
----- ----- -----

5C33-6094-0
File No. 5370/4300-34

--.- ­
-~--- ~- ----~-

-~-.-

Program Product

..

5C33-6094-0
File No. 5370/4300-34

VSE! Advanced Functions
System Management Guide

Program Number 5746~XE9

Release 2

--- - .--_._-- ---..--- ---- -. ---- - - -~-. --------- - ... -

Summary of Amendments

This publication, although a -0 edition, actually is a major revision of the
DOS/VSE SCP publication DOS/VSE System Management Guide,
GC33-5371-7. For a complete overview of new functions that have
become available since Release 34 of the DOS/VS SCP, refer to the
publication Introduction to the VSE System.

The amendments cover:

• Sharing of data on DASD across computing systems

• Chaining of libraries

• Sharing of libraries across partitions and across computing systems

• Extended multiprogramming and subtasking support (up to twelve
partitions and up to 208 subtasks)

• Improved label processing

• New initial program load functions and simplified supervisor assembly

• Linkage editor work files in VSE/VSAM managed data space, as
supported by the VSE/VSAM Space Management for SAM feature.

• More ease of use with VSE/VSAM space management (simplified job
control language)

• Inclusion of Device Support Facilities (DSF)

Significant changes are indicated· by· a ~ertical bar to the left of the
changes.

First Edition (October. 1979)

This edition applies to Release 2 of VSE/ Advanced Functions and to all subsequent
releases until otherwise indicated in new editions or Technical Newsletters. Changes
are continually made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM Syslem/370
Bibliography, GC20-0001, for the editions that are applicable and current.

It is possible that this material may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced
in your country. Such references or information must not be construed to mean that
IBM intends to announce such IBM products, programming, or services in your
country.

Publications are not stocked at the address given below; requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch office
serving your locality.

A form for readers' comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Laboratory, Programming
Publications Department, Schoenaicher Strasse 220, 0-7030 Boeblingen, Germany.
IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, continue
to use the information you supply.

© Copyright International Business Machines Corporation 1979

IT

TIllS MANUAL ...

. .. is a guide to using the functions available with the licensed
YSE/ Advanced Functions and its complementary system control
programming (SCP) code.

'YSE' refers to the mM Disk Operating System/Virtual Storage Extended
(DOS/YSE). YSE comprises your entire operating system, that is, not
only YSE/ Advanced Functions which is the minimum required support,
but also any optional installed system support. The latter may consist of
mM-supplied support programs (such as YSE/POWER, YSE/ICCF) or
of system support programs that you supplied yourself.

System management, which is discussed on a conceptual and functional
level, refers not only to the way YSE/ Advanced Functions is organized,
but also to the way you, the user, can efficiently manage your system.

Before you begin reading this manual, you should be familiar with the
information contained in the Introduction to the VSE System.

This book is not a guide to data management; instead, a separate manual
is provided for this purpose, called the VSE System Data Management
Concepts.

After reading this manual and the above mentioned manuals, you should
be able to turn directly to the YSE library of reference manuals in order
to work with your operating system. A reference manual is organized so
that you can easily retrieve specific information on the formats of the
control statements, macro instructions, labels, and messages, which you
deal with daily.

This manual is divided into four chapters:

Chapter 1: VSE/ Advanced Functions Overview provides conceptual
information on multiprogramming, virtual storage, and multitasking.

Chapter 2: Planniog the System gives planning information for system
generation.

Chapter 3: Using the System provides information on how to use the
system, in particular on the use of the IPL, job control, linkage editor,
and librarian programs.

Chapter 4: Using the Facilities and Options of VSE/ Advanced Functions
provides guidance information on how to use facilities and options of
YSE/ Advanced Functions; for example, writing IPL and job control
user exit routines, checkpointing and restarting a program, or
designing programs for virtual mode execution.

For reference purposes the organization of the system residence disk file
(SYSRES) is shown in Appendix A.

m

IV

The following IBM manuals are referred to in the text of this manual:

IBM System /370 Principles of Operation GA22-7000

IBM 4300 Processors, Principles of Operation GA22-7070

Using the VSE/VSAM Space Management for SAM Feature SC24-5192

VSE System Data Management Concepts GC24-5209

VSE/ Advanced Functions Macro User's Guide SC24-521O

VSE/ Advanced Functions Macro Reference SC24-5211

VSE/ Advanced Functions Tape Labels SC24-5212

VSE/ Advanced Functions DASD Labels SC24-S213

DOS/VSE IBM 3800 Printing Subsystem Programmer's Guide ... GC26-3900

OS/VS, DOS/VSE, VM/370 Environmental Recording Editing
and Printing (EREP) Program .. GC28-0772

Guide to the DOS/VSE Assembler GC33-4024

DOS/VSE OL TEP. .. GC33-5383

Data Security Under the VSE System GC33-6077

VSE/Fast Copy Data Set Installation Reference SC33-6082

VSE/ Advanced Functions Sysem Control Statements SC33-6095

VSE/ Advanced Functions System Generation SC33-6096

VSE/ Advanced Functions Operating Procedures SC33-6097

VSE/ Advanced Functions Messages SC33-6098

VSE/ Advanced Functions Serviceability Aids
and Debugging Procedures SC33-6099

VSE/ Advanced Functions System Utilities SC33-6100

VSE/ Advanced Functions Maintain
System History Program User's Guide SC33-6101

Introduction to the VSE System. .. GC33-6108

Table of Contents

Chapter 1: VSE/ Advanced Functions Overview ' 1-1

Multiprogramming .. .1-1
Partitions .. 1-2

Partition Priorities 1-3
Storage Protection 1-3

Device Considerations Under Multiprogramming 1-3
Virtual Storage1-4

Virtual Storage in VSE '.' 1-5
Storage Management 1-8
Relating Virtual Storage to Locations in Processor Storage1.9

Virtual Storage Implementation under VSE/ Advanced Functions 1.13
Division of Address Space 1-14
Processor Storage Utilization 1-17
Executing Programs in Virtual and Real Mode 1-17
Storage Allocation 1-18

Multitasking . 1-25
Two Types of Multitasking 1-26

Cross-Partition Event Control 1-26
Reliability/Availability/Serviceability 1-27

Recovery Management Support 1-27

Chapter 2: Planning the System 2-1

System Generation Procedure .. 2-1
Handling the Distribution System 2-2

Planning the Libraries ... 2-3
Purpose and Contents of the Libraries 2-4

Core Image Library2-4
Relocatable Library _ •2-4
Source Statement Library 2-5
Procedure Library 2-5
Private Libraries•................. 2-6

Choosing the Libraries for an Installation 2-7
Relocatable and Source Statement Libraries 2-7
Procedure Library '1.-7

Determining the Location of the Libraries2-8
Planning the Size and Contents of the Libraries 2-12

System and Work Files 2-13
Page Data Set .. 2-13
Recorder File . 2-15
Hard Copy File ... 2-15
History File . • 2-15
Alternate Dump Files 2-16
Work Files •.••......••......•..•....•..•..•.•..••.•..• 2-16

Label Information Area 2-18
Planning for Compiling in More Than One Partition 2-19

Tailoring the Supervisor 2-20
Virtual Storage Size .•.......•..•..•....•...•............. 2-20
The Shared Virtual Area 2-21
Defining the Number of Partitions and Subtasks 2-24
Library Options . 2-25

Library Chaining . 2-25
Second Level Directory for Core Image Libraries 2-26

Telecommunication . 2-26
BTAM-ES Support 2-27
ACF /VT AM Support 2-27

Linkage between VSE/ Advanced Functions and VM/370 2-27
Interactive Computing and Control . 2-28
Access Authorization Checking and Security Event Logging 2-28

Access Control 2-28
Logging and Reporting 2-29

Job Accounting ... 2-29

v

Timer Services .. 2-30
Time-of-Day Clock 2-30
Interval Timer 2-30
Task Timer ... 2-31

Console Buffering .. 2-31
Asynchronous Operator Communication 2-32
Disk Options ... 2-32

DASD Sharing Across Systems 2-32
DASD File Protection 2-32
Track Hold Option 2-33
Rotational Position Sensing 2-34

I/O Options .. 2-36
Channel Queue ' ... 2-36
Supervisor Buffers for I/O Processing 2-37
Error Queue .. 2-39
Display Operator Console Support 2-39
I/O Related Supervisor Areas 2-40

Chapter 3: Using the System 3-1

Starting the System ... 3-1
Initial Program Loading (IPL) 3-2

Establishing the Communication Device for IPL 3-3
IPL Commands 3-4
Automated System Initialization (AS I) 3-8
Automatic Functions of IPL 3-9
IPL Communication Device List .3-9

Building the SDL and Loading the SV A 3-10
Automatic SVA Loading 3-10
SDL Procedure at IPL 3-11
User Options for the SV A 3-11

Creating the System Recorder File 3-13
Creating the Hard Copy File 3-16
User-Defined Processing after IPL 3-16
Entering RDE Data 3-16
Allocating Address Space to the Partitions 3-17
Allocating Processor Storage to the Partitions 3-18
Initiating Foreground Partitions 3-18
Automated System Initialization (AS I) 3-19

Implementation Requirements 3-20
Contents of ASI IPL Procedures 3-22
Contents of ASI JCL Procedures 3-23
Example of an ASI JCL Procedure Set 3-24

Invoking VM/370 Linkage Support 3-26
Controlling Jobs .. 3-28

Defining a Job .. 3-28
Job Streams .. 3-31
Relating Files to Your Program 3-32

Symbolic I/O Assignment 3-33
Logical Units .. 3-35
Types of Device Assignments . 3-37
Device Assignments in a Multiprogramming System 3-38
Additional Assignment Considerations 3-42

Processing of File Labels 3-43
Label Information for Files on Diskette Devices 3-47
Label Information for Files on Direct Access Devices 3-48
Label Information for Files on Magnetic Tape 3-51
Storing Label Information 3-52

Job Control for Library Definitions 3-55
Establishing a Library Definition . 3-56
Resetting a Library Definition 3-58
Displaying Library Definitions 3-59

Tape and Print Operations 3-59
Controlling Magnetic Tape 3-59
Controlling Printed Output 3-60

Executing a Program 3-61
Assembling/Compiling, Link Editing, and Executing a Program 3-61
Defining Options for Program Execution 3-66

VI

Communicating with Problem Programs via Job Control 3-67
Executing in Virtual or Real Mode , .. 3-67
Dynamic Allocation of Storage . 3-69

System Files on Tape, Disk or Diskette 3-71
System Files on Tape 3-72
System Files on Disk 3-73
System Files on Diskette 3-76
Interrupting SYSIN Job Streams on Disk, Diskette, or Tape 3-76
Record Formats of System Fil~s 3-78

Using Cataloged Procedures 3-78
Retrieving Cataloged Procedures . 3-78

Temporarily Modifying Cataloged Procedures 3-79
Several Job Steps in One Procedure 3-82
Modifying Multistep Procedures ' 3-83
SYSIPT Data in Cataloged Procedures 3-84
Partition-Related Cataloged Procedures 3-85

Linking Programs . 3-87
Structure of a Program 3-88

Source Modules . 3-88
Object Modules ,. 3-89
Program Phases . 3-90

The Three Basic Applications of the Linkage Editor 3-90
Cataloging Phases into the Core Image Library ' : 3-91
Link Edit and Execute 3-91
Assemble (or Compile), Link Edit, and Execute ' 3-92

Processing Requirements for the Linkage Editor 3-94
Library Definitions. • . 3-94
Symbolic Units Required 3-95
Linkage Editor Work Files in VSAM-managed Space 3-96

Preparing Input for the Linkage Editor 3-96
Assigning a Name to a Program Phase 3-97
Defining a Load Address for a Phase 3-98
Building Phases from Object Modules with the INCLUDE Statement . 3-100
Linkage Editor Storage Requirements 3-101

The AUTOLINK Feature 3-101
Specifying Linkage Editor Aids for Problem Determination or Prevention. 3-103

Clearing the Unused Portion of the Core Image Library 3-103
Obtaining a Storage Map 3-103
Terminating an Erroneous Job 3-104

Designing an Overlay Program . • 3-104
Relating Control Sections to Phases 3-104
Using FETCH and LOAD Macros 3-106

Examples of Linkage Editor Applications . 3-106
Catalog to the System Core Image Library Example 3-107
Catalog to a Private Core Image Library Example 3-108
Link Edit and Execute Example 3-109
Compile and Execute Example . 3-111

Using the Libraries ... 3-113
The Librarian Programs 3-114

Maintaining the Libraries ; 3-116
Organizing the Libraries 3-129
Using the Service Functions of the Librarian 3-137

Creating and Working with Private Libraries 3-141
Private Library Creation 3-141
Using Private Libraries ',' 3-144

Chapter 4: Using'the Facilities and Options of VSE/ Advanced
Functions4-1

User-Written Exit Routines4 .. 1
Prol!ram Exit Routines 4-1

Interval Timer Exit 4-2
Program Check Exit 4-2
Abnormal Termination Exit 4-3
Operator Communications Exit 4-3
Task Timer Exit ' 4-3
Page Fault Handling Overlap Exit 4-4

Writing an IPL User Exit Routine 4-4

VII

vrn

Writing a Job Control User Exit Routine 4-6
Writing a Job Accounting Interface Routine 4-9

Job Accounting Information 4-9
Programming Considerations4-11
Tailoring the Program . 4-11

Checkpointing Facility • . • • . . . • . . • • . • • . . .• 4-1 S
Restarting a Program from a Checkpoint .. 4-1 S

DASD S~tching under VSE/Advanced Functions 4-16
DASD Sharing by Multiple VSE Systems 4-18

Reserving Devices for Exclusive Use 4-19
Resource Locking .. 4-19
Lock Communication File 4-21
How to Initialize a Shared VSE Environment 4-21
Definition of SYSREC in a DASD Sharing Environment 4-23
An Example of a Two-System Installation " . 4-23
Error Recovery after System Break-down 4-26

Designing Programs for Virtual Mode Execution 4-27
Programming Hints for Reducing Page Faults 4-27

General Hints for Reducing the Working Set 4-28
Using Virtual Storage Macros 4-30

Fixing Pages in Processor Storage . 4-30
Indicating the Execution Mode of a Program 4-32
Influencing the Paging Mechanism 4-32
Balancing Telecommunication Activity "•.•..... 4-32

Coding for the Shared Virtual Area 4-33

Appendix A: System Layout on Disk A-I

IPL Records ... A-I
System Volume Label•........ A-I
User Volume Label A-I
System. Directory . A-I
Library Directories and Libraries •.•.•...•••..••.......•.•.... A-I
Label Information Area A-I

Glossary .. 5-1

Index ... 6-1

List of Figures

Chapter 1: VSE/ Advanced Functions Overview

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure I-S
Figure 1-9
Figure 1-10
Figure 1-11
Figure 1-12
Figure 1-13

Figure 1-14
Figure 1-15
Figure 1-16
Figure 1-17

The Partitions of a VSE System 1-2
Assigning Different Physical Devices to the Same Logical Units. .. 1-4
Virtual Storage and Processor Storage 1-5
Storage Management Concept -, VSE/ Advanced Functions 1-7
Running a Program in Virtual Storage 1-9
Loading Program Pages into Page Frames 1-11
Storing Pages on the Page Data Set (Pageouts) .. , 1-12
Managing the Page Pool 1-13
Supervisor Area in Virtual Storage Address Space 1-14
Partition Distribution in a Four Partition System 1.15
Shared Virtual Area in a Four Partition System 1-16
Supervisor Routines - Fixed and Pageable 1-17
Address Space for 204SK Bytes of Virtual Storage and 512K Bytes
of Processor Storage : 1-19
Supervisor Location in Both ECPS:VSE and 370 Mode 1.19
A 4-Partition System in ECPS:VSE and 370 Mode : 1-21
Executing in Real Mode 1-23
A 4-Partition System in ECPS:VSE and 370 Mode with the
GETVIS Areas 1-25

Chapter 2: Planning the System

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7

Figure 2-S

The Relative Location of the Four System Libraries 2-S
Alternative Locations of the Libraries 2-10
Example of Library Organization 2-11
Layout of the Shared Virtual Area 2-21
System Directory List . 2-23
User Program Running in Virtual Storage without RPS Support ... 2-35
User Program Running in Virtual Storage using RPS Version
of Logic Module and Channel Program 2-35
Channel Queue Table 2-37

Chapter 3: Using the System

Figure 3-1
Figure 3-2
Figure 3-3

Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-S
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13

Figure 3-14
Figure 3-15
Figure 3-16
Figure 3-17
Figure 3-1S
Figure 3-19
Figure 3-20
Figure 3-21
Figure 3-22

Example of an ASI IPL Procedure 3-S
Example for the Creation of a CDL 3-10
Example for the Creation of the SYSREC File and for
Loading User Phases in the SV A 3-15
Example of an ASI JCL Procedure Set 3-25
Example of VSE/POWER AUTOSTART Statements•. 3-26
Control Statements Defining a Job Consisting of Two Job Steps .. 3-29
Example of a Job Stream 3-31
Example of Symbolic I/O Assignment 3-34
Possible Device Assignments 3-40
Device Assignments Required for an Assembly 3-41
File Label Processing 3-45
Summary of Label Option Functions 3-55
Job Control Statements to Assemble, Link Edit, and
Execute a Program in One Job 3-62
Submitting Input Data on SYSIPT 3-63
System Operation of an Assemble, Link Edit and Execute Job 3-65
Storage Layout of a Partition With Default GETVIS Area 3-70
Storage Layout of a Partition after the SIZE Command is Given .. 3-70
Program Execution with the SIZE Parameter 3-71
Creation of SYSIN on Tape 3-73
Processing System Input and Output Files on Disk 3-75
Interrupting a Job Stream on Disk 3-77
Example of Modifying a Three-Step Procedure 3-S4

IX

x

Figure 3-23 Stages of Program Development . 3-88
Figure 3-24 Record Types of an Object Module 3-89
Figure 3-25 A Job Stream to Catalog a Program into the Core Image Library .3-92
Figure 3-26 A Job Stream to Link Edit a Program for Immediate Execution ... 3-93
Figure 3-27 A Job Stream to Assemble, Link Edit, and Execute 3-94
Figure 3-28 Naming Multiphase Programs 3-~8
Figure 3-29 Overlay Tree Structure 3-105
Figure 3-30 Link-Editing an Overlay Program 3-106
Figure 3-31 Organization of the Directories and Libraries on SYSRES 3-114
Figure 3-32 Summary of Librarian Programs, Their Functions, and

Real Mode Requirements . 3-115
Figure 3-33 Library Sharing Capabilities of Librarian Programs. 3-116
Figure 3-34 Assembling and Cataloging to the Relocatable Library

in the Same Job 3-119
Figure 3-35 Example of Deleting and Condensing 3-126
Figure 3-36 Disk Space Available for System Libraries 3-133
Figure 3-37 Symbolic Unit Names and Filenames Required to

Create Private Libraries 3-141
Figure 3-38 Search Sequence for $ and non-$ Phases 3-146
Figure 3-39 Library Status Report for SYSRES on an FBA Device 3-147

Chapt~r 4: Using the Facilities and Options of VSE/ Advanced
FunctIOns

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10

Summary of Program Exit Conditions 4-2
IPL User Exit Example 4-5
Job Control User Exit Example 4-7
Job Accounting Table 4-10
Job Accounting Routine Example 4-13
Example of a RESTART Job 4-16
Example of a DASD Sharing Configuration 4-24
Example of ASI IPL Procedures for Two DASD Sharing Systems . 4-25
PFIX and PFREE Example 4-31
Example of ConventiOns for SV A Coding 4-34

Appendix A: System Layout on Disk

Figure A-I
Figure A-2

System Residence Organization on CKD Devices A-2
System Residence Organization on FBA Devices A-3

Chapter 1: VSE/ Advanced Functions Overview

Multiprogramming

YSE/ Advanced Functions is a combination of programs that interact with
user-written programs running on an IBM System/370 or an IBM 3031 or
a 4300 Processor. A reference to System/370 implies, in this manual, a
reference to the IBM 3031. When installed on a 4300 Processor,
YSE/ Advanced Functions may run in either 370 mode or ECPS:YSE
mode. YSE/ Advanced Functions installed on a System/370 or an IBM
3031 runs in 370 mode only.

This chapter expands on the conceptual information contained in
Introduction to the VSE System about the following topics:

• Multiprogramming

• Virtual storage

Multitasking

Multiprogramming is a technique. that allows the concurrent execution of
more than one program in a single computer system. Multiprogramming
balances the difference between the speed of the central processor (also
called central processing unit or, abbreviated, CPU) and the relatively
slower speed of the I/O devices, and improves the overall throughput of
the system.

When a single executing program requests an I/O operation, it may not
be able to continue processing until the I/O request has been satisfied.
During this time, the CPU is idle. With multiprogramming, when one
program stops processing, the CPU is put at the disposal of another
program.

A program is said to be in control of the system when its instructions are
being executed by the CPU. A program can voluntarily yield control of
the CPU, or control can be withdrawn from it. Programs that share the
use of the CPU in multiprogramming do not haV:e &.n equal claim on the
CPU. Instead, one program is given a greater priority than another.

When a program must wait for an event to occur before it can continue
processing, it yields control of the CPU. The operating system then passes
control to a program of lower priority. Conversely, the operating system
withdraws control from a program whenever a program with higher
priority is ready to resume processing. This generally happens when the
I/O operation for which the program has been waiting is completed.

Multiprogramming, therefore, allows the I/O operations of one program to
be overlapped by the processing of other programs. When a program has
to wait for the completion of an I/O operation, the system sets the
program in the wait state and selects another program for executiOll on
the basis of its priority and readiness to run. This process, called task
selection, is performed by the supervisor program of YSE/ Advanced

Chapter 1: VSE/ Advanced Functions Overview 1-1

Partitions

Functions. The supervisor is always resident in storage and controls many
functions of VSE/ Advanced Functions. The supervisor is discussed in
detail in the section Tailoring the Supervisor in Chapter 2: Planning the
System.

Efficient use of the system relates not only to the degree of CPU activity
but also to storage management. Storage is allocated to partitions to
accommodate the programs that will be executed in them. At times, only a
portion of the partition is used by the program being executed. Some
programs require a large partition. The operating system automatically
balances the storage demands made by programs by making processor
storage not being used by one program available to a program in another
partition as required.

The number of partitions supported equals the number of problem
programs that can be executed concurrently within the system. There is
always support for one background (BG) partition and one foreground
(Fl) partition. Optionally, support for up to ten additional foreground
partitions can be requested; see Figure 1-1. The actual number of
partitions in a particular configuration is a supervisor generation option,
and as such is described in the section Tailoring the Supervisor in
Chapter 2: Planning the System.

Storage
available
to problem
programs

~::::

Background

Foreground-"

Foreground-3

Foreground-2

Foreground-'

Figure 1-1. The Partitions of a VSE System

~

The background partition is automatically activated by IPL. A foreground
partition must be activated via the BATCH or START operator command.
(The BATCH and START operator commands are discussed in detail in
VSE / Advanced Functions Operating Procedures.)

1-2 VSE/ Advanced Functions System Management Guide

Partition Priorities

Storage Protection

During supervisor generation, default priorities are established for each
partition defined in the system. The default priorities are (from low to
high): BG, FB, FA, F9, ... F2, Fl.

During processing the operator can display the partition priorities and
change them dynamically by issuing the PR TY command. This can be
used to accelerate the execution of a given program. However, the
priorities should be reset to the installation standards as soon as possible
to handle the normal flow of jobs through the system.

Besides assigning a fixed priority to a certain partition, you can also
specify two or more partitions for balancing. Balanced partitions are
treated as a single entity within which the supervisor assigns priorities;
that is, dynamically distributes CPU time to the individual partitions.

Changing priorities while jobs are being executed should be done with
special care if the licensed program VSE/POWER or teleprocessing, which
normally run in a high-priority partition, are active in the system.

Storage protection, which is standard on all System/370 and 4300
processor models, ensures that the instructions and data of one program in
a given partition do not interfere with those of another program in
another partition.

Device Considerations Under Multiprogramming

Generally, the same physical I/O device (or extent of a direct access or
diskette device) may not be used concurrently by programs being executed
in different partitions. Exceptions to this are:

• The device or extents assigned to the system logical units:

•

SYSRES

SYSREC

SYSLOG

SYSDMP

SYSCAT

for system residence

for the recording of system information such as
console messages and hardware statistics

for system-operator communication

for alternate dump files

for use with VSE/VSAM, a licensed VSE access
method.

These devices (extents) are considered to belong to the system as a
whole, rather than to individual partitions. (A description of these
system logical units is contained in the section Symbolic I/O
Assignment in Chapter 3: Using the System).

The page data set .

The lock communication file, used for DASD sharing across
computing systems.

Chapter 1: YSE/ Advanced Functions Overview 1-3

Virtual Storage

A private library can be defined and used in any partition, except
when being condensed in another partition (for more information
refer to Using the Libraries in Chapter 3: Using the System).

• A file on a direct access device can be accessed across partitions,
providing it is not being created simultaneously by programs in more
than one partition (see Track Hold Option in Chapter 2, Planning the
System for information on protection when updating a file
concurrently by separate tasks).

If, for example, you wish to link edit programs in different partitions
concurrently, different physical devices or extents (except for SYSRES
and SYSLOG) must be assigned for each partition to all logical units used
by the linkage editor program. Figure 1-2 shows an example of the device
assignments in order to link edit in two partitions concurrently.

Logical Unit F1 Partition BG Partition

SYSIN X'181' X'OOC'
SYSLST X'182' X'OOE'
SYSLOG X'01F X'01F
SYSLNK X'131' X'132'
SYSOO1 X'131' X'132'
SYSRES X'130' X'130'

Figure 1-2. Assigning Different Physical Devices to the Same Logical
Units

In this case, the output on SYSLST in Fl. is written on a tape. A listing of
this output can be obtained by printing the tape after the job is
completed. If VSE/POWER is used, the listing could be automatically
obtained whenever a printer becomes available.

The objective of the virtual storage concept is to achieve greater
throughput. Multiprogramming, for example, increases throughput by
sharing CPU time between two or more partitions. Virtual storage enables
you to improve real (processor) storage utilization.

In the previous multiprogramming discussion the statement is made that
"Multiprogramming . . . allows the concurrent execution of more than one
program ... ". Note that concurrent does not mean simultaneous. Even
in the multiprogramming environment, when two or more programs are
executing in storage, the CPU can execute only one instruction at a time.
Hence, the space in storage used by all other instructions, data areas etc.
is temporarily not needed. All that must be in storage at anyone point in
time is the instruction (and its associated data areas) that is being
executed. The Virtual Storage concept exploits this fact.

1-4 VSE/ Advanced Functions System Management Guide

Virtual Storage i" VSE

Through a combination of hardware design and programming support,
VSE has an address space, called virtual storage, that can extend to the
maximum allowed by the system's addressing scheme, which is 16,777,216
bytes (16M bytes).

How much of the maximum address space (16 M bytes) will be used in a
particular system depends on a number of factors: the size of the
computer's processor storage, the amount of disk storage available, the
number of partitions, their sizes, and the characteristics of the
installation's programs and operating environment.

Virtual Storage
OK-~--------------------~

address
space

Processor Storage
OK~------------------~

Your Programs

~ ____________________ ~nK

max. = 16M-l bytes

It is in the address space that programs conceptual1y nIB.

Figure 1-3. Virtual Storage and Processor Storage

Your programs are conceptually loaded and run in address space. See
Figure 1-3. Of course, each instruction of a program must be in processor
storage when the instruction is executed, and so must the data this
instruction manipulates. The other instructions and data of that program
in virtual storage need not be in processor storage at that same moment;
they can reside on auxiliary storage until needed. The file used for this
purpose is called the page data set.

Chapter 1: VSE/ Advanced Functions Overview 1-5

It would be inefficient, however, to bring every instruction and its
associated data into processor storage individually. Virtual storage is
manipulated in sections called pages; the size of a page in VSE is 2K
bytes. Processor storage is also divided into 2K byte sections; these are
called page frames. Page frames accommodate pages of a program during
execution.

The resident routines of the VSE/ Advanced Functions supervisor occupy
the low address page frames, while the remaining page frames are
available for the execution of processing programs and the page able
routines of the supervisor. These remaining page frames are collectively
called the page pool.

When a program is loaded from the core image library into virtual storage,
all its pages are brought into page frames of the page pool. If there are
not enough page frames available to contain all the pages of a program,
the system writes the contents of some page frames to the page data set.
See Figure 1-4.

1-6 VSE/ Advanced Functions System Management Guide

Core
Image
Librar

Page
Data
Set

_-<7 rX (
I ",

~I', X \
--~, '----

, X' , ,
\ ,

-----I' X' I I
I ,

~tX:
~" 'X, , , , , ---- ..., :X' '/

I
I

e
I
I
I ~ _____ .1 __________ "

X

X

X

X X

X X

X X

i

X X X

X X X

X X X
PROG X X X X X X X

Page
Pool -----r----e--1,'

I
I
I
I
I
I
I

X

X

X

X

X

X

X X X X

X X X X

X X X X

Processor Storage
L ______________ ...J

Virtual Storage

A prOJP'lUD DUlled PROGX (A) is "coaeeptully" loaded mto l'irtaal stonge (8). The
sapemsor fillds page frames iD tbe page pool of processor stonge (C). Wllea there are
IIOt ellOagh page fnmes to accollUDOdate aD of PROGX, tbe supemsor stores tbe coateats
of some page fnmes OD tbe page data set (D). The remabIiDg PAles of tbe propam caD

thea be loaded.

Figure 1-4. Storage Management Concept - VSE/ Advanced Functions

Chapter 1: VSE/ Advanced Functions Overview 1-7

Storage Management

The following discussion amplifies the concept of storage management
shown in Figure 1-4.

When programs are loaded for execution they may be loaded in
non-contiguous page frames of processor storage. The supervisor knows
what processor storage locations pages of a given program occupy. If the
program should cancel, due to an error, the listing produced by the system
reflects the virtual addresses where the program was conceptually running.
In Figure 1-5, a 16K-byte program named INVEN, is conceptually loaded
at the virtual storage location 1024K. As shown, the system selected eight
page frames of processor storage which are not contiguous. If the
program were to end abnormally, and a listing representing storage was
produced (on SYSLST), the INVEN program would be shown as
occupying addresses 1024K through 1040K minus 1.

All of the information pertaining to the virtual storage and page frames is
maintained within the system in a series of tables. It is through these
tables that the virtual storage exists. Entries in these tables reflect the
current status of a given page of virtual storage.

1-8 YSE/ Advanced Functions System Management Guide

Virtual Storage
OKr---------------------~

Page Pool of 128 K
1024K l----------------------+ - - - - - ---- -- ----

INVEN (16K)

1040K-1 ,
\ , , , , , , , , ,

I I

I I

I I

I

I

Processor Storage

8 page frames are occupied by the 16K program
INVEN.

Figure 1-5. Running a Program in Virtual Storage

Relating Virtual Storage to Locations in Processor Storage

Since the system does not anticipate where in processor storage a page
will be loaded, the virtual addresses must be translated into real addresses
when required for execution. The address translation is performed by a
combination of the system hardware and the VSE/ Advanced Functions
supervisor.

If an entire program fits in processor storage, none of the program's pages
will be placed on the page data set.

Chapter 1: VSE/ Advanced Functions Overview 1-9

In the example shown in Figure 1-5, no page of INVEN will be paged out
as long as the demand on processor storage does not exceed the number
of available page frames.

If a second program were to be executed (multiprogramming) and this
program together with INVEN were larger in size than the number of
frames available in the page pool, the system would store as many pages
as necessary on the page data set to keep both programs running.

In Figure 1-6 a program called PAYROLL is being executed as well as
INVEN. PAYROLL is a l1SK program. As the page pool in this example
is only 12SK,the total demand (INVEN + PAYROLL) of 134K exceeds
the processor storage resource by 6K or three page frames.

The program PAYROLL will not start executing until all of its pages have
been loaded into processor storage. After having loaded 112K of program
PAYROLL, the supervisor must make three page frames available for that
program. It does this by selecting the three least recently used pages and
storing them on the page data set. See Figure 1-7. Once the pages have
been saved on the page data set the page frames are available for the last
three pages of the program PAYROLL. See Figure I-S.

1-10 VSE/ Advanced Functions System Management Guide

OK
Virtual Storage

1024K
Page Pool of 128K

I P P P I P P P
INVEN (16K)

p P I P P P I P
1040K-

p p p p p p p P

1060K
I P P P I P P P

PAYROLL (118K) P P P I P P P P

I P I
p

I p
I P I P P P P P P

1178K- P P P P P P P P

P P P P P P P P

Processor Storage

I = a page of program INVEN

P =apage of program PAYROll
3 pages of PAYROll not vet loaded

Figure 1-6. Loading Program Pages into Page Frames

• ,

Chapter 1: VSE/ Advanced Functions Overview 1-11

Virtua I Storage
OK

1024K

INVEN (16K)

1060K

PAYROLL (118K)

1040K-

1178K-1
...........

........
.................

........

Page Pool of 128K

P P

P

p p p p p p p

p p p p p

p p p p p p

p p p p p p

p p p p p p p

p p p p p p p

Processor Storage

I = a page of INVEN

P =a page of PAYROLL
The last 3 pages of PA YROLL are loaded and
execution begins.

Figure 1-7. Storing Pages on the Page Data Set (Page outs)

1-12 YSE/ Advanced Functions System Management Guide

P

P

p

p

p

p

p

p

OK

1024K

1060K

Virtual Storage

INVEN (16K)

1040K-

Page
Data
Set

p p

p

Page Pool of 128K -,.---r--...,
p p p

p p

p p p p p p

p p p p p

PAYROLL (118K)
p p p p p p p

1178K-1

p p p p p p

I = a page of INVEN

P =a page of PAYROLL
The last 3 pages of PAYROLL are loaded and
executio n begi ns.

p

DuriDa execution, whenever a required instruction or some data is not present in processor
storage, execution Is interrupted by a so-called page fault. The required page must then
be read Into processor storage.

Figure 1-8. Managing the Page Pool

Virtual Storage Implementation under VSE / Advanced Functions

Under VSE/ Advanced Functions you may generate a system that will
execute on 4300 or /370 hardware. Using the 4300 hardware, your VSE
system may be generated to run in either ECPS:VSE mode or 370 mode.
VSE on the System/370 hardware may run only in 370 mode.

Chapter 1: YSE/ Advanced Functions Overview 1-13

Division of Address Space

The generated supervisor in 370 mode is functionally the same, whether
the hardware is System/370 or a 4300 processor.

The concepts of virtual storage are the same in both modes of execution;
however, the implementation differs slightly.

This section discusses: virtual storage, processor storage, and program
execution (with and without paging). The implementation of most of
these items is the same in both modes. The differences between the two
execution modes (ECPS:VSE or /370) are discussed and illustrated later
in this section.

As stated earlier, all programs, including the supervisor, run in an address
space called virtual storage. This address space is divided into areas: for
the supervisor, the partitions, a shared virtual area (SVA).

Supervisor Area. The address space reserved for the supervisor is the low
addresses of your virtual storage. The supervisor area begins at locatio:p.
OK and extends up to the size of your generated supervisor (see Figure
1-9).

Virtual Storage
OK~------------------------~

Resident Supervisor Routines

Pageable Supervisor Routines

Resident Supervisor Routines

r------------------------------inK
Address
space

Figure 1-9. Supervisor Area in Virtual Storage Address Space

Partitions. The virtual storage contains the areas which are used by the
partitions. Programs will execute from these areas. The number of
partitions is determined at system generation. See Chapter 2, Planning the

1-14 VSE/ Advanced Functions System Management Guide

L,

System. The distribution of the partitions in the address space follows the
default partition priority scheme, that is, the lower priority partitions have
the lower addresses. The sequence is always BG, F4, F3, F2, Fl for a
five partition system.

Figure 1-10 shows the layout of virtual storage for a 4-partition VSE
system. In this figure each partition is 200K in size.

Virtual Storage

512K

BG Partition

712K

F3 Partition

Address
912K space

F2 Partition

1112K

F 1 Partition

Figure 1-10. Partition Distribution in a Four Partition System

The Shared Virtual Area (SV A). The SV A occupies the address space
immediately following the partitions, see Figure 1-11. Certain frequently
used programs are loaded into the SV A. Such programs (or parts of
programs), which are relocatable and reenterable, are available for

Chapter 1: VSE/ Advanced Functions Overview 1-15

concurrent use by programs executing in any partition. Additional
information on the use of the SV A is contained in this guide where
appropriate.

Virtual Storage

""-

Address
space

512K

712K

912K

1112K

1312K

BG

F3

F2

F1

Shared Virtual Area

Figure 1-11. Shared Virtual Area in a Four Partition System

1-16 YSE/ Advanced Functions System Management Guide

Processor Storage Utilization

Under VSE/ Advanced Functions, processor storage is used as follows:

• For the accommodation of the resident supervisor routines.

• For the loading and execution of the pageable supervisor routines.

• For the loading and execution of programs.

As shown in Figure 1-12, all page frames of processor storage not needed
for the resident supervisor routines are available to the page pool. It is
from this page pool that the system selects page frames for pages of
executing programs (including the pageable routines of the supervisor).

Virtual Storage Processor Storage

Resident Supervisor Routines Resident Supervisor Routines

Pageable Routines of Supervisor S S S

Resident Supervisor Routines Resident Supervisor Routines

S S S S

S

5 = pages of pageable supervisor routines

Figure 1-12. Supervisor Routines - Fixed and Page able

Executing Programs in Virtual and Real Mode

All programs when executing are conceptually running in the address
space associated with a partition. The operating system selects page frames
from the page pool for pages of the executing programs. The execution
can be in one of two modes:

Chapter 1: YSE/ Advanced Functions Overview 1-17

Page
Pool

Storage Allocation

Execution in Virtual Mode: The page frames occupied by pages of
programs running in virtual mode continue to be part of the page pool.
The operating system will manage the processor storage placing some
pages on the page data set, when necessary, and retrieving those pages as
required. Programs in virtual mode are pageable.

Execution in Real Mode: The page frames occupied by pages of programs
running in real mode are taken out of the page pool for the duration of
that program's execution; the page frames will not be selected for another
program of higher priority; the program is fixed in processor storage and is
non-pageable.

To have a program executed in real mode, an amount of processor storage
must be allocated to the partition in whi~h that program is to run. The
allocated processor storage remains part of the page pool until real mode
execution begins. Certain programs - such as those with critical time
dependencies - may have to run in real mode. A partition may execute in
only one mode at a given point in time; for example, the BG partition can
not initiate both real and virtual execution at the same time.

From a storage management point of view, only minor differences exist in
virtual and processor storage utilization techniques between ECPS:YSE
and 370 mode. These differences are indicated as the following topics are
being discussed:

• Address space layout
• Partition allocation
• Processor storage allocation for real mode execution
• Dynamic storage areas.

Address Space Layout. In ECPS:VSE mode, the virtual storage is one
area whose size is determined at Initial Microprogram Load (IML).

In 370 mode, the virtual storage is logically divided into two areas: real
address space and virtual address space, see Figure 1-13. The size of the
real address space is determined at the time of Initial Program Load
(IPL); it is equal to the amount of processor storage installed. A default
size of your virtual storage is determined by the system according to the
chosen supervisor options. You may override this default by specifying a
size of your own choosing at the time of IPL. The supervisor resides in
the low addresses of your virtual storage. In 370 mode, this is in the real
address area. See Figure 1-14.

1-18 VSE/ Advanced Functions System Management Guide

ECPS:VSE-Mocle 37D-Mode
OK~--------------------~ OK~---------------------,

Real Address Space

512Kr-----------------------~

The Address Space

Virtual Address Space

2048K~--------------------~ 2048K~--------------------~
Virtual Storage Virtual Storage

Figure 1-13. Address Space for 2048K Bytes of Virtual Storage and S12K
Bytes of Processor Storage

ECPS:VSE-Mode
OKrr--------------~------~ 370-Mode

OKr------------~~------~

108K

The
Address
Space

Supervisor Supervisor
108Kr-------------________ ~

512Kr-----------------------~

Real
Address
Space

Virtual
Address
Space

2048 K "---------------________ .J 2048K~----------____________ v
Virtual Storage Virtual Storage

l08K as supervisor size is an arbitrary number. somewhere aboTe the minimum supervisor

size.

Figure 1-14. Supervisor Location in Both ECPS:VSE and 370 Mode

Chapter I: VSE/ Advanced Functions Overview 1-19

Partition Allocation. Only the number of partitions but not their sizes are
defined when the supervisor is assembled. IPL allocates all of the address
space available for the partitions to the Background (BG). After IPL, you
allocate the foreground (FG) partition sizes. See Chapter 3, Using the
System.

Figure 1-15 shows the layout of a 4-partition system after IPL and
allocation, respectively, has taken place.

1-20 YSE/ Advanced Functions System Management Guide

OK

108K

ECPS:VSE-Mode 370-Mode

Supervisor

BG

F3

F2

F1

SVA

Virtual Storage

OK

108K

512K

712K

912K

1112K

1312K

2048K

Supervisor

BG

F3

F2

F1

SVA

Virtual Storage

Real
Address
Space

Virtual
Address
Space

Figure 1-15 assumes a virtual storage size of 2048K aDd a processor storage size of SI2K.
The supervisor will occupy the low address 108K of tbis system.

In ECPS:VSE mode, the address space from the end of the supervisor to the beginning of
the Foregronnd 3 partition belongs to the BG partition (616K).

In 370 mode the BG partition's address space starts at the beginning of the virtual address
space (SI2K). The real address space is the address space from which programs rnnning in
real mode are executed.

Figure 1-15. A 4-Partition System in ECPS:VSE and 370 Mode

Processor Storage Allocation for Real Mode Execution. A specific number
of page frames of processor storage may be allocated to any of the
partitions for real mode execution. The allocation may be done at any
time with the ALLOCR command.

Chapter 1: VSE/ Advanced Functions Overview 1-21

Submitting

ALLOCR BG=20K, Fl=24K

for example, causes the following:

• In ECPS:VSE mode: The operating system notes that 10 page
frames and 12 page frames of processor
storage are available to partitions background
and foreground 1, respectively, for real mode
execution.

• In 370 mode: 20K and 24K of real address space are
allocated to partitions background .and
foreground 1, respectively. In addition, when
real mode execution takes place, the processor
storage addresses used by the operating
system are the same as the addresses within
the allocated real address space.

With the above ALLOCR command the largest program that can be
executed real in the two partitions are 20K in BG and 24K in Fl.

When not occupied by a program running in real mode, the page frames
allocated to a partition are part of the page pool.

When a program running in real mode does not require all the allocated
page frames, the unused page frames may be made available to the page
pool by specifying the amount of storage required by the program. in the
SIZE operand of the EXEC job control statement for the program. In
order to execute a program in real mode an EXEC statement with the
REAL parameter must be used. For more details on the EXEC statement
see Chapter 3, Using the System.

Figure 1-16 shows the results of the above discussed ALLOCR command
with a 20K-program REALRUN executing in the BG partition in real
mode.

1-22 YSE/ Advanced Functions System Management Guide

ECPS: VSE-Mode
OK.-------------------------~

90K ------- Supervisor------

108K,r--------------------------~

s
REALRUN (20K)

BG

Virtual Storage Processor Storage

370-Mode
OK.-------------------------~ OK.-------------~----------~

90K

108Kr-------------------------~}
REALRUN(20K) BG

128K

------- Supervisor-------

142K
Allocated to F 1 s s

s s

Virtual Storage Processor Storage

R = pages of REALRUN in processor storage

S = pages of supervisor pageable routines in storage

Tbe sbaded portions of processor storage are not part of tbe page pool at tbis time_ Tbe
illustration assumes a supervisor witb 90K resident routines and 18K pageable routines_
Tbe program REALRUN is 10K in size and is executing in real mode in tbe BG partition.
Note tbat in ECPS:VSE mode tbe page frames are selected randomly from tbe page pool,
wbile in 370 mode tbe page frames occupied by REALRUN bave tbe same processor
storage addresses as tbe pages tbat are occupied by REALRUN within virtual storage. The

allocation for Fl bas not affected tbe page pool.

Figure 1-16. Executing in Real Mode

Chapter 1: VSE/ Advanced Functions Overview 1-23

Fixing Pages in Processor Storage. The allocated page frames are used
not only for programs running in real mode, but may also be used for
programs running in virtual mode.

Some programs that run in virtual mode contain instructions or data that
must be in processor storage when needed and therefore cannot tolerate
paging. The pages containing such code or data can be fixed via the PFIX
macro instruction, and freed immediately after use via the PFREE macro
instruction. The licensed program VSE/POWER is an example of an mM
program that uses PFIX/PFREE macros.

When pages of a program running in a given partition are fixed in
response to the PFIX macro, they are fixed in the page frames allocated
to the partition. If a PFIX macro is issued and enough storage is not
allocated, the pages are not fixed, and a completion code indicating this is
returned to the program.

Fixing pages in processor storage means that, in a multiprogramming
environment, fewer page frames are available to other programs running
in virtual mode, potentially degrading total system performance. When
channel programs with large II 0 areas are involved, the initial size of the
page pool may be too small. Consider this effect carefully before allowing
the use of the PFIX macro at your installation.

Dynamic Storage Areas. Under VSE/ Advanced Functions there is a
requirement for certain system functions to acquire virtual storage
dynamically during program execution. An area called GETVIS area is
used for this purpose. Each partition has its own partition GETVIS area,
the SV A includes the system GETVIS area. The GETVIS areas occupy
the high address space associated with each partition and the SV A. Figure
1-17 shows the virtual storage layout in ECPS:VSE and 370 mode with
the GETVIS areas included. For further information on the size and use
of GETVIS areas see Chapter 3, Using the System.

1-24 VSE/ Advanced Functions System Management Guide

OK

108K

ECPS:VSE-Mode

Supervisor

108K

BG

512K

370-Mode
OK

Supervisor

BG

Real
Address
Space

~--------- - - ------- -------------------
GETVIS Area BG

712K
GETVIS Area BG

F3 F3

----~--------------- -------------------GETVIS Area F3 GETVIS Area F3
912K

F2 F2

-------------------- ------------------
GETVIS Area F2

1112K

F1

GETVIS Area F2

F1 >
Virtual
Address
Space -------------------- 1-------------------

GETVIS Area F1
t312K

GETVIS Area F1

SVA SVA

------------------ - 1-------------------
System GETVIS

Virtual Storage

Multitasking

System GETVIS

2048K
Virtual Storage

Figure 1-17. A 4-Partition System in ECPS:VSE and 370 Mode with the
GETVIS Areas

At the beginning of this chapter, we defined multiprogramming as the
ability to execute more than one program concurrently in separate
partitions within a single computer system. Multitasking can be regarded
as an extension of multiprogramming in that it provides the ability to
execute more than one program concurrently in a single partition. In
simple terms, therefore, multitasking can be regarded as multiprogramming
within one partition.

Chapter 1: VSE/ Advanced Functions Overview 1-25

Some installations using former versions of DOS/VS, employed
multitasking to run more than five programs in a 5-partition system. The
additional partitions that VSE/ Advanced Functions provides serve the
same purpose. However, running programs concurrently in separate
partitions usually requires less preparation than running programs
concurrently in the same partition.

Two Types of Multitasking

Programs (or parts of a program) that are executed concurrently in a
given partition are called tasks. A distinction is drawn between the main
task in a partition and one or more subtasks in the same partition. The
main task is that program (or program part) which is initiated by job
control. The subtasks are programs (or program parts) that are initiated
through the use of the ATTACH macro in an assembler language routine.

A subtask executed in a given partition may be (1) logically independent,
or (2) logically dependent.

In the first case, one (usually the main) task monitors the execution ofthe
subtasks, treating them as independent programs. Such subtasks may be
coded in any programming language. This type of multitasking is
sometimes called multiprogramming within a partition. It is a suitable
technique to use, for example, for concurrent execution of more programs
than partitions are available.

In the second case,both the main task and the subtasks are program '"
routines that are logically part of the same program. Thus, the tasks can ...,
communicate with one another. In this case the subtasks at:e likely to be
coded in assembler language to allow the use of the task
intercommunication macros. They can share code (in particular, an access
method or subroutines), provided that it is of a read-only nature (that is,
that the code or subroutines are not modified during execution). This
technique is complex and can best be understood after studying the first
type of multitasking.

The maximum number of subtasks that can be active at anyone time
within the entire system is a supervisor generation option.

Cross-Partition Event Control

Highly complex applications may have a need for communication between
programs executing in separate partitions. For example, two such
programs may need to perform operations on a common file, and the
operations may require actual communication between the two programs.

Through cross-partition event control macros, one partition can delay the
execution of part of a program until another partition signals the
completion of a critical event. This allows synchronized multiprogramming
in separate partitions - thus protecting programs against inadvertent
destruction of each other - while at the same time providing for any
necessary communication between them. IBM licensed programs require ~
this support in certain complex applications. One example is the licensed .."
program VSE/POWER generated with SPOOL = YES. For details about

1-26 YSE/ Advanced Functior -'item Management Guide

cross-partition event control, see the manual VSE/ Advanced Functions
Macro Reference.

Reliability / Availability /Serviceability

VSE/ Advanced Functions includes routines that analyze and record CPU,
channel, and device errors and attempt to recover from them. The data is
stored on the system recorder file (SYSREC). The information obtained
from this file serves not only as an aid in diagnosing machine errors, but
also helps mM customer engineers to increase reliability, availability and
serviceability (RAS) of your system.

If on-line recovery is impossible, the system may be placed in a hard wait
state. A message is then issued to the system operator to run the EREP
program to obtain the diagnostic data.

On the mM System/370 Models 115 and 125, errors in the CPU and
natively attached input/output devices (for example, card reader/punch,
disk and printer) are recorded on the system diskette. mM System/370
Model 158, the mM 3031 and the 4300 processors have a similar
hardware error recording feature in addition to a software error recording
facility. This hardware error recording is independent of the software
routines.

Recovery Management Support

The Recovery Management Support routines, referred to as RMS, provide
the following RAS facilities:

• Machine Check Analysis and Recovery

• Channel Check Handler

These facilities provide hardware error analysis and attempt recovery.
Another RAS facility, the Recovery Management Support Recorder
(RMSR) provides for recording of error and operational statistics on
SYSREC as follows:

• Machine Check (CPU)

• Channel Check

• Unit check

• Tape/ disk error statistics by volume

• MDR (Miscellaneous Data Recorder)

• IPL information

• End-of-Day statistics held in main storage

Chapter 1: VSE/ Advanced Functions Overview 1-27

1-28 YSE/ Advanced Functions System Management Guide

Chapter 2: Planning the System

After a brief description of the system generation procedure in general,
this chapter discusses in greater detail three major considerations during
system generation, namely:

• Planning the libraries (planning the contents, the location and size of
the libraries).

• Planning the system files and work files.

• Tailoring the supervisor (adding functions to those of the basic
supervisor).

Because of the nature of this information, this chapter primarily addresses
programmers who are responsible for planning the system.

System Generation Procedure

Proper and detailed planning is essential for efficient system generation
and minimizes the need to modify the system after it is generated. You
may want to contact your mM marketing representative to set up a
system generation planning meeting. mM field engineering could be
invited to attend the meeting to discuss the procedure to install the

I VSE/Advanced Fu~tions which includes SCP (system control programs).
Generating a system includes:

• Plann.ing the contents, organization, and size of the system and
(optionally) private libraries. This entails distributing the storage space
available (on the disk packs) between the libraries desired for
day-to-day use. You must consider the size of the system core image
library and other system and private libraries.

• Planning the location and size of system and work files. This entails
determining, what system files are required, how large they must be
and where they shall be placed. Additionally, work file space needed
to assemble the supervisor and to link edit and catalog the
components selected to the system core image library must be
reserved.

• Planning the options and estimating the approximate size of the
supervisor. This entails selecting, from the programming services
prOvided by mM, those options which you wish to include in the
supervisor, and estimating the cost of these services in terms of bytes
of storage.

Chapter 2: Planning the System 2-1

Handling the Distribution System

'I To install the YSE/ Advanced Functions system, you work with the
mM-supplied distribution medium (normally a magnetic tape), which is
composed of four system libraries

core image
relocatable
source statement
procedure

and a system history file.

If you cannot do an online system generation (see the discussion further
below), your system generation approach should be as follows:

1. Restore the YSE/ Advanced Functions system and also the supplied
history file to disk. (This step does not apply if you receive the mM
supplied code on disk.)

2. Do an initial program load (IPL) of the restored supervisor.

3. Generate the supervisor by coding a set of supervisor generation
macros, which define the system configuration and the services you
wish the supervisor to contain. These are described in detail in the
section Tailoring the Supervisor.

4. Delete from the libraries any components you do not require and then
condense to free library space.

5. Assemble or compile and/or link edit programs - both your own and
mM's - and catalog them into the appropriate libraries.

After you deleted any of the supplied components, you must update your
history file by running the service program MSHP (Maintain System
History Program). The usage of MSHP is described in VSE/Advanced
Functions Maintain System History Program User's Guide.

Having determined what elements are to be contained in the system
libraries, you may wish to retain additional elements in private libraries
and therefore want to create private core image, relocatable, source
statement, or procedure libraries. These choices are discussed in the
section Planning the Libraries.

The system libraries, together with certain system work areas, constitute
the system residence file (SYSRES), which is one extent of a direct access
storage volume. The SYSRES file is described in Appendix A: System
Layout on Disk.

After establishing your SYSRES file and the history file, you should copy
those onto tape or disk for backup purposes. The utility program Backup
System and the licensed program Fast Copy Data Set are provided for this
purpose. They are described in VSE/ Advanced Functions System Utilities
and Fast Copy Data Set Installation Reference, respectively.

2-2 VSE/ Advanced Functions System Management Guide

Planning the libraries

Online System Generation. If you already have a running VSE system or
a DOS/VSE with Release 1 of VSE/ Advanced Functions it may be
advantageous to generate the new system under control of the currently
running system. The various steps such as assembling a new supervisor,
deleting unwanted components, updating the history file can be performed
in one partition while your normal operation continues undisturbed in
other partitions.

As a frrst step, you execute the MSHP program in order to restore the
new system to disk (unless you received the new system on disk). After
you generated a new supervisor and (possibly) established a set of private
libraries, you may want to merge your own programs from the old libraries
into those new libraries or into the new SYSRES file; you do this by
executing the CORGZ librarian program. You then IPL from the new
system and perform any other required steps.

For complete details on how to perform a system generation refer to
VSE/ A.dvanced Functions System Generation.

The components of VSE/ Advanced Functions are shipped in four system
libraries: the core image library, the relocatable library, the source
statement library, and the procedure library. Most programs and
procedures developed and used by your installation will also be stored in
these libraries. In addition to the system libraries, VSE/ Advanced
Functions supports private libraries which you may use to either substitute
for or supplement the corresponding system libraries.

Planning the size, contents, and location of these libraries according to the
needs of your installation is an essential part of the system generation
procedure. Such detailed planning will ensure that:

• No disk space is wasted by components not required in your
installation.

• The libraries are large enough to allow for future additions.

• The libraries are accessed by the system with maximum efficiency.

Following a brief description of the purpose and contents of the individual
libraries, this section discusses the major considerations involved in
tailoring the libraries to the needs of your installation:

• Which libraries are required.

• How many disk drives are available and where on these devices should
the individual libraries be placed.

• How large should each of the libraries be and what should they
contain.

Note that this section is intended to give only general guidance for
planning the libraries. More details about DASD space requirements for
the libraries are contained in VSE/ A.dvanced Functions System Generation.
How to change the size of a library, how to insert elements into or delete

Chapter 2: Planning the System 2-3

elements from a library, and how to create private libraries is described in
Chapter 3, Using the System.

Purpose and Contents of the Libraries

Core Image Library

Relocatable Library

The following is a brief summary of the purpose and contents of the
system and private libraries.

In order to be executed, all programs must be link edited into phases and
placed in the core image library (CIL). IBM supplies the YSE/ Advanced
Functions components pre-linked and cataloged in the CIL. A complete
list of the supplied components is shipped with the program directory
documentation which accompanies your YSE/ Advanced Functions system.
Prior to receiving the system, consult VSE/ Advanced Functions System
Generation for a listing of the YSE/ Advanced Functions ~omponents.

IBM also supplies cataloged distribution supervisors. Assembler source.
statements used to generate these supervisors are shown as part of the
Program Directory and are contained in the source statement library.

You have to decide which of the IBM supplied phases to retain in the
CIL. To delete unwanted components, use the delete procedures contained
in the procedure library. See VSE/Advanced Functions System Generation
for a list of these procedures.

Besides IBM components you may add to the CIL your own application
programs such as your payroll or accounts receivable programs, program
packages obtained from IBM, or program packages from other sources. If
you wish to include such programs in the CIL, you must link edit them
yourself. For information on how to do so, refer to the description of the
linkage editor in Chapter 3, Using the System.

The relocatable library as shipped by IBM uses a considerable amount of
DASD space. The library contains:

• YSE/ Advanced Functions component object modules.

Compiler required logical input/output control system (LIOCS)
modules.

Object Modules. These modules make up unlinked code of the executable
component phases in the CIL. The modules have been link edited and
cataloged into the CIL you receive. These modules are provided in the
relocatable library for maintenance purposes only.

LIOCS Modules. The LIOCS modules needed by the various compilers
are cataloged in the relocatable library. There are different modules for
each device type and access method. Some modules can be used by more

2-4 VSE/ Advanced Functions System Management Guide

Source Statement Library

Procedure Library

than one compiler. For a complete list of the LIOCS module names and
device applicability, see VSE/Advanced Functions System Generation.

The elements in the source statement library are called books. A book is
either a sequence of source statements or a macro definition.

You can catalog into the source statement library sets of source statements
that are used by more than one program, and then include these
statements in your source program by specifying a COpy (assembler,
DOS/VS RPG II, and COBOL) or %INCLUDE (PL/I) statement.

The macro definitions in the source statement library include those macros
supplied by IBM as well as any others which you may have written and
cataloged yourself. When you issue a macro instruction in your program,
the corresponding macro definition is retrieved from the source statement
library and included in your program according to the parameters you
specified.

Each book in the source statement library is classified as belonging to a
specific sublibrary; for example, an assembler, a PL/I, or a COBOL
sublibrary. Sublibraries are identified by a 1-letter prefix added to the
book name. Letters A through I and the letters P, Rand Z are reserved
for sublibraries containing system components. You can use all other
letters, the digits 0 through 9, and the special characters $, &, and #, to
define your own sublibraries.

Frequently-used sets of control statements can be cataloged into the
procedure library. The elements of the procedure library, called cataloged
procedures, can consist of IPL (Initial Program Load), job control
statements and/or SYSIPT data. Included VSE/POWER JECL
statements will be treated as VSE/ Advanced Functions comment
statements.

You can also catalog procedures containing data that is to be read from
SYSIPT under control of the device-independent sequential IOCS, by
your program or by IBM-supplied service programs and language
translators. SYSIPT in-line data can be, for example, the control
statements processed by the librarian or the sort/merge program.

Cataloged procedures are retrieved from the procedure library by a special
form of the EXEC job control statement.

The procedures shipped in the procedure library are provided as system
installation aids. They include:

• library-member-delete and module-link procedures

• MSHP history file update procedures

• standard label definition procedures

Chapter ~: PillnniIlg t~e Sy~tem_ 2-;;

Private Libraries

Delete and Link Procedures. The delete procedures are provided to assist
you in tailoring your libraries. A complete list of the delete procedures is
provided in the manual VSE/Advanced Functions System Generation.
Once your system is installed, these procedures themselves can be deleted.

The link procedures are provided to link edit mM-supplied modules
contained in the relocatable library to the core image library. These
procedures are provided for system-service purposes (the modules have
been link edited prior to your receiving the system).

MSHP History File Update Procedures. If you have installed a component
without the use of MSHP (Maintain System History Program) there is no
entry in the history file for that component. This can occur if, for
example, you have a DOS/VS Release 3.4.0 or earlier with a licensed
program, such as DOS/VS COBOL, running under it. The MSHP history
file update procedures may be used to create a history file entry for the
component, in this example DOS/VS COBOL. Now, you may use MSHP
for subsequent modification (updates, maintenance etc.) of that
component. For more details on the use of the program MSHP see
VSE/Advanced Functions Maintain System History Program User's Guide.

Standard Label Procedures. These procedures are discussed in section
lAbel Information Area in this chapter. A complete listing showing the
contents of the procedures is included in the Program Directory Document
shipped to all recipients of VSE/ Advanced Functions.

In addition to system libraries, you may establish private libraries. Private
libraries form a single extent on one volume. They are created by using
the program CORGZ and have the same format as system libraries.

You may establish private relocatable, source statement, or procedure
libraries either to supplement or to replace the corresponding system
library (note, however, that you must have a system procedure library if
you intend to use ASI, the Automated System Initialization). The system
core image library cannot be replaced by a private core image library; it
can only be supplemented by private core image libraries.

By replacing the system relocatable, source statement, or procedure library
with a private library (on a device different from the one that holds the
SYSRES file), you extend the space available to the system core image
library. Conversely, you may reduce the size of the system core image
library by placing selected programs in a private core image library.

You may define as many core image, relocatable and procedure libraries
as desired, and you may place them on any disk device supported by
VSE/ Advanced Functions.

Here are a few examples for the use of private libraries:

• Having a private core image library for each partition, each on a
separate disk drive, will reduce disk arm movement on the SYSRES
volume, which means faster access to libraries.

2-6 YSE/ Advanced Functions System Management Guide

• Private libraries are useful in a testing environment where you want to
keep working copies of your programs intact on one library while you
test modifications to the same program from another library.

• A number of small libraries instead of a few large libraries greatly
eases the task of maintaining the libraries.

• You can concatenate libraries, in any partition, in order to establish
certain search orders for the various system programs that retrieve
phases, modules, books, or procedures from the libraries. By placing
libraries containing frequently used members at the head of the
concatenation chain, you can considerably speed up the retrieval of
library members (for details on how libraries are searched, see section
Using the Libraries in chapter Using the System).

Private libraries thus add a great deal of flexibility to your system and aid
in tuning your system.

Choosing the Libraries for an Installation

In an operational VSE System, certain VSE/ Advanced Functions
components must reside in the system core image library. Therefore, a
system core image library must be present in every VSE installation.
Which of the other libraries you need depends largely on the type and
amount of work to be done and the resources available at your
installation.

Relocatable and Source Statement Libraries

Procedure Library

Although these libraries are optional, few installations can operate
efficiently without them. If, for example, you work with a PL/I compiler
and you need to have the PL/I resident library routines on-line at all
times, these routines must be in a relocatable library. Similarly, when you
assemble programs that use ffiM-supplied macros, the corresponding
macro definitions must be present in a source statement library. The same
holds for your own modules and macros.

In most data processing installations there are a number of programs that
are frequently executed. An inventory control program, for instance, may
have to be run dally or weekly. Or a payroll program may have to be
executed weekly or monthly. These programs are probably used for a long
period of time without being changed.

For each of these programs, there would be one or more sets of job
control statements which the programmer prepared and tested when the
program was first run. These sets of job control statements can be
cataloged as cataloged procedures in a procedure library; then, to retrieve
a set, only one statement is required. This minimizes repetitive operator
handling (which often includes the replacement of defective cards-or
reinsertion of diskettes) and reduces machine time and errors.

Chapter 2: Planning the System 2-7

A cataloged procedure is exactly the same as what is described above as a
fixed set of job control statements. But the individual procedure is no
longer collected by the operator and selected manually for use; instead, it
is cataloged and retrieved through a special form of the EXEC job control
statement. Cataloged procedures can be modified as they are retrieved
from the library.

The use of cataloged procedures is discussed in Chapter 3, Using the
System.

Automated System Initialization (ASI) allows you to automate initial
program load (IPL) and partition start-up. If you plan to use ASI, you
must catalog your IPL procedure(s) and your job control procedures (to
start up particular partitions) into the system procedure library. For more
information about ASI, refer to Starting' the System in Chapter 3.

Determining the Location 0/ the Libraries

Having decided which libraries you want in your system, you must
determine where on the available devices these libraries are to be placed.
All system libraries must reside in the SYSRES extent of the system disk
pack in a predefined sequence (see Figure 2-1). Although it is
theoretically possible to have private libraries on the system pack, outside
the SYSRES extent, this is not recommended because it involves increased
movement of the disk arm.

Procedure Library

Note: For details on SYSRES refer to
Appendix A: System Layout on Disk.

• end of SYSRES extent

Figure 2-1. The Relative Location of the Four System Libraries

2-8 VSE/ Advanced Functions System Management Guide

You can define private core image, relocatable, source statement and/or
procedure libraries on extra volumes. The system relocatable and system
source statement libraries can be removed from SYSRES and established
as private libraries; the same holds for the system procedure library unless
you intend to use ASI, the Automated System Initialization. The system
core image library, however, must always be present on SYSRES. It can
be supplemented but not replaced by a private core image library. Also,
you must have a system procedure library if you use AS!.

When deciding on the location of your libraries you should also consider
the I/O activity on these libraries and place, for example, libraries with
high I/O activity on separate volumes.

Figure 2-2 shows two examples of how you can organize the libraries in a
system with three disk drives. Any other combination of libraries on the
available devices is possible.

The examples in Figure 2-2 are to demonstrate that you can distribute
your private libraries among the available devices as you may see fit. A
more practical example of how you can organize your libraries is given in
Figure 2-3. The example assumes a system with four disk drives, but it is
also applicable for a system with less than four drives. One partition, as
shown in the upper part of the figure, serves primarily for compiling,
assembling and link editing. Two private core image libraries are defined
in this partition: one that holds the language translators, a second one
contains your own executable programs. The second private core image
library is also defined in another partition which is shown in the lower
part of Figure 2-3. This partition is reserved for production work; instead
of compiler/assembler libraries, a data file is assigned.

Chapter 2: Planning the System 2-9

If a private relocatable library and a private source statement library are to replace the corresponding system library, the core image library
directly precedes the procedure library. These private libraries can also be used to supplement the system relocatable and source statement
libraries, in which case the SYSRES file would appear exactly as shown in Figure 2-1 .

A private core .mage library can only be used to supplement the system core image library, which must always be present on SYSR ES.
Several private libraries may reside on the same disk as illustrated.

Figure 2-2. Alternative Locations of the Libraries

2-10 YSE/ Advanced Functions System Management Guide

I

I

I

~I
I

- - -- - - - - --- - -

D Partition for Compiling - Assembling - Link-Editing

Drive X'190' Drive X'191' Drive X'1 92'

The compi lers and assemblers are kept in a private core image library (PCI L 1). Phases that

have been tested and are ready for production processi ng are cataloged into another private
core image library (PCIL2).

f) Partition for Production Processing

Drive X'190' Drive X'192' Drive X'193'

For production·time processing, the compiler/assembler libraries are no longer required and
therefore not defined in this partition. Instead, a data file is assigned.

CI L ~ system core image library

PL system procedure library
PCIL private core image library
PR L private relocatable library
PSSL private source statement library

Figure 2-3. Example of Library Organization

Chapter 2: Planning the System 2-11

Planning the Siz.e and Contents 0/ the Libraries

When planning the libraries for an operational system, you must decide on
their precise contents and size for daily use. Although you can change the
size of your system libraries at any time after system generation (by
means of the librarian programs), you should try to anticipate future space
requirements and, if possible, provide this space. Such detailed planning
can eliminate the need for a complete reorganization of the libraries which
would be necessary if the extension of a library results in an overflow on
just one disk pack. Careful planning of the private libraries will save you
additional work because you cannot easily redefine the extents of a
private library once it has been created. To change the size of a private
library you must create a new private library and copy the contents of the
old library into it.

Consider the following factors before deciding on the contents and 'size of
the libraries:

•

•

The number of phases, books, modules and/or procedures you want
on-line and how you plan to group them (for example,' group by
application) .

The average size of phases, books, modules, and procedures in your
installation.

The amount of space and devices available .

The core image library, for example, is the library in which you normally
keep most of your programs. (Otherwise, each program must be submitted
to the linkage editor and placed in the core image library temporarily
before it can be executed.) Therefore, ensure that your core image library
is large enough to accommodate all programs that must be on-line; this
includes your own programs as well as IBM-supplied components.

The system relocatable and source statement libraries initially contain
more (IBM-supplied) members than you normally use for daily operation.
By deleting from your system libraries those members which you do not
need daily you are creating operational libraries. This reduces the disk
space requirement of the SYSRES extent. In planning the contents and
size of an operational relocatable library, determine which of the
IBM-supplied modules can be deleted and how much space you need to
store your own object modules on-line.

With one disk pack available for system files, you may prefer to maintain
only enough free space in the relocatable library of the operational pack
to contain the modules for the largest component in the system. This small
relocatable library permits temporary insertion of any component in
relocatable format. The component can then be immediately link edited
into the core image library and deleted from the relocatable library.

Similar considerations apply to an operational source statement library.
Determine which of the IBM-supplied components you need on-line,
which should be transferred to a backup volume for future extensions of
your system, and which can be deleted entirely.

2-12 YSE/ Advanced Functions System Management Guide

System and Work FOes

Page Dara Set

L

If you intend to use procedures, you should allocate sufficient space for
either the system procedure library or your private procedure libraries. In
estimating the amount of space required, consider the number of IPL
commands, job control statements and SYSIPT data records (source
modules, utility control statements, etc.) you expect to store in your
procedure libraries. Note that ASI procedures (if you have any) must be
contained in the system procedure library.

After you have determined the space requirements for your libraries in
terms of number and size of programs, you must define and allocate the
amount of disk space needed to accommodate these programs. A set of
formulas is available to calculate the disk space required for each library.
These formulas are contained in VSE/Advanced Functions System
Generation.

The contents of the libraries are identified in the Program Directory
(shipped with the distributed YSE/ Advanced Functions system). The
storage requirements (sizes) for these components and macro definitions
are identified in the section for each component.

The SYSRES file is only one of the system files that must be planned.
The location of the other system and work files and their sizes deserves
some thought. The system files besides SYSRES are:

Page data set

Recorder file (SYSREC)

Hard copy file (SYSREC)

History file (SYSREC)

Alternate dump files (SYSDMP)

A description of these files follows below. Another system file is required
if data on DASD devices is shared across computing systems: the lock
communication file. This file is discussed in section DASD Sharing by
Multiple VSE Systems in chapter Using the Facilities and Options of
VSE/Advanced Functions.

The page data set, a sequentially organized set of records on a direct
access device, is required to accommodate paged-out pages of programs
that are being executed in virtual mode. The size of the page data set
depends on the amount of virtual storage.

You define the page data set through the IPL command DPD. This
command is discussed in section IPL commands in Chapter 3, Using the
System. Among other items, you can specify the channel and unit number
of the device, whether you want to treat the page data set as a data

Chapter 2: Planning the System 2-13

secured file, the size of a particular extent, and the lower limit address of
the extent.

The page data set can reside on any disk device that is supported by
VSE/ Advanced Functions as a system residence device.

Your page data set may be spread over up to 15 extents. These extents
may be allocated on different volumes, a maximum of three per volume;
you must, however, stay within one disk architecture: FBA or CKD.

For all but the last extent, the size must be specified in the corresponding
DPD command. If a command does not include the size specification, the
command is considered to be the last one of a series. As a result, the
system calculates the upper limit address according to the amount of
page able storage defined for your system. The usage of disk space is
shown below:

Disk Device Type Pages per Cylinder

2314 60
3330 114
3340 36
3350 240
FBA see note

Note: Four FBA blocks contain one page of virtual storage; hence a 2M
byte system (2048K) requires 4096 FBA blocks (2048K -;- 2K x
4 blocks).

In ECPS:VSE mode, the virtual storage size to be mapped on the page
data set, is a function of the hardware. The default system size is 16M
bytes (16,384K). The default may be altered during Initial Microprogram
Load (IML) to: 2048K, 4096K or 8192K. How to perform IML is
described in the mM-provided Operator's Guide manual for your central
processor. If disk space is a concern, you might consider reducing the
virtual storage size. For example, a 16M (16,384K) system requires
32,768 FBA blocks whereas a 4M (4096K) system requires 8192 FBA
blocks.

In 370 mode, there is always a default virtual storage size defined
according to the selected supervisor options. You may override this value
through the VSIZE parameter when you begin to IPL your system. The
operating system uses the value to calculate the disk space requirements.
If your supervisor includes page able routines, space is automatically
reserved on the page data set for these routines.

If you have the licensed program VSE/POWER installed, the page data
set should not be placed on the same drive as the VSE/POWER data files
if this can be avoided. You should attempt to place the page data set on a
pack that has relatively low activity yet is on-line all the time. Normal
data files are not ·conducive to this approach as you probably do not want
to leave these files on-line when they are not needed. In many cases the
best place for the page data set is on the same pack that contains the
SYSRES file. A user with only two disk drives should place the page data
set on the pack that contains SYSRES.

2-14 VSE/ Advanced Functions System Management Guide

Recorder File

Hard Copy File

History File

The recorder file contains recovery management support statistics provided
primarily for IBM service personnel to analyze the performance of your
system. The information collected is related, for example, to:

• I/O errors

• CPU errors

• IPL reason codes

The system logical name used for the recorder file is SYSREC. The file
name is USYSRC. The SYSREC file must be defined as a disk extent on
a DASD type that is supported by YSE/ Advanced Functions as SYSRES.

The recorder file is created immediately after the first IPL for your system
with the SET RF=CREATE command. The file is opened by the first
occurrence of a / / JOB statement after IPL. No / / JOB statement may
be submitted prior to the SET RF=CREATE command. See .also Starting
the System in Chapter 3, Using the System.

The hard copy file, a disk extent, must be on the same device as the
recorder file SYSREC. The system logical name is SYSREC and the file
name is USYSCN.

The hard copy file contains all of the messages displayed on the display
operator console (DOC). These messages can be retrieved on SYSLOG by
using the operator redisplay (D) command, or on SYSLST by using
program PRINTLOG. The hard copy file is created immediately after the
first IPL with the SET HC=CREATE command. The file is opened by
the occurrence of the first / / JOB statement after IPL. See also Starting
the System in Chapter 3, Using the System.

An operating system needs a history file containing information about the
components of the system and the program fixes applied to those
components. The history file is used by MSHP (Maintain System History
Program) for the recording of information about your installed
components. When YSE/ Advanced Functions is shipped to you, a history
file is also shipped. This file reflects the change level of the supplied
YSE/ Advanced Functions components. An up-to-date history file eases
maintenance of your system.

The history file is a disk extent and must be on the same device as the
recorder and hard copy files. The system logical name is SYSREC and the
file name is USYSHF.

For information on installing the supplied history file consult
VSE/Advanced Functions System Generation. How MSHP uses the
history file is described in VSE/ Advanced Functions Maintain System

Chapter 2: Planning the System 2-15

Altemate Dump Files

Work Files

---------------..,-- -- --- -

History Program User's Guide. You should also consult VSE/Advanced
Functions System Utilities for information on BACKUP/RESTORE and
those programs' relationship with the history file.

Instead of SYSLST, one or two dump files on a direct access volume may
be used to receive dumps. A dump may be produced, for example, when a
program cancels.

The first (or only) dump file has the file name DOSDMPF. If you choose
to have a second dump file (its file name is DOSDMPG), the two dump
files are used alternatingly: while one is being filled, the other one could
be processed by the DOSVSDMP program. Note that the two dump files
must reside on the same DASD volume. Each dump file is a single extent
file.

At the time of IPL, you must assign the dump file using the DEF
command with the specification SYSDMP=cuu. The assignment cannot be
changed until the next IPL. If you fail to assign the dump file, the dump
will be printed on SYSLST.

You create the dump flle(s) through the DOSVSDMP program. This
program is also used for printing the dump from the dump file. For details
on the usage of the DOSVSDMP program, refer to the publication
VSE/ Advanced Functions Serviceability Aids and Debugging Procedures.

DLBL and EXTENT job control information must be provided each time
the dump file is to be accessed, that is, when

• the file is created,

• a dump is written into the dump file,

• a dump is printed with the dump file as input.

For each of these three cases, the EXTENT statement must specify the
logical unit name SYS006.

Work files are temporary files that are used by a program during the
execution of a given application. User-written programs as well as
mM-supplied programs can use work files. Work files used by your own
programs must be defined, created, and named individually by you. They
are not discussed here.

System work files are used in compiling (assembling) source statements
and preparing input for the linkage editor. System work file naming uses
the following conventions:

2-16 YSE/ Advanced Functions System Management Guide

<.

L,

Symbolic Name File Name

SYSLNK USYSLN
SYSOOI USYSOI
SYSOO2 USYS02
SYSOO3 USYS03
SYSOO4 USYS04
SYSOO5 USYS05
SYSOO6 USYS06

For example, the assembler requires three work files to translate source
input and one work file (SYSLNK) to prepare linkage editor input.

The work files are defined via / / DLBL and / / EXTENT statements.
They are opened and created when needed.

Listed below are the symbolic device requirements for the Assembler,
DOS/VS COBOL, and DOS/VS RPG II, the language translators, most
frequently used under VSE.

SYSLNK SYSOOI SYSOO2 SYSOO3 SYS004 SYS005 SYSOO6

Assembler L M M M

DOS/VS
COBOL L M M M M 0 0

DOS/VS
PPG II L M M

M = Mandatory
0 = Optional
L Required when link editing

The size requirements of these files vary. Refer to VSE/Advanced
Functions System Generation which gives the formulas for calculating the
size requirements of the assembler and linkage editor work files. DOS/VS
COBOL and DOS/VS RPG II work file sizes are described in their
respective installation guides.

To compile and link in two or more partitions simultaneously you will
need a set of work files for each partition in which you plan to compile
and link programs. A method for handling this situation is given in section
Label Information Area which follows.

A simpler method is available if you have the VSE/VSAM Space
Management for SAM Feature installed: you can place USYSLN and the
linkage editor work file USYSOI in VSAM-managed space. This renders
the allocation of work file space more flexible; you save a considerable
amount of space, in particular if you assemble and/or link edit in more
than one partition.

Section Linkage Editor Work Files in VSAM-managed Space in Chapter
Using the System describes briefly how you address, in your job control,
linkage editor work files in VSAM-managed space. For more information,
refer to the publication Using the VSE/VSAM Space Management for
SAM Feature.

Chapter 2: Planning the System 2-17

Label Information Area

The label information area is part of the SYSRES file and follows the last
library in SYSRES. If SYSRES is on an FBA device, the label information
area comprises 200 blocks. For CKD devices the area is two cylinders.
(For the 3340 disk, it is 3 cylinders and for the 3350 it is 1 cylinder).

For FBA devices, but not for CKD devices,· you may change the size of
the label information area using the RESTORE program. See
VSE/ Advanced Functions System Utilities for details on this program.

Using the DLA command during IPL, you may define or reference an
additional label information area. This area is separate from the SYSRES
file; it may be located on or outside the volume containing the SYSRES
file. The need to define such an area may arise when two CPUs or two
VSE systems under VM/370 share one SYSRES file. More information
on the DLA command is provided in chapter Using the System under
section IPL commands.

The size of a label information area that you define via the DLA
command can deviate from the default size, regardless whether it is
located on an FBA device or a CKD device.

Usage of the label information area is described in Chapter 3, Using the
System.

Entries in the label information area point the operating system to the
appropriate files on a given disk pack. mM provides standard label
procedures in the system procedure library for placing standard label
information into the label information area for the following files:

File Name File-ID Symbolic Name

IJSYSRS AS746XE9.SYSRES.FILE SYSRES
IJSYSRC VSE/ AF.RECORDER.FILE SYSREC
IJSYSCN VSE/ AF.HARDCOPY.FILE SYSREC
IJSYSHF AS746XE9.SYSTEM.HISTORY.FILE SYSREC
IJSYSLN VSE/ AF.SYSLNK.FILE SYSLNK
IJSYSOl VSE/ AF. WORK-FILE.l SYSOOl
IJSYS02 VSE/ AF.WORK-FILE.2 SYSOO2
IJSYS03 VSE/ AF. WORK-FILE. 3 SYSOO3
IJSYS04 VSE/ AF. WORK-FILE.4 SYSOO4
IJSYSIN* DTTEPTF SYSIN

* SYSIN labels for diskette cardless system.

The label information assumes you have taken the default library
allocations when you restored your system from tape to disk. If you use
different library allocations or if your page data set size is larger than the
-default, prepare your own label information and execute your own
/ / OPTION STDLABEL run. If you wish to add standard label
information, run the supplied standard label procedure(s) (or your own)
and supply also the new entries.

The Program Directory shipped with VSE/ Advanced Functions lists the
standard label procedure names and the contents of those procedures.

2-18 VSE/ Advanced Functions System Management Guide

L

Planning for Compiling in More Than One Partition

Once the standard label area contains label information for the work files
you can now assign the symbolic names (SYSnnn) to some physical drive
and start compiling. Initially there is only one set of / / DLBL and
/ / EXTENT statements for each work file (IJSYS01, IJSYS02, etc.), so
you cannot run compiles simultaneously in two different partitions.

The open routines of VSE/ Advanced Functions always look for the label
information in the label storage area in the following sequence:

1. partition userlabel area

2. partition standard label area

3. system standard label area

To cause each partition to have its own set of work files, place the
necessary label information in the partition standard label area associated
with that partition.

The job control program will write label information to the partition
standard label area of the partition in which job control is running when it
encounters the / / OPTION P ARSTD statement.

(a) II OPTION PARSTD
II DLBL IJSYS01,'BG-WORKFILE-1',O,SD
II EXTENT SYS001,,1,O,12,12
II DLBL IJSYS02, 'BG-WORKFILE-2',O,SD
II EXTENT SYS002,,1,O,24,12
II DLBL IJSYSLN, 'BG-SYSLNK' ,O,SD
II EXTENT SYSLNK,,1,O,36,12

(b) II OPTION PARSTD
II DLBL IJSYS01,'F2-WORKFILE-1',O,SD
II EXTENT SYS001,,1,O,48,12
II DLBL IJSYS02,'F2-WORKFILE-2',O,SD
II EXTENT SYS002,,1,O,60,12
II DLBL IJSYSLN, 'F2-SYSLNK',O,SD
II EXTENT SYSLNK,,1,O,72,12
II DLBL IJSYSCL,'PCIL-FOR-F2',O
II EXTENT SYSCLB,,1,O,84,24

Job streams (a) and (b) above, when run in the BG and F2 partitions
with appropriate ASSGN statements, will enable simultaneous use of the
DOS/VS RPG IT compiler in both partitions. When running the compiler
in either partition, the OPEN routines will search for file names IJSYS01,
IJSYS02, IJSYSLN. In the BG partition the compiler will use cylinder 1
through cylinder 3 of a 3340, and in the F2 partition cylinders 4
through 6.

Note: Label information for a private core image library (PCIL) has been provided in
job stream (b). See Creating and Working with Private Libraries in Chapter 3, Using
the System for information on creating private libraries.

Chapter 2: Planning the System 2-19

Tailoring the Supervisor

Virtual Storage Size

The IBM-shipped VSE/ Advanced Functions includes three supervisors,
one of which is used during system generation. Part of your system
generation procedure is to plan and assemble your tailored supervisor.
You may generate a system to run either in ECPS:VSE or 370 mode for
the 4300 processor, or in 370 mode for the System /370 CPUs.

This section describes the optional and required parameters of the
supervisor generation macros in a topical sequence; that is, such that
related options are presented together regardless of the macros in which
they are contained. For the exact formats of these macros, refer to
VSE/ Advanced Functions System Generation. This section discusses, in
addition, the advantages or necessity of specifying the support for the
various facilities of the supervisor.

In tailoring your supervisor to the requirements of your installation, you
can take into consideration future plans to add functions that require
supervisor options by including their requirements in your supervisor
generation macros. This allows you to upgrade your installation without
having to regenerate your supervisor. In your library planning, you should
include space for modules or components that will be required by a
planned future configuration or functional upgrades. The storage cost of
additional supervisor options may be estimated by consulting section
Storage Requirements in VSE/Advanced Functions System Generation.

No supervisor generation option is available to set the size of your virtual
storage; this can be done only at system start-up time. Nevertheless,
already when you plan your system, you should give some thought to the
virtual storage size you are going to use.

The method of defining virtual storage is different for ECPS:VSE mode
and 370 mode.

ECPS: VSE Mode Virtual Storage Definition.
In ECPS:VSE mode, the default value for the total size of your virtual
storage is 16M (16,777,216) bytes. The operator may change this value at
IML (Initial Microprogram Load). For details about IML on a 4300
processor, see the Operator's Guide manual provided by IBM for the
pertinent processor model. The value is used by the system to determine
the size of the page data set. How to define the page data set has been
discussed in section Page Data Set, earlier in this chapter.

370 Mode Virtual Storage Definition.
In 370 mode, virtual storage is composed of virtual address space and real
address space. The size of the real address space is determined
automatically when you execute the Initial Program Load (IPL) program.
You may leave it up to the system to calculate the size of the virtual
address space. Depending on the chosen supervisor options, the system
will establish a sufficiently large default size. At the time of IPL, you may
override that value when the system prompts you for the specification of
VSIZE. The value you specify for VSIZE is equal to the sum of the

2-20 VSE/ Advanced Functions System Management Guide

The Shared Virtual Area

virtual address space allocated to the defined partitions and the size of the
shared virtual area.

The maximum size of virtual storage is 16M (16,777,216) bytes. The
maximum value you can specify for VSIZE is 16M minus the size of the
real address space.

The defined virtual storage size is used by VSE/ Advanced Functions to
determine the size of the page data set.

The shared virtual area (SV A) is divided into subareas as follows; a
system directory list (SDL), an area for phases, a system GETVIS area
(see Figure 2-4).

You cannot define the SV A size at the time of supervisor generation;
VSE/ Advanced Functions determines the size during IPL, at which time
you may allocate additional space. Because the SY A space shortens the
amount of virtual storage that is left to the partitions, you should take the
SV A and its size into your planning considerations.

Virtual
Storage

Supervisor

System Directory List
1-------------------

Resident, Reenterable
Relocatable Phases

System GETVIS Area

Figure 2-4. Layout of the Shared Virtual Area

SVA

Chapter 2: Planning the System 2-21

The System Directory List. The system directory list (SDL) contains
copies of selected entries of core image library directories. This provides
for fast retrieval of frequently used phases. (These phases may be resident
in the SVA or in any core image library.) Having SDL entries avoids
searching a core image directory (on disk) for each phase load request.
Figure 2-5 shows the SDL and its relationship to the core image library.

2-22 VSE/ Advanced Functions System Management Guide

I
I

/
I I

/ /
I /

I /
I /

/ I
I I

I I
/ I

I /
I /

/ /
I /

I /
/ /

/ I
/ /

/ /
/ I

/ /
I I

/ /
/ /

I /
/ I

Virtua I Storage

Reenterable, Relocatable Phases SVA

System GETVIS Area

(/
PHASES I I ""--....L..-.P_HA_S_E_X __ -----:~ ---

PHASEA

PHASES

PHASEX

I
/ ,.

,.
/

/
I

/ ,.

/

/ ,.
,. /

/

/
/

,.
/

/

Core I mage library

The system directory list (SD U, built by the operating system, provides for fast locating of frequently used phases either in
the SVA or in a core image library.

The SDL entries point directly to a phase's location on disk.

The SDL entries are copies of selected Core Image Library Directory entries.

Figure 2-5. System Directory List

Chapter 2: P_lanning ~e ~ystl:m 2-23

The SV A Phase Area. The SV A phase area always contains
VSE/ Advanced Functions system phases; the area may, in addition,
contain IBM licensed program phases and user-written phases.

Phases that are in the SV A may be used concurrently by more than one
partition if the phases are reenterable and relocatable. Having phases in
the SV A speeds processing by:

• eliminating loading from a core image library - When a phase is
resident in the SV A, it does not have to be loaded from the library for
each execution. This saves the disk I/O, even if the phase was paged
out to the page data set as paging is generally faster than loading
from a core image library.

• reducing processor storage demands - If the phase is being shared
between two or more partitions, the impact on the page pool is less
than if two or more copies of the phase were loaded into storage.

The System GETVIS Area. The system GETVIS area is used by
VSE/ Advanced Functions to dynamically acquire virtual storage for its
own use.

An example of the GETVIS area use is the initialization of the SDAID
program. The SDAID program normally requires approximately lOOK of
system GETVIS space when it is being initialized,. For more details on the
SDAID program see VSE/ Advanced Functions S~rviceability Aids and
Debugging Procedures.

Size of the SV A. The IPL program calculates, based upon the chosen
supervisor options, the SV A size. The supervisor options and their cost in
SVA space are shown in the manual VSE/Advanced Functions System
Generation. Additional space requirements for installed licensed programs
such as VSE/VSAM or DOS/VS SORT/MERGE are also automatically
calculated by the IPL program. The space requirements for each licensed
program are shown in the appropriate licensed program documentation.
To support user-written programs in the SV A you must indicate the
required SV A space. The parameters SDL, PSIZE and GETVIS of the IPL
command SV A are used to increase the SV A size beyond the defaults set
by the system.

The loading of certain system phases into the SV A, and the creation of
SDL entries for them, occur automatically at IPL. For information on how
to increase the size of the SV A as well as loading items. not automatically
included by the IPL program, see the section Starting the System in
Chapter 3, Using the System.

Defining the Number of Partitions and Subtasks

In the NP ARTS parameter of the SUPVR generation macro, you define
the maximum number of partitions for your system.

In selecting the appropriate number of partitions for your particular
installation, you should consider the type of processing you require.
Assume you want to run concurrently the following types of programs:

2-24 YSE/ Advanced Functions System Management Guide

Library Options

I Library Chaining

• Test cases (assemble/compile, link edit, and execute)

• Daily application programs

• A spooling program, such as VSE/POWER

• Telecommunication application programs.

For this case, you should generate a system with at least five partitions,
depending on the volume of application program processing. If, for
example, your system includes the licensed program ACF /VT AM, at least
two partitions must be specified: one for ACF/VTAM and one for your
VT AM application programs.

Because you cannot alter the NP AR TS specification unless you regenerate
the supervisor, it may be advantageous to specify more partitions than you
see an immediate need for.

Number of Subtasks. Any function within your computing system is
performed as a 'task'. A task can create one or more subtasks, and each
subtask, in turn, may create other subtasks. The concept of multitasking
was briefly discussed in Chapter 1, VSE/Advanced Functions Overview.

The operating system itself employs, sometimes to a large extent, this
multitasking tool. Interactive processing (as performed, for example,
within VSE/ICCF) adds to the usage of subtasks.

There is, of course, a limit for the number of subtasks that may be active
at a given time within the entire computing system. VSE/ Advanced
Functions sets a default maximum. You may override this default in the
NT ASKS parameter of the SUPVR generation macro. The maximum you
may specify varies with the number of partitions (NPARTS) defined for
your system: the more partitions you define, the higher the allowed
maximum number of subtasks.

You can choose the maximum number of libraries you want to
concatenate per partition and the amount of space you want to reserve for
storage-resident directories to achieve better fetching performance. These
options are described below.

When mM programs access the libraries to retrieve procedures, books,
modules, or phases (for example, during assemblies, linkage editing, or
procedure execution), they expect job control information on which
particular libraries to access, and in what order.

In your job control, you may define chains of libraries. This allows not
only to define more than one library to be accessed, but also to direct the
system to search through the library directories in a given order.

Chapter 2: Planning the System 2-25

Support for chaining (concatenation) of libraries is always provided.
There is a default for the maximum number of libraries allowed per search
chain. You may use the LCONCAT parameter of the FOPT generation
macro in order to override the default.

Second Level Directory for Core Image Libraries

Telecommunication

The directory entries for phases in the core image library are sorted by
phase name in alphameric sequence.

An index of the directory entries is kept in the supervisor in a second
level directory (SLD). The SLD speeds the retrieval of phases from the
system core image library. You may specify the number of entries the
SLD will contain through the SLD parameter of the FOPT generation
macro. The value specified depends on the type of disk device that
contains the system core image library:

For CKD devices - the number of directory tracks.
For FBA devices - the number of directory blocks.

There are also second level directories for private core image libraries:
private second level directories (PSDL). A PSLD is provided for each
private core image library defined in a partition (if defined in more than
one partition, one PSLD suffices for all those definitions).

Storage for five entries per PSLD is automatically reserved. You may
override this default via the SV A command at IPL time. If you do so,
specify a PSLD value that accommodates for your largest private core
image library; the size of each PSLD will be based on one value: either
the default or the specification in the SV A command.

VSE/ Advanced Functions provides facilities for telecommunication, the
interchange of data between an application in the system and terminals
connected via telecommunication lines. These facilities provide the ability
to define such lines for supervisor assembly and to specify one or more
access methods for input/output services between an application and
terminals.

Telecommunication devices (terminals) are normally attached to the CPU
through transmission control units or communications controllers. The
control unit must be defined via the IPL command ADD. In some cases
there is a direct local attachment.

The access methods, defined in the TP parameter of the SUPVR
generation macro, are the licensed programs:

• Advanced Communication Function/VTAM (ACF/VTAM)

• Basic Telecommunication Access Method - Extended Support
(BTAM-ES)

2-26 YSE/ Advanced Functions System Management Guide

BTAM-ES Support

ACF/VTAM Support

Supervisor support for BTAM-ES is standard, also the support for TP
balancing (telecommunication balancing).

For detailed information on generating and using a telecommunication
access method, refer to the appropriate telecommunication publications.
Teleprocessing users should also pay particular attention to section I/O
Options later in this chapter and read section Balancing
Telecommunication in Chapter 4, Using the Facilities and Options of
VSE / Advanced Functions.

Applications using BTAM-ES can execute in either virtual or real mode.
If you have used BT AM under DOS or DOS/VS in the past, you have to
reassemble and catalog BTMOD before submitting your applications to
VSE/ Advanced Functions for execution. If BTMOD and the application
program were assembled together, the application program must also be
reassembled and re-link edited.

A CF /VT AM executes in virtual mode in its own partition.

As A CF /VT AM uses the PFIX macro, processor storage page frames
must be allocated to the partition in which ACF/VTAM is to run. A
separate partition is required for VT AM application programs. For
information on installing this licensed program refer to the ACF /VT AM
documentation.

Note: On an IBM 4331 processor, you use ACF/VTAME instead of ACF/VTAM.

I Linkage between VSE / A.dvanced Functions and VM /370

Your VSE system can run in a virtual machine under VM/370.
VSE/ Advanced Functions offers programming support (called the
VM/370 Linkage facility) to adjust program execution for the special
conditions prevalent in a virtual machine. Under VM/370 Linkage, the
operating system does not, for example, execute instructions that are
redundant in a VM/370 environment; it avoids functions such as load
leveling and paging as well as page fixing and page freeing. In ECPS:VSE
mode, the VM/370 Linkage facility causes direct address translation
(DAT) to be bypassed.

In order to generate that support, you specify VM= YES in the SUPVR
generation macro. You can generate a supervisor for execution in 370
mode with VM=NO and still run it under VM/370; of course, you do not

, receive the advantages of the VM/370 Linkage facility.

Specification of VM= YES is requred in order to obtain support for FBA
DASDs in 370 mode.

Chapter 2: Planning the System 2-27

I Note that a supervisor generated with VM= YES can operate only on a
virtual machine under VM/370.

Interactive Computing and Control

The licensed program VSE/lnteractive Computing and Control Facility
(VSE/ICCF) offers interactive timeshared. computing and control services
to terminal users.

VSE/ICCF provides a collection of tools for

• Online library maintenance

• Context editing and text manipulation

• Development and execution of interactive problem programs

• Job entry

• Monitoring of time-shared job processing.

VSE/ICCF runs in a VSE partition. Support for VSE/ICCF is always
provided; it is a prerequisite for the Access Control service of
VSE/ Advanced Functions which is described in the following section.

Access Authorization Checking and Security Event Logging

Access Control

VSE/ Advanced Functions provides a service to check against
unauthorized usage of your data and your programs.

Support for this function is available if you assigned a positive value to
the SEC parameter in the FOPT generation macro.

VSE/ Advanced Functions provides access control for the following
resources:

• your data

• your private libraries

• individual programs (phases) within any of the core image libraries.

Access control is not available for VSE system libraries. However, it is
available for phases of the system core image library.

Security profiles. To do this checking, VSE/ Advanced Functions uses the
'Access Control Table'. You build this table through the DTSECTAB
macro; usage of this macro is described in the manual Data Security
Under the VSE System. This table is loaded into the SVA at the time of
IPL.

2-28 VSE/ Advanced Functions System Management Guide

Logging and Reporting

Job Accounting

The access control table has two groups of entries:

• User profile entries. Anyone who uses your data processing
installation and wants to access secured programs or data or both
must submit a user-id and a password; the batch user through the
/ / ID job control statement, the terminal user through logon
procedures. User-id and password have to match the corresponding
parameters within one particul~r user profile entry. In addition, each
user profile entry may contain up to 32 security classes.

• Resource profile entries. There is one entry for each named resource
which is defined as 'protected'. Such a resource may be a file name, a
library name, or the phase name of a program.

Associated with each resource is a security class. When a user
program attempts to access a protected resource, the operating system
compares the security class in,that user's profile with the security class
assigned to the resource. If the security classes don't match, access to
the particular resource is denied to the user program.

For more information about access control implementation, refer to the
manual Data Security Under the VSE System.

If you have the licensed program VSE Access Control - Logging and
Reporting installed, the security related events are recorded on the logging
file. For details on the creation of and access to the logging file, refer to
the documentation available with that program.

What constitutes a security related event, is determined at the time you
build the resource profile entry. Depending on your installation's
requirements, you may want to trace only security violations of a
protected resource; or, you may want to trace all permitted accesses to
that resource.

Use the Reporting Program to get a formatted listing of the logging file.

The job accounting interface facility provides job and job step information
that can be used for charging system use, supervising system operation,
planning new applications, etc.

When this option is selected (JA= YES in the FOPT generation macro),
job accounting tables are built in the supervisor to accumulate accounting
information. One job accounting table is maintained per partition. The
format of these tables and information on how to write a job accounting
routine is given in Chapter 4, Using the Facilities and Options of
VSE / Advanced Functions.

To utilize this job accounting information, you must write a routine to
store or print the desired portions of the table. This routine must be
cataloged in the core image library under the name $JOBACCT.

Chapter 2: Planning the System 2-29

Timer Services

Time-of-Day Clock

Interval Timer

If the user I/O routine ($JOBACCT) is written using LIOCS with label
processing, the JALIOCS parameter of the FOPT macro must be specified
in addition to the JA parameter. JALIOCS indicates that a user save area
and a label area in the supervisor are to be reserved. The label area
replaces the one normally used by LIOCS label processing routines.

If the licensed program YSE/POWER job accounting is desired, support
for the job accounting interface is required. No user-written data
collection routine is then necessary. Refer to the VSE/POWER
documentation.

The following timer services are available to users of YSE/ Advanced
Functions:

• Time-of-day clock
• Interval timer
• Task Timer

The time-of-day clock is a standard hardware feature, while the task timer
and the interval timer require other hardware features (the clock
comparator and the CPU timer) which are standard on all System/370
and 4300 processors, except the 370 models 135 and 145. Utilization of
these timer services in YSE/ Advanced Functions is briefly discussed
below. Except for the task timer, the timer services are automatically
provided in YSE/ Advanced Functions. Support for the task timer is a
supervisor generation option.

The time-of-day (TOD) clock provides a consistent measure of elapsed
time suitable for time-of-day indication.

The TOD clock support also enables programs to issue the GETIME
macro instruction, which causes the exact time-of-day to be stored in
general register 1. A description of the use of the GETIME macro
instruction is given in VSE/ Advanced Functions Macro User's Guide.

The time-of-day and the date are automatically included with each
/ / JOB and / & job control statement that is printed on SYSLST or
SYSLOG.

During the IPL procedure, if IPL is performed from SYSLOG, a message
is printed on the operator console to inform the operator of the status of
the date, clock, and zone. If necessary, the operator can correct this
information in the SET comm~nd.

The interval timer can be used by programs (main tasks or subtasks or
both) that need to schedule certain processing based on discrete time
intervals. If a problem program is written with the appropriate macros and

2-30 VSE/ Advanced Functions System Management Guide

L

Task Timer

Console BUffering

routines, the interval timer causes an external interrupt when the time
limit established by the program has elapsed.

Several problem program macros relate to interval timer support. For
information about using these macros, refer to VSE/Advanced Functions
Macro User's Guide.

The task timer can be used by the main task of the partition owning the
task timer to escape from processing and enter an exit routine after a
specified period of time. This discrete time interval is decremented only
when the main task is executing. If support for the task timer is included
in the supervisor and the owning partition's main task is written with the
appropriate macro instructions and routines, the specified task timer
routine is entered when the time interval has elapsed.

To include support for the task timer in the supervisor, specify the TTIME
parameter in the FOPT generation macro.

If an exit routine is not specified in the STXIT TT macro, the interrupt is
ignored. The SETT macro is used to set the time interval, and that
interval can be tested or canceled by means of the TESTT macro. The
EXIT TT macro is used to return control from a task timer exit routine.

In an installation with a relatively slow console device, the entire system
can be held up while messages are being issued to the operator. Console
buffering support builds a queue of output messages and returns control
immediately to the partition requesting the output. The messages are then
written as soon as the console becomes available.

Console buffering is useful in two cases:

• when your console device is a 3210/3215 printer keyboard, or

• when your console is a display operator console and a printer is used
to produce a hard copy of messages while they are displayed on the
screen.

In an installation without such printers, a performance improvement
cannot be obtained by requesting console buffering support. On the
contrary, console buffering may, in that case, even work to your
disadvantage: certain VSE/ Advanced Functions tasks such as error
recovery routines issue high priority messages. If your console is a display
operator console, and a DASD rather than a printer is used as a hard copy
file, then, depending on the size of your console buffer, messages may be
issued to the screen in such rapid succession that a message like
INTERVENTION REQUIRED ... can easily be overlooked by the
operator.

Support for console buffering is indicated by the CBF=n parameter in the
FOPT generation macro (where n is the number of I/O requests to be

Chapter 2: Planning the System 2-31

buffered). If you decide to use console buffering, at least one buffer
should be specified for each partition or task issuing messages so that
buffers are available and the task can continue processing while the
message is being printed. Two per partition is recommended. Console
buffering is not split per partition, but used by the whole system.

Asynchronous Operator Communication

Disk Options

I DASD Sharing Across Systems

DASD File Protection

With asynchronous operator communication, operator action requests
(action or decision messages) and the corresponding replies need no
longer be in series. They can be asynchronous; that is, the operator can
defer replies to messages while the system continues processing. One reply
per active task in the system may be outstanding at a time.

To enter a reply, the operator must key in the reply-ID that the system
has assigned to the corresponding message. The asynchronous operator
communication support is activated by specifying ASYNOC=YES in the
FOPT generation macro. For details, refer to VSE/ Advanced Functions
Operating Procedures.

Options are provided for some DASD devices. These options are:

• DASD sharing across systems
• DASD file protection
• Track hold
• Rotational position sensing

Two or more VSE systems may be linked in such a way that they use
common disk files.

In order for this setup to be sensible, it must be ensured that resources
while being used by one system are protected against unallowed access
from other systems.

Support for this kind of resource control is established if each sharing
system runs under a supervisor generated with DASDSHR= YES in the
FOPT supervisor generation macro.

The concept of DASD sharing across systems is further discussed in
section DASD Sharing by Multiple VSE System, within chapter Using the
Facilities and Options of VSE/Advanced Functions.

This feature is provided to prevent user programs utilizing DAM or
user-written channel programs for writing onto DASD from writing data
outside of the limits of the DASD file currently being accessed. This might

2-32 YSE/ Advanced Functions System Management Guide

Track Hold Option

happen if, for example, a randomizing algorithm produces an unexpected
DASD address which is outside the file limits.

DASD file protection support is indicated in the DASDFP parameter of
the FOPT generation macro.

DASDFP gives protection on the basis of programmer logical units. If two
DASD files are open in the same partition and use the same programmer
logical unit, the DASDFP option does not give any protection to' either of
the two files.

If you are using physical lOCS, you must use the DTFPH macro to define
the file. The file must be opened using the OPEN or OPENR macro, and
each channel program must commence with a long seek (X'07') command
or a define extent (X'03') command, and contain no chained long seeks.

Specifying DASDFP does not prevent file contention between partitions,
or within partitions if the same symbolic unit is used. Thus, more than one
partition may access the same file at the same time and may even attempt
to update the same record simultaneously. The track hold option
(TRKHLD) is provided to solve this problem. Note, however, that all
DASD writes (DAM and others) will be checked for being within the
file-protect range.

Note that, for CKD devices, no protection is given to partially allocated
cylinders; files to be protected should begin and end on cylinder
boundaries.

The track hold option is used to ensure that, while data in a DASD file is
being modified by one task, no other task in the system can access that
data. The facility is available to most VSE disk access methods.

The track hold option can be selected by specifying the TRKHLD
parameter in the FOPT generation macro.

Additionally, user programs must invoke the track hold facility. For the
track hold feature to be effective all programs accessing the same file must
request its use. The track hold facility is requested in the DTF of the user
program by specifying HOLD= YES.

For FBA devices, the track hold facility protects the range of blocks
which contains the accessed data. For CKD devices, the facility protects
the track that contains the data being accessed.

Deadlock occurs if one task is waiting for a DASD area held by a second
task and the second task is waiting for a DASD area held by the first.
This can be prevented by establishing the convention that every task must
be programmed so that it will not attempt to hold more than one DASD
area at a time. Deadlock may also occur if the maximum number of
DASD areas demanded to be held by all tasks combined exceeds the
maximum specified in the TRKHLD parameter.

Chapter 2: Planning the System 2-33

Rotational Position Sensing

Rotational Position Sensing (RPS) is a feature on all mM eKD disk
storage devices except 2311, 2314, and 2319; it is optionally available on
mM 3340. It provides the ability to overlap positioning operations on one
device with service requests for other devices on a block multiplexer
channel (or its equivalent on System/370 Model 115 or 125).

The operating system makes use of the feature if you specify RPS= YES in
the FOPT generation macro. However, you should not request RPS
support if you use the 23xx emulator on a Model 115 or 125.

Better channel utilization can increase system throughput, especially in
large multiprogramming systems with heavy concurrent I/O activity.
Because a selector channel is monopolized once a channel program has
been initiated, no other device on this channel can be accessed until the
data has been transferred. With block multiplexer channels and the 'RPS
feature of DASD devices, however, the device can disconnect from the
channel during positioning operations. The channel is then available for
other requests so that other devices on the channel can be accessed.

Overlap of positioning to a record on a track requires adding RPS eews
to the direct access storage device channel programs. VSE/ Advanced
Functions system control and service programs that support RPS,
dynamically build these eews during program execution provided that
the supervisor is generated with RPS support and that the direct access
storage device has the feature.

RPS support within VSE/ Advanced Functions is provided in all access
methods which support RPS DASD devices and in the VSE/ Advanced
Functions system control and service programs where the implementation
benefits total system performance. Implementation of RPS support in
VSE/ Advanced Functions utilizes virtual storage to enable you to use
RPS to avoid recompiling or relink editing your problem programs. The
partition GETVIS area is used to generate an extension to.the DTF, and
the shared virtual area is used to hold the RPS phases which are used in
lieu of the logic modules of LIOeS.

Efficient use of RPS depends on each channel program's ability to free
that channel so that it can service requests for other devices. Programs
using VSE/ Advanced Functions DASD LIOeS access methods will have
RPS channel programs built by the access method. Programs using Ploes
for DASD access have to be recoded to include Set Sector eews and to
establish arguments for the eews. If this is not done, these programs will
destroy the effectiveness of RPS by monopolizing the channel.

The RPS phases are loaded into the SV A by IPL if you have specified
RPS=YES in the FOPT generation macro.

Figure 2-6 shows the organization of a user's program running in virtual
storage without RPS support.

Figure 2-7 shows how, with RPS support, this organization will be
modified when the pertinent file is opened to put the DTF extension in
the partition GETVIS area. The pointers to the RPS phases which are
used in lieu of the logic module and channel program will be put into the
DTF while the non-RPS logic module and channel program addresses will
be saved in the DTF extension. The DTF extension will be freed and the
pointers restored to their original values when the file is closed.

2-34 YSE/ Advanced Functions System Management Guide

USER PROGRAM

DTF

NON-RPS CCW STRING •
NON-RPS LOGIC MODULE.

---------------NON-RPS CHANNEL PROGRAM

NON-RPS

LOGIC MODULE

VIRTUAL STORAGE

~--------------------~

}
Partition
GETVIS
area

Figure 2-6. User Program Running in Virtual Storage without RPS
Support

w
l!)
«
a:
o
t;;
-l
«
:::::>
f­
a:
:;

USER PROGRAM

DTF

RPS CCW STRING
RPS LOGIC MODULE • • --------------

NON-RPS CHANNEL PROGRAM
(not used)

NON-RPS

LOGIC MODULE
(not used by RPS DTF

but available to other DTF)

NON-RPS CCW STRING

NON-RPS LOGIC MODULE i ____________ i
DTF EXTENSION

RPS CHANNEL PROGRAMj

Partition
> GETVIS

area

Figure 2-7. User Program Running in Virtual Storage using RPS Version
of Logic Module and Channel Program

Chapter 2: Planning the System 2-35

I/O Options

Channel Queue

The channel queue (CHANQ) is used by VSE/ Advanced Functions to
schedule I/O operations. The system builds an entry in the channel queue
whenever a request is made for an I/O operation and the entry remains in
the queue until the operation has completed. Thus, at any point in time,
the queue consists of entries for I/O operations in progress and I/O
operations waiting for initiation. Whenever an I/O event completes, the
queue is examined to see if another entry exists for the channel, and if so,
the operation is initiated. The number of channel queue entries to be
allocated in the supervisor can be specified in the CHANQ parameter of
the lOT AB macro.

The number of occupied entries in the channel queue depends on the
activity in the system and no accurate formulas for determining the
optimum size can be given.

Specifying too small a channel queue may cause performance degradation,
too large a channel queue value will waste storage space.

Tasks or programs that request an I/O operation when the channel queue
is full will be set in the wait state until an entry becomes free.

To avoid performance degradation it is better initially to specify ample
channel queue space, and reduce the allotted space later, if desired. Given
below is a rule-oj-thumb that you may follow:

• Specify at least one queue entry for each I/O request that can be
issued concurrently (open files per job step per partition).

• Specify one entry for the SYSRES file and one for the page data set.

• Specify one entry for each task or partition in the system.

• Specify one entry for each console buffer in the system.

• If multiple volume files are used on the system, specify one entry for
each file being accessed at the same time.

Add two entries per tape drive.

• Specify one entry for each telecommunication line that could solicit
input. If IBM 2260 local or 3270 local video display units are to be
supported by BTAM-ES, specify one entry for each display.

• Add five entries to the total for contingencies.

When the system has been generated, run as many programs as represent
the heaviest work load; in particular, run any telecommunication
programs. Then, before the next IPL, obtain a formatted dump of virtual
storage.

2-36 YSE/ Advanced Functions System Management Guide

L '

An analysis of the channel queue should show that entries near the
beginning of the table have been used, whereas those near the end are
unused. Although the unused entries are normally redundant, a few
surplus entries should be retained to allow for exceptional cases. If all the
entries have been used, then the channel queue was almost certainly too
small, and a process of experimentation will show the correct size.

Figure 2-8 shows the channel queue as displayed in a formatted dump.
Refer to VSE/ Advanced Functions Serviceability Aids and Debugging
Procedures for information on obtaining a formatted dump.

*** CI-iAfl/N'-L CUFfJr- TAP,LE' ***
"~~I= LT S T pn I"!TE ~ 02

Ar,ClR P[<: CHAI''' eCB RE~ Flf; LU"> TSI(T~ANS~IT FIX F I XLI <;T INFORMATION ACC UMULA TE 0 csw
PT~ ADD~ Ir, WI 10 INFDRMT"! F LG ADOR USl=O PITER"IALLY I'IIFORMA TI 0'11

01231:'4 0) 03 OA65/lb 3Q 00 04 31) 1:180000')0 00 011"144 00014(7400000000 001)0000000000000
0123':'4 rl FF ()87068 2~ 0') 04 2') 880(lOOClO 00 '11'0\16'1 ,)0014C 7400000000 00')0000000)00000
0123F4 (';;> (",0; OOI)JC,J O~ OJ U~· ')0 3'3000000 00 000000 0001401COOOOOOOO 000029500C4'l:)(40
01;:>41 .. 03 oi oc [550 50 OJ i)4 50 R8000000 00 01 til 110 00014C7400000000 OOjOOOOOOO'lOOCOO
0}74:>4 04 00 OBA~oR 4C' 00 04 40 ~flOOOO()O 00 01R120 00014C7400000000 OOJOOOOOOOOOOOOO
01:'454 I'''i 06 OOOJOO 00 FF "e: O')OOOO'}O 00 000000 0000000000000000 0000000000000000
017474 06 "7 O'l0000 FF 0) F" I'F ') l000'))0 00 00000'l 0'00000000000000 OOOOOOOOOOGJOOO:i
012494 C7 Oil co')()OO Fe: 00 .. e: FF (1)(100000 00 '000)0 0001)000000000000 OOOOOOOOOO'lOOOOO
01?'.i'.4 cct 09 000)00 FF 00 F" ~F "ClOOOOOO 00 000000 0000000000000000 0000000000000000
01741)4 u~ 04 01)0)00 Fi= 00 ;:F r-F 1)')0000:)0 00 00000(\ 0000000000000000 0000000000000000
012 ... 1" .. 04 0'3 OOCOOO FF OC FF FF 000000'10 00 OOOO'.!O 0000000000000000 OOOOOOOOOOOOOGOO
0120;14 r:~ (,C 000000 Fe: Or) ~e: FF cnOOOO00 00 000000 0000000000000000 0000000000000000
012534 r,c '~D 000000 I'e: 00 FF I"F I)C)OOOOOO 00 000000 0000000000(100000 000000000000(0)0
'll<,0;'54 () or OOc',OO') e:e: 00 Fe: "F 0)0000)(1 00 000000 0000000000000000 0000000000000('00
012574 1''' 0 .. :J(lc!OOO 1" .. G) FF FF CI·;f')OOO00 00 000000 0000000000000000 O("JOOOOOOO ClOOOOe
OPC;Q4 C.= 10 ooor,oo .. e: 00 F .. e:F (1')000000 00 'lOOOI)O 0000)00000000000 0000000000000000
012'i~4 l~' 11 OOJOOO FF 00 p: 10 .. 00000000 00 1)00000 0000000000000000 00')0000000010000
0120;"4 11 12 O,)C)00 FF n'l F!' F. ("\"OOOO'~'O 00 000000 0000000000000000 00000000000:0000
01251"4 1? 13 00 CI~!O() e:" 00 FF q- '100('00('0 00 100000 OGOO)00000)00000 00(0)000000000-)0
0121>14 13 FF 000·,1)0 FF 00 FF ,,<= (I'10000CO 00 00000"1 0"000000'11)00001)0 0000000000000000

An unused entry will have an FF in this location

Figure 2-8. Channel Queue Table

Supervisor Buffers for I/O Processing

Supervisor buffer space is used for the handling of I/O requests from
programs that execute in virtual mode. You specify the number of buffers
via the BUFSIZE parameter of the lOT AB generation macro.

The amount of buffer space required is dependent on the number and
type of concurrent I/O requests. The number of entries that you specify
in the channel queue table can be used as a guide. Generally three times
the number of channel queue table entries will give a sufficient number of
buffers. If ISAM is the predominant access method used or if you have
generated RPS support, you should increase the number of buffers by
20%.

Because your supervisor must end on a 2K boundary, any space between
the end of the supervisor and the next 2K boundary will be used for I/O
buffers in addition to the amount you specify in the lOT AB generation
macro.

To determine whether or not you specified a sufficient number of buffers,
use (but only if F ASTTR is not active) a technique similar to the one

Chapter 2: Planning the System 2-37

suggested for an analysis of the channel queue. While running as many
programs as represent your heaviest work load, issue the DUMP command
specifying the begin and end addresses of the buffer area in the
supervisor; if all blocks have been used, then probably too few buffers
were specified.

The use of the buffers is different in ECPS:VSE and 370 mode.

ECPS:VSE Mode. The buffers are called work blocks, and they have a
size of 36 bytes each. VSE/ Advanced Functions uses the work blocks to
store information about your channel program and the I/O areas for that
channel program. The information will be used to fix in processor storage
your I/O areas, channel program and control blocks until the I/O request
has been satisfied. The information stored is referred to as a fixlist. For
example, the system needs one workblock per I/O request for an FBA
type DASD and two or more such blocks per I/O request for a CKD type
DASD.

If you are writing your own channel programs it is suggested that you use
the IORB macro rather than the CCB so that your channel program will
contain a fixlist; processing will then be faster. For more information
about these two macros, refer to VSE/ Advanced Functions Macro
Reference.

370 Mode. In 370 mode the buffers are called copyblocks and have a size
of 72 bytes each. VSE/ Advanced Functions uses the copy blocks to keep
a copy of your channel program and control blocks in the supervisor area.

Your channel program refers to virtual addresses and these addresses must
be translated to reflect the processor storage locations that your I/O
area(s) actually occupy. (The translation is necessary since 370 mode does
not support relocating channels which can do the address translation.)
Once your channel program is translated, the I/O area(s) are fixed in
processor storage and the translated channel program is given to the
channel for execution. If you have installed the licensed program
VSE/VSAM the minimum number of buffers you should specify is 40. To
execute VSE/ Advanced Functions system utility programs, up to 38 copy
blocks are needed.

Bypassing System Translation of II 0 Addresses. In most instances, double
buffering techniques and an increase in block size can significantly reduce
the system overhead associated with channel program translation.
However, in extreme cases, you may wish to perform your own translation
of channel programs and thereby avoid system CCW translation overhead.
Programs that might require this are EXCP programs that have very high
start I/O rates and that repeatedly use the same channel programs.

VSE/ Advanced Functions provides support that assists in the translation
of channel programs. This support allows you to use the VIR T AD and
REALAD macros as well as the REAL parameter of the EXCP macro.
You must obtain processor storage by means of the PFIX macro and then
translate the channel program. For detailed information see
VSE/ Advanced Functions Macro User's Guide and VSE/ Advanced
Functions Macro Reference.

2-38 YSE/ Advanced Functions System Management Guide

Error Queue

The Fast Translate or Fast Function Option. You may specify
F ASTTR= YES in the FOPT generation macro. This creates a supervisor
with fast-function support in ECPS:VSE mode and fast-translate support
in 370 mode.

The feature works essentially the same way in both ECPS:VSE and 370
mode. That is, the supervisor buffers used for an I/O request are not
released when the I/O request is completed. The buffers are saved and
the referenced I/O areas are fixed in processor storage until the end of
job. This can speed I/O processing if your program has frequent repetitive
I/O requests. The overall effect on your system is subjective, however.

The page pool is decreased in size because the I/O areas remain fixed.
Additionally, more supervisor buffers are required than without this
support. In ECPS:VSE mode specify, as a rule of thumb, a number of
buffers that is 9 times the number of channel queue entries and in 370
mode 6 times the number of channel queue entries.

If you do not specify enough buffers or the page pool becomes too small,
the saved buffers and fixed I/O areas are released as required by the
system.

Specification of F ASTTR= YES may cause degradation of performance
when CICS/VS accesses SAM, ISAM and DAM files.

F ASTTR can be switched off for the duration of a job by specifying
NOF ASTTR in the OPTION job control statement. Specifying this option
is meaningful if, for a job, it is unlikely that buffers and fixed I/O areas
will be reused.

The error queue option is of value to installations using a large number of
I/O devices, for instance, telecommunication systems. The ERRQ
parameter of the FOPT generation macro allows you to specify the
number of error queue entries within the error recovery block of the
supervisor. These entries are used to record information on I/O device
errors, and this information is used by the ERP and RMSR routines.

Display Operator Console Support

In ECPS:VSE mode, 3277 is the standard operator console support. In
370 mode,this is the default, too; however, the DOC parameter of the
FOPT generation macro can be used to override that default. For
example, in an installation with a /370 model 115 or 125, it is usually
required to ask for DOC=125D support. DOC=NO gives a supervisor
that is generated with console support in printer keyboard mode.

Chapter 2: Planning the System 2-39

11/0 Related Supervisor Areas

The lOT AB generation macro, in general, directs the system to allocate
I/O related tables. The parameters involved refer to:

The number of programmer logical units for each partition defined by
the NPARTS parameter in the SUPVR macro.

The number of job information blocks for the system. One is required
whenever a temporary or alternate assignment is made.

The estimated number of physical I/O devices.

The number of named resources that may be held in a locked status at
anyone time.

• The number of I/O buffer blocks.

Before you can actually use your I/O devices, you must define each unit
to the system, specifying its characteristics such as channel and unit
address, device type, its mode (if applicable). You do this via the ADD
command at the time of Initial Program Load (IPL).

A supervisor generation macro is not available for this purpose.
Nevertheless, because the definition of your I/O devices is likely to
remain stable over a longer period, you should already at the time of
system generation give some thOUght to the sequence of ADD commands
you are going to use. The total number of ADD commands must not
exceed the total number of devices specified in the IODEV parameter of
the lOT AB generation macro.

Furthermore, physical I/O device addresses must be assigned to logical
unit names, via the / / ASSGN job control statement or job control
command (no / I). You cannot make these assignments at the time of
supervisor generation, even though you may want to have them remain
unchanged for a longer period of time.

The Automated System Initialization (AS!) facility allows you to place all
your IPL commands in a procedure. This procedure is automatically
invoked each time you IPL the system. Additionally the ASI facility
allows you to place job control commands in a procedure which would be
automatically invoked whenever the pertinent partition is started.

Definition and assignment of I/O devices is described in sections Starting
the System and Controlling Jobs within Chapter 3, Using the System.

2-40 VSE/ Advanced Functions System Management Guide

Chapter 3: Using the System

Starting the System

This chapter is intended primarily for programmers who are responsible
for optimum system throughput and for servicing the installation's
libraries. The topics discussed are:

Starting the System - describes the initial program load (IPL)
procedure. It also describes how to create the file required for recording
error information, how to allocate storage to a partition, and how to start
a foreground partition.

Controlling Jobs - describes the required input to the job control
program, which controls the execution of a job; it includes a brief
discussion of label processing.

Linking Programs - describes the input to the linkage editor program,
which links the modules produced by language translators, produces
executable phases and places them in the core image library.

Using the Libraries - provides the information on how to alter, copy,
and inspect the contents of the libraries. It also describes how to allocate
space to the libraries and how to create private libraries.

Before a job can be submitted for execution, the supervisor must be read
into processor storage, and the job control program must be loaded into
the background partition. To do this, the operator starts the system by
following the initial program load (IPL) procedure.

On a 4300 processor the amount of virtual storage available can be
altered during IML (Initial Microprogram Load) which is done prior to the
IPL procedure. Refer to section Virtual Storage Size in Chapter 2,
Planning the System, and also to the Operator's Guide manual for the
pertinent CPU model.

This section describes the use of the IPL commands. The exact formats of
these commands are contained in VSE/ Advanced Functions System
Control Statements and VSE/ Advanced Functions Operating Procedures.
This section also provides a summary of the automatic functions of IPL;
descriptions of how to load the shared virtual area, and how to create the
system recorder file (SYSREC) and the hard copy file; a section on the
optional user exit routine for user-defined processing after IPL; and a
section on entering data into SYSREC.

You must perform the IPL procedure each time you have to do one of the
following:

• Load a new supervisor (for normal system start-up, for different
supervisor options, or to recover from a system malfunction. For the
last, refer to VSE/ Advanced Functions SerViceability Aids and
Debugging Procedures).

Chapter 3: Using the System 3-1

•

•

•

•

•

•

•

Modify the shared virtual area size.

Add devices to or delete them from the system configuration.

Set or change the time-of-day clock value.

Set or change the system's time zone value.

Change the channel and unit assignment of the system residence
(SYSRES), the VSE/VSAM master catalog (SYSCAT), SYSREC, or
the page data set due to hardware problems with the channel or disk
drive.

Create SYSREC (for the first time or because of hardware problems).

Replace SYSRES or the page data set because of a hardware problem
with the pack.

Switch to a different label information area.

Reallocate the lock communication file.

Initial Program Loading (IPL)

For IPL, you place the system residence disk pack on a disk drive and set
the address of that drive in the load unit switches, ready SYSLOG and
the device containing the page data set and press LOAD on the console
(on the video display/keyboard console, type in the address of the drive
and press ENTER).

Now, the Automated System Initialization (ASI) is ready to control the
IPL process. If you want to prevent ASI from executing your cataloged
IPL procedure, press the INTERRUPT key immediately after you pressed
LOAD. This allows you either to specify different ASI procedures or to
leave ASI and continue with an interactive IPL. ASI is discussed in more
detail under Automated System Initialization (ASI), below. The remainder
of this section describes the interactive IPL process.

Next, the system enters the wait state. You now must indicate the device
that is to be used as the operator console (SYSLOG). To do so, press the
Request key (or END/ENTER) on the selected device. This causes an
interrupt and automatically transmits the address of this device to the
system. (If you have installed an IPL communication device list, the
system accepts the interrupt only if the address of the device is contained
in the list). IPL assigns SYSLOG to the device. This assignment remains I valid until the next IPL or until SYSLOG gets reassigned.

At this point, you are requested to specify the supervisor you want to be
used. You indicate this by one of the following:

• pressing ENTER or the Request key

I· entering supervisorname[,P I N][,VSIZE=nK][,LOG I NOLOG]

Pressing ENTER or the Request key indicates that the pageable default
supervisor is to be loaded ($$A$SUP1,P,LOG).

3-2 VSE/ Advanced Functions System Management Guide

Specifying P causes the loaded supervisor (default or your own) to have
certain routines pageable; specifying N causes the loaded supervisor
(default or your own) to be non-pageable. If, on entering the supervisor
name, you specify neither P nor N, P will be assumed.

The VSIZE parameter applies only to a supervisor generated for 370
mode. You use this parameter if you want to override the default value as
determined by the system.

By setting the list-option to NOLOG, you can prevent IPL from listing
the IPL commands on SYSLOG. If you don't specify the list-option, LOG
will be taken as deHmlt; that is, all IPL commands are listed on SYSLOG.
Invalid commands are always listed.

IPL now reads the supervisor into low processor storage from the core
image library. If an irrecoverable error is sensed while reading the
supervisor, an error message is displayed on SYSLOG; the hard wait
status is entered and an error code is set in the first four bytes of
processor storage. The IPL procedure must then be restarted. For more
information on wait states, refer to VSE/ Advanced Functions Serviceability
Aids and Debugging Procedures.

Establishing the Communication Device for IPL

The system again goes into a wait state with all interrupts enabled (see
Note). At this time you must indicate which device is to be used to
communicate the IPL commands to the system. The specific manual
operation you must perform depends on the selected device:

• If you wish to use the console (SYSLOG), press the Request key on
the console. (On the video display/keyboard console, you can press
the Enter key, the Request key, or the Cancel key.)

• If you wish to use a card reader, ready this card reader. The system
then assigns SYSRDR to this device for the duration of IPL.

• If you wish to use an IBM 3540 Diskette I/O Unit, ready it. The IPL
program assumes that the file IJIPL is part of the diskette and that it
contains the IPL commands in card image format (unblocked 80 byte
records).

Note: Because any interrupt WI;' (on a first-come basis) establish the issuing device as
the IPL communication device, it is advisable that TP installations and
terminal-oriented installations with locally attached terminals, (for example, IBM
3277) install the IPL-phase $$A$CDLO. (See IPL Communication Device List later in
this section.)

Chapter 3: Using the System 3-3

IPL Commands

IPL commands serve to set or change various characteristics of your
system. They operate on the following items:

II 0 configuration

System date and time

System disk file assignments

Page data set

Label information area
outside of SYSRES

Options relating to
P AGEIN requests and
DASD file protection

Lock communication file

Shared Virtual Area size

ADD and DEL commands

SET command

DEF command

DPD command

DLA command

SYS command

DLF command

SVA command

ADD and DEL commands precede all other commands. The DLF
command (if any) must immediately follow all ADD/DEL commands.
The SV A command is the last command to be submitted.

The ADD Command. Use the ADD command to define all your input and
output devices to your system. This definition specifies for a device the .~

channel and unit address, the device type, the mode (if applicable), and ...,
whether automatic channel switching is desired.

Each individual drive of a DASD (of a 3333/3330 or 3310, for example)
requires a specification in an ADD command. Note that if one physical
spindle contains two or more logical spindles, ADD commands must be
issued for each of these logical spindles.

The following requirement should be kept in mind: you can add a device
only if the number of devices specified in the IODEV parameter of the
IOTAB generation macro is not exhausted. If this requirement is not
satisfied, you will get an appropriate error message. You must then
provide space in the control blocks for the additional device by:

• deleting unnecessary devices of the type you want to add and then
re-issuing the ADD command, or

• re-assembling the supervisor.

Note: For an IBM 3031 CPU, one service record file 7443 must be defined. This
allows the operating system to access the system diskette on the service support
console. After having created the system recorder (SYSREC) file and encountered the
first / / JOB statement, the system reads machine check frames and channel check
frames from the service record file and writes them onto the SYSREC file. Those
frame records will be available as input for the Environmental Recording Editing and
Printing (EREP) program when that program is executed.

3-4 VSE/ Advanced Functions System Management Guide

c

The DEL Command. Use the DEL command to drop an I/O device from
the configuration you had established via ADD commands; this may be
necessary if, for example, you defined (ADDed) more devices than you
had allowed yourself in the lOT AB generation macro, or if you want to
correct the device type for one of the preceding ADD commands.
Because all references to the device are removed, any subsequent ASSGN
job control statement that refers to a deleted device will not be accepted.

The Set Command. You can use the SET command to set the system date,
the time-of-day clock, and the system time zone. If you specify a
time-of-day clock setting, set the time-of-day clock switch to the "enable
set" position at the exact time specified in the SET command. The SET
command is required only if the time-of-day clock has not been set. If this
is the case, a message at IPL will prompt the operator.

The DEF Command. You use the DEF command to assign the SYSCAT,
SYSDMP, and SYSREC files. This command is mandatory.

The SYSCA T file, the VSAM master catalog, is required if you have the
licensed program VSE/VSAM installed. If you don't have VSE/VSAM
installed, specify DEF SYSCAT=UA. SYSREC is the symbolic name
used for the system recorder file, the hard copy file and the system history
file. As described in section System and Workfiles of Chapter 2,
Planning the System, the SYSDMP file can be used instead of SYSLST to
hold system dumps, dump command output, and the output of your
installation's stand-alone dump program.

The DEF command must be submitted after any ADD and DEL
commands and prior to the SV A command. The ASSGN job control
statement or command is not valid for SYSDMP, SYSCAT or SYSREC
assignments.

The DPD Command. The DPD command is used to define the disk
attributes of your page data set. The operands of the command allow you
to specify

• a device address.

• whether the page data set resides on multiple extents.

• the size of a particular extent.

• whether the page data set is treated as a data secured file.

• the beginning address of the disk extent.

• the disk volume ID.

• whether or not the page data set should be formatted.

Because formatting the page data set is time-consuming, you should
request it only if the pack was damaged. The first time you use the page
data set, it will be formatted automatically.

The page data set can reside on any DASD supported by VSE/ Advanced
Functions as a system residence device. To help ensure better

Chapter 3: Using the System 3-5

performance, the page data set should not reside on a pack that is subject
to heavy I/O requests.

The DPD command is mandatory (except when your supervisor was
generated with VM=YES in which case the DPD command is invalid). It
must be submitted after any ADD and DEL commands and prior to the
SV A command.

If your page data set is to be allocated to multiple extents, you submit the
corresponding number of DPD commands. After accepting the first DPD
command, the IPL program prompts for additional DPD commands until
either the entire virtual storage is covered by the specified extents or you
submitted a total of 15 commands which is the maximum.

The DLA Command. Use the DLA command to define or reference a
label information area separate from the one within the SYSRES file.
When, for example, two CPUs or two VSE systems under VM/370 share
a SYSRES file, two separate label information areas enable the two
systems to distinguish between dedicated system file names.

The additional label information area may be located on a volume
different from the one that contains the SYSRES file; you would then
have to specify the UNIT parameter. Its format and layout are identical
to the format and layout of the SYSRES label information area.

When you define the area, you specify its beginning address by the CYL
or BLK parameter of the DLA command. By specifying NCYL or NBLK
you may deviate from the default size of a SYSRES label information
area. At the time of definition you supply a name by which this label area
is referenced during subsequent IPLs.

To define a label area of 300 blocks on an FBA device, you might submit
the following DLA command:

DLA NAME=MYLABEL,UNIT=280,BLK=125000,NBLK",,300

At subsequent IPLs, you may refer to this area by issuing the command

DLA NAME=MYLABEL,UNIT=280

In the above example, the SYSRES file resides on a different volume;
therefore, the UNIT parameter is requred.

If the DLA command is used, it must be submitted after any ADD and
DEL commands and prior to the SV A command.

The DLF Command. This command serves to either newly define or to
reference a cross-system communication file (also called lock file). This
file must be present when two or more VSE systems share data on disk.

To define a lock file, you specify

its physical device address

• the beginning address on the volume that is to contain the file.

3-6 YSE/ Advanced Functions System Management Guide

You may also indicate whether the file should become a data secured file
or not.

After the file has been allocated, it may later, at subsequent IPLs, be
referred to by simply giving its physical device address; for example:

DLF UNIT = 131

The DLF command is required whenever your supervisor was generated
with DASD sharing support and, at the time of IPL, DASD devices are
present which are defined with the SHR option in the ADD command.
The DLF command (if given at all) must immediately follow any ADD
and DEL commands.

For a more comprehensive description of DASD sharing, refer to section
DASD Sharing by Multiple VSE Systems in chapter Using the Facilities
and Options of VSE/Advanced Functions.

The SYS Command. This command is used for two purposes:
By issuing the PAGEIN macro, a program may request to have one or
more pages brought into processor storage 'in-advance', that is, ahead of
the time when they actually need to be in processor storage. Use of the
PAGEIN macro helps to reduce page faults. The system assumes a
(default) number of page-in requests that can be queued at anyone time.
You may deviate from this number by specifying an appropriate value in
the PAGEIN parameter of the SYS command.

EXTENT, the second parameter of the SYS command, is used in
connection with DASD file protection. For a supervisor generated with
DASDFP= YES, the IPL program allocates a so-called extent block area
in the system GETVIS area. The IBM-set default value of 4K may prove
to be insufficient after a large number of DASD files (some of them with
multiple extents perhaps) have been opened. In this case, you should
specify a larger EXTENT value next time you IPL the system.

The SYS command is optional. If used, it is accepted any time after the
DLF command and any time prior to the SV A command.

The SV A Command. This command must be the last IPL command
submitted. The SV A command may be given with or without parameters.

The command's parameters (SDL, PSIZE, GETVIS, PSLD) are used to
increase the SV A size beyond the size set by the IPL program. They serve
to add space for

• System Directory List (SDL) entries

• phases that you want to have loaded into the SV A

• the system GETVIS area

I· second level directory entries for private core image libraries.

If the parameters are not specified during IPL, no user SDL or phase
space is reserved in the SV A for user phases. An SV A will be allocated
which is large enough to contain:

Chapter 3: Using the System 3-7

• Phases required for use by VSE/ Advanced Functions.

• Phases required for installed licensed programs.

• The default system GETVIS area.

• Required SDL entries.

The PSLD parameter is useful if you anticipate a need for more than the
minimum of 5 entries per private core image library. The value you
specify should equal the largest number of actually used directory entries
for any private core image library, up to a maximum of 32 entries.

Automated System Initialization (ASI)

The facility allows you to place all your IPL commands into a procedure.
In addition to IPL commands, you include a specification of your
SYSLOG device and optionally, among other things, the supervisor name
you intend to use. After you have cataloged this procedure into the
(system) procedure library, you may let the IPL program execute the
procedure whenever you IPL your system. Figure 3-1 shows a typical ASI
IPL procedure (the first record specifies SYSLOG and a supervisor name;
the ADD command preceding the DEF command defines the SYSLOG
device type):

01F,$$A$SUP3,P,NOLOG
ADD 280,3420T9
ADD 281, 3420T9

ADD 162,3330
ADD 163,3330
ADD 00C,3505
ADD 00E,1403U
ADD 00D,3525P
ADD 01F,125D
DEF SYSREC=160,SYSCAT=160,SYSDMP=161
DPD UNIT=161,VOLID=PDSWRK,CYL=300,DSF=N
SVA SDL=100,PSIZE=150K,GETVIS=150K
/+ END OF IPL PROCEDURE

Figure 3-1. Example of an ASI IPL Procedure

Other ASI procedures contain job control information that serves to
prepare partitions for operation: they allocate partition space, store label
information, assign devices to logical units etc. Therefore, the entire
system initialization may proceed without your intervention.

A detailed description of how to set up ASI procedures is given in section
Automated System Initialization later in this section.

3-8 VSE! Advanced Functions System Management Guide

Automatic Functions of IPL

Apart from the Automated System Initialization, IPL performs the
following operations automatically:

• Builds the required control blocks and device tables.

I. Determines the size of the real and virtual address space.

IPL Communication Device List

• Unassigns any DASD assignments for devices that are not operational
at this time (so as to prevent the error recovery routines from trying
to establish error recording statistics for these devices).

• Loads the printer-control buffers with the installation defined
standard buffer images.

• Initializes the VSE/ Advanced Functions RMS routines.

• Loads into the SV A required system phases and licensed program
phases.

After IPL completes these operations, the system loader loads the job
control program into the background partition and places the system in
the problem program state. The message "READY FOR COMMUNI­
CATIONS" appears on the console immediately after IPL is complete.

For telecommunication installations and for installations with locally
attached terminals (such as the mM 3277), devices allowed to present an
interrupt during IPL should be restricted because an unsolicited interrupt
might interfere with your system start-up procedures. By installing an IPL
communication device list, you can avoid that a device outside the
operator's control establishes itself as the device used for submitting IPL
commands.

To build a restrictive pool of IPL communication devices, you assemble an
IPL communication device list (CDL) and catalog the list under the
phasename $$A$CDLO in the system core image library. During IPL, this
phase (if present) is loaded into storage. When the system enters the wait
state and an interrupt occurs, the CDL can now be searched for the
address of the device issuing the interrupt. If the address is listed, the
interrupting device is accepted as an IPL communication device and
processing continues. If the address is not found, the system remains in
the wait state. Installation of the CDL is optional.

For IPL to be successful, once $$A$CDLO is installed, the SYSLOG
device address must be present in the CDL. If you intend to submit IPL
commands from card reader or diskette, you must enter their addresses in
the CDL as well. To ensure backup in case of hardware errors during
IPL, consider stand-by devices, such as another card reader, diskette, or
even an additional SYSLOG device in the CDL.

Chapter 3: Using the System 3-9

The CDL may have up to eight entries each of which is four bytes long:

I reserved I cc

Bytes o 2

where: cc = channel number
uu = unit number

luu
3

You create the CDL by submitting a job that catalogs $$A$CDLO into
the system core image library. The example in Figure 3-2 creates a CDL
with five entries.

II JOB CATALOG CDL
II OPTION CATAL,NODECK

PHASE $$A$CDLO,+O
II EXKC ASSEMBLY
$$A$CDLO CSECT

DC

1*

DC
DC
DC
DC
END

II EXEC LNKEDT
1&

XL4'00C'
XL4'009'
XL4'01F'
XL4'OBD'
XL4'240'

card reader
1052
SYSLOG (DOC)
3277
diskette

Figure 3-2. Example for the Creation of a CDL

Once phase $$A$CDLO has been cataloged, the CDL addresses remain
effective for subsequent IPLs. However, you may:

• Replace the phase by another one, either by assembling and link
editing a new phase or by using the MAlNT librarian program to
rename an already cataloged CDL that has a name other than
$$A$CDLO.

• Override any CDL entry by manual intervention, which is the
suggested approach should an erroneous CDL be cataloged in the core
image library. The procedure for manually overriding the CDL is
given in VSE/ Advanced Functions Serviceability Aids and Debugging
Procedures.

Building the SDL and Loading the SV A

Automatic SV A Loading

A fresh copy of the SV A is built at each IPL. The IPL program loads
phases into the SVA from the system core image library. It uses
pre-defined load lists to find the appropriate phases. The load lists that
identify required system phases are shipped in the system core image
library ready for use at IPL. VSE/ Advanced Functions System Generation
contains a listing of the required system phases.

3 -1 0 YSE/ Advanced Functions System Management Guide

.j

I SDL Procedure at IPL

User Options for the SV A

If you install an IDM licensed program that includes SV A eligible phases,
you must catalog a load list for that licensed program. The licensed
program documentation will describe this procedure and tell you how
much space in the SV A the loaded phases require. Although the IPL
program automatically allocates sufficient SV A space (by checking the
load lists), you should know how much virtual storage will remain to be
allocated to the partitions. (In 370 mode, your specification in the VSIZE
parameter at the beginning of IPL is dependent on this information.)

The IPL program builds entries in the system directory list (SDL) for each
phase that it automatically loads into the SV A. Each of those entries
contains a pointer to the associated phase in the SV A.

Entries in the SDL are copies of specific (system or private) core image
library directory entries. Having entries in the SDL speeds up the loading
of the corresponding phases.

You should build SDL entries for certain frequently used system phases
that are not SV A eligible. VSE/ Advanced Functions provides a procedure
(its name is SDL) that you should execute at the time of IPL. In order to
create entries for those phases they must reside in the system core image
library. For a listing of the phases referenced by procedure SDL, refer to
VSE/ Advanced Functions System Generation. SV A space for those SDL
entries is not automatically reserved. In order to do that, you must define
space with the IPL command SV A.

In order to load user chosen elements into the SV A (phases or SDL
entries or both) the SV A space must be made large enough to
accommodate the new entries. Space for user entries may be defined at
IPL via the SV A command (see The SV A Command earlier in this
section). The SET SDL command is available for building SDL entries
and loading phases into the SV A.

Processing of the SET SDL command involves, for each specified phase, a
search through one or more directories of the core image libraries that you
have concatenated to your background partition. The search order for
concatenated libraries is described in section Using Private Libraries later
in this chapter. If a search chain is not defined (which is the case
immediately after IPL), only the system core image library will be
searched.

Building an SDL entry and loading into the SV A may only be done from
libraries that are not defined as access control protected to the Access
Control facility of VSE/ Advanced Functions.

A phase that you want to load into the SV A must be SV A eligible, that is:
it must have been cataloged with the SV A parameter specified in the
linkage editor PHASE statement. Link editing for inclusion in the SV A is
further discussed in Linking Programs in this chapter.

Chapter 3: Using the System 3-11

As mentioned before, you can build SDL entries for phases that are not
SVA eligible. Note, however, that these phases must be in the system core
image library in order to receive an SDL entry.

The SET SDL Command. The command used to create SDL entries and
to load phases in the SV A is the SET SDL job control command. This
command can be given only in the background (BG) partition. The
command may be given at any time after IPL. There is no limit to the
number of times it may be given.

Following the SET SDL command the input should be in the format of:

name[,SVA]

where name is any valid phase name and SV A indicates whether or not
the phase is to be loaded into the SV A. If you specify SV A and the phase
is SV A eligible, the job control program loads that phase.

If the requested phase is not found, the job control program issues a
message on SYSLST (or SYSLOG if SYSLST is not available); the SDL
receives a dummy entry indicating that the phase is uncataloged
(inactive). If you subsequently catalog a phase into the system core image
library under a name listed in the SDL as uncataloged, the entry in the
SDL is activated. Additionally, the phase is immediately loaded into the
SV A if you had specified name,SV A under the SET SDL command
and cataloged the phase as SV A eligible.

Duplicate phase names within one SET SDL command are ignored. Note
that a fresh copy of the phase is loaded each time a SET SDL command
for that phase is issued; mUltiple specifications may thus lead to an 'SV A
full' condition.

It is recommended that you create a SET SDL job stream, catalog it as a
procedure in a procedure library and run that procedure immediately after
IPL. For compatibility with DOS/VS or DOS/VSE, SET SDL=CREATE
will be accepted by VSE/ Advanced Functions. If the SET SDL job
stream is not being entered through a procedure, it may be submitted to
job control through SYSRDR or SYSLOG (depending on the device from
which job control is reading). This job stream can be entered via the IPL
communication device. Figure 3-3 illustrates such a job stream.

Make sure that prior to execution of the SET SDL command/procedure
the proper chain of libraries is established.

It is recommended that you run the librarian program DSER V after a SET
SDL job stream to be certain that all entries have been entered the way
you wish. Include the DSERV control statement DSPL Y SDL.

Fast B/C-traosient Fetch. You have to issue the SET SDL command if
you want to utilize the Fast B/C-transient Fetch facility. Normally, a
request to load or fetch a logical transient routine results in an I/O
operation. The Fast B/C-transient Fetch avoids this I/O operation by
obtaining a copy from the SV A and moving it into the supervisor's logical
transient area. Even if this action necessitates a page I/O operation, a
performance improvement can be gained because no directory search '~

operation is involved. ."",

3-12 VSE/ Advanced Functions System Management Guide

The transient routine must be self-relocating, the first character of its
name must be a '$', and it must have been loaded into the SVA by the
SET SDL command. To build an SDL entry for the transient and to load
it into the SV A, supply the following statement (behind a SET SDL
statement):

phasename,MOVE

VSE/ Advanced Functions provides a SET SDL procedure, called
'F ASTFTCH', which performs the above operation for certain B- and
C-transients.

Replacing Phases Stored in the SVA. Occasionally, a phase stored in the
SV A needs to be changed; that is, it must be replaced by an updated
version. To replace a phase in the SV A, link edit the updated version of
the phase to the system core image library. Link editing to a library other
than the system core image library does not cause an update in the SV A
(the same applies to a deletion or a renaming of a phase). Immediately
after the link edit operation, the updated phase is loaded into the SV A.
The old version of the phase remains in the SV A, but is not addressable.

The change or resetting of a search chain that was used for the processing
of a SET SDL command has no effect on the SV A. Therefore, phases
loaded from a concatenated library will stay in the SV A.

Creating the System Recorder File

The recovery management support of VSE/ Advanced Functions requires a
disk extent on which to record statistical information about machine errors
and environmental information. This disk extent is called the system
recorder file and is identified by the symbolic name SYSREC. The
SYSREC file must exist before job control encounters the first / / JOB
statement after IPL. Usually, you create the SYSREC file only after the
first IPL following a system generation (not after each IPL). If the
SYSREC file has been damaged, however, you must re-IPL and re-create
SYSREC.

If your system is running on an IBM 3031, the SYSREC file must be
evaluated (via program IFCEREP1) and recreated each time a hardware
(microcode) change is installed which affects the frame records on the
3031's Service Record File. For details on IFCEREP1, refer to OS/VS,
DOS/VSE, VM/370 Environmental Recording Editing and Printing
(EREP) Program.

On a CKD device the SYSREC file requires a minimum of ten tracks (not
including an alternate track), and it cannot be a split cylinder file. On an
FBA device the SYSREC file requires a minimum of 72 blocks of 512
bytes each. You must define SYSREC as an extent of a permanently
online disk device that VSE/ ADvanced Functions supports as a system
residence device.

The IBM 3031 requires additional space on the recorder file to
accommodate machine check frames and channel check frames (these
frames are peculiar to the IBM 3031). On an IBM 3330, for example, this
space amounts to approximately 9 tracks. If the SYSREC file resides on

Chapter 3: Using the System 3-13

an FBA device with blocksize of 512 bytes, add 164 blocks. The exact
amount of additional space needed for the recording of those frames can
be calculated after the first / / JOB statement has been processed and
message '11931 RECORDER FILE IS nnn% FULL' is issued.

The SYSREC file label information must be included in the standard label
portion of the label information area. Therefore, submit a / / OPTION
STDLABEL statement when you create th(\ SYSREC file. A more
detailed description of preparing standard label information is given under
section Controlling Jobs later in this chapter.

Figure 3-3 illustrates a job stream (via SYSLOG) to create the system
recorder file. The IPL commands are included in the figure to show the
proper placement of the statements that create the SYSREC file. Be sure
that you do not submit a / / JOB statement until you have supplied all the
information applicable to SYSREC. This is because the SYSREC file is
opened when the first / / JOB statement is encountered. Note that the
file name IJSYSRC is required in the DLBL job control statement.

3-14 VSE/ Advanced Functions System Management Guide

...J

01301 DATE= .. / .. / .. , CLOCK= .. / .. / .. , ZONE= .. / .. / ..
0110A GIVE IPL CONTROL COMMANDS
ADD .. .
ADD .. .

ADD .. .
SET .. .
DEF SYSREC=190
DPD
SVA
01201 IPL COMPLETE FOR ...
BG 1I00A READY FOR COMMUNICATIONS
BG SET SOL
1S511 ENTER PHASE NAME OR /*
BG USERONE
1S511 ENTER PHASE NAME OR /*
BG USERTWO,SVA
1S511 ENTER PHASE NAME OR /*
BG
BG
BG
BG /*
BG ASSGN

BG SET RF·CREATE

BG / / OPTION STDLABEL ~ Submit with the rest of the
BG / / DLBL IJSYSRC:VSE/AF. RECORDER. FI LE' -----.,---STD LASE L statements
BG / / EXTENT SYSREC"" 1700.43

BG /*
BG / / JOB FIRST

Figure 3-3. Example for the Creation of the SYSREC File and for
Loading User Phases in the SV A

When the system is to be shut down, you should issue the Record On
Demand (ROD) command to ensure that no statistical data is lost. For a
370 Model 115 or 125, the U command of the mode select display, should
also be issued to save disk usage statistics on the system diskette. These
commands are not valid for recording statistics on telecommunication
operation; refer to the appropriate telecommunication guides for more
information.

To obtain a listing of the SYSREC file, run the EREP program as
described in OS/VS, DOS/VSE, VM/370 Environmental Recording
Editing and Printing (EREP) Program. During execution of the EREP
program, recording on SYSREC is suppressed.

Chapter 3: Using the System 3-15

j
I ,

Creating the Hard Copy File

On a system that supports a video display/keyboard console, all messages
displayed on the screen and all information typed in by the operator are
saved in a file on the device assigned to SYSREC. This file, called the
hard copy file, can be used to obtain hard (printed) copies of the file
whenever required.

You must create the hard copy file after the first IPL and before you
submit the first / / JOB statement.

The contr~l statements and commands needed to create the hard copy file
are the same as those shown in Figure 3-3 for the SYSREC file with the
exception that you specify HC=CREATE in the SET command, and the
filename USYSCN in the DLBL job control statement. More information
about creating and printing the hard copy file is given in VSE/ Advanced
Functions Operating Procedures and VSE/ Advanced Functions System
Utilities.

User-Defined Processing after IPL

Entering RDE Data

At large VSE installations, it may be desirable to perform certain
processing at the end of an IPL procedure. It may, for instance, be
important to know who performed the procedure, whether the right system
pack was mounted, and whether the correct date was entered for the new
work session. Moreover, if you work with labeled data files it is important
that they bear the correct creation date, so as to guarantee that data files
are protected until their expiration date.

After the IPL procedure has been completed, control can be passed to a
user exit routine (phase name = $SYSOPEN) that you may include for
the purpose of checking system security and integrity. This routine is
entered once after every IPL procedure. The VSE/ Advanced Functions
distribution volume contains a dummy phase $SYSOPEN in the system
core image library. If you do not use the facility, that phase has no effect
on your system. Conventions for writing this kind of user exit routine,
together with an example, are contained in the section Writing an IPL
User Exit Routine in Chapter 4, Using the Facilities and Options of
VSE/ Advanced Functions.

Standard VSE/ Advanced Functions support includes the reliability data
extractor (RDE). In an interactive (that is: nonautomated) IPL, you are
asked by a message to SYSLOG to provide a 2-character IPL reason code
when the first / / JOB statement after IPL is processed. The system may
have been started at the beginning of normal operation or restarted
because of a machine error, a program error, an operator error, etc. In
addition, the system requests you to supply a subsystem identifier, a code
which identifies the device type or program type that failed. On the basis
of these replies job control will build a record for SYSREC.

3-16 YSE/ Advanced Functions System Management Guide

Before shutting down at the end of the day (or processing period), you
must ensure that no environmental data is lost, by issuing the ROD
command. This command also causes the RDE end-of-day record to be
written on the disk assigned to SYSREC. To obtain a listing of this file,
run the EREP program as described in OS/VS, DOS/VSE, VM/370
Environmental Recording Editing and Printing (EREP) Program.

RDE information can be very valuable to your operations management.
By replying with the exact reason code that applies in each case, you are
in fact ensuring a permanent record of the reason why you had to re-IPL.

Refer to the VSE/ Advanced Functions Operating Procedures, for more
information on the RDE messages and the valid replies to them.

A.llocating A.ddress Space to the Partitions

For each partition specified in the NPARTS parameter of the SUPVR
generation macro, address space must be allocated. The address space
available to the partitions is all of the address space from the end of the
supervisor area (in ECPS:VSE mode) or the end of the real address space
(in 370 mode) to the beginning of the SV A. The minimum size of that
address space is S12K.

Allocation of address space to a foreground partition must be done
explicitly. Space not allocated to a foreground partition belongs to the BG
partition. If no allocations are made, for example immediately after IPL,
then all available address space belongs to the BG partition. In this case,
the BG partition has the following size:

ECPS:VSE mode:

1370 mode:

Virtual storage size (16M default or as specified
at Initial Microprogram Load)

minus supervisor size

minus SVA size;

Virtual address space size (system default or
VSIZE value as specified at the start of IPL)

minus SV A size.

Through the use of the job control ALLOC command you allocate the
foreground partitions. Address space allocations are in multiples of 2K.
The minimum amount of address space that may be allocated to a
partition (explicitly or implied) for execution in virtual mode is 128K. This
128K size includes a minimum partition GETVIS area of 48K.

If a foreground partition is defined (via the NPARTS parameter of the
SUPVR generation macro), but not needed for a while, you can set its
size to OK by submitting an appropriate ALLOC command. .

During certain periods of processing, the operator can modify the
allocatiqns to the individual partitions, again by using the ALLOC
command. Details on the ALLOC command are given in VSE/ Advanced
Functions Operating Procedures.

Chapter 3: Using the System 3-17

Allocating Processor Storage to the Partitions

Processor storage is allocated to the partitions to enable the following:

• Program execution in real mode.

• Fixing pages by means of the PFIX/PFREE macros.

When processor storage is used for running,a program in real mode or for
fixing pages of a program running in virtual mode (for example,
VSE/POWER), the page pool is reduced by the number of page frames
required for real mode execution or page fixing, respectively. Because
reducing the page pool may reduce total system throughput, the use of real
mode execution and PFIX/PFREE macros should be carefully considered.

Processor storage is allocated to the partitions via the ALLOCR
command. For a partition's allocation to be affected, the partition
identifier (BG, F1, F2, ...) must be specified. The allocation is made in
multiples of 2K, with 2K being the smallest allocation permissible.
Absence of the partition identifier means: do not change the current
allocation. An allocation of 2K allocates one page frame, 20K allocates 10
page frames etc.

Note: In 370 mode, when the ALLOCR command is issued, the system delineates real
address space as well as allocating processor storage frames. In 370 mode, programs
executing real execute in the real address space.

The size of a given processor storage allocation for a partition is
determined either by the largest program you must run in real mode, or by
the maximum number of pages a program may fix. The number of pages
that can be fixed by the PFIX macro is limited by the amount of
processor storage allocated to that partiton.

With an allocation of

ALLOCR BG=20K, F3=10K

you could PFIX 10 pages in BG (while executing in BG) or 5 pages in F3
(while executing in F3). You could not PFIX 15 pages from one program
in either partition without reallocating processor storage.

Page Pool. The page pool is all processor storage beyond the resident
supervisor routines. When you use the ALLOCR command you are
potentially reducing the size of the page pool. The page pool is not
reduced until the processor storage page frames are taken for real mode
execution or for PFIX use in virtual mode. The minimum page pool size is
24K. If you allocate processor storage to partitions you must ensure that
at least 24K remain unallocated. A program running in virtual mode that
needs more than 6K for its I/O processing requires a corresponding
increase of the minimum page pool size.

Initiating Foreground Partitions

An Automated System Initialization (ASI) procedure may be used to start
foreground partitions by including, in the appropriate procedure, the
required partition start-up statements.

3-18 VSE/ Advanced Functions System Management Guide

In order to initiate a foreground partition, at least 128K of virtual storage
must be allocated to that partition. The allocation is made after IPL with
the ALLOC job control command.

Since the IPL program automatically determines the size of the SV A, it is
recommended that you issue the MAP command prior to any virtual
storage allocation. The MAP command will display the current allocations
and you can determine the amoun~ of virtual storage available for
allocation to the foreground partitions.

The ALLOC command is both a job control and an attention routine
command. (The attention routine is loaded when you press the Request
key on the console keyboard; that routine is in control of the system when
AR is displayed on SYSLOG.) When the ALLOC command is given
through the attention routine it cannot decrease the size of an active
partition.

The initial allocation of foreground partitions decreases the size of the BG
partition because all available virtual storage is allocated to BG at IPL.
Since, after IPL, the BG partition is active, the ALLOC command must
be given through job control.

Once virtual storage is allocated to the foregound partitions, they may be
made "active" through the attention routine. Issuing the BATCH or
START command, specifying a foreground partition, causes that
foreground partition to be initiated. For example:

AR BATCH Fl

causes the job control program to be loaded into the virtual storage
allocated to the F 1 partition.

Input may now be submitted to the Fl partition. Submitting jobs is
described in section, Controlling Jobs, later in this chapter.

Automated System Initialization (ASI)

During IPL and during the subsequent setting up of the system
environment, normally the same commands, the same prompting messages
and replies, the same job control information are processed.

ASI allows to place the required control information in procedures that
are cataloged in the (system) procedure library and to let the system
execute those procedures, without operator intervention, each time an IPL
and a partition start-up occur. The ASI procedures can be reused as long
as your system environment remains unchanged. Thus, your effort for a
total system bring-up is reduced to merely activating the initial microcode
load. In exceptional situations, you may have to bypass ASI and pedorm a
nonautomated, that is: an interactive system initialization.

Chapter 3: Using the System 3-19

Implementation Requirements

The Procedure Library. Your system residence (SYSRES) file must
contain the procedure library because you may catalog the ASI procedures
only into the system procedure library. Use the librarian program MAINT
and its CAT ALP function. The librarian programs are described in
Section Using the Libraries, later in this chapter.

The Set of Procedures. ASI requires one procedure for IPL (ASI IPL
procedure), and one job control procedure per partition (ASI JCL
procedure) if this partition is to be started under control of AS!.

Procedure Names. ASI assumes certain default names unless you instruct
it to use different names. The defaults are:

IPL: $IPL370
$IPLE

JCL: $OJCL370
$lJCL370
$2JCL370

$OJCLE
$lJCLE
$2JCLE

(for 370 mode)
(for ECPS:VSE mode)

(for 370 mode)

(for ECPS:VSE mode)

You might want to use different names. Por example, the initialization of
your system during the day deviates from that of the night shift: the day
shift runs a 5-partition VSE (including VSE/POWER, ACP/VTAM,
CICS/VS) whereas the night shift runs only simple batch jobs in 3
partitions. In this case, you might prefer to use procedure names as
follows: $IPLD, $OJCLD, $lJCLD, $2JCLD, $3JCLD, $4JCLD for.the
day shift, and $IPLN, $OJCLN, $lJCLN, $2JCLN for the night shift.

If you catalog ASI procedures by names other than ASI's default names,
be sure to delete procedures with ASI's default names if they are
cataloged; ASI looks for those names first and, upon finding them,
executes the pertinent procedure. When the default procedures are not
present, ASI prompts the operator to specify an ASI procedure; in the
above example, he may then enter $IPLD and $$JCLD, or $IPLN and
$$JCLN.

When you catalog your ASI J CL procedures, you must observe the same
naming rule as when you catalog a partition-related procedure. The first

I character must be a $. The second character identifies the partition: 0 for
the BG-partition, 1 for the PI-partition etc. The remaining characters
must be identical for all procedures belonging to one set.

ASI Master Procedure. If two or more CPU's share one SYSRES file, it
may be advisable to have a separate set of procedures cataloged for each

3-20 YSE/ Advanced Functions System Management Guide

CPU by a separate set of procedure names. ASI still performs a
completely automated system initialization if you have the ASI master
procedure $ASIPROC cataloged. Each record within this procedure
describes the ASI procedure set to be used for a specific CPU and the
processing mode of that CPU.

An ASI master procedure is also useful

if you have only one procedure set, but want to use other than default
names, or

if you plan to use the ASI STOP facility; for example when you are
still 'debugging' your ASI procedures.

The STOP facility allows you to specify, via the STOP parameter (see
below), up to four different IPL commands. Upon encountering the first
of a particular command type, the automatic IPL process interrupts itself
and gives the operator a chance to enter or update IPL commands via
SYSLOG.

To build the master procedure, submit one statement per procedure set.
The statement allows you to specify the following parameters, separated
by commas and terminated by a blank.

CPU=cpu-id

IPL=proc-name

JCL=proc-name

MODE=370IE

STOP=stoplist

specifies 12 hexadecimal digits to identify the
CPU on which an ASI procedure is to be run.
The CPU-id should be taken from message 01041
which is issued during an interactive IPL. The
format of the CPU-id corresponds to the first 6
bytes of the result field from execution of an
STIDP (Store CPU ID) assembler instruction and
can be looked up in the applicable Principles of
Operations manual.

specifies the ASI IPL procedure.

specifies the name of the JCL procedure set; the
name must start with $$.
Default: $$JCLE in ECPS:VSE mode

$$JCL370 in 370 mode.

indicates the processing mode of CPU.
Default: 370.

a list of up to four different IPL commands, in
arbitrary sequence. If more than one is specified,
the commands must be enclosed within
parentheses and separated by a comma. The first
of a specified command type that is encountered
during IPL initiates an interrupt; before the
command is processed, the operator may enter
additional IPL commands.

The parameters may be specified in any sequence. Parameters CPU and
IPL are mandatory. proc-name starts with an alphabetic character and
may consist of up to eight alphameric characters.

Chapter 3: Using the System 3-21

Following is an example of how to catalog the master procedure:

II JOB CATALP $ASIPROC
II EXEC MAINT

CATALP $ASIPROC
CPU=000713800138,IPL=IPLX,JCL=$$JCLX,STOP=(DEF,DPD)
CPU=FF0713800138,IPL=IPLE,MODE=E
1+
1&

The 'FF' in the second CPU-id indicates a virtual machine.

Contents of ASI IPL Procedures

The ASI IPL procedure contains all IPL commands that you want to have
executed by the IPL routines. Use the same format as in an interactive
IPL.

In addition to IPL commands, you must submit a first -record which
specifies in

• columns 1 through 3:

beginning in column 4:
(optionally)

SYSLOG device address

,supervisor name, paging
option, virtual storage size, list option (for
a description of these parameters, refer to
section Initial Program Loading at the
beginning of this chapter.)

The address you specify in columns 1 through 3 must be a
YSE/ Advanced Functions supported console device. Specification of an
address which does not represent a YSE/ Advanced Functions supported
console device may produce unpredictable results. The address is
meaningful only

• in IPL procedures referenced in $ASIPROC

• in procedure $IPL370 or $IPLE.

All other situations cause ASI to prompt for a procedure name from
SYSLOG. This can be done only when SYSLOG has been defined via
REQUEST/ENTER; the SYSLOG device address specified in the ASI
procedure will be ignored then.

Following is an example of a skeleton ASI IPL procedure:

01F,$$A$SUPX,N,NOLOG
ADD 180,3330
ADD 04C,2540R

DPD UNIT=180,CYL=400,DSF=N

DEF SYSREC=180
SVA

3-22 VSE/ Advanced Functions System Management Guide

c

If your page data set is allocated to multiple extents, you should place all
DPD commands necessary to define the extents into the procedure. This
prevents the IPL program from prompting the operator to define the
rem~ining extents.

The SET command should not be part of the ASI IPL procedure. The
command must be given only if the time-of-day clock is inoperative or is
not set; if this is the case, the operator will be prompted to provide the
actual date values.

Contents orASI JCL Procedures

ASI JCL procedures should contain all those job control commands or
statements that you would normally submit during an interactive system
start-up. Complete conceptional information on the use of job control
commands is given in section Controlling Jobs, later in this chapter.

ASI Background Procedure. This procedure must contain all job control
statements and commands necessary to initialize the BG partition and the
system as a whole.

•

I ·
•

ALLOC and ALLOCR commands to allocate space to the foreground
partitions you intend to start.

All permanent library definitions or assignments of logical units
needed in the BG partition.

The SIZE command if needed.

• / / STDOPT command for the definition of standard (permanent)
I options (see Note 2, beloW).

•

•

•

•

/ / OPTION STDLABEL, together with label information, to set up
the system standard label subarea if it was not set up during a
previous system initialization.

/ / OPTION PARSTD, together with label information, to set up
(background or foreground) partition standard label subareas if they
were not set up during a previous system initialization.

/ / JOB jobname for the initialization of RSMR recording and of the
hard copy file.

START Fn for each foreground partition to be started from this BG
partition.

STOP if the BG partition is to be spooled by VSE/POWER. The
STOP command should immediately follow the START command for
the VSE/POWER partition.

Chapter 3: Using the System 3-23

Notes: (1) The placement of the STOP and START commands, as given here for
VSE/POWER, applies also to other permanently running programs
such as VSE/ICCF or CICS/VS.

(2) It is advisable to place a / / PAUSE statement before the following / /
OPTION statement (if any). This would give you a chance to enter the
SET command if the recorder file or the hardcopy file needs to be
(re)created. Or, you could enter CANCEL to bypass the writing of
labels whenever you are sure that the label information is already set up
the way you want.

ASI Foreground Procedure. This procedure must contain job control
statements and commands necessary to initialize a particular foreground
partition:

• / / OPTION P ARSTD, followed by label information, to set up the
foreground partition standard label subarea if it was not set up during
a previous system initialization or from the background partition.

I. All permanent library definitions or assignments of logical units
needed in the particular foreground partition. -

Note that a foreground partition can be started through execution of the
ASI BG-procedure or via VSE/POWER or via an attention routine
START command.

SYSRDR or SYSIN cannot be assigned within a procedure. To cause
automatic assignment of these logical units, specify the required ASSGN
statement in the comment portion of the end-of-procedure statement:

1+ II ASSGN SYSIN, .. .
1+ II ASSGN SYSRDR, .. .

Only one / / ASSGN statement can be specified as a comment. The
command form (no / /) is not allowed.

Example of an ASI JCL Procedure Set

Figure 3-4 shows a skeleton example of an ASI JCL procedure set. It
assumes a 3-partition system with VSE/POWER running in the
FI-partition. Figure 3-5 shows the associated sequence of VSE/POWER
AUTOSTART commands on SYSIPT.

3-24 VSE/ Advanced Functions System Management Guide

* ASI PROCEDURE FOR BG
ALLOC Fl=300K,F2=200K
ALLOCR F1R=80K,F2R=24K
ASSGN SYSLNK, 1 3 1
ASSGN SYS001,131
ASSGN SYS002,131
ASSGN SYS003,131
II PAUSE SET RF/HC ?
II OPTION STDLABEL
II DLBL IJSYSRS
II EXTENT SYSRES, ...
I I ...
II OPTION PARSTD
II DLBL IJSYSOl
II EXTENT SYS001, ...
I I ...

1 II OPTION PARSTD=Fl
II DLBL IJSYSIN
II EXTENT SYSIPT,SYSRES",4000,2
II ...

2 II JOB ADAM
3 START Fl
4 STOP
8 ASSGN SYSLST,PRINTER

ASSGN SYSPCH,PUNCH
9 1+ II ASSGN SYSIN,OOC,PERM

5 * ASI PROCEDURE FOR Fl
6 ASSGN SYSIPT,SYSRES

ASSGN ...
7 II EXEC POWER

1+
* ASI PROCEDURE FOR F2
II OPTION PARSTD
II DLBL IJSYSOl
II EXTENT SYS001, ...
I I ...
ASSGN SYSLNK,130
ASSGN SYS001,130

10 1+ II ASSGN SYSIN,OOC,PERM

1 Label information is written to the F1 partition standard label subarea.

2 This / / JOB statement initializes RSMR recording. and the hard copy file (if applicable).

3 Activates the F1 partition where VSE/POWER is to run.

4 Deactivates the BG partition which is to be spooled by VSE/POWER.

5 When the F1 partition becomes active. the ASI JCL procedure for F1 is called automatically.

6 Assigns SYSIPT to a disk file in which VSE/POWER AUTOSTART statements had been recorded in an earlier
run of the OBJMAINT system utility.

7 Calls VSE/POWER which starts to read the AUTOSTART statements from the SYSIPT file. VSE/POWER starts
the F2 partition at which point the F2 JCL procedure is executed. VSE/POWER also reactivates the BG
partition.

8 The BG partition continues under control of VSE/POWER.

9 SYSIN is assigned to a spool device. The same happens

10 at the end of the F2 JCL procedure.

Figure 3-4. Example of an ASI JCL Procedure Set

Chapter 3: Using the System 3-25

PSTART RDR,OOC
PSTART LST,OOE
PSTART PUN,OOD

1 PSTART F2,2
READER=OOC
PRINTERS=OOE
PUNCHES=OOD

2 PSTART BG,O
READER=OOC
PRINTERS~OOE

PUNCHES=OOD
/*

1 Starts the F2 partition.

*** F2 ***

*** BG ***

2 Reactivates the BG partition from where the VSE/POWER partition was
started.

Figure 3-5. Example of VSE/POWER AUTOSTART Statements

I Invoking VM/370 Linkage Support

You can generate a supervisor with the high performance VM/370
Linkage facility (VM-YES specified in the SUPVR generation macro as
described in the preceding chapter). In order to invoke the support during
VM/370 start-up, proceed as follows:

1. Log on in the normal way.

2. Prepare your virtual machine on which VSE is to operate (you may
omit this step if your VM directory entries are already set):

• If you use a supervisor with VM ... YES in 370 mode, make sure
that the storage size of the virtual machine is equal to or greater
than the sum of 200K plus the VSIZE value as determined during
IPL. The real address space available to the VSE system is given
by the size that you defined for the virtual machine minus VSIZE.
If you use a supervisor generated with VM-YES in ECPS:VSE
mode, the entire virtual machine storage is available as VSE
address space.

• Set EC mode on by issuing the VM/370 command:

SETEC ON

3. Perform IPL using as the virtual machine's load unit the device that
contains your VSE. The IPL program already issued the commands:

SETPAGEXON
SET RUN ON

3-26 YSE/ Advanced Functions System Management Guide

L

4. If you wish to turn off the pseudo-page-fault handling support (only
useful with more than one partition and processing multi-tasking
applications), wait for message 01201, indicating that the IPL is
completed, and then enter the VM/370 command:

SET PAGEX OFF

PAGEX should be used with care, especially in a high-paging
environment where its use can aggravate the thrashing condition.

Note: Some programs (such as VSE/ICCF or SDAID) need PAGEX to be set
OFF. These programs automatically set PAGEX OFF. Therefore, be sure not to
set it ON again.

Chapter 3: Using the System 3-27

Controlling Jobs

Defining a Job

~~ - - - -_._- -------------------

After the system has been successfully started by means of the IPL
program, the following messages are displayed on the console:

BG 1I00A READY FOR COMMUNICATIONS
BG

This shows that the job control program is in the background partitio;.,
ready to accept input.

At this point, the job control program will accept commands submitit'· i
through the console (SYSLOG). Job control's normal input source,
however, is the logical unit SYSRDR.

Job control reads from SYSRDR if, at this point, you depress the I,'R
key on the console without entering any commands. Normally, SY
is assigned to a card reader or diskette device.

The unit of work that is submitted to the system for execution is c; . ,
job. A job, and the environment in which it is to run, must be def], .. j)
the system through job control statements and commands. These jot
control statements and commands are processed by the job control
program which is automatically loaded into storage as required.

The job control program runs in virtual mode in any partition. It performs
its functions only between jobs and job steps, and is not present in the
partition while a problem program is being executed.

After each job control statement or command is read, control can be
given to a user exit routine for examining and altering the input before it
is processed by the system. For a description of this facility refer to
Chapter 4, Using the Facilities and Options of VSE/ Advanced Functians.

The difference between job control statements and commands are not
discussed here because there is no need for a distinction in this section.
Whenever applicable, it is simply stated whether the function can be
performed using statements, commands, or both. The description of the
job control statements and commands in this section is limited to theL- use
and functions; formats and characteristics of statements and commands
are detailed in VSE/Advanced Functions System Control Statements.

This section describes how to define a job, how to relate files to a
program, and how to work with cataloged procedures.

The beginning and end of a job are defined by the JOB and / &
(end-of-job) statements.

If you have the Access Control facility of VSE/ Advanced Functions
implemented, you must also submit an ID statement which specifies y, jur
user identifier together with a password. For more information about "his
service, see the publication Data Security Under the VSE System.

3-28 VSE/ Advanced Functions System Management Guide

The program to be executed in a job is requested through an EXEC
statement. The occurrence of an EXEC statement is called a job step.
Each job may consist of one or more job steps.

You may include as many job steps in a job as you wish. However, it is
not advisable to execute, in one job, several programs that are completely
independent of one another because, if one step terminates abnormally
(and a / / JOB statement was provided), the job control program ignores
the remaining job steps up to the next / & or / / JOB statement. A
typical example of related job steps that should form a single job are
assembling, link editing, and executing a program, where correct execution
of one job step depends on successful completion of the preceding one.
Figure 3-6 shows an example of a multistep job.

1 II JOB jobname

2

3 II EXEC PAYROLL

3 II EXEC CHEX

4 1&

1 Defines the beginning of a job. For jobname, you may specify a name of
your own choosing.

2 Additional job control statements if required.

3 The two job steps. Job control is reloaded into storage at the end of each
job step, enabling the reading of subsequent job control statements.

4 At the end of the CHEX program's execution job control is reloaded and
reads the end-of-job indicator.

Figure 3-6. Control Statements Defining a Job Consisting of Two Job
Steps

Following are some additional details about the job and end-of-job (/ &)
statements. The EXEC statement is discussed later in this chapter.

The JOB Statement. The JOB statement indicates the beginning of
control information for a job. The specified job name is stored in the
communication region of the corresponding partition and is used, for

•

Chapter 3: Using the System 3-29

example, by job accounting and to identify listings produced during the
execution of the job.

If the JOB statement is omitted, the system uses NO NAME as the job
name. If the JOB statement is without a job name it is rejected by job
control as an invalid statement. The JOB statement should not be. omitted,
as many VSE/ Advanced Functions functions assume its presence. If, for
example, the operator cancels a job using tlw attention routine CANCEL
command, the job control program normally bypasses all statements on
SYSRDR until encountering a / &. However, if the job in question was
submitted without a JOB statement, no statements in the job stream are
bypassed even though job NO NAME was canceled.

Having JOB statements with specific job names is useful when you issue
the MAP command in a multiprogramming environment. The MAP
command displays on SYSLOG the storage allocations for each partition,
together with the name of a job that is currently active in the
corresponding partition.

The JOB statement is always printed in positions 1 through 72 on
SYSLST and SYSLOG; also, the time of day is printed. The JOB
statement causes a skip to a new page before printing is started on
SYSLST.

The End-of-Job (/ &) Statement. This statement is the last one for each
job (not job step). It signals the end of the input stream for the job.
When job control encounters / & on SYSRDR during normal operation,
the permanent assigriment for SYSIPT becomes effective and SYSIPT is
checked for an end-of-file condition.

If the / & statement is omitted, the next JOB statement will cause control
to be transferred to the end-of-job routine to simulate the / & statement.

When a / & statement is encountered, the job control program pedorms
such operations as the following:

• Resets all job control options for the partition to standard: either as
established by the STDOPT command, or the system default if the
particular option was not set through a STDOPT command.

• Resets all system and programmer logical unit assignments for the
partition to the permanent assignment established by job control
commands. Logical unit assignment is discussed under Relating Files
to Your Program later in this chapter.

J. Deactivates all temporary library chains for the partition.

• Modifies the communication region as follows:

1. Resets the date from the DATE statement to the one specified in
the SET command during IPL.

2. Stores the job name NO NAME.

3. Sets the user area and the UPSI byte to zero .

•

3-30 YSE/ Advanced Functions System Management Guide

Job Streams

• Displays an end-of-job (EOJ) message on SYSLST and SYSLOG with
the time and duration of the job.

• Ensures that end-of-file has been reached on SYSIPT.

• Deletes the temporary labels in the label information area on
SYSRES. (See Storing Label Information, later in this chapter.)

• Checks whether the condense limits of any of the libraries have been
reached (if library maintenance has been done in the job).

The job control program provides automatic job-to-job transition. In other
words, an unlimited number of jobs can be submitted to the system in one
batch, and job control processes one job after the other without requiring
intervention by the operator. The job or jobs submitted are referred to as
a job stream (see Figure 3-7 for an example of a payroll jobstream).

1&

(I I EXEC PAYCHK

(II PAUSE LOAD PAYCHECKS
I--

(1* -
I--

-r Time cards

C I I EXEC PAYRUN

(I I EXTENT SYSOO,
-

(II DLBL FILEP,'PAYFILE'
-

(I I ASSGN SYSOO 1 ,160
I--

(I I ASSGN SYSLST, OOE
I--

/ II JOB PAY'
-

r--

Figure 3-7. Example of a Job Stream

When setting up a job stream for a partition, you should bear in mind that
all jobs will get the priority of that partition. The selection of the jobs for
a particular partition in a multiprogramming system can help to improve
the efficiency of your installation. For example, jobs which have a
relatively low CPU usage and a relatively high rate of I/O activity, and
which therefore spend most of their time waiting for the completion of

Chapter 3: Using the System 3-31

I/O operations, should run in a high priority partition. Conversely,
CPU-bound jobs should be in a partition with a lower priority.

The operator may interrupt the processing of a job stream in any partition
to make last-minute changes to one of the jobs or to squeeze in a special
rush job. He does this by using the PAUSE statement or command.

A PAUSE statement may be included anywhere among the job control
statements of a job stream (see Figure 3-7). It becomes effective at the
point where it was inserted; processing is suspended in the affected
partition, and the operator console is unlocked for input. The PAUSE
statement can contain instructions to the operator and is always displayed
on SYSLOG.

The PAUSE statement may also be helpful when SYSIN is assigned to a
5424 or 5425 card reader (neither of which have an end-of-file button).
Place the / / PAUSE card after the last / & card; this will force control
to be given to the console-keyboard, which enables the console operator
to control subsequent system operation.

A PAUSE command may be entered either through the operator console
(after pressing the request key), or within a job stream together with the
job control statements for a job. If entered through the console to the
attention routine, the command must specify the partition that is to pause
(if the background partition is intended, however, no operand is required).
After encountering a PAUSE command, the system passes control to the
operator (through the console) into the specified partition, at the end of
the current job step (which may also be the end of the job). If that
PAUSE command specifies the EOJ operand, control passes to the
operator at the end of the current job, regardless of the number of steps
needed to reach that point.

The macro JOBCOM allows you to do job-to-job comm.unication. You
may store information (up to 256 bytes) in one job to be passed to and
retrieved by a subsequent job running in the same partition.
VSE/ Advanced Functions Macro Reference provides a detailed description
of the JOBCOM macro.

Relating Files to Your Program

Most programs perform some kind of input/output operation (that is, they
process files) on auxiliary storage devices. Before such files can be
processed, certain information about them must be provided to the system.
This information includes:

• The address of the II 0 device on which each of the files resides.

• For files on direct access storage devices (DASD), the exact location
of the file on the storage medium.

• For files on DASD, on diskette, or on labeled magnetic tape, a
description of the file, called a label, which is used for checking and
protection purposes.

3-32 VSE/ Advanced Functions System Management Guide

Symbolic I/O Assignment

, ,'~ !

L

The above information, specified in job control statements, is stored in the
system by the job control program for use by the data management
routines. How this is done is described below.

Whenever a processing program needs access to a file on auxiliary storage
the program need not specify an actual device address, but only a
symbolic name which refers to a logical, rather than physical, unit. Before
the program is executed that logical unit must be associated with an actual
device. This is done by the operating system when it executes an ASSGN
job control statement or command which specifies the symbolic name of
the logical unit and one of the following:

• A general device class or specific device type, with or without volume
serial number.

• The physical address (channel and unit number) of the I/O device.

• A list of physical addresses.

• Another logical unit.

See Figure 3-8 for an illustration of some of these combinations.

ASSGN statements may be submitted as part of ASI JCL procedures or
between jobs or job steps.

Another way of relating a file to a physical device can be employed if the
file is a VSE library and is defined by the LffiDEF job control statement.
Here the key parameter is the volume identifier (VOLID) of the library
pack rather than the logical unit name; the operating system automatically
finds the physical de\ice address on which the volume with that particular
VOLID is mounted. The LffiDEF statement and its use for defining
libraries is described in section Job Control for Library Definition, later in
this chapter.

Chapter 3: Using the System 3-33

Processing Program

Job Control

1/0 Device

DEVADDR=SYS008
t ,
I , ,

I

t
II ASSGN SYS008,OOE

1. The logical unit specified in the processing program (via DTF or CCD or lORD)
is a print file referred to by the symbolic device name SYSLST.

2. An ASSGN statement is used to associate SYSLST with the physical address ooE
of a printer. This information is stored in the system by job control and c~n be
accessed when a program is executed.

Figure 3-8. Example of Symbolic I/O Assignment (Part 1 of 2)

3-34 YSE/ Advanced Functions. System Manageme~ G\lide

Logical Units

Processing Program

DEVADDR=SYS002

Job Control

II ASSGN SYS002,(13O, 131) 0
II ASSGN SYS003,3330,VOL=000003 CD
II ASSGN SYS004,TAPE C9

000001 000002

130 131

o Device list - if drive 130 is unassigned SYS002 will be assigned to it, if it is
assigned the operating system tries 131.

CD Device type - the operating system searches for the device type (3330 in
this case) that is available and has the volume-id 000003.

C9 Device class - the operating system searches for an ava ilable tape device.

Figure 3-8. Example of Symbolic I/O Assignment (Part 2 of 2)

There are two types of logical units: system logical units, primarily used
by the system control and service programs, and programmer logical units,
primarily used by the processing programs. The following list shows the
names, logical units and the II 0 devices that each of these logical units
can represent. In the case of disk devices, the logical unit is not assigned
to the entire volume mounted on the device but only to the referenced
extent(s).

Chapter 3: Using the System 3-35

Logical
unit name

Type of I/O device

SYSRDR Card reader, magnetic tape unit, disk device, or diskette used
as input unit for job control statements or commands.

SYSIPT Card reader, magnetic tape unit (single volume), disk, or
diskette extent used as input unit for programs.

SYSPCH Card punch, magnetic tape unit, disk, or diskette extent used
as the unit for punched output.

SYSLST Printer, magnetic tape unit, disk, or diskette extent used as the
unit for printed output.

SYSLOG Operator console used for communication between the system
and the operator.

SYSLNK Disk extent used as input to the linkage editor.

SYSRES System residence extent on a disk pack.

SYSCLB Disk extent used for a private core image library.

SYSSLB Disk extent used for a private source statement library.

SYSRLB Disk extent used for a private relocatable library.

SYSREC Disk extent used to store error records collected by the
recovery management support recorder (RMSR) function. If a
display operator console (DOC) is installed, messages to or
from the operator are stored in the hard copy file, a separate
SYSREC extent so tlJat a hard copy listing of these messages
can be produced. A third SYSREC extent holds the system
history file.

SYSDMP Disk extent(s) for alternate dump file(s).

SYSCAT Disk extent used to hold the VSAM master catalog.

SYSCTL For system use.

SYSnnn Format for coding programmer logical units which are
discussed later in this section.

System Logical Units. All of the above logical unit names, except SYSnnn,
represent system logical units. Of these system logical units, user-written
programs may use SYSIPT and SYSRDR for input, SYSLST and SYSPCH
for output, and SYSLOG for communication with the operator. All other
system logical units may not be used within user-written programs (or
EXTENT statements, which are discussed later in this section).

Two additional symbolic names, SYSIN and SYSOUT, are used under
certain conditions:

SYSIN Can be used if you want to assign SYSRDR and SYSIPT to
the same card reader or magnetic tape unit. You should not
assign SYSRDR and SYSIPT to the same disk or diskette
extent, assigri SYSIN to that extent instead.

SYSOUT Must be used if you want to assign SYSPCH and SYSLST to
the same magnetic tape unit. SYSOUT cannot be used to
assign SYSPCH and SYSLST to disk or diskette because these
two units must refer to separate extents.

3-36 YSE/ Advanced Functions System Management Guide

Types of Device Assignments

SYSIN and SYSOUT are valid only to job control and cannot be
referenced in a user-written program. Examples for the use of SYSIN and
SYSOUT are given in the section System Files on Tape, Disk, or Diskette
later in this chapter.

Programmer Logical Units. Programmer logical units may be assigned to
any device installed on the system used for processing program input and
output. Each partition has a minimum of 5 programmer logical units
(except for the background partition where the minimum is 10) and a
maximum of 255 (SYSOOO-SYS254). The number of programmer logical
units is a supervisor generation option.

Device assignments are either permanent or temporary, depending on the
time of the assignment and the type of ASSGN statement or command
used.

Permanent Device Assignments. A permanent assignment is set up
between jobs or job steps any time after IPL by the ASSGN job control
command (no / /) or the / / ASSGN job control statement with the
PERM operand. It is valid until the next IPL procedure unless superseded
by another ASSGN job control command. A permanent assignment can
be changed for the duration of a job or job step by a / / ASSGN
statement or by an ASSGN command with the TEMP option.

Temporary Device Assignments. A temporary assignment is established
either by a / / ASSGN statement or by an ASSGN command with the
TEMP option. It is valid for a single job only, unless superseded by
another temporary or permanent assignment. Temporary assignments are
reset to permanent by

• a / & or JOB statement, whichever occurs first, or by

• a RESET job control statement or command.

Restrictions: The type of device assignment is restricted under certain
conditions:

1. If one of the system logical units SYSRDR, SYSIPT, SYSLST, or
SYSPCH is assigned to a disk device or diskette, the assignment must
be permanent. If SYSCLB is assigned, its assignment must also be
permanent.

2. If SYSRDR and SYSIPT are to be assigned to the same disk or
diskette extent, SYSIN should be assigned instead, and this assignment
must be permanent.

3. SYSOUT, if used, must be a permanent assignment.

4. The SYSLOG assignment is restricted when IPL was done from either
a 125D or 3277 device. You may not assign SYSLOG to a 125D if
IPL was done from a 3277 and vice-versa.

Chapter 3: Using the System 3-37

Device Assignments in a Multiprogramming System

Each partition has its own set of system logical units. For example, the
BG partition has a SYSRDR, SYSLST, SYSIPT etc. as do all the other
generated partitions. As each partition is started, assignments must be
made for the system logical units. Some assignments need be made only
in one partition and are valid for all partitions. These are logical units that
service the system rather than one partition. The page data set and the
lock communication file (defined via the DPD and DLF commands,
respectively) and the following units fall into this category:

logical name

SYSLOG

SYSREC

SYSDMP

SYSCTL

SYSRES

SYSCAT

how assigned

ASSGN job control commano

DEF IPL command

DEF IPL command

automatically assigned by the system

disk address entered at IPL

DEF IPL command

All of the other system logical unit assignments must be made for each
individual partition.

Each partition also has its own set of programmer logical units (SYSOOO
through SYSnnn) where nnn is the number of programmer logical units
specified for the partition minus 1.

You must make assignments of the programmer logical units as needed by
the programs running in each partition. Certain mM supplied programs
require specific programmer logical unit assignments. For example the
linkage editor requires SYS001 and the assembler requires SYSOO1,
SYS002, and SYS003.

Sharing Assignments. Within the same partition, different logical units may
be assigned to the same physical device. For example:

II ASSGN SYSLST,OOE
II ASSGN SYS007,OOE

Both logical names SYSLST and SYS007 are assigned to the device at
address OOE.

Normally it is not possible to share physical devices (except DASD)
between partitions. For example if you have a tape drive assigned to the
BG partition, but not used by that partition, you must first unassign it in
BG before attempting to assign it in F2. If, however, you use.a spooling
package, such as the licensed program VSE/POWER, you can share unit
record devices (card reader, card punch, for example) and diskette
between partitions (see the licensed program VSE/POWER
documentation for more details).

With direct access devices this problem does not exist because each extent
on a disk can be thought of as a separate device.

3-38 YSE/ Advanced Functions System Management Guide

Furthermore, if programs in several partitions need only to read and not
to update a file on disk, the one extent may be assigned to all of those
partitions. Certain VSE service programs (for example, the librarian
programs) are allowed to share a library even for updating. A library is
not defined as a disk volume, only as an extent on the disk volume. The
assignment from each partition where a librarian program is running is to
the same extent. Extents are discussed under Processing of File Labels in
this chapter.

It is not possible to share a diskette between partitions.

Figure 3-9 illustrates possible device assignments.

Chapter 3: Using the System 3-39

" BG I SYSOO5 {~ 191

F21 SYSOO5 {~ 192

F 1 I SYSOO5 ~U 193

BG SYSOO5

F2 SYS006 191

F1 SYS007

BG SYSOO5

BG SYS006 200

BG SYSOO7

BG SYSCLB

F2 SYSCLB 191

F1 SYSCLB

G) Each partition has its own set of programmer logical units.

o Each assignment must be for a separate extent on the disk unless the partitions
only have to r.ead a file and not update it.

e These assignments allow access to the tape volume by three different logical
unit names. No assignments to this tape are va lid from a partition other than
BG at this time.

(!) This example assumes that librarian programs update the same library; the
assignments are for one extent.

f4'igure 3-9. Possible Device Assignments

3-40 VSE/ Advanced Functions System Management Guide

~

L

L

SYSRES

SYSLOG

Page
Data
Set

Figure 3-10 shows the logical units needed for an assembly. The
illustration shows that the ASSGN statements must always precede the
EXEC statement of the job step for which they are to be effective. (The
device assignments for compilers are similar to the device assignments
shown in this assembler example; any variations are documented in the
applicable programmer's guides.)

Only jf the program is to

r-----...,
I I __ 1 __ -<.'", I

", y'
~------ I :
I ~ __ .J

.... J..--, I
, \ I

~------~..., \ J
~ I _­,-

I! EXEC ASSEMB L Y
be link-edited ~ --'-_____ --.

~ ~ I! OPTION r------,
I I Only if an object deck ___ ./.

is desired - /I ASSGN SYSPCH •....

/I ASSGN SYSO03 •....

II ASSGN SYSLST •....

_.J..---'-=~ I
, ~ I
1 ----' I I : :_.J

.... _'-, I
/ '\ I

I \)
I 1-_-"

II ASSGN SYSIPT •.... /----_.1..---, /

1/ JOB

CPU

r----l
I I
L_-4~ I
~ I

f ----,.l I
I ~J

I
, I
\)
J __ -'

I
-t._
SYSPCH
(Optional)

SYSLNK
(OptionaU

" c. __

r-----.,
I I

,._-...1 __ ..("', I

f------ .. r : I 1-__ -1
.... 1..... I

" " I \ I

I ,
\ J L_--

~--
SYSLST

SYSOOl
SYSOO2
SYSOO3

Figure 3-10. Device Assignments Required for an Assembly

Sh!1ptel"}: Esing the System 3-41

Additional Assignment Considerations

The following summarizes the functions of the job control ASSGN
statement (or command). Also included are statements (commands) that
can be used with logical unit assignments.

The ASSGN Statement/Command. The ASSGN statement or command is
used to connect a logical II 0 unit to a general device class, a specific
device type, a physical device or a list of physical devices, or another
logical unit. An ASSGN statement or command can also be used:

• to specify a temporary or permanent assignment.

• to specify a volume serial number for a tape, disk, or diskette.

• to specify that a disk is shareable by more than one partition or
logical unit.

• to unassign a logical unit to free it for assignment to another partition.

• to ignore the assignment of a logical unit, that is, program references
to the logical unit are ignored (useful in testing and certain rerun
situations).

• to specify an alternate tape unit to be used when the capacity of the
original is reached.

The assignment routines check the operands of the ASSGN statement/
command for the relationship between the physical device, the logical unit,
the type of assignment (permanent or temporary), etc. The following list
summarizes the most pertinent items to remember when making
assignments:

• Assignments are effective only for the partition in which they are
issued.

• Apart from the operator console, no physical device except DASD can
be assigned to more than one active partition at the same time.

• All system input and output file assignments to disk or diskette must
be permanent.

• SYSIN must be assigned if both SYSRDR and SYSIPT are to be
assigned to the same extent.

• SYSOUT cannot be assigned to disk or diskette; it must be a
permanent assignment if asSigned to tape.

SYSLNK must be assigned before issuing the LINK or CAT AL option
in an OPTION statement; otherwise, the option is ignored and the
message 'PLEASE ASSIGN SYSLNK' is issued to the operator.

• Before a tape unit is assigned to SYSLST, SYSPCH, or SYSOUT, all
previous assignments to this tape unit must be permanently
unassigned. This may be done by using a DVCDN command as
discussed below.

3-42 VSE/ Advanced Functions System Management Guide

Processing of File Labels

• The assignment of SYSLOG cannot be changed while a foreground
partition is active.

• SYSRES, SYSCAT, SYSREC, SYSDMP, the page data set and the
lock communication file can never be assigned by an ASSGN
statement or command. An IPL is required to change these
assignments.

The RESET Statement/Command. The RESET statement or command
can be used to reset temporary assignments of a partition to permanent.
With one RESET statement or command you can reset

• all logical units.

• all system logical units.

• all programmer logical units.

• one specific system or programmer logical unit.

The LlSTIO Statement/Command. With the LISTIO statement or
command you can obtain a listing of the current status of the I/O
assignments in your system. This may be done for all devices or individual
devices as required. If the LISTIO command is used (no / I), the output
goes to SYSLOG, otherwise the output is on SYSLST.

The DVCDN Command. The DVCDN (device down) command informs
the system that a device is no longer physically available for system
operations. This command releases all logical assignments to the device.

When the device becomes available again for system operations, a
DVCUP (device up) command must be given and new assignments made,
before the device may be used.

The DVCUP Command. The DVCUP (device up) command informs the
system that a device is available for system operations after it has been
down.

As shown above, the operating system relates physical devices to logical
names, used in programs, via the ASSGN job control statement (or
command). Certain device types (magnetic tape, disk, and diskette) have
removable volumes. It is important to ensure that the volume(s)
containing the file(s) to be processed are present on the assigned
device(s). Magnetic tape, disk and diskette files are identified through file
labels which are processed by the data management routines. Magnetic
tape file labels are optional, though desirable for reasons of data integrity.
Disk and diskette file labels are required.

File labels are written when a file is created based on label information
submitted through job control statements.

To write a file label on magnetic tape, job control uses the / / TLBL
statement. This label is written immediately preceding the associated file.

Chapter 3: Using the System 3-43

To write a file label on disk or on diskette, job control uses the / / DLBL
and / / EXTENT statements. The label is written into the volume table of -~
contents (VTOC), and a utility program, L VTOC, is available to list all ...""
labels included in this VTOC. Details on the DLBL and EXTENT
statements are given in VSE/ Advanced Functions System Control
Statements. When a labeled file is to be processed, the required / / TLBL,
/ / DLBL and / / EXTENT information must be available, so that job
control can perform the desired label checking on your existing file.
Figure 3-11 shows the relationship of label information that you provide
by the above mentioned statements to file labels and programs. For a
detailed discussion of label processing, refer to VSE/ Advanced Functions
DASD Labels and VSE/Advanced Functions Tape Labels.

3-44 VSE/ Advanced Functions System Manageme~t Ytlid~

II ASSGN SYS021 ,281
I/TLBL PAYPMO:PAY MARCH78'
II ASSGN SYS011 ,DISK, VOL=444444
II DLBL PAYROLL:MASTER',99/365,SD
II EXTENT SYS011, 1 ,0,100,50

Label I nformation Area

Executing Program

OPEN PA YROLL,PA YPMO

The OPEN invokes the
Data Management routines.

444444

Master

Data of File Master
(50 tracks)

Label I nfor mat ion provided
by the user is stored in the
label information area.

Data Management Routines

The Data Management routines search the label information
rea for the file names PA YROLL and PA YPMO.

Once the label information is found, the file I D's MASTER
and PA Y MA RCH78 are searched for on the mounted

PAY MARCH78

\ ,
\
\
\
\ ,
\ ,

\
\ ,

\

\
\
\
\ ,

\
\ ,

\

/
I

I

/

I
I ,

I

I
I

I

/

,
I

I
I

I
I

I
I

I

,

,
I

I , ,

Figure 3-11. File Label Processing

Chapter 3: Using the System 3-45

The / / TLBL, / / DLBL, and / / EXTENT job control statements may
be submitted with each execution of a given program that processes
labeled files. Job control temporarily stores these statements in the label
information area. A recommended alternative for frequently accessed files
is to permanently store the label information in the label information area.
The section Storing Label Information later in this chapter describes how
to permanently store label information.

When the program that processes the file is executed, the data
management routines access the label information

• to write the appropriate labels onto the storage volume, and to check
that no unexpired files are overwritten, if the file is to be created, or

• if an existing file is to be processed, to check the contents of the label
information area against the label(s) of the file to ensure, for example
that the correct volume is mounted.

The first two parameters of both the / / TLBL and / / DLBL statements
are the same:

II TLBL filename,'file-id'
II DLBL filename,'file-id'

The filename is not part of the file label. You code a filename in your
program to identify your file.

• In assembler language it is the DTF (Define The File) name.

• In DOS/VS RPG IT it is the FILENAME.

• In DOS/VS COBOL it is the name specified in the SELECT clause.

• In PL/I it is the identifier (with the FILE attribute) in the
DECLARE statement.

• In FORTRAN it is the file name associated with the data set
reference number.

The filename from your program is used as a search argument by the data
management routines in searching for label information in the label
information area. Accordingly you must code a matching filename in your
/ / TLBL or / / DLBL statements.

The file-id is part of the file label. After the DLBL or TLBL statements
are located (based on filename), the file-id is used to:

• create a label for an output file.

• locate and check the labels of an input file.

3-46 YSE/ Advanced Functions System Management Guide

Example of label checking:

II JOB UPDATE
II ASSGN SYS007,OOC
II ASSGN SYS008,280
* PLEASE MOUNT CURRENT ACCOUNTS RECEIVABLE TAPE
II PAUSE
II TLBL ACCT,'ACCTS.REC.FILE'
II EXEC UPDATE
data cards
1*
II MTC REW,SYS008
II ASSGN SYS010,280
II ASSGN SYS007,OOE
II TLBL ARFILE,'ACCTS.REC.FILE'
II EXEC ARREPORT
1&

The two programs UPDATE and ARREPORT access the same file
'ACCTS.REC.FllJE'. The two programs happen to use different file
names and different programmer logical units.

UPDATE opens a file named ACCT on logical- unit SYSOO8 and
ARREPORT opens a file named ARFILE on SYSOlO. In both cases the
file accessed is 'ACCTS.REC.FILE'. If the two programs had used the
same file name and programmer logical units, one ASSGN statement and
one / / TLBL statement permanently stored in the label information area
would suffice.

Labellnformatioo for Files 00 Diskette Devices

After you have informed the system, via the ASSGN statement or
command, on which physical device the file is to reside, you must supply
the following information to allow the creation and checking of diskette
labels:

1. A description of the characteristics of the file. You specify this in the
DLBL job control statement.

2. The volume(s) the file is contained on. You specify this in one or
more EXTENT job control statements.

The label information you supply in the DLBL job control statement may
include the following:

• The name of the file. This name must be identical to the
corresponding file name specified in your program. For programs
written in assembler language, this would be the name of the DTF.

• An identification of the file. This name is the one contained in the file
label on the diskette. It is associated with the file name via the DLBL
statement.

• The expiration date of the file.

• The type of access method used to process the file; always coded as
DU.

Chapter 3: Using the System 3-47

A diskette file consists of a data area on one or :Q1ore volumes; each
volume contains only one data area for a particular file. For each of these
data areas, called extents, you must supply the following information on
an EXTENT job control statement:

• The symbolic name of the device on which the volume containing the
file is mounted.

• The serial number of the volume.

• The type of extent; always coded as 1.

In the following example, the program CREATE creates a diskette (DU)
file named SALES that has a file-id of MONTHLY and is to be retained
for 30 days. The file comprises up to three diskettes. The diskettes have
the volume serial numbers 111111, 111112, and 111113, and are
mounted on the drive assigned to the symbolic device named SYS005.

II JOB EXAMPLE
II ASSGN SYSOOS,060
II DLBL SALES,'MONTHLY',30,DU
II EXTENT SYSOOS,111111,1
II EXTENT SYSOOS,111112,1
II EXTENT SYSOOS,111113,1
II EXEC CREATE
1&

The job control program checks the DLBL and EXTENT statements for
correctness and stores the supplied information in the label information
area for the duration of the job (see Storing Label Information later in
this chapter).

Label Information for Files on Direct Access Devices

After you have informed the system, via the ASSGN job control
statement or command, which volume or physical device you want, you
must supply the following information to allow the creation and checking
of DASD labels:

1. A description of the characteristics of the file. You specify this in the
DLBL job control statement.

2. The exact location of the file on the storage medium. You specify this
in one or more EXTENT job control statements.

The label information you supply in the DLBL job control statement may
include the following:

• The name of the file. This name must be identical to the
corresponding file name specified in your program. For programs
written in assembler language this would be the name of the DTF.

• An identification of the file which may include generation and version
numbers of the file. This name is the one contained in the file label
on the storage device. It is associated with the file name via the
DLBL statement.

3-48 YSE/ Advanced Functions System Management Guide

•

•

•

•

The expiration date of the file.

The type of access method used to process the file.

An indication of whether or not a data secured file is to be created.

The blocksize to be used for this file on an mM 3330-11 or 3350'
device.

• The control interval size (CISIZE) if your file is a sequential disk file
and resides on an FBA device.

A DASD file can consist of one or more data areas on one or more
volumes. For each of these data areas, called extents, you supply the
following information on an EXTENT job control statement:

•

•

•

•

•

The symbolic name of the device on which the volume containing the
file extent is mounted.

The serial number of this volume.

The type of the extent. An indexed sequential file, for instance, can
consist of data areas, index areas, and overflow areas. For each of
these areas an extent must be defined, and its type (data, index, or
overflow) must be specified.

The sequence number of the extent within the file.

For CKD devices:

The number of the track (relative to zero) on which the file
extent begins.

The amount of space (in tracks) the file occupies.

• For FBA devices:

The block number on which the file extent begins.

The amount of space (in blocks) the file occupies.

Examples for Submitting LabellDformation for DASD Files. Here are a
number of examples of how to code the job control statements required to
create or access the labels for the various types and organizations of
DASD files. It is helpful if you are familiar with the formats of the DLBL
and EXTENT job control statements as described in VSE/ Advanced
Functions System Control Statements. Detailed information on the
possible organizations and access methods for DASD files is given in VSE
System Data Management Concepts.

Sequentially Organized Disk Files (Single Drive, Single Volume). In the
following example, the program CREATE creates a sequential disk (SD)
file named SALES that is to be retained until the end of 1980. The file
compris~s one extent of 190 tracks on a CKD device, starting on relative
track number 1320. The disk pack has the volume serial number 111111
and is mounted on the drive assigned to the symbolic device name
SYS005:

Chapter 3: Using the System 3-49

II JOB EXAMPLE
II ASSGN SYS005,0ISK,VOL=111111,SHR
II OLBL SALES, 'ANNUAL SALES RECORDS',80/365,SO
II EXTENT SYS005,111111,1,O,1320,190
II EXEC CREATE
1&

The job control program checks the DLBL and EXTENT statements for
correctness and stores the supplied information in the label information
area for the duration of the job or job step.

Sequentially Organized Disk Files (Single Drive, Multivolume). Assume
that a program PROG 100 needs a sequential disk file located on three
different disk packs that are to be mounted successively on the same
device (SYS005). The file consists of four extents on an FBA device: two
on the pack with serial number 000020, one on pack 000100, and one on
pack 000006. The following job stream shows the label statements
required:

II JOB SAMLABEL
II ASSGN SYS005,0ISK,VOL=000020,SHR

1 II OLBL F1LNAME,'F1LE 10',99/365,SO
II EXTENT SYS005,000020,1,O,10,2010
II EXTENT SYS005,000020,1,1,4000,1510
II EXTENT SYS005,000100,1,2,64,1300
II EXTENT SYS005,000006,1,3,50,636

2 II EXEC PROG100
3 1&

1 Only one DLBL statement is required. For each extent one EXTENT statement
must be supplied in the sequence in which the extents are processed.

2 Logical IOCS in PROGIOO opens the first extent using the file name and file ID
in the DLBL statement, and the logical unit and volume serial number in the
first EXTENT statement to locate the actual label on the disk pack. After
PROG100 has processed the first extent, logical IOCS opens the second extent,
based on the extent sequence number.

For the third extent, volume serial number 000100 is specified while the volume
currently mounted on SYSOOS has the number 000020. The OPEN routine of
LIOCS notifies the operator of this discrepancy, and the operator can mount the
correct volume, at which time the OPEN routine regains control. The same is
true for the fourth extent.

3 The / & statement causes the label information stored in the label information
area to be cleared. Thus, if the next job requires the same file, the label
statements must be resubmitted (see Storing Label Information later in this
chapter).

Sequentially Organized Disk Files (Multiple Drives). This example has the
same requirements as the preceding 'Single Drive' example except that the
three volumes are mounted on three different drives. The required job
control statements are as follows:

3-50 VSE/ Advanced Functions System Management Guide

I I JOB SAMLABEL
II ASSGN SYS005,DISK,VOL=000020,SHR
II ASSGN SYS006,DISK,VOL=000100,SHR
II ASSGN SYS007,DISK,VOL=000006,SHR

1 II DLBL FILNAME,'FILE ID',99/365,SD
II EXTENT SYS005,000020,l,O,10,2010
II EXTENT SYS005,000020,l,l,4000,1510
II EXTENT SYS006,000100,l,2,64,1300
II EXTENT SYS007,000006,l,3,50,636

2 II EXEC PROG100
1&

1 All label statements submitted are identical to the 'Single Drive' example except
for SYSnnn in the EXTENT statements.

2 Logical rocs opens each extent in the same way as described in the 'Single
Drive' example except that processing does not stop for removal and mounting of
packs, because enough devices are, online to contain the file. A combination of
this and the 'Single Drive' example could be used to reduce handling time

without excessively increasing the total drive requirements.

DA Files. The program PROGIOI processes a direct access file consisting
of four extents contained on three CKD disk packs. The three packs must
be ready at the same time. The following job stream shows the label
statements required to process the file:

II JOB DALABEL
II ASSGN SYS005,DISK,VOL=000065,SHR
II ASSGN SYS006,DISK,VOL=000025,SHR
II ASSGN SYS007,DISK,VOL=000002,SHR

1 II DLBL FILNAME,'FILE ID',99/365,DA
II EXTENT SYS005,000065,l,O,1320,190
II EXTENT SYS005,000065,l,l,80,740
II EXTENT SYS006,000025,l,2,50,906
II EXTENT SYS007,000002,l,3,1275,64
II EXEC PROG10l
1&

1 The label statements follow the same pattern as for sequential files (described in
the preceding examples) except that the DLBL statement must specify DA to
indicate direct access.

Note: Library files are single extent, single drive files. You specify the label
information as for sequentially organized disk files, but you must never include
the CISIZE or BLKSIZE parameter.

Label Information for Files on Magnetic Tape

Files on magnetic tape can be processed with or without labels. For tape
files with IBM standard labels, the label information must be submitted
through the TLBL job control statement. (A tape file can also have
standard-user or non-standard labels; for these labels no job control
statements are required. More information on tape labels is given in VSE
System Data Management Concepts).

The standard label information submitted in the TLBL statement may
include the following:

• The name of the file. This name must be identical to the
corresponding filename (DTF name) specified in your program.

Chapter 3: Using the System 3-51

Storing Label Information

• An identification of the file.

• Creation date for input and expiration date (or retention period) for
output files.

• The volume serial number of the tape reel that contains the file.

• For files that extend over more than one volume, the sequence
number of the volume.

• For volumes that contain more than one file, sequence number of the
file.

• The version and modification number of the file.

As with DASD files, the label information you supply in the TLBL job
control statement is checked and stored in the label information area (see
Storing Label In/ormation, below).

Job control stores label information in the label information area. The
label information is stored temporarily (for the duration of one job or job
step) or permanently.

As label information is submitted, the job control program acquires a
portion of the label information area which is referred to as a label
subarea.

The minimum size of a label subarea is one track for a CKD device and
2K for an FBA device, the maximum size is the entire label information
area. There are three types of label subareas:

• partition temporary subarea

• partition standard subarea

• system standard subarea

Label information stored in either of the two types of partition subareas
may be accessed only from one particular partition. Label information
stored in the system subarea may be accessed from all partitions. The type
of subarea used is controlled by the following three options of the
OPTION job control statement:

USRLABEL causes all DASD, diskette, and tape label information to
be stored temporarily for one job or job step. Label
information submitted between job steps overlays the label
information from the former job step. The label
information is written to a partition temporary subarea
(one per partition) and is accessible only by the partition
in which it was submitted. It is a good idea to include all
TLBL, DLBL, and EXTENT statements in the first step
of a job (preceding the / / EXEC statement). If no
option is specified, or if the OPTION statement is
omitted, USRLABEL is assumed.

3-52 YSE/ Advanced Functions System Management Guide

I PARSTD causes DASD, diskette, and tape label information to be
stored permanently for all subsequent jobs. The label
information is written to a partition standard subarea (one
per partition) and is accessible only by the partition for
which it was submitted.

Partition standard labels can be submitted in the partition
to which they bel~ng. Foreground partition standard
labels can also be submitted through a job running in the
background partition. The job stream must contain the
following statement:

/ / OPTION P ARSTD=Fn

All label information following this statement is put into
the partition standard subarea of partition Fn (n is the
number of the foreground partition). The above statement
can be given only when partition Fn is inactive.

I STDLABEL causes DASD, diskette, and tape label information to be
stored permanently for all subsequent jobs. The label
information is written to the system standard subarea and
is accessible by all partitions, but can only be submitted in
the background partition. This ensures that the system
standard label information is not updated simultaneously
by two partitions. Logical unit numbers contained in the
submitted label information must not be greater than the
highest logical unit number specified for background at
system generation.

When P ARSTD or STDLABEL is given without an operand, any label
information currently in the respective subarea is completely overwritten
by the newly supplied data. If you want to retain the old label information
and only add more labels to it, code the parameter as P ARSTD=ADD or
STDLABEL""ADD, respectively.

Specifying

/ / OPTION P ARSTD=DELETE or

/ / OPTION STDLABEL=DELETE

causes labels to be deleted from the respective subarea. Such a statement
must be followed by one or more statements of the form

filename

where filename indicates which label is to be deleted. The last filename
statement must be followed by a /*. A DELETE operation is somewhat
time-consuming because the label is physically deleted from the label area,
and the label area space is condensed each time a DELETE request is
processed.

An ADD or DELETE specification can only be given from a job running
in the pertinent partition; therefore, ADD and DELETE are not allowed
in conjunction with PARSTD=Fn.

Chapter 3: Using the System 3-53

Note: When the label information area is located on an FBA disk device, the
operating system blocks user-supplied label information before writing that
information to disk. Therefore, you should terminate your / / OPTION P ARSTD or
/ / OPTION STDLABEL job stream with a / / OPTION USRLABEL statement. This
ensures that all label information is actually written to the label information area as
permanent partition or system standard labels. Labels in the system standard subarea
are accessible from other partitions only after they have been written completely.
The OPTION statement with USRLABEL specified indicates to the operating system
that no further partition or system standard labels will follow. The same effect is
accomplished by a / &, / / JOB, or / / EXEC statement.

A partition can have only one temporary and one standard subarea at
any point in time. As the subareas are variable in size it is possible that
disk space is not available in the label information area when job control
attempts to write label information. When this occurs, a message will be
displayed on the console stating that the label area is exhausted. To clear
a subarea (in order to run the current job), you can do one of the
following:

• Submit a / & in another partition to clear that partition's temporary
subarea.

• Submit a // OPTION PARSTD followed by a / & in any partition to
clear that partition's standard subarea.

Do not clear the system standard subarea. If you find that the system
standard subarea is using more disk space than you want, reorganize your
label information area. For example if you have an application that
always runs in the same partition (such as the licensed program
VSE/POWER) the labels for that application should be put on that
partition's standard label subarea, not the system standard subarea.

During program execution, the data management routines search the label
information area in the following sequence:

(1) user label information (partition temporary subarea)

(2) partition standard information (partition standard subarea)

(3) system standard information (system standard subarea).

It is important to distinguish between the conditions under which a label
option remains in effect and the conditions that govern the retention of
the label data in the label information area. For example, the label data
submitted following an OPTION statement with the P ARSTD option is
retained for all subsequent jobs until overwritten by another PARSTD
option, but the P ARSTD option is canceled at the end of the job or job
step in which it was specified. This is shown in the summary of label
options in Figure 3-12.

3-54 VSE/ Advanced Functions System Management Guide

Option in .earch sequence Type of label Option in effect Label information
For information until retained

USRLABELl temporary STDLABEL or for one job. The the partition in
PARSTD is / & statement which the option
specified. causes the was specified.

temporary label
area to be cleared.4

PARSTD permanent a) end of job step for all subsequent the partition in
b) end of job jobs until deleted.l which the option
c) USRLABEL or was specified, or
STDLABEL is as specified in
speCified.S PARSTD-Fn.

STDLABEL permanent a) end of job step for all subsequent all partitions.3
b) end of job jobs until deleted.1

c) USRLABEL or
PARSTD is
specified.S

1 If no option is given or if the OPTION statement is omitted, USRLABEL is assumed.
1 Either explicitly deleted (-DELETE) or by giving the option without an operand.
3 Label information stored with the STDLABEL option is available to all partitions but can be submitted only through the

background partition.
4 Additional label information from a subsequent job step will overlay previous label information.
S It is recommended that a USRLABEL option be submitted following the PARSTD or STDLABEL job stream when

SYSRES is on an FBA device.

Figure 3-12. Summary of Label Option Functions

By permanently storing the label information for a disk file in the label
information area, the operating system relates that file to the type of the
device which is assigned to the pertinent logical unit when this file is
processed for the first time. A later attempt to use this label information
for the same file (and extent) on a different device type causes the job to
be canceled. If a different device type has to be used for this file, the
label statements must be resubmitted and the pertinent logical unit
assigned to the device of the new type.

Stored label information may be displayed using program LSERV as
follows:

I Job COlltrol for Library Defillitiolls

II JOB
II EXEC LSERV
1*
1&

Libraries must be defined to job control. One means of defining a library
is the job control ASSGN (statement or command) together with
DLBL/EXTENT information. If you include, for example,

ASSGN SYSCLB,cuu

in a linkage editor job stream, you tell the linkage editor program to place
a phase into a private core image library.

Chapter 3: Using the System 3-55

Establishing a Library Definition

The ASSGN statement is applicable to any file. For libraries only, a more
versatile job control statement is available to define the libraries to be
accessed: the LmDEF statement.

A LmDEF definition may be established permanently, that is, for all
succeeding jobs (parameter PERM specified) or only for the duration of
the job (by default or parameter TEMP specified). As with the ASSGN
statement, DLBL and EXTENT information must be available when the
LmDEF statement is processed.

Each parameter in the LmDEF statement addresses a particular library
access:

Library Chaining (Concatenation). The SEARCH parameter anows to
establish a chain of libraries. The chain is given through a list of file
names that correspond to file names in DLBL statements, for example:

II DLBL YOURLIB, .. .
I I EXTENT , 1 11111 , .. .
II DLBL MYLIB, ...
II EXTENT ,222222, ...
II LIBDEF CL,SEARCH=(YOURLIB,MYLIB)

The position within the list determines the sequence in which libraries are
searched for a given member. When, in the above example, a phase is to
be FETCHed or LOADed, two private core image libraries are searched
for that phase: first the library YOURLm, and then, if the phase is not
found there, library MYLm.

Each type of library requires its own LmDEF, with a corresponding
identifier:

CL for a FETCH or LOAD, or the processing of a SET SDL
command from a core image library

RL for retrieval of object modules by the linkage editor

SL for retrieval of source statements by a language translator

PL for retrieval of cataloged procedures.

When you define, for a particular library type, two chains, one temporary
and one permanent, the temporary chain will be searched prior to the
permanent chain. The system library is always assumed to be the last
member of the chain; of the permanent chain if one is defined, otherwise
of the temporary chain. You don't have to explicitly include it in the
SEARCH list. If you want to place the system library at a different
position within the chain, you include that library in the list of file names
at the desired position. Whatever the library type, you identify the system
library by the name USYSRS.

Special conditions apply to the search order of core image libraries. They
are discussed in section Using Private Libraries, later in this chapter.

The number of file names you can give per SEARCH chain depends on
what you specified in the LCONCAT parameter of the FOPT supervisor

3-56 VSE/ Advanced Functions System Management Guide

generation macro; 15 is the maximum. With that maximum, the following
library chain could be set up:

15 libraries defined as temporary

15 libraries defined as permanent

the system library at the end of the chain.

Librarian Input. In the FROM parameter you define the library that is to
be used as input by

the librarian service programs such as SSERV, DSERV etc.

the CORGZ librarian program.

Output Libraries. In the TO parameter you define the library that is to be
used as output by

the linkage editor program when it catalogs a phase into a (private or
system) core image library

the MAINT librarian program

the CORGZ librarian program for a MERGE function.

A Newly Created Library. The NEW parameter defines a private library to
be created by the CORGZ librarian program. NEW can only be used for
a temporary library definition. The NEW library name must not appear
within the SEARCH, TO or FROM parameters of the same LIDDEF
statement.

The following example shows a job stream with two job steps: one linkage
editor step followed by an execution step. Permanent and temporary
library chains are defined: two chains for relocatable libraries and two
chains for core image libraries. Also, a private core image library (file
name TESTCIL) is defined for the linkage editor output.

II DLBL PREL01,'PRIVATE RELO LIB l' , ...
II EXTENT ,VOLIDA, ...
II DLBL PREL02,'PRIVATE RELO LIB 2', ...
II EXTENT ,VOLIDB, ...
II DLBL PCIL1,'PRIVATE CIL 1', ...
II EXTENT ,VOLIDA, ...
LIBDEF RL,SEARCH=(PREL01,PREL02),PERM
LIBDEF CL,SEARCH=PCIL1,PERM
II JOB TEST
II DLBL TESTRLB,'TEST RELO LIB', ...
II EXTENT ,VOLID1, ...
II DLBL PREL03,'PRIVATE RELO LIB 3', ...
II EXTENT ,VOLID2, ...
II DLBL ~ESTCIL,'TEST CIL FOR APARS', ...
II EXTENT ,VOLID1, ...
II DLBL PRODCIL,'PRODUCTION/HISTORY CIL', ...
II EXTENT ,VOLID3, ...
LIBDEF RL,SEARCH-(TESTRLB,PREL03),TEMP
LIBDEF CL,SEARCH=(TESTCIL,PRODCIL),TO=TESTCIL,TEMP
II OPTION LINK

INCLUDE LINKBOOK
II EXEC LNKEDT
II EXEC
1&

Chapter 3: Using the System 3-57

I
\
I'

\' I
I

1

r Resetting a Library Definition

You may catalog part of the above job stream into a procedure library. If,
for example, all DLBL and EXTENT statements and the permanent
library definitions were cataloged as procedure P ARCONCA, the above
job stream might look as follows:

II JOB TEST
II EXEC PROC=PARCONCA
LIBDEF RL,SEARCH=(TESTRLB,PREL03),TEMP
LIBDEF CL,SEARCH=(TESTCIL,PRODCIL),TO=TESTCIL,TEMP
II OPTION LINK

INCLUDE LINKBOOK
II EXEC LNKEDT
II EXEC
1&

The above example contains library definitions valid for one partition.
Similar definitions can be established for other partitions. A particular
library may appear in chains of several partitions.

One cannot mix, within a partition and for a particular library type,
library definitions via ASSGN and those via LIBDEF. It is conceivable,
however, to use an ASSGN for one library type and a LIBDEF for
another, as in the following skeleton example:

II DLBL IJSYSCL,'OLD PRIVATE CIL', ...
II EXTENT SYSCLB,VOLIDC, ...
II DLBL PRVPROC,'NEW PRIVATE PROC', ...
II EXTENT ,VOLIDP, .. .

ASSGN SYSCLB, .. .
LIBDEF PL,SEARCH=PRVPROC

I I EXEC PROC= ...

You will notice that the second EXTENT statement has the first
parameter, the logical unit name omitted. For one thing, no system logical
unit name exists for a private procedure library. Secondly, whenever
libraries are defined via LIBDEF, the operating system does not need the
SYSxxx specification; it is capable of determining the physical device
address via the volume identification in the EXTENT statement (the vol
id's must be unique within the system). If, however, you do include the
SYSxxx number, a corresponding ASSGN statement is required.

Note: A private library that is defined as access control protected may appear only in
a temporary LIBDEF definition. A permanent ASSGN for a secured private source
statement or relocatable library is allowed, but not for a private core image library.

The LIBDROP statement resets, for a particular library type, a definition
that had been given through a LIBDEF statement. The usage of
parameters is similar to the one in the LIBDEF statement. By specifying
ALL you may drop all library definitions for one library type within a
partition.

3-58 VSEj Advanced Functions System Management Guide

1

1("
1

I Displaying Library Definitions

Tape and Print Operations

1

:L Controlling Magnetic Tape

1

1(..
1

A library definition is reset also when one LIBDEF specification overrides
a preceding one that is still active.

If not reset explicitly, all temporary library definitions will be reset at
end-of-job. A permanent library definition will be automatically reset
when the partition is deactivated (via UNBATCH). If a HOLD command
was given before, the permanent library definitions are not deactivated
and are available again when the partition is restarted. The UNBATCH
and HOLD commands are described in VSE/ Advanced Functions
Operating Procedures.

Through the LIBLIST statement, you request a display of the currently
active library definitions, for a particular library type. Only those
definitions are listed which had been given through a LIBDEF statement.
The display may cover one partition only or all partitions. And you may
choose to direct the display to the system console or to SYSLST.

For a detailed description of the LIBDEF, LIBDROP and LIBLIST
statements, refer to VSE/ Advanced Functions System Control Statements.

The MTC job control statement or command controls certain magnetic
tape operations, for example, file positioning. Files on magnetic tape are
almost invariably processed sequentially. This means, for example, that if
you have five files on one tape reel and you want to process the last one,
you have to read four files before you can access the one you need. You
can, however, instruct the job control program to position the tape at a
particular file.

The MTC job control statement or command controls operations such as:

• Spacing the tape backward or forward to the required file.

• Spacing the tape backward or forward a specified number of records.

• Rewinding the tape to the beginning.

• Writing a tapemark to indicate the end of a file.

In the following example, program PROGA creates a labeled tape file
named RATES on tape volume 222222. At the end of the first job step,
an MTC job control statement is used to rewind (REW) the tape to the
beginning of the tape volume so that the newly created file can be
processed by PROGB.

Chapter 3: Using the System 3-59

Controlling Printed Output

II JOB TAPE
II ASSGN SYS004,TAPE,VOL=222222
II TLBL RATES,'MASTER',75/365,222222
II EXEC PROGA
II MTC REW,SYS004
II EXEC PROGB
1&

Most of the VSE/ Advanced Functions supported printers use a forms
control buffer (FCB) to control the length of forms skips. In addition,
printers may be equipped with the universal character set feature, which is
controlled by a universal character set buffer (UCB). Examples of printers
equipped with these buffers are the 3203 and 3211 printers.

The buffers of these printers must be loaded during or immediately after
IPL, and they may have to be reloaded later between job steps or,
occasionally, while a job step using the printer is being executed.

The following methods for loading the buffers ate available:

To load the FCB

• Automatic loading during IPL
• Using the SYSBUFLD program between job steps or immediately

after IPL
• Using the LFCB command
• Using the LFCB macro in the problem program
• Using the FCB parameter in the VSE/POWER • $$ LST statement.

To load the UCB

• Automatic loading during IPL (applies to PRT1 and 5203U printers)
• Using the SYSBUFLD program between job steps or immediately

after IPL
• Using the LUCB command
• Using the UCS command (applies only to a 1403 UCS printer).

The method of loading the buffers by using the SYSBUFLD program
offers the advantage that hardly any operator activity is involved; on the
other hand, loading the buffers by using the LFCB or LUCB command
does not require the operator to wait for a partition to finish processing.

When the contents of an FCB or a UCB are replaced by a new buffer
image, the system uses this new image to control printed output until the
buffer is reloaded (or until the next IPL). None of the above methods
provides automat~c resetting of the buffer load to the original contents. It
may be necessary to reset the buffer to the original contents before taking
a storage dump, to ensure that the dump is printed in the correct format,
without any part of it being left out.

3-60 VSE/ Advanced Functions System Management Guide

I •

.(,
I

Executing a Program

Details on how to load the FCB and UCB are contained in
VSE/ Advanced Functions System Control Statements.

The 3800 Printing Subsystem. The 3800 Printing Subsystem is a
nonimpact, high-speed, general-purpose system printer that uses an
electrophotographic technique with a low-powered laser to print output. It
provides more features than current impact printers.

The following methods of controlling the 3800 are available:

• The SETPRT job control statement or command, which allows you to
set the 3800 with user-specified control values. These values are reset
at the end of the current job to the installation's default control values
as specified in the SETDF operator command, or to the hardware
defaults if SETDF is not specified.

• The SETDF operator command, which allows the operator to set
and/ or reset default control values for the 3800. A SETDF command
can set default control values for the following:

One character arrangement table

The forms control buffer

The copy modification phase

The paper forms identifier

The forms overlay name

Bursting and trimming or continuous forms stacking

The setting of all. hardware defaults with one command.

• The SETPRT macro instruction, which is generally invoked via the
preceding statements but can also be used directly by the programmer
to initialize or dynamically change the setup of the 3800.

For information on available techniques for controlling the 3800, see
DOS/VSE IBM 3800 Printing Subsystem Programmers Guide.

After you have properly defined the I/O requirements of your program to
the system you can instruct job control to prepare your program for
execution. How this is done and how the supplied information is processed
is described in the following section.

Assembling/Compiling, Link Editing, and Executing a Program

In VSE/ Advanced Functions, three processing steps are necessary to
obtain results from a problem program once the source program has been
written:

\
\,

1. Assembly or compiling of the source program into an object module.
(Object modules are discussed in section Linking Programs later in
this chapter.)

2. Link editing of the object module to form an executable program
phase.

3. Execution of the program phase.

Each of these steps is initiated by the job control program in response to
an EXEC job control statement. The EXEC statement must be the last of
the job control statements submitted for anyone job step. Figure 3-13
shows an example of the job control statements needed to assemble, link
edit, and execute a source program.

II JOB EXECUTE
1 II OPTION LINK
2 II EXEC ASSEMBLY
3 II EXEC LNKEDT
4 II EXEC

If.

1 To link edit a program, the LINK option must be set ON.

2 The assembler is fetched from the core image library and starts execution.

3 The linkage editor is fetched from the core image library and starts execution.

4 When an EXEC statement without a program name is encountered, the
program last stored (if stored within the same job) in a core image library by
the linkage editor is fetched for execution.

Figure 3-13. Job Control Statements to Assemble, Link. Edtt, and Execute
a Program in One Job

Instead of submitting three EXEC statements, you may invoke all three
steps by one EXEC statement. Specifying the GO parameter in the
statement which invokes the assembler (compiler) causes the linkage
editor and your executable program to be invoked automatically once the
assembly (compilation) is finished. Only the source program and any
additional data required by your program must be SUbmitted.

Language translators read their input from SYSIPT. If SYSRDR and
SYSIPT are assigned to the same device, the source statements of your
program must follow the corresponding EXEC job control statement. In
this example, the assembler language ·statements would have to follow the
/ / EXEC ASSEMBLY statement. The end of the input data submitted
for one program must be indicated by a /* (end-of-data) statement. The
/* statement is not processed by job control; it is read by the logical
IOCS routines of YSE/ Advanced Functions. (Note: For an input file on
an mM 5424 MFCU, the /* card must be followed by a blank card.) The
placement of input data and the /. statement is shown in Figure 3-14 .

.. 62 VSE/ Advanced Functions System Management Guide

II JOB INPUT
I I OPTION LINK
II EXEC ASSEMBLY

source program

1*
II EXEC LNKEDT
II EXEC

input data for user program

1*
1&

Figure 3-14. Submitting Input Data on SYSIPf

How the job shown in Figure 3-14 is processed by the system is illustrated
in Figure 3-15. The numbers to the left of the subsequent paragraphs
refer to the encircled numbers in that illustration. The inclusion of
SYSIPT data in job streams in the procedure library is described under
SYSIPT Data in Cataloged Procedures, later this section.

1 Job control reads the JOB statement and stores the job name in the
supervisor. Other functions of the JOB statement are described under
Defining a Job, earlier in this chapter.

2 Job control reads the OPTION statement with the LINK option and
sets the LINK bit in the supervisor. This indicates

a) to the assembler, that the assembled object module is to be
written onto SYSLNK,

b) to job control that link editing is allowed in this job,

c) to the linkage editor, that the executable program is to be stored
in the core image library only temporarily for execution in the
same job.

3 On encountering the / / EXEC ASSEMBLY statement, job control
transfers control to the supervisor passing it the name of the assembler
program.

4 The supervisor loads the assembler into the partition, replacing job
control.

5 The assembler reads the source program, assembles it, and stores the
object module on SYSLNK (not shown).

6 The assembler transfers control to the supervisor.

7 The supervisor loads job control into storage, replacing the assembler.

Chapter 3: Using the System 3-63

1 . ,
\
i

1
!
\.
t
t
I

8

9

10

11

Job control reads the / / EXEC LNKEDT statement, as well as any
preceding linkage editor statements, and transfers control to the
supervisor, passing it the name of the linkage editor.

The supervisor loads the linkage editor into storage, replacing job
control.

The linkage editor reads the object module from SYSLNK. and link
edits it.

The linkage editor stores the executable program in the core image
library.

12 The linkage editor transfers control to the supervisor.

13 The supervisor loads job control into storage.

14 Job control reads an EXEC statement without a program name and
transfers control to the supervisor.

15 The supervisor loads the program last stored in the core image library
by the linkage editor replacing job control.

16 The user program is executed. It reads and processes the data from
SYSIPT and, at end-of-job, returns control to the supervisor.

17 The supervisor loads job control.

18 When job control reads the / & statement, it turns off the LINK
option and replaces the jobname stored in the supervisor by NO
NAME. Other functions of the / & statement are described under
Defining a Job, earlier in this chapter.

VSE/ Advanced Functions System Management Guide

Input on SYSIN

II
II
II

JOB INPUT
OPTION LINK
EXEC ASSEMBL Y

sou '~~og"m }

/*

II E XEC LNKEDT

II EXEC

inp

/*
1&

ut data ------

Any Partition Supervisor

JOB CONTROL

0 INPUT I
fj LINK I

I-t).
ei:::::: :;:::;::=;::::::. :::;:::::.::;.:: :-:.:.:.:.:-:-:-:.:.:.:.;.::::::::::::::::::::::::::::-:::{)ASSEMB L Y

1 ASSEMBLER r-- INPUT -
0 I LINK I

- .J\. .
IY

JOB CONTROL

I - ~ I INPUT - "'-.. !oINK
t: ::.:.:.;.;.:.; >.;.>:.;.:;:::::;:;:; :;:;:::::::::;:::::::;:::; .;:::::::::::::::::::;:: ::::::::::::::::::::{} LNKEDT

~

LlNK.EDITOR
~ I I NP!.!I I -® LINK

- J\.
II

y

JOB CONTROL

~~I - INPUT I ~::: ;:::::::::/::: ::;:::::: : : ; ; . :::: :. :.:;:.: 1.1 tl! I$, - :.:.: .. ; ... ; ... :.::::::::::;:;:;:;::::::::::;';}
y

USER

~I I PROGRAM
..... INPUT -

-- .1. !oINK

- IV

- JOB CONTROL - riSNAMEI ®

Core I mage Library

~ ~
iO) ASSEMBLER

~ - JOB CONTROL

'"'" - LINKAGE EDITOR

~ EXECUTABLE USER
~ PROGRAM
~
~) JOB CONTROL

tft -- EXECUTABLE USER
PROGRAM

~.
~

JOB CONTROL

--..... ~ T ra nsfer of data

;::;:;:;:;:;:':;::; : :::~ Transfer of control

_ .. _-----) Loading from core image library

Figure 3-15. System Operation of an Assemble, Link Edit and Execute
Job

Executing Cataloged Programs. Programs may be cataloged permanently in
a core image library after they have been assembled and link edited. This
saves assembling and link editing a program for every run.

Cataloging into a core image library is done by the linkage editor in
response to an OPTION job control statement with the CAT AL option
(see Linking Programs later in this chapter).

_____ C~h=apter 3: Using the System 3-65

To execute a cataloged program you use an EXEC job control statement
specifying the name under which the program was cataloged (as shown
for the assembler and linkage editor in the preceding example).

For example, the following job executes a program that was cataloged in a
core image library under the name PROGA; data cards are submitted on
SYSIPT:

II JOB CAT

assignment, label statements,
and library definition, if required

II EXEC PROGA

input data

1*
If.

Defining Options for Program Execution

In the preceding section, it was shown how the OPTION job control
statement can be used

• to specify the type of label information to be stored for a file
(USRLABEL, PARSTD, STDLABEL options), and

• to define whether a program is to be link edited (LINK option).

There are a number of additional functions which you can invoke through
the OPTION job control statement. The most important ones are:

/ / OPTION LOG
Logs all job control statements submitted to the system on SYSLST. This
facilitates diagnosing the job control statements in case of an error.

/ / OPTION PARTDUMP
Dumps the contents of the registers, a formatted portion of the supervisor
area, and the current partition on SYSLST in case of abnormal program
termination. To obtain the entire supervisor area unformatted,
/ / OPTION DUMP may be used.

/ / OPTION DECK
Puts an object module on SYSPCH. The object module can then be
combined with other object modules by the linkage editor to form one
executable program, or it can be used as input to the library maintenance
program to catalog it into a relocatable library.

/ / OPTION LIST, LISTX, SYM, XREF, ERRS
Prints various listings produced by the language translators (compilers) on
SYSLST. These listings include object code, symbol table, cross-reference,
and error lists which are useful debugging aids during the test period of a

E/ Advanced Functions System Management Guide

program. SXREF may be specified instead of XREF to obtain a cross
reference listing that includes only the referenced labels in the assembled
program.

These (and other) options may be permanently set by using the STDOPT
command. The specified options become effective after the next / & or
/ / JOB statement.

Permanent options are valid for all jobs unless overridden by an OPTION
job control statement. Options specified in an OPTION statement remain
in effect until (1) a contrary option is read or (2) a JOB or / & statement
is encountered which resets the options to permanent.

Certain of these options can be suppressed by specifying the prefix NO
(for example, NOLlST, NODuMP). A complete list of the available
options is given in VSE/ Advanced Functions System Control Statements.

Communicating with Problem Programs via Job Control

Via job control a program can be instructed to take a specific path of
action. This instruction is given by setting program switches which can be
tested by the problem program at the time of program execution.

These program switches, called UPS! (user program switch indicator), can
be set "on" (1) or "off" (0). They are set by job control in response to
the UPS! job control statement. The specific meaning attached to each bit
in the UPS! byte depends on the design of the program. The statement

/ / UPS! 10000001

for example, sets bits 0 and 7 of the UPS! byte to 1, and bits 2 through 6
to zero. A program can inspect these switches and take a specific path
based on their setting. Since the / / JOB statement sets the eight bits of
the UPS! byte to zero, the / / UPS! statement should follow the / / JOB
statement.

UPS! switches might be useful, for example, in an accounting application
that prepares reports of daily, weekly, and monthly accounts. Through the
program switches, the application can be instructed as to when the daily,
weekly, or monthly reports are due.

For more details on the UPS! statement see VSE/Advanced Functions
System Control Statements.

Executing in Virtual or Real Mode

All programs invoked for execution through an EXEC job control
statement are normally executed in virtual mode. To run a program in
real mode, you specify the REAL operand in the EXEC statement.

Chapter 3: Using the System 3-67

Example:

II JOB NAME

II EXEC PROGA,REAL
1&

If, for the above example, job control runs in partition F2, then the
program PROGA will be loaded and executed in real mode provided there
is sufficient processor storage allocated to the F2 partition to hold the
entire program PROGA.

If a program executing in real mode is smaller than the allocated processor
storage, the unused allocated processor storage should remain part of the
page pool. Specifying the size of the program in the SIZE operand of the
EXEC statement accomplishes this. Example:

II JOB NAME

II EXEC PROGA,REAL,SIZE=30K
1&

If the F2 partition has 50K of processor storage allocated and the program
PROGA has a size of 30K bytes, the remaining 20K bytes of that
partition will remain in the page pool.

If you specify SIZE AUTO, job control automatically uses the
information in the program's core image directory entry to calculate the
size of the program to be loaded.

Running programs in real mode implies temporarily forfeiting a number of
page frames in the page pool, which may lead to degradation of system
throughput. Therefore, real mode execution should be used sparingly.

With a few exceptions, all mM-supplied and user-written programs can be
executed under YSE/ Advanced Functions either in virtual or real mode.
These exceptions are listed in the following section.

Programs that Must Run in Real Mode. The mM -supplied program
OLTEP (On-line Test Executive Program) must be executed in real mode.

User-written programs must be executed in real mode if they contain
channel programs for devices not supported by YSE/ Advanced Functions.

User-written programs must be executed in real mode or modified if they

• contain MICR stacker selection routines or other time-dependent code
for execution of I/O requests.

• contain channel programs that are modified during command
execution.

• contain I/O appendage routines causing page faults.

A program may request to obtain additional storage from the partition
GETVlS area (this area is described in the following section, Dynamic
Allocation of Storage). During real mode execution, that storage is

3-68 VSE/ Advanced Functions System Management Guide

Dynamic Allocation of Storage

obtained from the unused allocated processor storage. Specifying a SIZE
value, therefore, allows you to issue GETVIS requests from a program
running in real mode (contrary to execution in virtual mode, DOS/VSE
does not provide a default partition GETVIS area for real mode
execution). For a program that is executed in real mode, allow 16K per
open file, and allow additional processor storage if double buffering is
used or if FBA files with large CI-sizes or VSE/VSAM files are opened.
For most mM-supplied programs that you want to run real, an allocation
of 48K for GETVIS requests suffices.

Note that the FREEVIS macro releases GETVIS space which was
obtained through a .GETVIS macro; that space is again available for
subsequent GETVIS requests. When issued from a program running in
real mode, however, the space is not returned to the page pool until the
execution of the particular job is finished.

VSE dynamic storage areas, called GETVIS areas, are part of the virtual
storage. The system GETVIS area is located in the SV A and used only be
the operating system. Each partition has an area called the partition
GETVIS area. These areas occupy the high address space of a partition's
virtual storage. The minimum GETVIS area for a partition is 48K, which
is the mM-set default. This default is not applicable to real mode
execution; in this case, you have to reserve storage yourself (as described
in the preceding section).

The partition GETVIS area is used by certain VSE/ Advanced Functions
system components for functions such as opening of files, label processing
etc. Programs using rotational positio;Jla1 sensing (RPS) require 256 to
512 bytes in the partition GETVIS aiea for each open file. This value
should be added to the minimum system requirement of 48K.

Programmers writing in assembler language may request space from the
partition GETVIS area via the GETVIS macro. When no longer needed
by the requesting program, area so acquired can be released by issuing the
FREEVIS macro. For details about using these macros, refer to the
publication VSE/ Advanced Functions Macro User's Guide.

Figure 3-16 shows the virtual storage layout of a 200K partition with a
default-size partition GETVIS area.

Chapter 3: Using the System 3-69

Problem
Program
Execution

r-------------.
Partition GETVIS Area

200K

T
48K

l

The largest size program that could execute in the shown partition is one that is
152K.

Figure 3-16. Storage Layout of a Partition With Default GETVIS Area

You may increase the size of a partition GETVIS area through:

• the SIZE job control or attention routine command.

• the SIZE parameter of the job control EXEC statement.

With the SIZE command, you specify the amount of virtual storage
available for program execution ina given partition. The balance of that
partition's allocation is the partition GETVIS area.

Given SIZE BG=140K, the result is a storage layout for the partition as
shown in Figure 3-17.

Problem
Program
Execution

r-------------

Partition GETVIS Area

200K

T
60K

1
Figure 3-17. Storage Layout of a Partition Mter the SIZE Command is

Given

3-70 VSE/ Advanced Functions System Management Guide

l
i

f

The boundaries set by the SIZE command are permanent until (1) another 1
SIZE command for the same partition or (2) the next IPL. '

You may temporarily alter the partition GETVIS area by using the SIZE
parameter on the job control EXEC statement. The SIZE parameter
establishes boundaries in the same way as the SIZE command, except that
the parameter value holds only for one job step (the EXEC). At the end
of the job step, the GETVIS size is set to the system default (48K) or the
amount established by a preceding SIZE command. See Figure 3-18.

Given:

II EXEC PROGX,SIZE=110K

Permanent T
GETVIS 50K
Allocation 1

PROGX

r--------------

Partition GETVIS Area

200K

T
90K

1
When PROGX is finished executing the partition GETVIS area size returns to its
permanent allocation.

Figure 3-18. Program Execution with the SIZE Parameter

With the SIZE parameter you may also specify SIZE-AUTO, in which
case job control uses the information available in the associated core
image library directory to determine the amount of storage needed by the
program and then allocates the remainder of the partition as GETVIS
area.

mM licensed programming support (for example VSE/VSAM) may have
partition GETVIS requirements beyond 48K bytes. Consult the
appropriate licensed program documentation to determine the partition
GETVIS area size requirements.

System Files on Tape, Disk or Diskette

As mentioned earlier in this chapter, I/O devices (except DASD) cannot
be assigned to more than one active partition at the same time. This
means that, in an installation with only one card reader, for instance, the

Chapter 3: Using the System 3-71

System Files on Tape

input job stream on SYSRDR and SYSIPT for one partition must have
been completely processed by job control and unassigned for that partition
before job streams can be read by another partition. This also applies
accordingly to the system output on SYSLST and SYSPCH if only one
printer and one card punch are available.

Since this situation can cause a considerable decrease of system
throughput, VSE/ Advanced Functions permits storing the input job
streams and the system output on a direct access device or, if enough tape
units are available, on magnetic tape. This allows several partitions
simultaneously to read system input from or to write system output to
high-speed devices, thus increasing system throughput and, due to reduced
CPU wait time, improving the overall performance.

Note: If system logical units (SYSIPT, SYSLST, SYSPCH, SYSRDR) are to be device
independent, DTFDI must be used in application programs that refer to any of these
system logical units.

The following section describes how to store system input and output on
high-speed devices and to read and process the job streams from these
devices.

The same improvements as those gained by having system files on
high-speed devices - but far more efficient and easier to use - can be
achieved by using a spooling program such as VSE/POWER. The spooling
program stores the job streams on disk, transfers the jobs to the partitions
for execution, and stores list and punch output on disk before it is finally
printed or punched.

If the system input units SYSRDR and SYSIPT are assigned to the same
magnetic tape unit, they may (but need not) be referred to as SYSIN. If
the system output units SYSLST and SYSPCH are assigned to the same
magnetic tape they must be referred to as SYSOUT. The tapes may be
unlabeled or they may have standard labels. If SYSLST or SYSPCH is
assigned to a standard label tape and no new label information is supplied,
the old labels will remain on the tape. SYSIPT assigned to a magnetic tape
cannot be a multiple-volume file.

To store the input stream on magnetic -tape you must write your own
program that transfers the job stream to the tape. Assume, in the
following example, that you have written such a program and cataloged it
in the core image library under the name CDTOTP; the program
CDTOTP uses SYS004 to read the input job stream, and SYS005 for the
tape onto which the job stream is to be written; the end of input data for
CDTOTP is indicated by ••. The example in Figure 3-19 shows how to
use the program CDTOTP to create a combined system input file on tape.

3-72 YSE/ Advanced Functions System Management Guide

System Files on Disk

II JOB BUILDIN

} 1 II ASSGN SYSOO4,OOC
2 II ASSGN SYSOO5,182 read from SYSRDR
3 II EXEC CDTOTP

II JOB A
'\

IF"
II JOB B job stream-

>
read from SYSOO4

IF"
4 ** J IF"

1 SYSOO4 is assigned to the card reader from which CDTOTP reads the job
stream.

2 SYSOO5 is assigned to the tape which is to receive the job stream.

3 The CDTOTP program is executed and writes the job stream onto tape.

4 ** (or any other significant character combination) signals end-of-data to
CDTOTP

Figure 3-19. Creation of SYSIN on Tape

After completion of the job BUILDIN shown in Figure 3-19 you can
assign SYSIN to the tape containing the job stream; job control will then
read and process the jobs A and B from the tape just as it would have
done from the card reader.

In the same way you can direct the system output on SYSLST and
SYSPCH to go on magnetic tape and then use your own or an
mM -supplied program to print or punch the contents of the tape on the
printer or card punch, respectively.

When both SYSRDR and SYSIPT are assigned to disk, they must refer to
the same disk extent, and should be referred to as SYSIN. Since the
output units SYSLST and SYSPCH have different record lengths, they
must be assigned to separate _disk extents; SYSOUT therefore cannot be
used if SYSLST and SYSPCH are assigned to disk. Note that only single
extent system files are supported.

For system files on disk, you must provide the required label information
by means of DLBL and EXTENT job control statements. In those
statements, use the following predefined file names:

USYSIN for SYSRDR, SYSIPT, SYSIN
USYSPH for SYSPCH
USYSLS for SYSLST

For example, the label information for SYSIN assigned to a disk extent
could be submitted by the following job control statements:

II DLBL IJSYSIN,'DISKINFILE'
II EXTENT SYSIN,DOSRES,1,O,1260,30

Chapter 3: Using the System 3-73

The assignment of a system file to a disk extent must always be
permanent, and it must follow the DLBL and EXTENT statement.

Example:

II DLBL IJSYSIN.'DISKINFILE'
II EXTENT SYSIN;DOSRES,1,O,1260,30

ASSGN SYSIN ,'131

After a system file on disk has been processed, it must be closed by a
CLOSE job control command (no / I). The second (optional) operand of
the CLOSE command can' be used to unassign a system logical unit or
reassign it to another device. The following command closes the SYSIN
file on disk and reassigns SYSIN to the card reader at address OOC:

CLOSE SYSIN,OOC

The CLOSE command can either be entered on SYSLOG by the operator
or it can be included at the end of the job stream on disk.

If SYSIPT is assigned to a disk extent, the CLOSE command must
precede the / & . Multiple. SYSIPT data files can be read via multiple job
steps with one / & at the end of the job stream.

The example in Figure 3-20 shows the job control statements needed to

1. write a job stream on disk,

2. execute the job stream from disk and store the print output on disk,
and

3. print the output from disk on the printer.

The example assumes that you have written your own programs to write
the job stream on disk (CDTODISK) and to list on the printer the print
output stored on disk (DISKTOPR).

System FOes on Fixed Block Architecture (FBA) DASD. If an FBA DASD
has a system logical unit assigned to it, the supervisor will block and
deblock system file records into the FBA Control Interval-based data
format, handle all special conditions, and update the Disk Information
Block (DID). This permits existing DTFDI and DTFCP programs to
process system files on FBA devices without making logic changes to
handle the FBA blocking.

Note, however, that the DTFSD support for system files on disk is limited
to sequential GET or PUT for fixed unblocked records. (That is, the
UPDATE=YES parameter is not supported.)

3-74 YSE/ Advanced Functions System Management Guide

®

o

CD
®
o

II JOB STORE
II ASSGN SYS001,00C
II ASSG N SYS006,190
II DLBL DASDOUT:DASDOUTFI LE'
II EXTENT SYS006,DOSRES, 1,0,1260,30
II EXEC CDTODISK

1&
II JOB B

**
1&

II DLBL IJSYSLS:OUTPR'
II EXTENT SYSLST,PVRLST, 1,0, 1970,20
ASSGN SYSLST, 191

II DLBL IJSYSIN:DASDOUTFILE'
II EXTENT SYSIN,DOSRES,1,0,1260,30
ASSGN SYSIN,190

II JOB PRINT
II ASSGN SYS001,191
II ASSGN SYS002,OOE
II DLBL OUTPR
II EXTENT SYSOOl ,PVR LSL, 1,0, 1970,20
II EXEC DISKTOPR
1&

JOB STREAM
IS EXECUTED
FROM DISK

PRINTED
LISTING

The program CDTODISK reads the following job stream from the card reader (SYSOO1) and stores it on disk (SYS0061. The end
of the job stream is indicated to CDTODISK by * *.

SYSLST and SYSI N are switched to disk. Job control now reads the job stream from the disk on device 190. The job stream is
executed and the print output is stored on the disk on device 191. The CLOSE commands at the end of the job stream wi II close
the system files on disk and reassign them to the pri nter and card reader, respectively.

The program DISKTOPR reads the print output from disk (SYSOO1) and lists it on the printer (SYS0021.

Figure 3-20. Processing System Input and Output Files on Disk

Chapter 3: Using the System 3-75

System Files on Diskette

If the system input units SYSRDR and SYSIPT are assigned to a diskette
extent, they must be referred to as SYSIN. Since the output units SYSLST
and SYSPCH have different record lengths, they must be assigned to
separate diskette extents; SYSOUT therefore cannot be used if SYSLST
and SYSPCH are assigned to diskette.

For system files on diskette, you must provide the required label
information by means of DLBL and EXTENT job control statements. In
those statements, use the following predefined file names:

USYSIN for SYSRDR, SYSIPT, SYSIN
USYSPH for SYSPCH
USYSLS for SYSLST

For example, the label information for SYSIN assigned to a diskette
extent could be submitted by the following job control statements:

II DLBL IJSYSIN,'DISKETTE'"DU
II EXTENT SYSIN,DSKETE,l

The assignment of a system file to a diskette extent must always be
permanent, and it must follow the DLBL and EXTENT statement.

Example:

II DLBL IJSYSIN,'DISKETTE'"DU
II EXTENT SYSIN,DSKETE,l

ASSGN SYSIN,060

After a system file on diskette has been processed, it must be closed by a
CLOSE job control command (no f f). The second (optional) operand of
the CLOSE command can be used to unassign a system logical unit or
reassign it to another device. The following command closes the SYSIN
file on diskette and reassigns SYSIN to the card reader at address OOC.

CLOSE SYSIN,OOC

The CLOSE command can either be entered on SYSLOG by the operator
or it can be included at the end of the job stream on diskette.

If SYSIPT is assigned to a 3540 diskette, the CLOSE command must
precede the f & . Multiple input data files can be read via multiple job
steps with one f & at the end of the job stream.

When job control encounters f & on SYSRDR during normal operation,
the standard assignment for SYSIPT becomes effective and SYSIPT is
checked for an end-of-file condition. If the standard assignments for
SYSRDR and SYSIPT are not to the same device, SYSIPT is advanced to
the next f* statement.

Interrupting SYSIN Job Streams on Disk, Diskette, or Tape

After a SYSIN or SYSRDR job stream has been prepared on tape,
diskette, or disk, it may be necessary to interrupt the normal schedule to
execute a rush job. To do this, press the Request key on the operator

3-76 VSE/ Advanced Functions System Management Guide

console and enter a PAUSE command with the EOJ operand causing the
corresponding partition to suspend processing at the end of the current
job. At this point you can make a temporary assignment for SYSIN to a
card reader to execute the rush job. At the end of this job, processing of
the job stream on disk, diskette, or tape will resume at the point of
interruption. This is illustrated in Figure 3-21. Starting an urgent job that
uses a cataloged procedure by means of a single EXEC statement is
discussed under Partition-Related Cataloged Procedures later in this
section.

Card Reader Disk Extent Operator Console

CD
CD
®
@)

®

®

/I DLBL IJSYSIN, .. .
/I EXTENT SYSIN, . . .
ASSGN SYSIN, 191 /I JOB A

1&
/I JOB B

/I JOB C

1&
1&

®
Press REQUEST key and
enter PAUSE xx, EOJ
where xx is the ID of
the partition

/I ASSGN SYSIN,OOC

/I JOB D ~.L..-....L._ CLOSE SYSIN,OOC

1&
/I JOB E

1&

SYSIN is assigned to disk and processing of the jobstream on disk begins.

While job B is being executed a PAUSE command is entered at the operator console.

At the end of job B control comes to the operator who can now enter a temporary assign­
ment for SYSI N to the card reader.

The job RUSH is read and processed from the card reader. Note that the temporary
assignment of SYSIN is not reset by the I/JOB RUSH statement but is retained to end of
the job.

The 1& statement resets the temporary aSSignment of SYSIN to permanent (190) and
the next job in the stream on disk is read and executed.

The CLOSE command closes the system file on disk and reassigns SYSIN to the card
reader to process jobs D and E.

Figure 3-21. Interrupting a Job Stream on Disk

Chapter 3: Using the System 3-77

Record Formats of System Files

SYSLST records are 121 characters and SYSPCH records 81 characters in
length. From SYSRDR and SYSlPT, job control accepts either 80- or
81-character records.

The first character of the SYSLST and SYSPCH records is assumed to be
an ASA carriage control or stacker selection character. SYSlPT, SYSRDR,
SYSPCH, and SYSLST records assigned to DASD have no keys, and
record lengths are the same as stated above. (For CKD devices the
records are unblocked; for FBA devices, the operating system
automatically blocks records into the FBA format and also deblocks
them.)

Using Cataloged Procedures

This section describes how to retrieve a cataloged procedure from a
procedure library and how to modify the contents of a cataloged
procedure. How a procedure is cataloged in a procedure library is
discussed in Using the Libraries later in this chapter.

Retrieving Cataloged Procedures

To retrieve a cataloged procedure from the procedure library you use the
PROC parameter in the EXEC job control statement, specifying the name
of the cataloged procedure. Assume that a program called PAYROLL uses
the following job control statements (in addition to the / / JOB and / &
statements) and that these statements have been cataloged in a procedure
library under the name PAY.

II ASSGN SYS017,SYSRDR
II ASSGN SYS018,SYSPCH
II ASSGN SYS019,OOE
II ASSGN SYS020,TAPE
II ASSGN SYS021,DISK,VOL=111111
II TLBL TAPFLE,'FILE-IN'
II DLBL DSKFLE,'FILE-OUT',99/365,SD
II EXTENT SYS021,111111,1,O,200,400
II EXEC PAYROLL

If the program PAYROLL is to be executed, the programmer or operator
would simply prepare the following job control statements:

II JOB USER1
II EXEC PROC=PAY
1&

When the job control program starts reading the job control statements in
the input stream on SYSRDR and finds the EXEC statement, it knows by
the operand PROC that a cataloged procedure is to be inserted. It takes
the name of the procedure to be used (PAY) and retrieves the procedure
with that name from the procedure library.

You may have cataloged some or all of your procedures into private
procedure libraries. Whether the job control program uses the system
procedure library and/or private procedure libraries for retrieval depends

3-78 VSE/Advanced Functions System Management Guide

on your library definitions. The LmDEF job control statement (or
command) allows you to define a chain of libraries to be searched. For
example, if you wanted job control to search in the following order

1. system procedure library

2. private procedure library with filename 'PROLml'

3. private procedure library with filename 'PROLm2'

your library chain definition might look as follows:

II LIBDEF PL,SEARCH=(IJSYSRS,PROLIB1,PROLIB2),PERM

If no LmDEF definition is active, job control searches the system
procedure library only. For a more detailed description of the LmDEF
statement, refer to section Job Control for Library Definitions, earlier in
this chapter.

After the procedure (PAY) has been retrieved, SYSRDR is temporarily
assigned to the procedure library. Job control reads and processes the job
control statements in its normal fashion. The statement

I I EXEC PAYROLL

causes the program PAYROLL to be loaded and given control. When
execution of PAYROLL is complete, the job control program reads the
next statement from the procedure library and, in this example, would find
an end of procedure indicator (/ +). The end of procedure indicator
returns the SYSRDR assignment to its permanent device, where the job
control program finds the / & statement and performs end-of-job
processing as usual.

Note: The listing of job control statements on SYSLOG and/or SYSLST will show
the message EOP PAY at the end of the inserted procedure.

Temporarily Modifying Cataloged Procedures

The preceding example is the simplest case of the use of cataloged
procedures. It will work as long as the requirements of the program do
not change.

It may happen, however, that some of the statements in a cataloged
procedure must be modified for a specific run of a program. For example,
the printer normally used (OOE in the preceding example) may be
temporarily unavailable and a different printer must be assigned. It does
not make much sense to delete the old procedure and to catalog a new
one because the old procedure will be needed again as soon as the normal
printer becomes operational again.

Likewise, it may be necessary to add or remove certain statements to or
from a cataloged procedure for a specific run of a program. You may
wish, for example, to process a different copy of the file FILE-OUT (see
the preceding example). You must therefore temporarily suppress the
corresponding DLBL and EXTENT statements in the cataloged procedure
and replace them by statements that identify the file you want to process
instead.

Chapter 3: Using the System 3-79

For cases like this, one or more statements in a cataloged procedure may
be

• temporarily modified (thus, overriding what was present).

• temporarily suppressed (deleted) without modifying them.

• temporarily incorporated at desired locations in a cataloged procedure.

You can request temporary modification of statements in a cataloged
procedure by supplying the corresponding modifier statements in the input
stream.

Since normally not all statements need be modified, you must establish an
exact correspondence between the statement to be modified and the
modifier statement by giving them the same symbolic name. This symbolic
name may have from one to seven characters, and must be specified in
columns 73 through 79 of both statements.

Note: An unnamed statement cannot be modified. Therefore, to be able to modify
any statement in a cataloged procedure for any usage of the procedure you should
name each statement when cataloging. Moreover, the modifier statements must be in
the sequence in which modification is to be performed on the cataloged statements.
The JOB statement cannot be modified; also, job control continuation statements
cannot be overridden.

A single character in column 80 of the modifier statement specifies which
function is to be performed:

A - indicates that the statement is to be inserted after the statement in
the cataloged procedure that has the same name.

B - indicates that the statement is to be inserted before the statement in
the cataloged procedure that has the same name.

D - indicates that the statement in the cataloged procedure that has the
same name is to be deleted.

Any other character or a blank in column 80 of the modifier statement
indicates that the statement is to replace (override) the statement in the
cataloged procedure that has the same name.

If the LOG function is active (by having issued the LOG job control
command), statements to be deleted are printed, with a D in column 80,
on the console, but not 'executed'.

In addition to naming the statements and indicating the function to be
performed, you must inform the job control program that it has to carry
out a procedure modification. This is done

(1) by specifying an additional parameter (OV for overriding) in the
EXEC statement that calls the procedure, and

(2) by using the statement / / OVEND to indicate the end of the modifier
statements.

Placement of the / / OVEND statement is as follows:

• directly behind the last modifier statement or,

3-80 VSE/ Advanced Functions System Management Guide

• if the last modifier statement overwrites a / / EXEC statement and is
followed by data input, between the /* and the / &.

The following examples show how you can temporarily modify a cataloged
procedure.

Assume that a procedure named PROC5 for the program PAYROLL
contains the following statements:

73--79
II ASSGN SYS017,SYSRDR PAYOOOl
II ASSGN SYS018,SYSPCH PAYOOO2
II ASSGN SYS019,SYSLST PAYOOO3
II ASSGN SYS020,181 PAYOOO4
II ASSGN SYS021,DISK,VOL=111111,SHR PAYOOOS
II TLBL TAPFLE,'FILE-IN' PAYOOO6
II DLBL DSKFLE,'FILE-OUT' PAYOOO7
II EXTENT SYS021,111111,1,O,200,200 PAYOOO8
II EXEC PAYROLL PAYOOO9
1+

Assume further that the programmer wants to use tape unit 183 instead of
181. The input stream on SYSRDR, in this case, would have to be as
follows:

II JOB USER
II EXEC PROC=EROCS,OV
II ASSGN SYS020,183
II OVEND
1&

73--80

PAY0004R

The form of the EXEC statement in the input stream indicates that (1)
the procedure PROC5 is to be used and (2) this procedure is to be
modified in some way. The first three procedure statements are processed
without change. The procedure statement named P A YOOO4 is replaced by
the corresponding statement in the input stream. (As any character other
than A, B, or D specifies override, an R was used to indicate this.) The
remaining procedure statements are again processed without change.

As another example, assume that the program PAYROLL is to use file
Fll...E-OUTI instead of Fll...E-OUT and that this file resides on two
extents of a disk pack that has the volume serial number 111112. The
input stream might then look as follows:

II JOB USER
II EXEC PROC=PROCS,OV
II ASSGN SYS021,DISK,VOL=111112,SHR
II DLBL DSKFLE,'FILE-OUT1'
II EXTENT SYS021,111112,1,O,100,200
II EXTENT SYS021,111112,1,1,500,200
II OVEND
1&

Co1.73--80

PAYOOOSR
PAY0007R
PAY0008R
PAY0008A

Processing would be as follows: The JOB statement and all procedure
statements up to the statement named P A Y0004 are processed without
modification. The procedure statements labeled PA Y0005, PA Y0007, and
P A Y0008 are replaced by the corresponding statements in the input
stream. The second EXTENT statement in the input stream has the
character A in column 80, which indicates that the statement is to be

Chapter 3: Using the System 3-81

1

inserted after the (replaced) statement named PA Y0008. The procedure
statement named P A Y0009 is processed without modification.

The possibility of modification as described above makes the use of
cataloged procedures more flexible. Often, however, it is simpler and more
economical to have different procedures for the same program than to
have a single procedure and modify it.

SYSIPT data in a cataloged procedure cannot be overridden by the
procedure override facility.

Several Job Steps in One Procedure

A cataloged procedure may contain more than one EXEC statement, that
is, it may contain control statements for more than one job step (within
the same job). However, as the number of job steps in a procedure
increases, so does the time required to re-execute the whole procedure
after an error occurs.

A program written in assembler language, for instance, requires three job
steps to assemble, link edit, and execute the program. For the use of a
cataloged procedure, your input stream for the entire job (on SYSIN for
simplicity) would contain the following:

II JOB USER
II OPTION LINK
II EXEC ASSEMBLY
source deck of program to be assembled
1*
II EXEC LNKEDT
II EXEC
data for program to be executed
1*
1&

If the OPTION statement and the three EXEC statements were cataloged
under the name ASDPROC, the input stream could be simplified as shown
below.

Input from SYSIN

II JOB USER
II EXEC PROC=ASDPROC ..
source statements of
program to be
assembled
1*

data to be
processed

1*
1&

3-82 VSE/ Advanced Functions System Management Guide

Procedure ASDPROC

r-[~~ OPTION LINK
EXEC ASSEMBLY

[II EXEC LNKEDT
II EXEC

1+ (end indicator)

Modifying Multistep Procedures

,
1

The same can be done for any number of job steps that logically belong j
together and are frequently executed. A stock control program STOCK, t
for instance, may be run dally to compile statistics that can be used to
prepare the following lists:

1. An exception list that shows which items are low in stock. Required
daily.

2. A lisi that shows the sales in currency for a certain item or group of
items. Required weekly.

3. A list that shows the sales in number of units for each item or group
of items. Required monthly.

4. An inventory list. Required semiannually.

To simplify processing, four procedures may have been cataloged:

STKPR1 - two job steps: the first to execute STOCK, the second to
prepare list 1.

STKPR2 - three job steps: the first two are the same as for STKPR1, the
third to prepare list 2.

STKPR3 - four job steps: the first three the same as for STKPR2, the
fourth to prepare list 3.

STKPR4 - five job steps: the first four the same as for STKPR3, the fifth
to prepare list 4.

Which lists are printed after every run of STOCK then depends on what
cataloged procedure is used.

Multistep procedures may be modified in the same way as the single-step
procedure described earlier. However, a number of considerations apply to
the ordering of the modification statements in the input stream when a
logical unit used for data input is assigned to the same physical unit as
SYSRDR.

• It is advisable to avoid using identical symbolic names for the
statements in the procedure.

• The modifier statements must be in the same sequence as the
statements in the referenced procedure.

• Modifier statements are normally placed immediately following the
EXEC PROC=procedure,OV statement. When input data is read by a
job step (EXEC statement) executed from the procedure, the
following cautions should be observed:

1. The first statement following the EXEC PROC=procedure,OV
must be a modifier statement (see "1" in Figure 3-22).

2. Modifier statements that take affect after the input data is read
are placed following the input data except for the first modifier
which must precede the input data (see "1" and the modifier
statement ASSGN SYSSLB,UA in Figure 3-22).

Chapter 3: Using the System 3-83

3. An exception to point 2 above is when the input data is processed
by a job step that itself was modified (see "3" and "4" in Figure
3-22). In this case the next modifier must follow the data (see
statement "3" and the modifier ASSGN SYSCLB,UA in Figure
3-22).

Figure 3-22 shows an example of modifying the second and third steps of
a three-step procedure.

In the example given in Figure 3-22, it is assumed that SYSRDR and
SYSIPT are assigned to the same physical unit.

SYSIN Input Stream Procedure CAT01 Containing JCL Only

II JOB EXAMPLE
II EXEC PROC=CAT01,OV
II ASSGN SYSRLB,UA

COlumnr-79

STMT3 II EXEC PSERV

Column [3--79

STMT1

o

DSPLY CAT01
/*

II ASSGN SYSSLB,UA
II EXEC DSERV,REAL
DSPLY CD,RD,SD

/*
ASSGN SYSCLB, UA
IIOVEND
DSPLY CD, PD

1*
1&

STMT4
STMT5

STMT6

ASSGN SYSCLB,130
II ASSGN SYSRLB,130
II ASSGN SYSSLB, 130
II EXEC DSERV

II ASSGN SYSSLB,UA
II EXEC DSERV,REAL
1+

o This is the first modifier statement. It refers to the second job step.

6 This statement provides SYSIPT data for PSERV.

e This modification overwrites the EXEC statement.

e This statement provides SYSIPT data for DSERV (STMT5) .

o This statement provides SYSIPT data for DSERV (STMT7).

Figure 3-22. Example of Modifying a Three-Step Procedure

SYSIPT Data in Cataloged Procedures

In the example shown in Figure 3-22 the librarian service programs
PSERV and DSERV accessed data from the logical unit SYSIPT. This
'SYSIPT' data may be made part of your cataloged procedure. System
utility, system service programs, and language translators all read their
input from SYSIPT.

3-84 VSE/ Advanced Functions System Management Guide

STMT2
STMT3
STMT4
STMT5

STMT6
STMT7

When you catalog a procedure containing SYSIPT data, the directory
entry for the procedure indicates this. When you execute such a
procedure, job control checks to see whether or not it contains SYSIPT
data. If it does, both SYSRDR and SYSIPT are assigned to the procedure
library until the end of the procedure. SYSIPT data in a cataloged
procedure cannot be overriden by the procedure library override facility.

SYSIPT inline data in procedures may also be any data that is processed
under control of the device independent IOCS used by your program or
mM-supplied programs. Normally, though, you would not catalog source
programs or data for your problem programs in a. procedure library.

SYSIPT inline data in procedures is useful and convenient mainly in the
case of control information for system utility and service programs.

A job stream for an initialize disk utility run could, for instance, contain
the following control statements (the statements are shown in skeleton
format only):

I I ASSGN ...
II EXEC INTDK
II UID IR,C1,R=(0027003)
II VTOC STANDARD
VOL 1111111
II END
1&

The job control statements are read from SYSRDR, the utility control
statements are read from SYSIPT. If, however, both the job control and
utility control statements had been cataloged (for example, under the
name INITDK), only the following statements would be required on
SYSRDR:

II JOB NAME
II EXEC PROC=INITDK
1&

If two or more programs in a procedure read SYSIPT data, the SYSIPT
data must be handled in a consistent manner, that is, if the SYSIPT data
is included in the procedure for one job step, it must be included for all
job steps in that procedure which require SYSIPT data.

Partition-Related Cataloged Procedures

Although a given procedure may be executed in any partition, a particular
job may need a specific set of job control statements, dependent on the
partition of execution. For example, you may want to run a job to store
DLBL and EXTENT statements in the partition label subarea for each
partition (OPTION PARSTD). Since each partition requires a different set
of label information, you would need a cataloged procedure for each of
your partitions. Partition-related cataloged procedures then allow you to
retrieve and execute the appropriate procedure with one version of the
EXEC statement, no matter which partition you are running in. One
benefit of this feature lies in the ease with which unscheduled jobs can be
started.

Chapter 3: Using the System 3-85

To use the feature, you must first create separate procedures that conform
to the specific partitions in your system. Most probably, the difference in
these procedures will be in the EXTENT and DLBL statements because
of the different device and DASD space assignments from partition to
partition. Next, in order to distinguish between the procedures and relate
them to the appropriate partitions, the following naming convention must
be used for cataloging these procedures:

First character of name
Second character

Third-eighth characters

$
o for BG partition
1 for F1 partition, 2 for F2 partition, etc.
A for FA partition (partition 10)
B for FB partition (partition 11)
any alphameric character

In the EXEC statement used to start the job, the first two characters of
the procedure name must be $$, with the remaining characters identical to
the last six characters of the cataloged name.

To continue the previous example, the procedures may be named
$OPARSTD for the BG partition, $lPARSTD for the F1 partition and so
on. The statement thus needed to invoke the appropriate procedure is
/ / EXEC PROC=$$PARSTD.

Partition related procedures or procedures for the starting of urgent jobs
are of great help to the operator. Full details on the use of cataloged
procedures by the operator are given in VSE/Advanced Functions
Operating Procedures.

3-86 YSE/ Advanced Functions System Management Guide

Linking Programs

Prior to execution in storage, all programs must be placed in a core image
library by the linkage editor. This section describes the role of the linkage
editor and how you can communicate with it through control statements.

The name linkage editor appropriately reflects the editing and the linking
operations that this program pedorms. The linkage editor prepares a
program for execution by editing the output of a language translator into
one or more executable phases. The linkage editor also combines
separately assembled or compiled program sections or subprograms (called
object modules) into phases. This process is referred to as linking.

A program can be link edited into one or more phases and

• cataloged permanently,

• cataloged permanently and executed immediately, or

• cataloged temporarily and executed immediately.

When a phase is cataloged permanently into a core image library, the
linkage editor is no longer required for that phase, because the supervisor
can load it directly from the library in response to an EXEC job control
statement, or a FETCH or LOAD macro. On the other hand, if the phase
is cataloged temporarily and executed immediately, the linkage editor is
required again the next time the phase is to be run.

Phases are stored either temporarily or permanently, depending on the
option specified in the OPTION job control statement:

/ / OPTION LINK

If the LINK option is specified, the phase is stored temporarily for
immediate execution in the same job. This phase will be overwritten in the
core image library by the next phase that is link edited.

/ / OPTION CATAL

If the CAT AL option is specified, the phase is stored permanently and
can be executed any time after the link edit run.

The linkage editor runs in any partition, and the phases produced by the
linkage editor are executable in any partition. The linkage editor can at
the same time run in more than one partition without endangering the
integrity of your program data. This holds true even if each executing
linkage editor program updates (that is, catalogs into) the same core image
library.

Note, however, that updating from multiple partitions is sequential, not
concurrent: the particular core image library is locked by one partition.
When linking in this partition is completed, the linkage editor program
running in another partition becomes eligible for updating the core image
library.

Chapter 3: Using the System 3-87

Structure of a Program

SOURCE MODULE

Source Statement
Library

To understand the functions of the linkage editor, you must understand
the structure of a program during the various stages of its development.
Figure 3-23 summarizes the three sections that follow, which discuss
source modules, object modules, and program phases.

-> Language
Translator

OBJECT MODULE

----,>f------l

Relocatable
Library

Linkage
Editor

Core Image
Library

A set of source statements, or source module 0), must be processed by a language translator, but can first
be cataloged as a book (2) into the source statement library. The output of the language translator is called
an object module (3), which must be processed by the linkage editor, but can first be cataloged as a module
(4) into the relocatable library. The output of the linkage editor is called a phase (5), which is cataloged
into a core image library temporarily or permanently, and can also be loaded into the shared virtual area.

Figure 3-23. Stages of Program Development

Source Modules

After planning the most logical approach to your application, you write a
set of source statements in a programming language. Your set of source
statements, called a source module, is processed by a language translator.
The language translator assembles source modules written in assembler
language, or it compiles source modules written in a high-level language
(for instance, COBOL, PL/I, or RPG II). The language translator
transforms the source module into an object module, which is in machine
language.

You can either submit your source module directly to the language
translator for processing, or you can catalog it into a sublibrary of the
source statement library for processing at a later time by the language
translator.

Source modules are written in one or more control sections (CSECTs).
Using assembler language the programmer defines the control sections.

3-88 VSE/ Advanced Functions System Management Guide

Object Modules

I
Source modules written in a high-level language have their control sections ,
defined by the various compiler options used.

An object module, the output of a language translator, consists of the q
dictionaries and text of one. or more control sections. The dictionaries
contain the information needed by the linkage editor to modify portions
of the text for relocation and to resolve cross-references between different
object modules. The tex{ consists of the actual instructions and data fields
of the object module. You can either submit your object module directly
to the linkage editor for processing, or catalog it into a relocatable library
for later inclusion in a linkage editor job stream.

For each object module the language translator produces four types of
records as illustrated and summarized in Figure 3-24. For more
information about these records see VSE/ Advanced Functions System
Control Statements.

Byte

" Contains X'02'. Identifies the record as one of an object module.

o Indicates the record type and can be one of the following :

C'ESO' -- External symbol dictionary. Contains symbols defined in this mo·
dule and referred to by one or more other modules and symbols referred to
in this module but defined in another module.

C'TXT' - Text. Contains actual code plus control information needed by the
linkage editor.

C'RLO' -- Relocation list dictionary. Identifies those portions of the text
which must be modified when the program is relocated for execution.

C'ENO' - End of module. Indicates the end of a module. The record may
contain an address where execution is to begin (transfer address) or the length
of the control section or both.

Figure 3-24. Record Types of an Object Module

If you want to change information in a TXT record, you can prepare a
REP record (user replace record) and submit it with your object module
for cataloging into the relocatable library or for linkage editor processing.
A REP record must be submitted between the TXT record it modifies and
the END record; otherwise, the TXT record is not modified. Usually, you
place the REP record(s) immediately before the END record.

Chapter 3: Using the System 3-89

Program Phases

The linkage editor produces a program phase from the object module(s)
you identify in linkage editor control statements. A phase is the functional
unit (consisting of one or more control sections) that the system loader
can load into a partition in response to a single EXEC job control
statement (or a FETCH or a LOAD macro instruction in an assembler
language program).

In the PHASE control statement you instruct the linkage editor to produce
one of three types of phases: relocatable, self-relocating, or
non-relocatable.

Relocatable Phases. A phase is relocatable if it can be loaded for
execution in any partition's address area. The linkage editor produces a
relocatable phase unless you specify an absolute origin (load) address
instead of a relative address. However, mM recommends that you always
specify a relative origin address. An address, in order to be relative, is
represented by a symbol with or without a displacement; for details see
VSE/Advanced Functions System Control Statements.

If a relocatable phase is also designed as a reenterable phase, it is eligible
to be loaded into the shared virtual area (SV A). Phases resident in the
SV A can be shared concurrently by programs running in either real or
virtual mode.

Self~Relocating Phases. Prior to the availability of a loader with the
relocating capability some users coded self-relocating programs in order to
gain the advantages of relocatability. If you have to perform maintenance
on such a program, you must write this program in assembler language
according to the rules described in VSE/ Advanced FUnctions Macro User's
Guide. In the PHASE control statement you indicate an origin address of
+0. The program must relocate all its addresses at execution time to
correspond with the addresses available in the partition where the program
is loaded.

Non~Relocatable Phases. A non-relocatable phase is link edited to be
loaded at a specific location (absolute address) associated with a partition.
When you request execution of a non-relocatable phase in a given
partition, the starting and ending addresses of the phase must be included
within that partition. Otherwise, the job is canceled. If you wish to
execute a non-relocatable phase in more than one partition, you must
catalog a separate copy of the phase for each partition.

The Three Basic· Applications 0/ the Linkage Editor

The three basic applications of the linkage editor are referred to as:

• cataloging phases into the core image library

• link edit and execute

• assemble (or compile), link edit, and execute.

3-90 VSE/ Advanced Functions System Management Guide

The following sections include a discussion of the system flow during each
of these applications.

Cataloging Phases into the Core Image Library

Link Edit and Execute

When you have an operational program (as an object deck in cards or on
tape, for example) and you expect to use that program frequently, you
should catalog it into a core image library. You can do this in a single job
step, which is shown in Figure 3-25, and described below.

Job control copies, onto SYSLNK, the linkage editor control statements
present on SYSRDR. The INCLUDE statement, without operands, signals
job control to read any object modules that are to be included from
SYSIPT. If an ENTRY statement is not encountered before the / / EXEC
LNKEDT statement, job control writes one on SYSLNK. An ENTRY
statement signals termination of the input to the linkage editor.

The linkage editor is loaded into the partition where the job stream was
submitted; it uses SYSOOI as a work file.

Because the CAT AL operand of the OPTION statement was specified,
the linkage editor places the executable program permanently into a core
image library. Which particular core image library serves as target library
depends on your library definition to Job control (see Processing
Requirements for the Linkage Editor, later in this section,). The library
descriptor entry in the core image directory for cataloged phases is
updated.

If the phase is already in the shared virtual area (SVA) or (via the SET
SDL command) has been requested to be loaded into the SV A, the phase
is also loaded into the SV A after it has been cataloged to the system core
image library as SV A eligible. Also, if the phase has an entry in the
system directory list, the entry is updated.

Cataloging a Supervisor. Supervisors may also be cataloged permanently
into the core image library as described above. Be sure, when doing this,
to specify a unique name (eight alphameric characters) for each
supervisor.

You do not always need to catalog a permanent copy of your program
into the core image library in order to execute the program. For instance,
you have modified parts of your program and want to test these
modifications with the entire program. In this case, you can specify the
LINK option, which requests that the linkage editor place a temporary
copy of the program into the core image library. Again, the INCLUDE
statement signals job control to read the following input from SYSIPT.
The shaded portions of Figure 3-26 illustrate how this job stream differs
from Figure 3-25.

By specifying an EXEC statement without a program name operand after
the EXEC LNKEDT statement, the program just link edited is loaded for

Chapter 3: Using the System 3-91

execution. The space temporarily occupied by this program in the core
image library is overwritten the next time a program is link edited.

/&

SYS~~ ______ ~
Object module 1----1

Figure 3-25. A Job Stream to Catalog a Program into the Core Image
Library

Assemble (or Compile), Link Edit, and Execute

You can also combine the job steps described above with a job step for
assembly (or compilation) of your source program. This is especially
useful when you are developing a program. Figure 3-27 shows how your
job stream should be set up. The shaded portions of the figure illustrate
how this job stream differs from that shown in Figure 3-26. Linkage
editor control statements are not required when linking single-phase
programs temporarily into the core image library.

You direct the language translator to write the object module directly onto
SYSLNK by specifying the LINK option at the beginning of the job.
After the linkage editor processed the input from SYSLNK, your program
is loaded for execution.

Instead of submitting three job steps, you may specify the GO parameter
in the EXEC statement that invokes the assembler (compiler). This causes
the linkage editor and your executable program to be invoked
automatically. Ocly the source program and any additional data for the
go step are required. For multiple assemblies (compilations), an OPTION
LINK statement must precede the first EXEC statement for an assembly
or compilation. This is true also when linkage editor control statements
like INCLUDE or' PHASE are used. If no LINK option is set, the GO
parameter will be in effect only for the EXEC statement it appears on,
and the ACTION default will be set to NOMAP (linkage editor control

3-92 YSE/ Advanced Functions System Management Guide

statements are described below, in Preparing Input for the Linkage Editor,
later in this section).

The / / EXEC statement (without a program name operand) causes this program to
be loaded for execution immediately.

The / / OPTION CATAL statement may also be used in this job stream. In this case,
the program that was cataloged (permanently) is executed immediately. When
/ / OPTION CATAL is specified a PHASE statement is required.

Figure 3-26. A Job Stream to Link Edit a Program for Immediate
Execution

When you make use of the GO parameter, your executable program has to
run in virtual mode, and the partition GETVIS area available to this
program will be of the IBM set default size unless you overrode that value
through the SIZE command.

If errors occur in one job step causing an abnormal termination, the
remaining job steps are ignored. Certain linkage editor errors do not
cause job step termination. If you do not want to execute the program
when these errors occur, you may specify ACTION CANCEL after the
/ / OPTION LINK.

Chapter 3: Using the System 3-93

/&

Figure 3-27. A Job Stream to Assemble, Link Edit, and Execute

Processing Requirements for the Linkage Editor

Library Definitions

Relocatable Library. Job control statements (commands) are available to
define one or more private relocatable libraries. It is from these libraries
that the linkage editor retrieves object modules whenever an INCLUDE
or the AUTOLINK function request such a retrieval.

The LmDEF job control statement defines a chain of relocatable libraries
(note that this 'chain' may consist of only one library). For example, if
you want to instruct the linkage editor to search, in that sequence, the two
private relocatable libraries with filenames MYRELOI and MYREL02,
you would specify

/ / LmDEF RL,SEARCH=(MYRELOl,MYREL02)

This chain implicitly includes as a third member the system relocatable
library. If you wanted the linkage editor to search first the system library
and then the other libraries, the SEARCH parameter would look as
follows:

SEARCH=(IJSYSRS,MYRELOl,MYREL02)

The LmDEF statement is discussed in more detail in the last section of
this chapter Using the Libraries.

Your job stream may start with an assemble/compile step. What has been
said about the relocatable library definition holds equally true for the
source statement library: you may define a chain of source statement

3-94 YSE/ Advanced Functions System Management Guide

SymboUc Units Required

libraries. The LmDEF statement would contain the parameter SL instead
of RL.

If only one private relocatable library needs to be defined, you may simply
use the ASSGN job control statement

/ / ASSGN SYSRLB,cuu

Note that both ASSGN and LmDEF need matching DLBL/EXTENT
information.

Core Image Library. The link edited phase is placed into one of the
following:

the core image library in a (temporary or permanent) library definition
of the form

LmDEF CL,TO.filename, ...

the system core image library if no LmDEF definition is present.

An ASSGN of SYSCLB will be treated as a

LmDEF CL,SEARCH ... (USYSCL).FROM ... USYSCL,TO-USYSCL,PERM

Note: If a LIBDEF CL definition is present, but no TO library specified, the system
core image library will not be taken as default; the link edit job is canceled, instead.

When OPTION LINK is in effect, the execution step retrieves the phase
to be executed from the library that served as target library in the link
edit step.

The linkage editor requires the following symbolic units:

SYSIPT Module input (if any)

SYSLST Programmer messages and listings (if SYSLST is not assigned,
no map is printed and programmer messages appear on
SYSLOG)

SYSLOG Operator messages

SYSRDR Control statement input (via job control)

SYSLNK Input to the linkage editor

SYSOOI Work file.

Note that SYSRDR and SYSIPT may contain input for the linkage editor.
This input is written on SYSLNK by job control.

If output from the linkage editor is to be placed in a private cote image
library and you don't use the LIBDEF statement, the following symbolic
unit is required:

Chapter 3: Using the System 3-95

SYSCLB The private core image library. It may be assigned anywhere
in the job stream but before job control reads the / / EXEC
LNKEDT statement.

If object modules from a private relocatable library are to be link edited
and you do not use the LIBDEF statement, the symbolic unit SYSRLB
must be assigned.

Linkage Editor Work Files in VSAM-managed Space

Linkage editor work files may be placed in VSAM-managed space if you
have the VSE/VSAM Space Management for SAM feature installed.
How you address those files in your job control depends on whether the
work files are defined explicitly or implicitly. A file is defined explicitly
via the DEFINE CLUSTER command of VSAM's Access Method
Services (for a detailed description refer to the publication Using the
VSE/VSAM Space Management for SAM Feature). If not defined
explicitly, the file is defined implicitly when the linkage editor opens the
IJSYSLN (SYSLNK) and IJSYSOI (SYSOOl) files.

Assume you had explicitly defined the two files with file-id's
% FILE. LINK and % FILE. ONE. The corresponding job control
statements would look as follows:

II DLBL IJSYS01,'%FILE.ONE'"VSAM
II DLBL IJSYSLN,'%FILE.LINK'"VSAM

If the files are defined implicitly, you must also supply information on
space allocations, record sizes and volume id's, as in the following
example:

II DLBL IJSYS01,'%FILE.ONE'"VSAM,RECORDS=10,RECSIZE=4089
II EXTENT ,volid
II DLBL IJSYSLN,'%FILE.LINK'"VSAM,RECORDS=100,RECSIZE=322
II EXTENT ,volid

The EXTENT statements may be omitted if a default SAM ESDS model
has been defined into the VSAM catalog.

Note that these job control statements use partition independent file-id's
so that if they are placed in the system standard label area or with the
job, concurrent linkage editor execution in multiple partitions would not
cause interference between linkage editor files.

Also note that RECORDS and RECSIZE specify the primary allocation.
On the average, 800 RLD items can be stored in a 4089 bytes long record
on IJSYSOl. Two text cards or one single control card can be stored in a
322-byte record on IJSYSLN.

Preparing Input for the Linkage Editor

The input you prepare for the linkage editor consists of job control
statements, linkage editor control statements, and object modules. Job
control reads the job control statements and the linkage editor control

3-96 VSE! Advanced Functions System Management Guide

statements from the device assigned to SYSRDR and object modules from
SYSIPT. The linkage editor control statements and object modules are
copied onto the disk extent assigned to SYSLNK.

The linkage editor control statements direct the execution of the linkage
editor. The statements are: ACTION, ENTRY, INCLUDE, and PHASE.
A description of how to prepare these control statements is given on the
following pages. Here, the various operands of the control statements are
described under headings that indicate their function.

Assigniog a Name to a Program Phase

Each program phase the linkage editor is to produce should have a name,
which you specify in the PHASE statement. When a phase is cataloged in
the core image library, the phase name identifies that phase for
subsequent retrieval. In other words, the same phase name you supplied in
the PHASE statement when permanently cataloging the initial or only
phase of a program must be used as the operand in the EXEC job control
statement or in a FETCH or a LOAD macro instruction.

When you catalog a phase with the same name as a phase already residing
in the core image library, the earlier entry with the same phase name is
deleted from the core image directory (and, if applicable, the system
directory list in the SV A) and cannot be accessed again.

The choice of a phase name has a bearing on retrieval efficiency and the
subsequent use of the librarian programs. Job control scans the directory
of the appropriate library for all phases st¥ting with the same four
characters as the program name specified in the EXEC statement.

Any phases with the same first four characters of their phase name will be
classified as a multiphase program. When a phase of a multiphase program
is fetched, the available address space must be large enough to contain the
largest of those phases even if that phase is not part of the program which
is being executed.

Phase names may be formed only from characters 0-9, A-Z, I, #, $, and
@' Otherwise, the phase statement is invalid. The names "S", "ALL",
and "ROOT" are invalid phase names.

In choosing a name for any multiphase program, make sure that the first
four characters are the same for all phases of that program but different
from those of other programs. Such names simplify the deleting,
displaying, punching, merging, and copying of the entire program. Figure
3-28 summarizes the above recommendations.

Note: A phase name" / /" cannot be placed into the System Directory List via the job
control command .SET SOL.

Chapter 3: Using the System 3-97

Prog1

ABCD1
ABCD2
ABCD3
ABCD4

Different names should be given to each
multiphase program; each phase of a

multiphase program should be named
with the same first four characters. This

simplifies library maintenance.

Prog2

ANN11
ANN12
ANN13
ANN14
ANN15

Prog3

WXYZ1
WXYZ2
WXYZ3

WXYZn

Simplified library maintenance means, for example, that one simple control state·
ment deletes all phases of Prog1 :

(DELETC ABCD.ALL

I'f the programs had been named:

Prog1

ABCD1
ABCD2
ABCD3
ABCD4

Prog2

ABCD5
ABCD6
ABCD7
ABCD8
ABCD9

the statement required to delete Prog1 would be:

(DELETC ABCD1, ABCD2, ABCD3, ABCD4

Figure 3-28. Naming Multiphase Programs

Defining a Load Address for a Phase

Prog3

ABCD10
ABCD11
ABCD12

ABCDn

For link editing, you specify where your program is to be loaded for
execution. You have several choices.

3-98 VSE/ Advanced Functions System Management Guide

A phase can be link edited to be loaded into and executed from:

• a partition's address area

• the shared virtual area

• an absolute address.

A phase can be link edited as a relocatable phase, a self-relocating phase,
or a non-relocatable phase.

The load address you specify in the PHASE statement determines the
relocatability status of the link edited phase:

• For a phase to be relocatable, specify a symbolic address with or
without a displacement.

• For a phase to be non-relocatable, specify an absolute address.

• For a phase which you wrote to be self-relocating, specify +0.

Full details on possible load address (also called origin address)
specifications are given in VSE/Advanced Functions System Control
Statements.

Link Editing for Execution at Any Address. If the linkage editor
determines that a phase is to be given the relocatable format, it flags the
core image directory entry for that phase, and inserts the relocation
information behind the text of the phase in the core image library.

When a relocatable phase is link edited, it is assigned a load address
relative to the partition's address area in which the linkage editor was
executed. When executing the phase from the same partition, relocation is
not required. (This assumes that virtual storage allocations were not
changed between link editing and executing the phase.)

Executing the phase from a different partition requires relocation by the
operating system. Loading and relocating a phase takes more processing
time than just loading.

Link Editing for Inclusion in the Shared Virtual Area. If a relocatable
phase is also reenterable, it can be included in the shared virtual area
(SVA). Phases resident i'1. the SVA can be shared concurrently by more
than one partition. It is aa lantageous to include frequently-used phases in
the SV A because these are then resident when requested for execution
(they are not reloaded from the core image library).

To indicate that a phase should reside in the SV A, you must specify the
SV A operand in the PHASE statement when cataloging the phase. This
operand is ignored if the phase is not relocatable; otherwise, the SV A
operand is accepted and the phase is said to be SV A-eligible.

The linkage editor cannot check whether a phase is reenterable; however,
a protection check can occur when executing a phase from the SV A that
modifies itself and therefore is not reenterable. Because the system
directory list (SDL) is sorted prior to the loading of phases into the SV A,

Chapter 3: Using the System 3-99

the packaging of phases to be executed together should be done using the
linkage editor.

Immediately after a phase is cataloged as SV A eligible into the system
core image library, it is loaded into the SV A if this phase either is already
in the SVA or (via the SET SDL command) has been requested to be
loaded into the SV A. See the section Building the SDL and Loading the
SVA earlier in this chapter.

Link Editing for Execution at an Absolute Address. If you specify an
absolute address in the PHASE statement, your program can be loaded
only at this address at the time of program execution. Not only must the
address you specify be within the address range of your installation's
virtual storage, but also the entire program must be included within the
boundaries of the area allocated to the partition where you request the
program to be executed.

In 370 mode, if you wish to force a phase to be executed in real mode,
you may link edit that phase with the absolute address of a given
partition's real.address space.

Using Self-Relocating Programs. You should identify self-relocating
programs by a PHASE statement with an origin point of +0:

PHASE PROGA,+O

The linkage editor assumes that the program is loaded at location zero,
and computes all addresses accordingly. The job control EXEC function
recognizes a zero phase address and adjusts the origin address to ~
compensate for the current partition boundary save area and label area. It ...,
then gives control to the updated entry address of the phase.

Building Phases from Object Modules with the INCLUDE Statement

You indicate which object modules or parts of object modules are to be
included in a phase by specifying the INCLUDE statement. The format
of the INCLUDE statement indicates the location of the modules. The
object modules can be either on the card reader, tape unit, disk or diskette
device assigned to SYSIPT, or in a relocatable library, or on the disk
device assigned to SYSLNK. The modules are extracted in the same order
as the INCLUDE statements are issued.

Including Modules from SYSIPT. If the object modules you want to
include in a phase are ~n the SYSIPT file, specify the INCLUDE
statement without operands. Job control copies the data from SYSIPT
until it encounters end-of-data U*).

Including Modules from a Relocatable Library. You may want to include in
a phase object modules or parts of an object module that are cataloged in
a relocatable library. To include an entire module, specify the module
name in the INCLUDE statement. To include part of a module, specify
the name of the module followed by the names of the control section(s)
you wish to be included.

3-100 VSE/Advanced Functions System Management Guide

Including Parts of Modules from SYSLNK. You do not need an
INCLUDE statement unless you want to change the sequence of control
sections or to extract certain control sections from an object module. For
either of these cases, specify the names of the control sections in an
INCLUDE statement.

Linkage Editor Storage Requirements

The AUTOUNK Feature

The storage requirements for a link edit run depend on the number of
PHASE statements and number of ESD items processed during a link edit
run.

In a minimum size virtual partition of 128K the linkage editor can process
for example 10 phases with a total number of 380 unique ESD items.

A unique ESD item is defined as being an occurrence in the control
dictionary. All symbols that appear in the MAP are unique occurrences. A
symbol that occurs several times in the input stream is normally
incorporated into a unique ESD item. However, if the same symbol occurs
in different phases (for example, control sections), each resolved
occurrence of the symbol within a different phase is a unique ESD item.

You can use the following formula for storage estimates:

56,000 + 40 • x + 20 • Y :S P

x ... number of PHASE statements

y .: total number of unique ESD items

P ... storage available to the partition, excluding GETVIS space.

To execute the linkage editor in real mode requires an allocation of
processor storage:

• for the linkage editor program itself 64K

• for the GETVIS area an amount that varies with the number of work
files and their associated device types; 48K should suffice in most
cases.

A larger allocation allows for larger I/O buffers thus reducing the number
of I/O operations and leading to a better performance.

For each phase the automatic library look-up feature (referred to as
AUTO LINK) collects any external references and attempts to resolve
them. An external reference is an ER item in the control dictionary that
has not been matched with an entry point. AUTOLINK searches any
defined private relocatable directory and then the system relocatable
directory until a cataloged module with the same name as the external
reference is found (or the end of the directory is reached). If found, the
module is included in the phase (autolinked). This retrieved module must

Chapter 3: Using the System 3-101

have an entry point matching the external reference in order to resolve its
address.

When you have a chain of relocatable libraries defined, use of
AUTOLINK may give you a performance gain: the directories (of the
libraries in the SEARCH chain) will in most cases be searched only once.
On the other hand, when using INCLUDE statements, a search through
the directories occurs each time an INCLUDE statement is processed.

The following examples show how the AUTOLINK feature works.

Assume that the relocatable library contains the following:

Module Name

A
D
E
F

Examples:

Entry Names

A,B,C

External References

A
B
A,C

In your linkage editor input stream you specify INCLUDE D. A will be
autolinked (included with module D) because the external reference A is
also a module name in the relocatable library.

If you specify INCLUDE E, then A will not be autolinked because the
external reference B does not relate to a module name. In this case, you
must also specify INCLUDE A, so that the external reference B can be
resolved. No autolink is required.

If you specify INCLUDE D and INCLUDE E, then A will be autolinked
by module D and the external reference B in module E can then be
resolved.

If you specify INCLUDE F, then module A will be autolinked by the
reference to A, and the reference to C will also be resolved.

Suppressing the AUTOLINK Feature. You can suppress the AUTOLINK
feature in two ways:

• By specifying NOAUTO in a PHASE statement, AUTOLINK is
canceled for that phase only.

• By specifying NOAUTO in the ACTION statement, AUTOLINK is
canceled for this execution of the linkage .editor. By writing a weak
external reference (WXTRN), AUTOLINK is canceled for one
symbol.

You can do this in assembler language by specifying for example:

DC A(LABEL)
WXTRN LABEL

or

DC V(LABEL)
WXTRN LABEL

For more information, refer to the assembler language publications.

3-102 VSE/ Advanced Functions System Management Guide

NOAUTO can be used to force a CSECT into a specific phase within an
overlay structure. For example, four phases of a program have a V-type
address constant called PETE, but in the overlay structure you want the
coding for PETE included only in the third phase.

PHASE PROGA,*,NOAUTO
PHASE PROGB,*,NOAUTO
PHASE PROGC,*
PHASE PROGD,*,NOAUTO

cause PETE to be included in PROGC only.

Sp«llyiItg LiIIkag~ Edil Aids lor Probkm lRtnmialltio. or Pre.eI.tioB

You can specify that the linkage editor aid you in avoiding certain
problems in your programs or determining what they are. The actions
discussed below are CLEAR, MAP, and CANCEL, which may be
specified as operands of the ACTION statement.

CleariDg the Unused Portion of the Core Image Library

ObtaiDiDg a Storage Map

If you used DS (define storage) statements in your source module, it may
be advantageous to fill these areas with binary zeros when the program is
link edited. This eliminates the risk that residual data from a previously
linked program be loaded with your program when. it is executed. Such
irrelevant data might disrupt your program considerably. By specifying
CLEAR in the ACTION statement, you request that the unused portion
of the core image library is to be set to binary zeros.

Because CLEAR is a time-consuming function, you might want to use DC
statements instead of DS statements when designing future programs; but
do use ACTION CLEAR when cataloging a supervisor.

You can obtain a linkage editor storage map and a listing of linkage editor
error diagnostics, which assist you in determining the reasons for
particular errors in your program. If SYSLST is assigned, ACTION MAP
is. the default. You can specify ACTION NOMAP if you are not
interested in this service of the linkage editor.

The storage map contains such information as:

• The lowest and highest addresses that each phase occupies in the
partition in which it is link edited.

• The starting disk address of the phase in the core image library.

• The names of all control sections and entry points, their load
addresses and relocation factors.

I. The names of relocatable modules from where CSECTs were inlcuded.

• The names of all external references that are unresolved.

Chapter 3: Using the System 3-103

Terminating an Erroneous Job

• An indication whether the phase is relocatable, non-relocatable,
self-relocating, or SV A eligible.

The error diagnostics warn you, for example, if:

• The ROOT phase has been overlaid.

• A control section has a length of zero.

• An address constant could not be resolved.

A sample storage map, together with a description of how to interpret it,
is included in VSE/ Advanced Functions Serviceability Aids and Debugging
Procedures.

If errors are present in the input to the linkage editor, the output of the
linkage editor will most likely also be erroneous. If you specify CANCEL
in the ACTION st~tement, the entire job is terminated when any of the
type of errors represented by messages 21001 through 21701 occurs. Refer
to these messages in VSE/ Advanced Functions Messages.

Designing an Overlay Program

The nature of virtual storage makes it unnecessary to write programs in an
overlay structure, because virtual partitions can be allocated to
accommodate very large programs.

Overlay programs consist of control sections organized in an overlay tree
structure. An example of an overlay tree structure is shown in Figure
3-29. This structure does not imply the order of execution, although the
root phase is normally the first to receive control.

The manner in which control should pass between control sections is
discussed below under Using FETCH and LOAD Macros.

Relating Control Sections to Phases

After having organized the control sections of your program into an
overlay tree structure, you must prepare a corresponding set of linkage
editor control statements.

Link edit your complete overlay program in a single job step, and
conversely, do not include in this job step any phases that are not related
to the overlay. Otherwise, the linkage editor may be unable to resolve
external references correctly.

The PHASE and INCLUDE statements you prepare are critical to ensure
the overlay tree structure you designed. Figure 3-30 is an example of the
job stream that ensures the overlay tree structure shown in Figure 3-29.

3-104 VSE/Advanced Functions System Management Guide

Root
Phase 1
(6000)

~A
I

I
I .. ----
I

Phase 2 : Phase 7
(5000) I B (6000) ~--- _________ L ____________ •

: C : J
I I
I I 1----- 1- ___ _

I I

Phase 3 : Phase 4 Phase 8 I Phase 9
(5000) I 0 (3000) (3000): K (8000) .-- -- - __ L... _____ ~ .- ______ L ______ ..,

: : F I I
I Phase 5 ,.---- Phase 6 : L I
I (7000) I G (3000) I I M
: E ~-------I------1 L____ :
I : I ~----
: I I I

~---- : H L____ I
: : N
I I
L____ L ___ _

The letters A through N represent control sections, which are organized to form nine
phases in one program. The root phase resides in storage during the entire execution
of the program. The remaining phases can overlay each other during execution.

You must guarantee a partition size that is equal to the longest combination of phases
that can possibly reside in storage together, namely, phases 1,2,4, and S, which total
21,000 bytes. If the program had not been organized in an overlay structure, it would
have required an ac;tdress space of 46,000 bytes.

Figure 3-29. Overlay Tree Structure

Chapter 3: Using the System 3-105

II JOB OVERLAY
I I OPTION CATAL

PHASE PHASE 1 , ROOT
INCLUDE , (CSECTA,CSECTB)
PHASE PHASE2,*
INCLUDE , (CSECTC,CSECTD)
PHASE PHASE3,*
INCLUDE , (CSECTE)
PHASE PHASE4,PHASE3
INCLUDE , (CSECTF,CSECTG)
PHASE PHASES, *
INCLUDE , (CSECTH)
PHASE PHASE6,PHASES
INCLUDE ,(CSECTI)
PHASE PHASE7,PHASE2
INCLUDE , (CSECTJ,CSECTK)
PHASE PHASE8,*
INCLUDE ,(CSECTL)
PHASE PHASE9,PHASE8
INCLUDE , (CSECTM,CSECTN)
INCLUDE

PHASE 1 stays in storage during
execution of the entire program.
PHASE2 is to be loaded
immediately behind PHASE1.
Since PHASE3 needs PHASE2, PHASE3
is not allowed to overlay PHASE2.
PHASE4 will occupy the same
storage locations as PHASE3.
PHASES will be loaded
immediately behind PHASE4.
PHASE6 will be loaded at the
same address as PHASES.
PHASE7 will be loaded at the
end of the root phase.
PHASE8 will be loaded at the
end of PHASE7.
PHASE9 will overlay
PHASE8.

(Object modules containing CSECTs A through N)
1*
II EXEC LNKEDT
1&

Figure 3-30. Link Editing an Overlay Program

Using FETCH and LOAD Macros

During execution, an overlay program communicates with the supervisor
to request that a subsequent phase be brought into the partition. You
include FETCH or LOAD macros within your phases for this purpose.

Use a LOAD macro in a phase that is to remain in control after the
requested phase is brought into the partition.

Use a FETCH macro if you want the requested phase to gain control
immediately after it is brought into the partition. If a phase loaded by the
FETCH macro is relocatable, it will be relocated if necessary. You cannot
issue a FETCH macro for a self-relocating phase.

Parameters in FETCH and LOAD allow use of the LDL (local directory
list), thereby reducing fetching and loading time.

VSE/ Advanced Functions Macro Reference contains details on the format
of the FETCH and LOAD macros.

Examples of Linkage Editor A.pplications

The linkage editor examples on the following pages illustrate the use of
and relation between linkage editor and job control statements. After
studying these examples, you should be able to set up a link edit job for
your own purposes.

3-106 VSE/ Advanced Functions System Management Guide

Catalog to the System Core Image Library Example

II JOB CATALCIL
* LINK EDIT AND CATALOG TO SYSTEM CORE IMAGE LIBRARY
* SINGLE PHASE, ELIGIBLE FOR LOADING INTO SHARED
* VIRTUAL AREA, MULTIPLE OBJECT MODULES,
* MIXTURE OF CATALOGED AND UNCATALOGED
* MODULES

1 II ASSGN SYSLNK,190
2 II OPTION CATAL
3 PHASE PROGB,*,SVA
4 INCLUDE

Object deck
1*

INCLUDE SUBRX
INCLUDE SUBRY
INCLUDE
Object deck

1*
I 5 II EXEC LNKEDT

1&

Explanation for Catalog to the System Core Image Library. This example
illustrates the cataloging of a single phase composed 'of multiple object
modules. These modules are located in the input stream and the system
relocatable library.

Statement 1: The statement is required, unless SYSLNK is permanently
assigned. If the statement is included, it must precede the OPTION
statement (Statement 2).

Statement 2: The OPTION CATAL statement sets the LINK switch, as
well as the CAT AL switch. If SYSLNK is not assigned, the statement is
ignored. The linkage editor control statements are not accepted unless the
OPTION statement is processed. Link-editing and cataloging to the
system core image library is requested.

Statement 3: Only one PHASE is produced. It is cataloged to the system
core image library and may be retrieved by the name PROGB. Because
there is only one phase, the origin point * indicates that this phase
originates at the starting address of the partition plus the length of the
partition save area, and the COMMON pool (if any). The SVA operand
indicates that the phase should be considered SV A-eligible. If the phase
PROGB either is already loaded in the SVA or has been requested (via
the SET SDL command) to be loaded into the SV A, PROGB is loaded
into the shared virtual area immediately after it is cataloged into the
system core image library. (This would not occur if PROGB is link edited
with OPTION LINK.)

Note: COMMON is used by FORTRAN programs to store data shared by multiple
programs.

Statement 4: Four modules make up this phase. The first and last are not
cataloged in the relocatable library; therefore the object decks must be on
SYSIPT, and each must be followed by the end-of-data record U*).
SUBRX and SUBRY were cataloged previously to the relocatable library

Chapter 3: Using the System 3-107

by those names. Job control puts the uncataloged modules on SYSLNK in
place of their INCLUDE statements. Job control copies onto SYSLNK
the INCLUDE statements for the cataloged modules.

Statement 5: The EXEC LNKEDT statement causes the linkage editor
program to be loaded. SYSLNK now becomes input to the linkage editor.
It contains:

PHASE PROGB,*,SVA
First uncataloged relocatable deck
INCLUDE SUBRX
INCLUDE SUBRY
Second uncataloged relocatable deck
ENTRY

The modules are link edited into one phase so that they occupy contiguous
addresses in the sequence in which they appear in the input stream. When
the linkage editing is completed, cataloging to the core image libary occurs
because of the CAT AL option.

In addition, the linkage editor prints a status report that reflects the usage
and available space in the core image library. (This does not occur in a
LINK situation.)

The example can be modified to illustrate a catalog-and-execute operation
by inserting the following statements between the EXEC LNKEDT and
/ & statements:

• Any job control statements required for execution of PROGB

• A / / EXEC statement

• Card reader input for PROGB, if any.

The example does not include an ENTRY statement. Job control,
therefore, writes an ENTRY statement on SYSLNK instructing the
linkage editor that:

• There is no more input on SYSLNK.

• The entry point defined in the source program should be the entry
point of the produced phase.

Catalog to a Private Core Image Library Example

II JOB CATLCIL
* LINK EDIT AND CATALOG TO PRIVATE CORE IMAGE LIBRARY
* SINGLE PHASE, ALIGNED ON A PAGE BOUNDARY, MULTIPLE
* OBJECT MODULES,
* MIXTURE OF CATALOGED AND UNCATALOGED OBJECT MODULES
LIBDEF RL,SEARCH=(RSUBLIB,PRVRELO)

1 LIBDEF CL,TO=PRIVCIL
2 II ASSGN SYSLNK,190
3 II OPTION CATAL
4 PHASE PROGB,S,PBDY
5 INCLUDE

object deck
1*

INCLUDE SUBRX

3-108 YSE/ Advanced Functions System Management Guide

Link Edit and Execute Example

1*

INCLUDE SUBRY
INCLUDE
Object deck

6 II EXEC LNKEDT
1&

Explanation for Catalog to Private Core Image Library. This example
illustrates how to define private libraries. Object modules SUBRX and
SUBRY are to be included from private relocatable libraries whose
filenames are RSUBLIB and PRVRELO. Phase PROGB, the output of
the linkage editor is to be cataloged into a library with filename
PRIVCIL.

Statement 1: These LmDEF statements define the private libraries.
Label information must have been stored in the label information area or,
if appropriate, DLBL and EXTENT statements must precede the LmDEF
statements. Instead of the second LmDEF statement, an ASSGN
SYSCLB,cuu command could have been used.

Statements 2 through 6: They are the same as statements 1 through 5 in
the preceding example (Catalog to the System Core Image Library).

Just like the preceding example, so can this example be modified to
illustrate a catalog-and-execute operation.

II JOB LINKEXEC
* LINK EDIT AND EXECUTE SINGLE PHASE, SINGLE OBJECT
* MODULE NOT CATALOGED

1 II ASSGN SYSLNK,190
2 II OPTION LINK
3 PHASE PROGA,*
4 INCLUDE

object deck
1*

5 II EXEC LNKEDT

6 Any job control statement required for execution
such as ASSGN or label statements

7 II EXEC
input data as required

1*
1&

Explanation for Link Edit and Execute. This example illustrates the basic
concept of link editing and executing by using a single phase that is
constructed from a single object module contained in punched cards.

Statement 1: No assignments are necessary because the system units
required for link editing are assumed to be permanently assigned. An
ASSGN for SYSLNK is included to illustrate its position relative to the
OPTION statement in case an assignment is required!

Statement 2: The statement indicates that a link edit operation is to be
performed. If SYSLNK has not been assigned, the statement is ignored.

Chapter 3: Using the System 3-109

Linkage editor control statements are not accepted until the OPTION
statement is processed. Because the option is LINK, and not CAT AL,
only link editing will be performed.

Statement 3: The PHASE statement is copied on SYSLNK. Job control
checks only the first operand; remaining operands are checked by the
linkage editor when that program uses SYSLNK as input.

Only one phase is built by the linkage editor because only one PHASE
statement is submitted for the entire run. The name of this phase is
PROGA, as specified in the first operand. The second operand indicates
the origin point for the phase. Because an • has been used, the phase
begins in the next storage location available, with forced doubleword
alignment. Because this is the first and only phase, it is located at the
beginning of the partition plus the length of the save area plus the length
of any area assigned to the COMMON pool (as designated by a CM entry
in the object module).

A displacement, either plus or minus, may be used with the ., such as
·+1024. This causes the origin point of the phase to be set relative to the
• by the amount of the displacement.

Statement 4: The INCLUDE statement has no operands so the records
are read from SYSIPT and written on SYSLNK until SYSIPT has an
end-of-data U·) record. The data on SYSIPT is expected to be the
object module in card image format that is used in this linkage editor
operation.

Statement 5: On encountering the EXEC LNKEDT statement, job control
writes an ENTRY statement with no operand on SYSLNK and causes the
linkage editor program to be loaded.

Using the data just placed on SYSLNK as input, the linkage editor
produces executable code. The output is placed in the next available space
of the core image library (immediately after the last cataloged phase).
This is true regardless of whether the program is cataloged permanently
(OPTION CATAL) or temporarily (OPTION LINK). However, if
OPTION LINK is specified, the temporarily cataloged program is
overlayed by the next program that is link edited. A program that is
cataloged temporarily must be link edited each time it is used. No
ACTION options are specified. Therefore, in resolving the external
references, the system makes use of the AUTOLINK feature. Error
diagnostics and a storage map are written on SYSLST, assuming that
SYSLST is assigned.

Statement 6: Because the program is not cataloged, it must be executed
immediately. Any pertinent job control statements are entered at this
point.

Statement 7: An EXEC statement with no program name operand
indicates that the phase to be executed was just link edited. Therefore, no
search of the core image directory for linked phases is required. The
program is brought into storage and control transferred to its entry point.
Because the automatic ENTRY statement is in effect for this example, the .,
entry point is the address specified in the program. ..",

3-110 YSE/Advanced Functions System Management Guide

Compile and Execute Example

This example can be modified to illustrate the following:

1. Catalog and execute. To cause this phase to be cataloged
permanently, change the OPTION statement (2) from LINK to
CATAL.

2. Catalog only. To catalog only, change the OPTION statement (2)
from LINK to CAT AL and remove all statements following the
EXEC LNKEDT statement (5) up to the / & statement.

3. Include object module from relocatable library. The name of the
object module in the relocatable library must be supplied by an
additional INCLUDE statement. If the name is RELOCA; the
statement is INCLUDE RELOCA. This form of the INCLUDE
statement is written on SYSLNK when it is read by job control. The
linkage editor retrieves the object module when it encounters the
INCLUDE statement because it uses SYSLNK for input.

II JOB COMPEXEC
* COMPILE OR ASSEMBLE, LINK EDIT AND EXECUTE
* SINGLE PHASE, MULTIPLE OBJECT MODULES,
* INPUT TO LINKAGE EDITOR FROM LANGUAGE TRANSLATOR,
* SYSTEM RELOCATABLE LIBRARY AND SYSIPT

1 II ASSGN SYSLNK,190
2 II OPTION LINK
3 PHASE PROGA,S
4 II EXEC FCOBOL

COBOL source statements
1*

5 INCLUDE SUBRX
INCLUDE
object module

1*
6 ENTRY BEGINl

I I EXEC LNKEDT
Any job control statements required for PROGA
execution

II EXEC
Any input data required for PROGA execution

1*
1&

Explanation for Compile and Execute. The language translators provide
the option of placing their output on SYSLNK. Because the linkage editor
uses SYSLNK for input, a program can be assembled or compiled, link
edited and executed, all in one job.

All three sources of object module input to the linkage editor are used:
SYSIPT, the (system) relocatable library, and the output from a language
translator. It is assumed that only sequential "DASD files or unlabeled tape
files are processed.

Statement 1: The SYSLNK assignment is given to show the position of
ASSGN statements relative to the OPTION statement. ASSGN
statements are not required if they are permanent assignments.

Chapter 3: Using the System 3-111

Statement 2: The statement is required.

Statement 3: The PHASE statement must always precede the relocatable
modules to which it applies; it is written on SYSLNK first for later use by
the linkage editor. S is the origin point, that is, the phase originates with
the first double word in the partition plus the length of the partition save
area and label area, plus the length of the area assigned to the COMMON
pool (if any). This gives the same effect as * gives for a single phase or
the first phase of a multiphase link edit run. As with the *, the S may be
used with a relocation factor, for example, S+ 1024.

Statement 4: The appropriate language translator is called (in this case,
DOS/VS COBOL). The normal rules for compiling are followed; the
source deck must be on the unit assigned to SYSIPT and the /* defines
the end of the source data. The output of the language translator is
written on SYSLNK.

Statement 5: The INCLUDE SUBRX statement is written on SYSLNK.
The linkage editor retrieves the named module from the system relocatable
library. Because it has no operand, the next INCLUDE statement signifies
that the relocatable module is on SYSIPT. The data on SYSIPT is copied
on SYSLNK up to the /* statement.

Statement 6: The ENTRY statement is written on SYSLNK as the last
linkage editor control statement. The symbol BEGIN! must be the name
of a CSECT or a label definition (which occurs in an ENTRY source
statement) defined in the first or only phase. The address of BEGIN!
becomes the transfer address for the first or only phase of the program.
The ENTRY is used to provide a specific entry point rather than to use
the point specified in the program.

The rest of the statements follow the same pattern as discussed in the
Link Edit and Execute example. The input from SYSLNK to the linkage
editor is:

PHASE PROGA,S
Relocatable module produced by COBOL compilation
INCLUDE SUBRX
Relocatable module from SYSIPT
ENTRY BEGIN 1

If certain types of errors are detected during compilation of a source
program, the LINK option is suppressed. Under these circumstances the
EXEC LNKEDT and EXEC statements are ignored and the message
'STATEMENT OUT OF SEQUENCE' results. This LINK option
suppression should be kept in mind if a series of programs is to be
compiled and cataloged as a single job. Failure of one job step would
cause failure of all succeeding steps.

An OPTION LINK cannot be given if OPTION CAT AL is in effect. The
message 'STATEMENT OUT OF SEQUENCE' results.

3-112 VSE/ Advanced Functions System Management Guide

Using the Libraries

After you have planned the size, contents, and location of the libraries
(see Chapter 2, Planning the System), you need to know how to allocate
space to a library, how to create private libraries and how to alter, copy,
and inspect the contents of the libraries. All these functions are performed
by a group of library processing programs, collectively referred to as the
librarian.

Associated with each library is a directory that is located at the beginning
of the space allocated to that library. For each element in a library, the
corresponding directory contains a unique entry describing the element. A
directory entry contains such information as name, disk address, size, load
address (core image library only), and version number (relocatable, source
statement, and procedure libraries only) of the element. These directory
entries are used by the system to locate elements in and retrieve them
from a library.

The begin addresses of the individual system library directories are stored
in a separate directory, the system directory. At the beginning of each
directory is a library descriptor. This entry contains information such as
the address of the next available record, the number of active and deleted
blocks, and the amount of space allocated to the library. The library
descriptor entry comprises the first block of each directory on FBA
devices. On CKD devices, the library descriptor information is in the first
entry of the core image library directory, and the first five entries of the
other library directories.

A core image library may contain a large number of program phases.
Thus, searching for a specific phase can become rather time consuming.
To reduce the search time, the core image library directory entries are in
alphameric sequence. The second level directory contained in the
supervisor assists in locating directory entries. This is discussed in Second
Level Directories for Core Image Libraries in Chapter 2, Planning the
System.

The organization of the directories on SYSRES is shown in Figure 3-3l.
A more detailed description of the complete SYSRES organization is given
in Appendix A: System Layout on Disk.

Chapter 3: Using the System 3-113

The Libraria" Programs

"- -- ------------------------

Core Image Directory Cataloged Phases

Linked Phases

Core Image Library

Relocatable Directory

Relocatable Library

Source Statement Directory

Source Statement Library

Procedure Directory

Procedure Library

_End of SYSRES
extent

Figure 3-31. Organization of the Directories and Libraries on SYSRES

This section describes how you can manage and control your libraries with
the use of the librarian programs. The librarian programs fall into three
functional groups: maintenance, organization, and service. The functions
are applicable both to the system and private libraries. Figure 3-32 is a
summary of the librarian programs and their functions. The figure also
lists the storage requirements for real mode execution: a value (ALLOCR
command) to allocate processor storage and a value (SIZE command or
SIZE parameter in the EXEC statement) to reserve space for the partition
GETVIS area. No special considerations apply to execution in virtual
mode; any librarian program will fit into the minimum partition size
(except for a CORGZ COPYC between 3350 devices where a partition
size of 138K is required).

3 -114 VSE/ Advanced Functions System Management Guide

GROUP PROGRAM FUNCTIONS ALLOCR SIZE
NAME

Maintenance MAINT Catalog 128K 80K
Delete
Rename
Condense (Note 1)
Establish Condense Limit
Update for Source Statement Library

Organization CORGZ Allocate a new SYSRES 128K 80K
Create private libraries (Note 2)
Transfer elements between any two libraries of the same
type

COPYSERV Compare library contents and generate input for CORGZ 68K 20K
(Note 3)

Service DSERV Display the contents of the library directories 68K 20K
(Note 4)

CSERV Display, punch, or display and punch the contents of the } 68K 20K
RSERV Core Image, Relocatable, Source Statement, or Procedure
SSERV library
PSERV

ESERV Convert edited macros to source format. Display and/or 112K 64K
punch converted macros

Note 1 Refer to the discussion of the condense function for restrictions related to execution of
the CONDS function of the MAINT program.

Note 2 CORGZ COPYC between 3350 devices requires an allocation (ALLOCR) of 138K and a

SIZE value of 90K.

Note 3 COPYSERV does not support the LIBDEF job control statement, shared libraries and

FBA devices.

Note 4 When requesting sorted DSERV output, an allocation (ALLOCR) of 128K together with a
specification of SIZE-80K in the EXEC statement will improve the performance.

Figure 3-32. Summary of Librarian Programs, Their Functions, and Real Mode Requirements

You invoke the individual functions of the librarian programs by means of
librarian control statements. The use of these control statements is
described and demonstrated by examples in the following section. Their
formats are contained in VSE/ Advanced Functions System Control
Statements.

Librarian control statements can be cataloged into a procedure library.
This excludes maintenance functions for a procedure library itself.

The librarian programs run in any partition (an exception is the CONDS
function of the MAINT program). Two or more librarian programs may
run at any point in time, even if they update or catalog to the same
library. When one librarian program attempts to update a given library
while a second librarian program is already in the process of updating that

Chapter 3: Using the System 3-115

Maintaining the Libraries

library, the first program has to wait until the other finishes its update job.
This kind of control is called 'locking' and 'unlocking' of a resource. If the
resource being protected is a system library, locking is limited to the
library; it does not extend over the entire SYSRES file.

Figure 3-33 shows to what extent libraries can be shared (for read or
write access) by the librarian programs.

FuDetIOD Library of SYSRES Private Library

MAINT

CATAL BG,FG BG,FG
DELETE BG,FG BG,FG
RENAME BG,FG BG,FG
UPDATE BG,FG BG,FG
CONDL BG,FG BG,FG
CONDS BG (Note 1) BG,FG (Note 2)

CORGZ

MERGE into SYSRES BG,FG not applicable
other functions BG,FG BG,FG

xSERV BG,FG BG,FG

linkage editor BG,FG BG,FG

Note 1: Foreground partitions must be inactive.
Note 2: The library to be condensed must be dedicated to the partition from where
the condensing was requested.

Figure 3-33. Library Sharing Capabilities of Librarian Programs

In this context, the linkage editor may be considered as performing some
kind of librarian function: when it places a phase into a core image
library. Therefore, the linkage editor is included in the above chart. When
OPTION LINK is in effect, the core image library which is locked by the
linkage editor will not be unlocked until the associated execution steps are
finished. If you foresee a longrunning execution step, try to avoid that
other partitions compete for updating that same library at the same time.
When OPTION CAT AL is in effect, the core image library is locked only
as long as the linkage editor executes.

The library sharing support described above uses the same facilities as the
sharing of data across computing systems (which is presented in the
following chapter) and, therefore, depends on the same hardware
restrictions.

The examples in this)section do not always show DLBL/EXTENT
statements, assignments or library definitions. Wherever these are missing,
it is assumed that the information is stored permanently.

The maintenance functions of the librarian greatly facilitate frequent
operations such as:

• Cataloging members to the libraries

3-116 VSE/Advanced Functions System Management Guide

L

• Deleting members from the libraries

• Condensing the libraries

• Establishing limits for condense

• Renaming members of the libraries

• Updating books in the source statement library.

The maintenance program is invoked by the job control statement:

I I EXEC MAINT

The functions to be performed are specified in librarian control statements
which must follow the EXEC MAINT statement on SYSIPT (If SYSIPT is
assigned to a tape unit, it must be a single file and a single volume). Any
combination of the maintenance functions can be performed in a single
run. A sample maintenance job (in skeleton form) is shown below:

II JOB ANYMAINT

assignments, if necessary

II EXEC MAINT

librarian control statements

1*
1&

Whenever the maintenance on one library is completed, a status report of
the library just updated is printed on SYSLST.

In order to identify a private library to the MAINT program, you either
provide symbolic unit assignments via the ASSGN job control statement.
Or you define the library through a LmDEF job control statement; for
example,

LmDEF RL,TO==PRVRELO

for cataloging to a private relocatable library. The file name in the TO
parameter can be freely determined, but it must agree with the file name
in the corresponding DLBL statement. With the ASSGN statement, the
following symbolic unit names must be used:

Private core image library . . .
Private relocatable library
Private source statement library

SYSCLB
SYSRLB
SYSSLB

An ASSGN statement can never be used for a private procedure library.

The ASSGN and LmDEF statements are explained in section Controlling
Jobs, earlier in this chapter. The library definitions (or, if applicable, the
symbolic unit assignments) required for the individual maintenance

Chapter 3: Using the System 3-117

- --- -- - ---------- ------ --

functions are described in VSE/ Advanced Functions System Control
Statements.

To perform maintenance on system libraries, you may supply a LmDEF
definition specifying USYSRS in the TO parameter. If no such definition
is given, be sure to have the corresponding private library unassigned.

Cataloging Members into the Libraries. The catalog function adds a
module to a relocatable library, a book to a source statement library, or a
procedure to a procedure library. Phases are cataloged to the core image
library by the linkage editor.

The catalog control statements specify the name of the member to be
cataloged and, optionally, a change level number. The control statements
are:

Relocatable library . . .
Source statement library
Procedure library

CATALR
CATALS
CATALP

The catalog function implies a delete for members with the same name.
Therefore, you should rename the existing member prior to cataloging the
new member that has the same name should you wish to retain the
existing member. Then, when the new member has been successfully
tested, the old member may be deleted.

When you add to the contents of a library, watch the status of the system
directory, which is printed at the end of the catalog run. If the libraries
are becoming full, you may wish to condense them or to create larger
libraries. (Condensing is described later in this section.)

Cataloging to the Relocatable Library. To catalog an object module to the
relocatable library, you must submit the object module on SYSIPT
immediately behind the CAT ALR control statement. The following job
catalogs two object modules, named MODI and MOD2, to the relocatable
library; the object modules were produced by language translators in
previous jobs:

II JOB CATREL
II EXEC MAINT

CATALR MOD1

object module for MOD 1

CATALR MOD2

object module for MOD2

1*
1&

You may compile or assemble a program and catalog the resulting object
module in the relocatable library in the same job. In this case, you assign
SYSPCH, which receives the output of the language translator, to a disk,
diskette or tape and then use the object module on that device as input to
the MAINT program. An example using a magnetic tape for SYSPCH is

3-118 YSE/ Advanced Functions System Management Guide

shown in Figure 3-34. To assign SYSPCH to a disk or diskette, you must
supply the necessary DLBL and EXTENT job control statements.

II JOB CATREL
II OPTION DECK

1 II ASSGN SYSPCH,180
II EXEC ASSEMBLY

2 PUNCH 'CATALR MODULE1 '
source module

3
1*

4 II MTC WTM,SYSPCH,2
5 II MTC REW,SYSPCH
6 II RESET SYSPCH
7 II ASSGN SYSIPT,180
8 II EXEC MAINT

1&
A magnetic tape device is assigned to SYSPCH to receive the assembler output.

2 The assembler will punch a CAT ALR statement on SYSPCH.
3 The assembler processes the source module and writes the object module onto

SYSPCH following the CATALR statement.
4 Tapemarks are written on SYSPCH to indicate the end of the object module.
S The tape is rewound to its load point.
6 The tape is unassigned as SYSPCH.
7 The tape is assigned to SYSIPT to serve as input for the MAINT program.
8 MAINT reads the object module from the tape and catalogs it in the

relocatable library.

Figure 3-34. Assembling and Cataloging to the Relocatable Library in the
Same Job

All modules in the relocatable library that have the first three characters
of the module name in common are considered to belong to one program.
This simplifies the control statements to delete, display, punch, merge, and
copy an entire program. The names of mM-supplied modules in the
relocatable. library begin with the letter I, which should therefore be
considered reserved so that you can easily. distinguish your modules from
mM's.

Cataloging to the Source Statement Library. To add a book to the source
statement library, you use the CAT ALS statement specifying the name of
the book and the sublibrary to which it belongs. A sublibrary is defined by
an alphameric character preceding the bookname. For example, the
statement

CATALS L.NEWBOOK

adds the book NEWBOOK to sublibrary L. Note that the sublibraries in
the range from A to I, P, R, and Z are reserved for mM components.

A -- is the assembler copy sublibrary. It contains books of assembler
source code and source macro definitions. See VSEj Advanced
Functions System Control Statements for details.

B is the network definition sublibrary for ACF jVT AM.

C is the COBOL sublibrary.

Chapter 3: Using the System 3-119

j

D -- is the alternate assembler copy sublibrary. It contains non-edited
macros and copy books for programs that are to be executed in a
telecommunications network control unit.

E is the assembler macro sublibrary. It contains mM-supplied and
user-written macro definitions in an edited (partially processed)
format. See Guide to the DOSjVSE Assembler for details.

F is the alternate assembler macro sublibrary. mM uses it to
distribute edited macros for use by programs that are to be
executed in a telecommunications network control unit.

P is the PL/I sublibrary.

R is the RPG II sublibrary.

Z contains sample programs supplied by mM.

The rest of the reserved characters (G, H, I) will be used by mM for
future additions to the source statement library. You should avoid,
wherever possible, cataloging to one of the reserved sublibraries. If you
must catalog to a sublibrary that is reserved for mM components, ensure
that you do not use duplicate names. You can obtain a listing of the
contents of each sublibrary by means of the SSERV librarian program
discussed later in this section. You can obtain a listing of the book names
within each sublibrary by means of the DSERV librarian program.

Users of previous versions of DOS, who have books in a sublibrary which
is reserved under VSE/ Advanced Functions can easily transfer this
sublibrary from the IBM range to the user range by means of the
librarian rename function of the MAINT program.

Edited macro definitions that are to be cataloged in the assembler
sublibrary must be preceded by a MACRO statement and followed by a
MEND statement. Example:

II JOB CATMAC
II EXEC MAINT

CATALS E.MBOOK
MACRO

edited macro definition statements

1*
1&

MEND

Books other than macro definitions that are to be cataloged must be
preceded and followed by BKEND statements. Example:

3-120 YSE/ Advanced Functions System Management Guide

II JOB CATBOOK
II EXEC MAINT

CATALS L.SBOOK
BKEND

source statements

1*
If.

BKEND

The BKEND statement can have optional operands specifying that a
sequence check or a card count be performed on the statements to be
cataloged, or that the book to be cataloged is in compressed format. If you
desire these functions when you catalog a macro definition, BKEND
statements can be included in addition to the MACRO and MEND
statements.

Cataloging to the Procedure Library. To catalog a procedure in a
procedure library you submit a CAT ALP statement specifying the
procedure name. Rules for the naming of procedures are given in
VSE/Advanced Functions System Control Statements.

The control statements to be cataloged follow the CAT ALP statement;
they can be job control or linkage editor control statements or both. The
end of the control statements to be cataloged must be indicated by an
end-of-procedure delimiter, which is normally a / +.

Each control statement cataloged in the procedure library should have a
unique identity. This identity is required if you want to be able to modify
the job stream at execution time. Therefore, when cataloging, identify
each control statement in columns 73-79 (blanks may be embedded).
Refer also to the section Temporarily Modifying Cataloged Procedures
earlier in this chapter.

The following job catalogs the procedure PROCA in the procedure
library:

II JOB CATPROC
II EXEC MAINT

CATALP PROCA

control statements to be cataloged

1+ END OF PROCEDURE
1*
If.

You can include inline SYSIPT data in the cataloged procedure. The
presence of SYSIPT data must be indicated to the MAINT program by the
DATA parameter of the CAT ALP statement. In addition, you must
indicate the end of inline data by the /* statement. The following
example catalogs a procedure consisting of control statements and SYSIPT
data:

Chapter 3: Using the System 3-121

II JOB CATPROC
II EXEC MAINT

CATALP PROCA,DATA=YES

control statements

SYSIPT data

1* END OF SYSIPT DATA

control statements

1+ END OF PROCEDURE
1*
1&

The following restrictions apply when you catalog procedures to the
procedure library:

1. A cataloged procedure cannot contain control statements or SYSIPT
data for more than one job.

2. If the cataloged control statements include the / / JOB statement you
must not have a / / JOB statement when you retrieve the procedure
through the EXEC statement.

3. A cataloged procedure must not include either of the following
statements:

[/ I J RESET SYS
[//J RESET ALL

4. A cataloged procedure with DATA=YES must not include any of the
following statements for SYSIN, SYSRDR, or SYSIPT:

[//J ASSGN
[//J CLOSE
[/11 RESET

1&
5. A cataloged procedure without inline SYSIPT data must not include

any of the following statements for SYSIN or SYSRDR:

[/11 ASSGN
[/11 CLOSE
[/11 RESET

1&

6. Cataloged procedures cannot be nested, that is, a cataloged procedure
cannot contain an EXEC statement that invokes another cataloged
procedure.

7. When cataloging a procedure that contains an imbedded / / JOB
statement, in a partition controlled by VSE/POWER, use • $$ JOB
and • $$ EOJ statements to define the cataloging job.

Assigning Change Levels. When you catalog a member in one of the
libraries, you can assign a change level to the member, which will enable

3-122 VSE/Advanced Functions System Management Guide

you to keep track of the current version of your programs. The change
level is specified in the catalog control statement by a version and a
modification number. The following statement catalogs version 1,
modification 3, of module MODI in the relocatable library:

CATALR MOD1,1.3

Change levels are stored in the directory entry for the member and can be
displayed by the librarian service program DSERV. A change level is not \
used by the system for identification purposes, that is, a change level is
not sufficient to allow two elements having the same name to coexist in a
library.

For the source statement library only, you can request verification of the
change level before a book is updated. This can prevent unintentional
updating of the wrong version of a book in a particular sublibrary. Specify
the character C in the CAT ALS statement to request change level
verification. Example:

CATALS M.BOOK1,1.1,C

To update the book you must supply the current change level of the book
in the update control statement. This change level is then cheeked against
the change level in the directory entry and, if they match, the book is
updated and its change level is increased by one to reflect the new status
of the book. If you want to overwrite the version and modification
numbers of a book, supply the new change level information in the END
statement of the update function. If change level verification is requested
for a particular book, the letter C will appear in the column headed LEV
CHK (level check) in the DSERV listing.

Deleting Members from the Libraries. You can delete an unwanted
member from a library either by cataloging a new member with the same
name or by means of the delete function of the librarian, using the
following control statements:

Core image library . . .
Relocatable library
Source statement library
Procedure library

DELETC
DELETR
DELETS
DELETP

To delete individual members from the libraries, you must specify each
member name in full in the delete control statement. If a group of
members is to be deleted, however, you can simplify the specification of
the control statement provided that the recommended naming conventions
were used:

• If all the phases of one program in the core image library were named
with the same first four characters, you need to specify only these
four characters to delete the entire program.

• You can delete all modules in the relocatable library that have the
first three characters in common by specifying these three characters
in one delete control statement.

• Similarly, you can delete an entire sublibrary from the source
statement library by specifying the sublibrary name.

Chapter 3: Using the System 3-123

Since no special naming conventions apply to the procedure library, each
cataloged procedure to be deleted must be specified individually.

You can also use the delete ALL function to remove all elements of a
relocatable library, source statement library, procedure library, or private
core image library. In this case, the system directory information is
updated to show that all blocks of the library in question are available for
cataloging programs; no condense operation is required. You cannot delete
the entire system core image library, but only individual phases or
programs.

The following job deletes (1) all phases whose name begin with PHAS
from the core image library, (2) modules MODI and MOD2 from the
relocatable library, (3) sublibrary P from the source statement library, and
(4) all the elements of the procedure library:

II JOB DELETE
II EXEC MAINT

1*
Is

DEL ETC PHAS.ALL
DELETR MOD1,MOD2
DELETS P.ALL
DELETP ALL

When you request the deletion of a library member, the name of the
member is no longer addressable in the corresponding directory entry.
The system is then no longer able to recognize the member although it is
still physically present in the library. The area taken up by such a member
can be referred to as unavailable free space. To make such space available
again for cataloging programs, use the condense function of the MAINT
program. The delete and condense functions are illustrated in Figure
3-34.

In case an entire component is deleted, the component entry in the system
history file should also be deleted using the seIVlce program MSHP
(Maintain System History Program).

When a phase is deleted from the system core image library, it is also
flagged as not present in the system directory list (if applicable). The
shared virtual area cannot be condensed; it must be recreated. See
Building the SDL and Loading the SVA under Starting the System
earlier in this chapter.

Condensing the Libraries. When you delete a member from a library, the
space occupied by the 'deleted' member is unavailable for cataloging new
members (see Figure 3-35). The condense function of the MAINT
program removes the corresponding entry from the directory and makes
the space available f9r cataloging.

To condense any of the system libraries you use the CONDS control
statement specifying which of the libraries is (are) to be condensed. The
following job condenses the core image, relocatable, and source statement
libraries after the deletion of members from the libraries:

3-124 YSE/ Advanced Functions System Management Guide

II JOB DELCOND
II EXEC MAINT

1*
1&

DELETC PHAS1,PHAS5,PROGA
DELETR MOD.ALL
DELETS P.ALL
DELETP ALL
CONDS CL
CONDS RL
CONDS SL

Chapter 3: Using the System 3-125

f:'\ Assume that phases A. B. and C are cataloged in the o core image library (c.i.\.) . Each core image directory
(c.i.d.) entry. which refers to one of these phases.
points to the beginning disk address of the phase.

o If phase B is no longer desired in the core image

\V library. specify (DELETC B I. which deletes the

name B from the directory.

f3\ To make full use of the core image library. eliminate

\V the unavailable free spaces by specifying

(CONDS CL 1

First area avai lable
for cataloging

}C.i.d.

}ou

}C.i.d.

space - unavailable because
no other program can be cata­
loged in this area.

First area available
for cataloging

} c.i.d.

}u

Figure 3-35. Example of Deleting and Condensing

3-126 VSE/ Advanced Functions System Management Guide

Note that you need not condense a library -- in the above example, the
procedure library -- if that library is deleted entirely.

If a condense operation is interrupted by a hardware error or by an
operator intervention before the next statement is read, the library being
condensed is unusable and must be rebuilt. Note that the condense
program shows all the symptoms of a looping program, but should never
be canceled by the operator.

There are two methods for condensing libraries that do not use the
MAINT program. Both methods involve copying only the undeleted
library members to a new volume.

• The utility programs BACKUP and RESTORE can be used if your
installation has magnetic tape drives installed. The BACKUP program
copies libraries to tape but doesn't copy deleted members. The
RESTORE program copies the tape volume to a disk recreating your
libraries. For more details see VSEj Advanced Functions System
Utilities.

• The Copy and Reorganize program (CORGZ) copies libraries from
one disk extent to a different disk extent. Deleted members are not
copied. See the section Organizing the Libraries later in this chapter
for information on the CORGZ program.

Specifying the Condense Limit. You can specify that a message is to be
delivered to the operator whenever the number of available blocks in a
library drops below a specified minimum, which is referred to as the
condense limit. Through the CONDL statement you specify the library or
libraries and the condense limit(s).

Example:

II JOB CONDSLMT
II EXEC MAl NT

CONDL CL=10
1*
1&

In the above example, the CONDL statement specifies that, whenever the
number of available library blocks falls below 10, a message is to be
issued. (Note that the term 'block' as used here should not be confused
with the block on an FBA device. A library block is a general physical
entity and applies to both CKD and FBA devices.)

The condense limit should always be less than the number of blocks
allocated to the library; otherwise this message is given after each
maintenance function. The MAINT program stores the condense limits in
the library descriptor, which can be displayed at the end of each librarian
maintenance job. If a library has reached a condense limit, this is
indicated in the status report by a note.

When Condense Can Be Performed. While the condense function is being
executed, the library directories do not represent the actual status of the
library. Thus, if a program in any partition were to attempt to use the
library in any way, the results would be unpredictable. For this reason,

Chapter 3: Using the System 3-127

various controls are provided to minimize the chances of unpredictable
results:

• Condensing of a system library can only be done from the background
partition, and no foreground partition may be active.

• A private library can be condensed from any partition; however, the
library must be dedicated to that partition.

• A job stream to condense a procedure library cannot be executed
from a cataloged procedure.

The CONOL control statement (which sets the condense limits) can be
submitted with the MAINT program at any time.

A partition is inactive if it has never been activated with a START or
BATCH command or has been deactivated with an UNBATCH
command.

Even if a program such as VSE/POWER is not doing any work, if it is
resident in a partition, that partition is considered to be active.

RenanrlDg Members in the Libraries. To change the name of a library
member, use the rename function. In a control statement, you supply the
existing name and the name to which you want to change it. If the new
name is identical to a name already cataloged in the library, an error
message is issued. You must then select a different name and resubmit the
job.

When you name a phase in the system core image library that is also listed
in the system directory list, the old phase name in the SDL is replaced by
the new one.

After a valid rename operation, the system recognizes only the new name.
The version and modification level (change level) is not changed by the
rename function.

Each type of library has a unique rename control statement:

Core image library . . .
Relocatable library
Source statement library
Procedure library

RENAMC
RENAMR
RENAMS

. RENAMP

The rename function can be used to establish naming conventions. All
phases in the core image library that have the first four characters in
common are considered to belong to one program. All modules in the
relocatable library that have the first three characters in common are
considered to belong to one program. Since the names of ffiM-supplied
relocatable modules begin with the letter I, it is of advantage to avoid this
first character when naming user modules. Similarly, you should avoid the
use of the first characters A through I, P, R, and Z when renaming
sublibraries in the source statement library. These prefixes are reserved for
ffiM-supplied components. Names for procedures cataloged in a procedure
library can consist of any combination of alphanumeric characters as long
as they adhere to the naming rules for- procedure names.

3-128 YSE/ Advanced Functions System Management Guide

Organizing the Libraries

Renaming a member of a library can be advantageous in a testing
environment. For instance, after making changes to your source deck,
rename the previous version residing in the library and catalog the new
source under the original name. This assures you of backup until your new
program is in working order, at which time you can delete the old
(renamed) version(s).

Updating Books in the Source Statement Library. The update function
applies only to a source statement library. This function revises one or
more source statements within a particular book. By using update you can
make minor changes to a book, without having to catalog an entire new
book.

Besides adding, deleting, or replacing a certain number of source
statements within a book, the update function allows you to:

• resequence statements within a book.

• revise a change level (version and modification) of a book.

• add or remove the requirement for change level verification.

• copy an entire book and rename the old book (for backup purposes).

The UPDATE control statement identifies the update function. This
statement may also be followed by one or more of these additional
statements as required:

) ADD To add source statements
) DEL To delete source statements
) REP To replace source statements.

The) END statement indicates the end of updates to the particular
book specified in the UPDATE control statement.

If the requirement for change level verification was specified in the
CAT ALS control statement when a book was cataloged, the version and
modification level must be specified in the UPDATE control statement
that refers to this book. This change level must agree with the current
change level in the directory entry for that book. (Check the DSERV
listing for the current change level and/or requirement for change level
verification. For more information on the DSERV program, refer to the
section Displaying the Directories.) The specification of the version and
modification level in the UPDATE statement prevents you from
inadvertently making an update based on a book with the wrong version
and modification. Regardless of whether or not the requirement is in
effect, the version. and modification level are incremented by one after
each update. If a version and modification level is specified in the) END
statement, this overrides the current change level.

The Copy and Reorganize (CORGZ) program and the Copy Service
(COPYSERV) program are tools for establishing and organizing your
libraries during system generation or any time thereafter. The following

Chapter 3: Using the System 3-129

discusses these programs, their functions, and their application to your
library organization requirements.

Copy and Reorganize Program (CORGZ). The functions of the CORGZ
program are to:

• Create a new system residence (SYSRES).

• Transfer members between any two existing libraries of the same type,
as follows:

all members, or
some members, or
only those members which do not yet exist in the receiving
library.

• Create private libraries.

The first two points are described in this section. The creation of private
libraries is discussed in Creating and Working with Private Libraries, later
in this chapter.

The CORGZ program can be executed in any partition. The program is
invoked by the statement

II EXEC CORGZ

After an update of a library, a status report of the library just updated is
printed on SYSLST.

Input and output devices must be of the same disk architecture (CKD or
FHA). Given, for instance, a CKD device as input, output cannot be an
FHA device.

The functions to be performed by the CORGZ program are specified in a
set of librarian control statements, which are discussed below.

Creating a New System Residence. When system generation is completed,
you will want a backup SYSRES, which can save you regenerating the
system from your distribution medium if the operational pack is
inadvertently destroyed. This backup SYSRES is usually kept on tape
(from which it can be restored using the RESTORE utility program), but
may also be kept on a disk of the same device type as the original
SYSRES. If the backup SYSRES is to be on disk, use the CORGZ
program with the ALLOC and COPY control statements to define the
new SYSRES file and copy the entire contents of the original SYSRES
file onto it.

You can also copy the SYSRES file selectively; that is, the new system
residence will contain only part of the original SYSRES. This may be
useful in an installation that uses certain components only during specific
processing periods. For instance, if telecommunication and support for five
partitions is required only during the prime shift, a different system
configuration (for instance, no telecommunication and three partitions)
could be used during the second shift. Therefore, you could copy onto a
new SYSRES file only those components required for the second shift and
add any additional components needed to that SYSRES. In this case, you

3-130 YSE/ Advanced Functions System Management Guide

L

L

must assemble a new supervisor and catalog it into the new SYSRES file.
The effect is a smaller supervisor and smaller libraries on both system
residence packs which means faster access to library elements and, thus,
improved overall system performance.

When you create a new system residence, SYS002 must be assigned to the
device on which the new SYSRES pack resides. The device types of
SYS002 and SYSRES must be identical. Note that the mM 3330-1 and
3330-11 are of the same device type; the same is true for the mM
3340-35 MB and 3340-70MB. In addition, you must define the extents of
the new SYSRES file by means of DLBL and EXTENT job control
statements. The file name in the DLBL statement must be USYSRS. The
lower extent limit must be relative track 1 for a CKD device or block 2
for an FBA device, and the upper extent limit must include the label
information area.

The information to be copied from the original to the new SYSRES is
specified in one or more of the following COPY control statements:

COpy ALL to copy the entire system residence file. You can use this
form of the COpy statement only if all four system
libraries are allocated on the original SYSRES file;
otherwise, you must use a combination of the following
COPY statements.

COPYC
COPYR
COPYS
COPYP

to copy one or more members, one or more
groups of members, or all members of the
Core image, Relocatable, Source statement
or Procedure library.

If more than one copy control statement is submitted for several libraries,
these statements should be grouped per library (for example, first all
COPYC statements, then all COPYR statements, and so on). A COpy
ALL or COPYx ALL statement must neither be preceded nor followed by
any other copy statement for the same library.

Note: The names of all members copied are printed on SYSLST if you specify / /
UPSI 10000000.

The following job creates a backup SYSRES file on a 3330 disk drive.
The example assumes that the original SYSRES file does not contain a
procedure library:

II JOB BACKUP
II ASSGN SYS002,131
II DLBL IJSYSRS,'VSE SYSRES BACKUP',99/365,SD
II EXTENT SYS002,111111,1,O,OOOl,2127
I I EXEC CORGZ

1*
1&

ALLOC CL=50(5),RL=30(5),SL=30(5),PL=O(O)
COPYC ALL
COPYR ALL
COPYS ALL

Since the 3330 is a CKD device, all space allocations in the ALLOC
statement are in number of cylinders. The number of tracks in the
EXTENT statement (2127) is the sum of: the library allocations (110
cylinders x 19 trks), minus 1 track (cylinder 0, trk 0); plus the label

Chapter 3: Using the System 3-131

j

\

information area (2 cylinders x 19 trks). For FBA devices the space
allocations are given in number of blocks.

For each CORGZ run to create a new SYSRES file, an ALLOC control
statement is required, preceding any COpy statements. If you wish to
exclude an entire library from being copied, specify a 'zero' allocation (for
example, RL=O(O». But note that you cannot eliminate the system core
image library because it is required for system operation. Assume that you
have a SYSRES file that contains all four system libraries and you want to
create a second SYSRES file containing only selected information from
the core image library and the entire relocatable library. The following job
creates this new SYSRES file (device type FBA assumed):

II JOB SYSRES
II ASSGN SYS002,131
II DLBL IJSYSRS,'VSE SYSRES II',99/365,SD
II EXTENT SYS002,111111,1,O,0002,12708
II EXEC CORGZ

1*
1&

ALLOC CL=7500(75),RL=5000(50),SL=O(O),PL=O(O)
COPYC PHAS.ALL,PROG.ALL,ABCD.ALL
COPYR ALL

The EXTENT statement reflects a SYSRES file beginning at block 2
comprising 12,708 blocks: 12,500 blocks make up the libraries, 200 blocks .
are allocated as the label information area, and the first 8 blocks are to be
reserved for system information.

Phases whose names start with a '$' are automatically copied by the
CORGZ program. This provides you with the essential components of
VSE/ Advanced Functions listed below:

• mM supplied supervisor ($$A$SUPn)

• Initial program load (IPL)

• All logical and physical transients

• Job control

• Linkage editor

User created elements can also be copied automatically:

• Phases that you have cataloged with a '$' as the first character (such
as a tailored supervisor)

• Partition and system standard labels (cataloged with the PARSTD and
STDLABEL options) from the label information area (see Note).

Therefore you may execute the CORGZ program without any COpy
statements, and the above items will be copied automatically onto the new
SYSRES file.

Note: The CORGZ program does not copy an alternate label information area that
you defined through the DLA command.

3-132 VSE/Advanced Functions System Management Guide

Changing the Size of the System Libraries. You can use the CORGZ
program to

• increase the size of a system library for further additions

• decrease the size of a system library; for example, to provide space for
extending other libraries.

The size changes appear only on the new SYSRES file.

When you increase the size of one library, you must consider the space
remaining for the libraries that follow.

Figure 3-36 shows the available disk space by device type. FBA space
requirements are in number of FBA blocks, all others are shown in
number of cylinders.

Label Disk space Device Type VTOC information
area available

CKD:
2314/2319 1 2 197

3330/3333 1 2
Modell 1 2 401
Model II 803

3340 1 3
w/3348 M35 1 3 344 w/3348 M70

692
3350 1 1

554
FBA (see note):
3310 16 200 125798
3370 16 200 557782

Note: FBA space requirements show the default sizes in FBA blocks; the size of the
VTOC may be changed by an Initialize Disk utility run and that of the label information
area by a RESTORE utility run. For more information, see VSE/Advanced Functions
System Utilities.

Figure 3-36. Disk Space Available for System Libraries

Assume, for example, that the SYSRES library space on a 2314 was
allocated during system generation as

CL=90(5),RL=40(2),SL=60(3),PL=6(5)

An attempt to allocate 120 cylinders to the core image library on the new
SYSRES pack would fail, because there is not enough space available for
all of the following libraries. To avoid this, you must reduce one or more
of these libraries to compensate for the increase. For example, reduce the
combined sizes of the relocatable and source statement libraries by 29
cylinders. In this case, the ALLOC statement should read:

ALLOC CL=120(7),RL=30(2),SL=41(3),PL=6(5)

The following example shows the job control statements required to
allocate the new system libraries as discussed above when the SYSRES
device type is 2314/2319:

Chapter 3: Using the System 3-133

II JOB REALLOC
II ASSGN SYS002,131
II DLBL IJSYSRS,'VSE SYSTEM RESIDENCE II',99/365,SD
II EXTENT SYS002,111111,1,O,OOOl,3979
II EXEC CORGZ

ALLOC CL=120(7),RL=30(2),SL=41(3),PL=6(5)
COPY ALL

1*
1&

For CKD devices, like the 2314 in the above example, allocations are
given in cylinders for the libraries. Because the SYSRES file begins at
cylinder 0 track 1, the EXTENT statement must take the following into
account:

CL = 120 cylinders x 20 tracks = 2400

RL = 30 cylinders x 20 tracks - 600

SL = 41 cylinders x 20 tracks - 820

PL = 6 cylinders x 20 tracks - 120 ----
3940

Label information area (2314/19)
2 cylinders x 20 40

Less cylinder 0, track 0

This SYSRES file comprises 3979 tracks.

3980

-1

3979

No special considerations apply for reducing the size of a library except
that you must also supply the necessary label information for the new
SYSRES extent. Reducing a library does not cause any gaps, that is, the
libraries following the one that was reduced are 'moved up' to close the
gap. If your allocations are too small for the existing library members, the
job is canceled and an appropriate message is displayed. At this point in
time, the libraries are still intact.

Transferring Members between Libraries. If you work with more than one
system residence pack or private library, you may want to transfer
members from one library to another. You can use the CORGZ program
with a MERGE statement to transfer the elements. This is especially
useful for system generation when a new version of the system is
installed; you can then copy the library elements directly from the old
version to the new one.

You use the MERGE control statement to define the characteristics of the
libraries to be merged and the direction of transfer between the libraries.
The operands of the MERGE control statement are:

RES -- For the system libraries on the system residence file.

NRS -- For the system libraries on a modified or duplicate system
residence file that is not currently IPLed.

3-134 VSE/ Advanced Functions System Management Guide

PRY -- For any private libraries.

For example, the statement MERGE RES,PRY indicates to the CORGZ ,
program that elements are to be transferred from one or more libraries on ' II
the system residence file to the corresponding private libraries.

The device types of the input and output devices may be different, within
the same disk architecture (CKD or FBA). However, when requesting

MERGE RES, NRS or
MERGE NRS,RES

the device types must be the same.

Note that the mM 3330-1 and 3330-11 are of the same device type, the
same is true for the mM 3340-35MB and 3340-70MB.

The type of library involved and the elements to be transferred are
specified in COPY statements immediately following the MERGE
statement. (The COPY statements are the same as those described under
Creating a New System Residence earlier in this chapter.)

You must define the extents of the libraries involved in a merge operation
by DLBL and EXTENT job control statements. The file names to be used
and the necessary library definitions and symbolic unit assignments are
described in detail in VSE/ Advanced Functions System Control Statements.

When the CORGZ program performs a merge operation, it does not
automatically copy the basic system components as it does when a new
system residence is created (see preceding section). You must specify
COPYC ALL to transfer the entire core image library or COPY ALL to
transfer the entire SYSRES extent.

The job in the following example adds the contents of the core image
library on a duplicate SYSRES file (NRS) to the elements in a private
core image library (PRY). Any elements with duplicate names (supervisor,
job control etc.) are deleted from the receiving library.

II ASSGN SYS002,130
II DLBL IJSYSRS,'VSE SYSRES II',99/365,SD
II EXTENT SYS002,111111,1,O,OOOl,2519
II DLBL NEWCIL,'PRIVATE CIL',99/365,SD
II EXTENT,222222,1,O,1600,200

LIBDEF CL,TO=NEWCIL
II EXEC CORGZ

1*
1&

MERGE NRS,PRV
COPYC ALL

Alternatively, for the COPYC, COPYR, COPYS, and COPyP statements,
the NEW operand can be used to copy only those members that do not
already exist in the receiving library. However, for COPYC NEW:

• supervisor phases are never copied, and

• a number of system phases are always copied.

For a list of phases that are always copied see VSE/ Advanced Functions
System Control Statements. In addition, when using the NEW operand,

Chapter 3: Using the System 3-135

!
I
j
I

ensure that your receiving library has sufficient space allocated to
accommodate the library members that are copied from the other library.

The job in the following example also adds the phases of the core image
library on a duplicate SYSRES file (NRS) to the phases in a private core
image library (PRV). In this example, only nonduplicate elements are
copied.

II JOB NRSPRV
II ASSGN SYS002,130
II DLBL IJSYSRS,'VSE SYSRES II',99/365,SD
II EXTENT SYS002,111111,1,O,OOOl,2519
II DLBL NEWCIL,'PRIVATE CIL',99/365,SD
II EXTENT,222222,1,O,1600,200
LIBDEF CL,TO=NEWCIL
II EXEC CORGZ

1*
1&

MERGE NRS,PRV
COPYC NEW

Each major CORGZ operand (ALLOC, MERGE, or NEWVOL) may be
followed by several COpy statements. A mix of the major operands
within one job step is not allowed; however, several MERGE operands
may appear within one job step.

Copy Service Program (COPYSERV). This program compares library
directories and, on finding differences in contents, produces corresponding
COpy statements for use with the CORGZ program. It thus provides a
similar function as a MERGE COPYx NEW of CORGZ.

The program allows comparison of both system and private libraries. The
libraries you wish to have compared must be defined by the appropriate
ASSGN, DLBL, and EXTENT statements.

The LmDEF statement cannot be used. Moreover, if a private library had
been created with a LmDEF definition and predetermined file names had
not been used, COPYSERV cannot access that library. The new (or
target) library must be assigned to SYS003, with a file name of USYSNR.
If private libraries are involved, it is necessary to provide an additional
definition of your compare requirements by means of the UPSI statement.

The COPYSERV program supports CKD devices only.

COPYSERV can be executed in any partition; it is invoked by the
statement / / EXEC COPYSERV. At the completion of a COPYSERV
run, you will receive the following types of statements on SYSPCH which
you can include in a CORGZ job stream:

II EXEC CORGZ
MERGE RES,PRV
COPYC phasename

1*
1&

For ease of correcting the output, you get this output sorted by member
names.

3-136 VSE/Advanced Functions System Management Guide

COPYSERV, in addition, provides a printout with

• A listing of "the punched output.

• The number of additional directory entries needed in the new library.

• The number of additional library blocks needed to accommodate the
new library.

For a COPYSERV /CORGZ job stream example in the context of a
system generation, refer to the System Generation Procedures in
VSE/ Advanced Functions System Generation.

With the job stream shown below, a comparison between a current and a
new private source statement library is executed by COPYSERV.

II

1 ~ jj
i II

2 ~ jj
1 II

3 II
II
1&

JOB COPYSERV
DLBL IJSYSSL,'OLD.PVT.SOURCE.STMT.LIBRARY'
EXTENT SYSSLB
ASSGN SYSSLB,132
DLBL IJSYSNR,'NEW.PRV.SOURCE.STMT.LIBRARY'
EXTENT SYS003
ASSGN SYS003,133
UPSI 00100010
EXEC COPYSERV

1 Label and assignment statements for the current (or source) library.

2 Label and assignment statements for the new (or target) library.

3 Required UPSI setting for comparing two private source statement libraries.

For more details on the COPYSERV program see VSE/Advanced
Functions System Control Statements.

Using the Service Functions of the Librarian

The service functions of the librarian enable you

• to obtain reports on the contents of your libraries by displaying the
directories on SYSLST.

• to print the contents of your libraries on SYSLST, to punch these
contents on SYSPCH, or both (in order to transfer the library
members to a different location or to correct them).

• to prepare macro definitions in the assembler macro (E) sublibrary for
update.

If you use private libraries, the service functions apply only to the defined
private libraries; 'defined' means: either you identified the library in the
FROM parameter of a LmDEF statement, or you ASSGNed the pertinent
logical unit number. If you access a system library and do not identify it
via LmDEF, make sure that the corresponding private library is
unassigned. A system library, if specified in the FROM parameter, is
identified by the file name USYSRS, regardless of the type of library.

Displaying the Directories. Using the directory service program (DSERV),
you can obtain a listing of the following directories:

Chapter 3: Using the System 3-137

• Core image directory, or the directory entry of a specific phase or
group of phases in the core image library together with their change
level, if present

•

•

•

•

I ·

System directory list (SDL)

Relocatable directory

Source statement directory

Procedure directory

Status report. Size and level of contents of the defined private
libraries and of the system libraries. (This directory is always listed
before any of the directories is printed.)

Depending on the control statement used, the entries of a directory can be
displayed in the order as they appear in the directory (DSPL Y control
statement) or sorted (DSPLYS control statement).

Note: The entries in the core image directory are always stored in alphameric
sequence and therefore displayed in that sequence.

Within a single job step you can obtain multiple displays of the same
directory, either sorted or unsorted, by supplying a separate control
statement for each desired display. Similarly, any number of directories
can be displayed within one job step, depending on the operands in the
control statement. The following job produces a sorted listing of all
$-phases and unsorted listings of the relocatable and source statement
libraries:

II JOB DISPDIR
II EXEC DSERV

DSPLYS TD

1*
1&

DSPLY RD,SD

If you specify / / EXEC DSERV without any control statements, a status
report of all libraries present on SYSRES and all private libraries defined
(if any) is printed on SYSLST.

Displaying and Punching the Contents of the Libraries. You can use the
library service programs to obtain a listing, a card deck, or a card image
copy of the elements in a library. There is a service program for each
library:

CSERV -- Core image library
RSERV -- Relocatable library
SSERV -- Source statement library
PSERV -- Procedure library.

You request the library service functions by invoking (with / / EXEC) the
pertinent service program and one of the following control statements:

DSPL Y to print entries of a directory or the members of a library on
SYSLST.

PUNCH to punch the members of a library on SYSPCH.

3-138 VSE/ Advanced Functions System Management Guide

DSPCH to print and punch the members of a library on SYSLST and
SYSPCH, respectively.

Each of these statements can specify one or more individual members, one
or more groups of members, or all members of a library to be printed or
punched. The following job prints the entire sublibrary P and punches
phases PHAS 1 and PHAS3 of the core image library:

II JOB LIBSERV
II EXEC SSERV

DSPLY P.ALL
1*
II EXEC CSERV

1*
1&

PUNCH PHAS1,PHAS3

The SYSPCH output (in cards or on tape, diskette, or disk) of any service
program can be used as input for recataloging into the type of library
from which it was extracted.

With the PUNCH or DSPCH statements the CSERV program produces a
PHASE statement, naming the output phase, as the first statement on
SYSPCH. For the same operations the other service programs produce a
CAT ALR, CAT ALS, CAT ALP statement immediately preceding each
member on SYSPCH.

CSERV, RSERV and SSERV SYSPCH output is followed by a /*.
PSERV SYSPCH output has the end-of-procedure delimiter (default / +)
following each procedure and a /* following the last output procedure.
Such output can therefore be submitted as is with a / / EXEC MAINT
statement for recataloging.

The SYSPCH output of the CSERV program is suitable as input to the
linkage editor for recataloging to the core image library. The control
statement stream would be as follows:

II JOB RECATAL
II OPTION CATAL

INCLUDE

II EXEC LNKEDT
1&

CSERV output

The PHASE statement produced by the CSERV program reflects the
status of the phase. when it was first cataloged (relocatable, self-relocating,
non-relocatable or SVA elegible). If you wish to change the status you
must change the PHASE statement prior to re-linking.

Printed output from any of the service programs is useful for debugging
purposes. For instance, after determining an error from a dump or source
listing, you implement a change to the RSERV object deck by inserting
the appropriate REP card(s) directly before the END card and run the
MAINT program to recatalog the object module; then to verify that the
REP card was correct, execute the RSERV program to obtain a listing. An
SSERV listing may be necessary before a single statement update can be

Chapter 3: Using the System 3-139

f performed; after locating the statement in error in the listing, submit an
UPDATE maintenance run to implement the change in the source
statement library.

Preparing Edited Macros for Update. The assembler uses two sublibraries
of the source statement library: the macro sublibrary (sublibrary E) and
the copy sublibrary (sublibrary A). All macro definitions in the assembler
macro (E) sublibrary have been preprocessed by the assembler; they are
said to be edited. An edited macro definition cannot be directly updated;
instead, the source macro, either in a card deck or in the copy (A)
sublibrary is updated. After the changed macro has been tested and
debugged, it must be edited again before it can be recataloged in the
macro sublibrary.

If the macro to be updated is not available in source format, you can use
the ESERV program to convert the edited macro back to source format:
this is called de-editing. If the output of the ESERV program is to be used
directly as input to the assembler, you can specify the GENEND control
statement to cause the END card and a /* card to be included after the
last macro. If the output is to be cataloged directly into the copy (A)
sublibrary, you can specify the GENCATALS control statement. This
causes a CAT ALS card to be generated before each macro in the run and
a /* card after the last macro. If neither the GENEND nor the
GENCATALS control statement is specified after the / / EXEC ESERV
statement, GENCATALS is assumed.

The remainder of the control statements that you can submit to the
ESERV program are the same as for the other librarian service programs:
DSPL Y, PUNCH, and DSPCH. The following job de-edits the macro
named MAC1:

II JOB DEEDIT
II EXEC ESERV

GENEND
PUNCH E. MAC 1

1*
1&

The output of the above job is the macro MAC1 in source format on
SYSPCH. An END card and a /* card is included after the macro. You
can now update the macro, edit it, and catalog it back into the E
sublibrary of the source statement library.

You can de-edit and update a macro in a single run by submitting the
necessary update control statements. The following job de-edits and
updates the macro MAC2. The result will be the updated macro in source
format on SYSPCH and a listing of the updated macro on SYSLST:

II JOB EDTUPDTE
II EXEC ESERV

GENCATALS
DSPCH E.MAC2

1*
1&

update control statements

3 -140 VSE/ Advanced Functions System Management Guide

The update function of the librarian is described in Updating Books in the
Source Statement Library, earlier in this section. Detailed information on
editing, de-editing, and updating macro definitions is given in Guide to the
DOS/VSE Assembler.

Creating and Working with Private Libraries

Private Library Creation

Private libraries are created and maintained by the system librarian
programs. All librarian functions are available for private libraries and
performed in the same manner as for system libraries. To change the
extents of a private library, create a new private library and copy the
contents of the old library into it.

The following sections describe how to create private libraries and what
you must consider when you use private libraries.

You can create private libraries either during system generation or at any
time thereafter. Private libraries can reside on the SYSRES pack (outside
the SYSRES extent) or on separate disk packs. You can define any
number of private core image, relocatable, source statement, and
procedure libraries.

You create private libraries with the CORGZ librarian program. The
creation of an operational private library involves two stages:

1. Defining the extents of the library by means of a NEWVOL (new
volume) control statement.

2. Transferring information to the library from an existing library by
means of COpy and/or MERGE control statements. (Note that the
NEWVOL and MERGE statements may not appear in one job step.)

To define the device on which a private library is to be created and the
disk extents occupied by the library, you must supply a set of LIBDEF (or
ASSGN), DLBL, and EXTENT job control statements. Use of the
ASSGN requires the specification of the following predetermined symbolic
unit names and file names (see Figure 3-37).

Private Library Symbolic Unit Name Filename

Core image SYSOO3 IJSYSPC

Relocatable SYSRLB IJSYSRL

Source statement SYSSLB IJSYSSL

Figure 3-37. Symbolic Unit Names and Filenames Required to Create
Private Libraries

You cannot use an ASSGN for the creation of a private procedure library.

If you use a LIBDEF statement, you need not be concerned about
predetermined names: the logical unit number in the EXTENT statement

Chapter 3: Using the System 3-141

; i
- I

should be left out altogether. And the file name of the TO parameter in
the LmDEF statement can be a name of your own choosing. It must,
however, be identical to the file name in the corresponding DLBL
statement.

You can store the label information submitted by DLBL and EXTENT
statements either temporarily (option USRLABEL) or permanently
(option PARSTD or STDLABEL). Temporary labels must be resubmitted
with every job (or job step, if new labels are submitted in an intermediate
job step) that accesses the corresponding library; permanent labels are
valid for all subsequent jobs.

The following example shows the job control and librarian control
statements necessary to define the extents of a private relocatable and a
private source statement library on CKD devices. The NEWVOL control
statement indicates the type of library to be created and the number of
cylinders (tracks) to be allocated to each library (directory) and the
number of tracks to be allocated to each directory.

II JOB DEFINE
II DLBL REL0111,'VSE PRIVATE RL',99/365,SD
II EXTENT ,111111,1,0,20,800
II DLBL SOURCE2,'VSE PRIVATE SSL',99/365,SD
II EXTENT ,222222,1,0,500,600
LIBDEF RL,NEW=REL0111
LIBDEF SL,NEW=SOURCE2
II EXEC CORGZ

1*
If.

NEWVOL RL=40(5),SL=30(5)

Note that the EXTENT statements have the first parameter, the logical
unit number omitted. When using ASSGN statements, the job stream
would look as follows:

II JOB DEFINE
II ASSGN SYSRLB,191
II ASSGN SYSSLB,192
II DLBL IJSYSRL,'VSE PRIVATE RL',99/365,SD
II EXTENT SYSRLB,111111,1,0,20,800
II DLBL IJSYSSL,'VSE PRIVATE SSL',99/365,SD
II EXTENT SYSSLB,222222,1,0,500,600
II EXEC CORGZ

1*
If.

NEWVOL RL=40(5),SL=30(5)

After you have defined the extents of the private libraries you can either
use the merge function of the CORGZ program to transfer members from
existing libraries or the catalog function of the MAINT program to store
new members.

To create a private library and at the same time copy information into it
from the corresponding system library, you submit a COpy statement
following the NEWVOL statement. To transfer information from an
existing private library, a MERGE statement must precede the COpy
statement. Note that NEWVOL and MERGE statements must not appear
within one job step. The following job creates a private relocatable library

3-142 YSE/ Advanced Functions System Management Guide

and copies into it the contents of the system relocatable library and of an
existing private relocatable library:

II JOB CREATE
II DLBL IJSYSRL,'NEW PRIVATE RL',99/365,SD
II EXTENT ,111111,1,0,1700,1200
II DLBL IJSYSPR,'OLD PRIVATE RL',99/365,SD
II EXTENT ,222222,1,0,700,400
II LIBDEF RL,NEW=IJSYSRL
II EXEC CORGZ

1*

NEWVOL RL=60(8)
COPYR ALL

II LIBDEF RL,FROM=IJSYSPR,TO=IJSYSRL
II EXEC CORGZ

1*
1&

MERGE PRV,PRV
COPYR ALL

The LffiDEF statement illustrates that you may very well restrict yourself
to predetermined file names, but you don't have to. Two job steps are
required, because NEWVOL and MERGE may not appear in one job
step.

Note: When using ASSGN statements, then in order to merge from a private
relocatable library,. you must assign SYSOOI to the device containing the library and
specify the file name IJSYSPR in the DLBL statement. The logical unit assignments
and file names required for the various merge operations are described in
VSE! Advanced Functions System Control Statements.

If after you have created a private library you want to change its extents,
you have to create a new private library and copy the contents of the old
library into it.

Private Core Image Library Creation. The organization of a private core
image library is the same as that of the system core image library, A
private core image library, however, may start on any track. The space
requirements must be entered in the NEWVOL statement.

For example, on a 3330 device, the statement NEWVOL CL ... 20(5)
creates a directory of five tracks and a library of 20 cylinders. To create
this private core image library starting at relative track number 190, you
submit the following control statements:

II JOB PCIL
II ASSGN SYS003,191
II DLBL IJSYSPC, 'VSE PRIVATE CL' ,99/365,SD
II EXTENT SYS003,111111,1,0,0190,380
II EXEC CORGZ

1*
1&

NEWVOL CL=20(5)

In the above example, the core image directory resides on cylinder 10
(tracks 0-4), and the private core image library on cylinders 10-29.

If you desire to start a private core image library on track 1 of cylinder 0
(of a CKD disk) and have it end on a cylinder boundary, the EXTENT
statement specifies a number of tracks that is one less than in the

Chapter 3: Using the System 3-143

Using Private Libraries

corresponding NEWVOL specification. The EXTENT statement in the
preceding example then reads:

II EXTENT SYS003,111111,1,O,1,379

Transferring phases from another core image library would require a
second job step.

In order to use private libraries, you must make them known to the
various programs that access the libraries. This is done by LIDDEF or
ASSGN job control statements.

Using the ASSGN Statement. When private libraries are defined to job
control through ASSGN statements (or commands), the following rules
should be observed:

To access the private libraries via ASSGN SYSxLB, you must assign the
following symbolic unit names to the device(s) containing the libraries:

SYSCLB -- Private core image library
SYSRLB -- Private relocatable library
SYSSLB -- Private source statement library

To create a private core image library, the symbolic unit name is SYS003
and, in the DLBL statement, file name USYSPC must be specified. To
access the private core image library, symbolic unit name and file name
are SYSCLB and USYSCL, respectively. For private relocatable and
source statement libraries, the symbolic unit names are the same for
creation and subsequent access.

You can assign private relocatable libraries and private source statement
libraries either temporarily or permanently by an ASSGN command or
statement; you can assign private core image libraries only by an ASSGN
command (that is, permanently). An ASSGN statement (or command)
can never be used for a private procedure library.

Unless you have cataloged partition or system standard labels for the
pertinent private library, you must submit DLBL and EXTENT statements

• when you assign a private core image library

• with every job that accesses a private source statement or private
relocatable library.

The file names and file identifications in the DLBL statements must be
identical to those specified when the libraries were created.

A private library must be unassigned if maintenance and service functions
are to be performed on the corresponding system library because the
librarian programs assume that the private library is intended whenever
assigned. Therefore if, by mistake, your private relocatable library is
assigned when you request changes in the system relocatable library, these
changes will be performed on the private relocatable library, and you may
have to rebuild this library, depending on the nature of the changes. The
only system service programs that can access the system libraries when

3-144 VSE! Advanced Functions System Management Guide

SYSRLB and SYSSLB are assigned are the linkage editor and the
CORGZ librarian program.

You can have an unlimited number of private libraries in your system;
however, no more than one private core image, one private relocatable,
and one private source statement library can be assigned at one time to
the same partition.

Using the LmDEF Function. Usage of LmDEF library definition not only
removes the above restrictions, but also helps you to expand on your
private library setup. (The LmDEF job control statement is introduced
earlier in this chapter, in section Controlling Jobs; you find a detailed
description in VSE/Advanced Functions System Control Statements.)

Over and above what is possible with the ASSGN statement, the LmDEF
statement allows

• to define private procedure libraries.

• to define private core image libraries temporarily, that is, for the
duration of the current job only.

• to perform maintenance and service on system libraries while the
corresponding private libraries are still assigned (via ASSGN) or
defined (via LmDEF).

• to have more than one private library of a given type defined at any
point in time, within one partition, in a search chain.

• access a private library under a file name that is different from the
one specified when the library was created (the file identifications,
however, must always be identical).

The ability to concatenate libraries (by defining search chains) allows to
distribute the contents of a given library type over several libraries. This
gives more flexibility in allocating the entire disk space available at your
installation. Also, smaller libraries allow for more economical library
maintenance.

Defining a SEARCH chain makes the contents of several libraries appear
as one library for search purposes. As a general rule, the search sequence
is in the order that you indicated in the SEARCH parameter of the
LmDEF statement. Special considerations apply for searching of core
image libraries; they are described below.

Concatenation of several libraries allows to tailor the library definition for
a particular partition or for a particular application. Among other things,
you may

• change the normal library definitions for a special-purpose run or for a
test run. Assuming that you normally execute programs with a library
definition of

LIBDEFCL,SEARCH=(TRANSNT,PRODCIL),PERM

Chapter 3: Using the System 3-145

and you want to test a new version of a program before you catalog it
into the production library (file name PROOCIL), you would define
for the test run the following chain:

II DLBL TESTCIL,'UNTESTED PROGRAMS', ...
II EXTENT ,VOL003, ...
LIBDEF CL,SEARCH=(TRANSNT,TESTCIL,PRODCIL),TEMP

• add your own libraries to the ones supplied by mM. For example, if
you assemble a program for a telecommunication application and use

the system source statement library

CICS/VS macros

your own macros,

a library chain definition might look as follows:

LIBDEFSL,SEARCH=(MYMACRO,CICSSS)

Search Order for Private Core Image Libraries. When a phase is to be
fetched or loaded or a SET SOL command is processed, various
directories are searched until the phase is found. The sequence in which
the directories are searched depends on the name of the phase and on the
job control definition of libraries.

Figure 3-38 shows the search sequence for phases starting with $ and
those starting without $, separated by library definition (LmOEF versus
ASSGN job control statements).

LIBDEF ASSGN

non-$ phase $ phase non-$ phase $ phase

(1) SOL SOL SOL SOL

(2) temporary search system core private core image system core
chain image library library (if image library

assigned)

(3) permanent search temporary search system core private core
chain chain image library image library (if

assigned)

(4) system core permanent search
image library chain

Figure 3-38. Search Sequence for $ and non-$ Phases

By default, the system directory list (SOL) is searched first. You may
override that default by placing the SOL anywhere in a temporary search
chain. Specify 'SOL' at the appropriate position within the list of file
names in the LmOEF SEARCH parameter; for example:

LIBDEFCL,SEARCH=(PRODCL1,PRODCL2,SDL),TEMP

However, if you intend to explicitly include both SOL and USYSRS (for
the system core image library) in the search chain, place SOL ahead of
USYSRS. This ensures that linkage to an SV A resident phase is in fact
established when a FETCH for that phase is requested. If you specified

3-146 YSE/ Advanced Functions System Management Guide

Ll"'\K.A~lC!;. V'<1 FIXf')
~L~,Co(. ARLhITtC1U t:
(<PAl ""VIU,:

SV5QC~ V~L.~rR.sy~7rS
PPI'JC5:"['ltJRf CIG.fCTDRV

LI2~AK:V

Iv
211

M01"
"211

I '>2 Ie
1>211

Z'-4C'1"
24<11

the two keywords the other way round, the phase would get loaded into
your partition, and linkage to the SV A would not be set up.

If you link edit a non-$ phase with OPTION LINK and you request
execution of the linked program, the link directory of the temporary
TO-library (if provided) is searched first. If only a permanent TO-library
is defined, its link directory will be searched first. These directories are
searched last, if the phase link edited with OPTION LINK is a $ phase.

The search sequence during the processing of a SET SDL command is as
described in figure 3-38; however, only the background partition is taken
into account.

Using System Libraries as Private Libraries. It may be desirable to use the
system libraries as private libraries for certain applications. This is a
helpful technique when generating your system; you could, for example,
assign system libraries of a follow-on release as private libraries.

In order to use any of the four eligible libraries as a private library you
must know their begin and end locations on the disk volume. This
information is found in the library status report which you can get by
running the DSERV program. You should note that, when using the
system core image library as a private library, that library does not begin
at the low address of the SYSRES extent. For CKD disk devices, although
the SYSRES extent begins at cylinder 0, track 1, the library begins at
cylinder 0, track 2. For FBA devices SYSRES begins at block 2, and the
library begins at block 10. Figure 3-39 is a sample of a status report
produced for a SYSRES file on an FBA device.

r~F: ('6/l' 17'> (~"\/rClYv) TI~l: 17.30 (HH.M~1

E,.T~lt' .CITV' !h

lv~It~~~[t0~~:·L.~'f'\ir tU

2 ,00 r31 ..
'" 4~/ 21(" 201

550' i.{C'~~ 77"" 244~ r 6~

5139 l'1Z " ,:<U7 .!t 34 "2\(' 201
160(;'-4 77 0 4 I>O~l

(, i,
9.)~·

loCi 1 l!tr.'
16711 ? .. C...:9

;4CII 21.tL H'
~ 4211 !':NN

201
77~C, fJ

21"11
77"J 1)

~r~T ~VAILA~L~ LG(A1IC~: ~A317

5240
77,,9

Figure 3-39. Library Status Report for SYSRES on an FBA Device

When accessing a system file as a private library, the file name of the
DLBL statement should reflect the private library name. The file-ill of
the DLBL statement must be the original file-ill of the SYSRES file.

The following job stream would be used to merge from a system residence
into a duplicate system residence whose 20 cylinder relocatable library is
being used as a private library. (Assume the disk packs are 3330s),

Chapter 3: Using the System 3-147

1
li

1
o

I
I
I

II JOB MERGE
II DLBL DUPLSYS,'DOS.SYSRES.FILE'
II EXTENT ,SYSRES,1,0,570,380
II LIBDEF RL,TO=DUPLSYS
II EXEC CORGZ

1*
1&

MERGE RES,PRV
COPYR M001,M002

The DLBL/EXTENT statements refer to the target library.
DLBL/EXTENT information describing the IPL SYSRES file is assumed
to be in the standard label area.

As another example, you may want to create a backup copy of your
system core image library as a private library on magnetic tape. The
following job stream illustrates the use of the Backup System utility to
achieve that. The system core image library takes up blocks 10 through
8009 of an FBA device (see the Status Report in Figure 3-39).

II JOB BACKUP
II ASSGN SYS005,UA
II DLBL IJSYSHF,'DOS.SYSTEM.HISTORY.FILE'
II EXTENT SYSREC,,1,0,5339,57 IBM 3330
II DLBL IJSYSCL,'DOS.SYSRES.FILE'
II EXTENT SYS007,,1,0,10,8000
I I ASSGN SYS007, 1 3 1 SYSRES FILE ON
I I ASSGN SYS006, 281 , CO FBA BACKUP TAPE
II EXEC BACKUP
1*
1&

Using Private Libraries Created under DOS/VS or DOS/VSE. You may
want to use private libraries that were created under DOS/VS (starting
with Relase 30) or DOS/VSE. These were created and used with
standard file names IJSYSPC, IJSYSCL, IJSYSRL or DSYSSL. You can
continue to use these names under VSE/ Advanced Functions. The
LmDEF statement allows to specify a different file name; the file id in
the DLBL information, however, must be identical to the one used under
the earlier system.

When a core image library created under DOS/VS or DOS/VSE resides
on a CKD device and is updated for the first time under VSE/ Advanced
Functions, the directory is reformatted to the format of VSE/ Advanced
Functions. The new directory will generally occupy more space.

3-148 YSE/ Advanced Functions System Management Guide

-~

Chapter 4: Using the Facilities and Options of VSE/ Advanced Functions

This chapter discusses ways and means for monitoring certain activities of .. ',,~ ,

the system. This involves the coding of program exit routines and of user " \,
programs to be used as IPL and job control exit routines and the coding
of a job accounting interface routine. In addition, this chapter discusses
the checkpointing facility, DASD switching under VSE/ Advanced
Functions and designing program for virtual mode execution. The SDAlD
program which is an effective debugging and measurement tool is
discussed in VSE/ Advanced Functions Serviceability Aids and Debugging
Procedures.

User-Written Exit Routines

Program Exit Routi1les

If required, the supervisor can permit user routines to gain control when
any of the following types of events occurs:

• Interval Timer Interrupt (IT)
• Program Check Interrupt (PC)
• Abnormal Termination (AB)
• Operator Communication Interrupt (OC)
• Task Timer Interrupt (TT)
• Page Fault Handling Overlap (PHO)

Both the supervisor and the problem program that contains the user
routine must have the proper code to establish an interface.

The problem program that wants to utilize the options must contain code
to set up the interface. For the first five events, code can be generated by
the STXlT macro. For the last event, code is generated by the SETPF A
macro. This code is assembled in the main line of a problem program.

Figure 4-1 is a summary of the supervisor-determined conditions for
which an exit routine may be ~ded and the operand to be coded in the
STXlT macro.

The STXlT operands and their use are discussed in VSE/Advanced
Functions Macro Reference.

Chapter 4: Using the Facilities and Options of VSE/ Advanced Functions _4-L

~--

Interval Timer Exit

Program Check Exit

Condition
Operand of the
STXIT Macro

Abnormal termination of the
AB

problem program

Interval timer external interrupt IT

Operator communications interrupt OC

Program check interrupt PC

Task timer interrupt TT

Figure 4-1. Summary of Program Exit Conditions

Short descriptions of the support for each of the types of program exit
routines follow, indicating the associated problem program macros. For
information on how multitasking affects this support and what happens if
multiple events coincide, refer to VSE/ Advanced Functions Macro User's
Guide. Some high-level languages offer similar facilities, for details of
which see the appropriate programmer's guide.

Suppose you want to take a checkpoint on a job at a certain time after it
has started. Code the STXIT to set up the interface of your user-exit
routine with the supervisor; use the SETIME macro to set a time interval.
When that interval elapses, an interval timer interrupt occurs and control
is given to your user routine. The user routine need not be entered
immediately. For instance, if the user routine is in the background
partition, and a foreground partition is active, the user routine will not be
entered until the background partition becomes active.

To find out the time remaining in an interval, a program can issue the
TTIMER macro instruction. The supervisor then loads this value in
general register O. This macro can also be used to cancel the remaining
time in the interval.

Programs can establish linkage from the supervisor to a user
program-check exit routine by coding an STXIT macro. If a program
check occurs within the program, the supervisor gives control to the user
routine instead of discontinuing the program. The user routine can
analyze the program check and choose to ignore, to correct, or to accept
it.

If the check is ignored, control can be given back to the supervisor by
executing an EXIT PC macro; if the user routine can correct the error
condition, the routine can request via the EXIT macro that processing of
the main line program continue.

4-2 VSE/ Advanced Functions System Management Guide

Abnormal Termination Exit

Operator Communications Exit

Task Timer Exit

If the problem cannot be resolved, the program check is accepted as valid. ,
The user routine can then terminate further processing of the program by
issuing a CANCEL, DUMP, JDUMP, or EOJ macro.

The ability to include a user routine to process program checks can be
especially advantageous when using LIOCS. In that case, I/O
housekeeping such as closing files and freeing tracks can be performed
before termination of the job or task.

Programs can establish linkage from the supervisor to an abnormal
termination exit routine by issuing an STXIT AB macro.

The macro allows a user routine to get control from the supervisor before
an ~bnormal end-of-job condition discontinues the processing of the
program. The user routine normally ends with one of the termination
macros (CANCEL, DUMP, JDUMP or EOJ) to terminate the problem
program and to return control to the supervisor, rather than by initiating
the continuation of the problem program.

VSE/ Advanced Functions allows problem programs to provide a routine
for handling external interrupts from the operator. This support is useful
in a number of applications, for example:

• A change in the environment is needed. A message is then issued by
the program. For example: MOUNT TAPE xxx ON UNIT xxx AND
PRESS THE INTERRUPT KEY.

• In telecommunication, the OC exit allows the operator to start and
stop activities on certain lines or terminals, or to invoke diagnostic
procedures. In this case, program run sheets with explicit instructions
may be required to ensure understanding between programmer and
operator.

The external interrupt that links to anOC user exit routine is caused by
pressing the request key and, when the attention routine identifier AR
appears, replying MSG followed by the partition identifier (such as BG or
F2).

Task timer support is included in the supervisor by the TTIME parameter
of the FOPT generation macro. This parameter also identifies the partition
owning the task timer. Only the main task in the owning partition can
utilize the task timer.

The time interval is specified in the SETT macro and is decremented only
when the main task is executing. The exit routine specified in the STXIT
TT macro is entered when the interval has elapsed, provided linkage

Chapter 4: Using the Facilities and Option~of VSE/Advance~Functioils 3-~

I
I

I

, I

I

I

I

I

I
I

; I

I

I

I

I

I

between that routine and the supervisor has already been established, at
that point of program execution.

To find out the time remaining in an interval, the task can issue a TESTT
macro. This causes the time remaining in the interval to be returned in
register O. The task can also issue a TESTT CANCEL to cancel the
remaining interval time. In this case the exit routine is not entered.

Page Fault Handling Overlap Exit

A user routine can continue processing during the time a page fault is
being handled by the system, provided this page fault occurs in the same
task and not in a supervisor routine invoked by this task. This support is
of interest only for programs executed in virtual mode and making use of
user-developed subtasking rather than ffiM-supplied multitasking.

Such programs may issue the SETPF A macro instruction to establish
linkage from the page management routines in the supervisor to a user
routine, called the page fault appendage routine. Linkage can be
established for only one task per partition. The usage of the SETPF A
macro is described in VSE/Advanced Functions Macro User's Guide.

Writing an IPL User Exit Routine

The IPL Exit allows you to do some processing at the end of IPL and
prior to execution of the job control program. You may want to check
about the options of the loaded supervisor, for example whether support
for job accounting or access control is included.

Before you start coding your exit routine, take account of any system
requirements that should be met at the time the routine is to be executed.
The exit routine and any routines that are called by your routine must be
present in the system core image library.

Moreover, your routine must adhere to the following conventions:

• Register 15 contains the entry point of the routine.

• Register 14 contains the return address to job control.

• The format of the PHASE statement must be as follows:

PHASE $SYSOPEN.

After IPL, the job control program executes the exit routine as an overlay
phase; an area of 4K has been reserved for the exit routine. While the
routine is being executed, the job control program is unable to read any
job control statements.

In your exit routine, you may issue SVCs and perform I/O operations to
SYSLOG and/or SYSRES. To do so, you may only use the EXCP macro.
Any use of LIOCS or of a DTFPH would obstruct proper execution of the
job control program. If you code your routine in assembler language, use
DC instructions instead of DS instructions.

4-4 VSE/ Advanced Functions System Management Guide

L

L

Phase $SYSOPEN will be executed with a storage protect key of zero. If
the phase is abnormally terminated, the job control program will be loaded
for execution.

Figure 4-2 illustrates a user-written routine that is executed once each
time the IPL procedure is performed.

Immediately after IPL, only a few system units are assigned, the most
important ones being SYSLOG and SYSRES. If you want to open a job
accounting file, place the necessary ASSGN statements, label information
(if not already present in the system standard, the partition standard, or
the user label area) and EXEC statement for the pertinent job in your
ASI BG JCL procedure, ahead of the statements that activate the
foreground partitions. This enables you to use the normal facilities of the
system, including LIOCS.

* THIS PROGRAM CHECKS WHETHER THE INSTALLATION INCLUDES
* JOB ACCOUNTING SUPPORT. IPL OF A SUPERVISOR WITHOUT
* THIS SUPPORT IS CONSIDERED AS NOT ALLOWED.
* A MESSAGE INFORMS THE OPERATOR WHY HE/SHE HAS TO
* REPEAT IPL. THEN A HARD WAIT IS FORCED.

START
USING

BEGIN ST
COMRG
TM
BZR
LA
EXCP
WAIT
L
ST
01
SVC

SVCNPSW EQU
LOGCCB CCB
LOGCCW CCW
LOGMSG DC

RETURN
HWCODE
RO
R1
R2
R 11
R12
R13
R14
R15

DC
DC
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
END

o
* ,R15
R14,RETURN
REG=R2
56(R2),X'80'
R14
R1,LOGCCB
(1)
(1)
R11,HWCODE
R11,0
SVCNPSW+1 ,X' 02'
7
96
SYSLOG,LOGCCW

SAVE RETURN ADDRESS

JOB ACCOUNTING SUPPORTED?
YES, RETURN TO JOB CONTROL
NO, WRITE MESSAGE TO
OPERATOR

LOAD HARD WAIT CODE
STORE IT IN LOW CORE
SET ON WAIT BIT
pORCE HARD WAIT
LOCATION OF SVC NEW PSW

X'09' ,LOGMSG,X'20' ,L'LOGMSG (column 72)
C'JOB ACCOUNTING SUPPORT MISSING,
CORRECT SUPERVISOR'
F'O'
C'NOJA'
o
1
2
11
12
13
14
15
BEGIN

RE-IPL C

Figure 4-2. IPL User Exit Example

Chapter 4: Using the Facilities and Options of YSE/ Advanced Functions 4-5

,
, 1

; 1

I
I
I

:1
"

!'

Writing a Job Control User Exit Routine

It is often desirable to exercise certain control on how a job step is
executed, thereby enhancing security, serviceability, and reliability. After
a job control statement (or command) has been read, control can be
passed to a user exit routine for the purpose of examining and altering the
statement (or command) before it is processed by job control.

The VSE/ Advanced Functions distribution volume contains a dummy
phase $JOBEXIT in the system core image library which is automatically
loaded into the SVA at IPL. If you do not use the Job-control-exit
facility, it has no effect on your system.

In your routine you are free to modify the operands of the job control
statement and to add comments. You must not, however, modify the
operation field of the statement. For example, / / EXEC ruM can be
modified to / / EXEC USER; the operation field (EXEC) cannot be
modified. In your exit routine neither perform any I/O operations nor
issue any SVCs nor request the system to cancel the job step.

Link-edit your routine to the system core image library using a PHASE
statement as follows:

PHASE $JOBEXIT,S[,NOAUTO] ,SVA[,PBDY]

Your routine must be coded reenterable; it must be SV A eligible, and it
must reside in the SV A. The PHASE statement must include the SV A
parameter. This ensures that when the phase is cataloged it will also be
loaded into the SV A replacing the dummy phase provided by ruM.

Phase $JOBEXIT is executed with a storage protection key of zero. The
code is shared between partitions.

When your routine receives control, registers contain control information
as follows:

Register Number Contents of Register

0 System identification characters 'SOOS'.

1 Address of partition communication region.

2 Address of system communication region.

3 Address of job control vector table.

4 Address of buffer that contains the currently processed
job control statement.

14 Return address to job control.

15 Entry point to $JOB EXIT; at completion of the routine it
contains the return code for job control.

Prior to returning control to job control, your routine must store a return
code value into register 15:

a zero value

I a non-zero value

4-6 YSE/ Advanced Functions System Management Guide

requests job control to continue processing the
current statement.

requests job control to print the statement on
SYSLST, to display it on SYSLOG, and from then
on to ignore it.

The vector table whose layout is given below shows which job control
statement is being processed by job control. You must not modify its
contents. Use it for comparison only. The size of the buffer into which
the job control statement is loaded (left-justified) is 120 bytes, the first 71
bytes of which are printed on the console printer. The full length of 120
bytes is printed on the printer assigned to SYSLST. The / & and
End-of-job statements are not displayed.

In the buffer, you may modify the statement up to and including byte 71,
eJ[cept for the operation field. Bytes 72-80 could contain a statement
identification, such as for procedure overwrites, and therefore should not
be modified. After having set the return code, your routine should pass
control back to job control.

Layout of the vector table:

Bytes 0 through 6: Operation field (name of job control statement)

Bytes 7 through 9: Internal control information

Do not attempt to modify the table or modify the operation field in the
buffer.

Note: Make sure your exit routine is free of errors that could cause abnormal
termination in a production environment.

Figure 4-3 illustrates a job control user exit routine.

II JOB EXIT ROUTINE
II OPTION CATAL,NODECK

PHASE $JOBEXIT,S,NOAUTO,SVA,PBDY
II EXEC ASSEMBLY

EJECT
**
* THIS PROGRAM, PHASE $JOBEXIT, EXAMINES ALL EXEC CONTROL STATEMENTS
*
*
*
* [//J
*
* [//J
*
*
*
*
*
*
*
*

AND EXEC COMMANDS WHETHER THEY WANT TO EXECUTE A PROGRAM NAMED:
IBM. THIS PROGRAM IS ASSUMED TO BE RESTRICTED FOR GENERAL USE AND
THE STATEMENT:
EXEC IBM
IS CHANGED TO:
EXEC USER
MESSAGE, 'PROG. IBM RESTRICTED FOR ALL USERS', IS PLACED INTO
THE EXEC CARD AND PRINTED ON SYSLOG (IF LOG IS ON) AND SYSLST.

THE PHASE NAMED USER MUST BE CATALOGED IN THE CIL

$JOBEXIT IS REENTERABLE AND SVA ELIGIBLE AND MUST BE
LOADED INTO THE SVA.

**

JOBEXIT
EJECT
START
BALR
USING

o
R12,O
* ,R12

ESTABLISH
ADDRESSABILITY

Figure 4-3. Job Control User Exit Example (Part 1 of 2)

Chapter 4: Using the Facilities and Options of VSE/ Advanced Functions 4-7

\.

*
*
*
*

CHECK FOR EXEC STATEMENT
REG.3 POINTS TO JOB CONTROL VECTOR TABLE

CLC
BNE

EXECNAM,O(R3)
RETURN

IS IT AN EXEC STATEMENT?
IF NOT RETURN

*
*
*
*

EXAMINE THE STATEMENT
REG.4 POINTS TO STATEMENT BUFFER

L
L
SR

R6,=F'1'
R7,-F'67'
R5,R5

INCREMENT VALUE FOR SEARCH LOOP
COUNT MAXIMUM FOR SEARCH LOOP
CLEAR R5, USED AS INDEXING REG.

*
*
*

FIND POSITION OF EXEC STATEMENT

SEARCHE EQU
LA
CLC
BE
BXLE
LA
BR

EXFOUND EQU
LA

SEARCHP EQU

*

LA
CLC
BE
BXLE
B

*
R8 , 0 (R5 , R4)
EXECNAM,O(R8)
EXFOUND
R5,R6,SEARCHE
R15,8
R14

*
R5,5(R5)

* R8, 0 (R5 , R4)
PROGNAM,O(R8)
PFOUND
R5,R6,SEARCHP
RETURN

POINT TO INDEXED POS. IN STMNT. BUF
DETERMINE POSITION OF EXEC
FOUND THE STATEMENT
INCREMENT INDEX AND LOOP
NO EXEC FOUND, RETURN CODE-8
RETURN TO CALLER

SKIP OVER EXEC TO PROGNAME

POINT TO INDEXED POS. IN STMNT. BUF
LOOK FOR PROGRAM-NAME IBM
PROGRAM-NAME FOUND
INCREMENT INDEX AND LOOP
IF ANY OTHER OR NO PROG.-NAME RETURN

* PROGRAM-NAME-IBM-FOUND PROCESSING

*
PFOUND EQU

LA
MVC

* R4,O(R5,R4) POINT TO PROG.-NAME IN BUFFER
O(L'USERTXT,R4),USERTXT MOVE USERTXT TO BUFFER

*
*
*
*

PREVIOUS MVC CHANGED PROGRAM-NAME IBM INTO PROGRAM-NAME USER
AN ADDITIONAL MESSAGE IS MOVED INTO THE BUFFER

RETURN EQU
SR
BR

EXECNAM DC
PROGNAM DC
USERTXT DC
R3 EQU
R4 EQU
R5 EQU
R6 EQU
R7 EQU
R8 EQU
R12 EQU
R14 EQU
R15 EQU

END
1*
II EXEC LNKEDT
1&

*
R15,R15 RETURNCODE ZERO TO REG. 15
R14 RETURN TO CALLER
C'EXEC'
C'IBM'
C'USER *** PROG. IBM RESTRICTED FOR ALL USERS'
3
4
5
6
7
8
12
14
15
JOBEXIT

Figure 4-3. Job Control User Exit Example (Part 2 of 2)

4-8 VSE/ Advanced Functions System Management Guide

-------------------~

Writing a Job Accounting Interface Routine

A VSE/ Advanced Functions supervisor generation option provides job
accounting interface support for all partitions in the system. At the end of
each job step or job, accounting information is accumulated in a table for
that partition and can be processed by a user-written routine. This routine
can extract data for such purposes as charging system usage and
supervising system operation, or for planning new applications or changing
the system configuration.

The routine must be relocatable, and it must be SV A eligible. With the
distribution volume, IBM provides a dummy phase $JO~ACCT as part of
the system core image library. If you decide to use the job accounting
facility, you must catalog your routine to the system core image library.
At IPL, the phase is automatically loaded into the SV A.

When you catalog your routine, the PHASE statement must include the
SV A parameter; this causes the phase, after it has been cataloged, to be
loaded into the SV A replacing the dummy phase provided by IBM.

Since the processing of the information is an overhead element, the user
routine should be efficient and avoid unnecessary reduction or
reformatting of data.

If your installation uses VSE/POWER with the job accounting facility
included, you do not need such a user routine. For more information
about this facility under VSE/POWER, refer to the documentation for
this licensed programming support.

Job Accounting In/ormation

When support is generated for basic job accounting, a job accounting
table comprising fourteen fields is included for each partition in the
system. At the end of each job step and job, information is stored in
fields 1 to 14 of the Job Accounting table (see Figure 4-4).

In addition, you may request (at the time of supervisor generation) to
have included the number of SIO (Start I/O) instructions issued per
device for each job step and job. The job accounting table for each
partition is then extended to contain the additional fields 15 and 16
shown in Figure 4-4.

SIO accounting is performed for the number of devices specified to be
supported by the facility for each partition. The maximum is 255 and has
no relation to the number of devices specified for the total VSE system. If
more devices are accessed than the number specified, SIOs on the excess
devices will not be counted.

Chapter 4: Using the Facilities and Options of VSE/ Advanced Functions 4-9

C .r.
~ ~
tI ~ Contents

'C i >-;r C aI

1 0-7 8 Job name_ 8-byte character string taken from
JOB statement.

2 8- 23 16 User Information. 16 characters of information
taken from the JOB statement.

3 24 - 25 2 Partition I D, BG, ... , F2, or Fl.

4 26 1 Cancel Code. Refer to VSE/Advanced Functions MesSIJges.
.. -

5 27 1 Type of Record. S = job step; L = last step of job.

6 28- 35 8 Date when job step started: mm/dd/yy or dd/mm/yy
dependi n9 on supervisor option.

7 36-39 4 Job Step Start Time. OhhmmssF, where h hours,
m minutes, s seconds, F is a sign (i n packed
decimal format).

8 40 -43 4 Job Step Stop Time (in same format as start time).

9 44-47 4 Reserved.

10 48- 55 8 Phase Name. 8-byte character string taken from the
EXEC card.

11 56- 59 4 Real Mode Processing:
Number of fixed pages, multiplied by 2K; equivalent to the
partition's allocated processor storage minus the portion of
the partition GETVIS area that was not used up by GETVIS
requests.
Virtual Mode Processing:
Number of pages referenced in the partition, multiplied
by 2K.

12 60-63 4 CPU Time. 4 binary bytes given in 300ths of a second.
Time is calculated from exit of the user-written routine
called during job control to next entry of the routine.
Time used by the user-written output routine is charged
to overhead of the next record.

13 64-67 4 Overhead Ti me. 4 binary bytes given in JOOth of a second.
Includes time taken by functions that cannot be charged
readily to one partition (such as attention routine and
error recovery). System overhead time is distributed to the
partitions in proportion to the used CPU time.

14 68- 71 4 All Bound Time. 4 binary bytes in JOOth of a second.
This is the time the system is in the wait state divided by
the number of partitions running.

15 72- SIO Tables. Variable number of bytes. Six bytes are
reserved for each device specified in the JA parameter.
First two bytes are X'Ocuu', next four are hex count of
SiCs for job step. Unused entries contain X'10' folloVll8d by
five bytes of zeros. Stacker select commands for M I C R
devices are not counted. Error recovery SIOs are not charged
to the JOB Accounting Table. Devices are added to the table
as they are used.

16 1 Overflow. Normally X'20'. Set to X'30' if more devices are
used than set by the JA parameter at system generation time.

Note: The difference between Start and Stop times will not necessarily equal the sum
of CPU, All Bound, and Overhead times, All Bound and Overhead times will vary,
depending on the number of active partitions and the type of partition activity. CPU
time is accurate for each partition, but it may not be reproducible. That is, the same
job being executed under different system conditions (varying number of active
partitions, logical transient available, etc.) may show differences in CPU time.

Figure 4-4. Job Accounting Table

4-10 VSE/ Advanced Functions System Management Guide

Programming Considerations

Tailoring the Program

If physical IOCS is used for printing, you must 'space after' to prevent
overwriting of job control statements.

For efficiency, an overlay structure should be avoided and the length of
the program should preferably not exceed one core image library block.

If the job accounting program is canceled as the result of an error
condition, the current information cannot be retrieved, the job accounting
information for the current job step is unreliable. However, provision is
made that the job accounting information for any subsequent job steps
will be correct, provided the cancellation was not caused by an error in
the $JOBACCT routine itself. If there was an error in the $JOBACCT
routine, it must be corrected first.

In order to avoid unintentional cancellation of the job accounting program
by operator action, the operator should issue the MAP command and
check the job name for the running partition. If the job name is 'JOB
ACCT', the job accounting routine is active; the CANCEL command
should not be issued until the original job name is displayed after another
MAP command.

Register Usage. Important data for the user's job accounting routine are
passed in the following general registers:

12 Base address for $JOBACCT
15 Address of the job accounting table
11 Length of the job accounting table
13 Address of the user save area
14 Return address to job control

If $JOBACCT uses LIOCS, the contents of general registers 14 and 15
must be saved (also registers 0 and 1 if necessary) because LIOCS uses
these registers.

Save Area for the User's Routine. The address of a save area that can be
used by the job accounting routine is passed in general register 13. This
save area is 16 bytes long unless a greater length (up to 1024 bytes for
saving DTF information for LIOCS) was specified at system generation
time. However, CCBs and executable CCWs must not be included.

User's Area for LIOCS Label Processing. If your job accounting routine
uses LIOCS for processing such items as standard tape labels, DTFDA, or
DTFPH with MOUNTED=ALL, then a special label area must be
specified at supervisor system generation.

The requirements of the program may be simply to record the accounting
information as part of the SYSLST output for each job step or job, or it
may be to accumulate information to be used for equitably allocating the
costs of a computing center.

Chapter 4: Using the Facilities and Options of VSE/ Advanced Functions 4-11

,

I
; ,,~~~~?

fo'

If data is to be written out on a disk or tape, the save area can be used
for communicating between job steps. Such information as the disk
address for the next record or an indication that tape labels have been
successfully processed, or even the DTF used to control the output, may
be stored in the save area.

Figure 4-5 illustrates a job accounting program that writes records to disk
without additional processing.

4-12 VSE! Advanced Functions System Management Guide

JAACT CSECT
USING
USING
LR

* ,R12
JASAVE,R13 JOB ACCT SAVE AREA
R9,R15 SAVE ADDR OF TBL
RO,JADTFLNG+L'JABSAVE LENGTH FOR GETVIS LA

GETVIS
LTR
BNZ

LENGTH=(O) GET SPACE IN PARTITION
R15,R15 CHECK RETURN CODE
JARET1 NO GETVIS SPACE
RO,JABROUT AB ROUTINE
AB,(O),(l) SET ABNRML TERM EXIT

LA
STXIT
LA R1,L'JABSAVE(R1) UPDATE GETVIS POINTER
TM JASTATSW,X'CO' TEST STATUS
BO JARET DISK AREA FULL
BM JAOPEN SAVE AREA INITIALIZED

* PERFORM LABEL
MVC
OPENR
MVC
MVC
MVI

PROCESSING AND INITIALIZE SAVE AREA
0(JADTFLNG,R1),JADTF MOVE DTF TO PARTITION
(R1) OPEN FILE (see Note)
JACCB,0(R1) MOVE CCB TO SAVE AREA
JASEEK, 58 (R 1) EXTENT LOWER LIMIT
JAR,X'Ol' FIRST RECORD

MVC JAHIGH,JADTF+54 HIGH EXTENT LIMIT
* RELOCATE CCWS

MVC JASKCCW(32) ,JAMODCCW·
LA R10,JASEEK
STCM R10,7,JASKCCW+1
LA R10,JASRCH
STCM R10,7,JASRCCW+1
LA R10,JASRCCW
STCM R10,7,JATIC+1
LA R10,JASKCCW
STCM R10,7,JACCB+9
MVI JASTATSW,X' 80 ,

* WRITE JOB ACCOUNTING TABLE TO DISK
JAOPEN STCM R9,7,JADATA+1

MVC ° (1 6 , R 1) , J ACCB
EXCP (1)
WAIT (1)

* UPDATE SEEK ADDRESS

JAHTST

JARET

JARET1

TR JAR,JARECTAB
CLI JAR,X'01'
BNE JARET
TR JAHEAD+1(1),JAHDTAB
CLI JAHEAD+1,X'00'
BNE JAHTST
LH
LA
STH
CLC
BH
MVC
LA
STCM
EXCP
WAIT
01
FREEVIS
STXIT
BR

R10,JACYL
R10,1(R10)
10,JACYL
JAHIGH,JASRCH
JARET
O(16,R 1) ,JACCBL
R2,JAMSG1
R2,7,9(R1)
(1)
(1)
JASTATSW,X'40'
LENGTH=(O)
AB
R14

PUT MOD CCWS IN SVE
SEEK ADDRESS
PUT ADDRESS IN CCW
SEARCH ADDRESS
PUT ADDRESS IN CCW
SEARCH CCW ADDRESS
PUT ADDRESS IN CCW
CHANNEL PROGRAM. ADDR
PUT ADDRESS IN CCB
IND SAVE AREA INIT

AREA

PUT ADDR OF TBL IN CCW
MOVE CCB TO PARTITION
WRITE DATA
WAIT FOR COMPLETION

RECORD
NEW TRACK
NO
HEAD
NEW CYLINDER
NO
CYLINDER ADDRESS
INCREMENT BY ONE
REPLACE IN SEEK ADDR
BEYOND UPPER LIMIT
NO
MOVE CONSOLE CCB TO
ERROR MESSAGE
PUT ADDRESS IN CCB
INFORM OPERATOR
WAIT FOR COMPLETION
INDICATE DISK FULL
FREE PARTITION SPACE
RESET EXIT LINKAGE
RETURN

PARTITION

Note: As this example is self relocating, the self-relocating form of the OPEN macro (OPENR) is used; for a routine that
will be linked relocatable, OPEN may be used instead.

Figure 4-5. Job Accounting Routine Example (Part 1 of 2)

Chapter 4: Using the Facilities and Options of YSE/ Advanced Functions 4-13
- - - -

1

i
t

',,, .,,
-.

.,."". '. -
",'" .' .

~

JABROUT LA R1 ,L'JABSAVE(R1 } RESTORE ADDR IN GETVIS AREA
MVC o (1 6 , R 1) , JACCBL MOVE CONSOLE CCB TO PARTITION
LA R2,JAMSG2 ERROR MESSAGE
STCM R2, 7 ,9(R1 } PUT ADDRESS IN CCB
EXCP (1) INFORM OPERATOR
WAIT (1) WAIT FOR COMPLETION
EOJ

JAMODCCW CCW X' 07' , *, X '60' ,6
CCW X' 31 ' , * , X' 60' ,5
CCW X' 08 ' , * , X' 00' ,1
CCW X'05' ,*,X'20' ,246

JACCBL CCB SYSLOG,*
JABSAVE DS OCL72
JADTF DTFPH TYPEFLE""INPUT, MEANS CHECK LABELS

DEVICEz 2314,
MOUNTED==SINGLE

JADTFLNG EQU *-JADTF
ORG JADTF
DC X'OOOOOBOO' SET CCB OPTION BITS
ORG

JAMSG1 CCW X'09',JAERR1,X'20' ,L'JAERR1
JAMSG2 CCW X'09',JAERR2,X'20' ,L'JAERR2
JAERR1 DC C'JOB ACCOUNTING DISK FULL'
JAERR2 DC C'JOB ACCOUNTING ROUTINE CANCELED'
JARECTAB DC X'OO02030405060708090AOBOCODOEOF101112131401'
JAHDTAB DC X'0102030405060708090AOBOCODOEOF1011121300'
JASAVE DSECT
JASEEK DS OXL6 SEEK ADDRESS BBCCHH
JABB DS XL2 BB
JASRCH DS OXL5 SEARCH ADDRESS CCHHR
JACYL DS XL2 CC
JAHEAD DS XL2 HH
JAR DS X R
JASTATSW DS X
JACCB DS XL16 COMMAND CONTROL BLOCK
JAHIGH DS XL4 HIGH EXTENT LIMIT

DS XL4
JASKCCW CCW X'07' ,JASEEK,X'60',6 SEEK CCW
JASRCCW CCW X'31',JASRCH,X'60',5 SEARCH CCW

iJATIC CCW X'08' ,JASRCCW,X'OO',1 TIC CCW
JADATA CCW X'05',*,X'20',246 WRITE DATA ASSUMING 29

1* SIO DEVICES TRACED

IRO EQU 0
R1 EQU 1

,R2 EQU 2
IR9 EQU 9
iR10 EQU 10
I R11 EQU 11
! R12 EQU 12
I R13 EQU 13
\R14 EQU 14
R15 EQU 15

END

Note: The DSECT labeled J.A.S.A.VE through J.A.D.A.T.A. defines the layout of the job accounting user-save area, which resides within
the supervisor. The address of this area is passed, in register 13, to your job accounting phase. When generating your supervisor you
must specify the desired length of this save area by substituting a value for s, the first operand of the J.A.LIOCS parameter of the

FOPT macro. If the operand is omitted or if J.A.LIOCS-NO is specified;he length of the user save area is set to 16 bytes by default.

Figure 4-5. Job Accounting Routine Example (Part 2 of 2)

4-14 VSE/ Advanced Functions System Management Guide

L
Checkpointing Facility

The progress of a program that performs considerable processing in one
job step should be protected against destruction in case the program is
canceled. VSE/ Advanced Functions provides support for taking up to
9999 checkpoint records in a job. Through this facility, information can
be preserved at regular intervals and in sufficient quantity to allow
restarting a program at an intermediate point.

The CHKPT macro (or the corresponding high-level language statement)
causes the checkpoint record to be stored on a magnetic tape or disk. For
more details about taking checkpoints, refer to VSE/ Advanced Functions
Macro Reference if you use assembler language or to the appropriate
high-level language manual.

The RSTRT job control statement restarts the program from the last or
any specified checkpoint taken before cancelation.

When a checkpointed program is to be restarted, the partition must start
at the same location as when the program was checkpointed and its end
address must not be lower than at that time unless a lower end address
was specified in the CHKPT macro instruction. Unless the user
reestablishes all linkages to SV A phases himself, the contents and location
of the modules in the SV A when restarting must also be the same as when
the program was checkpointed. The SDL must be identical if the restarted
program uses a local directory list (for example, one that was generated by
the assembler language macro GENL).

If any pages of a virtual mode program were fixed when the checkpoint
record was taken, then, in 370 mode, the real address area allocation for
the partition must also start at the same or a lower location and its end
address must be at least as high as at that time. The pages that were fixed
are refixed by the supervisor when the program is restarted.

Restarting a Program from a Checkpoint

To restart a program from a checkpoint the RSTRT job control statement
is used. The sequence of job control statements that must be submitted to
restart a program is as follows:

1. A JOB statement specifying the jobname used when the checkpoints
were taken.

2. ASSGN statements, if necessary, to establish the I/O assignments for
the program that is to be restarted.

3. A RSTRT statement specifying

a) the symbolic name of the tape or disk device on which the
checkpoint records are stored.

b) the sequence number of the checkpoint record to be used for
restart.

c) for checkpoint records on disk the filename (DTF name) of the
checkpoint file.

Chapter 4: Using the Facilities and Options of VSE/Advanced Functions 4-15

4. An end-of-job (/ &) statement.

Figure 4-6 shows the sequence of job control statements needed to restart
a checkpointed program that ended abnormally due to, for example, a
power failure. Following are the characteristics of the checkpointed
program that must be considered for restart:

• The job name specified in the JOB statement was CHECKP; the same
name must be used for restart.

• The checkpoint records were written on magnetic tape; therefore, no
filename need be specified in the RSTR T statement.

• The symbolic device name SYS006 is used for the checkpoint file.

• The sequence number of the last checkpoint record written was 0013;
this or any previous checkpoint record can be used for restart (the
sequence numbers are printed by VSE/ Advanced Functions on the
SYSLOG device).

In reconstructing the job stream note that the / / RSTRT statement
physically and functionally replaces the / / EXEC statement originally
used.

Another important consideration is the repositioning of files on magnetic
tape or disk. Assembler language users may consult VSE/ Advanced
Functions Macro Reference, which discusses the topic in context with
using the CHKPT macro. High-level language users should consider
printing a file processing status record for each checkpoint that is taken
during the execution of a program. This record should indicate the name
of the file(s) read or written on magnetic tape or disk when the
checkpoint is taken.

II JOB CHECKP
II ASSGN SYS006,380
II ASSGN
II ASSGN
II RSTRT SYS006,0013
1&

CHKPT TAPE

Figure 4-6. Example of a RESTART Job

DASD Switching under VSE/ Advanced Functions

The standard I/O interface between an I/O device and the CPU is a
channel and a control unit.

Normally, this interface provides one, and only one, path by which a CPU
communicates with an I/O device. However, it may be desirable to access
a device, especially a DASD device, by more than one path. For example,
a second CPU may be required to back-up the host CPU such that should
the host CPU become inoperable, the attached DASD devices may be

I switched immediately to (made accessible by) the back-up CPU. Multiple
CPUs may also need to access the same data base.

4-16 VSE/ Advanced Functions System Management Guide

' .: : ~ ~ .~ .

A single CPU may require back-up channels and control units, providing
alternate paths to the same DASD devices.

:~

In order to do this device sharing, the hardware provides a two-level
switching mechanism that allows you to connect one or more DASDs
either dynamically or manually to different I/O paths. This mechanism is
known as channel switching and string switching.

Channel Switching. Channel switching provides the switching mechanism
at the control unit level. The channel switch allows you to connect the
control unit to up to four channels, which may belong to the same or
different CPUs thus providing up to four distinct I/O paths. A maximum
of two channels may connect to one CPU. The connection of any
channel can be manually enabled or disabled. When enabled, the switch is
dynamically controlled by the hardware.

String Switching. In the case of string switching, the switching mechanism
is at the DASD string level. String switching allows you to connect a
string of DASDs to two distinct control units, or integrated disk
attachments. The two I/O paths may be connected to a single or two
different CPUs.

Using DASD Switching. In both types of this hardware-supported
switching, a desired I/O path may be selected in one of two ways. In the
first case, connection is made dynamically when an I/O command is
issued for a device. Provided that the control unit (in channel switching)
and the DASD string (in string switching) are free for connection, the
target DASD device can be accessed by the requesting CPU. Once a
connection is established by one CPU, the other CPU receives device busy
status if attempting to access a device on the string.

In the second case, the operator may manually switch the sharable devices
to the desired CPU (via the Enable/Disable toggle switches). It should be
noted that in this case an entire string of DASD is disconnected from the
other CPU.

If, at your installation, a DASD switching feature is being used, it is your
responsibility to resolve conflicting CPU references to shared devices (or
files) and thus ensure data integrity. Following are two ways of
preventing potential conflicts.

First, through scheduling of CPU file referencing, ensure that only one
CPU that is updating the file is connected to the shared DASD. The
operator needs only to switch the manual control to the updating CPU for
that period of time.

Secondly, through scheduling and the use of the operator commands
DVCUP and DVCDN (as described below), devices may be reserved for
use by one CPU for for a particular period of time.

An individual device can be excluded from use by a particular CPU by
entering a DVCDN command for that device via the operator console.
The other system then has exclusive access to that device. The device can
be made available again by issuing a DVCUP command for the device.
However, the other system should then issue a DVCDN command for that
device. To avoid conflicts, both system operators have to inform each

Chapter 4: Using the Facilities and Options of YSE/ Advanced Functions 4-17

i
j

\

I

"

I

other about the status of the reserved devices. It is therefore
recommended that a job, which requires exclusive access to a file or
device, notifies the operator when the device has to be reserved, and
when it may be released.

Note that the DVCUP /DVCDN commands reserve the DASD at the
device level, although the programmer may be interested in reserving only
one file on that particular device. It is recommended that DVCUP and
DVCDN commands be entered only via the console.

Further hardware details on channel or string switching may be found in
the appropriate DASD hardware manuals, and also in the hardware
manuals for the IDM 370/115 and 370/125.

I DASD Sharing by Multiple VSE Systems

If your installation consists of more than one computing system, each
running under VSE/ Advanced Functions, you may consider to share some
or all DASD devices between the different VSE systems. Rather than
assigning a fixed amount of disk spindles to the different systems, you can
combine the total number of available spindles into a disk pool which is
shared by all VSE systems. D ASD sharing between two or more VSE
systems has several advantages:

• Library maintenance is easier, if only one set of libraries has to be
maintained.

• Data Base duplication and the related update procedures can be
avoided, if the sharing systems work on one copy of the data base.

• The total system throughput increases, when the VSE systems running
under VSE/POWER share the POWER work files.

• Direct access storage space may be saved, as one copy of the data is
required instead of mUltiple copies.

As long as the different VSE systems access the shared devices for
reading only, the integrity of your data is preserved.

If, however, data on the shared DASD devices are accessed in write mode
by more than one system at the same time, data integrity is no longer
ensured, unless special precautions are taken. The Track Hold and DASD
File protect functions (which are described in chapter 2 Planning the
System) do not apply here because none of the sharing systems is aware
of what the other is doing.

VSE/ Advanced Functions provides programming support which allows to
access a DASD device from different VSE systems in read and write
mode. This programming support is based on the channel switching
and/ or the string switching feature and is available for the 33xx CKD
devices and for the 3370 FBA device.

4-18 VSE/ Advanced Functions System Management Guide

L

"-",, ' " ,

", ,
. .~. :; ~

Reserving Devices for Exclusive Use

I Resource Locking

Channel command words (DEVICE RESERVE / DEVICE RELEASE)
allow one I/O interface to reserve a disk drive for exclusive use. Any
other II 0 interface that attempts to access such a reserved disk drive will
receive a 'device busy' indication.

Reserving DASD devices has several disadvantages:

• An entire disk pack has to be reserved even if only a single record is
to be updated. This may lead to a severe performance degradation.

• If one CPU tries to access a volume which is already reserved by
another CPU, no clear-cut indication is given that the volume is not
available.

• When an application program terminates abnormally, the system does
not automatically release reserved disk drives; the other VSE
system(s) may have to wait indefinitely if they try to access data on
the reserved disk drives.

VSE/ Advanced Functions provides a method that avoids those risks. The
sharing of data on disk is controlled on the resource level, not on the
device level. This method, called 'resource locking', is described in the
remainder of this section.

A program running under VSE/ Advanced Functions is capable of
protecting data by reserving (,locking') and releasing (,unlocking') a
named resource. This resource may, for example, be a table in storage, a
phase name, a DASD volume identifier, or a library name.

Locking and unlocking occurs

• within a partition: the resource is shared between tasks belonging to
the partition,

• within one computing system: the resource is shared between
partitions, or

• within a multiple-CPU installation: the resource (a catalog or a data
base, for example) is shared between VSE systems.

Locking within one computing system is called 'intemallocking', locking
across systems is called 'extemallocking' or 'cross-system locking'. All
functions provided for intemallocking are available for extemallocking as
well.

Compared with the method of reserving of volumes, locking by named
resource offers the following advantages:

• protection can be limited to a portion of an entire volume (a file, for
example);

Chapter 4: Using the Facilities and Options of YSE/ Advanced Functions ,:"'-1 t, . ~<:iiI
.H .. i' ",~s{ ." "':~1 r , :~. "p l 'l

, .' . ~;lI9'- (.. :. > .. t .

• data can be shared, comparable to shareoptions 1 and 2 of
VSE/VSAM, that is, locking is not necessarily exclusive;

• if a lock request cannot be satisfied because the corresponding
resource is already under exclusive control by another task (by
another VSE system perhaps), the requestor can be immediately
notified if so desired.

If you are just planning to switch from a one-system to a multiple-system
setup and you have used the VSE/VSAM access method in the past, you
do not have to change your source programs in order to utilize DASD
sharing across systems. Resource protection across systems is
accomplished by the VSAM open routine. For SAM files in
VSAM-managed space, the open routine performs the cross-system
locking, too.

If a VSAM file defined with shareoption 1 or 2 is opened for update by
one program, then no other user (in another partition of the same VSE
system or in another system) can open the file for update at the same
time. Concurrent updating of a VSAM file defined with shareoption 4 is
allowed for the programs running in one system, but not for those running
in different systems: while that file is opened for update by one program,
a second program runnning in another partition within the same system
may open the file for update. A third program, this one running in
another system, would not be able to open the file for update while the
file is already opened for update in the first system; across computing
systems, VSAM files defined with shareoption 4 are treated as files of
shareoption 2 type.

Files of other types should be locked explicitly in order to have the file
protected against concurrent update by other tasks.

IBM-supplied programs such as the linkage editor or the librarian
programs do this locking whenever they are about to update a library. If
you want to do your own resource locking, you must use the assembler
language macros

• DTL, GENDTL, and/or MODDTL to define the named resource

LOCK and UNLOCK to perform the actual locking control.

Via the resource definition macros, a resource lock control block is
generated. Among other things, it defines

• the name of the resource

• the level of locking: exclusive or shared with other tasks

the scope of locking: within one system or across systems

the time of automatic unlocking: at the end of the job step or at
end-of-job.

Note that the locking . mechanism functions only if each task that shares a
particular resource subjects itself to the lock control and uses one and
only one name for the resource .

. +-2(} VSE/ Advanced Functions System Management Guide

L

L

I Lock Communication File

The following macro statement

EXAMPLE DTL NAME=SHAREFL,CONTROL=S,LOCKOPT=2,SCOPE=EXT

defines a lock control block for the resource SHAREFL. The SCOPE
parameter indicates that the resource should be shared across systems.
The combination of CONTROL=S and LOCKOPT=2 means: for a lock
request to be granted, other tasks with a definition of CONTROL=S may
have concurrent access, but not more than one task with a definition of
CONTROL=E.

The LOCK macro requests access to a named resource. The requestor
may specify which action the system is to take if the lock request cannot
be granted. For the above DTL, the statement

LOCK EXAMPLE ,FAIL = WAIT

requests access to the resource with the name TOPSECRET. If the
resource is locked such that no concurrent access is allowed, the
requesting task should be set into the wait state until the access can be
granted.

The use of the lock control macros is described in detail in
VSE/ Advanced Functions Macro User's Guide and VSE/ Advanced
Functions Macro Reference.

Resource protection across systems requires a special system file which
reflects the system-wide locking status to all the sharing systems at any
time. A resource which is locked across systems will be entered by the
operating system into this lock communication file. The DASD device
where this lock file resides must be accessible from all the sharing systems.

There must be an agreement between the sharing systems which ensures
that all systems use the same lock communication file. All systems which
take part in the DASD sharing must define the disk drive, where this file
is located, as sharable.

How to Initialize a Shared VSE Environment

Across-system DASD sharing IS generated by specifying DASDSHR= YES
in the FOPT supervisor generation macro. This provides for a cross-system
locking facility to ensure data integrity when a string of DASD devices is
accessible from two or more VSE systems via the channel and/or string
switching mechanism.

Programs can check for the DASDSHR option via the SUBSID macro.
This macro is described in VSE/Advanced Functions Macro Reference.

To define a DASD device as sharable across systems, you must include
the SHR parameter in the IPL command ADD as follows:

ADD cuu,device-type,SHR

.!t,

~ f

Chapter 4: Using the Facilities and Options of VSE/ Advanced Fu~ctiOn: :'~';t,<~
t ' ~ '.'

Example:

ADD 140,3330,SHR

All DASD devices of the shared disk pool should be defined (in all
sharing systems) as sharable. Especially the disk drive where the lock file
resides has to be defined as sharable.

Note 1: All DASD devices of the shared disk pool except the lock file
device may be defined as switchable between channels.

Example:

ADD 161(S),3330,SHR

Note 2: The disk drive where the lock communication file resides must
not be defined as switchable.

The lock communication file is created as a special system file with the
dedicated file name 'DOS.LOCK.FILE' via the IPL command DLF
(Define Lock File).

The DLF command has to be issued immediately after the ADD and DEL
commands. When the DLF command is missing in the IPL procedure
although a supervisor with DASD sharing support was IPLed and at least
one device ADDed as sharable, the operator is prompted for entering the
DLF command. If no DASD devices are ADDed as 'shared', the DASD
Sharing support in the supervisor is reset and the system works as if the
supervisor were generated with DASDSHR=NO.

Two versions of the DLF command are available:

• a long version used to create the lock file and

• a short version to refer to an already existing lock file.

The long version

DLF UNIT=cuu,CYL=p,DSF=Y I N (for a CKD device)
DLF UNIT=cuu,BLK=p,DSF=Y I N (for an FBA device)

is used to create the lock file.

UNIT specifies the disk unit where the lock file is to be located. You
should try to place the lock file on a disk drive that is not subject to
heavy I/O traffic; for example, keep it separate from files such as
SYSRES, the page data set, or POWER files.

CYL/BLK define the starting cylinder/block address.

The parameter DSF defines the lock file as secured or not secured. The
DASD sharing support depends heavily on the availability and integrity of
the lock communication file. This file should therefore be defined as a
secured file.

The lock file occupies one cylinder on a CKD device or 80 blocks on an
FBA device.

":~ , <:~'f;~2 YSE/ Advanced Functions System Management Guide

The short form of the DLF command

DLF UNIT=cuu

is used by the other CPUs which join the sharing environment to
reference the already existing lock file. The short form may be used also
by the first IPLing CPU if you want to resume with the lock file as it
existed at the end of a preceding production period. On the other hand,
submitting the long form for an already existing lock file is not harmful.

Note: During the execution of the DLF command, no other sharing system can access
the lock file. Therefore, lock and unlock requests cannot be serviced. A performance
degradation may be encountered on the already active systems while another (new)
system is in the process of IPLing.

DASD Sharing under VM/370. DASD sharing is also possible under
VM/370. Disks which are defined with the multiple write feature can be
used by different VM users as shared disks (minidisks or full disk packs).

Resource sharing across systems functions properly only if each sharing
(virtual) CPU is discernible by a unique CPU identification. Therefore,
for any virtual machine, a different CPU identification must be defined.
Before IPLing a virtual machine, the VM user has to define a unique CPU
identification via the CP command 'SET CPUID xxxxxx'. Without this
command, catastrophic errors regarding the lock file will occur.

I Definition of SYSREC in a DASD Sharing Environment

Three system files are referenced by the logical unit name SYSREC:

• the history file (file name IJSYSHF)

• the recorder file (file name IJSYSRC)

• the hard copy file (file name IJSYSCN).

The IPL DEF command 'assigns' SYSREC to a physical device. Because
the DEF command allows only one SYSREC=cuu specification, those
three files must reside on the same pack. For the placement of these files
within a DASD Sharing environment, the follOWing rules should be
observed.

\

To ensure that library maintenance under control of the MSHP program is
recorded in only one history file, the system standard label area of each
sharing system has to contain identical DLBL/EXTENT information for
the history file, and each DEF command must address, in the SYSREC=
specification, the same physical device on which the common history file
resides. This enables you to do library maintenance on the shared
SYSRES file and on any of the shared or non-shared private libraries
without loosing track of the change status of your libraries.

As to the hard copy file (IJSYSCN), each sharing system has to keep its
own extent on the pack where SYSREC is defined. The DLBL statement
must contain, for each sharing system, a unique file identifier of
IJSYSCN; non-overlapping extents on the SYSREC pack must be defined

Chapter 4: Using the Facilities and Options of VSE/Advanced Functions 4-23 ';
, (.If:

\
I

I in the EXTENT statement. Similar rules apply for the recorder file
(IJSYSRC).

I An Example 0/ a Two-System Installation

The following example shows how two VSE systems are set up to share a
string of 3340 disks. One system runs on a 4341 processor, the other one
on a System/370 Model 145. Figure 4-7 presents the configuration of
disk devices.

Number of Device Type

Devices

4341 8 3370

Processor: 6 2314
4 3340

4 3340 (shared)

370 Model 2 .3 3 50 in. .native lTlode

145: 1 3350 in 3330-1 mode

1 3350 in 3330-11 mode
4 3330

2 3330B
4 3340 (shared)

Figure 4-7. Example of a DASD Sharing Configuration

The shared 3340 disks are shared via a control unit which has a 2-channel
switch installed. The switch allows to address the 3340 disks through two
different channels from one CPU or from two different CPUs. In the
configuration presented here, the 4341 uses channel number 3, and the
145 liSes channel number 2.

The following files are sharable by the two systems:

• the SYSRES file
• the history file
• the recorder file
• VSE/POWER files
• private libraries
• VSAM catalog and VSAM files
• other data files

Two supervisors are generated with DASDSHR= YES specified in the
FOPT generation macro. Each supervisor is cataloged with a unique
name; one for execution in ECPS:VSE mode, the other for 370 mode.

Similarly, since VSE/POWER is being used, two POWER phases are
generated, each with a unique name; the POWER macro must specify the
SYSID and SHARED parameters. (You can operate with only one
POWER phase if SYSID is changed dynamically at autostart time.)
Formatting of POWER files should be requested only by the first IPUng

4-24 VSE/ Advanced Functions System Management Guide

system. If during POWER bring-up no FORMAT statement is included in
the AUTOSTART file, the operator will be prompted as to whether
POWER files are to be formatted or not. If the operator replies "D,A" or
the AUTOSTART file contains a FORMAT=D,A statement, the POWER
program asks the operator whether another system is already IPLed and
whether the shared files can be formatted.

Figure 4-8 shows two sets of IPL commands that are cataloged as ASI
(Automatic System Initialization) procedures.

• ASI procedure for Model 145:

01F,$$A$SUPS,P,NOLOG,VSIZE~8800K

ADD 148:149,3350
ADD 14A,3330
ADD 16A,3330
ADD 14·0: 143,3330
ADD 144:145,3333B

1 ADD 2DO:2D3,3340,SHR VIA CHANNEL 2

unit record devices, terminals, etc.

2 DLF UNIT=2D 1
3 DEF SYSREC=2DO,SYSCAT=2D1,SYSDMP=148
4 DLA NAME=SYST145,UNIT=148

DPD UNIT=149,CYL=450,DSF=N
SVA SDL=100,PSLD=20,PSIZE=100K,GETVIS=100K

• ASI procedure for the 4341:

01F,$$A$SUPE,P,NOLOG
ADD 340:343,FBA
ADD 350:353,FBA
ADD 690:695,2314
ADD 300:303,3340

1 ADD 300:303,3340,SHR VIA CHANNEL 3

unit record devices, terminals, etc.

2 DLF UNIT=30 1
3 DEF SYSREC=300,SYSCAT=301,SYSDMP=340
4 DLA NAME=SYST4300,UNIT=340

DPD UNIT=341,BLK-80000,DSF=N
SVA SDL=100,PSLD=20,PSIZE=100K,GETVIS=100K

Figure 4-8. Example of ASI IPL Procedures for Two DASD Sharing
Systems

Notice that both ADD commands for the shared disks (statement 1 in
Figure 4-8) refer to the same packs although they specify different device

Chapter 4: Using the Facilities and Options of VSE/ Advanced Functions ,fi'2,5

{

addresses. Each CPU accesses the shared disks via different channels: 2
and 3.

The short form of the DLF command is shown here (statement 2); if ever
the first IPLing system refers to a nonexisting lock file, it prompts the
operator to submit the long form of the DLFcommand. On the 4341
processor, for example, the long form would include the specifications
CYL=694 and DSF=Y. Similar considerations apply to the DLA
commands.

The SYSRES specifications (statement 3), just as the ADD commands,
refer to the same pack by different device addresses. Each system uses its
own label information area, defined on separate packs and with unique
names (statement 4).

Complete ASI JCL procedures are not shown here. These procedures
would contain DLBL/EXTENT statements for the following shared
resources,

• to be cataloged in the system standard label area (OPTION
STDLABEL):

USYSRS
USYSHF

SYSRES file
history file

• to be cataloged in the system standard label area (OPTION
STDLABEL) or in the partition standard label area (OPTION
PARSTD):

UAFILE
UQFILE
UDFILE
USYSCT
VSMSPCE
xxxxxxx

POWER account file
POWER queue file
POWER data file
VSAM catalog
VSAM data space
shared private libraries

In addition, of course, labels for the following non-shared resources must
be uniquely defined for each system:

USYSCN
USYSRC
DOSDMPF
DOSDMPG
xxxxxxx
USYSIN

Error Recovery after System Break-down

hard copy file
recorder file
dump file
dump file
dedicated files and libraries
POWER AUTOSTART file
(non-shared only if the two POWER
systems use different input parameters)

When one of the sharing systems breaks down, for example, due to
hardware malfunction, the other systems are set into the wait state.

Two error situations are possible:

4-26 VSEj Advanced Functions System Management Guide

L

. ~ .. ;.
''' . . ~

"

The hardware malfunction occurred while the system was executing a
LOCK or UNLOCK request. The system has reserved the disk drive
containing the lock file by a 'DEVICE RESERVE' channel program.
Thus the other systems are unable to execute LOCK or UNLOCK
requests. The operator should press 'system reset' on the failing CPU; the
device reserves will be reset.

The second error situation is as follows: prior to the system break-down,
the failing VSE system has locked some vital retiources (for example, a
VSAM catalog). The sharing VSE systems trying to lock these resources
will enter the wait state.

Use the Attention command 'UNLOCK SYSTEM=xxxxxx' to unlock all
resources locked by the failing CPU. You should be extremely careful with
the use of the Attention command UNLOCK. Enter this command only
when you are absolutely sure that the failing system has stopped and a
new IPL is required. The attention command UNLOCK when used to
break the lock of a running system will cause severe errors.

Designing Programs for Virtual Mode Execution

This section describes programming techniques that may improve the
efficiency of programs that execute in virtual mode. Consider these
techniques for new programs to be written and old programs to be
revised. The section also contains information on the use of certain
macros that are provided especially for virtual storage. Programming
conventions for the shared virtual area are also discussed.

Programming Hints for Reducing Page Faults

It is definitely worthwhile to spend some extra programming effort for
tuning virtual-mode programs that are used frequently or that require long
periods of processing time so that they will cause fewer page faults during
execution. Page faults generally occur when the size of the virtual-mode
program exceeds the number of page frames available to it during
execution. Efforts to reduce the number of page faults occurring in a
program generally involve techniques for reducing the size of the working
set of the program. The term working set is one that recurs often in
discussions of virtual storage systems.

The working set of a program is comprised of those program pages that
contain the most frequently used sequences of instructions for a given
period of time. The working set of a program is not a fixed number of
pages or instructions of that program; this set changes as the execution of
the program proceeds. For example, a program doing an internal sort and
writing a formatted table based on the results of this sort would have two
completely different basic working sets; one for the sort function and one
for the write functions.

What does execute efficiently mean? Essentially, this means that a
program will not execute appreciably slower than if the entire program
were in processor storage during its entire execution.

Chapter 4: Using the Facilities and Options of VSE/ Advanced Functions 4f27 ,.

Although the following section does not tell you how to determine the size
of the working set, it does provide techniques for reducing its size.

General Hints for Reducing the Working Set

There are three general rules to keep in mind when working toward a
reduction of a program's working set. The first is locality of reference,
that is, instructions and data used together should be in storage near each
other. Second is minimum processor storage. In other words, the amount
of processor storage. necessary for a program to do something should be
kept as low as possible. Third is validity of reference, that is, references
should be made only to data which will actually be used.

The chief means of achieving locality of reference is to make execution
sequential whenever possible by avoiding excessive branching.

A program that executes sequentially normally requires a partition larger
than the same program when it does not execute sequentially. For
example, the functions of a section of code repeat themselves several
times throughout the logic of your program. You are tempted to write this
code once and branch to it whenever necessary, but branching violates the
principle of locality of reference. Branching may cause more page faults
than would coding the routine in line each time it is used. Also, it is easier
for someone else to follow the logic of a program which is written to
execute sequentially.

Locality of reference can be achieved only to a limited extent by programs
written in a high-level language.

Elements in arrays in FORTRAN or PL/I can be referred to in the order
in which they appear in storage. In FORTRAN, for example, arrays are
ordered by columns. The elements of the array DIMENSION (2,2,2) are
arranged as follows in contiguous virtual storage locations:

(1,1,1) (2,1,1)
(1,2,1) (2,2,1)
(1,1,2) (2,1,2)
(1,2,2) (2,2,2)

For array structures of other compilers, refer to the appropriate
programming language reference manuals.

A routine which processes all the elements of such an array should refer
to them in this order. If only certain elements of an array are processed,
the elements should be arranged in the order in which they are to be
processed. If arranging an array in a certain manner causes it to be
processed advantageously one time, but disadvantageously another time,
you should consider writing two arrays, even at the cost of additional
virtual storage.

In an assembler language program, you should keep frequently used data
and constants near each other in storage, and near the instructions which
use them. This contrasts with the traditional practice of having one area at
the end of the program reserved for all the data areas and constants. By
the same token, seldom used data should be separated from the frequently
used data and placed with the routines which use it.

4-28 VSE/ Advanced Functions System Management Guide

A void, if possible, using chains which must be searched each time a data
item is required. If chains are unavoidable they should be kept in a
compact area of storage. This may result in some wasted (virtual) storage
but will be better than searches of large areas of storage.

Another good practice to help reduce paging is to initialize variables just
before they are to be used. For example in PL/I instead of the following:

use:

DCL A FIXED INIT (10);

DO B=l TO 100;
A=A+B;
END;

DCL A FIXED;

A=10;
DO B=l TO 100;
A=A+B;
END;

In the first method of coding, PL/I initializes the automatic variable at

1.: •• 1

~I

·1

the beginning of execution. The second method of coding does not require " I

the page containing A to be in processor storage until just before A is
used.

An important help in reducing the amount of processor storage needed for
execution is to keep coding used for errors or other unusual occurrences in
a separate routine. If, for example, the main routine contains code for
conditions that occur only 5 % of the time, by moving this error code to a
separate section of your program, you can reduce the amount of needed
processor storage for 95 % of the processing.

Frequently-used subroutines should be loaded near each other. Because of
their frequent use, these routines tend to be in processor storage almost
continuously. If they are scattered over several pages, each of these pages
will need to be in processor storage most of the time, thus increasing the
size of the working set. By loading these routines near each other, you
reduce the number of pages required in processor storage at anyone time.

Subroutines should be designed to do as much processing as possible
whenever they are called. It is better to duplicate some code from the
calling routine in the called routine in order to avoid switching back and
forth between routines. One technique for accomplishing this is to have
the calling program pass several parameters to the subroutine and make
one call, rather than passing one parameter at a time and make several
calls.

You should try to keep code that can be modified and code that cannot
be modified in separate sections of a large program. This will reduce page
traffic by reducing the number of pages that are changed. Also, try to
prevent I/O buffers from crossing page boundaries unnecessarily. Check
the assembler listing and the linkage editor map to determine where 2K
boundaries occur in your programs.

Chapter 4: Using the Facilities and Options of VSE/ Advanced Functions 4-29

1

Using Virtual Storage Macros

The macros designed for use by virtual-mode programs, which are
discussed below, perform the following services:

• fix pages in processor storage (PFrx macro) and later free the same
pages for normal paging (PFREE macro).

• indicate the mode of execution of a program (RUNMODE macro).

• influence the paging mechanism in order to reduce the number of page
faults, to minimize the page I/O activity, and to control the page
traffic within a specific partition.

In order to use these macros you must be programming in assembler
language or, if your program is written in a high-level language, you must
write an assembler subroutine to make use of them. Refer to
VSEIAdvanced Functions Macro Reference for a detailed description of
these macros.

Fixing Pages in Processor Storage

In VSEI Advanced Functions, parts of virtual-mode programs must be in
processor storage only at certain times. These parts include not only the
instructions and data being processed at anyone moment, but also data
areas for use by channel programs. Instructions and data are always in
processor storage when being used. Because of the nature of I/O
operations, the data areas for these operations could be paged out during
the 110 operation if something were not done to keep them in processor
storage during the entire operation. The operating system therefore fixes
I/O areas in processor storage for the duration of the I/O operation.

There are other parts of a program, however, which cannot tolerate
paging, and these parts are not necessarily kept in storage by the
operating system. For instance, programs that control time-dependent I/O
operations cannot tolerate paging. A familiar example is a MICR
(Magnetic Ink Character Reader) stacker select routine. If a page fault
were to occur during the execution of one of these programs, the results
would be unpredictable. A page fault in one of these programs can be
avoided by fixing the affected pages in processor storage, using the PFrx
macro.

The pages that you fix by the PFrx macro are fixed in the processor
storage allocated to the partition in which the PFrx request is issued.
Only as many pages may be fixed by a program at anyone time as there
are page frames allocated to the partition. This is done to prevent a loop
in one program from fixing all the pages in the system, and to enable
other programs to issue a PFrx macro concurrently.

The PFrx macro fixes the pages in processor storage, regardless of
whether these pages are stored in contiguous page frames or not. The
supervisor keeps a count of the number of times a page has been fixed
without being freed. A page that is fixed more than once without having
been freed (via the PFREE macro) is not brought in a second time and

4-30 YSE/ Advanced Functions System Management Guide

given another page frame. Instead, the counter for that page is just
increased by one and the page remains in the same page frame.

The PFREE macro does not directly free a page for paging out, but each
time it is issued, the counter of fixes is reduced by one. As soon as the
counter for a page reaches zero, the page can be paged out. At the end of
a job step, all pages that have been fixed during the job step are freed.

The PFREE macro should be used as soon as possible to make a
maximum possible number of page frames available to all programs
running in virtual mode.

Figure 4-9 is a skeleton example using the PFIX and PFREE macros.
After the execution of a PFIX macro, a return code is given in register
15. The meanings of the return codes are:

0- The pages were fixed successfully.
4 - You requested more page frames than the number of PFlXable

page frames available to the partition.
8 - Insufficient number of free page frames were available at the

time.
12 - You specified invalid addresses in your macros.

Note in the example how the return code can be used to establish a
branch to parts of the program that handle these specific conditions.

FIXER

HERE

ARTN

ARTNEND

NOPAGES

CANCL

WAIT

END
OPCCB
OPCCW
MSG

PFIX ARTN,ARTNEND+2 FIX ARTN IN STORAGE
B *+4(15) BRANCH ACCORDING TO RETURN CODE
B HERE CONTINUE IF OK
B NOPAGES GO TO CANCEL IF PART TOO SMALL
B WAIT GO TO WAIT UNTIL PAGES FREED
B CANCL GO TO CANCEL IF ADDR INVALID
BAL 14, ARTN GO TO ARTN
PFREE ARTN,ARTNEND+2 FREE ROUTINE AFTER EXECUTION

(time dependent processing which cannot be
paged out during execution)

BR

LA
EXCP
WAIT
CANCEL

R14 RETURN

R1,OPCCB
(1) WRITE MESSAGE TO OPERATOR
(1) WAIT FOR COMPLETION

ALL

(routine to free other pages)

EOJ
CCB
CCW
DC
DC

SYSLOG,OPCCW
X'09',MSG,X'20',61
CL32'AM CANCELING PLEASE ENLARGE REAL'
CL29'ADDR AREA AND RESTART THE JOB'

Figure 4-9. PFIX and PFREE Example

Chapter 4: Using the Facilities and Options of YSE/ Advanced Functions 4-31

Indicating the Execution Mode of a Program

You may have a program that must do different processing depending
upon its execution mode. It may be impractical to have two separate
programs cataloged in the core image library (one program for real mode
and another program for virtual mode). The RUNMODE macro can be
issued during the execution of the program to inquire which mode of
execution is being used. A return code is issued to the program in register 1.

Influencing the Paging Mechanism

Releasing Pages. With the RELP AG macro, you inform the page
management routines that the contents of one or more pages is no longer
required and need not be saved on the page data set. Thus, page frames
occupied by these released pages can be claimed for use by other pages,
and page 110 activity is reduced.

Forcing Page-out.

The FCEPGOUT macro is used to inform the page management routines
that one or more pages will not be needed until a later stage of
processing. The pages are given the highest page-out priority, with the
result that other pages, which may be needed immediately, are kept in
storage. Except when the RELP AG macro is in operation, the contents of
any pages written out are saved.

Page-in in Advance. The PAGEIN macro allows you to request that one
or more pages be read into processor storage in advance, in order to avoid
page faults when the specified pages are needed in processor storage. If
the specified pages are already in processor storage when the macro is
issued, they are given the lowest priority for page-out.

Balancing Telecommunication Activity

The use of telecommunication and production processing at the same time
may, occasionally, result in long or erratic telecommunication response
times. This may be especially true if you have overcommitted processor
storage, thus causing excessive paging. The telecommunication application
may have to compete so strongly for page frames (because of high
processing activity in the other partitions) that response time increases
substantially.

Telecommunication balancing improves response time by trading off
telecommunication response time against production partition throughput.
TP balancing tends to reduce response times, or at least to stabilize them.

After !PL, TP balancing can be activated by the operator issuing the
TPBAL command, which specifies the number of partitions that can
tolerate delayed processing. These will be the lowest priority partitions.
The TPBAL command is also used to change or display the current setting
(for more information, see the VSE/Advanced Functions Operating

4-32 YSE/ Advanced Functions System Management Guide

L
Procedures). Once activated, the TP balancing function can be invoked
by using TPINjTPOUT macros.

1
The TPIN macro signals to ,the operating system that an immediate
demand for system resoyices is being made by the telecommunication
application, for instance, when a message has arrived. After processing is
completed, TPOUT informs the operating system that the
telecommunication application has no further processing to do for the time
being, and that the system resources that were exclusively used for
telecommunication should be released. Failure to issue the TPOUT macro
can cause serious performance degradation in production partition
throughput.

The TPIN and TPOUT macros have been made available primarily for use
in IBM licensed telecommunication support (for example, ACFjVTAM
and CICSjVS). There is no need for these macros to be used in
user-written application programs that run under control of IBM supplied
telecommunication support.

Coding for the Shared Virtual Area

Besides accommodating the system directory list (SDL) and phases that
are needed by the operating system (for example, end-of-job step
routines), the shared virtual area (SVA) may contain user-written phases
that can be used concurrently by more than one program. The sV A
phases must be reenterable and relocatable; code that modifies itself will
cause a protection check when executed from the SV A. This section
presents some advice on coding phases to use SV A facilities and suggests
some standards for base-register usage.

The basic assumptions for coding an SV A phase are:

• The reenterable code must not modify any storage within its own
storage area. Therefore, the code must not contain DTFs, CCBs, or
other control blocks that are modified during execution.

• The phase can modify registers only if it saves and restores them for
each user.

• A user-specified work area (within the calling partition) must be
provided for storing registers and for any storage modifications.

Suggested register conventions:

• Use register 12 as the base register in both the main routine and the
reenterable code.

• Use register 13 as base for the working storage area. It is the
responsibility of the main routine to provide addressability to the work
area by loading register 13; the reenterable routine must not modify
register 13. The easiest way to address the working storage area in the
reenterable code is by a DSECT that defines the fields of the work
area and a USING dsectname,13. In this way symbolic addressing can
be used.

Chapter 4: Using the Facilities and Options of VSE/ Advanced Functions 4-33

MASTER

*
*

SAVE
WORKAREA
*
SWITCH
TECB
FIELDA
FIELDB

SLAVE

EXIT

DATAl
DATA2

WORKAREA
FIELDC
FIELDD

• Use CALL, SA VB, and RETURN macros. Since register 13 is the
base register, SA VB (14,12) and RETURN (14,12) result. Use
register notation for CALL, for example, CALL (15) Before
issuing the CALL, load register 15 with the transfer address. Register
14 will always contain the return address. The standard is thus
established of register 15 for calling and register 14 for returning.

• Switches, and other areas that may be modified, can be placed in the
working storage area using base register 13.

Figure 4-10 illustrates the suggested conventions: MASTER is the main
routine, SLA VB is the SV A phase.

CSECT
BALR
USING
LA
LOAD

LR
CALL

EOJ
DS
DS

DC
DS
DS
DS
END

CSECT
SAVE
BALR
USING
USING
LM
MVC
MVC
CLI
BE
SETIME
WAIT

XI
RETURN
DC
DC
LTORG
DSECT
DS
DS
END

12,0
*,12
13,SAVE
SLAVE,WORKAREA CANCELS IF SLAVE NOT IN CIL

LOADS SLAVE INTO WORKAREA
IF SLAVE IS NOT IN SVA

15, 1
(15),(SWITCH,TECB,FIELDA,FIELDB,WORKAREA)

9D
200D

XLl '00'
CL4
CL15
CLll

(14,12)
12,0
*,12
WORKAREA,6
2,6,0(1)
o (15,4) , DATA 1
0(11,5),DATA2
O(2),X' FF'
EXIT
3, (3)
(3)

0(2),X'FF'
(14,12)
CL15'THIS IS FIELDA'
CLll 'THIS IS FIELDB'

3D
3D

SLAVE IS LOADED HERE
IF NOT IN SVA

MUST BE SEPARATE ASSEMBLY

SETIME ALTERS THE TECB

Figure 4-10. Example of Conventions for SV A Coding

4-34 VSE/ Advanced Functions System Management Guide

L
Appendix A: System Layout on Disk

IPL Records

System Volume Label

User Volume Label

System Directory

Figures A-I and A-2 illustrate how the system residence (SYSRES) file is
organized. The volume containing the system residence file can be any
IDM DASD device supported by VSE/ Advanced Functions except a 2311
disk.

This area contains the initial program load (IPL) bootstrap records, which
cause the IPL retrieval program to be read from SYSRES and loaded into
processor storage. For CKD devices the IPL retrieval program is at
cylinder 0, track 1, record 5. For FBA devices it is contained within
blocks 3 through 9.

The volume label (VOLI label) contains the address of the volume table
of contents (VTOC) established when the pack was initialized. To
initialize a pack on an FBA device, use the system utility program
Initialize Disk; for a CKD device, use the initialize function of DSF
(Device Support Facilities). These programs are described in
VSE/ Advanced Functions System Utilities and Device Support Facilities,
respectively. The VTOC must be located outside of the SYSRES extent.

The user volume label area is provided for any additional standard volume
labels (VOL2-VOL8 labels). This area can extend from record 4 through
the end of track 0 on CKD devices or from the end of the system volume
label to the end of block 1 on FBA devices.

The SYSRES file starts with the system directory. This directory contains
the starting addresses of the 4 library directories and the address of the
label information area.

Library Directories and Libraries

Label Information Area

The purpose of these areas of the SYSRES file is discussed in Chapter 3
of this manual.

The SYSRES file ends with the label information area. The purpose of
this area is described in Chapter 2 of this manual.

Appendix A: System Layout on Disk A-I

Component

IPL Record
(Phase $$A$IPL 1)

IPL Record

System Volume Label

User Volume Label

Record 1

Record 2
System Directory

Record 3

Record 4

IPL Records (Phase $$A$PLBK)

Cata loged Phases
Core I mage Directory

Linked Phase

Core Image Library Members

Relocatable Directory

Relocatable Library Members

Source Statement Directory

Source Statement Library Members

Procedure Directory

Procedure Library Members

Label I nformation Area

* Allocation Dependent on User ReqUirements
X = Ending CC of the Preceding Directory
Y = Ending HH of the Preceding Directory
Z = Ending CC of the Preceding Library

Starting Disk Address

CC HH

00 00

00 00

00 00

00 00

00 01

00 01

00 01

00 01

00 01

00 02

X Y+1

Z+1 00

X Y+1

Z+1 00

X Y+1

Z+1 00

X Y+1

Z+1 00

Note: Track 0 of cylinder 0 is not part of the SYSRES file.

Number
of Tracks

R (Alloc.)

1

2
1

3

4

1

2

3 1

4

5

*

1 *

1 *

1 *

1 *

1 *

1 *

1 *

1 Device
dependent

Figure A-l. System Residence Organization on eKD Devices

A-2 VSE/ Advanced Functions System Management Guide

R = Required ~ 0= Optional

R

R

R

0

R

R

R

R

R

R

Ij
R

0

0

0

0

0

0

R

Component Starting Disk Address
Block Number

IPL Records
0 (Phase $$A$I PLO)

System Volume Labell 1

System Directory 2

IPL Retrieval Program
3 (Phase $$A$PLBF)

Core I mage Directory 10
Core I mage Library
Members X+1

Relocatable Directory Y+1
Relocatable Library
Members X+1

Source Statement Directory Y+1
-

Source Statement Library
Members X+1

Procedure Directory Y+1

Procedure Library Members X+1

Label I nformation Area Y+1

*
X=
Y=

Allocation dependent on user requirements
Last block of preceding directory
Last block of preceding library

Number of R=Required
Blocks O=Optional

1 R

1. R

1 R

7 R

* R

* R

* 0

* 0

* 0

* 0

* 0

* 0

200 2- R

I Optional user volume labels if written will be in the same block following the
system volume label.

2 Using the Restore program you may allocate a label information area different
than the default size of 200 blocks.

Note: Blocks 0 and 1 are not part of the SYSRES file.

Figure A-2. System Residence Organization on FDA devices

Appendix A: System Layout on Disk A-3

'i 1. 'J .

L ,

I

A-4 VSE/ Advanced Functions System Management Guide

/~------------------------

Glossary

This glossary defines the terms proper to this manual. If you do not find the term you
are looking for, refer to the IBM Data Processing Glossary, GC20-1699.

This glossary includes definitions developed by the American National Standards
Institute (ANSI) and the International Organization for Standardization (ISO). This
material is reproduced from the American National Dictionary for Information
Processing, copyright 1977 by the Computer and Business Equipment Manufacturers
Association, copies of which may be purchased from the American National
Standards Institute, 1430 Broadway, New York, New York 10018. American
National Standard Definitions are marked with an asterisk (*).

access method: A technique for moving data between virtual storage and
input/ output devices.

access method services: A multifunction service program that defines
VSAM files and allocates space for them, converts indexed-sequential files
to key-sequenced files with indexes, modifies file attributes in the catalog,
reorganizes files, facilitates data portability between operating systems,
creates backup copies of files and indexes, helps make inaccessible files
accessible, and lists the records of the files and catalogs.

address: (1) An identification, as represented by a name, label, or number,
for a register, location in storage, or any other data source or destination
such as the location of a station in a communication network. (2) Loosely,
any part of an instruction that specifies the location of an operand for the
instruction.

address translation: The process of changing the address of an item of
data or an instruction from its virtual address to its real storage address.
See also dynamic address translation.

alternate track: One of a number of tracks set aside on a disk pack for use
as alternatives to any defective tracks found elsewhere on the disk pack.

application program: A program written by a user that applies to his own
work.

assembler language: A source language that includes symbolic machine
language statements in which there is a one-to-one correspondence with
the instruction formats and data formats of the computer.

asynchronous operator communication: A facility which allows the operator
to defer the reply to a message that requires an operator's response.

attach: (1) To create a task and present it to the supervisor. (2) A macro
instruction that causes the control program to create a new task and
indicates the entry point in the program to be given control when the new
task becomes active.

auxiliary storage: Data storage other than real storage; for example,
storage on magnetic tape or disk. Synonymous with external storage,
secondary storage.

blocking: Combining two or more logical records into one block.

Glossary 5-1

*

blocking factor: The number of logical records combined into one physical
record or block.

book: A group of source statements written in any of the languages
supported by VSE and stored in a source statement library.

buffer: An area of storage that is temporarily reserved for use in
performing an input/output operation, into which data is read or from
which data is written. Synonymous with I/O area.

byte: A sequence of eight adjacent binary digits that are operated upon as
a unit and that constitute the smallest addressable unit of the system.

card punch: A device to record information in cards by punching holes in
the cards to represent letters, digits, and special characters.

card reader: A device which senses and translates into machine code the
holes in punched cards.

cardless system: A System/370 Model 115/125 configured without a card
reader or card punch, but with an mM 3540 Diskette Input/Output Unit.

catalog: To enter a phase, module, book, or procedure into one of the
system or private libraries.

central processing unit: A unit of a computer that includes the circuits
controlling the interpretation and execution of instructions. Abbreviated
CPU.

channel: (1) * A path along which signals can be sent, for example, data
channel, output channel. (2) A hardware device that connects the CPU
and real storage with the I/O control units.

channel program translation: In a copy of a channel program, replacement,
by software, of virtual addresses with real addre~ses.

compile: To prepare a machine language program from a computer
program written in a high-level language by making use of the overall
logic structure of the program, or generating more than one machine
instruction for each symbolic statement, or both, as well as performing the
function of an assembler.

compiler: A program that translates high-level language statements into
machine language instructions.

configuration: The group of machines, devices, etc., which make up a data
processing system.

control area: A group of control intervals used as a unit for formatting a
file before adding records to it. Also, in a key-sequenced file, the set of
control intervals covered by an index record; used by VSAM for
distributing free space and for placing a low-level index adjacent to its
data.

control intenal: (1) A fixed-length area of auxiliary storage space in
which VSAM stores records and distributes free space, also, in a
key-sequenced file, the set of records pointed to by an entry in the index

5-2 VSE/ Advanced Functions System Management Guide

record. It is the unit of information transmitted to or from auxiliary
storage by VSAM, independent of blocksize. (2) For an FBA device, the
unit of data transfer between processor storage and the device. It hat the
same format as a VSAM control interval. In recording data, IOCS maps
each control interval over an integral number of FBA blocks.

control program: A program that is designed to schedule and supervise the
performance of data processing work by a computing system.

control registers: A set of registers used for operating system control of
relocation, priority interruption, program event recording, error recovery,
and masking operations.

control section: That part of a program specified by the programmer to be
a relocatable unit.

control unit: A device that controls the reading, writing, or display of data
at one or more input/output devices.

core image library: A library of phases that have been produced as output
from link editing. The phases in the core image library are in a format
that is executable either directly or after processing by the relocating
loader in the supervisor.

count-key-data (CKD) device: A disk storage device storing data in the
format: count field normally followed by a key field followed by the
actual data of a record. The count field contains, among others, the
address of the record in the format CCHHR (CC = cylinder number, HH
= head or track number, R = record number) and the length of the data;
the key area contains the record's key (search argument). See also fixed
block architecture (FBA) device.

CPU busy time: The amount of time devoted by the central processing
unit to the execution of instructions.

data file: A collection of related data records organized in a specific
manner. For example, a payroll file (one record for each employee,
showing his rate of pay, deductions, etc., or an inventory item, showing
the cost, selling price, number in stock, etc.). See also file.

data integrity: See integrity.

data management: A major function of VSE/ Advanced Functions that
involves organizing, storing, locating, retrieving, and maintaining data.

deblocking: The action of making the first and each subsequent logical
record of a block available for processing one record at a time.

default value: The choice among exclusive alternatives made by the system
when no explicit choice is specified by the user.

deletion of an I/O Device: Removal of the I/O unit from the supervisor
configuration tables.

diagnostic routine: A program that facilitates computer maintenance by
detection and isolation of malfunctions or mistakes.

Glossary 5-3

dial-up terminal: A terminal on a switched teleprocessing line.

direct access: (1) Retrieval or storage of data by a reference to its
location on a volume, other than relative to the previously retrieved or
stored data. (2) • Pertaining to the process of obtaining data from, or
placing data into, storage where the time required for such access is
independent of the location of the data most recently obtained or placed
in storage. (3) • Pertaining to a storage device in which the access time is
effectively independent of the location of the data. Synonymous with
random access.

direct organization: Direct file organization implies that for purposes of
storage and retrieval there is a direct relationship between the contents of
the records and their addresses on disk storage.

directory: An index that is used by the system control and service
programs to locate one or more sequential blocks of program information
that are stored on direct access storage.

diskette: A flexible magnetic-oxide coated disk suitable for data storage
and retrieval. Data may be stored and retrieved via such devices as the
mM 3740 Data Entry Unit and the mM 3540 Diskette Input/Output
Unit. Diskettes are also used to contain microprograms for some central
processing units.

disk pack: A direct access storage volume containing magnetic disks on
which data is stored. Disk packs are mounted on a disk storage drive, such
as the mM 3330 Disk Storage Drive.

distributed free space: Space reserved within the control intervals of a
key-sequenced file for inserting new records into the file in key sequence;
also, whole control intervals reserved in a control area for the same
purpose.

dump: (1) To copy the contents of all or part of virtual storage. (2) The
data resulting from the process as in (1).

dynamic address translation (DAT): (1) The change of a virtual storage
address to an address in real storage during execution of an instruction.
(2) A hardware function that performs the translation.

dynamic partition balancing: A facility of VSE/ Advanced Functions wich
allows the user to specify two or more or all partitions of the system to
have their processing priority changed dynamically such that each of these
partitions receives approximately the same amount of CPU processing
time.

entry sequence: The order in which data records are physically arranged in
auxiliary storage, without respect to their contents (contrast with key
sequence).

entry-sequenced me: A VSAM file whose records are loaded without
respect to their contents, and whose relative byte addresses cannot
change. Records are retrieved and stored by addressed access, and new
records are added to the end of the file.

error message: The communication that an error has been detected.

5-4 VSE/ Advanced Functions System Management Guide

error recovery procedures: Procedures designed to help isolate, and, when
possible, to recover from errors in equipment. The procedures are often
used in conjunction with programs that record the statistics of machine
malfunctions.

extent: A continuous space on a direct access storage device, occupied by
or reserved for a particular file.

• file: A collection of related records treated as a unit. For example, one
line of an invoice may form an item, a complete invoice may form a
record, the complete set of such records may form a file, the c'Qllection of
inventory control files may form a library, and the libraries used by an
organization are known as its data bank.

•

•

•

FDA: See fixed block architecture (FBA) device.

FBA block: A unit of data of fixed length on which the FBA architeeture
is based.

fixed block architecture (FBA) device: A disk storage device storing data
in blocks of fixed size; these blocks are addressed by block number
relative to the beginning of the file.

fixed page: A page in processor storage that is not to be paged out.

hard copy: A printed copy of machine output in a visually readable form,
for example, printed reports, listings, documents, and summaries.

hard wait state: In general, a wait state is the condition of a CPU when all
operations are suspended. System recovery from a hard wait state requires
that the user performs a new IPL (initial.program load) procedure.

hardware: Physical equipment, as opposed to the computer program or
method of use, for example, mechanical, magnetic, electrical, or electronic
devices. Contrast with software.

idle time: That part of available time during which the hardware is not
being used.

index: (1) • An ordered reference list of the contents of a file or
document, together with keys or reference notations for identification or
location of those contents. (2) A table used to locate the records of an
indexed sequential file.

indexed-sequential organization: The records of an indexed sequential file
are arranged in logical sequence by key. Indexes to these keys permit
direct access to individual records. All or part of the file can be processed
sequentially.

Initial Program Load (IPL): The intialization procedure that causes the
VSE system to commence operation.

integrity: Preservation of data or programs for their intended purpose.

interface: A shared boundary. An interface might be a hardware
component to link two devices or it might be a portion of storage or
registers accessed by two or more computer programs.

Glossary 5-5

,
I :
;

I
II r
f ,

, .
! i

* I/o: An abbreviation for input/output.

*

ISAM interface program: A set of routines that allow a processing
program coded to use ISAM to gain access to a VSAM key-sequenced file
with an index.

job: (1) • A specified group of tasks prescribed as a unit of work for a
computer. By extension, a job usually includes all necessary computer
programs, linkages, files, and instructions to the operating system. (2) A
collection of related problem programs, identified in the input stream by a
JOB statement followed by one or more EXEC statements.

job accounting interface: A function that accumulates, for each job step,
accounting information that can be used for charging usage of the system,
planning new applications, and supervising system operation more
efficiently.

job control: A program that is called into a partition to prepare each job or
job step to be run. Some of its functions are to assign I/O devices to certain
symbolic names, set switches for program use, log (or print) job control
statements, and fetch the first program phase of each job step.

job (JOB) statement: The job control statement that identifies the
beginning of a job. It contains the name of the job.

job step: The execution of a single processing program.

K: 1024.

key: One or more characters associated within an item of data that are
used to identify it or control its use.

key sequence: The collating sequence of data records, determined by the
value of the key field in each of the data records. May be the same as, or
different from, the entry sequence of the records.

key-sequenced file: A file whose records are loaded in key sequence and
controlled by an index. Records are retrieved and stored by keyed access
or by addressed access, and new records are inserted in the file in key
sequence by means of distributed free space. Relative byte addresses of
records can change.

label: identification record for a tape, diskette, or disk file.

label information area: Under VSE, the last portion of the system
residence file that stores label information read from job control
statements or commands.

language translator: A general term for any assembler, compiler, or other
routine that accepts statements in one language and procedures equivalent
statements in another language.

leased facility: A circuit of the public telephone network made available
for the exclusive use of one subscriber.

librarian: The set of programs that maintains, services, and organizes the
system and private libraries.

5-6 VSE/ Advanced Functions System Management Guide

L

*

*

library: A collection of files or programs, each element of which has a
unique name, that are related by some common characteristics. For
example, all phases in the core image library have been processed by the
linkage editor.

f
linkage editor: A processing program that prepares the output of language
translators for execution. It combines separately produced object modules; l.'
resolves symbolic cross references among them, and generates overlay t
structure on request; and produces executable code (a phase) that is ready 'l
to be fetched or loaded into virtual storage.

load: (1) • In programming, to enter instructions or data into storage or I
working registers. (2) In VSE, to bring a program phase from a core ,,\
image library into virtual storage for execution.

main page pool: The set of all page frames in processor storage not
assigned to the supervisor or one of the partitions.

message: See error message, operator message.

microprogramming: A method of working of the CPU in which each
complete instruction starts the execution of a sequence of instructions,
called microinstructions, which are generally at a more elementary level.

multiprogramming system: A system that controls more than one program
simultaneously by interleaving their execution.

multitasking: The concurrent execution of one main task and one or more
subtasks in the same partition.

object code: Output from a compiler or assembler which is suitable for
processing by the linkage editor to produce executable machine code.

object module: A module that is the output of an assembler or compiler
and is input to a linkage editor.

object program: A fully compiled or assembled program. Contrast with
source program.

ooIine: (1) Pertaining to equipment or devices under control of the central
processing unit. (2) Pertaining to a user's ability to interact with a
computer.

operand: (1) • That which is operated upon. An operand is usually
identified by an address part of an instruction. (2) Information entered
with a command name to define the data on which a command processor
operates and to control the execution of the command processor.

operator command: A statement to the control program, issued via a
console device, which causes the control program to provide requested
information, alter normal operations, initiate new operations, or terminate
existing operations.

operator message: A message from the operating system or a problem
program directing the operator to perform a specific function, such as
mounting a tape reel, or informing him of specific conditions within the
system, such as an error condition.

Glossary 5-7

l

* overflow: (1) That portion of the result of an operation that exceeds the
capacity of the intended unit of storage. (2) Pertaining to the generation
of overflow as in (1).

overlay: n. (1) One of the segments, which consists of one or more
phases, of a program that is so structured that not all of the segments
need be in virtual storage at anyone time. v. (2) The process of replacing
a previously retrieved program segment in virtual storage by another
segment.

page: (1) In YSE, a 2K block of instructions, data or both. (2) To transfer
instructions, data, or both between processor storage and the page data set.

page data set: An extent in auxiliary storage, in which pages are stored.

page fault: A program check interruption that occurs when a page that is
marked not in processor storage is referred to by an active page.
Synonymous with page translation exception.

page fixing: Marking a page as nonpageable so that it remains in processor
storage.

page frame: A 2K block of processor storage that can contain a page.

page in: The process of transferring a page from the page data set to
processor storage.

page out: The process of transferring a page from processor storage to the
page data set.

page pool: The set of all page frames that may contain pages of programs
in virtual mode.

paging: The process of transferring pages between processor storage and
the page data set.

* parameter: A variable that is given a constant value for a specific purpose
or process.

partition: In YSE, a contiguous area of virtual storage available for the
execution of programs.

partition balancing: See dynamic partition balancing.

peripberal equipment: A term used to refer to card devices, magnetic tape
and disk devices, diskettes, printers, and other equipment bearing a similar
relation to the CPU.

pbase: The smallest complete unit that can be referred to in the core
image library.

POWER: A unit record spooling support available as the IBM licensed
program YSE/POWER.

printer: A device that expresses coded characters as hard copy.

priority: A rank assigned to a partition that determines its precedence in
receiving CPU time.

5-8 YSE/ Advanced Functions System Management Guide

private library: A user-owned library that is separate and distinct from the
system library.

private second level directory: The private second level directory is a table
located in the supervisor containing the highest phase names found on the
corresponding directory tracks of the private core image library.

problem determination aid: A program that traces a specified event when
it occurs during the operation of a program. Abbreviated PDAID.

problem program: Any program that is executed when the central
processing unit is in the problem state; that is, any program that does not
contain privileged instructions. This includes illM-distributed programs,
such as language translators and service programs, as well as programs
written by a user.

processing program: (1) A general term for any program that is not a
control program. (2) Synonymous with problem program.

processor storage: The general purpose storage of a computer. Processor
storage can be accessed directly by the operating registers. Synonymous
with real storage.

queue: (1) A waiting line or list formed by items in a system waiting for
service; for example, tasks to be performed or messages to be transmitted
in message switching system. (2) To arrange in, or form, a queue.

random processing: The treatment of data without respect to its location in
auxiliary storage, and in an arbitrary sequence governed by the input
against which it is to be processed.

real address: The address of a location in real storage.

real address area: In VSE, the area of virtual storage where virtual
addresses are equal to real addresses.

real mode: In VSE, the mode of a program that cannot be paged.

real storage: The storage of a computing system from which the central
processing unit can directly obtain instructions and data, and to which it
can directly return results. Synonymous with processor storage.

reenterable: The attribute of a load module that allows the same copy of
the load module to be used concurrently by two or more tasks.

relocatable: The attribute of a set of code whose address constants can be
modified to compensate for a change in origin.

relocatable library: A library of relocatable object modules and IOCS
modules required by various compilers. It allows the user to keep
frequently used modules available for combination with other modules
without recompilation.

restore: To return a data file created previously by a copy operation from
cards, disk or magnetic tape to disk storage.

Glossary 5-9

.
•

!

rotational position sensing (RPS): A standard or optional feature of most
mM disk storage devices. It permits these devices to disconnect from a
block multiplexer channel (or its equivalent on Model 3115/3125 CPUs)
during rotational positioning operations, thereby allowing the channel to
service other devices.

• routine: An ordered set of instructions that may have some general or
frequent use.

•

secondary storage: Same as auxiliary storage.

second level directory: A table located in the supervisor containing the
highest phase names found on the corresponding directory tracks of the
system core image library.

security: Prevention of access to or use of data or programs without
authorization.

sequential organization: Records of a sequential file are arranged in the
order in which they will be processed.

service program: A program that assists in the use of a computing system,
without contributing directly to the control of the system or the
production of results.

shared virtual area: An area located in the highest addresses of virtual
storage. It can contain a system directory list of highly used phases,
resident programs that can be shared between partitions, and an area for
system GETVIS support.

software: A set of programs, concerned with the operation of the
hardware in a data processing system.

source: The statements written by the programmer in any programming
language with the exception of actual machine language.

source program: A computer program written in a source language .
Contrast with object program.

source statement library: A collection of books (such as macro definitions)
cataloged in the system by the librarian program.

spanned records: Records of varying length that may be longer than the
currently used blocksize, and which may therefore be written in one or
more continuous blocks. A spanned record may occupy more than 1 track
of a disk device.

stand-alone dump: A program that displays the contents of the registers
and part of the real address area and that runs independently and is not
controlled by VSE.

standard label: A fixed-format identification record for a tape, diskette, or
disk file. Standard labels can be written and processed by the VSE system.

storage protection: An arrangement for preventing access to storage.

5-10 VSE/Advanced Functions System Management Guide

;

supervisor: A component of the control program. It consists of routines to
control the functions of program loading, machine interruptions, external
interruptions, operator communications and physical roes requests and
interruptions. The supervisor alone operates in the privileged (supervisor)
state. It coexists in real storage with problem programs.

switched line: A communication line in which the connection between the
computer and a remote station is established by dialing. Synonymous with
dial line.

system directory list: A list containing directory entries of highly used
phases and of all phases resident in the shared virtual area. This list is
contained in the shared virtual area.

system residence device: The direct access device on which the system
residence file is located.

system residence volume: The volume on which the basic system and all
related supervisor code is located.

task: A unit of work for the central processing unit from the standpoint of
the control program.

teleprocessing: The processing of data that is received from or sent to
remote locations by way of telecommunication lines.

terminal: (1) • A point in a system or communication network at which
data can either enter or leave. (2) Any device capable of sending and
receiving information over a communication channel.

throughput: The total volume of work performed by a computing system
over a given period of time.

track: The portion of a moving storage medium, such as a tape, diskette,
or disk, that is accessible to a given reading head position.

transient area: An area of processor storage used for temporary storage of
transient routines.

ues: Universal character set.

unit record: A card containing one complete record; a punched card.

universal character set: A printer feature that permits the use of a variety
of character arrays. Abbreviated ues.
unrecoverable error: A hardware error which cannot be recovered from by
the normal retry procedures.

user label: An identification record for a tape or disk file; the format and
contents are defined by the user, who must also write the necessary
processing routines.

utility program: A problem program designed to perform a routine task,
such as transcribing data from one storage device to another.

virtual address: An address that refers to virtual storage and must,
therefore, be translated into a real storage address when it is used.

----------------------------_________ g[£'~~ __ ?-ll

virtual address area: In VSE, the area of virtual storage whose addresses
are greater than the highest address of the real address area.

virtual mode: In VSE, the mode of execution of a program which may be
paged.

virtual storage: Addressable space that appears to the user as real storage,
from which instructions and data are mapped into real storage locations.
The size of virtual storage is limited by the addressing scheme of the
computing system and by the capacity of the page data set, rather than by
the actual number of real storage locations.

virtual storage access method (VSAM): An access method (available as the
licensed program product (VSE/VSAM) for direct or sequential
processing of fixed and variable length records on direct access devices;
designated for use in a virtual storage environment.

virtual telecommunications access method (VT AM): A set of IBM programs
(available as the licensed program product (A CF /VT AM) that control
communications between terminals and application programs.

volume: (1) That portion of a single unit of storage media which is
accessible to a single read/write mechanism, for example, a diskette, a
disk pack, or part of a disk storage module. (2) A recording medium that
is mounted and dismounted as a unit, for example, a reel of magnetic
tape, a disk pack, or a diskette.

volume table of contents: A table on a direct access volume or diskette
that describes each file on the volume. Abbreviated VTOC.

VSAM access method services: A multifunction utility program that
defines VSAM files and allocates space for them, converts indexed
sequential files to key-sequenced files with indexes, facilitates data
portability between operating systems, creates backup copies of files and
indexes, helps to make inaccessible files accessible, and lists file and
catalog entries.

VSAM catalog: A key-sequenced file, with an index, containing extensive
file and volume information that VSAM requires to locate files, to allocate
and deallocate storage space, to verify the authorization of a program or
operator to gain access to a file, and to accumulate usage statistics for
files.

VTOC: See volume table of contents.

work file: A file on an auxiliary storage medium reserved for intermediate
results during execution of the program.

working set: The set of pages of a user's virtual-mode program that must
be in processor storage in order to avoid excessive paging.

5-12 VSE/Advanced Functions System Management Guide

Index

$$A$CDLO 3-3, 3-9
$$A$IPLO A-2
$$A$IPL1 A-I
$$A$PLBF A-2
$$A$PLBK A-I
$$A$SUP1 3-2
$ASIPROC 3-21
$JOBACCT 2-29, 4-9
$JOBEXIT 4-6
$phase 3-13, 3-146
$SYSOPEN 3-16,4-4
/+ statement 3-121
/ & statement 3-30

A
abnormal termination exit 4-3
access authorization checking 2-28
access control 2-28

ID job control statement 3-28
restriction for library definition 3-58
restriction for SDL entries 3-11
table 2-28

access control table 2-28
ACF/VTAM support 2-27
ACTION statement 3-103

CANCEL operand 3-104
CLEAR operand 3-103
MAP operand 3-103
NOMAP operand 3-103

ADD command 2-40, 3-4
defining a device as sharable 4-21
defining a device as switchable 4-22

address space 1-5
allocating to the partitions 3-17
division of 1-14
minimum per partition 3-17
partitions within 1-14
real 1-18,2-20
shared virtual area (SV A) within 1-15
virtual 1-18,2-20

ALLOC (librarian) statement 3-132
ALLOC command

initiating foreground partitions 3-17, 3-19
ALLOCR command 1-21,3-18
alternate dump file(s) 2-16
ASI 2-40, 3-2, 3-8, 3-19

contents of IPL procedures 3-22
contents of JCL procedures 3-23
default procedure names 3-20
implementation requirements 3-20

master procedure 3-20
procedure library 2-8, 3-20
stop facility 3-21

ASI master procedure 3-20
ASI IPL procedure 3-22
ASI JCL procedure 3-23

example 3-24
naming conventions 3-20

ASI stop facility 3-21
assemble, link edit, and execute 3-61, 3-92
assembler copy sublibrary 3-119, 3-140
assembler macro sublibrary 3-120,3-140
ASSGN job control command/

statement 3-37, 3-42
assignment, sharing 3-38
asynchronous operator communication 2-32
ASYNOC (FOPT macro) operand 2-32
ATTACH macro 1-26
AUTO

specification in SIZE operand 3-68, 3-71
AUTOLINK feature 3-101

example 3-110
suppressing the 3-102

automated system initialization (see ASI)

B
background partition 1-2

initial size 3-17
Backup/Restore utility 2-2
BATCH command 1-2,3-19
BKEND statement 3-120
block 3-127
book 2-5

updating in the source statement library 3-129
BTAM-ES support 2-27
BTMOD 2-27
buffers, CCW translation 2-38
BUFSIZE (IOTAB macro) operand 2-37

c
CANCEL (linkage editor option) 3-93, 3-104
CANCEL command

effects of 3-30
CANCEL macro 4-3
CAT AL option 3-87
catalog control statements 3-118
cataloged procedures 2-5, 3-78

modifying multistep procedures 3-83
partition-related 3-85
retrieval 3-78
several job steps in 3-82
SYSIPT data in 3-82,3-84, 3-121

Index 6-1

temporarily modifying 3-79
use by operator 3-86

cataloged programs
invoking 3-65

cataloging 3-91
a supervisor 3-91
assigning change levels 3-112
members into libraries 3-118
to a private core image library 3-108
to the procedure library 3-121
to the relocatable library 3-118
to the source statement library 3 -119
to the system core image library 3-107

CATALP statement 3-121
DATA parameter in 3-121

CAT ALR statement 3-118
CATALS statement 3-119, 3-123
CBF (FOPT macro) operand 2-31
CCW translation 2-38
CDL (communication device list) 3-9
central processing unit (CPU)

control of 1-1
chaining of libraries (see

concatenation of libraries)
change level verification 3-123
change levels 3-122
channel queue (CHANQ) 2-36
channel queue table 2-37
channel switching 4-17
CHANQ (lOTAB macro) operand 2-36
checkpointing a program 4-15
CHKPT macro 4-15
CLEAR

operand in ACTION statement 3-103
CLOSE job control command 3-74, 3-76
COBOL sublibrary 3-119
COMMON

in FORTRAN programs 3-107
communication region

modification at end-of-job 3-30
compile and execute, example 3-111
compile, link edit, and execute 3-61, 3-92
compiler required LIOCS modules 2-4
compiling in more than one partition 2-19
concatenation of libraries 2-7, 3-56

maximum number 2-26
search order 3-146

condense limit
specifying the 3-127

condensing the libraries 3-124, 3-127
restrictions 3-127

CONDL statement 3-127
CONDS statement 3-124
console buffering 2-31
context editing 2-28

6-2 VSE/ Advanced Functions System Management Guide

control section (CSECT) 3-88
3-104

3-100
in an overlay structure
including for link-edit

controlling jobs 3-28
controlling magnetic tape 3-59
controlling printed output 3-60
copy blocks 2-3 8
COpy control statement 3-131,3-135

NEWoperand 3-135
COPYSERV librarian program 3-136
core image library 2-4

naming conventions for 3-128
CORGZ librarian program 2-6, 3-130

automatic copying 3-132
merging libraries 3-134

cross-partition event control 1-26
CSECT 3-88
CSERV program 3-138

D
DASD file protection 2-32

number of extent blocks 3-7
DASD labels 3-48
DASD sharing across systems 2-32, 3-6, 4-18

error recovery 4-26
example 4-24

DASD switching 4-16
channel switching 4-17
string switching 4-17

DASDFP (FOPT macro) operand 2-33
DASDSHR (FOPT macro) operand 2-32,4-21
data secured file (DSF) 3-49
de-editing assembler macros 3-140
DECK option 3-66
DEF command 2-16,3-5
default procedure names under ASI 3-20
DEL command 3-5
DELETC statement
deleting I/O devices
DELETP statement
DELETR statement
DELETS statement
device assignment

3-123
3-5

3-123
3-123
3-123

in a multiprogramming system 3-38
permanent 3-37
restrictions 3-37
temporary 3-37

device class
in ASSGN 3-33

DEVICE RESERVE channel command 4-19
Device Support Facilities A-I
device type for new system residence 3-131

c

device types for MERGE librarian
function 3-135

direct access devices
label information 3-48

directory
library A-I, 3-113, 3-137
system A-I, 3-113

disk information block (DIB) 3-74
disk options 2-32

DASD file protection 2-32
rotational position sensing (RPS) 2-34
track hold 2-33

diskette files
label information 3-47

display operator console (DOC) 2-39
distribution medium 2-1
distribution supervisors 2-4
DLA command 2-18,3-6
DLBL statement 3-46

for direct access files 3-48
DLF command 3-6, 4-22

position within IPL commands 3-4
DOC (FOPT macro) operand 2-39
DOS/VSE ill,3-148
DOSVSDMP program 2-16
DPD command 2-13,3-5

use under ASI 3-23
DSER V librarian program 3-137

displaying change levels 3-123
executing after SET SDL 3-12
listing of book names 3-120

DSF
Device Support Facilities (DSF) A-I
data secured file 3-49

DSPCH statement 3-139
DSPL Y statement 3 -13 8
DSPLYS statement 3-138
DTFDI 3-72
DTFPH macro 2-33
DTFSD support 3-74
DTL macro 4-20
DTSECTAB macro 2-28
D{]MP macro 4-3
dump file, alternate 2-16
DVCDN command 3-43, 4-17
DVC{]P command 3-43,4-17
dynamic allocation of storage 3-69
dynamic storage areas 1-24

E
ECPS:VSE mode 1-1, 1-14

defining the page data set 2-14

deternlining virtual storage size 1-18, 2-20
initial size of BG partition 3-17
use of supervisor buffers 2-38

edited macros
de-editing 3-140
preparing for update 3-140

editing under VSE/ICCF 2-28
END record

of an object module 3-89
END OEND) statement 3-129

for MAINT program 3-122
end-of-procedure (/ +) statement 3-121
end-of-job (/ &) statement 3-30
ENTRY statement 3-91
EO] macro 4-3
EREP program 3-4,3-13

for listing of SYSREC 2-39, 3-15, 3-17
error queue 2-39
ERRQ (FOPT macro) operand 2-39
ERRS option 3-66
ESERV librarian program 3-140
EXEC statement 3-29

REAL operand 1-22,3-67
SIZE operand 1-22, 3-68

executing a program 3-61
in real mode 1-18,3-67
in virtual mode 1-18

EXIT macro 2-31
exit routines

user-written 4-1
EXTENT job control statement 3-48

for DASD files 3-49

F
Fast Copy Data Set 2-2
fast function 2-39
fast translate 2-39
fast B/C-transient fetch 3-12
FASTFTCH SET SDL procedure 3-12
FASTTR (FOPT macro) operand 2-39
FBA device

size of label information area 3-133
space available for SYSRES 3-133

FCB (forms control buffer) 3-60
FCEPGO{]T macro 4-32
FETCH macro

use of 3-106
file id

in DLBL/TLBL statement 3-46
file labels 3-43
file name

for system files on disk 3-73
in problem program 3-46

Index 6-3

in DLBL/TLBL statement 3-46
files

data secured (DSF) 3-49
relating to a program 3-32

fixing pages in processor storage 1-24, 4-30
fixlist 2-38
FOPT generation macro

ASYNOC operand 2-32
CBF operand 2-31
DASDFP operand 2-33
DASDSHR operand 2-32,4-21
DOC operand 2-39
ERRQ operand 2-39
FASTTR operand 2-39
JA operand 2-29
JALIOCS operand 2-30
LCONCAT operand 2-26,3-56
RPS operand 2-34
SEC operand 2-28
SLD operand 2-26
TRKHLD operand 2-33
TTIME operand 2-31,4-3

foreground partition
allocating address space to 3-17
initiating 1-2, 3-18
minimum allocation 3-19
number of 1-2

forms control buffer (FCB) 3-60
FREEVIS macro 3-69

during real mode execution 3-69
FROM (LIBDEF) parameter 3-57, 3-137

G
GENEND (librarian) statement 3-140
GENDTL macro 4-20
GETCA T ALS (librarian) statement 3-140
GETIME macro 2-30
GETVIS (SVA command) parameter 2-24, 3-7
GETVIS area

partition 1-24, 3-69
system 1-24, 2-24

GETVIS requests, real mode execution 3-69
GO parameter of EXEC statement 3-62, 3-92

H
hard copy file

creating 2-15
DASD sharing across systems 4-23

history file 2-1, 2-15
DASD sharing across systems 4-23
update procedures 2-6

HOLD= for track hold 2-33

6-4 VSE/ Advanced Functions System Management Guide

I
I/O options 2-36

channel queue 2-36
error queue 2-39
supervisor buffers 2-37

ICCF 2-28
ID job control statement 3-28
IFCEREPI program 3-13
IJIPL file 3-3
INCLUDE statement 3-91,3-100
initial microprogram load

(IML) 1-18, 2-14
initial program load (IPL) 3-2

automatic 3-2, 3-8
automated functions of 3-8
interactive 3-2, 3-19
user-defined processing after 3-16

interactive computing and control (ICCF) 2-28
interactive IPL 3-2, 3-19
interval timer 2-30, 4-2
invoking cataloged programs 3-65
10DEV (IOTAB macro) operand 2-40, 3-4
10RB macro 2-38
lOT AB generation macro 2-40

BUFSIZE operand 2-37
CHANQ operand 2-36
10DEVoperand 2-40

IPL commands 3-4
ADD 3-4
DEF 2-16, 3-5
DEL 3-5
DLA 2-18, 3-6
DLF 3-6, 4-22
DPD 2-13, 3-5
SET 3-5
SVA 3-7
SYS 3-7

IPL communication device list (CDL) 3-9
IPL communication device, establishing 3-3
IPL list option 3-3, 3-22
IPL procedure under ASI 3-22
IPL records A-I
IPL user exit routine 4-4

example 4-5
register usage 4-4

J
JA (FOPT macro) operand 2-29
JALIOCS (FOPT macro) operand 2-30
JCL procedure under ASI 3-23
JDUMP macro 4-3

job 3-28
job accounting 2-29

example 4-13
programming considerations 4-11
register usage 4-11
table 4-10
user interface routine 4-9

job control 3-28
for library definitions 3-55

job control user exit routine 4-6
example 4-7
register usage 4-6
vector table 4-7

job information blocks
number of 2-40

job name 3-29
JOB statement 3-29
job step 3-29
job stream 3-31
job-to-job communication 3-32
JOB COM macro 3-32

L
label information

adding 3-53
deleting 3-53
for direct access files 3-48
for diskette files 3-47
for library files 3-51
for magnetic tape files 3-51
PARSTD 2-19,3-53
STDLABEL 2-18,3-53
storing 3-52
USRLABEL 3-52

label information area A-I, 2-18, 3-46
outside of SYSRES file 2-18, 3-6, 3-132
sequence of search 2-19, 3-54

label options 3-52
label subarea 3-52

clearing of 3-54
labels 3-43
language translator 3-88
LCONCAT (FOPT macro) operand 2-26, 3-56
LFCB command 3-60
LFCB macro 3-60
LffiDEF job control statement 3-56

defining private libraries 3-145
librarian service functions 3-137
link edit 3-94
link edit example 3-108
MAINT program 3-117
restriction for COPYSERV 3-136
retrieval of procedures 3-79

LffiDROP job control statement 3-58
LffiLIST job control statement 3-59
librarian programs 3-114

cataloging 3 -118
CORGZ and COPYSERV 3-129
CSERV 3-138
ESERV 3-140
maintenance functions 3-116
PSERV 3-138
real mode storage requirements 3-115
restrictions 3-115
RSERV 3-138
service programs 3-137
SSERV 3-138

libraries
cataloging into 3-118
changing the size of system libraries 3-133
choosing for an installation 2-7
concatenation 2-7, 3-56
condensing 3-124, 3-127
definition to job control 3-55
deleting members from 3-123
determining the location of 2-8
directories 3-113
displaying the contents of 3-138
displaying the directories 3-137
examples of deleting and condensing 3-126
examples of organization 2-10
label information 3-51
maintaining 3-116
online maintenance 2-28
operational 2-12
organizing 3-129
planning the 2-2
planning the size and contents of 2-12
private 2-6, 3-141
punching the contents of 3-138
purpose and contents of 2-4
reallocating the sizes of 3-133
renaming members 3-128
service programs 3-137
snaring 3-39, 3-116
sublibrary 2-5, 3-119
transferring members between 3-134
using system libraries as private libraries 3-147
using the 3 -113

library block 3-127
library directories 3-113
library status report 3-138, 3-147
link edit and execute 3-91

example 3-109
LINK option 3-63, 3-87, 3-91, 3-92

suppression of 3-112
linkage between VSE and VM/370 2-27
linkage editor 3-87

Index 6-5

automatic invocation 3-62, 3-92
examples 3-106
input to 3-96
obtaining a storage map 3-103
processing requirements 3-94
storage requirements 3-101
symbolic units required 3-95

linkage editor control statements
ACTION 3-103
ENTRY 3-91
examples 3-107
INCLUDE 3-91, 3-100
PHASE 3-90, 3-97

linkage editor work files
in VSAM-managed space 3-96

linking programs 3-87
LIST linkage editor option
LISTIO statement/command
LISTX linkage editor option
load address 3-98
LOAD macro 3-106
load lists 3-10

3-66
3-43

3-66

lock communication file
assignment restriction

LOCK macro 4-20
locking/unlocking 4-19

3-6, 4-21
3-43

libraries 3 -116
LOG 3-66
LOG IPL option 3-3
logging and reporting for access control 2-29
logical transients 3-12
logical I/O unit 3-33

accessing a private library 3-144
creating a private library 3-141
programmer 3-35, 3-37
system 3-35, 3-36

LSERV program 3-55
LUCB command 3-60

M
MACRO statement 3-120
magnetic tape, positioning 3-59
magnetic tape files, label information 3-51
main task 1-26
MAINT librarian program 3-117

catalog function 3-118
condense function 3-124
delete function 3-123
rename function 3-128
update function 3-1:-""'l
used to catalog ASI procedures 3-20

maintaining libraries 3 -116
definition of private libraries 3-117

6-6 VSE/ Advanced Functions System Management Guide

MAP
command 3-19, 3-30
operand in ACTION statement 3-103

master procedure under ASI 3-20
MEND statement 3-120
MERGE statement 3-134
merging of libraries 3-134
MICR stacker selection routines 3-68
mode of execution 1-17

inquiring via the RUNMODE macro 4-32
real 1-18, 3-67
virtual 1-18

MODDTL macro 4-20
MSG command 4-3
MSHP (Maintain System History

Program) 2-2, 2-15
update procedures 2-6
use of 3-124

MTC statement/command 3-59
multiphase program names 3-97
multiple extent page data

set 2-14, 3-6, 3-23
multiprogramming 1-1

device considerations under 1-3
multitasking 1-25

types of 1-26

N
naming conventions

ASI JCL procedure 3-20
cataloging partition-related procedures 3-86
phases 3-128
relocatable library 3-119, 3-128
source statement library 3-119
sublibrary 2-5

NEW (LffiDEF) parameter 3-57
new SYSRES, device type 3-131
NEWVOL (librarian) statement 3-141
NOAUTO

operand in PHASE statement 3-102
NOFASTTR option 2-39
NOLOG IPL option 3-3
NOMAP

operand in ACTION statement
nonpageable

program 1-18
supervisor routine 1-17

nonrelocatable phase 3-90
NPARTS (SUPVR macro) operand
NT ASKS (SUPVR macro) operand

3-103

2-24
2-25

o
object module 3-89

including an 3-100
OL TEP program 3-68
online library maintenance 2-28
online system generation 2-3
operator communication exit 4-3
operator communication, asynchronous 2-32
OPTION job control statement 3-52

CATAL option 3-87
LINK option 3-63, 3-87
NOFASTTR option 2-39

options for program execution 3-66
organizing the libraries 3-129
OV parameter in EXEC statement 3-80
OVEND statement 3-80
overlay structure 3-104

relating control sections to phases 3-104
use of FETCH and LOAD macros 3-106

p

page 1-6
fixing 1-24
releasing 4-32

page data set 1-5, 2-13
assignment restriction 3-43
data secured 2-13
defining attributes 3-5
defining extents during ASI 3-23
defining the 2-13
formatting of 3-5
location of 3-5
multiple extents 2-14, 3-6
size of 2-13

page fault 1-13
handling overlap exit 4-4
reducing occurrence of 4-27

page frame 1-6, 1-21
page out 1-10

forcing 4-32
page pool 1-6, 1-13, 1-17, 3-18

effect of large I/O areas in channel
programs 1-24

minimum size 3-18
page-in in advance 4-32
pageable

program 1-18
supervisor routine 1-17

PAGEIN macro 4-32
number of page-in requests 3-7

paging option 3-3, 3-22
PARSTD 2-19,3-53
P ARSTD option, used under ASI 3-23

PARTDUMP option 3-66
partition 1-2

allocating address space to 3-17
allocating processor storage to 3-18
allocation 1-20
defining the number of 2-24
displaying current allocation 3-19
inactive 3-128
priorities 1-3
selecting one for a particular job 3-31
sharing libraries 3-116

partition GETVIS area 1-24, 3-69
changing the size 3-70
for real mode execution 3-68, 3-115
Inlmmum size 3-17, 3-69
use by RPS 2-34

PAUSE command 3-77
PAUSE statement 3-32
permanent (storing of) label information 3-52
permanent device assignment 3-37
PFIX macro 1-24, 2-38, 3-18,4-30
PFREE macro 1-24,3-18,4-30
phase 3-90

load-address 3-98
name of 3-97
naming conventions 3-128
non-relocatable 3-90
reenterable 3-99
relocatable 3-90, 3-99
self-relocating 3-90, 3-100
SVA eligible 3-11, 3-90, 3-91, 3-99

PHASE statement 3-90, 3-97
NOAUTO operand 3-102
SV A operand 3-90, 3-99

phases in the SV A 2-24
automatic loading at IPL 3-9
replacing in 3-13
reserving space 3-7

PL/I sublibrary 3-120
POWER 3-72

job accounting 4-9
priority

of a partition 1-3
private core image library

assignment 3-144
creation of 3-143
example of cataloging to 3-108
file names 3-144
organization of 3-143
using the 3-144

private libraries 2-6
created under DOS/VS or DOS/VSE 3-148
creating and working with 3-141
example for use 2-6
EXTENT information 3-141

Index 6-7

filenames for accessing
filenames for creating
label information for

3-144
3-141

3-144
logical unit names for accessing
logical unit names for creating
multiple 3-145
number of 2-6
search order 3-146
using system libraries as 3-147

3-144
3-141

private second level directory (PSLD) 2-26
reserving space 3-8

PROC parameter in EXEC 3-78
procedure library 2-7

cataloging to 3-121
renaming procedures in 3-128
required by ASI 2-8
restrictions when cataloging to 3-122
retrieving procedures from 3-78
used for ASI 3-8, 3-20

processor storage 1-6, 1-17
allocating 3-18
allocating for real mode execution 1-21
fixing pages in 1-24
relating virtual storage to 1-9

program check exit 4-2
program development, stages 3-88
program directory 2-13,2-18
program execution 3-61

checkpointing 4-15
mode of 1-17
options for 3-66
real mode 1-18, 3-67
virtual mode 1-18

program exit routines 4-1
abnormal termination 4-3
interval timer 4-2
operator communication 4-3
page fault handling overlap 4-4
program check 4-2
task timer 4-3

programmer logical units 3-37
number of 2-40

programming techniques
for reducing page faults 4-27

PRTY command 1-3
PSERV program 3-138
PSIZE (SV A command) parameter 2-24, 3-7
PSLD (SV A command) parameter 2-26, 3-7
PUNCH statement 3-138

R
RAS 1-27
real address 1-9

6-8 VSE/ Advanced Functions System Management Guide

real address space
size of 2-20
under VM/370

real mode execution

1-18,2-20

3-26
1-18,3-67

processor storage allocation for 1-21
programs requiring 3-68

REAL operand
in EXCP macro 2-38
in EXEC statement 1-22, 3-67

REALAD macro 2-38
record on demand (ROD) command 3-15,3-17
recorder file 2-15

creating 3-13
DASD sharing across systems 4-24
label information for 3-14
minimum size 3-13

recovery management support (RMS) 1-27
reenterable phase 3-99
reliability data extractor (RDE) 3-16
reliability/availability/serviceability (RAS) 1-27
relocatable library 2-4

cataloging to 3-118
naming conventions for modules 3-119,3-128
renaming modules in 3-128

relocatable phase 3-90, 3-99
RELPAG macro 4-32
RENAMC statement 3-128
renaming members in libraries 3-128
RENAMP statement 3-128
RENAMR statement 3-128
RENAMS statement 3-128
REP record 3-89
RESET job control statement/

command 3-37, 3-43
resource locking 4-19
resource profile 2-29
restarting a program from a checkpoint 4-15
RLD record 3-89
RMS 1-27
RMSR 1-27
ROD command 3-15,3-17
rotational position sensing (RPS) 2-34
RPG IT sublibrary 3-120
RPS 2-34
RPS (FOPT macro) operand 2-34
RSERV program 3-138
RSTRT job control statement 4-15
RUNMODE macro 4-32

s
SDL (see system directory list)
SDL (SV A command) parameter 2-24, 3-7

SDL parameter in SEARCH chain 3-146
SDL procedure 3-11
SEARCH (LIDDEF) parameter 3-56,3-145
search chain 2-7,3-56,3-145

deactivation at end-of-job 3-30
link editing 3-94
maximum number of libraries 2-26

search order 2-7
advantage of AUTOLINK 3-102
label information area 3-54
private libraries 3-146
procedure library 3-79
SET SDL command 3-11

SEC (FOPT macro) operand 2-28
second level directory (SLD) 2-26
self-relocating phase 3-90, 3-100
service record file 3-4
SET command 3-5

to create system files 2-15
used during ASI 3-23

SET SDL command 3-12,3-146
SET SDL procedure 3-11, 3-13
SETDF operator command 3-61
SETIME macro 4-2
SETPFA macro 4-4
SETPRT job control statement/command 3-61
SETPRT macro 3-61
SETT macro 2-31,4-3
shared devices 3-38
shared virtual area (SVA) 1-15

coding for 4-33
layout of 2-21
loading phases into 3-10
phases 2-24
replacing phases in 3-13, 3-91
size of 2-21, 2-24
user options 3-11

sharing
assignments 3-38
data on DASD 2-32,4-18
libraries 3-39, 3-116

sharing of data across systems 2-32, 3-6, 4-18
SIO (start I/O) accounting 4-9
SIZE command

used under ASI 3-23
SIZE operand

in EXEC statement 1-22, 3-68
SLD (FOPT macro) operand 2-26
source module 3-88
source statement library 2-5

cataloging to 3-119
naming conventions 3-119
updating books in 3-129

SSERV librarian program 3-138
use of 3-120

stages of program development 3-88
standard label procedures 2-18
standard labels for system files on tape 3-72
START command 1-2,3-19

used under ASI 3-23
status report (see library status report)
STDLABEL 2-18,3-53
STDLABEL option, used under ASI 3-23
STDOPT command 3-30, 3-67

used under ASI 3-23
STOP command, used under ASI 3-23
stop facility under ASI 3-21
storage allocation 1-18
storage management 1-8
storage protection 1-3
string Switching 4-17
STI{IT macro 2-31,4-1
sublibrary 3-119

assembler macro (E) 3-140
copy (A) 3-140
naming conventions 2-5

SUBSID macro 4-21
subtasks 1-26

maximum number of 1-26,2-24
supervisor area in virtual storage 1-14
supervisor generation macros 2-2
supervisor

area in virtual storage 1-14
buffers for I/O processing 2-37
default 3-2
name, specifying the 3-2
nonpageable 1-17, 3-3
pageable 1-17, 3-3
routines 1-17
tailoring the 2-20

SUPVR generation macro 2-24
NPARTS operand 2-24
NTASKS operand 2-25
TP operand 2-26
VM operand 2-27,3-6

SV A (see shared virtual area)
SVA command 3-7

GETVIS operand 2-24,3-7
position within IPL commands 3-4
PSIZE operand 2-21,3-7
PSLD operand 2-26,3-7
SDL operand 2-24, 3-7

SV A eligible phase 3-11, 3-90, 3-99
SVA operand

in PHASE statement 3-99
in SET SDL 3-12

SXREF option 3-66
SYM option 3-66
symbolic I/O assignment 3-33
SYS command 3-7

Index 6-9

1,

SYSBUFLD program 3-60
SYSCAT 1-3, 3-36

assignment of 3-5
assignment restriction 3-43

SYSCLB 3-36
SYSCTL 3-36
SYSDMP 1-3,2-16, 3-36

assignment of 3-5
assignment restriction 3-43

SYSIN 3-36, 3-42, 3-72, 3-76
SYSIN job streams on disk, diskette or

tape 3-71
interrupting 3-76

SYSIPT 3-36, 3-42
input to language translators 3-62

SYSIPT data in cataloged
procedures 3-82, 3-84, 3-121

SYSLNK 3-36, 3-42
SYSLOG 1-3, 3-36, 3-43

assignment of 3-2
used under ASI 3-22

SYSLST 3-36, 3-42
SYSOUT 3-36, 3-42, 3-72, 3-76
SYSPCH 3-36, 3-42
SYSRDR 3-28, 3-36, 3-42
SYSREC (see also recorder

file) 1-3,2-15,3-36
assignment of 3-5
assignment restriction 3-43
DASD sharing across systems 3-43

SYSRES (see also system residence
file) 1-3,3-36
assignment restriction 3-43

SYSRLB 3-36
SYSSLB 3-36
system core image library

example of cataloging to 3-107
system date 3-5
system directory A-I, 3-113
system directory list (SDL) 2-22

building (entries) 3-11
dummy (inactive) entry 3-2
position in search order 3-146
reserving space 3-7

system files on disk 3-73
filenames 3-73
on FBA devices 3-74

system files on diskette 3-76
filenames 3-76

system files on tape 3-72
system files

hard copy file 2-15, 3-16
history file 2-2,2-15
on tape, disk or diskette 3-71
page data set 1-6, 2-13

6-10 VSE/ Advanced Functions System Management Guide

record formats 3-78
recorder file 2-15, 3-13
system residence (SYSRES) file 2-2, 2-8

system generation 2-1
online 2-3

system GETVIS area 1-24, 2-24
reserving space for 3-7

system history file 2-2, 2-15
DASD sharing across systems 4-23
update procedures 2-6

system installation aids 2-5
system libraries

relative location on SYSRES pack 2-8
using as private libraries 3-147

system logical units 3-36
assignment restriction 3-43
SYSCAT 1-3, 3-36
SYSCLB 3-36
SYSCTL 3-36
SYSDMP 1-3, 2-16, 3-36
SYSIN 3-36, 3-42, 3-72, 3-76
SYSIPT 3-36, 3-42
SYSLNK 3-36, 3-42
SYSLOG 1-3, 3-36, 3-43
SYSLST 3-36, 3-42
SYSOUT 3-36, 3-42, 3-72, 3-76
SYSPCH 3-36, 3-42
SYSRDR 3-28, 3-36, 3-42
SYSREC 1-3, 2-15, 3-36
SYSRES 1-3, 3-36
SYSRLB 3-36
SYSSLB 3-36

system residence (SYSRES) file 2-2, 2-8
copying the 3-130
creating a new 3-130
disk space available 3-133
layout of A-I

system time zone
setting 3-5

system volume label A-I
SYS006, used to access an alternate

dump file 2-16

T
task 1-26

main 1-26
subtask 1-26

task selection 1-1
task timer 2-31

exit 4-3
telecommunication balancing 2-27, 4-32
telecommunication facilities 2-26

ACF/VTAM 2-26

BTAM-ES 2-26
temporary device assignment 3-37
temporary label information 3-52
TESTT macro 2-31, 4-4
text editing 2-28
time zone

setting 3-5
time-of-day clock 2-30

setting 3-5
timer services 2-30

interval timer 2-30
task timer 2-31
time-of-day (TOD) clock 2-30

timeshared computing 2-28
TLBL statement 3-46, 3-51
TO (LIBDEF) parameter 3-57. 3-95
TP (SUPVR macro) operand 2-26
TPBAL command 4-32
TPIN macro 4-32
TPOUT macro 4-32
track hold option 2-33
TRKHLD (FOPT macro) operand 2-33
TTIME (FOPT macro) operand 2-31,4-3
TTIMER macro 2-30
TXT record 3-89

u
UCB (universal character set buffer) 3-60
UCScommand 3-60
universal character set buffer (UCB) 3-60
UNLOCK macro 4-20
UPDATE librarian statement 3-129
UPSI job control statement 3-67
user exit routines

IPL 4-4
job accounting 4-9
job control 4-6

user profile 2-29
user program switch indicator (UPSI) 3-67
user-defined processing after IPL 3-16
USRLABEL 3-52
utilities, number of copy blocks for 2-38

v
VIRTAD macro 2-38
virtual address space 1-18
virtual mode execution 1-18
virtual storage 1-4, 1-13

macros 4-30
maximum size 1-5
relating to locations in processor storage 1-9
size 2-14,2-21

supervisor area 1-14
virtual storage macros 4-30

FCEPGOUT 4-32
PAGEIN 4-32
PFrx 1-24, 2-38, 3-18, 4-30
PFREE 1-24, 3-18, 4-30
RELPAG 4-32
RUNMODE 4-32

VM (SUPVR macro) operand 2-27, 3-6
VM/370 multiple VSE systems 4-23
VM/370 Linkage facility 2-27

invoking 3-26
volume identifier (VOLID)

use with LIBDEF definition 3-33, 3-58
volume label

system A-I
user A-I

VSAM master catalog, assignment of 3-5
VSE ill

DASD sharing by multiple VSE systems 4-18
installing 2-2
planning 2-1

VSE/ Advanced Functions ill
distribution medium 2-1
installing 2-2
overview 1-1
program directory 2-13
using the facilities and options of 4-1

VSE/VSAM Space Management
for SAM 2-17, 3-96

VSIZE IPL option 3-3, 3-22
VSIZE specification at IPL 2-14,2-20, 3-3
VTAM 2-27

w
weak external reference 3-102
work blocks 2-38
work files 2-16

in VSAM-managed space 2-17,3-96
symbolic device requirements 2-17

working set 4-27
techniques for reducing 4-28

x
XREF option 3-66

23xx emulator 2-34
3031 processor 1-1,3-4, 3-13

space on recorder file 3-13
3540 diskette

as IPL device 3-3
SYSIPT assigned to 3-76

Index 6-11

\l ..
. i~
1

370 mode 1-1, 1-14
defining virtual address space 1-18,2-20, 3-3
defining the page data set 2-14
partition allocation 3-17
use Gf supervisor buffers 2-38
VSttE specification at IPL 2-14, 2-20, 3-3

3800 ; rinting Subsystem 3-61
4300J!>rocessor, modes of execution 1-1, 1-14
5424 MFCU 3-62
7443 service record file 3-4

6-12 VSE/ Advanced Functions System Management Guide

I
I

SC33-6094-0

==.=. .::@ - _._-,----- -... -~-- - -. ------_ ----- -,,-
Internationat Business .Machines Corporation
Data Procesaing Division
1133.Westchester Avenue. White Plains. N.Y. 10804

IBM Wortd Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9. North Tarrytown. N.Y .• U.S.A 10591

IBM World Trade Europe/Middle East/AfriCa Corporation
380 Hamilton Avenue. White Plains. N.Y .• U.S.A. 10801

,

< en
m
»
0..
<
Q)

::l

" CD
0..
"T1
C
::l

" .-+ o·
::l
(IJ

en
-<
(IJ
.-+
CD
3
s:
Q)

::l
Q)

co
CD
3
CD
::l
.-+

G>
c
c.:
CD

j ::!!
CS'
Z
0

en w
-...J
0
~ w
0
0
I

W
~

"tJ
~.
::l
.-+
CD
0..

::l

C
en
~
en
(")
w
W
I

0)
0
co
~
I

0

.E Co
Q)
EIIJ
0.'-
.~£
0'­
Q)~
O)IIJ
Co
'€~
00. IIJ co
::
CO-o
EQ)
-oE
Q)E
10;:,
EO)
0'" Q)
;:,.c
co o
.c ...
. ~ 0
~Q)
IIJ.~

.... E·~
Q)IIJ
-c .DQ)
01lJ ...
o.~
Q);:'
IIJIIJ
;:,IIJ
coQ)
0'" a.
cQ)
colIJ
0;:,
IIJQ)
'!!IIJ
a. CO
COQ) -<no...

! o
Z

YSE/ Advanced Functions
System Management Guide
Order No. SC33-6094-0

READER'S
COMMENT
~ORM

This manual is part of a library that serves as a reference source for system analysts,
programmers, and operators of IDM systems. This form may be used to communicate your views
about this publication. They will be sent to the author's department for whatever review and
action, if any, is deemed appropriate. Comments may be written in your own language; use of
English is not required.

IDM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, continue to use the
information you supply.
Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.
Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

What is your occupation? _________________________ _

Number of latest Newsletter associated with this publication: ____________ _

Thank you for your cooperation. No postage stamp is necessary if mailed in the U.S.A.
(Elsewhere, an IDM office or representative will be happy to forward your comments or you may
mail directly to the address in the Edition Notice on the back of the title page.)

\

SC33-6094-0

Reader's Comment Form

Fold and tape

Fold and tapa

==-= =® - ------ ~--- --.. ---- -- ------_ .. ---- -,,-

Pl Do Not Stapl.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK. N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Depcrtment 812 BP
1133 Westchester Avenue
White Plains, New York 10604

Pl Do Not Stapl.

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue. White Plains. N.Y. 10804

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9. Nonh Tarrytown, N.Y., U.S.A 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue. White Plains. N.Y .• U.S.A. 10601

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

h s
g
."
0
Ii:
>
0"
" .,
r
5" ..

,

< en
m
........ » a.
<
II)
:::l
0
CD a.

" c:
:::l
0 o·
:::l
(Jj

en
<
(Jj
CD
3
s::
II)
:::l
II)

CO
CD
3
CD
:::l
G')
c:
c.:
CD

,~ :n
(D

z
?
en
CtJ
......
0
........
-!:>o
CtJ
0
0
I

CtJ
~

"1J
~.
:::l
CD a.
:::l

C
en
~
en
n
CtJ
I

0)
0
CD
-!:>o
I

0

~

