

--------- -------- - ---- - - -----_.---_.-

(

(

(

... _------

Virtual Machine/Extended Architecture™
System Product

Guide to Saved Segments

VM /XNM SP Release 2

SC23-0457 -0

First Edition (Jnne 1989)

This edition applies to Release 2 of the Virtual Machine/Extended Architecture System Product (VM{XA SP)
Licensed Program 5664-308. Changes are made periodically to the information herein; before using this
publication in connection with the operation of IBM systems, consult the latest IBM System/370, 30xx, 4300,
and 9370 Processors Bibliography, GC20-OOO1, for the editions that are applicable and current.

Publications are not stocked at the address given below. Requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to International Business Machines, Department 52Q/MS 511, Neighborhood
Road, Kingston, N.Y. 12401. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

Virtual Machine/Extended Architecture and VM{XA are trademarks of the International Business Machines
Corporation.

C Copyright International Business Machines Corporation 1989. All rights reserved.

J

)

()

(Preface

Audience

Saved segments allow you to make efficient use of storage and improve virtual
machine performance.

This manual is for:

• System administrators responsible for planning the migration of programs that
operate in a saved segment from a VM/SP (or VM/SP HPO) environment to a
VM/XA SP environment.

• System programmers responsible for installing licensed programs or other
applications in saved segments.

• Application programmers responsible for developing programs that operate from
saved segments.

Prerequisite Knowledge
Before reading this book, you should be somewhat familiar with VM/XA SP, and
you should read VM/XA SP General Information, GC23-0362.

(Related Publications

(

VM/XA System Product:

Licensed Program Specifications, GC23-0366

Features Summary, LY27-8058

CP Command Reference, SC23-0358

Real System Operation, SC23-0371

Planning and Administration, GC23-0378

CP Diagnosis Reference, LY27-8054

CP Programming Services, SC23-0370

CMS Application Program Development Guide, SC23-0355

CMS Application Program Development Reference, SC23-0402

CMS Application Program Conversion Guide, SC23-0403

Preface iii

Contents

(

Chapter 1. Introduction to Saved Segments 1
Why Use Saved Segments? 1

Using Saved Segments - An Overview 2
Types of Saved Segments 3

Shared and Exclusive Segments 5

Chapter 2. VMfXA SP Segment Support 7
What Did 370-XA Architecture Introduce? 7

Architected Segment Size 7
What Did VM/XA SP Introduce? 7

Dynamic Saved Segment Definition 7
CP Segment Packing 8
The CMS SEGMENT Command and SEGMENT Macro 10

Migrating Saved Segments to a 370-XA Environment 11
Migration Inhibitors 11
Converting DMKSNT Macros to DEFSEG Commands 15
Summary - How Saved Segment Support Differs in VM/XA SP 19

Chapter 3. System Programmer Considerations 21
Planning Considerations 22

Planning Where to Save a Saved Segment 24
Creating Saved Segments 29

Using the DEFSEG Command 29
Using the SA VESEG Command 35
Keeping Backup Copies of Saved Segments 40
Purging Saved Segments from the System 40
Displaying Information about Saved Segments 41
Displaying Which Users Have Loaded a Saved Segment 42

Installing Applications in Saved Segments 44
Tips for Installing Your Applications in Saved Segments 44
Fitting Applications Below the 16MB Line 44
Using Segment Packing to Conserve Storage Space 45
Overlaying Your Applications 48

Chapter 4. Application Programmer Considerations 55
Using Saved Segments from Your Virtual Machine 55

Where Saved Segments Reside 55
Saved Segment Restrictions 56
Differences between SEGMENT and DIAGNOSE X '64' 56
Reserving Space for Saved Segments
Loading Saved Segments
Purging Saved Segments from Your Virtual Machine
Displaying Information about Saved Segments
Saved Segment Storage Protection
Tips for Using Saved Segments in a Virtual Machine
Using DIAGNOSE X' 64'

57
57
57
58
58
58
62

Chapter 5. Defining Saved Segments - Examples 65
Defining DCSSs 65
Defining a DCSS with Both Shared and Exclusive Page Ranges 66
Defining Overlaid DCSSs 66
Defining a Segment Space 66

Contents V

Defining Overlaid Segment Spaces 67
Adding a Member to an Existing ~gment Space 68
Replacing an Existing Member of a Segment Space 69
Setting Up Your Storage Layout 76

Index ... 81

vi Guide to Saved Segments

c··\··-~
; I

'\

j

(" Chapter 1. Introduction to Saved Segments

(

(

(

This chapter gives you an overview of saved segments. You may not need to read this if you are already
familiar with segment terminology.

This chapter tells you:

• What a segment is

• What a saved segment is

• Why saved segments are useful

• How to create saved segments

• The different types of saved segments you can define.

A segment (also called an "architected segment") is a I-megabyte portion of real
storage defined by 370-XA architecture.

A saved segment is a range of pages of virtual storage you can define to hold data or
reentrant code (programs).

Why Use Saved Segments?
Defining frequently used data (such as licensed programs) as saved segments
provides several advantages:

• Because several users can access the same saved segment, real storage use is
minimized.

• Using saved segments decreases the I/O rate and DASD paging space
requirements, thereby improving virtual machine performance.

• Saved segments attached to a virtual machine can be outside its virtual storage.
This allows the virtual storage of the virtual machine to be used for other
purposes.

Saved segments allow code or data in an area of virtual storage to be saved and
assigned a name. A saved segment can then be dynamically attached to and
detached from a virtual machine.

Programs residing within the page ranges of a saved segment that are reenterable can
be shared by concurrently operating virtual machines. This allows you to place code
that is required only some of the time in a saved segment and load it into a virtual
machine when needed.

Note that a saved segment differs from a named saved system (NSS) in that it is
loaded using a DIAGNOSE X'64' rather than an IPL.

Chapter 1. Introduction to Saved Segments 1

Using Saved Segments - An Overview
The following list summarizes what you need to do to access code or data from
within a saved segment.

1. Create the code or data that you want to define as a saved segment.

2. Define the saved segment. To do this:

a. Use the CP DEFSEG command. The DEFSEG command creates a
"skeleton" (class S) system data file (SDF) for the saved segment you
specify. The saved segment cannot be accessed until you issue a
corresponding SA VESEG command.

b. Load the code or data to be saved into the location indicated by the ranges
you specify on the DEFSEG command.

c. Use the CP SAVESEG command to save the saved segment. The
SA VESEG command writes the contents of the saved segment to spool
space on DASD, and changes a skeleton me to an active (class A or R) me
which can then be accessed by a virtual machine.

For more details on creating saved segments, see Chapter 3, "System
Programmer Considerations" on page 21.

3. Load the saved segment into a virtual machine. To use a saved segment in
CMS:

• Use the SEGMENT LOAD command or SEGMENT LOAD macro to load
the saved segment into storage. (If a saved segment is to reside within a
virtual machine's address space, you should consider using the SEGMENT
RESERVE command to reserve space before you issue the SEGMENT
LOAD command.)

• Or, use the CP interface, DIAGNOSE X '64', to load the code or data into
the saved segment.

The CMS SEGMENT command and macro provide a CMS interface to the
DIAGNOSE X '64' instruction.

For more information on accessing saved segments, see "Using Saved Segments
from Your Virtual Machine" on page 55.

Notes:

1. An application programmer generally:

• Creates the code or data that resides in a saved segment

• Provides code in the form of an installation EXEC which loads the data to
be saved into the page ranges indicated on the DEFSEG command

• Provides code in the form of an EXEC or a CMS module which invokes
either SEGMENT LOAD or DIAGNOSE X '64' .

2. A system programmer generally defines saved segments from a class E virtual
machine. (DEFSEG and SAVESEG are class E CP commands; therefore, to
define and save a saved segment, you need class E command privileges.)

2 Guide to Saved Segments

./ '\

',- /

j

(

(

Types of Saved Segments
The types of saved segments in Virtual Machine/Extended Architecture™ System
Product (VM/XA TM SP) are discontiguous saved segments, saved segment spaces, and
member saved segments.

A discontiguous saved segment (DCSS) is a saved segment that occupies one or more
architected segments. A DCSS begins and ends on a megabyte boundary, and is
accessed by name. Figure 1 shows several DCSSs defined in the 5-megabyte to
9-megabyte range of architected segments. Each DCSS contains an application
(represented by PPA, PPB, PPC, and PPD). By application, we mean a licensed
program or other shared code or data.

9MB

8MB

7MB

6MB

5MB

t

Discontiguous Saved Segments
(DCSSs)

DCSS

DCSS

DCSS

DCSS

Architected Segment Ranges

Figure 1. Discontiguous Saved Segments

A segment space is a saved segment composed of up to 64 member saved segments
referred to by a single name. A segment space occupies one or more architected
segments. It begins and ends on megabyte boundaries. A user with access to a
segment space has access to all of its members.

A member saved segment is a saved segment that begins and ends on a page
boundary. It belongs to up to 64 segment spaces and is accessed either by its own

Virtual Machine/Extended Architecture and VM/XA are trademarks of the International Business Machines
Corporation.

Chapter 1. Introduction to Saved Segments 3

name or by a segment space name. When a virtual machine loads any member of a
segment space,the virtual machine has access to all members of the space. If .. "
However, the virtual machine should load the other members before trying to use~)
them. Figure 2 shows a segment space defined in the 5-megabyte to 8-megabyte
range of architected segments. This segment space contains several member saved
segments, which are used to hold applications.

Segment Space

9MB

8MB

PPB

7MB PPC

PPD

PPE
6MB

PPF

PPA
5MB

Figure 2. Member Saved Segments

Member
Saved

Segments

Defining Saved Segments: Use the CP DEFSEG command to define a saved
segment and thereby set aside storage for applications. By omitting the SPACE
operand on the DEFSEG command, you define a discontiguous saved segment
(DCSS). A DCSS is at least one megabyte in size. The beginning address of a
DCSS is rounded down to a megabyte boundary, and the ending address is rounded
up to a megabyte boundary. Only one application can reside in each DCSS.

By including the SPACE operand on the DEFSEG command, you define a segment
space. Like a DCSS, the beginning address of a segment space is rounded down to a
megabyte boundary, and the ending address is rounded up to a megabyte boundary.
A segment space is at least one megabyte in size.

A segment space differs from a DCSS in the following ways:

• Segment spaces allow different, nonoverlapping saved segments to occupy the
same architected segment.

• A segment space is composed of up to 64 member saved segments (also called
members). A member is a licensed program or application, or a component
thereof, that you run under VM/XA SP in a segment space. A member begins
and ends on a page boundary, and is able to span a megabyte boundary. A
member can belong to more than one segment space.

4 Guide to Saved Segments

(j

(-

(

(

(

9MB

8MB

7MB

6MB

5MB

t
Figure 3.

• A segment space is created dynamically when you define member saved
segments.

A segment space allows you to pack licensed programs into the same architected
segment. Segment packing reclaims the address ranges that are unused within
DCSSs, and makes more licensed programs available to virtual machines. Saved
segment packing is most useful for programs that are used by Systemj370 mode
virtual machines, which are restricted to 16MB of virtual storage. To avoid the CP
overhead involved when segments are packed, programs used by 370-XA mode
virtual machines, which can address up to 999MB of virtual storage, should be
installed in DCSSs above the 16MB line. Figure 3 shows the relationship between
DCSSs and a packed segment space.

Discontiguous Saved Segments
(DCSSs)

DCSS

DCSS

DCSS

DCSS

Architected Segment Ranges

9MB

8MB

7MB

6MB

5MB

Relationship between DCSSs and a Packed Segment Space

Segment Space

PPB

PPC

Member
PPD Saved

Segments

PPE

PPF

PPA

Shared and Exclusive Segments
You can specify that a program or application be placed in a shared segment, an
exclusive segment, or a segment having both shared and exclusive areas. However, a
saved segment having both shared and exclusive areas cannot have both areas within
the same I-megabyte architected segment. Each I-megabyte architected segment must
be defined entirely as shared or entirely as exclusive. For an example of defining a
saved segment that has both shared and exclusive areas, see "Defining a DCSS with
Both Shared and Exclusive Page Ranges" on page 66. When you define a program
in a shared saved segment, a virtual machine accessing it receives a shared copy of
the program. When you define a program in an exclusive saved segment, a virtual
machine accessing it receives its own copy of the program.

Chapter 1. Introduction to Saved Segments 5

o

'\

/

c

(~- Chapter 2. VM/XA SP Segment Support

("

'.,'

This chapter explains segment and saved segment support in VM/XA SP. It also discusses the differences
between the way saved segments work in 370-XA architecture and the way they work in System/370
architecture.

This chapter tells you:

• What aspects of saved segments are unique to 370-XA architecture and to VM/XA SP

• What you should be aware of when you migrate your applications from a System/370 environment to
a 370-XA environment.

What Did 370-XA Architecture Introduce?
370-XA architecture introduced a larger size of architected segments.

Architected Segment Size
The differences in the size of segments in 370-XA architecture can be summarized as
follows:

1 379-XA segment = 1MB (256 pages)

1 System/379 segment = 64KB (16 pages)

1 379-XA segment = 16 System/379 segments

This size difference can cause problems when you migrate from a System/370
environment to a 370-XA environment. One of these problems is that only 16
architected segments are available in VM/XA SP to a System/370 mode virtual
machine, whereas 256 architected segments are available in VM/SP. Therefore, there
are fewer segments available for your System/370 applications in VM/XA SP.

What Did VM/XA SP Introduce?
The changes introduced to segments by VM/XA SP are:

• Dynamic segment definition

• CP segment packing

• The SEGMENT command and macro (new with CMS 5.5).

Dynamic Saved Segment Definition
VM/XA SP allows you to define (or redefine) a saved segment without IPLing the
system. You define a saved segment with the DEFSEG command, and save it with
the SA VESEG command.

The ability to define a saved segment with out re-IPLing allows you to install a new
version of an application while the old version is still being used. Once the new

Chapter 2. VM/XA SP Segment Support 7

,.------

version is installed and saved, users who access the application receive the new
version. When all users accessing the old version release it, the old version is
purged.

Classes. of Saved Segments: Each saved segment you define is maintained in a
system data file that has a specific ID and class. The class associated with this file
can be:

A, indicating an active saved segment.

R, indicating the saved segment is active and restricted.

S, indicating the saved segment is a skeleton and is not active.

P, indicating the saved segment is in a pending purge state, meaning the saved
segment is about to be purged.

When you define a saved segment with the DEFSEG command, a class S (skeleton)

()

system data file is created. The file only becomes an active file (class A or R) when ,/ "
you issue a corresponding SA VESEG command. The SA VESEG command copies /
the code or data included within the page ranges specified on the DEFSEG
command to the associated system data file. The file then' is considered active. Only
active saved segments can be loaded by a virtual machine.

Member and Segment Space Directories: The system data file associated with a
member saved segment contains a segment space directory identifying the segment
spaces to which the member belongs. Similarly, a segment space has its own
directory of all its members. For more information on system data files and segment
space directories, see "DEFSEG Command Functional Description" on page 32 and / '\
"SA VESEG Command Functional Description" on page 36. " ~

For more information on defining saved segments, see "Creating Saved Segments"
on page 29.

CP Segment Packing
To alleviate the problem of having fewer architected segments, 370-XA architecture
introduced segment packing. Segment packing allows you to conserve storage by
placing more than one application (a licensed program or other code or data) into
an architected segment. Consider the applications PPA, PPB, and ppc. Figure 4
on page 9 shows how these programs are placed in storage in System/370
architecture. It also shows how they would have to be placed in storage in 370-XA
architecture if segment packing was not possible. SR indicates a shared-read saved
segment.

8 Guide to Saved Segments

. '-.
)

()

(

](A ArchHected Segments Applications 370 Archltected Segments

PPC

16 Pages

PPB

4 Pages

1MB

PPA PPA PPA } ~K.
12 Pages

Figure 4. Storing Programs Without Segmeilt Packing

Without segment packing, a great deal of storage would be wasted.

Figure 5 on page 10 shows the same applications placed into 370-XA storage with
segment packing. which reclaims the storage that otherwise would not be used.

Chapter 2. VM/XA SP Segment Support 9

1MB

XA Archltected Segments
with Segment Packing

PPA

Applications 370 Archllected Segments

PPC

16 Pages

PPB

4 Pages

PPA PPA } MKB

12 Pages

Figure 5. Storing Programs With Segment Packing

For more information on segment packing, see "Using Segment Packing to Conserve
Storage Space" on page 45. .

The CMS SEGMENT Command and SEGMENT Macro
CMS 5.5 and later releases provides the SEGMENT command, the SEGMENT
macro, and the QUERY SEGMENT command to make it easier to load and
manage saved segments. The basic formats and functions of these are as follows.
(For the complete syntax, see VM/XA SP CMS Command Reference or VM/XA SP
CMS Application Program Development Guide.)

• SEGMENT command:

10 . Guide to Saved Segments

SEGMENT RESERVE - Reserves a space for segments and, optionally,
specifies the name of the saved segment to be loaded into the space. This
space is a "hole" you can create within a virtual machine's address space.
Creating a space for a segment:

./

/\,

" ./

'\

/

. (

(~

Allows you to ensure that virtual machines can load saved segments in
the storage they specify
Eliminates the possibility of saved segments overlaying or being overlaid
by portions of eMS.

SEGMENT LOAD - Reserves a space for segments (if one is not already
reserved) and loads a saved segment into it.

SEGMENT PURGE - Purges a saved segment. (SEGMENT PURGE also
releases the storage spaces that were created by SEGMENT LOAD.)

SEGMENT RELEASE - Releases the storage held by a saved segment.

• SEGMENT macro:

SEGMENT FIND - Returns the starting and ending addresses of the saved
segment.

SEGMENT LOAD - Reserves a space for segments (if one is not already
reserved) and loads a saved segment into it .

SEGMENT PURGE - Purges a saved segment. (SEGMENT PURGE also
releases the storage spaces that were reserved by SEGMENT LOAD.)

• QUERY SEGMENT command - Returns information about spaces reserved
for segments and saved segments that were loaded using the SEGMENT
command or macro.

For more information on using the SEGMENT command and macro, see "Using
Saved Segments from Your Virtual Machine'; on page 55.

Migrating Saved Segments to a 370-XA Environment
This section discusses some important considerations for migrating saved segments
from a System/370 environment to a 370-XA environment.

Migration Inhibitors
The factors that may cause problems when you migrate your saved segments to
370-XA architecture are:

• The eMS nucleus size

• The way eMS allocates storage

• Applications that require exclusive write segments

• Applications with VM/SP sensitivity.

Chapter 2. VM/XA SP Segment Support 11

eMS Nucleus Size
In VMfXA SP, the eMS 5.5 nucleus is approximately 275 pages in size, and ties up
two architected segments. Figure 6 shows that eMS resides in all of segment E and
part of segment F. (However, you cannot use the rest of segment F for any other
products.) In VM/SP HPO, the eMS 4.0 nucleus occupies approximately 126 pages,
or half a megabyte. It ties up only the upper half of segment F, as shown below. -
Therefore, there is more room for applications under VM/SP HPO than there is with
VMfXA SP.

CMS 5.5 Nucleus on VM/XA SP
with 1 MB Archltected Segments

eMS 4.0 Nucleus on VM/SP HPO
with 64KB Archltected Segments

CMS

i--------JoIt_---FOOOOO----.

1MB CMS

1..-____ ---".._--- EOOOOO ---...

Figure 6. eMS 5.5 Nucleus Size and Location

12 Guide to Saved Segments

---- -- ---~

o

\ ,

(

(

(

eMS Storage Allocation
The way eMS allocates storage at initialization time is another factor to consider
when you are migrating to VM/XA SP. When eMS is IPLed from the default
location in a virtual machine of 14MB or more, the upper portion of segment D is
used to load control blocks, as shown in Figure 7. The remainder of this segment
should generally not be used for any saved segments. For information on loading
eMS at a lower address so that you can use segment D, see "Fitting Applications
Below the 16MB Line" on page 44. VM/SP HPO, on the other hand, uses only a
64KB portion of storage for control blocks.

CMS 5.5 Nucleus on VM/XA SP
with 1 MB Architected Segments

CMS 4.0 Nucleus on VM/SP HPO
with 64KB Architected Segments

eMS

After eMS Initialization

r-----------~~-------FOOOOO--------.

eMS

t----------jl+-------EOOOOO -------.

After eMS Initialization

1MB

+-------- 000000 -----.

Figure 7. VM/XA SP Storage Allocation

Applications Requiring Exclusive Write Segments
Some applications that execute in a saved segment have to be defined in an exclusive
write segment. Since each I-megabyte architected segment must be defined entirely
as shared or entirely as exclusive, an application that requires only one page of
exclusive write storage must reside in a separate segment from any applications
requiring shared storage. In Figure 8 on page 14, the applications PPA, PPB, and
PPC all are defined in shared (SR) saved segments.

Chapter 2. VM/XA SP Segment Support 13

1MB

XA Archltected Segments
with Segment Packing

Figure 8. Exclusive Write Segments

Applications 370 ArchUected Segments

PPD

1 Page

PPC

16 Pages

PPB

4 Pages

PPA

12 Pages

These applications therefore can be packed into one architected segment. PPD,
however, is defined in an exclusive write (EW) segment, and must be placed in a
separate architected segment. .

PPD encompasses only one page of storage, but because it requires an exclusive
write segment, the remainder of the segment (255 pages) cannot be used for any
applications that are defined in a shared segment. However, you can pack other
exclusive write saved segments into this segment.

This problem is not as severe in System/370 architecture, since the segment sizes are
smaller. When PPD is loaded into a separate segment in System/370 architecture,
only 15 pages of storage are unused.

14 Guide to Saved Segments

/' '\

/

'\
)

'''--)

o

(~

. ('

(

(

Applications with VM/SP Sensitivity
The installation procedures for some applications require the attachment of a saved
segment. To use this type of installation procedure with VMfXA SP, you will need
to make sure an active saved segment is available. In VMfXA SP, you can only
attach an active saved segment.

For example, the installation EXECs DCSSGEN and SAVEFD, which install the
HELP and CMSINST saved segments, use certain VM/SP interfaces. VM/SP and
VM/SP HPO allow a skeleton file to be loaded, while VMfXA SP does not. To
avoid problems when you install the HELP and CMSINST saved segments:

1. If you are installing the saved segment for the first time, or if you are changing
the page ranges associated with the saved segment:

a. Issue the DEFSEG and SA VESEG commands for the saved segment to
create a "dummy" version. This gives you the empty saved segment
required by the installation procedures .

b. Issue the DEFSEG command again. This gives you the skeleton file
required by VMfXA SP to create an active saved segment.

2. If you are not changing the page ranges associated with the saved segment, just
issue the DEFSEG command to create a skeleton file. (Since the saved segment
exists, you already have an active saved segment.)

For examples of updating the HELP and CMSINST saved segments, see "Updating
the HELP Saved Segment" on page 74.

Converting DMKSNT Macros to DEFSEG Commands
In VM/SP and VM/SP HPO, you define saved segments during system initialization
using a system names table (DMKSNT). In VMfXA SP, you define saved segments
while the system is running using CP commands. This section tells you how you can
convert your DMKSNT macros to CP DEFSEG commands.

Converting your DMKSNT to DEFSEG commands helps you determine where your
existip,g applications fit in a 370-XA environment. Applications that are overlaid in
a System/370 environment can usually be overlaid in a 370-XA environment.

Because of the differences between VMjSP HPO and VMfXA SP and because of
other factors - for example, the size of your applications may be larger with
VMfXA SP - you must completely remap your installation's shared storage. This
remapping, however, is a one-time effort.

Chapter 2. VM/XA SP Segment Support 15

----~--- -"---.--------

Suppose that you have the following entry for the DMKSNT:

NAMESYS SYSNAME=SFMASS00

SYSPGCT=144,
SYSPGNM=(212S-2271},
SYSHRSG=(133,134,135,136,137,13S,139,140,141},
SYSVOl=volid,
SYSSTRT=(4e,e7} ,
SYSSIZE=576K,
VSYSRES=IGNORE
VSYSAOR=IGNORE

To translate the information in this entry to definitions for the DEFSEG command, ('\
follow the steps in this list. It will show you how to obtain the equivalent DEFSEG ,~ /
command for the above DMKSNT entry.

The equivalent command for the preceding entry is:

OEFSEG SFMAssee S00-SSF SR

See "Using the DEFSEG Command" on page 29 for the full syntax of the DEFSEG
command.

1. Extract the name on the SYSNAME parameter to use as dcssname on the
DEFSEG command. Tllis is the name given to the segment. In the DMKSNT
entry, this is entered as:

SYSNAME=SFMASS00

In VM/XA SP, this same segment name is entered as:

OEFSEG SFMASSee

2. Convert the decimal value of SYSPGCT to hexadecimal. It is recommended
that you use a hexadecimal calculator or conversion table to make the
hexadecimal conversions.

The result tells you how many pages the program needs (in hexadecimal).

In the example, the result would be X' 90' , meaning that the program requires
X'90' (4KB) pages of storage. If all pages were in the same segment, the page
range would be X'O' to X'8F' within the chosen segment. Be sure to count
page 0 as the first page. In the DMKSNT entry, this is entered as:

SYSPGCT=144

In VM/XA SP, X'90' pages are required. The page range may be X'OO' to
X' 8F' within the chosen segment.

3. Divide the decimal value of SYSPGCT by 16.

The result tells you how many 64KB segments the program needs in VM/SP
HPO.

16 Guide to Saved Segments

(

(

In the example, the result would be 9, meaning that the program requires nine
64KB-segments. In the DMKSNT entry:

SYSPGCT=144

To convert this for VMjXA SP:

144 divided by 16 equals 9

The program needs nine 64KB segments. This information is used later in the
DEFSEG command definition.

4. Convert both decimal values of the SYSPGNM parameter to hexadecimal
values.

Use the hexadecimal values to define the starting and ending pages and relative
location of the segment in VM/SP HPO.

In the example shown, 2128 is X' 850'. The likely place to locate this program
might be to start it on page X' 0' in segment 8. (If you use segment 8 for
CMSVSAM, this new segment will overlay CMSVSAM.) Round down to the
nearest segment boundary. The ending page is X '8DF' (X '850' plus X '8F'
pages). Count page 0 as the first page. In the DMKSNT entry, this is entered
as:

SYSPGNM=(2128-2271)

Converting the values for VM/XA SP:

2128 = X'850' 2271 = X'8DF'

In VM/XA SP, this is entered as:

DEFSEG SFMASS00 800

(You will use the ending page value later in the DEFSEG command definition.)

5. Look for the SYSHRSG parameter. If present, all the 64KB segments listed are
to be shared by users. The first letter of the mode operand will be S. Count the
number of segments listed singly or within a segment range. Compare the count
to the result of SYSPGCT.

If the count equals the result of SYSPGCT, all storage is shared. When the
count is less than the result of SYSPGCT, you must figure out which pages and
how many pages of storage must be put in an exclusive segment or segments.
The first letter of the mode operand is an E.

Another way to determine the first letter of the mode operand is to multiply the
beginning segment number by 16 (the number of pages in a 64KB segment) and
then multiply the ending segment number by 16 and add 15 (pages 0-15 of the
last segment). Compare the two results to the decimal values for SYSPGNM:

• When your results are the same as the values in SYSPGNM, all segments
are shared.

• When your results do not match the values in SYSPGNM, the segments
outside your results are exclusive.

In the example, th~re are nine segments listed as shared; 9 is the result of
dividing SYSPGCT by 16, so all segments defined for SFMASSOO will be
shared. In the DMKSNT entry, this is entered as:

SYSHRSG=(133,134,135,136,
137,138,139,140,141)

Chapter 1. VMiXA SP Segment Support 17

To convert this for VM/XA SP:

9 segments
133 x 16 = 212S
141 x 16 = 2256 + 15 = 2271

In VM/XA SP, the equivalent statement is:

DEFSEG SFMAssee Se0-SSF Sm

The m in the above example is the second letter of the mode operand (either R,
E, or N). This will be discussed below.

If the example had SYSHRSG = (133,134,135,136,137,138), six segments would
be shared; the remaining three segments wouid be exclusive and would have to
be placed in the next 1MB segment. Each segment of SYSHRSG represents
X' 0' to X "F' pages, so the shared portion would be the first X' 60 I pages
(pages X I 0 I to X I SF') of the lower segment, and X' 30' pages would be the
first pages in the next segment (pages X' 0' to X' 2F "). The page range might be
X' 800' to X '85F' for shared code and X' 900' to X' 92F' for the exclusive
code. In the DMKSNT entry, this is entered as:

SYSHRSG=(133,134,135,136,137,13S)

To convert this for VM/XA SP:

6 segments
133 x 16 = 2128
138 x 16 = 220S + 15 = 2223

In VMjXA SP, the equivalent statement is:

DEFSEG SFMASS00 800-85F Sm 900-92F Em

6. Look for the PROTECT parameter. When PROTECT=ON or when the
parameter is missing (the default is ON), the second letter of the mode operand
will be R (for read-only). When PROTECT = OFF, the second letter of the
mode operand will be W (for read/write access). Al1 exclusive segments should
have W as the second letter. In the DMKSNT entry:

The PROTECT parameter is missing

For VMjXA SP, this means that all pages are shared read-only. In VMjXA SP,
the equivalent statement is:

DEFSEG SFMASS00 S00-88F SR

In the preceding example with both shared and exclusive segments, you would
assign R to the shared segment because there was no PROTECT parameter, but
W to the exclusive segment. In the DMKSNT entry:

The PROTECT parameter is missing

For VM/XA SP, shared pages are read-only and exclusive pages are read/write.

In VMjXA SP, the equivalent statement is:

DEFSEG SFMASS00 800-85F SR 900-92F EW

tf-\
i,t_J

)

7. Look for the RCVID operand. If present, add the RSTD operand to the
DEFSEG command. When you want to restrict access to the program, you
might want to add the RSTD operand. You would also want to add the RSTD
operand when a person will load the segment using DIAGNOSE X '64' with the
LOADNSHR function code. Access to a restricted segment requires that the C
user have directory authorization via the NAMESAVE directory statement. If
you want to restrict access to the program in the example, you would add RSTD

18 Guide to Saved Segments

(~

. (

(

to the DEFSEG command. Suppose the following were entered in the
DMKSNT entry:

RCVID=userid

In VMfXA SP, the equivalent statement would be:

OEFSEG SFMASS00 800-88F SR RSTO

8. The following parameters of the DMKSNT entry are not applicable to a
DEFSEG command in VMfXA SP: SYSVOL, SYSSTRT, SYSSIZE,
VSYSRES, VSYSADR, SYSCYL, SYSBLOK, USERID, and SAVESEG.

Summary - How Saved Segment Support Differs in VM/XA SP
Although the basic concept is the same, the saved segment support in VMfXA SP
differs from the saved segment support in VM/SP HPO. Table 1 summarizes the
differences .

Table 1. How Saved Segment Support Differs in VM/XA SP

VM/SP HPO Saved Segment Support VM/XA SP Saved Segment Support

You define saved segments during You define saved segments while the
system initialization using a system system is running using CP
names table (DMKSNT). commands.

Storage is comprised of 64KB Storage is comprised of 1MB
segments, each containing 16 pages of segments, each containing 256 pages
4KB storage. of,4KB storage.

You can store only one licensed You can store several licensed
program in each 64KB segment. The programs in one or more 1 MB
licensed program must be stored on a segments as long as you do not store
64KB boundary. both shared code and nonshared

(exclusive) code in the same 1MB
segment. Each licensed program must
be stored on a page boundary.

You define the ranges of licensed You define the ranges of licensed
programs in decimal values. Messages programs in hexadecimal values.
and responses are in decimal. Messages and responses are in

hexadecimal.

To prevent overlaid saved segments, a To prevent overlaid saved segments, a
saved segment must be outside the saved segment must be loaded via the
address space of the virtual machine SEGMENT command or macro; or,
that loads the saved segment. the saved segment must be outside the

address space of the virtual machine
that loads the saved segment.

You can attach a saved segment once You can only attach an active saved
it is defined in DMKSNT. segment (one that has been defined,

installed, and saved).

You can resave the contents of an You must redefine a saved segment
existing saved segment without before you resave information into it.
redefining it as long as you are not
changing the page ranges.

Chapter 2. VM/XA SP Segment Support 19

------.----~-----

When converting to VM/XA SP, you should maintain the DMKSNT file on the
VM/SP HPO SYSRES in case you need to back off to VM/SP HPO. The VM/XA ,1-"\
SP saved segments and saved systems are kept in system data files and cannot be \. . ..!
transferred to VMjSP HPO using SPT APE. (You can move files between VM/XA
SP systems using SPTAPE.)

o
20 Guide to Saved Segments

(" Chapter 3. System Programmer Considerations

.('

(

(

('"

"

This chapter presents information that a system programmer needs to plan for and install saved segments.
It is divided into three sections:

1. "Planning Considerations" on page 22 tells you:

• Where to and where not to save a saved segment

• How to plan for saved segments based on virtual machine size

• How to plan for saved segments based on Systemj370 mode and 370-XA mode.

2. "Creating Saved Segments" on page 29 tells you how to:

• Use the DEFSEG and SAVESEG commands to create saved segments

• Keep backup copies of saved segments

• Purge saved segments from the system

• Display information on saved segments.

3. "Installing Applications in Saved Segments" on page 44 tells you how to:

• Load applications into saved segments

• Pack segments to conserve storage

• Overlay applications

• Redefine saved segments.

In this chapter and those that follow, these acronyms are used to refer to licensed
programs (and other applications). Consult the VMjXA SP Licensed Program
Specifications for more current information on licensed programs.

• APL 2 refers to A Programming Language 2 Release 3 (program No. 5668-899)

• AS refers to Application System Version 1 Release 5 Modification Levell
(program No. 5767-032)

• DWj370 refers to DispiayWritej370 Version 1 Release 2 (program No.
5664-370)

• DCF refers to Document Composition Facility Version 1 Release 3 Modification
Levell (program No. 5748-XX9)

• FORTRAN refers to VS FORTRAN Version 2 Release 3:

- Compiler, Library, and Interactive Debug (Program No. 5668-806)
- Library (program No. 5668-805).

• GAMjSP refers to Graphics Access MethodjSP Release 2 (program No.
5668-978)

• GCS refers to the group control system virtual machine supervisor

• GDDM refers to GDDM/VMXA Version 2 Release 2 (Program No. 5684-007)

• GDDM/graPHIGS refers to GDDMjgraPHIGS Release 3 Modification Level 2
(program No. 5668-792)

Chapter 3. System Programmer Considerations 21

• GDDM/PGF refers to GDDM/Presentation Graphics Facility Version 2 Release
1 (Program No. 5668-812)

• ISPF refers to Interactive System Productivity Facility for VM/XA Version 2
Release 2 (Program No. 5684-014)

• ISPF/PDF refers to Interactive System Productivity Facilityf Program
Development Facility for VM/XA Version 2 Release 2 (Program No. 5664-285)

• PROFS® refers to IBM Professional Office System Version 2 Release 2
Modification Level 2 (Program No. 5664-309) including the PROFS Application
Support Feature and the PROFS Personal Computer Support Feature in
System/370 mode only

• QMF refers to Query Management Facility Version 2 Release 2 (Program No.
5668-AAA)

• SQL refers to SQL/DS Version 2 Release 1 (Program No. 5688-004)

• TIF refers to The Information Facility Program Offering Version 2 (Program
No. 5798-DYF).

Note: Later versions, releases, and modifications of the above-listed programs are
supported unless explicitly stated otherwise.

Planning Considerations
In planning for saved segments, it is important that you consider the following.
These planning tips apply to both saved segments and the applications you install in
saved segments. By an application, we mean a licensed program or other shared
code or data.

1. Know your applications and their requirements. Take the following into
account:

• Make sure you are aware of the prerequisites and corequisites of the
applications you will be installing. One program may require the use of two
others. You should make a list of all the applications your installation uses
and any dependencies they have on other products. This information can be
found in the application's installation manual or in the Memo to Users that
is shipped on the installation tape.

• Know which applications are not required to run together. You may be able
to overlay these products by having them run in separate saved segments
defined in the same address range. A map of your DMKSNT ASSEMBLE
file can help you determine which programs overlap in your current
environment. For more information, see "Overlaying Your Applications"
on page 48.

• Know how many pages of storage each saved segment requires.

• Know in what mode the application operates. Under VM/XA SP, these
modes are possible:

System/370 compatibility mode
The application runs in a System/370 mode virtual machine. This
implies the application runs under the 16MB line.

PROFS is a registered trademark of the International Business Machines Corporation.

22 Guide to Saved Segments

(-'\
')

.(,

(

370-XA toleration mode
The application can run in a 370-XA mode virtual machine without
taking advantage of 31-bit addressing. It can also run in a System/370
mode virtual machine. In either case, this type of application runs
under the 16MB line, but in a 370-XA mode virtual machine the
application can call programs that reside above the 16MB line.

370-XA exploitation mode
The application can run above the 16MB line in a 370-XA mode virtual
machine and can exploit 31-bit addressing. It can also run below the
16MB line in a System/370 mode virtual machine or a 370-XA mode
virtual machine.

Note: In this book, Systemj370 mode is also referred to as "370 mode".
Also, "XA mode" refers to both 370-XA toleration mode and 370-XA
exploitation mode.

• Consider the type of storage this program requires: exclusive-read or
exclusive-write storage cannot be placed in the same segment as shared-read
or shared-write storage. When a program requires three pages of
exclusive-write storage and eight pages of shared-read storage, the program
will require parts of two segments.

• Determine if the program has storage location dependencies.

2. Know your users and their product requirements:

• You may not be able to supply every application that your users require. If
that is the case, determine what programs are the most essential.

• Products that are used concurrently need to be available at the same time
and should not overlay each other.

• Know if any national languages are required for a product.

• Decide on an average virtual machine size for your users. This will help you
when you install saved segments. For example, suppose a typical user at
your installation needs a 4-megabyte virtual machine. Based on this, you
should install saved segments from the 4-megabyte line on up. (Be aware,
however, of where eMS and other system-related saved segments are loaded.
This is discussed in "Planning for Segments Based on Systemj370 or 370-XA
Mode" on page 26.)

• If a set of applications executes in 370-XA toleration or exploitation mode,
you may want to have users of these applications run XA mode virtual
machines. For an application that runs in 370-XA exploitation mode,
consider defining two saved segments: one above the 16MB line (for XA
users) and one below (for 370 users). You can only do this if the application
can be called using two different names.

• Specific users may have unique product requirements. For example, a user
might have FORTRAN programs that interface with GDDMjVMXA and
GDDMjPGF. In this case, all of these programs have to be available to
this user, so they should not be defined in saved segments that overlay each
other.

By gathering the above information, you develop a set of rules and guidelines that
your installation needs to follow. Once you establish these guidelines, planning for
saved segments becomes a matter of moving your applications around until they fit
together without breaking any of the guidelines.

Chapter 3. System Programmer Considerations 23

For a sample storage layout for a given set of applications, see "Setting Up Your
Storage Layout" on page 76.

Planning Where to Save a Saved Segment
To avoid defining more than one saved segment in the same address range, consider
the following:

• The size of a virtual machine that will access a saved segment

• Whether the virtual machine runs in System/370 mode or 370-XA mode.

Planning for Saved Segments Based on the Size of a Virtual Machine
Assuming a saved segment is active, whether the virtual machine can load the
information in the saved segment depends on:

• Where the saved segment is located

• The size of the virtual machine.

For users with a virtual machine size less than or equal to 16 MB, eMS requires the
uppermost megabyte of the virtual machine. Because of this, if a saved segment
resides just below the 8MB line, a 2MB or 4MB virtual machine can use it; an 8MB
virtual machine can not. A 9MB or greater virtual machine can use it if the saved
segment is loaded with the SEGMENT command or macro. If the saved segment is
just below the 5MB line, an 8MB virtual machine can use it but a 5MB virtual
machine can not.

You should plan for saving segments based upon the most frequently used virtual
machine size at your installation (such as the default size in the directory entry). If
most users in your system run with 4MB of virtual machine storage, placing all
saved segments above the 4MB line avoids collisions.

Users with a VMDSSIZE (virtual machine size) that conflicts with saved segments
should not have a problem unless they try to use the saved segment using
DIAGNOSE X' 64' . (The SEGMENT LOAD command, however, should not
present any problems.) If users need to use DIAGNOSE X'64', they can make their
virtual storage size either larger or smaller and re-IPL. This may, of course, cause a
conflict with a different saved segment.

Where eMS is Loaded: When you IPL eMS, it initializes an internal page
allocation table at a location determined by the size of the virtual machine. eMS
cannot reserve a space for a saved segment at the location of this table. The
following sections describe how you can avoid collisions between the page allocation
table and saved segments.

Saved Segments above 16MB: For virtual machines larger than 16MB, eMS
always places the page allocation table at the 16MB line. The formula for
determining the size of the table is:

table size = VMDSSIZE + 1

where:

table size is measured in pages

VMDSSIZE is measured in megabytes

For example, for a 999MB virtual machine, eMS allocates a lOOO-page table. For a
64MB virtual machine, eMS allocates a 65-page table.

24 Guide to Saved Segments

/\

j

o

(

.(

(

To determine the address where you can safely define segment spaces, add the
storage required for the page allocation table (rounded up to the nearest megabyte)
to 16MB. The following table shows the results:

Safe Address for
Defining Segment

VMDSSIZE (MB) Table Size (Pages) Spaces (MB)

16 through 255 17 through 256 17

256 through 511 257 through 512 18

512 through 767 513 through 768 19

768 through 999 769 through 1000 20

Storage Configuration for a CMS Virtual Machine Greater Than 16MB: Figure 9
illustrates the location of the page allocation table for a virtual machine greater than
16MB.

VMDSSIZE
Free storage: also

available for
saved segments

Page allocation table
16MB

CMS nucleus
NUCALPHA

Free storage: also
available for

saved segments

Transient area

Free storage
Below 16MB

DMSNUC

Figure 9. Storage Configuration for a CMS Virtual Machine Greater Than 16MB

Saved Segments below 16MB: If a virtual machine is less than 16MB, the page
allocation table extends downward from VMDSSIZE or NUCALPHA, whichever is
smaller. (NUCALPHA is the starting address of the CMS nucleus.) If CMS is a
saved system starting at the 14MB line and is IPLed in an 8MB virtual machine, the
page allocation table would end at the 8MB line. If the same saved system was
IPLed in a 2MB virtual machine, the end of the allocation table would be at 2MB.
In a 16MB virtual machine, the end of the table would be at 14MB because
NUCALPHA is less than VMDSSIZE.

Storage Configuration for a CMS Virtual Machine Less Than 16MB: Figure 10 on
page 26 shows the location of the page allocation table for a virtual machine less
than or equal to 16MB. The left half of the figure shows the storage configuration
when VMDSSIZE is greater than NUCALPHA; the right half shows the storage
configuration when VMDSSIZE is less than NUCALPHA.

Chapter 3. System Programmer Considerations 25

VMDSSIZE
Free storage

NUCOMEGA (if vmdssize > NUCOMEGA)

CMS nucleus
NUCALPHA

Page allocation table

Free storage: also
available for

saved segments

Transient area

Free storage
Below 16MB

DMSNUC

NUCOMEGA~ ________________ -,

I CMS nucleus
NUCALPHA ~ ________________ ~

VMDSSIZE

Virtual address
range available

for saved segments

Page allocation table

Free storage: also
available for

saved segments

Transient area

Free storage
below 16MB

DMSNUC

Figure 10. Storage Configuration for a CMS Virtual Machine Less Than 16MB

Planning for Segments Based on System/370 or 370-XA Mode
For programs that operate in System/370 mode, 16 segments are available: segments
X'O' through X'F'. For programs that operate in 370-XA mode, 999 segments are
available: segments X'O' through X'3E6'.

In Figure 11 on page 27, you can see the default locations for System/370 segments;
optional segments have the segment name within parentheses. Three columns on the
right are provided for planning the layout of segments for your installation.

For programs that operate in 370-XA mode, 999 segments may be available:
segments X' 0' through X' 3E6 '. CMS and the optional segments occupy the same
segments as they do in System/370 storage. Unless otherwise defined, CMS occupies
segments 0 (EW), E, and F (both SR). A portion of another segment is used for a
work area and page allocation table. The location of this megabyte depends upon
the size of the user's virtual machine and the location of the CMS nucleus. For a
further explanation, see "Saved Segments above 16MB" on page 24 and "Saved
Segments below 16MB" on page 25;

Although programs may be 370-XA capable, this does not mean they can be loaded
above the 16MB line. Check the installation instructions for each product that you
will install in your 370-XA system; note any restrictions about the location at which
to load the program.

In Figure 12 on page 28, you can see the locations for default segments in XA
mode; optional segments have the segment name within parentheses. The columns
on the right are provided for you to plan the layout of segments for your
installation. For examples of storage layouts containing various applications, see
"Setting Up Your Storage Layout" on page 76.

26 Guide to Saved Segments

/ '\

")

(

.(

(

(

16M

(F) FOO

EOO

DOO

COO

BOO

AOO

900

800

700

800

500

400

300

200

100

(0)000

Note:

II' I

OMS OMSXA

(HELP)(SR) (HELP)(SR)
(CMSINST)(SR) (CMSINST)(SR)

(CMSVSAM)(SR) (CMSVSAM)(SR)
(CMSAMS)(SR) (CMSAMS)(SR)
(CMSBAM)(SR)
(CMSDOSi(SRi 19~:~~l(<:~l
(CMSVSAM)(EW) (CMSVSAM)(EW)
(CMSAMS)(EW) (CMSAMS)(EW)

OMS CMSXA

eMS may use part of the DOO segment for a work area and page allocation table. For more
information, see "Tips for Installing Your Applications in Saved Segments" on page 44.

Figure 11. Storage Planning Worksheet for Systenl/370 Mode

Chapter 3. System Programmer Considerations 27

(3E6) 3E600

1200

1100

(10) 1000

I 11\

(F) FOO

CMS CMSXA

EOO

DOO

(HELP)(SR) (HELP)(SR)
(CMSINST)(SR) (CMSINST)(SR)

coo
(CMSVSAM)(SR) (CMSVSAM)(SR)
(CMSAMS)(SR) (CMSAMS)(SR)

BOO
19~~g~~1(~~1 !g~~~~~l(~~l
(CMSVSAM){EW) (CMSVSAM)(EW)
(CMSAMS)(EW) (CMSAMS)(EW)

AOO

900

800

700

800

500

400

300

200

100

CMS CMSXA

(0)000

Note: eMS may use part of the DOO segment for a work area and page allocation table. For more
information, see "Tips for Installing Your Applications in Saved Segments" on page 44.

Figure 12. Storage Planning Worksheet for 370-XA Mode

28 Guide to Saved Segments

,/

\~ j

o

C:

Creating Saved Segments
This section describes how to set up saved segments into which you can later install
applications.

To create a saved segment, you must:

1. Issue the CP DEFSEG command (DEFSEG and SA VESEG are class E CP
commands). The DEFSEG command creates a "skeleton" (class S) system data
file for the saved segment you specify. The saved segment cannot be accessed
until you issue a corresponding SA VESEG command.

2. Load the application into the area of storage you set aside with the DEFSEG
command.

3. Issue the SA VESEG command. The SA VESEG command changes a skeleton
file to an active (class A or R) file.

For examples of defining and saving the different types of saved segments, see
Chapter 5, "Defining Saved Segments - Examples" on page 65.

Using the DEFSEG Command

I DEFSEG

The following is the syntax for the DEFSEG command. (For usage notes associated
with the DEFSEG command, see VMjXA SP CP Command Reference.)

dcssnam~ i{hexpagel-hexpage2 type} ••• t [RSTD] [SPACE spacename]
1sAMErange ~

where:

dcssname
is the name of the saved segment (a 1- to 8-character alphanumeric string).
When used with SPACE, the dcssname specified here is known as the member
name and must be different from the SPACE name.

hexpagel-hexpage2
is a range of pages to be saved. When hex pagel and hexpage2 are the same,
only that page is saved. The range may be contained in a single I-megabyte
segment, or it may comprise a contiguous area in two or more segments. You
may use multiple page ranges to define a I-megabyte segment. However, the
page descriptor codes of all page ranges in the same segment must have the same
shared or exclusive attribute.

Define only those pages whose data must be saved. Any page or pages in a
segment not explicitly defined in a page range on the DEFSEG command will
default to the no data saved attribute. If other pages in the segment were defined
with the shared attribute (page descriptor codes SR, SW, SN and SC), pages not
specified on the command line become shared read-only pages whose data are
not saved. No page descriptor code corresponds to this state; it has the same
attributes as the state defined by page descriptor code SC, except that CP will
not write into these pages.

If other pages in the segment were defined with the exclusive attribute (page
descriptor codes ER, EW, and EN), any pages not specified on the command
line become exclusive read/write pages whose data are not saved. This
corresponds to page descriptor code EN.

Chapter 3. System Programmer Considerations 29

--- _. ---- -- ---- ----------

The page ranges of a member saved segment cannot overlap with the specified
page ranges of another member saved segment associated with the same segment
space. Areas not specified (defaulted to no data saved) may be taken by another
member saved segment. If the member uses these pages but doesn't need the
pages' data saved, the range with the EN or SN attribute type must be specified.
Also, this member saved segment's range descriptor code cannot conflict with
those of an existing member that has ranges defined in the same segment of
storage.

The page number is a hexadecimal value less than or equal to X I 3E6FF I (999
MB). The following list shows examples of how storage addresses translate into
page numbers:

Hexadecimal Storage Hexadecimal
Address Page Number

OOOOOxxx 0

0000 I xxx 1

0OO22xxx 22

00333xxx 333

04444xxx 4444
- , -~ --

type
refers to the page descriptor code of the page range in the saved segment. It
indicates the type of virtual machine access permitted to pages in the range.

The first character is either "E" for exclusive access or "S" for shared access.
Sharing of storage between virtual machines is based on I-megabyte segments,
so a11256 pages in anyone segment must be either exclusive or shared.

The second character of the page descriptor code defines the storage protection
characteristics of the page. These character designators are as follows:

"R" indicates that page protection is used to make the page range read-only.

"W" means that the page is not protected, and users have read/write access.

"N" stands for "read/write, no data saved," meaning that the page is treated as
a new page when the user references it. The contents of and storage keys for
"no data saved" pages are not saved by the SA VESEG command.

"C" stands for "CP-writeable, virtual machine read-only, no data saved,"
meaning virtual machines have read-only access to these pages, but CP services
may change the d~ta in the pages.

The contents of storage keys for "no data saved" pages are not saved by the
SA VESEG command.

30 Guide to Saved Segments

/

()

(

C:

Valid page descriptor codes are: .

EW Exclusive read/write access
EN Exclusive read/write access, no data saved
ER exclusive read-only access
SW shared read/write access
SN shared read/write access, no data saved
SR shared read-only access
SC CP writeable pages, shared read-only access by virtual machine, no data

saved

The user must define all pages in segment 0 in ranges with an exclusive page
descriptor code (EW, ER, or EN). The system will reject the DEFSEG
command if the user defines any pages in segment 0 with a shared access page
descriptor code.

SAMERANGE
specifies that this member saved segment definition is the same as one specified
by a previous DEFSEG. This operand is mutually exclusive with the
hexpagel-hexpage2 operands. When you specify SAMERANGE, you also must
specify SPACE.

You don't have to specify SA VESEG if you use DEFSEG with the SAME
operand for a class A member saved segment. However, if the member saved
segment you're referencing is a class S file, you must still use SAVESEG to save
the file.

SAME RANGE makes it easier to create overlaying segment spaces by using the
same member for both segment spaces.

If you use this operand with a spacename that doesn't exist, the member that
you specify must be a class S (skeleton) file.

You must have either a class S or class A file with the same dcssname when you
use this operand. If you have both class A and class S files, the command uses
the information in the class S file.

RSTD
indicates a restricted saved segment. The user must have a corresponding
NAMESA VE directory statement to access this saved segment. If any member
of a segment space is defined with the restricted operand (that is, the SPACE
operand is used), the entire segment space is then restricted. The restricted
spacename must be used on the NAMESAVE directory statement. If you didn't
specify SPACE, then the dcssname is restricted. If you use the RSTD operand,
make sure that you use the NAMESA VE directory statement to allow
authorization.

If you used the SAMERANGE operand, you can use RSTD. This will affect
the authorization of the segment space that you specified in the DEFSEG
definition. The spacename must be used on the NAMESA VE directory
statement.

SPACE
specifies the definition of a segment space. Use this operand to make the
dcssname that you are defining a member of this segment space.

spacename
is the name of the segment space (a 1- to 8-character alphanumeric string). You
must specify this if you use the SPACE operand. The spacename must be
different from any saved segment known to CPo

Chapter 3. System Programmer Considerations 31

DEFSEG Command Functional Description
This section shows what operations the DEFSEG command performs when it is
issued.

When the DEFSEG command is issued, system data files (SDFs) are created
containing information related to the DEFSEG command input. Understanding the
information contained in these SDFs will help you manage saved segments.

The following scenarios show which files are created (or affected) after various
DEFSEG commands are issued. The abbreviations used (such as PPW, PPX, and
GRPl) are the names of saved segments.

No saved segment files currently exist.

defseg ppw 700-7ff sr is issued.

• A class S (skeleton) SDF with the name PPW is created. The system descriptor record is updated,
and a unique spool ID number is assigned to the file.

Because the SPACE operand was not specified on the DEFSEG command, the file created is a
DCSS.

The page range (700-7FF) and type (SR) information is saved. For mUltiple range specificationsJ

the ranges are sorted from lowest to highest.

A class S file now exists for P P W.

defseg ppx 800-820 sr space grpl is issued.

• A class S SDP with the name PPX is created. The system descriptor record is updated, and a unique
spool ID number is assigned to the file.

Because the SPACE operand was specified on the DEFSEG command, the SDF created is a
member.

The page range (800-820) and type (SR) information is saved ..

A count is maintained indicating how many segment spaces are associated with this member. In
this case the value is 1 since GRPI is the only segment space associated with the member PPX.

An entry for GRPI is made in the directory indicating that GRPI is a segment space containing
PPX.

• A class S SDP with the name GRPI is created. The system descriptor record is updated, and a
unique spool ID number is assigned to the file.

Because the SPACE operand was specified on the DEFSEG command, the SDF created is a
segment space.

Figure 13 (Part 1 of 3). Results of Issuing the DEFSEG Command

32 Guide to Saved Segments

c·
·.·\. . J

c

(

. (

(

(

(..
,/

The lowest and highest page range values specified for any member defined for this segment space
are maintained. In this way, the overall range of a segment space is determined by its member
definitions. (In the above example, the lowest value is 800 and the highest is 820.) These values
are rounded down and up respectively to megabyte boundaries to determine the true range of
pages that a segment space affects when any of its members is attached to a virtual machine. The
rounded values are the ones returned by the FINDSPACE function of the DIAGNOSE X' 64'
programming interface.

A count is maintained indicating how many members are associated with this segment space. In
this case, the value is 1.

An entry for PPX is made in the directory indicating that PPX is a member of this segment
space.

The page range (800-820) and type (SR) information is saved. The lowest (800) and highest (820)
page range values specified for the member are maintained.

The status of this entry is "not saved", meaning no corresponding SAVESEG has been issued .

Class SlUes now exist/or PPX, GRPl, and PPW.

defseg ppy 821-830 sr space grpl is issued.

• The same processing as outlined under the DEFSEG command for PPX occurs for PPY. Note,
however, the following changes to the SDF for the GRPI segment space:

Since a class S SDF already exists for GRP1, this file does not have to be created, but its
descriptor record is updated.

The page ranges of PPY are checked to make sure that they do not overlap the ranges of any
other member in GRPI. In this case, the page ranges of PPY are checked with those of PPX.

The count indicating how many members have been defined for this segment space is incremented
by 1. In this case, the value is now 2.

The lowest and highest page range values specified for any member defined for this segment space
are maintained. In this case, the lowest value (800) is maintained, and the highest value is
updated from 820 to 830.

An entry for PPY is made in the directory indicating that PPY is a member of this segment
space. The same information as indicated under the PPX member entry is captured for the PPY
member entry. The directory now has entries for PPX and PPY.

Class Sfiles now exist/or PPY, PPX, GRPl, and PPW.

defseg ppu 800-820 sr space grp2 is issued.

• The same processing as outlined under .the DEFSEG command for PPX and GRPI occurs for PPU
and GRP2.

Class SjUes exist/or PPU, GRP2, PPY, ppx, GRPl, and PPW.

Figure 13 (Part 2 of 3). Results of Issuing the DEFSEG Command

Chapter 3. System Programmer Considerations 33

defseg ppy same space grp2 is issued.

• Prior to updating the file for PPY, an existing class S file, a check is made to see if a class S SDF file
exists for GRP2 (it does). The PPY file is then updated.

The count indicating how many segment spaces have been defined for this member is incremented
by 1. In this case, the value is now 2.

An entry for GRP2 is made in the directory indicating that GRP2 is a segment space containing
the member PPY. The class S file for PPY now has entries for GRPI and GRP2.

• The existing class S SDF for GRP2 is updated as follows:

The page ranges of PPY are checked to make sure they do not overlap the ranges of any other
member in GRP2. In this case, the page ranges of PPY are checked with those of PPU.

The count indicating how many members have been defined for the segment space GRP2 is
incremented by 1. The value is now 2.

The lowest and highest page range values specified for any member defined for this segment space
are maintained, and thus the overall range of GRP2 is defined. In this case, the lowest value
(800) is maintained, and the highest value is updated from 820 to 830.

An entry for PPY is made in the directory indicating that PPY is a member of this segment
space. The same information as indicated under the PPX member entry is captured for the PPY
member entry. The directory now has entries for PPU and PPY.

Class SjUes now existfor PPU, GRP2, PPY, PPX, GRPl, and PPW.

Figure 13 (part 3 of 3). Results of Issuing the DEFSEG Command

Restrictions for Using the SAMERANGE Operand
The following rules apply to the SAMERANGE operand (also called the SAME
operand) of the DEFSEG command:

• You can only specify the SAME operand if you also specify the SPACE
operand.

• With type EW, EN, SW, and SN saved segments, you can not use the SAME
operand to cause a member to belong to two different segment spaces; you can
use SAME to update a segment space, replace a segment space, or add a
member to the same segment space. The SAME operand is useful when you
need to re-install a read-only (SR) member of a space containing other members
with writeable (EW or SW) pages.

• You should issue a DEFSEG command with the SAME operand on the first
definition of a segment space only if the member exists as a skeleton file.

• A DEFSEG command with a SAME operand needs no corresponding
SA VESEG command unless the member is not yet saved. (If a definition of a
member in a segment space does not include the SAME operand, a SA VESEG is
required.)

• A member of a segment space can not overlay any of the ranges specified for a
an existing member within the same segment space.

• There is no effect when you specify a DEFSEG command with the SAME
operand for an existing member that has the same segment space name. A
change to the state descriptor of the member's SDF occurs in the directory
section only if you define the member in a new or additional segment space.

34 Guide to Saved Segments

./\.
j

o

/

/

Using the SAVESEG Command
The following is the syntax of the SAVESEG command. For usage notes associated
with the SAVESEG command, see VM/XA SP CP Command Reference.

I SAVESEG dcssname

where:

dcssname
is the name (a 1- to 8-character alphanumeric string) of the segment to be saved.
This is the file name of a class S (skeleton) SDF previously defined with the
DEFSEG command. When a DEFSEG command using the SPACE operand is
issued, the dcssname specified in the SA VESEG command is interpreted as the
member name specified in the DEFSEG command.

Using SAVESEG With Your Installation Procedures
In general, customers use an installation procedure (normally an EXEC) to initialize
the page ranges given on previously specified DEFSEG commands. Once this is
done, the SA VESEG command can be issued to capture the contents of the pages in
the spool file that was created by the DEFSEG command and thereby save the
segment. Such installation procedures vary depending on the type of code that
makes up the application you plan to install.

For the virtual machine issuing the SAVESEG to get addressability to the saved
segment, one of the following must be true:

1. The virtual machine size must include the pages ranges of the saved segment.
For example, for a saved segment defined in the BOO-BFF address range, the
virtual machine must be at least 12MB. Or,

2. The virtual machine must define or use an existing saved segment containing the
required pages. In other words, the saved segment:

• Must be defined with writeable pages, or

• Must be loaded with the LOADNSHR option. To do this, a virtual
machine must have a NAMESA VE entry in its directory for the saved
segment.

To avoid the problems associated with loading a saved segment in a virtual
machine, install the application in a recently IPLed virtual machine large
enough to contain the pages of the saved segment. Or, follow the steps
below. It is best that you perform these steps when you first install the
application that resides in the saved segment:

a. Purge any skeleton files previously defined for the saved segment:

purge nss spoolid#

If the saved segment is a DCSS, you are done. If the saved segment is a
member saved segment, then you must also purge the spool file
associated with the segment space which contains the member.

b. Define or redefine a new skeleton file for the saved segment as exclusive
write (EW):

defseg name range ew

Chapter 3. System Programmer Considerations 35

This defines a DCSS as non-shared (EW). If you are defining a segment
space or a member saved segment, issue:

defseg name range ew space spacename

You must define all the members of a segment space. However, any
existing members can be defined with the SAME (SAME RANGE)
parameter if you are not changing their page ranges:

defseg name same space spacename

c. Create an active segment by issuing the SAVESEG command for the
saved segment you are installing:

saveseg name

d. Set up another skeleton file by issuing another DEFSEG command for
the saved segment. This step is necessary since any subsequent
SA VESEG commands that happen after the installation procedure is
done require a skeleton file. The saved segment you define now is the
one that will be attached to your users, so you should define it with the
appropriate page range type (SR in this example):

defseg name range sr

For a segment space or a member saved segment, issue:

defseg name range sr space spacename

You must define all the members of a segment space. However, they
can be defined with the SAME (samerange) parameter:

defseg name same space spacename

e. Now you can run your installation procedure for saved segments. If
your installation procedure is not set up to load the saved segments, use
the CMS SEGMENT command to perform the load. The SEGMENT
command loads the saved segment and gives the virtual machine
addressability to its pages.

SAVESEG Command Functional Description
The SAVESEG command saves a saved segment that was previously defined with
the DEFSEG command. The SA VESEG command copies the data from the virtual
storage page ranges associated with the saved segment to the spool file that was
created by the DEFSEG command. The spool file associated with the saved
segment changes from a skeleton to an active file. If this is a member saved segment,
the file associated with the corresponding segment space will change from skeleton to
active if all other members are active.

The following SA VESEG commands correspond to the DEFSEG commands
described in "DEFSEG Command Functional Description" on page 32. The
DEFSEGs previously specified were:

defseg ppw 788-7ff sr
defseg ppx 888-828 sr space grpl
defseg ppy 821-838 sr space grpl
defseg ppu 888-828 sr space grp2
defseg ppy same space grp2

For the following examples, assume the respective page ranges have been properly
initialized and the SA VESEG commands are issued from an installation EXEC. The
results of each command are described.

36 Guide to Saved Segments

/

(/~ -"
',~ /

c

'(

(

(

()

A class Sfilefor PPU, GRP2, PPY, PPX, GRPl, and PPW currently exist.

saveseg ppw is issued.

• The SAVESEG command determines if the saved segment is a member:

SAVESEG reads the descriptor record from the class S file for PPW. In this case, a flag field
indicates PPW is not a member but rather a DCSS.

The pages associated with PPW (as defined by the previous DEFSEG command) and their keys
are copied to a system data file.

The file for PPW is changed from class S to class A.

If a class A file already exists for PPW, the class of the existing file is changed from A to P
(pending purge). If no one is currently using the existing file, the file is purged. A class P file is
purged when the last virtual machine using the file purges it from the virtual machine address
space.

Since PPW is a DCSS, if PPW was defined with the RSTD (restricted) parameter on the
DEFSEG command, the class would change from S to R.

Since PPW is a DCSS, it can be attached to a virtual machine once its class becomes A or R.

Class Sfiles existfor PPU, GRP2, PPY, PPX, and GRPl, and a class A file for PPW currently exists.

saveseg ppx is issued.

• The SA VESEG command determines if the saved segment is a segment space:

SA VESEG reads the descriptor record from the class S file for PPX. In this case, a flag field
indicates PPX is not a segment space but rather a member saved segment.

The pages associated with PPX (as defined by the previous DEFSEG command) and their keys
are copied to a system data file.

The file for PPX is changed from class S to class A.

If a class A file already existed for PPX, the class of the existing file is changed from A to P
(pending purge). If no one is currently using the existing file, the file is purged. A class P file is
purged when the last virtual machine using the file purges it from the virtual machine address
space.

Since PPX is a member saved segment, the associated segment space directory is updated:

For each segment space entry associated with PPX, the respective class S file is processed.
PPX has only the GRPI segment space entry. The descriptor record of GRPI is read and its
directory section is then processed as follows:

• The status of PPX is changed to saved.

• The status of other members of GRPI (if any) is checked. The count indicating how
many members are associated with this segment space is used to determine how many
entries to check.

Figure 14 (Part 1 of 3). Results of Issuing the SA VESEG Command

Chapter 3. System Programmer Considerations 37

If all the members have a saved status, then the class of the segment space is changed
from S to A or R. In our example, the PPY member still has a status of not saved. So,
the class of the file associated with GRPI remains S.

Class Sfiles exist/or PPU, GRP2, PPY, and GRP1, and a class A file exists/or PPX, and PPW.

saveseg ppy is issued.

• The SA VESEG command determines if the saved segment is a segment space:

SAVESEG reads the descriptor record from the class S file for PPY. In this case, a flag field
indicates PPY is not a segment space but rather a member saved segment.

The pages associated with PPY (as defined by the previous DEFSEG command) and their keys
are copied to a system data file.

The file for PPY is changed from class S to class A.

If a class A file already existed for PPY, the class of the existing file is changed from A to P
(pending purge). If no one is currently using the existing file, the file is purged. A class P file is
purged when the last virtual machine using the file purges it from the virtual machine address
space.

Since PPY is a member saved segment, the directory is updated:

For each segment space entry associated \~lith PPY, the respective class S file is processed~
PPY has two segment space entries: GRPI and GRP2. The descriptor record of GRPI is
read and its directory section is then processed as follows:

• The status of PPY is changed to saved.

• The status of other members of GRPI (if any) is checked. The count indicating how
many members are associated with this segment space is used to determine how many
entries to check.

If all the members have a saved status, then the class of the segment space is changed
from S to A. In our example, all members have a saved status. So, the class of the file
associated with GRPI is changed to A. Since PPY is a member, if PPY or any other
member of GRPI was defined with the RSTD (restricted) parameter on the DEFSEG
command, the class of GRPI would change from S to R.

• If a class A file already existed for GRPI, the class of the existing file is changed from A
to P (pending purge). If no one is currently using the existing file, the file is purged. A
class P file is purged when the last virtual machine using the file purges it from the
virtual machine address space.

Since PPY is a member, it can be attached to a virtual machine once one of its associated
segment spaces becomes class A or R.

Next, the descriptor record of GRP2 is read and its directory section is then processed as
follows:

• The status of PPY is changed to saved.

Figure 14 (Part 2 of 3). Results of Issuing the SAVESEG Command

38 Guide to Saved Segments

()

(

(\

• The status of other members of GRP2 (if any) is checked. The count indicating how
many members are associated with this segment space is used to determine how many
entries to check.

If all the members have a saved status, then the class of the segment space is changed
from S to A. In our example, the member PPU has a status of not saved. So, the class
of the file associated with GRP2 remains as S.

Class Sfiles existfor PPU and GRP2, and class A files existfor GRPJ, PPY, PPX, and PPW.

saveseg ppu is issued.

• The SA VESEG command determines if the saved segment is a segment space:

SAVESEG reads the descriptor record from the class S file for PPU. In this case, a flag field
indicates PPU is not a segment space but rather a member saved segment.

The pages associated with PPU (as defined by the previous DEFSEG command) and their keys
are copied to a system data file.

The file for PPU is changed from class S to class A.

If a class A file already existed for PPU, the class of the existing file is changed from A to P
(pending purge). If no one is currently using the existing file, the file is purged. A class P file is
purged when the last virtual machine using the file purges it from the virtual machine address
space.

Since PPU is a member saved segment, the directory is updated:

For each segment space entry associated with PPU, the respective class S file is processed.
PPY has only one segment space entry: GRP2. The descriptor record of GRP2 is read and
its directory section is then processed as follows:

• The status of PPU is changed to saved.

• The status of other members of GRP2 (if any) is checked. The count indicating how
many members are associated with this segment space is used to determine how many
entries to check.

If all the members have a saved status, then the class of the segment space is changed
from S to A. In our example, all members have a saved status. So, the class of the file
associated with GRP2 is changed to A. Since PPU is a member, if PPU or any other
member of GRP2 was defined with the RSTD (restricted) parameter on the DEFSEG
command, the class of GRP2 would change from S to R.

• If a class A file already existed for PPU, the class of the existing file is changed from A
to P (pending purge). If no one is currently using the existing file, the file is purged. A
class P file is purged when the last virtual machine using the file purges it from the
virtual machine address space.

PPU can be attached to a virtual machine once its class becomes A or R.

Class A files now exist for GRP2, PPU, GRPI, PPY, ppx, and PPW.

Figure 14 (Part 3 of 3). Results of Issuing the SAVESEG Command

Chapter 3. System Programmer Considerations 39

Keeping Backup Copies of Saved Segments (:. .~
VMjXA SP retains saved segments in the event of a system cold start. However, ./
because VMjXA SP uses system spooling space to store saved segments, and because
you may not always be able to recover spooling space after a CP abend, you should
always keep backup copies of saved segments on tape. The CP SPT APE command
enables you to do this. For more information on SPTAPE, see VMjXA SP CP
Command Reference or VMjXA SP Real System Operation.

Purging Saved Segments from the System
Use the PURGE NSS command to purge unwanted files that contain saved
segments. PURGE NSS is a class E CP command.

Note: Do not use PURGE NSS if you want to purge the saved segment only from
your virtual machine. From CMS, use the SEGMENT PURGE command
or the SEGMENT PURGE macro. Otherwise, use DIAGNOSE X' 64' to
purge the saved segment. (See "Purging Saved Segments from Your Virtual
Machine" on page 57.)

Example - Purging A Saved Segment: To purge the sample program XAPROG,
enter:

purge nss name xaprog

After this command is entered, cr purges aU copies of XAPROG unless XAPROG
is currently in use by a virtual machine. If XAPROG is currently in use, CP places
the file in a "pending purge" state and purges it as soon as XAPROG is no longer
being used.

If you use PURGE NSS with the ASSOCIATES operand, you purge a saved
segment and remove references to it in associated saved segments. If this saved
segment is the last referred to by an associated segment, the associated segment is
also purged.

Purging a segment space with the ASSOCIATES operand removes the space's name
from all associated members' lists of spaces. Purging a member with this operand
removes it from all spaces to which it belongs. Any member or space system data
file will become class P (pending purge) if it is currently in use. This also holds for
any associated file being purged because no other members (or spaces) are associated
with this file.

To determine whether a file is in pending-purge state, issue the QUERY NSS
command. If the file is in pending-purge state, CP's response shows that the file is
class P. CP purges class P files if:

• All virtual machines using the saved segment logoff or re-IPL

• All virtual machines using the saved segment release it (with a DIAGNOSE
X '64' PURGE or a SEGMENT PURGE).

• The system is IPLed

• All virtual machines using the saved segment load a new saved segment which
overlays the address range of the first saved segment.

40 Guide to Saved Segments

,.-- ---"'"

()

{

(

Displaying Information about Saved Segments
To display information about saved segments (and named saved systems), use the
QUERY NSS ALL command and include the MAP option. The following is an
example of the QUERY NSS ALL MAP command. For usage notes associated
with the QUERY NSS command, see VM/XA SP CP Command Reference.

query n55 all map

In response to this command, CP displays information similar to the following:

FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL #USERS PARMREGS VMGROUP
spid filename filetype nnnnnnK begpag endpag -- c nnnnn N/A N/A

nnnnnnM

In this display:

FILE
Is the spool ID of the file.

FILENAME
Is the name of the saved segment.

FILETYPE
Is one of the following:

NSS A named saved system

CPNSS A CP system service named saved system

CPDCSS A CP system service saved segment

DCSS A saved segment defined without the SPACE operand

DCSS-S A segment space for which members are defined

DCSS-M A member of a segment space.

MINSIZE
Is the minimum storage size of the virtual machine into which a named saved
system can be IPLed. This field does not apply to saved segments.

BEGPAG
Is the beginning page number of a page range of the saved segment or named
saved system. For a segment space, this field shows the beginning page number
of the entire segment space.

ENDPAG
Is the ending page number of a page range of the saved segment or named saved
system. For a segment space, this field shows the ending page number of the
entire segment space.

TYPE
Is the type of access (ER, EW, EN, SR, SW, SN, SC) allowed to a page range of
a named saved system. The TYPE field does not apply to segment spaces;
therefore, "-" appears in this field.

Chapter 3. System Programmer Considerations 41

CL
Describes the current state of the file:

A

P

R

S

Indicates that this system data file is in the unrestricted available state. This
means the system data file has been defined and saved. To determine
whether the system data file is in use, examine the #USERS field in the
response from the QUERY NSS command with the MAP option.

Indicates that this system data file is in the pending purge state. This means
the PURGE NSS comniand has been issued for the name of this NSS or
DCSS but virtual machines are accessing it. No new users can access this
NSS or DCSS. It is purged when the last virtual machine releases the NSS
or DCSS, or during the next system IPL or RESTART.

Indicates this system data file has restricted access and is in the available
state. This means the system data file has been defined (with the RSTD
option) and saved. Access to a restricted NSS or DCSS requires a
NAMESAVE directory statement. To determine whether the system data
file is in use, examine the #USERS field in the response from the QUERY
NSS command with the MAP option.

Indicates this system data file is in "skeieton" format. This means that a
DEFSEG or DEFSYS command has been executed for the system data file.
The SA VESEG or SA VESYS can now be executed to complete this system

(f ".
~J

/

data file. /'\

#USERS \,/
indicates the number of users attached to the saved segment or named saved
system.

PARMREGS
"N/A", since this is not applicable to saved segments

VMGROUP
"N/A", since this is not applicable to saved segments.

You can also use QUERY NSS NAME name MAP and QUERY NSS spoolid MAP
to display information about saved segments.

Displaying Which Users Have Loaded a Saved Segment
To display which user IDs have loaded a specified saved segment, use the QUERY
NSS USERS command. If the saved segment is a segment space, the response lists
those users of the space and each of its members. If the saved segment is a member,
users with the member loaded and those with its associated space(s) loaded are
listed.

42 Guide to Saved Segments

~'C).:
./ '

C;
/

t.

c

For example:

query nss users tstspace

where TSTSPACE is the name of a segment space with two members, MEMBEROI
and MEMBER02. In response to this command, CP displays information similar to
the following:

FILE FILENAME FILETYPE CLASS
9465 TSTSPACE DCSS-S A

NONE

FILE FILENAME FILETYPE CLASS
9465 MEMBER91 DCSS-M A

US ERA USERB USERC USERD USERF USERG

FILE FILENAME FILETYPE CLASS
9465 MEMBER92 DCSS-M A

USERl USER2 USER3

In the example above, USERl, USER2, and USER3 have loaded (by name)
MEMBER02. USERA, USERB, USERC, USERD, USERF, and USERG have
loaded MEMBEROl.

Note that if there is a pending purge version, its users will also be shown.

For further examples of the QUERY NSS command, see "Examples of Segment
Spaces" on page 47.

Chapter 3. System Programmer Considerations 43

Installing Applications In Saved Segments
This section tells you how to install an application in a saved segment. It discusses
segment packing, and also describes how to overlay segment spaces.

Tips for Installing Your Applications in Saved Segments
Below are some recommendations that may help you when you are preparing to
install an application in a saved segment.

• If you want to load a program at the default load address, load it in System/370
mode, where the default is X I 20000 I •. In 370-XA mode, storage management
determines the default load address, which may vary.

• When you install CMS at the default locations (see Figure lIon page 27), it
uses segments E and part of F. All of F is set aside when CMS is set up as a
named saved system (NSS). You cannot combine an NSS and a saved segment
within the same architected segment.

If you install CMS at the default locations, you should leave the segment below \..
the CMS shared pages free of saved segments. CMS may use some of the D
segment for a page allocation table when CMS is defined in the E and F
segments. (See "Planning Where to Save a Saved Segment" on page 24.)

• Consider writing an EXEC that lists the DEFSEG commands used to build the
liC:lved segments for a product. For example, you could write an EXEC that
purges the old version, issues the new DEFSEG commands, installs the
products, and issues the SA VESEG commands.

(~,

Fitting Applications Below the 16MB Line ~.
If your installation has a large number of applications which all must run below the
16MB line, the following suggestions may help you when you set up your saved
segments. Note, however, that these tips may not work in every environment.

To fit your applications below the 16MB line, consider the following ideas:

• If you have an architected segment defined to hold exclusive code (for example,
type EW), and the segment has unused space, convert an application that
normally runs in a shared segment so that it now operates from an exclusive
segment. Then, pack this application into the architected segment where your
other EW applications reside. To do this, you must have room in the
architected segment for this application. Converting this application to EW may
impact performance somewhat, but it will help you ease your storage
constraints.

• Some installations require the use of the segments where CMS nonnally (by
default) resides: segments D, E, and F. You can use these segments if you
install CMS at a different (non-default) location. For example, if you install
CMS in the 400 and 500 segments, you will free up the D, E, and F segments.
eMS may still need part of a third segment, in this case the top of the 300
segment, for a page allocation table and other control blocks. For an example
of a saved segment environment where CMS is defined at a non-default location,
see Figure 31 on page 78.

44 Guide to Saved Segments

".,--- '~
(\

.\". /

~\ c/
..t) /

Using Segment Packing to Conserve Storage Space
An overlay is two or more saved segments defined in the same address range. If
possible, you should avoid overlaying saved segments. The more overlays you have,
the more system overhead may increase.

To avoid overlays and provide more efficient use of storage, VMfXA SP allows you
to define segment spaces into which you can pack multiple applications. A segment
space is on a megabyte boundary, but each application is stored on a page
boundary. Thus, you can store many more programs in a given area without
wasting storage. This is particularly important to you when running application
programs in 370 mode because you need to fit all your applications below the 16MB
line. Once you exploit VM/XA SP and can address licensed programs above the
16MB line, you do not need to store licensed programs so tightly; 1MB segments
will be sufficient.

You can mix shared and nonshared code within the same segment space as long as
you do not mix them within the same 1MB segment. So, if you have a licensed
program, such as PROFS, which requires both shared and exclusive code, you can
store both parts in the segment space but you must store them in separate 1MB
segments.

Figure 15 shows ISPF/PDF, ISPF, and PROFS all stored in one segment space
which spans three 1MB segments (from the beginning of megabyte 4 to the end of
megabyte 6). In this case, ISPFJPDF, ISPF, and PROFS are all considered member
saved segments of this segment space. Note that the boundaries of the segment space
are rounded to megabyte boundaries.

SPACE1

7MB -

PROFS (exclusive)
6MB

PROFS (shared)

ISPF (shared)

5MB

ISPF/PDF (shared)

4MB -~----------~

Figure 15. Using a Segment Space to Store Applications

Using a DCSS Versus Using a Segment Space
When to Use a Segment Space: The following are some guidelines for when to
pack programs into segment spaces, instead of defining a DCSS for each program:

• If more than one member segment will fit in a 1MB segment space

• If your system is constrained for virtual storage below the 16MB line

• If your system has a "family" of related programs (for example, SQL and QMF)
that are usually used at the same time. You may benefit from defining them in

Chapter 3. System Programmer Considerations 45

the same segment space because, when a member is loaded for the first time, all
other members in the segment space are also brought into storage. Thus, you
may reduce I/O operations if you can keep related code or data in the same
segment space. If you have very few QMF users (QMF uses SQL) and many
SQL users, you might not want to include QMF in the same segment space as
SQL. The layout of the segments depends on how they will be used in your
environment.

For some examples of segment space definitions, see "Defining a Segment Space" on
page 66.

When to Use a DCSS: In the following situations, you may benefit from defining a
DCSS instead of a member:

• If the size of a program is exactly on a megabyte boundary or slightly smaller.
You will eliminate any overhead caused by using segment spaces.

• If you can fit all your segments below the 16MB line without packing them into
segment spaces, you can eliminate the overhead.

• If your segments reside above the 16MB line, it is unlikely that your system is
constrained due to the large number of segments.

For examples of DCSS definitions, see "Defining DCSSs" on page 65.

Tips For Using Segment Spaces
Here are some practical tips to help you install applications in segment spaces:

• If you have a program that spans beyond a megabyte boundary, it may not be
worth adding additional programs to round out the unfilled last megabyte.
When the smaller program is invoked by a user, the whole segment space gets
loaded. Although the larger program is not being used, it may cause an overlay
with another DCSS or segment space. For example, GDDM spans beyond 2MB.
If you install GDDM, you must evaluate whether you should create a segment
space with GDDM and some other product which does not go beyond the third
megabyte boundary, or whether to define a DCSS for GDDM and put the other
product somewhere else. If the other product fits in the remainder of the third
megabyte and that product and GDDM are frequently used together, you
should combine them in the same segment space~ Because GDDM and ISPF are
often used together, you may want to pack them into a segment space.

• Both shared and exclusive (non-shared) pages can not exist in the same
architected segment. A given segment must be either shared or exclusive.
Nevertheless, a segment space, and even a member segment, can have both
shared and exclusive code if the shared pages are not in the same architected
1 MB segment as the exclusive pages.

• With the SAMERANGE operand on the DEFSEG command, you can make a
member part of another (or the same) segment space without redefining the page
ranges and saving the member again. A .example of when the SAMERANGE
operand is useful is if CMSDOS, CMSBAM, CMSVSAM, and CMSAMS are
all in the same segment space and CMSDOS requires service. You will need to
resave CMSDOS, but you can use SAMERANGE for the other saved segments
rather than resaving them all.

Note, however, the SAMERANGE operand can not be used if the member
contains SW, SN, EW or EN pages and you are defining it in a second segment
space.

46 Guide to Saved Segments

/

i •

(
\

~c-\
~

\ (":) /

c

jC

Problems with Large Segment Spaces: Some possible consequences of creating
large segment spaces are:

• Because the whole segment space gets loaded when a member is loaded, part of
the segment space may overlay another DCSS or segment space that is also
loaded in a user's virtual machine.

• Large segment spaces limit the size of the virtual machines that use them.
Although users can load a saved segment in their virtual machine if they use the
CMS SEGMENT command or macro, the saved segment cannot span from
below the virtual machine size to above it. CMS uses the uppermost segment in
a user's virtual machine. If a segment space spans from the page X '400' to
X' AFF I, users of any member of that segment space would need a 4MB or less
virtual machine if they are not using the SEGMENT command or macro. If
they use the SEGMENT command or macro, the virtual machine could be 4MB
or less, or greater than 12MB, but it cannot be between 4MB and 12MB.

Examples of Segment Spaces: The products you choose to combine in a segment
space and the location you load them at will vary depending on your users'
requirements. The page ranges shown may not be the actual page ranges of these
programs.

To see a sample storage mapping for a given set of applications, see "Setting Up
Your Storage Layout" on page 76.

1. GDDMXAL contains GDDM/GKS, GDDM/IMD, and GDDM/IVU:

query nss map name gddmxal
FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL #USERS PARMREGS VMGROUP
1112 GDDMXAL DCSS~S N/A ee6ee ee6FA A eeeee N/A N/A
1113 ADMGKeeeDCSS-M N/A ee6ee ee658 SR A eeeee N/A N/A
1114 ADMIMeee DCSS-M N/A ee66e ee6C4 SR A eeeee MIA N/A
1115 ADMIV11e DCSS-M N/A ea6De ee6FA SR A eeeee N/A N/A
Ready; T=G.a1/a.a1 12:57:46

2. SQLDCSI contains some of the SQL segments and QMF:

query nss map name sqldcsl
FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE Cl #USERS PARMREGS VMGROUP
1e69 SQlDCS1 DCSS-S N/A ea7ee easce A eeeee N/A N/A
1a7a QMF22aE DCSS-M N/A ea7ae aeS4F SR A eeeee N/A N/A
1e71 SQLRMGR DCSS-M N/A ea85e aeS6e SR A eaaae N/A N/A
1a72 SQLISQL DCSS-M N/A aa861 aa8Ca SR A eaeaa N/A N/A
Ready; T=a.a1/e.a1 12:58:42

Chapter 3. System Programmer Considerations 47

3. SQLDCS2 contains SQL segments that are not used by QMF:

query nss map name sqldcs2
FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL IUSERS PARMREGS VMGROUP
1e73 SQLDCS2 DCSS-S N/A eegee eeAA6 A eeeee N/A N/A
1e74 SQLSQLDS DCSS-M N/A eegee ee9De SR A eeeee N/A N/A
1e75 SQLXDRS DCSS-M N/A ee9D1 eeAA6 SR A eeeee N/A N/A
Ready; T=e.e1/e.e1 12:58:53

You should consider defining both SQLDCSI and SQLDCS2 as shown because
QMF may use SQLRMGR and SQLISQL, but will not use the SQL segments in
SQLDCS2.

4. GAMDCSS contains GAM/SP segments and GDDM/graPHIGS. In this case,
the segment space is still class S because the GDDM/graPHIGS segment,
AFMASSOO, has not yet been saved. Although the GAM segments have been
saved, they cannot be used until member AFMASSOO has been saved.

query nss map name gamdcss
FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL IUSERS PARMREGS VMGROUP
1146 GAMDCSS DCSS-S N/A ee8ee ee8F3 S eeeee N/A N/A
1147 CMSGAM DCSS-M N/A ee8ee ee8eF SR A eeeee N/A N/A
1148 GAMBUF DCSS-M N/A ee81e ee811 SW A eeeee N/A N/A
1149 AFMASSee DCSS-M N/A ee812 ee8F3 SR S eeeee N/A N/A
ReadYi T=e.e1/9.92 16:29:99

Overlaying Your Applications
If segment packing does not sufficiently reduce your installation's storage
constraints, you may need to define overlaid DCSSs or overlaid segment spaces.

When you overlay two segment spaces, the second segment space that is loaded into
storage replaces the entire address range of the first segment space, even if it is not
defined at exactly the same location as the first segment space. Also, all of the first
segment space is removed from the user's address space. For example, look at the
storage layout in Figure 16 on page 49. If you load SPACE3 while SPACE2 is
loaded, all of SPACE2 is removed from the guest's address space even though only
part of SPACE2 is overlapped. Similarly, if you load SPACE4 (PROFS) while
SPACE2 is loaded, all of SPACE2 is removed from the user's address space.

48 Guide to Saved Segments

j

(~'
8MB

\
vi ./

SPACE2
PROFS (exclusive)

7MB - 7MB
SPACE4 -

PROFS (shared)

6MB - 6MB

OAS2V151 (shared)
FORTRAN (shared)

5MB - OAS1V151 (shared) 5MB
OW/370 (shared) SPACE3

) . C· SQUSQl (shared)

c

c

c

4MB - 4MB -~----------~

Figure 16. Using Segment Spaces to Overlay Applications

DASIV151 and DAS2V151 are saved segments associated with AS. SQLISQL and
SQLRMGR are saved segments associated with the SQL user machine.

When you overlay two saved segments, it is not necessary for both saved segments to
have the same type of code. That is, if you define program A to overlap program B,
A and B do not both have to contain shared code; also, A and B do not both have
to contain exclusive code. One program can have shared code, and the other can
have exclusive code, provided both programs are not needed at the same time.

Remember that all parts of a particular product need not be packed into one
segment space. Given the needs of your installation, other arrangements may be
better. Some products require more than one segment, but the functions performed
by the code allow you to overlap the segments. For example, suppose you have one
set of users that:

• Use SQL/DS with QMF

• Use SQL/DS with AS

• Do not use QMF with AS.

Chapter 3. System Programmer Considerations 49

I'

8MB -

710

7MB

670

610
6MB -

You can pack these products together in the following manner:

SPACE 1

SPACE 2

8MB 8MB

OAS2V151 7CO

7A6

QMF220E

7MB 7MB
DAS1V151

600

670

SQLISQL SQLlSQL

610

6MB 6MB -

SPACE3

SQLXRDS

SOLSQLDS

\ !

) \

Figure 17. Installing SQL with Overlays

Although you need two segments for the SQL database machine (SQLSQLDS and
SQLXRDS) and two segments for the user (SQLISQLand SQLRMGR), the
segments for the database machine can overlap the segments for the user, as shown
in Figure 17.

If you are defining a member in multiple segm'ent spaces, define the member first in
the space having more commonly used members or having the highest beginning
address. For example, in Figure 17, if you have more QMF users than AS users,
define SQL in SPACE2 first (and use the SAME operand to define SQL in
SPACE 1).

When setting up overlays, a map of your DMKSNT ASSEMBLE file can help you
determine which programs overlap in your current environment.

For an example of defining the overlays shown in Figure 17, see "Defining Overlaid
Segment Spaces" on page 67. To see a sample storage mapping that includes)
overlays, refer to "Setting Up Your Storage Layout" on page 76.

Additional Overlay Possibilities
This section discusses the different ways you can overlay programs. The following
methods are discussed:

• Defining overlaid DCSSs

• Defining overlaid segment spaces.

Defining Overlaid DeSSe: One way to overlay program components is to define
each component in a separate DCSS, and define each DCSS in the same address
range. Figure 18 on page 51 shows PPT3, PPT4, and PPT5 - components of the
program PPT - dermed in separate DCSSs. These three DCSSs are all defined in
the 7MB to 8MB range of architected segments. This type of overlay arrangement
may reduce the amount of storage used. Note, however, that the programs PPT3, ('. -\.
PPT4, and PPT5 are mutuallyexclllSive; that is, they are not used at the same time. ,/

SO Guide to Saved Segments

c

1-(

c

C'· ,
./

SPACE1

10MB

PPT1

9MB

PPT2

8MB

PPT5
SPACE2

7MB

PPT6 ~---------- ----------) "V"
PPT7

Overlaid DCSSs
6MB

t
Architected Segment Ranges

Figure 18. DCSSs as Overlays

Defining Overlaid Spaces with One Unique Member In Each Space: If virtual
storage at your installation is extremely constrained, you may want to consider the
following overlay structure. You may want to define multiple segment spaces with
one unique member in each space. In Figure 19 on page 52, SPACEl, SPACE2,
and SPACE3 are each segment spaces. Each segment space contains a set of
common members plus one unique member.

Chapter 3. System Programmer Considerations 51

SPACE1 SPACE2 SPACE3

9MB

PPT1 PPT1 PPT1

8MB

PPT2 - I- - - - - - f-
PPT2 PPT2

.'
Overlay PPT3

..
PPT4 - PPT5

PPT6
7MB

PPT6 PPT6

PPT7 PPT7 PPT7

6Mb

+ '------- Architected Segment Ranges

Figure 19. Segment Spaces as Overlays

Note, however, that with this type of arrangement, system overhead increases when' a
user calls a program not currently in the user's address space. (When a user calls a
program not currently in the user's address space, the entire segment space that
contains the called program overlays whatever was executing in the user's address
space. Any currently loaded saved segments are overlaid by the new segment space
or removed from the user's address space.) Because of this, the set of common
members - PPTl, PPT2, PPT6, and PPT7 in this example - must be refreshable
programs. In other words, none of these common members can have writable
storage. This is an example of why you cannot use the SAME operand of the
DEFSEG command to place a member with writeable pages in more than one
segment space.

j

/ '\

")

(

With the above configuration, seven programs are defined in just three architected \,
segments. The procedure for defining SPACE1, SPACE2, and SPACE3 above is
described in detail under "Defining Overlaid Segment Spaces" on page 67.

Overlaid Segment Spaces across Several Applications: Segment spaces allow you
to define different applications in the same address range. If you have two sets of
mutually exclusive applications, you should define a separate segment space for each
application. Figure 20 on page 53 shows two overlaid segment spaces - SPACE2
and SPACE4 - where SPACE2 and SPACE4 are mutually exclusive. This
configuration is similar to the overlay situation shown in Figure 19 except that:

• In Figure 20 on page 53, the segment spaces represent multiple applications
rather than just one.

• The situation in Figure 19 requires that all common code be in each segment
space, while in Figure 20 on page 53 no code is duplicated.

The configuration in Figure 20 on page 53 allows one set of users to access
SPACE1, SPACE2, and SPACE3, for example, while another set of users accesses
SPACE1, SPACE3, and SPACE4.

S2 Guide to Saved Segments

)·e'" ,j

C

c

c

The procedure required to define SPACE2 is described in detail under "Defining a
Segment Space" on page 66.

SPACE3
11MB

PPT

PPS
SPACE2 SPACE4

10MB

PPJ

PPI

-I- - I-
PPH

9MB
PPO

SPACE2 and SPACE4
PPN are mutually exclusive

-I- PPG - I-8MB
PPM

PPL

PPK SPACEl
PPF

7MB

PPA

PPB

6MB

t
Architected Segment Ranges

figure 20. Mutually Exclusive Segment Spaces as Overlays

Redefining Saved Segments
At some point, you may need to redefine some of your saved segments due to service
upgrades or a product's ability to exploit 370-XA architecture; that is, the product's
ability to be loaded above the 16MB line. When you redefine a saved segment that
was residing below the 16MB line to now be above the 16MB line, you may want to
change the saved segment from a member to a DCSS. Although some virtual
storage within an architected segment will be unused, using a DCSS will give you
greater flexibility in terms of product combinations.

For an example of redefining an existing saved segment, see "Replacing an Existing
Member of a Segment Space" on page 69.

The following charts are provided to assist you in redefining saved segments. These
charts indicate whether a saved segment definition with the DEFSEG command will
be successful (indicated by "yes") or unsuccessful ("no") based on the existence of a

Chapter 3. System Programmer Considerations S3

saved segment with the same name as that being defined. The information in each
chart refers to the characteristics (class and type) of any existing saved segments.

Table 2. Defining a DCSS

Type of Existing Saved Segment

Class ncss Member Space

AorR yes yes no

S no no no

p yes yes yes

none yes yes yes

The chart above shows, for example, that you cannot define a ncss if a class A or
R segment space with the same name already exists.

Table 3. Defining a Member

Type of Existing Saved Segment

Qass ncss Member Space

AorR yes yes no

S no no no

p yes yes yes

none yes yes yes

The chart above shows, for example, that you can define a member if a class P
ness with the same name already exists.

Table 4. Defining a Segment Space

Type of Existing Saved Segment

Class ncss Member Space

AorR no no yes

S no no yes

P yes yes yes

none yes yes yes

The chart above shows, for example, that you cannot define a segment space if a
class S member with the same name already exists. Also, you can define a segment
space if a skeleton with that name exists because you are really just adding another
member to that space. This does not create a new system data file for the space; it
adds another member to that space's directory.

54 Guide to Saved Segments

\

)

/ \
\ /

C Chapter 4. Application Programmer Considerations

C'
/

This chapter presents information that helps application programmers use saved segments.

This chapter tells you how to:

• Determine where saved segments should reside

• What the differences are between the SEGMENT command (and macro) and DIAGNOSE X'64'

• Reserve space for a saved segment

• Load a saved segment

• Purge a saved segment from your virtual machine

• Display information on a saved segment

• Protect a saved segment with a storage protection key.

Using Saved Segments from Your Virtual Machine
Once a saved segment has been defined with the DEFSEG command, the application
programmer is responsible for initializing the content of the saved segment from a
virtual machine. The content of the saved segment is usually application programs
or other data. Then the SA VESEG command can be issued (generally by the system
programmer or by an EXEC) to make the saved segment active. This chapter
discusses what the application programmer needs to know to use saved segments
from a virtual machine.

Where Saved Segments Reside
The storage addresses you assign to a saved segment can be within or outside of the
virtual storage currently available to the virtual machine that attaches the saved
segment. However, saved segments are designed to execute outside the addressing
range of a user's virtual machine. When a saved segment is loaded, the virtual
machine can reference any area within the range of the saved segment. The virtual
machine cannot address areas above or below the saved segment that are also
outside the virtual machine storage definition.

Attaching a saved segment that is defined outside a virtual machine is a way to
increase the storage of the virtual machine without actually redefining its virtual
storage (with the DEFINE command). For example, a 4-megabyte virtual machine
that attaches a saved segment defined in the 4- to S-megabyte range now has access
to five megabytes of virtual storage.

The following sections describe how a virtual machine can use the eMS SEGMENT
command and macro and DIAGNOSE X'64' to access saved segments and to
manage segment spaces.

Chapter 4. Application Programmer Considerations 55

Saved Segment Restrictions
Before you work with saved segments from a virtual machine, note the following
restrictions:

• You cannot save a saved segment from a V = R virtual machine, from a V = F
virtual machine, or from a virtual machine for which you have defined multiple
virtual processors.

• You cannot load a saved segment into a V = R or V = F virtual machine.

Differences between SEGMENT and DIAGNOSE X I 64 I
The SEGMENT command and SEGMENT macro may be used instead of
DIAGNOSE X' 64'. However, existing DIAGNOSE X' 64' interfaces have not
changed, and applications using them continue to work.

The following list describes the differences between saved segment support (in
particular, the SEGMENT command and the SEGMENT macro) and the
DIAGNOSE X '64' instruction.

1. The SEGMENT command and the SEGMENT macro can load a saved segment
even if the segment resides within the virtual machine. Therefore, programs that
use the SEGMENT command or the SEGMENT macro do not need to check
the VMDSSIZE against the starting address of the saved segment to determine
whether the segment can be used.

For example, you can use the following code to load a segment:'

*

SEGMENT LOAD,NAME=SEGNAME
C R15,=F'12' Already loaded?
BE LOADED Yes, go process
BH LOADERR Higher return codes are errors,

lower return code is good load.

2. You can use the SEGMENT RESERVE command to create a segment space so
that a subsequent SEGMENT LOAD command or a DIAGNOSE X' 64' may
be safely issued. SEGMENT RESERVE does not actually load a saved segment
into storage. It reserves a segment space so that you can safely issue a
SEGMENT LOAD command or a DIAGNOSE X' 64' knowing that eMS has
not used that address range for something else. DIAGNOSE X'64', on the other
hand, does not check when it loads a saved segment to see if existing data would be
overlaid unless you specify the LOADNOLY operand.

3. The SEGMENT macro returns information about the loaded segment in general
registers 0 and 1, rather than in the Rx and Ry registers used by DIAGNOSE
X' 64'. Also, the SEGMENT command and the SEGMENT macro use return
codes rather than condition codes to indicate the success or failure of an
operation.

4. DIAGNOSE X'64' has additional functions not available with SEGMENT
support (such as the load no overlay feature). For more information, see "Using
DIAGNOSE X' 64 ,,, on page 62.

56 Guide to Saved Segments

('\

c Reserving Space for Saved Segments
In CMS 5.5, saved segments can be in your virtual machine's address space. For
saved segments that are not loaded immediately after IPL, consider reserving space
for the saved segment. If you do not reserve space for the saved segment, other
programs can use the storage. If the required storage is occupied when you try to
load a saved segment, the load fails.

You can use the SEGMENT RESERVE command to reserve space. Reserving a
segment space:

• Allows you to ensure that your applications can load saved segments in the
storage they specify

• Eliminates the possibility of saved segments overlaying or being overlaid by
portions of CMS.

To reserve segment spaces for all users, add the SEGMENT RESERVE command to
the SYSPROF (system profile) EXEC. To reserve segment space only for your
virtual machine, issue the SEGMENT RESERVE command from your virtual
machine.

Loading Saved Segments
Use the SEGMENT LOAD command to load a SEGMENT into storage.
SEGMENT LOAD reserves a segment space (if one is not already reserved) and
loads a saved segment into it.

Example 1: To load a segment named MYSEG that survives abend processing and
can be shared by any user, enter:

segment load myseg system share

Note that SHARE is a default value and can be omitted.

Example 2: To load a segment named MYSEG that does not survive abend
processing and cannot be shared by other users, enter:

segment load myseg noshare user

C Purging Saved Segments from Your Virtual Machine
Use the SEGMENT PURGE command to purge a saved segment from a segment
space. (SEGMENT PURGE also releases the storage held by segment spaces that
were created by SEGMENT LOAD.)

For example, to purge MYSEG, enter:

segment purge myseg

Releasing Segment Spaces
Use the SEGMENT RELEASE command to release the storage reserved for a saved
segment.

Chapter 4. Application Programmer Considerations 57

Displaying Information about Saved Segments
Use the QUERY SEGMENT command to display information about saved
segments that were loaded using the SEGMENT command or macro. For example:

query segment profs

might return a response similar to the following:

Space
PROFS

Name Location Length Loaded
PROFSEG eeseeeee eee2eeee YES

Attribute
USER

To display information on all the currently defined segment spaces, enter:

query segment *
In response, CMS returns something similar to the following:

Space
PROFS
GDDM

Name Location Length Loaded
PROFSEG eeseeeee eee2eeee YES
GDDM eegeeeee eee4eeee NO

Attribute
USER
SYSTEM

The SPACE field's value is different from the name fields value only for members of
a segment space. In the example above, PROFSEG is a member of the segment
space called "PROFS".

Saved Segment Storage Protection

\

/

To ensure that a saved segment is protected from inappropriate use, a storage \
protection key can be assigned to the segment. The key should be set to something,)
other than X'F' (decimal 15) before you save a segment. You can use the CMS
SETKEY command to assign the storage protection key for a segment.

When CMS EXECs install a segment, the EXEC may assign a storage protection
key to the segment; for example:

• DOSGEN assigns storage protection key X'D' to the CMSDOS segment.

• SAMGEN assigns storage protection key X' F' to the CMSBAM segment.

To change the storage protection key, or to assign a storage protection key, use the
CMS SETKEY command. For information on the SETKEY command, see VM/XA
SP CMS Command Reference.

Tips for Using Saved Segments in a Virtual Machine
Figure 21 on page 59 shows a saved segment environment with four CMS virtual
machines (two running in 370-XA mode and two running in System/370 mode) and
two segment spaces (SPACEl and SPACE2). This figure illustrates some important
points about loading saved segments:

• User 2 and User 3 can safely load SPACEl because SPACEl is defined outside
the virtual storage range of these two users.

• SPACEl is defined within the virtual storage range of User 4. Therefore, User 4
should use the SEGMENT command or macro to load this segment space and
thereby ensure access to the program operating in SPACEl. If a virtual
machine's address range exceeds the beginning address of a saved segment, and
the virtual machine loads the saved segment with DIAGNOSE X'64', the
virtual machine may not be able to access the data in the saved segment. See

58 Guide to Saved Segments

/
I ,

c

(~\

"Using the SEGMENT Command and Macro" on page 60 for more
information.

• User 1 cannot load SPACE 1 without overlaying its own page allocation table.

• SPACE2 is defined above the 16MB line and therefore can only be used by User
3 and User 4. This is discussed in more detail in "370-XA Mode Virtual
Machine Considerations" on page 60.

SPACE 2
1FFFFFF

1 FOOOOO PPF

PPD PPE
1 EOOOOO L..--_....I-_-J

Page
Allocation

Table
16MB----------------------------------+-------4--------r

Page
Allocation

Table

000000 1------1

CMS
370 mode

User 1

Page
Allocation

Table

CMS
370 mode

User 2

SPACE 1

VM/XASP CP

Page
Allocation

Table

CMS
XA mode

User 3

37o-XA Processor

Reserved

CMS
XA mode

User 4

Figure 21. Loading Segment Spaces

Chapter 4. Application Programmer Considerations S9

Using the SEGMENT Command and Macro
The SEGMENT command and macro help to prevent the overlay situation that can
occur in 370-XA mode virtual machines with a large virtual storage size. This
interface allows large virtual machines (those with an address range that overlaps a
saved segment definition) to reserve space in the virtual machine for the saved
segment prior to loading it. Should the space required for the saved segment be
currently allocated for some other CMS activity, a return code describing this
situation is returned. In this case, you should suspend the loading of the saved
segment into the" virtual machine until the storage required is available. Once the
area has been reserved with the SEGMENT command or macro, the saved segment
can be loaded. Once loaded, the area occupied by the saved segment will not be
allocated for any other purpose. In Figure 21 on page 59, User 4 can use the
SEGMENT interface to avoid an overlay situation when loading SPACE1.

You may want to have SEGMENT RESERVE issued from your PROFILE EXEC
or some other EXEC that reserves and loads a saved segment. SEGMENT
RESERVE is usually used in conjunction with DIAGNOSE X '64 I.

370-XA Mode Virtual Machine Considerations
CMS can now execute in 370-XA mode virtual machines with more than 16MB of
virtual storage. However, the majority of the products that operate in a saved
segment can only execute from within saved segments defined below 16MB. To be
able to execute above the 16MB line, a product must be able to operate in a 370-XA
mode virtual machine and execute in 31-bit addressing mode.

If a saved segment is defined above the 16MB line, its services are only available to
370-XA mode virtual machines. A System/370 mode virtual machine is limited to
24-bit addressing and therefore is unable to transfer control to a saved segment
operating above the 16MB line. In Figure 21 on page 59, SPACE2 is defined above
the 16MB line and is therefore only available to the 370-XA mode virtual machines
of User 3 and User 4. It is recommended that you define saved segments for
products wishing to exploit 370-XA architecture to have different names than those
used by System/370 virtual machines. This allows the existing System/370 user set to
still receive services to the extent of the product's System/370 support.

You can only define two saved segments for one application if the application allows
you to do this. Some applications (GDDM for example) determine which saved
segment to load based on the user's virtual machine mode. If you have an
application that does not do this, you may need to set up EXECs that determine
which version to load.

Applications with System/370 Architecture Sensitivity
Programs that are coded to expect a 64KB segment need to be modified for VM/XA
SP. For example, suppose you have an application called PP that requires a shared
segment for some of its code and an exclusive segment for the rest of its code. That
is, the program PPES (a component of PP) requires a shared segment, and PPEW (a
second component of PP) requires an exclusive write segment, as shown in Figure 22
on page 61.

60 Guide to Saved Segments

/ '

~" /

(.~.

.j

" (/

()

C···
. /

c

,,~.

1MB
EW

1MB
SR

XA Archltected Segments
with Segment Packing

PPES

Applications 370 Archltected Segments

EW

PPEW

4 Pages

SR

PPES PPES

12 Pages

Figure 22. Applications with Systemj370 Architecture Sensitivity

64KB
SR

You plan to load the applications with the following section of a VMjSP installation
EXEC:

LOAD PPES {ORIGIN Aeeeee
INCLUDE PPEW {ORIGIN Aleeee

When running under VMjSP, this EXEC loads PPES into the saved segment defined
as SR (shared). The EXEC then loads PPEW starting at address AIOOOO, placing
PPEW in the saved segment defined as EW (exclusive write).

Under VMjXA SP, the EXEC tries to load PPES and PPEW into the same storage
locations as it did under VMjSP. Due to the larger segment sizes in VMjXA SP,
this would mean that PPEW is placed in the SR saved segment with PPES as shown
in Figure 22. Although the DEFSEGs for PPEW and PPES would work, when you
load PPEW it would overlay PPES, and you would not have the use of PPES.
(Because of the overlay situation, DIAGNOSE X '64' LOADNOLY will not work.)

This EXEC needs to be modified to take into account the fact that segments in
VMjXA SP are one megabyte in size.

Chapter 4. Application Programmer Considerations 61

Using DIAGNOSE X I 64 I
In VMfXA SP, issuing a DIAGNOSE X '64' against a segment space or a member
saved segment produces results that are slightly different from those in VMjXA SF
or VMjSP HPO. The following sections highlight these differences:

lOADSR/LOADNSHR/LOADOVLY: When a member of a saved segment is attached
. (using LOADSR, LOADNSHR, or LOADOVL Y) to a virtual machine, the entire
storage range occupied by the segment space is addressable by the virtual machine.
However, only the beginning and ending addresses related to the member are
returned to the virtual machine.

In Figure 23 on page 64, if User I issues a DIAGNOSE X'64' LOADxxxx of the
saved segment PPM, the following things happen:

• User 1 can reference the range of addresses of the SPACE2 segment space
(700000-9FFFFF).

• A CP control block is established indicating that User 1 is attached to the
member saved segment PPM.

• The addresses of PPM (7BOOO0-81FFFF) are returned in the Rx and Ry
registers of User 1.

Similarly, if a virtual machine attaches a saved segment by specifying the name of
the segment space, the storage range occupied by the saved segment is addressable
by the virtual machine. All members that make up the segment space are attached
to the virtual machine. The address of the member with the lowest address is
returned in the Rx register. The Ry register contains the address of the last byte of
the megabyte in which the member with the highest address resides. \ j

In Figure 23 on page 64, if User 1 issues a DIAGNOSE X '64' LOADxxxx of the
segment space SPACE3, the following things happen:

• User 1 can reference the range of addresses of the SPACE3 segment space
(AOOOOO-AFFFFF).

• CP control blocks are established indicating that User 1 has loaded SPACE3.

• The addresses of SPACE3 (AOOOOO-AFFFFF) are returned in the Rx and Ry
registers.

When a virtual machine loads a member of a segment space, the virtual machine can
access all the members of the space. However, to access other members predictably,
the virtual machine must use DIAGNOSE X '64' or the SEGMENT command or
macro for each member.

FINDSEG: For member saved segments, the FINDSEG function returns the
beginning and ending addresses of the member. In Figure 23 on page 64, if User 2
issues a DIAGNOSE X'64' FINDSEG of saved segment PPN, the addresses of
PPN (820000-8AFFFF) are returned in the Rx and Ry registers.

For segment spaces, the FINDSEG function returns to the Rx register the address of
the megabyte that contains the member with the the lowest page definition. The Ry
register contains the address of the last byte of the megabyte in which the member
with the highest page definition resides. In Figure 23 on page 64, if User 2 issues a (.\
DIAGNOSE X '64' FINDSEG of segment space SPACE2, the addresses of of
SPACE2 (700000-9FFFFF) are returned in the Rx and Ry registers.

62 Guide to Saved Segments

o

·c

C·:
~/

c

PURGESEG: For member saved segments, the PURGESEG function releases the
control block associated with the member that was acquired on the corresponding
LOADxxxx function. If the purged member is the last member of a segment space
loaded by this user, the entire segment space is removed from the user's address
space.

If the storage occupied by the member is beyond the defined virtual machine storage
size, that storage is still addressable by the virtual machine provided another member
of the same segment space is still attached to the virtual machine.

In Figure 23 on page 64, suppose User 2 has previously attached members PPL and
PPO. If User 2 then issues a DIAGNOSE X '64' PURGESEG of the saved segment
PPO, the control block indicating that PPO is attached to User 2 is deleted.

If User 2 then issues a DIAGNOSE X '64' PURGESEG of the saved segment PPL,
the following things happen:

• The control block indicating that PPL was loaded by User 2 is deleted.

• Since there is no other member of SPACE2 attached to User 2, the page table
associated with SPACE2 is deleted from the User 2 virtual machine segment
table entries.

• The User 2 virtual machine can now use the 7MB, 8MB, and 9MB ranges for its
own activities.

If the storage occupied by the saved segment was beyond the defined virtual machine
storage size, that storage is no longer addressable by the virtual machine.

In Figure 23 on page 64, suppose User 2 has previously attached members PPL and
PPO. If User 2 then issues a DIAGNOSE X'64' PURGESEG ofSPACE2, nothing
is purged unless a corresponding LOADxxxx for SPACE2 was issued. (The
PURGESEG would then return a condition code of 1.) If a corresponding
LOADxxxx function was previously issued only for SPACE2, then:

• The control blocks indicating that SPACE2 was loaded by User 2 are deleted.

• Since there are no members of SPACE2 which were explicitly loaded by User 2,
the page table associated with SPACE2 is removed from the User 2 virtual
machine segment table entries.

• The User 2 virtual machine can now use the 7.,8·, and 9MB ranges for its own
activities.

If the space was loaded by name and a member was also explicitly loaded, only the
blocks indicating that the space is loaded are deleted. User 2 still has addressability
to the space until the member is purged.

Chapter 4. Application Programmer Considerations 63

+ Architected
Segment

11MB Ranges BOOOOO

A77000

10MB AOOOOO SPACE2

920000
9MB

PPO

8BOOOO

PPN

820000
8MB

PPM

7 BOOOO
PPL

760000
PPK

7MB 700000

677000

6MB 600000

Figure 23. Segment Space Environment

64 Guide to Saved Segments

SPACE3

PPT

PPS

SPACE1

PPA

CMS
370 mode

User 1

CMS
XAmode

User 2

VM/XA SP CP

37Q-XA Processor

\
i

" /'

(~ Chapter 5. Defining Saved Segments - Examples

o

This chapter gives examples of saved segment definitions.

This chapter tells you how to:

• Define a DCSS

• Define a DCSS with both shared and exclusive page ranges

• Define overlaid DCSSs

• Define segment spaces

• Define overlaid segment spaces

• Add a member to an existing segment space

• Replace an existing member of a segment space

• Save a new version of an existing member

• Set up a typical saved segment layout.

Defining DCSSs
The following sequence of commands tells you how to define and save each DCSS
shown in Figure 3 on page 5:

1. Define each DCSS:

defseg ppd 599-559 sr
defseg ppc 699-659 sr
defseg ppb 799-7cf sr
defseg ppa 889-839 sr

You should consider including these DEFSEG commands in an EXEC; if you
have to make changes to your storage layout, it will be relatively easy to change
the EXEC accordingly.

2. Install the programs PPD, PPC, PPB, and PPA with the appropriate installation
EXECs.

3. For each DCSS you have defined, issue the SA VESEG command to save the
DCSS (if the installation EXECs have not already done so):

saveseg ppd
saveseg ppc
saveseg ppb

. saveseg ppa

Chapter 5. Defining Saved Segments - Examples 63

Defining a DCSS with Both Shared and Exclusive Page Ranges
Some licensed programs, such as PROFS, have both shared and exclusive code and
therefore require a shared segment and an exclusive segment. You must define these
types of licensed programs to have both shared and exclusive page ranges.

For example, to define PROFS to have a range of addresses that is shared and a
range that is exclusive:

1. Issue:

defseg profs 700-7ff sr'800-845 ew

In the above example, the address range 700 - 7FF is defined as shared
read-only; the address range 800 - 845 is defined as exclusive read-write.

2. Install PROFS with the appropriate installation EXEC.

3. If it has not already been done by the installation EXEC, issue the SA VESEG
command for PROFS:

saveseg profs

In the above example, PROFS is defined in a DCSS. If PROFS and another
licensed program are always used together, you may want to define both in the same
segment space rather than each in a separate DCSS. This reclaims some of the
storage that goes unused when you define a DCSS.

Defining Overlaid DCSSs
The following sequence of commands tells you how to define and save each overlaid
DCSS shown in Figure 18 on page 51.

1. Define each DCSS in the same 1-megabyte address range:

defseg ppt3 700-750 sr
defseg ppt4 700-759 sr
defseg ppt5 799-789 sr

2. Install the program PPT3 with the appropriate installation EXEC.

3. Issue the SA VESEG command to save the DCSS (if the installation EXECs
have not already done so):

saveseg ppt3

4. Repeat steps 2 and 3 for program PPT4.

5. Repeat steps 2 and 3 for program PPT5.

Note: Do not use the SAME operand for DCSSs that have the SW, EW, EN, or
SN attributes. Programs in multiple segment spaces must be refreshable.

Defining a Segment Space
The following sequence of commands tells you how to define and save the segment
space shown residing in SPACE2 in Figure 20 on page 53:

1. Define each member of the segment space SPACE2:

defseg ppk 799-759 sr space space2
defseg ppl 751-7aO sr space space2
defseg ppm 7al-829 sr space space2
defseg ppn 821-8a9 sr space space2
defseg ppo 8al-929 sr space space2

66 Guide to Saved Segments

)

,
\" ./

(~

c

You should consider including these DEFSEG commands in an EXEC. Then, if
you have to make changes to your storage layout, it will be relatively easy to
change the EXEC accordingly.

2. Install the programs PPK, PPL, PPM, PPN, and PPO with the appropriate
installation EXECs.

3. For each member you have defined, issue the SA VESEG command to save the
segment (if the installation EXECs have not already done so):

saveseg ppk
saveseg ppl
saveseg ppm
saveseg ppn
saveseg ppo

Notes:

1. The ending address of SPACE2 is rounded up to a I-megabyte boundary.
Therefore, SPACE2 ranges from X'700' to X'9FF'.

2. Any unused space in a segment space can be considered a "growth area". Such
an area can contain, for example, a new release of a program (currently residing
in a segment space) that takes up more storage space than the previous release.
For example, if the next release of PPO in Figure 20 on page 53 was larger, you
could define it:

defseg ppo 8al-938 sr space space2

and use DEFSEG commands with the SAMERANGE operands for the other
members. Thus, only PPO will need to be a saved segment to make the new
version of SPACE2 active. The other members are used with their old
definitions.

To avoid having to re-install other members when one member has grown, you
should distribute the growth area (the unused virtual storage space) between all
the members. In this example, all members need to be redefined at higher page
ranges and re-installed if PPK grows in size.

3. The segment space SPACE2 is not active until you issue the last SAVESEG
command (SA VESEG PPO in this case). Therefore, you cannot use the
programs in SPACE2 until you issue the last SAVESEG command.

Defining Overlaid Segment Spaces
The following sequence of commands tell you how to define and save the overlaid
segment spaces SPACE!, SPACE2 and SPACE3 as shown Figure 17 on page 50.

1. Define each member of SPACEl:

defseg sqlrmgr 688-68f sr space space1
defseg sqlisql 618-66f sr space space1
defseg das1v151 678-78f sr space space1
defseg das2v151 718-83f sr space space1

SQLRMGR and SQLISQL are saved segments associated with the SQL user
machine; DASIV151 and DAS2V151 are saved segments associated with AS.

2. Install AS with the appropriate installation EXEC.

Chapter 5. Defining Saved Segments - Examples 67

3. Issue the SA VESEG command for the AS segments (if this has not already been
done by the installation EXEC): .

saveseg daslv151
saveseg das2v151

4. Define each member of SPACE2:

defseg qmf22ge 679-7bf sr space space2
defseg sqlrmgr same space space2
defseg sqlisql same spacespace2

QMF220E is the saved segment associated with QMF.

5. Install QMF with the appropriate installation EXEC.

6. Define each member of SPACE3:

defseg sqlsqlds 699 6cf space space3
defseg sqlxrds 7d9 7a5 space space3

SQLSQLDS and SQLXRDS are saved segments associated with the SQL service
machine.

7. Install SQL with the appropriate installation EXEC.

8. Issue the SAVESEG command for the remaining members of SPACE2 and
SPACE3 (if the installation EXEC has not already done so):

saveseg qmf22ge
saveseg sqlrmgr
saveseg sqlisql
saveseg sqlsqlds
saveseg sqlxrds

Once you issue the final SA VESEG command, both segment spaces become
active, and the SQL, QMF, and AS applications become available to users.

Adding a Member to an Existing Segment Space
To add a member called PPZ to the segment space SPACE2 shown in Figure 20 on
page 53 and defined under "Defining a Segment Space" on page 66:

1. Define the member PPZ:

defseg ppz 921-9d9 sr space space2

2. Define the rest of the segment space using the SAMERANGE option on the
DEFSEG command:

defseg ppk same space space2
defseg ppl same space space2
defseg ppm same space space2
defseg ppn same space space2
defseg ppo same space space2

3. Install PPZ with the appropriate installation EXEC.

4. Issue the SAVESEG command for PPZ (unless your installation EXEC has
already done so):

saveseg ppz

The program PPZ is available to users who are not currently attached to any of the
other programs in SPACE2 as soon as you issue the above SAVESEG command.

68 Guide to Saved Segments

\ .. /

C:

Replacing an Existing Member of a Segment Space
When a new release of a licensed program becomes available, you may want to
replace your old copy of the program with the new version.

Example 1 - Replacing a Member: Suppose you want to replace the version of the
program PPL (as shown in Figure 20 on page 53) with a new release of PPL. To
do this:

1. Define the new version of PPL as a member of SPACE2:

defseg ppl 751-7a8 sr space space2

2. Define the rest of SPACE2 using the SAME option on the DEFSEG command:

defseg ppk same space space2
defseg ppm same space space2
defseg ppn same space spaceZ
defseg ppo same space spaceZ
defseg ppz same space space2

3. Install program PPL with the appropriate installation EXEC.

4. Issue the SA VESEG command for PPL (unless your installation EXEC has
already done so):

saveseg ppl

Note that, in this example, the new version of PPL occupies the same page range as
the old version. Because of this, the other members of SPACE2 did not have to be
resaved but were merely redefined with the SAME operand on the DEFSEG
command.

You may want to keep both releases of PPL available to your users. If so, you
should consider defining the two versions of PPL in different segment spaces. Make
sure you do not use the same name for both versions.

How System Data Flies are Affected: The above example will work in most cases.
The following are more detailed examples that show how system data files are
affected when you replace an existing member.

Example 2 - Replacing a Member: The segment space SPACEI has been created,
and the system data file environment looks like that shown in Figure 24 on page 70.
In this figure and others like it in this chapter, the uppermost block shown under the
name of the member or segment space is its spool ID. For members, the other
blocks indicate the segment space that contains this member. For segment spaces
the other blocks indicate the members of the segment space. For example, in
Figure 24 on page 70, SPACE 1 has the spool ID 0001 and has Ml, M2, and M3 as
its members.

Chapter 5. Defining Saved Segments - Examples 69

SPACEl H1

El001 ElEl92
--

H1 .. SPACEl
--

M2

L
M2

M3 ElElEl3

SPACEl

ElElEl4

SPACEl

Figure 24. Initial Setup of a Segment Space

To replace M3, define the new version of M3 and SPACEl. You can do this by
issuing several DEFSEG commands as follows:

defseg m3 rangetnfo ••• space spacel
defseg ml same space spacel
defseg m2 same space spacel

Figure 25 shows the situation after these DEFINE commands have been issued.
Note that M3 and SPACEI have new spool IDs (005 and 006 respectively) which are
class S files.

SPACEl HI

9005

J
a002

r--- H3 SPACEl

Ml M2
--

M2 .. Elee3

SPACEl
M3

eElEl6

SPACEl

Figure 25. New Version of a Segment Space (DEFSEGs Complete)

Lastly, you need to issue the SA VESEG command for M3 based on the installation
procedures for M3. The SA VESEG M3 command converts spool files 0005 and
0006 to class A files, which causes the old class A versions (spool files 0001 and
00(4) to be purged.

70 Guide to Saved Segments

,

,)

c'

(~\

()

----.-.----.

Example 3 - Creating a New Member for an Overlay: This example explains how
to create a new version of one member of an overlay.

After the initial segment spaces have been created, the environment looks like that
shown in Figure 26 on page 71. (The Ls refer to segment spaces, and the Ms refer
to members.)

L1

aa10
--

M4
--

M5

1-

l~
~ o

M4

aall
--

L1
--

L2
--

L3

L2

0013
--

M4
--

M6

l~
~ o

L3

ea15
--

M4
--

M7

Figure 26. Replacing One Member of an Overlay - Initial Setup

To replace M6, define the new version of M6 and L2. This can be done by issuing
several DEFSEG commands as follows:

defseg m6 rangeinfo ••• space 12
defseg 1114 SIIII space 12

Figure 27 on page 72 shows the situation after these define commands have been
issued. Note that spool files 0017 and 0018 are class S files.

Chapter 5. Defining Saved Segments - Examples 71
--------.. -- ----- -_._ _------

M4

een ---
Ll

--
L2

--
L3

L1 L2 L3

eele ee17 eelS
-- --

M4 - M4 M4
-- --

MS M6

1~
M7

1M7

~ L2 ~ L3

Figure 27. Replacing One Member of an Overlay (DEFSEGs Complete)

Lastly, you must issue the SA VESEG for M6 as given in the installation procedures ", J

for M6. The SAVESEG M6 command converts spool files 0017 and 0018 to class A
files and causes the old class A versions to be purged.

Example 4 - Creating a New Version of a Common Member: This example
explains how to create a new version of a member which is shared between several
segment spaces.

After the initial segment spaces have been created, the environment looks like that
shown in Figure 28 on page 73.

72 Guide to Saved Segments

\

"

c

(

()

Lle

,...-. M9

M9

~
G

M1e

M8

elee
--

Lll
--

Ll2

Lll L12

e1e2 e1e3
-- --

M8 M8
-- --

Mll M12

Figure 28. Replacing a Shared Member - Initial Setup

To replace M8, define the new version of MS, Lll, and L12. This can be done by
issuing several DEFSEG commands as follows:

defseg m8 rangeinfo ••• space 111
defseg m11 same space 111
defseg m8 same space 112
defseg m12 same space 112

Figure 29 oil page 74 shows the situation after these define commands have been
issued. Note that spool files 0117,0118, and 0119 are class S files.

Chapter 5. Defining Saved Segments - Examples 73

Lle

mel

.-- M9

M9

~
G

M1e

M8

e1l8
--

Lll
--

L12

L11

e1l7
--

M8
--

Mll

Ll2

e119
--

M8
--

M12

lM12
~
G

Figure 29. Replacing a Shared Member (DEFSEGs Complete)

Lastly, you must issue the SAVESEG command for M8 based on the installation
procedures for M8. The SAVESEG M8 command converts spool files 0117,0118,
and 0119 to Class A files, and purges the old class A versions.

Updating the HELP Saved Segment
If you are using EXECs which require an active saved segment, consider the
following examples.

The installation EXECs DCSSGEN and SA VEFD are used to install the CMSINST
and HELP saved segments. These EXECs require that an active saved segment
exists in order for a saved segment to be installed successfully.

This section. gives two ,examples of updating the HELP saved segment without
having to re-install CMSINST. Follow Example 1 if you are not changing the page
ranges of the HELP saved segment. Follow Example 2 if you are installing HELP
for the first time or if you are changing its page ranges.

Example 1 (no page ranges changed):

1. Check to see what saved segments currently exist:

q nss name tester map
FILE FILENAME FILETYPE MINSIZE BEGPAG ENOPAG TYPE eL #USERS PARMREGS
e24e TESTER oess-s N/A eeeee eeee5 A eeeee N/A
e241 HELP OeSS-M N/A eeee3 eeee5 SR A eeeee N/A
e214 eMSINST OeSS-M N/A eeeee eeee2 SR A eeeee N/A

The segment space TESTER exists with two members, HELP and CMSINST.
We want to update HELP.

74 Guide to Saved Segments

\

/

'" /

/\

C\
./

()

c)

2. Redefine the member containing HELP:

defseg help c93-c9S sr space tester
HCPNSD44eI SEGMENT HELP DEFINED SUCCESSFULLY IN FILEID e243

3. Redfine the member that is not changing (CMSINST):

defseg cmsinst same space tester
HCPNSD44eI SEGMENT CMSINST DEFINED SUCCESSFULLY IN FILEID e214

4. Check to see what saved segments now exist:

q nss name tester map
FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL IUSERS PARMREGS
e24e TESTER DCSS-S N/A eecee eeces A eeeee NIA
e241 HELP DCSS-M N/A eeCe3 eeces SR A eeeee NIA
e214 CMSINST DCSS-M N/A eecee eeCe2 SR A eeeee N/A
e242 TESTER DCSS-S N/A eecee eeces S eeeee N/A
e243 HELP DCSS-M N/A eeCe3 eeces SR S eeeee N/A
e214 CMSINST DCSS-M N/A eecee eeCe2 SR A eee0e NIA

5. Issue SAVEFD to save the data in the skeleton file:

savefd save 999 jmu999 help
DMSACP723I Z (999) RIO
HCPNSS44eI SEGMENT HELP SAVED SUCCESSFULLY IN FILEID 0234

In the SA VEFD command above, 999 is the disk where HELP resides, and
jmu999 is the label of the disk.

6. Issue Q NSS again to see the results:

q nss name tester map
FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL IUSERS PARMREGS
e242 TESTER DCSS-S N/A eecee eeces A eeeee N/A
e243 HELP DCSS-M N/A eeCe3 eeces SR A ee0ee N/A
e214 CMSINST DCSS-M N/A eecee eeCe2 SR A eeeee N/A

Example 2: You are installing HELP for the first time, or you are changing its page
ranges.

1. Check to- see what saved segments currently exist:

q nss name tester map
FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL IUSERS PARMREGS
e244 TESTER DCSS-S N/A eecee eeces A eeeee N/A
e245 HELP DCSS-M N/A eeCe3 eeces SR A eeee0 N/A
e214 CMSINST DCSS-M N/A eecee eeCe2 SR A eeeee N/A

2. Create a "dummy" active version of TESTER with the desired changed pages.
First, re-establish the TESTER segment space by redefining HELP, which has
changed pages, and CMSINST, which does not.

defseg help c93-c9S sr space tester
HCPNSD44eI SEGMENT HELP DEFINED SUCCESSFULLY IN FILEID e247

defsegcmsinst same space tester
HCPNSD44eI SEGMENT CMSINST DEFINED SUCCESSFULLY IN FILEID e214 •

Now, create the active version of HELP:

s.veseg help
HCPNSD44eI SEGMENT HELP DEFINED SUCCESSFULLY IN FILEID e247

This purges any existing active versions of HELP and TESTER.

Chapter 5. Defining Saved Segments - Examples 75

q nss name tester map
FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL #USERS PARMREGS
e246 TESTER DCSS~S N/A eecee eeces A eeeee NIA
e247 HELP DCSS-M N/A eeCe3 eeces SR A eeeee N/A
e214 CMSINST DCSS-M N/A eecee eeCe2 SR A eeeee N/A

3. Create the skeleton files for the real version of TESTER:

defseg help c93-c9S sr space tester
HCPNSD44eI SEGMENT HELP DEFINED SUCCESSFULLY IN FILEID e249

defseg cmsinst same space tester
HCPNSD44eI SEGMENT CMSINST DEFINED SUCCESSFULLY IN FILEID e214

q nss name tester map
FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL #USERS PARMREGS
e246 TESTER DCSS-S N/A eecee eeces A eeeee N/A
e247 HELP DCSS-M N/A eeCe3 eeces SR A eeeee N/A
e214 CMSINST DCSS-M N/A eecee eeCe2 SR A eeeee N/A
e248 TESTER DCSS-S N/A eecee eeces S eeeee N/A
e249 HELP DCSS-M NIA eeCe3 eeCe5 SR S eeeee N/A
e214 CMSINSTDCSS-M N/A eecee eeCe2 SR A eeeee N/A

4. Issue SA VEFD (rather than the SA VESEG command) to save the new version
of HELP:

savefd save 999 jmu999 help
HCPNSD44eI SEGMENT HELP DEFINED SUCCESSFULLY IN FILEID e249

q nss name tester map
FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL #USERS PARMREGS
e248 TESTER DCSS-S NIA eecee eeces A eeeee NIA
e249 HELP DCSS-M N/A eeCe3 eeces SR A eeeee N/A
e214 CMSINST DCSS-M N/A eecee eeCe2 SR A eeeee N/A

SeHing Up Your Storage Layout
The following examples are storage layouts for a given group of applications. Please
note that these mappings are only examples and may not work successfully for every
installation. They should, however, provide you with some ideas on how to set up
your own saved segment environment.

76 Guide to Saved Segments

C

L\

(/

Example 1 - A Sample Storage Layout: The applications used in this example are
CMS, PROFS, ISPF, ISPFjPDF, GDDM, GDDMjPGF, DWj370, SQL, QMF,
FORTRAN, VMAS, DCF and APL.

Fee CMS

Eee

PROFS
(EW)

Dee

PROFS
(SR)

cee

ISPF
1---

Bee ISPF
/PDF

1---

Aee

GDDM
Base

gee

see

I GD~ I PGF
7ee DW/37e

@J User F
6ee 0

GJ
R
T
R

see QMF AS SQL A

GJ
Mach N

4ee

Figure 30. A Typical Saved Segment Environment - Example 1

In Figure 30, the two segments that make up the SQL user machine are SQLISQL
and SQLRMGR. The two segments that make up the SQL service machine are
SQLSQLDS and SQLXRDS.

Chapter 5. Defining Saved Segments - Examples 77

Example 2 - A Sample Storage Layout: The applications used in this example are
CMS, PROFS, TIF, GCS, ISPF, ISPF/pDF, GDDM, SQL, DW/370, QMF, DCF,
and VTAM.

Fee CMS (SR)

Eee '-------'

CMSVSAM (SR)

CMSAMS (SR)

CMSDOS (SR) TIF (SR)

CMSBAM (SR)
099

CMSVSAM (EW)

- - - -'- --
CMSAMS {EW}

PROFS (EW) PROFS (EW)

cae

PROFS (SR) PROFS (SR)

899

Figure 31 (Part 1 of 3). A Typical Saved Segment Environment - Example 2

78 Guide to Saved Segments

ISPF (SR)

AOO

ISPF/POF (SR)

900

SQLXRDS (SR)
GODM (SR)

sae GCS (SR)

SQlSQLDS (SR)

7ee 1....-___ ---'

DW/379 (SR)
CMSLOW (SR)

QMF (SR)

DCF (SR) VfAM (SR)

599 "'""-------'

Figure 31 (Part 2 of 3). A Typical Saved Segment Environment - Example 2

c

Chapter S. Defining Saved Segments - Examples 19

500

SQLlSQl (SR) SQLlSQl (SR) SQLISQl (SR)

SQlRMGR (SR) SQlRMGR (SR) SQlRMGR (SR)
4ee

Figure 31 (Part 3 of 3). A Typical Saved Segment Environment - Example 2

In the above figure:

• CMS is defined at a secondary location as a named saved system called
CMSLOW in order to make segment D (the default location of CMS) available
for other applications.

• The overlayed saved segment containing only PROFS was defined first, so that
PROFS users who do not require CMSVSAM, CMSAMS, CMSDOS, and
CMSAMS do not load these saved segments.

• The two segments that make up the SQL user machine are SQLISQL and
SQLRMGR. The two segments that make up the SQL service machine are
SQLSQLDS and SQLXRDS.

80 Guide to Saved Segments

c

()

c

Index

A
active file 2, 8, 35, 36
applications

installing in a saved segment 44
architected segment

description 1
in S/370 architecture 7
in 370-XA architecture 7
sizes of 7

architecture
differences between 370 and XA 7

avoiding overlaying saved segments 45

C
classes of a saved segment 8
CMS

nucleus size 12, 13
saved segments

storage locations 26
virtual machine 25

CMSINST saved segment 74
conserving storage space 45

D
D segment

as used by CMS 12, 13, 44
using for your applications 44

DCSS
defining 65, 66

with shared and exclusive pages 66
description 3
overlaying 66
reasons for using 45

DEFSEG (CP command)
defining saved segments 2, 3, 29
detailed description 29
internal operations 32
restrictions for using 34
SAME operand 34
SPACE operand 34
syntax 29

DIAGNOSE X '64' 62
displaying saved segment information 58
DMKSNT statement conversion 15

E
examples of saved segments 65-80
exclusive

pages 66
saved segment 5

H
HELP saved segment

updating 74

I
installation EXECs

DCSSGEN 15, 74
SAVEFD 15,74

installing an application in a saved segment 44-53

L
loading saved segments 57, 58

M
macro instructions

SEGMENT 10
member saved segment

description 3,45
migrating saved segments to VMjXA SP 7

o
overlaying saved segments 45, 48, 50

DCSSs as overlays 50
segment spaces as overlays 51, 52

p
packing saved segments 8
planning

for applications installed in saved segments 22
for saved segments based on virtual machine

mode 26
for saved segments based on virtual machine size 24

PROFS
installing in a typical environment 76
shared and exclusive code 48
using with a segment space 48

PURGE NSS (CMS command) 40
purging saved segments 57

Q
QUERY NSS (CMS command) 41
QUERY SEGMENT (CMS command) 10,58

R
redefining saved segments 53
releasing segment spaces 57

Index 81

reserving space for saved segments 57
restrictions 34, 56

S
saved segment

above 16MB 24
avoiding overlaying segment spaces 24, 26
below 16MB 25
classes 8, 53
CMS considerations 26
creating 1, 2, 21, 29
defining

examples 65
description 1
displaying information about 41,58
examples 47
exclusive 5
in S/370 architecture 7
in 370-XA architecture 7
installing applications 47
installing licensed programs 44
keeping a backup copy 40
loading

in a virtual machine 25
into storage 57

managing 1,7,21
migrating to 370-XA 11
overlays 45, 50
packing into storage 8,45, 50, 51, 52
planning considerations 1,21-28
planning for based on virtual machine size 24
protection of 58
purging 40, 57
querying 47
redefining 53
reserving space
restrictions 56
shared 5
space

adding a member to 68
defining 66
defining as an overlay 67
description 1, 3
overlaying 51, 52
planning considerations I, 3
replacing a member of 69

types 3, 8, 53
using from a virtual machine 55, 58, 60, 62
virtual machine

operating mode considerations 26
size considerations 24

SA VESEG (CP command)
detailed description 36
saving saved segments 29
syntax 35
using with installation EXECs 35

82 Guide to Saved Segments

segment
architected
in S/370 architecture 7
in 370-XA architecture 7
using the D segment 44

SEGMENT macro 10
segment packing 5,45,48,50,51,52
segment space

adding a member to 68
defining 66, 67

as an overlay 67
description 3
examples 47
reasons for using 45
replacing a member of 69

SEGMENT (CMS command) 10, 56, 57, 60
shared

pages 66
saved segment 5

skeleton file 2, 8, 32, 35, 36
SQL

installing in a typical environment 76
overlaying database and user segments 49

storage configuration
for a CMS virtual machine greater than 16MB 25
for a CMS virtual machine less than 16MB 25

storage protection
of saved segment 58

system data file 8, 32, 36
Systemj370 architecture 7
System/370 mode 22,26,44

T
types of system data files 8

U
using saved segments from a virtual machine 55

V
virtual machine

CMS 25
greater than 16MB 25
less than 16MB 25
size

planning for segments based on 24
using saved segments 58, 60, 62
370-XA mode 60

Numerics
16MB line 5,25,44,45,60
370-XA mode 7,22,26,44

E ...
'0 'C-

CD 1/1
E-
0.:E
'5-
C-O

C~
CD CD

1/1
01 0
!:-
1: CD
00.
1/1 0
J.-
C"C
E CD

E
.2 E
-::I

~OI
0 ...
-CD
::I.e
0'0

C: :E ...
'i 0

CD
1/1 >
E:E
CD 1/1
-I:
.QCD
01/1 ... ,
0. CD
CD ...
1/1 ::I
::I :l
o CD
IJ ...

0.
I:
C CD
IJ 1/1

(:
::I

:CD
-1/1
0.0
o CD --rna..

Qj
0 z

Virtual Machine/
Extended Architecture
System Product
Release 2

Guide to Saved Segments

Order No. SC23-0457-O

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the understanding that IBM may use or distribute whatever informa­
tion you supply in any way it believes appropriate without incurring any obligation to you. Your comments
will be sent to the author's department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM rep­
resentative or to the IBM branch office serving your locality.

How did you use this publication?

] As an introduction

] As a reference manual

] For another purpose (explain)

] As a text (student)

] As a text (instructor)

Is there anything you especially like or dislike about the organization, presentation, or writing in this
manual? Helpful comments include general usefulness of the book; possible additions, deletions, and clar":
ifications; specific errors and omissions.

Page Number: Comment:

What is your occupation?

Newsletter number of latest Technical Newsletter (if any) concerning this publication:

If you wish a reply, give your name and address:

IBM branch office serving you

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address in
the Edition Notice on the back of the title page.)

SC23-0457 -0

Reader's Comment Form

Fold and Tap.

Fold and Tap.

-~--------- -------- --- --- ~ ---- - - -------------, -
~

Please Do Not Staple

II I I I

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK. N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 52Q MS 511
Neighborhood Road
Kingston, New York 12401

Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

1 ••• 11 •• 1.1.1 •• 111 •••••• 111.1 •• 1.1 •• 1 •• 1 •••• 11.1.1.1

Please Do Not Staple Fold and Tape

PRINTED IN U.S.A.

I

