Virtual Machlne/Extended Archltecture*"
System Product

Group Control System Command
and Macro Reference R

VM/XA™SP Release 2

SC23-0433-0

Virtual Machine/Extended Architecture™
System Product

Group Control System Command
and Macro Reference

VM/XA™SP Release 2

SC23-0433-0

First Edition (November 1988)

This edition applies to Release 2 of the IBM Virtual Machine/Extended Architecture System Product
(VM/XA SP) Licensed Program 5664-308. Changes are made periodically to the information herein; before
using this publication in connection with the operation of IBM systems, consult the latest IBM System/370,
30xx, 4300, and 9370 Processors Bibliography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed program in
this publication is not intended to state or imply that only IBM’s licensed program may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below. Requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for readers’ comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to International Business Machines, Department 52Q/MS 458, Neighborhood
Road, Kingston, N.Y. 12401. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

Virtual Machine/Extended Architecture and VM /XA are trademarks of the International Business Machines
Corporation.

© Copyright International Business Machines Corporation 1988

Preface

Purpose

This publication is a reference manual; it contains detailed information on the
purpose and use of all Group Control System (GCS) commands and macro
instructions.

This publication presents the format, syntax rules, and parameter descriptions, plus
factual and feedback information on all GCS commands and macro instructions. In
special cases, this book also gives an example of exactly how a programmer might
issue a command or macro instruction.

Audience

This publication is for those who write programs to run under GCS; this includes
system and application programmers in both customer and IBM development
environments.

Related Publications
See the Bibliography at the back of this publication.

Preface iii

AT

- ™,

Contents

Chapter 1. Introduction, 1
A Quick Definition 2
The Whole Picture At AGlance 3
A Scenario for GCS 5
Linkage Registers 10
Establishing a Base Register 10
Providing a Save Area 11
Summary of Conventions for Passing and Receiving Control 12
GCS Macro Instruction Formats 13
GCS Macro Formatting Conventions 14
Parameter Notation Conventions 17
Chapter 2. Group Control System (GCS) Commands 19
GCS Commands 20
Console and Command Support 20
ACCESS . . e 23
DLBL . . 25
ETRACE e 31
FILEDEF 34
GDUMP . . 38
GLOBAL e 41
HX 42
ITRACE e 43
LOADCMD e 46
OSRUN . . . 50
QUERY . . . e S1
RELEASE e 57
REPLY . . . 58
SET . . 60
Chapter 3. GCS Macro Overview R 63
Multitasking 64
Chapter 4. Task Management Service Macros 83
ABEND 84
ATTACH e 86
CHAP . . e 94
DEQ . . . 96
DETACH 100
ENQ . . . e 102
ESTAE 108
IHASDWA e 114
POST . . e 116
SETRP . . . 119
WAIT 122
Chapter 5. Program Management Service Macros 125
BLDL . . e 126
CALL . . e 130
DELETE 133
IDENTIFY e 135
LINK . 137

Contents V

LOAD . . e 142

SAVE 147 /(

SYNCH . . . e 149 e

XCTL e 152

Chapter 6. Timer Service Macros 157

STIMER e 158

TIME . e 161

TTIMER . . 163

Chapter 7. Console I/O Service Macros 165

WTO . e 166

WTOR . . . 168

Chapter 8. Unauthorized GCS Service Macros 171

AUTHCALL e 172

CMDSI . 175 -

EXECCOMM 179

GENIO . . . e 181

Chapter 9. Authorized GCS Service Macros 191

AUTHNAME 192

LOCKWD . e e 196

MACHEXIT e 199

PGLOCK e 204

PGULOCK e 206

SCHEDEX 208 N

TASKEXIT e 211 s

VALIDATE . . . e 216

Chapter 10. Storage Management Service Macros 219

FREEMAIN e 220

GETMAIN . . . e 225

Chapter 11. Serviceability Macros 233

GTRACE . . . e 234 ST

SDUMP . . . 238 i_i

Chapter 12. QSAM and BSAM Data Management Service Macros 243

CHECK (BSAM) 244

CLOSE (BSAM/QSAM) e 246

DCB (BSAM/QSAM) 249

DCBD (BSAM/QSAM) 256

GET (QSAM) 258

NOTE (BSAM) e 260

OPEN (BSAM/QSAM) e 262

POINT (BSAM) e 265

PUT (QSAM) . . . 267

READ (BSAM) 269

SYNADAF (BSAM/QSAM) e 272

SYNADRLS (BSAM/QSAM) e 274

WRITE (BSAM) 276 £
L

Chapter 13. VSAM Data Management Service Macros e 279

Using VSAM under GCS 280

vi VM/XA SP GCS Command and Macro Reference

ACB . 295
CHECK 302
CLOSE 304
ENDREQ 307
ERASE e 309
EXLST . . e 311
GENCB e 315
GENCB e 323
GENCB 327
GET . . . 334
MODCB 336
MODCB 344
MODCB 347
OPEN . . . e 354
POINT 357
PUT . . e 359
RPL . e 361
SHOWCB e 367
SHOWCB 372
SHOWCB 375
TESTCB 378
TESTCB 386
TESTCB e 390
Chapter 14. TUCYV Service Macroes 397
TIUCVCOM . . 398
TUCVINI . .. 413
Chapter 15. Build Macros L 421
AUTHUSER 422
CONFIG 424
CONTENTS e 427
SEGMENT 430
Chapter 16. Data Areas Macros 433
CVT 434
FLS 436
GCSLEVEL 438
Appendix. The System Product Interpreter 439
The System Product Interpreter in the GCS Environment 440
Glossary 447
Bibliography 453
VM/XA System Product Microfiche 453
VM/XA System Product Publications 453
Non-VM/XA System Product Publications 453
Index 457

Contents Vil

Chapter 1. Introduction

A Quick Definition 2
The Whole Picture At A Glance e 3
A Scenario for GCS 5
Linkage Registers 10
Establishing a Base Register e 10
Providing a Save Area 11
Summary of Conventions for Passing and Receiving Control 12
GCS Macro Instruction Formats 13
GCS Macro Formatting Conventions 14
Parameter Notation Conventions 17

Chapter 1. Introduction 1

A Quick Definition
The Group Control System (GCS) is:

¢ A component of the Virtual Machine/Extended Architecture™ System Product
(VM/XA™ SP)

¢ A virtual machine supervisor

¢ An interface between program products, like Virtual Telecommunications Access
Methods (VTAM) and Remote Spooling Communications Subsystem (RSCS),
and the system’s control program (CP) (Figure 1).

Program Products 1y
(VTAM, RSCS, NCCF, NetView,...)

Group Control System

Control
Program

SNA Network

Figure 1. GCS, an Interface between Program Products and CP

GCS’s specific function for VM/XA SP is to support a standalone Virtual
Machine/System Network Architecture (VM/SNA) network — a network that
functions as part of your VM/XA SP system without help from a second operating
system. This System Network Architecture (SNA) network relies on ACF/VTAM,
VSCS (VTAM SNA Console Support), and other network applications to manage its
collection of links between terminals, controllers, and processors. In-turn,
ACF/VTAM, VSCS, and the others rely on GCS to provide services for them. This
arrangement eliminates your need for VM/VCNA (VTAM Communications
Network Application) and a second operating system like VS1 or VSE.

Virtual Machine/Extended Architecture, VM/XA, and NetView are trademarks of the International Business
Machines Corporation.

2 VM/XA SP GCS Command and Macro Reference

£
\

The Whole Picture At A Glance

Figure 2 on page 4 shows a conceptual view of how the GCS can fit into your
VM/XA SP environment. Familiar elements in the picture include:

e CP, at the bottom, a base for the rest of the system to build on
e Virtual machines, at the top, running various applications

¢ Conversational monitor system (CMS), at the left, an interactive VM/XA SP
component that runs on CP

¢ A route to the SNA network, lower right, a network that connects virtual
machines with remote consoles. (This is just one application of GCS.)

GCS, with its common and private areas, forms a base for a particular group of
virtual machines. It runs parallel to CMS as a VM/XA SP component on CP.

GCS may appear to offer some of the services offered by IBM’s Multiple Virtual
System (MVS). Granted, there are similarities between the two, but there are also
some very significant differences in function and use. If an application is to run
successfully under GCS, it must conform to GCS as discussed in this book.

Chapter 1. Introduction

3

A

R
A
c
F
/
%
T
A
M
R
RSCS E
NetView C
o]
v
E
R
Y
Shared ACF/VTAM
N /’(
GCS Common
cMS
Virtual
Machine
#1
GCS GCS GCS GCS GCS ‘, :
Private Private Private Private Private ‘\%
TO SNA NETWORK
Figure 2. GCS in VM/XA SP
This diagram illustrates only the conceptual relationships among the applications
and saved segments in storage. Actual storage layout is different for every .
installation. The application space might even include two or more separate areas. { ,
rd

4 VM/XA SP GCS Command and Macro Reference

A Scenario for GCS

The following scenario shows how GCS helps support standalone SNA/CCS
communications.

First, you log on from a SNA/CCS terminal and IPL CMS (Figure 3). Neither you,
as a user, nor CMS needs to know that it is a SNA/CCS terminal.

(Virtual Machine)

(SNA Terminal)

Figure 3. Initializing CMS from a SNA/CCS Terminal. On the right, you IPL CMS from
your virtual console, a SNA/CCS terminal. On the left, CMS begins running in
your virtual machine.

CMS responds to your commands. Being an interactive system, it communicates
back and forth with you via this terminal. The information exchange seems to
happen easily enough. But because you have a SNA/CCS terminal, the path from
your console to CMS is a complex one, involving GCS, ACF/VTAM, and
SNA/CCS somewhere in between.

Chapter 1. Introduction S

The Path between System and Console N
Let’s say CMS begins communicating with your console by issuing: £

Start 1/0 (SI0)
Or, a CMS application like XEDIT issues:
DIAGNOSE code X'58'

The instruction leaves your virtual machine, and CP intercepts it (Figure 4).

AE

XEDIT

Diag 58

Control Program

Figure 4. CP Intercepts Instructions from the Virtual Machine

After decoding and extracting the instruction’s pertinent information, CP prepares to
send data out on the network. A component in CP called CCS does the actual N
sending. :

From CCS, the data passes to a virtual machine running VSCS. (In the Figure 5
example, the VTAM machine runs VSCS.!) The transfer from CCS to VSCS takes
place through another CP facility, Inter-User Communications Vehicle JUCYV).

1 VSCS also may run in its own virtual machine.

6 VM/XA SP GCS Command and Macro Reference

(Virtual Machine #2)

(Virtual Machine #1)

Shared
VTAM N\

GCS Supervisor &
Common Storage

GCS
Private

Figure 5. Transferring Data to the Machine Running VSCS. Using IUCV, CCS sends
information to the virtual machine where VSCS is running. In this case, it is the
VTAM machine.

Figure 5 shows the VTAM virtual machine running on GCS. In a VM/XA SP
system with SNA/CCS terminals, this machine must be running ACF/VTAM
Version 3 because:

e ACF/VTAM allows a VSCS component to run in the VTAM virtual machine
(as in this example).

e ACF/VTAM provides a SHARED VTAM interface that lets all other machines
running in this GCS group communicate with ACF/VTAM and the rest of the

C network.

Chapter 1. Introduction 7

Figure 6 shows what happens after CCS sends data to the VTAM machine. VSCS
receives it, processes it into a physical screen image, and issues a SEND macro. The
SEND macro finally gives control to VTAM. '

Shared VTAM

Figure 6. Path of Data Moving through the VTAM Machine. The VSCS component
receives data from CCS, processes it, and sends it into VTAM’s control.

From VTAM, the information travels toward your terminal (Figure 7 on page 9).
Output instructions are relayed from VTAM to GCS, from GCS to CP, and from
CP to the network or local control unit. The control unit has charge of sending the
data through the SNA network to your virtual console.

8 VM/XA SP GCS Command and Macro Reference

(VTAM Virtual Machine)

GCS
Common

GCS
Private

Figure 7. Data Traveling from VTAM to the Virtual Console.

out to the SNA network and finally to the console.

(SNA Terminal/Virtual Console)

Local
or Network
Control
Unit

VTAM, at the top, sends data to GCS. GCS relays it

Chapter 1. Introduction

9

Linkage Registers

The general registers 0, 1, 13, 14, and 15 are also known as linkage registers. By

convention, each register has a specific purpose as follows:

Register

Conventional Purpose

Oand 1

Used to pass parameters to the supervisor or to a called
program. Some system macro instructions expand to
include instructions that load a value into one or both of
these registers. Others load the address of a parameter
list into register 1. At times, the supervisor will load a
parameter value into register 1 and pass it to a program
that you have called.

13

Used to hold the address of the register save area
provided by the calling program.

14

Used to hold the return address within the calling
program. That is, the address of the executable
statement just after the instruction that passed control to
another program. Once the calling program regains
control, it is at this point that execution resumes.

15

Used to hold the entry point address of the called
program. Some macro instructions expand to include
instructions that load a parameter list address into
register 15, which is then passed to the supervisor.
Programs also use register 15 to pass return codes to the
programs that called them.

Establishing a Base Register

In VM/XA SP, addresses are resolved by adding a displacement to a base address.
Therefore, you must establish a base register using one of the registers 2 through 12
or register 15. If your program does not use GCS macro instructions and does not
pass control to another program, then you can establish a base register using the
entry point address contained in register 15. Otherwise, since both the supervisor
and your program may use register 15 for other purposes, you must establish a base
using one of the registers 2 through 12. This should be done immediately after

saving the calling program’s registers.

Note: Choose your base register carefully. Remember that some instructions (GCS
macro instructions included) change the contents of some registers.

10 VM/XA SP GCS Command and Macro Reference

AT T

M

Providing a Save Area

If one of your programs passes control to another, then the former must provide a
save area in which the contents of its registers are saved by the program it calls. A
register save area is eighteen fullwords long, beginning on a fullword boundary. The
following table describes the save area’s structure and content. B

Word | Contents

0 Used by PL/I, if applicable. Otherwise, unused.

1 If applicable, the address of the calling program’s register
save area.

2 The address of the current program’s next register save area.

3 The contents of register 14 (the return address within the
calling program).

4 The contents of register 15 (the address of the called
program).

S The contents of register 0.

6 The contents of register 1.

7 The contents of register 2.

8 The contents of register 3.

9 The contents of register 4.

10 The contents of register 5.

11 The contents of register 6.

12 The contents of register 7.

13 The contents of register 8.

14 The contents of register 9.

15 The contents of register 10.

16 The contents of register 11.

17 The contents of register 12.

A called program can save the registers belonging to the program that called it by
issuing either the store multiple (STM) assembler instruction or the SAVE macro
instruction. The

STM 14,12,12(13)

assembler instruction places the contents of all registers, except register 13, in the
proper words of the save area. Refer to “SAVE” on page 147 for more detailed
information on the SAVE macro.

Chapter 1. Introduction 11

An Example of Chaining Save Areas in a Nonreenterable Program
PROGRAM1 CSECT
STM 14,12,12(13)
LR 12,15
USING PROGRAMI,12
ST 13,SAVEAREA+4

LR 2,13
LA 13,SAVEAREA
ST 13,8(2)

.

SAVEAREA DC 18F'0'

The program uses the STM instruction to store the contents of the registers in the
save area provided by the calling program. Then, the program establishes register 12
as its base register. The program goes on to save the address of the calling
program’s save area in the second word of another save area that it established via
the DC instruction. Then, the program loads the address of the calling program’s
save area into register 2. Finally, it loads the address of the new save area into
register 13, then stores the same address in the third word of the calling program’s
save area.

An Example of Chaining Save Areas in a Reenterable Program
PROGRAM2 CSECT
SAVE (14,12)
LR 12,15
USING PROGRAMZ,12
GETMAIN R,LV=72

ST 13,4(1)
ST 1,8(13)
LR 13,1

This program uses the GCS SAVE macro instruction to save the contents of its
registers. (It could also have used an STM instruction.) The program loads the
entry point address into register 12, establishing it as the base register. It then issues
an unconditional GCS GETMAIN macro instruction, requesting the supervisor to
allocate 72 bytes of virtual storage for the save area from outside the program. The
supervisor returns the address of this 72-byte area in register 1. The program stores
the address of the old and new save areas in the customary locations and loads the
address of the new save area into register 13.

Summary of Conventions for Passing and Receiving Control

Before it passes control (return required), a calling program shouid:

Place the address of its register save area in register 13.

Place its return address in register 14.

[]

Place the entry point address of the program it wishes to call in register 15.

®

If applicable, place the address of a parameter list in register 1.

12 VM/XA SP GCS Command and Macro Reference

\‘k,/

Before it passes control (return not required), a calling program should:

(-

Restore to registers 2 through 12 and register 14 the values that were present
when it received control.

Place the address of the save area provided by the program that called it in
register 13.

Place the entry point address of the program it wants to call in register 15.

As applicable, place the addresses of parameter lists in registers 0 and 1.

Immediately after receiving control, a called program should:

Save the contents of registers 0 through 12 and registers 14 and 15 in the save
area, whose address is in register 13.

Establish a base register.

Provide a save area of its own, unless of course it plans to call no other
program.

If it is a reentrant program, then it must obtain storage for its save area outside
of its own storage via the GETMAIN macro instruction. If it is a nonreentrant
program, then its save area can be located with the rest of its storage.

Store the save area addresses in the assigned locations.

Just before returning control, a called program shouid:

Restore to registers 0 through 12 and register 14 the values that were present
when it received control originally.

Place in register 13 the address of the save area belonging to the program to
which it is returning control.

If required, place the appropriate return code in register 15. Otherwise, restore
to register 15 its original value.

If it is a reenterable program that obtained storage for its save area via the
GETMAIN macro instruction, then it must release that storage via the
FREEMAIN instruction.

GCS Macro Instruction Formats

Generally, there are four possible formats in which macro instructions are available,
the:2

Standard Format
List Format

List Address Format
Execute Format.

Note: Not every GCS macro instruction is available in each of these formats.

C

However, each is available in a standard format. Several are also available in
list and execute formats. A few are available in all four formats.

2 The VSAM macro instructions listed in this book differ from this somewhat. Before you use these instructions, be
certain to review the entry titled “Using VSAM under GCS” on page 280.

Chapter 1. Introduction 13

The entry in this book devoted to each macro instruction tells you exactly which of
these formats applies and provides more detailed information. In general, the A
significance of each format is as follows: . ' N

The Standard Format
Generates an in-line parameter list to the macro. It also generates non-reentrant
code that executes the function as part of the macro expansion.

The List Format ,
Generates an in-line parameter list to the macro but generates no code that
executes the function.

The List Address Format
Generates no code that executes the function. However, it does generate
executable code that moves the parameter values that you specify in the
instruction to a parameter list at some designated address.

The Execute Format
Generates code that executes the function. Optionally, it generates executable
code that moves parameter values into a parameter list. The execute format
requires that you specify the address of a parameter list that you previously
created.

GCS Macro Formatting Conventions

You will notice that each macro instruction entry is accompanied by a box that
defines the proper format of the instruction.

As you examine these format boxes more closely, the first thing that you notice is ‘
the lack of blank spaces in the instructions. Generally speaking, there are only two S
places where a blank space can appear in a macro instruction. These are between

the label and the instruction, and between the instruction and its first parameter.

Moreover, you probably notice that the parameters themselves are not delimited by

blanks, but by commas. In these respects, macro instructions resemble assembler

language instructions rather closely.

Let us illustrate this by looking at a fictitious macro instruction called DUCK. The
DUCK macro instruction takes three parameters: A, B, and C. And, like most SN
other instructions, an optional label can be applied. \k

Its format box looks like this:

[1abel] DUCK A,B,C=some number

Therefore, you might code something like this:
QUACK DUCK A,B,C=7

You coded the mnemonic label QUACK and left one blank space (though more
than one is permissible). Then, mindful that macro instructions cannot be
abbreviated, you followed with the full name of the macro itself, DUCK. You left
another blank space, though you could have left more than one, and followed with
the parameters. Notice that only commas delimit the parameters.

14 VM/XA SP GCS Command and Macro Reference

Few macro instructions are this trivial. Many instructions have parameters that are
optional. Whether you choose them sometimes depends on your own needs, and
sometimes on circumstances. Another fictitious macro instruction, GOOSE, has two
parameters, one of which is optional.

Its format box looks like this:

[1abel] GOOSE [A=some number,]B=some other number

You could code GOOSE like this:
GOOSE B=77

This is perfectly valid since the brackets ([]) around the A parameter indicate that
you can omit it if you choose. Note that you did not supply a comma before the B
parameter, since there is no other parameter present from which to separate it.
Notice too that you did not supply a label this time.

You could also code GOOSE like this:

HONK GOOSE A=34,B=77

This time you supplied the A parameter because, for some reason, it suited your
purpose.

The format boxes of some macro instructions stack optional parameters in a list.

The fictitious HORSE macro format box looks like this:

[1abel] HORSE

Notice the large set of brackets around the C, D, and E parameters. These brackets
mean two things. First, all three of the parameters are optional. You can ignore the
bracketed list entirely, if it suits your purpose, or choose from the list. Second, if
you choose from the list, then you can choose either C, or D, or E. You cannot
choose two or three of them, but only one.

So, if you code
HORSE A,B,C,D

it is an error because you chose two optional parameters from the same bracketed
list, namely C and D.

HORSE A,B,C
is correct because you chose only one optional parameter. Of course,
HORSE A,B

is also correct, since you chose to omit all of the optional parameters.

Some macro instructions force you to make a choice from among a stacked list of
options.

Chapter 1. Introduction 15

The MOOSE macro format box looks like this:

[1abel] MOOSE H,P,M, X

—<

Notice the large braces ({ }) around the X, Y, and Z parameters. The braces mean
that you have one choice among the three parameters. But, this is not an optional
choice, it is a choice that you must make. So,

MOOSE H,P,M

is incorrect, since you did not select from among the list enclosed by braces.
Likewise,

MOOSE H,P,M,X,Z
is incorrect because you selected more than one parameter from the list. But,
MOOSE H,P,M,Z

is correct because you made your choice and it was only one parameter.

Sometimes brackets and braces are used together. Usually, though not always, they
involve parameters that take effect by default if something is not specified.

The MACKEREL macro format box looks like this:

,S={gs_}
NO

Notice that a set of braces surrounds the parameters YES and NO. Then, a set of
brackets embraces these, as well as the S parameter. To further complicate matters,
the YES parameter is underlined.

[1abel] MACKEREL
J,L,Q[

It is not that difficult to figure this out if you just remember that brackets mean you
have an option to choose or not choose and that braces mean you must choose. The
brackets here simply mean that you can choose the S parameter or ignore it.
However, if you do choose the S parameter, then the braces mean that you must
choose either the YES parameter or the NO parameter. And the line under the YES
parameter means that if you ignore the S parameter, then S=YES will be in effect
by default. So,

MACKEREL J,L,Q,S

is incorrect, because you chose the S parameter but did not choose either YES or
NO.

MACKEREL J,L,Q

. 1is correct, since you omitted the S parameter altogether, allowing S=YES to take
effect by default. Likewise, both

MACKEREL J,L,Q,S=YES
MACKEREL J,L,Q,S=NO

are correct, since you specified the S parameter correctly in each.

16 VM/XA SP GCS Command and Macro Reference

Parameter Notation Conventions

You will notice that under each parameter description there is a statement on how
that parameter can be expressed in the macro instruction. Several terms appear
frequently in this context. They are defined as follows:

Symbol
Any symbol that is valid in the assembler language. That is, an alphabetic
character followed by 0 through 7 alphameric characters. A symbol cannot
contain any special characters or imbedded blanks.

Register (2) through (12)
One of the general registers 2 through 12. Presumably, the register you specify
contains a right-justified value or address that pertains in some way to the
parameter in question. Any unused high-order bits in the register should be
re-set to zero. You can express the register number symbolically or via an
absolute expression. Unless otherwise specified, parentheses must surround the
register expression.

RX-type address
Any address that is valid in an RX-type assembler language instruction.

Chapter 1. Introduction 17

Chapter 2. Gr;up Control System (GCS) Commands

GCS Commands e 20
Console and Command Support 20
ACCESS . . . e 23
DLBL . . . e 25
ETRACE e 31
FILEDEF e 34
GDUMP . . 38
GLOBAL e 41
HX e 42
ITRACE 43
LOADCMD e 46
OSRUN . . . e 50
QUERY . . . 51
RELEASE e 57
REPLY . . . 58
SET . . . e 60

Chapter 2. Group Control System (GCS) Commands 19

GCS Commands

A
s
Command Formats
Braces { }
Indicate that you must choose one of the items inside.
Brackets |] .
Indicate that you may opt to choose any one or none of the items inside.
- Capital letters

Represent letters that you must type.

Lowercase letters
Either finish spelling a keyword or else represent variable values that are
explained in the accompanying text.

Underlined values
Represent defaults. If you enter nothing in their places, they P
automatically become the effective values. ‘

Console and Command Support

Communicating through the Console
Any terminal supported by VM/XA SP can be a GCS console (ASCII and 3270
devices included). GCS virtual machine operators use their consoles to communicate
with:

¢ The GCS supervisor (using the GCS commands)

* Applications running in the machine (using application commands defined with
the LOADCMD command). Refer to “LOADCMD?” on page 46 for
information.

If the GCS supervisor or GCS applications want to communicate with a GCS virtual
machine operator, they send messages to that operator’s console using the WTO
(Write To Operator) and WTOR (Write To Operator with Reply) macros: N

WTO Writes a message to the console .

WTOR Writes a message and adds a reply ID so that the GCS virtual machine
operator can respond. Unlike CMS, GCS lets programs keep running
even though you might owe them many replies.

See the macros “WTO” on page 166 and “WTOR” on page 168 for descriptions.

Issuing Commands to GCS
A user can issue commands in the following ways:

¢ Directly from the console
¢ From a program, using the CMDSI macro
¢ From a command file (EXEC).

20 VM/XA SP GCS Command and Macro Reference

A command file contains a series of GCS commands and resides on a disk. A user
o invokes it with a console command or with a GCS CMDSI macro or from another
(command file. PROFILE GCS (if the user has one) is a particular type of command
- file that executes automatically when the user IPLs GCS.

Besides GCS commands, a GCS command file can contain REXX statements and
functions. The VM/XA SP System Product Interpreter processes these REXX
statements and, in fact, the entire GCS command file. Therefore, most REXX
capabilities in CMS also apply with GCS. The differences with GCS are:

¢ REXX programs (EXECS) have a filetype of GCS.

¢ FEach task has its own program stack. With GCS, the program stack’s primary
use is for communication between EXECs. EXECs belonging to the same
program share data on the program stack. EXECs belonging to different
programs cannot. Moreover, because GCS console management routines bypass
the program stack, you cannot stack commands there for execution.

use issues PULL, and a task’s program stack is empty, the user receives a
message at the console (using the WTOR macro) that asks for the necessary
input.

o ADDRESS GCS replaces ADDRESS CMS. (The default for REXX is
ADDRESS GCS.) It acts the same as ADDRESS CMS, providing full
command resolution, which includes execution of command files and implied CP
commands.

The ADDRESS COMMAND environment acts much as it does on CMS: it
(T executes host commands, but not command files or implied CP commands.

(' * GCS has no external event queue (also called “terminal input buffer”). If the

* A user can cancel command files using HX. The commands TS, TE, and HI,
which worked with REXX in CMS, have no support on GCS.

* A user can invoke REXX programs from assembler language programs with the
CMDSI macro. FILEBLK, a parameter for CMDSI, contains the address of
the file block. FILEBLK is useful for executing in-storage command files,
executing command files with filetypes other than GCS, and establishing an
initial subcommand environment.

(' ' ¢ Non-REXX programs can share variables with REXX programs through the
EXECCOMM macro. The GCS EXECCOMM macro has the same capabilities
as the CMS EXECCOMM service.

* GCS supports external function calls if they are written in REXX. It does not
support external function libraries like RXSYSFN, RXLOCFN, AND
RXUSERFN.

¢ GCS supports subcommand environments (ADDRESS nnnn) set up using
LOADCMD. However, there is no facility like the “non-SVC fast path” for
issuing subcommands.

Note: EXECs cannot have the same names as the GCS immediate commands. The
commands are: ETRACE, ITRACE, HX, QUERY, REPLY, and GDUMP.
Immediate commands always execute first; therefore, an EXEC of the same
name would never execute.

Refer to VM/XA SP System Product Interpreter Reference for more information
about REXX.

Chapter 2. Group Control System (GCS) Commands 21

Processing GCS Commands

GCS processes commands much the same way as CMS does. Commands can be

processed as follows:

¢ Executed immediately

An immediate command is one that gets executed as soon as you issue it. If a
user enters commands with the CMDSI macro or any one of the following six

immediate GCS commands:

ETRACE (see page 31)
GDUMP (see page 38)
HX (see page 42)
ITRACE (see page 43)
QUERY (see page 51)
REPLY (see page 58).

they are not stacked; GCS processes them right away, even if the user enters

them while another command is being executed.

Note: If you enter several commands on the command line and separate them

with # characters, for example:

cmd1#cmd2#immed cmd#cmd3

your system will process any immediate commands first. In this case, you would
receive results from immed cmd before the results from cmdl. If an EXEC or
routine has named the same name as an immediate command, the immediate
command is executed. This differs from the way CMS processes commands.

e Stacked and wait their turn

This is the regular procedure. Nonimmediate commands entered are processed
serially. Refer to “LOADCMD” on page 46 for the format of the LOADCMD
command. When the current command finishes, GCS processes the next
command on the stack. The first command entered is the first command

executed.

Commands That GCS Supports

22

GCS supports commands that let a user define, start, terminate, and control an
application. Some commands are unique to GCS; others are existing or modified

CMS commands:

Unique GCS Commands

GCS/CMS Commands

ETRACE
ITRACE
LOADCMD
REPLY
GDUMP

ACCESS
DLBL
FILEDEF
GLOBAL
HX
OSRUN
QUERY
RELEASE

In addition, a user can define “application” commands with the LOADCMD

command.

VM/XA SP GCS Command and Macro Reference

O

ACCESS

e ACCESS

Identify the CMS or VSAM Disks that an Application Will Use

Applications that use files on CMS or VSAM disks must first identify those disks
with the ACCESS command. The disk you identify must be either a:

* VSAM disk or (Make sure you issue ACCESS before you issue the DLBL
command.)

¢ CMS disk formatted with a block size of 512, 1K, 2K, or 4K bytes. (You
cannot have an 800-byte block size.)

Unlike the CMS ACCESS command, you cannot specify options.

The format of the ACCESS command is:

(ACcess

vdev mode[/ext [fn [ft [fm]]]]
191 A

vdev
Makes available the disk at the specified virtual address. The default value is

191. Valid addresses are X'0001* through X'FFFF'.

mode
Assigns a 1-character filemode letter to all files on the disk being accessed. You
must specify this field if you specified the vdev parameter. The default value is
A.

ext
Indicates the mode of the parent disk. Files on the disk being accessed (vdev)
are logically associated with files on the parent disk; the disk at vdevis a
read-only extension. A parent disk must be accessed in the search order before
its extension gets accessed. Do not put a blank space before or after the slash

-

fn ft fm
Defines a subset of files residing on the disk to be accessed. These are the only
files that will go into your user file directory, and these are the only files you'll
be able to read. Entering an asterisk (*) in any one of these fields indicates that
you want all filenames or filetypes or filemode numbers (except 0) to be in your
user file directory. You can specify filename, filetype, and filemode fields only
for CMS-formatted disks that you've accessed as read-only extensions. For
example, to specify a filemode, use a letter and a number:

access 333 b/a * gcs bl

Note: You should issue the RELEASE command when your application no longer
needs access to the disk.

Chapter 2. Group Control System (GCS) Commands 23

ACCESS

Messages

CSIACCOO5S Virtual storage capacity exceeded RC=104 : ™
CSIACCOO6E Invalid parameter 'parameter' RC=24 Qtwyy

CSIACCO12E No options allowed RC=24

CSIACCGZIE Invalid mode 'mode' RC=24

CSIACC414E Disk vdev not properly formatted for ACCESS RC=16

CSIACC415E Invalid device address 'vdev' RC=24 ,

CSIACC422E vdev already accessed as Read/Write 'mode' disk
RC=36

CSIACC4231 mode (vdev) {R/0 | R/W}

CSIACC4241 vdev mode released

CSIACC4251 vdev replaces mode (vdev)

CSIACC4261 vdev also = mode disk

CSIACC427S mode (vdev) device error RC=100

CSIACC428S mode (vdev) not attached RC=100

CSIACCA29E File fn [ft [fm]] not found. Disk mode (vdev)
will not be accessed RC=28

CSIACC430W 0S disk - Fileid specified is ignored RC=4

CSIR0SO05S Virtual storage capacity exceeded

CSIR0S4231 mode (vdev) {R/0 | R/W} {-0S | -DOS}

CSIR0S4261 vdev also = mode {-0S | -D0S} disk

For more information on messages, see the VM/XA SP System Messages and Codes
Reference. '

24 VM/XA SP GCS Command and Macro Reference

DLBL

DLBL

Define VSAM Files Used for Program Input/Output

Application programs usually require some “setting up” before you try to start and
run them. The DLBL command is one of the preliminary commands normally
issued to prepare a program for execution. You issue the DLBL command to define
VSAM input/output files needed by the program. Be sure you issue the ACCESS
command for the disk containing your VSAM files before you issue DLBL.

Note: For non-VSAM file definitions, you use the “FILEDEF” on page 34.

VSAM itself does not always require file definition statements. To learn
when file definitions are necessary, see the VSE/VSAM Programmer’s
Reference.

The format of the DLBL command is:

DLBL r .
ddname mode |[DSN quall[[.]qual2....qualn]| [(optionB optionC [)]]
DSN ?
ddname CLEAR
*
optionB: optionC:
[PERM] [vsAM]
[MULT]
CHANGE
[CAT catdd]
NOCHANGE
[BUFSP nnnnnn]
ddname

A one- to seven-character program ddname. This ddname must be the same as
the ACB DDNAME parameter (or the ACB name if DDNAME is omitted).
An asterisk (*) entered, along with the CLEAR operand, indicates that all
DLBL definitions, except those that are entered with the PERM option, are to
be cleared.

If you have ddnames over seven characters long, be aware that only the first
seven characters get processed. Should you have two different files with the
same first seven letters and try to execute them both, you'll receive an error

message when GCS opens the second file.

mode

A letter representing the filemode of a VSAM disk and, optionally, a filemode
number. You must specify a letter, and it must refer to a disk that’s already
accessed. The filemode number, however, is optional. If you don’t provide one,
the default is 1. VSAM disks do not require this number anyway, but GCS will
accept one without error.

If a mode is specified, the associated disk must already be accessed.

Chapter 2. Group Control System (GCS) Commands 25

| CLEAR

| Removes any existing conditions for the specified ddname. Clearing a ddname
before defining it ensures that a file definition does not exist and that any
options previously defined for that ddname no longer have any effect.

If you release a disk that has a DLBL definition in effect, you should clear that
DLBL before executing a VSAM program. If a disk has a DLBL in effect, but
the disk is not accessed, GCS will issue the message:

®

Disk ' ' not accessed

DSN
Specifies that this is a VSAM file.

| ? (question mark)
‘ Indicates that you will enter the ddname interactively. GCS will prompt you
with the message:

Enter data set name:

When prompted, you must enter the data set name in its exact form, including
embedded blanks, hyphens, or periods. If you enter it as a command at the
console or from a REXX command file, you may use its exact form. DLBL will
replace any blanks between qualifiers with periods.

quall.qual2....qualn
A unique name associated with the file on the volume. It can be from one to 44
characters of alphameric data. If fewer than 44 characters are used, the field is
left-justified and padded with blanks.

For VSAM, DSN must be specified when an existing (input) file is being
processed. The name (qual) is identical to the name of the file, specified in the ‘
DEFINE command and listed in the VSAM catalog. For VSAM, the name NS
(qual) must be coded according to the following rules:

¢ One to 44 alphameric (A-Z, 0-9, @, $, or #) characters or hyphen (-) or plus
zero (+0).

o After each group of eight or fewer characters, a period (.) must be inserted.
* Embedded blanks are not allowed.

e The first character of the name (qual) and the first character following a
period must be alphabetic or national (A-Z, @, $, #). N

If this operand is omitted, ddname is used.

Option B:
PERM
Specifies that this DLBL definition can be cleared only by an explicit CLEAR
request. It cannot be cleared when d1bl * clear is entered.

CHANGE
Specifies that any existing definition for this ddname is not to be canceled, but
conflicting options are to be overridden and new options merged into the
existing definition. Both the ddname and the DSN file identifier must be the
same for the definitions to be merged.

NOCHANGE
Indicates that a new definition for the specified ddname is to be created if none
exists, but if a definition already exists, it is not to be changed.

26 VM/XA SP GCS Command and Macro Reference

DLBL

Option C:

. VSAM
(Indicates that the file is a VSAM data set. If not specified, VSAM is assumed.

MULT
Indicates that you want to enter volume specifications that refer to an existing
multivolume VSAM data set. Often, VSE/VSAM requires no MULT
information; see the VSE/VSAM Programmer’s Reference to find out when it’s
required.

When you specify MULT, the GCS supervisor sends a message asking you for
additional disk mode letters. You provide the mode letters using the REPLY
command (“REPLY” on page 58) and the following rules apply:

¢ All the disks you refer to must be mounted and accessed when you issue the
DLBL command.
* Do not repeat the mode letter that you entered on the command line.
B » If you enter all the letters on the same line, separate them with commas.
((GCS ignores any trailing commas at the end of the line.)
* You can specify a maximum of 25 disks, using any letter except “S”.
However, you don’t need to specify them in alphabetical order.

CAT catdd
Identifies the VSAM catalog (defined by a previous DLBL command) containing
the entry for this data set. You must use the CAT option when the VSAM data
set you are creating or identifying is not cataloged in the current job catalog.

catdd is the ddname in the DLBL definition for the catalog.

To identify a VSAM master catalog and job catalog, you have to use two special
(ddnames:

IJSYSCT identifies the master catalog when you begin a terminal session. You
should use the PERM option when you define it.

IJSYSUC identifies a job catalog to be used for subsequent VSAM programs.

Note: VSAM programs search only one catalog when performing a function. If
you defined an IJSYSUC job catalog, but want VSAM to use a different
catalog, you have to indicate that other catalog with the CAT option.

((See “Examples” on page 29.) The following figure shows which catalog
to use:

Chapter 2. Group Control System (GCS) Commands 27

DLBL

Is
the CAT
Option Specified
on the DLBL
Command?

Is
There a
DLBL Active for
IJSYSUC?

Use the Catalog
Defined by That
Ddname

Use the
Job Catalog

Use the
Master
Catalog

Figure 8. Determining Which VSAM Catalog to Use

BUFSP nnnnnn
Specifies the number of bytes (in decimal) to be used for I/O buffers by VSAM
data management during program execution, overriding the BUFSP value in the
ACB for the file. The maximum value for nnnnnn is 999999; embedded commas
are not permitted.

For more information, see the “Usage Notes” under the DLBL command in the
VM[XA SP CMS Command Reference.

Messages
CSIDLBOO1E
CSIDLBOO2E

CSIDLBOO3E
CSIDLBOO4E

CSIDLBOO5S
CSIDLBOOGE
CSIDLBO17E
CSIDLBOZ1E
CSIDLB302E
CSIDLB303I
CSIDLB305I
CSIDLB316R
CSIDLB311E
CSIDLB312R
CSIDLB313E
CSIDLB3141

Invalid option 'option' RC=24

Invalid parameter 'parameter’

in the option 'option' field RC=24

'option' option specified twice RC=24
‘optionl' and 'option2' are conflicting
options RC=24

Virtual storage capacity exceeded

Invalid parameter 'parameter' RC=24

Disk {mode/vdev/volumeid} not accessed RC=37
Invalid mode 'mode' RC=24

Parameter missing after DDNAME RC=24

No user defined DLBL's in effect

DDNAME 'ddname' not found. CLEAR not executed
Enter data set name:

Invalid data set name RC=24

Enter volume specifications:

Invalid DDNAME 'ddname' RC=24

Maximum number of disk entries recorded

28 VM/XA SP GCS Command and Macro Reference

Examples

DLBL

CSIDLB315E Catalog DDNAME 'ddname' not found

CSIDLB316E mode disk is in CMS format; invalid for VSAM
data set

CSIDLB3171 Job catalog DLBL cleared

CSIDLB318I Master catalog DLBL cleared

CSIDLB345I No option specified RC=24

For more information on messages, see the VM/XA SP System Messages and Codes
Reference.

1. To display all file definitions in effect for your disks, enter the following
command:

====> d1b]
GCS responds with:
‘ddname' DISK 'fn' 'ft'

If you have no DLBL definitions in effect, GCS sends the following message:
No user defined DLBL's in effect

2. To identify a file named “infile” on your C mode disk and be prompted for
additional disk mode letters, issue:

====> d1b] infile ¢ (mult
When processing is completed, you will receive the following message:
nn CSIDLB312R Enter volume specifications:

where nn is a reply ID number. You enter the requested disk mode letters using
the REPLY command (“REPLY” on page 58) and this reply ID. For example,
if you want to refer to disks accessed at modes D, E, F, and G, you enter:

reply nn D, E, F, G
To terminate the command, you must enter the following command:
reply nn

If you don’t enter this command, you may get an error message and have to
reenter the entire sequence of commands.

3. The following sequence of DLBL commands shows how you can use catalogs.

To identify a VSAM master catalog, named MASTCAT, for the terminal
session, enter:

====> d1b1 jjsysct c dsn mastcat (perm

To identify a VSAM job catalog, named MYCAT, for the terminal session,
enter:

====> d1bl ijsysuc d dsn mycat (perm

To identify a VSAM file INTEST1 that is cataloged in the job catalog MYCAT
as TEST.CASE, enter:

====> d1b] intestl e dsn test.case

Chapter 2. Group Control System (GCS) Commands 29

To identify an additional catalog TESTCAT which has an entry in the master
catalog, enter: '

====> d1b1 cat3 dsn testcat (cat ijsysct

Since you specified a job catalog (MYCAT) earlier, you must use the CAT
option to make sure that the master catalog IJSYSCT gets used instead.

To identify an input file INFILE cataloged in your catalog TESTCAT, which
was identified with a ddname of CAT3 on the previous DLBL command, enter:

====> d1b] infile e dsn test.input (cat cat3

30 VM/XA SP GCS Command and Macro Reference

A ™
R

ETRACE

ETRACE

Enable or Disable the Recording of Events in a System Data File for a Virtual
Machine or Virtual Machine Group

GCS supports external tracing — the recording of events in a system data file. You
control when this external tracing is active by using the ETRACE command.

You can enable (activate) or disable (deactivate) external tracing for a particular
virtual machine or an entire virtual machine group. Likewise, you can specify a
certain list of options for one virtual machine and a totally different set of options
for all other virtual machines in the group.

Before any external tracing actually takes place, though, a class C user must issue
the CP TRSOURCE command for the virtual machine(s) to be traced.

The format of the ETRACE command is:

ETrace r r 11
DSP
EXT
FRE
GET
1/0
PRG
SI0 OFF . [GRoup]
SSS
SVC
GTrace
[ALL]
([END]
DSP
Enables or disables external tracing of each task switch (dispatch of a different
task).
EXT
Enables or disables external tracing of each external interrupt.
FRE

Enables or disables external tracing of FREEMAIN events invoked through
SVC and Branch Entry calls.

GET
Enables or disables external tracing of GETMAIN events invoked through SVC
and Branch Entry calls.

1I/O
Enables or disables external tracing of each I/O interrupt.

PRG
Enables or disables external tracing of each program interrupt.

Chapter 2. Group Control System (GCS) Commands 31

ETRACE

Messages

S10
Enables or disables external tracing of each request by the supervisor for I/O. £
This includes execution of the following instructions: SIO, DIAGNOSE I/0, \./’
TIO, CLRIO, HIO, HDV, SIOF, and TCH. ‘

Note: The event is not recorded when the instruction is executed by an
application program.

SSS
Enables or disables detailed external tracing of IUCV interrupts on the Signal
System Service path.

SvC
Enables or disables external tracing of each SVC interrupt.

GTrace
Specifies that you want data, passed from the GTRACE macro, to be recorded
in a system data file.

ALL
Enables or disables external tracing of all events described above. ‘ ‘ '

OFF
Disables external tracing of events for the specified type(s).

Omitting the OFF operand enables external tracing of events for the specified
type.

END
Disables external tracing of all events.

GRoup 7N
Specifies that this command is to affect the virtual machine group, of which the
issuer of the command is a member. If this operand is omitted, the command is
applied only to the issuer’s virtual machine.

If external tracing of certain types of events is enabled for the group, then they
are automatically enabled for any virtual machine that may join the group later.

The GROUP operand can be used only by an authorized member of a virtual
machine group. That is, by a member of the group placed on the list of
authorized users in the GCS configuration file.

An unauthorized group member cannot deactivate tracing enabled by the o L/
GROUP operand. However, an authorized virtual machine can disable external

tracing for itself even though ETRACE with the GROUP operand was specified

by another authorized virtual machine.

CSIYTEQGOLE Invalid option 'option' RC=4

CSIYTEQGGYE Operand missing or invalid RC=4

CSIYTE5S09I ETRACE set ON for event-type(s)

CSIYTE510I ETRACE set ON for event-type(s) for GROUP

CSIYTE511I ETRACE set OFF for event-type(s)

CSIYTE5121 ETRACE set OFF for event-type(s) for GROUP

CSIYTE513E ETRACE GROUP option is in effect for event-type(s)
RC=8

For more information on messages, see the VM/XA SP System Messages and Codes <
Reference. :

32 VM/XA SP GCS Command and Macro Reference

Examples

ETRACE

The meanings of return codes for these messages are:

Return

Code Meaning

00 The specified ETRACE events have been
successfully enabled or disabled.

04 An invalid operand was specified, or an
unauthorized user specified the GROUP operand.
four request was ignored.

08 An authorized virtual machine had enabled
external tracing using the GROUP operand. An
unauthorized virtual machine then attempted to
disable external tracing. The request was ignored.

In the following example, the first ETRACE command requests that all types of
events for the issuer’s virtual machine be recorded in a system data file. The second
ETRACE command was issued to disable external tracing of I/O and program
interrupts for the issuer’s virtual machine.

etrace all

etrace i/o prg off

The following example requests that events, such as task dispatches, I/O interrupts,
and GCS supervisor I/O requests, be recorded externally for the virtual machine
group. The individual who issues this command must be an authorized user, since
the request is for the group.

etrace dsp i/o sio group
The example below requests that external tracing of events in a system data file for

the issuer’s virtual machine be disabled. This request will not be honored for an
unauthorized user if the ETRACE events were started by the GROUP operand.

etrace end

Chapter 2. Group Control System (GCS) Commands 33

FILEDEF

FILEDEF
'
Define CMS Format Files and Spool Data Files
Application programs usually require some “setting up” before you try to start and
run them. The FILEDEF command is one of the preliminary commands normally
issued to prepare a program for execution. You issue it to define CMS format files
and spool data files used by the program.
The format of the FILEDEF command is:
Flledef | ;
PRinter [(optionA OPTCD j[)1]
PUnch [(optionA[)]]
Reader [(optionA[)]] ' SN
. B /
{ddname} DISK |fn ft fm|| [(optionA optionB[)]]
* FILE ddname |Al
DUMMY [(optionA[)]]
CLEAR
\) J
option A: option B:
[PERM] [DISP MOD]
P
CHANGE [DSORG PS] f P
NOCHANGE
[RECFM a]
[LRECL nnnnn]
BLOCK nnnnn
BLKSIZE nnnnn
e
-
ddname
*
The name of the file, as referred to in your program. ddname can contain from
one to eight alphameric characters. However, the first one must be alphabetic or
national.
If you specify an asterisk (*) in place of ddname and follow it with the CLEAR
operand, all file definitions that you did not enter with the PERM option will be
cleared.
i/(‘
L

34 VM/XA SP GCS Command and Macro Reference

Option A

FILEDEF

PRinter
Reépresents the spooled printer, which you must have defined at virtual address
00E. ‘

OPTCD j
When the virtual printer is a 3800, j indicates to QSAM and BSAM that the
output data line’s first byte will contain a table reference character (TRC).
This TRC selects a character arrangement table to use in printing the data
line. The TRC can be alone or with other ANSI control characters.

PUnch
Represents the spooled punch, which you must have defined at virtual address
00D.

READER
Represents the spooled card reader, which you must have defined at virtual
address 00C. (I/O to the card reader must not be “blocked.”)

DISK fn ft [fm]

Specifies that the virtual I/O device is a disk. fn and ft are CMS fields. If fm
is the filemode of an OS disk, fn and ft represent the only two qualifiers of an
OS data set name. If you specify fm as an asterisk (*), all disks get searched.
You cannot use this form unless the OS data set name or VSE field conforms to
the OS naming convention (1- to 8-byte qualifiers, separated by periods, up to a
maximum of 44 characters, including periods). Moreover, the data set name can
have only two qualifiers. If you omit DISK fn ft, the default is FILE ddname Al.

DUMMY
Indicates that no real I/O takes place for the data set.

CLEAR
Removes any existing definition for the specified ddname. You should clear
ddnames before defining them to make sure the ddname doesn’t already exist.
Doing that nullifies any operations previously defined with the ddname.

PERM
Retains the current file definition until it either is explicitly cleared or is changed
by a new FILEDEF command with the CHANGE option. If you don’t specify
PERM, the definition is cleared when you issue FILEDEF * CLEAR.

CHANGE
Combines definitions for an existing ddname with new ones when you issue a
new FILEDEF for that same ddname. All options from both definitions are
merged. A new definition for a particular option replaces the original definition.

NOCHANGE
Retains the current file definition, if one exists, for a specified ddname. With
this option, the system stops further processing (error checking, scanning, and
similar functions) for new FILEDEF commands with the same ddname.

RECFM a
Represents the record format of the file, where a can be one of the following:

When a is: The file contains:
F Fixed-length records
FA Fixed-length records with American National Standards

Institute (ANSI) characters

Chapter 2. Group Control System (GCS) Commands 35

| FILEDEF

‘ FB Fixed-length, blocked records (not for use with READER
i - devices)
| FBA Fixed-length, blocked records with ANSI characters
‘ \4 Variable-length records
VA Variable-length records with ANSI characters
VB Variable-length, blocked records (not for use with READER
devices)
VBA Variable-length, blocked records with ANSI characters
U Records of an undefined length
UA Records of an undefined length with ANSI characters.
LRECL nnnnn |

Specifies the length, in bytes, of each fixed-length logical record or the maximum
length, in bytes, for variable-length logical records. This value should not
exceed 32760 bytes for fixed-length records or 32756 (including four bytes for a
record descriptor word) for variable-length records.

BLOCK nnnnn

BLKSIZE nnnnn
Specifies the maximum block length in bytes. For fixed-length records
(unblocked), this is the record length. For variable-length records, this gives the
maximum logical record length (up to 32756 bytes, plus four bytes for a block
descriptor word). For undefined-length records, this value can be altered by the
problem program. It can be inserted directly into the data control block or
specified in the length operand of a READ/WRITE macro instruction.

Option B
DISP MOD
Positions the read/write pointer after the last record in a disk file. Use this
option only when you're adding records to the end of a file. That file must be
on a disk accessed as read/write. The disk cannot be an extension of another
disk. If so, it would be read/only, and you couldn’t write to it. For standard
label tapes, you can use this to add records to the end of the tape.

DSORG PS
Specifies that the data set has a physical, sequential (PS) organization.

See VM/XA SP CMS Command Reference for more information on using this
command and its operands and options. ’

Messages

CSIFLDOO1E Invalid option 'option' RC=24

CSIFLDAO2E Invalid parameter 'parameter' in the option
'‘option' field RC=24

CSIFLDOO3E 'option' option specified twice RC=24

CSIFLDOOAE 'optionl' and 'option2' are conflicting
options RC=24

CSIFLDOO5S Virtual storage capacity exceeded

CSIFLDOG6E Invalid parameter 'parameter' RC=24

CSIFLDO11E Invalid character in fileid 'fn_ft' RC=20

CSIFLDO17I Disk mode not accessed

CSIFLDO21E Invalid mode 'mode' RC=24

36 VM/XA SP GCS Command and Macro Reference

H - H
-

FILEDEF

CSIFLDO23E No filetype specified RC=24

CSIFLD301E Invalid device 'device name' RC=24

CSIFLD302E Parameter missing after DDNAME RC=24

CSIFLD303I No user defined FILEDEFS in effect

CSIFLD304I Invalid CLEAR request

CSIFLD320E Error during FILEDEF CLEAR processing, DCB(s)
not closed

For more information on messages, see VM/XA SP System Messages and Codes
Reference.

Chapter 2. Group Control System (GCS) Commands

37

GDUMP .,

Produce a Copy of the Contents of Your Virtual Machine’s Storage

Use the GDUMP command to produce a copy of your virtual machine’s storage.

Refer to the VM/XA SP Group Control System Diagnosis Reference to understand

how to diagnose a GCS dump. Refer to VM/XA SP Dump Viewing Facility

Operation Guide and Reference to learn how to use the dump viewing facility (DVF)

to view a GCS dump.

The format of the GDUMP command is:

GDUMP
hexlocl - hexloc2 TO * [DSS] |FORMAT type
[¢] L:) END TO userid GCS
' .bytecount

hexlocl
The hexadecimal address in virtual storage where the dump is to start. If no
starting address is specified, 0 is assumed.

- (dash)

: (colon)
The dash and colon are range indicators that specify a range of storage to be
dumped. :)

Y

If the storage you want to dump begins at address X'4F023' and ends at
X'SFOSF', you could express the range this way:

4F023-5F05F
or:
4F023:5F05F
Embedded blanks are not allowed.

hexloc2 \
The hexadecimal address in virtual storage where the dump is to end. This must
be preceded by (and adjoined to) a dash or colon. If you do not specify it, and
either the colon or dash is used, then the last address in virtual storage is
assumed.

Note: Dumps are always generated in 4-kilobyte pages. These pages
correspond to the 4-kilobyte pages into which storage is segmented. If
you request that a certain portion of storage be dumped, the entire
4-kilobyte page into which that portion falls is included in the dump. So,
your request is always rounded up and down to the nearest page
boundaries.

END
Specifies that the dump is to end at the last address of virtual storage.

If you omit the hexloc2 and END parameters, END is assumed. (:

38 VM/XA SP GCS Command and Macro Reference

Messages

GDUMP

.bytecount

Specifies the number of bytes to be included in the dump. No embedded blanks
are allowed.

If you wanted 65597 (X'1003D"') bytes of storage, dumped starting at address
X'4F023', you would use:

4F023.1003D

TO *

Specifies that you want the dump sent to the virtual reader of the machine that
is issuing this GDUMP command.

If the issuer of an GDUMP command (with TO * specified) is not on the list of
authorized userids (specified with the GROUP EXEC), any fetch-protected data
that does not have a storage key of 14 is omitted from the dump. However, all
requested non-fetch-protected data and Key 14 storage is included.

TO userid

Specifies that you want the dump sent to the virtual reader of a specific user
(even if your group has a common dump receiver).

If the userid receiving the dump is not on the list of authorized userids (specified
with the GROUP EXEC), fetch-protected data is omitted from the dump.
However, all requested non-fetch-protected data and Key 14 storage is included.

Unauthorized userids can request a dump containing fetch-protected data and
send it to an authorized receiver. That way, the fetch-protected data will be
included. However, those unauthorized userids are prevented from using the CP
TRANSFER command to transfer the dump-containing spool data file to their
own machines.

If you don’t specify TO, the dump goes to the common dump receiver (if you
specified one with the GROUP EXEC). Otherwise, it goes to the virtual reader
of the machine issuing the GDUMP command.

DSS

Specifies that any saved systems, or discontiguous shared segments, in your
machine (the one where you're issuing the command) be included in the dump.

FORMAT |type]

Describes the type of virtual machine contents you are dumping (CMS, GCS,
RSCS, or another type).

If you omit this operand, a format type of GCS is assumed.

CSIDUMBOYE Operand is missing or invalid RC=0C
CSIDUMO1GE Command Complete

CSIDUM525E Userid is missing or invalid RC=14
CSIDUM526E Userid ‘userid' not in CP directory RC=10
CSIDUM527E Invalid range RC=18

CSIDUM529E Partial dump taken RC=4

CSIDUM531E Dump failed: spooling error RC=08
CSIDUM532E Dump failed: I/0 error RC=1C
CSIDUR528I Dump complete

CSIDUR5S29E Partial dump taken

CSIDUR530E Dump failed

Chapter 2. Group Control System (GCS) Commands 39

For more information on messages, see the VM/XA SP System Messages and Codes
Reference. o

The meanings of return codes for these messages are:

Return

Code Meaning

00 The dump finished successfully. All requested
areas were recorded in the dump.

04 Not all the requested areas were recorded in the
dump.

08 A spoo]ing error in CP prevents the dump from
being recorded.

0oC An operand is missing or invalid.

10 The recipient’s userid is not in the CP directory.

14 The TO operand was specified but the userid was
missing or invalid.

18 An invalid address range was specified.

1C CP experienced an I/O error when paging in the
parameter list or dump list. No dump was
recorded.

20 The input parameter list address was invalid.

Examples
In the following example, the first GDUMP command requests a dump of the
issuer’s virtual storage contents, from address 0 to CB8F7, and sends it to the
issuer’s own virtual reader. This dump includes any discontiguous shared segments
the virtual machine may be using and, if the user ID is authorized, any
fetch-protected data (other than key 14) that can be found within the specified
address range. The virtual machine type is GCS (the default).

gdump 0:CB8F7 TO * DSS

The second GDUMP command requests a dump of the issuer’s virtual storage
contents (excluding any discontiguous shared segments) and sends it to the common
dump receiver. If the common dump receiver is an unauthorized user ID, no
fetch-protected data other than key 14 will be included in the dump.

gdump

40 VM/XA SP GCS Command and Macro Reference

GLOBAL

GLOBAL

Define the CMS Load Libraries You Want Searched for Modules

Programs you run under GCS may be members of CMS load libraries. Before GCS
can invoke a program residing in a load library, you must identify the load library
where it can be found.

Use the GLOBAL command to specify what load libraries GCS should search
whenever you attempt to invoke a program.

The format of the GLOBAL command is:

LOADLIB [libnamel... T1ibname63]

GLobal
(Example
Messages

LOADLIB
An operand indicating that you are referring to CMS load libraries.

libnamel...
The filenames of the load libraries you want searched for modules. No more
than 63 load libraries may be specified in the GLOBAL command. Whenever
the load libraries are searched, they are searched in the order they are specified
in this command.

If no library names are specified, the command cancels the effects of any
previous GLOBAL command.

To find out what load libraries are currently identified to be searched, type:

query loadlib

CSIGLBOO5S Virtual storage capacity exceeded

CSIGLBO13E No function specified RC=24

CSIGLBO14E Invalid function 'function' RC=24

CSIGLBO24E File 'fn ft fm' not found RC=28

CSIGLB220E Unable to open file 'filename' RC=28
CSIGLB221S More than nnn Tibraries specified RC=88
CSIGLB222E File 'fn_ft fm' contains invalid record formats

RC=32
CSIGLB223S Error 'xx' reading file 'fn_[ft _fm]' from disk
RC=100

For more information on messages, see the VM/XA SP System Messages and Codes
Reference.

Chapter 2. Group Control System (GCS) Commands 41

HX

Halt Execution of All Programs and Commands Active in a Virtual Machine

Sometimes you may want to halt the processing of a command or program after
you've already issued it. Use the HX command to halt processing of all commands
and programs active in a virtual machine. Issuing HX will also clear commands you
have stacked and waiting to be processed, including any of your own commands
defined with a LOADCMD command.

The format of the HX command is:

HX

Messages

CSIABD225I Hx complete

For more information on messages, see the VM/XA SP System Messages and Codes
Reference.

42 VM/XA SP GCS Command an&Macro Reference

ITRACE

ITRACE

Enable or Disable Recording of Internal Trace Events for a Virtual Machine or

an Entire Group
, GCS maintains an internal trace table in common storage. This table contains two
types of information:

¢ records of supervisor events and
¢ records of GTRACE events.

GCS records all supervisor events that occur within your virtual machine. It also
can record data from programs or applications (GTRACE events) within your
virtual machine. This latter information is gathered via the GTRACE macro, and
you can use it for debugging purposes.

The ITRACE command lets you control what goes in the internal trace table.
Internal tracing for supervisor events starts out active, or “enabled”, recording all
events that occur from the time you join the group. However, if you want GCS to
begin recording GTRACE events, you have to enable the tracing yourself. You can
issue the ITRACE command to turn off tracing of supervisor events and later to
turn it back on. Likewise, you can turn GTRACE event tracing on and later turn it
off. If you have an authorized virtual machine, you can control internal tracing for
the entire group.

The format of the ITRACE command is:

ITrace r 7)
GTrace
SupP
<
{ OFF } [
[ALL] [GRoup }
| [END]
GTrace
Indicates that you want to affect only the internal tracing of data passed via the
GTRACE macro.
SupP

Indicates that you want to affect only the internal tracing of GCS supervisor
events. It includes DSP, EXT, FRE, GET, I/O, PRG, SIO, SSS, and SVC
events.

ALL
Indicates that you want to apply this command to the internal tracing of both
GTRACE and supervisor events.

OFF
Halts internal tracing of the events you indicated. ON is assumed, unless you
specify OFF.

Chapter 2. Group Control System (GCS) Commands 43

ITRACE

Messages

Examples

END : ~
Terminates, or disables, all internal tracing. You must specify this option by ey
itself or with the GROUP operand. These are the only two ways you can use it. ‘W
GRoup

Indicates that you want this command to apply to the whole virtual machine
group rather than just to your issuing machine. It will also apply to machines
that join the group later.

To use this operand, you need to have an authorized userid. Commands you
issue with the GROUP option “on” normally will take precedence over
commands issued without. However, an authorized virtual machine can disable
tracing for itself even though another authorized virtual machine started internal
tracing for the whole group.

CSIYTGOO1E Invalid option 'option' RC=4
CSIYTGOO9E Operand missing or invalid D
CSIYTG5171 ITRACE set ON for event-type(s)
CSIYTG5181 ITRACE set ON for event-type(s) for GROUP
CSIYTG5191 ITRACE set OFF for event-type(s)
CSIYTG5201 ITRACE set OFF for event-type(s) for GROUP
CSIYTG521E ITRACE GROUP option is in effect for event-type(s)
RC=8

For more information on messages, see the VM/XA SP System Messages and Codes

Reference. o
The meanings of return codes for these messages are: ~
Return
Code Meaning
00 The tracing of events has been successfully enabled
or disabled.
04 An invalid operand was specified, or an P
unauthorized user specified the GROUP operand. .
Your request was ignored. o
08 An authorized virtual machine had enabled tracing
of user events using the GROUP operand. An
unauthorized virtual machine then attempted to ‘
disable this tracing. The request was ignored.
To enable tracing of GTRACE events (program or application data) in the virtual
machine issuing the ITRACE command, enter:
ITRACE GTRACE
To enable tracing of GTRACE events for the virtual machine group, enter:
ITRACE GTRACE GROUP ’ Py
r)
The virtual machine issuing this command must be authorized. (,}"

44 VM/XA SP GCS Command and Macro Reference

ITRACE

To disable tracing of GTRACE events for the virtual machine group, enter:
ITRACE GTRACE OFF GROUP

The virtual machine issuing this command must be authorized. To disable internal
tracing of supervisor events for the virtual machine issuing this command, enter:

ITRACE SUP OFF
To disable internal tracing of all events for the virtual machine, issue this command:

ITRACE END

If tracing had been enabled for the whole group, you would need an authorized
virtual machine to issue this for yourself. If the tracing was enabled just for your
virtual machine, you don’t have to be authorized to issue this for yourself.

Chapter 2. Group Control System (GCS) Commands 45

LOADCMD

LOADCMD

Define a Program Module to be Executed as a Command

LOADCMD is a feature that lets you define your own commands. More precisely,
it lets you assign a command name to a program module. (The module for this
program must reside in a CMS load library that you’ve defined with a GLOBAL
~command.) When you issue the command name, this module gets control and
executes. It remains in storage, waiting to be run again when you issue its assigned
name from either the console or the CMDSI macro or a command file (EXEC).

For example, to run the GCS application ACF/VTAM, you first have to define the
“VTAM” command. “VTAM” is a command name that will be processed by one of
ACF/VTAM's program modules. After you've defined and issued this “VTAM”
command name, you can enter any of the following ACF/VTAM commands:

s START

* HALT

¢ VARY

¢ MODIFY
¢ DISPLAY.

The format for the LOADCMD command is:

LOADCmd

name member

name
The name of the command you are defining.

member
The member of a CMS load library associated with the command you've

defined. This member is the module that executes the command you’ve defined;

it is loaded into private, free storage.

When you enter the name, GCS calls the member to execute the command. Here's
what your registers will contain:

Register Contents

0 Address of an extended parameter list (plist).

1 Address of a tokenized parameter list of consecutive
doublewords. The first item in the list is the name of
your called routine or program. Other items in the list
may contain arguments you want passed to it.

3 Address of a word (UWORD) in storage that’s available
for the command’s use.

12 Address of the entry point to your program. You can
use this address as a base address to establish immediate
addressability in your program.

13 Address of a 96-byte save area for your program’s use.

46 VM/XA SP GCS Command and Macro Reference

£
7

LOADCMD

Register Contents

14 Return address of the SVC handling routines. The
program returns control to this address after it finishes
executing.

15 Same as Register 12, except that you should not use this

. transferring control. Otherwise, your ready message may

one as a base register. The SVCs use it to communicate
with the program, and GCS uses it to return a
completion code. Any time that completion code is
nonzero, you'll see it in the ready message (if you entered
the command at the console):

Ready (nnnnn) 5
If the program you execute does not return a completion
code in Register 15, make sure it puts a zero there before

contain meaningless data (whatever was in Register 15 at
the time).

When you enter a command, a GCS scan routine sets up two distinct parameter lists:

¢ The first list is a tokenized parameter list. (Register 1 contains its address.) The

parameters listed there line up on consecutive doubleword boundaries. Blanks

and parentheses serve as delimiters separating each parameter. (Parentheses
show up in the list, each on a doubleword boundary.)

¢ The second is an extended, or “not tokenized”, parameter list. (Register 0
contains its address.) It contains addresses that map out the extended form of a

command.

EPLMAP DC

Note:

DC
DC
DC
DC
DC
DS
DS

This extended parameter list has the following format:
A(CMDBEG) ADDR OF COMMAND TOKEN

A(ARGBEG) ADDR OF BEGINNING OF ARGUMENTS
A(ARGEND) ADDR OF END OF ARGUMENTS

A(0) ADDR OF EXEC FILEBLOCK

A(0) ADDR OF FUNCTION ARGUMENT LIST
A(0) ADDR FOR RETURN OF FUNCTION DATA
X INDICATOR (see the following note)
3X RESERVED

An INDICATOR byte of X'00' is a sign that a program issued the
command. X'0OB' is a sign that it was issued from the console. X'01"' is
a call from the System Product Interpreter when ADDRESS
COMMAND is specified. X'05"' is used by the System Product
Interpreter for function calls.

Here are two ways you might enter a command and two sets of accompanying
tokenized and extended parameter lists that result:

1. You enter:

> loadcmd cmdname memname

The scan routine sets up the following tokenized parameter list:
FORMAT: DC CL8'LOADCMD'

DC CL8'CMDNAME'
DC CL8'MEMNAME'
DC 8X'FF'

Chapter 2. Group Control System (GCS) Commands

47

LOADCMD

The scan routine sets up the extended parameter list with the following
references:

CMDBEG DC C'loadcmd'
ARGBEG DC C'cmdname memname'
ARGEND EQU *

The first nonblank character following ‘loademd’ determines the start of
ARGBEG.

2. You enter ‘loademd’. without specifying any arguments:
====>]oadcmd
The scan routine sets up the following tokenized parameter list:

FORMAT: DC CL8'LOADCMD'
DC 8X'FF!

The scan routine sets up the extended parameter list with the following
references:

CMDBEG DC C'lToadcmd'
ARGBEG DC *
ARGEND EQU *

With no arguments specified, ARGBEG is set equal to ARGEND.
For more information on parameter lists, see the VM/XA SP CMS User's Guide.

Messages
CSILDC212E Member cannot be loaded. Command is not defined
RC=xx
CSILDC240I No entry points were loaded by the LOADCMD command

For more information on messages, see the VM/XA SP System Messages and Codes
Reference.

The meanings of return codes for this message are:

Return

Code Meaning

01 The command has already been defined.

04 The module is marked not executable. The module

is not loaded and the command is not defined. The
module is not suitable for use as a command
module. Consult the information provided by the
linkage editor, at the time the module was created,
to determine why the module is not executable.

10 The module is an overlay structure. The module is
not loaded and the command is not defined. If this
module is to be used as a command module, it
must be restructured so that it does not require
overlays.

12 The module is marked only loadable. The module
is not loaded and the command is not defined.
This module is not suitable for use as a command
module.

48 VM/XA SP GCS Command and Macro Reference

LOADCMD

Return
Code Meaning

14 The command name specified is a GCS immediate
command or an abbreviation for one.

24 Too many operands were specified.

28 The specified member cannot be found.

32 No member name was specified.

36 A permanent I/O error was found when the system
attempted to search the CMS LOADLIB directory.

40 Insufficient virtual storage was available to read the
directory entry for this module.

41 Insufficient free storage was available to build the
nucleus extension control blocks representing this
command.

Example
To define the command named MYCMD to GCS, enter the following command:

LOADCMD MYCMD MYMOD

The module containing the code for this command can be found in a CMS load
library under the member name of MYMOD.

The MYMOD module can be invoked by entering:
MYCMD

Chapter 2. Group Control System (GCS) Commands 49

OSRUN

OSRUN

Start a GCS Application Program

Use the OSRUN command to execute a GCS application. The application program
must either be a member of a CMS load library (defined with the GLOBAL
command) or else reside in a saved segment. The OSRUN command maintains
control until the program ends; therefore, you cannot execute other commands while
the program is running.

The format of the OSRUN command is:

OSRUN

member [PARM=parameters]

Messages

member
The member of the CMS load library you want to execute.

PARM = parameters
The OS parameters that you want to pass to the module. If these parameters
contaiz blanks or special characters, you must enclose them in quotes. To
include a quote mark in a parameter, enter two quotes marks side-by-side (' ').
Parameters must be no longer than 100 characters. They get passed to the
module in OS format: Register 1 points to a fullword containing the address of
the character string. (The first halfword field contains the length of the
character string.)

CSIL0OS220E Unable to open file 'filename'

CSIL0S223S Error 'nn' reading file 'fn_[ft fm]' from disk
CSILOS224E Member 'membername' not found in library

CSIOSROO6E Invalid parameter 'parameter' RC=24

CSIOSRO22E No filename specified RC=24

CSIOSR219E Parm field contains more than 100 characters RC=24
CSIOSR236E Ending apostrophe is missing RC=24

CSIABD237E Command ended without detaching subtasks

For more information on messages, see the VM/XA SP System Messages and Codes
Reference.

50 VM/XA SP GCS Command and Macro Reference

QUERY

Request Information About Your GCS Virtual Machine

Use the QUERY command to gather information about your GCS virtual machine.

The format of the QUERY command is:

Query

mode
*

DISK |R/W
MAX

FILEDEF
LOADLIB
SEARCH
SYSNAMES
DLBL [mult]
ETRACE
ITRACE
GROUP
LOCK
REPLY
LOADCMD

| LOADALL)

The DISK, LOADLIB, FILEDEF, and SEARCH operands work the same as for
the CMS QUERY command with the exception that no options are allowed.

DISK
Displays the following disk information:

LABEL VDEV M STAT CYL TYPE BLKSIZE FILES BLKS USED-(%) BLKS LEFT BLKTOTAL

label vdev m stat cyl type blksize nnnn

label

The label assigned to the disk when it was formatted. If it’s an OS or DOS

disk, this is the volume label.

vdev
The virtual device address.

m
The access mode letter.

stat

Indicates whether the disk is read/only (R/O) or read/write (R/W).

cyl

The number of cylinders available on the disk. For an FB-512 device, this
field contains the abbreviation FBA rather than the number of cylinders.

type
The device type of the disk.

Chapter 2. Group Control System (GCS) Commands

blksize
The number of units that make up a block on the disk.

nnnn FILES
The number of files on the disk. If you have an OS or DOS disk, this field
will contain either 0S or DOS.

BLKS USED
The number of disk blocks in use.

mn %
The percentage of blocks in use.

nnnn BLKS LEFT
The number of disk blocks left. (The actual number of disk blocks
remaining is lower because this number also counts control blocks.)

nnnnn BLK TOTAL
The total number of blocks

If you specify DISK mode, you see information about the single disk associated
with that mode. DISK * gives you one line of information for each disk that’s
accessed. DISK R/W gives information for each accessed disk in read/write mode,
and DISK MAX gives information for the R/W disk having the most available
space.

FILEDEF

Displays all file definitions in effect.

Response:
ddname device [fn [ft]]

If you have no file definitions in effect, you'll receive the following message:
No user defined FILEDEFS in effect

LOADLIB

Displays the names of all files (of filetype LOADLIB) that will be searched for
load modules. This gives you a list of all LOADLIBs specified on the last
GLOBAL LOADLIB command, if any.

Response:
LOADLIB=Tibnamel . . . libname8

up to eight names are displayed per line, for as many lines as necessary.. If no
libraries are to be searched, the response is:

LOADLIB = NONE

SEARCH

Displays the search order of your accessed disks.

Response:

52 VM/XA SP GCS Command and Macro Reference

-

A
s

QUERY

label vdev mode R/0 0S
R/W DOS

.

label
The label assigned to the disk when it was formatted. Ifit’s an OS or DOS
disk, this is the volume label.

vdev
The virtual device address.

m
The filemode letter assigned to the disk when it was accessed.

R/O
R/W
Indicates whether the disk is read/only or read/write.

oS
DOS
Indicates an OS or DOS disk.

SYSNAMES

Displays the names of the standard saved systems.

Response:

SYSNAMES: GCSVSAM GCSBAM
ENTRIES: entry... entry...

where:

SYSNAMES
The names that identify the saved systems (discontiguous shared segments).

ENTRIES
The default system names or the system names established via the SET
command.

DLBL

Querying DLBL yields the following information:

DDNAME MODE TYPE CATALOG VOL BUFSPC PERM DISK DATASET.NAME
XXXXXX 0N XXXX XXXXXXX XXX XXX XXXXXXX

DDNAME
The program ddname.

MODE
The disk on which the data set resides.

TYPE
The type of data set defined. This field will always be VSAM.

CATALOG
The ddname of the VSAM catalog you want searched for the specified data
set.

Chapter 2. Group Control System (GCS) Commands 53

QUERY

YOL ,
The number of volumes (if greater than one) on which VSAM resides. This
field will be blank if the VSAM data set resides on only one volume. The
actual volumes may be displayed by entering either DLBL (MULT) or the
QUERY DLBL MULT commands.

BUFSPC
The size of the VSAM buffer space, if entered at DLBL definition time.

PERM
Indicates whether the DLBL definition was made with the PERM option.
This field will contain YES or NO.

DISK
Indicates whether the data set resided on a CMS or DOS/OS disk at DLBL
definition time. The values for this field are DOS and CMS.

DATASET.NAME
For a data set residing on a CMS disk, the CMS filename and filetype are
given; for a data set residing on a DOS/OS disk, the data set name
(maximum 44 characters) is given. This field will be blank if you failed to
enter a DOS/OS data set name at DLBL definition time.

If no DLBL definitions are active, you'll get the following message:
No user defined DLBL'S in effect

ETRACE
Displays a list of the events that are enabled for external tracing (recording in a
spool data file).
Response:

A1l external trace events are disabled
External trace is enabled for event-type(s)
External trace is enabled for event-type(s) for GROUP

ITRACE
Displays a list of the events that are enabled for internal tracing.

Response:

Internal trace is enabled for event-type
Internal trace is enabled for event-type for GROUP
A1l internal trace events are disabled

GROUP
Displays the userids of the virtual machines in the GCS group of the issuer.

Response:

GROUPID=groupname, USERS: CURRENT-ccccc MAX TMUM=mmmmm
VMUSERID(s)

LOCK
Displays the status of the common lock. If the lock is held, the userid holding
the lock is displayed.

Response:

The common lock is free
The common lock is held by 'userid’

54 VM/XA SP GCS Command and Macro Reference

2 *\
"/
N

N

¢

Messages

REPLY

QUERY

Displays the text and the identification number of all messages waiting for a

reply.

Response:

No replies outstanding

The following replies are outstanding:
XX YYyyyyyy
XX Yyyyyyyy

LOADCMD
Locates the entry point addresses for all entry points that are loaded by the
LOADCMD command.

LOADALL

Displays the entry point names and addresses for the entry points that have been
loaded and currently reside in the virtual machine storage.

For more information on using the QUERY command, see the VM/XA SP CMS
Command Reference.

Return | Meaning

Code

00 Successful completion. The requested information
is displayed.

04 Invalid option specified. No action taken.

All QUERY messages except CSIQRLO032S are issued without message numbers.

CSIQRD239I

CSIQRD2401
CSIQRLO32S
CSIQRL217E
CSIQRL218I
CSIQRQ5141
CSIQRQ515I
CSIQRQ5161

CSIQRQ5221
CSIQRQ5231

CSIQRQ5241
CSIQRROOG5S
CSIQRR2141

"No entry points are currently loaded in this
virtual machine"

"No entry points were loaded by the LOADCMD command"
Supervisor error 5. Re-IPL sysname

The common Tock is free

The common lock is held by userid

A1l external trace events are disabled
External trace is enabled for event-type(s)
External trace is enabled for event-type(s)
for GROUP

Internal trace is enabled for event-type(s)
Internal trace is enabled for event-type(s)
for GROUP

A1l internal trace events are disabled
Virtual storage capacity exceeded RC=8

No replies outstanding

Chapter 2. Group Control System (GCS) Commands 55

CSIQRR2151
CSIQRR2161

CSIQRSO15E

CSIQRSO17E
CSIQRSO19E
CSIQRSO20E

CSIQRU303I
CSIQRX005S
CSIQRX006E
CSIQRX3031
CSIQRYOO5S
CSIQRYGO6E
CSIQRYO13E

The following replies are outstanding:
GROUPID=systemname, USERS: CURRENT=nnnnn,

MAX IMUM=mmmmm

‘parameter' is invalid for 'function' function
RC=24

Disk {mode|vdev|volumeid} not accessed

No Read/Write mode disk accessed RC=1

No Read/Write disk with space available accessed
RC=2

No user defined FILEDEFs in effect

Virtual storage capacity exceeded RC=8
Invalid parameter 'parameter' RC=24

No user defined DLBLs in effect

Virtual storage capacity exceeded RC=8
Invalid parameter 'parameter' RC=24

No function specified RC=24

For more information on messages, see the VM/XA SP System Messages and Codes

Reference.

56 VM/XA SP GCS Command and Macro Reference

™
L W

RELEASE

RELEASE

Release a Disk

After an application no longer needs files on a particular disk, you should issue the
RELEASE command for that disk.

The format of the RELEASE command is:

RELease

vdev
mode

[(DETD)]]

Messages

vdev
The virtual device address of the disk to be released.

mode
The mode letter at which the disk is currently accessed.

DET
Specifies that the disk is to be detached from your virtual machine.

When the disk is detached, you receive the message:
DASD 'vdev' DETACHED

For more information on using the RELEASE command, see the VM/XA SP CMS
Command Reference.

CSIAREOO6E Invalid parameter 'parameter'’

CSIAREQ17E DISK {mode|vdev[vo]umeid} not accessed

CSIAREO21E Invalid mode 'mode'
CSIARE415E Invalid device address 'vdev'
CSIARE416E No device specified

For more information on messages, see the VM/XA SP System Messages and Codes
Reference.

Chapter 2. Group Control System (GCS) Commands 57

REPLY

REPLY

A

Reply to Messages Sent to a GCS Virtual Machine Operator

GCS programs can use the WTOR macro to send a message to a GCS virtual
machine operator’s console and request a reply. The message may request the
operator to set up certain devices for the program, provide data, or perform some
other service.

The issuer of a WTOR macro expects the operator to reply. Use the REPLY
command to respond to messages received via the WTOR macro.

The format of the REPLY command is:

Reply

id [text]

Example

id
The identification number (0-99), as specified in the message requesting the
response. Leading zeros may be omitted.

text
The text of the response to the message. The maximum text length is 119
characters (responses longer than 119 characters are truncated to 119).

Note: The WTOR macro instruction allows its issuer to specify the maximum
length of the expected operator’s response. If the operator attempts to send a
response that is longer than the issuer of the WTOR specified, the response
will not be transmitted, and a message is issued to that effect. - S

A list of all messages awaiting reply, along with their identification numbers,
can be obtained by issuing:

query reply

Return
Code Meaning .

0 Your reply is accepted. N

4 No message requiring a reply is associated with the
identification number you specified.

8 Your reply was not accepted. Its format was
invalid.

10 The reply buffer address or ECB address was not
accessible.

In the following example, the operator informs the issuer of a WTOR, whose
identification number is 16, that a disk has been mounted at address 250.

reply 16 disk is mounted at address 250

58 VM/XA SP GCS Command and Macro Reference

Messages

REPLY

CSIRPY206E Reply not accepted, ID not specified

CSIRPY207E Reply not accepted, ID number not 00 to 99 RC=8

CSIRPY208I Reply xx not outstanding RC=4

CSIRPY209E Reply xx not accepted, reply too long for requestor
RC=8

CSIRPY210E Reply not accepted, invalid ECB address RC=10

CSIRPY211E Reply not accepted, invalid reply buffer address
RC=10

For more information on messages, see the VM/XA SP System Messages and Codes
Reference.

Chapter 2. Group Control System (GCS) Commands 59

SET

SET

Replace a Saved System Name Entry in the SYSNAMES Table for VSAM

When GCS is generated, the default names of saved systems for VSAM (CMSVSAM
and CMSBAM) become entries in your SYSNAMES table. The table entry looks
like this:
SYSNAMES: GCSVSAM GCSBAM

ENTRIES: CMSVSAM CMSBAM

“GCSVSAM” and “GCSBAM?” are merely headings here. “CMSVSAM” and
“CMSBAM?” are the actual saved system names. Before VSAM is initialized (by the
first VSAM operation after IPL), you can change these saved system names with the
SET command. Once you initialize VSAM, these saved system names cannot be
changed. :

The format of the SET command is:

SET

SYSNAME GCSVSAM|! entry name
GCSBAM

60

SYSNAME
Specifies that a saved system name in the SYSNAMES table is to be replaced.

GCSVSAM
Indicates that the entry name you're about to supply will go under the heading
“GCSVSAM?” in your SYSNAMES table. “GCSVSAM?” does not automatically
become the new entry name of the VSAM system. For more information on
VSAM systems, see the VM/XA SP Installation and Service.

GCSBAM
Indicates that the entry name you're about to supply will go under the heading
“GCSBAM?” in your SYSNAMES table. (You need a BAM system to support
VSAM.) “GCSBAM?” does not automatically become the new entry name of
your BAM saved system. For more information on BAM systems, see the
VM/XA SP Installation and Service

entry name
The name of the alternative saved system that will replace your default VSAM
or BAM system. The VSAM and BAM systems you use for GCS can be the
same as the CMSVSAM and CMSBAM systems you use for CMS. Separate
systems are not required.

To display the saved system names currently available to your virtual machine,
enter:

query sysnames

VM/XA SP GCS Command and Macro Reference

"/(Aﬁmx
N

-

—- 7’

A

Messages

CSISETOO6E
CSISETO13E
CSISET321E

CSISET322E
CSISET323E
CSISET351E

Invalid parameter 'parameter' RC=24
No function specified RC=24
Saved system name 'name' is invalid. Only GCSVSAM

or GCSBAM allowed RC=24

New system name missing after 'name' RC=24
Parameter missing after SYSNAME RC=24

System name not changed. VSAM already initialized.
RC=24

For more information on messages, see the VM/XA SP System Messages and Codes

Reference.

Chapter 2. Group Control System (GCS) Commands 61

A ™

C

Chapter 3. GCS Macro Overview

Multitasking

Chapter 3. GCS Macro Overview 63

This section provides an overview of how GCS works.

Multitasking “

GCS provides multitasking services for multiple active tasks, as opposed to CMS
which supports only one active task at a time.

e What is a task?

A task is a single piece of work to be done, and, for the most part, an
independent routine. A program running in a GCS machine can spawn a series
of tasks, each with a specific job to do. Together, these tasks contribute to the
program, letting it accomplish its overall assignment.

¢ What is multitasking?

A program can have tasks that belong to it, and those tasks can have numerous

subtasks. With GCS, a single program can have many tasks active at one time,

even though the CPU can process only one task at a time. Multitasking is the i
act of managing system resources for all those tasks as they line up to run. ‘:

Adding and Discarding Tasks
A GCS program starts with one initial task. And that initial task can add on
additional subtasks using the ATTACH macro. Those subtasks, in turn, can add
more subtasks of their own. What results is a task hierarchy like that shown in
Figure 9 on page 65. All those tasks belong to one GCS application program.
They vie with each other for an opportunity to execute in that application” virtual
machine.

Tasks use the following two macros for adding and discarding subtasks: - J
ATTACH To add on a subtask

DETACH To get rid of a subtask.

Refer to the ATTACH and DETACH commands for more detailed information.

64 VM/XA SP GCS Command and Macro Reference

Dispatching Tasks

Initial

Task
A
Subtask Subtask Subtask
B C D
Subtask Subtask Subtask Subtask
E F G } H

Figure 9. Diagram of a Task’s Family Tree. Parent task A adds subtasks B, C, and D.
Subtask B becomes the parent of subtasks E and F. Subtask C has no offspring.
Subtask D becomes the parent of subtasks G and H.

To help GCS set up a task hierarchy, each task has a 2-byte task ID and a 1-byte
dispatching priority number. Tasks that want to execute first identify themselves
with the task ID. Then GCS sets the order of dispatching according to the 1-byte
dispatching priority number.

Tasks themselves determine dispatching priority numbers. Parent tasks assign
priority numbers to newly created subtasks. Subtasks” priorities can be the same,
higher, or lower than their parents’. To change an existing priority assignment, tasks
must invoke the CHAP macro. CHAP works only for:

e A task that wants to change its own priority
¢ A parent task that wants to change the priority of one of its attached subtasks.

Tasks with the largest dispatching priority numbers have the highest priority.
Usually, dispatching follows the simple rule:

e High priority before low.

But exceptions do occur:

e When tasks have equal priority, the task dispatcher keeps timing information
about the running task. If the running task exceeds the time limits the task
dispatcher switches to a ready task of equal priority.

e When the highest priority task cannot run, GCS dispatches the next-highest,
runnable task.

Otherwise, when a task does get dispatched, it maintains control:

¢ While disabled for interrupts, or

Chapter 3. GCS Macro Overview 65

e Until a higher priority task becomes ready to run, or
e Until it terminates, or '
¢ Until it issues a WAIT.

Terminating Tasks : ,
Task termination has two facets:

1. What makes tasks terminate: »
NORMALLY: A task ends normally for one reason.

A task finishes its work and returns control to the GCS
supervisor.” The supervisor or an exit routine (specified with
the GCS TASKEXIT macro) cleans up any resources the
task was using.

ABNORMALLY: A task terminates abnormally (abends) because:

o It requests an abnormal termination with the GCS
ABEND macro.

Note: When a task specifies: ABEND with the DUMP
option, it receives a dump of its virtual machine.

e A parent task above it terminates. (When a parent task
terminates, its immediate subtasks and all their attached
subtasks terminate t00.)

o Its parent task orders it terminated with a DETACH
macro.

¢ The virtual machine operator cancels the entire
application program.

e The GCS supervisor cannot provide a requested service.

The supervisor or an exit routine (specified with the
TASKEXIT or ESTAE macro) cleans up any resources the
abended task was using.

2. What happens because tasks terminate:
a. Tasks call exit routines.

Programs running in authorized machines can set up termination routines
with the TASKEXIT macro. These routines reside in shared storage so that
they can serve any machine in the group. When any task terminates,
normally or abnormally, the GCS supervisor calls these exit routines.

Not all terminations are final. GCS has procedures that permit tasks to
appeal abnormal terminations. Tasks can set up exit routines that are local
to their own virtual machine with the ESTAE macro. These routines clean
up resources and decide whether to uphold the abnormal termination.
ESTAE lets an exit routine, which you have written:

¢ Perform some predetermination processing

e Diagnose the cause of the abend

¢ Continue normal processing at some retry point or,
e Continue termination.

During the exit, an abended task can ask the GCS supervisor to let it
recover control and continue executing. GCS will invoke this ESTAE

66 VM/XA SP GCS Command and Macro Reference

-

exit for any abend, unless certain circumstances prevail. Refer to
“ESTAE” on page 108 for more information.
¢ GCS cleans up resources when tasks terminate:

— Closing any files the task opened

— Releasing any storage the task used

— Releasing any locks the task held

— Severing all IUCV paths the task established

— Canceling any timer intervals the task set

— Canceling resources the task requested via ENQ

— Closing General I/O devices the task opened and unlocking any
locked pages of storage

— Canceling any replies from the operator that the task requested via
the WTOR macro

— Subtracting the task’s modules from running totals in storage
(program load count and use count)

— Undefining any commands you defined with LOADCMD (only if
you terminated the task with an HX command).

Coordinating Dependent Tasks

Often, tasks depend on each other to get work done. For instance, one task might
have to stop running until a second task provides additional information or service.
When that “event” occurs, and the first task resumes again, the two tasks have
synchronized.

“Events” are important reference points for coordinating or synchronizing tasks.
Tasks plan their actions around events by using Event Control Blocks (ECBs). An
ECB is a word of storage that represents some event.

The two task management macros that use ECBs are:

WAIT Suspends the task until some event occurs, and

POST Notifies the task that some event has completed.

For example, when a task has to wait for an ECB, it is suspended until a POST
macro is issued for that same ECB. A task can wait for a whole list of ECBs.

When any one of them gets posted, the task resumes. Refer to Figure 10 on
page 68.

Chapter 3. GCS Macro Overview 67

Parent N
Task A

;

Task A
attaches
Task B

'

R

Y

Task B
begins

Task A
issues A
WAIT ' :

for ECB

Task B

Y

System
issues POST
on ECB

— WAIT: POST:

Task A is waiting Tell Task A that

for event |' ECB l event occurred

(Represents an event)
Event: Task B completes

l

Task A, ya ‘\‘
event,) ;
resumes S

'

Figure 10. How Tasks Can Use WAIT and POST Macros

GCS'’s specific function for VM/XA SP WAIT and POST work only among tasks in
the same virtual machine.

Coordinating Shared Resources
Sometimes tasks have to synchronize their use of a resource. A resource is
something (perhaps a facility or service) that applications in a particular virtual
machine need to use. Its assigned resource name has significance only within that
virtual machine, and then only to the applications programmed to use it. When
many tasks have to share such a resource, they coordinate their time using:

ENQ Enqueues a request for control of a resource %Ly’

DEQ Releases previously requested resource.

68 VM/XA SP GCS Command and Macro Reference

With an ENQ request, a task provides a resource name, identifying the resource it
wants to use, and specifies whether it can share that resource. If a task cannot share
the resource, it enqueues in exclusive mode, requesting exclusive use of that resource.
If it can share, it enqueues in shared mode. Sometimes tasks have to wait so they
each can take separate turns using a particular resource. In other cases, many tasks
share one resource at the same time.

If a task has enqueued a resource in exclusive mode, any other task that issues ENQ
on that same resource must wait until the first task finishes. After the first task issues
DEQ, the second can take its turn. In addition, if one or more tasks are already
enqueued in shared mode, a new task cannot gain control in exclusive mode. It will
be forced to wait until the others finish with the resource in shared mode.

ENQ and DEQ apply ouly to tasks rﬁnning in the same virtual machine.

OS Management Services

The OS management services (storage management, program management, and timer
management) described in this section are GCS services that resemble (but do not
duplicate) MVS functions.

Storage Management

Each GCS machine in a virtual machine group has two storage areas: private and
common. Private storage is local to an individual machine and not shared with
other group members. This means that a program running in a neighboring machine
can’t use or change another’s private storage area. Common storage, however, is
shared in a read/write fashion with all other machines in the group. Any program
can use or look at nonfetch-protected information in common storage. But only
authorized programs can obtain or otherwise modify storage space there.

GCS uses storage keys to prevent unauthorized storage allocation. Any program
that wants to obtain storage must have a PSW key (bits 8 through 11 in the PSW)
that matches the storage key of the address range in question. Unauthorized
programs, for example, have PSW keys of 14. Therefore, they cannot obtain GCS
common storage that has a storage key of 0 (zero).

Obtaining Storage: A program or task that runs in a GCS virtual machine can
obtain or release storage space as the need arises. It does this using GCS'’s
GETMAIN and FREEMAIN macros. With GETMAIN, the task requests a
certain-sized block of storage. GCS allocates the space and passes the block’s
address along to the task. Later, when the task no longer needs that space, it issues
the FREEMAIN macro and tells what block it wants freed.

When a task requests a certain size of storage with GETMAIN, it also can request
other storage characteristics by specifying a subpool. A subpool is a number
between 0 and 255. This number characterizes storage as:

* Private or common,
¢ Fetch-protected or nonfetch-protected, and

¢ Task-related (automatically released when the task ends) or persistent (retained
after the task ends).

Chapter 3. GCS Macro Overview 69

Assigning Storage Keys: When allocating storage, the GCS supervisor assigns the
address range a storage key that matches the requesting task’s PSW key. There are
sixteen possible storage keys for different types of code. A storage area’s key
depends upon what type of code it contains:

Key

Type of Code

0

Saved segments and reentrant code (including GCS common
storage and other shared code)

1-13

Authorized (privileged) applications

14

Unauthorized (nonprivileged) applications
(also the starting key for authorized applications)

15

VSAM and BAM shared segments

Switching Keys: A program can obtain storage only in the key of the PSW that it is

running in. Authorized and unauthorized GCS programs both start out with the
same PSW Key 14. Thus, unauthorized programs can secure only fetch-protected

storage in Key 14. Authorized programs, on the other hand, can allocate storage in

any key, including both fetch-protected and nonfetch-protected common storage.

An authorized program, running in supervisor state, can obtain storage in a new key

by changing its PSW key. This involves allocating storage in the new key with the
GETMAIN macro.

1. Specifying a new PSW key with the SPKA instruction, and
2. Allocating storage in the new key with the GETMAIN macro.

Program Management

Programs running on GCS can load and execute modules of code that were

assembled and link-edited under CMS. Some of these modules reside on a disk in a
load library. Others reside in saved segments that get linked automatically when you

IPL your GCS segment.

When a GCS program requests a module, the GCS supervisor first tries to find one
that was previously loaded in that program’s virtual machine. If no usable copy is
available, the supervisor tries to find the module in one of your system’s saved
segments. (In either case, the supervisor will use a copy where it locates one.)
Failing to find it in a saved segment,? the supervisor searches the load libraries
specified by GCS’s GLOBAL LOADLIB command. If the supervisor finds the

module there, it loads a copy into the program’s private storage area. See Figure 11

on page 71.

3 Each saved segment has a directory that was created with the CONTENTS macro. The GCS supervisor searches
these directories when looking for a particular module.

70 VM/XA SP GCS Command and Macro Reference

N

<

Saved
Segment

Program X
Private
Application
Storage

Load
Library GCS Supervisor
Disk and

Common Storage

Private
GCS

Private
GCS

Figure 11. Obtaining Modules Requested by a GCS Program. Program X, on the left,
loads a copy of a module from a disk load library. Program Y, on the right,
shares a reentrant module in a saved segment, using it where it exists without
actually copying it.

Chapter 3. GCS Macro Overview 71

To load a module, a program can issue any of the following macros in Table 1:

Table 1. Loading Functions N/
Macro | Action 1 Action 2 Action on Return
LINK Finds and loads a Passes control to After the linked module
. module (if it was the loaded module | runs, control returns to
not already in at the specified the program that issued
storage) entry point. LINK. In addition, if
containing a no other program is
specified entry using that copy of the
point. module, GCS deletes it
from storage. LOAD
Locates and loads a
module (if it was not
already in storage).
Returns the address of
an entry point,
associated with the
loaded module, to the
program that issued
LOAD.
LOAD returns control to
the program that issued
it. The supervisor keeps
track of the module’s N
whereabouts until the .
program issues
DELETE.
XCTL Finds and loads a After the module ’
' module (if it was runs, control does
not already in not return to the
storage) program that
containing a issued XCTL, but
specified entry to the program
point. Passes before that. N
control to the
loaded module at
a specified entry
point.
Macros associated with these loading functions include:
BLDL Creates a directory entry list that contains information about modules
you expect to invoke. (It includes their names, what load libraries they
reside in, their disk addresses, and other facts).
CALL Passes control to an entry point in the same or different control section
(CSECT).
DELETE Releases a module from its caller’s control (and removes it from -
storage if no other programs want to use it). @: J
R

IDENTIFY Defines an entry point within a load module.

72 VM/XA SP GCS Command and Macro Reference

RETURN Returns control to the calling program.

SAVE Saves the contents of registers belonging to a program that is calling
another program.

SYNCH Passes control to a program, in the same or different state, at a
specified entry point.

Here are examples of how you might use the loading macros:
LOAD

Program 1 loads module A.

Program 1 gives control to module A with LINK or SYNCH.
Module A executes.

Program 1 regains control when module A finishes.

5. Program 1 deletes module A.

LINK and XCTL

1. Program 2 LINKSs to module B.

2. Module B executes and transfers control to module C.
3. Module C executes.

4. Program 2 regains control when module C finishes.

L=

Timer Management
Programs or tasks that run under GCS sometimes need the services of a timer. A
task, for example, may want to set a timer for a certain interval and, when that
interval is up, transfer control to an exit routine. Another task might want to set a
timer for a certain interval and then stop executing until that interval expires.

GCS has three macros that let tasks define and manage time limits:
STIMER Lets you set a time interval by specifying:

a time length For the next 10 seconds, do this ...

a time-of-day At 09:30, do this ...

TIME Asks the GCS supervisor to provide the current time-of-day and date. In
effect, it asks the system, What time is it right now?

TTIMER Cancels any remaining interval (and exit routine) that was set with the
STIMER macro.

For more information and a detailed explanation of each macro, see the STIMER,
TTIMER, and TIME entries.

Native GCS Services
The native GCS services described in this section make use of unique GCS functions.
Authorization provides the basis for service. Some functions serve unauthorized
programs running in problem state machines; other functions serve only authorized
programs running in supervisor state machines.

Calling Authorized Programs
An unauthorized GCS program in problem state can transfer control to an
authorized program in supervisor state. When called, the authorized program
executes, beginning at an identified entry point in shared storage. Upon finishing, it
returns control to the unauthorized program.

Chapter 3. GCS Macro Overview 73

This transfer of control involves two macros:

AUTHNAME The authorized program has to provide an authorized entry point,

identified with the AUTHNAME macro.

AUTHCALL. The unauthorized program calls and passeé control to the
authorized one by issuing the AUTHCALL macro.

The table belows identifies what AUTHCALL can and cannot do:

Table 2. The AUTHCALL Macro

AUTHCALL Does AUTHCALL Does Not
Cause an authorized program to Cause a task switch to occur. (The
start executing at an entry point same task is still running.)

identified with AUTHNAME. The
entry point always receives control
in supervisor state and Key 0.

Return control to the calling Let an unauthorized program execute its
program in its original state and own code in supervisor state or Key 0.
key, when the authorized program

finishes.

“AUTHCALL” on page 172 describes the AUTHCALL macro in more detail.

Communicating through IUCV

GCS supports communication within a virtual machine, or between any two virtual
machines, at a routine-to-routine level. Task-users (routines running within a task)
communicate through ITUCV with:

¢ Other task-users in the same machine,
¢ Task-users in other virtual machines on the same system, or
» CP.
Task-users rely on two macros for IUCV communications:
IUCVINI Initializes or terminates a task-user’s [IUCV environment
IUCYVCOM Sets up, carries out, and terminates communications between two -
IUCV users.
To allow IUCV communication at the task-user level, GCS provides:

1. A “nonprivileged” IUCYV interface for both authorized and unauthorized
task-users.

This nonprivileged interface provides the following support shown in Table 3 on

page 75.

74 VM/XA SP GCS Command and Macro Reference

Performing 1/0)

Table 3. A Nonpriviledged TUCV Interface

Functions Provided

Functions Not Provided

ACCEPT

DCLBFR (Declare Buffer)

CONNECT

RTRVBFR (Retrieve Buffer)

PURGE (IUCYV only)

DESCRIBE (Describe)

QUERY

SETMASK (Set Mask)

QUIESCE (IUCV only)

SETCMASK (Set Control Mask)

RECEIVE

TESTCMPL (Test Completion)

REJECT (IUCV only)

TESTMSG (Test Message)

REPLY (IUCV only)

RESUME (IUCYV only)

SEND

SEVER

2. A “privileged” interface only for authorized task-users that specify PRIV=YES
with the IUCVINI SET function. With the privileged interface, a task-user:

e Cannot issue IUCVINI REP to change its general exit

¢ Cannot issue IUCVCOM REP to change a path-specific exit

e Must use the IUCVCOM functions CONNECT, ACCEPT, and SEVER to
establish or terminate JUCV paths

¢ Can issue the following functions directly (without going through the

IUCVCOM macro):

IUCV PURGE
IUCV QUERY
IUCV QUIESCE
IUCV RECEIVE

IUCV REJECT
IUCV REPLY
IUCV RESUME
IUCV SEND

When a GCS program needs an I/O operation performed, it uses a function called
General I/O. The related macro, GENIO, provides functions that an unauthorized
application can use to execute virtual channel programs on any real or virtual I/O
device except DASD. Table 4 on page 76 lists the six different functions provided

by GENIO:

Chapter 3. GCS Macro Overview 715

Table 4. GENIO Supported Functions for Unauthorized Programs

Function

Description

Open Device (OPEN)

This function identifies a task as
owner of a particular I/O device.
OPEN also requires the task to
specify an exit. Whenever the task
receives an I/O interrupt from the
device, this specified exit gets
control.

Close Device (CLOSE)

This function ends a task’s ownership
of a specified device. specified exit.

Modify (MODIFY)

This function requests that an active
channel program be modified. An
application first must modify the
virtual channel program and then
issue MODIFY.

Obtain Device Characteristics (CHAR)

This parameter returns information
about an I/O device’s type, class,
model, and features.

Start I/O (START)

This function starts a virtual channel
program on an open device. (The
device may be either virtual or real.)

Halt I/O (HALT)

This halts an operation on a given
device, terminating any active I/O.

The GENIO macro also provides a function for authorized programs that want to
execute real channel programs on real devices as shown in Table S:

Table 5. GENIO Supported Function for Authorized Programs

Function

Description

Start real I/O (STARTR)

This starts a real channel program
on an open real device. (The device
must be real.)

Executing Real Channel /0 Programs: Authorized GCS programs can use real

channel programs to move data between main storage and real I/O devices (except
DASDs). Real channel programs execute directly on the real channel, without CP
first translating them. Before you can execute real channel programs, you need an

authorized user ID and a special entry in your VM/XA SP directory. You make this

entry by specifying the DIAG98 parameter on the OPTION directory control

statement.

To execute real I/O, authorized programs use GENIO!s STARTR (start real)
function. For the most part, STARTR works much like the ordinary START
function for virtual I/O. However, with STARTR:

¢ CP does not translate the channel program before starting it.
¢ GCS issues a DIAGNOSE code X'98" instead of an SIOF instruction.

76 VM/XA SP GCS Command and Macro Reference

C

Refer to “GENIO” on page 181 for more detailed information about GENIO and
its parameters.

Securing Pages of Storage

Manipulating Locks

An authorized program intending to perform real I/O using STARTR must first
build a channel program?. in real storage. In the process of building a real channel
program, the program must lock pages of virtual storage into real storage. Later, it
needs a way to unlock those pages.

The two macros that do this are:
PGLOCK Locks given pages of virtual storage into real storage
PGULOCK Unlocks pages that were fixed via the PGLOCK macro.

Refer to “PGLOCK” on page 204 and “PGULOCK” on page 206 for more
detailed information.

Locks are controls that help authorized programs share resources. They serve as
warning signs that a particular resource is in use. There are two kinds of locks:

Local Helps synchronize the use of resources within a virtual machine
Common Helps synchronize common storage among many virtual machines.

The GCS supervisor uses the LOCKWD macro to manipulate these locks and
thereby regulate access to local resources or common storage. The LOCKWD
macro has parameters that:

¢ Identify a lock as local or common
* Test the common lock (to see whether it’s on or off)
¢ Specify whether the lock is to be acquired or released.

When a program or task wants to use a resource within its own virtual machine, it
uses the LOCKWD macro to acquire the local lock for that machine. That action
prevents all other tasks in the virtual machine from running until the lock is released.

When a task wants exclusive use of common storage, it can acquire the common
lock for its virtual machine. First, a task has to acquire the local lock before it tries
to acquire the common lock. Next, the program should use the LOCKWD macro to
test the common lock’s availability. Until that machine releases the lock, no other
machine will be able to acquire it. In the meantime, if a program tries to acquire the
common lock when it’s already on, the GCS supervisor will suspend the requesting
program until the lock gets turned off. As soon as it’s off, LOCKWD informs the
waiting machine that the common lock is available. This serializes (or synchronizes)
group use of common storage.

Refer to “LOCKWD” on page 196 for more detailed information.

4 For information about building channel programs, see the chapter titled Input/Output Operations in the System/370

Principles of Operation.

Chapter 3. GCS Macro Overview 77

Validating Requests for Storage Access

| An authorized program can validate another program’s request for storage access. A ™
The authorized program uses the VALIDATE macro to check input (a parameter S S
1 list, for example) from the other program. VALIDATE compares the other

program’s PSW key with the storage key of the storage area to be accessed. If those

two keys match, the authorized program will honor the storage access request,’ for

both read and write access. If the keys are different and the storage is nonfetch

protected, the authorized program will allow read access only.

Refer to “VALIDATE” on page 216 for more detailed information.

Scheduling Exits in Other Tasks
An authorized program can schedule an exit for any task in any group machine.
With the SCHEDEX macro, the program can preempt a specific task and arrange
for a designated exit routine to assume control. Instead of the task getting
dispatched (providing that it is not disabled), the exit routine gets control in
supervisor state and with a PSW key of 0 (zero).

After scheduling the exit, the authorized program continues executing. And after the
exit routine finishes, GCS lets the interrupted task continue executing. Refer to
“SCHEDEX” on page 208 for more detailed information on the SCHEDEX macro.

Establishing Exits for Group Members
Authorized programs can establish exits for the entire virtual machine group. These
exit routines must reside in storage that all machines in the group can share.

e Machine exits

Authorized programs can use the MACHEXIT macro to set up exit routines
that will get control when any machine terminates or leaves the group. These
routines will execute in the group’s recovery machine.

Note: The recovery machine must be the first one to join your group. It has
responsibility for cleaning up system resources when other machines using
them reset. (See “What Makes a Machine Reset ?7” on page 79.) This
clean-up involves executing all currently existing exit routines set up with
the MACHEXIT macro.

If the recovery machine itself gets reset, the machines remaining in the
virtual machine group will issue a CP SYSTEM RESET, which causes N o
the entire group to reset.

e Task exit routines

Authorized programs define task exit routines for programs in the same virtual
machine group. Whenever a task in one of the group’s virtual machines
terminates, a specified exit routine gains control. An authorized program uses
the TASKEXIT macro to identify the address where that exit routine begins.

o “Exits” to authorized entry points

Defining an entry point does not define an “exit”, in the true sense of the word.
However, when an authorized program identifies an entry point with the
AUTHNAME macro (refer to “Native GCS Services” on page 73), it resembles

5 The authorized program’s key does not need to match that of either the unauthorized program or storage. As an
authorized program, it can switch itself to Key 0 and transfer data across the different key boundaries.

78 VM/XA SP GCS Command and Macro Reference

the act of identifying an exit routine’s address. For details on transferring
control to authorized entry points, see the AUTHNAME and AUTHCALL
entries.

What Makes a Machine Reset ?
¢ Logging off

¢ IPLing another system (or re-IPLing GCS)
¢ A machine check (under certain conditions)

¢ Issuing certain CP commands:

SYSTEM RESET
SYSTEM CLEAR
DEFINE STORAGE

Data Management Services
GCS applications can process CMS files on minidisks, VSAM files, and CP spool
data files. With GCS’s data management services, applications can perform input,
output, or update operations on a file, depending on whether it’s a CMS, VSAM, or
CP spool data file. The types of data management services include:

1. resembling, but not duplicating, MVS/BSAM and MVS/QSAM services that
allows processing of CMS disk files and CP spool data files

2. resembling, but not duplicating, MVS/VSAM services that allows processing of
VSAM files.

Processing CMS Minidisk Files
A GCS program processes CMS files using BSAM or QSAM macros. For GCS,
these macros have unique constraints. In particular, GCS’s data management service
supports only the “extended file system” format.

GCS’s QSAM/BSAM data management service supports the following command:

FILEDEF Defines CMS minidisk files and CP spool data files.

GCS data management supports the following set of macros, at the MVS/SP 1.3.1

level:

CHECK Wait for and test completion of a read or write operation (BSAM).

CLOSE Logically disconnect a file (BSAM and QSAM).

DCB Construct a data control block (BSAM and QSAM).

DCBD Provide symbolic reference to data control blocks (BSAM and
QSAM).

GET Obtain next logical record (QSAM).

NOTE Determine relative position (BSAM).

OPEN Logically connect a file (BSAM and QSAM).

POINT Point to the relative position of a specific block (BSAM).

PUT Write next logical record (QSAM).

READ Read a block (BSAM).

SYNADAF Perform SYNAD analysis function (BSAM and QSAM).

Chapter 3. GCS Macro Overview 79

SYNADRLS Release SYNADAF buffer and save areas (BSAM and QSAM).
WRITE Write a block (BSAM).
Unlike CMS’s data management service, it does not let you use any of the following:

e OS formatted files
e 800-byte block size disk format
e 2314 series disks.

Nor does it allow:

¢ File mode 4 (treated instead like file mode 1)

¢ Spanned records

¢ Console or tape I/O

¢ Utility functions (such as formatting disks, loading files from tape, editing files).

However, GCS’s data management does follow the same rules as CMS’s when two
or more virtual machines want to share the same disk. Read/write privileges go to
only one virtual machine at a time, while multiple disk and minidisk users must
share in read-only mode. For detailed information about disk sharing, see the
VM|/XA SP CMS User's Guide.

Sometimes two or more tasks within the same machine need to share a single file.
They can do this under two conditions:

1. If they concurrently open and use multiple Data Control Blocks (DCBs) that
refer to the same, shared file.

When many DCBs refer to a single file, the type of processing (input, output, or
update) decides what programming procedures you should use and the
requirements that go along with each.

The requirements for programming procedures are described in Table 6:

Table 6. Opening Multiple DCBs

Type of Processing: Programming Required:

INPUT Each task should issue READ and GET requests
as if no file sharing were taking place. GCS keeps
track of the read pointers.

OUTPUT This sort of sharing is not supported for multiple
DCBs. Unpredictable results will occur if you
attempt it.

UPDATING (in BSAM) Each task should issue ENQ before the READ
macro. This helps serialize the processing of each
block of records. Macros issued to complete the
update are WRITE, CHECK, and DEQ, in that
order.

UPDATING (in QSAM) When updating a file, a task must avoid altering
blocks containing records that other tasks are
updating. GCS has no way of knowing whether

different tasks are processing discrete blocks.

Note: When you share a file with multiple DCBs, be sure you issue the
FILEDEF command only once for each ddname. If you need to issue
FILEDEF for the same ddname and same file later in the program, make

80 VM/XA SP GCS Command and Macro Reference

sure you specify the NOCHANGE option Refer to “FILEDEF” on
page 34 for the FILEDEF command format.

2. If they concurrently open and use only one shared DCB.

When tasks share a single DCB, GCS permits three types of processing:

a. inputting

b. outputting

c. updating.

To coordinate their activities, tasks must use the ENQ and DEQ macros. Only

one of the macros can have control at a time. The tasks must issue the ENQ
macro first (to take turns at getting control) and end with the DEQ macro (to
release control). Refer to “Coordinating Shared Resources” on page 68 for

more information on shared resources.

Processihg CP Spool Data Files

BSAM and QSAM functions allow GCS programs to process virtual reader, printer,
and punch files. Existing CP facilities, such as CP Directory, DEFINE, DETACH,
SPOOL, and TAG define and manipulate the various unit record devices.

Note: GCS programs cannot write to virtual readers or read from virtual printers

and punches.

Processing VSAM Files

GCS programs use VSAM macros supported at the MVS/VSAM Release 3.8 level,

the same level as CMS. In fact, you'll find them in a CMS macro library named

OSVSAM MACLIB. When you request a service with one of these macros, it gets
mapped to VSE/VSAM format and executed using VSE/VSAM code.

GCS’s VSAM data management service supports the following command:

DLBL

Identifies VSAM files for I/O

GCS data management supports the following macros:

ACB
BLDVRP
CHECK
CLOSE
DLVRP
ENDREQ
ERASE
EXLST
GENCB

GET
MODCB

OPEN
POINT

Generates an access method control block at assembly time
Builds a resource pool for Local Shared Resources
Suspends processing and wait for a request to complete
Disconnects a program and data

Deletes a resource pool

Terminates a request

Deletes a record

Generates an exit list

Generates an access method control block, exit list, or request
parameter list at execution time

Retrieves a record

Modifies an access method control block, exit list, or request
parameter list dynamically

Connects a program and data

Points VSAM to a specific record to be accessed

Chapter 3. GCS Macro Overview

81

PUT Stores a record

RPL Generates a réquest pafaméter list
SHOWCAT Retrieves information from the VSAM catalog
SHOWCB Displays fields of a control block or list
TESTCB Tests values in a control block or list
WRTBFR Writes buffers that contain Deferred Writes

Note: The control blocks generated by the OS ACB, RPL, and EXLST macros are
converted from OS format to VSE format the first time that these control
blocks are used by GCS. Because of this, the TESTCB, SHOWCB, and
MODCB macros, rather than the OS mapping macros from the OSVSAM
macro library, should be used to get or modify data in these control blocks.

Some other VSAM information you should consider is:

¢ VSAM data management services support the CHECK macro and RPL’s
“ASY” option, but no asynchronous activity is performed.

¢ GCS does not support utility functions. You have to perform disk initialization,
catalog definition, and file definition (AMS functions) under CMS.

¢ VSE/VSAM governs the sharing of VSAM data within a GCS virtual machine.
The way you define a VSAM file and the way you use it (for input or output)
determines how VSE/VSAM handles shared data. See the VSE/VSAM
Programmer’s Reference for more information.

e When a task terminates, GCS tries to close all open ACBs that the task opened.

82 VM/XA SP GCS Command and Macro Reference

\"k. ;

ABENDo 84
ATTACH 86
CHAP . . . 94
DEQ . oo 96
DETACHot 100
ENQ . oo 102
ESTAE . .ot 108
THASDWA . . oo 114
POST . o oot 116
SETRP . . . o oot 119
WAIT . oo 122

Chapter 4. Task Management Service Macros 83

ABEND

Abnormally Terminate the Active Task

For a variety of reasons, a task running under GCS may decide that it should
abnormally terminate itself.

Use the ABEND macro instruction to effect this.

The format of the ABEND macro instruction is:

[Tabel] ABEND

completion code[,DUMP][,STEP] |,USER

,SYSTEM

Parameters

completion code
Specifies the completion code that describes the condition under which the task
terminated itself.

A completion code is a number from 0 to 4095.

If you specified the address of an event control block in the ATTACH macro
instruction that created the ABENDing task, then the completion code is placed
there. (If necessary, review the entry titled “ATTACH” on page 86.) Ifitisa
user completion code, then it is stored in bits 20-31 of the ECB completion code
field. If it is a system completion code, then it is stored in bits 8-19.

If you specify the DUMP parameter, then this completion code will also appear
in the dump’s control block.

The meaning of each user completion code is defined by the application. The
meaning of each system completion code is defined by the GCS supervisor. The
USER and SYSTEM parameters, described below, govern which type of
completion code you receive.

You can write this parameter as any symbol, as a decimal or hexadecimal
number, or as register (1) through (12).

DUMP
Specifies that a dump will be sent to your virtual reader.

GCS sends the dump to the virtual reader belonging to the member of your
virtual machine group designated to receive dumps. If this member is not
authorized, then only non-fetch-protected key 14 data will be included in the
dump.

STEP
Indicates that the entire command or application, of which the task in question
is a part, is to be abnormally terminated.

USER
Indicates that the completion code specified is defined by the user or the
application. Unless otherwise stated, this is the case, by default.

84 VM/XA SP GCS Command and Macro Reference

a
N

Usage Notes

Example

ABEND

SYSTEM

Indicates that the completion code specified is defined by the GCS supervisor.

If any subtasks are defined for the task in question, then they are also
terminated abnormally. This applies to any of their descendants, as well.

When a task terminates, the GCS supervisor performs normal task termination
activities on the former’s behalf. These activities include the release of locks,
storage, and other resources associated with the task.

However, you may have defined an exit routine for the task via the ESTAE
macro instruction. (If necessary, review the entry titled “ESTAE” on page 108.)
The exit routine may attempt to retry the failed function or request that the
supervisor continue with normal task termination.

It may be that no exit routine was defined for the task in question. It may also
be that an exit routine was defined for the task but the exit routine directed that
termination continue anyway. In either case, GCS checks to see if the task in
question is a subtask of another task. If so, then the other task is the immediate
ancestor task of the task in question.

If the task in question has an immediate ancestor, then GCS checks to see if the
ancestor task included the ETXR parameter in the ATTACH instruction it used
to attach the task in question to itself. If so, then GCS schedules the routine
specified in the ETXR parameter for execution. If the ancestor task specified
the ECB parameter in the same ATTACH instruction, then GCS posts the
appropriate event control block.

If necessary, review the entry titled “ATTACH” on page 86.

Some of the subtasks of the task being terminated may have ESTAE exit
routines defined for themselves. If so, none of them ever receives control.

In the following example, the active task terminates itself abnormally.
ENDIT ABEND 899,DUMP

The user completion code of 899 describes the reason for the abend. The task
requests that a dump of its virtual storage be produced to aid in diagnosing the
problem. ENDIT is the label on this instruction.

Return Codes and Abend Codes

The ABEND macro generates no return codes.

Abend
Code Meaning
20D A descendant subtask of this task issued the ABEND

instruction with the STEP parameter specified. This task
was abnormally terminated.

Chapter 4. Task Management Service Macros 85

ATTACH

ATTACH

| Set Up a New Subtask

| In order for the code representing a new subtask to be usable, a task block must be
created for it by its immediate ancestor task. Moreover, the subtask’s code must be
brought into virtual storage if it is not already there.

The ATTACH macro instruction should be used by a task to create a task block for
one of its own new subtasks. This will bring the subtask into virtual storage if it is
not already there. The task issuing the ATTACH macro instruction thereby
becomes the immediate ancestor of the subtask in question.

The ATTACH macro instruction is available in standard, list, and execute format.

The standard format of the ATTACH macro instruction is:

[1abel] ATTACH { EP=symbo1 \ [,PARAM=(addresses) [,vL=1]1[, ECB—address]
EPLOC=address | [,ETXR=address] [,DPMOD=number] |,SZERO= {ES_I}

NO |
< > E

r T
DE=address »SHSPV=number ,SM=i PROB! ,JSTCB= (YES|
,SHSPL=address | SUPV | LIQ)

Parameters
EP
Specifies the eight-byte name of the entry point within the program that receives
control when your new subtask runs.

The entry point name can be any one of the followiﬁg:

e The name of the entry point as previously defined via the IDENTIFY macro
instruction. If necessary, review the entry titled “IDENTIFY” on page 135.

¢ The name of the entry point declared in a shared segment directory via the
CONTENTS macro instruction. If necessary, review the entry titled
“CONTENTS” on page 427.

* A member name (or alias) in the directory of a load library.

When looking for the entry point name that you specify, GCS searches the
following items in the following order:

1. Your private storage, since the module associated with the entry point name
may already be loaded.

2. Any shared segment directories that may have been created via the
CONTENTS macro instruction.

3. The directories of any load libraries that may have been defined for your
virtual machine via the GLOBAL LOADLIB command. For more
information on the GLOBAL command see “GCS Commands” on page 20.

86 VM/XA SP GCS Command and Macro Reference

ATTACH

If the subtask code is in a load library, then the ATTACH macro w111 bring the
subtask’s code into your private storage for you.

You must write this parameter as a symbol.

EPLOC
Specifies the address that contains the eight-byte name of the entry point of the
program that receives control when your new subtask runs.

You can write this parameter as an assembler program label or as register (2)
through (12).

DE
Specifies the address of the NAME field within the directory list entry associated
with the entry point.

This is the same list entry you placed in the directory using the BLDL macro
instruction. If necessary, review the entry titled “BLDL” on page 126.

You can write this parameter as an assembler program label or as register (2)
through (12).

PARAM
Specifies one or more parameter addresses that are to be passed to your subtask
program once it receives control.

GCS builds a parameter list containing these addresses in the order in which you
specify them. Then, the address of this parameter list is passed in register 1 to
your subtask program.

Note that this parameter list must be surrounded by parentheses and each
member of the list must be separated from the others by a comma.

You can write these parameters as assembler program labels or as registers (2)
through (12).

VL=1
Indicates that the subtask expects a variable number of parameters to be passed
to it.

This parameter causes the high-order bit of the last parameter address in the list
to be set to 1. This enables the subtask to find the end of a variable-length
parameter list.

You must write this parameter exactly as shown. And, you can use it only with
the PARAM parameter. To omit the VL =1 parameter is to say that the
subtask expects a set number of parameters.

ECB
Specifies the event control block (ECB) associated with your new subtask.

The entries titled “WAIT” on page 122 and “POST” on page 116 describe how
your new subtask can be treated as an event associated with an ECB. GCS
posts the ECB with the subtask’s completion code or return code as soon as the
latter terminates.

Remember, if you specify the address of an ECB in the ATTACH instruction,
then you must explicitly issue the DETACH instruction when you are finished
with the subtask in question. The DETACH instruction releases all the storage
associated with your subtask, including its control blocks. If necessary, review
the entry titled “DETACH” on page 100.

You can write this parameter as an assembler program label or as register (2)
through (12).

Chapter 4. Task Management Service Macros 87

ATTACH

ETXR

Specifies the address of the end-of-task exit routine that is to receive control
when your new subtask terminates either normally or abnormally.

It is your responsibility to provide this exit routine and to be certain that it is in
virtual storage when needed. Moreover, if your exit routine is to be shared by
several subtasks, then it must be reentrant.

Remember, if you specify the address of an exit routine in the ATTACH
instruction, then you must explicitly issue the DETACH macro instruction when
you are finished with the subtask in question. Normally the DETACH
instruction is issued somewhere in the exit routine itself.

You can write this parameter as an assembler program label or as registers (2)
through (12).

DPMOD

Specifies the number that is to be added to the dispatching priority of the
immediate ancestor task to produce the dispatching priority of your new
subtask.

The larger the dispatching priority number of a task, the more readily the task is
executed. So, if a positive number were assigned to the DPMOD parameter,
then the sum of this number and the priority of the ancestor task would produce
a higher priority for your new subtask. Conversely, a negative number assigned
to the DPMOD parameter would result in a priority for your subtask that is
lower than its immediate ancestor.

The dispatching priority for a problem state application task must be a number
from 0 to 240. Should the sum of the DPMOD parameter and the priority of
the ancestor task be less than zero, then the dispatching priority of your subtask
will be 0. Likewise, if this sum is greater than 240, then the dispatching priority
of your subtask will be 240.

The dispatching priority for a supervisor state application task must be a
number from 0 to 250. Should the sum of the DPMOD parameter and the
priority of the ancestor task be less than zero, then the dispatching priority of
your subtask will be 0. Likewise, if this sum is greater than 250, then the
dispatching priority of your subtask will be 250.

Note: If the task issuing the ATTACH instruction is running on the system
task, then the dispatching priority for its subtask will be the sum of 240
plus the value assigned to the DPMOD parameter.

SZERO

Indicates whether your new subtask is to share subpool 0 storage with its
immediate ancestor task.

A subpool is a number from 0 to 255 that is assigned to a block of storage to
describe its characteristics. Subpool 0 specifies private, fetch-protected storage.

If a main task issues the GETMAIN instruction for storage in subpool 0, then
GCS automatically frees the storage when the task terminates. Likewise, for a
subtask that is attached to a main task with the SZERO=NO parameter
specified.

However, if the subtask was attached with the SZERO=YES parameter
specified (or defaulted), then GCS associates the storage with the oldest ancestor
task with which this subtask is sharing the subpool. Hence, the storage block is
not automatically freed by GCS when the subtask terminates. The storage is
freed only when the oldest ancestor task terminates.

88 VM/XA SP GCS Command and Macro Reference

'

N

\"\, 7

i

L W

ATTACH

YES
Specifies that subpool 0 storage will be shared by your new subtask with its
immediate ancestor task. This is the case, by default.

NO
Specifies that subpool 0 storage will not be shared by them.

SHSPV
Specifies a storage subpool that will be shared by your new subtask with its
immediate ancestor (and with the latter’s ancestor, if it shares with the task that
attached it).

If a main task issues the GETMAIN instruction for storage from subpools 1
through 127, then GCS automatically frees the storage when the task terminates.
Likewise, for a subtask that was attached to that task without a subpool having
been specified in the SHSPV or SHSPL parameter.

However, if the subtask was attached with a subpool specified in the SHSPV or
SHSPL parameter in the ATTACH instruction, then GCS associates the storage
with the oldest ancestor task with which this subtask is sharing the subpool.
Hence, the storage is not automatically freed by GCS when the subtask
terminates. The storage is freed only when the oldest ancestor task terminates.

Since subpools greater than 127 cannot be shared, you should write this
parameter as a number from 1 to 127.

SHSPL
Specifies the address of a list of subpool numbers, each of which refers to a
subpool to be shared by your new subtask with its immediate ancestor task.

The rules governing the SHSPV parameter also apply here. In addition, the first
byte in the list must contain the number of bytes remaining in the list. Each
subsequent byte must contain a subpool number from 1 to 127.

You can write this parameter as an assembler program label or as register (2)
through (12).

SM
Indicates the state in which your new subtask will run. This parameter is valid
only if the task issuing the ATTACH instruction is running in supervisor state.
Otherwise this parameter is ignored.

PROB
Indicatés that your new subtask will run in problem state. If you omit the
SM parameter altogether, then the subtask will run in problem state, by
default.

SUPV
Indicates that your new subtask will run in supervisor state.

JSTCB
Indicates whether your new subtask is an independent application. Unless your
program.is running on the system task, this parameter is ignored.

YES
Indicates that your subtask is an independent application.

An independent application does not go away when the command through
which it was created terminates. This means that the application must be
explicitly detached via the DETACH instruction when it is no longer
needed.

Chapter 4. Task Management Service Macros 89

ATTACH

NO
Indicates that your subtask is not an independent application. This is the —
case, by default. {)

Usage Notes ,
¢ The ATTACH macro does not transfer control to your new subtask. It merely

sets up a task block for your subtask based upon the information you provide in
the ATTACH instruction.

When the new subtask is dispatched the first time, it receives control. At this
point, the programs it contains are enabled for interrupts. Moreover, the
subtask runs in the same key in which its ancestor task ran when the latter
issued the ATTACH instruction.

¢ The ATTACH macro assigns a unique task identifier to each new subtask. This
task id is returned to the task issuing the instruction in the two low-order bytes
of register 1. Further, the two high-order bytes of this register will contain the
appropriate virtual machine id. '

This task id is used to refer to your new subtask if you decide to delete it from
the system or change its dispatching priority. If necessary, review the entries
titled “DETACH” on page 100 and “CHAP” on page 94.

Note: Soon after the ATTACH macro completes execution, be certain to save
the task id somewhere in virtual storage. You will need this task id later
as a parameter to the DETACH and CHAP instructions.

¢ Do not use the ATTACH macro instruction in an ESTAE exit routine.

e An end-of-task exit routine will always run in the same key and state as the task ‘
that issued the ATTACH instruction originally. W

¢ If neither the ECB nor ETXR parameter is specified, then the subtask is
automatically removed from the system as soon as it terminates.

¢ When an exit routine specified in an ATTACH instruction receives control, the
contents of the registers are:

Register Contents -

Register 0 Unpredictable. R

Register 1 The task id for the subtask that just terminated.

Registers 2 - 12 Unpredictable.

Register 13 The address of an eighteen-word register save
area provided by the GCS supervisor.

Register 14 The return address within the GCS supervisor.

Register 15 The address of the exit routine.

o
)

\

90 VM/XA SP GCS Command and Macro Reference

ATTACH

¢ When the new subtask receives control, the contents of the registers are:

(._ Register

Contents

Register 0

Unpredictable.

Registers 1 - 12

Propagated to the new subtask.

Register 13

The address of a new user save area.

Register 14

The return address within the ancestor task.

Register 15

The address of the entry point.

e If the program that receives control once the new subtask becomes active is
reentrant, then it is loaded into key 0 storage. This ensures that it is not
accidentally modified or tampered with.

(' Example

To have a task request that a new subtask be created, enter:

ATTACH EPLOC=(4),PARAM=((5),(6),/(7)),VL=1,ECB=MYECB,SHSPL=SPLIST

The name of the entry point for the program associated with the new subtask can be

found at the address in register 4. Registers S5, 6, and 7 contain the addresses of
three parameters to be passed as a list to the subtask’s program when it receives

control. Since the new subtask’s program can accept a variable number of

with the new subtask can be found at the address associated with the label MYECB.

(' parameters, the VL =1 parameter is specified. The event control block associated

A list of storage subpools that are to be shared by the subtask with its immediate

ancestor task can be found at the address associated with the label SPLIST.

Return Codes and Abend Codes

When this macro completes processing, it passes to the caller a return code in

register 15.
(Return
Code Meaning
00 Function successfully completed.
04 An ATTACH macro instruction was issued in an ESTAE
exit routine. The subtask was not attached.
Abend
Code Meaning
22A You specified a subpool number greater than 127 in the
SHSPL or SHSPV parameter.
42A The ECB parameter specified an invalid address.
- 704 An uncorrectable machine, system, or indeterminate error
(' occurred while processing the GETMAIN macro.
- T2A Invalid parameter list.

Chapter 4. Task Management Service Macros

91

ATTACH

The List Format

[1abel] ATTACH r T
EP=symbol [,PARAM=(addresses) [,VL=1]][,ECB=address]

EPLOC=address| [,ETXR=address][,DPMOD=number]|,SZERO= {YESZ}

NO
DE=address ,SHSPV=number ||,SM= (PROB ,JSTCB= (YES
,SHSPL=address SUPV NO .

»SF=L

This format of the macro instruction generates an in-line parameter list based on the
parameter values that you specify. However, this format generates no executable
code. Remember that you cannot specify any of the parameters using register
notation.

Added Parameter

SF=L
Specifies the list format of this macro instruction.

92 VM/XA SP GCS Command and Macro Reference

)

ATTACH

The Execute Format

[1abel] ATTACH

EP=symbo]l [,PARAM=(addresses) [,VL=1]][,ECB=address]

EPLOC=address| [,ETXR=address][,DPMOD=number] |,SZERO= {xe_s%

NO
I
DE=address ,SHSPV=number || ,SM= (PROB ,JSTCB= (YES
,SHSPL=address SUPV NO |

,MF=(E,address)

,SF=(E,address)

,MF=(E,address),SF=(E,address)

Added Parameter

This format of the macro instruction generates code that executes the function, using
a parameter list whose address you specify.

MF = (E,address)
ADDRESS specifies the address of the remote parameter list to be used by the
program that receives control when the new task becomes active.

You can add or modify values in this parameter list by specifying them in this
instruction.

SF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the macro
that you generated using the list format of the instruction.

You can add or modify values in this parameter list by specifying them in this
instruction.

Chapter 4. Task Management Service Macros 93

CHAP

CHAP

In any multitasking environment some sort of priority system must be established to
govern access to the processor by so many tasks. To that end, each task is assigned
a dispatching priority number. These numbers determine the order in which many

Change the Dispatching Priority of a Given Task
j GCS is a multitasking system. This means that considerably more than one task can
! execute in the same virtual machine at the same time.

competing tasks gain access to the processor.

Use the CHAP macro instruction to change the dispatching priority of any

application task within your

virtual machine.

! The dispatching priority for any problem state application task must be a number
from 0 to 240. The dispatching priority for any supervisor state application task
must be a number from 0 to 250. The larger the number, the higher the dispatching
priority of the task and the more readily that task gains access to the processor.

The format of the CHAP macro instruction is:

[1abel] CHAP
priority change value [

,task id address
'8!

|

Parameters
priority change value

Specifies a number that is to be added to the current dispatching priority of the
task in question. The sum of these two numbers will be the task’s new

dispatching priority.

To raise the task’s dispatching priority, specify a positive number in this
parameter. To lower it, specify a negative number.

Should the sum of the two numbers result in a priority less than zero, then the
task’s new priority will be zero. Should the sum be greater than the highest
priority allowed, then the task’s new priority will be the highest allowed.

You can write this parameter as any symbol, as a decimal digit, as register (0),
or as register (2) through (12). If you write it as a register and wish to specify a
negative number, then you must store the number in the register in two’s

complement form.

task id address

Specifies the address of a fullword that contains the task identifier of the task in

question.

GCS assigned a task id to your task when you issued the ATTACH macro
instruction for it. (If necessary, review the entry titled “ATTACH” on page 86.)
Presumably, you saved the task id somewhere when the ATTACH macro
returned it to you. GCS assumes that the task id is stored in the two low-order
bytes at this address. GCS ignores the two high-order bytes.

94 VM/XA SP GCS Command and Macro Reference

A
7

CHAP

If the address specified in the task id address parameter equals zero, then GCS
assumes that the dispatching priority of the task issuing the CHAP instruction is
the one to be changed.

You can write this parameter as an RX-type address or as register (1) through

(12).

)]

Indicates that the dispatching priority of the task issuing the CHAP instruction
is the one to be changed.

If you omit both the S and the TASK ID ADDRESS parameters, then GCS
treats the instruction as though the S parameter were specified.

Note that this parameter must be surrounded by single quotation marks.

Usage Notes

¢ No task can change the dispatching priority of any other task unless the former
issued the ATTACH macro instruction for the latter. Put another way, no task
can change the dispatching priority of another task unless the latter is a subtask
of the former.

¢ You cannot use the CHAP instruction to change the priority of the system task.

Return Codes and Abend Codes

The CHAP macro generates no return codes.

Abend
Code Meaning

12C The task ID specified was invalid for one of the following
reasons:

* The task ID specified is associated with the system
task, not the user task.

¢ The task associated with the task ID does not exist.

e The task ID does not refer to one of its immediate
descendant tasks.

¢ The task specified has already terminated.

22C The address of the parameter list is invalid.

Chapter 4. Task Management Service Macros 95

DEQ

L
N

Release Control of a Serially Reusable Resource

A serially reusable resource (SRR) is a data resource that some tasks may want to
update and that others may only want to examine. The use of these SRRs should be
coordinated carefully. Two programs may seek to update the resource
simultaneously, leading to invalid results. Meanwhile, another program may be
looking at the same data, causing more confusion.

The solution to this is the ENQ macro instruction. Using this instruction, a task can
gain exclusive use of a serially reusable resource so it can be updated. No other task
can touch the resource until the task that has exclusive control releases it. If an
SRR is not being updated, but only looked at, several tasks can also share the
resource using the ENQ instruction. But they cannot alter the contents of the
resource in any way. (If necessary, review the entry titled “ENQ” on page 102.)

Use the DEQ macro instruction to release your task’s control of a serially reusable
resource.

The DEQ macro instruction is available in standard, list, and execute format.

The standard format of the DEQ macro instruction is:

[1abel]

DEQ

(gqname address,rname address[,rname length]) |,RET=HAVE
,RET=NONE

[,RELATED=value]

Parameters

gname address
Specifies the address in virtual storage where the QNAME for the resource in
question can be found. ‘

The QNAME is the first of a pair of names that identifies the resource. It can
be up to eight bytes long and can contain any valid hexadecimal characters.
Your installation has defined the QNAME:s of each serially reusable resource
available to you. Each programmer is required to use the proper QNAME to
identify an SRR.

You can write this parameter as an assembler program label or as register (2)
through (12).

rname address)
Specifies the address in virtual storage where the RNAME of the resource can
be found.

The RNAME is the second of a pair of names that identifies the resource.
Again, your installation has defined these and they must be used consistently.
The name can be qualified and must be from 1 to 255 characters long. £

You can write this parameter as an assembler program label or as register (2)
through (12).

96 VM/XA SP GCS Command and Macro Referencev

Usage thes

(

Examples

DEQ

rname length
Specifies the length of the RNAME, in bytes.

It must be the same value as the RNAME LENGTH specified in the ENQ
macro instruction that gave the task control of the resource in the first place.

If you omit this parameter, then the RNAME is considered, by default, to be as
long as its assembled length. If you wish, you can override its assembled length
with another within the range 1 through 255. If you specify 0 as the length, then
the ENQ macro assumes that the first byte at the address specified for the
RNAME ADDRESS contains the RNAME'’s correct length.

You must specify this parameter if there is no length associated with the
RNAME itself. For example, you may specify the RNAME by using a register
or by using a name appearing in an EQU assembler instruction.

You can write this parameter as a number between 0 and 255.

RET
Indicates the condition under which your request will be honored. If you omit
this parameter, then your request will be considered unconditional.

HAVE
Indicates that the resource is to be released from your task’s control only if
the task has control of it at the moment.

NONE :
Indicates that the request to release the resource from your task’s control is
unconditional.

RELATED
Specifies documentation data that you are using to relate this macro instruction
to an ENQ macro instruction. The value you assign to this parameter has
nothing to do with the execution of the macro itself. It merely relates one macro
instruction (DEQ) to a macro instruction that provides an opposite, though
related, service (ENQ).

The format and contents of this parameter are at your discretion and can be any
valid coding values.

¢ Control of a resource is surrendered under one of two circumstances:
— The task with control issues the DEQ macro instruction.

— The task with control ends. In this case the task terminates abnormally,
since it did not release the SRR itself.

* If you choose the NONE parameter and your task does not have control of the
resource, your task will terminate abnormally. It is important to find out if your
task really does have control of the resource before using the NONE parameter,
or simply use the HAVE parameter.

In the following example, a task is releasing a certain resource from its control.
LETGO DEQ (MARK, (8),16),RET=NONE
The QNAME of the resource can be found at the address associated with the label

MARK. Its RNAME can be found at the address in register 8. Since the RNAME
was specified by a register, the RNAME LENGTH was also specified—in this case,

Chapter 4. Task Management Service Macros 97

16. The request is unconditional, so presumably the task tested to see if it had
control of the resource before it issued the request. LETGO is the label on this

instruction. -

In the second exampie, a task is releasing a certain resource from its control.

DEQ ((3),RN),RET=HAVE

The QNAME of the resource can be found at the address in register 3. Its RNAME
can be found at the address associated with the label RN. The length of the
RNAME is not specified and will, therefore, be the assembled length of RN, by
default. This request will be honored only if the resource is under the task’s control

at the moment.

| Return Codes and Abend Codes

If register 15 contains the value zero, then the resource in question has been released.
If register 15 does not contain 0, then it contains the address of the input parameter
list of the macro. The DEQ macro places all non-zero return codes in byte 3 of the

input parameter list.

The return codes and abend codes are described as follows, according to the

condition specified in the RET parameter.

When RET =HAVE, the return and abend codes are as follows:

Return

Code Meaning

00 The resource specified has been released.

04 Your task requested control of the resource but has not yet
received it. This return code results if a DEQ instruction is
issued within an exit routine that received control because
of some interrupt.

08 Either your task never had control of the specified resource
or it already released control.

Abend

Code Meaning

130 The resource was not previously specified in an ENQ
instruction. Nor was the RET =HAVE parameter specified
in that instruction. ,

230 An invalid length was specified for the RNAME LENGTH
parameter. k

430 Invalid parameter list.

530 A task issued the ENQ instruction. Before the request
could be honored, the same task issued the DEQ
instruction without the HAVE parameter specified.

E30 Either your task attempted to make multiple requests with

one DEQ instruction, or a parameter that is not supported
by GCS was specified with the instruction.

98 VM/XA SP GCS Command and Macro Reference

o
N

The List Format

DEQ

[1abel]

DEQ

(gname address,rname address[,rname length]) |,RET=HAVE
,RET=NONE

[,RELATED=value] ,MF=L

Added Parameter

This format of the macro instruction generates an in-line parameter list based on the
parameter values that you specify. However, this format generates no executable
code. Remember that you cannot specify any of the parameters using register
notation.

MF=L
Specifies the list format of this macro instruction.

The Execute Format

[1abel]

DEQ

(gname address,rname address[,rname length]) |,RET=HAVE
,RET=NONE

[,RELATED=value] ,MF=(E,address)

Added Parameter

This format of the macro instruction generates code that executes the function, using
a parameter list whose address you specify.

MF = (E,address)

ADDRESS specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this
instruction.

Chapter 4. Task Management Service Macros 99

DETACH

DETACH e
N

Remove a Subtask From Your Virtual Storage
| When you no longer have any use for a subtask for which you issued the ATTACH
macro instruction, it should be removed from storage.

| Use the DETACH macro instruction to remove a subtask and its task block from
storage and to break the logical link between it and its immediate ancestor task.

g The format of the DETACH macro instruction is:

[1abel] DETACH task id address

Parameter
task id address
Specifies the address of a fullword that contains the task identifier of the subtask
in question.

GCS assigned a task id to your subtask when you issued the ATTACH macro
instruction for it. (If necessary, review the entry titled “ATTACH” on page 86.)
Presumably, you saved the task id somewhere when the ATTACH macro
returned it to you. GCS assumes that the task id is stored in the two low-order
bytes at this address. GCS ignores the two high-order bytes.

You can write this parameter as an RX-type address or as register (1) through

(12).

Usage Notes

¢ The task that issues the DETACH instruction for a particular subtask must be
the one that issued the ATTACH instruction for it in the first place.

¢ If a DETACH macro instruction is issued for a subtask that is in mid-execution,
then the latter is terminated abnormally. Should the subtask in question have
any descendant subtasks of its own, they are also terminated abnormally. If you ,
specified an exit routine for the subtask using the ESTAE macro instruction, g
then the former is not executed. (If necessary, review the entry titled “ESTAE”
on page 108.) Nor is the routine specified by the ETXR parameter in the
ATTACH instruction executed. However, if you specified an event control
block (ECB) in the ATTACH instruction associated with the subtask, then that
ECB is posted. Finally, control is returned to the instruction immediately
following the DETACH instruction.

Return Codes and Abend Codes

When this macro completes processing, it passes to the caller a return code in

register 15.
Return
Code Meaning {”\
00 Function completed normally. AW

100 VM/XA SP GCS Command and Macro Reference

DETACH

Abend

Code Meaning

13E This subtask was detached in mid-execution. Therefore, it
has terminated abnormally.

23E The address of the task id was invalid.

43E The ECB address specified in the corresponding ATTACH
instruction was invalid.

705 An uncorrectable machine, system, or indeterminate error
occurred when GCS issued the FREEMAIN macro
instruction.

Chapter 4. Task Management Service Macros 101

) ENQ

ENQ

Request Control of a Serially Reusable Resource
A serially reusable resource (SRR) is a data resource, local to a virtual machine, that
some tasks may want to update and that others may want merely to examine. Use
of these SRRs should be coordinated carefully. Two programs may seek to update
the resource simultaneously, leading to invalid results. Meanwhile, another program
may be looking at the same data, causing more confusion.

Use the ENQ macro instruction to request control of a serially reusable resource and
to define the nature of the control sought by your task.

The ENQ macro instruction is available in standard, list, and execute format.

The standard format of the ENQ macro instruction is:

[1abel] ENQ

(gname address,rname address |,E| [,rname length]) |,RET=TEST

[,RELATED=value]

:

S ,RET=CHNG
»RET=HAVE
,RET=NONE

,RET=USE

Parameters

gname address

Specifies the address in virtual storage where the QNAME for the resource in
question can be found.

The QNAME is the first of a pair of names that identifies the resource, and
must be eight characters long. Your installation has defined the QNAMEs of
each serially reusable resource available to you. Each programmer is required to
use the proper QNAME to identify an SRR.

You can write this parameter as an assembler program label or as register (2)
through (12).

rname address

=t

Specifies the address in virtual storage where the RNAME of the resource can
be found.

The RNAME is the second of a pair of names that identifies the resource.
Again, your installation has defined these and they must be used consistently.
The name can be qualified and be from 1 to 255 characters long.

You can write this parameter as an assembler program label or as register (2)
through (12).

Indicates that you want your task to have exclusive control over the serially
reusable resource. That is, while your task has control over the resource, no
other task can use it.

102 VM/XA SP GCS Command and Macro Reference

£
N

ENQ

You must request exclusive control if your task is to modify the serially reusable
resource in any way.

Indicates that your task can share control of the resource with other tasks that
are also willing to share.

If two or more tasks are sharing a serially reusable resource, then none is
permitted to change the contents of that resource.

rname length
Specifies the length of the RNAME, in bytes.

If you omit this parameter, then the RNAME is considered by default to be as
long as its assembled length. If you wish, you may override its assembled length
with another within the range 1 through 255. If you specify 0 as the length, then
the ENQ macro assumes that the first byte at the address specified for the
RNAME ADDRESS contains the RNAME's correct length.

You must specify this parameter if there is no length associated with the
RNAME itself. For example, you may specify the RNAME by using a register
or by using a name appearing in an EQU assembler instruction to specify the
RNAME.

You can write this parameter as a number from 0 to 255.

RET
Indicates the condition under which your request for control of the resource will
be honored. If you omit this parameter, then the request is considered
unconditional.

TEST
- Tests the availability of the resource specified. It does not turn control of
the resource over to your task.

CHNG
Indicates that the shared control your task now has over the resource is to
change to exclusive control.

This request will be honored if no other tasks are sharing the same resource
with your task.

HAVE
Indicates that your task wants control of the resource only if it has not
requested control of it before.

NONE
Indicates that your task requests control of the resource unconditionally.

Your task will not regain control until it obtains control of the resource.

USE
Indicates that your task wants immediate control over the resource. If
control of the resource is not immediately available, then your task foregoes
control and does not wait.

RELATED
Specifies documentation data that you are using to relate this macro instruction
to a DEQ macro instruction.

The value you assign to this parameter has nothing to do with the execution of
the macro itself. It merely relates one macro instruction (ENQ) to a macro
instruction that provides an opposite, though related, service (DEQ).

Chapter 4. Task Management Service Macros 103

| Usage Notes

Examples

The format and content of this parameter are at your discretion and may be any
valid coding values.

¢ Control of a resource is surrendered under one of two circumstances:

— A program within the task with control issues the DEQ macro instruction.
Review the entry titled “DEQ” on page 96.

— The task with control ends. In this case, the task terminates abnormally,
since it did not release the resource itself.

o After it issues the ENQ instruction, your task may be placed in the WAIT state
for one of the following reasons:

— It has requested exclusive unconditional control of a resource that is under
exclusive or shared control of another task.

— It has requested control of a resource that is under the exclusive control of
another task.

— Your task requested shared control but there is a request for exclusive
control ahead of it.

¢ The ENQ instruction affects only the tasks within the virtual machine in which
it was issued. Tasks in other virtual machines are not constrained from using
the serially reusable resource to which the instruction refers. The programmers
involved should take steps to assure that this does not create problems.

¢ If you choose the TEST parameter, then your task is not given control of the
task but merely receives a return code. The same may be true if you choose the
HAVE or USE parameter. Return codes are defined below.

In the following example, the task is requesting exclusive, unconditional control over
a certain serially reusable resource.

GETIT ENQ (MARK,(4),E,32)

The QNAME of the resource can be found at the address associated with the
assembler program label MARK. The RNAME can be found at the address in
register 4. Since a register was specified for the RNAME, the length of the RNAME
is also specified, in this case 32. GETIT is the label on this instruction.

In the second example, the task is requesting immediate, shared control of a
resource. If that resource is not immediately available, the task does not wish to
wait.

ENQ ((3),RN,S),RET=USE
The QNAME can be found at the address in register 3. The RNAME can be found

at the address associated with the label RN. The length of the RNAME will be the
assembled length of RN, by default.

104 VM/XA SP GCS Command and Macro Reference

A
1

Return Codes and Abend Codes

ENQ

A return code is passed to your task only if you choose the TEST, USE, CHNG, or
HAVE conditions for the RET parameter.

If register 15 contains 0, then the return code for the resource in question is 0. If
register 15 does not contain 0, then it contains the address of the input parameter list
of the macro. The ENQ macro places all non-zero return codes in byte 3 of the
input parameter list.

For all 08 return codes (except when RET =CHNG), you must examine the fourth
bit in byte 0 of the input parameter list. If this bit is reset to 0, then the return code
means that the task has obtained exclusive control of the resource. If this bit is set
to 1, then the return code means that the task has obtained shared control.

The return codes are described as follows, according to whether the condition

specified in the RET parameter is CHNG, RET, or USE.

When RET =CHNG, the return codes are as follows:

Return

Code Meaning

00 The task now has exclusive control of the resource.

04 The task cannot get exclusive control of the resource.

08 The resource has not been queued.

20 A previous request for control of the same resource was
made by this same task. The task does not have control of
the resource.

When RET=HAVE, the return codes are as follows:

Return

Code Meaning

00 Control of the resource has been given to the task.

08 "The task has control of this resource by virtue of a previous
request. If bit 3 of the first byte in the parameter list is set
to 1, then this task has shared control of the resource. If
bit 3 is reset to 0, then this task has exclusive control.

20 The task has made a previous request for control of this
resource. The task is not given control of the resource.

When RET =TEST, the return codes are as follows:

Return

Code Meaning

00 The resource is available immediately.

04 The resource is not available immediately.

Chapter 4. Task Management Service Macros

105

Return

Code Meaning

08 The task has control of this resource by virtue of a previous
request. If bit 3 of the first byte in the parameter list is set
to 1, then this task has shared control of the resource. If
bit 3 is reset to 0, then this task has exclusive control.

20 The task has made a previous request for control of this
resource. The task is not given control.

When RET = USE, the return codes are as follows:

Return

Code Meaning

00 Control of the resource has been given to the task.

04 The resource is not available immediately.

08 The task has control of this resource by virtue of a previous
request. If bit 3 of the first byte in the parameter list is set
to 1, then this task has shared control of the resource. If
bit 3 is reset to 0, then this task has exclusive control.

20 The task has made a previous request for control of this

resource. The task is not given control.

Abend codes for all functions are as follows:

Abend
Code Meaning
138 Two ENQ instructions were issued for the same resource by
the same task without an intervening DEQ instruction.
238 An invalid length was specified for the RNAME LENGTH
parameter.
438 Invalid parameter list.
| 638 Insufficient storage was available to fulfill your request.
E38 Either your task attempted to make multiple requests with
one ENQ instruction, or a parameter that is not supported
by GCS was specified in the instruction.

106 vm/xA SP. GCS Command and Macro Reference

A

ENQ

The List Format

[1abel] ENQ . -
(qname address,rname address [,E| [,rname length]) [,RET=TEST

»3 »RET=CHNG
,RET=HAVE
»RET=NONE

»RET=USE

e

[,RELATED=value] ,MF=L

This format of the macro instruction generates an in-line parameter list based on the
parameter values that you specify. However, this format generates no executable
code. Remember that you cannot specify any of the parameters using register
notation.

Added Parameter

MF=L
Specifies the list format of this macro instruction.

The Execute Format

[1abel] ENQ - i
(gname address,rname address |,E| [,rname length]) |,RET=TEST

s sRET=CHNG
,RET=HAVE
»RET=NONE

,RET=USE

L r

[,RELATED=value] ,MF=(E,address)

This format of the macro instruction generates code that executes the function, using
a parameter list whose address you specify.

Added Parameter
MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this
instruction.

Chapter 4. Task Management Service Macros 107

ESTAE

ESTAE

Specify an Exit Routine for a Task that will Gain Control if the Task ABENDs
When a task terminates abnormally, GCS usually performs task termination
} activities on behalf of the task. These activities include the release of locks, storage,
and other resources associated with the task.

‘ However, you may wish to provide your task with your own exit routine that

| receives control if an ABEND occurs. This exit routine can be designed to find a
solution to the problem, try the task again, or allow task termination to continue.
i Use the ESTAE macro instruction to specify and describe this exit routine.

The ESTAE macro instruction is available in standard, list, and execute format.

The standard format of the ESTAE macro instruction is:

[1abel] ESTAE
[exit address] {,CT| [,PARAM=address] |,XCTL= ug}

L0V YES

L,ASYNCH= é YES

(nO

Parameters
exit address
Specifies the address of the exit routine that is to gain control if your task
terminates abnormally.

If you specify an address of zero, then the exit routine you most recently defined
via the ESTAE instruction is cancelled.

You can write this parameter as an assembler program label or as register (2)
through (12).

Indicates that you are specifying a new exit routine for the active task.

Since you may have several exit routines, this new exit routine will supplement
any that may currently be defined for the task.

If neither the CT nor the OV parameter is specified, then CT is assumed, by
default.

ov
Indicates that you wish to modify (overlay) certain parameters that you specified
in your last ESTAE instruction, yet maintain the status of the current exit
routine as the current exit routine.

Specify only those parameters that you want overlaid, along with any necessary
values. To omit a certain parameter here is to say, “leave the parameter as it
is.”

108 VM/XA SP GCS Command and Macro Reference

(V " Usage Notes

ESTAE

PARAM

Specifies the address of a parameter list that is to be passed to your exit routine,
should it ever gain control.

It is your responsibility to provide this parameter list.

You can write this parameter as an assembler program label or as register (2)
through (12).

XCTL

Indicates whether your exit routine will maintain its status as current exit routine
if your task transfers control to a module via the XCTL macro instruction. If
necessary, review the entry titled “XCTL” on page 152.

NO
Indicates that if your task transfers control to a module via the XCTL
instruction, and the module ABENDs, then the exit routine in question will
not gain control. This is the default.

YES
Indicates that if your task transfers control to a module via the XCTL
instruction, and the module ABENDs, then the exit routine in question will
gain control.

ASYNCH

Indicates whether asynchronous exits will be allowed while your exit routine is
running.

YES
Indicates that you will allow asynchronous exits while your exit routine is
running. This is the default.

You must specify ASYNCH = YES if your exit routine requests supervisor
services that require such interrupts. These supervisor services include
general 1/0, ATTACH ETXR, IUCV, STIMER, and SCHEDEX.

NO
Indicates that you will allow no asynchronous exits while your exit routine is
running.

Your task may use the ESTAE macro instruction many times while processing.
However, only the most recent exit routine specified remains current. Any
others are pushed down in a stack. If the current exit routine is cancelled, then
the next one in the stack percolates to the top, becoming the current exit routine.
Conversely, if you specify a new exit routine, then any others in the stack move
down one position and the new one becomes the current exit routine.

The current exit routine loses its status as the current exit routine under one of
the following conditions:

— The module that defined it, via the ESTAE instruction, terminates.

— Your task issues the ESTAE instruction, specifying zero as the EXIT
ADDRESS.

— Your exit routine terminates abnormally.
— Your exit routine allows termination of the task that defined it to continue.

- Youf task attempts to transfer control using the XCTL instruction when
XCTL=YES is not specified.

Chapter 4. Task Management Service Macros 109

In each case, the exit routine defined by the previous ESTAE instruction
percolates to the top of the stack and assumes the role of current exit routine.

¢ ESTAE instructions that cancel the current exit routine or overlay parameters
thereof must be issued by the same program that defined the current exit routine
in the first place.

¢ Your exit routine can diagnose the cause of the ABEND, and then retry the task
at some entry point. Or, it can simply allow GCS to perform normal
termination activities and shut the task down.

* Whenever a task ABENDs, GCS attempts to build a system diagnostic work
area (SDWA), as described in the entry titled “ITHASDWA?” on page 114.

e If storage was available for the SDWA, then when your exit routine receives
control, the registers contain the following:

Register Contents

Register 0 A return code of 16(10), signifying that no I/O
processing was performed.

Register 1 Address of the SDWA.

Register 2-12 Unpredictable.

Register 13 Address of a register save area.

Register 14 A return address.

Register 15 Address of the current exit routine.

In this case, the SETRP macro instruction should be issued to notify the GCS
supervisor of the action that is to be taken. If necessary, review the entry titled
“SETRP” on page 119.

e If storage was not available for the SDWA, then when your exit routine receives
control, the registers contain the following:

Register Contents

Register 0 A return code of 12(C), signifying that no SDWA
was obtained.

Register 1 The completion code passed by the ABEND macro
instruction. If necessary, review the entry titled
“ABEND” on page 84.

Register 2

The address of the parameter list intended for the
exit routine. Or, if none was intended, zero.

Register 3-13

Unpredictable.

Register 14

Address of an SVC 3 instruction.

Register 15

Address of the current exit routine.

e If no SDWA was obtained, then your exit routine must set the registers in the

following manner just before returning control to the GCS supervisor.

110 VM/XA SP GCS Command and Macro Reference

’é%i
%

ESTAE

Register Contents

Register 0 The address of a recovery routine, if one is to be
scheduled.

Register 15 A return code. Specifically:

0 Termination should be continued. Any
previously defined exit routines will percolate
toward the top of the stack.

4 A recovery routine is to be scheduled. The
address of this routine can be found in register
0.

* An exit routine always runs in the same key as the task that defined it and is
enabled for the same interrupts. The same holds true for any retry routine.

e If storage was available for an SDWA, then when the recovery routine gains
control, the registers contain the following:

Register Contents

Register 0 Zero, indicating that storage for the SDWA was
available.

Register 1 Address of the SDWA.

Register 2-13 Unpredictable.

Register 14 Address of an SVC 3 instruction.

Register 15 Address of the recovery routine.

e If storage was not available for an SDWA, then when the recovery routine gains
control, the registers contain the following:

Register Contents

Register 0 12(C), indicating that storage for the SDWA was
not available.

Register 1 The value of the PARAM parameter that was
specified in the ESTAE instruction associated with
the current exit routine.

Register 2 Zero.

Register 3-13 Unpredictable.

Register 14 Address of an SVC 3 instruction.
Register 15 Address of the recovery routine.

Chapter 4. Task Management Service Macros 111

Example o
‘ In the following example, the task wants to define an exit routine that will gain b
| control in case of an abend.
| DEFEXT ESTAE (4),CT,PARAM=PLIST3
Register 4 contains the address of the exit routine in question. The CT parameter
indicates that this exit routine is new. The parameter list at the address associated
with the label PLIST3 will be passed to the exit routine if it ever gains control.
DEFEXT is the label on this instruction.
Return Codes and Abend Codes
| When this macro completes processing, it passes to the caller a return code in
: register 15.
Return
Code Meaning N
|
00 Function completed successfully.
04 The OV parameter was specified along with a valid EXIT
ADDRESS. However, either there is no current exit
routine defined, or the ESTAE instruction was not issued
by the same active program module that defined the
current exit routine.
0C An attempt was made to cancel the current exit routine.
However, either no current exit routine is defined, or the N
ESTAE instruction was not issued by the same active
program module that defined the current exit routine. R
14 The ESTAE macro was unable to acquire the storage
necessary for it to process.
Abend
Code Meaning
13C An invalid ESTAE request was made. oo
' \\%‘¥7 ‘
The List Format
[1abel] ESTAE
[exit address] |,CT| [,PARAM=address] |,XCTL= (NO }
L0V YES:
,ASYNCH= (YES
NO
| JMF=L s
; . K&.«,)’T

112 VM/XA SP GCS Command and Macro Reference

Added Parameter

ESTAE

This format of the macro instruction generates an in-line parameter list based on the

parameter values that you specify. However, this format generates no executable

code. Remember that you cannot specify any of the parameters using register

notation.

MF=L

Specifies the list format of this macro instruction.

The Execute Format

[1abel]

ESTAE

[exit address]

LASYNCH= { VES

NO

,MF=(E,address)

,0V

,CT| [,PARAM=address] ,XCTL={L}

YES

Added Parameter

This format of the macro instruction generates code that executes the function, using
a parameter list whose address you specify.

MF = (E,address)

ADDRESS specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list

instruction.

Chapter 4. Task Management Service Macros

by specifying them in this

113

THASDWA

IHASDWA

Get a Symbolic Name for Each Field in the System Diagnostic Work Area

Often an application identifies an exit routine for each task that will receive control
if the task terminates abnormally. Review the entry titled “ESTAE” on page 108
for an explanation of this.

When the ABEND macro instruction is issued for a specific task, a system
diagnostic work area (SDWA) is created. If necessary, review the entry titled
“ABEND” on page 84.

The SDWA is an area of storage that contains important information about the task
that has just terminated abnormally. (Study the format of the SDWA provided
below.) The exit routine uses this information to analyze the failure.

Use the IHASDWA macro instruction to produce a template of the system
diagnostic work area that will make programming your exit routine much easier.
The IHASDWA macro instruction assigns symbolic names to each field of the
template. Each symbolic name can be used as a displacement in an assembler
language instruction in your exit routine to gain access to the corresponding field in
the SDWA.

The format of the IHASDWA macro instruction is:

[1abel] THASDWA

DSECT=(YES ‘
w .
NO

Parameters

Usage Notes

DSECT

Indicates that you are about to specify whether the template produced will be a \
DSECT (dummy control section). N~

YES
Indicates that the template will be created as a DSECT. If you omit the
DSECT parameter altogether, then the template is produced as a DSECT.
This is the default.

NO
Indicates that the template will not be a DSECT.

¢ To use the DSECT you have created to find your way around the SDWA,
simply assign the address of the latter to a base register. Then, use the symbolic
name of a field in the DSECT as the displacement to the corresponding field in
the SDWA.

114 VM/XA SP GCS Command and Macro Reference

C

5

8

16(10)
24(18)
88(58)
92(5C)
96(60)
100(64)
200(C8)
201(C9)
204(CC)
232(E8)
232(E8)
234 (EA)

235(EB)

236(EC)
240(F0)
244(F4)
252(FC)

253(FD)
663(297)

SDWAPARM
SDWACMPF
SDWAREQ

SDWASTEP
SDWACMPC
SDWACTL1

SDWAGRSV
SDWANAME

SDWAEPA

SDWASPID
SDWALNTH

SDWAFLGS
SDWAERRC

SDWAPERC
SDWANRBE

SDWARTYA

SDWARCDE

IHASDWA

¢ The template is created as part of the expansion of the IHASDWA macro
instruction as follows:

ESTAE parameter Tist address

Flags:

80 ---> Dump requested

40 ---> STEP parameter specified in ABEND instruction
Completion code$

BC mode PSW at entry to ABEND macro

Reserved

General registers 0-15 at entry to ABEND macro

Name of module that terminated abnormally

Reserved

Entry point address of module that terminated abnormally
Reserved

Number of the subpool containing SDWA

Length of SDWA (in bytes)

Reserved

Flags

Reserved

Flags:

10 ---> Recovery routine percolated,

Flags:

40 ---> State block associated with this ESTAE exit
at time of error

Reserved

Address of recovery routine

Reserved

Return code from recovery routine:

0 ---> Continue with termination

4 ---> Retry using recovery at address in SDWARTYA
Reserved

END SDWA

Return Codes and Abend Codes

The IHASDWA macro generates no return codes and no abend codes.

6 This field contains the completion code specified in the ABEND macro instruction. The SETRP macro instruction
may modify this field via its COMPCOD parameter.

Chapter 4. Task Management Service Macros 115

| POST

POST

Signal a Task that the Event It is Waiting for Has Taken Place

A task that has issued the WAIT macro instruction cannot continue until a certain
event has taken place. (Review the entry titled “WAIT” on page 122.) It is the
responsibility of the program effecting this event to inform the waiting task that the
event has occurred.

Each such event is associated with an event control block (ECB). This ECB defines
the event that is to occur and indicates to the waiting task whether it has occurred.

Use the POST macro instruction to inform a task that the event it is waiting for has
taken place.

The format of the POST macro instruction is:

Parameters

Usage Notes

ech address
Specifies the address of the event control block associated with the event that
has occurred.

You can write this parameter as an RX-type address or as register (1) through
(12).

completion code
Specifies the code describing the manner in which the event in question took
place.

These codes have significance only to the programmers at your installation (and
to the programs they write). Each installation must define the meaning of some
or all of these completion codes and document them.

A completion code may be any number from 0 to 23°-1. If you omit this
parameter, a completion code of 0 is assumed, by default.

RELATED
Specifies documentation data that you are using to relate this macro instruction
to a WAIT macro instruction. The value you assign to this parameter has
nothing to do with the execution of the macro itself. It merely relates one macro
instruction (POST) to another instruction that provides an opposite, though
related, service (WAIT).

The format and content of this parameter are at your discretion, and can be any
valid coding values.

o It is the dual responsibility of the task issuing the WAIT instruction and the task
issuing the POST instruction to provide storage for each event control block.
Each ECB is a fullword on a fullword boundary.

e Bit 0 of the ECB is called the WAIT bit. If this bit is set to 1, then it means
that some task is waiting for the event associated with that ECB to occur.

116 VM/XA SP GCS Command and Macro Reference

POST

Bit 1 of the ECB is called the POST bit. The POST macro sets the POST bit of
the appropriate ECB to 1. It then resets the WAIT bit to 0. These actions
signal the waiting task that the event in question has taken place.

The remaining thirty bits of the ECB hold the completion code, once the ECB is
posted.

Tasks are not always placed in the WAIT state after having issued the WAIT
instruction. Let us say that event Z takes place. The ECB associated with that
event is posted, yet no task is presently waiting for the event. Moments later, a
task issues the WAIT instruction, specifying the ECB associated with event Z.
Since the task is immediately satisfied, there is no reason for it to go into the
WAIT state.

It is possible for a program to perform a branch entry into the POST macro
code. That is, to branch directly to the entry point in the macro code labelled
CSIWAIPB. This, however, is seldom done.

Those programmers who find it necessary to perform such a branch entry must
be disabled, and running in supervisor state and key 0. Moreover, they must do
the following before taking this branch.

1. Provide a save area in virtual storage that is 224 bytes long. In the first
word of this save area you must store the number 152. In the third word of
this save area you must store the sum of the address of the save area plus
72.

2. Further, you must be certain that the registers contain the following

information:
Register Contents
Register 0 The COMPLETION CODE in the low-order 30 bits.
Register 1 The address of the ECB in question.

Register 13 The address of the 224-byte save area.

Register 14 The return address within your program.

Register 15 The address of the entry point in the POST macro to
which you are branching.

3. Since the point to which you will branch will be in low storage, use the FLS
macro instruction to generate the FLS DSECT. Review the entry titled
“FLS” on page 436. Include the

USING FLS,0

instruction in your program, and branch to the address stored at the address
associated with the label FLSPOST.

e Be certain that none of your tasks changes any of the bits in an ECB for which

a WAIT instruction has been issued. Only after the POST bit has been set to 1
and its contents analyzed is it safe to alter an ECB.

Chapter 4. Task Management Service Macros 117

POST

Examples
In the following example a certain event has taken place.

DONE POST (3),657

The ECB associated with this event can be found at the address in register 3. The
POST bit at this address is to be set to 1, and the WAIT bit reset to 0. A
completion code of 657 is also placed in the ECB. DONE is the label on this
instruction.

The second example means the same as the first example with two exceptions: the
address of the ECB is in register 8, and the completion code is 0, by default.

POST (8)

Return Codes and Abend Codes

Note that these return codes are possible only when a branch entry to the POST
macro is involved.

Return

Code Meaning

04 The address of an ECB was invalid.

08 The state block that is waiting for the ECB to be posted is
not in the virtual machine’s task block/state block
structure.

Note that these ABEND codes are possible only during a normal SVC call from the

POST macro.

Abend

Code Meaning

102 The ECB in question is not addressable by the program
issuing the POST instruction.

202 The state block associated with the ECB to be posted is not
in the task block/state block structure of the task waiting
for the event.

118 VM/XA SP GCS Command and Macro Reference

Vs
L

4

SETRP

SETRP

Set Certain Parameters in the System Diagnostic Work Area (SDWA)

Often an application identifies an exit routine for each task that will receive control
if the task terminates abnormally. Review the entry titled “ESTAE” on page 108
for an explanation of this.

When the ABEND macro instruction is issued for a specific task, a system
diagnostic work area (SDWA) is created. If necessary, review the entry titled
“ABEND” on page 84.

The SDWA is an area of storage that contains important information about the task
that has just terminated abnormally. The exit routine uses this information to
analyze the failure. To appreciate the SETRP macro instruction fully, you should
also have a sound understanding of the IHASDWA macro instruction. Review the
entry titled “ITHASDWA” on page 114.

Use the SETRP macro instruction in an exit routine that you defined via the ESTAE
instruction. The SETRP macro instruction will set (or reset) certain parameters in
the SDWA. Prominent among these is the RC parameter. This will let GCS know
whether your recovery routine should get control and try to revive your task.

The format of the SETRP macro instruction is:

[1abel] SETRP

[WKAREA=(reg)][,REGS=(regl[,reg2])]

,COMPCOD= (number
(number, JUSER |)
SYSTEM

NO

,DUMP= { IGNORE ,RC= (0
YES : 4 ,RETADDR=address

Parameters

WKAREA
Specifies the address of the system diagnostic work area that will be passed to
your recovery routine.

If you omit this parameter, then the address of the SDWA must be in register 1.
Otherwise, you can write this parameter as register (1) through (12).

REGS
Specifies the single register (regl) or range of registers (regl,reg2) belonging to
the failed task, whose values are to be restored from the save area pointed to by
register 13.

To specify a range of registers, consider the general order in which registers are
saved: 14,15,0,1,2,3,4,5,6,7,8,9, 10, 11, 12. Substitute the first register
number in the range for the regl parameter. And, substitute the last register in

Chapter 4. Task Management Service Macros 119

SETRP

the range for the reg2 parameter. Obviously, a subset of this order is
permissible, but be mindful of the order when specifying a range.

Never specify register 13 as a register whose value is to be restored.

If you specify this parameter, then, when it is finished, your exit routine will
branch to the address in register 14, which you designated via the ESTAE
instruction. This will return control to the GCS supervisor. If you omit this
parameter, then no such branch will be taken, making it your responsibility to
code the return from your exit routine.

You can write the register or range of registers as decimal digits.

COMPCOD

Specifies the completion code that will overlay the current completion code in
the SDWA.

This completion code' must be a number from 0 to 4095. The meaning of each
completion code is governed by your application.

You can write this parameter as a symbol, as decimal digits, or as register (2)
through (12).

USER

Indicates that the completion code specified is defined by the user or the
application. Unless otherwise stated, this is the case, by default.

SYSTEM

Indicates that the completion code specified is defined by the GCS supervisor.

DUMP

Indicates whether you want a dump produced containing the contents of the
virtual machine in which the ABENDed task was running.

GCS will send the dump to the virtual reader belonging to the member of your

. virtual machine group designated to receive dumps. If this member is not

authorized, then only non-fetch-protected and key 14 data will be included in the
dump.

IGNORE
Indicates that you want this SETRP instruction not to change any dump
specification made by a previous SETRP or ABEND instruction. That is,
whatever any previous SETRP or ABEND instruction said about producing
or not producing a dump will remain in force.

This is the case, by default.

YES
Indicates that a dump of the virtual machine in which the ABENDed task
was running will be produced.

NO \
Indicates that no such dump will be produced.

Both the YES and NO parameters override any dump specification made by a
previous SETRP or ABEND instruction.

Specifies the return code that the exit routine you specified via the ESTAE
instruction will pass to your recovery routine. This return code describes what
your recovery routine should do.

120 VM/XA SP GCS Command and Macro Reference

RN

®

SETRP

Indicates that GCS should continue to terminate the ABENDed task. This
(‘ is the case, by default.

Indicates that GCS should give control to your retry routine, which will
attempt to execute the ABENDed task again.

RETADDR
Specifies the address in the ABENDed task that will receive control when
the attempt to retry it is made.

This parameter is valid only if RC=4 is also specified.

You can write this parameter as an RX-type address or as register (2)
through (12).

Example
In the following example, the task requests that certain fields in the SDWA be set

(' ' and that the failed routine be tried again.

RETRY SETRP WKAREA=(3),REGS=(14,12),COMPCOD=635,RC=4 ,RETADDR=(12)

The address of the SDWA is in register 3. Registers 14, 15, and 0 through 12,
belonging to the failed routine, are to be restored. A user completion code of 635 is
to overlay the completion code field in the SDWA. The RC=4 parameter indicates
that the failed routine, at the address in register 12, should be tried again. RETRY
is the label on this instruction.

Return Codes and Abend Codes

The SETRP macro generates no return codes and no abend codes.

Chapter 4. Task Management Service Macros 121

WAIT

WAIT

s

Wait for an Event to Take Place Before Continuing Processing
Often a task reaches a point where it cannot continue until something else happens.
For example, your task may be unable to continue until it receives input from a
certain file.

f‘&/ y
\

| Each such event is associated with an event control block (ECB). This ECB defines
| the event that is to occur and indicates to your task whether it has occurred.

Use the WAIT macro instruction to cause your task to wait for a certain event to
take place before your task resumes processing.

The format of the WAIT macro instruction is:

[1abel] WAIT [number of events,] §ECB=address [,RELATED=value]
' ECBLIST=address;

Parameters
number of events
Specifies the number of events that must take place before your task can resume.

You are limited to specifying either zero events or one event, written as the
numerals O or 1. P

If you omit this parameter, one event is assumed, by default. If you write 0, . S
then the macro instruction is treated as a NOP (NO OPERATION) assembler
instruction.

ECB
Specifies the address of a single ECB associated with the event for which your
task must wait.

You can write this parameter as an RX-type address or as register (1) through
(12). N

ECBLIST e
Specifies the address of an area in your virtual storage that contains a string of
addresses. Each address in the string points to one ECB, and there may be one
or more addresses in this string.

This list of ECB addresses signifies a list of events. If one of these events occurs,
then your waiting task will be able to continue. This string must begin on a
fullword boundary, as must each address in the string. The high-order bit of the
last address in the list must be set to 1, indicating the end of the list.

You can write the address of this string as an RX-type address or as register (1)
through (12).

RELATED
Specifies documentation data that you are using to relate this macro instruction
to a POST macro instruction.

The value you assign to this parameter has nothing to do with the execution of ‘\1_“ 5
the macro itself. It merely relates one macro instruction (WAIT) to a macro
instruction that provides an opposite, though related, service (POST).

122 VM/XA SP GCS Command and Macro Reference

Usage Notes

Examples

WAIT

The format and contents of this parameter are at your discretion and can be any
valid coding values.

It is the responsibility of the task issuing the WAIT instruction to provide
storage for each event control block. Each ECB is a fullword on a fullword
boundary.

Bit 0 of the ECB is called the WAIT bit. If this bit is set to‘ 1, then it means
that some task is waiting for the event associated with that ECB to occur.

Bit 1 of the ECB is called the POST bit. If this bit is set to 1, then it means the
event associated with the ECB has occurred. The WAIT bit is also reset to 0.
(These actions are performed by the program effecting the event your task is
waiting for. This other program issues the POST macro instruction to alert your
program that the event has taken place. This fact is communicated to your task
through this POST bit. Review the entry titled “POST” on page 116.)

If the program issuing the related POST instruction has chosen to pass it, then
the remaining thirty bits of the ECB will contain a completion code. This code
will describe the manner in which the event your program is waiting for took
place.

This completion code only has meaning to the applications involved.

You know that the event in quesfion has occurred when your task regains
control.

Implicit in using the ECBLIST parameter is that you do not care which of
several events occurs. The occurrence of any one of the events associated with
the ECBs in the list will allow your task to continue.

Tasks are not always placed in the WAIT state after having issued the WAIT
instruction. Let us say that event Z takes place. The ECB associated with that
event is posted, yet no task is presently waiting for the event. Moments later, a
task issues the WAIT instruction specifying the ECB associated with event Z.
The task is immediately satisfied.

Be certain to reset to zero each bit of the ECBs in question before you issue the
WAIT instruction. Likewise, once your program regains control, be certain to
reset these bits after the ECB is analyzed. If you do not, and the event occurs
again, your program will not know it.

No task should change any of the bits in any ECB for which a WAIT
instruction has been issued. Only after the POST bit has been set to 1 and its
contents analyzed is it safe to alter an ECB.

In the following example, a task is waiting for an event to occur.
HOLDIT WAIT 1,ECB=(2)

That event is associated with an ECB whose address is in register 2. The task will
regain control when the POST bit is set to 1. HOLDIT is the label on this
instruction.

In the second example, a task is waiting for one of several events to occur.
WAIT ECBLIST=(4)

Chapter 4. Task Management Service Macros 123

The ECBs associated with each of these events can be found in a list whose starting

address is in register 4.

Return Codes and Abend Codes

The WAIT macro instruction generates no return codes.

Abend

Code Meaning

101 The problem program specified a number of events other
than O or 1.

201 The macro expansion contained an invalid ECB address or
the end of the ECBLIST could not be found.

301 The ECB’s WAIT bit is already set to 1.

} 124 VM/XA SP GCS Command and Macro Reference

|

(? Chapter 5. Program Management Service Macros
BLDL . . . 126
CALL . . 130
DELETE e 133
IDENTIFY e 135
LINK . 137
LOAD . . . e 142
RETURN . . . e 145
SAVE . e 147
SYNCH 149
XCTL . 152

Chapter 5. Program Management Service Macros 125

BLDL

Build a Directory Entry List to Aid in Invoking One or More Load Library

Members
Frequently the programs you write to run under GCS need to invoke other
programs. Some of these programs may be modules resident in load libraries stored
on disks. To bring a member of a load library into virtual storage and execute it,
GCS needs certain information about it. It needs to know the module’s name, the
name of the load library of which the module is a member, the module’s address on
the disk, relocation information, and so forth.

Your program can issue the BLDL macro instruction to build a directory entry list
for each load library member expected to be invoked. The needed information is
extracted from the directory of the load library containing the module and placed in
the directory entry list.

If you do not issue the BLDL macro instruction, then GCS will do it for you
whenever you load a new module. This is satisfactory if you plan to load, use, and
delete the module only once. However, if you plan to use the same module several
times, it is more efficient for you to issue the BLDL instruction once. That way, the
module can be loaded once and executed several times using the same directory entry
list.

The format of the BLDL macro instruction is:

[1abel] BLDL 0,1ist address

Parameters

The numeral zero, written exactly as shown.

It indicates that the BLDL macro is to search for the information it needs only
in the directories of the load libraries identified previously in your GLOBAL
LOADLIB command.

For more information on the GLOBAL command see “GCS Commands” on
page 20.

list address
Specifies the address of the directory entry list.

The skeleton for this list (and certain basic information for it) must be provided
by your program. These matters are discussed below.

You can write this address as an RX-type address, as register (0), or as register
(2) through (12).

126 VM/XA SP GCS Command and Macro Reference

BLDL

The Directory Entry List

List Information

The List Entry

As mentioned before, your program must provide the storage necessary for the
directory entry list. It must also provide certain information about the list, and the
names of the modules the list is to describe. The BLDL macro then fills in the
blanks with information necessary for the invocation of the modules.

The basic format of a directory entry list is as shown in Table 7:

Table 7. Directory Entry List Basic Format

LIST LIST LIST LIST e LIST
INFORMATION ENTRY | ENTRY | ENTRY ENTRY
#1 #2 #3 #64K-1

The list information for the directory entry list is contained in the first two fields, as
illustrated below. Note that the numbers in parentheses indicate the number of
bytes in each field.

FF () | LL (2)

These fields are described as follows:

FF)
Indicates the number of separate list entries in the directory entry list. It must
be a binary number corresponding to the number of modules your list will
describe.

LL
Indicates the length of each separate list entry in the directory entry list, in
bytes. It must be a binary number of at least 58, and it must be even.

As illustrated in Table 7, the directory entry list comprises one or more list entries.
Each list entry corresponds to one module from a load library that you intend to
invoke. A single list entry is composed of the following fields. The number of bytes
are in parentheses.

NAME@8) | TTR3) | K() | Z(@1) | CQ) | UD (at least 44)

You need only supply one field in the list entry yourself:

NAME
The name of the module (or its alias) that the particular list entry will describe.

This name must start in the first byte of this field. If the name is fewer than
eight bytes long, it must be padded on the right with blanks.

The list information and the name of each module is all the information your
program has to supply. The remaining fields within each list entry are filled in by
the BLDL macro. The significance of these fields is as follows:

TTR
The relative position where the module may be found in the load library.

Chapter 5. Program Management Service Macros 127

K
Identifies the load library of which the program is a member. It is a number
4 specifying the relative position of the load library’s name in your GLOBAL
w LOADLIB command.
| The number assigned to the first or only load library is zero.
y/
A byte of binary zeroes.
C

Indicates whether the information your program put in the NAME field is the
member program’s name or its alias. It also indicates the length of the user data
field in halfwords. '

This field is one byte long. If bit 0 is reset to 0, it means you are using the
member program’s name. If bit 0 is set to 1, it means you are using its alias.
Bits 1 and 2 are always reset to 0. Bits 3 through 7 contain the number of -
halfwords in the UD (user data) field.

UD
This field contains the user data found in the load library associated with the
member program. The user data information is used by the loader to relocate
the module in storage.

This user data field is always at least 22 halfwords long. By increasing the
number in the LL field, you increase the size of the UD field. This allows room
for more user data, if necessary.

Usage Notes

* The only load libraries that the BLDL macro will consider are those you specify
in the GLOBAL LOADLIB command.

¢ The BLDL macro will allow no more than 65,535 (64K-1) separate list entries in
any single directory entry list, and no fewer than one.

¢ If there is more than one list entry in the directory entry list, then it is wise to
arrange them alphamerically according to the NAME field. However, this is not
a requirement.

¢ Your program is responsible for providing the storage space for the directory
entry list. It must also supply the list information and insert the name of each
module in its respective list entry.

* Many programmers find it convenient to use the BLDL macro instruction
simply to find out whether a program is really a member of a specific load
library. Check the return code and reason code generated by the macro to find
this out.

Return Codes and Abend Codes

When this macro completes processing, it passes to the caller a return code in the
low-order byte of register 15. The reason code is returned to the caller in the
low-order byte of register 0. There are no abend codes.

128 VM/XA SP GCS Command and Macro Reference

s
«

BLDL

Return Reason

Code Code Meaning

00 00 Function successfully completed.

04 00 One or more modules named in the directory entry
list could not be found. The R byte (byte 11) of its
TTR field was reset to 0.

08 00 A permanent I/O error was found when GCS
attempted to search a load library directory.

08 04 Insufficient virtual storage space was available for

file management.

Chapter 5. Program Management Service Macros

129

CALL

Pass Control to an Entry Point in this or Another Control Section
Use the CALL macro instruction to pass control to an entry point in the same
control section or in some other control section. Implicit in the use of this macro
instruction is the fact that ultimately you expect control to return to the point from
which it was passed.

The CALL macro instruction is available in standard, list, and execute formats.

The standard format of the CALL macro instruction is:

[1abel] CALL

entry point name[, (parameter addresses)[,VL]][,ID=number]

Parameters

entry point name

Specifies the name of the entry point that is to receive control.

Since the macro uses this name as a V-type address constant, the linkage editor
and loader will have resolved this name into a virtual address.

If you specify a symbol for the entry point name, then the linkage editor will
include the control section containing the entry point in question within the load
module containing the CALL instruction. P

You can write this parameter as a symbol or as register (15). N/

parameter addresses

Specifies a list of one or more parameter addresses that you want to pass to the
program at the specified entry point.

The CALL macro gathers these addresses into a parameter list in the order that
you list them in the instruction. The parameter list comprises one or more

fullwords, each on a fullword boundary and each containing the address of one
parameter. The specified entry point receives the address of this parameter list P
in register 1. S

Note that each parameter address in the instruction must be separated by a
comma, with the whole list surrounded by parentheses.

You can write these addresses as assembler program labels or as registers (2)
through (12).

VL

Indicates that the program receiving control expects a variable number of
parameters to be passed to it. To omit this parameter is to say that the program
receiving control expects a set number of parameters.

This parameter sets the high-order bit of the last address parameter in the list to
1, thereby indicating the end of the list.

A debugging aid for use when you issue several CALL macro instructions. {- -

You can assign this parameter a unique, mnemonic value that will be inserted in
any dump you might request. This allows you to associate an area within the
dump with a specific CALL instruction.

130 VM/XA SP GCS Command and Macro Reference

C

Usage Notes

Example

CALL

You can write this parameter as any number or symbol.

¢ If you specify the entry point name as register 15, then the load module that
contains the entry point must be in virtual storage. Moreover, register 15 must
contain the address of the entry point.

e Use of the CALL macro instruction implies that the issuing program ultimately
expects to regain control.

e [t is the responsibility of the program issuing the CALL instruction to provide
storage where the values in its registers may be saved while the other program
has control. The address of this save area must be placed in register 13. Also,
the called program must save the values in these registers and, later, restore
them.

¢ The supervisor is not involved in passing control to the entry point. Therefore,
it is your task’s responsibility to maintain the reusability of the program at that
entry point. That is, if you modify the program in any way, then you must
restore it to its original condition after you have finished. Moreover, your task
must ensure that only one user has control of the program at any given time.

In the following, the program requests that control be passed to the entry point
whose address is in register 15.

CALL (15), (PARAM1,PARAM2),VL

Since register 15 is specified, GCS assumes that the entry point is in virtual storage.
The program being called is to receive two parameter addresses arranged in a
parameter list. The addresses of these parameters are associated with the labels
PARAMI1 and PARAM?2. Since the VL parameter is specified, the program being
called expects a variable number of parameters be passed to it —in this case, two.

Return Codes and Abend Codes

The List Format

The CALL macro generates no return codes and no abend codes.

[Tabel] CALL

[(parameter addresses)[,VL],]MF=L

Added Parameter

This format of the macro instruction generates an in-line parameter list, based on the
parameter values that you specify. However, this format generates no executable
code. Remember that you cannot specify any of the parameters using register
notation. Also, note that only the parameters listed above are valid in the list
format of this instruction.

MF=L
Specifies the list format of this macro instruction.

Chapter 5. Program Management Service Macros 131

CALL

The Execute Format

[1abel]

CALL

entry point name[, (parameter addresses)[,VL]][,ID=number]
,MF=(E,address)

Added Parameter

This format of the macro instruction generates code that executes the function, using

a parameter list whose address you specify.

MF = (E,address)

ADDRESS specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this

instruction.

132 VM/XA SP GCS Command and Macro Reference

A ™
S

DELETE

DELETE

Relinquish Control of a Load Module

Once a task is finished with a load module, that module should be released from the
task’s control. Generally this will free the storage space that the load module
occupies.

In effect, the DELETE macro instruction cancels the effect of the LOAD macro
instruction. (If necessary, review the entry titled “LOAD” on page 142.) Use the
DELETE macro instruction to release your task’s control over a load module and, if
it is no longer needed, to remove it from virtual storage.

The format of the DELETE macro instruction is:

[1abel] DELETE

‘EP=symbo1
EPLOC=address » [,RELATED=value]
DE=address

Parameters

EP
Specifies the name of the entry point contained in the load module.

This is the module you no longer wish to control.
You can write this parameter as any valid symbol.

EPLOC
Specifies the address in your program where you have stored the name of the
load module’s entry point.

This name may be up to eight bytes long. If it is less than eight bytes long, then
it must be padded on the right with blanks.

You can write this parameter as an RX-type address, as register (0), or as
register (2) through (12).

DE .
Specifies the address of the NAME FIELD within the directory list entry
associated with the entry point in question.

This is the same list entry you placed in the directory using the BLDL macro
instruction. If necessary, review the entry titled “BLDL” on page 126.

You can write this parameter as an RX-type address, as register (0), or as
register (2) through (12).

RELATED
Specifies documentation data that you are using to relate this macro instruction
to a LOAD macro instruction.

The valué you assign to this parameter has nothing to do with the execution of
the macro itself. It merely relates one macro instruction (DELETE) to a macro
instruction that provides an opposite, though related, service (LOAD).

The format and contents of this parameter are at your discretion, and can be
any valid coding value.

Chapter 5. Program Management Service Macros 133

DELETE

Usage Notes .
¢ The DELETE macro frees the storage occupied by the load module only if it
resides in private storage and if the module is no longer needed.

e The task that issues the DELETE instruction to release a given load module
must be the same task that issued the LOAD instruction for it in the first place.

Example
In the following example, the task relinquishes control over the load module
containing the entry point XYZ. This DELETE instruction is cross-referenced with
a related LOAD instruction by use of the RELATED parameters in each.

LOADIT LOAD EP=XYZ,RELATED=DELETEIT

DELETETIT DELETE EP=XYZ,RELATED=LOADIT

Return Codes and Abend Codes

When this macro completes processing, it passes to the caller a return code in
register 15.

Return

Code Meaning

00 Function successfully completed.

04 Either your task did not issue a corresponding LOAD
instruction, or the load module has already been deleted.

Abend

Code Meaning

206 Invalid parameter list.

134 VM/XA SP GCS Command and Macro Reference

IDENTIFY

IDENTIFY

Define an Entry Point Within a Load Module

At times you may find it necessary to add an entry point to a load module where
none had previously existed.

Use the IDENTIFY macro instruction to define an entry point in a load module.

The format of the IDENTIFY macro instruction is:

[1abel]

IDENTIFY

{lEP=symbo] } ,ENTRY=address
|[EPLOC=address

Parameters

Usage Notes

Specifies the name by which you want the entry point to be known. It is this
name that you will use in your program to refer to the entry point.

This name need not correspond to any name or symbol within the load module,
though it can if you wish. It must not, however, correspond to any name, alias,
or entry point name known to the system.

This name can be up to eight bytes long.

EPLOC

Specifies the address where you have stored the name of the entry point in your
program.

This name can be up to eight bytes long. If it is less than eight bytes long, it
must be padded on the right with blanks.

You can write this parameter as an RX-type address, as register (0), or as
register (2) through (12).

ENTRY

Specifies the address within the load module of the entry point you wish to
identify.

You can write this parameter as an RX-type address or as register (1) through
(12).

¢ The copy of the load module containing the entry point in question must be one

of the following:

— A copy of the load module for which you previously issued a LOAD macro
instruction. If necessary, review the entry titled “LOAD” on page 142.

— The last load module given control using the OSRUN command, or the
ATTACH, LINK, or XCTL macro instruction. For more information on
OSRUN see “ATTACH” on page 86, “LINK” on page 137, “XCTL” on
page 152, or “GCS Commands” on page 20. ‘

e The IDENTIFY instruction cannot be issued by any asynchronous exit routine.

Chapter 5. Program Management Service Macros 135

IDENTIFY

* You cannot use the IDENTIFY instruction to define an entry point that has
been declared via the CONTENTS instruction. If necessary, review the entry

titled “CONTENTS” on page 427.

¢ All Program Management Macros consider the code at entry points that are
defined via the IDENTIFY instruction to be reentrant. You must be certain
that this code is indeed reentrant, otherwise unpredictable results are possible.

Example

In the following example, a new entry point is defined within a certain load module.

NAMEIT IDENTIFY EP=ABC3,ENTRY=(6)

The name of this entry point will be ABC3. The address of the entry point within

the load module can be found in register 6. NAMEIT is the label on this

instruction.

Return Codes and Abend Codes

When this macro completes processing, it passes to the caller a return code in

register 15. It may be one of the following:

Return
Code

Meaning

00

Function successfully completed.

04

The non-main entry point name you specified is already
assigned to the address you specified.

08

The entry point name you specified duplicates the name of
a load module currently in virtual storage. The entry point
name was not assigned to the address you specified.

0C

The entry point address you specified is not within an
eligible load module. The entry point name was not
assigned to the address you specified.

10

The IDENTIFY instruction was issued by an asynchronous
exit routine. The entry name was not assigned to the
address you specified.

14

An IDENTIFY instruction was previously issued defining
the same non-main entry point name but at a different
address. The entry point name specified in the present
IDENTIFY instruction was not assigned to the address
specified.

18

The parameter list was invalid. The entry point name was
not assigned to the address you specified.

28

The address specified by the EPLOC parameter is
fetch-protected and the calling program is in a different
key. Therefore, the calling program cannot access the
storage. So, the entry point name was not assigned to the
address that you specified.

136 VM/XA SP GCS Command and Macro Reference

o
RV

LINK

LINK

Pass Control to a Program, Expecting to Regain Control Later

GCS provides several techniques for passing control from one program to another.
Use the LINK macro instruction to pass control to a certain entry point in another
load module with the intent that control will eventually return to the program
issuing the instruction.

The LINK macro instruction is available in standard, list, and execute formats.

The standard format of the LINK macro instruction is:

[1abel] LINK ‘EP=symbol
: EPLOC=addr » [, ID=number][,PARAM=(addresses)[,VL=1]]
{.DE=addr }
Parameters
EP
Specifies the name of the entry point within the program that is to receive
control.

The entry point name can be any one of the following:

¢ The name of the entry point as previously defined via the IDENTIFY macro
instruction. If necessary, review the entry titled “IDENTIFY” on page 135.

e The name of the entry point declared in a shared segment directory via the
CONTENTS macro instruction. If necessary, review the entry titled
“CONTENTS” on page 427.

¢ A member name (or alias) in the directory of a load library.

When looking for the entry point name that you specify, GCS searches the
following items in the following order:

1. Your private storage, since the module associated with the entry point name
may already be loaded.

2. Any shared segment directories that may have been created via the
CONTENTS macro instruction.

3. The directories of any load libraries that may have been defined for your
virtual machine via the GLOBAL LOADLIB command. For more
information on the GLOBAL command see “GCS Commands” on page 20.

You must write this parameter as a symbol.

EPLOC
Specifies the address containing the name of the entry point of the program that
is to receive control.

The name, as stored, can be up to eight bytes long. If it is fewer than eight
bytes long, the name must be padded on the right with blanks.

You can write this parameter as an assembler program label or as register (2)
through (12).

Chapter 5. Program Management Service Macros 137

DE
Specifies the address of the name field within the list entry for the entry point in Py

question. S
A

\
} You must previously have created this list entry for the entry point using the
1 BLDL macro instruction. (If necessary, review the entry titled “BLDL” on

1 page 126.)

You can write this parameter as an assembler program label or as register (2)
through (12).

Specifies a number that GCS is to put in bytes 3 and 4 of the last instruction in
the LINK macro expansion.

The last instruction in the LINK macro is a NOP instruction. GCS will place
the number that you specify in this parameter into this NOP instruction. You
| can then use it as a debugging tool. Choose a number from 0 to 4095 or a
symbol.

You can write this parameter as decimal digits or as an assembler program label.

PARAM
Specifies one or more parameter addresses that GCS will pass to the program
being called.

GCS builds a parameter list containing these addresses in the order in which you
specify them. Then, the system passes the address of this parameter list to the
program being called in register 1. If you omit this parameter, then register 1
remains unchanged.

| You can write these parameters as assembler program labels or as registers (2) N

| through (12). w

VL=1
Indicates that the program being called expects a variable number of parameters
to be passed to it.

You must write this parameter exactly as shown, and you can use it only with
the PARAM parameter. To omit the VL =1 parameter is to say that the
program being called expects a set number of parameters.

Usage Notes .
e If you issue the LINK instruction and the load module in question is not
resident in virtual storage, then GCS will load the module for you. Then, after
the module is run, GCS removes it from storage. This is satisfactory if you
intend to pass control to the module only once.

However, loading a module into virtual storage involves a good deal of overhead
processing. If you intend to pass control to the module more than once, it is far
more efficient to issue the LOAD instruction yourself just one time. This avoids
all the overhead processing involved in having GCS repeatedly load the module
for you! .

¢ The relationship between the program issuing the LINK instruction and the
program receiving control is the same as that established by a BAL assembler
language instruction. Once the program being called has completed execution,

control is returned to the program that issued the LINK instruction. (m
¢ It is the responsibility of the program issuing the LINK instruction to provide L
the program receiving control with the address of an area wherein the former’s

138 VM/XA SP GCS Command and Macro Reference

Examples

LINK

registers will be saved. This address must be placed in register 13 by the
program issuing the LINK instruction.

¢ Likewise, it is the responsibility of the program being called to place the value of
the other program’s registers in this save area once it gets control. And, just
before the called program returns control, the values must be restored to
registers 0 through 14. A return code can be placed in register 15; if not, then
register 15 must be restored.

* You can use the LINK instruction to link to a serially reusable program. If the
program is being used by someone else, then you will placed in the WAIT state
until the other user is finished.

- o If the program being called is reentrant, then it is loaded into key O storage.

This ensures that it is not accidentally modified or tampered with.

In the following example, control is passed to an entry point named PROGRAMB.
LINK EP=PROGRAMB,PARAM=(ADDRA,ADDRB,ADDRC)

PROGRAMB expects exactly three parameters be passed to it. These parameters
may be found at addresses ADDRA, ADDRB, and ADDRC, respectively.

In the second example, control is passed to an entry point whose name can be found
at the address corresponding to the label PROGADDR.

LINKIT LINK EPLOC=PROGADDR,PARAM=((2),(3)),VL=1

PROGADDR expects a variable number of parameters be passed to it, in this case
two. The address of the first parameter can be found in register 2, and that of the
the second in register 3. LINKIT is the label on this instruction.

In the last example, control is passed to a certain entry point.
LINK DE=BLDLNAM,ID=6

The system is to look for the name of the entry point in the BLDL list entry for that
entry point. The name field of the list entry corresponds to the address of the label
BLDLNAM. As an aid to debugging, the LINK macro is to place the value 6 in
bytes three and four of the final instruction that it generates.

Input to the Program Receiving Control

Register Contents

Register 0 Unpredictable. May be used by the GCS supervisor.
Register Unchanged. Register 1 will contain the address of
1-13 the parameter list, if it was specified.

Register 14 The address to which control is to return once the

called program completes execution.

Register 15 The address of the entry point in the program being
called.

Chapter 5. Program Management Service Macros 139

LINK

Return Codes and Abend Codes

No return codes are generated. The abend codes are as follows:

Abend Reason

Code Code Meaning

106 0B An error was found when the supervisor
attempted to load the requested module into
virtual storage.

106 0C Insufficient virtual storage was available to load
the requested module.

206 Invalid parameter list.

406 The module is marked ONLY LOADABLE.

706 The linkage editor marked the module NOT
EXECUTABLE.

806 04 Either the program could not be found or no
load libraries were defined by the GLOBAL
command.

806 08 An unrecoverable I/O error occurred when the
BLDL control program attempted to search the
directory.

806 10 When GCS attempted to close the load library
used by the BLDL macro, it found that the load
library had never been opened.

906 The maximum use-count or the maximum
load-count of the module has been reached.

A06 Your task is already waiting for this serially
reusable module.

The List Format
[1abel] LINK
EP=symbo]
EPLOC=addr| [,ID=number],SF=L
DE=addr

This format of the macro instruction generates an in-line parameter list, based on the
parameter values that you specify. However, this format generates no executable
code. Remember that you cannot specify any of the parameters using register
notation. Also, note that only the parameters listed above are valid in the list

format of this instruction.

140 VM/XA SP GCS Command and Macro Reference

>

N

\"&;_:, e

LINK

Added Parameter
SF=L
Specifies the list format of this macro instruction.

The Execute Format

[1abel] LINK ‘
EP=symbo] ',SF=(E,addr) [,options]
EPLOC=addr| [,ID=number]{ ,MF=(E,address)

DE=addr ,SF=(E,addr) ,MF=(E=address)

options:
PARAM=(addrs) [,VL=1]

This format of the macro instruction generates code that executes the function, using
a parameter list whose address you specify.

Note that only the parameters listed above are valid in the execute format of this
instruction.

Added Parameter
SF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the macro.
This is the parameter list that was generated via the list format of this
instruction.

You can add or modify values in this parameter list by specifying them in this
instruction.

MF = (E,address)
ADDRESS specifies the address of the remote parameter list to be used by the
called program.

You can add or modify values in this parameter list by specifying them in this
instruction.

Chapter 5. Program Management Service Macros 141

LOAD

LOAD

Bring a Load Module that You Intend to Invoke More than Once into Virtual
Storage

Use the LOAD macro instruction to bring a load module, containing a specified
entry point, into virtual storage. This makes the code at that entry point available
for your use. ‘

The format of the LOAD macro instruction is:

[Tabel] LOAD

EP=symbo1 ‘
EPLOC=address p [,RELATED=value]

DE=address

Parameters

142

EP

Specifies the name of the entry point contained in the load module to be brought

into storage.

The entry point name can be any one of the following:

¢ The name of the entry point as previously defined via the IDENTIFY macro

instruction. If necessary, review the entry titled “IDENTIFY” on page 135.

¢ The name of the entry point declared in a shared segment directory via the
CONTENTS macro instruction. If necessary, review the entry titled
“CONTENTS” on page 427.

* A member name (or alias) in the directory of a load library.

When looking for the entry point name that you specify, GCS searches the
following items in the following order:

1. Your private storage, since the module associated with the entry point name
may already be loaded.

2. Any shared segment directories that may have been created via the.
CONTENTS macro instruction.

3. The directories of any load libraries that may have been defined for your
virtual machine via the GLOBAL LOADLIB command. For more
information on the GLOBAL command, see “GCS Commands” on
page 20.

You must write this parameter as a symbol.

EPLOC

Specifies the address in your program where you have stored the name of the
entry point.

This name may be up to eight bytes long. If it is fewer than eight bytes long, it
must be padded on the right with blanks. Again, the entry point name can refer
to one of the same three things as listed under the EP parameter.

You can write this parameter as an RX-type address, as register (0), or as
register (2) through (12).

VM/XA SP GCS Command and Macro Reference

£
N

Usage Notes

Example

LOAD

DE
Specifies the address of the NAME field within the directory list entry associated
with the entry point in question.

GCS assumes that you have created this list entry within the directory using the
BLDL macro instruction. Review the entry titled “BLDL” on page 126. When
using the BLDL macro instruction for this particular purpose, be certain to
specify at least 60 bytes as the length of the list entry for your entry point.

You can write this parameter as an RX-type address, as register (0), or as
register (2) through (12).

RELATED
Specifies documentation data that you are using to relate this macro instruction
to a DELETE macro instruction.

The value you assign to this parameter has nothing to do with the execution of
the macro itself. It merely relates one macro instruction (LOAD) to a macro
instruction that provides an opposite, though related, service (DELETE).

The format and contents of this parameter are at your discretion and can be any
valid coding value.

« If you specify the DE parameter, then GCS assumes that a list entry has been
created for the entry point in the directory entry list using the BLDL macro.

o The LOAD macro does not pass control to the entry point in question. Rather,
the address of the entry point is returned to your program in register 0.

e The entire load module containing the specified entry point is brought into
virtual storage. This happens, however, only if there is no other usable copy of
the module available. It remains in your private storage until no outstanding
requests for the module remain.

¢ For each LOAD instruction that you issue, you must also issue a corresponding
DELETE instruction. Review the entry titled “DELETE” on page 133.

e If the program being called is reentrant, then it is loaded into key 0 storage.
This ensures that it is not accidentally modified or tampered with.

The following is an example of bringing a load module containing the entry point
XYZ into virtual storage. This LOAD instruction is cross-referenced with a related
DELETE macro instruction by use of the RELATED parameters in each.

LOADIT LOAD EP=XYZ,RELATED=DLEETIT

DLEETIT DELETE EP=XYZ,RELATED=LOADIT

Chapter 5. Program Management Service Macros 143

LOAD

Return Codes and Abend Codes

The program issuing the LOAD macro instruction receives the following information
in its registers.

Register

Contents

Register 0

The address of the entry point specified in the LOAD
instruction.

Register 1

If the load module is in private storage, then this is
the length of the load module in doublewords. If the
load module is in a shared segment, then this length
is set to zero. :

Register 15

A return code of zero indicating a successful load.

The LOAD macro generates the following abend codes. If applicable, a reason code

is returned in register 15.

Abend Reason

Code Code Meaning

106 0B An error was found when the supervisor
attempted to load the requested module.

106 0C Insufficient virtual storage was available to load
the requested module.

206 Invalid parameter list.

706 The linkage editor marked the requested load

' module as NOT EXECUTABLE.

806 04 Either the program could not be found or no
load libraries were defined by the GLOBAL
LOADLIB command.

806 08 An unrecoverable I/O error occurred when the
GCS supervisor attempted to search the
directory.

806 10 When GCS attempted to close the load library
used by the BLDL macro, it found that the load
library had never been opened.

906 The LOAD COUNT and/or USE COUNT for
the load module have reached the maximum of
32767.

144 VM/XA SP GCS Command and Macro Reference

RETURN

RETURN

Return Control to a Program

Use the RETURN macro instruction to return control from one program to the
program that called it.

The RETURN macro instruction can also restore the contents of certain registers
belonging to the program to which control is returning. It can also supply the
program with a return code and flag the save area where the values of its registers
were saved.

The format of the RETURN macro instruction is:

[1abel] RETURN

(regl[,reg2]) [,T][,RC=number]

Parameters

(regl) or

(regl,reg2)
Specifies the single register, (regl), or the range of registers, (regl,reg2), whose
values are to be restored from the save area.

The RETURN instruction uses the same conventions for restoring registers that
the SAVE macro instruction uses. They are restored in the following general
order: 14,15,0,1,2,3,4,5,6,7,8,9, 10, 11, 12.

To specify a range of registers to be restored, substitute the first register in the
range for the regl parameter. Then, substitute the last register in the range for
the reg2 parameter. Obviously, a subset of the above general order is
permissible but be mindful of the general order when specifying a range of
registers.

Never specify register 13 as a register whose value is to be restored.

If you omit this parameter, no registers are restored.

Indicates that you want the save area, from which the register values are
restored, to be flagged.

The flag indicates that the program issuing the RETURN instruction (which
saved the values in the first place) has returned control to the program that
called it.

The flag itself is a byte of all ones placed in the high-order byte of word 4 in the
save area.

RC
Specifies the return code to be passed to the program to which control is being
returned.

The value of this return code has meaning only to the applications involved.

You can write this parameter as decimal digits, as an EQU symbol, or as register
(15). If you write it as one or more digits or as a symbol, then the return code is
right-justified in register 15 just before control is returned. If you write it as
register (15), then the macro assumes that the program returning control has

Chapter 5. Program Management Service Macros 145

RETURN

placed the return code in register 15. In this case, register 15 will be left alone
during the restoration of the other registers.

If you omit this parameter, the contents of register 15 will be determined by the
regl or regl,reg2 parameter.

Usage Note
e If registers are to be restored or if the save area is to be flagged, then register 13
must contain the address of the save area.

Example
In the following example, the program requests that control be returned to the
program that called it.

GOBACK RETURN (14,7),T,RC=40

Registers 14, 15, and registers 0 through 7 are to be restored. A flag byte is to be
placed in the save area, and a return code of 40 is to be placed in register 15. Note
that the return code replaces the value that was just restored to register 15.
GOBACK is the label on this instruction.

Return Codes and Abend Codes

The RETURN macro generates no return codes and no abend codes.

146 VM/XA SP GCS Command and Macro Reference

A ™
s

SAVE

SAVE

Save the Contents of the Registers
By convention, it is the responsibility of any program called by another to save the
values in the registers when it receives control. Likewise, it is the responsibility of
the calling program to provide storage wherein the values in its registers can be
saved. The calling program must also place the address of this save area in register
13 before it calls the other program.

Use the SAVE macro instruction in a called program to save the values of certain
registers belonging to the program that called it.

Note that the SAVE macro uses the standard conventions for saving registers. That
is, they are saved in an area composed of eighteen contiguous fullwords, starting at
the fourth fullword. And, they are saved in the following general order: 14, 15, 0,
1,2,3,4,5,6,7,8,9, 10, 11, 12. Register 13 is never saved.

The format of the SAVE macro instruction is:

’

[1abel]} SAVE (regl[,reg2])[,T]1[,id name]
Parameters
(regl) or
) (regl,reg2)
Specifies the single register (regl) or range of registers (regl,reg2) whose values

are to be stored in the save area.

To specify a range of registers, consider the general order in which registers are
saved. Substitute the first register number in the range for the regl parameter.
And, substitute the last register in the range for the reg2 parameter. Obviously,
a subset of this order is permissible but be mindful of the general order when
specifying a range of registers.

Never specify register 13 as a register whose value is to be saved.

(You must write the register or range of registers as decimal digits.

Indicates that regardless of what other registers are saved or not saved, registers
14 and 15 are saved.

Use this parameter if you want to save the values in registers 14 and 15 as well
as those in another subset of registers, of which 14 and 15 are not a part. The
other subset can be specified by the (regl) or (regl,reg2) parameter, while
registers 14 and 15 are specified by the T parameter.

The T parameter can also be specified alone, indicating that only registers 14
and 15 are to be saved.

id name
Specifies an identifier or label that is to be associated with the SAVE macro
instruction.

(A You can use this identifier as a debugging aid when you issue several SAVE
instructions. You can assign this parameter a unique, mnemonic value that will

Chapter 5. Program Management Service Macros 147

SAVE

be inserted in any dump you might request. This allows you to associate a
section within the dump with a specific SAVE instruction, and thereby with a
specific save area.

A byte containing the length of the ID NAME appears in the dump four bytes
after the address in register 15. The ID NAME itself begins five bytes after this
address.

If you write the ID NAME parameter as an asterisk (*), then the label on the
SAVE instruction itself will be assigned to it. If you omit this parameter
entirely, then the label on the appropriate CSECT instruction will be assigned to
the ID NAME parameter. If no label appears on the CSECT instruction, then
this parameter is ignored.

Usage Note
¢ The SAVE macro instruction must be the first instruction at the entry point of
any called program. This is because register 15 must contain the address of the
macro instruction, which it might not were the SAVE instruction issued later.
Examples

In the following example, the program requests that the values in registers 14, 15,
and registers 0 through 12 be saved.

SAVE (14,12),,*

Since an asterisk is specified and no label appears on this instruction, the label on
the appropriate CSECT instruction is assigned to the ID NAME parameter.

In the second example, the program requests that the values in registers 5, 6, and 7
be saved.

SAVE (5,7),T

Since registers 14 and 15 are not within this range and since the program wants them
saved, the T parameter is also specified.

Return Codes and Abend Codes

The SAVE macro generates no return codes and no abend codes.

148 VM/XA SP GCS Command and Macro Reference

N LA

£

S

-

SYNCH

SYNCH

Schedule a Synchronous Exit from One Program to Another, Possibly with a

Change in State

The SYNCH macro instruction schedules a synchronous exit from one program to
another. If desired, the SYNCH macro instruction allows a supervisor state
program to call another program and choose the state in which the latter will
function. In addition, the SYNCH macro instruction allows you to control the
restoration of registers belonging to the calling program.

The SYNCH macro instruction is available in standard, list, and execute formats.

The standard format of the SYNCH macro instruction is:

[1abel] SYNCH

entry point [,RESTORE={YES}
NO

,STATE= {'SUPV |
PROB |

Parameters

entry point

Specifies the address of the entry point that is to receive control.
The program must be resident in virtual storage.

You can write this parameter as an RX-type address or as a register. If you
write it as a register, you can choose only from among registers (2) through (12)
and register (15).

RESTORE

Indicates whether you want registers 2 through 13 restored when control is
returned to the program that issued the SYNCH instruction. If you do not
specify this parameter, then, by default, no restoration takes place.

YES
Indicates that you do want this restoration to take place.

NO
Indicates that you do not want this restoration to take place.

STATE

Indicates the state in which the program being called will function. If you do
not specify this parameter, then the program being called functions in problem
state, by default.

SUPV
Indicates that the program being called will function in supervisor state.

PROB
Indicates that the program being called will function in problem state.

Chapter 5. Program Management Service Macros 149

SYNCH

Usage Notes

f ¢ The SYNCH macro makes no validity checks on the entry point address.
i Regardless of what is at that address, control is transferred to it.

e It is not necessary for the program that issues the SYNCH instruction to be in
supervisor state. Nor must a program called by a supervisor state program
| necessarily function in that state. The rule is:

— If the program issuing the SYNCH instruction is a problem state program,
then the called program will also function in that state.

— If the program issuing the SYNCH instruction is a supervisor state program,
1 then there is a choice. Use the STATE parameter to specify in which state
the called program is to function.

e Itis important to remember that any program called via the SYNCH instruction
will always run in the same key as the program that called it. This usually is not
a problem. However, a supervisor state program may call another program and
specify that the latter should run in problem state. The supervisor state program
should change its own key to that of the problem state program before it issues
the SYNCH instruction.

o It is risky to use the SYNCH macro instruction to transfer control to a program
that is not reentrant. While this practice is not prohibited, the results are
unpredictable.

Examples
In the following example, the first SYNCH macro instruction schedules an exit to
the entry point whose address is in register 2.

SYNCH (2) ,RESTORE=NO,STATE=SUPV
The program being called will function in supervisor state if the program issuing the

SYNCH macro is also in supervisor state. When control is returned to the program
that issued the SYNCH instruction, no registers will be restored.

The second SYNCH macro instruction was issued to schedule an exit to an address
named ENCRYPT.
SYNCHIT SYNCH ENCRYPT,RESTORE=YES,STATE=PROB

ENCRYPT is to function in problem state. SYNCHIT is the label on this
instruction. When control is returned, registers 2 through 13, belonging to the
program that issued the SYNCH instruction, will be restored.

Input to the Exit Program
The exit program receives the following information in its registers.

Register Contents
Registers 0-13 Unchanged.
Register 14 The address to which control is to return once

the exit program completes execution.

Register 15 The address of the entry point in the exit
program being called.

150 VM/XA SP GCS Command and Macro Reference

SYNCH

Return Codes and Abend Codes

The List Format

The SYNCH macro generates no return codes.

Abend Reason

Code Code Meaning

106 0C Insufficient virtual storage was available to load
the requested module.

206 Either an invalid parameter list was produced or
an I/O error occurred while processing.

[1abel] SYNCH

RESTORE= J YES ,STATE= §.SUPV | |,MF=L
NO PROB |

Added Parameter

This format of the macro instruction generates an in-line parameter list, based on the
parameter values that you specify. However, this format generates no executable
code. Remember that you cannot specify any of the parameters using register
notation. Also, note that only the parameters listed above are valid in the list
format of this instruction.

MF=L
Specifies the list format of this macro instruction.

The Execute Format

[Tabel] SYNCH

entry point |,RESTORE= { YES) ||,STATE= f SUPV) |,MF=(E,address)
NO PROB

Added Parameter

This format of the macro instruction generates code that executes the function, using
a parameter list whose address you specify.

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this
instruction.

Chapter 5. Program Management Service Macros 151

XCTL

XCTL

Pass Control to a Program, Expecting Never to Regain It

GCS provides several techniques for passing control from one program to another.
Typically, when one program passes control to another, it expects to eventually
regain it. The XCTL macro instruction allows you to pass control from one
program to another, with the former never again to regain it.

The XCTL macro instruction is available in standard, list, and execute formats.

The standard format of the XCTL macro instruction is:

[1abel] XCTL

,EPLOC=addr

[(regi[,reg2])] (,EP=symbol
,DE=addr

Parameters

(regl), or
(regl,reg2)

Specifies the register, or range of registers, that was saved by the issuer of the
XCTL instruction and that is to be restored and passed to the program being
called. The saving of these registers, then, becomes the responsibility of the
program being called by the XCTL macro instruction.

You can write these as registers 2 through 12 or as assembler program labels. If
you omit the reg2 parameter, then the only register restored is the one
represented by the regl parameter. It is possible, however, to restore a subrange
of registers within the range 2 through 12. The low register in the range must be
regl and reg2 must be the high register in the range. If you omit these
parameters entirely, no registers are restored.

Be certain to supply a set of parentheses around this parameter. And, if you
specify a pair of register numbers, separate them with a comma.

Specifies the name of the entry point that is to receive control.
The entry point name can be any one of the following:

¢ The name of the entry point as previously defined via the IDENTIFY macro
instruction. If necessary, review the entry titled “IDENTIFY” on page 135.

¢ The name of the entry point declared in a shared segment directory via the
CONTENTS macro instruction. If necessary, review the entry titled
“CONTENTS” on page 427.

¢ A member name (or alias) in the directory of a load library.

When looking for the entry point name that you specify, GCS searches the
following items in the following order:

1. Your private storage, since the module associated with the entry point name
may already be loaded.

2. Any shared segment directories that may have been created via the
CONTENTS macro instruction.

152 VM/XA SP GCS Command and Macro Reference

™
A

XCTL

3. The directories of any load libraries that may have been defined for your
virtual machine via the GLOBAL LOADLIB command. For more
information on the GLOBAL command see “GCS Commands” on page 20.

You must write this parameter as an assembler program label.

EPLOC
The address containing the name of the entry point of the program that is to
receive control.

The name, as stored, can be up to eight bytes long. If less than eight bytes long,
then the name must be padded on the right with blanks.

You can write this parameter as an assembler program label or as register (2)
through (12).

DE
Specifies the address of the name field within the directory list entry for the
entry point. You must have previously created this list entry for the entry point
using the BLDL macro instruction. Review the entry titled “BLDL” on
page 126.

You can write this parameter as an assembler program label or as register (2)
through (12).

Usage Notes
¢ If you issue the XCTL instruction and the load module in question is not
resident in virtual storage, then GCS will load the module for you. Then, after
the module is run, GCS removes it from storage. This is satisfactory if you
intend to pass control to the module only once.

However, loading a module into virtual storage involves a good deal of overhead
processing. If you intend to pass control to the module more than once, it is far
more efficient to issue the LOAD instruction once yourself. This avoids all the
overhead processing involved in having GCS repeatedly load the module for
you. If necessary, review the entry titled “LOAD” on page 142.

o It is the responsibility of the program issuing the XCTL instruction to restore
registers 2 through 14 to what they were when it first received control. Registers
13 and 14 must be restored before the XCTL instruction is issued. Registers 2
through 12 (or a subset thereof) can be restored at the same time or via the
(regl,reg2) parameter.

The program issuing the XCTL macro instruction can omit the (regl) or
(regl,reg2) parameters. If it does, then the XCTL macro will restore no
registers. It then becomes the responsibility of the program issuing the XCTL
instruction to restore registers 2 through 14 by itself.

o It is the responsibility of the program receiving control via the XCTL instruction
to save the registers that the program that called it was saving.

¢ The program being called, using the standard format of the XCTL instruction,
may expect certain parameters be passed to it. Since the program is using the
standard format of the instruction, it must see to it that register 1 contains the
address of the parameter list, if one is expected.

* You can use the XCTL instruction to pass control to a serially reusable
program. If the program is under the control of another user, then you will be
placed in the WAIT state until the other user is finished.

Chapter 5. Program Management Service Macros 153

XCTL

o If the program being called is reentrant, then it is loaded into key O storage.

This ensures that it is not accidentally modified or tampered with.

Examples

In the following example, the XCTL macro will first restore registers 2 through 12,

which the program issuing it was saving.
XCTL (2,12) ,EP=PROGRAMC

GCS assumes that this program restored registers 13 and 14 on its own. Then

control will pass to a program named PROGRAMC.

In the second example, control is passed to an entry point whose name can be found

at the address in register 6.
TRANSCTL XCTL (4),EPLOC=(6)

The XCTL macro need only restore register 4. GCS assumes that the program
issuing the XCTL instruction restored registers 2, 3, and 5 through 14. TRANSCTL

is the label on this instruction.

In the last example, control is passed to a certain entry point.

XCTL DE=BLDLNAM

The system is to look for the name of this entry point in the list entry created for
that entry point. The name field of the list entry corresponds with the address of the
label BLDLNAM. The XCTL macro need restore no registers. GCS assumes that

they were all restored by the program issuing the XCTL instruction.

Return Codes and Abend Codes

When control is passed to the program being called, the registers contain the

following information.

Register

Contents

Register 0-13

Unchanged. Register 1 contains the address of the
parameter list, if it was specified.

Register 14

The address to which control is to return once the
called program completes execution.

Register 15

The address of the entry point in the program being
called.

154 VM/XA SP GCS Command and Macro Reference

!/{\\‘7
i)

re

The List Format

XCTL

Abend Reason

Code Code Meaning

106 0B An error was found when the supervisor
attempted to load the requested module into
virtual storage.

106 0C Insufficient virtual storage was available to load
the requested module.

206 Invalid parameter list.

406 The module is marked ONLY LOADABLE.

706 The linkage editor marked the requested load
module as NOT EXECUTABLE.

806 04 Either the program could not be found or no
load libraries were defined by the GLOBAL
LOADLIB command.

806 08 An unrecoverable I/O error occurred when the
BLDL control program attempted to search the
directory.

806 10 When GCS attempted to close the load library
used by the BLDL macro, it found that the load
library had never been opened.

906 The LOAD COUNT and/or USE COUNT for
the load module have reached the maximum of
32767.

A06 Your task is already waiting for this serially
reusable module.

[1abel] XCTL

[(regi[,reg2])] |,EP=symbol |,SF=L
,EPLOC=addr
,DE=addr

Added Parameter

This format of the macro instruction generates an in-line parameter list, based on the
parameter values that you specify. However, this format generates no executable
code. Remember that you cannot specify any of the parameters using register
notation.

SF=L
Specifies the list format of this macro instruction.

Chapter 5. Program Management Service Macros 155

XCTL

The Execute Format

[1abel] XCTL

EP=symbo1l
EPLOC=addr [,ID=number]
DE=addr

options:

,SF=(E,addr) [,options]
,MF=(E,address)
,SF=(E,addr) ,MF=(E=address)

Added Parameters

PARAM=(addrs) [,VL=1]

This format of the macro instruction generates code that executes the function, using

a parameter list whose address you specify.

Note that only the parameters listed above are valid in the execute format of this

instruction.

SF = (E,address)

ADDRESS specifies the address of the parameter list to be used by the macro.
This is the parameter list that was generated via the list format of this

instruction.

You can add or modify values in this parameter list by specifying them in this

instruction.

MF = (E,address)

ADDRESS specifies the address of the remote parameter list to be used by the

called program.

PARAM

Specifies one or more parameter addresses to be passed to the program being
called. XCTL builds a parameter list containing these addresses in the order
which you specify them. Then, the address of this parameter list is passed in

register 1 to the program being called.

You can write these parameters as assembler program labels or as registers (2)

through (12).
VL=1

Indicates that the program being called expects a variable number of parameters

to be passed to it.

You must write this parameter exactly as shown and you can use it only with the
PARAM parameter. To omit the VL =1 parameter is to say that the program

being called expects a set number of parameters.

156 VM/XA SP GCS Command and Macro Reference

Chapter 6. Timer Service Macros

STIMER . . . 158
TIME . 161
TTIMER . . 163

Chapter 6. Timer Service Macros 157

STIMER

STIMER

Set a Timer

A7

N

At times, a task reaches a point where it needs to have something done for it. The
task allocates a certain time period during which it waits for some event to occur.
When told that time is up, the task resumes execution.

At other times, a task may be able to continue with other work while waiting for
some event to take place. Having allocated a certain time period for this event, the
task needs to be told when time is up.

To keep track of these time periods, a task sets a timer, specifying the amount of
time it will allow for a certain event to take place.

Use the STIMER macro instruction to set a timer to a given time period. When
time is up, your task will be notified. PrN

The format of the STIMER macro instruction is:

[1abel] STIMER

REAL[,exit routine address] ,BINTVL=address
WAIT ,DINTVL=address
,TOD=address

Parameters

REAL N
Indicates that the task will continue with other work while waiting for the
specified time to elapse.

exit routine address
Specifies the address of an exit routine that will get control at the end of the
time interval.

This exit routine must be resident in virtual storage and can be specified only
with the REAL parameter. P

You can write this as an RX-type address, as register (0), or as register (2)
through (12).
WAIT

Indicates that the task is to be placed in the WAIT state during the specified
time period. At the end of the time period, the task will resume execution.

BINTVL
Specifies the address containing the duration of time allocated for the event.

You must store the amount of time as an unsigned 32 bit binary number in a
fullword on a fullword boundary. The low-order bit is equivalent to 0.01
seconds.

You can write this parameter as an RX-type address or as register (1) through

12).

158 VM/XA SP GCS Command and Macro Reference

Usage Notes

STIMER

DINTVL

Specifies the address containing the duration of time allocated for the event.

You must store the amount of time as unpacked decimal digits in a doubleword
on a doubleword boundary in the following format:

HHMMSSth

HH stands for the number of hours; MM for the number of minutes; SS for the
number of seconds; t for the number of tenths of a second; and h for the number
of hundredths of a second. The maximum amount of time you can specify is
twenty-four hours.

You can write this parameter as an RX-type address or as register (1) through
(12).

TOD

Specifies the address containing the time of day that marks the end of the time
period.

You must store this time of day as unpacked decimal digits in a doubleword on
a doubleword boundary. Moreover, you must store it according to the
HHMMSSth format described above, using twenty-four hour clock notation.

It is the responsibility of the task issuing the STIMER instruction to provide
storage for the amount of time. Likewise, the task must see to it that the
appropriate time value is stored there before issuing the STIMER instruction.

If you choose the REAL parameter and you do not specify the address of an
exit routine, your task will never know the time has expired. In such a case, the
supervisor does not notify your task that time is up.

The exit routine is responsible for saving and restoring your task’s registers. It
also executes in the same state and key as did your task when the latter issued
the STIMER instruction. Once your exit routine completes execution, it returns
control to the supervisor.

Input to the exit routine is:

Register Contents

Registers 0 - 12 Unpredictable.

Register 13 The address of a supervisor-provided save area.

Register 14 The address to which control will transfer once
the exit routine completes processing.

Register 15 The address of the exit routine.

No task can have more than one timer set at the same time. If you issue an
STIMER instruction before the time period associated with a previous STIMER
instruction expires, then the second STIMER instruction cancels and replaces the
first.

¢ All time is measured continuously in real time.

Chapter 6. Timer Service Macros 159

STIMER

Examples . B
In the first example, the task wishes to set a timer. /‘{ ™

CLOCKIT STIMER REAL,(6),T0D=(7) A
Since the REAL parameter is specified, the task will continue with other work while
it is waiting. The specific time of day marking the end of the time period is stored at

the address in register 7. When time is up, the exit routine, whose address is in
register 6, receives control. CLOCKIT is the label on this instruction.

In the second example, the task wishes to set a timer.
STIMER WAIT,DINTVL=(5)

Since the WAIT parameter is specified, the task will be placed in the WAIT state
until time is up. The amount of time, stored as characters, can be found at the
address in register 5.

Return Codes and Abend Codes N

The STIMER macro generates no return codes.

Abend
Code Meaning

12F Your task is in problem state and the parameter list for the
macro is not in the same key as the task. You may also
have incorrectly specified the DINTVL or TOD parameter.
These must be in unpacked decimal format.

E2F A parameter unsupported by GCS was specified. /
' Unsupported parameters include TASK, GMT, TUINTVL, R
and MICVL.

™
It
it

160 VM/XA SP GCS Command and Macro Reference

TIME

TIME

Request Today’s Date and the Correct Time

Use the TIME macro instruction to ask the supervisor to send today’s date and the
correct time of day to your program.

The format of the TIME macro instruction is:

[1abel] TIME

DEC

BIN

Parameters

Usage Notes

DEC

Indicates that the time of day is to be returned to your program in unsigned
packed decimal format. It is stored in the following format:

HHMMSSth

HH stands for the number of hours; MM for the number of minutes; SS for the
number of seconds; t for the number of tenths of a second; and h for the number
of hundredths of a second.

Today’s date is also returned to your program in packed decimal form.

If you omit all parameters from the TIME instruction, then DEC is assumed, by
default.

BIN

Indicates that the time of day is to be returned to your program as an unsigned
32-bit binary number. The low-order bit is equivalent to 0.01 seconds.

Today’s date, however, will be returned to your program in packed decimal
form.

The time of day is returned to your program in register 0.
Today’s date is returned to your program in register 1.
The date is stored in the following format:

00YYDDDF

00 is a byte of zeroes. YY are the last two digits of the year. DDD is the Julian
day of the year. F is a four-bit sign character that helps you unpack and print
the date, if you request it.

Note that the accuracy of the time and date depends upon the accuracy of the
corresponding data entered by your system operator. Your system’s response
time is also a factor.

Chapter 6. Timer Service Macros 161

Return Codes and ABEND Codes

The TIME macro generates no return codes.

Abend
Code

Meaning

EOB

* A parameter not supported by GCS was specified.

Unsupported parameters include TU, MIC, STCK, and
ZONE =GMT.

162 VM/XA sp GCS Command and Macro Reference

s

TTIMER

TTIMER

Cancel a Timer
Use the TTIMER macro instruction to cancel a timer that you set via an STIMER
macro instruction. If necessary, review the entry titled “STIMER” on page 158.

The format of the TTIMER macro instruction is:

[1abel] TTIMER CANCEL

Parameter
CANCEL
Indicates that you wish to cancel the effect of the last STIMER instruction.
That is, the timer is to stop keeping track of elapsed time. Also, the specified
branch to an exit routine, if any, is cancelled.

This is the only parameter on the TTIMER instruction and is required.

Usage Note
¢ The TTIMER instruction has no effect if the STIMER instruction you are trying
to cancel included the WAIT parameter.

Return Codes and Abend Codes

The TTIMER macro generates no return codes.

Abend
Code Meaning
E2E Either the CANCEL parameter was not specified or a

parameter not supported by GCS was specified.
Unsupported parameters include TU and MIC.

Chapter 6. Timer Service Macros 163

A

Chapter 7. Console I/O Service Macros

165

WTO

WTO

Send a message to the virtual machine console, requiring no reply.

Occasionally you will find it necessary to have a program running under GCS send a
message to the virtual machine console. Use the WTO macro instruction for this
purpose. Use of this macro instruction implies that you do not require a response to
your message.

The WTO macro instruction is available in standard, list, and execute formats.

The standard format of the WTO macro instruction is as follows.

[1abel]

WT0

'message’

Parameter

Usage Notes

"MESSAGE’
Specifies the text of the message to be sent to the virtual machine console.

Though they will not appear at the console, you must enclose the message in
single quotation marks. The message may be up to 124 characters long. If you
send a message that is longer than that, it will be truncated before it is sent.
You can include in your message any character that is permitted in a C-type
(character) DC assembler instruction.

* GCS does not support multiple line messages. Nor does it support multiple
console message handling.

¢ GCS performs no translation on your message at all. It is transmitted exactly as
coded.

Return Codes and Abend Codes

The List Format

The WTO macro generates no return codes.

Abend
Code Meaning

D23 Either an invalid parameter list exists or insufficient space
is available for processing.

[Tabel]

WTO

'message’' ,MF=L

This format of the macro instruction generates an in-line parameter list, based on the

parameter values that you specify. However, this format generates no executable
code.

166 VM/XA SP GCS Command and Macro Reference

WTO

Added Parameter
. MF=L
(Specifies the list format of this macro instruction.

The Execute Format

[1abel] WTO MF=(E,address)

This format of the macro instruction generates code that executes the function using
a parameter list whose address you specify.

Note that only the parameters listed above are valid in the execute format of this
instruction.

Added Parameter

' MF = (E,address)
(ADDRESS specifies the address of the parameter list to be used by the macro.

Chapter 7. Console I/O Service Macros 167

WTOR

WTOR

L

Send a message to the virtual machine console, requiring a reply.

Occasionally you will find it necessary to have a program running under GCS send a
message to the virtual machine console. Moreover, your program may require a
reply to its message.

Use the WTOR macro instruction to send a message to the virtual machine console,
to which you expect a reply.

The WTOR macro instruction is available in standard, list, and execute formats.

The standard format of the WTOR macro instruction is as follows.

[1abel] WTOR

'message’ ,reply address,reply length,ech

Parameters

'MESSAGE’ .
Specifies the text of the message to be sent to the virtual machine console.

Though they will not appear at the console, you must enclose the message in
single quotation marks. The message may be up to 121 characters long. If you
send a message that is longer than that, it will be truncated before it is sent.
Since the message is assembled as a variable-length record, it is not necessary to
pad it with blanks. You can include in your message any character that is
permitted in a C-type (character) DC assembler instruction.

REPLY ADDRESS
Specifies the address in virtual storage into which you want the reply placed.

The reply will be left-justified at this address.

You can write this parameter as an assembler program label or as register (2)
through (12).

REPLY LENGTH
Specifies the maximum length of the reply that your program will accept.

This refers to the size of the reply area, the address of which you specified in the
REPLY ADDRESS parameter.

This length must be from 1 to 119 bytes.

You can write this parameter as a symbol, as decimal digits, or as register (2)
through (12).

ECB
Specifies the address of your event control block.

GCS uses this area of storage to indicate whether the reply to your message has
been received. Event control blocks are discussed in detail in the entries titled
“WAIT” on page 122 and “POST” on page 116.

You can write this parameter as an assembler program label or as register (2) £
through (12). 3

168 VM/XA SP GCS Command and Macro Reference

WTOR

Usage Notes
o ¢ The WTOR macro assigns a reply identification number to the message it is
(transmitting for you. The operator will use this identification number when
responding to your message. ‘

¢ GCS does not support multiple line messages. Nor does it support multiple
console message handling.

¢ GCS performs no translation on your message at all. It is transmitted exactly as
coded.

Return Codes and Abend Codes

The WTOR macro generates no return codes.

Abend
Code Meaning

(' D23 Either an invalid parameter list exists or insufficient space
is available for processing.

E23 The address of the event control block or the address of the
reply area was invalid.

The List Format

[1abel] WTOR 'message’ [,reply address][,reply length][,ecb],MF=L

(- This format of the macro instruction generates an in-line parameter list, based on the
parameter values that you specify. However, this format generates no executable
code. Remember that you cannot specify any of the parameters using register
notation.

Added Parameter

MF=L
Specifies the list format of this macro instruction.

The Execute Format

[1abel] WTOR [reply address][,reply length][,ecb],MF=(E,address)

This format of the macro instruction generates code that executes the function using
a parameter list whose address you specify.

Note that only the parameters listed above are valid in the execute format of this
instruction.

Chapter 7. Console I/O Service Macros 169

WTOR

Added Parameter
MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this
instruction.

170 VM/XA SP GCS Command and Macro Reference

A
L

Chapter 8. Unauthorized GCS Service Macros

AUTHCALL
CMDSI
EXECCOMM
GENIO . . .

Chapter 8. Unauthorized GCS Service Macros

171

AUTHCALL

AUTHCALL | .

Call an Authorized Program from an Unauthorized Program
An important feature of GCS is that it permits an authorized program to be called
by an unauthorized program.” The authorized program resides in a shared segment,
having been linked to its virtual machine at GCS initialization time. The
unauthorized program resides in one of the virtual machines that makes up the
group.

The AUTHCALL macro instruction allows an unauthorized program to call an
authorized program. However, AUTHCALL is not an authorized GCS function.

The format of the AUTHCALL macro instruction is:

[,UWORD=addr]

[1abel] AUTHCALL
EPLOC=addr

EP=name }

Parameters
EP
Specifies the name by which the authorized program is known to the
unauthorized program. Note that this name is from one to eight alphanumeric
characters long.

EPLOC TN
Specifies the address at which the name of the authorized program can be found. a,
Again, this is the name by which the authorized program is known to the
unauthorized program.

You can write this address as an assembler program label, as register (0), or as
register (2) through (12). The name of the authorized program, as stored at this
address, should be padded on the right with blanks if the name occupies fewer
than eight bytes.

UWORD P
Specifies an optional fullword parameter that may be passed to the authorized i
program when it is called by the unauthorized program. '

You can use this parameter to pass any information you wish to the authorized
program.

The UWORD may be written as an assembler program label or as register (1)
through (12). If you write it as a label, then the UWORD is passed to the
authorized program as the address associated with that label. If you write it as a
register, then the UWORD is passed to the authorized program as the contents
of that register. If no UWORD is specified, it is passed as the value zero.

7 In this context, an “authorized program” is one running in supervisor state. An “unauthorized program” is one
running in problem state.

172 VM/XA SP GCS Command and Macro Reference

Usage Notes

AUTHCALL

¢ It is impossible for an unauthorized program to call an authorized program via
the AUTHCALL instruction unless the AUTHNAME instruction is issued for
that authorized program first. If necessary, review the entry titled
“AUTHNAME” on page 192.

* Any program invoked via the AUTHCALL instruction runs in key 0.

Examples

In the following example, the first AUTHCALL macro instruction calls an
authorized program named PAT.

AUTHCALL EP=PAT

In the second example, the AUTHCALL macro instruction is used to call an
authorized program whose name can be found at the address in register 2.

AUTHCALL EPLOC=(2),UWORD=(5)

Register 5 contains information that the program expects to receive from the
program that called it.

Input to the Authorized Program
The program being called receives the following information in its registers.

Register

Contents

Register 0

The user word (UWORD) specified in the associated
AUTHNAME instruction.

Register 1

The user word (UWORD) specified in the
AUTHCALL instruction.

Register 13

The address of the register save area.

Register 14

The address to which control is to return once the
authorized program completes execution.

Register 15

The address of the entry point in the program being
called.

Return Codes and Abend Codes
Except for the return code noted below, the authorized program will pass its return
code to the program that called it in register 15. The AUTHCALL macro generates
the return code described below.

If you receive a return code of -3 in register 15, do not mistake it for a return code
generated by the program that you called.

Return
Code

Meaning

-3

The system could not find the program whose address
you specified.

Chapter 8. Unauthorized GCS Service Macros 173

AUTHCALL

Abend Reason

Code Code Meaning

FCB 0100 A call was made to an authorized program that
is not available to the unauthorized program.

FCB 0102 The GETMAIN instruction, issued by GCS, was
unable to obtain enough storage to complete
your request.

174 VM/XA SP GCS Command and Macro Reference

CMDSI

CMDsI

Issue a Command from a Program

Occasionally you will find it necessary to issue a “command” from a program
running under GCS. In using the word “command” we do not refer to the normal
instructions peculiar to the programming language you are using. Obviously your
program will contain those. “Command,” in this context, means one of several
things.

¢ Any command that ordinarily would be issued directly from the console. This
includes GCS commands, CP commands, and EXECs.

e Any command that you previously defined to GCS using the LOADCMD
command. For more information on the LOADCMD command see “GCS
Commands” on page 20.

If you include any such command in your program, you need a way of telling GCS,
lest it mistake the command for something else or not recognize it at all. Use the
CMDSI macro instruction to identify to GCS a “command” that you have included
in one of your programs.

The CMDSI macro instruction is available in standard, list, list address, and execute
formats.

The standard format of the CMDSI macro instruction is:

CMDSI

command name[,length][,FILEBLK=addr] [,ERROR=addr]

(‘ ' [1abel]

Parameters

command name
Specifies the command in question, with any necessary parameters or options.

You can specify it using one of the following:

COMMAND TEXT The actual text of the command, with any necessary
parameters or options. The entire command statement
must be surrounded by single quotation marks.

The LENGTH parameter need not be specified when
using this method. If it is, it will be ignored.

SYMBOL The programming language symbol on the statement
containing the command and its options or parameters.
Note that you must specify the LENGTH parameter if
you use this method.

REGISTER The register containing the address of the command in
question. Again, with this method, you must specify the
LENGTH parameter. Also, the reference to the register
must be in parentheses.

length

Specifies the length of the command in bytes. This includes the command itself,
its parameters, options, operands, and all imbedded blanks.

It must be a number from 1 to 130.

Chapter 8. Unauthorized GCS Service Macros 175

CMDSI

You can write this parameter as an absolute expression or as register (2) through
(12). If you write it as a register, the register must contain the length of the
command.

FILEBLK
Use this parameter in one of the following instances:

o If the System Product Interpreter is to execute a non-GCS file.
¢ If the Interpreter is to execute from storage.

e If the address environment is inconsistent with the filetype of the file
containing the command.

This parameter specifies the address of the file block to be passed to the System
Product Interpreter, which will interpret the code associated with the command.

This file block contains information necessary to invoke the code properly. This
includes, among other things, the filename, filetype, and filemode of the file
containing the code; its address (if in storage), and its size. If necessary, consult
the VM/XA SP System Product Interpreter User's Guide or the VM/XA SP
System Product Interpreter Reference for more on this topic.

You can write this address as a programming language label or as register (2)
through (12).

ERROR
Specifies the address of a routine that is to receive control if an error occurs in
the CMDSI macro.

Note that this error routine does not receive control if an error occurs in the
command you are trying to execute. If you omit this parameter and an error
occurs, then control returns to the instruction immediately following the CMDSI
instruction, just as it would were there no error.

You can write this parameter as a programming language label or as register (2)
through (12).

Examples |
The first example issues the command at the address associated with the label
MYCMD.

DOIT CMDSI MYCMD,48,FILEBLK=(8),ERROR=(6)

The command issued is 48 characters long. Since the command invokes an EXEC,
the address of the file block can be found in register 8. Register 6 contains the
address of an error routine that gets control if an error occurs in the CMDSI macro.
Presumably, the LOADCMD command has been issued for the command. DOIT is
the label on this instruction.

The second example issues the GCS QUERY DISK command.
INQUIRE CMDSI 'QUERY DISK',ERROR=ERR1

No length for the issued command is needed, since length is implicit in the single
quotation marks that surround the command. ERRI is the label on the error
routine that is to receive control in case of an error in the CMDSI macro.
INQUIRE is the label on this instruction.

176 VM/XA SP GCS Command and Macro Reference

A

CMDSI

‘'Return Codes and Abend Codes
(o The only return codes generated by the CMDSI macro are defined below. They are
passed to the caller in register 15. Any other return code passed by the CMDSI
macro is really the return code from the command that it invoked.

Return
Code Meaning
0 The command was successfully executed.
-3 The command could not be found.
Abend Reason
Code Code Meaning

, FCA 0300 The parameter list was invalid.

(The List Format
[1abel] CMDSI MF=L[,command name][,length] [,FILEBLK=addr]

This format of the macro instruction generates an in-line parameter list based on the
parameter values that you specify. However, this format generates no executable
code. Remember that you cannot specify any of the parameters using register
notation. Also, note that only the parameters listed above are valid in the list

(format of this instruction.

Added Parameter

MF=L
Specifies the list format of this macro instruction.

The List Address Format

([1abel] CMDSI MF=(L,address[,1abel]) [,command name][,length]
‘ [,FILEBLK=addr]

This format of the macro instruction does not produce any executable code that
invokes the function. However, it does produce executable code that moves the
parameter values that you specify into a certain parameter list. If you issue the
instruction using this format, then you must do so before any related invocation of
the instruction using the execute format. Also, note that only the parameters listed
above are valid in the list format of this instruction.

Added Parameter
MF = (L,address|,label])
ADDRESS specifies the address of the parameter list into which you want the
parameter values you mention placed. This address can be within your program
(, or somewhere in free storage.

Chapter 8. Unauthorized GCS Service Macros 177

LABEL is a user-specified label, indicating that you want to determine the
length of the parameter list. The macro expansion equates the label you specify
with the length of the parameter list.

The Execute Format

[1abel]

CMDSI

MF=(E,address) [,command name] [,1ength]
[,FILEBLK=addr] [, ERROR=addr]

Added Parameter

This format of the macro instruction generates code that executes the function, using
a parameter list whose address you specify.

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this
instruction.

178 VM/XA SP GCS Command and Macro Reference

NS

EXECCOMM

EXECCOMM

Access and Manipulate REXX Variables
EXECs running under GCS frequently call other programs, such as commands and
subcommands. Often these programs need access to the variables within the EXEC
that called them.

Use the EXECCOMM macro instruction to set up the interface that allows a
program to gain access to the variables within the EXEC that invoked it.

The format of the EXECCOMM macro instruction is:

[1abel] EXECCOMM

REQLIST=address

Parameter

REQLIST

Usage Notes

Specifies the address of the first (or only) shared variable request block in a
chain of such blocks.

A shared variable request block is a control block that defines an EXEC variable
to which your program wants access. In addition, it describes how that variable
will be used. Your program must create one shared variable request block for
each variable to which it wants access. Moreover, if there is more than one
request block, they must be strung together in a chain.

Detailed information on the EXECCOMM facility and shared variable request
block formatting is provided in the VM/XA SP System Product Interpreter
Reference. This book also provides an appendix titled “REXX in the GCS
Environment”, which you may find helpful.

You can write this parameter as an RX-type address or as register (2) through

(12).

The EXECCOMM macro stores the address of the first (or only) request block
in the chain in a register. This is then passed to the System Product Interpreter,
which processes your request. The EXECCOMM macro then passes a return
code back to your program that describes if and how the function was
completed.

EXEC variables may be inspected, modified, or deleted by a program that gains
access to them.

For a program within a specific task to issue the EXECCOMM instruction, an
EXEC must be active within that task.

Chapter 8. Unauthorized GCS Service Macros 179

EXECCOMM

Return Codes and Abend Codes

When this macro completes processing, it passes to the caller a return code in

register 15.

Return

Code Meaning

0 OR Function completed successfully.

ANY

POSITIVE

NUMBER

-1 No EXEC was active within the task.

-2 Insufficient storage is available to process your request.

Abend Reason

Code Code Meaning

FCB 0DO1 An invalid address exists in a shared variable
request block, or the address of the block itself is
invalid.

180 VM/XA SP GCS Command and Macro Reference

o
L

GENIO

GENIO

Use General Input/Output Devices
The GENIO macro instruction allows a program to obtain, use, and release any I/O
device.8 It is an unauthorized GCS function, except for GENIO STARTR, which is
an authorized function.

The GENIO macro instruction is available in standard, list, list address, and execute
formats.

The standard format of the GENIO macro instruction is:

[1abel] GENIO (OPEN,EXIT=exit[,UWNORD=uword]) ,DEV=dev[,ERROR=addr]
| cLose

| CHAR,DATA=address
4 MODIFY,CCW=address (
START,CCW=address
] STARTR,CCW=address
{UHALT

Parameters
OPEN
Indicates that the device specified in the instruction should be opened for use by
your program.

In doing so, an entry is placed in the GCS general I/O table containing
information about the device and your program. Among the information
included in the table entry are the device’s address, its characteristics, the address
in your program to which control is given when an interrupt occurs on the
device, and the UWORD.

No other program may open a device that has been opened by another program.
In opening a device, a program obtains exclusive use of it until it closes the
device.

The OPEN parameter requires that the address of an exit routine be specified for
the device.

EXIT
Specifies the address of the exit routine for the specified device.

This routine receives control under one of three conditions:

¢ An I/O interrupt occurs on the device that was opened, signalling the end of
an I/O operation.

e An I/O operation terminates because of error.
® An asynchronous interrupt occurs.

This exit routine is responsible for handling all interrupts occurring on the
specified device.

8 Except for DASD devices and the virtual machine console.

Chapter 8. Unauthorized GCS Service Macros 181

You can write this parameter as an assembler program label or as register (2)
through (12). If you write it as a register, then the register must contain the
address of the exit routine.

UWORD

An optional fullword parameter that will be passed to the exit routine. It can
contain any value you wish.

You can write this parameter as an assembler program label or as register (2)
through (12). If you write it as a label, the address of the label is passed to the
routine. If you write it as a register, the contents of the register are passed to
the routine.

CLOSE

Indicates that the program no longer needs the device specified in the instruction
and relinquishes control of it. After this, any program may obtain control over
the device.

The program issuing the GENIO instruction with this parameter had to have
opened the device in the first place. The use of this parameter clears the entry
that was placed in the GCS general I/O table when the device was opened. Any
pending I/O requests for the device are deleted from the virtual channel queue.
And, all I/O activity for the device is terminated.

Remember that your exit routine cannot receive control resulting from an
interrupt occurring on a closed device. Also, remember that the GENIO
instruction, with the CLOSE parameter specified, cannot be issued from an I/O
exit routine.

CHAR

Indicates that the characteristics of the specified device should be returned to the
program making the request. These characteristics include such things as the
device's class, type, and model.

It is not necessary that the device be opened for the program to request this
information. The device’s characteristics are placed in two consecutive fullwords
that your program should reserve for this purpose.

DATA

Specifies the address of the data area into which the characteristics of the device
are to be placed. Your program must reserve two consecutive fullwords for this
purpose.

The first word will contain the characteristics of the virtual device. The second
word will contain the characteristics of the real device. If no real device is
associated with the virtual device, then the second word will be reset to zero.

You may write this as an assembler program label or as register (2) through (12).
If you write it as a register, then that register must contain the address of this
data area.

MODIFY

Indicates that you wish to modify a real CCW (channel control word) after the
I/O operation has begun but before it has finished.

First, modify the virtual CCW. Then, issue the GENIO instruction with the
MODIFY parameter to apply the modification to the real CCW.

Remember that you are allowed to make only the following changes to any
CCW: ‘

¢ Change a TIC instruction to a NOP instruction.

182 VM/XA SP GCS Command and Macro Reference

A

AN

GENIO

e Change a NOP instruction to a TIC instruction.
¢ Change the address in a TIC instruction.

START
Indicates that a virtual channel program should be started on the specified
opened device.

This program is a set of channel control words that instructs the channel which
I/O operation to perform. Only one I/O operation can be performed by a single
device at one time. Another I/O operation is not accepted by GCS until the
previous I/O operation is complete. The latter terminates either when a
DEVICE END interrupt occurs, or when an error condition arises. The I/O
operation is performed in the same key as the program requesting the operation.

STARTR
Indicates that a real channel program should be started on the specified opened
device.

This program is a set of channel control words that instructs the channel which
1/O operation to perform. The device in question must be a real device.

The program issuing the GENIO instruction with the STARTR parameter must
be running in supervisor state in a key other than key 0. And, the DIAG98
parameter must be in the OPTION control statement in the virtual machine’s
directory entry. Moreover, the program is responsible for building the channel
control program in real storage using real addresses. To do this, the program
should take advantage of the page-locking and unlocking capabilities of the
PGLOCK and PGULOCK macro instructions. Review the entries titled
“PGLOCK?” on page 204 and “PGULOCK” on page 206.

CCW
If you select the STARTR parameter, then CCW specifies the real address of the
first channel control word of the real channel program.

If you select the START parameter, then CCW specifies the virtual address of
the first channel control word of the virtual channel program.

If you select the MODIFY parameter, then CCW specifies the virtual address of
the channel control word that will be modified.

You can write this parameter as an assembler program label or as register (2)
through (12). If you write it as a register, then that register must contain the
address of the first CCW.

HALT
Indicates that the active I/O operation of the specified device is to stop
immediately. GCS will issue a HDV (HALT DEVICE) instruction to effect this.

DEV
Specifies the virtual address of the I/O device that the GENIO macro instruction
is to affect.

You can write this parameter as an assembler program label or as register (2)
through (12). If you write it as an assembler program label, the address of the
device must be in the halfword at that address. If you write it as a register, the
address of the device must be in the low-order two bytes of the register.

ERROR
Specifies the address of an error routine that is to receive control if an error in
the GENIO macro occurs.

Chapter 8. Unauthorized GCS Service Macros 183

" If you omit this parameter, control will return to the instruction immediately
following the GENIO instruction, just as it would were there no error. In such a P
case you should analyze the return code before proceeding further. & P

Usage Notes
o If you request it, GCS will return the characteristics of the I/O device to a
storage area your program has reserved for this purpose. This information is
returned in a specific format. For information on this specific format, I/O
device classes, types, and models, consult the VM/XA SP CP Programming
Services.

e It is an error if you issue the GENIO macro instruction with the START,
STARTR, HALT, MODIFY, or CLOSE parameter specified before the device
has been opened.

¢ Only an authorized supervisor state program can issue the GENIO instruction
with the STARTR parameter specified. This allows an authorized program to
use real channel programs to control real I/O devices directly. The CP channel
program translation, which is a necessary middle step when using a “virtual”
channel program, is thereby bypassed.

An unauthorized program must use the START parameter.

A virtual machine must be authorized to issue the DIAGNOSE X'98' code.

This authorization is granted by specifying DIAG98 in the directory entry of the

virtual machine (OPTION statement). If the machine is not authorized for

DIAGNOSE X'98', a return code is passed to the program issuing the GENIO

STARTR function. Refer to VM/XA SP CP Programming Services for more

detailed information on DIAGNOSE X'98"'. R

¢ The exit routine receives control in the same state and key as the program that
opened the device. If the program is authorized, then the exit is disabled,
meaning it cannot be interrupted. If the program is unauthorized, then the exit
routine is enabled. I/O requests can be issued only by an exit routine that is
disabled. Moreover, I/O interrupts are handled after the exit routine terminates.

e A distinction must be made between errors occurring in the GENIO macro and
errors occurring during the I/O operation.

If an error is found in the GENIO macro before the I/O operation has actually ‘
been started, a return code is placed in register 15. If you specified an address S
via the ERROR parameter, then control is passed, along with the return code, to

the routine at that address. If you specified no error routine address, then

control is passed to the instruction immediately following the GENIO

instruction.

If an error results from an I/O operation that was initiated through the START
or STARTR parameter, then the exit routine specified when the device was
opened receives control. All I/O error recovery is the responsibility of the
program that opened the device.

¢ The CLOSE parameter completely cuts the program off from the device
specified and makes the device generally available. This includes deactivating
the exit routine, which cannot receive control resulting from an interrupt from a
closed device.

5

¢ GCS does not support program controlled interrupts (PCls). If a task receives a
PCI, then the interrupt is saved in the interrupt control block. However, it will
not be passed to the task’s exit until the I/O operation is complete. And,

e

184 VM/XA SP GCS Command and Macro Reference

Examples

although the byte-count in the CSW is unpredictable when a PCI interrupt
occurs, the byte-count is also passed to the task’s exit.

* The GENIO macro passes the following information to the exit routine.

Register Contents

Register 0 The UWORD parameter, as specified when the device
in question was opened.

Register 1 The address of the interrupt control block, defined
below.

The contents of the interrupt control block are as follows:

Offset Contents

0 (0) Flag byte X
Synchronous Interrupt = 00
Asynchronous Interrupt = 01

1(1) Reserved 3X
44 Device address F
8 (8) Channel status word (CSW) D
10 (16) Sense bytes 6F
28 (40) End

If there was a unit check and the sense data could not be obtained, then the first two
bytes of the sense data will contain X‘107E’.

Even though it may be a condition code 3 (DEVICE NOT OPERATIONAL), the
condition code from the I/O operation will be in byte 0 of the interrupt control
block’s CSW.

If the STARTR parameter was specified, then the CCW address in the channel
status word will be a real address.

Program controlled interrupts (PCIs) do not result in the scheduling of a user’s exit
routine. Rather, the CSW stored as the result of a PCI will be saved in the interrupt
control block.

In the following examples, the three GENIO macro instructions are issued by the
same program, affecting the same device.

In the first example, the program requests that the device be opened.

GENIO OPEN,DEV=(2),EXIT=GOODBYE

The address of the device can be found in register 2. When an interrupt occurs on
this device, the exit routine at the address associated with the label GOODBYE is to
receive control.

Chapter 8. Unauthorized GCS Service Macros 185

GENIO

In the second example, the program now asks that the device it just opened be
started.

GENIO START,DEV=(2),CCW=(3) ‘
Register 3 contains the address of the first CCW in the channel control program to
be executed. If the device is not busy, then the I/O operation is begun. When the

operation is finished, the exit program at the address associated with the label
GOODBYE receives control.

The third example is of an GENIO macro issued when the program no longer needs

the device and wants to close it.
GENIO CLOSE,DEV=DEVADDR

The address of the device can be found at the address associated with the label
DEVADDR.

Return Codes and Abend Codes

When the GENIO macro completes execution, it passes to the caller a return code in
register 15. The return codes are tabulated below according to general application to
the GENIO macro or to one of the specific GENIO functions. The table of abend
codes follows the return code tables.

General Return Codes:

Return

Code Meaning

0 Function completed successfully.
48 An invalid function was requested.
52 No device address was specified.

For the OPEN Function:

Return
Code Meaning
4 DASD devices cannot be epened as general I/O devices.
8 The specified I/O device does not exist.
12 The specified device is already opened.
16 You did not specify the address of an exit routine.
For the CLOSE function:
Return
Coade Meaning
4 The specified device is not opened.
8 The program that closes a device must be the same as the
one that opened it.

186 VM/XA SP GCS Command and Macro Reference

£
S

o

GENIO

Return

Code Meaning

12 An I/O exit routine cannot issue the GENIO macro
instruction with the CLOSE parameter specified.

For the CHAR function:

Return

Code Meaning

8 The device specified does not exist.

12 The data area for storage of the device characteristics was
not specified.

For the MODIFY function:

Return

Code Meaning

4 No /O is active on the device.

8 The device is not open or not operational.

12 The specified CCW address is not accessible to you.

16 The specified CCW address does not fall on a doubleword
boundary.

20 No CCW could be found that corresponds with the
specified address and/or device.

24 The CCW is neither a TIC nor a NOP instruction.

28 The new address of the modified CCW TIC instruction is
not accessible to you.

32 The new address of the modified CCW TIC instruction
does not fall on a doubleword boundary.

36 DEVICE END and CHANNEL END have already
occurred.

44 The modified CCW cannot be a NOP instruction with
command chaining if it is the last CCW in a real channel
control program.

56 Since the I/O is queued, there is no reason to issue a
GENIO MODIFY instruction.

60 No CCW address was specified.

For the START or STARTR functions:

Return
Code Meaning
4 Your virtual machine is not authorized for real I/O.

Chapter 8. Unauthorized GCS Service Macros 187

GENIO

Return

Code Meaning

8 The specified 1/O device is not open.

12 The specified I/O device is busy.

16 Channel control word (CCW) address was not specified.
20 You cannot perform real I/O functions while in key 0.
24 A real I/O device is required for the STARTR function.

For the HALT function:

Return

Code Meaning

8 The specified I/O device is not open.

12 The I/O activities of the device could not be halted.
16 The specified device is not operational.

Abend codes for all functions:

Abend Reason

Code Code Meaning

FCA 0500 The specified parameter list is invalid.

FCA 0501 Your task is not authorized to perform real I/O
functions.

The List Format

[1abel] GENIO - 7
OPEN[,EXIT=exit] [,UWORD=uword] { ,MF=L

CLOSE
CHAR[,DATA=address]
MODIFY[,CCW=address]
START[,CCW=address]

STARTR[,CCW=address]

HALT

This format of the macro instruction generates an in-line parameter list, based on the
parameter values that you specify. However, this format generates no executable
code. Remember that you cannot specify any of the parameters using register
notation. Also, note that only the parameters listed above are valid in the list
format of this instruction.

188 VM/XA SP GCS Command and Macro Reference

Added Parameter

MF=L

Specifies the list format of this macro instruction.

The List Address Format

GENIO

[1abel] GENIO

-

OPEN[,EXIT=exit] [,UWORD=uword]
CLOSE

CHAR[,DATA=address]
MODIFY[,CCW=address]
START[,CCW=address]
STARTR[,CCW=address]

HALT

,DEV=dev

,MF=(L,address[,1abel])

Added Parameter

This format of the macro instruction does not produce any executable code that
invokes the function. However, it does produce executable code that moves the
parameter values that you specify into a certain parameter list. If you issue the
instruction using this format, then you must do so before any related invocation of

the instruction using the execute format.

MF = (L,address|,label])

ADDRESS specifies the address of the parameter list into which you want the
parameter values you mention placed. This address can be within your program

or somewhere in free storage.

LABEL is a user-specified label, indicating that you want to determine the
length of the parameter list. The macro expansion equates the label you specify

with the length of the parameter list.

Chapter 8. Unauthorized GCS Service Macros 189

GENIO

The Execute Format

, ‘\ ;
[1abel] GENIO I : N
OPEN[,EXIT=exit][,UNORD=uword] | ,MF=(E,address)

CLOSE
CHAR[,DATA=address]
MODIFY[,CCW=address]
START[,CCW=address]
STARTR[,CCW=ccw]

HALT

sDEV=dev[,ERROR=addr]

This format of the macro instruction generates code that executes the function, using
a parameter list whose address you specify.

Note that only the parameters listed above are valid in the execute format of this
instruction.

Added Parameter
MF = (E,address) .
ADDRESS specifies the address of the parameter list to be used by the macro. v

You can add or modify values in this parameter list by specifying them in this
instruction.

/,
vl§
.

L W

190 VvM/XA sP GCS Command and Macro Reference

Chapter 9. Authorized GCS Service Macros
AUTHNAME e 192
LOCKWD . . e 196
MACHEXIT e 199
PGLOCK e 204
PGULOCK 206
SCHEDEX . . . e 208
TASKEXIT 211
VALIDATE e 216

Chapter 9. Authorized GCS Service Macros 191

AUTHNAME

AUTHNAME

Define or Withdraw the Name of an Authorized Program that is to be Called
by an Unauthorized Program

An important feature of GCS is that it permits an authorized program to be called
by an unauthorized program.® The authorized program resides in a shared segment
that was linked to its virtual machine at GCS initialization time. The unauthorized
application resides in one of the virtual machines that makes up the virtual machine
group.

The AUTHNAME macro instruction creates (or clears, depending on your intent) a
control block that contains information the unauthorized program needs to call the
authorized program. This information includes, among other things, the name by
which the authorized program is known by the various applications within the
virtual machine group; the address of the authorized program; the key in which the
calling program is running; the state of the calling program (problem or supervisor);
and the address of a user-defined fullword, which will be described later.

The AUTHNAME macro instruction is available in standard, list, list address, and
execute formats.

The standard format of the AUTHNAME macro instruction is:

[1abel] AUTHNAME :SET,EP=addr[,Uw0RD=addr] ,NAME= { 'name’ [,ERROR=addr]
CLR ‘ register
Parameters

SET
Indicates that a control block is to be created for the authorized program in
question.
Once this is done, the unauthorized program will be able to call the authorized
program.

EP

Specifies the address of the authorized program in question.

The authorized program must be resident in a shared segment. That is, it must
be a program whose entry point is defined in a shared segment directory that
was created via the CONTENTS macro instruction. If necessary, review the
entry titled “CONTENTS” on page 427.

This parameter is required when you use the SET option. The parameter is
meaningless with the CLR parameter.

You can writé this parameter as an assembler program label or as register (2)
through (12).

9 In this context, an “authorized program” is one running in supervisor state. An “unauthorized program” is one
running in problem state.

192 VM/XA SP GCS Command and Macro Reference

A
N o

Usage Notes

AUTHNAME

UWORD

A fullword of storage in the control block that you can use in any way you
please.

For example, perhaps the authorized program expects the address of a
parameter list or some other value be passed to it. You can use the UWORD
for that, if you wish. However, this parameter has meaning only when used with
the SET parameter.

You can write this parameter as an assembler program label or as register (2)
through (12). If you write it as a label, then the label itself is placed in the
UWORD field of the control block. If you write it as a register, then the
contents of that register are placed in the UWORD field. If you omit this
parameter altogether, then it is passed as a fullword of zeroes.

CLR

Indicates that the authorized program in question is no longer needed by any
unauthorized program. Therefore, the control block for the authorized program
is cleared away.

NAME

Specifies the name by which the authorized program is known to the
unauthorized program.

If you choose the SET parameter, then this name refers to the authorized
program for which a control block is to be created. If you choose the CLR
option, then the name refers to the authorized program that is no longer needed
and whose control block is to be cleared.

Note that this name can be no more than eight characters long.

You can write this parameter as the name of the program itself, surrounded by
single quotation marks. Or, you can write it as register (2) through (12). If you
do the latter, then the register must contain the address where the name is
stored.

ERROR

Specifies the address of the routine that is to receive control if an error occurs in
the AUTHNAME macro.

You can omit this parameter if you wish, test the return code from the macro,
and proceed in an appropriate manner.

Otherwise, you can write this parameter as an assembler program label or as
register (2) through (12).

The authorized program is always loaded at GCS initialization time. It is
possible for one virtual machine to invoke this program after another machine
has cleared it. This is due to the time lag between issuing the CLR function and
completing it. The authorized program should be designed with this in mind. If
necessary, review the entry titled “AUTHCALL” on page 172.

It is impossible for an unauthorized program to call an authorized program via
the AUTHCALL macro unless the AUTHNAME macro has been issued for the
authorized program first. The control block created by the AUTHNAME
macro is, in effect, “permission” for an unauthorized program to call an
authorized program.

Generally, the AUTHNAME macro is issued by an authorized program (RSCS
or VTAM, for example) on behalf of unauthorized programs.

Chapter 9. Authorized GCS Service Macros 193

AUTHNAME

Examples

e The authorized program called by the unauthorized program (via AUTHCALL)
will have the same PSW key as the program that issued the corresponding
AUTHNAME instruction.

¢ The AUTHNAME macro places the control block for an authorized program in
common storage. Hence, any unauthorized application in the group can call it.

In the first example, an AUTHNAME macro is issued to make an authorized
program available to unauthorized programs.

AUTHNAME SET,NAME=BLUE,EP=(3)

The authorized program will be known to the unauthorized programs as BLUE.
The address of this authorized program is in register 3.

In the second example, an AUTHNAME macro was issued to make an authorized
program available to unauthorized programs.

AUTHNAME SET,NAME=RED, EP=PURPLE,ERROR=REDERR

The authorized program will be known to the unauthorized programs as RED. This
program can be found at the address associated with the label PURPLE. If an error
occurs in the AUTHNAME macro, control will be transferred to the routine at the
address associated with the label REDERR.

Return Codes and Abend Codes

The List Format

When this macro completes processing, it passes to the caller a return code in
register 15. There are no abend codes.

Return

Code Meaning

0 Request was completed normally.

4 A control block already exists for this authorized program.

8 The address you specified for the EP parameter is not in a
shared segment.

24 Parameter list is invalid.

44 No authorized program has the name you specified.

[Tabel]

AUTHNAME

SET, [EP=addr] [,UWORD=addr]| [,NAME='name"']
CLR

LMF=L

This format of the macro instruction generates an in-line parameter list based on the
parameter values that you specify. However, this format generates no executable
code. Remember that you cannot specify any of the parameters using register
notation. Also, note that only the parameters listed above are valid in the list
format of this instruction.

194 VM/XA SP GCS Command and Macro Reference

s

Added Parameter

The List Address

AUTHNAME

MF=L
Specifies the list format of this macro instruction.

Format

[1abel] AUTHNAME

SET, [EP=addr] [,UWORD=addr] | ,NAME='name'
CLR

,MF=(L,address[,1abel])

Added Parameter

This format of the macro instruction does not produce any executable code that
invokes the function. However, it does produce executable code that moves the
parameter values that you specify into a certain parameter list. If you issue the
instruction using this format, then you must do so before any related invocation of
the instruction using the execute format.

Note that only the parameters listed above are valid in the list address format of this
instruction.

MF = (L,address|,label])
ADDRESS specifies the address of the parameter list into which you want the
parameter values you mention placed. This address can be within your program
or somewhere in free storage.

LABEL is a user-specified label, indicating that you want to determine the
length of the parameter list. The macro expansion equates the label you specify
with the length of the parameter list.

The Execute Format

[1abel] AUTHNAME

SET,EP=addr[,UWORD=addr] | ,NAME='name'[,ERROR=addr]
CLR

,MF=(E,address)

Added Parameter

This format of the macro instruction generates code that executes the function using
a parameter list whose address you specify.

Note that only the parameters listed above are valid in the list address format of this
instruction.

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this
instruction.

Chapter 9. Authorized GCS Service Macros 195

LOCKWD

LOCKWD | | .

2

Acquire or Release a Lock on Common or Private Storage
GCS allows several virtual machines in a virtual machine group to share common
storage. This creates competition among the machines for access to the shared
storage. Likewise multitasking within a single virtual machine creates competition
among several tasks for access to local resources. The word “resources” includes the
virtual machine’s private storage, I/O devices, tapes, disks, etc.

The LOCKWD macro instruction helps you to manage this competition. It can
allow a virtual machine to acquire exclusive use of common storage while it accesses,
and possibly modifies, the data therein. Likewise it can allow one of several tasks
within a virtual machine to acquire exclusive use of a private resource. Once the
virtual machine or task is finished, it must then reissue the LOCKWD macro
instruction to release its lock so others can use the resource.

The LOCKWD macro instruction is an authorized GCS function. R

The format of the LOCKWD macro instruction is:

RELEASE COMMON

[1abel] LOCKWD ACQUIRE) ,LOCK= {'LOCAL }
TEST

Parameters
ACQUIRE
Indicates that the virtual machine or task wants to establish the lock specified in
the instruction.

RELEASE
Indicates that the virtual machine or task wants to give up the lock it acquired
previously. That lock is specified in the instruction.

TEST <N
Indicates that the virtual machine or task wants to know if it holds a lock on R
common storage.

This parameter is valid only with the LOCK =COMMON parameter.

LOCK
Indicates that the description of the lock to be acquired or released follows.

LOCAL
Indicates that a task within a single virtual machine either wants to acquire
or release a lock on the machine’s local resources.

COMMON
Indicates that a virtual machine within a virtual machine group wants to
acquire or release a lock on the common storage shared by the entire group.

196 VM/XA SP GCS Command and Macro Reference

Usage Notes

Examples

LOCKWD

* Before you acquire a lock on common storage, you must first acquire a lock on
your own local resources. This ensures that your task cannot be interrupted by
any other task also seeking a lock on common storage.

¢ The supervisor acquires and releases locks on behalf of a virtual machine or
task.

e If a certain virtual machine holds a lock on common storage, then no other
virtual machine in the group may acquire that lock until it is released. A virtual
machine that requests a lock on common storage already held by another
machine is placed in the WAIT state.

e If a task within a virtual machine has obtained a lock on the machine’s private
storage, then that task is disabled from interrupts. This means that no other
task within the virtual machine can interrupt until the task holding the lock
releases it. In effect, no other task in the machine may run or obtain access to
private storage until this time.

e There are two ways to release a lock:

1. A virtual machine or task explicitly reissues the LOCKWD macro
instruction with the RELEASE parameter and lock properly specified.

2. A virtual machine or task that is holding a lock terminates.

¢ The LOCKWD macro instruction can help manage the natural competition for
storage access among virtual machines and among tasks. But to realize only this
would be to ignore LOCKWD's richer ability to coordinate activity among
virtual machines and among tasks.

¢ Often an authorized program will be called to perform work on behalf of an
unauthorized program. Usually the authorized program runs in a different key
from the unauthorized program. In such cases, the LOCKWD macro
instruction is required before the authorized program issues the VALIDATE
macro instruction. Review the entry titled “VALIDATE” on page 216.

¢ Some virtual machines and tasks run in supervisor state. Those that do are able
to inspect and modify the fullword in storage that contains the lock. Under no
circumstances should this fullword be modified! This privilege is strictly reserved
to the GCS supervisor and to no one else.

¢ If you have requested a lock on common storage, you must be careful to release
that lock when you are through with your task. Failure to release any lock can
cause unnecessary and prolonged delays for other virtual machines in the group
that are waiting for access to common storage.

In the following example, a task requests a lock on common storage. Presumably,
the task has already acquired a lock on its own local resources.

LOCKWD ACQUIRE,LOCK=COMMON

In the second example, the task wants to know if it holds the lock on common
storage.

LOCKWD TEST,LOCK=COMMON

Chapter 9. Authorized GCS Service Macros 197

LOCKWD

Return Codes and Abend Codes

When this macro completes processing, it passes to the caller a return code in

register 15.

General Return Codes:

Return

Code Meaning

00 The lock was successfully acquired or released.

04 For an ACQUIRE request, this return code means that the
virtual machine or task making the request already holds
the lock specified. For a RELEASE request, the virtual
machine or task making the request does not hold the lock
specified.

For the TEST function:

Return

Code Meaning

0 The lock is free.

4 Your machine and task hold the lock on common storage.

8 Another machine and task hold the lock on common

storage.

Abend codes for all functions:

Abend
Code

Meaning

0600

Your task does not hold a lock on its local resources.
Your task must acquire a lock on its local resources before
it tries to acquire a lock on common storage.

198 VM/XA SP GCS Command and Macro Reference

A

L

MACHEXIT

MACHEXIT

Declare or Cancel a Machine Termination Exit Routine for a Virtual Machine

Group

Often it is useful to declare a machine termination exit routine for your entire virtual
machine group. This routine will receive control when one of the virtual machines in
the group resets.!0

To illustrate, let us say that a virtual machine group is processing a certain file. The
authorized machine that is managing the effort needs to know if another member of
the group resets so it can make certain adjustments in the processing. A machine
termination exit routine may be provided to analyze the situation that caused a
machine to reset. The exit routine may then make the necessary adjustments or it
may communicate with the managing authorized machine so that the latter can
make the adjustments.

A machine termination exit routine can help your virtual machine group manage its
common storage. A machine termination exit routine can also perform CP SENDs
to a machine, if it is running disconnected and if the user performing the SENDs is
defined as the secondary user of the target machine.

Use the MACHEXIT macro instruction to declare or cancel a machine termination
exit routine for an entire virtual machine group.

The MACHEXIT macro instruction is an authorized GCS function.

The MACHEXIT macro instruction is available in standard, list, list address, and
execute formats.

The standard format of the MACHEXIT macro instruction is:

[Tabel] MACHEXIT

‘ SET,EP=address[,UNORD=address]) ,NAME= { name | [,ERROR=addr]
CLR reg

Parameters

SET
Indicates that you are declaring a machine termination exit routine for your
virtual machine group.

CLR
Indicates that you are cancelling a machine termination exit routine that was
previously declared for your virtual machine group.

Any authorized virtual machine in the group can cancel such a routine. It is not
necessary that the routine be cancelled by the same machine that declared it.

— 10 A virtual machine is reset under one of the following conditions: LOGOFF, IPL, when certain machine checks
(occur, and when certain authorized commands are issued, namely SYSTEM RESET, SYSTEM CLEAR, DEFINE
e’ STORAGE, SET ECMODE, and DEFINE CHANNELS. A virtual machine also resets when its GCS supervisor
terminates abnormally or when it issues the IUCV SEVER or IUCV RETRIEVE BUFFER instruction. It may also
be forced to reset by the CP operator.

Chapter 9. Authorized GCS Service Macros 199

MACHEXIT

EP
Specifies the address of the machine termination exit routine that you are
declaring.

The routine in question must be resident in a shared segment. That is, a routine
whose entry point is defined in a shared segment directory that was created via
the CONTENTS macro instruction. If necessary, review the entry titled
“CONTENTS” on page 427.

You can write this parameter as an assembler program label or as register (2)
through (12).

UWORD
Specifies a fullword of data that you want passed to the machine termination
exit routine, if it ever gains control.

You can use this parameter to pass any information you please.

If you write this parameter as an assembler program label, then the address
associated with that label is passed to the exit routine. If you write it as register
(2) through (12), then the contents of the register are passed to the routine.

NAME
Specifies a one to eight-character name that identifies the machine termination
exit routine to the MACHEXIT macro.

This name must not be confused with the routine’s module name, program
name, or entry point name. The name referred to by this parameter is simply a
character string used to identify the routine to the MACHEXIT macro. Outside
the MACHEXIT macro environment, this name is meaningless.

Not every authorized machine in the group knows the routine’s address. Hence,
this option provides a way for any authorized machine to refer to the exit, as,
for example, when clearing it.

Note that the name for the routine is declared by the authorized machine that
declares the exit routine in the first place. That machine must supply both the
name and the address of the routine being declared, thereby associating the
name with the address.

You can write this parameter as the name itself or as register (2) through (12).
If you store it as a name less than eight characters long, and specify it using a
register, then it must be padded on the right with blanks. A name consisting of
more than eight characters would be truncated. GCS does not allow a name
consisting of all blanks. If you write it as a register, then the register must
contain the address of the name.

ERROR
Specifies the address of an error routine that will receive control if an error
occurs in the MACHEXIT macro.

If you omit this parameter and an error occurs, then control will return to the
instruction following the MACHEXIT instruction, just as it would were there no
erTor.

You can write this parameter as an assembler program label or as register (2)
through (12).

200 VM/XA SP GCS Command and Macro Reference

A ™

'

Usage Notes

'MACHEXIT

Only an authorized virtual machine can issue the MACHEXIT macro
instruction.

A machine termination exit routine always runs in the recovery machine
designated for the virtual machine group. Moreover, it runs in the same key as
that of the virtual machine that declared it, and it always runs in supervisor
state.

An authorized member of a virtual machine group can declare more than one
machine termination exit routine for the group. Each will run in the event one
of the machines in the group resets. However, the routines will not necessarily
run in the order in which they were declared.

A machine termination exit routine is always associated with the task that
declared it. When a task terminates, any machine termination exit routine it
may have declared is cancelled.

In a typical scenario, a machine termination exit routine may be scheduled for
execution when one virtual machine resets and later be cancelled by another
virtual machine. Nevertheless, the routine would still run because it has already
been scheduled. You should take this into account when designing your over-all
processing procedure.

No machine termination exit routine can receive control via the AUTHCALL
macro instruction. Such a routine receives control only if it is properly declared
via the MACHEXIT instruction and if some virtual machine within the group
resets.

When the machine termination exit routine receives control, its registers contain
the following.

Register Contents

0 Bits 0 - 15: The machine ID of the virtual machine that
was reset.
Bits 16 - 31: Reserved.

1 The UWORD parameter specified in the MACHEXIT
instruction that declared the routine.

13 The address of a 72-byte save area.

14 The return address.

15 The address of the entry point in the exit routine.

Chapter 9. Authorized GCS Service Macros 201

MACHEXIT

Return Codes and Abend Codes

When this macro completes processing, it passes to the caller a return code in
register 15. There are no abend codes.

Return

Code Meaning

0 Function completed successfully.

4 The specified machine termination exit routine has already
been declared.

8 The specified machine termination exit routine is not in
common storage.

24 Invalid parameter list.

44 The name of the machine termination exit routine that you
want to cancel could not be found.

The List Format

[1abel] MACHEXIT

MF=L|,SET[,EP=address] [,UWORD] ,NAME= (‘name
,CLR reg

This format of the macro instruction generates an in-line parameter list based on the
parameter values that you specify. However, this format generates no executable
code. Remember that you cannot specify any of the parameters using register
notation. Also, note that only the parameters listed above are valid in the list
format of this instruction.

Added Parameter

MF=L
Specifies the list format of this macro instruction.

The List Address Format

[1abel] MACHEXIT MF=(L,address[,1abel])

,SET[,EP=addr] [,UWORD] ,NAME= f name
,CLR reg

-

This format of the macro instruction does not produce any executable code that
invokes the function. However, it does produce executable code that moves the
parameter values that you specify into a certain parameter list. If you issue the
instruction using this format, then you must do so before any related invocation of
the instruction using the execute format.

Note: Only the parameters listed above are valid in the list address format of this
instruction.

202 VM/XA SP GCS Command and Macro Reference

Added Parameter

The Execute Format

MACHEXIT

MF = (L,address],1abel])

ADDRESS specifies the address of the parameter list into which you want the
parameter values you mention placed. This address can be within your program
or somewhere in free storage.

LABEL is a user-specified label, indicating that you want to determine the
length of the parameter list. The macro expansion equates the label you specify
with the length of the parameter list.

[1abel]

MACHEXIT

MF=(E,address)

,SET[,EP=addr] [,UWORD]||,NAME= (name) | [,ERROR=addr]
,CLR reg

Added Parameter

This format of the macro instruction generates code that executes the function using
a parameter list whose address you specify.

MF = (E,address)

ADDRESS specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this
instruction.

Chapter 9. Authorized GCS Service Macros 203

PGLOCK

PGLOCK

Lock a Certain Page of Virtual Storage into Real Storage
| If your program performs real I/O operations, then the pages of storage used for
i these operations must be locked into real storage.

The PGLOCK macro instruction locks a specified page of your virtual storage into
real storage. This makes the page ineligible for page-out.

The PGLOCK macro instruction is an authorized GCS function.

The format of the PGLOCK macro instruction is:

[1abel] PGLOCK (reg)

Parameter
reg
Specifies the register that contains the address of the virtual page to be locked
into real storage.

You can write this parameter as register (0) or as register (2) through (12).

Usage Notes
¢ The task that issues the PGLOCK macro instruction must be running in
supervisor state. Moreover, the DIAG98 parameter must be specified in the
OPTION control statement in the virtual machine’s directory entry.

¢ Use of the PGLOCK macro instruction can enhance your program’s efficiency
by making the CP virtual-to-real translation step unnecessary. Moreover, it rids
the system of the need to repeatedly lock and unlock pages of your storage every
time you perform an input or output operation.

A virtual machine must be authorized to issue the DIAGNOSE X'98' code.
This authorization is granted by specifying DIAG98 in the directory entry of the
virtual machine (OPTION statement). If the machine is not authorized for
DIAGNOSE X'98', a return code is passed to the program issuing the
PGLOCK macro. Refer to VM/XA SP CP Programming Services for more
detailed information on the DIAGNOSE X'98'.

¢ The PGLOCK macro returns the real address of the locked page in register 1.

¢ The page that contains the address you specify will be locked into real storage.

e There are two ways for a page locked by the PGLOCK macro to be unlocked:
— The task that issued the PGLOCK macro instruction terminates.

— A task explicitly issues the PGULOCK macro instruction, correctly
specifying the virtual address of the page to be unlocked.

* A supervisor state program often must build a channel control program in real
storage. When it does, it should use the PGLOCK instruction to lock into real
storage the page in which it is building the channel control program. If
necessary, review the entry titled “GENIO” on page 181.

204 VM/XA SP GCS Command and Macro Reference

PGLOCK

¢ If you engage in real input/output activities, you must observe certain
restrictions. ‘

First, the storage size declared for your virtual machine must be large enough to
accommodate the page you wish to lock.

Second, the storage size declared for your virtual machine group’s recovery
machine must be at least as large as that declared for your machine. This is to
allow for the possibility that the recovery machine may be called upon to process
exit routines you specified via the GENIO macro instruction. If necessary,
review the entry titled “GENIO” on page 181.

Return Codes and Abend Codes
The PGLOCK macro generates no abend codes.

When this macro completes processing, it passes to the caller a return code in
register 15. The possible meanings of the return code are as follows:

Return

Code Meaning

00 Function completed successfully.

04 The user is running V=R.

08 The virtual address of the page in question is invalid.

12 GCS is unable to lock the specified page. No real page
frames are available.

16 The specified page is already locked.

20 The virtual machine issuing this instruction is not
authorized to perform any real I/O operations.

Chapter 9. Authorized GCS Service Macros 205

PGULOCK

PGULOCK

Unlock a Certain Page of Virtual Storage that was Locked in Real Storage

Using PGLOCK

If you need to lock a certain page of virtual storage into real storage, you should
take care to release it when it is no longer needed. Otherwise you tie up an
important resource.

The PGULOCK macro instruction unlocks a certain page of virtual storage that was
previously locked in real storage using the PGLOCK macro instruction. Unlocking
such a page makes it eligible for page-out once again.

The PGULOCK ‘mécro instruction is an authorized GCS function.

The format of the PGULOCK macro instruction is:

[1abel] PGULOCK (reg)

Parameter

Usage Notes

reg
Specifies the register that contains the address of the virtual page to be unlocked
from real storage.

You can write this parameter as register (1) through (12).

* The task that issues the PGULOCK macro instruction must be running in
supervisor state. Moreover, the DIAG98 parameter must be in the OPTION
control statement in the virtual machine’s directory entry.

* Ifa PGULOCK macro instruction is not issued for a page that is locked, then
the page is automatically unlocked when the task that locked it terminates.

* A locked page does not necessarily have to be unlocked by the same task that
locked it.

206 VM/XA SP GCS Command and Macro Reference

N

PGULOCK

| Return Codes and Abend Codes
(' The PGULOCK macro generates no abend codes.

When this macro completes processing, it passes to the caller a return code in
register 15. The possible meanings of this code are as follows:

Return
Code Meaning
00 Function completed successfully.
04 The user is running V=R.
08 The virtual address of the page in question is invalid.
12 The specified page is not locked.
16 The virtual machine issuing this instruction is not
(,_ authorized to perform any real I/O operations.

Chapter 9. Authorized GCS Service Macros 207

SCHEDEX

SCHEDEX

Schedule an Exit to a Specific Task ‘

One feature of GCS is that it permits virtual machines to work together in virtual
machine groups. A virtual machine group consists of several virtual machines
sharing common storage and, usually, a common purpose. Within each virtual
machine more than one task can be running simultaneously.

For a variety of reasons, one task may decide that it needs another task to perform
work for it. The SCHEDEX macro instruction will schedule an exit to that task.
This means that the next time the second task is dispatched the exit receives control
so it can perform the needed work.

The SCHEDEX macro instruction is an authorized GCS function.

The format of the SCHEDEX macro instruction is:

[1abel]

SCHEDEX ID=1d,EXIT=exit[,UWORD=addr]

Parameters

ID
Specifies the identifier of the virtual machine that contains the task requesting
the exit, and the identifier of the task to which an exit is to be scheduled.

This is a fullword parameter containing the virtual machine identification in the
high-order halfword and the task identification in the low-order halfword.

If the task ID is zero, then the task identification will be the SYSTEM TASK,
by default.

You can write this parameter as an assembler program label, as register (0), or
as register (2) through (12). If you write it as a label, then the machine and task
identifiers must be at the address associated with that label. If you write it as a
register, then the machine and task identifiers must be in that register. In either
case, GCS expects that they be in the proper format.

EXIT
Specifies the address of the exit routine to be scheduled.

This routine must be in a shared segment that was linked to the virtual machine
at GCS initialization time. Once the task is dispatched, it receives control.

You can write this address as an assembler program label, as register (2) through
(12), or as register (15).

UWORD
Specifies an optional fullword parameter that can be passed to the exit routine in
question.

You can use this parameter to pass any information you wish.

You can write this parameter as an assembler program label or as register (1)
through (12). If you write it as an assembler program label, then the address of
the label is passed to the exit routine. If you write it as a register number, then
the contents of that register will be passed to the exit routine. If this parameter
is not specified, then it is passed with a value of zero.

208 VM/XA SP GCS Command and Macro Reference

Usage Notes

Example

SCHEDEX

It is important to realize that the SCHEDEX macro does not turn control over
to any task. It merely schedules an exit to the appropriate task, which receives
control only when it has been dispatched.

The use of SCHEDEX certainly is not limited to one virtual machine. Note that
the purpose of the ID parameter is not only to identify the task in question but
also the virtual machine in which it resides. For example, TASK X, residing in
VIRTUAL MACHINE A, can schedule an exit to TASK Y, which resides in
VIRTUAL MACHINE B.

The task issuing the SCHEDEX macro instruction resumes normal execution
when it receives the return code from the macro. It does not wait for the
scheduled exit routine to run but proceeds to its own next executable statement.

Any exit routine scheduled via the SCHEDEX instruction runs in key 0.

A zero return code from the SCHEDEX macro does not necessarily mean that
the exit has been scheduled. What it does mean is that the request has been sent
to CP. If the virtual machine wherein the exit resides is part of the group, then
the exit will be scheduled.

In the following example, the SCHEDEX macro instruction schedules an exit on the
virtual machine, whose machine ID is 2, and on a task therein, whose task ID is 4.
The address of the routine to receive control is in register 3.

SCHEDEX ID=IDENT,EXIT=(3)

IDENT DC H'2'

DC H'4'

Input to the Exit Program

The program to which an exit is scheduled receives the following information in its

registers.

Register Contents

Register 1 The user word (UWORD) specified in the
SCHEDEX instruction.

Register 13 The address of the register save area.

Register 14 The address to which control is to return once the
exit program completes execution.

Register 15 The address of the entry point in the exit program.

Chapter 9. Authorized GCS Service Macros 209

SCHEDEX

Return Codes and Abend Codes

When this macro completes processing, it passes to the caller a return code in

register 15.

Return
Code

Meaning

0

Your request has been sent to CP.

4

The virtual machine identifier that you specified was
invalid.

The address of the exit routine you specified is not in a
shared segment.

12

The task identifier is invalid. This return code is
meaningful only if the exit is scheduled to run on your
virtual machine.

Abend
Code

Reason
Code Meaning

FCB

0A01 Insufficient storage was available to satisfy a
GETMAIN instruction that the system issued.

210 VM/XA SP GCS Command and Macro Reference

\ ,
Mo

TASKEXIT

TASKEXIT

Declare a Task Termination Exit Routine for an Entire Virtual Machine Group

A task termination exit routine, declared for an entire virtual machine group, gains
control whenever a task running within the group terminates—either normally or
abnormally.

There are several good reasons for declaring such an exit routine for a virtual
machine group. For example, several subsystem applications may be running in
various virtual machines within the group. Having a task termination exit routine
declared might help the subsystem clean up after itself, monitor the various
applications, and react to their progress.

Use the TASKEXIT macro instruction to declare a task termination exit routine for
an entire virtual machine group.

The TASKEXIT macro instruction is an authorized GCS function.

The TASKEXIT macro instruction is available in standard, list, list address, and
execute formats.

The standard format of the TASKEXIT macro instruction is:

[1abel] TASKEXIT SET,EP=addr[,UWORD=addr]) ,NAME= § name [,ERROR=addr]
register
(CLR
Parameters
SET
Indicates that you are declaring a task termination exit routine for your entire
virtual machine group.
‘ CLR
(Indicates that the task termination exit routine you specify is to be cancelled.
' EP

Specifies the address of the task termination exit routine in question.

This exit routine must reside in a shared segment. That is, a routine whose entry
point is defined in a shared segment directory that was created via the
CONTENTS macro instruction. If necessary, review the entry titled
“CONTENTS” on page 427.

You can write this parameter as an assembler program label or as register (2)
through (12).

UWORD .
Specifies a fullword of data you want passed to the task termination exit routine
if it ever gains control.

You can use this parameter to pass any information you please.

If you write this parameter as an assembler program label, then the address
associated with that label is passed to the exit routine. If you write it as register
(2) through (12), then the contents of the register are passed to the routine.

Chapter 9. Authorized GCS Service Macros 211

TASKEXIT

NAME
Specifies a name used in any TASKEXIT instruction to refer to a certain task Ps
termination exit routine.]

Do not confuse this name with the name of any entry point within the exit
routine or with the name of the routine itself. This name is merely an identifier
used by the TASKEXIT macro to distinguish one task termination exit routine
from another. The name is meaningless outside the TASKEXIT macro
environment.

This name can contain up to eight characters.
There are two ways of coding this name in the TASKEXIT instruction:
e Write the actual name itself.

e Write a register number from (2) through (12). The register you specify
must contain the address where the name can be found. If the name is less
than eight characters long, then it must be padded on the right with blanks.

ERROR
Specifies the address of an error routine that is to receive control if an error is
found in the TASKEXIT macro.

If you omit this parameter and an error occurs, then control will return to the
instruction following the TASKEXIT instruction, just as it would were there no
error.

Usage Notes
* Only an authorized user can issue the TASKEXIT macro instruction.

¢ The exit routine that you define via the TASKEXIT instruction must reside in a .
shared segment.

e Remember that the identifier you specify in the NAME parameter is strictly for
your benefit and that of the TASKEXIT macro. To specify the SET and
NAME parameters together is, in effect, to “declare” the name that is to be
associated with the exit routine in question.

* You can declare more than one task termination exit routine for your virtual
machine group. However, since the TASKEXIT instruction can declare only
one exit routine at a time, you will have to issue it more than once. Each exit
routine that you declare will run when a task in your virtual machine group
terminates. However, the order in which they will run is unpredictable.

* GCS associates the PSW key and the enable flags of the task that issues the
TASKEXIT instruction with those of the task termination exit routine.

* A task termination exit routine always runs in supervisor state. Moreover, it is
eligible for the same types of interrupts as the task that declared it.

¢ Remember that besides the task termination exit routine declared for the entire
group, an individual task may have its own exit routines declared. For example,
you may have defined an exit routine via the ESATE macro instruction that will
run if the task terminates abnormally.

Should this be the case, and the task terminates, GCS sees to it that the task’s
exit routines are run first. Afterward the task termination exit routine is

executed. £
&LJ‘
¢ When the task that declared the task termination exit routine terminates, then

the latter executes one last time. After that, it disappears.

212 VM/XA SP GCS Command and Macro Reference

J

e When the task termination exit routine gains control, its registers contain the

following:

TASKEXIT

Register

Contents

0

The high-order two bytes contain the virtual machine id
in which the terminated task was running. The
low-order bytes contain the task id.

The UWORD.

13

Address of the register save area.

14

Return address within the GCS supervisor.

15

The address of the task termination exit routine.

Example

In the following example, an authorized member of a virtual machine group wants
to define a task termination exit routine for its entire group.

DCLTE TASKEXIT SET,EP=(4),NAME=TE6,ERROR=(7)

The entry point of this routine is at the address in register 4. Since this routine is
being newly defined, the authorized member declares the name TE6 for the routine.
The address of the error routine is in register 7. DCLTE is the label on this

instruction.

Return Codes and Abend Codes

When this macro completes processing, it passes to the caller a return code in
register 15. There are no abend codes.

Return
Code

Meaning

0

Function completed successfully.

4

This task termination exit routine has already been declared
for this virtual machine group.

The address you specified for the task termination exit
routine is not in a shared segment.

24

Invalid parameter list.

44

You specified the CLR parameter with the name of a task
termination exit routine. However, no such name could be
found for a task termination exit routine.

Chapter 9. Authorized GCS Service Macros

213

TASKEXIT

The List Format

[1abel] TASKEXIT

register

N

SET,EP=addr [, UWORD=addr] [,NAME= { name }] JMF=L

CLR

Added Parameter

This format of the macro instruction generates an in-line parameter list based on the
parameter values that you specify. However, this format generates no executable
code. Remember that you cannot specify any of the parameters using register
notation. Also, note that only the parameters listed above are valid in the list
format of this instruction.

MF=L
Specifies the list format of this macro instruction.

The List Address Format

[1abel] TASKEXIT

SET,EP=addr[,UNORD=addr] ,NAME= { name
register

CLR

,MF=(L,address, [1abel])

Added Parameter

This format of the macro instruction does not produce any executable code that
invokes the function. However, it does produce executable code that moves the
parameter values that you specify into a certain parameter list. If you issue the
instruction using this format, then you must do so before any related invocation of
the instruction using the execute format.

Note that only the parameters listed above are valid in the list address format of this
instruction.

MF = (L,address|,label])
ADDRESS specifies the address of the parameter list into which you want the
parameter values you mention placed. This address can be within your program
or somewhere in free storage.

LABEL is a user-specified label, indicating that you want to determine the
length of the parameter list. The macro expansion equates the label you specify
with the length of the parameter list.

214 VM/XA SP GCS Command and Macro Reference

TASKEXIT

The Execute Format

([1abel] TASKEXIT
SET,EP=addr[,UWORD=addr] ,NAME= { name

{regi ster
CLR

,MF=(E,address)

This format of the macro instruction generates code that executes the function using
a parameter list whose address you specify.

Note that only the parameters listed above are valid in the execute format of this
instruction.

‘ Added Parameter
{ MF = (E,address)
: ADDRESS specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this
instruction.

Chapter 9. Authorized GCS Service Macros 215

VALIDATE

VALIDATE

By Comparing Keys, Confirm that a Virtual Machine, Program, etc., Has

Access to a

Particular Area of Storage
Virtual machines, tasks, and programs constantly request access to areas of storage.
This does not necessarily mean that they are entitled to have each request granted.
Each 4-kilobyte block of storage has a key associated with it. This key governs
access to the storage block and protects the data there against unauthorized use.

What’s more, there are two kinds of access available: fetch and store. If, for
example, a program has fetch access, it means that it can only obtain data from the
block. Fetch access prevents the program from actually changing any of the data in
the block. Store access, on the other hand, allows a program to both obtain data
from the storage block and alter the data therein. Also there are programs that can
be denied either type of access.

The VALIDATE macro instruction confirms or denies that a program has access to
a certain block of storage. If access is allowed, it indicates whether the program can
have fetch type access or store type access.

The VALIDATE macro instruction is an authorized GCS instruction.

The format of the VALIDATE macro instruction is:

[Tabel]

VALIDATE ADDR=addr[,KEY=key] [,LENGTH=1ength]

Parameters

ADDR
Specifies the starting address of the area of storage to which the program wants
access.

You can write this parameter as an assembler program label or as register (1)
through (12). If you write it as a label, then the address of the label must be the
starting address of the storage area in question. If you write it as a register, then
the register must contain this starting address.

KEY .
Specifies the key that will be compared with the key of the storage area in
question. »

You can write this parameter as an assembler program label, as register (0), or
as register (2) through (12). If you write it as a label, then the key must be
contained in the four high-order bits of the byte at the address associated with
that label. If you write it as a register, then the key must be in bits 24 through
27 of that register. If you do not specify a key, then VALIDATE will use the
key of the task that issued the instruction.

LENGTH
The length of the storage area in question, in bytes.

If you omit this parameter, then the length is 1, by default.

You can write this parameter as an absolute expression, as register (2) through
(12), or as register (15). If you write the length as an absolute expression, then it

216 VM/XA SP GCS Command and Macro Reference

y—

N

»s")

(

Usage Notes

Examples

VALIDATE

must be a positive integer between 1 and 224-1. If you write it as a register, then
the register must contain a positive fullword integer within the same range.

¢ The VALIDATE instruction does not obtain access for any program. It only
tells whether a program is entitled to access a certain area of storage and, if so,
in what way it can access the storage.

* The supervisor determines whether the area of storage in question is addressable.
If it is, then the key specified in the VALIDATE macro instruction is compared
with the key of the area of storage in question. If they do not match, the
supervisor checks to see if the area of storage is fetch protected. The
appropriate return code is then passed to the issuer of the macro.

¢ If the key of the storage area matches the key specified in the VALIDATE
macro instruction, or if the program is running in key 0, then store access to the
area is possible.

* If the keys do not match, the program is running in a key other than 0, and the
storage area is without fetch protection, then fetch access to the area is possible.

o If the keys do not match, the program is running in a key other than 0, and the
storage area has fetch protection, then no access to the area is possible.

® Authorized programs often are asked to perform work on behalf of
unauthorized programs. Before an authorized program accesses an area of
storage on behalf of an unauthorized program, it should confirm that the latter
is “sufficiently authorized” to have its work affect that storage. This is one of
the major applications of the VALIDATE macro instruction. In addition,
system routines frequently use the VALIDATE instruction to accomplish much
the same thing.

¢ Before an authorized program issues the VALIDATE instruction for shared
storage, it should place a lock on the storage in question via the LOCKWD
instruction. This is required to prevent the key of the storage from changing.
Review the entry titled “LOCKWD” on page 196.

In the first example, the first VALIDATE macro instruction is issued to confirm that
the address is accessible by a program running in key 14.

VALIDATE ADDR=ADDRESS,KEY=KEY1

ADDRESS DS F'5672'
KEY1 DS X'EQ'

In the second example, a VALIDATE macro instruction was issued to confirm that
the program running in the key stored in register 7 has access to the storage area
beginning at the address in register 6. The length of the storage area in question is
in register 3.

VALIDATE ADDR=(6),KEY=(7),LENGTH=(3)

Chapter 9. Authorized GCS Service Macros 217

VALIDATE

Return Codes and Abend Codes
The VALIDATE macro generates no abend codes.

When this macro completes processing, it passes to the caller a return code in

register 15.

Return
Code

Meaning

0

The key of the storage area matches the key specified in the
macro instruction or, if none was specified, the key of the
program that issued the instruction.

The keys do not match but the storage area has no fetch
protection. Therefore, fetch access is possible.

The keys do not match and the storage area has fetch
protection. Therefore, no type of access is possible.

12

The storage area in question is not addressable.

16

The specified length of the storage area is less than 0 or
greater than 224-1 bytes.

218 VM/XA SP GCS Command and Macro Reference

Ny

(Chapter 10. Storage Management Service Macros

FREEMAIN e 220
GETMAIN . . . 225

Chapter 10. Storage Management Service Macros 219

FREEMAIN

FREEMAIN

|

| Free a Contiguous Block of Storage

! The storage management function of GCS enables a task to dynamically obtain and
free contiguous blocks of storage as required.

Use the FREEMAIN macro instruction to free a contiguous block of storage.

The FREEMAIN macro instruction is available in standard, list, and execute
formats.

The standard format of the FREEMAIN macro instruction is:

[1abel] FREEMAIN RC,LV=1ength,A=address
RU,LV=1ength,A=address
R,LV=1ength,A=address [,SP=number]
1 E,LV=Tength,A=address
EU,LV=1ength,A=address
V,A=address

VU,A=address

Parameters
RC
Indicates that your register request to free the storage is conditional.

RU
Indicates that your register request to free the storage is unconditional.

R
Indicates that your register request to free the storage is unconditional.

E or

EU
Indicates that this is an unconditional request to free a certain element of
storage.

Vor
YU
Indicates that your request to free the storage is unconditional.

This storage was originally obtained by using the VC or VU parameter on the
GETMAIN instruction. Hence, it was a request for a variable amount of
storage.

LV
Specifies the length, in bytes, of the storage block you want to free.

This length should be a multiple of eight. If it is not, then GCS rounds it up to
the nearest multiple of eight.

If the R parameter is specified, then LV =(0) can be coded as well. If it is, then
the high-order byte of register 0 must contain the storage block’s subpool
number and the three low-order bytes must contain the length of the storage
block.

220 VM/XA SP GCS Command and Macro Reference

Examples

FREEMAIN

You can write this parameter as an assembler program label or as register (2)
through (12).

Specifies the address of a one or two-word list, starting on a fullword boundary.

If you select the E, EU, R, RC, or RU parameter, then this list need contain
only one fullword. This word must contain the address of the block of storage
to be freed.

If you select the V or VU parameter, then this list must contain two fullwords.
The first word must contain the address of the block of storage you want to free.
The second word must contain the length of this block, in bytes.

The storage block must begin on a doubleword boundary. Its length must be a
multiple of eight. If it is not, then GCS rounds the length up to the nearest
multiple of eight.

You can write this parameter as register (2) through (12) or as an assembler
program label. If you express it as a register, and if you select the R, RC, or
RU parameter, then the register must contain the address of the block you want
to free, not the address of any fullword that contains that address. In this case
you may also use register (1) to specify the address.

SP
Specifies the subpool associated with the storage block you want to free.

A subpool is identified by a number from 0 to 255. A subpool number describes
the characteristics of the block of storage to which it is assigned. The subpool
number that you specify (explicitly or by default) must be the same as you
specified in the corresponding GETMAIN macro instruction.

For a definition of all subpool numbers, review the section on the SP parameter
in the entry titled “GETMAIN” on page 225.

If you omit this parameter, the subpool number is 0, by default. You can write
it as an assembler program label or as register (2) through (12). Or, if the R
parameter is specified, then LV =(0) can be coded as well. If it is, then the
high-order byte of register 0 must contain the storage block’s subpool number
and the three low-order bytes must contain the length of the storage block.

In the first example, the task requests that 400 bytes of storage in subpool 10 be
freed.

FREEMAIN RC,LV=400,A=(2),SP=10

Register 2 contains the address of the storage block. Since this is a conditional
request, a return code of 0 would result if the storage were indeed freed. If it were
not, then a return code of 4 would result and the storage in question would remain
unchanged.

In the second example, the task requested a variable amount of storage within a
certain range.

GETMAIN VC LA=RANGE,A=DBLWD

FREEMAIN V,A=DBLWD

Chapter 10. Storage Management Service Macros 221

FREEMAIN

The range was specified in the 2-word list at the address associated with the label
RANGE. The task provided a 2-word list at the address associated with the label
DBLWD. When GCS gave the storage to the task, it stored the address of the
storage block in the first word of this list. It then stored the actual length of the
storage block in the second word. The task retained the values in this two-word list

and later requested that the same storage block be freed.

Return Codes and Abend Codes

When this macro completes processing an unconditional request, it passes to the

caller a return code in register 15.

For the RC parameter only:

Return
Code

Meaning

0

Function completed successfully.

4

Function was not completed.

Abend
Code

Meaning

305

A FREEMAIN macro instruction contained a subpool
specification error.

605

Either a FREEMAIN macro instruction contained an
invalid address in the A parameter or an invalid parameter
list address was passed to the macro.

705

An unrecoverable machine, system, or other error occurred
while processing the FREEMAIN macro.

905

The address of the storage area specified in a FREEMAIN
macro instruction was not on a doubleword boundary.

A0S

Either the area you tried to free overlapped into an already
free area, or it has been locked via the PGLOCK macro
instruction.

D05

One of several things happened:

e The FREEMAIN macro attempted to free an area of
storage not allocated to your task.

® Or, you specified zero or a negative number in the LV
parameter.

¢ Or, the key is different from what it was when the
storage was allocated.

E05

.You specified a parameter that GCS does not support.

30A

A FREEMAIN macro instruction, with the R parameter
specified, contained a subpool specification error.

70A

An unrecoverable machine, system, or other error occurred
while processing the FREEMAIN macro with the R
parameter specified.

222 VM/XA SP GCS Command and Macro Reference

'
N

o

e

FREEMAIN

Abend

Meaning

(Code

90A

The address of the storage area specified in a FREEMAIN
instruction, with the R parameter specified, was not on a
doubleword boundary.

AOA

Either the area to be freed by a FREEMAIN instruction,
with the R parameter specified, overlapped into an already
free area or was locked via the PGLOCK instruction and
never unlocked.

DOA

One of several things happened:

o The FREEMAIN macro, with the R parameter
specified, attempted to free an area of storage not
allocated to your task.

¢ Or, you specified zero or a negative number in the LV
parameter.

* Or, the key is different from what it was when the
storage was allocated.

EOA

A FREEMAIN instruction, with the R parameter specified,
specified another parameter that GCS does not support.

378

A FREEMAIN macro, with the RU parameter specified,
contained a subpool specification error.

778

An unrecoverable machine, system, or other error occurred
while processing the FREEMAIN macro with the RU
parameter specified. It may also be that an error, involving
the release of free storage, occurred within the GCS
SUpervisor.

978

The address of the storage area specified in a FREEMAIN
macro instruction, with the RU parameter specified, was
not on a doubleword boundary.

A78

The area to be freed by the FREEMAIN instruction, with
the RU parameter specified, overlapped a free area of
storage or is an area that was locked via the PGLOCK
instruction.

D78

One of several things happened:

¢ The FREEMAIN macro, with the RU parameter
specified, attempted to free an area of storage not
allocated to your task.

* Or, you specified zero or a negative number in the LV
parameter.

¢ Or, the key is different from what it was when the
storage was allocated.

E78

A FREEMAIN instruction, with the RU parameter
specified, specified another parameter that is not supported
by GCS.

Chapter 10. Storage Management Service Macros

223

FREEMAIN

The List Format

[1abel] FREEMAIN
[V

E[,LV=1 ength]:l [,A=address] [,SP=number] ,MF=L

This format of the macro instruction generates an in-line parameter list based on the
parameter values that you specify. However, this format generates no executable
code. Remember that you cannot specify any of the parameters using register
notation. Also, note that only the parameters listed above are valid in the list
format of this instruction.

Added Parameter

MF=L
Specifies the list format of this macro instruction.

The Execute Format

[Tabel] FREEMAIN
;

E[,LV=1ength]] [,A=address] [,SP=number] ,MF=(E,address)

This format of the macro instruction generates code that executes the function, using
a parameter list whose address you specify.

Note that only the parameters listed above are valid in the execute format of this
instruction.

Added Parameter
MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this

instruction.

224 VM/XA SP GCS Command and Macro Reference

R

GETMAIN

GETMAIN

Obtain a Contiguous Block of Storage
The storage management function of GCS enables a task to dynamically obtain and
free contiguous blocks of virtual storage as required.

Use the GETMAIN macro instruction to obtain a contiguous block of virtual
storage.

The GETMAIN macro instruction is available in standard, list, and execute formats.

The standard format of the GETMAIN macro instruction is:

[1abel] | GETMAIN RC,LV=length)
RU,LV=1ength

R,LV=length [,SP=number] | ,BNDRY= DBLWD
} 4
] EU,LV=1ength,A=address PAGE |

EU,LV=1ength,A=address
VC,LA=1ength address,A=address
. VU,LA=length address,A=address

Parameters
RC
Indicates that your register request for storage is conditional. That is, your task
will be able to continue, even if the storage you ask for is not immediately
available.

Express the amount of storage you need in the LV parameter. If the storage is
available, then you will receive its address in register 1. If it is not available,
then you will receive a return code to that effect in register 15.

RU
Indicates that your register request for storage is unconditional. That is, your
task will be unable to continue unless the storage you ask for is available
immediately.

Express the amount of storage you need in the LV parameter. If the storage is
available, then you will receive its address in register 1. If it is not available,
then your task is abnormally terminated and you will receive an ABEND code.

Indicates that your register request for storage is unconditional.

Express the amount of storage you need in the LV parameter. If the storage is
available, then you will receive its address in register 1. If it is not available,
then your task is abnormally terminated and you will receive an ABEND code.
Note that the BNDRY parameter cannot be used with the R parameter.

EC
Indicates that your request for storage is conditional.

Express the amount of storage you need in the LV parameter. If the storage is

Chapter 10. Storage Management Service Macros 225

GETMAIN

available, then you will receive its address in the word specified by the A
parameter. If it is not available, then you will receive a return code to that
effect in register 15.

| EU

Indicates that your request for storage is unconditional.

Express the amount of storage you need in the LV parameter. If the storage is

available, then you will receive its address in the word specified by the A

parameter. If it is not, then your task is terminated abnormally and you will
receive an ABEND code.

vC
Indicates that your request for a variable amount of storage is conditional.

Express the acceptable size range in the LA parameter.

If the storage is available, then you will receive the address of the storage block
in the first word of the area specified by the A parameter. The second word of
that area will contain the length of the storage block. If it is not available, then
you will receive a return code to that effect in register 15.

VU
Indicates that your request for a variable amount of storage is unconditional.

Express the acceptable size range in the LA parameter.

If the storage is available, then you will receive its address in the first word of
the area specified by the A parameter. The second word of that area will
contain the length of the storage block. If it is not available, then your task is
terminated abnormally and you receive an ABEND code.

LV
Specifies the length, in bytes, of the storage block you need.

This number should be a multiple of eight. If it is not, then GCS rounds it up
to the nearest multiple of eight.

If the R parameter is used, then you can code LV =(0) as well. If it is, then the
high-order byte of register 0 must contain the subpool number and the three
low-order bytes must contain the length of the requested storage block.

You can write this parameter as an assembler program label or as register (2)
through (12).

LA
Specifies the address of a two-word list that defines the acceptable size range
into which the requested variable length storage block may fall.

The first word in the list must contain the minimum acceptable length of the
block. The second word must contain its maximum acceptable length. These
numbers should be multiples of eight. If they are not, then GCS rounds them
up to the nearest multiples of eight.

You can write this parameter as an assembler program label or as register (2)
through (12).

Specifies the address of a one or two word list.

If the EC, EU, VC, or VU parameter is specified, then GCS will store the
address of the storage block in the first word of this list.

226 VM/XA SP GCS Command and Macro Reference

Sp

GETMAIN

If the VC or VU parameter is specified, then GCS will store the length of the
variable length storage block in the second word of this list.

You can write this parameter as an assembler program label or as register (2)
through (12).

Specifies the subpool associated with the requested block of storage.

A subpool is a number from 0 to 255 that is assigned to a block of storage to
describe its characteristics.

You can write this parameter as an assembler program label or as register (2)

through (12). If the R parameter is used, then LV =(0) can be coded as well. If
it is, then the high-order byte of register 0 must contain the subpool number and
the three low-order bytes must contain the length of the requested storage block.

Subpool numbers are defined as follows:

0 Specifies private, fetch-protected storage. If the main task issued the
GETMAIN instruction, then GCS automatically frees the storage when
the task terminates. This is also true for a subtask that was attached to
a main task with the SZERO=NO parameter specified in an ATTACH
macro instruction. Review the entry titled “ATTACH” on page 86.

However, if the subtask were attached with the SZERO=YES
parameter specified (or defaulted), then GCS associates the storage
with the oldest ancestor task with which this subtask is sharing the
subpool. Hence, the storage block is not automatically freed by GCS
when the subtask terminates. The storage is freed only when the oldest
ancestor task terminates.

Any program can obtain storage from this subpool.

1 -127 Specifies private, fetch-protected storage. If the main task issued the
GETMAIN instruction, then GCS automatically frees the storage when
the task terminates. This is also true for a subtask that was attached to
a main task without this subpool having been specified in the SHSPV
or SHSPL parameter in the ATTACH macro instruction.

However, if the subtask was attached with this subpool specified in the
SHSPV or SHSPL parameter in the ATTACH instruction, then GCS
associates the storage with the oldest ancestor task with which this
subtask is sharing the subpool. Hence, the storage is not automatically
freed by GCS when the subtask terminates. The storage is freed only
when the oldest ancestor task terminates.

Any program can obtain storage from these subpools.

229 Specifies private, fetch-protected storage. GCS will automatically free
the storage when the task terminates.

Only privileged programs can obtain storage from this subpool.

230 Specifies private, non-fetch-protected storage. GCS will automatically
free the storage when the task terminates.

Only privileged programs can obtain storage from this subpool.

231 Specifies common, fetch-protected storage. GCS does not free the
storage when the task that acquired it terminates. This storage is
persistent in that it must be explicitly freed by some privileged
program.

Chapter 10. Storage Management Service Macros 227

GETMAIN

241

243

244

Only privileged programs can obtain storage from this subpool.

Specifies common, non-fetch-protected storage. GCS does not free the
storage when the task that acquired it terminates. This storage is
persistent in that it must be explicitly freed by some privileged
program.

Only privileged programs can obtain storage from this subpool.

Specifies private, fetch-protected storage. GCS does not free the
storage when the task that acquired it terminates. This storage is
persistent in that it must be explicitly freed by some privileged
program.

Only privileged programs can obtain storage from this subpool.

Specifies private, non-fetch-protected storage. GCS does not free the
storage when the task that acquired it terminates. This storage is
persistent in that it must be explicitly freed by some privileged
program.

Only privileged programs can obtain storage from this subpool.

If you specify a subpool number that is not listed above or one which you are
not authorized to use, and if your request was unconditional, then GCS will
terminate your program abnormally. If your request were conditional, then you
will receive a return code of 4.

In summary,

Subpool | Private Fetch-protected Privileged Persistent
0 X X
1-127 X X
229 X X X
230 X X
231 X X X
241 X X
243 X X X X
244 X X X
BNDRY
Specifies the boundary alignment of the requested storage block.

If you omit this parameter, then the block is aligned on a doubleword boundary,

by default. Indeed, you must omit this parameter if you use the R parameter.

Include one of the following with the BNDRY parameter.

PAGE

Indicates that the storage block is to begin on a 4-kilobyte page boundary.

DBLWD

Indicates that the storage block is to begin on a doubleword boundary.

228 VM/XA SP GCS Command and Macro Reference

i
‘x

Usage Note

Examples

GETMAIN

® GCS sets the key of the requested storage block to the PSW key of the task
issuing the GETMAIN instruction.

In the following example a task requests a certain amount of storage space.
GETMAIN RU,LV=(5),SP=0,BNDRY=PAGE

The amount requested has previously been stored in register 5. If the task cannot
get the storage, it will not continue processing, since this is an unconditional request.
Furthermore, the task requests that the subpool number 0 be assigned to the storage
and that it begin on a page boundary.

In the second example a task requests a certain amount of storage space.
GETMAIN EC,LV=STORE,A=BLOCK

The amount requested is stored at the address associated with the label STORE.
The address of the storage space is to be stored at the address associated with the
label BLOCK.

Return Codes and Abend Codes

When this macro completes processing, it passes to the caller a return code in
register 15.

For CONDITIONAL requests only:

Return

Code Meaning

0 Function completed successfully.

4 Function was not completed.

Abend

Code Meaning

604 Either an invalid address was specified in the A or LA
parameter, or the macro itself received an invalid parameter
list address.

704 An unrecoverable machine, system, or other error occurred
while processing the GETMAIN macro.

804 Either there was insufficient virtual storage to execute the
GETMAIN macro, or the LV parameter specified zero or a
negative number.

B04 A GETMAIN instruction contained an error in the
specification of the subpool.

70A An unrecoverable machine, system, or other error occurred
while processing the GETMAIN macro with the R
parameter specified.

Chapter 10. Storage Management Service Macros 229

GETMAIN

Abend

Code Meaning

80A Either there was insufficient virtual storage to execute the
GETMAIN instruction with the R parameter specified, or
a length of zero was specified.

BOA A GETMAIN instruction, with the R parameter specified,
contained an error in the specification of the subpool.

778 An unrecoverable machine, system, or other error occurred
while processing the GETMAIN macro instruction with the
RU parameter specified.

878 Either there was insufficient virtual storage to execute the
GETMAIN instruction with the RU parameter specified,
or the LV parameter specified a zero or a negative number.

B78 A GETMAIN instruction, with the RU parameter
specified, contained an error in the specification of the
subpool.

E04 A GETMAIN instruction specified a parameter that GCS

does not support.

The List Format

[1abel]

GETMAIN

EC[,LV=Tength][,A=address]
EU[,LV=1ength][,A=address]

VC[,LA=length address][,A=address]|[,SP=number]

VU[,LA=length address][,A=address]
L .

,MF=L| ,BNDRY= DBLWD}

'PAGE

This format of the macro instruction generates an in-line parameter list based on the
parameter values that you specify. However, this format generates no executable
code. Remember that you cannot specify any of the parameters using register
notation. Also, note that only the parameters listed above are valid in the list
format of this instruction.

Added Parameter

MF=L
Specifies the list format of this macro instruction.

230 VM/XA SP GCS Command and Macro Reference

4
L

The Execute Format

[1abel] GETMAIN - 1
EC[,LV=1ength] [,A=address]

EU[,LV=Tength] [,A=address]

VC[,LA=1ength address][,A=address]|[,SP=number]

VU[,LA=1ength address][,A=address]

,MF=(E,address) ,BNDRY={ DBLND}

PAGE

This format of the macro instruction generates code that executes the function, using
a parameter list whose address you specify.

Note that only the parameters listed above are valid in the execute format of this
instruction.

Added Parameter
MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this
instruction.

Chapter 10. Storage Management Service Macros 231

s

T

Chapter 11. Serviceability Macros

Chapter 11. Serviceability Macros 233

GTRACE

| GTRACE

Record User Data in the GCS Trace Table

Sometimes, you will need certain user data recorded for you in the GCS trace table.
Any type of data you wish can be recorded in the GCS trace table, for example an
instruction or the result of some calculation.

Use the GTRACE macro instruction to record user data in the GCS trace table.

The GTRACE macro instruction is available in standard, list, and execute formats.

The standard format of the GTRACE macro instruction is:

[1abel] GTRACE DATA=address,LNG=1ength,ID=number[, FID=number]

Parameters
DATA

Specifies the address in your virtual storage where the data you want recorded
begins.

You can write this parameter as an assembler program label or as register (2)
through (12).

LNG

Specifies the number of bytes to be recorded starting at the address you specified
in the DATA parameter. R

You can write this parameter as any decimal number from 1 to 256, as a
hexadecimal number from 00 to 100, or as register (2) through (12).

Specifies an identifier you want associated with the recorded data, which you
can use for documentation purposes.

’
This identifier will be recorded along with the specified data to make it easier for
you to find a trace entry on a terminal screen or in a printed dump. Valid o
identifier values are as follows: e

0 through 1023 For general users
1024 through 4095 For IBM use only

FID
Specifies the last two characters in the name of one of your formatting routines.

A formatting routine processes the externally traced data, making them suitable
for printing. Since you define the data to be recorded by the trace facility, it is
your responsibility to provide any routine that may be required to interpret and
format it. When you are ready to print the data, run TRACERED under CMS.
TRACERED will invoke your formatting routine, using the file containing the
trace entries as input. For more information on TRACERED, see VM/XA4 SP rd
| Dump Viewing Facility Operation Guide and Reference. \t y

234 VM/XA SP GCS Command and Macro Reference

Usage Notes

GTRACE

Each formatting routine must have a name that is eight characters long. The
first six of these characters must be:

CSIYTX

The last two characters of the name can be any two-digit hexadecimal number
from X'00' to X'FF'. These last two characters must be used as follows:

X'00" The data is to be dumped in hexadecimal
form (IBM USE ONLY).

X'01' through X'50' For general users

X'51" through X'FF!' For IBM use only

Since the first six characters of the routine’s name are known, you need only
specify the last two characters in the FID parameter. If you omit this
parameter, GCS assumes X'00', by default.

For the information given to the GTRACE macro to be recorded, you must
have previously issued the ETRACE or ITRACE commands. For more
information on the ETRACE or ITRACE commands, see “GCS Commands” on
page 20.

The GCS trace table can be displayed on a terminal screen or it can be part of a
printed dump but only if the receiver of the dump is authorized to view common
storage.

To identify data recdrded by the GTRACE facility, look for X'0E' in the first
two bytes of the record. Then, among this data, look in bytes 23 and 24 for the
number you specified in the ID parameter.

Chapter 11. Serviceability Macros 235

GTRACE

Return Codes and Abend Codes
The GTRACE macro generates no abend codes.

When this macro completes processing, it passes to the caller a return code in
register 15. The return codes are as follows:

Return

Code Meaning

00 Function completed successfully.

04 The GTRACE facility (monitor class 14) is not enabled.

08 You specified an invalid value for the LNG parameter. It
was less than 1 or greater than 256.

0C You specified an invalid address for the DATA parameter.

10 You specified an invalid value for the FID parameter. It
was less than 0 or greater than 255.

14 You specified an invalid value for the ID parameter. It

' may have been less than 0 or greater than 4095. Or, you

may have specified a value from 1 to 80 for the FID
parameter. This requires that the value specified for the ID
parameter be from 0 to 1023.

1C Invalid parameter list address.

The List Format
[1abel] GTRACE [DATA=address] [,LNG=1ength] [, ID=number] [, FID=number] ,MF=L

This format of the macro instruction generates an in-line parameter list based on the
parameter values that you specify. However, this format generates no executable
code. Remember that you cannot specify any of the parameters using register
notation.

Added Parameter

MF=L
Specifies the list format of this macro instruction.

The Execute Format

[1abel] GTRACE [DATA=address] [,LNG=1ength] [, ID=number] [, FID=number]
,MF=(E,address)

This format of the macro instruction generates code that executes the function, using
a parameter list whose address you specify.

236 VM/XA SP GCS Command and Macro Reference

Added Parameter

GTRACE

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this
instruction.

Chapter 11. Serviceability Macros 237

SDUMP

SDUMP ~ o

Request a Recording of the Contents of your Virtual Machine’s Storage
A dump is a recording of the contents of a virtual machine’s storage at a given
moment. Refer to the VM/XA SP CP Diagnosis Reference for information about
the dump viewing facility.

Use the SDUMP macro instruction to produce a dump of part or all of your virtual
machine’s storage.

The SDUMP macro instruction is available in standard, list, and execute formats.

The standard format of the SDUMP macro instruction is:

HDR="'dump descriptor'

HDRAD=dump descriptor address

[1abel] SDUMP .
} [, LIST=Tist address

,STORAGE=(start ,end)}

Parameters
HDR
Specifies a string of characters that you can use to describe the dump.

This character string is placed in the dump to help you to identify it quickly. ‘
This string can contain up to 100 characters and must be surrounded by single o
quotation marks.

HDRAD ‘
Specifies the address of a string of characters you stored previously that describe
the dump.

This character string is placed in the dump to help you to identify it quickly.

This string can contain up to 100 characters. The first byte at this address must
contain the hexadecimal length of the character string and no single quotation
marks are required.

You can write this parameter as an assembler program label or as register (2)
through (12).

STORAGE
Specifies the range of virtual storage addresses to be recorded in the dump.

Note: From the format illustration each pair of addresses must be separated by
a comma and enclosed in parentheses. You can specify more than one
range of addresses if you wish. Just be certain that each starting address
is less than its corresponding ending address.

LIST
Specifies the address of a list that contains one or more pairs of addresses. Each
pair of addresses in the list specifies a range of virtual storage addresses to be
included in the dump.

This list can contain up to 2049 different pairs of addresses, which can overlap \‘k J
each other. If they do, then CP will resolve two or more overlapping pairs into
one pair. ‘

238 VM/XA SP GCS Command and Macro Reference

Usage Notes

Examples

SDUMP

The high-order bit of the fullword containing the last ending address in the list
must be set to 1 to indicate the end of the list. All other high-order bits in the
list must be reset to 0.

You can write this parameter as an assembler program label or as register (2)
through (12).

e If both the STORAGE and LIST parameters are omitted from the SDUMP
instruction, then GCS assumes that all virtual storage in the machine is to be
recorded in the dump. This includes any discontiguous saved segments the
virtual machine may be using.

¢ It is important to understand the rules governing who receives the spool data file
containing the dump and what that file contains.

For security reasons, not every user is authorized to receive dumps containing
fetch-protected data. Those who are authorized are listed among the authorized
users at GCS build time. If a common dump receiver was specified at GCS
build time, then that individual receives the dump. Otherwise the issuer of the
SDUMP instruction receives the dump.

Bear in mind that if the person receiving the dump is not authorized to handle
fetch-protected data, that data will be omitted from the dump. However, all
requested non-fetch-protected data and private key 14 storage will be included in
the dump.

In the first example, a dump of the entire virtual machine’s storage is requested.
DUMPALL SDUMP HDR='ALL MY STORAGE'

The character string ALL MY STORAGE is to be placed in the dump for ready
identification. The dump is to be sent to the member of the virtual machine group
authorized to receive it. If no one is so authorized, then the dump will be sent to the
issuer of the instruction. Fetch-protected data will be included in the dump only if
the recipient is authorized to handle such data. DUMPALL is the label on this
instruction.

In the second example, a dump of certain portions of virtual storage is requested.
SDUMP HDRAD=(5) ,LIST=RANGES

The address of a string of characters describing the dump can be found at the
address in register 5. The first byte of register 5 must contain the length of the
character string, in hexadecimal. This character string is to be placed in the dump
for ready identification. A list containing at least one pair of addresses can be found
at the address associated with the label RANGES. Each pair of addresses in the list
specifies a range of virtual storage addresses to be included in the dump.

Presumably the high-order bit of the last ending address has been set to 1 to indicate
the end of the list.

Chapter 11. Serviceability Macros 239

SDUMP

Return Codes and Abend Codes 2 o
When this macro completes processing, it passes to the caller a return code in ¢

register 15. A

Return
Code Meaning

0 All requested areas have been included in the dump.

4 Only a portion of the requested areas was included in the
dump.

8 GCS was unable to produce a dump.

Abend Reason
Code Code Meaning

233 8 Invalid parameter list address.

The List Format

HDR='char string'

HDRAD=char string address

[1abel] SDUMP
}[,LIST=1ist address

, STORAGE=(start,end)jl

JMF=L o

This format of the macro instruction generates an in-line parameter list based on the
parameter values that you specify. However, this format generates no executable
code. Remember that you cannot specify any of the parameters using register
notation.

Added Parameter

MF=L
Specifies the list format of this macro instruction.

The Execute Format

HDR='char string'

HDRAD=char string address

[1abel] SDuMP
] [,LIST=Hst_ address

,STORAGE=(start,end)}

,MF=(E,address)

This format of the macro instruction generates code that executes the function, using
a parameter list whose address you specify.

240 VM/XA SP GCS Command and Macro Reference

Added Parameter

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this
instruction.

Chapter 11. Serviceability Macros 241

A
&,f

C

Chapter 12. QSAM and BSAM Data Management Service

Macros

CHECK (BSAM) . . . oo 244
CLOSE (BSAM/QSAM) oot ot 246
DCB (BSAM/QSAM) . . . o oo 249
DCBD (BSAM/QSAM) oot 256
GET (QSAM) . . o o oo 258
NOTE (BSAM) . . o oo 260
OPEN (BSAM/QSAM) . . .\ oo 262
POINT (BSAM) o oo 265
PUT (QSAM) oo oo 267
READ (BSAM) . . .o oot 269
SYNADAF (BSAM/QSAM)\ oo 272
SYNADRLS (BSAM/QSAM)ot 274
WRITE (BSAM) . . . o o oo 276

Chapter 12. QSAM and BSAM Data Management Service Macros 243

CHECK (BSAM)

CHECK (BSAM)

Test the Completion of a READ or WRITE Operation : :
Whenever you issue a READ or WRITE macro instruction, your task needs some
way to confirm that the I/O operation completed successfully.

Use the CHECK macro instruction immediately after each READ and WRITE
instruction to determine if and how the I/O operation was completed.

The format of the CHECK macro instruction is:

[Tabel] CHECK decb address

Parameter
decb address
Specifies the address of the data event control block (DECB) associated with the
READ or WRITE instruction you just issued.

The data event control block is created as part of the expansion of the READ or
WRITE macro. It describes the input or output “event” that you have asked to
take place. This control block is discussed in detail in the entries titled “READ
(BSAM)” on page 269 and “WRITE (BSAM)” on page 276.

You can write this parameter as an RX-type address or as register (1) through
(12).

Usage Notes
¢ The CHECK macro tests for errors in the last READ or WRITE operation
involving the specified DECB.

If you issue a READ instruction and the END-OF-FILE condition has been
raised, then the CHECK macro gives control to your end-of-file exit routine.
This is the routine whose address you specified via the EODAD parameter of
the DCB instruction. (If necessary, review the entry “DCB (BSAM/QSAM)” on
page 249.)

If you did not specify an end-of-file exit routine or an error occurred after you
issued a WRITE instruction, then GCS will give control to the error analysis
routine that you specified via the SYNAD parameter in the DCB instruction. If
you failed to specify an error analysis routine, then your task will terminate
abnormally.

¢ For each READ or WRITE instruction you issue you must also issue a CHECK
instruction. Moreover, you must issue the CHECK instruction immediately
after the READ or WRITE instruction with which it is associated. So, the
sequence

READ. . .READ...WRITE...WRITE...CHECK...CHECK...CHECK...CHECK
is incorrect. But, the sequence
READ. ..CHECK...READ...CHECK...WRITE...CHECK...WRITE...CHECK s

is correct. A

244 VM/XA SP GCS Command and Macro Reference

CHECK (BSAM)

* GCS does not support the MVS parameter DSORG on this macro instruction.
If you include it, then an error will occur.

Return Codes and Abend Codes

No return codes are generated.

Abend
Code

Meaning

001

The data control block (DCB) of the file in question
identified no SYNAD routine. Your task was terminated
abnormally.

00A

An invalid address appeared in the CHECK instruction,
the data event control block (DECB), or the data control
block (DCB).

Chapter 12. QSAM and BSAM Data Management Service Macros

245

CLOSE (BSAM/QSAM)

CLOSE (BSAM/QSAM)

Ci}x

Close a File with which Your Task has Finished

After a task has finished with a particular file, the file must be closed.

Use the CLOSE macro instruction to close a file that your task had previously
opened.

The CLOSE macro instruction is available in standard, list, and execute formats.

The standard format of the CLOSE macro instruction is:

(dcb address[,,dcb address ...])

[1abel] CLOSE

Parameter

Usage Notes

dcb address
Specifies the address of the data control block associated with your file. More
specifically, it is the address of the label on the DCB macro instruction

associated with your file. If necessary, review the entry titled “DCB
(BSAM/QSAM)” on page 249.

More than one file can be closed by a single CLOSE instruction. Note that a
double-comma is required to delimit each DCB address.

You can write this parameter as an RX-type address or as register (2) through

(12). NS

¢ First, the CLOSE macro restores the data control block associated with your file
to its original condition. That is, the original information you specified for the
file in the DCB macro instruction is restored.

The file is then “logically disconnected” from the main processor.

Finally, the input or output buffer that GCS set up for the file, when its DCB .)
was opened, is released. k.

* Only the task that opened the file can close it.

Often a file is being used by more than one task. If it is a BSAM file, then you
must issue a CHECK macro instruction for each data event control block
(DECB) associated with the file before you close it. A DECB is associated with
each of the file’s I/O events. There may be several DECBs associated with
output activity from several tasks. Therefore, you must make certain that all the
tasks have completed their output to the file before you close it. The CHECK
instruction confirms whether there are any outstanding output events pending
for the file in question, as from a WRITE macro instruction. If necessary,

‘review the entries titled “CHECK (BSAM)” on page 244 and “WRITE
(BSAM)” on page 276.

as DCBs, then you can specify a combination of both in the same CLOSE
instruction. GCS is able to distinguish the address of one from the address of
the other, as long as you separate each with a double-comma.

e If you have access method control blocks (ACBs) that you wish to close, as well (

\

246 VM/XA SP GCS Command and Macro Reference

CLOSE (BSAM/QSAM)

Return Codes and Abend Codes

(The CLOSE macro generates no return codes.
Abend
Code Meaning
014 An error occurred during the execution of the CLOSE
macro. You will receive a message explaining this further.

The List Format

[1abel] CLOSE [([dcb address][,,dch address ... 1)],MF=L

This format of the macro instruction generates a data management parameter list

7 based on the parameter values that you specify. However, this format generates no
(executable code. Remember that you cannot specify any of the parameters using
register notation.

The parameter list consists of a one-word entry for each DCB in the parameter list.
The high-order byte is reserved while the three low-order bytes contain the address
of a DCB. The end of the list is marked by setting the high-order bit of the last
entry to 1.

The length of the list generated by the list format of this instruction must be equal to
, the maximum length required by an execute format instruction that refers to the
(same list. A maximum length list can be constructed in one of two ways.

1. Issue the instruction using the list format with the maximum number of
parameters required by the execute format of the instruction that refers to the
same list.

2. Use an appropriate number of commas in the list format of the instruction to
obtain a list of the required size. For example,

CLOSE (9’!3””9)’MF=L
(' would create a list of five fullwords.
GCS assumes that any entries at the end of the list that are not referred to by the

instruction in the execute format were filled in by a previous instruction.

Added Parameter
MF=L
Specifies the list format of this macro instruction.

The Execute Format

[1abel] CLOSE [([dcb address][,,dcb address ...])],MF=(E,address)

This format of the macro instruction generates code that executes the function using
(a parameter list whose address you specify.

Chapter 12. QSAM and BSAM Data Management Service Macros 247

CLOSE (BSAM/QSAM)

Added Parameter
MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this
instruction.

248 VM/XA SP GCS Command and Macro Reference

A
Yoo

DCB (BSAM/QSAM)

(DCB (BSAM/QSAM)

Create a Data Control Block for One of Your Files
For a program to process a file via BSAM or QSAM, a data control block (DCB)
must be created for it. A DCB contains information that defines the characteristics
of the data in the file and describes the I/O device requirements for handling the
data.

Normally the DCB macro instruction is issued sometime after the FILEDEF
command is issued. The FILEDEF command provides similar information about
your file. Together, the FILEDEF command and the DCB macro instruction
provide all the information necessary to the data control block.!! For more
information on the FILEDEF command see “FILEDEF” on page 34.

) Use the DCB macro instruction to create a data control block for one of your files.
(' The format of the DCB macro instruction is:

[1abel] DCB [BLKSIZE=absolute expression][,DDNAME=1abel]
,DSORG=PS[,EODAD=address] [,EXLST=address]
[,LRECL=nnnnn]

,MACRF= [R ,RECFM= | VB
| w VBA
= RP FB
(WP FBA

GM F

GL v

PM | FA

PL VA

R[PI,W[P] u

UA

"1l e {M},P {M
(’ Lf L}

[,0PTCD=J] [,SYNAD=address]

Parameters
It is required that the DSORG and MACRF parameters be specified in the DCB
macro instruction. The other parameters may be supplied in one or more of the
following ways.

e Use of the DCB macro instruction.
e Use of the FILEDEF command.

¢ Given the physical characteristics of the file.

11 Tt is possible for the DCB macro instruction to provide all data for the data control block without the help of the
FILEDEF command.

Chapter 12. QSAM and BSAM Data Management Service Macros 249

DCB (BSAM/QSAM)

¢ - Direct insertion of a parameter’s value or attribute into the data control block

by your program. This is not too difficult, if you take advantage of the DCBD £ ™
macro instruction. Review the entry titled “DCBD (BSAM/QSAM)” on \{ W
page 256.

However, you must be careful to insert the value in the DCB in a timely fashion.
For example, it would be useless to insert the value of the DDNAME or the
EXLST after issuing the OPEN macro instruction, since that macro needs those
values to process correctly.

BLKSIZE
Specifies the maximum block length for the file, in bytes. In the case of
fixed-length, unblocked records, this parameter specifies the maximum individual
record length.

If your file contains variable-length records, then the value specified by this

parameter must include four extra bytes to accommodate the block descriptor

word (BDW). In such a case, you can write this parameter as-any number from

8 to 32756, plus four bytes for the BDW.12

If your file contains undefined-length records, then the field in the DCB
associated with this parameter (the DCBBLKSI field) can be filled in with the
exact value once it is known by your program. Alternatively, it can be specified
in the LENGTH parameter of a READ or WRITE instruction. If necessary,
review the entries titled “READ (BSAM)” on page 269 and “WRITE (BSAM)”

on page 276.
DDNAME
Specifies the name by which the file in question is known within your program.
This parameter corresponds exactly with the DDNAME parameter in the AN
FILEDEF command. w“. ./

You can write this parameter as any label of from one to eight alphameric
characters. The first character must be alphabetic or national.

DSORG=PS
Indicates that your file consists of physical sequential records.

Since GCS supports only physical sequential file processing, this parameter is
required.

EODAD
Specifies the address of a routine that is to receive control when the
Specifies the address of your program’s exit list. end of an input file is reached.

It is your responsibility to provide this routine. Obviously you are only required
to do so when the file, whose DCB you are creating, is an input file. You define
whether it is an input or output file in the MACRF parameter described below.

When GCS receives a request for input (for example, via a READ macro
instruction) and the subsequent CHECK macro instruction indicates that the
end of the file has been reached, then this EODAD routine automatically
receives control.

If this parameter is omitted and the END-OF-FILE condition is raised in an
input file, then control is given to the routine whose address you specify in the
SYNAD parameter, described below. If you omit both the EODAD and the

L

12 The OPEN macro simulation routine will not accept a BLKSIZE of less than eight.

250 VM/XA SP GCS Command and Macro Reference

DCB (BSAM/QSAM)

SYNAD parameters, and the END-OF-FILE condition occurs, then your task
terminates abnormally.

You can write this parameter as an RX-type address or as register (2) through

(12).

EXLST

Specifies the address of your program’s exit list.

This list contains the address(es) of one or more routines that you want executed
during each OPEN macro that you request. Review the entry titled “OPEN
(BSAM/QSAM)” on page 262.

If you specify this parameter, then it is the responsibility of your task to provide
and maintain this exit list. Moreover, your task must provide the routines to
which it refers. The list must begin on a fullword boundary, with each entry
therein comprising a fullword. The basic format of the exit list is:

1 Byte 3 Bytes

Code Routine 1’s address
Code Routine 2’s address
Code Routine n’s address

The code in the first byte of each word indicates the disposition of the exit
routine, whose address appears in the last three bytes. Table 8 shows the
meanings of these codes. Note that these are the only codes that have meaning
to GCS. Any others are ignored.

Table 8. Exit List Table Codes

Code Meaning

X'00' Inactive routine that is not to be processed.

X'05" Active routine that is to be processed.

X'80" The last routine in the list. It is considered inactive and is
not processed.

X'85* The last routine in the list. It is considered active and is
processed.

Just before the completion of each OPEN macro that you request, the exit list
table is searched, and each active routine is processed.

You can write this parameter as an RX-type address or as register (2) through

(12).

LRECL

In the case of fixed-length record files, this parameter specifies the length, in -
bytes, of each record. You can write this as a number from 1 to 32760.

In the case of variable-length record files, this parameter specifies the maximum
length of any record in the file. You can write this as a number from 1 to
32752, plus four bytes for the record descriptor word (RDW).

Chapter 12. QSAM and BSAM Data Management Service Macros 251

DCB (BSAM/QSAM)

It may happen that you omit this parameter in both the FILEDEF command
and the DCB instruction. If so, and if the file already exists, then the current
LRECL value is obtained from the actual length of the file’s records. However,
if your file is newly created, then its logical record length must be supplied in
one of the ways listed earlier. Otherwise it is considered an error.

MACRF

Specifies the type of macro instructions that you will use to process the file in
question. In effect, you use this parameter to define whether you will treat it as

* an input file or an output file. Moreover, you are stating what mode of data

transmission you will employ in moving data in to or out of the file.

R
-(BSAM) Specifies that the READ macro instruction will be used. Review
the entry titled “READ (BSAM)” on page 269.

W
(BSAM) Specifies that the WRITE macro instruction will be used. Review
the entry titled “WRITE (BSAM)” on page 276.

RP
(BSAM) Specifies that the READ and POINT macro instructions will be
used. Review the entry titled “POINT (BSAM)” on page 265.

Specifying the RP parameter gives you the added capability of using the
NOTE macro instruction. Review the entry titled “NOTE (BSAM)” on
page 260.

wP
(BSAM) Specifies that the WRITE and POINT macro instructions will be
used.

The WP parameter gives you the added capability of using the NOTE macro
instruction.

GM
(QSAM) Specifies that the GET macro instruction in MOVE mode will be
used. MOVE mode is defined in the entry titled “GET (QSAM)” on
page 258.

GL
(QSAM) Specifies that the GET macro instruction in LOCATE mode will
be used. LOCATE mode is defined in the entry titled “GET (QSAM)” on
page 258.

PM
(QSAM) Specifies that the PUT macro instruction in MOVE mode will be
used. MOVE mode is defined in the entry titled “PUT (QSAM)” on
page 267.

PL
(QSAM) Specifies that the PUT macro instruction in LOCATE mode will
be used. LOCATE mode is defined in the entry titled “PUT (QSAM)” on
page 267.

RECFM

Specifies the record format of your file.

For an existing file, the currently assigned record format is used unless another
is specified. For a new file whose DCB you are creating, the record format is
undefined, by default, unless one is specified.

252 VM/XA SP GCS Command and Macro Reference

£
AN

A

DCB (BSAM/QSAM)

Select from among the following record formats.

VB
Indicates that the records in your file are variable long, according to the
LRECL parameter. It also indicates that these records are to be blocked
according to the BLKSIZE parameter specified here or in the FILEDEF
command.

VBA
Indicates the same as the VB parameter but also indicates that your file
contains ASA control characters.

FB
Indicates that each record in your file is of a fixed length, according to the
LRECL parameter. Likewise, these records are to be blocked, according to
the BLKSIZE parameter as specified here or in the FILEDEF command.

FBA
Indicates the same as the FB parameter but also indicates that your file
contains ASA control characters.

Indicates that each record in your file is of a fixed length, according to the
LRECL parameter.

Indicates that the records in your file are variable long, according to the
LRECL parameter.

FA
Indicates that your file is composed of fixed-length records that contain
ASA control characters.

VA
Indicates that your file is composed of variable-length records that contain
ASA control characters.

Indicates that the record format of your file is undefined. If the RECFM
parameter is omitted, then the record format of the file is undefined, by
default.

UA
Indicates that the record format of your file is undefined. It also indicates
that your file contains ASA control characters.

OPTCD=J
Indicates that the first byte in the output data stream will be a 3800 table
reference character.

Such a character selects a particular character arrangement table for the
printing of the output data stream on a 3800 printing subsystem. You can
use this character with ANSI control characters, if you wish.

SYNAD
Specifies the address of your error routine that is to receive control when an
unrecoverable I/O error occurs.

Under BSAM, this SYNAD routine receives control when the CHECK
macro instruction is issued. Under QSAM, it receives control automatically
during the processing of the GET or PUT macro instruction.

Chapter 12. QSAM and BSAM Data Management Service Macros 253

DCB (BSAM/QSAM)

Usage Notes

If you provide no error routine and an unrecoverable I/O error occurs, then
your task terminates abnormally.

If you provide an error routine and an error occurs, then GCS automatically
saves your program’s registers and turns control over to your error routine.
You must design your error routine in such a way that it does not use the
register save area pointed to by register 13. This save area is for your
program’s registers. If your error routine needs a register save area, it must
construct and maintain one of its own.

Your error routine can issue the RETURN macro instruction, using the
address in register 14, to return control to GCS. If control returns to GCS,
then GCS returns control to the problem program, which can then proceed
as though no error occurred. If necessary, review the entry titled
“RETURN” on page 145.

You can write the SYNAD parameter as an RX-type address or as register
(2) through (12). Remember, your program can change the address in this
parameter anytime.

Table 9 shows the contents of the registers when your error routine receives
control.

Table 9. Contents of the Register when your Error Routine Receives Control

Register Bits Meaning

0 0-7 Reserved.

0 8-31 For BSAM, the address of the event control block.
For QSAM, these bits are all reset to 0.

1 0 The bit is set to 1 if the error was caused by an
input operation.

1 1 The bit is set to 1 if the error was caused by an
output operation.

1 2-7 Reserved.

1 8-31 The address of the data control block for the file in
question.

2-13 | 0-31 | The contents of the registers that existed before the
macro instruction was issued.

14 0-7 Reserved.

14 8-31 The address in the GCS supervisor to which control
will return after your error routine completes
processing.

15 0-7 Reserved.

15 8-31 The address of your error routine.

* The data control block for a BSAM or QSAM file is created during the
assembly of the problem program. The data supplied by the FILEDEF
command and the DCB macro instruction are brought together at execution
time to form one complete data control block. The physical characteristics on

254 VM/XA SP GCS Command and Macro Reference

£
s

DCB (BSAM/QSAM)

an existing disk file may also supply certain information. Among them, they can
supply all necessary data for the DCB.

The FILEDEF command and the DCB instruction may supply the value or
attribute for the same parameter. If the value or attribute expressed by the
FILEDEF command differs from that expressed by the DCB instruction, then
the latter will supersede the former.

Any READ or WRITE macro instruction issued by your program must be
tested for completion by the CHECK macro instruction. If necessary, review the
entry titled “CHECK (BSAM)” on page 244.

If you provide a list of exit routine addresses via the EXLST parameter,
remember that your program can dynamically alter the disposition of each exit
routine. Merely change the code in the first byte of the fullword containing the
routine’s address to indicate the desired disposition. Select from among the
codes listed in Table 8 on page 251.

Each of your exit routines must save the contents of register 14. The values in
registers 2 through 13 are saved by the GCS supervisor.

Your SYNAD routine can terminate in one of two ways:

— It can pass control to another routine in your program. For example, it
could pass control to a program that closes the file being processed.

- — It can return control to GCS, which in turn would return control to your

original program. Control would return to the instruction immediately
following the one that caused the error.

If you choose the latter course, you must follow these conventions for saving
and restoring registers:

1. When it receives control from GCS, your SYNAD routine must not use the
register save area pointed to by register 13. If necessary, use the
SYNADATF instruction to obtain the address of a register save area and
message buffer that your SYNAD routine can use.

However, your SYNAD routine must release both this register save area and
the message buffer, via the SYNADRLS instruction, when they are no
longer needed. If necessary, review the entries titled “SYNADRLS
(BSAM/QSAM)” on page 274 and “SYNADAF (BSAM/QSAM)” on

page 272.

2. Your SYNAD routine must preserve the contents of registers 13 and 14 as
passed to it by GCS. Depending upon your own requirements, it may also -
need to save the contents of registers 2 through 12. When control ultimately
returns to your original program, registers 2 through 12 will contain the
same values they contained when your SYNAD routine returned control to
GCS. GCS does not restore your program’s registers.

¢ Note that GCS does not support the MVS parameter LRECL =X on this macro

instruction. If you include it, then an error will occur.

Return Codes and Abend Codes

The DCB macro instruction generates no return codes and no abend codes.

Chapter 12. QSAM and BSAM Data Management Service Macros 255

DCBD (BSAM/QSAM)

DCBD (BSAM/QSAM) -

Get the Symbolic Name for Each Field in a Data Control Block

For a file to be of any use to you, a data control block (DCB) must be vc;?eated for
it. A DCB contains information that defines the characteristics of the data in the
file and describes the I/O device requirements for handling the data.

As was explained in the entry titled “DCB (BSAM/QSAM)” on page 249, there are
three ways of assigning a value to a field in a data control block.

¢ Via the DCB macro instruction.
¢ Via the FILEDEF command.

¢ Direct insertion of a parameter’s value or attribute into the data control block
by your program.

The DCBD macro instruction helps you with the third of these alternatives by
producing a road map of the data control block that your program can follow while
inserting certain values therein.

The DCBD macro instruction creates a dummy control section (DSECT) modelled
after a real data control block. Each field in this DSECT is assigned a symbolic
name. Each symbolic name can be used as a displacement in an assembler language
instruction to gain access to the corresponding field in the real data control block.

The format of the DCBD macro instruction is:

[1abel]

DCBD

[DSORG=[BS] [,PS][,Qs]]

Parameters

DSORG
Specifies the type of real data control block for which you want a DSECT
created. p

Note that data control blocks for BSAM files (BS parameter below) and QSAM W
files (QS parameter below) are constructed somewhat differently, though they do

have fields in common. Note also that the PS parameter, described below,

embraces the characteristics of both.

If you omit the DSORG parameter, then the DSECT will contain what is called
a “foundation block”. A foundation block contains fields that are common to
all three types of data control blocks but only those that are common.

You can specify one, two, or all three of the following parameters:

BS
Indicates that the data control block for which you want a DSECT created
is associated with a basic sequential access file.

PS
Indicates that the data control block for which you want a DSECT created .
is associated with a physical sequential access file. {M

256 VM/XA SP GCS Command and Macro Reference

Usage Notes

DCBD (BSAM/QSAM)

QS
Indicates that the data control block for which you want a DSECT created
is associated with a queued sequential access file.

To use the DSECT to find your way around the data control block, simply
assign the address of the DCB to a base register. Then, use the symbolic name
of a field in the DSECT as the displacement to the corresponding field in the
data control block.

You can use the same DSECT to insert data into more than one data control
block. Just assign another DCB address your base register.

Since you are the one inserting data into the data control block, you must be
certain that the data is inserted in a timely fashion. For example, it would be
useless to insert the value of the DDNAME or the EXLST after issuing the
OPEN macro instruction, since that macro needs those values to execute

properly.

Return Codes and Abend Codes

Check the DCBD macro expansion in your source listing for a complete list of the
symbolic names and their relative addresses.

The DCBD macro generates no return codes and no abend codes.

Chapter 12. QSAM and BSAM Data Management Service Macros 257

GET (QSAM)

GET (QSAM)

Obtain the Next Logical Record from a QSAM File
For a record in a QSAM data file to be processed, it must be transferred from its
- secondary storage device to main storage.

Use the GET macro instruction to obtain the next logical record of a QSAM file for
your program to process.

The format of the GET macro instruction is:

[1abel] GET dcb address[,area address]

Parameters
dcb address
Specifies the address of the data control block (DCB) associated with the QSAM
file your program is processing.

A DCB contains information that defines the characteristics of the data stored in
a file and describes the I/O device requirements for handling the data. You are
responsible for having created a DCB for the file in question via the DCB macro
instruction. If necessary, review the entry titled “DCB (BSAM/QSAM)” on
page 249.

You can write this parameter as an RX-type address or as register (1) through ;
(12). w7

area address
Specifies the address of a work area into which GCS will place the next logical
record.

This parameter is valid only if you are using the GET macro in MOVE mode.
Moreover, it is your responsibility to provide storage for this work area in your
program.

If you omit this parameter while operating in MOVE mode, then GCS assumes
the address of the work area is in register 0. Otherwise you can write this
parameter as an RX-type address, as register (0), or as register (2) through (12).

Usage Notes
e The GET macro operates in one of two modes, namely MOVE and LOCATE.
You declare which mode is to be used in obtaining records from a file when you
create its data control block via the DCB macro instruction.

MOVE MODE GCS moves the next logical record of the file directly into
the work area specified by the AREA ADDRESS
parameter. The system assumes that you have provided a
work area large enough to accommodate the largest record
that may emerge from the file. If your file comprises
variable-length records, then the work area must be large
enough to accommodate the largest record plus its record f
descriptor word. &

258 VM/XA SP GCS Command and Macro Reference

GET (QSAM)

When the record has been successfully obtained, GCS
returns the address of the work area in register 1.

LOCATE MODE GCS moves the next logical record of the file to an input

buffer. The system then places the length of the record in
the DCBLRECL field of the file’s data control block. It
then returns the address of the input buffer in register 1.

You may process the record in the input buffer or move it
to a work area, as you wish.

o GCS assumes that the file being processed has been properly opened using the
OPEN macro instruction. If necessary, review the entry titled “OPEN
(BSAM/QSAM)” on page 262. '

Return Codes and Abend Codes

The GET macro instruction generates no return codes.

Abend
Code

Meaning

005

Either an invalid address appears in the GET instruction,
or a required address parameter is missing.

Chapter 12. QSAM and BSAM Data Management Service Macros 259

1

| NOTE (BSAM)

NOTE (BSAM)

‘ Get the Relative Position of the Last Block Read or Written in a File

For many reasons, you may want to know the relative position of the last block you
read from or wrote in a BSAM file. You may want to save the location of one or
more of these blocks so that you can return to them at some later time.

The relative position of the block does not refer to its address on the disk or other
such device. Rather, it refers to the block’s position relative to the beginning of the
file of which it is a part.

Use the NOTE macro instruction to obtain the relative position of the last block you
processed in a BSAM file.

The format of the NOTE macro instruction is:

[1abel] NOTE

dcb address

Parameter

Usage Notes

dcb address

Specifies the address of the data control block (DCB) associated with the BSAM
file you are processing.

A DCB contains information that defines the characteristics of the data stored in
a file and describes the I/O device requirements for handling its data. You are
responsible for having created a DCB for the file in question via the DCB macro
instruction. If necessary, review the entry titled “DCB (BSAM/QSAM)” on
page 249.

You can write this parameter as an RX-type address or as register (1) through

(12).

Before you issue the NOTE instruction, you must confirm that the last I/O
operation was completed successfully. Use the CHECK macro instruction to
accomplish this. If necessary, review the entry titled “CHECK (BSAM)” on
page 244.

The NOTE macro returns the record id (or relative position) of the last block
read or written in register 1. This is the position of the record within the file
relative to the beginning of the file, not to the beginning of the secondary
storage device. The macro stores the record id in the following format:

NNNz
NNN represents the three-byte file system record number, and z, a byte of

zeroes. You must retain this value in a register or in virtual storage for future
reference.

You can use the NOTE and POINT macro instructions on any BSAM file. (If
necessary, review the entry titled “POINT (BSAM)” on page 265.) However,
you must inform GCS in advance of your intention to do so using the MACRF
parameter in the DCB macro instruction.

260 VM/XA SP GCS Command and Macro Reference

.

NOTE (BSAM)

Return Codes and Abend Codes

No return codes are generated.

Abend
Code

Meaning

00A

Either you specified an invalid address in the NOTE macro
instruction, or an invalid address exists in the data control
block associated with your file.

Chapter 12. QSAM and BSAM Data Management Service Macros

261

OPEN (BSAM/QSAM)

OPEN (BSAM/QSAM) —
.

Prepare a File for Processing
Before a program can use a file, they must be “logically connected” to each other.
That is, GCS must be told where the file is and what its characteristics are. In
general, this process is called “opening the file.”
Use the OPEN macro instruction to open a file and prepare it for processing.

The OPEN macro instruction is available in standard, list, and execute format.

The standard format of the OPEN macro instruction is as follows:

[1abel] OPEN
(dcb address, | (INPUT) |, ...)

(ouTPUT)

(UPDAT)

Parameters
dcb address
Specifies the address of the data control block associated with the file you want
to open. More specifically, it is the address of the label on the DCB macro
instruction associated with your file. If necessary, review the entry titled “DCB
(BSAM/QSAM)” on page 249.

You can write this parameter as an RX-type address or as register (2) through
(12).

INPUT
Indicates that your file is to be treated as an input file. Unless otherwise
specified, this parameter applies by default.

OUTPUT
Indicates that your file is to be treated as an output file.

You must specify this parameter if you are creating a new file.

UPDAT
Indicates that you intend to update an already existing file.

Usage Notes
¢ Use of the OPEN macro instruction to open a file assumes that the DCB macro
instruction has also been issued for that file.

¢ The OPEN macro prepares your file for processing, then “logically connects” it
to your program.

First, the information you supplied using the DCB macro instruction and the ”f o
FILEDEF command are merged into one data control block. For more L W
information on the FILEDEF command, see “FILEDEF” on page 34.

262 VM/XA SP GCS Command and Macro Reference

OPEN (BSAM/QSAM)

Where an existing file is concerned, if any information necessary to the data
control block is not provided by either of these sources, then it is taken from the
attributes of the file itself.

Later, the exit routines specified in the DCB instruction are executed and the
processing method of your file (INPUT, OUTPUT, or UPDAT) is designated.
After a few other details are taken care of, your file is ready for processing.

More than one file may be opened by a single OPEN instruction. Just be
certain that a comma delimits each entry in the list and that the entire list is
surrounded by parentheses.

When choosing from among the INPUT, OUTPUT, and UPDAT parameters,
be mindful of what was specified by the DCB instruction in the MACRF
parameter. In this respect, the OPEN and DCB instructions must be
compatible.

For example, if input macros were specified by the MACRF parameter, then the
INPUT parameter must be applied to the corresponding OPEN instruction.

Only the task that opened a file can close it.

To try to open a file that is already opened, with the same DCB, amounts to
issuing a NOP (NO OPERATION) instruction.

It is an error to open a file specifying a DCB address that is not really the
address of a data control block. The results of such an error are unpredictable.

If you have access method control blocks (ACBs) that you wish to open, as well
as DCBs, then you can specify a combination of both in the same OPEN
instruction. GCS is able to distinguish the address of one from the address of
the other, as long as you separate each with a comma.

Return Codes and Abend Codes

The OPEN macro generates no return codes.

The List Format

Abend

Code Meaning

013 An error occurred during the execution of the OPEN
macro. You will receive a message explaining this further.

[1abel]

OPEN

[([dcb address], |(INPUT) {,...)],MF=L
(OUTPUT)

(UPDAT)

This format of the macro instruction generates an in-line parameter list based on the
parameter values that you specify. However, this format generates no executable
code. Remember that you cannot specify any of the parameters using register
notation. Also, note that only the parameters listed above are valid in the list

format of this instruction.

Chapter 12. QSAM and BSAM Data Management Service Macros

OPEN (BSAM/QSAM)

Added Parameter

The parameter list consists of a one-word entry for each DCB in the parameter list.
The high-order byte is reserved while the three low-order bytes contain the address P
of a DCB. The end of the list is marked by setting the high-order bit of the last ;
entry to 1.

The length of the list generated by the list format of this instruction must be equal to
the maximum length required by an execute format instruction that refers to the
same list. A maximum length list can be constructed in one of two ways.

1. Issue the instruction using the list format, with the maximum number of
parameters required by the execute format of the instruction that refers to the
same list.

2. Use an appropriate number of commas in the list format of the instruction to
obtain a list of the required size. For example,

OPEN (’9”””’)!MF=L
would create a list of five fullwords.

GCS assumes that any entries at the end of the list that are not referred to by the
instruction in the execute format were filled in by a previous instruction.

MF=L
Specifies the list format of this macro instruction.

The Execute Format

[1abel]

OPEN

[([dcb address], |(INPUT) |,...)],MF=(E, }address)

\

(OUTPUT) (1)

(UPDAT)

Added Parameter

This format of the macro instruction generates code that executes the function using
a parameter list whose address you specify.

Note that only the parameters listed above are valid in the execute format of this
instruction.

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the macro.

You can add or modify values in this parameter list by specifying them in this
instruction.

264 VM/XA SP GCS Command and Macro Reference

POINT (BSAM)

POINT (BSAM)

Return to a Specified Block within a File

As described in the entry titled “NOTE (BSAM)” on page 260, the NOTE macro
instruction will give you the relative position of the last block read from or written
in a file. You save one or more such locations with the intention of returning to
them at some later time.

Use the POINT macro instruction to return to one of the locations in a BSAM file
that you saved via the NOTE instruction. If you then issue a READ or WRITE
macro instruction, it is the block to which you have returned that will be read or
written. (If necessary, review the entries titled “READ (BSAM)” on page 269 and
“WRITE (BSAM)” on page 276.)

The format of the POINT macro instruction is:

[1abel] POINT

dcb address,block address

Parameters

Usage Notes

dcb address
Specifies the address of the data control block (DCB) associated with the BSAM
file you are processing.

A DCB contains information that defines the characteristics of the data stored in
a file and describes the I/O device requirements for handling its data. You are
responsible for having created a DCB for the file in question via the DCB macro
instruction. If necessary, review the entry titled “DCB (BSAM/QSAM)” on
page 249.

You can write this parameter as an RX-type address or as register (1) through
(12).

block address
Specifies the address containing the record id (or relative position) of the block
that is to be processed next.

The record id must be stored in a fullword on a fullword boundary.

You can write this parameter as an RX-type address, as register (0), or as
register (2) through (12).

e Before you issue the POINT instruction, you must confirm that the last I/O
operation was completed successfully. Use the CHECK macro instruction to
accomplish this. If necessary, review the entry titled “CHECK (BSAM)” on
page 244.

e The POINT macro processes no file blocks. It merely positions a pointer to the
block that is to be processed next.

e The NOTE macro returns the record id (or relative position) of the last block
read or written in register 1. This is the position of the record within the file
relative to the beginning of the file, not to the beginning of the secondary
storage device. The macro stores the record id in the following format:

Chapter 12. QSAM and BSAM Data Management Service Macros 265

| POINT (BSAM)

| ‘ NNNz
‘ v NNN represents the three-byte file system record number, and z, a byte of
zeroes. Presumably you retained this value in a register or in virtual storage.

¢ Usually, the low-order byte of the record id is reset to 0. This indicates that the
block to be affected by the next I/O instruction is the one to which the record id
points. If you set the low-order byte of the record id to 1, then you indicate that
the block following the block to which the record id points is to be processed.

e If you are processing an output BSAM file, then you should issue one last
WRITE instruction before you close the file. This ensures that any altered block
is written in the file.

Return Codes and Abend Codes

No return codes are generated.

Abend

Code Meaning

00A You specified an invalid address in the POINT macro
instruction.

266 VM/XA SP GCS Command and Macro Reference

PUT (QSAM)

PUT (QSAM)

Place the Next Logical Record in a QSAM File

Use the PUT macro instruction to write the next logical record in a QSAM file.

The format of the PUT macro instruction is:

[1abel] PUT

dcb address[,area address]

Parameters

Usage Notes

dcb address

Specifies the address of the data control block (DCB) associated with the QSAM
file your program is processing.

A DCB contains information that defines the characteristics of the data stored in
a file and describes the I/O device requirements for handling its data. You are
responsible for having created a DCB for the file in question via the DCB macro
instruction. If necessary, review the entry titled “DCB (BSAM/QSAM)” on
page 249.

You can write this parameter as an RX-type address or as register (1) through
(12).

area address

Specifies the address of a work area from which GCS will obtain the next logical
record it will write in the file.

This parameter is valid only if you are using the PUT macro in MOVE mode.
Moreover, it is your responsibility to provide storage for this work area in your
program.

If you omit this parameter while operating in MOVE mode, then GCS assumes
the address of the work area is in register 0. Otherwise you can write this
parameter as an RX-type address, as register (0), or as register (2) through (12).

The PUT macro operates in one of two modes, namely MOVE and LOCATE.
You declare which mode is to be used in writing records in a file when you
create its data control block using the DCB instruction.

MOVE MODE GCS moves the next logical record to be written in the file
from the work area specified by the AREA ADDRESS
parameter to an output buffer. From there, the system
moves the record to the secondary storage device containing
the QSAM file in question. It then returns the address of
the output buffer in register 1.

Chapter 12. QSAM and BSAM Data Management Service Macros 267

PUT (QSAM)

e GCS assumes that the file being processed has been properly opened via the
OPEN macro instruction. If necessary, review the entry titled “OPEN

LOCATE MODE

again.

(BSAM/QSAM)” on page 262.

Return Codes and Abend Codes

The PUT macro instruction generates no return codes.

The moment you issue the PUT instruction, while operating
in LOCATE mode, GCS writes in the QSAM file the last
record you built in the output buffer. It then returns the
address of the next available output buffer to you in register
1. It is at this address where your program builds the next
record to be written in the file. The system does not write
this record in the file until you issue the PUT instruction

Abend
Code

Meaning

005

Either an invalid address appears in the PUT instruction,
or a required address parameter is missing.

268 VM/XA SP GCS Command and Macro Reference

w

READ (BSAM)

(READ (BSAM)

Using BSAM, Get a Block of Data from a File
When obtaining input from a file, your application is responsible for blocking and
unblocking the data.

Use the READ macro instruction to retrieve a block of data from a BSAM disk or
reader file and place it into a specified area of your virtual storage.

The READ macro instruction is available in standard, list, and execute formats.

The standard format of the READ macro instruction is:

[1abel] READ
decb name,SF,dcb address,area address [, 1 ength}
. IS 1

Parameters
decb name
Specifies the label that you want applied to the data event control block.

A data event control block (DECB) is created within the expansion of the
READ macro. It contains information that describes the input “event” you

(want to effect. The DECB will be defined in detail later. For now, suffice to
say that the DECB, as it expands within the macro, requires a label which you
must supply. You will use this label to access the DECB itself.

You must write this parameter as an assembler program label.

SF
Indicates that a normal, sequential, forward retrieval access method will be
employed in obtaining the block from your file.

(Since this is the only method of extracting data from a BSAM file that GCS
supports, the SF parameter is required and must be written exactly as shown.

dcb address
Specifies the address of the data control block (DCB) associated with the BSAM
file you are processing.

A DCB contains information that defines the characteristics of the data stored in
a file’and describes the I/O device requirements for handling its data. You are
responsible for having created a DCB for the file in question via the DCB macro
instruction. If necessary, review the entry titled “DCB (BSAM/QSAM)” on
page 249.

You can write this parameter as an RX-type address or as register (1) through
(12).

area address
(: Specifies the address in your virtual storage at which you want the input block
placed.

It is your program’s responsibility to provide and manage this area of storage.

Chapter 12. QSAM and BSAM Data Management Service Macros 269

READ (BSAM)

You can write this parameter as an assembler program label or as register (2)
through (12).

length

Usage Notes

Specifies the number of bytes you want extracted from your file.

GCS begins extracting the data starting with the next available record, as
indicated by the data control block (DCB) associated with your file. This data
will be placed in virtual storage starting at the address specified by the AREA
ADDRESS parameter.

You can write this parameter as any number from 1 to 32760.

Indicates that the number of bytes to be extracted from your file will be the
number found in the DCBLRECL field of the file’'s DCB.

This is the same number you specified previously for the LRECL parameter in
the FILEDEF command or the DCB macro instruction. If necessary, review the
entry titled “FILEDEF” on page 34, and the entry titled “DCB ‘
(BSAM/QSAM)” on page 249 in this book.

Control may return to your program before the READ macro completes
processing. Therefore, you must issue the CHECK macro instruction after each
READ instruction to be certain that the latter executed properly. By using the
CHECK instruction you confirm whether the input from your file has succeeded,
failed, or is incomplete. If necessary, review the entry titled “CHECK (BSAM)”
on page 244,

If you specified the UPDAT parameter in the OPEN instruction that opened
your file, then both the READ and WRITE macro instructions must use the
same DECB name. If necessary, review the entries titled “OPEN
(BSAM/QSAM)” on page 262 and “WRITE (BSAM)” on page 276.

Input to the READ Macro

The data event control block is created as part of the READ macro expansion. It
defines the input “event” using the following format.

Offset Contents
0(0) ECB
4 4) Type of I/O request, thus:
0000 1000 ---> READ
6 (6) Length of the block being extracted
8(8) Address of the data control block (DCB)
12 (C) Address in your virtual storage where the block is to be
placed

16 (10) Zeroes

Note that the address of the logical input block is placed in the DECB at 12 (C). It
is through this address that you manipulate the data in the block.

270 VM/XA SP GCS Command and Macro Reference

£ ™
N

READ (BSAM)

Return Codes and Abend Codes

The READ macro generates no return codes.

Abend

Code Meaning

001 An I/O error occurred but no SYNAD routine address was
found in the file’s DCB.

005 Either you specified an invalid address, or an address was
missing.

010 You specified a parameter not supported by GCS.

The List Format

[1abel] READ
decb name,SF[,dcb address][,area address] [,length] ,MF=L
R] S 1

This format of the macro instruction generates an in-line DECB based on the
parameter values that you specify. However, this format generates no executable
code. Remember that you cannot specify any of the parameters using register
notation.

Added Parameter

MF=L
Specifies the list format of this macro instruction.

The Execute Format

[1abel] READ

decb name,SF[,dcb address][,area address] [,length] JMF=E
. 1 S 1

This format of the macro instruction generates code that executes the function. The
access method uses the DECB whose name you specify as the parameter address.

Added Parameter

MF=E i
Specifies the execute format of this macro instruction.

Chapter 12. QSAM and BSAM Data Management Service Macros 271

SYNADAF (BSAM/QSAM)

SYNADAF (BSAM/QSAM)

Obtain a Message and an Error Code that Explain an I/O Error
During input or output, errors sometimes occur. When they do, one of two things
happens:

Your task terminates abnormally,
Or, if you have provided one, your SYNAD routine receives control.

A SYNAD routine is a program that you provide to analyze the cause of any
permanent I/O error your task encounters. When you define the data control block
(DCB) associated with a file, you can also identify a SYNAD routine for that file.
If necessary, review the entry titled “DCB (BSAM/QSAM)” on page 249.

You can write your SYNAD routine to determine the cause and type of the error by
examining:

The contents of the registers at the moment of error,

The data event control block (DECB) associated with the I/O “event” that
caused the error (this applies only to BSAM files),

The exceptional condition code,

The standard status and sense indicators.

Often it is simpler to issue the SYNADAF macro instruction, which will return a
message and error code to you describing the I/O error.

The format of the SYNADAF macro instruction is:

[Tabel] SYNADAF ACSMETH= iBSAM i[,PARM1=(register)][,PARM2=(register)]
(QSAM
Parameters
ACSMETH
Specifies the access method you are using on the file in question. Specify either
BSAM or QSAM.
PARMI1

Specifies the number of the register containing the information that was in
register 1 when your SYNAD routine received control.

When the error occurred, GCS gained control. After it attempted to recover
from the error, it passed control to your SYNAD routine. In so doing, GCS
passed the following information to your routine in register 1.

¢ Status bits,

* Flag bits, »

¢ The address of the data control block (DCB) associated with the file being
processed when the error occurred.

If you moved this data to another register, then write the number of that
register, surrounding it with parentheses. If you omit this parameter, then GCS
assumes that you left this data in register 1.

272 VM/XA SP GCS Command and Macro Reference

N

PARM2

SYNADAF (BSAM/QSAM)

Specifies the number of the register containing the information that was in
register 0 when your SYNAD routine received control.

When GCS passed control to your SYNAD routine, it also passed certain status
and control information in register 0.

If you moved the data to another register, then write the register number,
surrounding it with parentheses. If you omit this parameter, then GCS assumes
that you left this data in register 0.

Usage Notes

¢ The SYNADAF macro returns the address of a buffer to you in register 1. This

buffer contains a 120-byte message, describing the result of its error analysis.

The format of this message is:

Bytes

Contents

0-43

Blank. You can add your own comments to the message in
this field, if you wish.

44-33

CSISER306S INPUT ERROR nnn ON ddname
OR
CSISER307S OUTPUT ERROR nnn ON ddname

nnn specifies an I/O error code. Consult the VM/XA SP
System Messages and Codes Reference for an explanation
of messages CSI306S or CSI307S. ddname specifies the
name of the file in question.

84-119

Blank

The message describing the SYNADAF macro’s error analysis is a
variable-length record containing EBCDIC data. If you wish, you can have this
message printed.

Return Codes and Abend Codes

No return codes are generated.

Abend
Code

Meaning

144

The high-order byte of register 15 should have contained
X'02' or X'03' on entry to the SYNADAF SVC routine.
It did not.

244

The caller provided an invalid save area address in register
13.

344

Either the DCB address or the DCB DEB address was
invalid.

444

The DECB address was invalid.

Chapter 12. QSAM and BSAM Data Management Service Macros

273

SYNADRLS (BSAM/QSAM)

SYNADRLS (BSAM/QSAM)

Release the Message Buffer and Save Areas Created by the SYNADAF

Macro
When you issue the SYNADAF macro instruction from your SYNAD routine, a
message buffer, parameter save area, and register save area are creat