VSE/Advanced Functions
System Management Guide

Program Number 5746-XE9

Release 2

SC33-6094-0
File No. S370/4300-34

VSE/Advanced Functions
Program Product System Management Guide

Program Number 5746-XE9

. Release 2

Summary of Amendments

This publication, although a -0 edition, actually is a major revision of the
DOS/VSE SCP publication DOS/VSE System Management Guide,
GC33-5371-7. For a complete overview of new functions that have
become available since Release 34 of the DOS/VS SCP, refer to the
publication Introduction to the VSE System.

The amendments cover:

o Sharing of data on DASD across computing systems

¢ Chaining of libraries

o Sharing of libraries across partitions and across computing systems

o Extended multiprogramming and subtasking support (up to twelve
partitions and up to 208 subtasks)

o Improved label processing
o New initial program load functions and simplified supervisor assembly

« Linkage editor work files in VSE/VSAM managed data space, as
supported by the VSE/VSAM Space Management for SAM feature.

« More ease of use with VSE/VSAM space management (simplified job
control language)

« Inclusion of Device Support Facilities (DSF)

Significant changes are indicated by a vertical bar to the left of the
changes.

First Edition (October, 1979)

This edition applies to Release 2 of VSE/Advanced Functions and: to all subsequent
releases until otherwise indicated in new editions or Technical Newsletters. Changes
are continually made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370
Bibliography, GC20-0001, for the editions that are applicable and current.

It is possible that this material may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced
in your country. Such references or information must not be construed to mean that
IBM intends to announce such IBM products, programming, or services in your
country.

Publications are not stocked at the address given below; requests for copies of IBM
publications should be made to your IBM representative or to the IBM. branch office
serving your locality.

A form for readers’ comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Laboratory, Programming
Publications Department, Schoenaicher Strasse 220, D-7030 Boeblingen, Germany.
IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, continue
to use the information you supply.

© Copyright International Business Machines Corporation 1979

i)

THIS MANUAL ...

... is a guide to using the functions available with the licensed
VSE/Advanced Functions and its complementary system control
programming (SCP) code.

"VSE’ refers to the IBM Disk Operating System/Virtual Storage Extended
(DOS/VSE). VSE comprises your entire operating system, that is, not
only VSE/Advanced Functions which is the minimum required support,
but also any optional installed system support. The latter may consist of
IBM-supplied support programs (such as VSE/POWER, VSE/ICCF) or
of system support programs that you supplied yourself.

System management, which is discussed on a conceptual and functional
level, refers not only to the way VSE/Advanced Functions is organized,
but also to the way you, the user, can efficiently manage your system.

Before you begin reading this manual, you should be familiar with the
information contained in the Introduction to the VSE System.

This book is not a guide to data management; instead, a separate manual
is provided for this purpose, called the VSE System Data Management
Concepts.

After reading this manual and the above mentioned manuals, you should
be able to turn directly to the VSE library. of reference manuals in order
to work with your operating system. A reference manual is organized so
that you can easily retrieve specific information on the formats of the
control statements, macro instructions, labels, and messages, which you
deal with daily.

This manual is divided into four chapters:

Chapter 1: VSE/Advanced Functions Overview provides conceptual
information on multiprogramming, virtual storage, and multitasking.

Chapter 2: Planning the System gives planning information for system
generation.

Chapter. 3: Using the System provides information on how to use the
system, in particular on the use of the IPL, job control, linkage editor,
and librarian programs.

Chapter 4: Using the Facilities and Options of VSE/Advanced Functions
provides guidance information on how to use facilities and options of
VSE/Advanced Functions; for example, writing IPL and job control
user exit routines, checkpointing and restarting a program, or
designing programs for virtual mode execution.

For reference purposes the organization of the system residence disk file
(SYSRES) is shown in Appendix A.

The following IBM manuals are referred to in the text of this manual:

IBM System /370 Principles of Operation GA22-7000
IBM 4300 Processors, Principles of Operation GA22-7070
Using the VSE/VSAM Space Management for SAM Feature. SC24-5192
VSE System Data Management Concepts GC24-5209
VSE/Advanced Functions Macro User’s Guide SC24-5210
VSE/Advanced Functions Macro Reference SC24-5211
VSE/Advanced Functions Tape Labels. SC24-5212
VSE/Advanced Functions DASD Labels. SC24-5213

DOS/VSE IBM 3800 Printing Subsystem Programmer’s Guide. . . GC26-3900
0S/VS, DOS/VSE, VM/370 Environmental Recording Editing

and Printing (EREP) Programc..vuveueneenn.n GC28-0772
Guide to the DOS/VSE Assembler. GC33-4024
DOS/VSE OLTEP.ttt ittt ittt eieeeeennns GC33-5383
Data Security Under the VSE System GC33-6077
VSE/Fast Copy Data Set Installation Reference. SC33-6082
VSE/Advanced Functions Sysem Control Statements SC33-6095
VSE/Advanced Functions System Generation SC33-6096
VSE/Advanced Functions Operating Procedures SC33-6097
VSE/Advanced Functions Messagesconvun... SC33-6098
VSE/Advanced Functions Serviceability Aids

and Debugging Procedures.ttt SC33-6099
VSE/Advanced Functions System Utilities. SC33-6100

VSE/Advanced Functions Maintain
System History Program User’s Guide SC33-6101

Introductiontothe VSE System GC33-6108

Table of Contents

Chapter 1: VSE/Advanced Functions Overview T 1-1
Multiprogrammingt oo v oot onnenneeeeeeeeeeeeeeneennnens 1-1
Partitionst iiiiinneeneeeeeeeeeeeenenesennnnnnns 12
Partition Priorities it ittt i i innetennereaneennnn 1-3

Storage Protection iinennneeennnnnnannannenn 1-3

Device Considerations Under Multiprogramming coeeeuwnnnn. 1-3
Virtual Storage v vt ittt it i et ettt et e e 14
Virtual Storage in VSE et et et e ettt et 1-5
Storage Managementc.00iiitttateeraaaaann 1-8

Relating Virtual Storage to Locations in Processor Storage 1.9

Virtual Storage Implementation under VSE/Advanced Functions 1.13
Division of Address Spaceot iiiitteetneeeennnnnn 1-14
Processor Storage Utilizationc.0ciciieeeenn. 1-17
Executing Programs in Virtual and Real Mode 1-17

Storage Allocation u o v v veeneeneneeeeeeeennnnnnns 1-18
Multitaskingot ittt ittt ettt et e 1-25
Two Types of Multitaskingt eeeeeeenenennn 126
Cross-Partition Event Controlttt teeeennnnnnn 126
Reliability/Availability/Serviceabilityttt nneeennn 1-27
Recovery Management Supporttuieteeeennencnns 1-27
Chapter 2: Planning the System 2-1
System Generation Proceduret iiitineenennnnnannns 2-1
Handling the Distribution Systemcttttteneeennnn. 22
Planning the Libraries ittt ittt ittt 2-3
Purpose and Contents of the Librariesc00ivenn.. 24
Corelmage Librarycciitiiireernnncnnnnnas 24
Relocatable Libraryc..0tttitinneanennnnn 24

Source Statement Library00 ittt trnnnneannn 2-5
Procedure Libraryttt iinennennnnnnenn 2-5

Private Libraries e et et 2-6
Choosing the Libraries for an Installation 2-7
Relocatable and Source Statement Libraries 2-7
Procedure Library ittt eennnnnnnnnas 2-7
Determining the Location of the Librariesc000... 2-8
Planning the Size and Contents of the Libraries 2-12
System and Work Filesttt eneenenennnnanennn 2-13
Page Data Setc.iiiiieineenneeassesenssannness 2-13
Recorder File ittt ittt iiieeetennneesancannnns 2-15
Hard Copy File0ttt iinneetnnneannanans 2-15
History File it ettt 2-15
Alternate Dump Files 000ttt ennnennns 2-16
Work Filesttt ittt eeneneesecasesasaaennns 2-16
Label Information Areaottt eneeeeeeennsssnansnnnnns 2-18
Planning for Compiling in More Than One Partition 2-19
Tailoring the SUPEIVISOTttt iiieeeeeeneeenneananncsans 2-20
Virtual Storage Sizeiiiuetereeeeernennnnnnennn 220
The Shared Virtual Areatuiueueenerooenonnens 2-21
Defining the Number of Partitions and Subtasks 224
Library Optionsttt ittt ittt teeeeaeoeananenns 225
Library Chainingttt ittt inneeceanneoennanns 2-25

Second Level Directory for Core Image Libraries 2-26
TelecommuUNICAtION & ¢t v vttt it eeeeeocnnneonneensseness 2-26
BTAM-ES SUPPOTt . . . oo ittt it ettt eaecnenanannasenns 227
ACF/VTAM SUpportttt iineteneneeennanenannnns 227

Linkage between VSE/Advanced Functions and VM/370 227
Interactive Computing and Control 2-28
Access Authorization Checking and Security Event Logging 2-28
Access Control ittt inetennnnrconeannnnn 228
Loggingand Reporting00i ittt ennnnnnnnns 229

Job Accounting ittt ittt 229

TImer SeIVICES . . v it i it it ittt it ettt e et ee et et aaneeas 2-30

Time-of-Day Clockottt ittt itee s etensenn 2-30
Interval TIMert it ittt it et ettt et e e e eanns 2-30
Task Timer ittt it it ettt et eenennens 2-31
Console Bufferingttt e e 2-31
Asynchronous Operator Communicationcc000vn.n 2-32
Disk OPLIONS i it ittt ittt it ettt e et ane et 2-32
DASD Sharing Across SyStems v v v v v vt vt e it e 2-32
DASD File Protectiont v ittt it it i i e e 2-32
Track Hold Optionttt ittt it ittt e e eee e 2-33
Rotational Position Sensingttt ittt 2-34
I/OOPptionso i ittt ennnans e e 2-36
Channel Queuec0iii it eennnenennnenns .. .2-36
Supervisor Buffers for I/O Processing 0.t eennn 2-37
Error Queue ittt ittt e e 2-39
Display Operator Console Support ennnnnnn. 2-39

I/0 Related SUPEIVISOT AT€aS . . v v v v v v e v vt e et e eeeeeee e 2-40
Chapter 3: Using the System 3-1
Starting the System v ittt ittt ittt e 3-1
Initial Program Loading (IPL)00ttt eereenennn 3-2
Establishing the Communication Device for IPL 3-3

IPL Commandsot tiuiuuunnnennnnnnnnneeennennenns 34
Automated System Initialization (ASI) 3-8
Automatic Functionsof IPL 39

IPL Communication Device List 3-9
Building the SDL and Loadingthe SVA 3-10
Automatic SVA Loadingttt 3-10
SDL Procedure at IPLttt nnnnnans 3-11
User Options for the SVA ittt 3-11
Creating the System Recorder File 3-13
Creating the Hard Copy Filettt iiirennnnnn. 3-16
User-Defined Processing after IPL, 3-16
Entering RDE Datattt tiinnenrnnnnenan 3-16
Allocating Address Space to the Partitions 3-17
Allocating Processor Storage to the Partitions 3-18
Initiating Foreground Partitionsttt ennnnnn 3-18
Automated System Initialization (ASI)00 3-19
Implementation Requirementscuuieeeeeeenenn 3-20
Contents of ASI IPL Procedureso viiiinnneenennnn 3-22
Contents of ASI JCL Proceduresciiiiineeennennn 3-23
Example of an ASI JCL Procedure Setcuvvvu... 3-24
Invoking VM/370 Linkage SUppoTt v v v vt v v vttt e e eeeeae e 3-26
Controlling JObS . . . v v v it i e e e e e et ettt e 3-28
Defining a Job ittt ittt e e e e e e 3-28
Job Streams o ittt e e e e e e e e 3-31
Relating Files to Your Programc.ciiiieneeeennnnnn 3-32
Symbolic I/O Assignmentciuiitutntneeneeeenn 3-33
Logical Units i it ittt it i ettt eeeee et e 3-35
Types of Device Assignments v ietttneeennnenennn 3-37
Device Assignments in a Multiprogramming System 3-38
Additional Assignment Considerations 3-42
Processing of File Labelst 3-43
Label Information for Files on Diskette Devices 3-47
Label Information for Files on Direct Access Devices 3-48
Label Information for Files on Magnetic Tape 3-51
Storing Label Informationttt eennean. 3-52

Job Control for Library Definitions., 3-55
Establishing a Library Definition 3-56
Resetting a Library Definition 3-58
Displaying Library Definitions, 3-59
Tape and Print Operations vt vttt ittt eeeneenn 3-59
Controlling Magnetic Tapec.uuit et eeernnneens 3-59
Controlling Printed Outputttt eeeennn. 3-60
Executing a Programt et 3-61
Assembling/Compiling, Link Editing, and Executing a Program 3-61

Defining Options for Program Execution 3-66

Communicating with Problem Programs via Job Control 3-67

Executing in Virtualor RealMode 3-67
Dynamic Allocation of Storagec0uiueurnen. 3-69
System Files on Tape, Disk or Diskettec..... 371
System Files on Tapet it i ittt it reineeenneens 3-72
System Fileson Diskttt eeennsnnns 3-73
System Fileson Diskette00ttt eieeerennnennn. 3-76
Interrupting SYSIN Job Streams on Disk, Diskette, or Tape 3-76
Record Formats of System Files 3-78
Using Cataloged Procedurescvtvttinneneeeennneeeenens 3-78
Retrieving Cataloged Procedures iennn 3-78
Temporarily Modifying Cataloged Procedures0... 3-79
Several Job Steps in One Procedure. 3-82
Modifying Multistep Procedures N 3-83
SYSIPT Data in Cataloged Procedureso eeunn. 3-84
Partition-Related Cataloged Procedures00veiuu.n 3-85
Linking Programs v v v v vttt ettt ne et eeeeeeeeeaeeneonnans 3-87
Structure of a Programttt ierireeeeenoenneenn 3-88
Source Modulesttt i e e e 3-88
Object Modulescuiiineeennnn et et 3-89
Program Phasesttt enennnnaanns 3-90

The Three Basic Applications of the Linkage Editor 3-90
Cataloging Phases into the Core Image Library Y. 3-91
Link Edit and Executecc0viienneneneneeannnns 391
Assemble (or Compile), Link Edit, and Execute e e 392
Processing Requirements for the Linkage Editor 3-94
Library Definitions. ¢ o ot v vt ittt ettt e e i 3-94
Symbolic Units Required 3-95
Linkage Editor Work Files in VSAM-managed Space 3-96
Preparing Input for the Linkage Editor 3-96
Assigning a Name to a Program Phase 3-97
Defining a Load Address foraPhasec.c.00iveunnn. 398
Building Phases from Object Modules with the INCLUDE Statement . 3-100
Linkage Editor Storage Requirementsc.00000u.n 3-101
The AUTOLINK Featuret v i vt ittt iennanenonnans 3-101
Specifying Linkage Editor Aids for Problem Determination or Prevention . 3-103
Clearing the Unused Portion of the Core Image Library 3-103
Obtaining a Storage Mapttt ennenens 3-103
Terminating an Erroneous Job 3-104
Designing an Overlay Programttt nnnennnnns 3-104
Relating Control Sections to Phasesc.0... 3-104
Using FETCH and LOAD Macros v vevetenenenneenan 3-106
Examples of Linkage Editor Applications 3-106
Catalog to the System Core Image Library Example 3-107
Catalog to a Private Core Image Library Example 3-108
Link Edit and Execute Examplec000teeeenn. 3-109
Compile and Execute EXampleo veereeeeneeenenenns 3-111
Using the Libraries oo vttt it it it ittt et ittt enetennnnnas 3-113
The Librarian Programs cu ittt nneeneeees 3-114
Maintaining the Libraries00l eeinnnnns 3-116
Organizing the Libraries0ttt iierenanns 3-129
Using the Service Functions of the Librarian 3-137
Creating and Working with Private Libraries 3-141
Private Library Creationt viiiit e eennn 3-141
Using Private Libraries e e 3-144

Chapter 4: Using the Facilities and Options of VSE/Advanced

Functions 41
User-Written Exit Routines ittt innenanns 4-1
Program Exit Routinesttt etnnnennns 4-1

Interval Timer Exit ittt ittt ieeenenenn 4-2

Program Check Exit ittt ittt ittt tenereenns 42

Abnormal Termination Exit iiinns 4-3

Operator Communications Exit 4-3

Task Timer ExXit ittt it it ittt tneennnn e 4-3

Page Fault Handling Overlap Exit 44

Writing an IPL User Exit Routinettt ennnnnnn 4-4

Writing a Job Control User Exit Routine 4-6

Writing a Job Accounting Interface Routine00tiienn.. 49
Job Accounting Informationttt nananna 49
Programming Considerationscceeeeececeeenenanens 4-11
Tailoring the Programc0 ittt inieneneennnnnns 4-11

Checkpointing Facilityt ittt ittt teteeaaaaeacanans 4-15
Restarting a Program from a Checkpoint00 4-15

DASD Switching under VSE/Advanced Functions 416

DASD Sharing by Multiple VSE Systemsttt neeennnn 418
Reserving Devices for Exclusive Uset ecuen. 419
Resource Lockingttt eeeeneeenencaaanannn 4-19
Lock Communication File0 eun.. 421
How to Initialize a Shared VSE Environment 421
Definition of SYSREC in a DASD Sharing Environment 423
An Example of a Two-System Installation 423
Error Recovery after System Break-down 426

Designing Programs for Virtual Mode Execution 427
Programming Hints for Reducing Page Faults 427

General Hints for Reducing the Working Set 4-28
Using Virtual Storage Macros vt eeeeeecooncoooncanens 430
Fixing Pages in Processor Storageccuueeennn.. 4-30
Indicating the Execution Mode of a Program 432
Influencing the Paging Mechanism 432
Balancing Telecommunication Activitycveeeennn.. 4-32
Coding for the Shared Virtual Areattt eennennn 433

Appendix A: System Layouton Disk A-l
IPLRecordscciiiiiieenenaneeeeaanecncnsncananas A-1
System Volume Label ittt innnnennns A-1
User Volume Labelt eenenanannnns A-1
System Directoryi it iieneeeeeaeeacenasasannnas A-1
Library Directories and Libraries A-1
Label Information Areao oo it teeneeseneeaaacanasanns A-1

Glossary e i 5-1

C

List of Figures

Chapter 1: VSE/Advanced Functions Overview

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 1-9
Figure 1-10
Figure 1-11
Figure 1-12
Figure 1-13

Figure 1-14
Figure 1-15

Figure 1-16-

Figure 1-17

The Partitions of a VSE System 000t unnnn 12
Assigning Different Physical Devices to the Same Logical Units . . . 14
Virtual Storage and Processor Storageooeueuue.n 1-5
Storage Management Concept — VSE/Advanced Functions 1-7
Running a Program in Virtual Storage0c00v.. 19
Loading Program Pages into Page Frames 1-11
Storing Pages on the Page Data Set (Pageouts) 1-12
Managing the Page Poolcciiitiiennnnnns 1-13
Supervisor Area in Virtual Storage Address Space 1-14
Partition Distribution in a Four Partition System 1.15
Shared Virtual Area in a Four Partition System 1-16
Supervisor Routines — Fixed and Pageable 1-17
Address Space for 2048K Bytes of Virtual Storage and 512K Bytes

Of Processor Storagecooiivmeervenneennnenns 1-19
Supervisor Location in Both ECPS:VSE and 370 Mode 1.19
A 4-Partition System in ECPS:VSE and 370 Mode 1-21
Executingin Real Mode iiiiuue.. 1-23
A 4-Partition System in ECPS:VSE and 370 Mode with the

GETVIS AT€as v vttt tneeonnnnnennnennnenes 1-25

Chapter 2: Planning the System

Figure 2-1
Figure 2-2
Figure 2-3
Figure 24
Figure 2-5
Figure 2-6
Figure 2-7

Figure 2-8

The Relative Location of the Four System Libraries 2-8
Alternative Locations of the Libraries 2-10
Example of Library Organizationc00eueee.. 2-11
Layout of the Shared Virtual Areac.00.c... 2-21
System Directory Listttt nneneens 2-23

User Program Running in Virtual Storage without RPS Support . . .2-35
User Program Running in Virtual Storage using RPS Version

of Logic Module and Channel Program 2-35
Channel Queue Tablec0iiiiiiiereennnnenn 2-37

Chapter 3: Using the System

Figure 3-1
Figure 3-2
Figure 3-3

Figure 34
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13

Figure 3-14
Figure 3-15
Figure 3-16
Figure 3-17
Figure 3-18
Figure 3-19
Figure 3-20
Figure 3-21
Figure 3-22

Example of an ASI IPL Procedurec00iuvuuen. 3-8
Example for the Creationof aCDLc0vuu. 3-10
Example for the Creation of the SYSREC File and for

Loading User Phasesinthe SVAc.¢ciiieeenenn. 3-15
Example of an ASI JCL Procedure Set 3-25
Example of VSE/POWER AUTOSTART Statements326
Control Statements Defining a Job Consisting of Two Job Steps . .3-29
Example of aJob Streamttt 3-31
Example of Symbolic I/O Assignment000ee... 3-34
Possible Device Assignmentsccuoueeeeeeeeeens 3-40
Device Assignments Required for an Assembly 341
File Label Processingcciiiuietieennneeenns 3-45
Summary of Label Option Functions 3-55
Job Control Statements to Assemble, Link Edit, and

Execute a PrograminOne Jobc0.... 3-62
Submitting Input Data on SYSIPTcciteruuee.. 3-63
System Operation of an Assemble, Link Edit and Execute Job3-65
Storage Layout of a Partition With Default GETVIS Area 3-70
Storage Layout of a Partition after the SIZE Command is Given . .3-70
Program Execution with the SIZE Parameter 3-71
Creation of SYSINonTapeccvvviiitinnenennenns 3-73
Processing System Input and Output Files on Disk oo .375
Interrupting a Job Streamon Disk 3-77
Example of Modifying a Three-Step Procedure 3-84

Figure 3-23 Stages of Program Development00iiieenenn. 3-88
Figure 3-24 Record Types of an Object Module0c000vu.. 3-89
Figure 3-25 A Job Stream to Catalog a Program into the Core Image Library .3-92
Figure 3-26 A Job Stream to Link Edit a Program for Immediate Execution . . .3-93

Figure 3-27 A Job Stream to Assemble, Link Edit, and Execute 394
Figure 3-28 Naming Multiphase Programs v o v v v vttt vt v v vnvnnon 3-98
Figure 3-29 Overlay Tree Structure oo eeeeeens 3-105
Figure 3-30 Link-Editing an Overlay Programc000.. 3-106
Figure 3-31 Organization of the Directories and Libraries on SYSRES 3-114
Figure 3-32 Summary of Librarian Programs, Their Functions, and

Real Mode Requirementsovvveeiennneeennns 3-115
Figure 3-33 Library Sharing Capabilities of Librarian Programs.......... 3-116
Figure 3-34 Assembling and Cataloging to the Relocatable Library

intheSame Job i i, 3-119
Figure 3-35 Example of Deleting and Condensing00... 3-126
Figure 3-36 Disk Space Available for System Libraries 3-133
Figure 3-37 Symbolic Unit Names and Filenames Required to

Create Private Libraries 00 iiiiiiieneeenens 3-141
Figure 3-38 Search Sequence for $ and non-$ Phases 3-146
Figure 3-39 Library Status Report for SYSRES on an FBA Device 3-147

Chapter 4: Using the Facilities and Options of VSE/Advanced
Functions

Figure 41 Summary of Program Exit Conditions 4-2
Figure 42 IPL User Exit Examplectteeueennnnnnnnnns 4-5
Figure 4-3 Job Control User Exit Examplec0uiiunnnnn. 4-7
Figure 44 Job Accounting Table¢c00iittiieenueennn 4-10
Figure 4-5 Job Accounting Routine Examplec00vieno.. 4-13
Figure 46 Example of a RESTART Jobcciiiiiinnnnn 4-16
Figure 47 Example of a DASD Sharing Configuration 4-24
Figure 4-8 Example of ASI IPL Procedures for Two DASD Sharing Systems . 4-25
Figure 49 PFIX and PFREEEXamplec0uiiuennnnnnnn 431
Figure 4-10 Example of Conventions for SVACoding 4-34

Appendix A: System Layout on Disk

Figure A-1 System Residence Organization on CKD Devices A-2
Figure A2 System Residence Organization on FBA Devices A-3

C

Chapter 1: VSE/Advanced Functions Overview

Multiprogramming

VSE/Advanced Functions is a combination of programs that interact with
user-written programs running on an IBM System/370 or an IBM 3031 or
a 4300 Processor. A reference to System/370 implies, in this manual, a
reference to the IBM 3031. When installed on a 4300 Processor,
VSE/Advanced Functions may run in either 370 mode or ECPS:VSE
mode. VSE/Advanced Functions installed on a System/370 or an IBM
3031 runs in 370 mode only.

This chapter expands on the conceptual information contained in
Introduction to the VSE System about the following topics:

» Multiprogramming
o Virtual storage
« Multitasking

Multiprogramming is a technique that allows the concurrent execution of
more than one program in a single computer system. Multiprogramming
balances the difference between the speed of the central processor (also
called central processing unit or, abbreviated, CPU) and the relatively
slower speed of the I/O devices, and improves the overall throughput of
the system.

When a single executing program requests an I/O operation, it may not
be able to continue processing until the I/O request has been satisfied.
During this time, the CPU is idle. With multiprogramming, when one
program stops processing, the CPU is put at the disposal of another
program.

A program is said to be in control of the system when its instructions are
being executed by the CPU. A program can voluntarily yield control of
the CPU, or control can be withdrawn from it. Programs that share the
use of the CPU in multiprogramming do not have an equal claim on the
CPU. Instead, one program is given a greater priority than another.

When a program must wait for an event to occur before it can continue
processing, it yields control of the CPU. The operating system then passes
control to a program of lower priority. Conversely, the operating system
withdraws control from a program whenever a program with higher
priority is ready to resume processing. This generally happens when the
1/0 operation for which the program has been waiting is completed.

Multiprogramming, therefore, allows the I/O operations of one program to
be overlapped by the processing of other programs. When a program has
to wait for the completion of an I/O operation, the system sets the
program in the wait state and selects another program for execution on
the basis of its priority and readiness to run. This process, called task
selection, is performed by the supervisor program of VSE/Advanced

Chapter 1: VSE/Advanced Functions Overview 1-1

Functions. The supervisor is always resident in storage and controls many
functions of VSE/Advanced Functions. The supervisor is discussed in
detail in the section Tailoring the Supervisor in Chapter 2: Planning the
System.

Partitions

Efficient use of the system relates not only to the degree of CPU activity
but also to storage management. Storage is allocated to partitions to
accommodate the programs that will be executed in them. At times, only a
portion of the partition is used by the program being executed. Some
programs require a large partition. The operating system automatically
balances the storage demands made by programs by making processor
storage not being used by one program available to a program in another
partition as required.

The number of partitions supported equals the number of problem
programs that can be executed concurrently within the system. There is
always support for one background (BG) partition and one foreground
(F1) partition. Optionally, support for up to ten additional foreground
partitions can be requested; see Figure 1-1. The actual number of
partitions in a particular configuration is a supervisor generation option,
and as such is described in the section Tailoring the Supervisor in
Chapter 2: Planning the System.

Background

Foreground-11

Storage
available pa
to problem
programs

[£4
)
L4{

Foreground-3

Foreground-2

Foreground-1

Figure 1-1. The Partitions of a VSE System

The background partition is automatically activated by IPL. A foreground
partition must be activated via the BATCH or START operator command.
(The BATCH and START operator commands are discussed in detail in
VSE/Advanced Functions Operating Procedures.)

1-2 VSE/Advanced Functions System Management Guide

Partition Priorities

Storage Protection

During supervisor generation, default priorities are established for each
partition defined in the system. The default priorities are (from low to
high): BG, FB, FA, F9, ... F2, F1.

During processing the operator can display the partition priorities and
change them dynamically by issuing the PRTY command. This can be
used to accelerate the execution of a given program. However, the
priorities should be reset to the installation standards as soon as possible
to handle the normal flow of jobs through the system.

Besides assigning a fixed priority to a certain partition, you can also
specify two or more partitions for balancing. Balanced partitions are
treated as a single entity within which the supervisor assigns priorities;
that is, dynamically distributes CPU time to the individual partitions.

Changing priorities while jobs are being executed should be done with
special care if the licensed program VSE/POWER or teleprocessing, which
normally run in a high-priority partition, are active in the system.

Storage protection, which is standard on all System/370 and 4300
processor models, ensures that the instructions and data of one program in
a given partition do not interfere with those of another program in
another partition.

Device Considerations Under Multiprogramming

Generally, the same physical I/0O device (or extent of a direct access or
diskette device) may not be used concurrently by programs being executed
in different partitions. Exceptions to this are:

o The device or extents assigned to the system logical units:

SYSRES for system residence

SYSREC for the recording of system information such as
console messages and hardware statistics

SYSLOG for system-operator communication

SYSDMP for alternate dump files

SYSCAT for use with VSE/VSAM, a licensed VSE access
method.

These devices (extents) are considered to belong to the system as a
whole, rather than to individual partitions. (A description of these
system logical units is contained in the section Symbolic I/0O
Assignment in Chapter 3: Using the System).

e The page data set.

e The lock communication file, used for DASD sharing across
computing systems.

Chapter 1: VSE/Advanced Functions Overview 1-3

Virtual Storage

I e A private library can be defined and used in any partition, except

when being condensed in another partition (for more information
refer to Using the Libraries in Chapter 3: Using the System).

e A file on a direct access device can be accessed across partitions,
providing it is not being created simultaneously by programs in more
than one partition (see Track Hold Option in Chapter 2, Planning the
System for information on protection when updating a file
concurrently by separate tasks).

If, for example, you wish to link edit programs in different partitions
concurrently, different physical devices or extents (except for SYSRES
and SYSLOG) must be assigned for each partition to all logical units used
by the linkage editor program. Figure 1-2 shows an example of the device
assignments in order to link edit in two partitions concurrently.

Logical Unit F1 Partition BG Partition
SYSIN X'181" X‘o0oC’
SYSLST X‘182° X'00E’
SYSLOG X'01F X‘01F
SYSLNK X'131° X'132°
SYS001 X131° X132’
SYSRES X‘130° X130’

Figure 1-2. Assigning Different Physical Devices to the Same Logical
Units

In this case, the output on SYSLST in F1.is written on a tape. A listing of
this output can be obtained by printing the tape after the job is
completed. If VSE/POWER is used, the listing could be automatically
obtained whenever a printer becomes available.

The objective of the virtual storage concept is to achieve greater
throughput. Multiprogramming, for example, increases throughput by
sharing CPU time between two or more partitions. Virtual storage enables
you to improve real (processor) storage utilization.

In the previous multiprogramming discussion the statement is made that
”Multiprogramming . . . allows the concurrent execution of more than one
program Note that concurrent does not mean simultaneous. Even
in the multiprogramming environment, when two or more programs are
executing in storage, the CPU can execute only one instruction at a time.
Hence, the space in storage used by all other instructions, data areas etc.
is temporarily not needed. All that must be in storage at any one point in
time is the instruction (and its associated data areas) that is being
executed. The Virtual Storage concept exploits this fact.

1-4 VSE/Advanced Functions System Management Guide

C

Virtual Storage in VSE

0K

address
space

Through a combination of hardware design and programming support,
VSE has an address space, called virtual storage, that can extend to the
maximum allowed by the system’s addressing scheme, which is 16,777,216

bytes (16M bytes).

How much of the maximum address space (16 M bytes) will be used in a
particular system depends on a number of factors: the size of the
computer’s processor storage, the amount of disk storage available, the
number of partitions, their sizes, and the characteristics of the

installation’s programs

Virtual Storage

and operating environment.

Your Programs

Processor Storage

oK

max.=16M—1 bytes

It is in the address space that programs conceptually run.

Figure 1-3. Virtual Storage and Processor Storage

Your programs are conceptually loaded and run in address space. See

Figure 1-3. Of course,

each instruction of a program must be in processor

storage when the instruction is executed, and so must the data this
instruction manipulates. The other instructions and data of that program
in virtual storage need not be in processor storage at that same moment;
they can reside on auxiliary storage until needed. The file used for this
purpose is called the page data set.

Chapter 1: VSE/Advanced Functions Overview 1-5

nK

It would be inefficient, however, to bring every instruction and its
associated data into processor storage individually. Virtual storage is
manipulated in sections called pages; the size of a page in VSE is 2K
bytes. Processor storage is also divided into 2K byte sections; these are
called page frames. Page frames accommodate pages of a program during
execution.

The resident routines of the VSE/Advanced Functions supervisor occupy
the low address page frames, while the remaining page frames are
available for the execution of processing programs and the pageable
routines of the supervisor. These remaining page frames are collectively
called the page pool.

When a program is loaded from the core image library into virtual storage,
all its pages are brought into page frames of the page pool. If there are
not enough page frames available to contain all the pages of a program,
the system writes the contents of some page frames to the page data set.
See Figure 1-4.

1-6 VSE/Advanced Functions System Management Guide

-

Core
Image
Library

e |

Page
Data
Set

x
x
x
x
x
x

--------------- - N Page
PROGX -?_(__2(]__)_(__)_(__2(__2.(, >Poo|
VX | X | X | x| X]|X
O
: X X X X X X
|
: X X X X X X)
: Processor Storage

Virtual Storage

A program named PROGX (A) is ”conceptually” loaded into virtual storage (B). The
supervisor finds page frames in the page pool of processor storage (C). When there are
not enough page frames to accommodate all of PROGX, the supervisor stores the contents

of some page frames on the page data set (D). The remaining pages of the program can
then be loaded.

Figure 1-4. Storage Management Concept — VSE/Advanced Functions

Chapter 1: VSE/Advanced Functions Overview 1-7

Storage Management

The following discussion amplifies the concept of storage management
shown in Figure 1-4.

~r

9

When programs are loaded for execution they may be loaded in
non-contiguous page frames of processor storage. The supervisor knows
what processor storage locations pages of a given program occupy. If the
program should cancel, due to an error, the listing produced by the system
reflects the virtual addresses where the program was conceptually running.
In Figure 1-5, a 16K-byte program named INVEN, is conceptually loaded
at the virtual storage location 1024K. As shown, the system selected eight
page frames of processor storage which are not contiguous. If the
program were to end abnormally, and a listing representing storage was
produced (on SYSLST), the INVEN program would be shown as
occupying addresses 1024K through 1040K minus 1.

All of the information pertaining to the virtual storage and page frames is
maintained within the system in a series of tables. It is through these
tables that the virtual storage exists. Entries in these tables reflect the
current status of a given page of virtual storage.

1-8 VSE/Advanced Functions System Management Guide

0K

1024K

Virtual Storage

INVEN (16K)

Relating Virtual Storage to Locations in Processor Storage

Page Pool of 128 K

Processor Storage

8 page frames are occupied by the 16K program

Figure 1-5. Running a Program in Virtual Storage

Since the system does not anticipate where in processor storage a page
will be loaded, the virtual addresses must be translated into real addresses
when required for execution. The address translation is performed by a
combination of the system hardware and the VSE/Advanced Functions
supervisor.

If an entire program fits in processor storage, none of the program’s pages
will be placed on the page data set.

Chapter 1: VSE/Advanced Functions Overview 1-9

In the example shown in Figure 1-5, no page of INVEN will be paged out
as long as the demand on processor storage does not exceed the number
of available page frames.

If a second program were to be executed (multiprogramming) and this
program together with INVEN were larger in size than the number of
frames available in the page pool, the system would store as many pages
as necessary on the page data set to keep both programs running.

In Figure 1-6 a program called PAYROLL is being executed as well as
INVEN. PAYROLL is a 118K program. As the page pool in this example
is only 128K, the total demand (INVEN + PAYROLL) of 134K exceeds
the processor storage resource by 6K or three page frames.

The program PAYROLL will not start executing until all of its pages have
been loaded into processor storage. After having loaded 112K of program
PAYROLL, the supervisor must make three page frames available for that
program. It does this by selecting the three least recently used pages and
storing them on the page data set. See Figure 1-7. Once the pages have
been saved on the page data set the page frames are available for the last
three pages of the program PAYROLL. See Figure 1-8.

1-10 VSE/Advanced Functions System Management Guide

oK

1024K

1060K

Virtual Storage

Page Pool of 128K

Lle|lp|lP|1]p
INVEN (16K)
plPp|li|P|lP|P
1040K—1
PlP|P|P|P|P|P]|P
I - N O B B
PAYROLL (118K) Pl P| P]I Pl P| P|P
P1P P Pl 1 |P|P|P|P|P]|P
78RS PlPlP|lP|P|[P|P]|P
S N N N

Processor Storage

| = a page of program INVEN

P =a-page of program PAYROLL
3 pages of PAYROLL not yet loaded

Figure 1-6. Loading Program Pages into Page Frames

Chapter 1: VSE/Advanced Functions Overview 1-11

Virtual Storage

oK
Page_’-/
SData m m
)]
124 Kfb——om—m—m——————"—F -
INVEN (16K)
1040K—1
P|P|P|P|P|P|P
1060K | P|P|P| 1 |P|P
P
PAYROLL (118K) P P ! P P P
Pl 1 |P|P|P|P|P
1178K—-1+«
L P|P|P|P|P|P]|P
‘\\ P|(P|P|P|P|P|P
Processor Storage
| = a page of INVEN
P =a page of PAYROLL
The last 3 pages of PAYROLL are loaded and
execution begins,

Figure 1-7. Storing Pages on the Page Data Set (Pageouts)

1-12 VSE/Advanced Functions System Management Guide

Virtual Storage

oK
Bagev
ata
Set m m m
Page Pool of 128K
MoK o
Pl P
INVEN (16K)
| P
1040K—-1
PlP|P|P|P|P|P]|P
1060K Pl P|PlL|P|P]|P
PAYROLL (118K) PLP | P 1P P|P|P
pPli|P|PlP|lP|P|P
1178K-1 \\\\ p P p P P P p P
.| P|P|P|P|P|P|P]|P
Processor Storage
= a page of INVEN
P =a page of PAYROLL
The last 3 pages of PAYROLL are loaded and
execution begins.

During execution, whenever a required instruction or some data is not present in processor
storage, execution is interrupted by a so-called page fault. The required page must then
be read into processor storage.

Figure 1-8. Managing the Page Pool

Virtual Storage Implementation under VSE /Advanced Functions

Under VSE/Advanced Functions you may generate a system that will
execute on 4300 or /370 hardware. Using the 4300 hardware, your VSE
system may be generated to run in either ECPS:VSE mode or 370 mode.
VSE on the System/370 hardware may run only in 370 mode.

Chapter 1: VSE/Advanced Functions Overview 1-13

Division of Address Space

The generated supervisor in 370 mode is functionally the same, whether
the hardware is System/370 or a 4300 processor.

The concepts of virtual storage are the same in both modes of execution;
however, the implementation differs slightly.

This section discusses: virtual storage, processor storage, and program
execution (with and without paging). The implementation of most of
these items is the same in both modes. The differences between the two
execution modes (ECPS:VSE or /370) are discussed and illustrated later
in this section.

As stated earlier, all programs, including the supervisor, run in an address
space called virtual storage. This address space is divided into areas: for
the supervisor, the partitions, a shared virtual area (SVA).

Supervisor Area. The address space reserved for the supervisor is the low
addresses of your virtual storage. The supervisor area begins at location
OK and extends up to the size of your generated supervisor (see Figure
1-9).

Virtual Storage
(1]¢

Resident Supervisor Routines

Resident Supervisor Routines

~_

nK

Address
space

Figure 1-9. Supervisor Area in Virtual Storage Address Space

Partitions. The virtual storage contains the areas which are used by the
partitions. Programs will execute from these areas. The number of
partitions is determined at system generation. See Chapter 2, Planning the

1-14 VSE/Advanced Functions System Management Guide

System. The distribution of the partitions in the address space follows the
default partition priority scheme, that is, the lower priority partitions have
the lower addresses. The sequence is always BG, F4, F3, F2, F1 for a
five partition system.

Figure 1-10 shows the layout of virtual storage for a 4-partition VSE
system. In this figure each partition is 200K in size.

4 Virtual Storage

512K
BG Partition
712K
F3 Partition
f‘p‘;ﬂfss 912K
F2 Partition
1112K
F1 Partition

\ /

Figure 1-10. Partition Distribution in a Four Partition System

The Shared Virtual Area (SVA). The SVA occupies the address space
immediately following the partitions, see Figure 1-11. Certain frequently
used programs are loaded into the SVA. Such programs (or parts of
programs), which are relocatable and reenterable, are available for

Chapter 1: VSE/Advanced Functions Overview 1-15

concurrent use by programs executing in any partition. Additional
information on the use of the SVA is contained in this guide where

appropriate.

Address
space

Figure 1-11. Shared Virtual Area in a Four Partition System

1-16 VSE/Advanced Functions System Management Guide

512K

712K

912K

112K

1312K

Virtual Storage

BG

F3

F2

F1

Shared Virtual Area

9

C

Processor Storage Utilization

Under VSE/Advanced Functions, processor storage is used as follows:
e For the accommodation of the resident supervisor routines.

o For the loading and execution of the pageable supervisor routines.
o For the loading and execution of programs.

As shown in Figure 1-12, all page frames of processor storage not needed
for the resident supervisor routines are available to the page pool. 1t is
from this page pool that the system selects page frames for pages of
executing programs (including the pageable routines of the supervisor).

Virtual Storage Processor Storage
Resident Supervisor Routines Resident Supervisor Routines
_____________________ ~
Pageable Routines of Supervisor S S S

Resident Supervisor Routines

Resident Supervisor Routines

N |

S S S S
S

\ Page
Pool

S =pages of pageable supervisor routines

Figure 1-12. Supervisor Routines — Fixed and Pageable

Executing Programs in Virtual and Real Mode

All programs when executing are conceptually running in the address
space associated with a partition. The operating system selects page frames
from the page pool for pages of the executing programs. The execution
can be in one of two modes:

Chapter 1: VSE/Advanced Functions Overview 1-17

Storage Allocation

Execution in Virtual Mode: The page frames occupied by pages of
programs running in virtual mode continue to be part of the page pool.
The operating system will manage the processor storage placing some
pages on the page data set, when necessary, and retrieving those pages as
required. Programs in virtual mode are pageable.

Execution in Real Mode: The page frames occupied by pages of programs
running in real mode are taken out of the page pool for the duration of
that program’s execution; the page frames will not be selected for another
program of higher priority; the program is fixed in processor storage and is
non-pageable.

To have a program executed in real mode, an amount of processor storage
must be allocated to the partition in which that program is to run. The
allocated processor storage remains part of the page pool until real mode
execution begins. Certain programs — such as those with critical time
dependencies — may have to run in real mode. A partition may execute in
only one mode at a given point in time; for example, the BG partition can
not initiate both real and virtual execution at the same time.

From a storage management point of view, only minor differences exist in
virtual and processor storage utilization techniques between ECPS:VSE
and 370 mode. These differences are indicated as the following topics are
being discussed:

Address space layout

Partition allocation

Processor storage allocation for real mode execution
Dynamic storage areas.

Address Space Layout. In ECPS:VSE mode, the virtual storage is one
area whose size is determined at Initial Microprogram Load (IML).

In 370 mode, the virtual storage is logically divided into two areas: real
address space and virtual address space, see Figure 1-13. The size of the
real address space is determined at the time of Initial Program Load
(IPL); it is equal to the amount of processor storage installed. A default
size of your virtual storage is determined by the system according to the
chosen supervisor options. You may override this default by specifying a
size of your own choosing at the time of IPL. The supervisor resides in
the low addresses of your virtual storage. In 370 mode, this is in the real
address area. See Figure 1-14.

1-18 VSE/Advanced Functions System Management Guide

ECPS:VSE-Mode

oK

The Address Space

2048K

Virtual Storage

370-Mode

oK

Real Address Space

512K

Virtual Address Space

2048K

Virtual Storage

Figure 1-13. Address Space for 2048K Bytes of Virtual Storage and 512K
Bytes of Processor Storage

ECPS:VSE-Mode

OK(

Supervisor

108K

The
Address 4
Space

2048K

Virtual Storage

0K 370-Mode A
Supervisor
108K
?
512K =
2048K J

Virtual Storage

Real
Address
Space

Virtual
Address
Space

108K as supervisor size is an arbitrary number, somewhere above the minimum supervisor

size.

Figure 1-14. Supervisor Location in Both ECPS:VSE and 370 Mode

Chapter 1: VSE/Advanced Functions Overview 1-19

Partition Allocation. Only the number of partitions but not their sizes are
defined when the supervisor is assembled. IPL allocates all of the address
space available for the partitions to the Background (BG). After IPL, you
allocate the foreground (FG) partition sizes. See Chapter 3, Using the
System.

Figure 1-15 shows the layout of a 4-partition system after IPL. and
allocation, respectively, has taken place.

1-20 VSE/Advanced Functions System Management Guide

oK

108K

ECPS:VSE-Mode

370-Mode

0K
Supervisor Supervisor
108K
Real
> Address
Space
BG
512K W
BG
712K
F3 F3
912K
E2 F2
1112K Virtual
> Address
F1 F1 Space
1312K
SVA SVA
2048K J

Virtual Storage

Virtual Storage

Figure 1-15 assumes a virtual storage size of 2048K and a processor storage size of 512K.
The supervisor will occupy the low address 108K of this system.

In ECPS:VSE mode, the address space from the end of the supervisor to the beginning of
the Foreground 3 partition belongs to the BG partition (616K).

In 370 mode the BG partition’s address space starts at the beginning of the virtual address
space (512K). The real address space is the address space from which programs running in

real mode are executed.

Figure 1-15. A 4-Partition System in ECPS:VSE and 370 Mode

Processor Storage Allocation for Real Mode Execution. A specific number
of page frames of processor storage may be allocated to any of the
partitions for real mode execution. The allocation may be done at any
time with the ALLOCR command.

Chapter 1: VSE/Advanced Functions Overview 1-21

Submitting
ALLOCR BG=20K, F1=24K)
N
for example, causes the following:

¢« In ECPS:VSE mode: The operating system notes that 10 page
frames and 12 page frames of processor
storage are available to partitions background
and foreground 1, respectively, for real mode
execution.

e In 370 mode: 20K and 24K of real address space are
allocated to partitions background and
foreground 1, respectively. In addition, when
real mode execution takes place, the processor
storage addresses used by the operating
system are the same as the addresses within
the allocated real address space.

With the above ALLOCR command the largest program that can be
executed real in the two partitions are 20K in BG and 24K in F1.

When not occupied by a program running in real mode, the page frames
allocated to a partition are part of the page pool.

When a program running in real mode does not require all the allocated

page frames, the unused page frames may be made available to the page

pool by specifying the amount of storage required by the program in the

SIZE operand of the EXEC job control statement for the program. In J
order to execute a program in real mode an EXEC statement with the

REAL parameter must be used. For more details on the EXEC statement

see Chapter 3, Using the System.

Figure 1-16 shows the results of the above discussed ALLOCR command
with a 20K-program REALRUN executing in the BG partition in real
mode.

1-22 VSE/Advanced Functions System Management Guide

ECPS:VSE-Mode

0K 0K
OKpf——————— Supervisor = — — — — — 90K}
S
108K r
S S
S | S
S
REALRUN (20K)
BG ¢
\
Virtual Storage Processor Storage
oK 370-Mode 0K
Resident Supervisor Routine
OVKp——————- Supervisor - — — — — — — 90K » :
108K
REALRUN (20K) }BG
128K
Allocated to F1
4K ————]

Virtual Storage Processor Storage

R = pages of REALRUN in processor storage

S = pages of supervisor pageable routines in storage
The shaded portions of processor storage are not part of the page pool at this time. The
illustration assumes a supervisor with 90K resident routines and 18K pageable routines.
The program REALRUN is 20K in size and is executing in real mode in the BG partition.
Note that in ECPS:VSE mode the page frames are selected randomly from the page pool,
while in 370 mode the page frames occupied by REALRUN have the same processor
storage addresses as the pages that are occupied by REALRUN within virtual storage. The
allocation for F1 has not affected the page pool.

Figure 1-16. Executing in Real Mode

Chapter 1: VSE/Advanced Functions Overview 1-23

e o e e e 1 vt L e ST TN .

Fixing Pages in Processor Storage. The allocated page frames are used J
not only for programs running in real mode, but may also be used for
programs running in virtual mode.

Some programs that run in virtual mode contain instructions or data that
must be in processor storage when needed and therefore cannot tolerate
paging. The pages containing such code or data can be fixed via the PFIX
macro instruction, and freed immediately after use via the PFREE macro
instruction. The licensed program VSE/POWER is an example of an IBM
program that uses PFIX/PFREE macros.

When pages of a program running in a given partition are fixed in
response to the PFIX macro, they are fixed in the page frames allocated
to the partition. If a PFIX macro is issued and enough storage is not
allocated, the pages are not fixed, and a completion code indicating this is
returned to the program.

Fixing pages in processor storage means that, in a multiprogramming
environment, fewer page frames are available to other programs running
in virtual mode, potentially degrading total system performance. When
channel programs with large I/O areas are involved, the initial size of the
page pool may be too small. Consider this effect carefully before allowing
the use of the PFIX macro at your installation.

Dynamic Storage Areas. Under VSE/Advanced Functions there is a

requirement for certain system functions to acquire virtual storage J
dynamically during program execution. An area called GETVIS area is

used for this purpose. Each partition has its own partition GETVIS area,

the SVA includes the system GETVIS area. The GETVIS areas occupy

the high address space associated with each partition and the SVA. Figure

1-17 shows the virtual storage layout in ECPS:VSE and 370 mode with

the GETVIS areas included. For further information on the size and use

of GETVIS areas see Chapter 3, Using the System.

1-24 VSE/Advanced Functions System Management Guide

oK

108K

ECPS:VSE-Mode

Supervisor

BG

GETVIS Area F1

SVA

System GET VIS

Virtual Storage

0K

108K

512K

712K

912K

1112K

1312K

2048K

370-Mode

Supervisor

GETVIS Area F1

SVA

System GETVIS

ﬁ

>

Virtual Storage

Real
Address
Space

Virtual
Address
Space

Figure 1-17. A 4-Partition System in ECPS:VSE and 370 Mode with the
GETVIS Areas

Multitasking

At the beginning of this chapter, we defined multiprogramming as the
ability to execute more than one program concurrently in separate
partitions within a single computer system. Multitasking can be regarded
as an extension of multiprogramming in that it provides the ability to
execute more than one program concurrently in a single partition. In
simple terms, therefore, multitasking can be regarded as multiprogramming
within one partition.

Chapter 1: VSE/Advanced Functions Overview 1-25

Some installations using former versions of DOS/VS, employed
multitasking to run more than five programs in a 5-partition system. The
additional partitions that VSE/Advanced Functions provides serve the
same purpose. However, running programs concurrently in separate
partitions usually requires less preparation than running programs
concurrently in the same partition.

Two Types of Multitasking

Programs (or parts of a program) that are executed concurrently in a
given partition are called tasks. A distinction is-drawn between the main
task in a partition and one or more subtasks in the same partition. The
main task is that program (or program part) which is initiated by job
control. The subtasks are programs (or program parts) that are initiated
through the use of the ATTACH macro in an assembler language routine.

A subtask executed in a given partition may be (1) logically independent,
or (2) logically dependent.

In the first case, one (usually the main) task monitors the execution of the
subtasks, treating them as independent programs. Such subtasks may be
coded in any programming language. This type of multitasking is
sometimes called multiprogramming within a partition. It is a suitable
technique to use, for example, for concurrent execution of more programs
than partitions are available.

In the second case, both the main task and the subtasks are program
routines that are logically part of the same program. Thus, the tasks can
communicate with one another. In this case the subtasks are likely to be
coded in assembler language to allow the use of the task
intercommunication macros. They can share code (in particular, an access
method or subroutines), provided that it is of a read-only nature (that is,
that the code or subroutines are not modified during execution). This
technique is complex and can best be understood after studying the first
type of multitasking.

The maximum number of subtasks that can be active at any one time
within the entire system is a supervisor generation option.

Cross-Partition Event Control

1-26 VSE/Advanced Functior

Highly complex applications may have a need for communication between
programs executing in separate partitions. For example, two such
programs may need to perform operations on a common file, and the
operations may require actual communication between the two programs.

Through cross-partition event control macros, one partition can delay the
execution of part of a program until another partition signals the
completion of a critical event. This allows synchronized multiprogramming
in separate partitions — thus protecting programs against inadvertent
destruction of each other — while at the same time providing for any
necessary communication between them. IBM licensed programs require
this support in certain complex applications. One example is the licensed
program VSE/POWER generated with SPOOL=YES. For details about

stem Management Guide

C

cross-partition event control, see the manual VSE/Advanced Functions
Macro Reference.

Reliability / Availability / Serviceability

VSE/Advanced Functions includes routines that analyze and record CPU,
channel, and device errors and attempt to recover from them. The data is
stored on the system recorder file (SYSREC). The information obtained
from this file serves not only as an aid in diagnosing machine errors, but
also helps IBM customer engineers to increase reliability, availability and
serviceability (RAS) of your system.

If on-line recovery is impossible, the system may be placed in a hard wait
state. A message is then issued to the system operator to run the EREP
program to obtain the diagnostic data.

On the IBM System/370 Models 115 and 125, errors in the CPU and
natively attached input/output devices (for example, card reader/punch,
disk and printer) are recorded on the system diskette. IBM System/ 370
Model 158, the IBM 3031 and the 4300 processors have a similar
hardware error recording feature in addition to a software error recording
facility. This hardware error recording is independent of the software
routines.

Recovery Management Support

The Recovery Management Support routines, referred to as RMS, provide
the following RAS facilities:

+ Machine Check Analysis and Recovery

o Channel Check Handler

These facilities provide hardware error analysis and attempt recovery.
Another RAS facility, the Recovery Management Support Recorder

(RMSR) provides for recording of error and operational statistics on
SYSREC as follows:

e Machine Check (CPU)

o Channel Check

o Unit check

o Tape/disk error statistics by volume
« MDR (Miscellaneous Data Recorder)
e IPL information

e End-of-Day statistics held in main storage

Chapter 1: VSE/Advanced Functions Overview 1-27

1-28 VSE/Advanced Functions System Management Guide

Chapter 2: Planning the System

After a brief description of the system generation procedure in general,
this chapter discusses in greater detail three major considerations during
system generation, namely:

e Planning the libraries (planning the contents, the location and size of
the libraries).

o Planning the system files and work files.

o Tailoring the supervisor (adding functions to those of the basic
supervisor).

Because of the nature of this information, this chapter primarily addresses
programmers who are responsible for planning the system.

System Generation Procedure

Proper and detailed planning is essential for efficient system generation
and minimizes the need to modify the system after it is generated. You
may want to contact your IBM marketing representative to set up a
system generation planning meeting. IBM field engineering could be

invited to attend the meeting to discuss the procedure to install the

VSE/Advanced Functions which includes SCP (system control programs).
Generating a system includes:

e Planning the contents, organization, and size of the system and
(optionally) private libraries. This entails distributing the storage space
available (on the disk packs) between the libraries desired for
day-to-day use. You must consider the size of the system core image
library and other system and private libraries.

o Planning the location and size of system and work files. This entails
determining, what system files are required, how large they must be
and where they shall be placed. Additionally, work file space needed
to assemble the supervisor and to link edit and catalog the
components selected to the system core image library must be
reserved.

o Planning the options and estimating the approximate size of the
supervisor. This entails selecting, from the programming services
provided by IBM, those options which you wish to include in the
supervisor, and estimating the cost of these services in terms of bytes
of storage.

Chapter 2: Planning the System 2-1

Handling the Distribution System

!l To install the VSE/Advanced Functions system, you work with the J
IBM-supplied distribution medium (normally a magnetic tape), which is
composed of four system libraries

core image
relocatable
source statement
procedure

and a system history file.

If you cannot do an online system generation (see the discussion further
below), your system generation approach should be as follows:

1. Restore the VSE/Advanced Functions system and also the supplied
history file to disk. (This step does not apply if you receive the IBM
supplied code on disk.)

2. Do an initial program load (IPL) of the restored supervisor.

3. Generate the supervisor by coding a set of supervisor generation
macros, which define the system configuration and the services you
wish the supervisor to contain. These are described in detail in the
section Tailoring the Supervisor.

4. Delete from the libraries any components you do not require and then
condense to free library space.)

5. Assemble or compile and/or link edit programs — both your own and
IBM’s — and catalog them into the appropriate libraries.

After you deleted any of the supplied components, you must update your
history file by running the service program MSHP (Maintain System
History Program). The usage of MSHP is described in VSE/Advanced
Functions Maintain System History Program User’s Guide.

Having determined what elements are to be contained in the system
libraries, you may wish to retain additional elements in private libraries
and therefore want to create private core image, relocatable, source
statement, or procedure libraries. These choices are discussed in the
section Planning the Libraries.

The system libraries, together with certain system work areas, constitute
the system residence file (SYSRES), which is one extent of a direct access
storage volume. The SYSRES file is described in Appendix A: System
Layout on Disk.

After establishing your SYSRES file and the history file, you should copy
those onto tape or disk for backup purposes. The utility program Backup
System and the licensed program Fast Copy Data Set are provided for this
purpose. They are described in VSE/Advanced Functions System Utilities
and Fast Copy Data Set Installation Reference, respectively.

9

2-2 VSE/Advanced Functions System Management Guide

Planning the Libraries

Online System Generation. If you already have a running VSE system or
a DOS/VSE with Release 1 of VSE/Advanced Functions it may be
advantageous to generate the new system under control of the currently
running system. The various steps such as assembling a new supervisor,
deleting unwanted components, updating the history file can be performed
in one partition while your normal operation continues undisturbed in
other partitions.

As a first step, you execute the MSHP program in order to restore the
new system to disk (unless you received the new system on disk). After
you generated a new supervisor and (possibly) established a set of private
libraries, you may want to merge your own programs from the old libraries
into those new libraries or into the new SYSRES file; you do this by
executing the CORGZ librarian program. You then IPL from the new
system and perform any other required steps.

For complete details on how to perform a system generation refer to
VSE/Advanced Functions System Generation.

The components of VSE/Advanced Functions are shipped in four system
libraries: the core image library, the relocatable library, the source
statement library, and the procedure library. Most programs and
procedures developed and used by your installation will also be stored in
these libraries. In addition to the system libraries, VSE/Advanced
Functions supports private libraries which you may use to either substitute
for or supplement the corresponding system libraries.

Planning the size, contents, and location of these libraries according to the
needs of your installation is an essential part of the system generation
procedure. Such detailed planning will ensure that:

+ No disk space is wasted by components not required in your
installation.

o The libraries are large enough to allow for future additions.
» The libraries are accessed by the system with maximum efficiency.

Following a brief description of the purpose and contents of the individual
libraries, this section discusses the major considerations involved in
tailoring the libraries to the needs of your installation:

e Which libraries are required.

 How many disk drives are available and where on these devices should
the individual libraries be placed.

+ How large should each of the libraries be and what should they
contain.

Note that this section is intended to give only general guidance for
planning the libraries. More details about DASD space requirements for
the libraries are contained in VSE/Advanced Functions System Generation.
How to change the size of a library, how to insert elements into or delete

Chapter 2: Planning the System 2-3

elements from a library, and how to create private libraries is described in
Chapter 3, Using the System.

Purpose and Contents of the Libraries

Core Image Library

Relocatable Library

The following is a brief summary of the purpose and contents of the
system and private libraries.

In order to be executed, all programs must be link edited into phases and
placed in the core image library (CIL). IBM supplies the VSE/Advanced
Functions components pre-linked and cataloged in the CIL. A complete
list of the supplied components is shipped with the program directory
documentation which accompanies your VSE/Advanced Functions system.
Prior to receiving the system, consult VSE/Advanced Functions System
Generation for a listing of the VSE/Advanced Functions components.

IBM also supplies cataloged distribution supervisors. Assembler source.
statements used to generate these supervisors are shown as part of the
Program Directory and are contained in the source statement library.

You have to decide which of the IBM supplied phases to retain in the
CIL. To delete unwanted components, use the delete procedures contained
in the procedure library. See VSE/Advanced Functions System Generation
for a list of these procedures.

Besides IBM components you may add to the CIL your own application
programs such as your payroll or accounts receivable programs, program
packages obtained from IBM, or program packages from other sources. If
you wish to include such programs in the CIL, you must link edit them
yourself. For information on how to do so, refer to the description of the
linkage editor in Chapter 3, Using the System.

The relocatable library as shipped by IBM uses a considerable amount of
DASD space. The library contains:

e VSE/Advanced Functions component object modules.

« Compiler required logical input/output control system (LIOCS)
modules.

Object Modules. These modules make up unlinked code of the executable
component phases in the CIL. The modules have been link edited and
cataloged into the CIL you receive. These modules are provided in the
relocatable library for maintenance purposes only.

LIOCS Modules. The LIOCS modules needed by the various compilers
are cataloged in the relocatable library. There are different modules for
each device type and access method. Some modules can be used by more

2-4 VSE/Advanced Functions System Management Guide

9

9

C

C

Source Statement Library

Procedure Library

than one compiler. For a complete list of the LIOCS module names and
device applicability, see VSE/Advanced Functions System Generation.

The elements in the source statement library are called books. A book is
either a sequence of source statements or a macro definition.

You can catalog into the source statement library sets of source statemerits
that are used by more than one program, and then include these
statements in your source program by specifying a COPY (assembler,
DOS/VS RPG II, and COBOL) or %INCLUDE (PL/I) statement.

The macro definitions in the source statement library include those macros
supplied by IBM as well as any others which you may have written and
cataloged yourself. When you issue a macro instruction in your program,
the corresponding macro definition is retrieved from the source statement
library and included in your program according to the parameters you
specified.

Each book in the source statement library is classified as belonging to a
specific sublibrary; for example, an assembler, a PL/I, or a COBOL
sublibrary. Sublibraries are identified by a 1-letter prefix added to the
book name. Letters A through I and the letters P, R and Z are reserved
for sublibraries containing system components. You can use all other
letters, the digits O through 9, and the special characters $, &, and #, to
define your own sublibraries.

Frequently-used sets of control statements can be cataloged into the
procedure library. The elements of the procedure library, called cataloged
procedures, can consist of IPL (Initial Program Load), job control
statements and/or SYSIPT data. Included VSE/POWER JECL
statements will be treated as VSE/Advanced Functions comment
statements.

You can also catalog procedures containing data that is to be read from
SYSIPT under control of the device-independent sequential IOCS, by
your program or by IBM-supplied service programs and language
translators. SYSIPT in-line data can be, for example, the control
statements processed by the librarian or the sort/merge program.

Cataloged procedures are retrieved from the procedure library by a special
form of the EXEC job control statement.

The procedures shipped in the procedure library are provided as system
installation aids. They include:

e library-member-delete and module-link procedures
« MSHP history file update procedures

« standard label definition procedures

Chapter 2: Planning the System 2-5

Private Libraries

Delete and Link Procedures. The delete procedures are provided to assist
you in tailoring your libraries. A complete list of the delete procedures is
provided in the manual VSE/Advanced Functions System Generation.
Once your system is installed, these procedures themselves can be deleted.

The link procedures are provided to link edit IBM-supplied modules
contained in the relocatable library to the core image library. These
procedures are provided for system-service purposes (the modules have
been link edited prior to your receiving the system).

MSHP History File Update Procedures. If you have installed a component
without the use of MSHP (Maintain System History Program) there is no
entry in the history file for that component. This can occur if, for
example, you have a DOS/VS Release 34.0 or earlier with a licensed
program, such as DOS/VS COBOL, running under it. The MSHP history
file update procedures may be used to create a history file entry for the
component, in this example DOS/VS COBOL. Now, you may use MSHP
for subsequent modification (updates, maintenance etc.) of that
component. For more details on the use of the program MSHP see
VSE/Advanced Functions Maintain System History Program User’s Guide.

Standard Label Procedures. These procedures are discussed in section
Label Information Area in this chapter. A complete listing showing the
contents of the procedures is included in the Program Directory Document
shipped to all recipients of VSE/Advanced Functions.

In addition to system libraries, you may establish private libraries. Private
libraries form a single extent on one volume. They are created by using
the program CORGZ and have the same format as system libraries.

You may establish private relocatable, source statement, or procedure
libraries either to supplement or to replace the corresponding system
library (note, however, that you must have a system procedure library if
you intend to use ASI, the Automated System Initialization). The system
core image library cannot be replaced by a private core image library; it
can only be supplemented by private core image libraries.

By replacing the system relocatable, source statement, or procedure library
with a private library (on a device different from the one that holds the
SYSRES file), you extend the space available to the system core image
library. Conversely, you may reduce the size of the system core image
library by placing selected programs in a private core image library.

You may define as many core image, relocatable and procedure libraries
as desired, and you may place them on any disk device supported by
VSE/Advanced Functions.

Here are a few examples for the use of private libraries:

o Having a private core image library for each partition, each on a
separate disk drive, will reduce disk arm movement on the SYSRES
volume, which means faster access to libraries.

2-6 VSE/Advanced Functions System Management Guide

9

C

o Private libraries are useful in a testing environment where you want to
keep working copies of your programs intact on one library while you
test modifications to the same program from another library.

e A number of small libraries instead of a few large libraries greatly
eases the task of maintaining the libraries.

« You can concatenate libraries, in any partition, in order to establish
certain search orders for the various system programs that retrieve
phases, modules, books, or procedures from the libraries. By placing
libraries containing frequently used members at the head of the
concatenation chain, you can considerably speed up the retrieval of
library members (for details on how libraries are searched, see section
Using the Libraries in chapter Using the System).

Private libraries thus add a great deal of flexibility to your system and aid
in tuning your system.

Choosing the Libraries for an Installation

In an operational VSE System, certain VSE/Advanced Functions
components must reside in the system core image library. Therefore, a
system core image library must be present in every VSE installation.
Which of the other libraries you need depends largely on the type and
amount of work to be done and the resources available at your
installation.

Relocatable and Source Statement Libraries

Procedure Library

Although these libraries are optional, few installations can operate
efficiently without them. If, for example, you work with a PL/I compiler
and you need to have the PL/I resident library routines on-line at all
times, these routines must be in a relocatable library. Similarly, when you
assemble programs that use IBM-supplied macros, the corresponding
macro definitions must be present in a source statement library. The same
holds for your own modules and macros.

In most data processing installations there are a number of programs that
are frequently executed. An inventory control program, for instance, may
have to be run daily or weekly. Or a payroll program may have to be
executed weekly or monthly. These programs are probably used for a long
period of time without being changed.

For each of these programs, there would be one or more sets of job
control statements which the programmer prepared and tested when the
program was first run. These sets of job control statements can be
cataloged as cataloged procedures in a procedure library; then, to retrieve
a set, only one statement is required. This minimizes repetitive operator
handling (which often includes the replacement of defective cards-or
reinsertion of diskettes) and reduces machine time and errors.

Chapter 2: Planning the System 2-7

A cataloged procedure is exactly the same as what is described above as a
fixed set of job control statements. But the individual procedure is no
longer collected by the operator and selected manually for use; instead, it
is cataloged and retrieved through a special form of the EXEC job control
statement. Cataloged procedures can be modified as they are retrieved
from the library.

The use of cataloged procedures is discussed in Chapter 3, Using the
System.

Automated System Initialization (ASI) allows you to automate initial
program load (IPL) and partition start-up. If you plan to use ASI, you
must catalog your IPL procedure(s) and your job control procedures (to
start up particular partitions) into the system procedure library. For more
information about ASI, refer to Starting the System in Chapter 3.

Determining the Location of the Libraries

Having decided which libraries you want in your system, you must
determine where on the available devices these libraries are to be placed.
All system libraries must reside in the SYSRES extent of the system disk
pack in a predefined sequence (see Figure 2-1). Although it is
theoretically possible to have private libraries on the system pack, outside
the SYSRES extent, this is not recommended because it involves increased
movement of the disk arm.

[SYSRES]
Note: For details on SYSRES refer to
Appendix A: System Layout on Disk.

Core Image Library

Relocatable Library
Source Statement Library

Procedure Library
~ag——— end of SYSRES extent

Label Information

Figure 2-1. The Relative Location of the Four System Libraries

2-8 VSE/Advanced Functions System Management Guide

You can define private core image, relocatable, source statement and/or
procedure libraries on extra volumes. The system relocatable and system
source statement libraries can be removed from SYSRES and established
as private libraries; the same holds for the system procedure library unless
you intend to use ASI, the Automated System Initialization. The system
core image library, however, must always be present on SYSRES. It can
be supplemented but not replaced by a private core image library. Also,
you must have a system procedure library if you use ASI.

When deciding on the location of your libraries you should also consider
the I/O activity on these libraries and place, for example, libraries with
high I/O activity on separate volumes.

Figure 2-2 shows two examples of how you can organize the libraries in a
system with three disk drives. Any other combination of libraries on the
available devices is possible.

The examples in Figure 2-2 are to demonstrate that you can distribute
your private libraries among the available devices as you may see fit. A
more practical example of how you can organize your libraries is given in
Figure 2-3. The example assumes a system with four disk drives, but it is
also applicable for a system with less than four drives. One partition, as
shown in the upper part of the figure, serves primarily for compiling,
assembling and link editing. Two private core image libraries are defined
in this partition: one that holds the language translators, a second one
contains your own executable programs. The second private core image
library is also defined in another partition which is shown in the lower
part of Figure 2-3. This partition is reserved for production work; instead
of compiler/assembler libraries, a data file is assigned.

Chapter 2: Planning the System 2-9

Core Image Library

Procedure Library

Label Information

Private
Relocatable Library

Private Source
Statement Library

If a private relocatable library and a private source statement library are to replace the corresponding system library, the core image library
directly precedes the procedure library. These private libraries can also be used to supplement the system relocatable and source statement

libraries, in which case the SYSRES file would appear exactly as shown in Figure 2-1.

Core Image Library

Procedure Library

Label Information

Private Core
Image Library

Private

Relocatable Library '

Private Source
Statement Library

A private core image library can only be used to supplement the system core image library, which must always be present on SYSRES.
Several private libraries may reside on the same disk as illustrated.

Figure 2-2. Alternative Locations of the Libraries

2-10 VSE/Advanced Functions System Management Guide

C

n Partition for Compiling — Assembling — Link-Editing

Drive X'190’ Drive X191°

5 O

ci/w

PRL

N
o

core image library (PCIL2).

B Partition for Production Processing
Drive X'190° Drive X192’

Nt

PCIL2

therefore not defined in this partition. Instead, a data file is assigned.

CIL = system core image library
PL = system procedure library
PCIL private core image library
PRL private relocatable library
PSSL private source statement library

Drive X'192°

The compilers and assemblers are kept in a private core image library (PCIL1). Phases that
have been tested and are ready for production processing are cataloged into another private

Drive X193’

For production-time processing, the compiler/assembler libraries are no longer required and

Figure 2-3. Example of Library Organization

Chapter 2: Planning the System 2-11

Planning the Size and Contents of the Libraries

When planning the libraries for an operational system, you must decide on
their precise contents and size for daily use. Although you can change the
size of your system libraries at any time after system generation (by
means of the librarian programs), you should try to anticipate future space
requirements and, if possible, provide this space. Such detailed planning
can eliminate the need for a complete reorganization of the libraries which
would be necessary if the extension of a library results in an overflow on
just one disk pack. Careful planning of the private libraries will save you
additional work because you cannot easily redefine the extents of a
private library once it has been created. To change the size of a private
library you must create a new private library and copy the contents of the
old library into it.

Consider the following factors before deciding on the contents and size of
the libraries:

o The number of phases, books, modules and/or procedures you want
on-line and how you plan to group them (for example, group by
application).

o The average size of phases, books, modules, and procedures in your
installation.

e« The amount of space and devices available.

The core image library, for example, is the library in which you normally
keep most of your programs. (Otherwise, each program must be submitted
to the linkage editor and placed in the core image library temporarily
before it can be executed.) Therefore, ensure that your core image library
is large enough to accommodate all programs that must be on-line; this
includes your own programs as well as IBM-supplied components.

The system relocatable and source statement libraries initially contain
more (IBM-supplied) members than you normally use for daily operation.
By deleting from your system libraries those members which you do not
need daily you are creating operational libraries. This reduces the disk
space requirement of the SYSRES extent. In planning the contents and
size of an operational relocatable library, determine which of the
IBM-supplied modules can be deleted and how much space you need to
store your own object modules on-line.

With one disk pack available for system files, you may prefer to maintain
only enough free space in the relocatable library of the operational pack
to contain the modules for the largest component in the system. This small
relocatable library permits temporary insertion of any component in
relocatable format. The component can then be immediately link edited
into the core image library and deleted from the relocatable library.

Similar considerations apply to an operational source statement library.
Determine which of the IBM-supplied components you need on-line,
which should be transferred to a backup volume for future extensions of
your system, and which can be deleted entirely.

2-12 VSE/Advanced Functions System Management Guide

System and Work Files

Page Dara Set

If you intend to use procedures, you should allocate sufficient space for
either the system procedure library or your private procedure libraries. In
estimating the amount of space required, consider the number of IPL
commands, job control statements and SYSIPT data records (source
modules, utility control statements, etc.) you expect to store in your
procedure libraries. Note that ASI procedures (if you have any) must be
contained in the system procedure library.

After you have determined the space requirements for your libraries in
terms of number and size of programs, you must define and allocate the
amount of disk space needed to accommodate these programs. A set of
formulas is available to calculate the disk space required for each library.
These formulas are contained in VSE/Advanced Functions System
Generation.

The contents of the libraries are identified in the Program Directory
(shipped with the distributed VSE/Advanced Functions system). The
storage requirements (sizes) for these components and macro definitions
are identified in the section for each component.

The SYSRES file is only one of the system files that must be planned.
The location of the other system and work files and their sizes deserves
some thought. The system files besides SYSRES are:

Page data set

Recorder file (SYSREC)

Hard copy file (SYSREC)
History file (SYSREC)
Alternate dump files (SYSDMP)

A description of these files follows below. Another system file is required
if data on DASD devices is shared across computing systems: the lock
communication file. This file is discussed in section DASD Sharing by
Multiple VSE Systems in chapter Using the Facilities and Options of
VSE/Advanced Functions.

The page data set, a sequentially organized set of records on a direct
access device, is required to accommodate paged-out pages of programs
that are being executed in virtual mode. The size of the page data set
depends on the amount of virtual storage.

You define the page data set through the IPL. command DPD. This
command is discussed in section IPL commands in Chapter 3, Using the
System. Among other items, you can specify the channel and unit number
of the device, whether you want to treat the page data set as a data

Chapter 2: Planning the System 2-13

IR

secured file, the size of a particular extent, and the lower limit address of
the extent.

The page data set can reside on any disk device that is supported by J
VSE/Advanced Functions as a system residence device.

I Your page data set may be spread over up to 15 extents. These extents
may be allocated on different volumes, a maximum of three per volume;
you must, however, stay within one disk architecture: FBA or CKD.

For all but the last extent, the size must be specified in the corresponding
DPD command. If a command does not include the size specification, the
command is considered to be the last one of a series. As a result, the
system calculates the upper limit address according to the amount of
pageable storage defined for your system. The usage of disk space is
shown below:

Disk Device Type Pages per Cylinder
2314 60
3330 114
3340 36
3350 240
FBA see note

Note: Four FBA blocks contain one page of virtual storage; hence a 2M
byte system (2048K) requires 4096 FBA blocks (2048K + 2K x

4 blocks). ’

In ECPS:VSE mode, the virtual storage size to be mapped on the page
data set, is a function of the hardware. The default system size is 16M.
bytes (16,384K). The default may be altered during Injtial Microprogram
Load (IML) to: 2048K, 4096K or 8192K. How to perform IML is
described in the IBM-provided Operator’s Guide manual for your central
processor. If disk space is a concern, you might consider reducing the
virtual storage size. For example, a 16M (16,384K) system requires
32,768 FBA blocks whereas a 4M (4096K) system requires 8192 FBA
blocks.

In 370 mode, there is always a default virtual storage size defined
according to the selected supervisor options. You may override this value
through the VSIZE parameter when you begin to IPL your system. The
operating system uses the value to calculate the disk space requirements.
If your supervisor includes pageable routines, space is automatically
reserved on the page data set for these routines.

If you have the licensed program VSE/POWER installed, the page data

set should not be placed on the same drive as the VSE/POWER data files

if this can be avoided. You should attempt to place the page data set on a

pack that has relatively low activity yet is on-line all the time. Normal

data files are not conducive to this approach as you probably do not want

to leave these files on-line when they are not needed. In many cases the

best place for the page data set is on the same pack that contains the

SYSRES file. A user with only two disk drives should place the page data

set on the pack that contains SYSRES. J

2-14 VSE/Advanced Functions System Management Guide

Recorder File

Hard Copy File

History File

The recorder file contains recovery management support statistics provided
primarily for IBM service personnel to analyze the performance of your
system. The information collected is related, for example, to:

e I/0O errors
e CPU errors
e IPL reason codes

The system logical name used for the recorder file is SYSREC. The file
name is IISYSRC. The SYSREC file must be defined as a disk extent on
a DASD type that is supported by VSE/Advanced Functions as SYSRES.

The recorder file is created immediately after the first IPL for your system
with the SET RF=CREATE command. The file is opened by the first
occurrence of a // JOB statement after IPL.. No // JOB statement may
be submitted prior to the SET RF=CREATE command. See also Starting
the System in Chapter 3, Using the System.

The hard copy file, a disk extent, must be on the same device as the
recorder file SYSREC. The system logical name is SYSREC and the file
name is IJSYSCN.

The hard copy file contains all of the messages displayed on the display
operator console (DOC). These messages can be retrieved on SYSLOG by
using the operator redisplay (D) command, or on SYSLST by using
program PRINTLOG. The hard copy file is created immediately after the
first IPL. with the SET HC=CREATE command. The file is opened by
the occurrence of the first // JOB statement after IPL. See also Starting
the System in Chapter 3, Using the System.

An operating system needs a history file containing information about the
components of the system and the program fixes applied to those
components. The history file is used by MSHP (Maintain System History
Program) for the recording of information about your installed
components. When VSE/Advanced Functions is shipped to you, a history
file is also shipped. This file reflects the change level of the supplied
VSE/Advanced Functions components. An up-to-date history file eases
maintenance of your system.

The history file is a disk extent and must be on the same device as the
recorder and hard copy files. The system logical name is SYSREC and the
file name is IISYSHF.

For information on installing the supplied history file consult

VSE/Advanced Functions System Generation. How MSHP uses the
history file is described in VSE/Advanced Functions Maintain System

Chapter 2: Planning the System 2-15

History Program User’s Guide. You should also consult VSE/Advanced
Functions System Utilities for information on BACKUP/RESTORE and
those programs’ relationship with the history file.

Alternate Dump Files

Instead of SYSLST, one or two dump files on a direct access volume may
be used to receive dumps. A dump may be produced, for example, when a
program cancels.

The first (or only) dump file has the file name DOSDMPEF. If you choose
to have a second dump file (its file name is DOSDMPG), the two dump
files are used alternatingly: while one is being filled, the other one could
be processed by the DOSVSDMP program. Note that the two dump files
must reside on the same DASD volume. Each dump file is a single extent
file.

At the time of IPL, you must assign the dump file using the DEF
command with the specification SYSDMP=cuu. The assignment cannot be
changed until the next IPL. If you fail to assign the dump file, the dump
will be printed on SYSLST.

You create the dump file(s) through the DOSVSDMP program. This
program is also used for printing the dump from the dump file. For details
on the usage of the DOSVSDMP program, refer to the publication
VSE/Advanced Functions Serviceability Aids and Debugging Procedures.

DLBL and EXTENT job control information must be provided each time
the dump file is to be accessed, that is, when

o the file is created,
e a dump is written into the dump file,
e a dump is printed with the dump file as input.

For each of these three cases, the EXTENT statement must specify the
logical unit name SYS006.

Work Files

Work files are temporary files that are used by a program during the
execution of a given application. User-written programs as well as
IBM-supplied programs can use work files. Work files used by your own
programs must be defined, created, and named individually by you. They
are not discussed here.

System work files are used in compiling (assembling) source statements
and preparing input for the linkage editor. System work file naming uses
the following conventions:

2-16 VSE/Advanced Functions System Management Guide

Symbelic Name File Name

SYSLNK IJSYSLN
SYS001 1JSYS01
SYS002 1JSYS02
SYS003 1JISYS03
SYS004 1JSYS04
SYS005 1ISYSO05
SYS006 1ISYS06

For example, the assembler requires three work files to translate source
input and one work file (SYSLNK) to prepare linkage editor input.

The work files are defined via // DLBL and // EXTENT statements.
They are opened and created when needed.

Listed below are the symbolic device requirements for the Assembler,
DOS/VS COBOL, and DOS/VS RPG II, the language translators, most
frequently used under VSE.

SYSLNK SYS001 SYS002 SYS003 SYS004 SYS005 SYS006

Assembler L M M M
DOS/VS
COBOL L M M M M (o) (o)
DOS/VS
RPG I L M M
M = Mandatory
o = Optional
L = Required when link editing

The size requirements of these files vary. Refer to VSE/Advanced
Functions System Generation which gives the formulas for calculating the
size requirements of the assembler and linkage editor work files. DOS/VS
COBOL and DOS/VS RPG 1I work file sizes are described in their
respective installation guides.

To compile and link in two or more partitions simultaneously you will
need a set of work files for each partition in which you plan to compile
and link programs. A method for handling this situation is given in section
Label Information Area which follows.

A simpler method is available if you have the VSE/VSAM Space
Management for SAM Feature installed: you can place IISYSLN and the
linkage editor work file IJSYSO1 in VSAM-managed space. This renders
the allocation of work file space more flexible; you save a considerable
amount of space, in particular if you assemble and/or link edit in more
than one partition.

Section Linkage Editor Work Files in VSAM-managed Space in Chapter
Using the System describes briefly how you address, in your job control,
linkage editor work files in VSAM-managed space. For more information,
refer to the publication Using the VSE/VSAM Space Management for
SAM Feature.

Chapter 2: Planning the System 2-17

Label Information Area

The label information area is part of the SYSRES file and follows the last J
library in SYSRES. If SYSRES is on an FBA device, the label information

area comprises 200 blocks. For CKD devices the area is two cylinders.

(For the 3340 disk, it is 3 cylinders and for the 3350 it is 1 cylinder).

For FBA devices, but not for CKD devices, you may change the size of
the label information area using the RESTORE program. See
VSE/Advanced Functions System Utilities for details on this program.

Using the DLA command during IPL, you may define or reference an
additional label information area. This area is separate from the SYSRES
file; it may be located on or outside the volume containing the SYSRES
file. The need to define such an area may arise when two CPUs or two
VSE systems under VM/370 share one SYSRES file. More information
on the DLA command is provided in chapter Using the System under
section IPL commands.

The size of a label information area that you define via the DLA
command can deviate from the default size, regardless whether it is
located on an FBA device or a CKD device.

Usage of the label information area is described in Chapter 3, Using the
System.

Entries in the label information area point the operating system to the

appropriate files on a given disk pack. IBM provides standard label

procedures in the system procedure library for placing standard label J
information into the label information area for the following files:

File Name File-ID Symbolic Name
IJSYSRS A5746XE9.SYSRES.FILE SYSRES
IJSYSRC VSE/AF.RECORDER.FILE SYSREC
IJISYSCN VSE/AF.HARDCOPY.FILE SYSREC
IJSYSHF A5746XE9.SYSTEM.HISTORY.FILE SYSREC
IJSYSLN VSE/AF.SYSLNK.FILE SYSLNK
1JSYSO01 VSE/AF.WORK-FILE.1 SYS001
1JSYS02 VSE/AF.WORK-FILE.2 SYS002
1JSYS03 VSE/AF.WORK-FILE.3 SYS003
1JSYS04 VSE/AF.WORK-FILE.4 SYS004
IJSYSIN* DTTEPTF SYSIN

* SYSIN labels for diskette cardless system.

The label information assumes you have taken the default library
allocations when you restored your system from tape to disk. If you use
different library allocations or if your page data set size is larger than the
‘default, prepare your own label information and execute your own

// OPTION STDLABEL run. If you wish to add standard label
information, run the supplied standard label procedure(s) (or your own)
and supply also the new entries.

The Program Directory shipped with VSE/Advanced Functions lists the
standard label procedure names and the contents of those procedures.)

2-18 VSE/Advanced Functions System Management Guide

C

Planning for Compiling in More Than One Partition

Once the standard label area contains label information for the work files
you can now assign the symbolic names (SYSnnn) to some physical drive
and start compiling. Initially there is only one set of // DLBL and

// EXTENT statements for each work file (IJSYSO1, IISYS02, etc.), so
you cannot run compiles simultaneously in two different partitions.

The open routines of VSE/Advanced Functions always look for the label
information in the label storage area in the following sequence:

1. partition userlabel area
2. partition standard label area
3. system standard label area

To cause each partition to have its own set of work files, place the
necessary label information in the partition standard label area associated
with that partition.

The job control program will write label information to the partition
standard label area of the partition in which job control is running when it
encounters the // OPTION PARSTD statement.

(a) // OPTION PARSTD
// DLBL IJSYSO1,'BG-WORKFILE-1',0,SD
// EXTENT SYS001,,1,0,12,12
// DLBL IJSYS02,'BG-WORKFILE-2',0,SD
// EXTENT SYS002,,1,0,24,12
// DLBL IJSYSLN, 'BG-SYSLNK',0,SD
// EXTENT SYSLNK,,1,0,36,12

(b) // OPTION PARSTD
// DLBL IJSYS01,'F2-WORKFILE-1',0,SD
// EXTENT SYys001,,1,0,48,12
// DLBL IJSYS02,'F2-WORKFILE-2',0,SD
// EXTENT SYs002,,1,0,60,12
// DLBL IJSYSLN, 'F2-SYSLNK',0,SD
// EXTENT SYSLNK,,1,0,72,12
// DLBL IJSYSCL,'PCIL-FOR-F2',0
// EXTENT SYSCLB,,1,0,84,24

Job streams (a) and (b) above, when run in the BG and F2 partitions
with appropriate ASSGN statements, will enable simultaneous use of the
DOS/VS RPG 1I compiler in both partitions. When running the compiler
in either partition, the OPEN routines will search for file names IJSYSO1,
IJSYS02, IJSYSLN. In the BG partition the compiler will use cylinder 1
through cylinder 3 of a 3340, and in the F2 partition cylinders 4

through 6.

Note: Label information for a private core image library (PCIL) has been provided in
job stream (b). See Creating and Working with Private Libraries in Chapter 3, Using
the System for information on creating private libraries.

Chapter 2: Planning the System 2-19

N E————

Tailoring the Supervisor

Virtual Storage Size

The IBM-shipped VSE/Advanced Functions includes three supervisors, J
one of which is used during system generation. Part of your system

generation procedure is to plan and assemble your tailored supervisor.

You may generate a system to run either in ECPS:VSE or 370 mode for

the 4300 processor, or in 370 mode for the System /370 CPUs.

This section describes the optional and required parameters of the
supervisor generation macros in a topical sequence; that is, such that
related options are presented together regardless of the macros in which
they are contained. For the exact formats of these macros, refer to
VSE/Advanced Functions System Generation. This section discusses, in
addition, the advantages or necessity of specifying the support for the
various facilities of the supervisor.

In tailoring your supervisor to the requirements of your installation, you
can take into consideration future plans to add functions that require
supervisor options by including their requirements in your supervisor
generation macros. This allows you to upgrade your installation without
having to regenerate your supervisor. In your library planning, you should
include space for modules or components that will be required by a
planned future configuration or functional upgrades. The storage cost of
additional supervisor options may be estimated by consulting section
Storage Requirements in VSE/Advanced Functions System Generation.

No supervisor generation option is available to set the size of your virtual
storage; this can be done only at system start-up time. Nevertheless,

already when you plan your system, you should give some thought to the
virtual storage size you are going to use.

The method of defining virtual storage is different for ECPS:VSE mode
and 370 mode.

ECPS:VSE Mode Virtual Storage Definition.

In ECPS:VSE mode, the default value for the total size of your virtual
storage is 16M (16,777,216) bytes. The operator may change this value at
IML. (Initial Microprogram Load). For details about IML on a 4300
processor, see the Operator’s Guide manual provided by IBM for the
pertinent processor model. The value is used by the system to determine
the size of the page data set. How to define the page data set has been
discussed in section Page Data Set, earlier in this chapter.

370 Mode Virtual Storage Definition.

In 370 mode, virtual storage is composed of virtual address space and real

address space. The size of the real address space is determined

automatically when you execute the Initial Program Load (IPL) program.

You may leave it up to the system to calculate the size of the virtual

address space. Depending on the chosen supervisor options, the system

will establish a sufficiently large default size. At the time of IPL, you may

override that value when the system prompts you for the specification of J
VSIZE. The value you specify for VSIZE is equal to the sum of the

2-20 VSE/Advanced Functions System Management Guide

The Shared Virtual Area

virtual address space allocated to the defined partitions and the size of the
shared virtual area.

The maximum size of virtual storage is 16M (16,777,216) bytes. The
maximum value you can specify for VSIZE is 16M minus the size of the
real address space.

The defined virtual storage size is used by VSE/Advanced Functions to
determine the size of the page data set.

The shared virtual area (SVA) is divided into subareas as follows; a
system directory list (SDL), an area for phases, a system GETVIS area
(see Figure 2-4).

You cannot define the SVA size at the time of supervisor generation;
VSE/Advanced Functions determines the size during IPL, at which time
you may allocate additional space. Because the SVA space shortens the
amount of virtual storage that is left to the partitions, you should take the
SVA and its size into your planning considerations.

Supervisor

Virtual
Storage

System Directory List

Resident, Reenterable
Relocatable Phases > SVA

System GETVIS Area

Figure 2-4. Layout of the Shared Virtual Area

Chapter 2: Planning the System 2-21

The System Directory List. The system directory list (SDL) contains

copies of selected entries of core image library directories. This provides

for fast retrieval of frequently used phases. (These phases may be resident LJ
in the SVA or in any core image library.) Having SDL entries avoids

searching a core image directory (on disk) for each phase load request.

Figure 2-5 shows the SDL and its relationship to the core image library.

2-22 VSE/Advanced Functions System Management Guide

Virtual Storage

: SDL
/
/
v/
/7 7/
// //
Reenterable, Relocatable Phases
/S > SVA
// /
7 /
7 /
/ 7/
S System GETVIS Area
/ /
/ / 4
Vi //
// /
/7 /
/ 7/
,/ //
// /
/ //
ya
PHASEA PHASEB £ 4 | prasex
PHASEA
PHASEB
/__ /
Ve
PHASE X 7 /
/ /‘/
7/
//
//
//
,/
/7
/7
7/
7/
/I

Core Image Library

Q The system directory list (SDL), built by the operating system, provides for fast locating of frequently used phases either in
the SVA or in a core image library.

G The SDL entries point directly to a phase’s location on disk.
O The SDL entries are copies of selected Core Image Library Directory entries.

Figure 2-5. System Directory List

Chapter 2: Planning the System 2-23

The SVA Phase Area. The SVA phase area always contains
VSE/Advanced Functions system phases; the area may, in addition, ,
contain IBM licensed program phases and user-written phases.

Phases that are in the SVA may be used concurrently by more than one
partition if the phases are reenterable and relocatable. Having phases in
the SVA speeds processing by:

o eliminating loading from a core image library — When a phase is
resident in the SVA, it does not have to be loaded from the library for
I each execution. This saves the disk I/0, even if the phase was paged
out to the page data set as paging is generally faster than loading
from a core image library.

e reducing processor storage demands — If the phase is being shared
between two or more partitions, the impact on the page pool is less
than if two or more copies of the phase were loaded into storage.

The System GETVIS Area. The system GETVIS area is used by
VSE/Advanced Functions to dynamically acquire virtual storage for its
own use.

An example of the GETVIS area use is the initialization of the SDAID
program. The SDAID program normally requires approximately 100K of
system GETVIS space when it is being initialized. For more details on the
SDAID program see VSE/Advanced Functions Serviceability Aids and
Debugging Procedures.

Size of the SVA. The IPL program calculates, based upon the chosen J
supervisor options, the SVA size. The supervisor options and their cost in
SVA space are shown in the manual VSE/Advanced Functions System
Generation. Additional space requirements for installed licensed programs
such as VSE/VSAM or DOS/VS SORT/MERGE are also automatically
calculated by the IPL program. The space requirements for each licensed
program are shown in the appropriate licensed program documentation.

To support user-written programs in the SVA you must indicate the
required SVA space. The parameters SDL, PSIZE and GETVIS of the IPL
command SVA are used to increase the SVA size beyond the defaults set
by the system.

The loading of certain system phases into the SVA, and the creation of
SDL entries for them, occur automatically at IPL. For information on how
to increase the size of the SVA as well as loading items not automatically
included by the IPL program, see the section Starting the System in
Chapter 3, Using the System.

| Defining the Number of Partitions and Subtasks

In the NPARTS parameter of the SUPVR generation macro, you define
the maximum number of partitions for your system.

In selecting the appropriate number of partitions for your particular
installation, you should consider the type of processing you require.)
Assume you want to run concurrently the following types of programs:

2-24 VSE/Advanced Functions System Management Guide

Library Options

I Library Chaining

o Test cases (assemble/compile, link edit, and execute)
o Daily application programs

e A spooling program, such as VSE/POWER

o Telecommunication application programs.

For this case, you should generate a system with at least five partitions,
depending on the volume of application program processing. If, for
example, your system includes the licensed program ACF/VTAM, at least
two partitions must be specified: one for ACF/VTAM and one for your
VTAM application programs.

Because you cannot alter the NPARTS specification unless you regenerate
the supervisor, it may be advantageous to specify more partitions than you
see an immediate need for.

Number of Subtasks. Any function within your computing system is
performed as a ’task’. A task can create one or more subtasks, and each
subtask, in turn, may create other subtasks. The concept of multitasking
was briefly discussed in Chapter 1, VSE/Advanced Functions Overview.

The operating system itself employs, sometimes to a large extent, this
multitasking tool. Interactive processing (as performed, for example,
within VSE/ICCF) adds to the usage of subtasks.

There is, of course, a limit for the number of subtasks that may be active
at a given time within the entire computing system. VSE/Advanced
Functions sets a default maximum. You may override this default in the
NTASKS parameter of the SUPVR generation macro. The maximum you
may specify varies with the number of partitions (NPARTS) defined for
your system: the more partitions you define, the higher the allowed
maximum number of subtasks.

You can choose the maximum number of libraries you want to
concatenate per partition and the amount of space you want to reserve for
storage-resident directories to achieve better fetching performance. These
options are described below.

When IBM programs access the libraries to retrieve procedures, books,
modules, or phases (for example, during assemblies, linkage editing, or
procedure execution), they expect job control information on which
particular libraries to access, and in what order.

In your job control, you may define chains of libraries. This allows not
only to define more than one library to be accessed, but also to direct the
system to search through the library directories in a given order.

Chapter 2: Planning the System 2-25

Support for chaining (concatenation) of libraries is always provided.

There is a default for the maximum number of libraries allowed per search

chain. You may use the LCONCAT parameter of the FOPT generation J
macro in order to override the default.

Second Level Directory for Core Image Libraries

The directory entries for phases in the core image library are sorted by
phase name in alphameric sequence.

An index of the directory entries is kept in the supervisor in a second
level directory (SLD). The SLD speeds the retrieval of phases from the
system core image library. You may specify the number of entries the
SLD will contain through the SLD parameter of the FOPT generation
macro. The value specified depends on the type of disk device that
contains the system core image library:

For CKD devices — the number of directory tracks.
For FBA devices — the number of directory blocks.

There are also second level directories for private core image libraries:
private second level directories (PSDL). A PSLD is provided for each
private core image library defined in a partition (if defined in more than
one partition, one PSLD suffices for all those definitions).

Storage for five entries per PSLD is automatically reserved. You may

override this default via the SVA command at IPL time. If you do so,

specify a PSLD value that accommodates for your largest private core J
image library; the size of each PSLD will be based on one value: either

the default or the specification in the SVA command.

Telecommunication

VSE/Advanced Functions provides facilities for telecommunication, the
interchange of data between an application in the system and terminals
connected via telecommunication lines. These facilities provide the ability
to define such lines for supervisor assembly and to specify one or more
access methods for input/output services between an application and
terminals.

Telecommunication devices (terminals) are normally attached to the CPU
through transmission control units or communications controllers. The
control unit must be defined via the IPL command ADD. In some cases
there is a direct local attachment.

The access methods, defined in the TP parameter of the SUPVR
generation macro, are the licensed programs:

e Advanced Communication Function/VTAM (ACF/VTAM)

o Basic Telecommunication Access Method — Extended Support
(BTAM-ES)

2-26 VSE/Advanced Functions System Management Guide

Supervisor support for BTAM-ES is standard, also the support for TP
balancing (telecommunication balancing).

For detailed information on generating and using a telecommunication
access method, refer to the appropriate telecommunication publications.
Teleprocessing users should also pay particular attention to section I/0
Options later in this chapter and read section Balancing
Telecommunication in Chapter 4, Using the Facilities and Options of
VSE/Advanced Functions.

BTAM-ES Support

Applications using BTAM-ES can execute in either virtual or real mode.
If you have used BTAM under DOS or DOS/VS in the past, you have to
reassemble and catalog BTMOD before submitting your applications to
VSE/Advanced Functions for execution. If BTMOD and the application
program were assembled together, the application program must also be
reassembled and re-link edited.

ACF/VTAM Support

ACF/VTAM executes in virtual mode in its own partition.

As ACF/VTAM uses the PFIX macro, processor storage page frames
must be allocated to the partition in which ACF/VTAM is to run. A
separate partition is required for VTAM application programs. For
information on installing this licensed program refer to the ACF/VTAM
documentation.

Note: On an IBM 4331 processor, you use ACF/VTAME instead of ACF/VTAM.

| Linkage between VSE/Advanced Functions and VM/370

Your VSE system can run in a virtual machine under VM/370.
VSE/Advanced Functions offers programming support (called the
VM/370 Linkage facility) to adjust program execution for the special
conditions prevalent in a virtual machine. Under VM/370 Linkage, the
operating system does not, for example, execute instructions that are
redundant in a VM/370 environment; it avoids functions such as load
leveling and paging as well as page fixing and page freeing. In ECPS:VSE
mode, the VM/370 Linkage facility causes direct address translation
(DAT) to be bypassed.

In order to generate that support, you specify VM=YES in the SUPVR

generation macro. You can generate a supervisor for execution in 370

mode with VM=NO and still run it under VM/370; of course, you do not
. receive the advantages of the VM/370 Linkage facility.

Specification of VM=YES is requred in order to obtain support for FBA
DASDs in 370 mode.

Chapter 2: Planning the System 2-27

Note that a supervisor generated with VM =YES can operate only on a
virtual machine under VM/370.

Interactive Computing and Control

The licensed program VSE/Interactive Computing and Control Facility
(VSE/ICCEF) offers interactive timeshared.computing and control services
to terminal users.

VSE/ICCEF provides a collection of tools for

¢ Online library maintenance

e Context editing and text manipulation

e Development and execution of interactive problem programs
¢ Job entry

e Monitoring of time-shared job processing.

VSE/ICCEF runs in a VSE partition. Support for VSE/ICCF is always
provided; it is a prerequisite for the Access Control service of
VSE/Advanced Functions which is described in the following section.

Access Authorization Checking and Security Event Logging

Access Control

VSE/Advanced Functions provides a service to check against
unauthorized usage of your data and your programs.

Support for this function is available if you assigned a positive value to
the SEC parameter in the FOPT generation macro.

VSE/Advanced Functions provides access control for the following
resources:

e your data
e your private libraries
¢ individual programs (phases) within any of the core image libraries.

Access control is not available for VSE system libraries. However, it is
available for phases of the system core image library.

Security profiles. To do this checking, VSE/Advanced Functions uses the
’Access Control Table’. You build this table through the DTSECTAB
macro; usage of this macro is described in the manual Data Security
Under the VSE System. This table is loaded into the SVA at the time of
IPL.

2-28 VSE/Advanced Functions System Management Guide

Logging and Reporting

Job Accounting

The access control table has two groups of entries:

o User profile entries. Anyone who uses your data processing
installation and wants to access secured programs or data or both
must submit a user-id and a password; the batch user through the
// ID job control statement, the terminal user through logon
procedures. User-id and password have to match the corresponding
parameters within one particular user profile entry. In addition, each
user profile entry may contain up to 32 security classes.

e Resource profile entries. There is one entry for each named resource
which is defined as ’protected’. Such a resource may be a file name, a
library name, or the phase name of a program.

Associated with each resource is a security class. When a user
program attempts to access a protected resource, the operating system
compares the security class in-that user’s profile with the security class
assigned to the resource. If the security classes don’t match, access to
the particular resource is denied to the user program.

For more information about access control implementation, refer to the
manual Data Security Under the VSE System.

If you have the licensed program VSE Access Control — Logging and
Reporting installed, the security related events are recorded on the logging
file. For details on the creation of and access to the logging file, refer to
the documentation available with that program.

What constitutes a security related event, is determined at the time you
build the resource profile entry. Depending on your installation’s
requirements, you may want to trace only security violations of a
protected resource; or, you may want to trace all permitted accesses to
that resource.

Use the Reporting Program to get a formatted listing of the logging file.

The job accounting interface facility provides job and job step information
that can be used for charging system use, supervising system operation,
planning new applications, etc.

When this option is selected (JA=YES in the FOPT generation macro),
job accounting tables are built in the supervisor to accumulate accounting
information. One job accounting table is maintained per partition. The
format of these tables and information on how to write a job accounting
routine is given in Chapter 4, Using the Facilities and Options of
VSE/Advanced Functions.

To utilize this job accounting information, you must write a routine to

store or print the desired portions of the table. This routine must be
cataloged in the core image library under the name $JOBACCT.

Chapter 2: Planning the System 2-29

Timer Services

Time-of-Day Clock

Interval Timer

If the user I/O routine ($JOBACCT) is written using LIOCS with label
processing, the JALIOCS parameter of the FOPT macro must be specified
in addition to the JA parameter. JALIOCS indicates that a user save area
and a label area in the supervisor are to be reserved. The label area
replaces the one normally used by LIOCS label processing routines.

If the licensed program VSE/POWER job accounting is desired, support
for the job accounting interface is required. No user-written data
collection routine is then necessary. Refer to the VSE/POWER
documentation.

The following timer services are available to users of VSE/Advanced
Functions:

o Time-of-day clock
e Interval timer
o Task Timer

The time-of-day clock is a standard hardware feature, while the task timer
and the interval timer require other hardware features (the clock
comparator and the CPU timer) which are standard on all System/370
and 4300 processors, except the 370 models 135 and 145. Utilization of
these timer services in VSE/Advanced Functions is briefly discussed
below. Except for the task timer, the timer services are automatically
provided in VSE/Advanced Functions. Support for the task timer is a
supervisor generation option.

The time-of-day (TOD) clock provides a consistent measure of elapsed
time suitable for time-of-day indication.

The TOD clock support also enables programs to issue the GETIME
macro instruction, which causes the exact time-of-day to be stored in
general register 1. A description of the use of the GETIME macro

instruction is given in VSE/Advanced Functions Macro User’s Guide.

The time-of-day and the date are automatically included with each
// JOB and / & job control statement that is printed on SYSLST or
SYSLOG.

During the IPL procedure, if IPL is performed from SYSLOG, a message
is printed on the operator console to inform the operator of the status of
the date, clock, and zone. If necessary, the operator can correct this
information in the SET command.

The interval timer can be used by programs (main tasks or subtasks or
both) that need to schedule certain processing based on discrete time
intervals. If a problem program is written with the appropriate macros and

2-30 VSE/Advanced Functions System Management Guide

C

Task Timer

Console Buffering

routines, the interval timer causes an external interrupt when the time
limit established by the program has elapsed.

Several problem program macros relate to interval timer support. For
information about using these macros, refer to V.SE/Advanced Functions
Macro User’s Guide.

The task timer can be used by the main task of the partition owning the
task timer to escape from processing and enter an exit routine after a
specified period of time. This discrete time interval is decremented only
when the main task is executing. If support for the task timer is included
in the supervisor and the owning partition’s main task is written with the
appropriate macro instructions and routines, the specified task timer
routine is entered when the time interval has elapsed.

To include support for the task timer in the supervisor, specify the TTIME
parameter in the FOPT generation macro.

If an exit routine is not specified in the STXIT TT macro, the interrupt is
ignored. The SETT macro is used to set the time interval, and that
interval can be tested or canceled by means of the TESTT macro. The
EXIT TT macro is used to return control from a task timer exit routine.

In an installation with a relatively slow console device, the entire system
can be held up while messages are being issued to the operator. Console
buffering support builds a queue of output messages and returns control
immediately to the partition requesting the output. The messages are then
written as soon as the console becomes available.

Console buffering is useful in two cases:
e when your console device is a 3210/3215 printer keyboard, or

¢« when your console is a display operator console and a printer is used
to produce a hard copy of messages while they are displayed on the
screen.

In an installation without such printers, a performance improvement
cannot be obtained by requesting console buffering support. On the
contrary, console buffering may, in that case, even work to your
disadvantage: certain VSE/Advanced Functions tasks such as error
recovery routines issue high priority messages. If your console is a display
operator console, and a DASD rather than a printer is used as a hard copy
file, then, depending on the size of your console buffer, messages may be
issued to the screen in such rapid succession that a message like
INTERVENTION REQUIRED ... can easily be overlooked by the
operator.

Support for console buffering is indicated by the CBF=n parameter in the
FOPT generation macro (where n is the number of I/0 requests to be

Chapter 2: Planning the System 2-31

buffered). If you decide to use console buffering, at least one buffer
should be specified for each partition or task issuing messages so that
buffers are available and the task can continue processing while the
message is being printed. Two per partition is recommended. Console
buffering is not split per partition, but used by the whole system.

Asynchronous Operator Communication

Disk Options

I DASD Sharing Across Systems

DASD File Protection

With asynchronous operator communication, operator action requests
(action or decision messages) and the corresponding replies need no
longer be in series. They can be asynchronous; that is, the operator can
defer replies to messages while the system continues processing. One reply
per active task in the system may be outstanding at a time.

To enter a reply, the operator must key in the reply-ID that the system
has assigned to the corresponding message. The asynchronous operator
communication support is activated by specifying ASYNOC=YES in the
FOPT generation macro. For details, refer to VSE/Advanced Functions
Operating Procedures.

Options are provided for some DASD devices. These options are:

e DASD sharing across systems
« DASD file protection

e Track hold

o Rotational position sensing

Two or more VSE systems may be linked in such a way that they use
common disk files.

In order for this setup to be sensible, it must be ensured that resources
while being used by one system are protected against unallowed access
from other systems.

Support for this kind of resource control is established if each sharing
system runs under a supervisor generated with DASDSHR=YES in the
FOPT supervisor generation macro.

The concept of DASD sharing across systems is further discussed in
section DASD Sharing by Multiple VSE System, within chapter Using the
Facilities and Options of VSE/Advanced Functions.

This feature is provided to prevent user programs utilizing DAM or
user-written channel programs for writing onto DASD from writing data
outside of the limits of the DASD file currently being accessed. This might

2-32 VSE/Advanced Functions System Management Guide

9

C

Track Hold Option

happen if, for example, a randomizing algorithm produces an unexpected
DASD address which is outside the file limits.

DASD file protection support is indicated in the DASDFP parameter of
the FOPT generation macro.

DASDFP gives protection on the basis of programmer logical units. If two
DASD files are open in the same partition and use the same programmer
logical unit, the DASDFP option does not give any protection to either of
the two files.

If you are using physical IOCS, you must use the DTFPH macro to define
the file. The file must be opened using the OPEN or OPENR macro, and
each channel program must commence with a long seek (X‘07’) command
or a define extent (X’03’) command, and contain no chained long seeks.

Specifying DASDFP does not prevent file contention between partitions,
or within partitions if the same symbolic unit is used. Thus, more than one
partition may access the same file at the same time and may even attempt
to update the same record simultaneously. The track hold option
(TRKHLD) is provided to solve this problem. Note, however, that all
DASD writes (DAM and others) will be checked for being within the
file-protect range.

Note that, for CKD devices, no protection is given to partially allocated
cylinders; files to be protected should begin and end on cylinder
boundaries.

The track hold option is used to ensure that, while data in a DASD file is
being modified by one task, no other task in the system can access that
data. The facility is available to most VSE disk access methods.

The track hold option can be selected by specifying the TRKHLD
parameter in the FOPT generation macro.

Additionally, user programs must invoke the track hold facility. For the
track hold feature to be effective all programs accessing the same file must
request its use. The track hold facility is requested in the DTF of the user
program by specifying HOLD=YES.

For FBA devices, the track hold facility protects the range of blocks
which contains the accessed data. For CKD devices, the facility protects
the track that contains the data being accessed.

Deadlock occurs if one task is waiting for a DASD area held by a second
task and the second task is waiting for a DASD area held by the first.
This can be prevented by establishing the convention that every task must
be programmed so that it will not attempt to hold more than one DASD
area at a time. Deadlock may also occur if the maximum number of
DASD areas demanded to be held by all tasks combined exceeds the
maximum specified in the TRKHLD parameter.

Chapter 2: Planning the System 2-33

Rotational Position Sensing

Rotational Position Sensing (RPS) is a feature on all IBM CKD disk
storage devices except 2311, 2314, and 2319; it is optionally available on
IBM 3340. It provides the ability to overlap positioning operations on one
device with service requests for other devices on a block multiplexer
channel (or its equivalent on System/370 Model 115 or 125).

The operating system makes use of the feature if you specify RPS=YES in
the FOPT generation macro. However, you should not request RPS
support if you use the 23xx emulator on a Model 115 or 125.

Better channel utilization can increase system throughput, especially in
large multiprogramming systems with heavy concurrent I/O activity.
Because a selector channel is monopolized once a channel program has
been initiated, no other device on this channel can be accessed until the
data has been transferred. With block multiplexer channels and the RPS
feature of DASD devices, however, the device can disconnect from the
channel during positioning operations. The channel is then available for
other requests so that other devices on the channel can be accessed.

Overlap of positioning to a record on a track requires adding RPS CCWs
to the direct access storage device channel programs. VSE/Advanced
Functions system control and service programs that support RPS,
dynamically build these CCWs during program execution provided that
the supervisor is generated with RPS support and that the direct access
storage device has the feature.

RPS support within VSE/Advanced Functions is provided in all access
methods which support RPS DASD devices and in the VSE/Advanced
Functions system control and service programs where the implementation
benefits total system performance. Implementation of RPS support in
VSE/Advanced Functions utilizes virtual storage to enable you to use
RPS to avoid recompiling or relink editing your problem programs. The
partition GETVIS area is used to generate an extension to.the DTF, and
the shared virtual area is used to hold the RPS phases which are used in
lieu of the logic modules of LIOCS.

Efficient use of RPS depends on each channel program’s ability to free
that channel so that it can service requests for other devices. Programs
using VSE/Advanced Functions DASD LIOCS access methods will have
RPS channel programs built by the access method. Programs using PIOCS
for DASD access have to be recoded to include Set Sector CCWs and to
establish arguments for the CCWs. If this is not done, these programs will
destroy the effectiveness of RPS by monopolizing the channel.

The RPS phases are loaded into the SVA by IPL if you have specified
RPS=YES in the FOPT generation macro.

Figure 2-6 shows the organization of a user’s program running in virtual
storage without RPS support.

Figure 2-7 shows how, with RPS support, this organization will be
modified when the pertinent file is opened to put the DTF extension in
the partition GETVIS area. The pointers to the RPS phases which are
used in lieu of the logic module and channel program will be put into the
DTF while the non-RPS logic module and channel program addresses will
be saved in the DTF extension. The DTF extension will be freed and the
pointers restored to their original values when the file is closed.

2-34 VSE/Advanced Functions System Management Guide

9

9

X

USER PROGRAM

DTF

NON-RPS CCW STRING 4
NON-RPS LOGIC MODULE 4

NON-RPS CHANNEL PROGRAM

NON-RPS

LOGIC MODULE

VIRTUAL STORAGE

Partition
GETVIS
area

Figure 2-6. User Program Running in Virtual Storage without RPS

VIRTUAL STCRAGE ——>|

Support

USER PROGRAM

DTF

RPS CCW STRING *
RPS LOGIC MODULE 4

NON-RPS CHANNEL PROGRAM
{not used)

NON-RPS

LOGIC MODULE
(not used by RPS DTF
but available to other DTF)

NON-RPS CCW STRING
NON-RPS LOGIC MODULE

DTF EXTENSION
RPS CHANNEL PROGRAM

Partition
> GETVIS
area

Figure 2-7. User Program Running in Virtual Storage using RPS Version
of Logic Module and Channel Program

Chapter 2: Planning the System 2-35

I/0 Options

Channel Queue

The channel queue (CHANQ) is used by VSE/Advanced Functions to
schedule 1/0O operations. The system builds an entry in the channel queue
whenever a request is made for an I/O operation and the entry remains in
the queue until the operation has completed. Thus, at any point in time,
the queue consists of entries for I/O operations in progress and I/O
operations waiting for initiation. Whenever an I/O event completes, the
queue is examined to see if another entry exists for the channel, and if so,
the operation is initiated. The number of channel queue entries to be
allocated in the supervisor can be specified in the CHANQ parameter of
the IOTAB macro.

The number of occupied entries in the channel queue depends on the
activity in the system and no accurate formulas for determining the
optimum size can be given.

Specifying too small a channel queue may cause performance degradation,
too large a channel queue value will waste storage space.

Tasks or programs that request an I/O operation when the channel queue
is full will be set in the wait state until an entry becomes free.

To avoid performance degradation it is better initially to specify ample
channel queue space, and reduce the allotted space later, if desired. Given
below is a rule-of-thumb that you may follow:

« Specify at least one queue entry for each I/O request that can be
issued concurrently (open files per job step per partition).

« Specify one entry for the SYSRES file and one for the page data set.
« Specify one entry for each task or partition in the system.
e Specify one entry for each console buffer in the system.

o If multiple volume files are used on the system, specify one entry for
each file being accessed at the same time.

« Add two entries per tape drive.

o Specify one entry for each telecommunication line that could solicit
input. If IBM 2260 local or 3270 local video display units are to be
supported by BTAM-ES, specify one entry for each display.

¢ Add five entries to the total for contingencies.

When the system has been generated, run as many programs as represent
the heaviest work load; in particular, run any telecommunication
programs. Then, before the next IPL, obtain a formatted dump of virtual
storage.

2-36 VSE/Advanced Functions System Management Guide

An analysis of the channel queue should show that entries near the
beginning of the table have been used, whereas those near the end are
unused. Although the unused entries are normally redundant, a few
surplus entries should be retained to allow for exceptional cases. If all the
entries have been used, then the channel queue was almost certainly too
small, and a process of experimentation will show the correct size.

Figure 2-8 shows the channel queue as displayed in a formatted dump.
Refer to VSE/Advanced Functions Serviceability Aids and Debugging
Procedures for information on obtaining a formatted dump.

*xk CHANNFL CQUFUT TABLE *%x*

FRFF LTST PONINTER 02

ANDR PCS CHAIN CC3 REg
PTR ACCR I’
012384 C) 03 0Aa656b 32
012304 () FF 0H87D68 27
0123F4 (2?2 8 0003CT Q2
012414 03 1 0CE550 572
012424 (4 N0 0BASHKR 40
Cl2454 0£S 6 0C0oUn0
Nl12474 0Ok “T Q000200
012494 C7 08 C09G00
0124it4 CR° 09 000209
0124N6 C9 OA - CNO 00
C12+4F« CA 03 Q00Co00
012514 7R oC CO020C
012534 < oD 007000
012554 (2 OF 00400
012574 ©°F OF 200000
012594 CF 10 000700
012584 12 11 02000
0125n4 11 12 C¢2CH00
0125F4 12 13 00000
012614 13 FF 0007V

An unused entry will have an FF in this location

FLG LUS TSK TRANSMIT FIX FIXLIST INFORMATION ACCUMULATED CSW
N ID INFORMTN FLG ADDR USFD INTERNALLY INFORMATION

00 04 20 88000020 00 ClRl44 00014C7400000000 0090000000000300
N9 04 20 BSCO0DD0 00 N18168 90014C7400000000 0220000000700000
€3 2 50 23000000 00 00C00Q 00014D1CCO000020 CQ3029500C49IC40
02 04 50 RB8QJ00VO 00 QC181K0 0014C7400000000 5030000000000000
00 04 40 9818000030 00 O01lR120 00014C7400000000 0030000000000000
20 FF FE 02000090 00 000090 0000000009000000 OOOOOOOOOOOQOOQQ
0Y FEF FFE 93300270 00 220039 0700202000000000 002000000Q0CJ0GEY
06 FE FF H00C0OG3SO 00 100020 9J000009050000000 0000090200900000
00 FF EfF 25200000 00 ¢00000 0000000000000000 0000000000000000
00 FFFF NN000570 00 230000 0702000000000000 0920000000000000
0 FF FF 00000090 Q0 000039 0000000000000000 0030000000300¢00
09 E=F FF 927000000 OC 0000209 €C0N0C0000000000 0000000000000G30
00 FF FF 020000090 00 000000 92000000000000000 $009000009922030
00 EF O FF 02920030 0G 090000 2000200000300000 0030000000000C00
5) FF FF 05000000 00 000000 0000390000000000 C0S030000000009C
63 FF EF 0N0N0009 00 000000 C000300000000000 0070000209€00009
00 FF FF 0000O00CO 0 90000C 0000J00000C0QVN0 0050000000070000
AN FE FF 0ONO00020 00 Q20000 2060000000000000 00000000000.0C00
Q0 FF FF 700C0002 0CG N00000 92600300000)30070 CO0CNJ00000030090
03 FF FF 019000C0 00 000002 £000900CN3000320 00000000000090090

Figure 2-8. Channel Queue Table

Supervisor Buffers for /O Processing

Supervisor buffer space is used for the handling of I/O requests from
programs that execute in virtual mode. You specify the number of buffers
via the BUFSIZE parameter of the IOTAB generation macro.

The amount of buffer space required is dependent on the number and
type of concurrent I/O requests. The number of entries that you specify
in the channel queue table can be used as a guide. Generally three times
the number of channel queue table entries will give a sufficient number of
buffers. If ISAM is the predominant access method used or if you have
generated RPS support, you should increase the number of buffers by
20%.

Because your supervisor must end on a 2K boundary, any space between
the end of the supervisor and the next 2K boundary will be used for I/0O
buffers in addition to the amount you specify in the IOTAB generation
macro.

To determine whether or not you specified a sufficient number of buffers,
use (but only if FASTTR is not active) a technique similar to the one

Chapter 2: Planning the System 2-37

suggested for an analysis of the channel queue. While running as many
programs as represent your heaviest work load, issue the DUMP command
specifying the begin and end addresses of the buffer area in the
supervisor; if all blocks have been used, then probably too few buffers
were specified.

The use of the buffers is different in ECPS:VSE and 370 mode.

ECPS:VSE Mode. The buffers are called work blocks, and they have a
size of 36 bytes each. VSE/Advanced Functions uses the work blocks to
store information about your channel program and the I/O areas for that
channel program. The information will be used to fix in processor storage
your I/0O areas, channel program and control blocks until the I/O request
has been satisfied. The information stored is referred to as a fixlist. For
example, the system needs one workblock per I/O request for an FBA
type DASD and two or more such blocks per I/0 request for a CKD type
DASD.

If you are writing your own channel programs it is suggested that you use
the IORB macro rather than the CCB so that your channel program will
contain a fixlist; processing will then be faster. For more information
about these two macros, refer to VSE/Advanced Functions Macro
Reference.

370 Mode. In 370 mode the buffers are called copyblocks and have a size
of 72 bytes each. VSE/Advanced Functions uses the copy blocks to keep
a copy of your channel program and control blocks in the supervisor area.

Your channel program refers to virtual addresses and these addresses must
be translated to reflect the processor storage locations that your 1/0
area(s) actually occupy. (The translation is necessary since 370 mode does
not support relocating channels which can do the address translation.)
Once your channel program is translated, the I/O area(s) are fixed in
processor storage and the translated channel program is given to the
channel for execution. If you have installed the licensed program
VSE/VSAM the minimum number of buffers you should specify is 40. To
execute VSE/Advanced Functions system utility programs, up to 38 copy
blocks are needed.

Bypassing System Translation of I/0O Addresses. In most instances, double
buffering techniques and an increase in block size can significantly reduce
the system overhead associated with channel program translation.
However, in extreme cases, you may wish to perform your own translation
of channel programs and thereby avoid system CCW translation overhead.
Programs that might require this are EXCP programs that have very high
start I/0 rates and that repeatedly use the same channel programs.

VSE/Advanced Functions provides support that assists in the translation
of channel programs. This support allows you to use the VIRTAD and
REALAD macros as well as the REAL parameter of the EXCP macro.
You must obtain processor storage by means of the PFIX macro and then
translate the channel program. For detailed information see
VSE/Advanced Functions Macro User’s Guide and VSE/Advanced
Functions Macro Reference.

2-38 VSE/Advanced Functions System Management Guide

Error Queue

The Fast Translate or Fast Function Option. You may specify
FASTTR=YES in the FOPT generation macro. This creates a supervisor
with fast-function support in ECPS:VSE mode and fast-translate support
in 370 mode.

The feature works essentially the same way in both ECPS:VSE and 370
mode. That is, the supervisor buffers used for an I/O request are not
released when the I/O request is completed. The buffers are saved and
the referenced I/O areas are fixed in processor storage until the end of
job. This can speed I/O processing if your program has frequent repetitive
I/0 requests. The overall effect on your system is subjective, however.

The page pool is decreased in size because the I/O areas remain fixed.
Additionally, more supervisor buffers are required than without this
support. In ECPS:VSE mode specify, as a rule of thumb, a number of
buffers that is 9 times the number of channel queue entries and in 370
mode 6 times the number of channel queue entries.

If you do not specify enough buffers or the page pool becomes too small,
the saved buffers and fixed I/O areas are released as required by the
system.

Specification of FASTTR=YES may cause degradation of performance
when CICS/VS accesses SAM, ISAM and DAM files.

FASTTR can be switched off for the duration of a job by specifying
NOFASTTR in the OPTION job control statement. Specifying this option
is meaningful if, for a job, it is unlikely that buffers and fixed I/O areas
will be reused.

The error queue option is of value to installations using a large number of
I/0 devices, for instance, telecommunication systems. The ERRQ
parameter of the FOPT generation macro allows you to specify the
number of error queue entries within the error recovery block of the
supervisor. These entries are used to record information on I/0O device
errors, and this information is used by the ERP and RMSR routines.

Display Operator Console Support

In ECPS:VSE mode, 3277 is the standard operator console support. In
370 mode,this is the default, too; however, the DOC parameter of the
FOPT generation macro can be used to override that default. For
example, in an installation with a /370 model 115 or 125, it is usually
required to ask for DOC=125D support. DOC=NO gives a supervisor
that is generated with console support in printer keyboard mode.

Chapter 2: Planning the System 2-39

l I/0O Related Supervisor Areas

The IOTAB generation macro, in general, directs the system to allocate
I/0 related tables. The parameters involved refer to:

e The number of programmer logical units for each partition defined by
the NPARTS parameter in the SUPVR macro.

« The number of job information blocks for the system. One is required
whenever a temporary or alternate assignment is made.

o The estimated number of physical I/O devices.

e The number of named resources that may be held in a locked status at
any one time.

« The number of I/0O buffer blocks.

Before you can actually use your I/O devices, you must define each unit
to the system, specifying its characteristics such as channel and unit
address, device type, its mode (if applicable). You do this via the ADD
command at the time of Initial Program Load (IPL).

A supervisor generation macro is not available for this purpose.
Nevertheless, because the definition of your I/O devices is likely to
remain stable over a longer period, you should already at the time of
system generation give some thought to the sequence of ADD commands
you are going to use. The total number of ADD commands must not
exceed the total number of devices specified in the IODEV parameter of
the IOTAB generation macro.

Furthermore, physical I/O device addresses must be assigned to logical
unit names, via the // ASSGN job control statement or job control
command (no //). You cannot make these assignments at the time of
supervisor generation, even though you may want to have them remain
unchanged for a longer period of time.

The Automated System Initialization (ASI) facility allows you to place all
your IPL. commands in a procedure. This procedure is automatically
invoked each time you IPL the system. Additionally the ASI facility
allows you to place job control commands in a procedure which would be
automatically invoked whenever the pertinent partition is started.

Definition and assignment of I/O devices is described in sections Starting
the System and Controlling Jobs within Chapter 3, Using the System.

2-40 VSE/Advanced Functions System Management Guide

J

C

3

Chapter 3: Using the System

Starting the System

This chapter is intended primarily for programmers who are responsible
for optimum system throughput and for servicing the installation’s
libraries. The topics discussed are:

Starting the System — describes the initial program load (IPL)
procedure. It also describes how to create the file required for recording
error information, how to allocate storage to a partition, and how to start
a foreground partition.

Controlling Jobs — describes the required input to the job control
program, which controls the execution of a job; it includes a brief
discussion of label processing.

Linking Programs — describes the input to the linkage editor program,
which links the modules produced by language translators, produces
executable phases and places them in the core image library.

Using the Libraries — provides the information on how to alter, copy,
and inspect the contents of the libraries. It also describes how to allocate
space to the libraries and how to create private libraries.

Before a job can be submitted for execution, the supervisor must be read
into processor storage, and the job control program must be loaded into
the background partition. To do this, the operator starts the system by
following the initial program load (IPL) procedure.

On a 4300 processor the amount of virtual storage available can be
altered during IML (Initial Microprogram Load) which is done prior to the
IPL procedure. Refer to section Virtual Storage Size in Chapter 2,
Planning the System, and also to the Operator’s Guide manual for the
pertinent CPU model.

This section describes the use of the IPL commands. The exact formats of
these commands are contained in VSE/Advanced Functions System
Control Statements and VSE/Advanced Functions Operating Procedures.
This section also provides a summary of the automatic functions of IPL;
descriptions of how to load the shared virtual area, and how to create the
system recorder file (SYSREC) and the hard copy file; a section on the
optional user exit routine for user-defined processing after IPL; and a
section on entering data into SYSREC.

You must perform the IPL procedure each time you have to do one of the
following:

« Load a new supervisor (for normal system start-up, for different
supervisor options, or to recover from a system malfunction. For the
last, refer to VSE/Advanced Functions Serviceability Aids and
Debugging Procedures).

Chapter 3: Using the System 3-1

e Modify the shared virtual area size.

o Add devices to or delete them from the system configuration. J
e Set or change the time-of-day clock value.

e Set or change the system’s time zone value.

o Change the channel and unit assignment of the system residence
(SYSRES), the VSE/VSAM master catalog (SYSCAT), SYSREC, or
the page data set due to hardware problems with the channel or disk
drive.

e« Create SYSREC (for the first time or because of hardware problems).

+ Replace SYSRES or the page data set because of a hardware problem
with the pack.

o Switch to a different label information area.

« Reallocate the lock communication file.

Initial Program Loading (IPL)

For IPL, you place the system residence disk pack on a disk drive and set

the address of that drive in the load unit switches, ready SYSLOG and

the device containing the page data set and press LOAD on the console

(on the video display/keyboard console, type in the address of the drive J
and press ENTER).

Now, the Automated System Initialization (ASI) is ready to control the
IPL process. If you want to prevent ASI from executing your cataloged
IPL procedure, press the INTERRUPT key immediately after you pressed
LOAD. This allows you either to specify different ASI procedures or to
leave ASI and continue with an interactive IPL. ASI is discussed in more
detail under Automated System Initialization (ASI), below. The remainder
of this section describes the interactive IPL process.

Next, the system enters the wait state. You now must indicate the device
that is to be used as the operator console (SYSLOG). To do so, press the
Request key (or END/ENTER) on the selected device. This causes an
interrupt and automatically transmits the address of this device to the
system. (If you have installed an IPL. communication device list, the
system accepts the interrupt only if the address of the device is contained
in the list). IPL assigns SYSLOG to the device. This assignment remains
| valid until the next IPL or until SYSLOG gets reassigned.

At this point, you are requested to specify the supervisor you want to be
used. You indicate this by one of the following:

« pressing ENTER or the Request key
I e entering supervisorname[,P | N][,VSIZE=nK][,L.OG | NOLOG]

Pressing ENTER or the Request key indicates that the pageable default '
supervisor is to be loaded ($$A$SUP1,P,LOG).

3-2 VSE/Advanced Functions System Management Guide

Establishing the Communication

Specifying P causes the loaded supervisor (default or your own) to have
certain routines pageable; specifying N causes the loaded supervisor
(default or your own) to be non-pageable. If, on entering the supervisor
name, you specify neither P nor N, P will be assumed.

The VSIZE parameter applies only to a supervisor generated for 370
mode. You use this parameter if you want to override the default value as
determined by the system.

By setting the list-option to NOLOG, you can prevent IPL from listing
the IPL commands on SYSLOG. If you don’t specify the list-option, LOG
will be taken as default; that is, all IPL. commands are listed on SYSLOG.
Invalid commands are always listed.

IPL now reads the supervisor into low processor storage from the core
image library. If an irrecoverable error is sensed while reading the
supervisor, an error message is displayed on SYSLOG:; the hard wait
status is entered and an error code is set in the first four bytes of
processor storage. The IPL procedure must then be restarted. For more
information on wait states, refer to VSE/Advanced Functions Serviceability
Aids and Debugging Procedures.

Device for IPL

The system again goes into a wait state with all interrupts enabled (see
Note). At this time you must indicate which device is to be used to
communicate the IPL commands to the system. The specific manual
operation you must perform depends on the selected device:

o If you wish to use the console (SYSLOG), press the Request key on
the console. (On the video display/keyboard console, you can press
the Enter key, the Request key, or the Cancel key.)

« If you wish to use a card reader, ready this card reader. The system
then assigns SYSRDR to this device for the duration of IPL.

« If you wish to use an IBM 3540 Diskette I/O Unit, ready it. The IPL
program assumes that the file IJIPL is part of the diskette and that it
contains the IPL. commands in card image format (unblocked 80 byte
records).

Note: Because any interrupt wi' (on a first-come basis) establish the issuing device as
the IPL communication device, it is advisable that TP installations and
terminal-oriented installations with locally attached terminals, (for example, IBM
3277) install the IPL-phase $$A$CDLO. (See IPL Communication Device List later in
this section.)

Chapter 3: Using the System 3-3

IPL. Commands

IPL commands serve to set or change various characteristics of your J
system. They operate on the following items:

I/0 configuration — ADD and DEL commands

System date and time — SET command

System disk file assignments — DEF command

Page data set . — DPD command

Label information area
outside of SYSRES — DLA command

Options relating to
PAGEIN requests and

DASD file protection — SYS command
Lock communication file — DLF command
Shared Virtual Area size — SVA command

ADD and DEL commands precede all other commands. The DLF
command (if any) must immediately follow all ADD/DEL commands.
The SVA command is the last command to be submitted.

The ADD Command. Use the ADD command to define all your input and

output devices to your system. This definition specifies for a device the

channel and unit address, the device type, the mode (if applicable), and J
whether automatic channel switching is desired.

Each individual drive of a DASD (of a 3333/3330 or 3310, for example)

I requires a specification in an ADD command. Note that if one physical
spindle contains two or more logical spindles, ADD commands must be
issued for each of these logical spindles.

The following requirement should be kept in mind: you can add a device
only if the number of devices specified in the IODEV parameter of the
IOTAB generation macro is not exhausted. If this requirement is not
satisfied, you will get an appropriate error message. You must then
provide space in the control blocks for the additional device by:

¢ deleting unnecessary devices of the type you want to add and then
re-issuing the ADD command, or

¢ re-assembling the supervisor.

Note: For an IBM 3031 CPU, one service record file 7443 must be defined. This
allows the operating system to access the system diskette on the service support
console. After having created the system recorder (SYSREC) file and encountered the
first // JOB statement, the system reads machine check frames and channel check
frames from the service record file and writes them onto the SYSREC file. Those
frame records will be available as input for the Environmental Recording Editing and
Printing (EREP) program when that program is executed.

3-4 VSE/Advanced Functions System Management Guide

C

The DEL Command. Use the DEL command to drop an I/O device from
the configuration you had established via ADD commands; this may be
necessary if, for example, you defined (ADDed) more devices than you
had allowed yourself in the IOTAB generation macro, or if you want to
correct the device type for one of the preceding ADD commands.
Because all references to the device are removed, any subsequent ASSGN
job control statement that refers to a deleted device will not be accepted.

The Set Command. You can use the SET command to set the system date,
the time-of-day clock, and the system time zone. If you specify a
time-of-day clock setting, set the time-of-day clock switch to the “’enable
set” position at the exact time specified in the SET command. The SET
command is required only if the time-of-day clock has not been set. If this
is the case, a message at IPL will prompt the operator.

The DEF Command. You use the DEF command to assign the SYSCAT,
SYSDMP, and SYSREC files. This command is mandatory.

The SYSCAT file, the VSAM master catalog, is required if you have the
licensed program VSE/VSAM installed. If you don’t have VSE/VSAM
installed, specify DEF SYSCAT=UA. SYSREC is the symbolic name
used for the system recorder file, the hard copy file and the system history
file. As described in section System and Workfiles of Chapter 2,
Planning the System, the SYSDMP file can be used instead of SYSLST to
hold system dumps, dump command output, and the output of your
installation’s stand-alone dump program.

The DEF command must be submitted after any ADD and DEL
commands and prior to the SVA command. The ASSGN job control
statement or command is not valid for SYSDMP, SYSCAT or SYSREC
assignments.

The DPD Command. The DPD command is used to define the disk
attributes of your page data set. The operands of the command allow you
to specify

» adevice address.

« whether the page data set resides on multiple extents.

o the size of a particular extent.

« whether the page data set is treated as a data secured file.
« the beginning address of the disk extent.

o the disk volume ID.

« whether or not the page data set should be formatted.

Because formatting the page data set is time-consuming, you should
request it only if the pack was damaged. The first time you use the page
data set, it will be formatted automatically.

The page data set can reside on any DASD supported by VSE/Advanced
Functions as a system residence device. To help ensure better

Chapter 3: Using the System 3-5

performance, the page data set should not reside on a pack that is subject

to heavy 1/0 requests.)

The DPD command is mandatory (except when your supervisor was
generated with VM=YES in which case the DPD command is invalid). It
must be submitted after any ADD and DEL commands and prior to the
SVA command.

If your page data set is to be allocated to multiple extents, you submit the

corresponding number of DPD commands. After accepting the first DPD

command, the IPL program prompts for additional DPD commands until

either the entire virtual storage is covered by the specified extents or you
I submitted a total of 15 commands which is the maximum.

The DLA Command. Use the DLA command to define or reference a
label information area separate from the one within the SYSRES file.
When, for example, two CPUs or two VSE systems under VM/370 share
a SYSRES file, two separate label information areas enable the two
systems to distinguish between dedicated system file names.

different from the one that contains the SYSRES file; you would then
have to specify the UNIT parameter. Its format and layout are identical
to the format and layout of the SYSRES label information area.

| The additional label information area may be located on a volume

When you define the area, you specify its beginning address by the CYL

or BLK parameter of the DLA command. By specifying NCYL or NBLK

you may deviate from the default size of a SYSRES label information :
area. At the time of definition you supply a name by which this label area J
is referenced during subsequent IPLs.

To define a label area of 300 blocks on an FBA device, you might submit
the following DLA command:

DLA NAME=MYLABEL,UNIT=280,BLK=125000,NBLK =300
At subsequent IPLs, you may refer to this area by issuing the command
DLA NAME=MYLABEL,UNIT=280

In the above example, the SYSRES file resides on a different volume;
therefore, the UNIT parameter is requred.

If the DLA command is used, it must be submitted after any ADD and
DEL commands and prior to the SVA command.

The DLF Command. This command serves to either newly define or to
reference a cross-system communication file (also called lock file). This
file must be present when two or more VSE systems share data on disk.

To define a lock file, you specify

« its physical device address

o the beginning address on the volume that is to contain the file.

9

\

3-6 VSE/Advanced Functions System Management Guide

You may also indicate whether the file should become a data secured file
or not.

After the file has been allocated, it may later, at subsequent IPLs, be
referred to by simply giving its physical device address; for example:

DLF UNIT=131

The DLF command is required whenever your supervisor was generated
with DASD sharing support and, at the time of IPL, DASD devices are
present which are defined with the SHR option in the ADD command.

The DLF command (if given at all) must immediately follow any ADD

and DEL commands.

For a more comprehensive description of DASD sharing, refer to section
DASD Sharing by Multiple VSE Systems in chapter Using the Facilities
and Options of VSE/Advanced Functions.

The SYS Command. This command is used for two purposes:

By issuing the PAGEIN macro, a program may request to have one or
more pages brought into processor storage ’in-advance’, that is, ahead of
the time when they actually need to be in processor storage. Use of the
PAGEIN macro helps to reduce page faults. The system assumes a
(default) number of page-in requests that can be queued at any one time.
You may deviate from this number by specifying an appropriate value in
the PAGEIN parameter of the SYS command.

EXTENT, the second parameter of the SYS command, is used in
connection with DASD file protection. For a supervisor generated with
DASDFP=YES, the IPL program allocates a so-called extent block area
in the system GETVIS area. The IBM-set default value of 4K may prove
to be insufficient after a large number of DASD files (some of them with
multiple extents perhaps) have been opened. In this case, you should
specify a larger EXTENT value next time you IPL the system.

The SYS command is optional. If used, it is accepted any time after the
DLF command and any time prior to the SVA command.

The SVA Command. This command must be the last IPL. command
submitted. The SVA command may be given with or without parameters.

The command’s parameters (SDL, PSIZE, GETVIS, PSLD) are used to
increase the SVA size beyond the size set by the IPL program. They serve
to add space for

e System Directory List (SDL) entries

« phases that you want to have loaded into the SVA

« the system GETVIS area

« second level directory entries for private core image libraries.

If the parameters are not specified during IPL, no user SDL or phase
space is reserved in the SVA for user phases. An SVA will be allocated
which is large enough to contain:

Chapter 3: Using the System 3-7

o Phases required for use by VSE/Advanced Functions.
o Phases required for installed licensed programs.

o The default system GETVIS area.

e Required SDL entries.

The PSLD parameter is useful if you anticipate a need for more than the
minimum of 5 entries per private core image library. The value you
specify should equal the largest number of actually used directory entries
for any private core image library, up to a maximum of 32 entries.

Automated System Initialization (ASI)

The facility allows you to place all your IPL commands into a procedure.
In addition to IPL commands, you include a specification of your
SYSLOG device and optionally, among other things, the supervisor name
you intend to use. After you have cataloged this procedure into the

| (system) procedure library, you may let the IPL program execute the
procedure whenever you IPL your system. Figure 3-1 shows a typical AST
IPL procedure (the first record specifies SYSLOG and a supervisor name;
the ADD command preceding the DEF command defines the SYSLOG
device type):

01F, $$A$SUP3,P,NOLOG
ADD 280,3420T9
ADD 281,3420T9

ADD 162,3330

ADD 163,3330

ADD 00C,3505

ADD OOE, 1403U

ADD 00D, 3525P

ADD O1F, 125D

DEF SYSREC=160,SYSCAT=160,SYSDMP=161
DPD UNIT=161,VOLID=PDSWRK,CYL=300,DSF=N
SVA SDL=100,PSIZE=150K,GETVIS=150K

/+ END OF IPL PROCEDURE

Figure 3-1. Example of an ASI IPL Procedure

Other ASI procedures contain job control information that serves to
prepare partitions for operation: they allocate partition space, store label
information, assign devices to logical units etc. Therefore, the entire
system initialization may proceed without your intervention.

A detailed description of how to set up ASI procedures is given in section
Automated System Initialization later in this section.

3-8 VSE/Advanced Functions System Management Guide

C

¢

Automatic Functions of IPL

IPL Communication Device List

Apart from the Automated System Initialization, IPL performs the
following operations automatically:

o Builds the required control blocks and device tables.
¢ Determines the size of the real and virtual address space.

o Unassigns any DASD assignments for devices that are not operational
at this time (so as to prevent the error recovery routines from trying
to establish error recording statistics for these devices).

e Loads the printer-control buffers with the installation defined
standard buffer images.

o Initializes the VSE/Advanced Functions RMS routines.

e Loads into the SVA required system phases and licensed program
phases.

After IPL completes these operations, the system loader loads the job
control program into the background partition and places the system in
the problem program state. The message "READY FOR COMMUNI-
CATIONS'" appears on the console immediately after IPL is complete.

For telecommunication installations and for installations with locally
attached terminals (such as the IBM 3277), devices allowed to present an
interrupt during IPL should be restricted because an unsolicited interrupt
might interfere with your system start-up procedures. By installing an IPL
communication device list, you can avoid that a device outside the
operator’s control establishes itself as the device used for submitting IPL
commands.

To build a restrictive pool of IPL communication devices, you assemble an
IPL communication device list (CDL) and catalog the list under the
phasename $$A$CDLO in the system core image library. During IPL, this
phase (if present) is loaded into storage. When the system enters the wait
state and an interrupt occurs, the CDL can now be searched for the
address of the device issuing the interrupt. If the address is listed, the
interrupting device is accepted as an IPL. communication device and
processing continues. If the address is not found, the system remains in
the wait state. Installation of the CDL is optional.

For IPL to be successful, once $$A$CDLO is installed, the SYSLOG
device address must be present in the CDL. If you intend to submit IPL
commands from card reader or diskette, you must enter their addresses in
the CDL as well. To ensure backup in case of hardware errors during
IPL, consider stand-by devices, such as another card reader, diskette, or
even an additional SYSLOG device in the CDL.

Chapter 3: Using the System 3-9

The CDL may have up to eight entries each of which is four bytes long:

reserved |cc uu
Bytes 0 2 3

where: cc = channel number
uu = unit number

You create the CDL by submitting a job that catalogs $$A$CDLO into
the system core image library. The example in Figure 3-2 creates a CDL
with five entries.

// JOB CATALOG CDL

// OPTION CATAL,NODECK
PHASE $$A$CDLO,+0

// EXEC ASSEMBLY

$$A$CDLO CSECT

DC XL4'O0C' card reader
DC XL4'009' 1052
DC XL4'O1F' SYSLOG (DOC)
DC XL4'OBD' 3277
DC XL4'240' diskette
END

Vi

// EXEC LNKEDT

/&

Figure 3-2. Example for the Creation of a CDL

Once phase $$A$CDLO has been cataloged, the CDL addresses remain
effective for subsequent IPLs. However, you may:

« Replace the phase by another one, either by assembling and link
editing a new phase or by using the MAINT librarian program to
rename an already cataloged CDL that has a name other than
$$SASCDLO.

e Override any CDL entry by manual intervention, which is the
suggested approach should an erroneous CDL be cataloged in the core
image library. The procedure for manually overriding the CDL is
given in VSE/Advanced Functions Serviceability Aids and Debugging
Procedures.

Building the SDL and Loading the SVA

Automatic SVA Loading

A fresh copy of the SVA is built at each IPL. The IPL program loads
phases into the SVA from the system core image library. It uses
pre-defined load lists to find the appropriate phases. The load lists that
identify required system phases are shipped in the system core image
library ready for use at IPL. VSE/Advanced Functions System Generation
contains a listing of the required system phases.

3-10 VSE/Advanced Functions System Management Guide

C

| SDL Procedure at IPL

User Options for the SVA

If you install an IBM licensed program that includes SVA eligible phases,
you must catalog a load list for that licensed program. The licensed
program documentation will describe this procedure and tell you how
much space in the SVA the loaded phases require. Although the IPL
program automatically allocates sufficient SVA space (by checking the
load lists), you should know how much virtual storage will remain to be
allocated to the partitions. (In 370 mode, your specification in the VSIZE
parameter at the beginning of IPL. is dependent on this information.)

The IPL program builds entries in the system directory list (SDL) for each
phase that it automatically loads into the SVA. Each of those entries
contains a pointer to the associated phase in the SVA.

Entries in the SDL are copies of specific (system or private) core image
library directory entries. Having entries in the SDL speeds up the loading
of the corresponding phases.

You should build SDL entries for certain frequently used system phases
that are not SVA eligible. VSE/Advanced Functions provides a procedure
(its name is SDL) that you should execute at the time of IPL. In order to
create entries for those phases they must reside in the system core image
library. For a listing of the phases referenced by procedure SDL, refer to
VSE/Advanced Functions System Generation. SVA space for those SDL
entries is not automatically reserved. In order to do that, you must define
space with the IPL. command SVA.

In order to load user chosen elements into the SVA (phases or SDL
entries or both) the SVA space must be made large enough to
accommodate the new entries. Space for user entries may be defined at
IPL via the SVA command (see The SVA Command earlier in this
section). The SET SDL command is available for building SDL entries
and loading phases into the SVA.

Processing of the SET SDL command involves, for each specified phase, a
search through one or more directories of the core image libraries that you
have concatenated to your background partition. The search order for
concatenated libraries is described in section Using Private Libraries later
in this chapter. If a search chain is not defined (which is the case
immediately after IPL), only the system core image library will be
searched.

Building an SDL entry and loading into the SVA may only be done from
libraries that are not defined as access control protected to the Access
Control facility of VSE/Advanced Functions.

A phase that you want to load into the SVA must be SVA eligible, that is:
it must have been cataloged with the SVA parameter specified in the
linkage editor PHASE statement. Link editing for inclusion in the SVA is
further discussed in Linking Programs in this chapter.

Chapter 3: Using the System 3-11

As mentioned before, you can build SDL entries for phases that are not
SVA eligible. Note, however, that these phases must be in the system core
image library in order to receive an SDL entry. ’

The SET SDL Command. The command used to create SDL entries and
to load phases in the SVA is the SET SDL job control command. This
command can be given only in the background (BG) partition. The
command may be given at any time after IPL. There is no limit to the
number of times it may be given.

Following the SET SDL command the input should be in the format of:
name[,SVA]

where name is any valid phase name and SVA indicates whether or not
the phase is to be loaded into the SVA. If you specify SVA and the phase
| is SVA eligible, the job control program loads that phase.

If the requested phase is not found, the job control program issues a
message on SYSLST (or SYSLOG if SYSLST is not available); the SDL
receives a dummy entry indicating that the phase is uncataloged
(inactive). If you subsequently catalog a phase into the system core image
library under a name listed in the SDL as uncataloged, the entry in the
SDL is activated. Additionally, the phase is immediately loaded into the
SVA if you had specified name,SVA under the SET SDL command
and cataloged the phase as SVA eligible.

Duplicate phase names within one SET SDL command are ignored. Note

that a fresh copy of the phase is loaded each time a SET SDL command

for that phase is issued; multiple specifications may thus lead to an 'SVA J
full’ condition.

It is recommended that you create a SET SDL job stream, catalog it as a
procedure in a procedure library and run that procedure immediately after
IPL. For compatibility with DOS/VS or DOS/VSE, SET SDL=CREATE
will be accepted by VSE/Advanced Functions. If the SET SDL job
stream is not being entered through a procedure, it may be submitted to
job control through SYSRDR or SYSLOG (depending on the device from
which job control is reading). This job stream can be entered via the IPL
communication device. Figure 3-3 illustrates such a job stream.

Make sure that prior to execution of the SET SDL command/procedure
the proper chain of libraries is established.

It is recommended that you run the librarian program DSERYV after a SET
SDL job stream to be certain that all entries have been entered the way
you wish. Include the DSERYV control statement DSPLY SDL.

Fast B/C-transient Fetch. You have to issue the SET SDL command if

you want to utilize the Fast B/C-transient Fetch facility. Normally, a

request to load or fetch a logical transient routine results in an I/0O

operation. The Fast B/C-transient Fetch avoids this I/O operation by

obtaining a copy from the SVA and moving it into the supervisor’s logical

transient area. Even if this action necessitates a page I/O operation, a

performance improvement can be gained because no directory search

operation is involved. J

3-12 VSE/Advanced Functions System Management Guide

C

The transient routine must be self-relocating, the first character of its
name must be a ’$’, and it must have been loaded into the SVA by the
SET SDL command. To build an SDL entry for the transient and to load
it into the SVA, supply the following statement (behind a SET SDL
statement):

phasename, MOVE

VSE/Advanced Functions provides a SET SDL procedure, called
"FASTFTCH’, which performs the above operation for certain B- and
C-transients.

Replacing Phases Stored in the SVA. Occasionally, a phase stored in the
SVA needs to be changed; that is, it must be replaced by an updated
version. To replace a phase in the SVA, link edit the updated version of
the phase to the system core image library. Link editing to a library other
than the system core image library does not cause an update in the SVA
(the same applies to a deletion or a renaming of a phase). Immediately
after the link edit operation, the updated phase is loaded into the SVA.
The old version of the phase remains in the SVA, but is not addressable.

The change or resetting of a search chain that was used for the processing
of a SET SDL command has no effect on the SVA. Therefore, phases
loaded from a concatenated library will stay in the SVA.

Creating the System Recorder File

The recovery management support of VSE/Advanced Functions requires a
disk extent on which to record statistical information about machine errors
and environmental information. This disk extent is called the system
recorder file and is identified by the symbolic name SYSREC. The
SYSREC file must exist before job control encounters the first // JOB
statement after IPL. Usually, you create the SYSREC file only after the
first IPL following a system generation (not after each IPL). If the
SYSREC file has been damaged, however, you must re-IPL and re-create
SYSREC.

If your system is running on an IBM 3031, the SYSREC file must be
evaluated (via program IFCEREP1) and recreated each time a hardware
(microcode) change is installed which affects the frame records on the
3031’s Service Record File. For details on IFCEREPI, refer to OS/VS,
DOS/VSE, VM/370 Environmental Recording Editing and Printing
(EREP) Program.

On a CKD device the SYSREC file requires a minimum of ten tracks (not
including an alternate track), and it cannot be a split cylinder file. On an
FBA device the SYSREC file requires a minimum of 72 blocks of 512
bytes each. You must define SYSREC as an extent of a permanently
online disk device that VSE/ADvanced Functions supports as a system
residence device.

The IBM 3031 requires additional space on the recorder file to
accommodate machine check frames and channel check frames (these
frames are peculiar to the IBM 3031). On an IBM 3330, for example, this
space amounts to approximately 9 tracks. If the SYSREC file resides on

Chapter 3: Using the System 3-13

an FBA device with blocksize of 512 bytes, add 164 blocks. The exact
amount of additional space needed for the recording of those frames can
be calculated after the first // JOB statement has been processed and
message *11931 RECORDER FILE IS nnn% FULL’ is issued.

The SYSREC file label information must be included in the standard label
portion of the label information area. Therefore, submit a // OPTION
STDLABEL statement when you create the SYSREC file. A more
detailed description of preparing standard label information is given under
section Controlling Jobs later in this chapter.

Figure 3-3 illustrates a job stream (via SYSLOG) to create the system
recorder file. The IPL commands are included in the figure to show the
proper placement of the statements that create the SYSREC file. Be sure
that you do not submit a // JOB statement until you have supplied all the
information applicable to SYSREC. This is because the SYSREC file is
opened when the first // JOB statement is encountered. Note that the
file name IJSYSRC is required in the DLBL job control statement.

3-14 VSE/Advanced Functions System Management Guide

l 01301 DATE=../../..,CLOCK=../../..,20NE=../.. /..
0110A GIVE IPL CONTROL COMMANDS

ADD...

ADD...

ADD...

SET...

DEF SYSREC=190

DPD

SVA

01201 IPL COMPLETE FOR . ..

BG 1100A READY FOR COMMUNICATIONS
BG SET SDL

1S511 ENTER PHASE NAME OR /*
BG USERONE

1S511 ENTER PHASE NAME OR /*
BG USERTWO,SVA

1S511 ENTER PHASE NAME OR /*
BG

BG

BG ...

BG /*

BG ASSGN

BG SET RF-CREATE

BG // OPTION STDLABEL

BG // DLBL IJSYSRC,'VSE/AF. RECORDER.FILE') —— ==
BG // EXTENT SYSREC, ,,, 1700,43

Submit with the rest of the
STDLABEL statements

BG /*
BG // JOB FIRST

Figure 3-3. Example for the Creation of the SYSREC File and for
Loading User Phases in the SVA

When the system is to be shut down, you should issue the Record On
Demand (ROD) command to ensure that no statistical data is lost. For a
370 Model 115 or 125, the U command of the mode select display, should
also be issued to save disk usage statistics on the system diskette. These
commands are not valid for recording statistics on telecommunication
operation; refer to the appropriate telecommunication guides for more
information.

To obtain a listing of the SYSREC file, run the EREP program as
described in OS/VS, DOS/VSE, VM/370 Environmental Recording
Editing and Printing (EREP) Program. During execution of the EREP
program, recording on SYSREC is suppressed.

Chapter 3: Using the System 3-15

e e

Creating the Hard Copy File

On a system that supports a video display/keyboard console, all messages J
displayed on the screen and all information typed in by the operator are

saved in a file on the device assigned to SYSREC. This file, called the

hard copy file, can be used to obtain hard (printed) copies of the file

whenever required.

You must create the hard copy file after the first IPL. and before you
submit the first // JOB statement.

The control statements and commands needed to create the hard copy file
are the same as those shown in Figure 3-3 for the SYSREC file with the
exception that you specify HC=CREATE in the SET command, and the
filename IJSYSCN in the DLBL job control statement. More information
about creating and printing the hard copy file is given in VSE/Advanced
Functions Operating Procedures and VSE/Advanced Functions System
Utilities.

User-Defined Processing after IPL

At large VSE installations, it may be desirable to perform certain

processing at the end of an IPL procedure. It may, for instance, be

important to know who performed the procedure, whether the right system

pack was mounted, and whether the correct date was entered for the new

work session. Moreover, if you work with labeled data files it is important

that they bear the correct creation date, so as to guarantee that data files ;
are protected until their expiration date. J

After the IPL procedure has been completed, control can be passed to a
user exit routine (phase name = $SYSOPEN) that you may include for
the purpose of checking system security and integrity. This routine is
entered once after every IPL procedure. The VSE/Advanced Functions
distribution volume contains a dummy phase $SYSOPEN in the system
core image library. If you do not use the facility, that phase has no effect
on your system. Conventions for writing this kind of user exit routine,
together with an example, are contained in the section Writing an IPL
User Exit Routine in Chapter 4, Using the Facilities and Options of
VSE/Advanced Functions.

Entering RDE Data

Standard VSE/Advanced Functions support includes the reliability data
extractor (RDE). In an interactive (that is: nonautomated) IPL, you are
asked by a message to SYSLOG to provide a 2-character IPL. reason code
when the first // JOB statement after IPL is processed. The system may
have been started at the beginning of normal operation or restarted
because of a machine error, a program error, an operator error, etc. In
addition, the system requests you to supply a subsystem identifier, a code
which identifies the device type or program type that failed. On the basis
of these replies job control will build a record for SYSREC.

3-16 VSE/Advanced Functions System Management Guide

Before shutting down at the end of the day (or processing period), you
must ensure that no environmental data is lost, by issuing the ROD
command. This command also causes the RDE end-of-day record to be
written on the disk assigned to SYSREC. To obtain a listing of this file,
run the EREP program as described in OS/VS, DOS/VSE, VM/370
Environmental Recording Editing and Printing (EREP) Program.

RDE information can be very valuable to your operations management.
By replying with the exact reason code that applies in each case, you are
in fact ensuring a permanent record of the reason why you had to re-IPL.

Refer to the VSE/Advanced Functions Operating Procedures, for more
information on the RDE messages and the valid replies to them.

Allocating Address Space to the Partitions

For each partition specified in the NPARTS parameter of the SUPVR
generation macro, address space must be allocated. The address space
available to the partitions is all of the address space from the end of the
supervisor area (in ECPS:VSE mode) or the end of the real address space
(in 370 mode) to the beginning of the SVA. The minimum size of that
address space is 512K.

Allocation of address space to a foreground partition must be done
explicitly. Space not allocated to a foreground partition belongs to the BG
partition. If no allocations are made, for example immediately after IPL,
then all available address space belongs to the BG partition. In this case,
the BG partition has the following size:

ECPS:VSE mode: Virtual storage size (16M default or as specified
at Initial Microprogram Load)

minus supervisor size
minus SVA size;

370 mode: Virtual address space size (system default or
VSIZE value as specified at the start of IPL)

minus SVA size.

Through the use of the job control ALLOC command you allocate the
foreground partitions. Address space allocations are in multiples of 2K.
The minimum amount of address space that may be allocated to a
partition (explicitly or implied) for execution in virtual mode is 128K. This
128K size includes a minimum partition GETVIS area of 48K.

If a foreground partition is defined (via the NPARTS parameter of the
SUPVR generation macro), but not needed for a while, you can set its
size to OK by submitting an appropriate ALLOC command. ’

During certain periods of processing, the operator can medify the
allocations to the individual partitions, again by using the ALLOC
command. Details on the ALLOC command are given in VSE/Advanced
Functions Operating Procedures.

Chapter 3: Using the System 3-17

Allocating Processor Storage to the Partitions

Processor storage is allocated to the partitions to enable the following: '
¢ Program execution in real mode.
« Fixing pages by means of the PFIX/PFREE macros.

When processor storage is used for running a program in real mode or for
fixing pages of a program running in virtual mode (for example,
VSE/POWER), the page pool is reduced by the number of page frames
required for real mode execution or page fixing, respectively. Because
reducing the page pool may reduce total system throughput, the use of real
mode execution and PFIX/PFREE macros should be carefully considered.

Processor storage is allocated to the partitions via the ALLOCR
command. For a partition’s allocation to be affected, the partition
identifier (BG, F1, F2, ...) must be specified. The allocation is made in
multiples of 2K, with 2K being the smallest allocation permissible.
Absence of the partition identifier means: do not change the current
allocation. An allocation of 2K allocates one page frame, 20K allocates 10
page frames etc.

Note: In 370 mode, when the ALLOCR command is issued, the system delineates real
address space as well as allocating processor storage frames. In 370 mode, programs
executing real execute in the real address space.

The size of a given processor storage allocation for a partition is

determined either by the largest program you must run in real mode, or by

the maximum number of pages a program may fix. The number of pages

that can be fixed by the PFIX macro is limited by the amount of J
processor storage allocated to that partiton.

With an allocation of
ALLOCR BG=20K, F3=10K

you could PFIX 10 pages in BG (while executing in BG) or 5 pages in F3
(while executing in F3). You could not PFIX 15 pages from one program
in either partition without reallocating processor storage.

Page Pool. The page pool is all processor storage beyond the resident
supervisor routines. When you use the ALLOCR command you are
potentially reducing the size of the page pool. The page pool is not
reduced until the processor storage page frames are taken for real mode
execution or for PFIX use in virtual mode. The minimum page pool size is
24K. If you allocate processor storage to partitions you must ensure that
at least 24K remain unallocated. A program running in virtual mode that
needs more than 6K for its I/O processing requires a corresponding
increase of the minimum page pool size.

Initiating Foreground Partitions
An Automated System Initialization (ASI) procedure may be used to start

foreground partitions by including, in the appropriate procedure, the
required partition start-up statements. l

3-18 VSE/Advanced Functions System Management Guide

In order to initiate a foreground partition, at least 128K of virtual storage
must be allocated to that partition. The allocation is made after IPL with
the ALLOC job control command.

Since the IPL program automatically determines the size of the SVA, it is
recommended that you issue the MAP command prior to any virtual
storage allocation. The MAP command will display the current allocations
and you can determine the amount of virtual storage available for
allocation to the foreground partitions. '

The ALLOC command is both a job control and an attention routine
command. (The attention routine is loaded when you press the Request
key on the console keyboard; that routine is in control of the system when
AR is displayed on SYSLOG.) When the ALLOC command is given
through the attention routine it cannot decrease the size of an active
partition.

The initial allocation of foreground partitions decreases the size of the BG
partition because all available virtual storage is allocated to BG at IPL.
Since, after IPL, the BG partition is active, the ALLOC command must
be given through job control.

Once virtual storage is allocated to the foregound partitions, they may be
made “active” through the attention routine. Issuing the BATCH or
START command, specifying a foreground partition, causes that
foreground partition to be initiated. For example:

AR BATCH F1

causes the job control program to be loaded into the virtual storage
allocated to the F1 partition.

Input may now be submitted to the F1 partition. Submitting jobs is
described in section, Controlling Jobs, later in this chapter.

Automated System Initialization (ASI)

During IPL and during the subsequent setting up of the system
environment, normally the same commands, the same prompting messages
and replies, the same job control information are processed.

ASI allows to place the required control information in procedures that
are cataloged in the (system) procedure library and to let the system
execute those procedures, without operator intervention, each time an IPL
and a partition start-up occur. The ASI procedures can be reused as long
as your system environment remains unchanged. Thus, your effort for a
total system bring-up is reduced to merely activating the initial microcode
load. In exceptional situations, you may have to bypass ASI and perform a
nonautomated, that is: an interactive system initialization.

Chapter 3: Using the System 3-19

Implementation Requirements

The Procedure Library. Your system residence (SYSRES) file must
contain the procedure library because you may catalog the ASI procedures
only into the system procedure library. Use the librarian program MAINT
and its CATALP function. The librarian programs are described in
Section Using the Libraries, later in this chapter.

The Set of Procedures. ASI requires one procedure for IPL (ASI IPL
procedure), and one job control procedure per partition (ASI JCL
procedure) if this partition is to be started under control of ASI

Procedure Names. ASI assumes certain default names unless you instruct
it to use different names. The defaults are:

IPL: $IPL370 (for 370 mode)
$IPLE (for ECPS:VSE mode)
JCL: $0JCL370 (for 370 mode)
$1JCL370
$2JCL370
$0JCLE (for ECPS:VSE mode)
$1JCLE
$2JCLE

You might want to use different names. For example, the initialization of
your system during the day deviates from that of the night shift: the day
shift runs a 5-partition VSE (including VSE/POWER, ACF/VTAM,
CICS/VS) whereas the night shift runs only simple batch jobs in 3
partitions. In this case, you might prefer to use procedure names as
follows: $IPLD, $0JCLD, $1JCLD, $2JCLD, $3JCLD, $4JCLD for the
day shift, and $IPLN, $0JCLN, $1JCLN, $2JCLN for the night shift.

If you catalog ASI procedures by names other than ASI’s default names,
be sure to delete procedures with ASI’s default names if they are
cataloged; ASI looks for those names first and, upon finding them,
executes the pertinent procedure. When the default procedures are not
present, ASI prompts the operator to specify an ASI procedure; in the
above example, he may then enter $TPLD and $$JCLD, or $IPLN and
$$JICLN.

When you catalog your ASI JCL procedures, you must observe the same
naming rule as when you catalog a partition-related procedure. The first
character must be a $. The second character identifies the partition: 0 for
the BG-partition, 1 for the F1-partition etc. The remaining characters
must be identical for all procedures belonging to one set.

ASI Master Procedure. If two or more CPU’s share one SYSRES file, it
may be advisable to have a separate set of procedures cataloged for each

3-20 VSE/Advanced Functions System Management Guide

9

9

CPU by a separate set of procedure names. ASI still performs a
completely automated system initialization if you have the ASI master
procedure $ASIPROC cataloged. Each record within this procedure
describes the ASI procedure set to be used for a specific CPU and the
processing mode of that CPU.

An ASI master procedure is also useful

— if you have only one procedure set, but want to use other than default
names, or

— if you plan to use the ASI STOP facility; for example when you are
still ’debugging’ your ASI procedures.

The STOP facility allows you to specify, via the STOP parameter (see
below), up to four different IPL. commands. Upon encountering the first
of a particular command type, the automatic IPL process interrupts itself
and gives the operator a chance to enter or update IPL commands via
SYSLOG.

To build the master procedure, submit one statement per procedure set.
The statement allows you to specify the following parameters, separated
by commas and terminated by a blank.

CPU=cpu-id specifies 12 hexadecimal digits to identify the
CPU on which an ASI procedure is to be run.
The CPU-id should be taken from message 01041
which is issued during an interactive IPL. The
format of the CPU-id corresponds to the first 6
bytes of the result field from execution of an
STIDP (Store CPU ID) assembler instruction and
can be looked up in the applicable Principles of
Operations manual.

IPL=proc-name specifies the ASI IPL procedure.

JCL=proc-name specifies the name of the JCL procedure set; the
name must start with $$.
Default: $$JCLE in ECPS:VSE mode
$$JCL370 in 370 mode.

MODE=370|E indicates the processing mode of CPU.
Default: 370.
STOP=stoplist a list of up to four different IPL. commands, in

arbitrary sequence. If more than one is specified,
the commands must be enclosed within
parentheses and separated by a comma. The first
of a specified command type that is encountered
during IPL initiates an interrupt; before the
command is processed, the operator may enter
additional IPL. commands.

The parameters may be specified in any sequence. Parameters CPU and
IPL are mandatory. proc-name starts with an alphabetic character and
may consist of up to eight alphameric characters.

Chapter 3: Using the System 3-21

Following is an example of how to catalog the master procedure:

// JOB CATALP $ASIPROC
// EXEC MAINT
CATALP $ASIPROC
I CPU=000713800138, IPL=IPLX,JCL=$$JCLX, STOP=(DEF,DPD)
CPU=FF0713800138, IPL=IPLE,MODE=E
/+
/&

' The ’FF’ in the second CPU-id indicates a virtual machine.

Contents of ASI IPL Procedures

The ASI IPL procedure contains all IPL. commands that you want to have
executed by the IPL routines. Use the same format as in an interactive
IPL.

In addition to IPL. commands, you must submit a first record which
specifies in

e columns 1 through 3: SYSLOG device address
e beginning in column 4: ,supervisor name, paging
(optionally) option, virtual storage size, list option (for

a description of these parameters, refer to
section Initial Program Loading at the
beginning of this chapter.)

The address you specify in columns 1 through 3 must be a
VSE/Advanced Functions supported console device. Specification of an
address which does not represent a VSE/Advanced Functions supported
console device may produce unpredictable results. The address is
meaningful only

« in IPL procedures referenced in $ASIPROC
e in procedure $IPL370 or $IPLE.

All other situations cause ASI to prompt for a procedure name from
SYSLOG. This can be done only when SYSLOG has been defined via
REQUEST/ENTER; the SYSLOG device address specified in the ASI
procedure will be ignored then.

Following is an example of a skeleton ASI IPL procedure:
01F, $$A$SUPX, N, NOLOG

ADD 180,3330
ADD 04C,2540R

.

| DPD UNIT=180,CYL=400,DSF=N

DEF SYSREC=180
SVA

3-22 VSE/Advanced Functions System Management Guide

If your page data set is allocated to multiple extents, you should place all
DPD commands necessary to define the extents into the procedure. This

l prevents the IPL program from prompting the operator to define the
remaining extents.

The SET command should not be part of the ASI IPL procedure. The
command must be given only if the time-of-day clock is inoperative or is

I not set; if this is the case, the operator will be prompted to provide the
actual date values.

Contents of ASI JCL Procedures

ASI JCL procedures should contain all those job control commands or
statements that you would normally submit during an interactive system
start-up. Complete conceptional information on the use of job control
commands is given in section Controlling Jobs, later in this chapter.

ASI Background Procedure. This procedure must contain all job control
statements and commands necessary to initialize the BG partition and the
system as a whole.

e ALILOC and ALLOCR commands to allocate space to the foreground
partitions you intend to start.

o All permanent library definitions or assignments of logical units
needed in the BG partition.

o The SIZE command if needed.

e // STDOPT command for the definition of standard (permanent)
l options (see Note 2, below).

« // OPTION STDLABEL, together with label information, to set up
the system standard label subarea if it was not set up during a
previous system initialization.

e // OPTION PARSTD, together with label information, to set up
| (background or foreground) partition standard label subareas if they
were not set up during a previous system initialization.

e // JOB jobname for the initialization of RSMR recording and of the
hard copy file.

o START Fn for each foreground partition to be started from this BG
partition.

« STOP if the BG partition is to be spooled by VSE/POWER. The
STOP command should immediately follow the START command for
the VSE/POWER partition.

Chapter 3: Using the System 3-23

Notes: (1) The placement of the STOP and START commands, as given here for
VSE/POWER, applies also to other permanently running programs
such as VSE/ICCF or CICS/VS.

(2) It is advisable to place a // PAUSE statement before the following //
OPTION statement (if any). This would give you a chance to enter the
SET command if the recorder file or the hardcopy file needs to be
(re)created. Or, you could enter CANCEL to bypass the writing of
labels whenever you are sure that the label information is already set up
the way you want.

ASI Foreground Procedure. This procedure must contain job control
statements and commands necessary to initialize a particular foreground
partition:

e // OPTION PARSTD, followed by label information, to set up the
foreground partition standard label subarea if it was not set up during
| a previous system initialization or from the background partition.

| ¢ All permanent library definitions or assignments of logical units
needed in the particular foreground partition.

Note that a foreground partition can be started through execution of the
ASI BG-procedure or via VSE/POWER or via an attention routine
START command.

SYSRDR or SYSIN cannot be assigned within a procedure. To cause
automatic assignment of these logical units, specify the required ASSGN
statement in the comment portion of the end-of-procedure statement:

/+ // ASSGN SYSIN,...
/+ // ASSGN SYSRDR, ...

| Only one // ASSGN statement can be specified as a comment. The
command form (no //) is not allowed.

Example of an ASI JCL Procedure Set

Figure 3-4 shows a skeleton example of an ASI JCL procedure set. It
assumes a 3-partition system with VSE/POWER running in the
F1-partition. Figure 3-5 shows the associated sequence of VSE/POWER
AUTOSTART commands on SYSIPT.

3-24 VSE/Advanced Functions System Management Guide

* AST PROCEDURE FOR BG
ALLOC F1=300K,F2=200K
ALLOCR F1R=80K,F2R=24K
ASSGN SYSLNK, 131

ASSGN SYS001,131

ASSGN SYS002,131

ASSGN SYS003,131

// PAUSE SET RF/HC ?
// OPTION STDLABEL

// DLBL IJSYSRS

// EXTENT SYSRES,...
// ...

// OPTION PARSTD

// DLBL IJSYSO1

// EXTENT SYS001,...
/) ...

// OPTION PARSTD=F1

// DLBL IJSYSIN

// EXTENT SYSIPT,SYSRES,,,4000,2
// ...

// JOB ADAM

START F1

STOP

ASSGN SYSLST,PRINTER
ASSGN SYSPCH, PUNCH

/+ // ASSGN SYSIN,00C,PERM

N QW (O R WN

* ASI PROCEDURE FOR F1
ASSGN SYSIPT,SYSRES
ASSGN ...

// EXEC POWER

/+

* ASI PROCEDURE FOR F2

// OPTION PARSTD

// DLBL IJSYSO1

// EXTENT SYS001,...

// ...

ASSGN SYSLNK, 130

ASSGN SYS001,130

/+ // ASSGN SYSIN,00C,PERM

A W b WN =

8
9
10

Label information is written to the F1 partition standard label subarea.

This // JOB statement initializes RSMR recording, and the hard copy file (if applicable).
Activates the F1 partition where VSE/POWER is to run.

Deactivates the BG partition which is to be spooled by VSE/POWER.

When the F1 partition becomes active, the AS| JCL procedure for F1 is called automatically.

Assigns SYSIPT to a disk file in which VSE/POWER AUTOSTART statements had been recorded in an earlier
run of the OBJMAINT system utility.

Calls VSE/POWER which starts to read the AUTOSTART statements from the SYSIPT file. VSE/POWER starts
the F2 partition at which point the F2 JCL procedure is executed. VSE/POWER also reactivates the BG
partition.

The BG partition continues under control of VSE/POWER.
SYSIN is assigned to a spool device. The same happens
at the end of the F2 JCL procedure.

Figure 3-4. Example of an ASI JCL Procedure Set

Chapter 3: Using the System 3-25

PSTART RDR,00C
PSTART LST,O0E
PSTART PUN,00D
1 PSTART F2,2 k% F2 k%%
READER=00C
PRINTERS=00E
PUNCHES=00D
2 PSTART BG,0 *%% BG *¥%
READER=00C
PRINTERS=00E
PUNCHES=00D
/*

Starts the F2 partition.

2 Reactivates the BG partition from where the VSE/POWER partition was
started.

Figure 3-5. Example of VSE/POWER AUTOSTART Statements

I Invoking VM /370 Linkage Support

You can generate a supervisor with the high performance VM/370
Linkage facility (VM=YES specified in the SUPVR generation macro as
described in the preceding chapter). In order to invoke the support during
VM/370 start-up, proceed as follows:

1. Log on in the normal way.

2. Prepare your virtual machine on which VSE is to operate (you may
omit this step if your VM directory entries are already set):

o If you use a supervisor with VM=YES in 370 mode, make sure
that the storage size of the virtual machine is equal to or greater
than the sum of 200K plus the VSIZE value as determined during
IPL. The real address space available to the VSE system is given
by the size that you defined for the virtual machine minus VSIZE.
If you use a supervisor generated with VM=YES in ECPS:VSE
mode, the entire virtual machine storage is available as VSE
address space.

« Set EC mode on by issuing the VM/370 command:
SET EC ON

3. Perform IPL using as the virtual machine’s load unit the device that
contains your VSE. The IPL program already issued the commands:

SET PAGEX ON
SET RUN ON

3-26 VSE/Advanced Functions System Management Guide

4. If you wish to turn off the pseudo-page-fault handling support (only
useful with more than one partition and processing multi-tasking
applications), wait for message 01201, indicating that the IPL is
completed, and then enter the VM/370 command:

SET PAGEX OFF

PAGEX should be used with care, especially in a high-paging
environment where its use can aggravate the thrashing condition.

Note: Some programs (such as VSE/ICCF or SDAID) need PAGEX to be set

OFF. These programs automatically set PAGEX OFF. Therefore, be sure not to
set it ON again.

Chapter 3: Using the System 3-27

e - it

Controlling Jobs

After the system has been successfully started by means of the IPL
program, the following messages are displayed on the console:

BG 1I00A READY FOR COMMUNICATIONS
BG

This shows that the job control program is in the background partitio::
ready to accept input.

At this point, the job control program will accept commands submitte
through the console (SYSLOG). Job control’s normal input source,
however, is the logical unit SYSRDR.

Job control reads from SYSRDR if, at this point, you depress the F * R
key on the console without entering any commands. Normally, SY
| is assigned to a card reader or diskette device.

The unit of work that is submitted to the system for execution is c: ' .
Jjob. A job, and the environment in which it is to run, must be defi: .o
the system through job control statements and commands. These jo!
control statements and commands are processed by the job control
program which is automatically loaded into storage as required.

The job control program runs in virtual mode in any partition. It performs
its functions only between jobs and job steps, and is not present in the
partition while a problem program is being executed.

After each job control statement or command is read, control can be
given to a user exit routine for examining and altering the input before it
is processed by the system. For a description of this facility refer to
Chapter 4, Using the Facilities and Options of VSE/Advanced Functions.

The difference between job control statements and commands are not
discussed here because there is no need for a distinction in this section.
Whenever applicable, it is simply stated whether the function can be
performed using statements, commands, or both. The description of tke
job control statements and commands in this section is limited to thei: use
and functions; formats and characteristics of statements and comman:is
are detailed in VSE/Advanced Functions System Control Statements.

This section describes how to define a job, how to relate files to a
program, and how to work with cataloged procedures.

Defining a Job

The beginning and end of a job are defined by the JOB and / &
(end-of-job) statements.

| If you have the Access Control facility of VSE/Advanced Functions
implemented, you must also submit an ID statement which specifies y.-ur
user identifier together with a password. For more information about :his
| service, see the publication Data Security Under the VSE System.

3-28 VSE/Advanced Functions System Management Guide

o

The program to be executed in a job is requested through an EXEC
statement. The occurrence of an EXEC statement is called a job step.
Each job may consist of one or more job steps.

You may include as many job steps in a job as you wish. Howeyver, it is
not advisable to execute, in one job, several programs that are completely
independent of one another because, if one step terminates abnormally
(and a // JOB statement was provided), the job control program ignores
the remaining job steps up to the next / & or // JOB statement. A
typical example of related job steps that should form a single job are
assembling, link editing, and executing a program, where correct execution
of one job step depends on successful completion of the preceding one.
Figure 3-6 shows an example of a multistep job.

1 // JOB jobname j

3 // EXEC PAYROLL

3 // EXEC CHEX

4 /¢

1 Defines the beginning of a job. For jobname, you may specify a name of
your own choosing.

2 Additional job control statements if required.

3 The two job steps. Job control is reloaded into storage at the end of each
job step, enabling the reading of subsequent job control statements.

4 At the end of the CHEX program'’s execution job control is reloaded and
reads the end-of-job indicator.

Figure 3-6. gontrol Statements Defining a Job Consisting of Two Job
teps

Following are some additional details about the job and end-of-job (/ &)
statements. The EXEC statement is discussed later in this chapter.
The JOB Statement. The JOB statement indicates the beginning of

control information for a job. The specified job name is stored in the
communication region of the corresponding partition and is used, for
[]

Chapter 3: Using the System 3-29

example, by job accounting and to identify listings produced during the
execution of the job.

If the JOB statement is omitted, the system uses NO NAME as the job
name. If the JOB statement is without a job name it is rejected by job
control as an invalid statement. The JOB statement should not be omitted,
as many VSE/Advanced Functions functions assume its presence. If, for
example, the operator cancels a job using the attention routine CANCEL
command, the job control program normally bypasses all statements on
SYSRDR until encountering a / & . However, if the job in question was
submitted without a JOB statement, no statements in the job stream are
bypassed even though job NO NAME was canceled.

Having JOB statements with specific job names is useful when you issue
the MAP command in a multiprogramming environment. The MAP
command displays on SYSLOG the storage allocations for each partition,
together with the name of a job that is currently active in the
corresponding partition.

The JOB statement is always printed in positions 1 through 72 on
SYSLST and SYSLOG:; also, the time of day is printed. The JOB
statement causes a skip to a new page before printing is started on
SYSLST.

The End-of-Job (/&) Statement. This statement is the last one for each
job (not job step). It signals the end of the input stream for the job.
When job control encounters / & on SYSRDR during normal operation,
the permanent assignment for SYSIPT becomes effective and SYSIPT is
checked for an end-of-file condition.

If the / & statement is omitted, the next JOB statement will cause control
to be transferred to the end-of-job routine to simulate the / & statement.

When a / & statement is encountered, the job control program performs
such operations as the following:

« Resets all job control options for the partition to standard: either as
established by the STDOPT command, or the system default if the
particular option was not set through a STDOPT command.

« Resets all system and programmer logical unit assignments for the
partition to the permanent assignment established by job control
commands. Logical unit assignment is discussed under Relating Files
to Your Program later in this chapter.

| o Deactivates all temporary library chains for the partition.
o Modifies the communication region as follows:

1. Resets the date from the DATE statement to the one specified in
the SET command during IPL.

2. Stores the job name NO NAME.

3. Sets the user area and the UPSI byte to zero.

3-30 VSE/Advanced Functions System Management Guide

Job Streams

» Displays an end-of-job (EOJ) message on SYSLST and SYSLOG with
the time and duration of the job.

o Ensures that end-of-file has been reached on SYSIPT.

o Deletes the temporary labels in the label information area on
SYSRES. (See Storing Label Information, later in this chapter.)

o Checks whether the condense limits of any of the libraries have been
reached (if library maintenance has been done in the job).

The job control program provides automatic job-to-job transition. In other
words, an unlimited number of jobs can be submitted to the system in one
batch, and job control processes one job after the other without requiring
intervention by the operator. The job or jobs submitted are referred to as
a job stream (see Figure 3-7 for an example of a payroll jobstream).

rr7%

r'// EXEC PAYCHK

r'// PAUSE LOAD PAYCHECKS

[~

i
p 4
A
Y/ a
Y/ a

Y/ a

Y/ a

)/
y/

(Time cards LJ
l // EXEC PAYRUN

r,// EXTENT SYSO001

r7/ DLBL FILEP, 'PAYFILE'

[// BSSGN SYS001,160
r,// ASSGN SYSLST, 00E

// JOB PAY1

Figure 3-7. Example of a Job Stream

When setting up a job stream for a partition, you should bear in mind that
all jobs will get the priority of that partition. The selection of the jobs for
a particular partition in a multiprogramming system can help to improve
the efficiency of your installation. For example, jobs which have a
relatively low CPU usage and a relatively high rate of 1/0 activity, and
which therefore spend most of their time waiting for the completion of

Chapter 3: Using the System 3-31

I/O operations, should run in a high priority partition. Conversely,
CPU-bound jobs should be in a partition with a lower priority.)

The operator may interrupt the processing of a job stream in any partition
to make last-minute changes to one of the jobs or to squeeze in a special
rush job. He does this by using the PAUSE statement or command.

A PAUSE statement may be included anywhere among the job control
statements of a job stream (see Figure 3-7). It becomes effective at the
point where it was inserted; processing is suspended in the affected
partition, and the operator console is unlocked for input. The PAUSE
statement can contain instructions to the operator and is always displayed
on SYSLOG.

The PAUSE statement may also be helpful when SYSIN is assigned to a
5424 or 5425 card reader (neither of which have an end-of-file button).
Place the // PAUSE card after the last / & card; this will force control
to be given to the console-keyboard, which enables the console operator
to control subsequent system operation.

A PAUSE command may be entered either through the operator console
(after pressing the request key), or within a job stream together with the
job control statements for a job. If entered through the console to the
attention routine, the command must specify the partition that is to pause
(if the background partition is intended, however, no operand is required).
After encountering a PAUSE command, the system passes control to the
operator (through the console) into the specified partition, at the end of
the current job step (which may also be the end of the job). If that
PAUSE command specifies the EOJ operand, control passes to the J
operator at the end of the current job, regardless of the number of steps
needed to reach that point.

The macro JOBCOM allows you to do job-to-job communication. You
may store information (up to 256 bytes) in one job to be passed to and
retrieved by a subsequent job running in the same partition.
VSE/Advanced Functions Macro Reference provides a detailed description
of the JOBCOM macro.

Relating Files to Your Program

Most programs perform some kind of input/output operation (that is, they
process files) on auxiliary storage devices. Before such files can be
processed, certain information about them must be provided to the system.
This information includes:

o The address of the I/O device on which each of the files resides.

o For files on direct access storage devices (DASD), the exact location
of the file on the storage medium.

« For files on DASD, on diskette, or on labeled magnetic tape, a
description of the file, called a label, which is used for checking and
protection purposes.

3

3-32 VSE/Advanced Functions System Management Guide

Symbolic I/O Assignment

)

e 07 s SIS
RN L™ <2 SR

3~

The above information, specified in job control statements, is stored in the
system by the job control program for use by the data management
routines. How this is done is described below.

Whenever a processing program needs access to a file on auxiliary storage
the program need not specify an actual device address, but only a
symbolic name which refers to a logical, rather than physical, unit. Before
the program is executed that logical unit must be associated with an actual
device. This is done by the operating system when it executes an ASSGN
job control statement or command which specifies the symbolic name of
the logical unit and one of the following:

e A general device class or specific device type, with or without volume
serial number.

o The physical address (channel and unit number) of the I/0O device.
e A list of physical addresses.

e Another logical unit.
See Figure 3-8 for an illustration of some of these combinations.

ASSGN statements may be submitted as part of ASI JCL procedures or
between jobs or job steps.

Another way of relating a file to a physical device can be employed if the
file is a VSE library and is defined by the LIBDEF job control statement.
Here the key parameter is the volume identifier (VOLID) of the library
pack rather than the logical unit name; the operating system automatically
finds the physical device address on which the volume with that particular
VOLID is mounted. The LIBDEF statement and its use for defining
libraries is described in section Job Control for Library Definition, later in
this chapter.

Chapter 3: Using the System 3-33

Processing Program

DEVADDR=SYS008
I

Job Control |

¥
// ASSGN SYS008,00E

1/0 Device

1. The logical unit specified in the processing program (via DTF or CCB or IORB)
is a print file referred to by the symbolic device name SYSLST.

2. An ASSGN statement is used to associate SYSLST with the physical address 00E
of a printer. This information is stored in the system by job control and can be
accessed when a program is executed.

Figure 3-8. Example of Symbolic I/O Assignment (Part 1 of 2)

3-34 VSE/Advanced Functions System Management Guide

¢

Logical Units

Processing Program

DEVADDR=SYS002

Job Control

// ASSGN SYS002,(130,131) @
// ASSGN SYS003,3330,vVOL=000003
// ASSGN SYS004, TAPE (®

000001 000002 000003
130 131 132

@ Device list — if drive 130 is unassigned SYS002 will be assigned to it, if it is
assigned the operating system tries 131.

©

Device type — the operating system searches for the device type (3330 in
this case) that is available and has the volume-id 000003.

G Device class — the operating system searches for an available tape device.

Figure 3-8. Example of Symbolic I/O Assignment (Part 2 of 2)

There are two types of logical units: system logical units, primarily used
by the system control and service programs, and programmer logical units,
primarily used by the processing programs. The following list shows the
names, logical units and the I/O devices that each of these logical units
can represent. In the case of disk devices, the logical unit is not assigned
to the entire volume mounted on the device but only to the referenced

| extent(s).

Chapter 3: Using the System 3-35

Logical
unit name

SYSRDR

SYSIPT

SYSPCH

SYSLST

SYSLOG

SYSLNK
SYSRES
SYSCLB
SYSSLB
SYSRLB
SYSREC

SYSDMP
SYSCAT
SYSCTL
SYSnnn

Type of 1/0 device

Card reader, magnetic tape unit, disk device, or diskette used
as input unit for job control statements or commands.

Card reader, magnetic tape unit (single volume), disk, or
diskette extent used as input unit for programs.

Card punch, magnetic tape unit, disk, or diskette extent used
as the unit for punched output.

Printer, magnetic tape unit, disk, or diskette extent used as the
unit for printed output.

Operator console used for communication between the system
and the operator.

Disk extent used as input to the linkage editor.

System residence extent on a disk pack.

Disk extent used for a private core image library.

Disk extent used for a private source statement library.
Disk extent used for a private relocatable library.

Disk extent used to store error records collected by the
recovery management support recorder (RMSR) function. If a
display operator console (DOC) is installed, messages to or
from the operator are stored in the hard copy file, a separate
SYSREC extent so that a hard copy listing of these messages
can be produced. A third SYSREC extent holds the system
history file.

Disk extent(s) for alternate dump file(s).
Disk extent used to hold the VSAM master catalog.
For system use.

Format for coding programmer logical units which are
discussed later in this section.

System Logical Units. All of the above logical unit names, except SYSnnn,
represent system logical units. Of these system logical units, user-written
programs may use SYSIPT and SYSRDR for input, SYSLST and SYSPCH
for output, and SYSLOG for communication with the operator. All other
system logical units may not be used within user-written programs (or
EXTENT statements, which are discussed later in this section).

Two additional symbolic names, SYSIN and SYSOUT, are used under
certain conditions:

SYSIN

SYSOUT

Can be used if you want to assign SYSRDR and SYSIPT to
the same card reader or magnetic tape unit. You should not
assign SYSRDR and SYSIPT to the same disk or diskette
extent, assign SYSIN to that extent instead.

Must be used if you want to assign SYSPCH and SYSLST to
the same magnetic tape unit. SYSOUT cannot be used to
assign SYSPCH and SYSLST to disk or diskette because these
two units must refer to separate extents.

3-36 VSE/Advanced Functions System Management Guide

9

9

Types of Device Assignments

SYSIN and SYSOUT are valid only to job control and cannot be
referenced in a user-written program. Examples for the use of SYSIN and
SYSOUT are given in the section System Files on Tape, Disk, or Diskette
later in this chapter.

Programmer Logical Units. Programmer logical units may be assigned to
any device installed on the system used for processing program input and
output. Each partition has a minimum of 5 programmer logical units
(except for the background partition where the minimum is 10) and a
maximum of 255 (SYS000-SYS254). The number of programmer logical
units is a supervisor generation option.

Device assignments are either permanent or temporary, depending on the
time of the assignment and the type of ASSGN statement or command
used.

Permanent Device Assignments. A permanent assignment is set up
between jobs or job steps any time after IPL by the ASSGN job control
command (no //) or the // ASSGN job control statement with the
PERM operand. It is valid until the next IPL procedure unless superseded
by another ASSGN job control command. A permanent assignment can
be changed for the duration of a job or job step by a // ASSGN
statement or by an ASSGN command with the TEMP option.

Temporary Device Assignments. A temporary assignment is established
either by a // ASSGN statement or by an ASSGN command with the
TEMP option. It is valid for a single job only, unless superseded by
another temporary or permanent assignment. Temporary assignments are
reset to permanent by

« a /& or JOB statement, whichever occurs first, or by

o a RESET job control statement or command.

Restrictions: The type of device assignment is restricted under certain
conditions:

1. If one of the system logical units SYSRDR, SYSIPT, SYSLST, or
SYSPCH is assigned to a disk device or diskette, the assignment must
be permanent. If SYSCLB is assigned, its assignment must also be
permanent.

2. If SYSRDR and SYSIPT are to be assigned to the same disk or
diskette extent, SYSIN should be assigned instead, and this assignment
must be permanent.

SYSOUT, if used, must be a permanent assignment.

4. The SYSLOG assignment is restricted when IPL was done from either
a 125D or 3277 device. You may not assign SYSLOG to a 125D if
IPL was done from a 3277 and vice-versa.

Chapter 3: Using the System 3-37

Device Assignments in a Multiprogramming System

Each partition has its own set of system logical units. For example, the J
BG partition has a SYSRDR, SYSLST, SYSIPT etc. as do all the other

generated partitions. As each partition is started, assignments must be

made for the system logical units. Some assignments need be made only

in one partition and are valid for all partitions. These are logical units that

service the system rather than one partition. The page data set and the

lock communication file (defined via the DPD and DLF commands,

respectively) and the following units fall into this category:

logical name how assigned

SYSLOG ASSGN job control commana
SYSREC DEF IPL command

SYSDMP DEF IPL command

SYSCTL automatically assigned by the system
SYSRES disk address entered at IPL
SYSCAT DEF IPL command

All of the other system logical unit assignments must be made for each
individual partition.

Each partition also has its own set of programmer logical units (SYS000
through SYSnnn) where nnn is the number of programmer logical units
specified for the partition minus 1.

You must make assignments of the programmer logical units as needed by J
the programs running in each partition. Certain IBM supplied programs

require specific programmer logical unit assignments. For example the

linkage editor requires SYSO01 and the assembler requires SYS001,

SYS002, and SYS003.

Sharing Assignments. Within the same partition, different logical units may
be assigned to the same physical device. For example:

// ASSGN SYSLST,O00E
// ASSGN SYS007,00E

Both logical names SYSLST and SYS007 are assigned to the device at
address OOE.

Normally it is not possible to share physical devices (except DASD)
between partitions. For example if you have a tape drive assigned to the
BG partition, but not used by that partition, you must first unassign it in
BG before attempting to assign it in F2. If, however, you use.a spooling
package, such as the licensed program VSE/POWER, you can share unit
record devices (card reader, card punch, for example) and diskette
between partitions (see the licensed program VSE/POWER
documentation for more details).

With direct access devices this problem does not exist because each extent
on a disk can be thought of as a separate device. ,

3-38 VSE/Advanced Functions System Management Guide

Furthermore, if programs in several partitions need only to read and not
to update a file on disk, the one extent may be assigned to all of those
partitions. Certain VSE service programs (for example, the librarian
programs) are allowed to share a library even for updating. A library is
not defined as a disk volume, only as an extent on the disk volume. The
assignment from each partition where a librarian program is running is to
the same extent. Extents are discussed under Processing of File Labels in
this chapter.

It is not possible to share a diskette between partitions.

Figure 3-9 illustrates possible device assignments.

Chapter 3: Using the System 3-39

BG

F2

F1

BG

F2

F1

BG

BG

BG

F2

F1

SYS005

SYS005

Y

SYS005

Y

SYS005

SYS006

SYS007

SYS005

SYS006

SYS007

SYSCLB

SYSCLB

SYSCLB

L0

@) Each partition has its own set of programmer logical units.

191

192

193

191

280

191

| @ Each assignment must be for a separate extent on the disk unless the partitions

only have to read a file and not update it.

@ These assignments allow access to the tape volume by three different logical
unit names. No assignments to this tape are valid from a partition other than

BG at this time.

(@ This example assumes that librarian programs update the same library; the
assignments are for one extent.

kFigure 3-9. Possible Device Assignments

}-40 VSE/Advanced Functions System Management Guide

Figure 3-10 shows the logical units needed for an assembly. The
illustration shows that the ASSGN statements must always precede the
EXEC statement of the job step for which they are to be effective. (The
device assignments for compilers are similar to the device assignments
shown in this assembler example; any variations are documented in the
applicable programmer’s guides.)

=" |
! I
/"L—‘(\ |
I
| S
R
’ ~ |
/ \ |
.
. s | _.
Only if the program is to)=
be link-edited (1] EXEC ASSEMBLY -7
Cioetion.. | —
7/ ASSGN SYSLNK, .. !— 1|
Only if an object deck -
Ny an onee .'mASSGN SYSPCH, ... P
is desired (] |
ﬂASSGN SYS003,.... 7 S, B
J{// ASSGN SYS002..... ! -
L/// ASSGN SYS001,.... //—'k\\ :
(7] ASSGN SYSLST, .. / ./
(11 ASSGN SYSIPT, ... /
/1 JOB.... <%
Pge | | 1
Data SYSRDR r 1
Set | |
SOURCE Pl —— ,[\) |
PROGRAM f\‘__'_,l{ :
|
SYSIPT L :———-'
7 N
! \\ I
Y L
’/
. £ o o
System CcPU - SYSLST
Residence

SYSRES
3 Work SYS001
files SYS002
SYS003
SYSLOG

SYSLNK
(Optional}

et e

SYSPCH
(Optional)

Figure 3-10. Device Assignments Required for an Assembly

Chapter 3: Using the System 3-41

Additional Assignment Considerations

The following summarizes the functions of the job control ASSGN
statement (or command). Also included are statements (commands) that
can be used with logical unit assignments.

The ASSGN Statement/Command. The ASSGN statement or command is
used to connect a logical 1/O unit to a general device class, a specific
device type, a physical device or a list of physical devices, or another
logical unit. An ASSGN statement or command can also be used:

o to specify a temporary or permanent assignment.
« to specify a volume serial number for a tape, disk, or diskette.

e to specify that a disk is shareable by more than one partition or
logical unit.

e to unassign a logical unit to free it for assignment to another partition.

« to ignore the assignment of a logical unit, that is, program references
to the logical unit are ignored (useful in testing and certain rerun
situations).

« to specify an alternate tape unit to be used when the capacity of the

original is reached. J
The assignment routines check the operands of the ASSGN statement/ ‘
command for the relationship between the physical device, the logical unit,
the type of assignment (permanent or temporary), etc. The following list
summarizes the most pertinent items to remember when making
assignments:

o Assignments are effective only for the partition in which they are
issued.

e Apart from the operator console, no physical device except DASD can
be assigned to more than one active partition at the same time.

o All system input and output file assignments to disk or diskette must
be permanent.

» SYSIN must be assigned if both SYSRDR and SYSIPT are to be
assigned to the same extent.

« SYSOUT cannot be assigned to disk or diskette; it must be a
permanent assignment if assigned to tape.

+ SYSLNK must be assigned before issuing the LINK or CATAL option
in an OPTION statement; otherwise, the option is ignored and the
message 'PLEASE ASSIGN SYSLNK'’ is issued to the operator.

« Before a tape unit is assigned to SYSLST, SYSPCH, or SYSOUT, all
previous assignments to this tape unit must be permanently
unassigned. This may be done by using a DVCDN command as J
discussed below.

3-42 VSE/Advanced Functions System Management Guide

(\

Processing of File Labels

« The assignment of SYSLOG cannot be changed while a foreground
partition is active.

« SYSRES, SYSCAT, SYSREC, SYSDMP, the page data set and the
lock communication file can never be assigned by an ASSGN
statement or command. An IPL is required to change these
assignments.

The RESET Statement/Command. The RESET statement or command
can be used to reset temporary assignments of a partition to permanent.
With one RESET statement or command you can reset

+ all logical units.
« all system logical units.
« all programmer logical units.

» one specific system or programmer logical unit.

The LISTIO Statement/Command. With the LISTIO statement or
command you can obtain a listing of the current status of the 1I/O
assignments in your system. This may be done for all devices or individual
devices as required. If the LISTIO command is used (no //), the output
goes to SYSLOG, otherwise the output is on SYSLST.

The DVCDN Command. The DVCDN (device down) command informs
the system that a device is no longer physically available for system
operations. This command releases all logical assignments to the device.

When the device becomes available again for system operations, a
DVCUP (device up) command must be given and new assignments made,
before the device may be used.

The DVCUP Command. The DVCUP (device up) command informs the
system that a device is available for system operations after it has been
down.

As shown above, the operating system relates physical devices to logical
names, used in programs, via the ASSGN job control statement (or
command). Certain device types (magnetic tape, disk, and diskette) have
removable volumes. It is important to ensure that the volume(s)
containing the file(s) to be processed are present on the assigned
device(s). Magnetic tape, disk and diskette files are identified through file
labels which are processed by the data management routines. Magnetic
tape file labels are optional, though desirable for reasons of data integrity.
Disk and diskette file labels are required.

File labels are written when a file is created based on label information
submitted through job control statements.

To write a file label on magnetic tape, job control uses the // TLBL
statement. This label is written immediately preceding the associated file.

Chapter 3: Using the System 3-43

To write a file label on disk or on diskette, job control uses the // DLBL

and // EXTENT statements. The label is written into the volume table of :
contents (VTOC), and a utility program, LVTOC, is available to list all J
labels included in this VTOC. Details on the DLLBL. and EXTENT

statements are given in VSE/Advanced Functions System Control

Statements. When a labeled file is to be processed, the required // TLBL,

// DLBL and // EXTENT information must be available, so that job

control can perform the desired label checking on your existing file.

Figure 3-11 shows the relationship of label information that you provide

by the above mentioned statements to file labels and programs. For a

detailed discussion of label processing, refer to V.SE/Advanced Functions

DASD Labels and VSE/Advanced Functions Tape Labels.

3-44 VSE/Advanced Functions System Management Guide

// ASSGN SYS021,281

// TLBL PAYPMO,’PAY MARCH78’

// ASSGN SYS011,DISK,VOL=444444

// DLBL PAYROLL,’"MASTER’,99/365,SD
c // EXTENT SYS011,1,0,100,50

Label Information provided
by the user is stored in the
label information area.

Label Information Area \v

\
Executing Program Data Management Routines
OPEN PAYROLL PAYPMO The Data Management routines search the label information
- area for the file names PAYROLL and PAYPMO.
_ Once the label information is found, the file ID’s MASTER
The OPEN invokes the @~ = p=====-——— - and PAY MARCH?78 are searched for on the mounted
Data Management routines. fe=c——eeea= +{ _volumes.

444444 F :
: Begin |End :
_ Address | Address Ji8

g PAY MARCH78

Data of File Master
(50 tracks)

‘ Figure 3-11. File Label Processing

Chapter 3: Using the System 3-45

The // TLBL, // DLBL, and // EXTENT job control statements may

be submitted with each execution of a given program that processes

labeled files. Job control temporarily stores these statements in the label)
information area. A recommended alternative for frequently accessed files

is to permanently store the label information in the label information area.

The section Storing Label Information later in this chapter describes how

to permanently store label information.

When the program that processes the file is executed, the data
management routines access the label information

« to write the appropriate labels onto the storage volume, and to check
that no unexpired files are overwritten, if the file is to be created, or

« if an existing file is to be processed, to check the contents of the label
information area against the label(s) of the file to ensure, for example
that the correct volume is mounted.

The first two parameters of both the // TLBL and // DLBL statements
are the same:

// TLBL filename,'file-id’
// DLBL filename, 'file-id’

The filename is not part of the file label. You code a filename in your
program to identify your file.

« In assembler language it is the DTF (Define The File) name.
« In DOS/VS RPG II it is the FILENAME.)
« In DOS/VS COBOL it is the name specified in the SELECT clause.

o In PL/Iit is the identifier (with the FILE attribute) in the
DECLARE statement.

« In FORTRAN it is the file name associated with the data set
reference number.

The filename from your program is used as a search argument by the data
management routines in searching for label information in the label
information area. Accordingly you must code a matching filename in your
// TLBL or // DLBL statements.

The file-id is part of the file label. After the DLBL or TLBL statements
are located (based on filename), the file-id is used to:

e create a label for an output file.

e locate and check the labels of an input file.

3-46 VSE/Advanced Functions System Management Guide

Example of label checking:

‘;' // JOB UPDATE
, 7/ BSSGN SYS007,00C
// BSSGN SYS008,280
* DLEASE MOUNT CURRENT ACCOUNTS RECEIVABLE TAPE
// PAUSE
// TLBL ACCT,'ACCTS.REC.FILE'
// EXEC UPDATE
data cards
/*
// MTC REW,SYS008
// BSSGN SYS010,280
// ASSGN SYS007,00E
// TLBL ARFILE,'ACCTS.REC.FILE'
// EXEC ARREPORT
/&

The two programs UPDATE and ARREPORT access the same file
’ACCTS.REC.FILE’. The two programs happen to use different file
names and different programmer logical units.

UPDATE opens a file named ACCT on logical unit SYS008 and
ARREPORT opens a file named ARFILE on SYS010. In both cases the
file accessed is ’"ACCTS.REC.FILE’. If the two programs had used the
same file name and programmer logical units, one ASSGN statement and
one // TLBL statement permanently stored in the label information area
would suffice.

(Label Information for Files on Diskette Devices

After you have informed the system, via the ASSGN statement or
command, on which physical device the file is to reside, you must supply
the following information to allow the creation and checking of diskette
labels:

1. A description of the characteristics of the file. You specify this in the
DLBL job control statement.

2. The volume(s) the file is contained on. You specify this in one or
more EXTENT job control statements.

The label information you supply in the DLBL job control statement may
include the following:

¢« The name of the file. This name must be identical to the
corresponding file name specified in your program. For programs
written in assembler language, this would be the name of the DTF,

¢ An identification of the file. This name is the one contained in the file
label on the diskette. It is associated with the file name via the DLBL
statement.

o The expiration date of the file.

+ The type of access method used to process the file; always coded as

L DU.

Chapter 3: Using the System 3-47

A diskette file consists of a data area on one or more volumes; each

volume contains only one data area for a particular file. For each of these \
data areas, called extents, you must supply the following information on J
an EXTENT job control statement:

o The symbolic name of the device on which the volume containing the
file is mounted.

o The serial number of the volume.

o The type of extent; always coded as 1.

In the following example, the program CREATE creates a diskette (DU)
file named SALES that has a file-id of MONTHLY and is to be retained
for 30 days. The file comprises up to three diskettes. The diskettes have
the volume serial numbers 111111, 111112, and 111113, and are
mounted on the drive assigned to the symbolic device named SYS005.

// JOB EXAMPLE

// ASSGN SYS005,060

// DLBL SALES, "MONTHLY',30,DU
// EXTENT SYS005,111111,1

// EXTENT SYS005,111112,1

// EXTENT SYS005,111113,1

// EXEC CREATE

The job control program checks the DLLBL and EXTENT statements for
correctness and stores the supplied information in the label information
I area for the duration of the job (see Storing Label Information later in
this chapter). J

Label Information for Files on Direct Access Devices

After you have informed the system, via the ASSGN job control
statement or command, which volume or physical device you want, you
must supply the following information to allow the creation and checking
of DASD labels:

1. A description of the characteristics of the file. You specify this in the
DLBL job control statement.

2. The exact location of the file on the storage medium. You specify this
in one or more EXTENT job control statements.

The label information you supply in the DLBL job control statement may
include the following:

e The name of the file. This name must be identical to the
corresponding file name specified in your program. For programs
written in assembler language this would be the name of the DTF.

e An identification of the file which may include generation and version
numbers of the file. This name is the one contained in the file label
on the storage device. It is associated with the file name via the

DLBL statement. ' .

3-48 VSE/Advanced Functions System Management Guide

o The expiration date of the file.
o The type of access method used to process the file.
e An indication of whether or not a data secured file is to be created.

o The blocksize to be used for this file on an IBM 3330-11 or 3350
device.

e The control interval size (CISIZE) if your file is a sequential disk file
and resides on an FBA device.

A DASD file can consist of one or more data areas on one or more
volumes. For each of these data areas, called extents, you supply the
following information on an EXTENT job control statement:

o The symbolic name of the device on which the volume containing the
file extent is mounted.

o The serial number of this volume.

o The type of the extent. An indexed sequential file, for instance, can
consist of data areas, index areas, and overflow areas. For each of
these areas an extent must be defined, and its type (data, index, or
overflow) must be specified.

o« The sequence number of the extent within the file.
e For CKD devices:

The number of the track (relative to zero) on which the file
extent begins.

The amount of space (in tracks) the file occupies.
o For FBA devices:
The block number on which the file extent begins.

The amount of space (in blocks) the file occupies.

Examples for Submitting Label Information for DASD Files. Here are a
number of examples of how to code the job control statements required to
create or access the labels for the various types and organizations of
DASD files. It is helpful if you are familiar with the formats of the DLBL
and EXTENT job control statements as described in VSE/Advanced
Functions System Control Statements. Detailed information on the
possible organizations and access methods for DASD files is given in VSE
System Data Management Concepls.

Sequentially Organized Disk Files (Single Drive, Single Volume). In the
following example, the program CREATE creates a sequential disk (SD)
file named SALES that is to be retained until the end of 1980. The file
comprises one extent of 190 tracks on a CKD device, starting on relative
track number 1320. The disk pack has the volume serial number 111111
and is mounted on the drive assigned to the symbolic device name
SYS005:

Chapter 3: Using the System 3-49

// JOB EXAMPLE
// ASSGN SYS005,DISK,VOL=111111,SHR
| // DLBL SALES, 'ANNUAL SALES RECORDS',80/365,SD
// EXTENT SYs005,111111,1,0,1320,190
// EXEC CREATE

The job control program checks the DLBL and EXTENT statements for
correctness and stores the supplied information in the label information
I area for the duration of the job or job step.

Sequentially Organized Disk Files (Single Drive, Multivolume). Assume
that a program PROG100 needs a sequential disk file located on three
different disk packs that are to be mounted successively on the same
device (SYS005). The file consists of four extents on an FBA device: two
on the pack with serial number 000020, one on pack 000100, and one on
pack 000006. The following job stream shows the label statements
required:

// JOB SAMLABEL
// ASSGN SYS005,DISK,VOL=000020,SHR

1 // DLBL FILNAME, 'FILE ID',99/365,SD
// EXTENT SYS005,000020,1,0,10,2010
// EXTENT SYS005,000020,1,1,4000,1510
// EXTENT SYS005,000100,1,2,64,1300
// EXTENT SYS005,000006,1,3,50,636

2 // EXEC PROG100

1 Only one DLBL statement is required. For each extent one EXTENT statement
must be supplied in the sequence in which the extents are processed.

2 Logical IOCS in PROGI100 opens the first extent using the file name and file ID
in the DLBL statement, and the logical unit and volume serial number in the
first EXTENT statement to locate the actual label on the disk pack. After
PROG100 has processed the first extent, logical IOCS opens the second extent,
based on the extent sequence number.

For the third extent, volume serial number 000100 is specified while the volume
currently mounted on SYS005 has the number 000020. The OPEN routine of
LIOCS notifies the operator of this discrepancy, and the operator can mount the
correct volume, at which time the OPEN routine regains control. The same is
true for the fourth extent.

3 The /& statement causes the label information stored in the label information
area to be cleared. Thus, if the next job requires the same file, the label
statements must be resubmitted (see Storing Label Information later in this

chapter).

Sequentially Organized Disk Files (Multiple Drives). This example has the
same requirements as the preceding ’Single Drive’ example except that the
three volumes are mounted on three different drives. The required job
control statements are as follows:

3-50 VSE/Advanced Functions System Management Guide

// JOB SAMLABEL
// ASSGN SYS005,DISK,VOL=000020,SHR
// ASSGN SYS006,DISK,VOL=000100,SHR
// BASSGN SYS007,DISK,VOL=000006,SHR

1 // DLBL FILNAME,'FILE ID',99/365,SD
// EXTENT SYS005,000020,1,0,10,2010
// EXTENT SYS005,000020,1,1,4000,1510
// EXTENT SYsS006,000100,1,2,64,1300
// EXTENT SYS007,000006,1,3,50,636

2 // EXEC PROG100

1 All label statements submitted are identical to the Single Drive’ example except
for SYSnnn in the EXTENT statements.

2 Logical IOCS opens each extent in the same way as described in the ’Single
Drive’ example except that processing does not stop for removal and mounting of
packs, because enough devices are online to contain the file. A combination of
this and the ’Single Drive’ example could be used to reduce handling time

without excessively increasing the total drive requirements.

DA Files. The program PROG101 processes a direct access file consisting
of four extents contained on three CKD disk packs. The three packs must
be ready at the same time. The following job stream shows the label
statements required to process the file:

// JOB DALABEL
// ASSGN SYS005,DISK,VOL=000065,SHR
// ASSGN SYS006,DISK,VOL=000025,SHR
// ASSGN SYS007,DISK,VOL=000002,SHR
1 // DLBL FILNAME,'FILE ID',b99/365,DA
// EXTENT SYS005,000065,1,0,1320,190
// EXTENT SYS005,000065,1,1,80,740
// EXTENT SYS006,000025,1,2,50,906
// EXTENT SYS007,000002,1,3,1275,64
// EXEC PROG101

1 The label statements follow the same pattern as for sequential files (described in
the preceding examples) except that the DLBL statement must specify DA to
indicate direct access.

Note: Library files are single extent, single drive files. You specify the label
information as for sequentially organized disk files, but you must never include
the CISIZE or BLKSIZE parameter.

Label Information for Files on Magnetic Tape

Files on magnetic tape can be processed with or without labels. For tape
files with IBM standard labels, the label information must be submitted
through the TLBL job control statement. (A tape file can also have
standard-user or non-standard labels; for these labels no job control
statements are required. More information on tape labels is given in VSE
System Data Management Concepts).

The standard label information submitted in the TLBL statement may
include the following:

o The name of the file. This name must be identical to the
corresponding filename (DTF name) specified in your program.

Chapter 3: Using the System 3-51

Storing Label Information

¢ An identification of the file.

o Creation date for input and expiration date (or retention period) for
output files.

o The volume serial number of the tape reel that contains the file.

¢ For files that extend over more than one volume, the sequence
number of the volume.

« For volumes that contain more than one file, ssquence number of the
file.

« The version and modification number of the file.

As with DASD files, the label information you supply in the TLBL job
control statement is checked and stored in the label information area (see
Storing Label Information, below).

Job control stores label information in the label information area. The
label information is stored temporarily (for the duration of one job or job
step) or permanently.

As label information is submitted, the job control program acquires a
portion of the label information area which is referred to as a label
subarea.

The minimum size of a label subarea is one track for a CKD device and
2K for an FBA device, the maximum size is the entire label information
area. There are three types of label subareas:

e partition temporary subarea
e partition standard subarea
o system standard subarea

Label information stored in either of the two types of partition subareas
may be accessed only from one particular partition. Label information
stored in the system subarea may be accessed from all partitions. The type
of subarea used is controlled by the following three options of the
OPTION job control statement:

USRLABEL causes all DASD, diskette, and tape label information to
be stored temporarily for one job or job step. Label
information submitted between job steps overlays the label
information from the former job step. The label
information is written to a partition temporary subarea
(one per partition) and is accessible only by the partition
in which it was submitted. It is a good idea to include all
TLBL, DLBL, and EXTENT statements in the first step
of a job (preceding the // EXEC statement). If no
option is specified, or if the OPTION statement is
omitted, USRLABEL is assumed.

3-52 VSE/Advanced Functions System Management Guide

9

J

' PARSTD causes DASD, diskette, and tape label information to be
stored permanently for all subsequent jobs. The label
information is written to a partition standard subarea (one
per partition) and is accessible only by the partition for
which it was submitted.

Partition standard labels can be submitted in the partition
to which they belong. Foreground partition standard
labels can also be submitted through a job running in the
background partition. The job stream must contain the
following statement:

// OPTION PARSTD=Fn

All label information following this statement is put into
the partition standard subarea of partition Fn (n is the
number of the foreground partition). The above statement
can be given only when partition Fn is inactive.

| STDLABEL causes DASD, diskette, and tape label information to be
stored permanently for all subsequent jobs. The label
information is written to the system standard subarea and
is accessible by all partitions, but can only be submitted in
the background partition. This ensures that the system
standard label information is not updated simultaneously
by two partitions. Logical unit numbers contained in the
submitted label information must not be greater than the
highest logical unit number specified for background at
system generation.

When PARSTD or STDLABEL is given without an operand, any label
information currently in the respective subarea is completely overwritten
by the newly supplied data. If you want to retain the old label information
and only add more labels to it, code the parameter as PARSTD=ADD or
STDLABEL=ADD, respectively.

Specifying
// OPTION PARSTD=DELETE or
// OPTION STDLABEL=DELETE

causes labels to be deleted from the respective subarea. Such a statement
must be followed by one or more statements of the form

filename

where filename indicates which label is to be deleted. The last filename
statement must be followed by a /*. A DELETE operation is somewhat
time-consuming because the label is physically deleted from the label area,
and the label area space is condensed each time a DELETE request is
processed.

An ADD or DELETE specification can only be given from a job running
in the pertinent partition; therefore, ADD and DELETE are not allowed
in conjunction with PARSTD=Fn.

Chapter 3: Using the System 3-53

l Note: When the label information area is located on an FBA disk device, the
operating system blocks user-supplied label information before writing that
information to disk. Therefore, you should terminate your // OPTION PARSTD or ,
// OPTION STDLABEL job stream with a // OPTION USRLABEL statement. This
ensures that all label information is actually written to the label information area as
permanent partition or system standard labels. Labels in the system standard subarea
are accessible from other partitions only after they have been written completely.
The OPTION statement with USRLABEL specified indicates to the operating system
that no further partition or system standard labels will follow. The same effect is
accomplished by a /&, // JOB, or // EXEC statement.

A partition can have only one temporary and one standard subarea at
any point in time. As the subareas are variable in size it is possible that
disk space is not available in the label information area when job control
attempts to write label information. When this occurs, a message will be
displayed on the console stating that the label area is exhausted. To clear
a subarea (in order to run the current job), you can do one of the
following:

« Submit a /& in another partition to clear that partition’s temporary
subarea.

o Submit a // OPTION PARSTD followed by a / & in any partition to
clear that partition’s standard subarea.

Do not clear the system standard subarea. If you find that the system

standard subarea is using more disk space than you want, reorganize your

label information area. For example if you have an application that

always runs in the same partition (such as the licensed program

VSE/POWER) the labels for that application should be put on that J
partition’s standard label subarea, not the system standard subarea.

During program execution, the data management routines search the label
information area in the following sequence:

(1) user label information (partition temporary subarea)
(2) partition standard information (partition standard subarea)
(3) system standard information (system standard subarea).

It is important to distinguish between the conditions under which a label
option remains in effect and the conditions that govern the retention of
the label data in the label information area. For example, the label data
submitted following an OPTION statement with the PARSTD option is
retained for all subsequent jobs until overwritten by another PARSTD
option, but the PARSTD option is canceled at the end of the job or job
step in which it was specified. This is shown in the summary of label
options in Figure 3-12.

3-54 VSE/Advanced Functions System Management Guide

L. Type of label Option in effect | Label information
Option in search- sequence information until retained For
USRLABEL! temporary STDLABEL or for one job. The the partition in
PARSTD is / & statement which the option
specified. causes the was specified.
temporary label
area to be cleared.4
PARSTD permanent a) end of job step for all subsequent the partition in
b) end of job jobs until deleted.2 | which the option
c) USRLABEL or was specified, or
STDLABEL is as specified in
specified.5 PARSTDm=Fn.
STDLABEL permanent a) end of job step for all subsequent all partitions.3
b) end of job jobs until deleted.2
c) USRLABEL or
PARSTD is
specified.5

background partition.

SYSRES is on an FBA device.

1 If no option is given or if the OPTION statement is omitted, USRLABEL is assumed.
2 Either explicitly deleted (=DELETE) or by giving the option without an operand.
3 Label information stored with the STDLABEL option is available to all partitions but can be submitted only through the

4 Additional label information from a subsequent job step will overlay previous label information.
5 It is recommended that a USRLABEL option be submitted following the PARSTD or STDLABEL job stream when

Figure 3-12. Summary of Label Option Functions

By permanently storing the label information for a disk file in the label
information area, the operating system relates that file to the type of the
device which is assigned to the pertinent logical unit when this file is
processed for the first time. A later attempt to use this label information
for the same file (and extent) on a different device type causes the job to
be canceled. If a different device type has to be used for this file, the
label statements must be resubmitted and the pertinent logical unit
assigned to the device of the new type.

Stored label information may be displayed using program LSERYV as

follows:

// JOB
// EXEC LSERV

/*
/€

I Job Control for Library Definitions

Libraries must be defined to job control. One means of defining a library
is the job control ASSGN (statement or command) together with
DLBL/EXTENT information. If you include, for example,

ASSGN SYSCLB,cuu

in a linkage editor job stream, you tell the linkage editor program to place
a phase into a private core image library.

Chapter 3: Using the System 3-55

I Establishing a Library Definition

The ASSGN statement is applicable to any file. For libraries only, a more
versatile job control statement is available to define the libraries to be
accessed: the- LIBDEF statement.

A LIBDEF definition may be established permanently, that is, for all
succeeding jobs (parameter PERM specified) or only for the duration of
the job (by default or parameter TEMP specified). As with the ASSGN
statement, DLBL and EXTENT information must be available when the
LIBDEF statement is processed.

Each parameter in the LIBDEF statement addresses a particular library
access:

Library Chaining (Concatenation). The SEARCH parameter allows to
establish a chain of libraries. The chain is given through a list of file
names that correspond to file names in DLBL statements, for example:

// DLBL YOURLIB,...

// EXTENT ,111111,...

// DLBL MYLIB,...

// EXTENT ,222222,...

// LIBDEF CL,SEARCH=(YOURLIB,MYLIB)

The position within the list determines the sequence in which libraries are
searched for a given member. When, in the above example, a phase is to
be FETCHed or LOADed, two private core image libraries are searched
for that phase: first the library YOURLIB, and then, if the phase is not
found there, library MYLIB.

Each type of library requires its own LIBDEF, with a corresponding
identifier:

CL — for a FETCH or LOAD, or the processing of a SET SDL
command from a core image library

RL — for retrieval of object modules by the linkage editor
SL ~ for retrieval of source statements by a language translator
PL — for retrieval of cataloged procedures.

When you define, for a particular library type, two chains, one temporary
and one permanent, the temporary chain will be searched prior to the
permanent chain. The system library is always assumed to be the last
member of the chain; of the permanent chain if one is defined, otherwise
of the temporary chain. You don’t have to explicitly include it in the
SEARCH list. If you want to place the system library at a different
position within the chain, you include that library in the list of file names
at the desired position. Whatever the library type, you identify the system
library by the name IJSYSRS.

Special conditions apply to the search order of core image libraries. They
are discussed in section Using Private Libraries, later in this chapter.

The number of file names you can give per SEARCH chain depends on
what you specified in the LCONCAT parameter of the FOPT supervisor

3-56 VSE/Advanced Functions System Management Guide

<9

9

generation macro; 15 is the maximum. With that maximum, the following
library chain could be set up:

— 15 libraries defined as temporary
— 15 libraries defined as permanent

— the system library at the end of the chain.

Librarian Input. In the FROM parameter you define the library that is to
be used as input by

— the librarian service programs such as SSERV, DSERY etc.
— the CORGZ librarian program.

Output Libraries. In the TO parameter you define the library that is to be
used as output by

— the linkage editor program when it catalogs a phase into a (private or
system) core image library

— the MAINT librarian program
— the CORGZ librarian program for a MERGE function.

A Newly Created Library. The NEW parameter defines a private library to
be created by the CORGZ librarian program. NEW can only be used for
a temporary library definition. The NEW library name must not appear
within the SEARCH, TO or FROM parameters of the same LIBDEF
statement.

The following example shows a job stream with two job steps: one linkage
editor step followed by an execution step. Permanent and temporary
library chains are defined: two chains for relocatable libraries and two
chains for core image libraries. Also, a private core image library (file
name TESTCIL) is defined for the linkage editor output.

// DLBL PRELO1, 'PRIVATE RELO LIB 1',...
// EXTENT ,VOLIDA,...
// DLBL PRELO2,'PRIVATE RELO LIB 2',...
// EXTENT ,VOLIDBE,...
// DLBL PCIL1,'PRIVATE CIL 1',...
// EXTENT ,VOLIDA,...
LIBDEF RL,SEARCH=(PRELO1,PRELO2),PERM
LIBDEF CL,SEARCH=PCIL1,PERM
// JOB TEST
// DLBL TESTRLB,'TEST RELO LIB',...
// EXTENT ,VOLIDI1,...
// DLBL PRELO3,'PRIVATE RELO LIB 3',...
// EXTENT ,VOLID2,...
// DLBL TESTCIL,'TEST CIL FOR APARS',...
// EXTENT ,VOLIDI1,...
// DLBL PRODCIL, 'PRODUCTION/HISTORY CIL',...
// EXTENT ,VOLID3,...
LIBDEF RL,SEARCH=(TESTRLB,PRELO3), TEMP
LIBDEF CL,SEARCH=(TESTCIL,PRODCIL),TO=TESTCIL, TEMP
// OPTION LINK

INCLUDE LINKBOOK
// EXEC LNKEDT
// EXEC
/&

Chapter 3: Using the System 3-57

' Resetting a Library Definition

You may catalog part of the above job stream into a procedure library. If,
for example, all DLBL and EXTENT statements and the permanent
library definitions were cataloged as procedure PARCONCA, the above
job stream might look as follows:

// JOB TEST
// EXEC PROC=PARCONCA
LIBDEF RL,SEARCH=(TESTRLB,PRELO3), TEMP
LIBDEF CL,SEARCH=(TESTCIL,PRODCIL), TO=TESTCIL, TEMP
// OPTION LINK
INCLUDE LINKBOOK
// EXEC LNKEDT
// EXEC
/&

The above example contains library definitions valid for one partition.
Similar definitions can be established for other partitions. A particular
library may appear in chains of several partitions.

One cannot mix, within a partition and for a particular library type,
library definitions via ASSGN and those via LIBDEF. It is conceivable,
however, to use an ASSGN for one library type and a LIBDEF for
another, as in the following skeleton example:

// DLBL IJSYSCL,'OLD PRIVATE CIL',...
// EXTENT SYSCLB,VOLIDC,...
// DLBL PRVPROC, 'NEW PRIVATE PROC',...
// EXTENT ,VOLIDP,...

ASSGN SYSCLB, ...
LIBDEF PL,SEARCH=PRVPROC

// EXEC PROC=...

You will notice that the second EXTENT statement has the first
parameter, the logical unit name omitted. For one thing, no system logical
unit name exists for a private procedure library. Secondly, whenever
libraries are defined via LIBDEF, the operating system does not need the
SYSxxx specification; it is capable of determining the physical device
address via the volume identification in the EXTENT statement (the vol
id’s must be unique within the system). If, however, you do include the
SYSxxx number, a corresponding ASSGN statement is required.

Note: A private library that is defined as access control protected may appear only in
a temporary LIBDEF definition. A permanent ASSGN for a secured private source
statement or relocatable library is allowed, but not for a private core image library.

The LIBDROP statement resets, for a particular library type, a definition
that had been given through a LIBDEF statement. The usage of
parameters is similar to the one in the LIBDEF statement. By specifying
ALL you may drop all library definitions for one library type within a
partition.

3-58 VSE/Advanced Functions System Management Guide

<9

C

Displaying Library Definitions

Tape and Print Operations

Controlling Magnetic Tape

A library definition is reset also when one LIBDEF specification overrides 1
a preceding one that is still active. i

If not reset explicitly, all temporary library definitions will be reset at
end-of-job. A permanent library definition will be automatically reset
when the partition is deactivated (via UNBATCH). If a HOLD command
was given before, the permanent library definitions are not deactivated
and are available again when the partition is restarted. The UNBATCH
and HOLD commands are described in VSE/Advanced Functions
Operating Procedures.

Through the LIBLIST statement, you request a display of the currently
active library definitions, for a particular library type. Only those
definitions are listed which had been given through a LIBDEF statement.
The display may cover one partition only or all partitions. And you may
choose to direct the display to the system console or to SYSLST.

For a detailed description of the LIBDEF, LIBDROP and LIBLIST
statements, refer to VSE/Advanced Functions System Control Statements.

The MTC job control statement or command controls certain magnetic
tape operations, for example, file positioning. Files on magnetic tape are
almost invariably processed sequentially. This means, for example, that if
you have five files on one tape reel and you want to process the last one,
you have to read four files before you can access the one you need. You
can, however, instruct the job control program to position the tape at a
particular file.

The MTC job control statement or command controls operations such as:
e Spacing the tape backward or forward to the required file.

e Spacing the tape backward or forward a specified number of records.
¢ Rewinding the tape to the beginning.

« Writing a tapemark to indicate the end of a file.

In the following example, program PROGA creates a labeled tape file
named RATES on tape volume 222222. At the end of the first job step,
an MTC job control statement is used to rewind (REW) the tape to the
beginning of the tape volume so that the newly created file can be
processed by PROGB.

Chapter 3: Using the System 3-59

Controlling Printed Output

// JOB TAPE

// ASSGN SYS004,TAPE,VOL=222222

// TLBL RATES, 'MASTER',75/365,222222
// EXEC PROGA

// MTC REW,SYS004

// EXEC PROGB

Most of the VSE/Advanced Functions supported printers use a forms
control buffer (FCB) to control the length of forms skips. In addition,
printers may be equipped with the universal character set feature, which is
controlled by a universal character set buffer (UCB). Examples of printers
equipped with these buffers are the 3203 and 3211 printers.

The buffers of these printers must be loaded during or immediately after
IPL, and they may have to be reloaded later between job steps or,
occasionally, while a job step using the printer is being executed.

The following methods for loading the buffers are available:
To load the FCB

» Automatic loading during IPL

o Using the SYSBUFLD program between job steps or immediately
after IPL

e Using the LFCB command

e Using the LFCB macro in the problem program

e Using the FCB parameter in the VSE/POWER * $$ LST statement.

To load the UCB

e Automatic loading during IPL (applies to PRT1 and 5203U printers)

o Using the SYSBUFLD program between job steps or immediately
after IPL

e Using the LUCB command

o Using the UCS command (applies only to a 1403 UCS printer).

The method of loading the buffers by using the SYSBUFLD program
offers the advantage that hardly any operator activity is involved; on the
other hand, loading the buffers by using the LFCB or LUCB command
does not require the operator to wait for a partition to finish processing.

When the contents of an FCB or a UCB are replaced by a new buffer
image, the system uses this new image to control printed output until the
buffer is reloaded (or until the next IPL). None of the above methods
provides automatic resetting of the buffer load to the original contents. It
may be necessary to reset the buffer to the original contents before taking
a storage dump, to ensure that the dump is printed in the correct format,
without any part of it being left out.

3-60 VSE/Advanced Functions System Management Guide

Details on how to load the FCB and UCB are contained in
VSE/Advanced Functions System Control Statements.

The 3800 Printing Subsystem. The 3800 Printing Subsystem is a
nonimpact, high-speed, general-purpose system printer that uses an
electrophotographic technique with a low-powered laser to print output. It
provides more features than current impact printers.

The following methods of controlling the 3800 are available:

« The SETPRT job control statement or command, which allows you to
set the 3800 with user-specified control values. These values are reset
at the end of the current job to the installation’s default control values
as specified in the SETDF operator command, or to the hardware
defaults if SETDF is not specified.

o The SETDF operator command, which allows the operator to set
and/or reset default control values for the 3800. A SETDF command
can set default control values for the following:

— One character arrangement table

— The forms control buffer

— The copy modification phase

— The paper forms identifier

— The forms overlay name

— Bursting and trimming or continuous forms stacking

— The setting of all hardware defaults with one command.

o« The SETPRT macro instruction, which is generally invoked via the
preceding statements but can also be used directly by the programmer
to initialize or dynamically change the setup of the 3800.

For information on available techniques for controlling the 3800, see

DOS/VSE IBM 3800 Printing Subsystem Programmer’s Guide.

Executing a Program

After you have properly defined the I/O requirements of your program to
the system you can instruct job control to prepare your program for

execution. How this is done and how the supplied information is processed
is described in the following section.

Assembling/Compiling, Link Editing, and Executing a Program

In VSE/Advanced Functions, three processing steps are necessary to

obtain results from a problem program once the source program has been
written:

Chapter 3: Using the System 3-61

1. Assembly or compiling of the source program into an object module.
(Object modules are discussed in section Linking Programs later in

this chapter.) '

2. Link editing of the object module to form an executable program
phase.

3. Execution of the program phase.

Each of these steps is initiated by the job control program in response to
an EXEC job control statement. The EXEC statement must be the last of
the job control statements submitted for any one job step. Figure 3-13
shows an example of the job control statements needed to assemble, link
edit, and execute a source program.

// JOB EXECUTE
// OPTION LINK
// EXEC ASSEMBLY
// EXEC LNKEDT
// EXEC

/8

W=

To link edit a program, the LINK option must be set ON.
The assembler is fetched from the core image library and starts execution.

The linkage editor is fetched from the core image library and starts execution.

HOW N =

When an EXEC statement without a program name is encountered, the
program last stored (if stored within the same job) in a core image library by
the linkage editor is fetched for execution. ’

Figure 3-13. Job Control Statements to Assemble, Link Edit, and Execute
a Program in One Job

Instead of submitting three EXEC statements, you may invoke all three
steps by one EXEC statement. Specifying the GO parameter in the
statement which invokes the assembler (compiler) causes the linkage
editor and your executable program to be invoked automatically once the
assembly (compilation) is finished. Only the source program and any
additional data required by your program must be submitted.

Language translators read their input from SYSIPT. If SYSRDR and
SYSIPT are assigned to the same device, the source statements of your
program must follow the corresponding EXEC job control statement. In
this example, the assembler language -statements would have to follow the
// EXEC ASSEMBLY statement. The end of the input data submitted
for one program must be indicated by a /* (end-of-data) statement. The
/* statement is not processed by job control; it is read by the logical
IOCS routines of VSE/Advanced Functions. (Note: For an input file on
an IBM 5424 MFCU, the /* card must be followed by a blank card.) The
placement of input data and the /* statement is shown in Figure 3-14.

~62 VSE/Advanced Functions System Management Guide

// JOB INPUT
// OPTION LINK
// EXEC ASSEMBLY

source program

/*
// EXEC LNKEDT
// EXEC

input data for user program

/*
/&

Figure 3-14. Submitting Input Data on SYSIPT

How the job shown in Figure 3-14 is processed by the system is illustrated
in Figure 3-15. The numbers to the left of the subsequent paragraphs
refer to the encircled numbers in that illustration. The inclusion of
SYSIPT data in job streams in the procedure library is described under
SYSIPT Data in Cataloged Procedures, later this section.

1

Job control reads the JOB statement and stores the job name in the
supervisor. Other functions of the JOB statement are described under
Defining a Job, earlier in this chapter.

Job control reads the OPTION statement with the LINK option and
sets the LINK bit in the supervisor. This indicates

a) to the assembler, that the assembled object module is to be
written onto SYSLNK,

b) to job control that link editing is allowed in this job,
c) to the linkage editor, that the executable program is to be stored
in the core image library only temporarily for execution in the

same job.

On encountering the // EXEC ASSEMBLY statement, job control
transfers control to the supervisor passing it the name of the assembler
program.

The supervisor loads the assembler into the partition, replacing job
control.

The assembler reads the source program, assembles it, and stores the
object module on SYSLNK (not shown).

The assembler transfers control to the supervisor.

The supervisor loads job control into storage, replacing the assembler.

Chapter 3: Using the System 3-63

o8

8 Job control reads the // EXEC LNKEDT statement, as well as any
preceding linkage editor statements, and transfers control to the
supervisor, passing it the name of the linkage editor. '

9 The supervisor loads the linkage editor into storage, replacing job
control.

10 The linkage editor reads the object module from SYSLNK and link
edits it.

11 The linkage editor stores the executable program in the core image
library.

12 The linkage editor transfers control to the supervisor.
13 The supervisor loads job control into storage.

14 Job control reads an EXEC statement without a program name and
transfers control to the supervisor.

15 The supervisor loads the program last stored in the core image library
by the linkage editor replacing job control.

16 The user program is executed. It reads and processes the data from
SYSIPT and, at end-of-job, returns control to the supervisor.

17 The supervisor loads job control.

18 When job control reads the / & statement, it turns off the LINK
option and replaces the jobname stored in the supervisor by NO J
NAME. Other functions of the / & statement are described under
Defining a Job, earlier in this chapter.

VSE/Advanced Functions System Management Guide

Input on SYSIN

Any Partition

Supervisor

// JOB INPUT
// OPTION LINK
/] EXEC ASSEMBLY —

JOB CONTROL

Core Image Library

ASSEMBLER =L

ASSEMBLER

: INPUT
source program »———am @ LINK
I |_
_|JOB CONTROL}t————— RO
LINK
// EXEC LNKEDT - X LNKEDT ——O—

JOB CONTROL

LINK.EDITOR =g

LINKAGE EDITOR

INPUT —
LINK

EXECUTABLE USER
PROGRAM

JOB CONTROL

EXECUTABLE USER
PROGRAM

e ————————
JOB CONTROL NPT
L LINK]

// EXEC - O L &>
USER Q
PROGRAM INPUT | [—

. LINE]

input data —————1—= @;:;:s 7

* friio—-—--—————— F

/ __]J0B CONTROL | owwE

/& - @

— Transfer of data

") Transfer of control

) Loading from core

image library

) JOB CONTROL

~_

Figure 3-15. ?yls;tem Operation of an Assemble, Link Edit and Execute
o

Executing Cataloged Programs. Programs may be cataloged permanently in
| a core image library after they have been assembled and link edited. This
saves assembling and link editing a program for every run.

| Cataloging into a core image library is done by the linkage editor in
response to an OPTION job control statement with the CATAL option

(see Linking Programs later in this chapter).

Chapter 3: Using the System 3-65

To execute a cataloged program you use an EXEC job control statement
specifying the name under which the program was cataloged (as shown
for the assembler and linkage editor in the preceding example). ’

I For example, the following job executes a program that was cataloged in a

core image library under the name PROGA,; data cards are submitted on
SYSIPT:

// JOB CAT

assignment, label statements,
' and library definition, if required

// EXEC PROGA
input data

/*
/8

Defining Options for Program Execution

In the preceding section, it was shown how the OPTION job control
statement can be used

« to specify the type of label information to be stored for a file ,
(USRLABEL, PARSTD, STDLABEL options), and

o to define whether a program is to be link edited (LINK option).

There are a number of additional functions which you can invoke through
the OPTION job control statement. The most important ones are:

// OPTION LOG
Logs all job control statements submitted to the system on SYSLST. This
facilitates diagnosing the job control statements in case of an error.

// OPTION PARTDUMP
Dumps the contents of the registers, a formatted portion of the supervisor
area, and the current partition on SYSLST in case of abnormal program

termination. To obtain the entire supervisor area unformatted,
// OPTION DUMP may be used.

// OPTION DECK

Puts an object module on SYSPCH. The object module can then be

combined with other object modules by the linkage editor to form one

executable program, or it can be used as input to the library maintenance
| program to catalog it into a relocatable library.

// OPTION LIST, LISTX, SYM, XREF, ERRS

Prints various listings produced by the language translators (compilers) on

SYSLST. These listings include object code, symbol table, cross-reference,

and error lists which are useful debugging aids during the test period of a J

E/Advanced Functions System Management Guide

7 svawa LOouU

-~

program. SXREF may be specified instead of XREF to obtain a cross
reference listing that includes only the referenced labels in the assembled
program.

These (and other) options may be permanently set by using the STDOPT
command. The specified options become effective after the next /& or
// JOB statement.

Permanent options are valid for all jobs unless overridden by an OPTION
job control statement. Options specified in an OPTION statement remain
in effect until (1) a contrary option is read or (2) a JOB or / & statement
is encountered which resets the options to permanent.

Certain of these options can be suppressed by specifying the prefix NO
(for example, NOLIST, NODUMP). A complete list of the available
options is given in VSE/Advanced Functions System Control Statements.

Communicating with Problem Programs via Job Control

Via job control a program can be instructed to take a specific path of
action. This instruction is given by setting program switches which can be
tested by the problem program at the time of program execution.

These program switches, called UPSI (user program switch indicator), can
be set ’on” (1) or ”off”” (0). They are set by job control in response to
the UPSI job control statement. The specific meaning attached to each bit
in the UPSI byte depends on the design of the program. The statement

// UPSI 10000001

for example, sets bits 0 and 7 of the UPSI byte to 1, and bits 2 through 6
to zero. A program can inspect these switches and take a specific path
based on their setting. Since the // JOB statement sets the eight bits of
the UPSI byte to zero, the // UPSI statement should follow the // JOB
statement.

UPSI switches might be useful, for example, in an accounting application
that prepares reports of daily, weekly, and monthly accounts. Through the
program switches, the application can be instructed as to when the daily,
weekly, or monthly reports are due.

For more details on the UPSI statement see VSE/Advanced Functions
System Control Statements.

Executing in Virtual or Real Mode

All programs invoked for execution through an EXEC job control
statement are normally executed in virtual mode. To run a program in
real mode, you specify the REAL operand in the EXEC statement.

Chapter 3: Using the System 3-67

-

s RO 00

Example:

// JOB NAME '

// EXEC PROGA,REAL
/&

If, for the above example, job control runs in partition F2, then the
program PROGA will be loaded and executed in real mode provided there
is sufficient processor storage allocated to the F2 partition to hold the
entire program PROGA.

If a program executing in real mode is smaller than the allocated processor
storage, the unused allocated processor storage should remain part of the
page pool. Specifying the size of the program in the SIZE operand of the
EXEC statement accomplishes this. Example:

// JOB NAME

// EXEC PROGA,REAL,SIZE=30K
/&

If the F2 partition has 50K of processor storage allocated and the program
PROGA has a size of 30K bytes, the remaining 20K bytes of that
partition will remain in the page pool.

If you specify SIZE=AUTO, job control automatically uses the
information in the program’s core image directory entry to calculate the
size of the program to be loaded.)

Running programs in real mode implies temporarily forfeiting a number of
page frames in the page pool, which may lead to degradation of system
throughput. Therefore, real mode execution should be used sparingly.

With a few exceptions, all IBM-supplied and user-written programs can be
executed under VSE/Advanced Functions either in virtual or real mode.
These exceptions are listed in the following section.

Programs that Must Run in Real Mode. The IBM-supplied program
OLTEP (On-line Test Executive Program) must be executed in real mode.

User-written programs must be executed in real mode if they contain
channel programs for devices not supported by VSE/Advanced Functions.

User-written programs must be executed in real mode or modified if they

o contain MICR stacker selection routines or other time-dependent code
for execution of I/O requests.

o contain channel programs that are modified during command
execution.

« contain I/O appendage routines causing page faults.

A program may request to obtain additional storage from the partition
GETVIS area (this area is described in the following section, Dynamic
Allocation of Storage). During real mode execution, that storage is J

3-68 VSE/Advanced Functions System Management Guide

Dynamic Allocation of Storage

obtained from the unused allocated processor storage. Specifying a SIZE
value, therefore, allows you to issue GETVIS requests from a program
running in real mode (contrary to execution in virtual mode, DOS/VSE
does not provide a default partition GETVIS area for real mode
execution). For a program that is executed in real mode, allow 16K per
open file, and allow additional processor storage if double buffering is
used or if FBA files with large Cl-sizes or VSE/VSAM files are opened.
For most IBM-supplied programs that you want to run real, an allocation
of 48K for GETVIS requests suffices.

Note that the FREEVIS macro releases GETVIS space which was
obtained through a GETVIS macro; that space is again available for
subsequent GETVIS requests. When issued from a program running in
real mode, however, the space is not returned to the page pool until the
execution of the particular job is finished.

VSE dynamic storage areas, called GETVIS areas, are part of the virtual
storage. The system GETVIS area is located in the SVA and used only be
the operating system. Each partition has an area called the partition
GETVIS area. These areas occupy the high address space of a partition’s
virtual storage. The minimum GETVIS area for a partition is 48K, which
is the IBM-set default. This default is not applicable to real mode
execution; in this case, you have to reserve storage yourself (as described
in the preceding section).

The partition GETVIS area is used by certain VSE/Advanced Functions
system components for functions such as opening of files, label processing
etc. Programs using rotational positional sensing (RPS) require 256 to
512 bytes in the partition GETVIS area for each open file. This value
should be added to the minimum system requirement of 48K.

Programmers writing in assembler language may request space from the
partition GETVIS area via the GETVIS macro. When no longer needed
by the requesting program, area so acquired can be released by issuing the
FREEVIS macro. For details about using these macros, refer to the
publication VSE/Advanced Functions Macro User’s Guide.

Figure 3-16 shows the virtual storage layout of a 200K partition with a
default-size partition GETVIS area.

Chapter 3: Using the System 3-69

Problem
Program
Execution 200K

: T
Partition GETVIS Area 48K
52 X

The largest size program that could execute in the shown partition is one that is
152K.

Figure 3-16. Storage Layout of a Partition With Default GETVIS Area

You may increase the size of a partition GETVIS area through:
o the SIZE job control or attention routine command.
« the SIZE parameter of the job control EXEC statement.

With the SIZE command, you specify the amount of virtual storage
available for program execution in a given partition. The balance of that
partition’s allocation is the partition GETVIS area.

Given SIZE BG=140K, the result is a storage layout for the partition as
shown in Figure 3-17.

T
Problem
Program
Execution
200K
- -
Partition GETVIS Area 6(1K
R)

Figure 3-17. gt_orage Layout of a Partition After the SIZE Command is
iven

3-70 VSE/Advanced Functions System Management Guide

The boundaries set by the SIZE command are permanent until (1) another
SIZE command for the same partition or (2) the next IPL.

You may temporarily alter the partition GETVIS area by using the SIZE
parameter on the job control EXEC statement. The SIZE parameter
establishes boundaries in the same way as the SIZE command, except that
the parameter value holds only for one job step (the EXEC). At the end
of the job step, the GETVIS size is set to the system default (48K) or the
amount established by a preceding SIZE command. See Figure 3-18.

Given:

// EXEC PROGX,SIZE=110K

PROGX

200K

Partition GETVIS Are
Permanent artition a 90K

GETVIS 850K
Allocation —L 4

When PROG X is finished executing the partition GET VIS area size returns to its
permanent allocation.

Figure 3-18. Program Execution with the SIZE Parameter

With the SIZE parameter you may also specify SIZE=AUTO, in which
case job control uses the information available in the associated core
image library directory to determine the amount of storage needed by the
program and then allocates the remainder of the partition as GETVIS
area.

IBM licensed programming support (for example VSE/VSAM) may have
partition GETVIS requirements beyond 48K bytes. Consult the
appropriate licensed program documentation to determine the partition
GETVIS area size requirements.

System Files on Tape, Disk or Diskette

As mentioned earlier in this chapter, I/O devices (except DASD) cannot
be assigned to more than one active partition at the same time. This
means that, in an installation with only one card reader, for instance, the

Chapter 3: Using the System 3-71

PRV P

System Files on Tape

input job stream on SYSRDR and SYSIPT for one partition must have
been completely processed by job control and unassigned for that partition
before job streams can be read by another partition. This also applies
accordingly to the system output on SYSLST and SYSPCH if only one
printer and one card punch are available.

Since this situation can cause a considerable decrease of system
throughput, VSE/Advanced Functions permits storing the input job
streams and the system output on a direct access device or, if enough tape
units are available, on magnetic tape. This allows several partitions
simultaneously to read system input from or to write system output to
high-speed devices, thus increasing system throughput and, due to reduced
CPU wait time, improving the overall performance.

Note: If system logical units (SYSIPT, SYSLST, SYSPCH, SYSRDR) are to be device
independent, DTFDI must be used in application programs that refer to any of these
system logical units.

The following section describes how to store system input and output on
high-speed devices and to read and process the job streams from these
devices.

The same improvements as those gained by having system files on
high-speed devices - but far more efficient and easier to use - can be
achieved by using a spooling program such as VSE/POWER. The spooling
program stores the job streams on disk, transfers the jobs to the partitions
for execution, and stores list and punch output on disk before it is finally
printed or punched.

If the system input units SYSRDR and SYSIPT are assigned to the same
magnetic tape unit, they may (but need not) be referred to as SYSIN. If
the system output units SYSLST and SYSPCH are assigned to the same
magnetic tape they must be referred to as SYSOUT. The tapes may be
unlabeled or they may have standard labels. If SYSLST or SYSPCH is
assigned to a standard label tape and no new label information is supplied,
the old labels will remain on the tape. SYSIPT assigned to a magnetic tape
cannot be a multiple-volume file.

To store the input stream on magnetic tape you must write your own
program that transfers the job stream to the tape. Assume, in the
following example, that you have written such a program and cataloged it
in the core image library under the name CDTOTP; the program
CDTOTP uses SYS004 to read the input job stream, and SYS00S5 for the
tape onto which the job stream is to be written; the end of input data for
CDTOTP is indicated by **. The example in Figuie 3-19 shows how to
use the program CDTOTP to create a combined system input file on tape.

3-72 VSE/Advanced Functions System Management Guide

System Files on Disk

// ASSGN SYS004,00C
// ASSGN SYS005,182
// EXEC CDTOTP

// JOB A

.

/e
// JOB B job stream:

// JOB BUILDIN
read from SYSRDR

W N =

. read from SYS004
/€

4 %%
/&

1 SYS004 is assigned to the card reader from which CDTOTP reads the job
stream.

SYSO005 is assigned to the tape which is to receive the job stream.
3 The CDTOTP program is executed and writes the job stream onto tape.

** (or any other significant character combination) signals end-of-data to
CDTOTP

Figure 3-19. Creation of SYSIN on Tape

After completion of the job BUILDIN shown in Figure 3-19 you can
assign SYSIN to the tape containing the job stream; job control will then
read and process the jobs A and B from the tape just as it would have
done from the card reader.

In the same way you can direct the system output on SYSLST and
SYSPCH to go on magnetic tape and then use your own or an
IBM-supplied program to print or punch the contents of the tape on the
printer or card punch, respectively.

When both SYSRDR and SYSIPT are assigned to disk, they must refer to
the same disk extent, and should be referred to as SYSIN. Since the
output units SYSLST and SYSPCH have different record lengths, they
must be assigned to separate disk extents; SYSOUT therefore cannot be
used if SYSLST and SYSPCH are assigned to disk. Note that only single
extent system files are supported.

For system files on disk, you must provide the required label information
by means of DLBL and EXTENT job control statements. In those
statements, use the following predefined file names:

IJSYSIN for SYSRDR, SYSIPT, SYSIN
IISYSPH for SYSPCH
IJSYSLS for SYSLST

For example, the label information for SYSIN assigned to a disk extent
could be submitted by the following job control statements:

// DLBL IJSYSIN, 'DISKINFILE'
// EXTENT SYSIN,DOSRES,1,0,1260,30

Chapter 3: Using the System 3-73

The assignment of a system file to a disk extent must always be
permanent, and it must follow the DLBL and EXTENT statement.

Example:

// DLBL IJSYSIN,'DISKINFILE'
// EXTENT SYSIN,DOSRES,1,0,1260,30
ASSGN SYSIN,131

After a system file on disk has been processed, it must be closed by a
CLOSE job control command (no //). The second (optional) operand of
the CLOSE command can be used to unassign a system logical unit or
reassign it to another device. The following command closes the SYSIN
file on disk and reassigns SYSIN to the card reader at address 00C:

CLOSE SYSIN,00C

The CLOSE command can either be entered on SYSLOG by the operator
or it can be included at the end of the job stream on disk.

If SYSIPT is assigned to a disk extent, the CLOSE command must
precede the / & . Multiple SYSIPT data files can be read via multiple job
steps with one / & at the end of the job stream.

The example in Figure 3-20 shows the job control statements needed to
1. write a job stream on disk,

2. execute the job stream from disk and store the print output on disk,
and

3. print the output from disk on the printer.

The example assumes that you have written your own programs to write
the job stream on disk (CDTODISK) and to list on the printer the print
output stored on disk (DISKTOPR).

System Files on Fixed Block Architecture (FBA) DASD. If an FBA DASD

| has a system logical unit assigned to it, the supervisor will block and
deblock system file records into the FBA Control Interval-based data
format, handle all special conditions, and update the Disk Information
Block (DIB). This permits existing DTFDI and DTFCP programs to
process system files on FBA devices without making logic changes to
handle the FBA blocking.

l Note, however, that the DTFSD support for system files on disk is limited
to sequential GET or PUT for fixed unblocked records. (That is, the
UPDATE=YES parameter is not supported.)

3-74 VSE/Advanced Functions System Management Guide

®
©

®

// JOB STORE
// ASSGN SYS001,00C

// ASSGN SYS006,190

// DLBL DASDOUT,'DASDOUTFILE’

// EXTENT SYS006,DOSRES, 1,0,1260,30
// EXEC CDTODISK

// JOB A

8
// JOB B

JOB STREAM
IS EXECUTED
FROM DISK

/3 '_
CLOSE SYSLST,00E i,
_CLO SYSIN,00C

* *

/&

// DLBL 1JSYSLS,’"OUTPR’
// EXTENT SYSLST,PVRLST,1,0,1970,20
ASSGN SYSLST,191

PRINT
// DLBL IJSYSIN,'DASDOUTFILE’ OUTPUT

// EXTENT SYSIN,DOSRES,1,0,1260,30
ASSGN SYSIN, 190

// JOB PRINT
// ASSGN SYS001,191
// ASSGN SYS002,00E

// DLBL OUTPR

// EXTENT SYS001,PVRLSL,1,0,1970,20 PRINTED
// EXEC DISKTOPR LISTING
/&

The program CDTODISK reads the following job stream from the card reader {SYS001) and stores it on disk (SYS006). The end
of the job stream is indicated to CDTODISK by **.

SYSLST and SYSIN are switched to disk. Job control now reads the job stream from the disk on device 190. The job stream is
executed and the print output is stored on the disk on device 191. The CLOSE commands at the end of the job stream will close
the system files on disk and reassign them to the printer and card reader, respectively.

The program DISKTOPR reads the print output from disk (SYS001) and lists it on the printer (SYS002).

Figure 3-20. Processing System Input and Output Files on Disk

Chapter 3: Using the System 3-75

System Files on Diskette

If the system input units SYSRDR and SYSIPT are assigned to a diskette J
extent, they must be referred to as SYSIN. Since the output units SYSLST

and SYSPCH have different record lengths, they must be assigned to

separate diskette extents; SYSOUT therefore cannot be used if SYSLST

and SYSPCH are assigned to diskette.

For system files on diskette, you must provide the required label
information by means of DLBL and EXTENT job control statements. In
those statements, use the following predefined file names:

IJSYSIN for SYSRDR, SYSIPT, SYSIN
IJSYSPH for SYSPCH
IJSYSLS for SYSLST

For example, the label information for SYSIN assigned to a diskette
extent could be submitted by the following job control statements:

// DLBL IJSYSIN, 'DISKETTE',,DU
// EXTENT SYSIN,DSKETE, 1

The assignment of a system file to a diskette extent must always be
permanent, and it must follow the DLBL and EXTENT statement.

Example:

// DLBL IJSYSIN, 'DISKETTE', ,DU
// EXTENT SYSIN,DSKETE, 1

ASSGN SYSIN, 060 ,

After a system file on diskette has been processed, it must be closed by a
CLOSE job control command (no //). The second (optional) operand of
the CLOSE command can be used to unassign a system logical unit or
reassign it to another device. The following command closes the SYSIN
file on diskette and reassigns SYSIN to the card reader at address 00C.

CLOSE SYSIN,00C

The CLOSE command can either be entered on SYSLOG by the operator
or it can be included at the end of the job stream on diskette.

If SYSIPT is assigned to a 3540 diskette, the CLOSE command must
precede the / & . Multiple input data files can be read via multiple job
steps with one / & at the end of the job stream.

When job control encounters / & on SYSRDR during normal operation,
the standard assignment for SYSIPT becomes effective and SYSIPT is
checked for an end-of-file condition. If the standard assignments for
SYSRDR and SYSIPT are not to the same device, SYSIPT is advanced to
the next /* statement.

Interrupting SYSIN Job Streams on Disk, Diskette, or Tape
After a SYSIN or SYSRDR job stream has been prepared on tape,]

diskette, or disk, it may be necessary to interrupt the normal schedule to
execute a rush job. To do this, press the Request key on the operator

3-76 VSE/Advanced Functions System Management Guide

console and enter a PAUSE command with the EOJ operand causing the
corresponding partition to suspend processing at the end of the current
job. At this point you can make a temporary assignment for SYSIN to a
card reader to execute the rush job. At the end of this job, processing of
the job stream on disk, diskette, or tape will resume at the point of
interruption. This is illustrated in Figure 3-21. Starting an urgent job that
uses a cataloged procedure by means of a single EXEC statement is ;
discussed under Partition-Related Cataloged Procedures later in this

section.

Card Reader Disk Extent Operator Console

// DLBL LJSYSIN, . ..
/I EXTENT SYSIN, . ..

ASSGN SYSIN,191 — // JOB A
/&
//JOB B @
. Press REQUEST key and
. enter PAUSE xx, EQOJ
. where xx is the 1D of
. the partition

&
// JOB RUSH oottt CoIIToIIoI-V// ASSGN SYSIN,00C
. //J0B C
. —
/&
// JOB D 6) CLOSE SYSIN,00C
/&
// JOBE
/&

SYSIN is assigned to disk and processing of the jobstream on disk begins.
While job B is being executed a PAUSE command is entered at the operator console.

At the end of job B control comes to the operator who can now enter a temporary assign-
ment for SYSIN to the card reader.

The job RUSH is read and processed from the card reader. Note that the temporary
assignment of SYSIN is not reset by the //JOB RUSH statement but is retained to end of
the job. '

The /& statement resets the temporary assignment of SYSIN to permanent (190) and
the next job in the stream on disk is read and executed.

®@ @ ® 0o

The CLOSE command closes the system file on disk and reassigns SYSIN to the card
reader to process jobs D and E.

Figure 3-21. Interrupting a Job Stream on Disk

Chapter 3: Using the System 3-77

Record Formats of System Files

SYSLST records are 121 characters and SYSPCH records 81 characters in
length. From SYSRDR and SYSIPT, job control accepts either 80- or
81-character records.

The first character of the SYSLST and SYSPCH records is assumed to be
an ASA carriage control or stacker selection character. SYSIPT, SYSRDR,
SYSPCH, and SYSLST records assigned to DASD have no keys, and
record lengths are the same as stated above. (For CKD devices the
records are unblocked; for FBA devices, the operating system
automatically blocks records into the FBA format and also deblocks
them.)

Using Cataloged Procedures

This section describes how to retrieve a cataloged procedure from a
procedure library and how to modify the contents of a cataloged
procedure. How a procedure is cataloged in a procedure library is
discussed in Using the Libraries later in this chapter.

Retrieving Cataloged Procedures

To retrieve a cataloged procedure from the procedure library you use the
PROC parameter in the EXEC job control statement, specifying the name
of the cataloged procedure. Assume that a program called PAYROLL uses
the following job control statements (in addition to the // JOB and / &
statements) and that these statements have been cataloged in a procedure
library under the name PAY.

// BASSGN SYS017,SYSRDR

// ASSGN SYS018,SYSPCH

// ASSGN SYS019,00E

// BASSGN SYS020,TAPE

// ASSGN SYS021,DISK,VOL=111111

// TLBL TAPFLE,'FILE-IN'

// DLBL DSKFLE,'FILE-OUT',99/365,SD
// EXTENT SYS021,111111,1,0,200,400
// EXEC PAYROLL

If the program PAYROLL is to be executed, the programmer or operator
would simply prepare the following job control statements:

// JOB USERI
// EXEC PROC=PAY

/&

When the job control program starts reading the job control statements in
the input stream on SYSRDR and finds the EXEC statement, it knows by
the operand PROC that a cataloged procedure is to be inserted. It takes
the name of the procedure to be used (PAY) and retrieves the procedure
with that name from the procedure library.

You may have cataloged some or all of your procedures into private
procedure libraries. Whether the job control program uses the system
procedure library and/or private procedure libraries for retrieval depends

3-78 VSE/Advanced Functions System Management Guide

9

on your library definitions. The LIBDEF job control statement (or
command) allows you to define a chain of libraries to be searched. For
example, if you wanted job control to search in the following order

1. system procedure library
2. private procedure library with filename 'PROLIB1’
3. private procedure library with filename ’PROLIB2’
your library chain definition might look as follows:
// LIBDEF PL,SEARCH=(IJSYSRS,PROLIB1,PROLIB2),PERM

If no LIBDEF definition is active, job control searches the system
procedure library only. For a more detailed description of the LIBDEF
statement, refer to section Job Control for Library Definitions, earlier in
this chapter.

After the procedure (PAY) has been retrieved, SYSRDR is temporarily
assigned to the procedure library. Job control reads and processes the job
control statements in its normal fashion. The statement

// EXEC PAYROLL

causes the program PAYROLL to be loaded and given control. When
execution of PAYROLL is complete, the job control program reads the
next statement from the procedure library and, in this example, would find
an end of procedure indicator (/+). The end of procedure indicator
returns the SYSRDR assignment to its permanent device, where the job
control program finds the / & statement and performs end-of-job
processing as usual.

Note: The listing of job control statements on SYSLOG and/or SYSLST will show
the message EOP PAY at the end of the inserted procedure.

Temporarily Modifying Cataloged Procedures

The preceding example is the simplest case of the use of cataloged
procedures. It will work as long as the requirements of the program do
not change.

It may happen, however, that some of the statements in a cataloged
procedure must be modified for a specific run of a program. For example,
the printer normally used (OOE in the preceding example) may be
temporarily unavailable and a different printer must be assigned. It does
not make much sense to delete the old procedure and to catalog a new
one because the old procedure will be needed again as soon as the normal
printer becomes operational again.

Likewise, it may be necessary to add or remove certain statements to or
from a cataloged procedure for a specific run of a program. You may
wish, for example, to process a different copy of the file FILE-OUT (see
the preceding example). You must therefore temporarily suppress the
corresponding DLBL and EXTENT statements in the cataloged procedure
and replace them by statements that identify the file you want to process
instead.

Chapter 3: Using the System 3-79

For cases like this, one or more statements in a cataloged procedure may
be

o temporarily modified (thus, overriding what was present).
e temporarily suppressed (deleted) without modifying them.
« temporarily incorporated at desired locations in a cataloged procedure.

You can request temporary modification of statements in a cataloged
procedure by supplying the corresponding modifier statements in the input
stream.

Since normally not all statements need be modified, you must establish an
exact correspondence between the statement to be modified and the
modifier statement by giving them the same symbolic name. This symbolic
name may have from one to seven characters, and must be specified in
columns 73 through 79 of both statements.

Note: An unnamed statement cannot be modified. Therefore, to be able to modify
any statement in a cataloged procedure for any usage of the procedure you should
name each statement when cataloging. Moreover, the modifier statements must be in
the sequence in which modification is to be performed on the cataloged statements.
The JOB statement cannot be modified; also, job control continuation statements
cannot be overridden.

A single character in column 80 of the modifier statement specifies which
function is to be performed:

A -indicates that the statement is to be inserted after the statement in
the cataloged procedure that has the same name.

B - indicates that the statement is to be inserted before the statement in
the cataloged procedure that has the same name.

D - indicates that the statement in the cataloged procedure that has the
same name is to be deleted.

Any other character or a blank in column 80 of the modifier statement
indicates that the statement is to replace (override) the statement in the
cataloged procedure that has the same name.

If the LOG function is active (by having issued the LOG job control
command), statements to be deleted are printed, with a D in column 80,
on the console, but not ’executed’.

In addition to naming the statements and indicating the function to be
performed, you must inform the job control program that it has to carry
out a procedure modification. This is done

(1) by specifying an additional parameter (OV for overriding) in the
EXEC statement that calls the procedure, and

(2) by using the statement // OVEND to indicate the end of the modifier
statements.

Placement of the // OVEND statement is as follows:

o directly behind the last modifier statement or,

3-80 VSE/Advanced Functions System Management Guide

o if the last modifier statement overwrites a // EXEC statement and is
followed by data input, between the /* and the / &.

The following examples show how you can temporarily modify a cataloged
procedure.

Assume that a procedure named PROCS for the program PAYROLL
contains the following statements:

73--79
// ASSGN SYS017,SYSRDR PAYO0001
// ASSGN SYS018,SYSPCH PAY0002
// ASSGN SYS019,SYSLST PAY(0003
// ASSGN SYS020,181 PAY0004
// ASSGN SYS021,DISK,VOL=111111,SHR PAY0005
// TLBL TAPFLE, 'FILE-IN' PAY0006
// DLBL DSKFLE, 'FILE-OUT' PAYO0007
// EXTENT Sys021,111111,1,0,200,200 PAYO0008
// EXEC PAYROLL PAY0009

Assume further that the programmer wants to use tape unit 183 instead of
181. The input stream on SYSRDR, in this case, would have to be as
follows:

73--80
// JOB USER
// EXEC PROC=PROCS,0V
// ASSGN SYS020,183 PAYOOO4R
// OVEND
/&

The form of the EXEC statement in the input stream indicates that (1)
the procedure PROCS is to be used and (2) this procedure is to be
modified in some way. The first three procedure statements are processed
without change. The procedure statement named PAY0004 is replaced by
the corresponding statement in the input stream. (As any character other
than A, B, or D specifies override, an R was used to indicate this.) The
remaining procedure statements are again processed without change.

As another example, assume that the program PAYROLL is to use file
FILE-OUT1 instead of FILE-OUT and that this file resides on two
extents of a disk pack that has the volume serial number 111112. The
input stream might then look as follows:

Col.73--80
// JOB USER
// EXEC PROC=PROCS5,0V
// ASSGN SYS021,DISK,VOL=111112,SHR PAYOOOS5R
// DLBL DSKFLE,'FILE-OUT1' PAYOOO7R
// EXTENT SYS021,111112,1,0,100,200 PAYOOOSR
// EXTENT SYS021,111112,1,1,500,200 PAY0008A
// OVEND
/&

Processing would be as follows: The JOB statement and all procedure
statements up to the statement named PAY0004 are processed without
modification. The procedure statements labeled PAY0005, PAY0007, and
PAYO0008 are replaced by the corresponding statements in the input
stream. The second EXTENT statement in the input stream has the
character A in column 80, which indicates that the statement is to be

Chapter 3: Using the System 3-81

inserted after the (replaced) statement named PAYO0008. The procedure
statement named PAY0009 is processed without modification.

The possibility of modification as described above makes the use of
cataloged procedures more flexible. Often, however, it is simpler and more
economical to have different procedures for the same program than to
have a single procedure and modify it.

SYSIPT data in a cataloged procedure cannot be overridden by the
procedure override facility.

Several Job Steps in One Procedure

A cataloged procedure may contain more than one EXEC statement, that
is, it may contain control statements for more than one job step (within
the same job). However, as the number of job steps in a procedure
increases, so does the time required to re-execute the whole procedure
after an error occurs.

A program written in assembler language, for instance, requires three job
steps to assemble, link edit, and execute the program. For the use of a
cataloged procedure, your input stream for the entire job (on SYSIN for
simplicity) would contain the following:

// JOB USER

// OPTION LINK

// EXEC ASSEMBLY

source deck of program to be assembled
/*

// EXEC LNKEDT

// EXEC

data for program to be executed

/*

/&

If the OPTION statement and the three EXEC statements were cataloged
under the name ASDPROC, the input stream could be simplified as shown
below.

Input from SYSIN Procedure ASDPROC
// JOB USER
// EXEC PROC=ASDPROC // OPTION LINK
. // EXEC ASSEMBLY
source statements of // EXEC LNKEDT
program to be ‘ // EXEC
assembled
/* /+ (end indicator)
. —~—
data to be
processed
/-
/&

3-82 VSE/Advanced Functions System Management Guide

Modifying Multistep Procedures

The same can be done for any number of job steps that logically belong
together and are frequently executed. A stock control program STOCK,
for instance, may be run daily to compile statistics that can be used to
prepare the following lists:

1. An exception list that shows which items are low in stock. Required
daily.

2. A list that shows the sales in currency for a certain item or group of
items. Required weekly.

3. A list that shows the sales in number of units for each item or group
of items. Required monthly.

4. An inventory list. Required semiannually.

To simplify processing, four procedures may have been cataloged:

STKPR1 - two job steps: the first to execute STOCK, the second to
prepare list 1.

STKPR2 - three job steps: the first two are the same as for STKPR1, the
third to prepare list 2.

STKPR3 - four job steps: the first three the same as for STKPR2, the
fourth to prepare list 3.

STKPR4 - five job steps: the first four the same as for STKPR3, the fifth
to prepare list 4.

Which lists are printed after every run of STOCK then depends on what
cataloged procedure is used.

Multistep procedures may be modified in the same way as the single-step
procedure described earlier. However, a number of considerations apply to
the ordering of the modification statements in the input stream when a
logical unit used for data input is assigned to the same physical unit as
SYSRDR.

o It is advisable to avoid using identical symbolic names for the
statements in the procedure.

e The modifier statements must be in the same sequence as the
statements in the referenced procedure.

« Modifier statements are normally placed immediately following the
EXEC PROC=procedure,OV statement. When input data is read by a
job step (EXEC statement) executed from the procedure, the
following cautions should be observed:

1. The first statement following the EXEC PROC=procedure,0OV
must be a modifier statement (see ’1” in Figure 3-22).

2. Modifier statements that take affect after the input data is read
are placed following the input data except for the first modifier
which must precede the input data (see ’1” and the modifier
statement ASSGN SYSSLB,UA in Figure 3-22).

Chapter 3: Using the System 3-83

[P ——

3. An exception to point 2 above is when the input data is processed
by a job step that itself was modified (see ’3” and 4" in Figure
3-22). In this case the next modifier must follow the data (see
statement ’3” and the modifier ASSGN SYSCLB,UA in Figure

3-22).

Figure 3-22 shows an example of modifying the second and third steps of

a three-step procedure.

In the example given in Figure 3-22, it is assumed that SYSRDR and
SYSIPT are assigned to the same physical unit.

SYSIN Input Stream

Procedure CATO1 Containing JCL Only

Column 73—79
// EXEC PSERV STMT1
ASSGN SYSCLB,130 STMT2
// ASSGN SYSRLB,130 STMT3
// ASSGN SYSSLB,130 STMT4
// EXEC DSERV STMT5
// ASSGN SYSSLB,UA STMT6
// EXEC DSERV,REAL STMT?7

/+

Column 73—-79

// JOB EXAMPLE

// EXEC PROC=CATO01,0V

// ASSGN SYSRLB,UA STMT3

DSPLY CATO1

/l

// ASSGN SYSSLB,UA STMT4

// EXEC DSERV,REAL STMT5

DSPLY CD,RD,SD

/I

ASSGN SYSCLB,UA STMT6

// OVEND
(5) DSPLY CD, PD

/l

/&
o This is the first modifier statement. It refers to the second job step.
@ This statement provides SYSIPT data for PSERV.
9 This modification overwrites the EXEC statement.
Q This statement provides SYSIPT data for DSERV (STMT5).
@ This statement provides SYSIPT data for DSERV (STMT7).

Figure 3-22. Example of Modifying a Three-Step Procedure

SYSIPT Data in Cataloged Procedures

In the example shown in Figure 3-22 the librarian service programs

PSERYV and DSERYV accessed data from the logical unit SYSIPT. This
’SYSIPT’ data may be made part of your cataloged procedure. System
utility, system service programs, and language translators all read their

input from SYSIPT.

3-84 VSE/Advanced Functions System Management Guide

9

When you catalog a procedure containing SYSIPT data, the directory
entry for the procedure indicates this. When you execute such a
procedure, job control checks to see whether or not it contains SYSIPT
data. If it does, both SYSRDR and SYSIPT are assigned to the procedure
library until the end of the procedure. SYSIPT data in a cataloged
procedure cannot be overriden by the procedure library override facility.

SYSIPT inline data in procedures may also be any data that is processed

under control of the device independent IOCS used by your program or

IBM-supplied programs. Normally, though, you would not catalog source
I programs or data for your problem programs in a procedure library.

SYSIPT inline data in procedures is useful and convenient mainly in the
case of control information for system utility and service programs.

A job stream for an initialize disk utility run could, for instance, contain
the following control statements (the statements are shown in skeleton
format only):

// BSSGN ...

// EXEC INTDK

// UID IR,C1,R=(0027003)
// VTOC STANDARD
VOL1111111

// END

/8

The job control statements are read from SYSRDR, the utility control
statements are read from SYSIPT. If, however, both the job control and
utility control statements had been cataloged (for example, under the
name INITDK), only the following statements would be required on
SYSRDR:

// JOB NAME
// EXEC PROC=INITDK
/&

If two or more programs in a procedure read SYSIPT data, the SYSIPT
data must be handled in a consistent manner, that is, if the SYSIPT data
is included in the procedure for one job step, it must be included for all
job steps in that procedure which require SYSIPT data.

Partition-Related Cataloged Procedures

Although a given procedure may be executed in any partition, a particular
job may need a specific set of job control statements, dependent on the
partition of execution. For example, you may want to run a job to store
DLBL and EXTENT statements in the partition label subarea for each
partition (OPTION PARSTD). Since each partition requires a different set
of label information, you would need a cataloged procedure for each of
your partitions. Partition-related cataloged procedures then allow you to
retrieve and execute the appropriate procedure with one version of the
EXEC statement, no matter which partition you are running in. One
benefit of this feature lies in the ease with which unscheduled jobs can be
started.

Chapter 3: Using the System 3-85

To use the feature, you must first create separate procedures that conform
to the specific partitions in your system. Most probably, the difference in
these procedures will be in the EXTENT and DLBL statements because
of the different device and DASD space assignments from partition to
partition. Next, in order to distinguish between the procedures and relate
them to the appropriate partitions, the following naming convention must
be used for cataloging these procedures:

First character of name - §

Second character — O for BG partition
— 1 for F1 partition, 2 for F2 partition, etc.
— A for FA partition (partition 10)
— B for FB partition (partition 11)

any alphameric character

Third-eighth characters

In the EXEC statement used to start the job, the first two characters of
the procedure name must be $$, with the remaining characters identical to
the last six characters of the cataloged name.

To continue the previous example, the procedures may be named

' $OPARSTD for the BG partition, $1PARSTD for the F1 partition and so
on. The statement thus needed to invoke the appropriate procedure is
// EXEC PROC=$$PARSTD.

Partition related procedures or procedures for the starting of urgent jobs
are of great help to the operator. Full details on the use of cataloged
procedures by the operator are given in VSE/Advanced Functions
Operating Procedures.

3-86 VSE/Advanced Functions System Management Guide

C

Linking Programs

' Prior to execution in storage, all programs must be placed in a core image

library by the linkage editor. This section describes the role of the linkage
editor and how you can communicate with it through control statements.

The name linkage editor appropriately reflects the editing and the linking
operations that this program performs. The linkage editor prepares a
program for execution by editing the output of a language translator into
one or more executable phases. The linkage editor also combines
separately assembled or compiled program sections or subprograms (called
object modules) into phases. This process is referred to as linking.

A program can be link edited into one or more phases and
o cataloged permanently,

o cataloged permanently and executed immediately, or

o cataloged temporarily and executed immediately.

When a phase is cataloged permanently into a core image library, the
linkage editor is no longer required for that phase, because the supervisor
can load it directly from the library in response to an EXEC job control
statement, or a FETCH or LOAD macro. On the other hand, if the phase
is cataloged temporarily and executed immediately, the linkage editor is
required again the next time the phase is to be run.

Phases are stored either temporarily or permanently, depending on the
option specified in the OPTION job control statement:

// OPTION LINK

If the LINK option is specified, the phase is stored temporarily for
immediate execution in the same job. This phase will be overwritten in the
core image library by the next phase that is link edited.

// OPTION CATAL

If the CATAL option is specified, the phase is stored permanently and
can be executed any time after the link edit run.

The linkage editor runs in any partition, and the phases produced by the
linkage editor are executable in any partition. The linkage editor can at
the same time run in more than one partition without endangering the
integrity of your program data. This holds true even if each executing
linkage editor program updates (that is, catalogs into) the same core image
library.

Note, however, that updating from multiple partitions is sequential, not
concurrent: the particular core image library is locked by one partition.
When linking in this partition is completed, the linkage editor program
running in another partition becomes eligible for updating the core image
library.

Chapter 3: Using the System 3-87

Structure of a Program
To understand the functions of the linkage editor, you must understand J
the structure of a program during the various stages of its development.

Figure 3-23 summarizes the three sections that follow, which discuss
source modules, object modules, and program phases.

SOURCE MODULE OBJECT MODULE

—> Language —> Linkage
@ Translator @ - Editor

/ --

Source Statement Relocatable Core Image
Library Library Library
A set of source statements, or source module (1), must be processed by a language translator, but can first J

be cataloged as a book (2) into the source statement library. The output of the language translator is called
an object module (3), which must be processed by the linkage editor, but can first be cataloged as a module
(4) into the relocatable library. The output of the linkage editor is called a phase (5), which is cataloged

I into a core image library temporarily or permanently, and can also be loaded into the shared virtual area.

Figure 3-23. Stages of Program Development

Source Modules

After planning the most logical approach to your application, you write a
set of source statements in a programming language. Your set of source
statements, called a source module, is processed by a language translator.
The language translator assembles source modules written in assembler
language, or it compiles source modules written in a high-level language
(for instance, COBOL, PL/I, or RPG II). The language translator
transforms the source module into an object module, which is in machine
language.

You can either submit your source module directly to the language
translator for processing, or you can catalog it into a sublibrary of the
source statement library for processing at a later time by the language
translator.

Source modules are written in one or more control sections (CSECTs). J
Using assembler language the programmer defines the control sections.

3-88 VSE/Advanced Functions System Management Guide

C

Object Modules

Source modules written in a high-level language have their control sections
defined by the various compiler options used.

An object module, the output of a language translator, consists of the
dictionaries and text of one or more control sections. The dictionaries
contain the information needed by the linkage editor to modify portions
of the text for relocation and to resolve cross-references between different
object modules. The text consists of the actual instructions and data fields
of the object module. You can either submit your object module directly
to the linkage editor for processing, or catalog it into a relocatable library
for later inclusion in a linkage editor job stream.

For each object module the language translator produces four types of
records as illustrated and summarized in Figure 3-24. For more
information about these records see VSE/Advanced Functions System
Control Statements.

09—

Byte 0 1 4

0 Contains X'02'. Identifies the record as one of an object module.

e Indicates the record type and can be one of the following:

C’ESD’ -- External symbol dictionary. Contains symbols defined in this mo-
dule and referred to by one or more other modules and symbols referred to
in this module but defined in another module.

C'TXT’ - Text. Contains actual code plus control information needed by the
linkage editor.

C’RLD’ -- Relocation list dictionary. Identifies those portions of the text
which must be modified when the program is relocated for execution.

C’END’ -- End of module. Indicates.the end of a module. The record may
contain an address where execution is to begin (transfer address) or the length
of the control section or both.

Figure 3-24. Record Types of an Object Module

If you want to change information in a TXT record, you can prepare a
REP record (user replace record) and submit it with your object module
for cataloging into the relocatable library or for linkage editor processing.
A REP record must be submitted between the TXT record it modifies and
the END record; otherwise, the TXT record is not modified. Usually, you
place the REP record(s) immediately before the END record.

Chapter 3: Using the System 3-89

- . e o al

Program Phases

The linkage editor produces a program phase from the object module(s)
you identify in linkage editor control statements. A phase is the functional
unit (consisting of one or more control sections) that the system loader
can load into a partition in response to a single EXEC job control
statement (or a FETCH or a LOAD macro instruction in an assembler
language program).

In the PHASE control statement you instruct the linkage editor to produce
one of three types of phases: relocatable, self-relocating, or
non-relocatable.

Relocatable Phases. A phase is relocatable if it can be loaded for
execution in any partition’s address area. The linkage editor produces a
relocatable phase unless you specify an absolute origin (load) address
instead of a relative address. However, IBM recommends that you always
specify a relative origin address. An address, in order to be relative, is
represented by a symbol with or without a displacement; for details see
VSE/Advanced Functions System Control Statements.

If a relocatable phase is also designed as a reenterable phase, it is eligible
to be loaded into the shared virtual area (SVA). Phases resident in the
SVA can be shared concurrently by programs running in either real or
virtual mode.

Self-Relocating Phases. Prior to the availability of a loader with the
relocating capability some users coded self-relocating programs in order to
gain the advantages of relocatability. If you have to perform maintenance
on such a program, you must write this program in assembler language
according to the rules described in VSE/Advanced Functions Macro User’s
Guide. In the PHASE contro] statement you indicate an origin address of
+0. The program must relocate all its addresses at execution time to
correspond with the addresses available in the partition where the program
is loaded.

Non-Relocatable Phases. A non-relocatable phase is link edited to be
loaded at a specific location (absolute address) associated with a partition.
When you request execution of a non-relocatable phase in a given
partition, the starting and ending addresses of the phase must be included
within that partition. Otherwise, the job is canceled. If you wish to
execute a non-relocatable phase in more than one partition, you must
catalog a separate copy of the phase for each partition.

The Three Basic Applications of the Linkage Editor

The three basic applications of the linkage editor are referred to as:
« cataloging phases into the core image library
o link edit and execute

« assemble (or compile), link edit, and execute.

3-90 VSE/Advanced Functions System Management Guide

9

C

The following sections include a discussion of the system flow during each
of these applications.

Cataloging Phases into the Core Image Library

Link Edit and Execute

When you have an operational program (as an object deck in cards or on
tape, for example) and you expect to use that program frequently, you
should catalog it into a core image library. You can do this in a single job
step, which is shown in Figure 3-25, and described below.

Job control copies, onto SYSLNK, the linkage editor control statements
present on SYSRDR. The INCLUDE statement, without operands, signals
job control to read any object modules that are to be included from
SYSIPT. If an ENTRY statement is not encountered before the // EXEC
LNKEDT statement, job control writes one on SYSLNK. An ENTRY
statement signals termination of the input to the linkage editor.

The linkage editor is loaded into the partition where the job stream was
submitted; it uses SYS001 as a work file.

Because the CATAL operand of the OPTION statement was specified,
the linkage editor places the executable program permanently into a core
image library. Which particular core image library serves as target library
depends on your library definition to job control (see Processing
Requirements for the Linkage Editor, later in this section.). The library
descriptor entry in the core image directory for cataloged phases is
updated.

If the phase is already in the shared virtual area (SVA) or (via the SET
SDL command) has been requested to be loaded into the SVA, the phase
is also loaded into the SVA after it has been cataloged to the system core
image library as SVA eligible. Also, if the phase has an entry in the
system directory list, the entry is updated.

Cataloging a Supervisor. Supervisors may also be cataloged permanently
into the core image library as described above. Be sure, when doing this,
to specify a unique name (eight alphameric characters) for each
supervisor.

You do not always need to catalog a permanent copy of your program
into the core image library in order to execute the program. For instance,
you have modified parts of your program and want to test these
modifications with the entire program. In this case, you can specify the
LINK option, which requests that the linkage editor place a temporary
copy of the program into the core image library. Again, the INCLUDE
statement signals job control to read the following input from SYSIPT.
The shaded portions of Figure 3-26 illustrate how this job stream differs
from Figure 3-25.

By specifying an EXEC statement without a program name operand after
the EXEC LNKEDT statement, the program just link edited is loaded for

Chapter 3: Using the System 3-91

execution. The space temporarily occupied by this program in the core
image library is overwritten the next time a program is link edited. J

SYSRDR r/&
I///EXEC LNKEDT

rENTRY

SYSIPT / j/*

r Object module
(INCLUDE
r PHASE
(ACTION

I // OPTION CATAL
// JOB CATALOG

SYSRDR

Figure 3-25. A Job Stream to Catalog a Program into the Core Image
Library

Assemble (or Compile), Link Edit, and Execute

You can also combine the job steps described above with a job step for
assembly (or compilation) of your source program. This is especially
useful when you are developing a program. Figure 3-27 shows how your
job stream should be set up. The shaded portions of the figure illustrate
how this job stream differs from that shown in Figure 3-26. Linkage
editor control statements are not required when linking single-phase
programs temporarily into the core image library.

You direct the language translator to write the object module directly onto
SYSLNK by specifying the LINK option at the beginning of the job.
After the linkage editor processed the input from SYSLNK, your program
is loaded for execution.

Instead of submitting three job steps, you may specify the GO parameter

in the EXEC statement that invokes the assembler (compiler). This causes

the linkage editor and your executable program to be invoked

automatically. Only the source program and any additional data for the

go step are required. For multiple assemblies (compilations), an OPTION

LINK statement must precede the first EXEC statement for an assembly

or compilation. This is true also when linkage editor control statements

like INCLUDE or PHASE are used. If no LINK option is set, the GO

parameter will be in effect only for the EXEC statement it appears on,

and the ACTION default will be set to NOMAP (linkage editor control)

3-92 VSE/Advanced Functions System Management Guide

SYSRDR

statements are described below, in Preparing Input for the Linkage Editor,
later in this section).

SYSRDR

/7 EXEC LNKEDT [

™ :
SYSIPT |

e

(Object module

rINCLUDE

ACTION
i OPTION LINKEH
/7JOB TEMP

The // EXEC statement (without a program name operand) causes this program to
be loaded for execution immediately.

The // OPTION CATAL statement may also be used in this job stream. In this case,
the program that was cataloged (permanently) is executed immediately. When
// OPTION CATAL is specified a PHASE statement is required.

Figure 3-26. A Job Stream to Link Edit a Program for Immediate
Execution

When you make use of the GO parameter, your executable program has to
run in virtual mode, and the partition GETVIS area available to this
program will be of the IBM set default size unless you overrode that value
through the SIZE command.

If errors occur in one job step causing an abnormal termination, the
remaining job steps are ignored. Certain linkage editor errors do not
cause job step termination. If you do not want to execute the program
when these errors occur, you may specify ACTION CANCEL after the
// OPTION LINK.

Chapter 3: Using the System 3-93

SYSRDR

SYSRDR rV&
r'//EXEc

r7/EXECLNKEDT

SYSIPT

IASSEMBLY
/ / OPTION LINK

//JOB TEST

Figure 3-27. A Job Stream to Assemble, Link Edit, and Execute

Processing Requirements for the Linkage Editor

I Library Definitions

/

Relocatable Library. Job control statements (commands) are available to
define one or more private relocatable libraries. It is from these libraries
that the linkage editor retrieves object modules whenever an INCLUDE
or the AUTOLINK function request such a retrieval.

The LIBDEEF job control statement defines a chain of relocatable libraries
(note that this ’chain’ may consist of only one library). For example, if
you want to instruct the linkage editor to search, in that sequence, the two
private relocatable libraries with filenames MYRELO1 and MYRELO?2,
you would specify

// LIBDEF RL,SEARCH=(MYRELO1,MYRELO2)

This chain implicitly includes as a third member the system relocatable
library. If you wanted the linkage editor to search first the system library
and then the other libraries, the SEARCH parameter would look as
follows:

SEARCH=(IJSYSRSMYRELO1,MYRELO2)

The LIBDEEF statement is discussed in more detail in the last section of
this chapter Using the Libraries.

Your job stream may start with an assemble/compile step. What has been
said about the relocatable library definition holds equally true for the
source statement library: you may define a chain of source statement)

3-94 VSE/Advanced Functions System Management Guide

Symbolic Units Required

libraries. The LIBDEF statement would contain the parameter SL instead
of RL.

If only one private relocatable library needs to be defined, you may simply
use the ASSGN job control statement

// ASSGN SYSRLB,cuu

Note that both ASSGN and LIBDEF need matching DLBL/EXTENT
information.

Core Image Library. The link edited phase is placed into one of the
following:

— the core image library in a (temporary or permanent) library definition
of the form

LIBDEF CL,TO=filename,...
~ the system core image library if no LIBDEF definition is present.
An ASSGN of SYSCLB will be treated as a

LIBDEF CL,SEARCH=(IJSYSCL) FROM=IJSYSCL,TO=1JSYSCL,PERM

Note: If a LIBDEF CL definition is present, but no TO library specified, the system
core image library will not be taken as default; the link edit job is canceled, instead.

When OPTION LINK is in effect, the execution step retrieves the phase
to be executed from the library that served as target library in the link
edit step.

The linkage editor requires the following symbolic units:
SYSIPT Module input (if any)

SYSLST Programmer messages and listings (if SYSLST is not assigned,
no map is printed and programmer messages appear on
SYSLOG)

SYSLOG Operator messages _
SYSRDR Control statement input (via job control)
SYSLNK Input to the linkage editor

SYS001 Work file.

Note that SYSRDR and SYSIPT may contain input for the linkage editor.
This input is written on SYSLNK by job control.

If output from the linkage editor is to be placed in a private cotre image
library and you don’t use the LIBDEF statement, the following symbolic
unit is required:

Chapter 3: Using the System 3-95

SYSCLB The private core image library. It may be assigned anywhere
in the job stream but before job control reads the // EXEC
LNKEDT statement.)

If object modules from a private relocatable library are to be link edited
and you do not use the LIBDEF statement, the symbolic unit SYSRLB
must be assigned.

I Linkage Editor Work Files in VSAM-managed Space

Linkage editor work files may be placed in VSAM-mmanaged space if you
have the VSE/VSAM Space Management for SAM feature installed.
How you address those files in your job control depends on whether the
work files are defined explicitly or implicitly. A file is defined explicitly
via the DEFINE CLUSTER command of VSAM’s Access Method
Services (for a detailed description refer to the publication Using the
VSE/VSAM Space Management for SAM Feature). If not defined
explicitly, the file is defined implicitly when the linkage editor opens the
IJSYSLN (SYSLNK) and IJSYSO1 (SYS001) files.

Assume you had explicitly defined the two files with file-id’s
%FILE.LINK and %FILE.ONE. The corresponding job control
statements would look as follows:

// DLBL IJSYSO01,'%FILE.ONE',,VSAM
// DLBL IJSYSLN,'%FILE.LINK',,VSAM

If the files are defined implicitly, you must also supply information on
space allocations, record sizes and volume id’s, as in the following J
example:

// DLBL IJSYSO1,'%FILE.ONE', ,VSAM,RECORDS=10,RECSIZE=4089
// EXTENT ,volid
// DLBL IJSYSLN,'§FILE.LINK',,VSAM,RECORDS=100,RECSIZE=322
// EXTENT ,volid

The EXTENT statements may be omitted if a default SAM ESDS model
has been defined into the VSAM catalog.

Note that these job control statements use partition independent file-id’s
so that if they are placed in the system standard label area or with the
job, concurrent linkage editor execution in multiple partitions would not
cause interference between linkage editor files.

Also note that RECORDS and RECSIZE specify the primary allocation.
On the average, 800 RLD items can be stored in a 4089 bytes long record
on IJSYSO1. Two text cards or one single control card can be stored in a
322-byte record on IJSYSLN.

Preparing Input for the Linkage Editor
The input you prepare for the linkage editor consists of job control

statements, linkage editor control statements, and object modules. Job
control reads the job control statements and the linkage editor control)

3-96 VSE/Advanced Functions System Management Guide

statements from the device assigned to SYSRDR and object modules from
SYSIPT. The linkage editor control statements and object modules are
copied onto the disk extent assigned to SYSLNK.

The linkage editor control statements direct the execution of the linkage
editor. The statements are: ACTION, ENTRY, INCLUDE, and PHASE.
A description of how to prepare these control statements is given on the
following pages. Here, the various operands of the control statements are
described under headings that indicate their function.

Assigning a Name to a Program Phase

Each program phase the linkage editor is to produce should have a name,
which you specify in the PHASE statement. When a phase is cataloged in
the core image library, the phase name identifies that phase for
subsequent retrieval. In other words, the same phase name you supplied in
the PHASE statement when permanently cataloging the initial or only
phase of a program must be used as the operand in the EXEC job control
statement or in a FETCH or a LOAD macro instruction.

When you catalog a phase with the same name as a phase already residing
in the core image library, the earlier entry with the same phase name is
deleted from the core image directory (and, if applicable, the system
directory list in the SVA) and cannot be accessed again.

The choice of a phase name has a bearing on retrieval efficiency and the
subsequent use of the librarian programs. Job control scans the directory
of the appropriate library for all phases starting with the same four
characters as the program name specified in the EXEC statement.

Any phases with the same first four characters of their phase name will be
classified as a multiphase program. When a phase of a multiphase program
is fetched, the available address space must be large enough to contain the
largest of those phases even if that phase is not part of the program which
is being executed.

Phase names may be formed only from characters 0-9, A-Z, /, #, $, and
(@. Otherwise, the phase statement is invalid. The names S, ”ALL”,
and "ROOT?” are invalid phase names.

In choosing a name for any multiphase program, make sure that the first
four characters are the same for all phases of that program but different
from those of other programs. Such names simplify the deleting,
displaying, punching, merging, and copying of the entire program. Figure
3-28 summarizes the above recommendations.

Note: A phase name ”//” cannot be placed into the System Directory List via the job
control command SET SDL.

Chapter 3: Using the System 3-97

Different names should be given to each
multiphase program; each phase of a
multiphase program should be named

with the same first four characters. This

simplifies library maintenance.

Prog1 Prog3
ABCD1 ANN11 WXYZ1
ABCD2 ANN12 WXYZ2
ABCD3 ANN13 WXYZ3
ABCD4 ANN14

ANN15
WXYZn

Simplified library maintenance means, for example, that one simple control state-
ment deletes all phases of Prog1:

(DELETC ABCD.ALL

If the programs had been named:

Prog1 PI’092 Prog3

ABCD1 ABCD5 ABCD10

ABCD2 . ABCD6 ABCD11

ABCD3 ABCD7 ABCD12
ABCD4 ABCDS8
ABCD9

ABCDn

the statement required to delete Prog1 would be:

(DELETC ABCD1, ABCD2, ABCD3, ABCD4

Figure 3-28. Naming Multiphase Programs

Defining a Load Address for a Phase

For link editing, you specify where your program is to be loaded for
execution. You have several choices.

3-98 VSE/Advanced Functions System Management Guide

A phase can be link edited to be loaded into and executed from:
e a partition’s address area

o the shared virtual area

e an absolute address.

A phase can be link edited as a relocatable phase, a self-relocating phase,
or a non-relocatable phase.

The load address you specify in the PHASE statement determines the
relocatability status of the link edited phase:

« For a phase to be relocatable, specify a symbolic address with or
without a displacement.

« For a phase to be non-relocatable, specify an absolute address.
« For a phase which you wrote to be self-relocating, specify +0.

Full details on possible load address (also called origin address)
specifications are given in VSE/Advanced Functions System Control
Statements.

Link Editing for Execution at Any Address. If the linkage editor
determines that a phase is to be given the relocatable format, it flags the
core image directory entry for that phase, and inserts the relocation
information behind the text of the phase in the core image library.

When a relocatable phase is link edited, it is assigned a load address
relative to the partition’s address area in which the linkage editor was
executed. When executing the phase from the same partition, relocation is
not required. (This assumes that virtual storage allocations were not
changed between link editing and executing the phase.)

Executing the phase from a different partition requires relocation by the
operating system. Loading and relocating a phase takes more processing
time than just loading.

Link Editing for Inclusion in the Shared Virtual Area. If a relocatable
phase is also reenterable, it can be included in the shared virtual area
(SVA). Phases resident in the SVA can be shared concurrently by more
than one partition. It is aavantageous to include frequently-used phases in
the SVA because these are then resident when requested for execution
(they are not reloaded from the core image library).

To indicate that a phase should reside in the SVA, you must specify the
SVA operand in the PHASE statement when cataloging the phase. This
operand is ignored if the phase is not relocatable; otherwise, the SVA
operand is accepted and the phase is said to be SVA-eligible.

The linkage editor cannot check whether a phase is reenterable; however,
a protection check can occur when executing a phase from the SVA that
modifies itself and therefore is not reenterable. Because the system

directory list (SDL) is sorted prior to the loading of phases into the SVA,

Chapter 3: Using the System 3-99

the packaging of phases to be executed together should be done using the

linkage editor. J
Immediately after a phase is cataloged as SVA eligible into the system

core image library, it is loaded into the SVA if this phase either is already

in the SVA or (via the SET SDL command) has been requested to be

loaded into the SVA. See the section Building the SDL and Loading the

SVA earlier in this chapter.

Link Editing for Execution at an Absolute Address. If you specify an
absolute address in the PHASE statement, your program can be loaded
only at this address at the time of program execution. Not only must the
address you specify be within the address range of your installation’s
virtua<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>