

The number of initiators active in VS2/2 determines the
degree of multiprogramming within the system and the
number of address spaces available for batch job processing.
With one initiator started, only one job stream may be
processed. To increase the degree of multiprogramming
another initiator (and, thus, address space) must be started.
Figure 87 shows an example in which three initiators have
been started. Job steps are executing in two of the address
spaces. The initiator in the third address space is scheduling
a new job.

Demand paging controls the real storage allocation for
active programs in the private area of each address space.
External page storage (not shown in Figure 87) must be
large enough to back the requirements of each user's ad
dress space and the common area that is mapped in each
address space. As in VS2 ReI 1, there is an external page
table associated with each page table in VS2/2. These ex
ternal page tables map active pages, identifying their slot
locations in external page storage.

V= R Job Steps

Demand paging is the normal mode of operation for user
programs and most system programs that execute in VS2/2.
However, as in ReI 1 there are certain types of programs
that, due to time dependencies or dyna:mic channel pro
gram modification, must be executed as Virtual = Real
(V=R). As a result, VS2/2 has an option for V=R job steps.
At IPL time, the system operator may define a V=R area
for the execution of V=R job steps. If selected, the size of
the V=R �a�r�e�~� is specified as a multiple of 4K. Control and
allocation of the V=R area is maintained by VS2/2's
nucleus. When the V=R option is selected, the V=R area is
available in real storage beginning �4�~� above the nucleus.
This is indicated in Figure 88 which shows a one megabyte
real storage with a 256K nucleus and a 256K V=R area
specified beginning at 260K.

REAL STORAGE
1 megr--------.

V= RAREA

�2�6�0�K�~�-�-�-
�2�5�6�K�~�-�-�-�-�-�-�-�-�~�

NUCLEUS
o '----------'

Figure 88

84

AVAILABLE
FOR
DEMAND
PAGING

Notice that all of real storage above the nucleus is available
for demand paging. The V=R area, although specified, does
not reserve real storage. It simply indicates the area of real
storage that may be used for V=Rjob steps. If no V=Rjob
steps are being executed, VS2/2 uses the real storage for
demand paging. However, VS2/2 does try to avoid long
term page fixes within the V=R area to prevent fragmenting
it.

When a job step is specified V=R, this is detected by the
initiator during job step scheduling within an address space.
The job step's execute statement contains the V=R parame
ter and the region size required. The initiator then passes
control to the nucleus so that it may attempt to satisfy the
V=R space request. The nucleus tries to find a contiguous
space within the V=R area large enough to satisfy the
region request. If the V=R area is fragmented by pages with
a long term fix or by another V=R job step so that the
required space is not available, the operator is notified and
the requesting job step must wait. If the space is available,
the V=R job step may be scheduled. Figure 89 shows an
example of V=R job step scheduling and execution with
active initiators in two address spaces.

In Figure 89 ADDRESS SPACE ONE has scheduled the
V=R job step. ADDRESS SPACE TWO is executing a batch
job that is being demand paged. Other system components
are not shown for clarity. Notice that after the V=R job
step begins execution, the initiator in ADDRESS SPACE
ONE cannot schedule another job or job step until V=R job
step completion. The V=R job step is fIXed in real storage
during execution. There is no demand paging for the job
step. Its addresses are still translated by the DAT feature
but channel programs are not translated. Also, observe that
any unused V=R space is available for demand paging.
JOB56 is executing in ADDRESS SPACE TWO. It is loaded
at the beginning of the private area because it is mapped by
a different set of segment and page tables, and JOB56 is
demand paged.

Timesharing in VS2/2

Until now, we have described the batch, multiprogramming
functions as they are implemented in VS2 ReI 2. In the
introduction to this lesson we said that the Time Sharing
Option (TSO) is fully integrated into VS2/2's design. As
with batch job initiators, when a TSO user logs on, the
system creates a new address space for the 1S0 job's use.
When the system operator starts TSO, an address space is
created for the teleprocessing method (TCAM is used)

that services all TSO user lines. As each new TSO user logs
on, a new address space is created for his use. All address
spaces created for TSO operation appear the same as those

PRIVATE
AREA

ADDRESS
SPACE TWO

r COMMON 1 AREA

LSOA&SWA
1'-------

-- -----
JOB56

512K

AVAILABLE

FOR 1 DEMAND
PAGING

ADDRESS
SPACE ONE

COMMON 1
AREA

~/8»)'A7)')'A7)')'h"J)J;)

PRIVATE
AREA

260K ~~"""'~'"'
256K~----"""4

}v= R AREA
INITIATOR

FOR
V=R

JOB STEP

NUCLEUS NUCLEUS NUCLEUS

0-------..
Figure 89

for batch jobs. They map the nucleus and the common area
through segment sharing. Each TSO user then has the entire
private area for his own use. Figure 90 shows an example of
a TSO operation with three logged-on users and no batch
operations.

Because VS2/2 creates an address space or virtual storage
for each user in the system, an important question arises: is
there any limit to the number of address spaces that VS2/2
can create? Theoretically, there is no limit. However, practi
cal limits are imposed by the size of a system's real and
external page storage. VS2/2 has a thrashing monitor to
prevent excessive paging and it also implements a

16 megs

COM

"swapping" algorithm. Remember, TSO is fully integrated
into the design of VS2/2. As discussed in PART I of this
text, in a timesharing environm~nt it is more effective to
allocate real storage to multiple users through a combina
tion of demand paging and block paging (or swapping). This
will assure that all users, both batch and timesharing, have
an opportunity to execute over a reasonable time period. In
a system with a thrashing monitor only, some users might
be deactivated for a rather long time period. This would be
intolerable if such a user were at a terminal waiting for a
response.

16 megs

16 megs MON
EA

MON ~~ 116 megs
~~ Af\~

'''' COM
~

16 megs 1
EA

.~ MON ~~
16 megs 16 meg

AR
~~ COMMON !~

EA
COMMON ~~ SWA ~~ AREA

\ I
\ I

!~

LS(AREA \ /
\ / SWA 1-------

LS(----
LSOA

:~
~---

'~ 1----
ASM ~ ::;

JOB
~------

ENTR~

NUCL
SYSTEI\ MASTER

SCHEDULER

SWA ----
LSOA& SWA ---- ::: ----1-------- ~:: ----

~: USER3
~---

~~ ~; USER2
~-----. .. EUS USER1

TCAM .EUS

\\ 1/
~ \\REALSTORAGE/~

~~ USED FOR /
DEMAND /

~ PAGING ~

NUCL .EUS ----1------.... - ---
NUCLEUS NUCLEUS NUCLEUS

0
Figure 90

o 0-------....

Lesson 14. OS/VS2 Release 2 85

Levels of Control VS2/2

To prevent this problem, VS2/2 has three levels of control.
The first level involves how many address spaces or virtual
storages may exist in the system. Will the system allow the
operator to start another initiator for batch or TP jobs? Will
VS2/2 allow another TSO user to log on? This first level of
control is implemented so that VS2/2 can prevent external
page storage and real storage from being overrun.

The second level of control involves all the address
spaces that currently exist in the system (for both TSO
users and batch or TP jobs). If enough users exist to cause
trashing, VS2/2 will schedule these users to decide which
ones may contend for real storage through demand paging
(and thus have an opportunity to execute). Of all the users
in the system then, some are active and some are quiesced.
The VS2/2 scheduling rule attempts to give all users an
opportunity to execute. When VS2/2 quiesces a user (to
activate another user) it block-pages all of the changed
pages in the user's private area to external page storage.
This will include the user's segment and page tables and any
other control blocks required for reactivation. Only
changed pages need be block-paged out because copies of
any active unchanged pages already exist on external page
storage. When a user is reactivated, the same set of changed
pages is block-paged in to real storage. When execution re
sumes, the user is again under the control of demand pag
ing.

With this second level of control then, the VS2/2
scheduling rule "swaps" virtual storages to assure that all
users have an opportunity to execute. An installation may
assign higher preference to TP jobs or time sharing users so
that the scheduling rule will give such users a higher level of
service.

The third level of control in VS2/2 involves dispatching
(or scheduling) the system's CPU(s) among the active users.
Dispatching in VS2/2 has been enhanced over ReI 1 to
service a system with multiple virtual storages (this will be
discussed in more detail later).

The VS2/2 Systems Resources Manager

The three levels of control in VS2/2 all involve system re
sources, whether external page storage, real storage, the
number of address spaces or the CPU(s). Each level of con
trol is affected by a new component of the VS2 nucleus
called the systems resources manager. The resources manager
is an extension of and a replacement for the TSO driver in
VS2 ReI 1. The resources manager affects the use of all
system resources - the CPU(s), real storage, virtual storage
creation, virtual storage swapping, external page storage and
so forth. The resources manager is a collection of algo-

86

rithms that are supplied with VS2/2. An installation may
specify parameters to tailor these algorithms to its partic
ular needs or use default parameters provided with the
VS2/2 system. In fact, an installation may replace an algo
rithm with one more suitable to its needs. The overall
objective of the resources manager is to control system re
sources in such a way that VS2/2 achieves good perform
ance objectives, whether the objectives be throughput, good
response to timesharing users, some combination of these
two, or some other set of objectives desired by an installa
tion.

One area with which the resources manager interacts is
CPU dispatching. Unlike VS2 ReI I which supports multi
tasking in a single address space, VS2/2 supports multi
tasking in multiple address spaces. Before dispatching tasks,
the dispatcher must first select an address space (or user)
for execution. The highest priority address space in the
ready state is always selected. When an address space is
selected for execution it may contain multiple tasks. The
highest priority task in the ready state is then selected for
execution. Once a task begins to execute, it will continue
until one of the following events occurs:

• The task is interrupted by a higher priority task
within the address space.

• The task is interrupted and another address space is
dispatched.

• The task goes into a wait state. The next highest
priority task would then receive CPU control. If no
other tasks are in the ready state another address
space will be dispatched.

The VS2/2 resources manager assigns address space priority
and tries to assure that each address space (or mer) receives
a certain degree of service (CPU time and time in the active
state between swapping). A VS2/2 installation can favor
certain users by requesting a high degree of service for that
user. For example, a TP appliCation can be assigned a high
degree of service to assure good response. Thus there are
two levels of dispatching in VS2/2, the global level where
the system decides which address space (or user) to dis
patch, and the local level where the dispatcher selects a task
for execution from within an address space.

This idea of global and local services extends beyond
dispatching in VS2/2. On the global level VS2/2 controls
the CPU, real storage, external page storage, I/O device as
signment, address space creation and so forth. SQA is used
for control blocks and queues that pertain to global control
of the system. The Page able Link Pack Area contains
system and user programs that are available to all users in
the system.

On the local level, resources are used to service a parti
cular address space. LSQA contains control blocks and

tables that pertain to the address space, for example, the
segment and page tables that map the address space. SWA is

used for control blocks for job scheduling within the
address space. While a user is executing within an address
space, the user may attach tasks and allocate space to them
from within the address space. The user may also create a
Job Pack Area (JPA), analogous to the Page able Link Pack
Area, but only for use within the address space. If at any
time a user inadvertently destroys data within the address
space the remainder of the system and its users will not be

affected because of the inherent protection in a multiple
virtual storage system.

VS2/2 is not just a system that supports multiple virtual
storages. It is an operating system that services batch jobs
from both local and remote work stations. It is an operating
system that fully integrates the TSO timesharing service
into its structure. It is an operating system that supports
uniprocessing for a single System/370 CPU or multiprocess
ing on two or more tightly coupled System/370 CPU's.
VS2/2 makes a major stride in the evolution of the OS/VS
operating system.

Lesson 14. OS/VS2 Release 2 87

Lesson 15. DOS/VS

The Disk Operating System/Virtual Storage (OOS/VS) adds
major functional enhancements to DOS. Five user par
titions, an enhanced POWER facility, variable partition
priority, a relocating loader, cataloged procedures and
virtual storage implementation are the new functions in
OOS/VS. In this lesson we shall describe briefly the five
user partitions, variable partition priority and the relo
eatable loader. We shall then present the virtual storage
implementation in DOS/VS. OOS/VS implements a single
virtual storage as a standard feature of the system. DOS/VS
executes only on a System/370 with the DAT feature.

Five User Partitions

With DOS/VS, you may execute job streams in one to five
batch user partitions. Single Program, Initiation (SPI) is not
required and thus not supported in DOS/VS. Standard par
tition sizes are specified during system generation. At IPL
time you-may change the standard size of any partition.
Minimum partition size is 64K. This allows Job Control to
execute in all partitions and eliminates the need for SPI
support. Figure 91 contrasts the former DOS system struc
ture with DOS/VS showing the maximum number of user
partitions in each system.

You can run batch jobs in the two new DOS/VS par
titions F3 (Foreground 3) and F4 (Foreground 4). Standard
partition dispatching priority, which determines what par
tition gets the system's CPU next, is FI, F2, F3, F4 and BG

DOS

F1

in that order. A job executing in the F 1 partition has the
highest priority; jobs that execute in BG have the lowest
priority. To properly balance the use of the CPU and
channels among the jobs executing in your system, you
must consider the priority of the partition where a job will
execute. Assign jobs to partitions in a way that will balance
the use' of your CPU and channels using the DOS/VS
standard dispatching priorities. For example, an I/O bound
job should have a higher priority than a CPU bound job.
This will tend to produce overlap between channel and CPU
operation.

Variable Partition Priority

DOS/VS also has a new feature that will let you change
standard partition dispatching priorities during system oper
ation. It is called variable partition priority. In a situation
where, for example, a job executing in the BG partition
(normally the lowest priority partition) needs to be rushed,
your operator could give the BG partition a higher priority.
Under norm!! circumstances you should plan for system
operation with standard dispatching priorities. Use the
variable partition priority feature for exception situations.

Relocating Loader

Early in the text we described static relocation and dy
namic relocation. System/360 versions of DOS, with their

DOSNS

F1

F2

F2 3 USER
PARTITIONS F3

5 USER
PARTITIONS

F4
BG

BG

SUPERVISOR SUPERVISOR

. Figure 91

88

link edit process, don't implement either type of relocation.
With DOS on System/360, programs, in general, are bound
to their· real storage locations at link edit time. In effect,
programs will execute in the same real storage locations
every time, unless you relink edit to another area of real
storage. In other words, a program is bound to a partition,
FI, F2, or BG, at link edit time. This resulted in several
considerations for the System/360 DOS user:

1. A partition's size and location in real storage had to
be planned in advance.

2. Programs were usually bound to one partition. If
there was a need to execute a program in multiple
partitions, this usually required multiple copies of the
program, each copy link edited to its partition's
location.

3. It was difficult to change the real storage boundaries
of a partition. This last item is very significant for
users. Consider the situation shown in Figure 92.

Users periodically generate a new system to add new
functions. In the process, the new supervisor usually be
comes larger as indicated in Figure 92. The larger supervisor
offsets the boundary of the BG partition. You might also
have to change the real storage locations of the FI and F2
partitions. Since programs are bound to partitions and their
real storage locations, a System/360 DOS installation in this
situation would have to relink edit all programs that exe
cute in BG to BG's new real storage locations. If you
change the boundaries of the F I and F2 partitions, you
must also relink edit their programs.

DOS/VS users won't have this kind of problem if they
use the DOS/VS relocating loader option. The relocating
loader is a software feature that translates or relocates a
program's addresses to a partition's boundary. The re-

Figure 92

64K

40K

30K

,\.Iu
-::1 OK
'/\\\ '

o

REAL STORAGE

F1

F2

BG

SUPERVISOR
(OLD VERSION)

DOS

location occurs at program load time. Relocation occurs
every time that you load a program, not just once at link
edit time as in DOS. Since relocation occurs at program
load time, programs don't become, in effect, bound to par
titions. You may load a program into any partition. Thus,
partition locations aren't as rigid. The situation that we
described for DOS with a linkage editor only, as shown in
Figure 92, is no longer a problem.

The DOS/VS relocating loader is a type of static re
location. It gives the DOS/VS user an assist for effective
multiprogramming in five partitions and for effective use of
virtual storage in DOS/VS. We shall describe the relocating
loader - virtual storage relationship in a later topic.

Virtual Storage in DOS/VS

The DOS/VS system has a single virtual storage. In many
ways the DOS/VS virtual storage implementation is similar -
to OS/VS I. DOS/VS is structured in its virtual storage,
while real storage is a system resource shared by all user
partitions through the demand paging technique.

In DOS/VS, virtual storage size may not exceed 16
megabytes (16 megs). It may be smaller. Virtual storag~ size
is specified by a user at system generation time. Figure 93
shows a virtual storage of 16 megs ..

Notice in Figure 93 that virtual storage is divided into
segments. Each segment is 64K in size. In 16 megs, there
are 256 segments numbered from 0 through 255. In
DOS/VS, segments are useful when considering virtual
storage size. A 512K virtual storage would be 8 segments in
size.

Also notice in Figure 93 the structure of each segment.

. REAL STORAGE
64K

F1

... 42K
F2

• 32K

BG

... ~ \\IIIt--____ ~
12K

~/r\\ SUPERVISOR
(NEW VERSION)

o--------------~
DOS

Lesson 15. DOS/VS 89

16 MEGABYTES

VI RTUAL STORAG E
STRUCTURE

64K

SEGMENT 255

64K

SEGMENT 254

~-----------6-4-K~

SEGMENT 2

/
/

I

64K"

'"

I
I

/

/
/

/

I

SEGMENT
STRUCTURE

PAGE 31

PAGE 30

2K

2K

2K

~ _,--- - ~

2K

PAGE 1

SEGMENT 1 "'" 2K

" " "
64K

PAGE 0
....

SEGMENT 0
0 _______ ..

DOSNS

Figure 93

Each segment has 32 pages, numbered from 0 through 31.
Each page is 2K in size. In DOS/VS, the page is the primary
building block. Virtual storage is allocated to the super
visor and partitions in page size increments.

The DOS/VS Structure in Virtual Storage

The DOS/VS system is structured in its virtual storage.
Figure 94 shows an example of a DOS/VS system struc
tured in virtual storage. Virtual· storage is divided into two
major areas, the virtual address area and the real address
area. The DOS/VS virtual address area of virtual storage is
analogous to the pageable area of virtual storage in VS 1 and
VS2. The DOS/VS real address area of virtual storage is
analogous to the non-pageable area of virtual storage in VS 1
and VS2. In DOS/VS, during operation active partitions in
the virtual address area of virtual storage dynamically share
real storage through demand paging. The DOS/VS super
visor and the V=R area are defined in the real address area
of virtual storage. The real address area is not controlled by
demand paging. Its pages, when allocated, are fIXed in cor
responding page frames of real storage. We will return to
the relationship of virtual storage to real storage later. Next
we will present a short description of the DOS/VS super
visor, the V=R area and user partitions.

90

DOS/VS Supervisor

The supervisor is the primary control program of the
system. It controls the allocation of all system resources -
the CPU, I/O devices, and so forth. Minimum supervisor
size for DOS/VS is 26K. Supervisor size expands in incre
ments of 2K, the size of a page, depending on the options
selected for your installation. In addition to normal DOS
control functions, the DOS/VS supervisor contains a paging
supervisor. Thtt·paging supervisor controls real storage using
the demand paging technique. The DOS/VS supervisor also
contains the segment table and page tables used during
dynamic address translation. The DOS/VS supervisor is
loaded at the origin of virtual storage (the DOS/VS system's
address space) as shown in Figure 94. If the supervisor were
32K, it would use the first 32K of virtual storage.

The Virtual Equals Real Area

The Virtual Equals Real (V=R) area is the part of virtual
storage (see Figure 94) used for V=Rjob steps. When ajob
step is executed as V=R, it is not paged and its channel
programs are not translated. A job step is executed as V=R
for two primary reasons:

1. The job cannot tolerate time delays caused by paging.
This would be the case for a MICRjob.

2. The. job dynainically modifies channel program ad
dresses during I/O operations (see Lesson 11, Channel

I
V IRTUAL
A DDRESS

R
A

EAL
DDRESS

~
Figure 94

VI RTUAL STORAGE

F1

F2

F3

F4

BG

V=R
AREA

SUPERVISOR

DOS/VS

DOS/VS Partitions

Earlier in this lesson we described the five partition feature
in DOS/VS. Figure 94 shows all five partitions in virtual
storage. However, the number of partitions in your
DOS/VS system is a system generation or user option. If
you were to select three partitions at system generation
time you would have FI, F2 and BG in your DOS/VS
system. Partitions are defined in the virtual address area of
virtual storage. A size for each partition is specified during
system generation as the system standard. You can change
the size of any partition during system operation. Partition
size is always specified as a multiple of 2K, the size of a
page. Minimum partition size is 64K, the size of Job Con
trol. Thus, in DOS!VS, all partitons are batch partitions.

Virtual Storage - Real Storage Relationship in
DOS/VS

Program Translation for additional explanation).

We have thus far described the major parts of DOS/VS in
virtual storage. Figure 9S shows the relationship of virtual
storage to real storage in the DOS!VS system. Real storage
is divided into fixed size page frames. Page frames are 2K in
size, the same size as a page. Whenever the real address area
of virtual storage is used, its pages are fIXed in corre
sponding real storage page frames. Thus, all supervisor.pages
are fIXed in real storage, as shown in Figure 95, during

Job Control language is used to specify a job step as V=R.
How V=R space is allocated and how V=R job steps are
loaded will be presented later in this lesson.

VIRTUAL STORAGE

r F1 \
\

\
F2 \

\
VI RTUAL F3 \
AD DRESS \

I F4 \
\

\
BG \ ,

I
1', ,

V=R
,

AREA " , , RE AL

'-, AD DRESS

~

FIXED IN

SUPERVISOR a-
REAL ST.ORAGE -------

DOS/VS

Figure 95

REAL STORAGE PAGE
~ FRAME (2K)

r'

SUPERVISOR

Lesson 15. DOS/VS 91

EXTERNAL

VI RTUAL STORAGE
PAGE STORAG~ SLOT (2K)

F1

F2

F3
VIRTUAL
ADDRESS

ONE-TO-ONE

F4 CORRESPONDENCE

BG

REAL STORAGE

REAL
ADDRESS

V=R
AREA

~ SUPERVISOR SUPERVISOR

DOSNS

Figure 96

system operation. Pages allocated for a V=Rjob step (from
the V=R area) would also be fIXed in corresponding page
frames of real storage.

Pages in the virtual address area of virtual storage share
real storage page frames dynamically through demand
paging. This is indicated by the arrow in Figure 95. Thus, it
is possible for you to define partitions whose total size
exceeds real storage size. Your active partitions will share
real storage under the control of the DOS/VS paging
supervisor. The System/370 DAT feature will translate all
virtual addresses using the segment table and the page tables
in the DOS/VS supervisor. With DOS/VS, you will be able
to define a system that is less dependent on real storage size
than past versions of DOS. The DOS/VS system is struc
tured in virtual storage. Real storage is a system resource
controlled by the paging supervisor.

Virtual Storage - External Page Storage Relation
ship in DOS/VS

Since virtual storage in DOS/VS is the system's address
space, the virtual address area of virtual storage must have
some physical resource within the system to back it.
DOS/VS must have some type of External Page Storage as

92

described in PART I of this text. Figure 96 shows external
page storage in DOS/VS. External Page Storage may reside
on a 2314, 2319 or 3330 device. Its record size is 2K, the
same size as a page and page frame. External page storage
records are called slots. As shown in Figure 96, there is a
one-to-one correspondence between pages in the virtual ad
dress area of virtual storage and slots of external page
storage. That is, for every page in the virtual address area
there is an assigned slot in external page storage. Paging
then physically occurs between external page storage and
real storage. Pages are moved between slots of external page
storage and page frames of real storage. This is indicated in
Figure 96. During a page-in operation, a page is moved from
its slot in external page storage to any available page frame
in real storage. During a page-out operation a page is moved
from the frame it occupies in real storage to its assigned slot
in external page storage. That is, in DOS/VS a page can
occupy any page frame but it always returns to the same
slot.

Figure 96 shows the complete relationship of virtual
storage to real storage and external page storage. The real
address area, whenever used, uses corresponding page
frames of real storage. The supervisor is always fixed in real
storage during system operation. Pages in the V=R area,
when used, are always fIXed in corresponding page frames

~
I 272K

VIRTUAL
ADDRESS 1 208K

t 144K

REAL
ADDRESS

VI RTUAL STORAGE

64K \
F1 \

64K

F2

64K

BG

"
V=R

AREA

\ , ,
\

\
\

\ ,
REAL STORAGE

144K , , , , , ,

1: ------~, 36K

SUPERVISOR FIXED IN .. SUPERVISOR
REAL STORAGE o -------.

DOS!VS
Figure 97

of real storage. The virtual address area of virtual storage
has a one-to-one correspondence with external page storage.
Paging physically takes place between external page storage
and real storage.

DOS/VS System Definition and Operation

In this next topic we will describe the DOS/VS system
using a specific example. This section will include items
such as system generation considerations; loading a program
into a partition in virtual storage using the relocating
loader; and loading and executing V=R job steps. Our
sample system configuration assumes that we have a
System/370 Model 135 with the DAT feature and 144K of
real storage. We will define a system with 3 partitions, Fl,
F2 and BG, the relocating loader function, and a virtual
storage (or address space) size of 336K. Figure 97 shows
this DOS/VS system structured in virtual storage next to its
real storage resource.

At system generation time, three major decisions were
necessary to build the sample system shown in Figure 97:

1. Virtual storage size
2. The number of partitions (from one to five)
3. Whether or not to use the DOS/VS relocating loader

There are many other system generatio~ considerations. We
only mention those most pertinent to some of the new
DOS/VS features. With these options we assume a super
visor size of 36K. Remember, supervisor size is always a
multiple of 2K, the size of a page.

Standard partition sizes are also selected at system gener
ation time. Remember, partition sizes may be changed

during system operation, usually at IPL time. In OUI

example, Figure 97 , all partitions are the same size. This has
a nice scheduling advantage. All jobs 64K and under can be
executed in any of the partitions. You can assign jobs to
partitions, concentrating on effective use of the CPU. For
example, you can execute I/O-bound jobs in high priority
partitions and CPU-bound jobs in lower priority partitions.
If, for example, you execute a 10K I/O-bound job in Fl,
54K of virtual storage (not real storage) is wasted. This is a
result of the demand paging technique implemented by the
DOS/VS paging supervisor. With DOS/VS, fragmentation
may occur, but it occurs in virtual storage not in real
storage as in former DOS systems. This is an example of
how you can make good use of the size of virtual storage.
With virtual storage you might also try full-function
processors like the PL/I Optimizer or full ANS COBOL. Or
you might try large applications, too large to attempt with
former versions of DOS because of real storage limitations.
Be careful, however, not to assume that virtual storage is a
substitute for real storage. If you recall the working set
concept from PART I, some programs may require much
less real storage than their actual size; some programs may
need the same real storage as their size. Some of the ad
vantages in DOS/VS are:

1. Virtual storage enables flexible operations, such as
our example of equal size partitions.

2. Virtual storage allows experimentation with programs
too large for your real storage resource. This enables
easier growth into new applications. You can try an
application before you install additional real storage.

3. In some cases, virtual storage will allow you to exe-

Lesson 15. DOSjVS 93

336K

208

144K

36K

VI RTUAL STORAGE

F1

BG

V=R
AREA

SUPERVISOR

\
\
\
\
\
\
\
\
\
\
\
\

SUPERVISOR

SOME OF)
JOB CONTROL"S
PAGES

DOS!VS LIBRARY

36K

~~ __________ ~o

RE_L()~ATt~G
LOADER DOS!VS

Figure 98

cute a set of jobs too large for your real storage
because of the working set concept.

4. Virtual storage should make programming easier. You
can use large partitions instead of an overlay or
multi-step approach when designing an application.

s. The relocating loader option will make operations
and the installation, of new system releases easier.

6. Design and development of teleprocessing and data
base applications should be easier with a large virtual
storage.

Although we have suggested how to schedule jobs in
DOS/VS, we haven't described how programs are loaded.
We said before that we included the relocating loader
option in our DOS/VS sample system. We will now describe
how programs are loaded into DOS/VS partitions.

Let's assume that we have ajob that we want to execute
in F2. To schedule the job, Job Control is loaded into F2.
It uses 64K. Job Control is paged, just like all other pro
grams that execute in the virtual address area of virtual
storage. Our sample job will execute a program called PRO
GRAMA. PROGRAMA is in a DOS/VS library (the Core
Image library) in the format required by the relocating
loader. The Relocating Loader, which is part of the
DOS/VS supervisor, can load PROGRAMA into any con-

94

tiguous range of virtual addresses, therefore, into any parti
tion. In our example, the range of virtual addresses is F2,
from 20SK to 272K. Let's assume that PROGRAMA is 42K
in size. Figure 98 shows the situation that we have just
described. Notice that we show some of Job Control's pages
in real storage. This is the case because we assume that Job
Control is executing at this time.

When Job Control is told to load PROGRAMA (through
the JCL execute statement) it passes control to the Relocat
ing Loader. The Relocating Loader reads PROGRAMA as
data .and translates PROGRAMA's address constants related
to F2's origin in virtual storage (20SK). After loading, PRO
GRAMA's addresses start at 208K and end at 272K. This
translation of addresses at load time is the static relocation
technique that was described in PART I. Thus far we have
described the logical process performed by the relocating
loader in DOS/VS. Physically, the Relocating Loader reads
PROG RAMA into page frames and translates PRO
GRAMA's addresses. This process continues until all of
PROGRAMA is translated (or loaded). In most cases, many
of PROGRAMA's pages will be paged out during the load
operation. Therefore, at the end of loading most of PRO
GRAMA will be in external page storage. When loading is
complete, control passes to PROGRAMA and it begins to

EXTERNAL
PAGE STORAGE

VI RTUA L STORAGE

64K--- PHYSICAL ACTIVITY

F1
_...-- FINAL RESULT

144K

F2

BG

V=R
AREA

64K

64K " " " " "

36K SUPERVISOR SUPERVISOR 36K

~~L-________ ~O

ELOCATING
LOADER

DOS/VS

Figure 99

execute under the control of demand paging. Figure 99
shows both the physical and logical results of program load
ing using the DOS/VS Relocating Loader.

Because the Relocating Loader loads programs just be
fore execution, we could have executed PROGRAMA in Fl
or BG by scheduling the job through an Fl or BG system
reader. There would be no requirement to relink-edit or to
have multiple copies pf PROGRAMA (one for each
partition).

Executing V=R Job Steps

Normally, jobs will run in the virtual address area of virtual
storage in DOS/VS. Job initiation is performed py Jqb Con
trol. Program loading is controlled by the Relocating
Loader (if you select that option). But what about V=Rjob
steps? We have described the need for them - time
dependent jobs or programs that dynamically modify their
channel programs. You have seen the V= R area of virtual
storage in DOS/VS. However, we have yet to describe how
V=R space is allocated and how V=R job steps are
scheduled and executed.

V=R Space Allocation

We said before that pages from the real address area of
virtual storage are fIXed in real storage when they are used.
The DOS/VS supervisor is fixed in real storage during
system operation. The V=R area allows the DOS/VS user to
fIX programs (or V=R job steps) in real storage in a similar
manner. This type of page fixing is called a long term fix.
That is, a V=R job step's pages are fIXed in real storage
during the entire execution of the job step.

V=R space (or pages) can be allocated to any or all
partitions during system operation. You can make a
standard assignment of V=R space to a partition at system
generation time and then chang.e the allocation during
system operation. Using our sample DOS/VS system, we
have assigned V= R space to F 1 and BG, 16K (or 8 pages) to
Fl and 30K (or 15 pages) to BG. This is shown in Figure
100.

Notice that a user assigns V=R space starting at the bottom
of the V=R area. We identify the allocated pages as BGR
and FIR. BGR identifies the Background partition's V=R
pages. FIR identifies the Foreground One partition's V=R
pages. These pages are reserved for any V=R job steps that

Lesson 15. DOS/VS 95

t
V = R 82K

AREA

L
36K

o

Figure 100

VI RTUAL STORAGE

64K

F1

64K

F2

64K

BG

--------_"!'
F1 R (PAGES) 16K ---------30K
BGR (PAGES)

SUPERVISOR

DOS!VS

will execute in BG or Fl. Because we have not assigned
V=R space to F2, no V=R job steps can run in F2 (unless
V=R space is assigned to F2 during system operation).

V=R space allocation does not affect real storage unless

VIRTUAL STORAGE
336K F1 64K \ ----- \

\
JOB EXECUTI NG \

\
\
\ F2

64K

\
JOB EXECUTING

64K
BG

JOB CONTROL

I ,
\

...-.----- \ V=R 16K \ AREA F1R

1:

30K

BGR

36K
SUPERVISOR

0

\
\

\

you use it for a V=R job step. Thus, in normal system
operation, all real storage page frames (above the Super
visor) are available for demand paging. Let's assume a situ
ation for our sample DOSjVS system in which jobs are
executing in FI and F2; V=R space is allocated as shown in
Figure 100, and we are about to schedule a V=R job step in
BG. Figure 101 shows this situation.

Notice how real storage page frames are shared among the
three partitions. This includes some of Job Control's pages
in BG. We will call the V=R job step VRSTEP. VRSTEP is
specified as Virtual Equals Real (V= R) in its JCL execute
statement. When Job Control reads this statement, it directs
the Relocating Loader (assuming that you have installed the
option in your DOSjVS supervisor) to load VRSTEP into
BGR in the V=R Area of virtual storage. Let's assume that
VRSTEP is 20K in size. It could not exceed 30K, the size
of BGR, unless we reassigned space in the V=R Area to
make BGR larger than 30K.

Before the Relocating Loader can load VRSTEP., the
DOSjVS paging supervisor must move any active pages
(from the virtual address area of virtual storage) that cur
rently reside in page frames of real storage corresponding to
BGR's pages in the V=R Area. These pages (from the
pageable area of virtual storage) will be moved to available
page frames or external page storage. When the area in real
storage that corresponds to BGR is clear VRSTEP can be

\
\
\
\

____ ~~PAGESFROMJOBS
---=~-':::t:;;;;IN F1 AND F2 AN D

FROM JOB CONTROL
IN BG

\
\

\
36K

SUPERVISOR
~ ____________ ~o

DOSNS

Figure 101

96

VI RTUAL STORAGE

336K F1 64K \

\
\
\

JOB EXECUTING

\
\
\

F2

\
\
\
\

144K

F1R 16K

SUPERVISOR

\
\

\

--__ -I---=~PAGESFROM JOBS
-~--IN F1 AND F2

.... ~---10K OF WASTED
REAL STORAGE

SUPERVISOR
'--______ 0

DOS/VS

Figure 102

loaded. The Relocating Loader loads VRSTEP, relocating
its addresses to an origin of 36K. All of VRSTEP's pages get
a long term fIX in real storage. VRSTEP then begins to
execute, its pages fIXed for the entire execution. VRSTEP's
virtual addresses equal its real addresses. Therefore, no
paging occurs. VRSTEP's pages are fIXed in real storage.
Also, no channel translation occurs. VRSTEP could be a
program that dynamically modifies CCW's during I/O
operations. Figure 102 shows the status of our sample
DOS/VS system during VRSTEP's execution. No new jobs
or job steps can be initiated in the BG partition until the
VRSTEP program terminates. There is only one BG parti
tion. When used for a V=R job step the program is loaded
into BG's V=R space (BGR); BG's space in the virtual ad
dress area is unused until the V=R job step terminates. At
that time, Job Control would be loaded into BG in the
virtual address area and initiate the next job or job step for
the BG partition. Figure 102 also shows the effect of a V=R
job step on real storage. A part of real storage is dedicated
to VRSTEP. This real storage can no longer be shared dy-.

namicaIly among all active jobs in the system until VRSTEP
terminates. Also notice in Figure: 1 02 that the unused 10K in
BGR results in 10K of wasted real storage. This can be
prevented if you specify the size of VRSTEP in its JCL
execute statement. For example, if we had specified
VRSTEP as 20K, only the first 20K of BGR's pages and the
corresponding 20K in real storage would have been used.
The 10K of wasted space shown in Figure 102 would be
available to Fl and F2 under the control of the paging
supervisor.

Plan to use the V=R area only when required. Let the
DOS/VS paging supervisor control the allocation of real
storage through demand paging.

The many new functions in DOS/VS add significant im
provements to its multiprogramming, teleprocessing, data
base and interactive computing capabilities. With the
DOS/VS system structured in virtual storage, system oper
ation and application development should be much im
proved. These improvements in DOS/VS truly make it a
system of the '70's.

Lesson 15. DOS/VS 97

READER 6 S COMMENT FORM

Introduction to Virtual Storage in System/370 G R 20-4260-1

Please comment on the usefulness and readability of this publication, suggest
additions and deletions, and list specific errors and omissions (give page numbers).
All comments and suggestions become the property of 18M.

Reply Requested

Yes 0
No 0

COMMENTS

Name
------------------------~-----------

Job Title _______________ _

Address --------------------------------
_________________________ Zip ____________ _

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

FOLD

YOUR COMMENTS PLEASE

Your comments on the other side of this form will help us improve future editions of this
publication. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material.

Please note that requests for copies of publications and for assistance in utilizing your
IBM system should be directed to your IBM representative or the IBM branch office
serving your locality.

FOLD

..

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY:

I BM Education Center, Building 005
Department 78l, Publications Services
South Road
Poughkeepsie, New York 12602

FIRST CLASS
PERMIT NO. 40

ARMONK, NEW YORK

...

FOLD FOLD

--- ------ - ---- ---- - ---- - - -----------,,-
(!J

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

G R 2()'426()'1

