executing
user-defined function or subroutine was invoked. &LINK has the value 0 if there
are no user-defined functions or subroutines in execution.

&N or &INDEX is maintained as the number of EXEC 2 arguments that are set.
Initially, this is the number of arguments that are passed to the EXEC 2 file. It is
reset if &ARGS or &READ ARGS is executed. &N or &INDEX is temporarily
reset by invocation of user-defined subroutines and functions. (See the description
of &1 &2) If &N or &INDEX is the target of an assignment statement, the value
of the other variable is not affected.

&RC or &RETCODE is maintained as the return code from the last command (or
subcommand) issued from the EXEC 2 file. &RC and &RETCODE are initialized
to zero. If &RC or &RETCODE is the target of an assignment statement, the value
of the other variable is not affected.

Chapter 2. EXEC 2 Statements 7

EXEC 2 Statements

&TIME is the true time-of-day on the primary meridian (Greenwich Mean Time
(GMT» in the form HH:MM:SS. &TIME is evaluated when the statement con­
taining it is executed. (See the description of &DATE.)

Control Statements
Control statements begin with a control word, which is usually followed by one or
more additional words. The following are the control words and the rules for their
use.

8 VM/XA SP EXEC 2 Reference

,--,\

V

(-

&ARGS

Assign "wordl", "word2", ... , to the arguments &1 &2 ... , and discard any other
EXEC 2 arguments that were previously set. The number of arguments now set
(&N or &INDEX) is the number of words given in the &ARGS statement. This
number may be less than or greater than the number of arguments previously set.

For example:

&TRACE
&TYPE &1 &2 &3 &4
&TYPE THE NUMBER OF ARGUMENTS SET IS: &N
&ARGS FOUR FIVE SIX SEVEN
&TYPE &1 &2 &3 &4
&TYPE NOW, THE NUMBER OF ARGUMENTS SET IS: &N
&EXIT

Suppose the name of the above EXEC is NUMBER. If you issue the following
command:

NUMBER RED WHITE BLUE

the result of the EXEC is:

RED WHITE BLUE
THE NUMBER OF ARGUMENTS SET IS: 3
FOUR FIVE SIX SEVEN
NOW, THE NUMBER OF ARGUMENTS SET IS: 4

(See the description of &READ ARGS; also see the predefined variables &N,
&INDEX, and &1 &2)

Chapter 2. EXEC 2 Statements 9

&BEGPRrNT,&BEGTYPE

Print at the console "line1", "line2", ... without removing surplus blanks or
replacing any EXEC 2 variables. Columns l-k are printed if .ok" is specified. If the
truncation column, uk", is not given, or is given as "*", the lines are not truncated
by the EXEC 2 interpreter. (CMS truncates at 130 characters. See
Appendix B, "EXEC 2 in CMS" on page 73.)

The number of lines to be printed is determined by the first argument, as follows:

n
1

*

label

Print the given number of lines; or if there are insnfficient lines in the file, print
all lines to the end of the file.

Print all lines to the end of the file.

Print down to, but not including, a line that contains the given label and
nothing else; or if such a line does not exist, print all lines to the end of the
file. The label must be wholly contained within the columns that would other­
wise be printed, and it must be the only word within these columns. The first
character of a label must be a hyphen.

After the lines have been printed, execution continues on the line following the last
one printed. If printing is terminated by a label, execution continues on the line
following the label.

These and &BEGST ACK are the only statements that occupy more than one line.
They are also the only statements that permit the lines of an EXEC 2 file to be
handled literally, that is, without removing surplus blanks or replacing EXEC 2 vari­
ables.

For example:

&TRACE
&BEGPRINT -END
ROSES ARE RED
VIOLETS ARE BLUE
-END
&EXIT

The result of the above EXEC is:

ROSES ARE RED VIOLETS ARE BLUE

(See the description and example of &PRINT and &TYPE.)

10 VMjXA SP EXEC 2 Reference

,/

/-r-\
(

\. j

(:.-

(

(

(-',

.-

&BEGSTACK

Place in the program stack "linel", "line2", ... without removing surplus blanks or
replacing any EXEC 2 variables. Columns l-k are stacked if "k" is specified. If the
truncation column is not given or is given as "*", the lines are not truncated. The
lines are by default stacked "FIFO" (first in, first out), but this can be changed by
specifying "LIFO" (last in, first out) as the third argument.

The number of lines to be stacked is determined by the first argument, as follows:

n

1
Stack the given number of lines; or if there are insufficient lines in the file,
stack all lines to the end of the file.

*
Stack all lines to the end of the file.

label
Stack down to, but not including, a line that contains the given labei and
nothing else; or if such a line does not exist, stack all lines to the end of the
file. The label must be wholly contained within the columns which would oth­
erwise be stacked, and it must be the only word within these columns. The first
character of a label must be a hyphen.

After the lines have been stacked, execution continues on the line following the last
one stacked. If stacking is terminated by a label, execution continues on the line
following the label.

This, &BEGPRINT, and &BEGTYPE are the only statements that occupy more
than one line. They are also the only statements that permit the lines of an EXEC 2
file to be handled literally, that is, without removing surplus blanks or replacing
EXEC 2 variables.

For example:

&TRACE
&BEGSTACK 2 * LIFO
THE FIRST COLOR IS RED
THE SECOND COLOR IS BLUE
&READ STRING &ONE
&READ STRING &TWO
&TYPE &ONE
&TYPE &TWO
&EXIT

Chapter 2. EXEC 2 Statements 11

&BEGSTACK

The result of the above EXEC is:

THE SECOND COLOR IS BLUE
THE FIRST COLOR IS RED

The last line stacked is the first line read since the LIFO option was specified.

(See the description of &STACK.)

12 VM/XA SP EXEC 2 Reference

-- ----- -- -------------------

o

(-

(

&BUFFER

Discard the lookaside buffer (if any) together with its contents. Then, if "n" is given
and is positive, or if "*,, is given, create a new lookaside buffer. If "n" is given and
is zero, a new lookaside buffer is not created. The value of "n" must not be nega­
tive. (In CMS, the initial buffer size is 32 lines. See Appendix B, "EXEC 2 in
CMS" on page 73.)

The lookaside buffer is a device that enables the EXEC 2 interpreter to remember
the location of labels that have already been referenced and to keep a private copy
of some of the more recently executed lines of the file. The lookaside buffer can
thereby improve the performance of EXEC 2 loops, where the same labels and lines
are used repeatedly.

If "n" is given, it defines the maximum number of lines that can be kept in the
buffer. If "*,, is given, there is no fixed limit. For maximum effect, the buffer
should be capable of keeping the longest loop in its entirety and should be set up
before entering the loop. An even larger buffer may be advantageous if user-defined
functions or subroutines are invoked from within a loop.

A lookaside buffer should not be used if the EXEC 2 file is subject to modification
during execution. If it is used, the results are unpredictable.

Chapter 2. EXEC 2 Statements 13

&CALL

Create a new generation of the EXEC 2 arguments &1 &2 ... , initialized to "argl",
"arg2", ... , and invoke the specified subroutine by transferring control to the given
line or to the line starting with the given label. Control is returned to the line fol­
lowing the &CALL statement via the &RETURN statement.

The new generation of arguments supersedes the arguments that were previously set.
The previous value of the arguments and the number of arguments previously set are
temporarily inaccessible. On entry to the subroutine, the value of the arguments and
the number of arguments set are determined by the arguments specified in the
&CALL statement. Their values and the number of arguments set can be changed
inside the subroutine in the same way as outside-by assignment or with the &ARGS
or &READ statement.

On return, the new generation of arguments is discarded, and the previous values
and the number of arguments previously set are again accessible. Execution resumes
on the line following the &CALL statement.

The first character of a label must be a hyphen. The search for a label starts on the
line following the &CALL statement. If a match is not found before the end of the
file, the search resumes at the top. If a matching label does not exist, execution
stops abnormally with an error message.

Suppose the following EXEC is named A VG:

&TRACE
&TYPE THE INITIAL VALUES OF THE ARGUMENTS ARE:
&DUMP ARGS
&CALL -AVG &2 &1
&TYPE THE AVERAGE IS: &ANSWER
&EXIT
-AVG
&TYPE THE VALUES OF THE ARGUMENTS IN THE -AVG SUBROUTINE ARE:
&DUMP ARGS
&SUM = &1 + &2
&ANSWER = &DIV OF &SUM 2
&RETURN
&EXIT

If you issue the command:

AVG 76 98

the result is:

THE INITIAL VALUES OF THE ARGUMENTS ARE:
&1 = 76
&2 = 98
THE VALUES OF THE ARGUMENTS IN THE -AVG SUBROUTINE ARE:
&1 = 98
&2 = 76
THE AVERAGE IS: 87

Initially, &1 = 76 and &2 = 98. The &CALL statement transfers control to the
label -A VG and passes the arguments 98 and 76. (Notice that the arguments in this

14 VM/XA SP EXEC 2 Reference

~-""

G

(

&CALL

example are passed to the -A VG subroutine in a different order than they were
received.) Now, in the -AVG routine, &1 = 98 and &2 = 76.

The &RETURN statement then transfers control to the line following the &CALL
statement. The initial values of &1 and &2 are accessible again-&l = 76 and
&2 = 98.

(See the description of &RETURN; also see "User-Defined Functions" on page 54.)

Chapter 2. EXEC 2 Statements 15

&CASE

Translate to uppercase "U" any lowercase alphabetic characters that are read in
response to subsequent &READ statements, or do not translate them (allow mixed
"M" cases), or (if no argument is given) do not change the setting. Initially, the
translation is set to "U".

For example:

&TRACE
&TYPE ENTER YOUR NAME:
&CASE M
&READ VARS &NAME
&TYPE &NAME
&EXIT

The above EXEC prompts you to enter your name. If you enter your name using
uppercase and lowercase characters, such as:

Sue

the result is:

Sue

However, if the "&CASE M" control statement is removed, the result is:

SUE

(See the description of &UPPER.)

16 VM/XA SP EXEC 2 Reference

c

c

(~

(

--- -- -- ------~-- --.. .

&COMMAND

Issue to the host system (CMS) the command comprising of "word I ", "word2", ... ,
separated from each other by a single blank. When the command is finished, its
return code is obtainable from the predefined EXEC 2 variables &RC and
&RETCODE. The &COMMAND statement normally has the same effect as:

word! word2 •••

There are, however, the following differences:

• A command, the first word of which begins with an asterisk, a hyphen, or an
ampersand can be issued by specifying it as an argument of &COMMAND; oth­
erwise, it is interpreted as a comment, a labeled statement, an assignment, or a
control statement. (Note, however, that these characters are not acceptable to
CMS command mode. See Appendix B, "EXEC 2 in CMS" on page 73.)

• &COMMAND overrides any presumption of a subcommand environment and
always issues the command to the host system (CMS).

(See the description of &SUBCOMMAND and &PRESUME; see the predefined
variables &COMLINE, &RC, and &RETCODE. Refer to "EXECCOMM - Sharing
EXEC 2 Variables with Assembler Language Programs" on page 78 for possible
side-effects of command execution.)

Chapter 2. EXEC 2 Statements 17

&DUMp·

Print lines at the console in the form:

var = VALUE

where var is &1, &2, ... or "varI", "var2",

ARGS
Print one line for each EXEC 2 argument &1 &:2 ... th~t is set.

VAR[S]
Print one line for each of the variables "varl", "var2",

The lines are truncated if their length exceeds the implementation limit for printed
output. (In CMS, the line is truncated if its length exceeds 130. See
Appendix B, "EXEC 2 in CMS" on page 73.)

For example:

&TRACE
&ARGS ROSES ARE RED
&TYPE &1 &2 &3
&ONE = &1
&TWO = &2
&THREE = &3
&DUMP ARGS
&DUMP VARS &ONE &TWO &THREE
&EXIT

The result of the above EXEC is:

ROSES ARE RED
&1 = ROSES
&2 .. ARE
&3 = RED
&ONE = ROSES
&TWO = ARE
&THREE = RED

18 VMfXA SP EXEC 2 Reference

c'

o

(

, .. ' ~--~. ~. ,,-~----

&ERROR

Set the action which, until further notice, is to be invoked automatically on return
from any commands (and subcommands) that yield an error return code (a return
code that is not zero). The action may be any executable statement, including a null
statement.

The action is not inspected at the time the &ERROR statement is executed. Instead,
the search for and replacement of any EXEC 2 variables takes place each time the
action is executed. The action is executed as if it occupied the same line in the
EXEC 2 file as the command (or subcommand) that yielded the nonzero return
code. The &ERROR control statement must come before any statement that may
give an error return code. If it does not, the action specified will not occur.

What happens after the action depends upon the type and consequences of the
action. If it is itself a command (or subcommand) which also yields an error return
code, execution stops abnormally with an error message; otherwise (unless the action
causes a transfer of control), execution resumes on the line following the command
that caused the action to be invoked.

Initially, the error action is set to the null statement.

Suppose the name of the following EXEC is MEMOLIST:

&TRACE
&ERROR &TYPE THE RETURN CODE IS &RC
CMDCALL LISTFILE &1 MEMO A
&EXIT

If you want to see if the file POEM MEMO exists on your A disk, issue the
command:

MEMOLIST POEM

If POEM MEMO does not exist, you will receive the message:

FILE NOT FOUND
THE RETURN CODE IS 28

However, if the file POEM MEMO does exist, you will receive the following
message:

POEM MEMO Al

Chapter 2. EXEC 2 Statements 19

&EXIT

Stop execution of the EXEC 2 file, and yield the given return code. If the return
code is specified, it must be numeric. If the given return code is not within the range
of return codes acceptable to the host system, the result is defined by the implemen­
tation. (In CMS, the range is -2,147,483,648 to +2,147,483,647. See
Appendix B, "EXEC 2 in CMS" on page 73.)

For example:

&TRACE
&SUM = a
&TYPE ENTER A NUMBER:
&READ ARGS
&IF &1 < a &EXIT laa
&SUM = &SUM + &1
&TYPE THE SUM IS: &SUM
&EXIT

The above EXEC prompts you to enter a number. If a negative number is entered,
the &IF statement is true. Therefore, the &EXIT control statement is executed and
the result is:

R(amaa) ;

If you enter the number 12, the result is:

THE SUM IS: 12

20 VMjXA SP EXEC 2 Reference

/

(

(

(

&GOTO

Transfer control to the given line or to the line starting with "label".

The first character of a label must be a hyphen. The search for a label starts on the
line following the &GOTO statement. Then, if a match is not found before the end
of the file, the search resumes at the top. If a matching label does not exist, exe­
cution stops abnormally with an error message.

For example:

&TRACE
&P = 1
&SUM = 0
-START &IF &P > 3 &GOTO -END
&TYPE ENTER A NUMBER:
&READ ARGS
&IF &1 < 0 &EXIT 100
&SUM = &SUM + &1
&P = &P + 1
&GOTO -START
-END
&TYPE THE SUM IS: &SUM
&EXIT

At the first &IF statement, the EXEC 2 interpreter compares the variable P to 3.
(&P counts how many numbers have been entered.) If the comparison is true, then
the &GOTO statement is executed. If the comparison is false, the &GOTO state­
ment is ignored and execution continues with the next statement.

If you enter the numbers 10, 500, and 100 when you are prompted, the result is:

THE SUM IS: 610

(See the description of &SKIP and &CALL; also see the predefined variable
&FROM.)

Chapter 2. EXEC 2 Statements 21

&IF

----- ---_ .. --------

If the condition is satisfied, execute the given executable statement; otherwise,
proceed to the next statement. The comparative may be given in any of the forms
shown (for example, "=" or "EQ"). If "word2" is absent, a null string is used in its
stead. The comparison is numeric if both comparatives are numeric; otherwise, both
comparatives are treated as character strings, and the shorter one is (for the purpose
of the comparison) padded on the right with blanks.

For example:

&TRACE
lP = 1
lSUM = a
-START lIF lP > 3 lGOTO -END
lTYPE ENTER A NUMBER:
lREAD ARGS
lIF &1 < a &EXIT 1aa
&SUM = &SUM + &1
&P=&P+1
&GOTO -START
-END
&TYPE THE SUM IS: &SUM
&EXIT

At the first &IF statement; the EXEC 2 interpreter compares the variable P to 3.
(&P counts how many numbers have been entered.) If the comparison is true, then
the &GOTO statement is executed. If the comparison is false, the &GOTO state­
ment is ignored and execution continues with the next statement.

If you enter the numbers 10, 500, and 100 when you are prompted, the result is:

THE SUM IS: 61a

22 VM/XA SP EXEC 2 Reference

(",. -"
v,.J

c ' . .. ' -'

.~~--."-." --"

("

c

&LQOP

Loop through the following "n" lines, or loop down to (and including) the first line
starting with "label". Execute the loop "m" times, indefinitely "*", or "WHILE" (or
"UNTIL") the given condition is satisfied.

The values of "n" and "m" (if given) must be numeric; also "n" must be positive and
"m" must not be negative. If "m" is zero, the entire loop is ignored.

The first character of the label (if given) must be a hyphen. Th~ label must be
attached as the first word of the line to an executable statement that lies below the
&LOOP statement.

The form of the condition (if given) is similar to that of the &IF statement previ­
ously described, namely:

The condition is evaluated before each iteration of the loop, including the first. If
"word2" is absent, a null string is used ill its stead. The comparison is numeric if
both comparatives are numeric; otherwise, both comparatives are treated as char­
acter strings, and the shorter one is (for the purpose of the comparison) padded on
the right with blanks.

If the condition is invalid, execution stops abnormally with an error message that
identifies the line containing the &LOOP statement.

For example:

&TRACE
&SUM = 0
&LOOP -END 3
&TYPE ENTER A NUMBER:
&READ ARGS
&IF &1 < 0 &EXIT 100
&SUM = &SUM + &1
-END
&TYPE THE SUM IS: &SUM
&EXIT

This &LOOP statement tells the EXEC 2 interpreter to execute the,next five lines
(up to and including the line beginning with the -END label) three times.

If you enter the numbers 10, 500, and 100 when you are prompted, the result is:

THE SUM IS: 610

Chapter 2. EXEC 2 Statements 23

&PRESUME

Presume that any executable statements that have the syntax of a command (that is,
the first word of the statement does not begin with an ampersand) are to be issued to
the host system (CMS), or presume that they are to be issued to the given subcom­
mand environment.

The name of the subcommand environment is not checked when the &PRESUME
statement is executed. If the environment does not exist when a subcommand is
subsequently issued, the only effect is to set a special retUTIl code. (In CMS, it is -3.)

The &PRESUME control statement with no arguments is equivalent to
"&PRESUME &COMMAND".

By convention, the presumption is initially set to "&COMMAND" if the EXEC 2
file has a filetype of EXEC; otherwise, it is set to "&SUBCOMMAND filet ype" ,
where "filetype" is the filetype of the EXEC 2 file.

The presumption has no effect on &COMMAND or &SUBCOMMAND statements
since they do not have the syntax of a command.

(See the description of &COMMAND and &SUBCOMMAND.)

24 VM/XA SP EXEC 2 Reference

c

o

(

..

&PRINT, &TYPE

Print at the console a line containing "word!", "word2", ... , or print a blank line if
there are no words given. Each word is separated from each other by a single blank.
The line is truncated if necessary. (In CMS, the line is truncated if its length exceeds
130. See Appendix B, "EXEC 2 in CMS" on page 73.)

Unlike &BEGPRINT and &BEGTYPE, surplus blanks are removed and the words
to be printed are searched for EXEC 2 variables. Then these variables are replaced
by their values. '

For example:

&TRACE
&COLORl = RED
&COLOR2 = BLUE
&TYPE ROSES ARE &COLORl
&PRINT VIOLETS ARE &COLOR2
&EXIT

The result of the above EXEC is:

ROSES ARE RED
VIOLETS ARE BLUE

(See the description of &BEGPRINT and &BEGTYPE.)

Chapter 2. EXEC 2 Statements 2S

&READ

----- --------_ .. ------------.--

Read from the console stack (program stack and terminal input buffer), or read
from the console (otherwise). Then execute or assign what is read according to the
following rules:

n

1

*

ARGS

Read "n" lines, read "I" line, or read an indefinite number of lines "*".
Execute the lines individually as if they had been part of the EXEC 2 file.
Reading stops (and normal execution resumes) when "n" lines are read, or
when a &BEGPRINT, &BEGTYPE, &BEGST ACK, &EXIT, &GOTO,
&LOOP, or &SKIP statement is encountered. Reading is suspended if a user­
defined function or subroutine is invoked and is continued when control
returns from that invocation.

If a "&READ n" statement is read in response to a previous "&READ n"
statement, the new value of n is added to the number of lines that remain from
the previous statement. Reading stops if th~ number remaining becomes zero
or less. The value of "n" may be negative.

If a "&READ *" statement is read in response to a previous "&READ n" or
"&READ *" statement, or if a "&READ n" statement is read in response to a
previous "&READ *" statement, then an indefinite number of lines remain to
be read.

Read a single line, assign the words in it to the EXEC 2 arguments &1 &2 ... ,
and discard any other EXEC 2 arguments that were previously set. The
number of arguments now set is the number of words in the line, which may be
less or greater than the number of arguments previously set. (See the
description of &ARGS, and the predefined variables &N, &INDEX, and &1
&2 ...)

STRING

VARS

Read a single line and assign it as a literal string to "var". Surplus blanks are
not removed, and EXEC 2 variables are not replaced.

Read a single line and assign the words in it to the variables "varl", "var2",
.... If the number of words in the line read exceeds the number of variables
given in the statement, the surplus words are discarded. If the number of vari­
ables exceeds the number of words, the remaining variables are set to the null
string. Therefore, "&READ VARS" (without any variables) can be used to
read a line and discard it. Asterisks (*) may be used in lieu of variable names
to indicate that the corresponding words in the line read are to be discarded.

26 VM/XA SP EXEC 2 Reference

o

(

(

&READ

In the case of &READ ARGS and &READ V ARS ... , the line that is read is
scanned for words (leading, trailing, and other surplus blanks are discarded), but the
words are treated as literals (there is no replacement of EXEC 2 variables).

The names of the variables in &READ V ARS and &READ STRING are treated in
the same way as the variables on the left-hand side of an assignment statement. (See
"Name Substitution" on page 57.) A variable of the form &j, where "j" is an
unsigned integer without leading zeros, cannot be set with &READ V ARS or
&READ STRING if "j" exceeds the number of EXEC 2 arguments that are cur­
rently set.

Lines that are read mayor may not be translated to uppercase. The case is deter­
mined by the translation mode that is set by the &CASE control statement. The
&CASE control statement is issued prior to the &READ control statement. (See the
description of &CASE.) However, if no case is specified, the lines read in default to
uppercase.

Lines that are read are not truncated by the EXEC 2 interpreter; they are unaffected
by the setting of &TRUNC. (See the description of &TRUNC.)

(In CMS, the maximum length of a line read from the console is 130, and the
maximum length of a line read from the program stack is 255. See
Appendix B, "EXEC 2 in CMS" on page 73.)

Suppose you have the following EXEC named QUALIFY:

&TRACE
&TYPE ENTER YOUR NAME PLEASE (FIRST AND LAST):
&REAO STRING &NAME
&TYPE ENTER YOUR SOCIAL SECURITY NUMBER PLEASE:
&REAO VARS &NUM
&TYPE NOW. TELL US YOUR AGE:
&READ ARGS
&IF &1 < 21 &TYPE &NUM ---- &NAME IS TOO YOUNG
&IF &1 >= 21 &TYPE &NUM ---- &NAME IS OLD ENOUGH
&EXIT

First you are prompted to enter your name:

SUE SMITH

Then, the &READ STRING &NAME statement reads the line from the console and
assigns the literal string to &NAME. Now, &NAME equals "SUE SMITH". Next
you need to enter your social security number

111-11-1111

The next &READ statement assigns the word, 111-11-1111, to the variable &NUM.

If you enter 24 as your age, the EXEC 2 interpreter assigns 24 to the variable &1.
Since &1 is greater than or equal to 21, the result of this EXEC, with the above
data, is:

111-11-1111 ---- SUE SMITH IS OLD ENOUGH

Chapter 2. EXEC 2 Statements 27 r

&RETURN

Return control to the most recent subroutine invocation (&CALL statement) to
,which return has not yet been made; or return "word" (or the null string) to the
most recent user-defined function invocation to which a value has not yet been
returned.

The generation of EXEC 2 arguments that was created at subroutine invocation is
discarded. The previous values and the number of arguments previously set become
accessible again. The iluinber of lines (if any) tha'tremainto be read from the
console stack or console in response to a previous '''&READ n" statement is reset to

" the DUmber outstanding at the time of the invocation. Any loops that have been left
opened in the subroutine or function are aborted, and any loops that were open at
the time of invocation are reinstated.

If there is both a subroutine invocation and a function invocation to which return
has not yet been made, return is to the more recent point of invocation. If there is
neither, execution stops abnormally with an error message.

(See the description and example of &CALL; also see "User-Defined Functions" on
page 54.)

28 VM/XA'SP EXEC 2 Reference

(.f""',

\,j

o

(-

(

--~~-~~~-~------

ASKIP

If 0 > 0, skip the oext "0" lines of the EXEC 2 file. If n < 0, transfer control to
the line that is "-0" lines above the current line. If 0 = 0, transfer control to the
next line.

If an attempt is made to transfer control to a line number that is zero or negative,
execution stops abnormally with an error message. If control is transferred to a line
below the last in the EXEC 2 file, execution stops normally with a return code of
zero.

For example:

&TRACE
&SKIP 3
&TYPE THREE
&TYPE FOUR
&EXIT
&TYPE ONE
&TYPE TWO
&SKIP -5
&EXIT

The result of the above EXEC is:

ONE
TWO
THREE
FOUR

(See the description of &GOTO.)

Chapter 2, EXEC 2 Statements 29

&STACK

Place a line in the program stack containing "word!", "word2", ... , or stack a null
line if there are no words. Each word is separated from each other by a single
blank. (In CMS, stacked lines are truncated at 255. See Appendix B, "EXEC 2 in
CMS" on page 73.)

The line is by default stacked "FIFO" (first in, first out), but this can be changed by
giving "LIFO" Qast in, first out) as the first argument. If "word!" is itself FIFO or
LIFO, then it must be preceded by the FIFO or LIFO stacking choice . .
Unlike &BEGSTACK, surplus blanks are removed and the words to be stacked are
searched for EXEC 2 variables. Then these variables are replaced by their values.

For example:

&TRACE
&COLOR! = RED
&COLOR2 = BLUE
&STACK LIFO THE FIRST COLOR IS &COLORl
&STACK LIFO THE SECOND COLOR IS &COLOR2
&READ STRING &ONE
&READ STRING &TWO
&TYPE &ONE
&TYPE &TWO
&EXIT

Since the data is stacked LIFO (last-in, first-out) the result is:

THE SECOND COLOR IS BLUE
THE FIRST COLOR IS RED

(See the description of &BEGSTACK.)

30 VMjXA SP EXEC 2 Reference

c

(

(,

(..... .

"

&SUBCOMMAND

Issue to the given subcommand environment the subcommand comprising of
"word 1 ", "word2", Each word is separated from each other by a single blank.
When the subcommand is finished, its return code is obtainable from the predefined
EXEC 2 variable &RC.

If the given environment does not exist, the only effect is to set a special return code.
(In CMS, it is -3.)

Normally, it is convenient to "presume" the environment so that this control state­
ment does not have to be issued for every subcommand (see the description of
&PRESUME. above). The explicit use of the &SUBCOMMAND statement does,
however, allow subcommands that start with an asterisk, a hyphen, or an ampersand
to be issued. (Compare with the description of &COMMAND.) Also note that the
statement "&SUBCOMMAND environment" (without any additional arguments) is
the only way of issuing a null subcommand.

(See the description of &COMMAND; also see the predefined variables
&COMLINE, &RC, and &RETCODE. Refer to "EXECCOMM - Sharing EXEC 2
Variables with Assembler Language Programs" on page 78 for possible side-effects
of command execution.)

Chapter 2. EXEC 2 Statements 31

i'

aTRACE

where "output-action", if given, is;

&PRINT [word 1 [word2 •••]]
or:

&COMMAND wordl [word2 •••]
or:

&SUBCOMMAND environment [word 1 [word2 •••]]

The following do not change the setting:

• Trace commands and subcommands that are issued form the EXEC 2 file

• Trace commands and subcommands that yield an error return code (a return
code that is not zero)

• Trace all executable statements

• Do not trace any statements

• An "*,, is given.

The setting remains in effect until reset. The initial setting is OFF.

Trace information can be printed at the console, or passed to a command (or sub­
command) for processing. The trace destination is determined by the output action,
as described below.

Suppose you have the following EXEC named TEST EXEC:

&TRACE
CP NMES
CP Q USERS
&TYPE HELLO
&EXIT

ON

ERR

When tracing is ON, each command is traced before it is executed. Subse­
quently, the return code is traced if it is not zero. The return code is traced on
a line by itself in the form" + + + E(nnn) + + +".

The result of the above EXEC with '''&TRACE ON" specified is:

CP NMES
+++ E(l} +++
CP Q USERS
096 USERS, 010 DIALED, 000 NET
HELLO

'\
)

When ERR is in effect, commands that yield a nonzero return code are traced O .. ' "\. '.
after execution, followed by the return code. The return code is traced on a .
line by itself in the form" + + + E(nnn) + + +".

32 VM/XA SP EXEC 2 Reference

--_._----------------- ---_ ... _---_._->--

('

(

ALL

OFF

*

The result of the above EXEC with "&TRACE ERR" specified is:

CP NMES
+++ E(l) +++

e96 USERS, ele DIALED, eee NET
HELLO

&TRACE

When ALL is in effect, every executable statement is traced before it is exe­
cuted, and every executable statement is preceded by its line number. Nonzero
return codes are traced (as for ON and ERR). Loop conditions and lines that
are read from the console stack or console are also traced. The statement fol~
lowing an &IF clause, the action given in an &ERROR statement, and the
conditional phrase in a &LOOP statement are traced as literal words (that is,
without replacement of any variables). These statements and phrases are
traced again, with the normal replacement of variables, at the time of their exe­
cution. A statement that is executed as a consequence of a satisfied &IF clause
is preceded in the trace by an ellipsis. Words that exceed 24 characters in
length are truncated in the trace at 21 characters and followed by an ellipsis.
Statements that exceed 80 characters in length (with the line number and pre­
ceding ellipsis, if present) are truncated in the trace at an integral number of
words and followed by an ellipsis.

The result of the above EXEC with "&TRACE ALL" specified is:

2. CP NMES
+++ E(l) +++

3. CP Q USERS
e96 USERS, ala DIALED, eae NET
4. &TYPE HELLO
HELLO
5. &EXIT

Do not trace any statements. This is the initial setting.

The result of the above EXEC with "&TRACE OFF" specified is:

e96 USERS, ele DIALED, eee NET
HELLO

Do not change the setting. "&TRACE" without arguments is equivalent to
"&TRACE *".

output-action
The output action gives the destination of the tracing information. The words
in it are searched in the normal way for the names of EXEC 2 variables.
These variables are replaced by their values, and the resulting sequence of
words is set aside. When a trace line is produced, it is prefixed with the
sequence of words, and the resulting EXEC 2 statement is executed without
tracing. (See the description of &PRINT, &TYPE, &COMMAND, and
&SUaCOMMAND). If the return code from the command or subcommand is
nonzero, execution stops abnormally with an error message.

Initially the output action is set to "&PRINT", which causes the trace to be
printed at the console. If the output action is not given, the previous action
remains in effect. Let's change the output-action of the &TRACE statement in
the above TEST EXEC so the trace information is printed somewhere other
than at the console. If the &TRACE statement is changed to:

&TRACE ALL &COMMAND EXECIO 1 DISKW INFO SCRIPT A (STRING

Chapter 2. EXEC 2 Statements 33

&TRACE

the trace information is written to the CMS file INFO SCRIPT A. The INFO
SCRIPT A file contains:

3. CP NMES
+++ E(1) +++
4. CP Q USERS
5. &TYPE HELLO
6. &EXIT

See VMjXA SP CMS Command Reference for details on the EXECIO
command.

34 VM/XA SP EXEC 2 Reference

c

\~ /

c

(-

(

(

(

(..... ,.
, .,/

&TRUNC

Set the truncation column for EXEC 2 statements to "k", or set it to the maximum
value "*", or (if no argument is given) do not change it. Initially, it is set to the
maximum value. (In CMS, the maximum value is 255. See Appendix D, "EXEC 2
in CMS" on page 73.)

This setting affects only the reading of EXEC 2 statements from a file and the search
for labels. &TRUNC does not affect lines read from the console (these lines are
never truncated) or lines appearing within a &DEGPRINT, &BEGTYPE, or
&BEGST ACK statement (these lines are not truncated unless the statements specify
a truncation column). This setting does not affect the length to which a statement
can grow during or after replacement of EXEC 2 variables.

Changing the truncation column has the side-effect of purging the lookaside buffer
(if there is one), and may consequently degrade performance if done within a loop.

Suppose you had the following EXEC:

&TRACE
&TRUNC 19
&TYPE TYPE YOUR NAME:
&READ STRING &NAME
&TYPE YOUR NAME IS:
&TYPE &NAME
&TYPE
&BEGPRINT
THIS IS AN EXAMPLE OF THE TRUNC STATEMENT
&EXIT

The line "&TYPE TYPE YOUR NAME:" is truncated at column 19 and appears on
the screen as:

TYPE YOUR NAM

However, if you enter the name:

MARGARET SMITHSONIAN

the result is:

YOUR NAME IS:
MARGARET SMITHSONIAN

THIS IS AN EXAMPLE OF THE TRUNC STATEMENT

The lines read from the console are not truncated. Also, the message following the
&DEGPRINT statement is not truncated.

(See the description of &DUFFER.)

Chapter 2. EXEC 2 Statements 3S

Translate to uppercase any lowercase alphabetic characters in the values of the
EXEC 2 arguments &1 &2 ... , or translate to uppercase any lowercase alphabetic
characters in the values of "varl", "var2",

For example:

&TRACE
&TYPE ENTER YOUR FIRST NAME:
&CASE M
&READ ARGS
&TYPE &1
&UPPER ARGS
&TYPE &1
&EXIT

The above EXEC prompts you to enter your name. Suppose you enter your name
as follows:

Sue

Because of the control statement "&CASE M", "Sue" is not translated to uppercase.
However, when the &UPPER ARGS statement is interpreted, the value of &1 is
translated to uppercase.

The result of the above EXEC is:

Sue
SUE

A variable of the form &j, where "j" is an unsigned integer without leading zeros,
cannot be translated with &UPPER VARS if "j" exceeds the number of EXEC 2
arguments that are currently set.

(See the description of &CASE.)

36 VM/XA SP EXEC 2 Reference

o

Predefined FUDdl ..

(Predefined Functions

("

(

(
"~ ..

!

A predefined function can be invoked only in the last term on the right-hand side of
an assignment statement. The invocation takes the form:

function-name OF [argl [arg2 •••]]

The following are names of the predefined functions and the rules for their use.

Chapter 2. EXEC 2 Statements 37

&CONCATENATION OF, &CONCAT OF

Concatenates "wordl", "word2", ... , into a single word, without intervening blanks,
or yields the null string if there are no words.

Example:

&A = **

&B = &CONCAT OF xx &A 45
&PRINT &B

This results in the printed line:

XX**45

38 VM/XA SP EXEC 2 Reference

(

(-

(

&DATATYPE OF, &TYPE OF

Yields the value NUM if "word" represents a valid (signed or unsigned) number;
otherwise, yields the value CHAR.

Example:

&TRACE
&X = &DATATYPE OF -2
&Y = &TYPE OF 1
&Z = &DATATYPE OF 123HELLO

This sets &X to "NUM", & Y to "NUM", and &Z to "CHAR".

Chapter 2. EXEC 2 Statements 39

I .

I.

"DIVISION OF, "DIV OF

Yields a numeric value that results from dividing the dividend by the divisor. Both
the dividend and the divisor must be numeric and the divisor must not be zero.

If the dividend and divisor are both positive, or if they are both negative, the result
is positive; if the dividend is positive and the divisor is negative, or vice versa, the
result is negative; if the dividend is zero, then the result is zero.

In precise terms, the value is the integral part of the division of the absolute value of
the dividend by the absolute value of the divisor, or minus this value if the dividend
is not zero and the sign of the dividend differs from that· of the divisor.

Examples:

&W= &DIY OF 7 2
&X = &DIV OF -7 -2
&Y = &DIVOF -7 2
&Z = &DIVOF a -2

This sets 8r.W to 3, 8r.X to 3, 8r.Y to -3, and &Z to 0.·

40 VM/XA SP EXEC 2 Reference

c

(-

(-"

(

()

&LEFf"OF

Yields a string of length "j" in which "word" is left-justified and either padded with
blanks or truncated on the right.

Example:

&TRACE
&X = &LEFT OF HELLO 3
&EXIT

This sets &X to "HEL".

(See the. description of &RIGHT OF.)

Chapter 2. EXEC 2 Statements 41

&LENGTHOF

Yields a numeric value representing the length of the word (that is, the number of
characters in it), or yields zero if the word is absent.

Example:

&TRACE
&X = &LENGTH OF BOOKS
&EXIT

The value of &X is 5.

42 VM/XA SP EXEC 2 Reference

j

c

(

(

(

&LITERAL OF

Yields the literal string that begins with the character following the blank that termi­
nates "OF" and ends with the last nonblank character before or at the truncation
column. Any leading or embedded blanks are retained, and the search for and
replacement of any EXEC 2 variables that may appear in the string is suppressed.

Example:

& = &LITERAL OF &X =
&X = **
&PRINT & &X

This results in the printed line:

&X = **
(See the description of &STRING OF.)

Chapter 2. EXEC 2 Statements 43

"I.

,
I
I'

&LOCATION OF

Searches "haystack" for the first occurrence of "needle", and yields a n,umber indi­
cating its starting position, or yields zero if there is no occurrence (or if the length of
"needle" exceeds that of "haystack").

Example;

AX = &LOCATION OF ANN LIZANNE

This sets &X to 4.

(See the description of &PIECE OF, &SUBSTR OF, and &POSITION OF.)

44 VMjXA SP EXEC 2 ReferenCe

- ---~---- -~~~~~~~--~~~-

o

)

/,,--\

\",-~j

o

(

(-

&MULTIPLICATION OF, &MULT OF

Yields a numeric value representing the result of multiplying the given words. There
must be at least two words given (i and j), and each word must be numeric (signed
or unsigned).

Example:

lX I: AMUL T OF 4 5 6

This sets &X to 120.

Chapter 2. EXEC 2 Statements 45

&PIECE OF, &SUBSTR OF

Extracts that piece of "word" that starts at character "i", with length "j"; or tmtt
starts at character "i" and runs to the end of the word ""'''.

The value of "i" (and "j" if given) must be numeric; also "i" must be positive, and
"j" must not be negative.

If the value of "i" exceeds the length of the word, the value of the function is the
null string. If 44j" is given, but exceeds the remaining length of the word, the
remaining length is used instead.

Example:

&A = &PIECE OF ABCDE 2 3
&B = &PIECE OF ABCDE 2 999
&C = &PIECE OF ABCDE 33 2
&PRINT &A &8 &e ***

This results in the printed line:

BeD BeDE ***

(See the description of &LOCATION OF.)

46 VMjXA SP EXEC 2 Reference

(~,

"''''oj

c

(

(

(

&POSITION OF

Compares "word" with "word!", "word2", ... , looking for a match, and yields a
numeric value representing the position of t~e first matching word, or yields zero if
"word" does not match any of the other words (or if there are no other words
given).

Example:

&X = &POSITION OF TWO ONE TWO THREE

This sets &X to 2.

Note: "wordl", "word2" ... must be listed individually. If a variable contains a
string of words, the &POSITION OF predefined function will not find "word", since
the variable will be treated as one word.

For example, suppose you passed an EXEC the argument string "ONE TWO
THREE":

&X = &POSITION OF TWO &ARGSTRING

This will set &X to 0, since "TWO" is only part of the whole word, "ONE TWO
THREE".

(See the description of &LOCATION OF and &WORD OF.)

Chapter 2. EXEC 2 Statements 47

· &RANGEOF

Yields a string consisting of the words that are composed by appending to the given
stem the numbers i, i+l, ... ,j, the words being separated from each other by a single
blank, or the null string if i > j.

The stem is treated as a literal until after the composition is performed. The
numbers that are appended to it are stripped of any plus sign or redundant leading
zeros.

The composed names are searched for any EXEC 2 variables, which are replaced by
their values in the usual way. If, as a result of this, a word is reduced to the null
string, it is discarded from the result, and the next word is deemed immediately to
follow the previous one.

Examples:

1. Irrespective of the values of &A, &A3, &A4, and &A5, the sequence:

&'X = &.RANGE OF &A 3 S
&'PRINT &'X

produces the same result as:

&'PRINT &.A3 &A4 &AS

2. The sequence:

&ARGS A Be DEF GHIJ KLMNO

&'X = &RANGE OF & 1 &N
&PRINT &X

produces the same result as:

&PRINT &1 &2 &3 &4 &5

and this yields the printed line:

A Be DEF GHIJ KlMNO

3. The sequence:

&X = &RANGE OF AB -2 +2
&PRINT &X

yields the printed line:

AB-2 AB-1 ABa ABl AB2

48 VM/XA SP EXEC 2 Reference

c·" ... · ~ ,

(

&RIGHTOF

Yields a string of length "j" in which "word" is right-justified and either extended
with blanks or shortened on the left.

Example:

&TRACE &X = &RIGHT OF HELLO 3 &EXIT

This sets &X to "LLO".

(See the description of &LEFT OF.)

Chapter 2. EXEC 2 Statements 49

&STRINGOF

Yields the string that begins with the character following the blank that terminates
"OF" and ends with the last nonblank character before or at the truncation column,
suppressing the removal of any leading or embedded blanks in the string.

Each word in the string is searched in the usual way for the names of EXEC 2 vari­
ables. These variables are replaced by their values. However, blanks are not
removed from the string, even if they are adjacent to a word that is reduced to the
null string.

Example:

&A = STRING
&8 = ENDS
&X = &STRING OF A PIECE OF &A
&PRINT &X

This yields the printed line:

A PIECE OF STRING HAS TWO ENDS

HAS TWO &8

(See the description of &LITERAL OF.)

50 VM/XA SP EXEC 2 Reference

o

(

(

&TRANSLATION OF, &TRANS OF

Makes a copy of "wordl", modifies the characters in it as directed by "word2" and
"word3", and yields the resulting string.

The rules for modification are as follows. Each character of the copy is considered
in tum, and:

• If "word2" does not contain a matching character, the character in the copy is
left unchanged, or

• If "word2" contains a matching character, in position "i" (or if it contains
several matching characters, the first of which occupies position "i"), the char­
acter in the copy is replaced by the ith character of "word3", or by a blank if
"word3" is not given or contains fewer than "i" characters.

The result has the same length as "wordl".

Example:

&TRACE
&X = &TRANS OF 85BBE 1234567899ABCDE ABCDEFGHIJKlMNOP
&PRINT &X
&EXIT

"word I " is "85BBE", "word2" is "1234567890ABCDE", and "word3" is
"ABCDEFGHIJKLMNOP" .

The first character in "wordl" is "8". "word2" is scanned for the character "8".
"8" is the eighth character in "word2". Now, look at the eighth character in
"word3"-this character is "H". Do the same for "5" in "wordl". "5" is the fifth
character in "word2"; and, the fifth character in "word3" is "E". Continue this for
the remaining characters in "wordl".

The result is:

HEllO

Chapter 2. EXEC 2 Statements 51

&TRIMOF

Yields a string consisting of "word" with any trailing blanks removed, or yields the
null string if "word" is not given.

52 VMfXA SP EXEC 2 Reference

---- ~- -----~-- --------

o

('

(

(""

/

&WORDOF

Yields the ith word from the given list of words, or yields the null string if "i" is zero
or exceeds the number of words that are given. The value of "i" must be numeric,
and "i" must not be negative.

Example:

&TRACE
&X = &WORD OF ONE TWO THREE FOUR FIVE 3
&EXIT

This sets &X to "THREE".

(See the description of &POSITION OF.)

Chapter 2. EXEC 2 Statements S3

I

EXEC 2 Statements

User-Defined Functions
A user-defined function can be invoked only in the last term on the right-hand side
of an assignment statement. The invocation takes the form: .

The effect is to create a new generation of the EXEC 2 arguments &1 &2 ... , initial­
ized to "argl", "arg2", ... , and to invoke the given function; that is, to transfer
control to the given line, or to a line starting with the given label, in such a way as
to allow a value to be returned with the &RETURN statement.

The new generation of arguments supersedes the arguments that were previously set,
making the previous values and the number of arguments previously set temporarily
inaccessible. On entry to the body of the function, the values of the arguments, and
the number of arguments set, are as given in the function invocation. Their values,
and the number of arguments set, can be changed in the body of the function in the
same way as outside, such as by assignment or with the &ARGS or &READ state­
ment. On return, the new generation of arguments is discarded, and the previous
values, and the number of arguments previously set, become accessible again.

The first character of a label must be a hyphen. The search for a label starts on the
line following the function invocation. Then, if a match is not found before the end
of the file, the search resumes at the top. If a matching label does not exist, exe­
cution stops abnormally with an error message.

(See the description of the &CALL and &RETURN control statements.)

Examples:

1. The user-defined function

-OVERLAY OF layee layer

is to return the string "layee" overlaid by "layer". (The result will be different
from "layer" only if "layee" is longer than "layer".) Here is the body of the
function, preceded by an example of its invocation:

&S = -OVERLAY OF &S *

* THIS FUNCTION USES U&U AS A TEMPORARY VARIABLE
-OVERLAY & = 1 + &LENGTH OF &2
&1 = &PIECE OF &1 &
&1 = &CONCAT OF &2 &1
&RETURN &1

54 VM/XA SP EXEC 2 Reference

c

o

(-

(

EXEC 2 Statements

2. Suppose there is an external program TIME that stacks the CPU time consumed
in (say) microseconds. The user-defined function -TIME OF is to return this
number as its value, relieving its caller of the need to issue the external
command, check the return code, and read the answer. Here is the body of the
function, preceded by an example of its use:

&T = -TIME OF
(sequence to be timed)

&T = a - &T + -TIME OF
&PRINT TIME CONSUMED WAS &T

-TIME &COMMAND TIME
&IF &RC ~= a &GOTO -UNEXPECTED
&READ ARGS
&RETURN &1
-UNEXPECTED &PRINT UNEXPECTED ERROR FROM TIME
&EXIT &RC

Chapter 2. EXEC 2 Statements 55

Notes on EXEC 2

(-. Chapter 3. Notes on EXEC 2

(

(

The following is a list of topics contained in this chapter:

• Name Substitution
• Recursive Execution
• Termination of an EXEC 2 File
• Program Stack
• Assignment Statement
• Evaluation of &DATE and &TIME
• Size and Treatment of Numbers
• Removing Plus Signs and Leading Zeros
• Syntax of Conditional Phrases
• Embedded Blanks
• &LOOP Statement
• Closing of Loops
• Search for Labels
• Performance of Label Searches
• EXEC 2 Words are Not Reserved Words
• Example of &TRACE ALL
• Truncation Column.

Name Substitution
The words that form an executable statement are searched for the names of EXEC 2
variables. These variables are replaced by their values. This is done according to
the following steps:

1, Each word is inspected for ampersands, starting with the rightmost character of
the word and proceeding to the left.

2. If an ampersand is found, then it, with the rest of the word to the right, is taken
as the name of an EXEC 2 variable and replaced (in the word) by its value.
This may increase or decrease the length of the word. Initially, all variables
have a null value, except:

a. The variables that represent the EXEC 2 control words and predefined- func­
tions; they are initialized to their own names (for example, the value of
"&IF" is "&IF"), and

b. The EXEC 2 arguments, and the other predefined variables, that have the
values specified in the section "Predefined Variables" on page 5.

3. Inspection resumes at the next character to the left, and the procedure is
repeated from step 2 above, until the word is exhausted.

There is an exception if the word is the target of an assignment. In this case,
inspection for ampersands stops on the second character of the word.

Note that any characters that are substituted are not themselves inspected for amper­
sands. They are, however, included in the name of the next variable if another
ampersand is found to the left.

These rules make it possible to construct arrays of subscripted variables.

Chapter 3. Notes on EXEC 2 57

Notes on EXEC 1

Examples:

1. The sequence:

(Original file)

&X = 123

(After Substitution)

2. lX = 123

&PRINT ABC &X ABC&X 999&X 3. lPRINT ABC 123 ABC123 ge9123

yields the printed line:

ABC 123 ABC123 999123

2. The sequence:

(Original file)

&1 = 2

&X&I = 5

&1 = &1 - 1

&X&I = &1 + 1

(After Substitution)

2. &1 = 2

3. lX2 = 5

4. &1 :: 2 - 1

5. lXI = I + 1

6. lX = 2 + 5 &X = &X&I + &X&X&I

&PRINT ANSWER IS &X

yields the printed line:

7. lPRINT ANSWER IS 7

ANSWER IS 7

3. The sequence:

(Original file)

&X = &CONCAT OF X &BLANK X

&&X = 7

&DUMP VARS lX llX

yields the printed line:

&X = X X
&X X = 7

(After Substitution)

2. lX = lCONCAT OF X

3. &X X = 7

4. lDUMP VARS lX lX X

X

Recursive Execution
An EXEC 2 file may invoke itself recursively, or may invoke other EXEC 2 files, by
issuing the appropriate command or subcommand. EXEC 2 files may also invoke
files written in CMS EXEC language and Restructured Extended Executor (REXX)
language. EXEC 2 files that have the filetype EXEC can, for example, be invoked
by means of the statement:

&COMMAND EXEC filename [argi [arg2 .••]]

58 VMjXA SP EXEC 2 Reference

C, \ '1. _ oj

C'. \
\'

Notes on EXEC 2

Termination of an EXEC 2 File

Program Stack

An EXEC 2 file stops execution and returns to its caller:

• When an &EXIT statement is executed, or

• When an attempt is made to pass control to a line beyond the last (for example
by "falling off' the end of the file), in which case a return code of zero is used,
or

• When an EXEC 2 error is encountered, in which case a message is printed and
execution stops abnormally.

EXEC 2 can use the CMS program stack. This is a conceptual area in which lines
can be deposited FIFO (first in, first out), or LIFO (last in, first out), and subse­
quently retrieved by attempts to read from the program stack. It provides a simple
mechanism for communicating between programs. In EXEC 2 files, lines can be
deposited in the program stack with the &ST ACK or &BEGST ACK statements, and
can be retrieved with the &READ statement.

Assignment Statement
The word immediately following the target of an assignment must be a literal equal
sign. It cannot be an EXEC 2 variable that has the value of an equal sign nor an
EXEC 2 variable that is discarded from the statement due to having a null value.
Conversely, if an equal sign is to be the first word following a control word, either it
must be given as an EXEC 2 variable that h~s the value of an equal sign, or there
must be an intervening word that reduces to the null string; otherwise, the statement
is interpreted as an assignment, and (if it is valid as such) the control word is
assigned a new value (see "EXEC 2 Words are Not Reserved Words" on page 63).
With this exception, a word that is discarded due to having a null value has no effect
on whether a statenient is interpreted as an assignment, even if it occurs at the begin­
ning of the statement. For example, in the sequence:

&X =
&LOOP 2 2

&X &Y = 2 + 1
&X = &PRINT

the first statement in the loop is executed as an assignment to &Y, and then (the
second time) as a &PRINT statement, resulting in the line:

3 = 2 + 1

Evaluation of &DATE and &TIME
The time is taken once for each execution of a statement that refers to the predefined
variable &DATE or &TIME. Therefore, multiple references to these variables
within a statement yield the same values. If consistency (rather than currentness) is
required over a range exceeding one statement, then the values of &DATE and
&TIME must be assigned to ordinary variables. For example:

&STACK LIFO &DATE &TIME
&READ VARS &D &T

Chapter 3. Notes on EXEC 2 59

I

- ----------~~- ----

Notes on EXEC 2

Size and Treatment of Numbers
Words that are treated as numbers must represent integers. No limit is imposed on
the size of a number that appears in a comparison, or as an. argument to the prede­
fined function &DATATYPE OF. In contexts that require numeric values, numbers
must lie within a range that is defined by the implementation. (In CMS, the range is
-2,147,483,648 to +2,147,483,647. See Appendix B, "EXEC 2 in CMS" on
page 73.) An attempt to interpret a number outside the allowable range, or to
derive such a number by arithmetic, causes numeric overflow. This overflow causes
e,xecution to stop abnormally with an error message.

Removing Plus Signs and Leading Zeros
A plus sign, and any redundant leading zeros, can be stripped from a numeric quan­
tity by performing an arithmetic operation on it.

Example:

&X = eeeeeeeeeeeeeeeeeeee12
&y = &X + e
&PRINT &X &Y

This yields the printed line:

eeeeeeeeeeeeeeeeeeee12 12

Syntax of Conditional Phrases
In the conditional phrases that occur in the &TF and conditional &LOOP state­
ments, a missing second comparand is regarded as a null string. The first
comparand and the comparator must always be present; otherwise execution stops
abnormally with an error message. If there is a risk of the first comparand having a
null value, syntactic validity can be ensured by prefixing both comparands with the
same character. For example, the clause:

&IF /&1 = /
is satisfied if, and only if, &1 is null or blank; and

&IF /&1 = /PRINT
is syntactically valid even if &1 is null.

A similar technique can be used to force character-string comparisons even if b~th 'of
the comparands are numeric. (In this case, the prefix must not be numeric.) For
example, if it is known that &1 has a numeric value, the clause:

&IF /&1 < /e

is satisfied if and only if &1 begins with a plus or minus sign. If &1 is equal to "1",
the clause is false. However, if &1 is equal to "+ 1 ", the clause is true, since" +" is
less than "0" in a character-string comparison. (For the relative values of charac­
ters, refer to the internal codes for the EBCDIC character set, given in Systemj370
Reference Summary.)

60 VM/XA SP EXEC 2 Reference

----- -------------------- --------

(

(

(

Notes on EXEC 2

Embedded Blanks
With a few exceptions, EXEC 2 does not embed blanks in the values of variables.
The exceptions are as follows:

1. &ARGSTRING is initialized to the string containing the EXEC 2 arguments,
and &CMDSTRING is initialized to the command string exactly as passed to
the EXEC 2 file. Therefore, these variables may contain embedded blanks.

2. The "&READ STRING var" statement assigns to the given variable the com­
plete line exactly as read; this. variable may contain embedded blanks.

3. The predefined variable &BLANK can be used to embed blanks in the value of
a variable, for example:

&Y = &CONCAT OF A &BLANK B

4. The predefined function &RANGE OF inserts a blank between each word; the
predefined functions &LITERAL OF and &STRING OF retain embedded
blanks that are given iri their arguments; and the predefined functions &LEFT
OF, &RIGHT OF, and &TRANSLATION OF can yield leading, embedded, or
trailing blanks.

5. Embedded blanks can be transmitted from one variable to another with the
assignment statement, and to the EXEC 2 arguments &1 &2 ... with the &ARGS
statement or by invocation of user-defined subroutines and functions.

Embedded blanks are always significant. For example, "&IF " is not recognized as
"&IF", and "10 " and" 10" cannot be used as numbers.

Embedded blanks can be removed from the value of a variable by stacking it and
rereading it as a sequence of words. Suppose, for example, that a line to be read
from the console is required both in its literal form (with embedded blanks, if any)
and as a series of normal words (without embedded blanks). The following sequence
achieves this:

&READ STRING &S
&STACK LI FO &S
&READ ARGS

Now &S contains the literal string, and the EXEC 2 arguments &1 &2 ... , ~ontain
the constituent words.

&LOOP Statement
The first three words of the &LOOP statement are searched for EXEC 2 variables
(in the normal way) when the &LOOP statement is executed. However, the
remainder of the statement (which is present only if "WHILE" or "UNTIL" is
given) is saved without inspection. This saved phrase is then interpreted as a condi­
tion each time around the loop (including the first time). For example:

&J = 3
&LOOP 2 UNTIL &J = 5

&J=&J+l
&PRINT &J

This results in the printed lines:

45

Chapter 3. Notes on EXEC 2 61

-'

~I

Notes on EXEC 1

Closing of Loops
A loop may be in any of three mutually exclusive states: active, suspended, or
closed. A loop becomes active when execution of its defining &LOOP statement
begins. It is suspended if another loop becomes active before the first is closed or if
a user-defined subroutine or function is invoked. It becomes active again when the
second loop is closed or when a corresponding &RETURN statement is executed. A
loop is closed when it is active, and when either:

1. The requirement for termination, given in the &LOOP statement, is met, or

2. Control is transferred to a line outside the scope of the loop by any means other
than invocation of a user-defined function or subroutine.

In addition, the &EXIT statement closes all loops, and the &RETURN statement
closes any loops that have been opened during execution of a user-defined subrou­
tine or function.

Examples:

1. In the following sequence, the &SKIP statement closes the loop after ten iter­
ations, since it transfers control to a line below the last line in the loop:

&J = e
&lOOP 2 *

&J=&J+l
&IF &J > 9 &SKIP e

2. In the following sequence, the second loop closes the first loop since it causes
control to be transferred to a line outside the scope of the first loop:

Search for Labels

&LOOP 1 *
&LOOP 1 1

& =

The first loop would similarly be closed, for the same reason, if the second loop
statement were replaced by a &BEGPRINT, &BEGTYPE, or &BEGSTACK
statement which occupied more than one line.

The search for a label to which reference is made in a &CALL, &GOTO, or &LOOP
statement, or in the invocation of a user-defined function, involves examination of
the first word on each line, without regard to its context or what follows it. It is,
therefore, necessary to avoid using labels that would be matched by the first word of
a line within a &BEGPRINT, &BEGTYPE, or &BEGSTACK statement.

Labels that are attached to statements are treated literally; they are not searched for
EXEC 2 variables. Labels need not be unique.

Performance of Label Searches
1. &CALL, &GOTO, and user-defined functions

A &CALL statement, a &GOTO statement, or an invocation of a user-defined
function that transfers to a label above the current statement tends to be ineffi­
cient, especially in long EXEC 2 files. It is preferable to use the &LOOP state­
ment in place of an upward "&GOTO label" statement.

62 VMfXA SP EXEC 2 Reference

--- ---~-~~~~~~-

r(\. "J

(

(

(

(

(~

Notes on EXEC 2

2. &LOOP label ...

A "&LOOP label ... " statement is converted, at the time of its execution, into
the equivalent "&LOOP n ... " statement. Therefore, the overhead for finding
the label is incurred only once, when the loop is entered, irrespective of the
number of iterations.

EXEC 2 Words are Not Reserved Words
EXEC 2 control words, predefined functions, and predefined variables are known as
EXEC 2 words. EXEC 2 words begin with an ampersand, but unlike ordinary vari­
ables, they have an initial value that is not null.

The initial value of EXEC 2 control words and predefined functions is the word
itself (for example, the value of &IF is "&IF"). If one of these words is assigned a
different value (for example, &IF = ABC), then the feature that it represents in the
language is lost to the EXEC 2 file unless it, or another variable, is reset to the old
value (for example &IFX = &LITERAL OF &IF) and used appropriately.

In the case of predefined variables other than the EXEC 2 arguments, the special
properties of a variable disappear if an explicit assignment is made to it. For
example, the statement:

&TIME = &TIME

inhibits further automatic updating of the variable &TIME.

Words of the form &j, where "j" is an unsigned integer without leading zeros, are
reserved for the EXEC 2 arguments. They can be set explicitly (for example, &2 =
1) only if they are within the range of arguments that are currently set. With this
exception, EXEC 2 words are not reserved words, and can, if desired, be used like
ordinary variables.

&READ VARS, &READ STRING, and &UPPER VARS are treated as explicit
assignments to the variables given; &ARGS, &READ ARGS, and &UPPER ARGS
are not treated as explicit assignments to &N or &INDEX.

If a feature, function, or value is accessible through more than one name (for
example, &PIECE OF and &SUBSTR OF), an assignment to one of the names does
not affect the other name or names.

With the exception of the arguments &1 &2 ... , there are no EXEC 2 words that end
with a numeral, and it is intended that no such words will ever be introduced.
Therefore, variables such as &Al, &A2, ... , can be relied upon to have an initial
value of null. However, the names of variables that do not end with a numeral
should not be used in a way that relies upon their initial value being null.

Example of & TRACE ALL
Assume that an editor accepts the requests NEXT (which moves down the file, and
yields a return code of zero unless the end of file is reached), EXTRACT LENGTH
(which returns the length of the current line), and TOP (which moves to the first line
in the file). The following sample XEDIT macro (called LONGER) searches for the
next line that is longer than the given length (passed to the EXEC file as an argu­
ment).

Chapter 3. Notes on EXEC 2 63

Notes on EXEC 2

&TRACE ALL
NEXT
&IF &RC ~ 0 TOP
NEXT
&LOOP 3 WHILE &RC = 0

EXTRACT /LENGTH
&IF &LENGTH.l > &1 &EXIT
NEXT

&EXIT &RC

If the macro is invoked at the end of the file, the search starts from the top.

Suppose that the macro is invoked with the parameter 40 at the end of a file con­
taining two lines, both of length 30. This is the trace:

2. NEXT
+++ E(l} +++
3. &IF 1 ~= 0 TOP

()

3 •••. TOP . '\
4. NDT)
5. &LOOP 3 WHILE &RC = e
--- LOOP WHILE 0 = e
6. EXTRACT /LENGTH
7. &IF 30 > 40 &EXIT
8. NEXT
--- LOOP WHILE 0 = e
6. EXTRACT /LENGTH
7. &IF 30> 40 &EXIT
8. NEXT ,/ "
+++ E(I} +++ j

--- LOOP WHILE 1 = 0
9. &EXIi 1

Truncation Column
A truncation column may be specified with the &BEGSTACK, &BEGTYPE,
&BEGPRINT, and &TRUNC statements.

In all cases the truncation column is the last column in which characters are signif­
icant. Characters in columns that are beyond the truncation column are ignored.

Example:

----:~---1----:----2
&TRUNC 10
&X = ABCDEFGHIJK

This sets &X to ABCDE.

64 VM/XA SP EXEC 2 Reference

--------_ .. _ .. __ ----.-.---.~-- -_ .. ----

c

EXEC 2 Syntax

(Chapter 4. BNF Description of the EXEC 2 Syntax

(

(

What follows is a description of the EXEC 2 syntax in Backus-Naur Form (BNF).
This is an alternative to the other descriptions in this manual and is not essential
reading.

The items enclosed in the angular brackets" <" and ">" are variables (nonterminal
symbols). These items are replaced by the items to the right of ":: = ". (":: ="
means "is to be replaced by.") The items to the right of ":: =" may give exact
replacements, other variables to be replaced, or the final step of the syntax break­
down. Items in capital letters are exact replacements. Items in lowercase, not sur­
rounded by the angular brackets, are the final step (terminals) of the syntax
breakdown.

<stat~ment>

<comment>

<comment_string>

<label>

<executable_stmt>

::= <statement>
<exec_file> <statement>

: : = <comment>
<label> <executable_stmt>
<executable stmt>

::= *
*<comment_string>

::= <character_string>
<comment_string> <character_string>

::= -<word>

::= <unconditional_stmt>
<if_clause> <executable_stmt>

<word> ::= <number>
<character_string>
<variable>

<unconditional stmt> ::= <assignment>
<control_stmt>
<command>

<character_string>

<number>

<variable>

<assignment>

null

::= &IF <word> <comparator>
&IF <word> <comparator> <word>

::= <character>
<character_string><character>

::= <unSigned_integer>
+<unsigned_integer>
-<unsigned_integer>

::= &<character_string>
<predefined_variable>

::= <variable> = <rhs>

Chapter 4. BNF Description of the EXEC 2 Syntax 65

I

EXEC 2 Syntax

<control_stmt:> : := &ARGS
&ARGS <arg_string>
&BEGPRINT r,

\) &BEGPRINT <arg_string>/

&BEGTYPE
&BEGTYPE <arg_string>
&BEGSTACK
&BEGSTACK <arg_string>
&BUFFER <unsigned_integer>
&BUFFER *
&BUFFER <unsigned_integer> <arg_string>
&BUFFER * <arg_string>
&CALL <unsigned_integer>
&CALL <label>
&CALL <unsigned_integer> <arg_string>
&CALL <label> <arg_string>
&CASE
&CASE <arg_string>
&COMMAND <arg_string>
&DUMP ARGS
&DUMP VARS <arg_string>
&ERROR <arg_string>
&EXIT
&EXIT <arg_string>
&GOTO <unsigned_integer>
&GOTO <label>
&GOTO <unsigned_integer> <comment_string>
&GOTO <label> <comment_string>
&IF <arg_string> -",
&LOOP <unsigned_integer> <arg_string>
&LOOP <label> <arg_string>
&PRESUME
&PRESUME <arg_string>
&PRINT
&PRINT <arg_string>
&READ
&READ <arg_string>
&RETURN
&RETURN <arg_string> ,/\
&SKIP ~~/ &SKIP <arg_string>
&STACK
&STACK <arg_string>
&SUBCOMMAND <arg_string>
&TRACE
&TRACE <arg_string>
&TRUNC
&TRUNC <arg_string>
&TYPE
&TYPE <arg_string>
&UPPER ARGS
&UPPER VARS <arg_string>

<command> ::= CP command
CMS command
XEDIT command (if working with 10 an XEDIT macro)

66 VM/XA SP EXEC 2 Reference

,~-~ .-. ---_ ..

.. _".- .. _- -.. ~---.-.--

EXEC 2 Syntax

<comparator> : := =IEQ

(-
-.=INE
<ILT
<=I-.>ILEING
>IGT
>=I ... <IGEINL

<character> ::= <letter>
<unsigned_integer>
symbol

<unsigned_integer> : := <digit>
<unsigned_integer><digit>

<predefined_variable> ::= &
&e
&1 &2

(&ARGSTRING
&BLANK
&CMDSTRING
&COMLINE
&DATE
&DEPTH
&FILEMODE
&FILENAME
&FILETYPE
&FROM

(&INDEX
&LINE
&LINENUM
&LINK
&N
&RC
&RETCODE
&TIME

<rhs> ::= <word>

(<function_invocation>
<arithmetic_rhs>
null

<arg_string> ::= <word>
<arg_string> <word>

<letter> ::= alblcl ... IxlylzlAIBlc •••

<digit> ::= 0111213141516171819

I

Chapter 4. BNF Description of the EXEC 2 Syntax 67

EXEC 2 Syntax

<function_invocation> ::= &CONCAT OF
&CONCAT OF <arg_string> 0
&CONCATENATION OF ~/
&CONCATENATION OF <arg_string>
&DATATYPE OF
&DATATYPE OF <arg_string>
&DIV OF <arg_string>
&DIVISION OF <arg_string>
&lEFT OF <arg_string>
&lENGTH OF
&lENGTH OF <arg_string>
&LITERAl OF
&lITERAl OF <arg_string>
&lOCATION OF <arg_string>
&MUlT OF <arg_string>
&MULTIPLICATION OF <arg_string>
&PIECE OF <arg_string>
&POSITION OF <arg_string>
&RANGE OF <arg_string>

/ &RIGHT OF <arg_string>
&STRING OF
&STRING OF <arg_string>
&SUBSTR OF <arg_string>
&TRANS OF <arg_string>
&TRANSlATION OF <arg_string>
&TRIM OF
&TRIM OF <arg_string>
&TYPE OF

r~ &TYPE OF <arg_string>
&WORD OF ., .. _/
&WORD OF <ar9_string>
<user_function>

<arithmetic_rhs> ::= <arithmetic_expr>
<arithmetic_expr> + <function_invocation>
<arithmetic_expr> - <function_invocation>

<user_function> : := <unsigned_integer> OF <arg_string>
if ." <label> OF <arg_string> I ,J

<arithmetic_expr> ::= <number>
<arithmetic_expr> + <number>
<arithmetic_expr> - <number>

c
68 VM/XA SP EXEC 2 Reference

.~---- ... ----

- ,~--~-~~-~-----

EXEC 2 Errors

(" Chapter 5. EXEC 2 Errors

(

1. If the EXEC 2 interpreter finds an erro.r, it issues the following message:

ERROR IN EXEC FILE fn ft fm. LINE nnn - description of error

(In CMS, this is message DMSEXE085E.)

Execution of the EXEC 2 file then stops abnormally with one of the following
return codes:

Return Description
Code of Error

Ie991 FILE NOT FOUND
Ie992 WRONG FILE FORMAT
Hl993 WORD TOO LONG
Ie994 STATEMENT TOO LONG
19995 INVALID CONTROL WORD
Ie996 LABEL NOT FOUND
Ie997 INVALID VARIABLE NAME
Ie99a INVALID FORM OF CONDITION
19999 INVALID ASSIGNMENT
199Ie MISSING ARGUMENT
Ie9n INVALID ARGUMENT
19912 CONVERSION ERROR
19913 NUMERIC OVERFLOW
19914 INVALID FUNCTION NAME
19915 END OF FILE FOUND IN LOOP
19916 DIVISION BY ZERO
19917 INVALID LOOP CONDITION
19919 ERROR RETURN DURING &ERROR ACTION
19929 ASSIGNMENT TO UNSET ARGUMENT
19921 STATEMENT OUT OF CONTEXT
19997 INSUFFICIENT STORAGE AVAILABLE
19a9a FILE READ ERROR nnn
19999 TRACE ERROR nnn

2. The EXEC 2 interpreter also issues the following messages:

INVALID EXEC COMMAND

(In CMS, this is message DMSEXEI75E.)

Return Code: 10000

INSUFFICIENT STORAGE FOR EXEC INTERPRETER

(In CMS, this is message DMSEXE255T.)

Return Code: 10096

Chapter 5. EXEC 2 Errors 69

EXEC 2 Errors

70 VMjXA SP EXEC 2 Reference

Sample FUes

« Appendix A. Sample EXEC 2 Files

(

1. This sample EXEC 2 file, called GRAB EXEC, copies a file from any CMS disk
to the user's A-disk.

&TRACE
*
* THIS EXEC COPIES A FILE FROM ANY
* CMS DISK TO THE USER'S A-DISK
*
* CHECK THE NUMBER OF ARGUMENTS, AND USE FILEMODE
* OF "*" IF IT IS NOT GIVEN
*
&IF &N = e &GOTO -TELL
&IF &N < 2 &GOTO -BAD
&IF &N > 3 &GOTO -BAD
&IF &N = 2 &ARGS &1 &2 *
*
* COPY THE FILE SPECIFIED ONTO THE USER'S A-DISK.
* AND EXIT WITH THE RETURN CODE FROM THE
* COPYFILE COMMAND
*
COPYFILE &1 &2 &3 &1 &2 A
&EXIT &RC
*
* SEND THE USER A MESSAGE THAT THE GRAB COMMAND WAS
* INVALID, AND EXIT WITH A RETURN CODE OF leI
*
-BAD &PRINT INVALID GRAB COMMAND
&EXIT 1el
*
* TELL THE USER HOW TO ISSUE THE GRAB COMMAND,
* AND EXIT WITH A RETURN CODE OF lGG
*
-TELL &PRINT COMMAND IS: GRAB FN FT FM
&PRINT COPY THE GIVEN FILE TO THE A-DISK,
&PRINT AND PASS BACK THE RETURN CODE FROM
&PRINT 'COPYFILE'.
&EXIT we

Appendix A. Sample EXEC 2 Files 71

Sample Files

2. This sample EXEC 2 file, called SHIP EXEC, sends a specified CMS file to a
specified user. The comments are included for tutorial purposes.

&TRACE
*
* COMMAND IS: SHIP USER FILENAME FILETYPE [FILEMODE]
* IF THERE ARE NO ARGUMENTS GIVEN, TELL USER HOW •••
*
* CHECK THE NUMBER OF ARGUMENTS, AND USE FILEMODE
* OF "*" IF IT IS NOT GIVEN •••
*
&IF &N = a &GOTO -TELL
&IF &N < 3 &GOTO -BAD
&IF &N > 4 &GOTO -BAD
&IF &N = 3 &ARGS &1 &2 &3 *
*
* SPOOL PUNCH TO USER'S CARD-READER, OR
* COMPLAIN IF THE USER IS NOT KNOWN TO THE SYSTEM •••
*
CP SPOOL PUNCH TO &1
&IF &RC ~= a &GOTO -BADUSER
*
* PUNCH THE FILE, OR COMPLAIN IF FAILURE •••
*
PUNCH &2 &3 &4
&IF &RC ~= a &GOTO -ERROR
*
* TELL THE USER WHAT HAS BEEN DONE; THEN UNSPOOL
* THE PUNCH, AND RETURN WITH SUCCESS •••
*
CP MSG &1 I HAVE PUNCHED YOU MY FILE &2 &3 &4
CP SPOOL PUNCH TO *
&EXIT
*
* SEND THE USER A MESSAGE THAT THE SHIP COMMAND
* WAS INVALID, AND RETURN WITH AN ERROR •.•
*
-BAD &PRINT INVALID SHIP COMMAND
&EXIT 191
*
* SEND THE USER A MESSAGE THAT THE USERID IS NOT
* VALID. AND RETURN WITH AN ERROR •••
*
-BADUSER &PRINT &1 IS NOT A VALID USERID
&EXIT 1a2
*
* SEND THE USER A MESSAGE THAT THERE WAS AN
* ERROR WHEN PUNCHING THE FILE; .THEN UNSPOOL
* THE PUNCH, AND RETURN WITH AN ERROR •••
*
-ERROR &PRINT ERROR &RC FROM "PUNCH" (WHILE IN SEND)
CP SPOOL PUNCH TO *
&EXIT 193
*
* TELL THE USER HOW TO ISSUE THE SHIP COMMAND
*
-TELL &PRINT COMMAND IS: SHIP USER FN FT [FM]
&EXIT 1aa

72 VM{XA SP EXEC 2 Reference

." ---~ --_." ~------ ~------ ------ .. _--"-

/

C""\
j

C··~"\ , '

EXEC 2 in CMS

(- Appendix B. EXEC 2 in eMS

(

c'

Identifying EXEC 2 Files
Since all EXEC files are called in the same way, CMS examines the first statement of
the EXEC file to determine which EXEC interpreter must handle it. If the first
statement of the EXEC file is &TRACE, CMS calls the EXEC 2 interpreter to
handle it.

Calling EXEC 2 Programs from CMS Command Level
When EXEC 2 programs are called from command level, the command verb (which
becomes &0) and the arguments (which individually become &1 &2 ... and collec­
tively become &ARGSTRING) are translated to uppercase. &CMDSTRING con­
tains the untranslated command string.

When EXEC 2 programs are invoked from another EXEC 2 program, no translation
takes place, and &CMDSTRING is the same as the &STRING OF &0
&ARGSTRING (if &0 was delimited by a blank) or &CONCAT OF &0
&ARGSTRING (if &0 was delimited by a parenthesis).

It is possible to "pretend" a command-level call by using the CMS command,
CMDCALL. CMDCALL converts EXEC 2 extended plistfunction calls to CMS
extended plist command calls. The use of CMDCALL in an EXEC 2 EXEC allows
the message 'FILE NOT FOUND' to be displayed for the ERASE, LISTFILE,
RENAME, and STATE commands. Also, an EXEC 2 program invoking another
EXEC 2 program will have the same results as an EXEC 2 program being called
from command level. &0, &1 &2 ... , and &ARGSTRING will be translated as
stated above.

In either case, calling an EXEC 2 program from command level or invoking an
EXEC 2 program from another EXEC 2 program, the CMS convention that paren­
theses are token delimiters is applied to separate &0 from &ARGSTRING, but it is
not applied to delimit &1, &2, .,. from each other.

Summary of Limits for EXEC 2 Files in CMS
Some CMS limits that apply to EXEC 2 files:

• EXEC 2 files used as CMS command files must have the word &TRACE as the
first word in the first record of the file. In subcommand environments, such as
XEDIT for XEDIT macros, the word &TRACE is optional.

• The maximum length of an EXEC 2 line is 255.

• The maximum length of a statement, after replacement of variables, is 511.
(This limit is enforced only as needed by the interpreter; some statements can
grow to a greater length.)

• The maximum length of a word, after replacement of variables, is 255.

Appendix B. EXEC 2 in CMS 73

EXEC 2 in CMS

. .
• The. maximum length of a line read from the console is 130, and from the

program stack is 255.

• The maximum length of a printed line is 130.

• An EXEC 2 filename can be from one to eight characters long. The valid char­
acters are A-Z, 0-9, $, #, @, +, : (colon), - (hyphen), and _ (underscore). The
filetype must be EXEC for files that are invoked from CMS command mode and
XEDIT for files used as XEDIT macros.

• All EXEC 2 files have an initiallookaside buffer of 32 lines (see the &BUFFER
description in "Control Statements" on page 8). The &BUFFER 0 statement
must be issued to delete the lookaside buffer if the file is to be modified while
being executed.

e In a context that requires numeric values, numbers must be in the range
-2,147,483,648 to +2,147,483,647.

e, In CMS, return codes for the &EXIT control statement are limited to the range
-2,147,483,648 to +2,147,483,647. Attempts to exceed these limits causes the
EXEC 2 file to stop abnormally with an error message (NUMERIC OVER­
FLOW).

• CMS commands issued from EXEC 2 files are invoked in such a way that most
information and error messages issued by the following CMS commands are not
typed: ERASE, LISTFILE, RENAME, STATE, and FILEDEF. (See the
description of CMDCALL, in "Calling EXEC 2 Programs from CMS Command
Level" on page 73 for an exception to this statement.) This is also true for any
other system or user command that makes a distinction in its operation based on
flags passed in register 1. However, note that a nonzero return code from any of
these commands is reflected in the predefined variables &RETCODE and &RC.

• EXEC 2 is designed to maintain a complex program environment. For this
reason, automatic clean-up is not invoked at the completion of each command
within the EXEC. It is the programmer's responsibility to ensure that any neces­
sary clean-up functions (i.e. STRINIT, OS RESET, VSAM CLEAN-UP, etc.)
are invoked when needed.

Note: The CMS EXECOS command can be used for OS reset and VSAM
clean-up.

e The length limit for values assigned via the EXECCOMM facility is 255. If the
limit is exceeded, the return code from the EXECCOMM facility is 16
(INVALID VALUE).

• The length limit for the external name of a shared variable is 254. If the limit is
exceeded, the return code from the EXECCOMM facility is 8 (INV ALID
NAME).

• If a "STORE" reference is made to an unset EXEC 2 argument (i.e. a variable
of the form &i where "i" is an unsigned number without leading zeros that
exceeds the number of EXEC 2 arguments that are currently stored), no assign­
ment is performed, and the return code from the EXECCOMM facility is 8
(INVALID NAME).

• If a "FETCH" reference is made to &ARGSTRING (or &CMDSTRING) via
the EXECCOMM facility and the length of &ARGSTRING (or
&CMDSTRING) exceeds 255, a length of 256 is recorded. If the length of the
caller's area exceeds 255, the value is truncated without any error indication.

74 VMjXA SP EXEC 2 Reference

------------ .----

c

(

(

(

(

EXEC 2in CMS

• If a "FETCH" reference is made to &TIME or &DATE via the EXECCOMM
facility, the time-of-day returned is the same for all references from a given
program invocation, since (as far as the EXEC 2 interpreter is concerned) the
same statement is still in execution (see "Evaluation of &DATE and &TIME"
on page 59 in Chapter 3).

Using EXEC 2 Parameter Lists with Assembler Language Programs
The calls illustrated below are made via CMS SVC 202 calls.

I. EXEC 2 interpreter calling another program:

For &COMMAND warde wordl .•. wordn

RO = A(NPLIST)
RI = A(tokenized CMS plist)
High-order byte of RI is X'OI'.

For &SUBCOMMAND warde wordl .•. wordn

RO = A(NPLIST)
RI = A(= CLS'wordO')
High-order byte of RI is X' 02 ' .

where:

NPLIST DS 0F

COMVERB

BEGARGS

DC A(COMVERB)
DC A (BEGARGS)
DC A(ENDARGS)
DC A(e)

EQU *
DC C'worde'
DC C' ,
EQU *
DC C'wordl'
DC C' ,
DC C'word2'
DC C' ,

DC C'wordn'
ENDARGS EQU *

the command verb

optional blanks
the argument string

2. Calling the EXEC 2 interpreter with a tokenized plist only:

RO = irrelevant
RI = A(CMS tokenized plist)
High-order byte of RI as from LA, BAL, or BALR.

The value of &ARGSTRING in this case is set as if by the EXEC 2 statement:

&ARGSTRING = &RANGE OF & 1 &INDEX

3. The EXEC 2 interpreter can be passed an extended plist, that specifies an
untokenized argument string. In addition, the parameter list may precisely iden­
tify the EXEC file to be executed (and thereby specify a file type other than

Appendix B. EXEC 2 in CMS 75

EXEC 2 in CMS

EXEC, or an ~xplicit filemode); or it may identify an "in-memory file." An
"in-memory file" is similar in concept to a file on disk, but it is resident in
memory.

RO = A(NPLIST)
Rl = A(CMSPLIST)
High-order byte of Rl is X' 01'.

NPLIST OS eF
DC A(e) (ignored by EXEC 2)
DC A (BEGARGS)
DC A(ENDARGS)
DC A(e) or A(FBLOCK)

CMSPLIST OS eF

*
*
*

*
*
*
*
*

DC CL8'EXEC'
DC CL8'filename' (Ignored if file block is

given)
(Always ignored by EXEC 2
interface)

If no FBLOCK is given for the above instruction in the
NPLIST (i. e. A(FBLOCK) is zero), the filename of the
EXEC file is taken from the second 8-byte token of the
area addressed by register 1. This will be the value
after synonym resolution so it may be different from &e.

BEGARGS EQU * the argument string

*

DC C'ampe'
DC C' ,

no embedded blanks, becomes &e~

single blank separates &e from
&ARGSTRING

DC C'argstring' becomes &ARGSTRING
ENDARGS EQU *

FBLOCK OS eF ** File Descriptor **

*

*

*
*
*
*
*
*
*
*
*
*
*

DC CL8'filename'

DC CL8'filetype'

DC CL2'filemode'

if blank, &e will be used -
see &e

may be blanks for &PRESUME
&COMMAND

should be given as '*', or
blanks for in-memory files

IMPORTANT NOTE: The default &PRESUME setting is as
follows:

No file block given: &COMMAND
File block given, filetype blank: &COMMAND
File block given, filetype non-blank: &COMMAND filetype

Thus, if a filetype of EXEC is explicitly specified
in the file block, the default presumption will be
&SUBCOMMAND EXEC, and not &COMMAND, even though an

76 VM/XA SP EXEC 2 Reference

----~------

(,\ ., . /

'\

J

o

(~

(

C:

... ---~-~~----

EXEC lin CMS

* EXEC file of filetype EXEC will be executed.
*
* The following is an FBLOCK extension block. The first
* halfword specifies how many words are in the extension
* block. CMS requires a value of either zero or two.

DC XL2'8882' Number of full words
* that follow

DC AL4(PGMFILE) Address of the in-memory
* EXEC 2 descriptor

DC AL4 (PGMEND-PGMFI LE) Number of bytes in
* the descriptor

* If no "in-memory file" is provided, the values in
* the extension must either both be zero, or be
* omitted by changing the XL2'8882 , to XL2'8888'.

PGMFILE OS 8F in-memory EXEC 2 Program
DC A(l i ne 1), F 'len I' Address and length of

* file line 1
DC A(line 2),F'len 2' Address and length of

* file line 2
DC A(line 3),F'len 3' Address and length of

* file line 3

DC A(line n},F'len n' Address and length of
* file line n
PGMEND OS 8H

*
*
*
*
*

The above fields are not checked by the interpreter,
but they are used in error messages. and in the
predefined variables &FILENAME, &FILETYPE, and
&FILEMODE. If they contain embedded blanks,
the results are unpredictable.

4. Using the EXEC 2 Interpreter as a Macro Processor.

The use of EXEC 2 programs as macros or command files for user specified
command processors requires functions provided by the CMS SUBCOM func­
tion.

The following paragraphs describe how to use SUBCOM and the EXEC 2 inter­
preter to implement a macro facility.

Issue the SUBCOM macro to set up an entry point in the command processor.
(For information on how to do this, refer to VM/XA SP eMS Application
Program Development Guide, under SUBCOM).-

Call EXEC 2 as in example 3 above. The filetype from the file descriptor block
becomes the default &PRESUME &SUBCOMMAND environment except when
it is blank, in which case the default filetype is EXEC, and the default
presumption is &PRESUME &COMMAND.

When subcommands are encountered in the macro, the EXEC 2 interpreter will
call the entry point specified in the SUBCOM call. This entry point may then
take whatever action is necessary with the command.

Upon return, the EXEC 2 interpreter continues with the next statement or
command.

Appendix B. EXEC 2 in CMS 77

i

i

'1

EXEC ZiDCMS

When the EXEC 2 file terminates, control is returned to the initiating program
at the calling point. C

Executing XEDIT Macros in EXEC 2
The basic subcommand language of the XEDIT editor can be extended by writing
macros that are executed by the EXEC 2 interpreter.

These XEDIT macros are CMS files with the filetype of XEDIT.

When the EXEC 2 interpreter encounters an XEDIT subcommand, it sends the
command to XEDIT for execution. XEDIT processes the command and returns to
the XED IT macro with a return code. The XEDIT macro then continues execution
with the next statement or command. When the XEDIT macro completes, control
returns to XEDIT.

See Appendix D, "Writing Editor Macros" on page 95 for further information on
XEDIT macros.

EXECCOMM - Sharing EXEC 2 Variables with Assembler Language
Programs

EXEC 2 permits programs called from an EXEC 2 file to access all EXEC variables
used within that EXEC file. Variables accessed in this manner are called "shared
variables." The EXECCOMM facility of EXEC 2 provides this variable sharing
environment. Using the "FETCH" and "STORE" functions of EXECCOMM, pro­
grams can directly access and manipulate EXEC 2 variables. Also, the execution of
commands or subcommands can result in assignments to some of these variables as a
side-effect of their execution. It is also possible to create new variables in the called
program.

When variables are stored by a program, their names are checked for validity, but
no substitution is carried out by EXEC 2. In other words, names passed through
EXECCOMM are taken exactly as is, and embedded ampersands (&) do not cause
multiple substitution.

Variables are identified by an "external name," which is the same as their "internal
name," but without the leading ampersand. For example, to "fetch" a value con­
tained in the internal variable "&VALUE", a program should use the external name
"VALUE".

The facility works as follows:

When EXEC 2 starts to interpret a new EXEC or XEDIT macro, it first sets up a
subcommand entry point called EXECCOMM. When a program (command or sub­
command) is called by EXEC 2, it may in turn use the current EXECCOMM entry
point to Store or Fetch variable values.

To access variables, the EXECCOMM entry point is invoked using both the normal
and the extended Plist (see below; also see the VMjXA SP eMS Application C~
Program Development Guide). The CMSCALL macro should be issued with register .
1 pointing to the normal Plist and the top flag byte of register 1 set to X I 02 I •

78 VMfXA SP EXEC 2 Reference

(.

(-

(

EXEC 2 in CMS

On return from the SVC, register 15 contains a summary return code for the entire
Plist. The possible return codes are:

Return Code Meaning

o or positive Entire Plist was processed. Register 15 is the
composite OR-ing of the SHVRET flags (see
below).

-1 Invalid entry conditions.

-2 Insufficient storage was available for the requested
operation. Processing was terminated.

-3 from I No EXECCOMM entry point found (Le. not
SUB COM called from inside a EXEC 2 EXEC).

The register 1 Plist: Register I should point to a Plist which consists of the eight
character string "EXECCOMM".

The register 0 Plist: Register 0 should point to the SUB COM Plist. The first word
of the SUBCOM plist should also point to the word "EXECCOMM". No argument
string should be given, so the second and third words should be the same (e.g. point
to the same address or both 0). The fourth word of the Plist should point to the
first of a chain of one or more request blocks.

Note: These blocks must reside below the 16 megabyte line.

The call is made via the CMS supervisor call, CMSCALL macro, with the PHst reg­
isters set up as follows:

Re = A(NPLIST) (see below)
R1 = A(CL8'EXECCOMM') high-order byte = x'e2'

where:

NPLIST os eF subcommand'Plist
DC A(CL8'EXECCOMM') same as register 1,

* but with e in the
* high-order byte

DC A(ARGS) null argument string
DC A(ARGS) end address of null

* argument string
DC A(SHRLIST) pointer to first variable

* access request block

Appendix B. EXEC 2 in CMS 79

EXEC2in CMS

The request block: Each request block in the chain must be laid out as follows:

**
* SHVBLOCK: Layout of shared-variable Plist element.
**
*.
SHRLIST DS eF Variable Access Request Block
SHVNEXT DS A Chain pointer (e if last block)
SHVUSER DS F Not used, available for private
* use
SHVCODE DS CL1 Individual function code
SHVRET DS XLl Individual return code flag

DC H'e' Not used, should be zero

,I SHVBUFL DS F Length of 'FETCH' value buffer
SHVNAMA DS A Address of external variable name
SHVNAML DS F Length of external variable name
SHVVALA DS A Address of value buffer
* (e = 'none)
SHVVALL DS F Length of value (set by 'FETCH')

*
* Function Codes (SHVCODE)
*
SHVFETCH EQU C'F' FETCH - Copy value to caller's area
SHVSTORE EQU C'S' STORE - Store from value supplied by
* caller
*
* Return Code Flags (SHVRET)
*
SHVCLEAN EQU x'eo' (Decimal e) Execution was OK
SHVTRUNC EQU X'e4' (Decimal 4) Truncation occurred
* during 'FETCH'
SHVBADN EQU X'e8' (Decimal 8) Invalid variable name
* (e.g. too long)
SHVBADV EQU X'le' (Decimal 16) Value too long - 'STORE'
* not performed
SHVBADF EQU X'8e' (Decima 1 128) Invalid function code
* (SHVCODE)
*
*

A typical calling sequence for the EXECCOMM facility might be:

LA R0,NPLIST Subcom Plist as shown
LA R1,=CL8'EXECCOMM' Name of Subcom entry

* point
ICM R1,B'1000',=X'02' Insert 'subcommand call'

* flag
SVC 202 Issue SVC
DC AL4(1) Sequential return
LTR R15,R15 Check for a negative

* return code

80 VM/XA SP EXEC 2 Reference

~-.- .. -- ~~--~~~ .. ------.----------------

~
\
~.

,.' '\ I

\
'. .. ./

(-\
-\., ... /

C

EXEC 2in CMS

BM DISASTER If yes, quit
* Execution was okay

The specific actions for each function code are as follows:

s

F

Store variable. SHVNAMA contains the address of the external variable
name, and SHVNAML contains the length of this name. SHVV ALA contain
the address of the buffer where the "value" of SHVNAMA is stored, and
SHVV ALL contains the length of the "value." The external name
(SHVNAMA) is checked (e.g. length limitations), and the corresponding
internal variable (same name as the external name, only with a leading amper­
sand (&» is set to the value of the external variable. If a "STORE" reference
is made to an unset EXEC 2 argument (i.e. a variable of the form &i where "i"
is an unsigned number without leading zeros that exceeds the number of EXEC
2 arguments that are currently stored), no assignment is performed. The
SHVBADN bit is set to X I 08 I (INVALID NAME).

Fetch variable. SHVNAMA contains the address of the external variable
name, which is the same as the internal variable name that you want to fetch,
but without the leading ampersand (&). SHVNAML contains the length of
this external name. SHVV ALA contains the address of a buffer where the
fetched variable value will be copied, and SHVBUFL contains the length of
the buffer. The external variable name (SHVNAMA) is checked (e.g. length
limitations), and the internal variable is located and copied into the buffer.
The total length of the fetched variable is placed in SHVV ALL, and if the
fetched value was truncated because the buffer was not big enough, the
SHVTR UNC bit is set to X I 04 I. If the referenced variable is shorter than the
length of the buffer, no padding is done.

If there is insufficient storage (return code -2), some of the SHRLIST elements
may not have been processed. These elements (including the SHVRET field)
are left unchanged.

Note: The value returned by a FETCH operation is a snapshot of the internal
variable at the time the operation is done. The returned value is therefore
unaffected by subsequent STORE operations to the same internal variable
(even within the same list).

Appendix B.EXEC 2 in CMS 81

'I

«~ -".

\';',j

c

..... _---- .. -.~-'--.~.--... -----

EXEC 2 Primer

(-- Appendix C. EXEC 2 Primer for New Users

("

The function of a command programming language such as EXEC 2 is to improve
the effectiveness of a programming system by matching the available commands to
the particular needs and applications of each user. As a CMS user, you probably
have observed that some commands are needed more frequently than others. Some
of the commands you used are short and easy to type, while others involved several
arguments and are more difficult to issue. There may be instances when you have to
look up the correct command format or issue several commands in succession to
perform an operation that would be much more convenient if it were done by only
one command. Command procedures, written in the EXEC 2 language, can adapt
existing commands to user needs by storing commands that are issued frequently,
and in the sequence that you wish them executed, in a disk file. Within this file, the
validation of arguments can be checked and default values can be supplied. (A
default value is a specific value assumed when an argument has not been explicitly
specified. Usually, default values are the most frequently used argument values, so
that the convenience of not having to write that particular value is realized as many
times as possible.) The name of the file containing these commands becomes a new
command name, and hence, a new CMS command. The format of this new
command can be tailored to the individuals needs.

To illustrate this, assume you have the files listed in the first column of the following
table and you wish to rename them as indicated in the second column:

Current Name

X MEMO
NEW MEMO
OLD MEMO

Desired Name

NEW MEMO
OLD MEMO
(erased)

The commands used to perform this operation are straightforward, though they are
a bit lengthy because two of the three fileids must be repeated and filemodes are
required for the RENAME commands:

ERASE OLD MEMO
RENAME NEW MEMO A OLD MEMO A
RENAME X MEMO A NEW MEMO A

EXEC 2 makes it easy for the user to issue a sequence of commands. The desired
commands are stored in a disk file, and then they are invoked by typing the file's
name as the command name.

Such files of stored commands must have a filetype of EXEC. Note that other
filetypes are possible, but they cannot be called directly by a command that you type
at your console; they can be invoked from a program, such as a text editor. When
CMS reads a command typed by the user, it searches for a disk file having the same
filename as the typed command name and a filetype of EXEC. If such a file is
found, the EXEC 2 interpreter processes the command statements read from the disk
file.

Appendix C. EXEC 2 Primer for New Users 83

',I

EXEC· 2 Primer

If you use a text editor to create the following file named RIPPLE EXEC:

&TRACE ON
ERASE OLD MEMO
RENAME NEW MEMO A OLD MEMO A
RENAME X MEMO A NEW MEMO A

you can rename the files described above by typing the line:

RIPPLE

The first line of the RIPPLE EXEC file is an EXEC 2 control statement. Such
statements affect the operation of the EXEC 2 interpreter instead of performing
some operation in the CMS environment. The &TRACE ON statement tells the
EXEC 2 interpreter to display on your console any commands that it issues before
they are executed. A &TRACE OFF statement suppresses this display of executed
commands. A &TRACE ALL statement displays EXEC 2 control statements as
well as commands that are executed.

In the CMS environment, where the EXEC 2 interpreter coexists with the eMS
EXEC interpreter and the System Product interpreter, a second purpose is served by
the &TRACE statement. Whenever an EXEC file is to be interpreted, the first
record of the file is read and scanned. If the first word of the file is &TRACE, the
EXEC 2 interpreter processes the file. If the first record of the file begins with a /*,
the System Product interpreter processes the file. If neither case occurs, the CMS
EXEC interpreter processes the file.

./

EXEC 2 control statements make it possible to conditionally interpret statements in ('"
an EXEC 2 file, to repeat the interpretation of statements, and to control the __ /
working of the EXEC 2 interpreter in various ways. The control statements make it
possible to write EXEC 2 files that perform different operations depending on the
arguments entered on the EXEC 2 command line or, the results of commands issued
from the EXEC 2 file. This is a very important concept, for it is this ability to
modify the commands issued from an EXEC 2 file (and the order in which they !;lre
issued) which underlies the most useful features of EXEC 2 files.

EXEC 2 Variable Names
EXEC 2 variables and EXEC 2 control words always start with an ampersand. The
ampersand may be followed by any other characters, up to a maximum length of 256
characters (including the initial ampersand). This is the maximum length allowed for
any word; it is also the maximum length allowed for any line in an EXEC 2 file.

The characters ampersand and blank have special meanings. They cannot be made
part of a variable name by simply writing them .as part of a word. A blank denotes
the end of a word, so it can not be included as part of the word. An ampersand
denotes the beginning of an EXEC 2 variable name. That name (including the
ampersand) is replaced with the value of the variable when the word containing it is
evaluated during statement interpretation. Value substitution for variable names
makes it possible to put blanks or ampersands (or any other characters) into names,
but it's principal benefit is to manipulate an indefinite number of variables by modi-
fying the words in a few statements instead of writing all of the variable names 0\
explicitly. " .. _., .

84 VM/XA SP EXEC 2 Reference

EXEC 2 Primer

(- Return Codes and EXEC 2 Variables

(

(

(
~

.~/

Every command executed in CMS issues a return code indicating the success or
failure of the operation requested. This return code is a numeric value that is passed
back to the caller of the command. If a command is issued from an EXEC 2 file,
the return code generated by that command can be examined and used to control the
subsequent interpretation of statements in the EXEC 2 file. For example, the
ERASE command displayed above in RIPPLE EXEC yields a return code of 0
(zero) if it succeeds in erasing a file, 28 if the file to be erased does not exist, 36 if
the file exists but is on a read-only disk, and other values for less common condi­
tions.

A command's return code is saved by the EXEC 2 interpreter as the value of the
EXEC 2 variable &RC. EXEC 2 variables are symbols used to refer to values that
may change during the interpretation of an EXEC 2 file. You can use the symbol
&RC in an EXEC 2 statement to refer to the return code generated by the most
recent command issued from the EXEC 2 file. One way the &RC variable might be
used in the RIPPLE EXEC file is to force termination of the EXEC 2 file (before
renaming any files) if the X MEMO file does not exist. To do this, use the CMS
command STATE to determine whether X MEMO exists on the A-disk. STATE
generates a return code of 0 if the designated file exists, or a return code greater than
o if it does not.

&TRACE OFF
STATE X MEMO A
&IF &RC > 0 &EXIT 1
ERASE OLD MEMO
RENAME NEW MEMO A OLD MEMO A
RENAME X MEMO A NEW MEMO A

The third statement in this file (&IF ...) tests the return code from STATE, and uses
the &EXIT control statement to force immediate termination of the EXEC 2 file if
the value of &RC is greater than zero. Like CMS commands and user programs,
EXEC 2 files also generate return codes. If an EXEC 2 file terminates because an
end-of-file is reached and there are no more statements to interpret, the return code
is zero. However, various errors detected by the EXEC 2 interpreter (invalid EXEC
control word, nonexistent file, and so on) causes termination with a return code
greater than 10000; or you may write the &EXIT control statement to terminate the
EXEC 2 file with a specific return code, as shown above.

The ampersand character is used at the beginning of a word to signal the EXEC 2
interpreter that this word is an EXEC 2 variable or an EXEC 2 control word. When
the EXEC 2 interpreter processes a statement from an EXEC 2 file, it begins by
examining each word and replacing any EXEC 2 variables with their current values.
(Later, we'll see exactly how this is done.) EXEC 2 control words are like EXEC 2
variables, except their values are initialized to their names by the EXEC 2 interpreter
(that is, the value of &TRACE is &TRACE, the value of &IF is &IF, and so on).

&RC is one of a group of variables that is handled in a special manner by the EXEC
2 interpreter. They are called "predefined variables" because the EXEC 2 interpreter
assigns values to them automatically. Some of these predefined variables are given
values only once, when the EXEC 2 interpreter starts processing a file
(&FILENAME is such a variable, whose value is the name of the EXEC 2 file being
processed). Other predefined variables are assigned values whenever some specific
action occurs. Examples are &RC, which is set to the return code value whenever a

Appendix C. EXEC 2 Primer for New Users 85

,I
I

EXEC 2 Primer

command is issued, and &N, which is initially set to the number of arguments
present on the EXEC 2 command line and is updated when an EXEC 2 control
statement redefines the set of argument variables.

EXEC 2 File Arguments
The EXEC 2 variables &1 &2 &3 ... are used to refer to the arguments in the EXEC
2 command invoking the file. The value of &1 is the first word following the name
of the EXEC 2 file in the command line, &2 is the second word, etc. If you refer to
an argument that is not present in the command line (such as &1, if no operands
were written), its value is null, and that word disappears from any statement in
which it is used. The same is true for a reference to any other EXEC 2 variable that
has not been assigned a value, or has been explicitly assigned the null value.

Let's modify the RIPPLE EXEC again so that it accepts the name of any MEMO
file as an argument instead of always using the file X MEMO:

&TRACE OFF
STATE &1 MEMO A
&IF &RC > e &EXIT &RC
ERASE OLD MEMO
RENAME NEW MEMO A OLD MEMO A
RENAME &1 MEMO A NEW MEMO A

Here the return code from STATE is used as the return code from the RIPPLE
EXEC file. A nonzero value indicates failure of the RIPPLE command and provides
a little more information than simply returning a value of 1. (Refer to VM/XA SP
CMS Command Reference for the Responses, the Error Messages, and the Return
Codes issued by CMS for the STATE command.)

With this RIPPLE EXEC file, you could have any number of current or working
MEMO files, each with a different filename. Whenever you wish to rename one of
them (RWR MEMO, for example), you could use the command:

RIPPLE RWR

There will always be copies of the last two files renamed, in case a need arose to use
one of them again. Files more than two iterations old are automatically erased.

There is no limit (other than disk capacity) to the number of files that can be kept.
By adding more RENAME commands to the EXEC 2 file, you can keep as many
old files as you desire. By using some additional EXEC 2 control statements, you
could rename any number of files using only one RENAME statement, interpreting
it as many times as necessary, each time with different arguments.

Conditional Interpretation of Statements
Before looking at more sample EXEC 2 files, let's examine the structure of the con­
ditional (&IF) statement more closely and introduce some other EXEC 2 control
statements. The &IF statement is actually a compound statement. The first part
defines a condition; the second part may be any executable statement, which is inter-

/' "
\
C,,< .• ;'

preted only when the condition is true. (An executable statement is any statement CC_-\
except a comment. Comment statements have an asterisk as their first nonblank

86 VMfXA SP EXEC 2 Reference

("

(

(

(,"/

EXEC 2 Primer

character, and are ignored by the EXEC 2 interpreter.) The complete &IF statement
has the format:

&IF word! comparator word2 statement

where "comparator" is =, -, =, >, <, > =, < =, EQ, NE, GT, LT, GE, NL, LE,
or NG. The comparison is performed numerically if both word! and word2 are
numeric data items; it is performed on a character basis if either is not numeric.
Thus, "&IF 2 = + 2" is true and "&IF 000 = 0" is true, but "&IF 1. = 1" and
"&IF + A = 10" are false. A numeric data item consists of decimal digits,
optionally preceded by a plus or minus sign. EXEC 2 does not support fractional
numbers as numeric data.

The "statement" part of an &IF statement may be another &IF statement. There­
fore, several conditions may be written in one conditional statement, with the last
"statement" interpreted only when all of the conditions are true. Thus:

&IF &1 = A &IF &2 = B &EXIT

terminates an EXEC 2 file only if both conditions are true.

Statement Labels
You may attach a label to an EXEC 2 statement (including the null statement,
which has no words in it) so that an EXEC 2 control statement can reference the
labeled statement. The label must be the first word of the statement, and it must
start with a hyphen. EXEC 2 does not consider a label to be part of a statement, so
it is not inspected for EXEC 2 variables. References to labels, however, may involve
EXEC 2 variables. The most frequent references to statement labels are &GOTO
control statements, which modify the regular, sequential processing of an EXEC 2
file. A typical &GOTO statement is:

&GOTO -END

which means continue interpretation of statements with the next statement having
the label -END.

When a &GOTO statement is interpreted, EXEC 2 searches for the specified label by
reading successive statements from the disk file and examining the first word of each
statement to determine if it is the desired label. If it finds the label, sequential inter­
pretation of statements resumes with that statement. If the end of the disk file is
encountered without finding the specified label, EXEC 2 continues to read state­
ments starting at the beginning of the file until either the desired label is found or all
statements before the one being interpreted have been examined. You will receive a
message if the label is not found.

Appendix C. EXEC 2 Primer for New Users 87

EXEC 2 Primer

Assignment Statements
The EXEC 2 assignment statement is a special case, in that it is recognized when the
second word of the statement (not counting a label) is an equal sign and the first
word starts with an ampersand. (This is a simplification of the actual rule, which is
discussed in Chapter 3, "Notes on EXEC 2" on page 57.) The function of the
assignment statement is to make the EXEC 2 variable, specified by the first word,
have the value specified by the expression following the equal sign. Thus:

&OPTION = GESUNDHEIT

assigns the value GESUNDHEIT to the EXEC 2 variable &OPTION.

The statement:

&ITEM = &ITEM + 2

increments the value of &ITEM by 2, assuming the value of &ITEM was numeric to
start with (if it was not numeric, EXEC 2 considers it an error and terminates inter­
pretation of the EXEC 2 file).

The statement:

&L = &LENGTH OF &OPTION

uses the predefined function &LENGTH OF to compute the number of characters in
the value of the variable &OPTION; that number is then assigned to the variable
&L. If &OPTION has the value GESUNDHEIT, then &L would be assigned the
value 10. The right side of an expression in an assignment statement is the only
place to use a predefined (or user-defined) function in EXEC 2. There are several
predefined functions used in the EXEC 2 files discussed later.

It is possible to set a variable to the null value by using an assignment statement:

&NOTHING =

and it is possible, of course, to have labels on assignment statements:

-SETONE &ONE = 1

EXEC 2 Variable Evaluation
It is time to explain in detail how EXEC 2 examines a word for variable names and
replaces them with values. Inspection "for EXEC 2 variables is performed by exam­
ining the characters in a word from right to left. Whenever an ampersand is
detected, the ampersand and all characters to the right of it are taken as the name of
an EXEC 2 variable, which is then replaced by the variable's current value. After a
value has replaced a variable name in a word, the inspection process resumes with
the next character to the left. So it is possible to use EXEC 2 variables to build the
names of other EXEC 2 variables.

c

To illustrate, if &X = I and &1 = FIRST, the word &&X means &1, which is C
replaced by the value FIRST. Suppose the value of &1 is an ampersand instead of
FIRST; then, &&X = = > &1 = = > &. No further substitution occurs, since there
are no more characters of the original word to be inspected.

88 VM/XA SP EXEC 2 Reference

(

(

EXEC 2 Primer

In the case of an assignment statement, the inspection of the first word for amper­
sands is stopped just before the first character of the line (remember that characters
are examined from right to left). Therefore, the first word keeps its initial amper­
sand and remains an appropriate EXEC 2 variable name. Retention of the initial
ampersand of a word also occurs in other contexts where a variable name is required
(the &READ VARS and &UPPER V ARS statements, for example).

Recall that there are no undefined EXEC 2 variables. If an EXEC variable has no
default or explicitly assigned value, its value is taken to be null (the character string
that has no characters in it, and whose length is zero).

An Example of Generating EXEC 2 Variable Names
We are now ready to look at an EXEC 2 file that depends on this ability to use an
EXEC 2 variable to build the names of other variables. The following EXEC,
named LFN, uses the CMS command LISTFILE to display information about all of
the files on all accessed disks that have the filenames (arguments) specified on the
command line invoking the EXEC 2 file. Because the number of filename arguments
may differ from one use to the next, the EXEC 2 variable &J is used to select the
next argument to use in the LISTFILE command:

&TRACE
&J = 1
-LOOP LISTFILE &&J * * (LABEL
&J=&J+l
&IF &J <= &N &GOTO -LOOP

Suppose this EXEC 2 file were invoked by the command:

LFN NEW OLD

The first time the LISTFILE command is issued, the EXEC 2 variable &J has the
value 1, so &&J = = > &1 = = > NEW and the command passed to CMS is:

LISTFILE NEW * * (LABEL

After the first LISTFILE command, the value of &J is incremented from 1 to 2, and
the &IF statement is interpreted. Since there are two arguments, NEW and OLD,
the value of &N is 2, the condition part of the &IF control statement is true, and the
&GOTO statement is executed. Interpretation of EXEC 2 statements continues with
the LISTFILE statement again, but this time &&J = = > &2 = = > OLD and the
command issued is:

LISTFILE OLD * * (LABEL

After &J is incremented to 3, the &IF condition is false. So the &GOTO statement
is not interpreted, and the EXEC 2 file terminates with a return code of zero. If
more than one of the specified filenames is found on a disk, the output generated by
this EXEC 2 is not as pretty as it could be. This is because the LISTFILE
command with the LABEL option produces a title line each time it is invoked and
finds at least one file meeting its argument pattern. The LABEL option includes
further information you may want about the file specified, for example, the label of
the disk on which the file resides.

The following elaboration of LFN EXEC uses the return code generated by the
LISTFILE command to detect when the title line is first displayed and uses the

Appendix C. EXEC 2 Primer for New Users 89

I

EXEC 2 Primer

NOHEADER option in subsequent LISTFILE commands to prevent duplicate title
lines from being displayed. .

&TRACE
&J = 1
-LOOP LISTFILE &&J * * (LABEL &NOHEADER
&IF &RC = e &NOHEADER = NOHEADER
&J=&J+l
&IF &J <= &N &60TO -LOOP

Since the initial value of &NOHEADER is null, it disappears the first time the
LISTFILE command is interpreted. When the command is successful (that is, when
it produces a return code of zero), the EXEC 2 variable &NOHEADER is given the
value NOHEADER, and all subsequent LISTFILE commands have the
NOHEADER option following the LABEL option.

The &LOOP Control Statement
There is another way of writing the LFN EXEC. The &LOOP control statement
eliminates the need for repetitively interpreting the &IF statement and searching the
file for the label ·LOOP:

&TRACE
&J = 1
&LOOP 3 &N

LISTFILE &&J * * (LABEL &NOHEADER
&IF &RC = e &NOHEADER = NOHEADER
&J=&J+l

The &LOOP statement can take several forms. Here, it specifies that the three lines
following the &LOOP statement are to be repeated &N times; that is, for as many
times as there are arguments to the EXEC 2 file. The statements to be repeated (the
scope of the loop) were indented to make it easier to read the EXEC 2 file.

It is often more convenient to use a label reference in a &LOOP statement instead of
an absolute count of the number of statements to be repeated. In this case, the label
is written in place of the count and the EXEC 2 interpreter determines how many
statements to repeat:

&TRACE
&J = 1
&LOOP -END &N

LISTFILE &&J * * (LABEL &NOHEADER
&IF &RC = e &NOHEADER = NOH EADER
-END &J = &J + 1

The label defining the scope of the loop must occur before the end of the EXEC 2
file or an error is reported. If there is a statement on the same line as the label, the
statement is executed. In this case, the assignment statement, &J = &J + 1, is the
last line of the loop. It is valid to have a loop count of zero, in which case no
statements within the loop are interpreted. This would happen in the above EXEC
if it were invoked with no arguments.

A loop statement that defines its scope through the use of a label reference is more
resistant to errors than a loop statement that specifies an absolute number of lines.
The label reference avoids a common error: forgetting to update the line count in a

90 VM/XA SP EXEC 2 Reference

c

/\
\..~J

(-\
\ ,
"'-_./

c

(...

(

(

EXEC 2 Primer

&LOOP statement when a change is made that alters the number of statements
within the scope of the loop.

Making EXEC 2 Files Interact with Users
The more EXEC 2 files you write, the more difficult it is to remember the correct
formats of these new user commands. You can solve this difficulty by making these
EXEC 2 files self-documenting; that is, whenever they are invoked with incorrect
arguments, or with a question mark as an argument, the EXEC 2 files display a
description of the correct command format and whatever additional description the
writer deems appropriate. Such additional information might be a description of
what the file does and how to use it, or perhaps a reference to a MEMO file or a
publication containing more information. Here is a version of LFN EXEC that is
self-documenting:

&TRACE
&IF &N = 9 &60TO -TELL
&IF &N = 1 &IF &1 = ? &GOTO -TELL
&J = 1
&LOOP -X &N

LISTFILE &&J * * (LABEL &NOHEADER
&IF &RC = 9 &NOHEADER = NOHEADER
-X &J = &J + 1

&IF /&NOHEADER = / &EXIT 28
&EXIT
-TELL &PRINT FORMAT IS: &FILENAME FNI FN2
&PRINT USES LISTFILE TO DISPLAY INFORMATION ABOUT
&PRINT ALL FILES WITH FILENAMES FNl, FN2, ETC.
&EXIT 199

The &PRINT control statement directs the EXEC 2 interpreter to display the words
following &PRINT as a line on the user's console. The EXEC 2 interpreter substi­
tutes the appropriate values into the EXEC 2 variables before displaying the infor­
mation.

The above version of LFN EXEC generates a nonzero return code, 28, in any
instance where no files were found. Since the EXEC 2 variable &NOHEADER is
already being used to detect a successful invocation of LISTFILE, you can use
&NOHEADER to determine whether any files were found. If the value of
&NOHEADER is null after all the LIFTFILE commands have been issued, no files
were found. It is not possible to simply write:

&IF &NOHEADER -,= NOHEADER &EXIT 28

to determine the value of &NOHEADER. If &NOHEADER is null, a syntax error
in the &IF statement occurs because the &NOHEADER word would disappear and
you are left with:

&IF -,= NOH EADER &EXIT 28

Appendix C. EXEC 2 Primer for New Users 91

'I

EXEC 2 Primer

A solution for testing the value of an EXEC 2 variable that might be null is to use
some prefix character on both the variable and the value compared with it. In the
case of LFN EXEC, the slash is that prefix, and the two statements that can result
after substituting for the variable &NOHEADER are:

&IF /NOHEADER = / &EXIT 28

or:

&IF / = / &EXIT 28

For success, &NOHEADER = NOHEADER; for failure, &NOHEADER is null.

All of the previous EXEC 2 files have used only the arguments provided on the
command line to determine what function they would perform.

You can also write an EXEC that interacts with you - displaying prompting mes­
sages on the console and reading instructions or values that are typed in. Before
showing an example with this interaction, let's discuss the &READ control state­
ments.

Data is read from the console using the &READ control statement. A &READ
statement may read one input line and assign it to a single EXEC 2 variable:

&READ STRING &S

&S contains the entire text of the input line, including all blanks.
'\

Alternatively, the input line can be separated into words and each word assigned to '-<" .J
an EXEC 2 variable:

&READ VARS &FIRST &SECOND &THIRD &FOURTH

The first word of the input line is assigned to the variable &FIRST, the second word
is assigned to the variable &SECOND, and so on. If there are more variables than
words in the input line, those variables remaining after all words have been used are
assigned the null value. If there are more words than variables, the extra words are
ignored.

If you don't know how many words will be on an input line, it is often convenient to
use the statement:

&READ ARGS

This statement assigns the words in the input line to the EXEC 2 variables &1 &2
&3 ... and so on. The predefined variable &N is assigned to the number of words
(arguments) in the input line. All of the prior values for &1 &2 ... and so on, are
lost when this is done. So remember to assign any EXEC 2 argument variables that
may be needed later to other EXEC 2 variables before interpreting a &READ
ARGS statement. The predefined variable &ARGSTRING is not affected by a
&READ ARGS statement. Its value continues to be the original argument string
passed to the EXEC 2 file, or whatever value the user last gave it in an assignment
statement.

92 VM/XA SP EXEC 2 Reference

/ """,

(

(

(

(

EXEC 2 Primer

It is possible to read lines from the console and interpret them as EXEC 2 state­
ments using the form:

&READ n

"n" is the number of lines to read. If no explicit number of lines is given, only one
line is read. An asterisk (*) may be used in place of a number to denote that state­
ments are to be read from the console until a statement which modifies sequential
processing of lines is interpreted (&EXIT, &GOTO, &SKIP, and so on).

It is easy to test the effect of various EXEC 2 statements by using the file:

&TRACE ALL
&READ *

which reads statements from your console and traces their interpretation.

Here is a modified version of the LFN EXEC. It interacts with you and contains
the &READ control statement.

&TRACE
&PRINT ENTER THE FILENAME YOU ARE INTERESTED IN
&PRINT OR PRESS ENTER TO EXIT.
&PRINT
&READ ARGS
-LOOP

&PRINT
LISTFILE &1 * * (LABEL
&PRINT
&IF &RC = 28 &PRINT THIS FILE DOES NOT EXIST.
&PRINT ENTER ANOTHER FILENAME YOU ARE INTERESTED IN
&PRINT OR PRESS ENTER TO EXIT.
&PRINT
&READ ARGS
&IF &N ~= e &GOTO -LOOP

&EXIT

The first two print statements tell you what information you must input. The state­
ment, &PRINT, just leaves a blank space on the console. This is just to make the
screen neater.

&READ ARGS reads the filename you entered and assigns it to the variable &1.

-LOOP is a label signalling the beginning of the loop.

The CMS LISTFILE command displays information about the file that is specified
in variable &1. The LABEL option includes further information you may want to
know about the file specified, for example, the label of the disk on which the file
resides.

The statement, &IF &RC = 28, checks the return code from the LISTFILE
command. If the return code equals 28, you receive a message that the file entered
does not exist.

The next two &PRINT statements ask you if you want to inquire about any other
file.

Appendix C. EXEC 2 Primer for New Users 93

EXEC 2 Primer

&READ ARGS again reads the filename or null character you entered and assigns it
to &1.

The statement, &IF &N -, = 0 &GOTO -LOOP, checks if you entered another
filename or a null character. &N is the number of arguments set. Therefore, if &N
= 0, no filename was entered and you exit the EXEC.

Using the &CASE Control Statement
When CMS or CP reads a command line, it translates the command line into upper­
case before interpreting it. When a program, such as the EXEC 2 interpreter, reads
a console input line, it chooses whether or not to translate to uppercase. The EXEC
2 control statement:

&CASE M

instructs the EXEC 2 interpreter to read subsequent input lines in mixed case (upper­
case and lowercase combined) while

&CASE U

reques~s translation into upper case. &CASE U is the initial setting when the EXEC
2 interpreter starts processing an EXEC 2 file.

Here is an example to show you how the &CASE control statement works:

&TRACE
&TYPE ENTER YOUR NAME:
&CASE M
&READ VARS &NAME
&TYPE &NAME
&EXIT

The above EXEC prompts you to enter your name. If you enter your name using
uppercase and lowercase characters, such as:

Sue

the result is:

Sue

However, if the "&CASE M" control statement is removed and you enter your
name:

Sue

the result is:

SUE

94 VM/XA SP EXEC 2 Reference

,/.-~

Editor Macros

(~-- Appendix D. Writing Editor Macros

(

The macro language is one of the most powerful facilities that the editor provides.
By writing macros, you can:

• Expand the basic subcommand language
• Expand the prefix subcommand language
• Tailor the language to your own application
• Eliminate repetitive tasks.

This chapter explains how to write an XEDIT macro using the EXEC 2 language.

What is an XEDIT Macro?
An XEDIT macro is an EXEC file that is invoked from the XEDIT environment.

(A macro may also be written using the Restructured Extended Executor (REXX)
language. However, all examples in this chapter use the EXEC 2 language.)

You execute a macro the same way you execute XEDIT subcommands: type the
macro name on the command line (or the prefix area) and press the ENTER key. A
macro may be executed by entering only its name (or synonym). The execution of
the macro may also depend on arguments you enter when it is invoked.

A macro file can contain:

• XEDIT subcommands
• EXEC 2 control statements
• CMS and CP commands.

Creating a Macro File
Because an XEDIT macro is a normal CMS file, it may be created in any of the
ways that CMS provides for file creation. It can even be created dynamically, by
using-the XEDIT multiple file editing capability (see the VM/XA SP System Product
Editor User's Guide). As soon as a FILE subcommand is executed for the macro
file, the macro can be used.

Like any CMS file, a macro file is identified by filename, filetype, and filemode. The
file identifier for a macro file must follow certain rules:

• For macros entered from the command line, the filename is a string of one to
eight alphameric characters. This name is used to invoke the macro. For
example, if the filename is SEND, entering "SEND" during an editing session
causes the macro to be executed.

Prefix macro filenames may be one to eight characters, but they may not contain
numbers. (Because the prefix area is only five positions long, you can define a
synonym for a prefix macro filename that is longer than five characters. For
more information on defining synonyms for prefix macros, see VM/XA SP
System Product Editor Command and Macro Reference).

• The filetype must be XEDIT.

• The filemode can specify any of your accessed disks, for example, AI.

Appendix D. Writing Editor Macros 95

Editor Macros

Using XEDIT Subcommands in a Macro
A macro can contain any XEDIT subcommand, with the following exceptions:
prefix macros cannot contain READ, QUIT, FILE, and LPREFIX. However, some
subcommands perform functions that are meaningful only in the context of a macro,
for example, one that passes information to the EXEC 2 interpreter.

When EXEC 2 interprets a file not having a filetype of EXEC, it starts with a
&SUBCOMMAND presumption of the filetype, in this case XEDIT. Therefore,
you do not have to preface XEDIT subcommands in an XEDIT macro with
"&SUBCOMMAND XEDIT', unless the default &SUBCOMMAND presumption
has been explicitly changed. It is necessary, however, to preface regular CMS com­
mands with "&COMMAND" if they are not to be passed to XEDIT. XEDIT
macros do not require an initial &TRACE statement to indicate that they should be
interpreted by the EXEC 2 interpreter because that is indicated by the way in which
XEDIT invokes the EXEC 2 program.

To illustrate just how simple an XEDIT macro can be, consider the case where it is
desired to replace lines that currently contain:

.SK 3

with the three lines:

.SK

.CE ----------

.SK

This can be done using the XEDIT commands:

FIND .SK 3
REPLACE .SK
INPUT .CE ---------­
INPUT .SK

\

"

If those commands are put into a file named REPSK XEDIT, they may be executed /\
by simply entering the command:

REPSK

in the XEDIT environment. Of course, this only affects the next occurrence of the
".SK 3" line. All occurrences could be changed by writing a loop in the XEDIT
macro:

FIND .SK 3
&LOOP 4 UNTIL &RC ~= e

kEPLACE .SK
INPUT .CE ---------­
INPUT .SK
FIND .SK 3

Note that you can take advantage of the fact that XEDIT subcommands generate t£ -"
return codes indicating their success or failure much like regular eMS commands. (t)
In this example, the FIND command generates a return code of zero if it succeeds in
finding the specified text, and a return code of one if it fails.

96 VM/XA SP EXEC 2 Reference

(

(

(

c

Editor Macros

The above example contains all uppercase data, but it may be necessary to process
mixed case data in XEDIT macros. EXEC 2 statements may be written in whatever
case you desire, but control words such as &LOOP and predefined variables such as
&RC must be in uppercase. Variables to which you assign values, such as &X or
&ZILCH, may be written in uppercase or lowercase, but remember that &ZILCH
and &zilch are two distinct variables. Likewise, &LOOP is an EXEC 2 control
word, but &loop is a variable. You can use variables such as &JuGGerNauT if you
like pressing the shift key.

Suppose you want to use the REPSK XEDIT file for lines starting with .SK 2, or
.SK 3, or .sp 3. You can use two arguments to define the lines you are interested in
finding, as follows:

FIND &1 &2
&LOOP 4 UNTIL &RC ~= e

REPLACE .SK
INPUT .CE ---------­
INPUT .SK
FIND &1 &2

This works fine, but the question of case rises again. If the editor is operating in
CASE U, it translates input commands into uppercase before invoking an XEDIT
macro. Therefore, if a REPSK .sp 3 command is to work properly (meaning it is to
look for ".sp 3," not ".SP 3"), it must be entered while XEDIT is in mixed case
mode. XEDIT allows a second argument on a CASE subcommand, indicating
whether locate and find operations may "RESPECT" or "IGNORE" the case when
comparing characters. Using the "IGNORE" value produces a different effect than
the above macro, because REPSK .sp 3 would find lines starting with any of these:
".sp 3," ".sP 3," ".Sp 3," ".SP 3."

Handling Embedded Blanks
If you wanted to find a line starting with the words ".SK" and "3" separated by two
blanks, the above macro would fail. When EXEC 2 prepares a command, it builds a
parameter list by concatenating all the words of the command (after variable substi­
tution) with a single blank between words. If a word is null (that is, it has zero
characters in it), the word and its delimiting blank disappear from the command.

To handle a case having two blanks between words, rewrite REPSK XEDIT using
the predefined variable &ARGSTRING. This variable has an initial value of the
entire string of arguments passed to the EXEC file. This string does not include the
command name used to invoke the EXEC file, nor the blank separating it from the
argument string. It does include all blanks separating the argument words, plus any
additional blanks preceding or following those words:

&C = &CONCAT OF FIND &BLANK &ARGSTRING
&C
&LOOP 4 UNTIL &RC ~= e

REPLACE .SK
INPUT .CE ---------­
INPUT .SK
&C

The idea here is to build the XEDIT command you want, with blanks exactly where
you want them, as the value of an EXEC 2 variable. Then, the FIND command is
represented as a single word, and you avoid any difficulties stemming from the com-

Appendix D. Writing Editor Macros 97

Editor Macros

bination of several words to form a command. To build the FIND command, use
the predefined function &CONCAT OF, whose value is the string obtained by (--"-"
placing all of its argument values (after variable substitution) side by side without \.0.../
any intervening blanks. Since you need one blank to separate the FIND XEDIT
command from its operand, that blank is included by explicitly using the predefined
variable &BLANK, whose value is a single blank character.

Actually, it really wasn't necessary to build the FIND command quite so carefully.
It would work equally well using FIND &ARGSTRING, but the method displayed
above is more general, and can be used to build any possible command.

Avoiding Name Conflicts
Use the MACRO subcommand to cause the editor to execute a specified macro
without first checking to see if a subcommand of the same name or a synonym
exists. (This cannot be used for prefix macros.)

When a subcommand has a number as its operand, a blank is not required between
the subcommand name and the operand. For example, both "NEXT8" and "N8"
are interpreted by the editor as being the subcommand "NEXT 8". Therefore, if a
macro name were also "N8", the macro would not be executed; the subcommand
"NEXT 8" would be executed instead. To execute the macro, you could enter the
following:

MACRO N8

The macro whose name is "N8" would then be executed.

The SET MACRO subcommand can be used to control the order in which the editor
searches for subcommands and macros. SET MACRO ON tells the editor to look
for macros before it looks for subcommands; SET MACRO OFF reverses the order.

Walking Through An XEDIT Macro
The following XEDIT macro, whose filename is GLOBCHG, is an example of a

/"
!

macro you may write to make life a little easier. The application is typical of a text rr "
processing file arrangement, where many SCRIPT files are imbedded in a master file,"',j
via the SCRIPT control word ".1M".

The problem with this type of setup is that if you have to make a global change
throughout all the files, you have to edit each file, make the change, and then file
each file.

When issued from the master file, the GLOBCHG macro edits each file, performs a
global change, and files it.

The macro is invoked by entering the macro name, GLOBCHG; the arguments
passed to the macro are the old data and the new data, enclosed in delimiters:

GLOBCHG /stringl/string2/

98 VM/XA SP EXEC 2 Reference

(

(

(

c

For example, if a file called MASTER SCRIPT contains:

.IM FILE!

.IM FILE2

.IM FILEHl9

and the following commands are issued:

XEDIT MASTER SCRIPT
GLOBCHG /WAR AND PEACE/SENSE AND NONSENSE/

Editor Macros

"WAR AND PEACE" is changed to "SENSE AND NONSENSE" each time it
occurs in every file. (In this macro, no attempt is made to execute the change on
files that may be imbedded at the next level.)

The GLOBCHG macro can also be used to delete data throughout the files, by
changing a string to a null string. For example:

GLOBCHG /bad data//

The following is a listing of the macro, whose fileid is GLOBCHG XEDIT AI.
After the listing, each line in the macro is explained.

Appendix D. Writing Editor Macros 99

Editor Macros

eeeel ***
eeee2 **
eeee3 **
eeee4 **
eeees **

ENTER THE OLD STRING YOU WANT CHANGED AND THE
STRING YOU WANT IT CHANGED TO. ENTER IT IN
THE FORM:

jSTRINGljSTRING2j

**
**
**
**

eeae6 ***
eaaa7 &IF &N = a &GOTO -MISSING
eeaa8 &OPERAND = lARGSTRING
eeae9 PRESERVE
eeale SET MSGMODE OFF
aean TOP
ea912 FIND .IM
aaal3 &IF &RC ~= e &GOTO -NOIMBED
aael4 -LOOP
eeelS STACK 1
eeel6 &READ ARGS
eeel7 &COMMAND STATE &2 SCRIPT *
eeel8 &IF &RC = e &SKIP 2
eeel9 &TYPE IMBEDDED FILE I &2 SCRIPT I DOES NOT EXIST; BYPASSED
eee2e &GOTO -ENDLOOP
eee2l XEDIT &2 SCRIPT (NOPROFILE
eee22 EXTRACT jFNAMEjFTXPEjFMODEj
aee23 &TYPE PROCESSING FILE I &FNAME.l &FTYPE.l &FMODE.l I

eee24 CHANGE &OPERAND * *
eaa2S &IF &RC ~= a &TYPE NO CHANGES OCCURRED IN I &FNAME.l &FTYPE.l I

eee26 FILE
eee27 -ENDLOOP FIND .IM
eee28 &IF &RC = e &GOTO-LOOP
eee29 RESTORE
eee3e &EXIT
eee3l -NOIMBED
eee32 RESTORE
eee33 EMSG NO IMBED FOUND.
eee34 &EXIT
eee35 -MISSING EMSG EXE545E MISSING OPERAND(S)
eee36 CMSG e
eee37 &EXIT

Figure 1. A Sample Macro: GLOBCHG

eeeel ***
eeee2 ** ENTER THE OLD STRING YOU WANT CHANGED AND THE **
eeee3 ** STRING YOU WANT IT CHANGED TO. ENTER IT IN **
eeee4 ** THE FORM: I **
eeees ** jSTRINGljSTRING2j **
eeee6 ***

Statements 1 through 6 are comments describing the arguments to this EXEC.

eeee7 &IF &N = e &G010 -MISSING

100 VM/XA SP EXEC 2 Reference

~--~-------------

o

,/-~ "\,

\" ~

(

(

(

(

Editor Macros

If the number of arguments you passed to the macro (&N) is zero, go to the state­
ment labeled "-MISSING" where an error message is issued. Obviously, this macro
cannot work unless you tell it what to change.

aaaaa &OPERAND = &ARGSTRING

The user-defined variable (&OPERAND) is assigned the value of the argument
string (&ARGSTRING) passed to the macro. (The argument string contains the old
data string you want changed and the new data string you want it changed to.)

The next four statements in the macro are XEDIT subcommands:

aaaa9 PRESERVE

This subcommand saves the editor settings until a subsequent RESTORE subcom­
mand is issued (statement 32).

aaaia SET MSGMODE OFF

No messages will be displayed. By turning the message mode on and off, you can
select which messages you want displayed. Message mode is set OFF here to
prevent messages from the FIND subcommand (statement 12) from being displayed,
because the macro issues its own message (statement 33) if no imbedded files are
found.

aaan TOP

Moves the line pointer to the top of the master file - the file where the macro was
invoked.

aaal2 FIND .IM

Searches forward in the master file for the first line that contains ".IM" in column 1;
that is, locate the first line that imbeds a file.

aaal3 &IF &RC -,= a &GOTO -NOIMBED

If there is a non-zero return code from the FIND subcommand (statement 12), go to
the statement labeled "-NOIMBED". This situation occurs if no ".1M" statements
are found in the master file.

Statements 14 through 26 are the major loop in the macro. The global change is
made on each imbedded file in this loop.

aa914 -LOOP

This is the statement label that begins the loop.

aa915 STACK I

When the FIND subcommand (statement 12) locates a ".IM filename" statement in
the master file, it makes that line the current line. This STACK subcommand places
the current line in the program stack, so that its contents can be read by the fol­
lowing statement.

aaal6 &READ ARGS

This statement reads a line from the program stack and assigns the arguments to &1,
&2, &3,

aaall &COMMAND STATE &2 SCRIPT *
The STATE command is a CMS command that verifies the existence of a file. This
statement checks to see if the file named in the ".1M filename" statement exists.
(EXEC 2 transmits the STATE command directly to CMS.)

aaal8 &IF &RC = 0 &SKIP 2

Appendix D. Writing Editor Macros 101

Editor Macros

If the return code from the STATE command is zero, the file exists. Therefore, skip
down to statement 21. If it is not zero, execute the next two statements (19-20), ~-"
which comprise "file not found" processing. ',,"_j

eeel9 &TYPE IMBEDDED FILE I &2 SCRIPT I DOES NOT EXIST; BYPASSED.
eee2e &GOTO -ENDLOOP

Statement 19 issues a message - the file, &2 SCRIPT, imbedded in the master file
does not exist. Statement 20 branches to the statement label that begins the FIND
loop again.

eee21 XEDIT &2 SCRIPT (NOPROFILE

The XEDIT subcommand brings the imbedded file into virtual storage. The
NOPROFILE option forces the editor not to execute the default PROFILE XEDIT
macro.

eee22 EXTRACT /FNAME/FTYPE/FMODE/

This form of the EXTRACT command places the filename, filemode, and filetype of
the imbedded file into variables: &FNAME.l, &FTYPE.l, &FMODE.l, respec­
tively. See "Using the XEDIT EXTRACT Subcommand" for further information
on the EXTRACT subcommand.

eee23 &TYPE PROCESSING FILE I &FNAME.I &FTYPE.I &FMODE.I I

Displays a message to let you know which file is being processed.

eee24 CHANGE &OPERAND * *
The global change on one of the imbedded files. (The argument string you entered
when the macro was invoked was assigned to &OPERAND in line 8. The change
statement is in the form: CHANGE /stringl/string2/ * *)

eee25 &IF &RC -,= e &TYPE NO CHANGES OCCURRED IN I &FNAME.I &FTYPE.l I

If the change occurs, the return code from the CHANGE subcommand is O. This
statement checks the return code. If the return code is 0, a message is printed.

eee26 FILE

The changed file is written to disk.

eee2l -ENDLOOP FIND .IM

Then, the editor resumes editing the master file, searching for the next ".1M
filename" statement.

eee28 &IF &RC = e &GOTO -LOOP

If the FIND (statement 27) is successful, go through the loop again.

eee29 RESTORE

If the FIND (statement 27) is not successful, restore the settings of XEDIT variables
to the values they had when the PRESERVE subcommand was issued (statement 9).

eee3e &EXIT

Return control to the editor; you can then issue a QUIT subcommand for the master
file.

eee31 -NO IMBED
eee32 RESTORE
eee33 EMSG NO IMBED FOUND.
eee34 &EXIT

Statements 31 through 34 are executed if no ".IM" statements were found in the
master file.

.. "
./

1 02 VM /XA SP EXEC 2 Reference

('

(

---_. ------------

Editor Macros

aaa35 -MISSING EMSG EXE545E MISSING OPERAND(S)

This message is displayed in the message line if no arguments, which are required,
were entered when the macro was invoked. It is a branch from statement 7.

aaa36 CMSG a

In addition, the macro name (GLOBCHG) is displayed in the command line, so that
you can type the arguments (string I string2) and press the ENTER key to invoke the
macro again.

aaa37 &EXIT

The end.

Using the XEDIT EXTRACT Subcommand
Notice in line 23 of Figure I on page 100 the variables &FNAME.l, &FTYPE.l,
and &FMODE.l appear. These variables are created as a result of the XEDIT
EXTRACT subcommand. The EXTRACT subcommand is an extended form of the
XEDIT TRANSFER subcommand. Let's compare the two subcommands.

The statement:

TRANSFER FNAME FTYPE FMODE

puts the filename, filetype, and filemode of the file being edited into the progrl;lm
stack.

The statement:

EXTRACT /FNAME/FTYPE/FMODE/

puts the filename, filetype, and filemode of the file being edited into the newly
created variables &FNAME.I, &FTYPE.1, and &FMODE.l, respectively.

The EXTRACT subcommand creates similar variables for all operands available to
the subcommand. See the VM/XA SP System Product Editor Command and Macro
Reference for more details on the EXTRACT subcommand.

Writing Prefix Macros
You can write prefix macros for a variety of purposes-from performing a function
from the prefix area that is normally accomplished by entering a subcommand on
the command line to creating an entirely new function.

What Information is Passed to the Macro?
An argument string is automatically passed to a prefix macro when it is invoked. It
can supply a macro with information critical to its execution, like the line number of
the prefix area in which the macro was entered.

The format of the argument string is as follows:

PREFIX SETlsHADOwlclEAR pline [opl[op2[op3]]]

where:

PREFIX
indicates that this is a prefix call.

SET
indicates that the prefix macro was entered on someJine in the file displayed.

Appendix D. Writing Editor Macros 103

Editor Macros

SHADOW

CLEAR

pline

indicates that a prefix macro was entered on a shadow line (see SET
SHADOW in the VM/XA SP System Product Editor Command and Macro
Reference).

indicates that a new prefix subcommand or macro or new blank area replaces a
previously pending prefix subcommand or macro on the same line, or the
RESET subcommand was entered. In this case, this macro is invoked with
"PREFIX CLEAR pline".

is the line number on which the prefix macro was entered.
opl op2 op3

are the optional operands of the macro, entered either to its left or right (for
example, SM or MS).

Creating a Sample Prefix Macro
Let's create a prefix macro, with filename U and filetype XEDIT, that translates one
or more lines in a file to uppercase, which normally is accomplished by issuing the
UPPERCAS subcommand in the command line. When U is entered in the prefix
area of a line, that line is translated to uppercase. A number may be specified before
or after the U to translate more than one line; for example, 3U = = = or = U5 = =.

The U prefix macro may look like this:

00001 &PLINE = &3
00002 &OP = &4
00003 &IF .&OP =. &OP = 1
00004 COMMAND :&PLINE UPPERCAS &OP
00005 &EXIT

Figure 2. A Sample Prefix Macro: U

00001 &PLINE = &3
00002 &OP = &4

Lines 1 and 2 assign the arguments to specific variables. &3 is set to the line number
the prefix macro was entered on, and &4 is set to any operand that is passed.

00003 &IF .&OP =. &OP = 1

Line 3 determines if an operand was entered. If the operand is null, a default of 1 is
assumed.

00004 COMMAND :&PLINE UPPERCAS &OP

Line 4 uses :&PLINE to make the line in which the prefix macro was entered
(&PLINE) the new current line, and then issues the UPPERCAS subcommand with
the operand, &OP. &OP is the number of lines to be put in uppercase.

For example, if "U8" was entered in the prefix area of line 3 of a file, &.0 would be
"U", &PLINE would be "3", and &OP would be "8". Then, the next eight lines,
including the current line, would be put in uppercase.

104 VM/XA SP EXEC 2 Reference

." ,

(

(

Editor Macros

Current Line Positioning
Note that in line 6, &PLINE is an absolute line number target. It is used to make
the prefix line the current line because the UPPERCAS subcommand translates all
lowercase characters to uppercase, starting at the current line.

When a prefix macro is finished executing, the current line is returned automatically
to the line that was current when it began execution. Therefore, even though line
&PLINE is made current for the UPPERCAS subcommand, the macro need not
restore the current line.

Appendix D. Writing Editor Macros 105

-~~~~~-----~~~~------------------------------

tf\ (:: :

"L/

Useful Techaiques

(-- Appendix E. Useful. EXEC 2 Techniques

(

(

(

The following illustrations exhibit solutions to some EXEC programming problems.
There has been no attempt to present a comprehensive catalog of solutions. The
objective is to give the reader some insight into the possibilities inherent in the
EXEC 2 functions.

1. The statement:

& = &DATATYPE OF +&1

sets & to 'NUM' if, and only if, &1 contains an unsigned integer.

2. If &J is an unsigned integer not exceeding 99999999, the statement:

&J = &RIGHT OF 9999999&J 8

extends it with leading zeros to a total length of 8.

3. A string of any number of blanks, 23 for example, can be created by:

&823 = &LEFT OF &8LANK 23

A string of some character other than blanks, asterisks for example, is easily
obtained from the string of blanks by using the &TRANSLA TION OF prede­
fined function:

&*23 = &TRANSLATION OF &823 &8LANK *

4. Suppose a multi-way branch is desired, based on an argument value supplied by
the caller and currently in &1. However, the value of &1 must first be tested to
verify it is valid -- that is, its value is either A, B, or C. (You can expand this
example to handle more than three cases.)

&TRACE
& = &POSITION OF &1 A 8 C
&IF & ~ 9 &GOTO -&1
&TYPE INVALID CASE: &1
&EXIT
-A &TYPE THIS IS CASE A

&EXIT
-8 &TYPE THIS IS CASE 8

&EXIT
-C &TYPE THIS IS CASE C

&EXIT

5. The statement:

& = &LOCATION OF /&1 //PRINT

sets & to 2 if, and only if, &1 contains the word "PRINT" or an abbreviation
for it. Note that & would have the value 1 if &1 is null.

Appendix E. Useful EXEC 2 Techniques 107

Useful Techniques

6. Suppose &1 is as given on entry, and is, therefore, known not to contain any
blanks. Then the following sequence transfers control to the label-BLUE if &1
contains the word "BLUE" or an abbreviation for it, to the label -GREEN if &1
contains the word "GREEN" or an abbreviation for it, ... , or to the label-ERR
if &1 is null or does not contain a color or an abbreviation thereof:

&X = &LITERAL OF ERR /ERR /BLUE /GREEN /RED /YELLOW
& = 1 + &LOCATION OF /&1 &X
& = &PIECE OF &X &
&STACK lIFO &GOTO -&
&READ

The first statement assigns to &X the string containing all of the expected labels
prefaced with j and separated by blanks. In addition, the first word (ERR) is
included in case the value of &1 does not appear in &X, and the second word
(jERR) is included in case the value of &1 is null. The third statement assigns
to & that part of &X starting with the desired label. A &GOTO statement is
then stacked. This statement is read and interpreted by the last, &READ state-
ment. When the stacked line is read, it is broken into words and examined in /' "
the ordinary way, so the desired label becomes the &GOTO operand, and any ./
surplus data from the original value of &X is treated as a comment.

7. The argument values are to be assigned to the variables &Xi, for i = 1,2, ... ,
&N. The object of this is to make it possible to reuse the numeric variables
without losing access to the current arguments. Calling a user-defined function
which needs the argument values that existed before the function was invoked
illustrates such a need:

&S = &RANGE OF & 1 &N
&STACK LIFO &S
&S = &RANGE OF *X 1 &N
&S = &TRANS OF &S * &
&STACK lIFO &READ VARS &S
&READ

The first line constructed a string from the argument values &1 &2 ... &&N that
are separated by blanks, and the second line stacks the string. A corresponding
string of variable names is then created in two steps. First, a string of words
*Xl *X2 ... ·X&N is built, then all of the asterisks in that string are translated
to ampersands. The string of variable names is used when stacking a &READ
V ARS statement. The final statement causes the just stacked &READ V ARS
statement to be read and interpreted by EXEC 2. When executing this state­
ment, the previously stacked argument values are read and assigned to &Xl,
&X2, ... , &X&N. Note that use of & as a temporary variable is avoided so that
its predefined value (ampersand) will be available as an argument to &TRANS
OF.

If only a (contiguous) subset of the current arguments are to be transferred to
the variables &Xi, the arguments to &RANGE OF may be adjusted as required.
If the values of the original arguments, instead of the current argument values,
were desired, the first two lines could be replaced with:

&STACK lIFO &ARGSTRING

8. To verify that a value is a valid hexadecimal number (contains no characters
other than the digits 0-9 and the letters A-F):

& = &TRANS OF &HEXNUM 9123456789ABCDEF
&IF /& ~= / &GOTO -BADHEX

/~ '\

j

108 VM/XA SP EXEC 2 Reference

(-

(

Useful Techniques

The first statement uses &TRANSLATION OF to translate all valid characters
in &HEXNUM into blanks. Then, the &IF condition succeeds only if the trans­
lation contained something other than blanks (since the shorter word is extended
with blanks for purposes of comparing the two strings). This corresponds to the
presence of one or more untranslated (that is, invalid) characters in
&HEXNUM.

This scheme works only if it is known that there are no blanks embedded in
&HEXNUM, or if blanks are acceptable characters. The following modification
detects embedded blanks as invalid characters:

&Z = &CONCAT OF &BLANK e123456789ABCDEF
& = &TRANS OF &HEXNUM &Z *
&IF /& ~= / &GOTO -BADHEX

Here, a blank in &HEXNUM is explicitly translated into an asterisk so that it
forces the subsequent comparison to fail.

9. The following EXEC file is useful when it is necessary to extract information
delimited by parentheses within a string. Blanks and nested parentheses are
retained, so PAREN EXEC may be invoked multiple times when there are
nested parentheses. The result is two lines put into the program stack. The first
line in the program stack contains all characters of the original argument string
except the first left parenthesis, the characters following it to the matching right
parenthesis, and that right parenthesis. The second line in the program stack
contains the data excised from the first line without the delimiting parentheses,
but includes any nested parentheses:

&TRACE
&A = &ARGSTRING
& = -1 + &LOCATION OF (&ARGSTRING
&IF & < e &GOTO -END
&A = &PIECE OF &ARGSTRING 1 &
& = & + 2
&B = &PIECE OF &ARGSTRING &
&IF .&B EQ. &GOTO -END
& = 1 + -NESTED OF 1
&Z = &PIECE OF &B &
&A = &CONCAT OF &A &Z
& = & - 2
&B = &PIECE OF &B 1 &
-END &STACK LIFO &A
&ST ACK LI FO &B
&EXIT
* Recursive subroutine to balance parentheses.
* &1 = index into string &B where search is to start.
* Returns index into &B of matching).
-NESTED &ARGS &1 e e e
&LOOP -X *

&2 = &PIECE OF &B &1
&3 = &LOCATION OF) &2
&4 = &LOCATION OF (&2
&IF &4 ~= e &IF &4 < &3 &SKIP 3

&IF &3 = e &3 = 1 + &LENGTH OF &2
&3 = &1 + &3 - 1
&RETURN &3

&2 = &1 + &4
-X &1 = 1 + -NESTED OF &2

Appendix E. Useful EXEC 2 Techniques 109

----~--~--.------- .. " --...

This implementation of PAREN ilfustrates the use of a recursive user-defined
function. Notice the &ARGS statement at the beginning of -NESTED which

r~
creates three local variables (&2, &3 and &4) each time the function is entered. (
This automatically associates a unique group of EXEC variables with every ,_/
invocation of the function (in addition to the function's explicit arguments).
Because these variables are unique to an individual invocation of the user-
defined function, they are guaranteed not to conflict with any other EXEC vari-
able name. Actually, in this instance the technique is not necessary. The
&ARGS statement could be eliminated, and the variables &2, &3, and &4
renamed &S, &L, and &R, without introducing an error. An error would occur
only if a subsequent modification of the EXEC file introduced one of those vari-
able names outside of the -NESTED function.

The following version of PAREN EXEC illustrates an alternative implementa­
tion which doesn't use a user-defined function:

&TRACE
&A = &ARGSTRING
& = -1 + &LOCATION OF (&ARGSTRING
&IF & < e &GOTO -END
&A = &PIECE OF &ARGSTRING 1 &
& = & + 2
&8 = &PIECE OF &ARGSTRING &
&IF .&8 EQ. &GOTO -END
&LP = 1
& = 1
&LOOP -X UNTIL &LP = e

&S = &PIECE OF &8 &
&R = &LOCATION OF) &S
&IF &R = e &GOTO -END
&L = &LOCATION OF (&S
&IF &L ~= e &IF &L < &R &SKIP 3

& = & + &R
&LP = &LP - 1
&GOTO -X

& = & + &L
&LP = &LP + 1
-X

&Z = &PIECE OF &8 &
&A = &CONCAT OF &A &Z
& = & - 2
&8 = &PIECE OF &8 1 &
-END &STACK LIFO &A
&STACK LIFO &8
&EXIT

110 VMfXA SP EXEC 2 Reference

/

_ ... _-_ ... ------------

(~ Bibliography

This section describes publications about VM/XA System Product.

Description of VM/XA System Product Release 1 Publications

(

(

(

You can order the library from Mechanicsburg through the System Library Sub­
scription Service (SLSS) or from your IBM representative.

To help you organize and store your library, IBM provides a set of binders and
binder-sleeve inserts tailored for VMfXA SP documentation. Instructions for assem­
bling your library are included with the binder-sleeve inserts.

You can order the VMfXA SP library, binders, and binder-sleeve inserts by using
either a bill-of-forms number or individual order numbers.

SBOF-0260

SX23-0399

SX23-0398

Use this bill-of-forms number to order the core library, the binders,
and the inserts.

Note that you must order manuals that contain licensed information
(manuals with an order number that begins with L Y) through your
support personnel. Books that contain licensed information are:

• VM/XA System Product: Features Summary, LY27-8058
• VM/XA System Product: Diagnosis Guide, LY27-8056
• VM/XA System Product: CP Diagnosis Reference, LY27-8054
• VM/XA System Product: CMS Diagnosis Reference, LY27-8052
• VM/XA System Product: CP Data Areas and Control Blocks,

LY27-8053
• VMjXA System Product: CMS Data Areas and Control Blocks,

LY27-8051.

Individual binder.

Set of binder-sleeve inserts.

You can also order VMjXA SP microfiche listings that contain VMjXA SP code.
The order numbers for the VMjXA SP microfiche are:

Order No.
LYC7-0314
LYC7-0315

Description
VMjXA System Product: CP listings.
VM/XA System Product: CMS listings.

As shown in Figure 3 on page 112, VM/XA SP publications are organized into six
categories:

1. Evaluation and introduction: information on VM/XA SP concepts.

2. Planning, installation, administration, and service: planning your system and
performing system installation and !Daintenance.

3. Operation and end use: performing system and virtual machine tasks

Bibliography 111

4. Application programming: information on using programming interfaces.

5. Diagnosis: information for understanding of VM/XA SP design and to aid in
problem diagnosis.

6. Reference: quick retrieving of library usage information, command language
syntax, macro instructions, diagnose codes, and system messages.

Evaluation and Introduction

VM/XA
System Product

Licensed
Program

Specifications
GC23-0388

(20)

VM/XA
System Product

VM
at a Glance:

Large Systems
GC23-0380

(20)

VM/XA
System Product

General
Information
GC23-0382

(20)

VM/XA
System Product

Conversion
Notebook
SC23-0357

(34)

Planning, Installation, Administration, and Service

VM/XA VM/XA
System Product System Product

Planning Installation
GC23-0378 and Service

SC23-0384

(34) (34)

Operation and End Use

VM/XA
System Product

Real System
Operation
SC23-0371

(40)

VM/XA
System Product

Virtual
Machine

Operation
SC23-0377

(39)

Application Programming

VM/XA VM/XA
System Product System Product

CMS
CP Application

Programming Program
Services Development

SC23-0370 Guide
(39) SC23-0355 (39)

VM/XA
System Product

Administration
SC23-0353

(34)

VM/XA VM/XA
System Product System Product

CMS CMS Primer
User's Guide SC23-0368
SC23-0356

(39) (39)

VM/XA VM/XA
System Product System Product

CMS Application
Application Development

Program Guide
Conversion for FORTRAN

Guide and COBOL
SC23-0403 (39 SC23-0389 (39

VM/XA
System Product

System Product
Editor

User's Guide
SC23-0373

(39)

VM/XA
System Product

System Product
Interpreter

User's Guide
SC23-0375

(39\

The numbers in parentheses are subject codes. A subject code is a two-digit number found on the System Library Subscription List
(SLSS) subcription form that represents a topic. (For example, general information, evaluation, and flyers are associated with code 20.)
By choosing certain subject codes on the SLSS subscription form, you can order specific categories of information about IBM products
rather than all of the literature about them. For a complete list of subject codes, see the SLSS subscription form.

Figure 3 (Part 1 of 2). Publications that Support the VM/XA System Product

112 VM/XA SP EXEC 2 Reference

~.-'\

V

(

(""

(

Diagnosis

VM/XA
System Product

Diagnosis
Guide

LY27-8058

(37)

VM/XA
System Product

CP Data Areas
and Control

Blocks
LY27-8053

(37)

Reference

VM/XA
System Product

CP Command
Reference
SC23-0358

(36)

VM/XA
System Product

CMS
Application

Program
Development

Reference(39)
SC23-0402

VM/XA
System Product

EXEC2 Reference
SC23-0361

(36)

VM/XA
System Product

CP Diagnosis
Reference
LY27-8054

(37)

VM/XA
System Product

CMS Data Areas
and Control

Blocks
LY27-8051

(37)

VM/XA
System Product

CMS Command
Reference
SC23-0354

(39)

VM/XA
System Product

Quick Reference
SX23-0391

(36)

VM/XA
System Product

Library Guide.
Glossary. and
Master Index

GC23-0367

(39)

. ,------._,-"----------------- --~--~~-~---

VM/XA
System Product

CMS
Diagnosis
Reference
LY27-8052

(37)

VM/XA
System Product

Dump Viewing
Facility

Operation Guide
and Reference

SC23-0359
(37)

VM/XA
System Product

Features
Summary
LY27-8058

(36)

VM/XA
System Product

System Product
Editor

Command and
Macro Reference

SC23-0372
(39)

VM/XA
System Product

CMS Primer
Summary of
Commands
SC23-0421

(39)

VM/XA
System Product

System Messages
and Codes
Reference
SC23-0376

(37)

VM/XA
System Product

System Product
Interpreter
Reference
SC23-0374

(39)

Figure 3 (Part 2 of 2). Publications that Support the VM/XA System Product

Evaluation and Introduction: Understanding Basic System Concepts
The evaluation and introduction publications for VMjXA SP are:

• VM/XA System Product: Licensed Program Specifications, GC23-0366

Provides information on the warranted functions of VM/XA SP and describes
the specified operating environment.

• VM at a Glance: Large Systems, GC23-0360

Presents an overview of the features of each of the large VM systems: the
VM/XA Systems Facility, VMjSP High Performance Option, and VMjXA
System Product.

Bibliography 113

--,-

• VM/XA System Product: General Information, GC23-0362

Provides general and planning information for VM/XA SP. It can help you
decide whether VM/XA SP can fill your needs.

• VM/XA System Product: Conversion Notebook, SC23-0357

Provides migration and compatibility information for customers migrating from
VM/SP HPO Release 5 and VM/XA SF Release 2.

Planning, Installation, Service, and Administration: Generating and
Maintaining the System

• VM/XA System Product: Planning, GC23-0378

Presents system planning concepts for VM/XA SP and virtual machine planning
concepts for guest operating systems. Topics include suggestions for defining
you real system configuration and building and updating your directory. This
book discusses running these operating systems under VM/XA SP: MVS/SP,
MVS/XA, VSE/SP, VM/SP, and VM/SP HPO.

• VM/XA System Product: Installation and Service, SC23-0364

Gives step-by-step procedures for generating VM/XA SP and describes how to
apply service updates to your system.

• VM/XA System Product: Administration, SC23-0353

Provides information on how to manage your system. Topics include:

Setting up virtual machines for accounting, error recording, and CMS batch
Setting up the programmable operator
Redefining command privilege classes
Defining and managing saved segments and named saved systems
Tuning the system
Reference information on the VM/XA SP monitor.

Operations and End Use: Making the System Work for You
• VM/XA System Product: Real System Operation, SC23-0371

Provides a task-oriented source for real system operations. In step-by-step
format it describes the procedures and commands used to perform each real
system task.

• VM/XA System Product: Virtual Machine Operation, SC23-0377

Provides a task-oriented source for virtual machine operations. In step-by-step
format it describes the procedures and commands used to perform each virtual
machine task.

• VM/XA System Product: eMS User's Guide, SC23-0356

Provides information on using CMS.

• VM/XA System Product: CMS Primer, f "'~3-0368

Provides a tutorial approach to learning CMS.

• VM/XA System Product: System Product Editor User's Guide, SC23-0373

Provides information about using the System Product Editor.

114 VMfXA SP EXEC 2 Reference

c

(.

(

Application Programming: Using Programming Interfaces
• VM/XA System Product: CP Programming Services, SC23-0370

Provides reference and usage information for the following CP services and
macros:

The DIAGNOSE codes
- The IUCV macro
- CP system services.

• VM/XA System Product: CMS Application Program Development Guide,
SC23-0355

Helps you use the assembler language macros and functions of CMS in your
assembler language application programs. It describes how to manage storage,
perform I/O, handle interrupts, process abends, load and start programs, and
exploit 3 I-bit addressing. It also includes message repository information.

• VM/XA System Product: CMS Application Program Conversion Guide,
SC23-0403

Helps you convert your existing CMS assembler language application programs
so that they run on the CMS provided with VMfXA SP. It summarizes the dif­
ferences between the CMS provided with VM/XA SP and previous versions of
CMS, it describes the tasks you may need to perform in converting your pro­
grams, and it points you towards other books that can help you convert your
programs.

• VM/XA System Product: Application Development Guide for FORTRAN and
COBOL, SC23-0369

Provides information on how to use the CMS environment to develop and
execute FORTRAN and COBOL application programs. The book contains
such information as:

- How to use the System Product Editor to create an application program
- How to load, compile, and execute selected· supported licensed programs.

• VM/XA System Product: System Product Interpreter User's Guide, SC23-0375

Provides information about using the System Product Interpreter.

Diagnosis: Understanding System Design
• VM/XA System Product: Diagnosis Guide, LY27-8056

Provides diagnostic information. It describes how to locate problems within the
VM/XA SP control program, and how to describe and report problems to IB_.f
support personnel. The diagnosis reference publications describe how the system
works. You should use them as supplements to this book.

• VM/XA System Product: CP Diagnosis Reference, L Y27-8054

Describes each of the major VMfXA SP control program facilities. Also con­
tains a module cross-reference list.

• VM/XA System Product: CMS Diagnosis Reference, LY27-8052

Describes each of the major conversational monitor system facilities.

• VM/XA System Product: CP Data Areas and Control Blocks, L Y27-8053

Lists the data areas and control blocks used by the VMfXA SP control program.

Bibliography 115

• VM/XA System Product: CMS Data Areas and Control Blocks, LY27-8051

Lists the data areas and control blocks used by CMS.

• VM/XA System Product: Dump Viewing Facility Operation Guide and Reference,
SC23-0359

Describes step-by-step procedures for using the dump viewing facility. The pub­
lication is also a reference for dump viewing facility commands and messages.

Reference: Retrieving Information Quickly
• VM/XA System Product: CP Command Reference, SC23-0358

Provides complete descriptions of the commands used to communicate with
VM(XA SP, including usage notes. The commands are in alphabetical order.

• VM/XA System Product: CMS Command Reference, SC23-0354

Provides complete descriptions of the commands used to communicate with the
CMS component of VM(XA SP. The commands are in alphabetical order.

• VM/XA System Product: Features Summary, LY27-8058

Provides a comprehensive survey of VM(XA SP at a higher level than the
VM/XA SP CP Diagnosis Reference. Topics cover such areas as:

Supported features, hardware, and operating systems
CP-owned direct access storage, CP virtual storage, and real storage organ­
ization
Virtual machine management
Real machine management
Multiple preferred guest support.

• VM/XA System Product: System Messages and Codes Reference, SC23-0376

Contains all the system messages generated by VM/XA SP (both the CP and
CMS components). For each message, the publication provides:

The message number
The message text
An explanation of why the message was issued
System action
Recommended operator action (if any)
Recommended user action (if any)
Return code (if any).

• VM/XA System Product: CMS Application Program Development Reference,
SC23-0402

Describes the CMS programming interface. It includes descriptions of the CMS
macros, DOS macros, and external-use control blocks.

The publication also documents all abend codes and wait state codes, as well as
the reason for each code and the recommended action.

• VM/XA System Product: Quick Reference, SX23-0391

Shows only the command syntax of all the VM/XA SP commands. The com­
mands summarized in this publication are described in detail in the VM/XA
System Product: CP Command Reference, the VM/XA System Product: CMS
Command Reference, and the VM/XA System Product: Dump Viewing Facility
Operation Guide and Reference.

116 VM/XA SP EXEC 2 Reference

------""---

CO' ,

" /

(

(

(/

~--~---------~~----------------

• VM/XA System Product: System Product Editor Command and Macro Reference,
SC23-0372

Describes the system product editor commands, in alphabetical order.

• VM/XA System Product: System Product Interpreter Reference, SC23-0374

Describes the system product interpreter control words, in alphabetical order.

• VMjXA SP EXEC 2 Reference, SC23-0361

Describes the EXEC 2 control words, in alphabetical order.

• VM/XA System Product: Library Guide, Glossary, and Master Index, GC23-0367

Provides an overview of the library's structure, a glossary, and a means for
directly locating specific information within a manual or manuals.

• VM/XA System Product: CMS Primer Summary of Commands, SC23-0421

Contains summary information about commands described in the VM/XA
System Product: CMS Primer.

Bibliography 117

o

\ I
~". 7-1

/ '\

(

(

(

(._-.
. ,

.... /

Index

Special Characters
& 5
&0 5
&ARGS EXEC2 control statements 5, 9

embedded blanks 61
&ARGSTRING EXEC2 control statement 5, 73

embedded blanks 61
&BEGPRINT EXEC2 control statement 10

truncation column 10, 64
&BEGSTACK EXEC2 control statement 11

first-inJfirst-out (FIFO) II
last-inJfirst-out (LIFO) 11
truncation column 11, 64

&BEGTYPE EXEC2 control statement 10
truncation column 10,64

&BLANK EXEC2 control statement 6
embedded blanks 61

&BUFFER EXEC2 control statement 13
&CALL EXEC2 control statement 14

label search 62
&CASE EXEC2 control statement 16
&CMDSTRING 6, 73
&COMLINE 6
&COMMAND EXEC2 control statement 17

&PRESUME 17, 24
&CONCAT OF 38
&CONCATENATION OF 38
&DATATYPE OF 39
&DATE 6

evaluation 59
Greenwich Mean Time (GMT) 6

&DEPTH 6
&DIV OF 40
&DIVISION OF 40
&DUMP EXEC2 control statement 18
&ERROR 19
&EXIT 20
&FILEMODE 6
&FILENAME 6
&FILETYPE 6
&FROM 7
&GOTO 21

label search 62
&IF 22

comparands 22
comparatives 22
conditional statements 86

&INDEX 7
&LEFT OF 41

embedded blanks 61
&LENGTH OF 42
&LINE 7

&LINENUM 7
&LINK 7
&LITERAL OF 43

embedded blanks 61
&LOCA TlON OF 44
&LOOP 23,90

closing 62
label search 62

&MULT OF 45
&MULTlPLICATlON OF 45
&N 7
&PIECE OF 46
&POSITION OF 47
&PRESUME 24

&COMMAND 17, 24
&SUBCOMMAND 24, 31

&PRINT 25
&RANGEOF 48

embedded blanks 61
&RC 7
&READ 26

&TRUNC 27, 35
ARGS 26
embedded blanks 61
examples 92
n,l,· 26
STRING 26
VARS 26

&RETCODE 7
&RETURN 28
&RIGHT OF 49

embedded blanks 61
&SKIP 29
&STACK 30

first-in/first-out (FIFO) 30
last-in/first-out (LIFO) 30

&STRING OF 50
embedded blanks 61

&SUBCOMMAND 31
&PRESUME 24, 31

&SUBSTR OF 46
&TIME 8

evaluation 59
Greenwich Mean Time (GMT) 8

&TRACE 32

• 33
ALL 33,63
ERR 32
example 63
OFF 33
ON 32
output-action 33

&TRANS OF 51
embedded blanks 61

Index 119

&TRANS OF (continued)
rules for modification 51

&TRANSLATION OF 51
embedded blanks 61
rules for modification 51

&TRIM OF 52
&TRUNC 27,35

truncation column 35, 64
&TYPE 25
&TYPE OF 39
&UPPER 36
&WORDOF53
&1 &2 ... 5

&ARGS 5, 9, 26
&READ ARGS 5, 26
arguments 2, 5,9,86
embedded blanks 61

"in memory files" 76

A
arguments 86 .

&1 &2 ... 2,5,9
assembler language programs 75-78

SVC 202 calls 75, 77
tokenized plist 75
untokenized plist 75

assigning arguments 9
assignment statements

description of 1,59,88
example 59,88

assignments
See ,assignment statements

B
BNF syntax 65

C
calling subroutines 14
case translation 16, 36
CHAR data type 39
CMDCALL 73
CMS (Conversational Monitor System) 73-81
CMS (Conversational Monitor System) limits 73

&EXIT return codes 74
&TRACE 73
console 74
console stack 74
filename 74
line length 73
lookaside buffer 74
NUMERIC OVERFLOW 74
numeric values 74
printed line length 74
statement length 73
word length 73

120 VM/XA SP EXEC 2 Reference

column location 44
combining words 38, 50
commands I, 2, 85
comments 1
concatenating words 38
conditional statements 86

&IF control statement 22,60
&LOOP control statement 60
example 60
syntax 60

console stack
See program stack

control statements
&ARGS 9
&BEGPRINT 10
&BEGSTACK 11
&BEGTYPE 10
&BUFFER 13
&CALL 14
&CASE 16
&COMMAND 17
&DUMP 18
&ERROR 19
&EXIT 20
&GOTO 21
&IF 22
&LOOP 23
&PRESUME 24
&PRINT 25
&READ 26
&RETURN 28
&SKIP 29
&STACK 30
&SUBCOMMAND 31
&TRACE 32
&TRUNC 35
&TYPE 25
&UPPER 36
description of I, 3, 8

control words
examples 2

conventions iv
Conversational Monitor System (CMS) 73-81
Conversational Monitor System (CMS) limits 73

&EXIT return codes 74
&TRACE 73
console 74
console stack 74
filename 74
line length 73
lookaside buffer 74
NUMERIC OVERFLOW 74
numeric values 74
printed line length 74
statement length 73
word length 73

current line positioning 105

\'4,.. .. /

("'"
J

(

(

D
data type of a word 39
delimiters

parenthesis 5
space 5

dividing numbers 40
DMSEXE085E 69
DMSEXEl75E 69
DMSEXE255T 69
documentation 111

E
editor macros 78, 95-97

executing 78
filetype 78
implementation 95

embedded blanks
discussion of 61
examples 61, 97
exceptions 61
handling 97
variables 61

errors
DMSEXE085E 69
DMSEXE175E 69
DMSEXE255T 69
messages 69
setting the action taken 19

evaluation of &DATE and &TIME 59
examples

&BLANK 61
assembler language programs 75-78
assignment statement 59
conditional statements 60
control words 2
generating EXEC 2 variable names 89
labels 2
leading zeros 60
name substitution 57
plus signs 60
programming techniques 107-110
SVC 202 75
tokenized plist 75
untokenized plist 75
user-defined functions 54
variable 2

exceptions
embedded blanks 61
EXEC 2 words 63

EXEC 2 errors 69
EXEC 2 files

filename, valid character for 74
filetype I, 78
format 1
identifying 73
recursive execution 58
sample of 71

EXEC 2 files (continued)
terminating 59

EXEC 2 in CMS 73-81
assembler language programs 75-78
EXECCOMM 78
identifying EXEC 2 files 73
limits in eMS 73
XEDIT macros 78

EXEC 2 interpreter
as a macro processor 77
invoked 1

EXEC 2 language
EXEC 2 parameter lists 75
EXEC 2 programs

assembler language programs 75-78
calling 73
EXEC 2 file
EXEC 2 interpreter
executing 1
interaction with users 91

EXEC 2 statements
comment 1
executable statement

EXECCOMM 78
FETCH 74
length limit for external names of shared

variables 74
length limit for values assigned by 74
sharing EXEC 2 variables with assembler

programs 78
STORE 74

EXECOS 74
executable statements

assignment statement
assignments 2
commands 1, 2
control statements 1, 3
description of 1
interpreting 3
null statement 1, 2
types 2

exit from an EXEC 2 file 20
extracting words from a string of words 53
extracting words from other words 46

F
FIFO (first-in/first-out) 30
function invocation

predefined function 37
user-defined functions 54

functions
predefined 37-53
user-defined 54

Index 121

interpreting executable statements 3
introduction 1
issuing commpnds to the given subcommand environ­

ment 24,31
issuing commands to the host system 17, 24

J
justified words

left-justified 41
right-justified 49

L
label

description of 87
example 2
performance 62
search 62

leading zeros
example 60
removing 60

left-justified 41
length limits 73
length of words, finding 42
LIFO (last-in/first-out) 30
limits for EXEC 2 files in CMS 73
literal string, evaluating 43
locating

a word in a string of words 47
starting column of a word in another word 44

lookaside buffer 13
looping 23, 61

M
messages

DMSEXE085E 69
DMSEXE175E 69
DMSEXE255T 69
return codes 69

mixed case data 16, 94, 97
multiplying numbers 45

N
name substitution

examples 57
steps 57

notational conventions iv
notes on EXEC 2 57-64

&LOOP statement 61
&TRACE ALL 63
assignment statement 59
closing loops 62
conditional phrases 60
embedded blanks 61
evaluation of &DA TE and &TIME 59

122 VM/XA SP EXEC 2 Reference

notes on EXEC 2 (continued)
label search 62
leading zeros 60
numbers 60
plus signs 60
program stack 59
recursive execution 58
reserved words 63
termination 59
truncation column 64

null statement 1, 2
NUM data type 39
numbers

p

dividing 40
mUltiplying 45
range 74
size and treatment 60

parameter list 75
passing arguments 9
plus signs

example 60
removing 60

position of a word in a string of words 47
predefined functions 37-53

&CONCAT OF 38
&CONCATENATION OF 38
&DAT ATYPE OF 39
&DIVOF 40
&DIVISION OF 40
&LEFTOF 41
&LENGTH OF 42
&LITERAL OF 43
&LOCATION OF 44
&MULTOF 45
&MUL TIPLICA TION OF 45
&PIECE OF 46
&POSITION OF 47
&RANGEOF 48
&RIGHTOF 49
&STRING OF 50
&SUBSTR OF 46
&TRANS OF 51
&TRANSLATION OF 51
&TRIM OF 52
&TYPEOF 39
&WORD OF 53
format of 37
reserved words 63

predefined variables
& 5
&0 5
&ARGSTRING 5
&BLANK 6
&CMDSTRING 6
&COMLINE 6

f\
o

\"-.

(

(.

(

predefined variables (continued)
&DATE 6
&DEPTH 6
&FILEMODE 6
&FILENAME 6
&FILETYPE 6
&FROM 7
&INDEX 7
&LINE 7
&LINENUM 7
&LINK 7
&N 7
&RC 7
&RETCODE 7
&TlME 8
&1 &2... 2,5
description of 85
reserved words 63

prefix macros
current line positioning 105
description of 103
sample of 104
writing 103

Primer 83
&CASE control statement 94
&LOOP control statement 90
assignment statements 88
conditional statements 86
embedded blanks 97
file arguments 86
function of EXEC 2 language 83
implementation of editor macros 95
labels 87
looping 90
return codes 85
translating to uppercase 94
user interaction 91
variables

evaluation 88
names 84

printing lines 10, 18, 25
program stack

&BEGST ACK II
&STACK 30
description of 59
using 59

programming techniques
examples 107-110

publications III

R
reading lines 26
recursive execution 58
removing plus signs and leading zeros 60
repeating lines 23
reserved words

predefined functions 63
predefined variables 63

return codes 69, 85-86
right-justified 49

S
sample EXEC 2 files 71
searching for a word in a string or words 47
searching for a word in another word 44
sharing EXEC 2 variables with assembler language pro-

grams 78
skipping lines 29
stacking lines 11, 30
stopping execution 20
subroutines

calling 14
returning 28

substituting variables 57
SVC 202 call

example 75
SUBCOM function 77

syntax

T

BNF description 65
conditional statements 60
predefined functions 37
user-defined functions 54

terminating EXEC 2 file 59
tokenized plist

example 75
tracing 32

commands 32
commands that yield nonzero return codes 32
every executable statement 33

transferring control 14,21,28,29
translating characters to other characters 51
translating to .uppercase 16, 36, 73, 94
truncating

limits 73
lines 35,64

types of executable statements
. assignments 1, 2

commands 1, 2
control statements 1, 3
null statement 1, 2

typing lines 10, 18,25

Index 123

U
UNTIL keyword 23
untokenized plist

"in-memory fIle" 75
example 75

uppercase data 16, 73, 94
user-defined functions

description of 54
examples 54
form of 54
invocation 54
label search 62
returning to 28

user interaction 91-94

V
variables

embedded blanks 61
evaluation 88
examples 2
EXEC 2 variables 85
names 84,89

W
WHILE keyword 23
word

X

definition of
reserved 63

XEDIT macros in EXEC 2
avoiding name conflicts 98
creating 95
defining 78,95
executing 78
fIletype 78
sample XEDIT macro 98
using 96
XEDIT EXTRACT subcommand 103

XEDIT prefix macros
current line positioning 105
description of 103
sample of 104
writing 103

124 VM/XA SP EXEC 2 Reference

c

c

E
L

• 0
C-
I/) 1/1
E-
D.:E
':i-

(- C"c
I/) I/)

1/1
01 0
E--L I/)
0D.
1/1 C
.1-
0-0 E I/)

E
~E
-::I

EOI
o L
-CD
::I.J:
c-

(-' 0

:EL
'i 0

1/1 ~ E+:
11)1/1
-c:
.0 CD
01/1
LI
D.CD
Q) L
1/1 ::I
::I =:
C I/)
U L

D.
c:
C I/)

(- U 1/1
::I

1/1
CD Q)
-1/1
D.C
C CD --VIa..

iD -0
z

Virtual Machine
Extended Architecture
System Product
Release 1 and Release 2

EXEC 2 Reference

Order No. SC23-0361-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers,
and operators of IBM systems. You may use this form to communicate your comments about this
publication, its organization, or subject matter, with the understanding that IBM may use or
distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you. Your comments will be sent to the author's department for whatever review and
action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to your
IBM representative or to the IBM branch office serving your locality.

How did you use this publication?

] As an introduction] As a text (student)

] As a reference manual] As a text (instructor)

] For another purpose (explain)

Is there anything you especially like or dislike about the organization, presentation, or writing in
this manual? Helpful comments include general usefulness of the book; possible additions, deletions,
and clarifications; specific errors and omissions.

Page Number: Comment:

What is your occupation?

Newsletter number of latest Technical Newsletter (if any) concerning this publication:

If you wish a reply, give your name and address:

IBM branch office serving you

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail directly to the
address in the Edition Notice on the back of the title page.)

SC23-0361-0

Reader's Comment Form

Fold and Tapa Please Do Not Staple

II I I II

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 52Q MS 458
Neighborhood Road
Kingston, New York 12401

Fold and Tapa

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

1 ••• 11 •• 1.1.1 •• 111 •••••• 111.1 •• 1.1 •• 1 •• 1 •••• 11.1.1.1
I
I
I
I '" ... I

Fold and Tape Please Do Not Staple Fold and Tape I
I
I
I
I
I "tI

I ~
I ~
I JTI
I 0

I
....
2:

I c
I VI

l>

VI
('")
N
W

c

If-""
''-oj

--...- ----- ~O - - - ~--~~. - -.. ---- - - ---------_~_'f_

---- ------ --------

I
(;)

E I..
• 0 e-

III 1/1

E'-
a.:E
3-

(
tTC
III III

1/1

g'o .---I.. III
00.
1/1 C
1.-
'0 "0
E III

E
~E
-:::J
~CI
01..
-III
:::I.e
c-o (-- :EI..
'i 0

III
1/1 >
E+=
III 1/1 -c:
.£llll
01/1
1..1
0. 111
CD I..
1/1 :::I
:::I :::
C III () I..

a.
c:
C III

(
() 1/1

:::J
1/1
III CD
-1/1
a.c
C III --(/)~

Ii -0
z

Virtual Machine!
Extended Architecture
System Product
Release 1 and Release 2

SYSTEM
USABILITY
COMMENTS

Please use this form to communicate your comments about the usability of the VM system, with the
understanding that IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

Your comments will be sent to the Product Usability Department for appropriate review and action,
if any. Comments may be written in your own language; English is not required.

System Information

If you answer No, please explain .
Yes No

• Does the VM system meet your needs?
• Is it easy to use and understand?
• Are the commands/messages easy to understand and use?

o
o
o
o

o
o
o
o • Are the HELP facilities appropriate?

Customer Information

• What is your occupation? --• How long have you been in this occupation?

• How long have you been using VM?

• Indicate the tasks your job involves:
Evaluation 0
Installation 0
Customization 0
Diagnosis 0
Other 0

Your Comments:

We appreciate your comments.

--
--

Planning
Administration
Operations
End Use

o
o
o
o

If you would like a reply, please supply your name and address on the reverse side of this form. No
postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be
happy to forward your comments or you may mail directly to the address in the Edition Notice on the
back of the title page.)

System Usability Comments

Fold and Tape Please Do Not Staple Fold and Tape

...

II I I I

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 49MA MS 925
Neighborhood Road
Kingston, New York 12401

NO POSTAGE'
NECESSARY
IF MAILED

INTHE
UNITED STATES

I
1 ••• 11 •• 1.1.1 •• 11111.11.111.1111.1111111.11.11.1.1.1 I•.. I

Fold and Tape Please Do Not Staple Fold and Tape I

If you would like a reply, please print:

Your Name ---
Company Name Department -------------------------Street Address -----------------------------------City --

I
I
I
I
I
I
I
I
I
I
I
I

......
z
c

State Zip Code --------------------- ------------
IBM Branch Office serving you

I Vl

I :D

--...- .------ ------- -. ---- - - ------ ------" -®

/

/ '\

'\

/

f~
(~ .. '

~

--------~.-.--.---.~---

E
L-

·0 "E
III III
E-
CL;:

"5-
tTC

(III III
III

g'O .---L- III
°CL
1/1 C
1.-
C"C
EID

E
.2E
-::J

~Cl
o L-
-III
::J.s;.
C-O

(~
;:L-

"i 0
III

III >
E=-=
III III -r: .0 111
0111
L-I
CL ID
ID L-
III ::J
::J :::
C III
() L-

CL
r:
C III
() III

(
:s

1/1
ID ID
-1/1
CLC
C ID --Cf)Q..

Qj -0
Z

(,

Virtual Machinel
Extended Architecture
System Product
Release 1 and Release 2

SYSTEM
USABILITY
COMMENTS

Please use this form to communicate your comments about the usability of the VM system, with the
understanding that IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

Your comments will be sent to the Product Usability Department for appropriate review and action,
if any. Comments may be written in your own language; English is not required.

System Information

If you answer No, please explain.
Yes No

• Does the VM system meet your needs?
• Is it easy to use and understand?
• Are the commands/messages easy to understand and use?

o
o
o
o

o
o
o
o • Are the HELP facilities appropriate?

Customer Information

• What is your occupation? --• How long have you been in this occupation?

• How long have you been using VM?

• Indicate the tasks your job involves:
Evaluation 0
Installation 0
Customization 0
Diagnosis 0
Other 0

Your Comments:

We appreciate your comments.

--

Planning
Administration
Operations
End Use

o
o
o
o

If you would like a reply, please supply your name and address on the reverse side of this form. No
postage stamp necessary if mailed in the U.S.A. (Elsewhere, an mM office or representative will be
happy to forward your comments or you may mail directly to the address in the Edition Notice on the
back of the title page.)

----------~------~--- .. --.-. -

System Usability Comments

Fold and Tape Please Do Not Staple Fold and Tape

.......................... " "

Fold and Tape

IIII
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 49MA MS 925
Neighborhood Road
Kingston, New York 12401

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

1'1111 •• 1.1.1 •• 111"'11.111.1 •• 1.1 •• 1 •• 1 •••• 11.1.1.1

Please Do Not Staple Fold and Tape

If you would like a reply, please print:

Your Name ---Company Name Department -------------------------Street Address -----------------------------------City --State Zip Code --------------------- ------------
IBM Branch Office serving you -----------------------------------

--...- ------ - ------- ~ ---- -- ----------~-,-
®

.-~- ----------_._._--

"0
::0
:z
-I
ITI
C

.....
:z
c
VI

»

o

