
VsE/Advanced Functions

Diagnosis Reference
LIOCS Volume 1

General lnformation and
lmperative Macros

;

t
I
ii1

+

l
I

I

la
I
i

f
t

lc
t
{

I
I

f

Itr
I

t
I\
f

i



VSEI Advanced Functions 

Diagnosis Reference 
LIOCS Volume 1 
General Information and 
Imperative Macros 

Program Number 5666-301 

Order Number LY33-9116-0 
File No. 5370/4300-30 



Licensed Program - Property of IBM 

First Edition (March 1985) 

This edition applies to Version 2 Release 1 of IBM 
Virtual Storage Extended/Advanced Functions, Program 
Number 5666-301, and to all subsequent releases until 
otherwise indicated in new editions or Technical 
Newsletters. Changes are made periodically to the 
information herein: before using this publication in 
connection with the operation of IBM systems, consult 
the !atest IBM System/370, 30XX and.4300 Processors 
BiblIography. GC20-0001, for-the edltTCns that are 
app icable and current. 

References in this publication to IBM products, 
programs. or services do not imply that IBM intends 
to make these available in all countries in which IBM 
operates. Any reference to an IBM program product in 
this document is not intended to state or imply that 
only IBM's program product may be used. Any 
functionally equivalent program may be used instead. 

Publications are not stocked at the addresses given 
below: requests for copies of IBM publications should 
be made to your IBM representative or to the IBM 
branch office serving your locality. 

A form for readers' comments is provided at the back 
of this publication. If the form has been removed, 
comments may be addressed either to: 

IBM Corporation 
Dept. 6Rl 
180 Kost Road 
Mechanicsburg. PA 17055, USA 

or to: 

IBM Deutschland GmbH 
Dept. 3248 
Schoenaicher strasse 220 
D-7030 Boeblingen. Federal Republic of Germany 

IBM may use or distribute whatever information you 
supply in any way it believes appropriate without 
incurring any obligation to you. 

(c) Copyright International Business Machines 
Corporation 1985 

J 

J 

J 



Licensed Program - Property of IBM 

PREFACE 

This publication, although a O-edition, is 
a major revision of the previously 
available publication LV24-5209-0. 

This manual is the first in a series of 
four manuals providing detailed information 
about the VSE/Advanced Functions Logical 
IOCS programs. The four manuals are: 

Volume 1 : General Informatio[l and 
ImQeratlve Macrosl LV33 9116. 

Volume l..l SAM 1 LV33-9117. 

Volume .l.l. DAM and ~ LV33-9118. 

Volume !u SAM for DASD. LV33-9119. 

This first volume is mainly intended for 
persons involved in program maintenance and 
for systems programmers who are altering 
the program design. The volume contains 
general information about Logical IOCS as 
well as descriptive text and flowcharts 
about commonly used transients. Included 
in this manual are: 

1. The functions of logical IOCS. 
including a short description of the 
available access methods. 

2. The modular-tabular system. 

3. A short description of the declarative 
macros. 

4. Complete description of the imperative 
macros. 

5. File initialization and termination. 

6. A detailed description of the open and 
close routines. 

7. A detailed description of DASD file 
protect routines. 

8. A detailed description of VTOC Display 
and Dump routines. 

9. Charts. 

In addition. this volume contains 
appendixes with information that is either 

supplementary to LIOCS or is an aid for 
information retrieval. To the first 
category belongs the EBCDIC - ASCII 
conversion tables. To the second category 
belong the error message list, master error 
message list, and master index. 

Volumes 2, 3, and 4 contain information 
relating to all the logical IOCS components 
necessary to process the file types 
described within those books. Exception to 
this approach is found in those routines 
that are either common to more than one 
access method or independent of file types. 
These routines, which include the open and 
close monitor, DASD file protect. and VTOC 
routines, are documented in this volume. 

PREREQUISITE PUBLICATIONS 

• 

• 

• 

• 

• 

• 

• 

IBM System/370 PrinciQles Qf OQeration, 
GA22 7000, in conjunction with 

IBM Sgstem/360 PrinciQles Qf OQeration, 
GA22- 821. 

OS/VS - DOS/VSE - VM/370 Assembler 
LanQUage, GC33-4010. 

VSE/AF Data Management Concepts, 
GC33 6192. 

VSE/Advanced Functions Macro User's 
Guide, SC33-6196. 

VSE/Advanced Functions ~ Reference, 
SC33 6197. 

VSE/Advanced Functi§ns System Control 
Statements, SC33-61 8. 
VSE/Advanced Functions Diagnosis 
Reference: SupervIsor. LV33-9107. 

RELATED PUBLICATIONS 

• VSE/Advanced Functions Diagnosis 
Reference: Initial Program Load and 
Job Control, LV33 9110. ----

• VSE/Advanced Functions Messages, 
SC33-6098. 

For other related publications, refer to 
~ ~ystem/3701 30xx and 4300 Processors 
~110graphy, GC20-0001. 

PREFACE iii 



licensed Program - Property of IBM 

J 

iv IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

CONTENTS 

Figures vii 

CHARTS vii i 

PREFACE .•••••• 
PREREQUISITE PUBLICATIONS 
RELATED PUBLICATIONS 

INTRODUCTION 

LOr6~~EAlOi~cs PROCESSING'METHODS 
Sequential Access Method (SAM) 
Direct Access Method (DAM) " 
Indexed Sequential Access Method 

(ISAM) , •••••• ,'" 
Virtual Storage Access Method 

(VSE/VSAM) , •••• ,.,.,' 
Virtual and Basic Telecommunications 

Access Methods (ACF/VTAM and 
BTAM-ES) ., •• 

Storage Requirements 
MODULAR-TABULAR SYSTEM ,.... 
DECLARATIVE MACROS .•••••• 

DTF (Define the File) Macros 
MOD (Module Generation) Macros 

TRACK HOLD FUNCTION .•••• 
REENTERABLE MODULES ••••••• 
INTERRELATIONSHIPS OF THE DECLARATIVE 

MACRO INSTRUCTIONS 
IMPERATIVE MACROS ..•.• 

IMPERATIVE MACRO EXPANSIONS 
CHECK Macro 
CLOSE Macro 
CLOSER Macro 
CNTRL Macro 
OlSEN Macro 
DSPLY Macro 
ENDFL Macro 
ERET Macro 
ESETL Macro 
FEOV Macro 
FEOVD Macro 
FREE Macro 
GET Macro 
LBRET Macro 
LITE Macro 
NOTE Macro 
OPEN Macro 
OPENC Macro 
OPENR Macro 
POINTR Macro 
POINTS Macro 
POINTW Macro 
PRTOV Macro 
PUT Macro 
PUTR Macro 
RDLNE Macro 
READ Macro ••.•..••• 
RELEASE Macro -- Dynamic Device 

Release 
RELSE Macro 
RESCN Macro 
SEOV Macro 
SETDEV Macro 
SETFL Macro 
SETL Macro 
TRUNC Macro 
WAITF Macro 
WRITE Macro 

File Initialization and Termination 
OPEN Routines Charts 01-04 

1 
1 
2 
2 
2 

2 

2 

3 
3 
3 
4 
4 
7 
7 
7 

7 
8 

12 
12 
13 
14 
14 
16 
16 
17 
17 
17 
18 
18 
18 
19 
19 
21 
21 
22 
22 
23 
24 
24 
24 
25 
25 
26 
27 
27 

28 
29 
29 
30 
30 
30 
31 
31 
31 
32 

33 
33 

Unit Record and 3881 Optical Mark 
Reader Files ••••.•..• 33 

Magnetic Ink Character Recognition 
Files .•.•.••••• 33 

Optical Reader Files (Except 3881) 33 
Magnetic Tape Files (DTFMT. 

DTFPH-MT) 33 
DASD Files •••••••• 33 
Diskette Files •••••• 33 

CLOSE ROUTINES CHARTS 05. 06 •• 33 
Unit Record Files (Except MICR) 34 
MICR (Magnetic Ink Character 

Recognition) Files ••• 34 
Magnetic Tape Files (DTFMT. 

DTFPH-MT> 34 
DASD Files • 34 
Diskette Files ••••• , 34 

File Labeling . •••••• 34 
Label Processing ••••••• 34 

Creation of Tape Volume Labels 34 
Standard Tape File Labels. 34 
Additional File Labels on Tape 34 
User Header and Trailer Labels on 

Tape •• ,.......... 35 
Tapemarks with Standard Tape Labels 35 
Standard Tape Label Processing 35 
Nonstandard Tape Labels 36 
Unlabeled Tape Files 36 
DASD Label Processing 36 
Diskette Label Processing 37 

Common and Special Purpose Logical IOCS 
Routines 39 

$$BOESTV: 'E;r~r'Stati~tic~ by'T~p~ 
Volume •••••••...•• 39 

$$BOPEN: Open Monitor .•.•. 39 
$$BOPEN1: Open Monitor Phase 1 40 
$$BOPEN4: DASD DTF DEV Type Update 

OPEN Phase ,......... 40 
$$BOPIGN: Open Ignore .•... 41 
$$BOPEN2: Open Monitor. Phase 2 41 
$$BOPLBL: Open Monitor Label Space 

Processor 41 
$$BOPENR: Reio~ate'DTF'Add;e~s' . 
Constants .....".... 41 

$$BOPENC: Check Duplicate Device 
Assignments for Logical Units • 42 

$$BENDQB: Enqueue and Dequeue for 
VSE/VSAM Routines 42 

$$BOPNR2: Relocate DTF'Add;e~s' 
Constants. Phase 2 •.... 42 

$$BOPNR3: Relocate DTF Address 
Constants. Phase 3 •...• 42 

MODLOOP (Address Modification) 
Subroutine 43 

$$BOPENS: RPS SVA initiaiizati~n 
Routine 43 

$$VOPENT: RPS Ph~s~ Lo~ding . 
Routine 44 

$$BCLOSE: Cio~e'M~nit~r; Ph~s~ i' 44 
$$BCLOS2: Close Monitor. Phase 2 44 
$$BCLOS4: Close Monitor. Phase 4 45 
$$BCLLBL: Close Monitor Label 
Space Processor .•.•••• 45 

$$BCLRPS: DASD RPS Common Close 45 
$$BOSDC1: SD Close Input and 

Output .......... 46 
$$BOSDC2: Close: Free Track 

Funct i on ....••... 46 
$$BOSDEV: SD Close ..•. 46 
$$BODQUE: Remove Extents from 

Extent Block .••••. 46 
$$BRELSE: Device Release 47 

COMMONLY USED LOGICAL TRANSIENTS 47 
$$BOFLPT: DASD File-Protect 47 
$$BODSPV: VTOC Display, Phase 47 
$$BODSPW: VTOC Display. Phase 2 48 
$$BODSPO: Diskette VTOC Display 48 

Contents v 



Licensed Program - Property of IBM 

$$BOVDMO: Diskette VTOC Dump 
$$BOWDMO: Diskette List VTOC 
$$BODMSG: Diskette Open Error 

Message Writer Phase 1 
$$BODMS2: Diskette Open Error 

Message Writer, Phase 2 
$$BODSMO: Diskette Data Security 

Message Writer • • •• 
$$BOVDMP: VTOC Dump •••• 
$$BOWDMP: List VTOC .••• 
$$BOMSG1 Disk Open Error Message 
Writer, Phase 1 ••••••• 

$$BOMSG2: Disk Open Error Message 
Writer, Phase 2 •••• 

$$BODSMW Data Security Message 
Writer 

Charts 

Appendix A: Master Error Message List 

Appendix B: ASCII Conversion Tables 

Appendix C: DASD and TAPE Labels • 
Label Processing for SAM and DAM Files 

on DASD or DISKETTE 
SAM and DAM Input File 

VOll label 
Format-1 label 
Format-3 label • 
User-standard label 

SAM and DAM Output File 
VOll label • 
Format-1 label 
Format-3 label • 
User-Standard Label 

Diskette Files: Input File 
VOLl label 
HDR1 Label 

Diskette Files: Output File 
VOLl Label 
HDR1 label 

label Processing for ISAM Files 
ISAM Files, Load (Create, Extent) 
Function • 

VOll Label •• • •• 
Format-1 l.abel 
Format-2 Label 

ISAM Files, Add Function 
VOLl Label 
Format-1 Label 
Format-2 Label •... 

ISAM Files, Retrieve Function 
VOLl Label 
Format-1 label 
Format-2 label ••• 

Label Fields for SAM and DAM files on 
DASD and DISKETTE Devices 

Label Fields for DASD • 
Volume Label on Disk (VOL1) • 
IBM-Standard File Labels on Disk 
User-Standard File Labels on Disk 

label Fields for DISKETTE 

48 
49 

49 

49 

51 
51 
51 

52 

53 

53 

56 

66 

75 

79 

79 
79 
79 
79 
81 
81 
82 
82 
82 
84 
84 
85 
85 
85 
86 
86 
87 
87 
88 
88 
88 
88 
91 
92 
92 
92 
95 
96 
96 
97 
99 

100 
101 
101 
104 
133 
134 

Volume Labels on Diskette 
IBM-Standard File Labels on 
Disk~tte •• 

Label Processing for Tape Files 
Standard labels, Input File 

VOll Label •• 
HDR1 Label ••• 
EOF1/EOV1 Label ••••. 
User-Standard labels (UHL/UTL) 
Multivolume File 
Multifile Volume 
Read Backward 
Tapemarks . • • • • • 

Standard labels, Output File 
VOL1 Label •• 
HDR1/HDR2 Labels .• .•• 
EOF1/EOV1 and EOF2/EOV2 Labels 
User-Standard labels (UHL/UTL) 
Multivolume File 
Multifile Volume 
Tapemarks 

Nonstandard Labels 
IOCS Routines 
User Routine • • •• 

Nonstandard Labels, Input File 
Header Label ••.•.• 
End-of-File/End-of-Volume Label 
Multivolume File 
Multifile Volume 
Read Backward 
Tapemarks 

Nonstandard labels, Output File 
Header label .••. •• 
End-of-File/End-of-Volume Label 
Multivolume File 
Multifile Volume 
Tapemarks 

Processing of Unlabeled Tape Files 
Unlabeled Files, Input File 

First Record 
Last Record 
Multivolume File 
Multifile Volume 
Read Backward 
Tapemarks 

Unlabeled Files, Output File 
First Record 
Last Record 
Multivolume File 
Multifile Volume 
Tapemarks • • • . 

American National Standard Labels 
label Fields for Tape 

Volume labels on Tape • 
IBM-Standard File Labels on Tape 
User-Standard File Labels on Tape 
Non-Standard File labels on Tape 

Label Records in the label Area 

Appendix D: Master Index for 
VSE/Advanced Functions LIOeS 

Index 

vi IBM VSE/Adv. Functions Diag. Ref. LIoes Volume 1 

134 

136 
140 
140 
140 
141 
141 
142 
142 
143 
143 
144 
144 
144 
145 
145 
146 
147 
147 
148 
149 
149 
149 
149 
149 
150 
150 
151 
151 
151 
152 
152 
152 
153 
153 
153 
154 
154 
154 
154 
154 
155 
155 
155 
155 
155 
155 
155 
156 
156 
156 
158 
158 
162 
171 
172 
173 

174 

183 



licensed Program - Property of IBM 

FIGURES 

1. Example of lIOCS and PIOCS Interrelationship 3 
2. DTF Table Types 6 
3. The Relationship Between Imperative and Declarative Macros 8 
4. logical IOCS Imperative Macros and DTFs 9 
5. logical IOCS Imperative Macros and Devices 11 
6. DTFMT Unlabeled Workfile Format 43 
7. Use of Different DTF Types by $$BClRPS 46 
8. ISAM RPS or DAM DASD Device Independent Extension Work Area 47 
9. VTOC Display of Disk Pack (DSPlVV Response) 48 

10. VTOC Display of Diskette (DSPlVV Response) 49 
11. VTOC Dump of Diskette (CANCElV Response) 50 
12. VTOC Dump of Disk Pack (CANCElV Response) 52 
13. Message Code for Disk Open Error Message Writer 54 
14. Master Error Message list 67 
15. ASCII to EBCDIC Conversion 75 
16. EBCDIC to ASCII Conversion 77 
17. Multivolume Indicator Combinations (3 Extents) 86 
18. Disk Volume label (VOll label) 101 
19. Standard Volume label 1 Fields (DASD) 102 
20. IBM-Standard Disk File label (Format-I) 105 
21. Format-1 label Fields 107 
22. IBM-Standard Disk File Continuation label (Format-3) 117 
23. Format-3 label Fields 118 
24. Format-2 label Fields 120 
25. VTOC label (Format-4) 132 
26. User-Standard Disk File labels (Header and Trailer) 133 
27. User-Standard label Fields 133 
28. User-Standard Disk File labels (5 UHls and 4 UTls Specified) 134 
29. User-Standard Disk File labels (3 UHls Specified) 134 
30. Diskette Volume label 134 
31. Diskette Standard Volume label Fields 135 
32. Diskette File label 136 
33. Diskette HDR 1 label Fields 137 
34. Tape Volume label for EBCDIC Code 158 
35. Tape Standard Volume label 1 Fields 159 
36. Tape Volume label for ASCII Code 160 
37. Tape Standard Volume label 1 (ASCII Mode) Fields 161 
38. IBM-Standard Tape File label for EBCDIC Code 162 
39. Tape Standard File label 1 Fields 163 
40. IBM-Standard Tape File label for ASCII Code 167 
41. Tape Standard File label 1 (ASCII Mode) Fields 167 
42. User-Standard Tape File label 171 
43. Tape User-Standard label Fields 172 

FIGURES vii 



licensed Program - Property of IBM 

CHARTS 

Chart Ole Open Monitor. 56 
Chart 02. Open Monitor. 

Tape: 
57 

Chart 03. Open Magnetic · 58 
Chart 04. Open ISAM · · 59 
Chart 05. Close Monitor . . · · 60 
Chart 06. EOF/EOV Routine . . . . · · 63 
Chart 07. Open Diskette, Input. · · 64 
Chart 08. Open Diskette, Output . 65 

viii IBM VSE/Ady. Functions Diag. Ref. lIOCS Volume 1 



licensed Program - Property of IBM 

INTRODUCTION 

The transfer of data between storage and 
the input/output devices attached to a 
system is controlled by the Input/Output 
Control System (IOCS). IOCS allows the 
problem programmer to specify: 

• What data has to be transferred. 

• Which I/O device is to be used. 

• In which sequence data transfer is to 
take place. 

VSE/Advanced Functions gives the problem 
programmer a choice of two input/output 
control systems: 

• Physical IOCS (PIOCS) 

• logical IOCS (lIOCS). 

Full details on physical IOCS can be found 
in VSE/Advanced Functions Diagnosis 
Reference: Supervisor, lV33-9107. 

lOGICAL IOCS 

lIOCS performs the data management function 
required to locate and access logical 
records for processing. Some lIOCS 
routines are linked and executed as a part 
of the user's problem program. Others, 
notablY SAM DASD and DAM lIOCS routines, 
are provided by IBM, loaded into the System 
Virtual Area (SVA) at IPl time, and are 

dynamically linked to the user's program. 
They provide an interface between the 
user's file processing routine and the 
PIOCS rOIl4:ines. Some of the data 
management functions performed by lIOCS 
are: 

Blocking and deblocking of logical 
records. 

• Switching between I/O areas when two 
areas are specified for a file. 

• Handling End-of-File (EOF) and 
End-of-Volume (EOV) conditions. 

• Issuing requests to PIOCS to execute the 
appropriate channel programs. 

lIOCS makes use of two types of macro 
instructions to perform the required 
functions: imperative macro instructions 
and declarative macro instructions. 
Imperative macro instructions supply the 
facilities for reading, writing, blocking 
and deblocking, file labeling, and error 
checking. These instructions can be used 
only for data files that have been defined 
by declarative macro instructions. The 
declarative macro instructions specify the 
characteristics of a data file, such as the 
file name, I/O device type, or 
organization. 

When lIOCS determines that a data area 
contains no logical record, it issues a 
physical IOCS macro instruction to execute 
the actual data transfer. Figure 1 on 
page 3 shows the relationship between 
logical and physical IOCS for a lIOCS 
imperative READ macro issued to an input 
file when one I/O area is used. 

INTRODUCTION 1 



Licensed Program - Property of IBM 

LOGICAL IOCS PROCESSING METHODS 

Logical IOCS routines process records in 
anyone of three ways: 

1. Sequentially, through the use of the 
Sequential Access Method (SAM). This 
method can be used with all files on 
serial devices (such as card readers, 
tapes, and printers), and with 
sequentially organized files on disk 
and diskette. 

2. Randomly, through the use of the Direct 
Access Method (DAM). This method can 
be used with files on disk only. 

3. Both sequentially and randomly, through 
the use of the Indexed Sequential 
Access Method (ISAM) or the Virtual 
Storage Access Method (VSAM). These 
methods can be used with disk only. 
VSAM is available to VSE users through 
the VSE/VSAM program product. 

Sequential Access Method (SAM) 

Sequential processing reads/writes and 
processes successive records in a logical 
file. For example, card records are 
processed in the order the cards are fed; 
tape records are processed starting with 
the first record following the header 
labels and ending with the last record 
before the trailer labels. DASD records 
are processed starting with the beginning 
DASD address and continuing in order 
through the records on successive tracks 
and cylinders up to the ending address. 

Oiskette records are processed starting 
with the beginning diskette address and 
continuing in order through the records on 
successive tracks up to the ending address. 

Volumes 2 and 4 contain a detailed 
discussion on sequential processing. 

Direct Access Method (DAM) 

The Direct Access Metho~ processes records 
contained on IBM disk devices that are 
usually organized in a random manner. DAM 
is a method for processing records rather 
than an organizational method. 

The location reference required by LIOCS 
for processing a file in a random manner 
consists of two parts: a track reference 
and a record reference. The record 
reference may be the record key, or, if no 
key areas are present, the record ID which 
is in the count area of each DASD record. 
Volume 3 contains a detailed description of 
random processing through DAM. 

Indexed Sequential Access Method (ISAM) 

The Indexed Sequential Access Method can 
process records on a DASD device in a 
random and/or sequential order. Both 
orders use the control information that is 
in the key field of each record. The user 
supplies ISAM with the key (control 
information) of the desired record. ISAM 

searches for the record and makes it 
available for processing. 

In sequential processing. a series of 
records is made available. The first 
record to be processed is specified by the 
user. ISAM retrieves the succeeding 
records (on demand) from the logical file, 
in key order, until the problem program 
terminates the operation. 

ISAM creates an organized file and then 
adds to, reads from, and updates records in 
that file. The file is organized from 
records that are presorted by control 
information. As the DASD records are 
loaded, ISAM constructs indexes for the 
logical file. If records are added to the 
file at a later stage, ISAM updates the 
indexes to reflect the new records. Volume 
3 describes ISAM in detail. 

Virtual Storage Access Method (VSE/VSAM) 

The Virtual Storage Access Method can 
process records on a DASD device. It 
differs from the access methods mentioned 
so far in that: 

• It allows three different ways of data 
organization, each of which allows 
different ways of processing. 

• It includes a facility for automatic 
space allocation. 

• It includes a set of service programs 
that allow for the execution of a number 
of specialized functions. 

• It allows ISAM files that have been 
converted to the VSAM format to be 
processed using ISAM macros. 

• It offers device independence due to the 
special format of its physical blocks. 

• It offers data integrity control and 
access control by means of design. and 
integrity and access control options. 

In VSE/VSAM, a user may choose between 
three types of data organization: 

• Key-sequenced data organization. 

• Entry-sequenced data organization. 

• Relative-record data organization. 

In a key-sequenced organization, logical 
records are stored on the basis of a 
collating sequence determined by the 
content of the primary keys of those 
records. This key collating sequence is 
kept at all times. The key-sequenced 
organization is basically similar to the 
organization of an ISAM file. 

Key-sequenced data organization allows for 
the following types of processing: 

• Keyed-direct processing. 

• Keyed-sequential processing. 

• Addressed-direct processing. 

2 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

Problem Program Logical 10CS Physical I DeS I/O Device 

Issue READ request (refer Provide a new logical 
to the file description record from a physical 
elsewhere in the program). block in the 1/0 area 

(deblock) to the problem 
program, 

,r 

if aC!:ual input is required 
(new block), issue a 
physical read request 
IEXCP) Determine channel and: 

and a) If channel is not busy, 

WIlT 
r-- __ start 110 Start device 

When I/O is tmPlete, 

b) If channel is busy I place t 
request into channel Data transfer 

provide the first (or only) queue and return to t 
Lloes. (Supervisor liD complete logical record from the 

new block in the 1/0 area will retry later.) 

to the problem program. 
When I/O is complete, I 

Next instruction after return to L1acs via inter-
READ request. rupt handling routine. 

Figure 1. Example of LIOCS and PIOCS Interrelationship 

Addressed-sequential processing. 

In an entry-sequenced organization, logical 
records are stored physically in the same 
sequence in which they are entered. Newly 
added logical records are stored at the 
physical end of the file. This 
organization is basically similar to that 
of the SAM file. 

Entry-sequenced data organization allows 
for the following types of processing: 

Addressed-direct processing. 

Addressed-sequential processing. 

In a relative-record organization, logical 
records are stored in a string of 
fixed-length slots, each of which has a 
relative-record number, starting from one 
up to the maximum number of relative 
records that can be stored in the file. No 
index is built. 

A slot may be empty or it may be 
occupied, in which case the record is 
identified by the number of the slot. For 
example, a record in the tenth slot of the 
file gets relative-record 10; it will 
always be the tenth record of the file 
regardless of whether or not records have 
been written into the preceding nine slots. 
A record is retrieved by its 
relative-record (that is, slot) number, the 
number being treated as a key. 

Virtual and Basic Telecommunications Access 
Methods (ACF/VTAM and BTAM-ES) 

VSE/Advanced Functions communicates with 
remote terminals with Advanced 

Communications Function/VTAM or Basic 
Telecommunications Access Method - Extended 
Support. 

These processing methods are not 
documented, beyond an occasional-reference, 
in this set of Diagnosis Reference Manuals. 
Specific information concerning ACF/VTAM 
and BTAM-ES is found in the ACF/VTAM and 
BTAM-ES publications. 

Storage Requirements 

Some logical IOCS routines are generated as 
part of the problem program, others 
(supplied by IBM) reside in the System 
Virtual Area and are dynamically linked to 
the user program. Imperative macro 
expansions, which serve as linkage to the 
logical or physical IOCS routines, are 
generated inline at the point the macro is 
used in the problem program. The open, 
close, EOF/EOV, and other special purpose 
routines are called into the B-transient 
(logical transient) area as required. The 
physical IOCS routines used by logical IOCS 
are generated as part of the supervisor 
program. 

MODULAR-TABULAR SYSTEM 

The term tabular and modular indicate that 
the system uses tables in conjunction with 
data handling modules to implement its 
functicns. 

The modular-tabular system has the 
advantages of: 

Saving assembly time by allowing the 
data handling modules to be generated 

INTRODUCTION 3 



Licensed Program - Property of IBM 

separately and to be stored in the 
relocatable library for subsequent use. 

• Using one module with many files if the 
device types are the same and the files 
are similar. 

The modular-tabular combination for a 
specific file is generated by two 
declarative macros: the file definition 
macros (DTFxx) and the module generation 
macros (xxMOD). 

The file definition macros describe the 
logicar-file, indicate the type of 
processing to be used for the file, and 
specify storage areas (work area, I/O area) 
for the file. A number of file definition 
macros define the files processed by 
logical IOCS, and one defines files 
processed by physical 10CS (DTFPH). The 
file to be processed determines the type of 
file definition macro to be used. 

The module generation macros generate the 
data handling logic modules. These modules 
contain generalized routines needed to 
perform the functions of the logical IOCS 
imperative macros. The generalized 
routines in the logic modules are altered 
and made more specific through various 
parameters (specified by the problem 
programmer) included in the xxMOD macro 
statements. It is possible, therefore, to 
generate many variations of a particular 
type of logic module, each specifically 
suited to the need of the problem 
programmer. For sequential DASD and DAM 
files, the data handling logic modules are 
provided by IBM. If the user provides a 
module in these cases, it is overridden by 
the IBM-supplied version. 

DECLARATIVE MACROS 

DTF (Define the File) Macros 

Whenever logical IOCS imperative macro 
instructions are used in a problem program 
to control the transfer of records in a 
file, that file must be defined by a 
declarative DTF macro instruction. The DTF 
macro instruction describes (through 
various parameters specified by the problem 
programmer) the characteristics of the 
logical file, indicates the type of 
processing for the file, and specifies the 
main storage areas and routines. Figure 2 
on page 6 summarizes the various DTF table 
types supported by VSE. Detailed 
descriptions of the logical IOCS file 
definition (DTF) macros and their 
parameters appear in VSE/Advanced Functions 
Macro Reference. 

In general, the IBM-supplied file 
definition declarative macros are 
device-oriented. In addition, three 
declarative macros, DTFSR, DTFBG, and DTFEN 
are supported by VSE/Advanced Functions to 
provide upward compatibility from the IBM 
Basic Operating System (8K system). A 
brief description follows for each of the 

DTF macros available to users of 
VSE/Advanced Functions. 

DTFCD. Define The File for a Card Device. 
To define a file associated with the 
records on a card unit or on the 3881 
Optical Mark Reader. 

DTFCN. Define The File for a CoNsole. To 
defIne a file associated with the console 
printer-keyboard (3210 or 3215) or with a 
Display Operator Console. 

DTFCP. Define The File for a ComPiler. To 
provIde limited device independence for 
IBM-written programs (COBOL, FORTRAN, 
PL/I). Because the DTFCP macro is written 
specifically to handle the needs of IBM 
internal programs, it is not documented in 
any System Reference Library pUblications. 

DTFDA. Define The File for Direct Access 
method. To determine a file when DASD 
(Direct Access Storage Device) records are 
to be processed by the Direct Access 
Method. 

DTFDI. Define The File for Device 
Independent system files. To define files 
assigned to the device independent system 
logical units SYSRDR, SYSIPT, SYSPCH, and 
SYSLST to provide DOS/VSE Assembler users 
with the same capabilities extended by 
DTFCP. 

DTFDR. Define the File for the 3886 
OptIcal Character Reader. To define a file 
associated with a 3886 Optical Character 
Reader. 

DTFDU. Define the File for a Diskette 
Unit. To define a file associated with a 
3540 Diskette Input/Output Unit. 

DTFIS. Define The File for Indexed 
Sequential file management system. To 
define a file organized and processed by 
the Indexed Sequential File Management 
System. 

DTFMR. Define The File for Magnetic 
Recognition. To define a file associated 
with a Magnetic Ink Character Recognition 
(MICR) device (1255/1259/1419) or Optical 
Reader/Sorter (1270-1275*). 

DTFMT. Define The File for Magnetic Tape. 
To define a file associated with a magnetic 
tape device. 

DTFOR. Define The File for an Optical 
Reader. To define a file associated with 
an Optical Character Reader device (1287). 

DTFPH. Define The File for processing by 
PHysical IOCS. To define a magnetic tape, 
diskette, or DASD file with standard labels 
that is processed by physical IOCS when the 
user wishes to use the OPEN and CLOSE 
macros for label processing. DTFPH 
parameters define the magnetic tape, 
diskette, and DASD files. No other files 
processed by physical IOCS require 
definition. 

* These devices are not available in the United States of America. 

4 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



J 

Licensed Program - Property of IBM 

Qnlx the following logical IOCS functions 
can be performed for files defined by a 
DTFPH macro. 

Check the header labels on input files, 
and close these files when requested. 

• Create header labels on output files, 
and create trailer labels when the file 
is closed. 

• Force end-of-volume on an output file 
when requested. (Force end-of-volume is 
not supported on diskettes.) 

When a DTFPH macro instruction is 
encountered at assembly time, the assembler 
builds a DTF table that includes only the 
parameters needed for the OPEN, CLOSE, and 
FEOV routines. The OPEN, CLOSE, and FEOV 
macro expansions call the open and close 
routines into the supervisor B-transient 
area at object time. 

DTFPR. Define The File for a PRinter. To 
define a file associated with a printer 
device, or a 2560 MFCM or 3525 Card Punch 
with the print feature. 

DTFPT Define The File for Paper Tape. To 
define a paper tape file. 

DTFSD. Define The File for Sequential 
DASD. To define sequential files on a 
Direct Access Storage Device (DASD). 

DTFSR. Define The File in a SeRial type 
file device. To define a file for 
sequential processing of records on any 
IOCS supported I/O device. 

The VSE DTFSR macro definition accepts 
either the BOS or 8PS DTFSR macro as valid 
input. After determining the device type 
required, the VSE DTFSR macro calls, from 
the source statement library, the 
appropriate VSE DTF macro. The DTF macro 
called by the VSE DTFSR then sets up a DTF 
table in the usual manner. 

The VSE macro definition is used only to 
allow upward compatibility and DTFSR should 
not be used as a statement in the user's 
VSE source deck. 

DTFBG. The BeGin-definition must be 
punched with DTF8G in the operation field 
and DISK in the operand field. The name 
field is left blank. DTF8G is included in 
VSE to provide compatibility with the BOS 
DTFSR macro instruction. 

DTFEN. Define The Field ENd. To show 
there are no more DTF source statements to 
process. Only to allow upward 
compatibility for 80S and BPS users. 

~ The ACB macro produces an Access 
Method Control Block (AC8) for a VSE/VSAM 
file. The control block identifies the 
key-sequenced file and its index or the 
entry-sequenced file that is to be 
processed, and indicates the types of 
requests that are to be made. The ACB is 
similar to a DTF in that it identifies the 
file to be processed. However, most 
information about the file, such as key 
length and record format, is specified in 
the DEFINE command of the access method 
services. Information supplied in this 
command resides in the VSAM catalog and is 
read into storage when the ACB is opened. 

INTRODUCTION 5 



I DTF Type Code I I (Byte 20) I 
of DTF Table I DTF 

I X'OO' IDTFCD 
II X'OI' IDTFPT 

X'02' IDTFCD 
I X'03' IDTFCN 
I X'04' IDTFCD 
I X'05' IDTFCD 
I X'D7' IDTFPR 
I X'08' DTFPR 
I X'09' IDTFOR 

I X'OA' IDTFOR 
X'OB' IDTFMR 

( 
I X'OC' IDTFDR 
II X'10' IDTFMT 

I DTFCP 
I X'II' IDTFMT 

X'12' IDTFMT 

I 
I 

I 

X' 13' 
X'14' 
X'15' 
X'IA' 
X'20' 

X' 21 ' 
X' 22' 
X'23' 
X'24' 
X'25' 
X'26' 
X'27' 
X'28' 
X' 3 J' 
X' 31' 
X'32' 
X'33' 
X'40' 

1 
IX'60' - X'67' , 

I DTFPH 
DTFMT 
DTFMT 
DTFMT 
DTFDU 
DTFSD 
DTFCP 
DTFPH 
DTFDA 
DTFPH 
DTFIS 
DTFIS 
DTFIS 
DTFIS 
ACB 
DTFCP 
DTFCP 
DTFCP 
DTFDI 
DTFBT 

Licensed Program - Property of IBM 

IDescriPtion 

ICombined files 
IPaper tape files 
IReader and 3881 Optical Mark Reader files 
IConsole 
IPunch files 
IReader files on 2560. 5424/5425 
IPrinter files on 2560 
Printer files 

IOptical Reader files except 3881 and 3886 files 
(Optical Reader files (HEADER=VES) 
(Magnetic Ink Character Recognition (MICR) and 
(Optical Reader/Sorter files 
13886 Optical Character Reader files 
(Unlabeled tape work files 
IUnlabeled tape work files (compiler). (Note 1) 
INonstandard or unlabeled tape files 
IStandard labeled, output tape files 
IStandard labeled. output tape files (physical IOCS) 
IStandard labeled. input tape files (read backward) 
lstandard labeled. input tape files (read forward) 
Standard labeled tape work files 

I
Diskette Input/Output Unit files 
Sequential DASD work files and data files 
DASD work files (compiler) 
lsequential DASD files, MOUNTED=SINGLE (physi~~l IOCS) 
Direct access files 

IDirect access files. MOUNTED=ALL (physical IOCS) 
IIndexed sequential. LOAD file 
IIndexed sequential, ADD file 
(Indexed sequential. RETRVE file 
IIndexed sequential. ADDRTR file 
IAccess Method Control Block for VSE/VSAM 
ICompiler file for DOS Version 1 (Note 1) 
ICompiler file for DOS Versions 2 onward 
ICompiler file for DOS Versions 2 onward (Note 2) 
IDevice independent system unit files 

IBaSiC Telecommunications Access Method - Extended Support 
(BTAM-ES) file (Notes 3 and 4) 

Figure 2. DTF Table Types 

Notes: 

1. DTF type is X'30' except for tape or DASD assigned to units SVSOOO 
to SYSnnn. In this case. the DTFCP open phases change the DTF 
type to X'10' for tape work files. or X'20' for DASD work files. 

2. DTF type is X'32' except for DASD assigned to units SVSOOO to 
SVSnnn. In this case. the DTFCP open phases change the DTF type 
to X'20' for DASD work files. 

3. The following control unit codes are ORed into the low-order 4 
bits of the DTF type code. 

Control Unit 
7770 
2848 
2701 
2702 
2703 

Cide 
3 
4 
5 
6 

4. The DTF tables for BTAM-ES files are not documented in this 
manual. They are documented in the BTAM-ES publications. 

6 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

MOD (Module Generation) Macros 

Each DTF (except DTFCN, DTFPH, DTFSR, 
DTFDA, DTFSD, and DTFDI or DTFCP files 
residing on DASD and except DTFPR, DTFDI, 
DTFCP with DISK=YES for PRT1 and 3800 
files, which use logic modules in the SVA) 
is linked to a logical IOCS module 
generated by an xxMOD macro instruction. 
These modules provide the necessary 
instructions to perform the input/output 
functions required by the problem program. 
For example, the module can read or write 
data, test for unusual input/output 
conditions, block or deblock records, or 
place logical records in a work area. 

Some of the module functions are 
provided on a selective basis, according to 
the parameters specified in the xxMOD macro 
instruction. The problem programmer has 
the option of selecting (or omitting) some 
of these functions according to the 
requirements of his program. The omission 
of some of these functions results in 
smaller main-storage requirements for a 
particular module. 

There are two options for MOD macros. 
The user can: 

1. Insert the MOD macro instruction with 
its file parameters in the problem 
program source deck. In this case, the 
logic module is assembled in line with 
the problem program. 

2. Choose to generate the logic modules 
needed for his file formats and system 
configuration. To do this, source 
decks using macro parameters to 
describe the file attributes are 
punched for each MOD macro statement. 
The logic module macro definition 
generates its own unique name, or the 
user can name the module in the name 
field of the MOD macro statement. The 
user name overrides the name the macro 
definition normally generates. 

For each type of xxMOD macro, the problem 
programmer can generate, by issuing the 
macro with varying parameters for each 
required module, many logic modules. The 
logic modules must be cataloged in the 
relocatable library. The CATALR control 
cards are automatically generated when the 
module is assembled. 

At assembly time, the Assembler produces 
an EXTRN (External Symbol) card for every 
V-type constant, or EXTRN statement, in the 
user program. At the time this program is 
link edited, the Linkage Editor resolves 
these EXTRN symbols. When these are 
resolved, the program is cataloged into the 
core image library, from which it is called 
for execution. 

TRACK HOLD FUNCTION 

The track (or control interval) hold 
function provides DASD track protection 
when the parameter HOLD=YES is specified in 
the operand of the module generation macro 
(DAMOD/ISMOD) and the DTFSD/DTFDA/DTFIS 
macro. If a task has previously accessed a 

DASD track and is currently modifying a 
record from that track, DASD track 
protection prevents another task in storage 
from accessing that track. The task 
attempting to access the held track is put 
in the wait state until the track has been 
released. 

For DAM and ISAM, the problem program 
must issue the FREE macro to release a 
track held on READ operation. The module 
automaticallY holds and releases all tracks 
for WRITE operations. 

For sequential DASD, the track is held 
and freed implicitly by the logic modules. 

The track (or CI, for FBA) hold function 
is applicable to four situations: 

1. Sequential DASD update files (data). 

2. Sequential DASD work files with the 
~PDATE=YES parameter specified. 

3. DAM files. 

4. ISAM files. 

REENTERABLE MODULES 

A reenterable module is a logic module that 
can be used asynchronyuslY~ or shared, by 
more than one file. nclu ing the 
RDONLY=YES parameter in the module 
generation macro generates a reenterable 
logic module. The RDONLY (read-only) 
parameter implies and assures, regardless 
of the processing requirements of any 
file(s) using the module, that the 
generated logic module is never modified in 
any way. To provide this feature, unique 
save areas, external to the logic module, 
are established, one for each task using 
the module. Each save area must be 72 
bytes and double-word aligned. A task must 
provide the address of its unique save area 
in register 13 before an imperative macro 
is issued to a file and a logic module 
entered by the task. 

The IBM-supplied logic modules used for 
DAM and sequential DASD (DTFCP, DTFDA, 
DTFDI, DTFSD) files are read-only and 
re-entrant, but do not require the user to 
provide a save area-address in register 13 
and will ignore such an address if 
provided. The same is true for logic 
modules used for tape support with DTFMT. 

Reenterable modules include: CDMOD, 
CPMOD, DIMOD, DUMOD, and ISMOD 

INTERRELATIONSHIPS OF THE DECLARATIVE MACRO 
INSTRUCTIONS 

The DTFCD, DTFCP, DTFDA, DTFDI, DTFDR, 
DTFDU, DTFIS, DTFMR, DTFMT, DTFOR, DTFPR, 
DTFPT, and DTFSD declarative macros are 
similar in one respect. They each generate 
a DTF table that references an IOCS logic 
module. The first 20 bytes of each table 
have the same format; that is, a Command 
Control Block (CCB) and a logic module 
address. The remainder of each table is 

INTRODUCTION 7 



Licensed Program - Property of IBM 

tailored to the particular device and file 
type. 

When one of these DTF macro instructions 
is encountered at assembly time, the 
assembler builds a DTF table tailored to 
the DTF parameters. The table contains: 

• Device CCB. 

• A V-type statement used by the Linkage 
Editor to resolve the linkage to the 
logic module with this DTF. For DTFMT, 
the referenced logic module (IJJTCTL) 
processes only the CNTRL commands for 
not opened magnetic tape files. For 
DTFSD, DTFMT, DTFDA and, DTFPR/DI/CP if 
actual device is a PRTI or 3800 printer, 
OPEN will dynamically fill in this field 
with the address of the IBM-supplied 
logic module. (Therefore for DTFSD and 
DTFDA zeros are generated.) 

• Logic indicators; that is, one I/O area, 
two I/O areas, device type, and so on. 

• Addresses of all (except work files) of 
the areas and controls used by this 
device. 

Regardless of the method of assembling 
logic modules and DTF tables (that is, with 
the main program or separately), a symbolic 
linkage results between the DTF table and 
the logic module. Normally, the linkage 
editor resolves these linkages at edit 
time. However, for logic modules that 

Problem program DTF table 

support SAM and DAM files on DASD, the 
linkages are resolved at open time. 

To accomplish the linkage between the 
DTF table and the logic module, the 
assembler generates a V-type address 
constant in the DTF table and a named CSECT 
in the logic module. To resolve this 
linkage, the linkage symbols (module names) 
must be identical. Figure 3 shows the 
relationship of the program (the imperative 
macro), the DTF, and the logic module. 
Imperative macros initiate the action to be 
performed on the file by branching to the 
logic module entry point generated in the 
DTF table. CRD is the name of the file; 
IJCFAOZO the name of the logic module. 

IMPERATIVE MACROS 

The problem programmer issues imperative 
logical IOCS macro instructions to initiate 
such functions as opening a file, making 
records available for processing, writing 
records that have been processed, 
controlling physical device operations, 
etc. Figure 4 on page 9 summarizes the 
macro instructions provided by IBM for 
logical IOCS. Figure 5 on page 11 further 
defines the general function of each of the 
macro instructions and indicates the 
devices with which they are used. 

Module 

> CRD DTFCD r--->IJCFAOZO CDMOD 

PUT CRD---' 
DC V(IJCFAOZO)~ -

Figure 3. The Relationship Between Imperative and Declarative Macros 

8 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

I MACROS 
I , 
I 
ICHECK 
I 
ICLOSE(R) 
I 
ICNTRL 

IDISEN 
I 
IDSPLY 
I 

ENDFL 

ERET 

ESETL 

FEOV 

FEOVD 

FREE 

GET 

LBRET 

LITE 

NOTE 

OPEN(R) 

POINTR 

POINTS 

POINTW 

PRTOV 

PUT 

PUTR 
I 
IRDLNE 
I 
,READ 
I 
IRELSE 
I 
IRESCN 
I 

I DID ITT 
I F I F 
I C I C 
I D I N 

X 

X 

X X 

X 

X X 

x 

I 
I 
I 

F F I F F F 
D , DID I TD I D TIT ITT 
C I D I D I D D 
P A I I R U 

X X X X X 

)C X 

X X 

x 

)C 

x x x 

X 

X X X X X 

X X X 

X x 

I 

D 
T 
F 
I 
S 

X 

)C 

X 

X 

x 

x 

X 

X 

x 

D 
T 
F 
M 
R 

X 

X 

X 

X 

X 

X 

X 

I , 
D 
T 
F 
M 
T 
Xl 

X 

)C 

X 

x 

XJ 

X 

Xl 

X 

Xl 

Xl 

Xl 

X J 

Xl 

x 

I , 
I 

. 

D 
T 
F 
0 
R 

X 

X 

X 

X 

X 

x 

X 

I 
I 
I 

D 
T 
F 
P 
H 

X 

X 

I 
D 
T 
F 
P 
R 

X 

X2 

X 

X2 

X 

, 
I 

D 
T 
F 
S 
D 
Xl 

X 

X 

x 

X 

Xl 

X J 

x 

Xl 

X 

Xl 

Xl 

Xl 

XJ 

Xl 

x 

I , 
I 

D 
T 
F 
S 
R 

x 

X 

X 

X 

X 

x 

X 

X 

x 

Fig~re 4 (Part 1 of 2). Logical IOCS Imperative Macros and DTFs 

INTRODUCTION 9 

I , 
I 
I 

I 
I 
I 
I 
I 

I 

I 
I 
I 
I 

I 
I 
I 



licensed Program - Property of IBM 

I 
I D I D I D I D I D I D D I D 

I 
D I D I D I D I D I D I D I I T I T I T I T I T T T 

I 
T T I T T T I T I T T 

MACROS I F I F I F F I F F F F F F F I F I F I F I F I 
I I C I C I C I D D D D I I M I M 0 p I p I S S I 
I I D I N I p A I I R U I S R T R H R D R I 
I , ISEOV II 
I 
SETDEV II I 

I 
SETFl x I 
SETl x I 

I 
TRUNC x II II 

WAITF II II II X II 

WRITE II II II 1 II 1 

I 
1 .Work flIes only. Z J .Not for 560 work flIes. .Data fIles only 

Figure 4 (Part 2 of 2). logical IOCS Imperative Macros and DTFs 

10 IBM VSE/Adv. Functions Diag. Ref. llOCS Volume 1 



Licensed Program - Property of IBM 

TYPE OF PROCESSING WITH LOGICAL IOCS 

Indexed Sequential 
Sequential 

0 ::;, ::;, 
0 .c U U 
~ci~ uo. u.. 

,~~~ 
u 

~ 
3;;; ;;; 

~ "-'" -~.~ .c c ",'" 0"0" u 

~ i·§ "'~ 0:: 
",,, 

"'''' c Macro Instruction . . ~ ",!!2 "'.- ~ 

"0 ;;;16 
~ ~ ~~ "'0::", 'c "- .~ ~ gj 8'§~ "'~ ~ 

0", OlD'" t:l 'c ::;, 
~ 8. .! c 0:: "'0:: -~ ;:\'" ~~~ C/) ::;, ",a...:: 

"'~ o.~ ..: 
~~ 8- ~ i 0: 1i t!8 ~ ~2:! Oe ~ "" NM' t:l o..~ ~ 0:: ~o:: -;;; --;;; . .... jg "0 ~ "'~ M",,,, "'u '" ~ °u -"'u ..: t- 3- ~ 'g, ,,0 

~~ 
"'~ ;; -"0 ",,,,,,, "'. E. Nu. 000. ~ ~ u -. <. . N~ ~~-; ~~ 2~ ~::a ~t!~ '" iS~ 

o~ 
~ E ';; 

M' 0 0 0. '{; :::0: u: 0:: ° Ii _0 
0.0 .... M"'''' (1ju 0"0 co "'~ ~g "''''0 ;::; 

~~ 
c ;::8- '" 

u 16 "0 
"0 ~ 

-> '" O",N -", ..... "'. ""'''' " I ;; . ~ g-
N~ !::' "N ... ~E N· '" co.c "It) ""'It) "'. is 0 "0 

M" -"'''' _0:: M MU _N _NN U M-= Nt- - ..J ..: 0:: C/) 

OPEN(RI X X X X X X X X X X X X X X X X X X 
Initialize 

LBRETI X X 

GET X X X X X2 X2 X X X X X 

PUT X X X X' X' X X X X 

PUTRH X 

READ X X X X X X X 

WRITE X X X X X X 

Process CHECK X X X X 
RELSE5 X X 
TRUNK6 X X 

WAITF X X X X X X X X 

RDLNE X 

RESCN X 

DSPLY X 

SETFL X 

ENDFL X 
Set Mode SETL X 

ESETL X 

SETDEV X 

CNTRL7 X X X X X X Xl2 X X 

CHNG X 
Non Data PRTOV XlO 
Operations DISEN X X 

LITE X9 X9 

ERET X X X X X X X 

READ X X 

Work Files 
WRITE X X 

for DASD CHECK X X 

and NOTE X X 
Magnetic POINTR X X 
Tape POINTW X X 

POINTS X X 

CLOSE(RI X X X X X X X X X X X X X X X X X X 

FEOV X 

FEOVD X 
Complete 

FREE X· X 

LBRETI X X 

SEOV X 

Notes: 1. Applies only If OTFSR, DTFMT, DTFDA, or DTFPH LABADDR or XTNTXIT IS specified. 
2.ln the 2520 or 2540, GET normally reads cards in the read feed. If TYPEFLE=CMBNO is specified, GET reads 

cards at the punch -feed-read station. For the 3881, the WORKNAME operand is invalid. 
3. Put rewrites on input DASD records If UPDATE is specified. 

4. In the 1442, 2520, or 2540, PUT punches an input card with additional information if TYPEFLE=CMBND is 
specified; PUT is specified by the 2560, 3525, and 5424/5425, if read/punch-associated files are specified. 

5. Applies only to blocked input records. 
6. Applies only to blo-cked output records. 
7. Provided only for upward compatibility for BPS and BOS. 
8, Work files only. 

9. Applicable to 1419 and 1275 with the Pocket Light Feature. 
10. Not for 2560 or 5424/5425 with print feature. 
11. Display Operator Console only. 
12. CNTR L is treated as a no-op for FBA. 
13. Applies also to 3211 compatable printers (with device type code of PRT1). 

Figure 5. Logical IOCS Imperative Macros and Devices 

INTRODUCTION 11 



licensed Program - Property of IBM 

IMPERATIVE MACRO EXPANSIONS 

For each imperative macro issued by the problem programmer, the 
Assembler program generates an in-line expansion that links the 
instruction to the DTF table (and thus the logic module) for the 
specified file. The fjlename used for the DTFxx macro describing the 
file must always be an operand of the imperative macro instruction. 

Typical expansions and brief descriptions of the function and 
procedure of each of the logical IOCS imperative macro instructions 
follow. 

CHECK Macro 

ILabel I CHECKlf,!ename,PARAM* 
1 I II 1 ______ -+_L ______ +-l_,_=_A __ (_f_l_l_e_n_a_m __ e_)~~l-O-a--d-s--a-d-d_r __ e_s_s __ o_f ___ D_T_F __ t_a_b __ l_e_. ______________ ___ 

I !L IO,=A(PARM) loads address of control field. * 
II----~I------I~-------------+----------------------------------------------

L 15,16(1) loads address of logic module. I IBAL 114,8(15) Branch to CHECK routine in logic module. 

* Optional 

Function: This macro instruction forces the program to wait for 
completion of the I/O operation started by a READ or WRITE macro for 
the data file specified. 

Procedure: This macro instruction waits for the completion of the 
input/output operation, started by a READ or WRITE, for the device 
associated with the filename. If the I/O operation is completed 
without an error or other exceptional condition, CHECK returns control 
to the next sequential instruction. If the operation results in an 
unusual condition CEOV, EOF, overflow, errors), CHECK processes the 
user's option specified in the DTF. Then, if the unusual condition is 
resolved, control returns to the user. Generally, if the unusual 
condition is not resolved, the routine posts a bit in some area set 
aside to indicate the condition, or issues a message to the operator 
on the system console printer. 

12 IBM VSE/Adv. Functions Diag. Ref. lIOCS Volume 1 



Licensed Program - Property of IBM 

CLOSE Macro 

/Label ICLOSEIFILEA.FILEB •.••• FILEn I 
�----------~----~------------------------------------------------------------------I 
I CHOP O. 4 I 'I 
I IDC OF'O' 
I ILA 1.=C'$$BCLOSE' IInitializes to fetch Close Monitor. I 
IIJJCxxxx IBAL O.*+4+4*<&N-1) Register 0 points to the address of the DTF I 
I II Itable for the first file in the file list. I 

" 
II The second operand causes a branch to the SVCI 

I 12 instruction. I 
I DC 'ACFILEA) Start of file list. ~ 
II IDC IACFILEB) CThe file list contains the addresses of the I 

I. I DTF tables for all the files specified in thel 
I I. I CLOSE macro operand.) I 

I
I ',DC ACFILEn) Address of the DTF table for the last file III 

specified in the CLOSE macro operand. 

I 2 Fetches the Close Monitor. $$BCLOSE. I 
I I 
IFILEn Symbolic address of the DTF table for the last file specified in the CLOSE I 
I macro operand. I 
I N Sequence number of a file (1. 2. 3) in the order it appears in the CLOSE macro I 
I operand. I ! &N N of last file +1. ! 

Function: The CLOSE macro instruction deactivates any file previously 
opened on any input/output unit in the system. The symbolic name of 
the logical file. assigned in the DTF header entry. is required in 
this instruction. Up to 16 files can be closed by one instruction by 
entering additional filename parameters. CLOSE is required whenever 
logical IOCS macro instructions have been used to transfer data. and 
the file has been previously opened. 

Procedure: The CLOSE macro instruction calls the Close Monitor. 
$$BCLOSE. into the logical transient area to determine the device type 
assigned to the file. 

for PRTl or 3800 printers with DTFPR. DTFDI or DTFCP with DISK=YES 
CLOSE frees the DTF extension created by OPEN and indicates in the 
DTF that the file is no longer available for processing. 

For other printers. card readers. card punches. CLOSE simply sets a 
bit off in the DTF table to indicate that the file is no longer 
available for processing. For magnetic tape. DASD. and MICR devices. 
the monitor calls the appropriate device-oriented close logical 
transient. For magnetic tape and DASD files. the CLOSE macro 
instruction causes trailer label processing for an input file. and 
trailer label creation for an output file. if necessary. If a 
magnetic tape file is being closed. the rewind option selected is 
executed. The file is deactivated by setting a bit off in the DTF 
table to indicate that the file is no longer available for processing. 

For Diskette I/O Unit input files. the diskette is fed out and the 
file is deactivated. For output files. the HDR1 label is updated to 
reflect the proper end-of-data. the diskette is fed out. and the file 
is deactivated. The following table defines feed control: 

Input -- Output -- Input --
Programmer Programmer System 
Logical Unit Logical Unit Logical Unit 

DTFCP A A N 
DTFDI HA NA N 
DTFDU S S N 
DTFPH A A N 

A always feed at close 
S user can suppress feed at close 
N never feed at close 
NA-- not applicable 

INTRODUCTION 13 

Output --
System 
Logical Unit 

A 
A 
H 
A 



Licensed Program - Property of IBM 

If physical IOCS is used, CLOSE is required only when standard labels 
are to be checked or written. 

CLOSER Macro 

Label 

IJJCxxxx 

FILEn 

ICLOSERIFILEA,FILEB, ... ,FILEn 

ICNOP 10,4 
IDC 10F'0' 
I B 1*+8 
I DC I A (*) 
ILA 11,*-4 
IMVI 1*-4,X'58' 
IL 10,*-12 
ISR 11,0 

I 
Il 0,IJJCxxxx+N*4 
I 
IAR 
1ST 
I 
I 
I 
I 

ILA 
ICNOP 
IBAl 

I 
I 

0,1 
0,IJJCxxxx+N*4 

1,=C'$$BCLOSE' 
0,4 
0,*+4+4*(&N-1) 

ACFILEA) 
IA(FILEB) 
I 
I 
IA(FILEn) 

12 

I 
IAddress used by CLOSER for relocation. 

I
Loads actual location address. 
Disable subsequent relocation. 
Loads relocation factor. 

IFinds displacement value. 

IGets address of DTF table for file to be 
lopened. 
IAdds displacement value. 
IReturns new DTF table address to file list. 
I 
I(The three instructions listed are repeated 
Ifor each file specified in the OPENR macro 
loperand starting with FILEA.) 

IInitializes to fetch $$BCLOSE. 
I 
Register 0 points to the address of the DTF 
table for first in the file list. The second 
operand causes a branch to the SVC 2 
instruction. 

Start of file list. 
(The file list contains the addresses of the 

IDTF tables for all files specified in the 
ICLOSER macro operand.) 
IAddress of the DTF table for the last file in 
Ithe CLOSER macro operand. 

IFetches Close Monitor, $$BCLOSE. 

Symbolic address of the DTF table for the last file specified in the CLOSER 
macro operand. 

N Sequence number of a file (1, 2, 3), in the order it appears in the CLOSER 
macro operand 

&N N of the last file +1. 

Function: The CLOSER macro instruction deactivates files used by ~ 
self-relocating programs. ~ 
Procedure: The CLOSER macro instruction performs its function in the 
same manner as the CLOSE macro. 

CNTRl Macro 

label CNTRLlfilename,code, n 1 , n 2 111213 
------~--L------rl-1-,-=-A-(--f-i-I-e-n--a-m-e-)---I-L-o-a-d-s---a-d-d--r-e-s-s---O-f--D-T--F--t-a-b--I-e-.----------------------------~Ir-*I~ 

MVI 123(1),code IPuts control code in the DTF table I 1*1* 

LA 
L 
BALR 

I lif delayed printer control. . I 1 I 
10,code Iloads control code. 1*1 1* 
115,16(1) Iloads address of logic module. 1*1 1* 
114,15 IBranch to CNTRL routine in logic module. 1*1 1* 

1. Instruction assembled if skip or space immediate is specified. 
2. Instruction assembled if delayed skip or space is specified. 

13. Instruction assembled if both delayed and immediate skip and space are specified. , 

14 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



licensed Program - Property of IBM 

ILabel filename,code, n 1 , n 2 

MVC 

MVC 
BAl 
DC 
DC 
DC 

l 
lR 
l 
BALR 

1,=A(filename) ILoads address of OTF table. 
72(1),code IPuts command code for OMK, lMK, and ESP on a 3886 to the 

ICCW in the DTF. 
*+ll(I),fldname Generated if code is ESP and n 2 is fldname. Move byte at 

*+II(I),O(r) 
0,*+6 
ALI(n l ) 
Al1(n Z ) 
Al1(O) 

O,=A(fldname) 
O,r 
15,16(1) 
14,15 

fldname to second DC of parameter list (DC generated 
later). 
Same, but n Z is a register. 
Generated if n 1 is a number. 

IAlways generated if BAl is generated. 
IGenerated if code is lMK or ESP and n 2 is a number. 
IGenerated if code is lMK or ESP and n 2 is fldname or a 
register. The value is filled in by one of the MVC 
l instructions described above. 
Generated if code is DMK or lMK and n Z is fldname. 

ISame, but n 2 is a register other than register O. 
Iloads address of logic module. 
IBranch to CNTRL routine in logic module. 

ICNTRL expansion for the 3886 Optical Character Reader. 
I 

Function: The CNTRL (control) macro instruction provides commands for 
these input/output units: magnetic tape units, card reader-punches, 
punches, DASD, printers, and 3881 and 3886 optical readers. Commands 
apply to physical nondata operations of a unit and are peculiar to the 
unit involved. They specify such functions as rewinding tape, stacker 
selection of cards and documents, line spacing on a printer, etc. 
When a CNTRL macro is executed, the routine waits for completion of 
the operation before returning control to the user. On DASD, however, 
control returns at channel end. 

Whenever CNTRL is to be issued in the problem program, the DTF 
entry CONTROL=YES must be included in the file definition (except in 
DTFDR and OTFMT). 

The CNTRL macro instruction must not be used for printer or punch 
files, if the data records contarn-control characters and the entry 
CTLCHR= is included in the file definition (OTF) macro. 

The CNTRL macro may also be used to process sequential DASD (DTFSD 
TVPEFLE=WORK,RECFORM=FIXUNB) work files backwards. The Backspace (BSL) 
function is invoked as follows: 

CONTRL {filenamel(l)},BSL 

Operands 

filename (1) The name of the file specified as a symbol or in register notation. 
It must be the name of the file specified in the DTF. 

BSL Mnemonic code for backspace. 

As a result of the function code BSL, LIDCS sets the current position 
pointer back to the previous sequential record, unless one of the 
restrictions below applies. (i.e. assume record n has been handled 
by the last request, then the positioning of the file after BSL will 
be the same as after a POINTR or POINTW to record n-l, unless one of 
the restrictions below applies.) SSL out of the End-of-Extent routine 
specified by the EOXPTR parameter results in a POINTR or POINTW to the 
last record successfully written. The BSL function code is the only 
one recognized, all others will be ignored. 

Violation of the following processing restrictions for BSL will 
result in a return code in register 0: 

Return code 8: 
For non-control-interval-format CKD files 

BACKSPACE cannot cross EXTENT-limits or boundaries. The file was 
already or is now positioned at the beginning of an EXTENT (not 
1st EXTENT). 

Return code 4: 
For all files 

A BACKSPACE request was issued and the pointer was already 

INTRODUCTION 15 



licensed Program - Property of IBM 

positioned at the beginning of the file, for instance immediately 
after OPEN or after POINTS, or the pointer is now positioned at 
the beginning. 

Restriction: A WRITE UPDATE should not follow a BSl with return code 
4 or 8, task gets cancelled, if the file is positioned at the 
beginning of an extent (POINTS like situation). 

Procedure:;The control routine waits for completion of any previous 
operation of the file. Then the device symbolic address is moved to 
the CCB. The command code is moved to the CCW, and the CCB address is 
loaded into register 1. Next an SVC 0 is issued to perform the 
control function indicated by the CNTRl macro instruction. Then 
control returns to the problem program. CNTRl is treated as a no-op 
for sequential (DTFSD) files, unless BSl (backspace one logical 
record) and both RECFORM=FIXUNB and TVPEFlE=WORK are specified. 

DISEN Macro 

ILabellDISENlfilename 

I IL 11,=ACfilename)llOads address of DTF table. 
I I I I 
I IL 115,16(1) Iloads address of logic module. 
I I I I 
I IBAL 114,12(15) IBranch to DISEN routine in logic module. , 

Function: The DISEN (disengage) macro stops the feeding of documents 
through a magnetic ink character reader (MICR) or Optical 
Reader/Sorter. 

Procedure: The DISEN macro modifies the instructions in the CCW chain 
and sets the disengage bit (bit 0 of byte 21) in the DTF table. 
Control returns to the problem program at the next sequential 
instruction following the OlSEN macro expansion without waiting for 
completion of the disengage operation. 

DSPLY Macro 

IlabeIIOSPLYlfilename,r 1 ,r 2 I 
i------+I-L----~1-1--,-=-A-(-f--i-I-e-n-a-m--e-)-I-l-O--a-d-s--a--d-d-r-e-s--s--o-f---O-T-F--t--a-b-I-e--.----------------------II 
I IMVC 188(8,1),0(r 2 ) Puts load Format CCW for document coordinates 
I I I lof field to be displayed in OTF table. I 
I IMVC 196(16,1),0(r 1 )IPuts load Format CCW for document coordinatesl 
1 I 1 lof reference I 
1 I 1 Imark for field to be displayed in DTF table. I 
1 IL 115,16(1) ILoads address of logic module. 
I IBAL 114,20(15) IBranch to DSPLY routine in logic module. I 
, I 

Function: The DSPlV macro displays a specific field on the display 
scope of the IBM 1287 Optical Reader for entering the field from the 
keyboard. The DSPlY macro should be used in Document Mode only. 

The macro requires three parameters, none of which can be omitted. 
The first parameter is the symbolic name of the 1287 file as specified 
in the DTFOR header entry. This parameter may also be a register that 
contains the address of the file. The second parameter must be a 
register that contains the address of the CCW defining the coordinates 
of the field to be displayed. The third parameter must also be a 
register that contains the address of the landmark defining CCW. 

Procedure: If the reader cannot scan a complete field due to specific 
characters or fields running together, the field containing the error 
is retried by PIOCS. If still unsuccessful, the user is informed of 
the condition via his error correction routine (specified in the DTFOR 
COREXIT entry). The DSPlY macro is then issued to display the field 
in question on the 1287 display scope. The operator can then key in 
the correct characters. If an error is made in keying in the 

16 IBM VSE/Adv. Functions Diag. Ref. lIOCS Volume 1 



Licensed Program - Property of IBM 

characters, the operator should press the cancel key and then the 
enter key, and the field will be redisplayed. 

ENDFL Macro 

ILabellENDFLlfilename 

I IL 10,=A(filename)ILoads address 
I I LA 11, C' $$BENDFL' I Loads Address I I SVC 12 Fetches phase 

of DTF table. 
of B-transient phase name. 
$$BENDFL. 

Function: The ENDFL (END File Load mode) macro instruction ends the 
ISAM mode initiated by the SETFL macro. The name of the file that has 
been loaded is the only parameter required, and must be the same as 
the name specified in the file definition (DTF) macro. 

Procedure: The ENDFL macro instruction performs a close operation for 
a file that was just loaded. It writes the last block of data 
records, if necessary, and then writes a DASD end-of-file record after 
the last record written. The EOF record is a DASD record with a data 
length of zero. The routine also updates the index entries as 
required, and writes dummy index entries for the unused portion of the 
prime data extent. Control then returns to the problem program. 

ERET Macro 

ILabellERETI 

I Is I 
I I B I 
I I S I 

0(14)1 If operand is 
4(14)1 If operand is 
8(14) If operand is 

SKIP. 
IGNORE. 
RETRY. 

Function: The ERET (Error RETurn) macro returns control to a logic 
module from an error routine in the problem program when ERREXT=YES is 
specified in the DTF macro. The choice of one of the three operands 
provided (SKIP, IGNORE, or RETRY) allows the problem programmer to 
select the subsequent action of the logic module. The problem 
programmer should select his operand based on the nature of the error 
as analyzed within his routine. 

Procedure: An ERET macro issued in the problem program error routine 
generates a branch instruction to return control to the logic module. 
Register 14 in the generated branch instruction contains the address 
of the return point in the module. The macro operand (SKIP, IGNORE, 
or RETRY) supplies the displacement (0, 4, or 8 bytes respectively) 
from the return point of an instruction that returns control to the 
desired reentry point in the logic module. 

ESETL Macro 

ILabellESETLlfilename 

I IL 11,=ACfilename)ILOads address of DTF table. 
I IL 115,16(1) ILoads address of logic module. 
I ISAL 114,20(15) IBranch to ESETL routine in logic module. 
I 

Function: The ESETL (End SET Limit) macro instruction ends the 
sequential mode initiated by the SETL macro. 

Procedure: If blocked records are specified, ESETL writes the last 
block if a PUT macro was issued. 

INTRODUCTION 17 



Licensed Program - Property of IBM 

FEOV Macro 

ILabellFEOV Ifilename 
I I I L 
I I L 
I I BAL 

11,=A(filename)ILOadS address of DTF table. 
115,16(1) Loads address of logic module. 
114,16(15) Branch to FEOV routine in logic module. 

I 

Function: The FEOV (Force End-of-Volume) macro instruction is for 
either input or output files on magnetic tape devices to force an 
end-of-volume condition when neither an EOF indicator nor a reflective 
marker has been sensed. It indicates that processing of records on 
one volume is considered finished, but that more records for the same 
logical file are to be read from, or written on, the following volume. 

Procedure: The FEOV macro fetches the proper phases to close the 
current volume and open the new volume. 

FEOVD Macro 

ILabel IFEOVDlfilename 
I I I I LA 1,=CL8'$$BOSDEV' ILoads address of B-Transient name. 
IIJJOxxxxlBAL 10,*+8 
I IDC IA(filename) I 
I ISVC 12 
I 

IFetch phase $$BOSDEV. 

Function: The FEOVD (Forced End-of-Volume for Disk) macro instruction 
is used for either input or output files in sequential disk processing 
to force an end-of-volume condition before end-of-volume has actually 
been reached. It indicates that record processing on one volume is 
finished, but that more records for the same logical file are to be 
read from, or written on, the following volume. If no extents are 
available on the new volume, the job is canceled. 

The FEOVD macro fetches $$BOSDEV to close the current volume and open 
a new volume. 

Procedure: When FEOVD is issued, an end of extent switch is set in the 
DTFSD. When the next GET or PUT IS issued, end of extent is detected 
and the open transients are called. 

FREE Macro 

IlabellFREE Ifilename 

I Il 11,=A(filename)ILOadS address of DTF table. 
115,16(1) Loads address of logic module. 
114,44(15) Branch to FREE routine in the logic module. 

I Il 
I I BAl 

Function: The FREE macro instruction releases a protected track (Track 
hold function included for Asynchronous Processing) on a direct access 
storage device. 

Procedure: The FREE routine in the logic module determines the seek 
address of the protected (held) track, and loads the address of the 
control seek CCB into general register 1. The routine then issues an 
SVC 36 to free the track. For sequential DASD files, FREE is treated 
as a no-op since the holding and freeing of tracks (or control 
intervals) is done implicitly by the logic modules. 

18 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

GET Macro 

ILabel GET Ifilename,PARAM* 
1 

11,=ACfilename) 1 L ILoads 
1 
1 Q,=ACPARAM) ILoads 
1 

address of DTF table. 

address of work area if specified. 

1 L 115.16(1) ILoads address of logic module. 
1 BAL 114,8(15) Branch to GET routine in logic module. 
! 

* Optional 

Function: This instruction makes the next sequential logical record 
from an input file available for processing in either an input area or 
a specified work area. It is used for any input file in the system, 
and for any type of record: blocked or unblocked, spanned or 
unspanned, fixed or variable length, and undefined. When the GET 
routine detects an end-of-volume or an end-of-file condition, it calls 
in the EOV/EOF monitor, which initiates the correct file termination 
procedures. 

The GET macro instruction is written with one or two parameters, 
depending on the area where the records will be processed. Either 
form, but not both, can be used for one logical file. If records are 
to be processed directly in the input area(s), the GET macro 
instruction requires only one parameter. This parameter specifies the 
name of the file from which the record is to be retrieved. The file 
name must be the same as the one specified in the DTF header entry for 
the file. 

The second parameter is optional, and if used, specifies the 
address (or a register containing the address) of the work area. This 
parameter is used jf records are to be processed in a work area 
defined by the user. The second parameter causes the GET routine to 
move each logical record from the input area to the work area. 

Procedure: Two input areas permit an overlap of data transfer and 
processing operations. Whenever two input areas are specified, the 
LIOCS routines transfer records alternately to each area (except when 
combined files are specified). The LIOCS routines completely handle 
the switching of I/O areas so that the next sequential record is 
always available to the problem program for processing. If the file 
is blocked, it is not necessary to transfer data from the input device 
to main storage on every GET instruction. Only when the first record 
of a block is required (blocked records), is it necessary to transfer 
data. 

If overlap is possible, the transfer of data required for the 
current GET was initiated on a previous GET. If overlap is not 
possible, it is necessary to start data transfer, read data, and wait 
for completion of the I/O operation. The handling of the data is done 
after a test for unusual condition is made. Unusual conditions are: 
end of reel, wrong-length record, irrecoverable error, no record 
found, etc. 

LBRET Macro 

LabeliLBRETI1 

1 ISR 11,1 
i 1 SVC 19 
! 

I Labell LBRET 12 

I 1 SVC 19 
! 

IZero register 1. 
IReturn to logical IOCS. 

IReturn to logical IOCS. 

INTRODUCTION 19 

* 



Licensed Program - Property of IBM 

LabellLBRET 3 
I-----r----~---------------------------------------------------I 1 , 1 
I 9 

IPut negative value in register 1. 
IReturn to logical IOCS. 

! 

Function: The LBRET (LaBel RETurn) macro instruction provides the 
return from: 

1. Your routine for the processing of additional user labels or 
nonstandard labels that you want to check or write. 

2. Your routine for any examination or processing of extent 
information during the direct access open of a DASD file. 

To return from a label processing routine (specified by the DTF entry 
LABADDR), issue the LBRET macro after each user's header or trailer 
label is processed. Tape files need an operand of 1 or 2, while DASD 
label routines use all three operands as required. 

To return from an extent processing routine (specified by the DTF 
entry XTNTXIT). issue the LBRET macro after handling each extent. An 
operand of 2 passes the next extent to your routine. After processing 
the last extent, an operand of 1 signifies to LIOCS that all user 
extent processing has been completed. 

Procedure for Tape and DASD Labels: 

1. Input Files. The LBRET macro checks for an 
the user label processing is terminated and 
are skipped. If all the labels on an input 
processed. the LBRET 1 macro is not needed. 
processing when the DASD end-of-file record 
sensed. 

operand of 1. If one. 
any additional labels 
file are to be 

That is. IOCS ends 
or the tapemark is 

2. Output Files. LBRET 1 is required to return to logical IOCS when 
all user labels have been created and written. Otherwise. LIOCS 
terminates label processing after a maximum of 8 header or (where 
allowed) 8 trailer labels. 

Operand 1 is invalid for tape input files that contain nonstandard 
labels (FILABL=NSTD). 

Operand 2 (input file) returns to LIOCS after each additional user 
standard label has been checked. LIOCS makes the next label. if 
present, available for checking in the label input area. When IOeS 
senses the end of the label set (DASD end-of-file record or tapemark). 
it terminates label processing. 

Operand 2 (output file) returns to LIOeS after each additional user 
standard label except the last has been built. LIOCS writes the label 
from the label output area and returns to the user's label routine to 
permit him to build his next label. LBRET 1 terminates the label set 
or it is terminated after 8 header or 8 trailer labels have been 
written. 

For nonstandard tape labels. LIOeS branches to the user's label 
routine only once. and the problem program must read or write every 
required label before issuing LBRET 2 to return to LIOCS. 

Procedure for DASD Extents:;The LBRET macro checks for an operand of 2 
to determine if the user desires any additional extents for 
examination. Control passes between LIOCS and the user's routine for 
each extent requested until an operand of 1 terminates extent 
processing for this file. 

Operand 3 causes LIOeS to write an updated label onto a DASD input 
file. After writing the updated label. LBRET 2 procedures are 
followed. 

Note: If register 15 is required in your routine, save the contents of 
it. and restore the contents before returning to LIOCS via the LBRET 
macro instruction. 

20 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

LITE Macro 

ILabellLITElfilename.PARAM 
1----~---4---------------------------------------------------------

I 
I 
I 

1.=A(filename) 
O.=A(PARAM) 

IL 115.16(1) 
IBAL 114.16(15) 

ILoads address of 
Loads address of 
l indicator. 

Loads address of 
IBranch to pocket 
Imodule. 

DTF table. 
user's 2-byte pocket light 

logic module. 
light routine in the logic 

Function: The LITE macro turns on the 1275/1419 pocket lights 
specified by the problem programmer. 

Note: The problem program must issue a DISEN macro before issuing a 
LITE macro. 

Procedure: The LITE macro turns on the pocket lights that are 
specified by setting indicators (bits) in a 2-byte field identified in 
the macro operand. When all the specified pocket lights are turned 
on. control returns to the problem program at the next sequential 
instruction following the LITE macro expansion. 

NOTE Macro 

ILabellNOTElfilename 

I IL 11.=A(filename)ILOadS address of DTF table. 
I IL 115 • 16 (1) ILoads address of logic module. 

IBAL 14.12(15) IBranch to NOTE routine in logic module. 
I 

Function: The NOTE macro instruction retains the identification of a 
physical record just read or written in a specified file. 

The user must ensure that the previous operation was completed 
satisfactorily by using the CHECK macro before issuing a NOTE. The 
record identification is placed in register 1. 

Procedure: For a tape file. this routine loads the physical record 
count into register 1. and control returns to the user. 

For DASD. register 1 is loaded with the four bytes identifying the 
cylinder. head. and record number (CCHR) or BBBn for control interval 
format. where: 

BBB = physical Block Number of the Control interval and 

n = the logical block number within the control interval. 

If NOTE follows a WRITE macro. the unused space remaining on the track 
or control interval is loaded into register O. 

INTRODUCTION 21 



Licensed Program - Property of IBM 

OPEN Macro 

ILabel IOPEN IFILEA,FILEB, ••. ,FILEn I 
�---------il----~I------------------------------------------------------------I 
I CNOP 0,4 I I 
II IDC IOF'O' I, 

ILA Il,=C'$$BOPEN' Initializes to fetch the OPEN processor. 
IIJJOxxxx IBAL IO,*+4+4*C&N-l) Register 0 points to the address of the DTF 
I I I table for the first file in the file list. I 
I I I The second operand causes a branch to the I 
I I I SVC 2 instruction. I 
, IDC IACFILEA) start of the file list. I 
I IDC IACFILEB) (The file list contains the addresses of the I 
I I. II DTF tables for all of the files specified in I 
I I the operand of the OPEN macro.) I 
II II DC IIACFILEn) Address of the DTF table for the last file II 

specified in the OPEN macro operand. 

II I SVC I Z II Fetches the OPEN processor, $$BOPEN. 
I I 
IFILEn Symbolic address of the DTF table for the last file specified in the OPEN macrol 
I operand. II 
II N Sequence number of a file (1, 2, 3, etc.), in the order it appears in the OPEN II 
I macro operand. 

I &N N of the last file +1. I 
Function: The OPEN macro instruction activates each file in the 
problem program. The symbolic name of the logical file (assigned by 
the DTF header entry) is entered in the operand field of this 
instruction. Up to 16 files may be opened with an OPEN macro 
instruction by entering the filenames in the operand field. If 
physical IOCS is used, OPEN is required only when standard labels are 
to be checked or created. 

Procedure: The OPEN macro instruction calls the OPEN processor, 
$$BOPEN, into the logical transient area. The monitor checks for the 
device type assigned to the file, and calls the appropriate 
device-oriented open logical transient. The tape, diskette, and DASD 
open transients do all processing required to check or create standard 
labels for their respective files. For devices other than magnetic 
tape, diskette, or DASD an indicator is set in the DTF table to show 
that these files have been opened. For PRTI or 3800 printers with 
DTFPR, DTFDI or DTFCP with DISK=YES OPEN creates a DTF extension in a 
getvised area. 

OPENC Macro 

Label OPENC I SYSxxx 1, SYSxxX Z , ••••• SYSxxxn 

I LA Il,=C'$$BOPENC'ILoads address of B-transient name. , 
I B4L 10,IJJOxxxx Branch to fetch B-transient. I 
II DC IALl(class)l ILogical unit class for SYSxxx l • I 

DC IALICnumber)l ILogical unit number for SYSxxx l • I 
I DC IALl(class)2 ILogical unit class for SYSxxx 2 • I 
1 DC IIAL1(number)Z ILogiCal unit number for SYSxxx z • I 
I ,I 

II DC IAL1(ClaSS)n ILOgiCal unit class for last SYSxxx in list. 
DC IALl(number)n Logical unit number for last SYSxxx in list. 

IIJJOxxxx SVC 12 IFetches phase $$BOPENC. I 
1------------------------------------------------------------------------------------1 
In a maximum of 16 symbolic units (either system or programmer) can be included in thel 
I macro operand. I 

22 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

Function: The OPENC macro instruction determines if a physical device 
is assigned to more than one of the symbolic units specified in the 
macro operand. A maximum of 16 symbolic units can be checked with a 
single macro instruction. 

Procedure: The OPENC macro instruction calls the logical transient, 
$$BOPENC, which checks each symbolic unit specified in the macro 
operand in turn. $$BOPENC determines the PUB entry address specified 
in the LUB for the corresponding symbolic unit, and compares it to the 
PUB entry addresses of each of the remaining symbolic units in the 
macro operand. If an equal comparison results between the PUB 
addresses of any two symbolic units, an error message is printed and 
the job is canceled. 

OPENR Macro 

ILabel OPENR /FILEA,FILEB, ••• ,FILEn 
!---------+--C-N-o-p--+I-O-,-4--------------------,----------------------------------------------

I DC IOF'O' 
I LA Il,IJJOXXXX+4 Loads actual location address. 
I MVI *-4,X'58' Disable subsequent relocation. 
II L fO,IJJOxxxx+4 ILoads relocation factor. 

SR 11,0 IFinds displacement value. 
I--------~------~---------------------r--------------------------------------------
II 0,IJJOxxxx+4+4*N Gets address of DTF table for file to be 

I opened. 
I AR 0,1 IAdds displacement value. 
I ST 10,IJJOxxxx+4+4*N IReturns new DTF table address to file list. 
I I I(The three instructions listed are repeated 
II I for each file specified in the OPENR macro 

operand starting with FILEA.) 
I--------~------~---------------------r--------------------------------------------f 1,=C'$$BOPENR' Initializes to fetch $$BOPENR. 
I 10,4 I 
IIJJOxxxx IO,*+8+4*(&N-1) Register ° points to the address used for 
II Irelocation. The second operand causes a 

branch to the SVC 2 instruction. 
I--------~------r-------------------_+-------------------------------------------I A(*) Address used by OPENR for relocation. 
I IA(FILEA) IStart of file list. 
I IA(FILEB) I(The file list contains ADCONS for the 
1 laddresses of the DTF tables for all the files 
I 1 Ispecified in the operand of the OPENR macro.) 
I DC IA(FILEn) ADCON for last file in file list. 
11--------+------+1--------------------,-----------------------------------------SVC 2 Fetches $$BOPENR. 1------------------------------------------------------------------------------------IFILEn 
I 
I N 
I 
I &N , 

Symbolic address of the DTF table for the last file specified in the operand of 
the OPENR macro. 
Sequence number of a file (1, 2, 3, etc.), in the order it appears in the OPENR 
macro operand. 
N of the la~t file +1. 

Function: The OPENR macro instruction activates files used by 
self-relocating programs. In addition to the basic function performed 
by the OPEN macro, the OPENR macro relocates all the address constants 
within the DTF tables for the files specified in the operand field. A 
maximum of 16 files can be specified in the operand of a single OPENR 
macro instruction. 

Procedure: The OPENR macro instruction calls the logical transient 
$$BOPENR to perform the relocation of the DTF table address constants 
for each individual file. After the DTF address constants for all the 
files specified in the macro operand have been relocated, $$BOPENR 
calls the OPEN processor ($$BOPEN), then the Open Monitor ($$BOPEN1) 
to perform the actual open function. After all the specified files 
are opened, control returns to the problem program. 

INTRODUCTION 23 



POINTR Macro 

ILabelIPOINTRlfilename,PARAM 

I IL 11'~ACfilename) 
1 IL IO,=ACPARAM) 
1 IL 115,16(1) 
1 IBAL 114,16(15) , 

Licensed Program - P~operty of IBM 

ILoads address of DTF table. 
Loads address of field containing record identification. 
Loads address of logic module. 

(Branch to POINTR routine in logic module. 

Function: The POINTR macro instruction repositions the file to read a 
magnetic tape or DASD record previously identified by a NOTE macro 
instruction. 

Procedure: If the file is on tape, this routine spaces tape either 
forward or backward until the block count in the DTF table reaches the 
value provided as a parameter of the POINTR macro. Then the file is 
backspaced so the record may be read. 

For DASD files, the POINTR macro instruction logic flow is the same 
as POINTW except track space is not considered. The POINTR macro is 
only used with IBM disk devices. 

POINTS Macro 

LabellPOINTSlfilename 

I 1,=ACfilename) 
1 15,16Cl) 
1 14,24(15) 

ILoads address of DTF table. 
Loads address of logic module. 

(Branch to POINTS routine in logic module. 

Function: The POINTS macro instruction repositions a magnetic tape or 
DASD file to the beginning of the file. 

Procedure: For a magnetic tape file, a POINTS macro instruction 
rewinds the tape associated with the filename. If any header labels 
are present, they are bypassed on the next READ or WRITE instruction. 
The tape is positioned to the first data record following the label 
set. 

For a DASD file, a POINTS macro instruction positions the file to 
the lower limit of the first extent. The first record on the file is 
read or written when the next READ or WRITE macro instruction is 
issued for the file. 

POINTW Macro 

LabeliPOINTWlfilename,PARAM 

I IL 11,=A(filename) 
1 IL IO,=A(PARAM) 
I 
I IL 115.16(1) 
I IBAL 114,20(15) 

ILoads address of DTF table. ILoadss address of field containing record 
identification. 
Loads address of logic module. 

IBranch to POINTW routine in logic module. 

Function: The POINTW macro instruction repositions the file to write a 
magnetic tape or DASD record following the one previously identified 
by a NOTE macro instruction. 

Procedure: If the file is on magnetic tape, this routine spaces tape 
either forward or backward until the block count in the DTF table 
reaches the value provided as a parameter of the POINTW macro. 

For a DASD file, the DASD address of the record to be written is 
calculated. The POINTW routine determines if the record can be 
contained in the same extent used by the preceding record (the 

24 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume I 



Licensed Program - Property of IBM 

preceding record is the one identified by the NOTE macro). If not, 
the Sequential DASD Open routine is called to open the required 
extent. When the correct extent is obtained, the CCW seek address is 
modified and the space remaining on the extent is updated in the DTF 
table. Control then returns to the problem program. 

PRTOV Macro 

ILabel PRTOVlfilename,CHAN,routine* 
I-------+--L-----+I-l-,-=-A-(-f--i-l-e-n-a-m-e--)-I-L-o-a-d-s---a-d-d-r-e-s--s--o-f--D--T-F--t-a-b--I-e-.------------------------------------
I ____ ~~----+-------------~-----------------------------------------------------
1 O,=A(routine) Loads address of user's overflow routine if specified. * 
1 10,0 IZero register 0 if no user routine specified. * 
1-------+--L-----+I-I-5-,-1-6-(--I-)-------tI-L-o-a-d-s---a-d-d-r-e-s--s--o-f---I-o-g-i-c--m-o--d-u-l-e-.---------------------------------

II------~----+-------------+------------------------------------------------------21(1),1 Sets channel 9 bit in DTF table if CHAN is 9; otherwise, 
1 1 Ichannel 12 assumed. ** 
l----~r-----+-------------+_-----------------------------------------------------
I 14,4(15) Branch to PRTOV routine in logic module. , 

* Optional 
** Only if CHAN=9 

Function: The PRTOV (PRinTer OVerflow) macro instruction specifies the 
operation to be performed when an overflow condition is reached on a 
printer. Whenever this macro instruction is to be issued in a problem 
program, the DTFPR or the DTFSR entry PRINTOV must be included in the 
file definition. 

Procedure: The program performs the functions specified by the problem 
programmer. That is, skip to channell on a 9 or 12, or perform his 
own functions when a 9 or 12 is sensed. If skip to channell on a 9 
or 12 is desired and a 9 or 12 is sensed, skip to channell is placed 
in the CCW chain. Then, an SVC 0 executes the skip and resets the 
channel 9 and 12 indicators. 

If a user routine is specified in the macro instruction, the 
problem programmer may issue any logical IOCS macro instructions 
(except another PRTOV) in his routine to perform whatever functions 
are desired. For example: print total lines, skip to channell, and 
print overflow page headings. The user routine must return to LIOCS 
by a branch to the address in register 14. Logical IOCS supplies this 
address upon entry to the user's routine. Therefore, if LIOCS macros 
are used in the routine or if register 14 is used, the return address 
must be saved. 

PUT Macro 

ILabel PUT Ifilename,PARAM,control* 
l------~--L------rl-l-,-=-A--(-f-i-l-e-n--a-m-e-)---I-L-o-a-d--s--a-d--d-r-e-s-s---o-f--D--T-F--t-a--b-l-e--.------------------------------------
I------~----+--------------+-----------------------------------------------------
I 
I 
1 

O,=A(STLSP) 
IO.=A(STLSK) 
IO.=A(PARAM) 

Loads 
ILoads 
ILoads 

address of 
address of 
address of 

control field, if control = STLSP. * control field. if control = STLSK. * work area, i f specified. * I------+_-----r--------------+-------------------------------------------------------
148(l),X'80' Isets I 01 indicator in DTF table if control = STLSK. * 

I------~-----r--------------+-------------------------------------------------------
115.16(1) Iloads 1 

I 
L 
BA~ 114,12(15) 

address 
IBranch to PUT 

of logic module. 
routine in logic module. 

I------~----+--------------+-----------------------------------------------------
148(l),X'7F' IResets 1 NI control = STLSK indicator in DTF , 

* Optional 

Function: This instruction writes or punches logical records that have 
been built directly in the output area or in a specified work area. 
It is for any output file in the system (except work file), and for 

INTRODUCTION 25 

table. * 



Licensed Program - Property of IBM 

any type of record: blocked or unblocked, spanned or unspanned, fixed 
or variable length, and undefined. It operates much the same as GET 
but in reverse. It is issued after a record is built. 

Similar to GET, the PUT macro instruction is written with one or 
two parameters, depending on the area where the records are built. 
Either form, but not both, can be used for one specified logical file. 
If records are built directly in the output area(s), the PUT macro 
instruction requires only one parameter. This parameter specifies the 
name of the file to which the record is to be transferred. The 
filename must be the same as the one specified in the DTF entry for 
the file. 

The second parameter is optional and if used, specifies the address 
(or a register containing the address> of the work area. This 
parameter is used if records are to be built in a work area deflned by 
the user. The second parameter causes the PUT routine to move each 
logical record from the work area to the output area. 

A third (optional) parameter, CONTROL=, is included in the macro 
operand for files assigned to printers with the Selective Tape Lister 
(STL) feature. 

Procedure: Two output areas permit an overlap of data transfer and 
processing operation. Whenever two output areas are specified, the 
LIOCS routines transfer records alternately from each area (except for 
combined files). The LIOCS routines completely handle the switching 
of I/O areas so that the proper area is available to the program for 
the next sequential output record. 

If a work area is specified, the output record is moved from the 
work area to the output area. 

With blocked files specified, it is not necessary to transfer 
information from main storage to the output device on each PUT 
instruction. Only if the logical record is the last record of a block 
is it necessary to transfer a physical record to the output device. 
If overlap is possible, the transfer of information need not be 
completed before another PUT requiring data transfer is issued. When 
overlap is not possible, the transfer of data must be completed before 
another PUT is issued. 

Tests are made for unusual conditions, which include: end of reel, 
wrong length record, irrecoverable error, no record found, etc. 

PUTR Macro 

ILabel IPUTR Ifilename,workout*,workinp* 
I-------+I-L------+I-l-,-=-A--(-f-i-I-e-n-a-m--e-)--L-o-a-d--s--a-d-d-r--e-s-s--o-f---D-T-F--t-a-b--I-e-.---------------

1-------1--------rO--,-=-A-(-W--O-r-k-o--u-t-)--~L-o-a-d-s---a-d-d-r--e-s-s--o--f--o-u-t--p-u-t--w--o-r-k--a--r-e-a--.--*-----I 12,=A(workinp) Loads address of input work area. * 
2(1),X'08' Set action message indicator in CCB. 

115,16(1) Load address of logical module. 
1 114,4(15) Branch to PUTR routine in logic module. 
! 

* Optional 

Function: The PUTR (PUT with Reply) macro handles action messages that 
appear on the screen of the Display Operator Console. PUTR used with 
the 3210 or 3215 performs the same functions as a PUT followed by a 
GET. Moreover, the message non-deletion code for the Display Operator 
Console is then provided. 

Procedure: The PUTR macro is issued after a record has been built. It 
processes fixed-length records only. The PUTR macro is written with 
either one or three parameters, depending on the area in which the 
records must be built. Either form, but not both, can be used for a 
logical file. If the records are built in the I/O area, only the 
filename parameter is required. If the records are to be built in a 
user specified work area, both workout and workinp must be specified. 
In this case, the record is moved from the work area to the I/O area. 

26 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



licensed Program - Property of IBM 

In the case of overlap, information transfer need not be completed 
before the next PUTR requests new data to be transferred. If overlap 
is not possible, the next PUTR must wait for the completion of the 
previous PUTR. Tests are made for unusual conditions such as 
end-of-reel, wrong length record, irrecoverable error, no record 
found, etc. 

PUTR sets bit 5 of byte 3 in the CCB to '1' to indicate an action 
message; it then passes control to logical IOCS, which executes a PUT 
immediately followed by a GET. 

RDlNE Macro 

IlabellRDlNE 
I I I l 
I Il 
I IBAl 
I 

Ifilename 

Il,=A(filename) 
115,16(1) 
114,4(15) 

ILoads address of DTF table. ILoads address of logic module. 
Branch to RDLNE routine in logic module. 

Function: The RDlNE macro provides selective online correction when 
journal tapes are being processed on an IBM 1287 Optical Reader. This 
macro reads a line in the online correction mode while processing is 
in the offline correction mode. 

Procedure: If the reader cannot read a character, logical IOCS retries 
the line containing the unread character. If still unsuccessful, the 
user is informed of the condition via his error correction routine 
(specified in the DTFOR COREXIT entry). The RDlNE macro causes 
another attempt to read the line. If the character in the line cannot 
be read during this attempt, the character is displayed on the 1287 
display scope. The operator may key in the correct character, if 
possible. If the defective character cannot be readily identified by 
the operator, he may enter a reject character in the error line. This 
condition is posted in byte 80 of the DTF table for user examination. 
Wrong length records and lost line conditions are also posted to byte 
80 of the DTF table. RDLNE should be used in COREXIT only; otherwise 
the line following the one in error will be read in online correction 
mode. 

The macro requires only one parameter, the symbolic name of the 
file from which the record is to be retrieved. This name is the same 
as that specified in the DTFOR header entry for this file. The 
filename can be specified as a symbol or in special or ordinary 
register notation. 

READ Macro 

ILabel IREAD Ifilename,TYPE,PARAM,length 

II------------I~L----~I~l--,-=-A-(-f-i-l-e--n-a-m-e-)-------I-L-o--a-d-s--a-d-d--r-e-s-s--o--f--D-T-F--t--a-b-I-e-.--------
IL 10,=A(PARAM) Loads address of input area. 

I IL 115,16(1) Loads address of logic module. 
I------------~-------+-----------------------~~----------------------------------
I 14,28(15) TYPE=ID. * 
1----------+-----+1-1-4-,-2-4-(-1-5-)----------1----T-Y-P-E-=-K-E-Y-.--*--------------------

I----------r---~~----------------~--------------------------------I 14,0(15) If TYPE=MR. * 
I----------~-----+-------------------~---------------------------------
I LA 14,IJJRSYSNDX+IO Loads return address for TYPE=SQ.I 
IIJJRSYSNDXIBAL 10,4(15) Branch to READ routine in the I 
I I I Il09iC module if TYPE=SQ. 
I IDC IA(PARAM) Address of input area. I ! DC IH'length' Length of record to be read. I 

* Portion of macro expansion determined by TYPE= parameter. 

INTRODUCTION 27 



Licensed Program - Property of IBM 

ILabel IREAD Ifilename,DR,PARAMI,PARAM2 I 
1----------~I-L----~1-1-,-=-A--(-f-i-I-e-n-a--m-e-)--------,-L-o-a--d-s--a-d-d-r--e-s-s--o-f---D-T-F--t-a--b-I-e-.--------------------I 
I IL la,=A(fldname) ILoads the field name specified by PARAMl. I 
I ILR IO,r ',Loads the register specified by PARAMI. " 
I IBAL 10,*+6 
I IDC IAL1(PARAM1) I Generated if PARAM1 and PARAM2 are numbers. I 
I IDC IAL1(PARAM2) I I 
I IL 115,16(1) ILoads address of logic module. I 
I IBAL 114,8(15) IBranch to read routine in logic module. I 
1---------------------------------------------------------------------------1 
IREAD macro expansion for the 3886 Optical Character Reader. I 
I 1 

Function: The READ macro instruction causes part or all of the next 
sequential physical record (or the next logical block for control 
interval format) to be read from the file associated with the filename 
into the area of storage indicated. If the file is on a 3886 Optical 
Character Reader, the storage area is indicated in the DTF. 

Procedure: The READ macro instruction must always be followed by 
either a CHECK macro (MICR and work files) or a WAITF macro (DAM, 
ISAM, and 3886 files) to ensure the completion of the READ 
instruction. 

The read logic sets up the channel program, modifies the CCW, 
inserts the address and number of bytes to be r~ad, and issues an SVC 
O. For control interval format the READ may not cause physical I/O. 

The read logic does not provide for deblocking of records. If the 
user wishes to use blocked records, he must provide this function in 
the problem program. 

RELEASE Macro -- Dynamic Device Release 

!LabelIRELEASEISYSxxx, ..• 

I ISTM lad,sAvE 
liLA 11,=C'$$BRELSE' 
I IBAL 10,*+4+6 
I 1 SVC 12 
I ILM 10d,SAVE 
1 ISVC 114 , 

ISaves registers 0 and 1. 
ILoads address of B-Transient name. 
IBranches to fetch and skip table. 
IFetches $$BRELSE. 
IRestores registers 0 and 1. 
INormal end of job. 

Function: This macro releases a unit table as specified by the problem 
program and fetches $$BRELSE. 

The 'savearea' parameter is optional. If it is provided, it should 
be the name of an 8-byte area where registers 0 and 1 are saved for 
the user. If it is not provided, the contents of registers a and 1 
are destroyed. 

Procedure: The macro checks all of the units provided in the operand 
sublist to assure that no system logical units are requested for 
release. If system logical units are specified, an MNOTE is issued 
and the unit is ignored. 

After all checking is done, a unit table is set up, register a is 
loaded with the table address, and $$BRELSE is fetched. If the 
'savearea' option is specified, registers 0 and 1 are saved, and code 
is generated to restore them after the transient returns control to 
the RELEASE macro. 

28 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

RELSE Macro 

LabellRELSE 

I I L 
I IL 
1 1 BAL 
I 

Ifilename 

11,=ACfilename) 
115.160) 
114,4(15) 

ILoads address of DTF table. 
ILoads address of logic module. 
IBranch to RELSE routine in logic module. 

Function: The RELSE (release) macro instruction is used in conjunction 
with blocked input records. It allows the programmer to skip the 
remaining records in a block. If the record spans multiple physical 
blocks, the entire logical spanned record is bypassed. Processing 
continues with the first record of the next block when the next GET 
macro instruction is issued. 

Procedure: The GET routine is modified to make the current record 
being processed look like the last record of the block. With this 
indication, the next GET transfers information from the input device 
to main storage and makes the first record of the new block available 
to the problem program. 

RESCN Macro 

ILabellRESCN 

I IL 
liLA 
I I MVC 
I I 
I I MVC 
I I 
I I L 
I I BAL 
I 

11,=A(fi lename) 
10,18 
188(8,1) ,O(r2) 
I 
196(16.1),OCr 1 ) 

I 
115,16(1) 
114,16(15) 

ILoads address of DTF table. 
I 
IPuts Load Format CCW for reference mark 
lin DTF table. 
IPuts Load Format CCW for field to be read 
lin DTF table. 
ILoads address of logic module. 
IBranch to RESCN routine in logic module. 

Function: The RESCN macro provides the capability of rereading a field 
that has a defective character. This macro pertains only to the 
document mode and rereads into the portion of IOAREAl corresponding to 
the original read. Online correction can also be forced by this 
macro. 

The macro requires from three to five parameters. The first 
parameter specifies the symbolic name of the 1287D file given in the 
DTFOR header entry for the file. The second parameter specifies a 
general purpose register (2-12) which must contain the address of the 
Load Format CCW giving the document coordinates for the field to be 
read. The third parameter specifies a general purpose register (2-12) 
that must contain the address of the Load Format CCW giving the 
coordinates of the reference mark. The fourth parameter specifies a 
number (n), which is the number of retries to be given. The fifth 
parameter specifies one more retry with forced online correction. 
This parameter must be the letter F. 

Procedure: When a character cannot be read, logical IOCS retries the 
line containing the unread character. If the character still cannot 
be read, the user is informed of the condition in his error correction 
routine specified in the DTFOR COREXIT entry. The user can then issue 
the RESCN macro to reread the field with the unreadable character. If 
the character still cannot be read, it is retried up to nine times 
depending on what the user specified. If the error still exists on 
the last retry, online correction is forced if the user specified 
this. 

INTRODUCTION 29 



SEOV Macro 

IlabellSEOV 

I IlA 
I Il 
I ISVC 
I 

Ifilename 

Il,=C'$$BCEOV1' 
10,=A(filename) 
12 

licensed Program - Property of IBM 

Iloads addreess of B-transient name. 
ISaves filename for B-transient phase. 
IFetches phase $$BCEOVI. 

Function: The SEOV (System Units End-of-Volume) macro instruction 
allows automatic volume switching to occur if the reflective spot is 
reached on a magnetic tape output file assigned to either SVSlST or 
SVSPCH. 

Procedure: An SEOV macro, issued after the physical end-of-volume has 
been detected on a tape file, fetches phase $$BCEOVI to determine the 
file type, and to select the proper tape close routine. The selected 
tape close routine performs the appropriate close functions and 
determines if an alternate tape is available. If an alternate tape is 
available, it is opened and made ready for processing. 

SETDEV Macro 

IlabellSETDEVlfilename,phasename I 
I--~I----~I-----------------------------------------------I 
Il Il=A(filename) Iloads address of the DTF table. I 
I IBAl 10,*+12 IGenerated if the phasename is an actual phasename.1 
I I DC I Cl8' phasename' I I 
I ILR 10,r IIf phasename is specified in a register (r) I 
I 1 I lather than register O. I 
I Il 115,16(1) Iloads address of logic module. I, 

I IBAl 114,16(15) IBranch to SETDEV routine in logic module. , , 

Function: The SETDEV (SET DEVice) macro instruction loads a format 
record into the 3886 Optical Character Reader. 

Procedure: The SETDEV macro generates code which sets up parameters 
and branches to the 3886 logic module. The logic module gets the 
format record from the core image library and loads it into the 3886 
device control unit. 

SETFl Macro 

Ilabell SETFl 
I I I l 
lilA 
1 I SVC 
I I L R 

Ifilename 

10,=ACfilename) 
Il,=C'$$BSETFl' 
12 
11,0 

Iloads address of DTF table (DTFIS load). 

Iloads address of B-transient name. 
Fetches phase $$BSETFl. 
Saves address of DTF table for the problem 

Iprogram. 

Function: The SETFl (SET File load mode) macro instruction sets up the 
ISAM file so that the load function can be performed. 

Procedure: The SETFl macro instruction pre formats the last track index 
of each cylinder of a file with zero entries, and initializes for a 
WRITE. Control then returns to the problem program. 

30 IBM VSE/Adv. Functions Diag. Ref. lIOCS Volume 1 



licensed Program - Property of IBM 

SETl Macro 

label Ifilename.PARAM 
I 

ISaves parameter. ST 
IlA 

IJJS&SYSNDX BAl 
DC 

PARAMCl).IJJS&SYSNDX+8 
1.=C'$$BSETl' Iloads address of B-transient name. 

10.*+12 
IACfilename) 

Branch to fetch B-transient. 
Address of DTF table. 

DC 

DC 

ACPARAH(I» 

Cl4'PARAH' 

Address of field containing starting (or 
lowest) reference if PARAH=ID name. * 

*Optional 

SVC 
I l 

2 
I,IJJS&SYSNDX+4 

If PARAM = BOF, KEY, or GKEY. * 

Fetches phase $$BSETl. 
Iloads address of DTF table. 

Function: The SETl CSET limits) macro instruction initiates the mode 
for sequential retrieval and initializes the ISAM routines to begin 
retrieval at a specified starting address. 

Procedure: If KEY is specified in the DTFIS table, the SETl routine 
searches the indexes to find the track and record address of the keyed 
record. The GET/PUT constants are initialized to begin with the 
address of the keyed record. When BOF (beginning of the file) is 
specified. SETl initializes the GET/PUT logic to begin retrieval with 
the first record in the file. If 10 is specified in the DTF, the 
GET/PUT logic is initialized to start with the record in the prime 
data area corresponding to the specified 10. 

TRUNC Macro 

!labeIITRUNC Ifilename 

I I l II 1.=A(filename)lloads address of DTF table. 
I I l 115,16(1) Iloads address of logic module. 
I IBAl 114,20(15) IBranch to TRUNC routine in logic module. , 

Function: The TRUNC (TRUNCate) macro instruction is used with blocked 
output records. It allows the programmer to write a short block of 
records. (Blocks do not include padding.) Thus, the TRUNC macro is 
used for a function similar to the RElSE (release) instruction for 
input records. but in reverse. That is, when the end of a group of 
logical records is reached, that block is written and a new group is 
started at the beginning of a new block. 

Procedure: If Cas a result of the previous PUT) the block has already 
been transferred to the output device, the TRUNC macro requires no 
additional handling. If physical I/O is needed, the PUT routine is 
modified to handle the truncated record. Control then returns to the 
problem program. 

WAITF Macro 

Ilabel 

I 
I 

IWAITF 

1ST 
Ifilename',filenamez, ••• filenamen I 
IsyslIsT(n,I), IStores end of list code. n+l. I 

IIJJW&SYSNDX 
I 
! 

I 
Il 
Il 
IBAl 
I 
IDC 

I IJJW&SYSNDX+n*4 lin last entry in file list. I 
11,=ACfilenamen) loads address of DTF table. 
115,16(1) Iloads address of logic module. I 
114,4CI5) IBranch to WAITF routine in I 
I I IOgiC module. I 
A(SYSlIST(n» Address of file list. I , 

n = a maximum of 16 files can be specified in the macro operand. 

INTRODUCTION 31 



licensed Program - Property of IBM 

Function: The WAITF macro tests the condition of MICR device(s) and 
tests for I/O complete when used with DAM or ISAM files. 

Procedure: For MICR files, if anyone of the devices tested is 
operative and ready (that is, has records or error conditions to be 
processed), control returns to the problem program at the next 
sequential instruction following the macro expansion. On the other 
hand, if all the devices tested are not operational (that is, they are 
all waiting for documents to process), the system enters the wait 
state. 

For DAM or ISAM files, the WAITF macro makes the system enter the 
wait state until a previously started I/O operation is complete. 

Note: Only that partition in which the device(s) tested is operating 
enters the wait state. This allows processing to continue in another 
partition. 

WRITE Macro 

Label IWRITE*lfilename,TVPE,PARAM 
1----------~lrL------~lrl--,-=-A-(-f-i-l-e--n-a-m-e-)--------------------------------------------------

ILoads address of DTF table. 
I IL IO,=A(PARAM) (Loads address of output area. 
1 IL 115.16(1) ILoads address of logic module. 
I--------~------r---------------------+-------------------------------I 14,32(15) 
I 1 

Branch to WRITE routine in logic 
module if TVPE=SQ. ** 

1----------~----~1-1-4-,-2-8-,-(-1-5-)------------~---------------------------------
IBranch to WRITE routine in logic 

1 1 

* For RECFORM 
** Optional 

FIXUNB. 

Imodule if TVPE=UPDATE. 

Function: The WRITE macro instruction writes a record from the 
indicated area in main storage to the file associated with the file 
name. 

** 

Procedure: The WRITE macro sets up the channel program, modifies the 
CCW command code to write, inserts the address and number of bytes to 
be written. and issues an SVC O. For control interval format. 
physical I/O mayor may not occur. 

The write logic does not provide for blocking of records. If the 
user wishes to block records, he must provide for it in the problem 
program. 

The WRITE macro instruction must always be followed by either a 
CHECK macro (work files) or a WAITF macro (DAM and ISAM files) to 
ensure the completion of the WRITE instruction before another 
instruction is issued. 

32 IBM VSE/Adv. Functions Diag. Ref. lIoes Volume 1 



Licensed Program - Property of IBM 

FILE INITIALIZATION AND TERMINATION 

File initialization and termination 
routines open files required by the problem 
programmer, and close the files when they 
are no longer needed. These routines, 
called into the B-transient (logical 
transient) area by the corresponding OPEN 
and CLOSE macros, consist of: 

1. TES Processor ($$BOESTV). 

2. Open Monitor ($$BOPEN, $$BOPENl, 
$$BOPEN2, $$BOPEN4. and $$BOPLBL). 

3. Close Monitor ($$BCLOSE. $$BCLOS2, 
$$BCLOS4. $$BCLRPS, and $$BCLLBL). 

4. EOF/EOV Monitor ($$BCEOV1). 

5. Device or file-processing method 
oriented open and close transients. 

OPEN ROUTINES CHARTS 01-04 

The open routine opens each file needed in 
the problem program. Up to 16 files can be 
opened with each OPEN macro instruction by 
entering their filenames as parameters. 

To open a particular file, the Open 
Monitor (Chart 02) examines the DTF table 
specified by the filename to determine the 
file type and/or the file processing 
method. This information is obtained from 
byte 20 of the DTF table. Figure 2 on 
page 6 summarizes these DTF type codes. In 
addition, the Open Monitor performs some 
initialization and checking. and reads any 
necessary label information into main 
storage. The Open Monitor then calls the 
appropriate open transient(s) to handle the 
tile open. 

Unit Record and 3881 Optical Mark Reader 
Files 

When opening unit record devices (readers, 
punches, consoles. printers, paper tapes, 
and the 3881 Optical Mark Reader), the Open 
Monitor calls $$BOUR01 to determine it the 
device is in the ready condition. If the 
device is ready. the open indicator in the 
DTF table is set to a I (bit 0 ot byte 21) 
to indicate the file is open. 

The Open Monitor calls $$BOMRCE if the 
device is a 3505 with OMR and RCE or a 3525 
with RCE. 

Magnetic Ink Character Recognition Files 

When opening MICR type devices (IBM 1255. 
1259, 1270, 1275, and 1419), the Open 
Monitor calls $$BOMROl, which clears the 
document butfer area and initializes the 
document buffer pointer within the DTF. 

The address of the DTF is inserted into the 
correct entry of the supervisor PDTABB 
table. The unit exception bit in the CCB 
is turned on, and the device address is 
calculated and moved into the DTF. The 
OPEN indicator in the DTF table is set to 
indicate that the file is open. 

Optical Reader Files (Except 3881) 

When opening the IBM 1287 Optical Reader, 
the Open Monitor calls $$BOOROI. which 
determines if the device is ready, and if 
so, further determines if a header is to be 
read (HEADER=YES specified in the DTF). If 
it is. the open routine waits for the 
operator to manually key in a header. When 
the header has been read. the OPEN 
indicator in the DTF table is set to 1 to 
indicate that the file is open. 

When opening the 3886 Optical Character 
Reader file. the Open Monitor calls 
$$BOOROl, which determines if the device is 
ready and if so, loads a format record from 
disk into the format area of the DTF. If 
the length of the format record is found to 
be within the required limits. it is loaded 
into the 3886 ~ontrol unit. If no errors 
occur on the load, the open bit in the DTF 
is set on and control is returned to the 
Open Monitor. If the format record length 
is incorrect or if an error occurs on the 
load. the open routine is canceled by an 
illegal SVC. 

Magnetic Tape Files (DTFMT, DTFPH-MT) 

When opening magnetic tape files, the Dpen 
Monitor calls $$BOTSVA to link to the 
$IJJTTOP SVA phase to complete the OPEN 
processing. 

DASD Files 

When opening DASD files, the Open Monitor 
checks the label information to determine 
the type of processing used for the file: 
SAM, DAM. ISAM. or VSAM. The monitor then 
calls the appropriate transient to complete 
the open. If an ISAM DTF is linked with a 
VSAM file, IIPOPEN is called. 

Diskette Files 

When opening diskette files. the Open 
Monitor checks the DTF type code (byte 20 
of the DTF table) and the device code (byte 
29 of the DTF table) to determine if the 
Diskette Input/Output Unit transients are 
needed. The monitor then fetches the 
appropriate transient to complete the open 
(see Charts 07 and 08). 

CLOSE ROUTINES CHARTS ~ ~ 

The close routine closes any file that was 
previously opened in the system. Up to 16 
files can be closed by each CLOSE macro 
instruction by entering their filenames as 
parameters. 

File Initialization and Termination 33 



licensed Program - Property of IBM 

Unit Record Files (Except MICR) 

For unit record devices, the Close Monitor 
sets the close indicator in the DTF table 
(bit 0 of byte 21) to a 0 to indicate that 
the file is closed. 

MICR (Magnetic Ink Character Recognition) 
Files 

For MICR type files, the Close Monitor 
calls $$BCMROI to complete the close 
function. 

Magnetic Tape Files (DTFMT, DTFPH-MT) 

For magnetic tape files, the CLOSE Monitor 
calls $$BOTSVA to link to the $IJJTTOP SVA 
phase to complete the CLOSE processing. 

DASD Files 

For DASD files processed by SAM the Close 
Monitor calls $$BOSFBL to link to the 
$IJJGTOP SVA phase to complete the close 
function. For DASD files processed by 
ISAM, the Close Monitor calls $$BCISOA to 
update and rewrite the format-l and 
format-2 standard file labels, and to set 
the close indicator in the DTF table. If 
an ISAM DTF is linked with a VSAM file, 
ISCCLOSE is called. For DASD files 
processed by DAM, $$BClRPS is called to 
free storage that was obtained for the DTF 
extension. 

Diskette Files 

For Diskette Input/Output Unit files, the 
Close Monitor calls $$BODI04 to complete 
the close function. 

FILE LABELING 

VSE/Advanced Functions can identify and 
protect DASD, diskette, and magnetic tape 
files by recording labels on each volume 
(DASD pack, diskette, or magnetic tape 
reel). These labels ensure that the 
correct volume is used for input and that 
no current information is destroyed when a 
volume is used for output. 

DASD, diskette, and magnetic tape files 
processed by logical IOCS must conform to 
certain standards regarding the use of 
labels. Although it is possible to process 
files with physical IOeS macros such as 
EXCP and WAIT, without processing labels, 
any file processed this way that is defined 
by a DTFPH macro must also conform to the 
same label standards established for files 
processed by logical IOCS. 

The standard label set processed by 
logical IOCS includes one volume label for 
each volume, and one or more ~ labels 
for each logical file contained within the 
volume. Optional user labels can be 
included in the label set but these must be 
processed by an independent user routine. 
(Logical IOCS routines pass control to the 
user's label routine in the problem program 

if the lABADDR= parameter is specified in 
the file definition, DTF, macro.) 
Additional volume and file labels can also 
be included in the label set but these 
labels can only be processed by the user, 
and only if nonstandard labels are 
specified in the file definition macro. 

User labels are not supported for 
diskette files. 

lABEL PROCESSING 

Creation of Tape Volume labels 

The IBM or American National Standards 
Institute, Inc. standard volume labell, 
and any additional EBCDIC volume labels, 
are written by an IBM-supplied utility 
program at the time a reel is prepared for 
use. The information in the standard 
volume label is checked, but never altered, 
during file processing. logical IOCS 
bypasses all additional volume labels when 
building output files. 

Standard Tape File labels 

Standard file labels are written before and 
after every logical file on a reel. These 
labels are referred to as file header 
labels or file trailer labels, depending on 
their position and use. They are always 80 
bytes long and always have the same format 
and content, with the following exceptions: 

1. The label identifier field (bytes 1-3) 
contains: 

a. HDR to indicate a header label 
(precedes the data file). 

b. EOV to indicate an End-of-Volume 
(end of reel) trailer label 
(written at the end of a reel, 
indicating that the file is 
continued on another reel). 

c. EOF to indicate an End-of-File 
trailer label (written at the end 
of the logical file). 

2. The block count field is used only in 
the EOF and EOV trailer labels. This 
field is set to zero in the HDR label. 

Additional File Labels on Tape 

Each standard file label (one header and 
one trailer) can be followed by up to seven 
additional file labels for EBCDIC tape 
files, or by up to eight additional file 
labels for ASCII tape files. The labels 
are 80 bytes long and must contain the 
label identifier HDR, EOV, or EOF in the 
first three bytes. The fourth byte should 
contain a character 2, 3, ••• n, indicating 
the second. third, ••• and up to the last 
file label. These labels are not processed 
by lIOCS. If required. these labels must 
be written in the user's lABADDR routine by 
use of physical I/O macro instructions. 

34 IBM VSE/Adv. Functions Diag. Ref. lIOeS Volume 1 



Licensed Program - Property of IBM 

LIOCS bypasses additional header labels on 
input files. For ASCII ouput files a 
HDR2,EOF2 or EOV2 label is written by LIOCS 
following the HDR1, EOFI or EOVI label. 

User Header and Trailer Labels on Tape 

The user can include additional header and 
trailer labels to further define his file, 
if he desires. Each additional label in 
the set is 80 characters long. EBCDIC 
label identifiers are numbered from UHLI 
and UTLI through UHL8 and UTL8, maximum, 
for user header and trailer labels, 
respectively. American National Standards 
Institute, Inc., user header and trailer 
labels are identified by UHLa and UTLa, 
respectively, wherein "a" represents the 
range 2/0 through 5/14 except 2/7 
(quotation mark). The remaining 76 
characters can contain any information and 
arrangement desired by the user. 

Tapemarks with Standard Tape Labels 

The sequence of items on the tape that uses 
standard label sets is: 

1. No tapemark preceding the header label 
set. 

2. Header label set: 

3. 

4. 

5. 

a. Standard volume label (required). 

b. 

c. 

d. 

Additional volume labels (0-7, 
optional: EBCDIC only). 

Additional user volume labels (0-9, 
optional: American National 
Standards Institute, Inc., only). 

Standard file header label 
(required). 

e. Additional file labels (0-7, 
EBCDIC: 0-8, American National 
Standards Institute, Inc., 
optional). 

f. User header labels (0-8, EBCDIC: 
or range 2/0-5/14 except 2/7, 
American National Standards 
Institute, Inc., optional). 

Tapemark between header label set and 
first data record. 

Physical data records for file. 

Tapemark between last data record and 
trailer label set. 

6. Trailer label set: 

a. Standard file trailer label 
(required at end-of-file and 
end-of-volume). 

b. Additional file labels (0-7, 
EBCDIC: 0-8, American National 
Standards Institute, Inc., 
optional), 

c. User trailer labels (0-8, EBCDIC: 
range 2/0-5/14 except 2/7 

7. 

(quotation mark), American National 
Standards Institute, Inc., 
optional). 

Tapemark after trailer label set. 

8. If multifile reel (EOF label), next 
standard file header label follows 
here. If single-file reel (EOF label) 
or if last file of a multifile reel, 
another tapemark follows here. If 
multireel file (EOV label), one 
tapemark follows the EOV label on an 
EBCDIC file. Two tapemarks follow the 
EOV label on a multi reel ASCII file. 

Standard Tape Label Processing 

Standard tape label processing is performed 
by the LIOCS transient label-processing 
(Open, Close, EOF/EOV) routines. These 
routines use the information supplied in 
the job control card (// TLBL) that was 
stored in the label information area. 

The actual label processing consists of the 
following checks: 

Tape Input File: 

• The volume serial number in the standard 
volume label on the first or only reel 
is compared to the file serial number in 
the TLBL card. All other volume labels 
on all reels of the file are bypassed. 

• The contents of the TLBL card are 
compared to the corresponding fields in 
the standard file header label on the 
first reel. Fields 1-10 are required. 
Fields 11-14 are optional. For 
successive reels of a multireel file, 
the volume sequence number (EBCDIC file) 
or file section number (ASCII file) is 
increased by 1 for each reel. 

• If user labels are indicated, they are 
read into main storage by the open 
routine for processing by the user's 
label routines. The user labels are 
read one at a time, until all have been 
processed. 

• When a standard file trailer label is 
read, the block count is compared to a 
count accumulated by IOCS. 

• If user trailer labels are indicated, 
they are read into main storage by the 
close routine for processing by the 
user's label routine. The user trailer 
labels are read one at a time until all 
have been processed. 

Tape Output File: 

• The volume serial number in the standard 
volume label on the first or only reel 
is compared to the file serial number in 
the // TLBL card. All other volume 
labels on all reels are bypassed. 

• The expiration date in the standard file 
header label is checked against the 
today's date in the communications 

File Initialization and Termination 35 



Licensed Program - Property of IBM 

region. If the expiration date has 
passed, the reel is backspaced to write 
the new standard file label. If not, 
the operator is notified of the 
condition. This check is performed on 
each reel of a multi reel output file. 
If no file label is present, the tape is 
considered expired. For an expired 
9-track tape, the user-specified density 
is compared to the VOLI density of the 
mounted tape. If a discrepancy is 
found, and if the tape is at load point, 
the volume label(s) is rewritten 
according to the user-specified density. 

• The new standard file label is written 
with the information supplied in the // 
TLBL card. For multi reel files, the 
volume sequence number (EBCDIC file) or 
file section number (ASCII file) is 
increased by 1 for each successive reel. 

• If user header labels are indicated, the 
user's label routine is entered to 
furnish the labels as each reel is 
opened. This can be done for as many as 
eight user header labels per EBCDIC file 
and for an unlimited number of user 
header labels per ASCII file. 

• If end of reel is sensed before 
completing the file, an EOV trailer 
label is written with all fields 
presented in the // TLBL card plus a 
block count. 

• When end of file is reached, an EOF 
trailer label is written identical to 
the EOV label previously mentioned. 

• If user trailer labels are indicated, 
the user's label routine is entered to 
furnish the labels after each trailer 
(EOV or EOF) label is written. This can 
be done for as many as eight user 
trailer labels for EBCDIC files and an 
unlimited number of trailer labels for 
ASCII labels. 

Nonstandard Tape Labels 

Any tape labels that do not conform to the 
standard label specifications are 
considered nonstandard. Nonstandard labels 
are not supported in ASCII files. If 
nonstandard labels are to be read, checked, 
or written, it must be done by the user. 
On input files, the nonstandard labels may 
or may not be followed by a tapemark. 
Therefore, four conditions are possible: 

1. Nonstandard labeICs), followed by a 
tapemark, to be checked. 

2. 

3. 

4. 

Nonstandard label(s), not followed by a 
tapemark, to be checke~ 

Nonstandard labeICs), followed by a 
tapemark, not to be checked. 

Nonstandard labeICs), not followed by a 
tapemark, not to be checked. 

For conditions 1 and 2. the DTFMT or DTFSR 
entries must specify nonstandard labels and 

the address of a user-written routine to do 
the reading or writing. 

For condition 3, nonstandard labels must 
be specified, but the address of a user 
routine is omitted. IOCS skips all labels, 
passes the tapemark, and positions the tape 
at the first data record to be read. 

For condition 4, nonstandard labels and 
a user address are specified. IOCS cannot 
distinguish labels from data records 
because there is no tapemark to indicate 
the end of the labels. Therefore, to 
position the tape at the first data record, 
the user must read all labels. 

With nonstandard labels when an 
end-of-file or an end-of-volume condition 
exists, the user indicates to IOCS which 
condition it is. On end-of-file, IDes 
branches to the user's end-of-file address. 
On end-of-volume, IOCS initiates the 
end-of-volume procedures to close the 
completed volume and open the next volume 
for processing. 

On output files, nonstandard labels are 
written by the user's routine by using 
physical IOCS. The OPEN routine writes a 
tapemark between the user's nonstandard 
header labels and his first data record 
unless the DTF macro instruction has the 
entry: TPMARK=NO. The close routine 
writes a tapemark after the user's last 
data record before he writes his ---
nonstandard trailer labels. and after the 
trailer labels. 

Unlabeled Tape Files 

The DTF macro instruction specifies whether 
the first record of an unlabeled file is a 
tapemark. 

Unlabeled IBM EBCDIC input tape files 
mayor may not have a tapemark as the first 
record. CIf the first record is not a 
tapemark, IOCS assumes it is a data 
record.) Any tape that is to be read 
backward may have a tapemark as the first 
record on tape. Unlabeled output tape 
files (written by IOCS) may be written with 
a tapemark as the first record. ASCII 
unlabeled tapes do not contain leading 
tapemarks. A read backward operation is 
performed to load point for these files by 
special error recovery procedures. 

Note:;Seven-track tapes may be read 
backward only if they were written in 
EBCDIC, and they must not have been written 
in the conversion mode. 

When an unlabeled output file is 
specified, the open routine assumes the 
mounted scratch tape is also unlabeled. No 
checking of expiration date is performed. 
Therefore, ~ eXistin3 labelSa including 
the volume label, are estroye. 

DASD Label Processing 

When a DASD file is processed by logical 
IOCS. the file must be opened before any 
transfer of data can be made. The open 

36 IBM VSE/Adv. Functions Diag. Ref. LIOeS Volume 1 



Licensed Program - Property of IBM 

routines check the DASD labels identifying 
the file. The open routines also compare 
information from the actual file labels in 
the VTOC against the label information 
supplied by the user in job control cards. 
and stored in the label information area by 
job control. 

Note: References made in this manual to the 
// DLBL and // EXTENT job control 
statements also apply to the // VOL. // 
DLAB. and // XTENT statements for the 2311. 
and 2314/2319. 

The DTFSD and DTFSR routines process the 
labels of a sequential file (input or 
output) one volume at a time. For DTFSR. 
as each extent is checked. IOCS can pass 
control to a user's extent exit routine. 
When the end of the last extent on a volume 
is reached. an automatic open is issued for 
the next volume. The DTFDA and DTFIS 
routines require that all volumes be online 
for the initial OPEN. DTFPH can be used to 
process SAM or DAM files. The actual label 
processing consists of the following 
operations: 

DASD Input Files: 

The volume serial numbers in the volume 
labels are compared to the volume serial 
numbers in the DLBL/EXTENT cards. 

• The file identification. format 
identifier. and the file serial number 
in the format-l label are compared to 
the corresponding fields in the DLBL 
card. The volume sequence number, the 
creation and expiration dates are then 
checked against their EBCDIC equivalents 
in the DLBL card. 

• Each of the extent definitions in the 
format-1 and format-3 labels is checked 
against the limit fields supplied in the 
EXTENT cards. 

• If user header labels are indicated 
(when DTFSD, DTFSR, DTFPH, or DTFDA are 
used), they are read as each volume IS 
opened. After reading each label, the 
open routine branches to the user's 
label routine to perform any processing 
necessary. 

If user trailer labels are indicated 
(when DTFSD or DTFSR are used). they are 
read after reaching the end of the last 
extent on each volume or an end-of-file 
read by logical IOCS. As with the user 
header labels. the trailer labels are 
processed by the user's routine. 

DASD Output Files: 

The volume serial numbers in the volume 
labels are compared to the volume serial 
numbers in the DLBL/EXTENT cards. 

• The extent definitions in all labels in 
the VTOC are checked to determine 
whether any extend into those defined in 
the EXTENT cards. If any do overlap, 
the expiration date is checked against 
the current date in the communication 
region. If the expiration date has 

passed, the old labels are deleted. If 
not, the operator is notified of the 
condition. 

• The file names of all entries in the 
VTOC are compared with the filename in 
the DLBL statement. If a match is found 
with an expired file. the expired file 
is deleted. If a match is found with an 
unexpired file, the operator is 
notified. 

• The new format-l label is written with 
information supplied in the DLBL card. 
If an indexed sequential file is being 
processed, the DTFIS table supplies 
information for the format-2 label. 

• The information in the EXTENT cards is 
placed in the format-l labels, and (if 
necessary) additional format-3 labels. 

• If user header labels are indicated 
(when DTFSD, DTFSR, DTFPH, or DTFDA are 
used). the user's label routine is 
entered to furnish the labels as each 
volume is opened. This can be done for 
as many as eight header labels per 
volume. As each label is presented, 
IOCS writes it out on the first track of 
the first extent of the volume. 

• If user trailer labels are indicated 
(when DTFSD or DTFSR are used), the 
user's label routine is entered to 
furnish the labels when the end of the 
last extent on each volume is reached. 
This can be done for as many as eight 
user trailer labels. As each label is 
presented, IOCS writes it out on the 
first track of the first extent of the 
volume. The CLOSE macro instruction 
must be issued to create trailer labels 
for the last volume of a file. 

Diskette Label Processing 

When a diskette file is processed by 
logical IOCS, the file must be opened 
before any transfer of data can be made. 
The open routines check the diskette labels 
(which identify the file) against the label 
information supplied by the user in the 
control cards (stored in the label 
information area by job control). 

A diskette file can be identified by two 
job control statements: // DLBL and 
// EXTENT. When the extent limits on a 
volume are exhausted. an automatic open is 
issued for the next volume (for DTFDU and 
DTFPH). DTFPH can be used to process 
diskette files. feed the diskettes out for 
a multivolume file. and issue an open to 
get the new extent limits for the new 
diskette (both for input and for output). 

Diskette Input Files 

• The volume serial numbers in the labels 
are compared to the serial numbers in 
the DLBL/EXTENT cards. 

• If 'file ID' is supplied on the DLBL 
card. then that file on the diskette is 

File Initialization and Termination 37 



Licensed Program - Property of IBM 

processed (if found). If 'file ID' is 
omitted, the DTF name is used. 

• Both volume and file security label 
fields are examined and handled to 
ensure data integrity. 

All symbolic units specified in the 
EXTENT cards are checked to ensure that 
only one physical unit is being 
addressed. This is necessary to ensure 
that only one file is open on a 
diskette. 

The extent limits in the file label are 
checked for validity; if they are found 
to be correct, the DTF is initialized. 

• For multivolume diskette input files 
using DTFDU, the extent cards and the 
multivolume indicator are used in 
conjunction by the OPEN transients to 
determine when end-of-file has occurred. 
If three extents were provided by the 
user, the following multivolume 
indicator combination could occur: 

Multivolume IAction by OPEN Transients 
I Indicator I 
I--,--a--n-y-t-'-l-i-n-g----+I-P-r-o-c--e-s-S---f-i-r-s-t---v-o-I-u-m--e--a-n--d-
I issue warning message. 
I 
IL, anything No volumes are processed; 
I issue permanent error 
I message. 
I 
Ie, Process first volume and 
II issue permanent error 

message. 
I 
Ie, x 
I 
I 
I 
I I 

Process first volume and 
issue permanent error 
message because file not 
found. 

Ie, L, 
I 

I 
anythinglProcess through the 'L' 

land issue warning 
'message. 

Ie, e, e 
I 

I Ie, e, L , 
I 

I 
IProcess through the 
Inumber of extents. 
INo message. 
I 
IProcess through the 'L'. 
INo message. 

In summary, for DTFDU the number of 
diskettes can be less than the number of 
extents provided. For all other supported 
DTF's, processing continues until the 
number of extents is exhausted. Regardless 
of the DTF type, for system files 
processing continues until all extents are 
exhausted. 

Diskette Output Files 

• The volume serial numbers in the labels 
are compared to the serial numbers in 
the DLBL/EXTENT cards. 

• If 'file ID' is supplied on the DLBL 
card, it will become the name of the new 
file on the diskette. If 'file 10' is 
omitted, the DTF name is used. 

• Extent limits are determined by OPEN; 
any expired files that are overlapped by 
the file to be created are deleted. The 
operator is informed of any overlap with 
an unexpired file. 

• All file names are cnmpared with the 
name of the file to ~~ created. If a 
match is found with an expired file, the 
file is deleted. The operator is 
informed of a matcn with an unexpired 
file. 

• The new HDRI label is created and 
written back out onto the diskette. 

• If a secured file is being created, the 
volume label is updated to indicate a 
secured volume. 

• A CLOSE macro instruction must be issued 
to ensure that all records are written 
and to update the HDRI label for the 
last volume of the file. 

38 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

COMMON AND SPECIAL PURPOSE LOGICAL .I..Q.lcl 
ROUTINES 

This section contains detailed descriptions 
of certain routines generic to logical 
IOCS. In general. these routines cannot be 
related to a specific file type or file 
processing method. Describing LIOCS in 
four volumes has made it necessary to 
include details of these routines in Volume 
1 even though they may relate to file 
processing described in other volumes. 

Included in this section are: 

• TES Processor ($$BOESTV) 

• Open Monitor ($$BOPEN. $$BOPENI. 
$$BOPEN2. $$BOPEN4. and $$BOPLBL) 

• Close Monitor ($$BCLOSE. $$BCLOS2. 
$$BCLOS4. $$BCLLBL. and $$BCLRPS) 

• Open for self-relocating programs 
($$BOPENR. and $$BOPNR2. and $$BOPNR3) 

• RPS SVA initialization routine 
($$BOPENS) and RPS phase loading routine 
( $ $ VOPENTl . 

• DASD File Protect and VToe Display and 
Dump routines. 

• DASD RPS Common Close ($$BCLRPS) 

• Check Duplicate Device Assignments for 
Logical Units ($$BOPENC) 

• Enqueue and Dequeue for VSE/VSAM 
Routines ($$BENDQB) 

• SD Close Input and Output ($$BOSOCl) 

Close. Free Track Function ($$BOSOC2) 

• Forced End of Volume for Disk ($$BOSOEV) 

• Remove Extents from Extent Block 
($$BODQUE) 

• Device Release ($$BRELSE) 

$$BOESTV: Error Statistics by Tape Volume 

Objective: For tape. record TES information 
from the PUB2 table onto SVSREC as 
applicable. post the new tape open. and 
pass control to the next transient. 

Entry: 

1. From $$BOPENI or $$BPCPOI when tape 
unit ready. 

2. From $$BOPEN for job control tape OPEN. 

3. From a message writer routine to post 
OPEN and process new volume label. 

Exit:;To next transient. 

Method: $$BOESTV tests the device type of 
the devi;e to be opened. It does the 
following: 

I. The tape label is read and compared 
with the label currently stored in the 
PUB2 table for that device. 

2. Control is passed to the appropriate 
exit phase if the tape was previously 
opened. 

3. The tape open bit is posted. the volume 
serial number in the PUB2 table is 
saved. and control is passed to the 
appropriate exit phase if this is the 
first tape on the device. 

4. The tape open bit is posted and control 
is passed to the appropriate exit 
routine if the tape is unlabeled. there 
is no volume 10 in the PUB2 table (the 
previous tape was also unlabeled). and 
individual recording was not specified. 

5. The TES record is written onto SYSREC. 
the tape open bit is posted. and 
control is passed to the appropriate 
exit phase if the tape is unlabeled and 
either individual recording was 
specified or the previous tape was 
labeled. 

6. The TES record is written onto SVSREC. 
the tape open bit is posted. the new 
volume 10 is stored in the PUB2 table. 
and the appropriate phase is fetched if 
the tape label read is different from 
the label in the PUB2 table. 

$$BOPEN: Open Monitor 

Objective: 

1. Initialization of the Logical 
Transients Common Area and the Fetch 
RPS Initialization Routine. 

Common and Special Purpose Logical IOCS Routines 39 



Licensed Program - Property of IBM 

2. Tape Error Recording Routine for Job 
Control open. 

Entry: 

1. From an OPEN macro expansion in the 
problem program. 

2. From a successfully completed open 
routine. 

3. From the $$BOPENR or $$BOPNR2, DTF 
relocation routines. 

4. From a message writer routine. 

5. From the open routine for DTFCP or 
DTFDI files. 

Exits: To $$BOPENI, $$BOESTV, and $$BOPENS. 

Method: 

1. If RPS is not yet initialized, $$BOPENS 
is fetched to do so. 

2. $$BOPEN tests the device type of the 
device to be opened. If the device is 
a tape, the logical transients common 
area is initialized for tape open. If 
$$BOPEN was fetched by job control, an 
exit is taken to $$BOESTV to do 
recording. If the open is not for job 
control, $$BOPENI is fetched. If the 
device is not a tape, initialization of 
the logical transients common area 
takes place and $$BOPENI is fetched. 

$$BOPENI: Open Monitor Phase 1 

Objective: To determine, initialize for, 
and fetch the proper open routine for DASD, 
diskette, magnetic ink character 
recognition (MICR), magnetic tape, optical 
reader, unit record, and telecommunications 
files. 

Entry: From $$BOPEN, or return from another 
logical transient. 

Exits: 

• To $$BOSFBL for DTF type code X'20' and 
X' 21' . 

• To $$BOPlBl, and then to $$BOPEN2 for 
ISAM fi les. 

To $$B35400 for diskette files. 

• To an appropriate open routine if other 
files are to be opened. 

To a message writer routine if an error 
has occurred. 

• To the problem program if no more files 
are to be opened. 

• To $$BOCPOI for DTFCP printer files. 

• To $$BOUROI for DTFPR/DI printer files. 

Method: The $$BOPENI phase begins the 
initialization of the open table located at 
the end of the logical transient area. The 
open table is initialized for all file 
types and passes information to the 
successive open phases. Next, the type of 
entry into the $$BOPENI phase is 
determined. If entry was made directly 
from an OPEN macro, the monitor prepares to 
open the first file specified in the macro 
operand. If access control is in the 
system, the monitor links first to the 
access control module residing in the SVA. 
If entry was made from another open phase, 
the monitor prepares to open the next file 
specified in the macro operand. If entry 
to the $$BOPENI phase was from a message 
writer phase or from a device independent 
file (CP or DI) open phase, processing 
continues on the current file. At this 
point $$BOPENI checks whether the control 
block is a DTF or a VSAM ACB by testin9 the 
type code (byte 20 of the control block). 
If the code is X'28', the file being opened 
is a VSAM file with an ACB control block. 
In this case, phase $$BOVSAM is called. If 
the code is anything other than X'28', 
X'20', X'2I', X'22', and X'23', $$BOPENI 
loads and branches to $$BOPIGN. 

When $$BOPIGN returns control, $$BOPENI 
determines the type of file being opened 
from byte 20 of the DTF table. If an 
invalid file type is detected, message 
48801 is printed and the job is canceled. 
The file type governs the functions that 
the open monitor must perform to open a 
particular file: 

• Console (DTFCN) files are ignored. 

• Unit record (DTFCD, DTFPR, and DTFPT), 
optical reader (DTFOR), magnetic ink 
character recognition (DTFMR), compiler 
(DTFCP), and basic telecommunication 
access method - extended support 
(BTAM-ES) files are checked to validate 
the address limits of the respective DTF 
tables and the proper open phase is 
fetched. 

For all DTFMT and DTFPH-MT files, $$BOPENI 
fetches the SVA link phase $$BOTSVA to link 
to the $IJJTTOP SVA phase to complete the 
OPEN processing. 

For DAM and sequential DASD files defined 
by DTFCP, DTFDA, DTFDI and DTFSD $$BOPENI 
fetches the SVA link phase $$BOSFBl to link 
the $IJJGTOP SVA phase to complete the OPEN 
processing. 

For diskette files, $$BOPENI prepares to 
read sequential DASD labels from the label 
area into the logical transient area and 
fetches diskette open phase $$B35400. 

$$BOPEN4: DASD DTF DEV Type Update OPEN 
Phase 

Objective: 

To locate the PUB for the DASD, using 
the corresponding LUB pointer • 

2. To test the PUB to make sure it is used 
for a 3340. 

40 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

3. To check the VOL ID to make sure that 
the corresponding 3340 is ready and the 
VOL ID is correct. 

Entry: From $$BOPLBL and reentry from 
$$BOM5Gl. 

Exits: To $$BOPEN2 to continue OPEN 
processing for ISAM or to $$BOM561 for 
operator communication. 

Method:;The logical unit address in the 
first type-l label extent information of an 
ISAM file defines the correct size for all 
3340 data modules containing prime data 
and/or overflow areas af an ISAM 
multivolume file. The logical unit address 
of the first (or only) type-4 label extent 
information defines the size of the 3340 
data module containing the index area(s). 

$$BOPIGN: Open Ignore 

Objective: To check for the COBOL open 
ignore option. 

Entry: From $$BOPENI. 

Exits: 

• To $$BOPENI to continue opening the 
f i I es. 

• To $$BOMSGI if an error occurs. 

Method: $$BDPIGN determines if the COBOL 
~ ignore option is specified for the 
file by testing bit 2 in byte 16 of the DTF 
table. If the bit is on, a second test 
determines if the file is either unassigned 
or assigned ignored. If this is the case, 
the open for the f1le is bypassed, and 
control returns to $$BOPENI to open the 
next file. In all other cases, $$BOPIGN 
validates the address limits of the DTF 
table, and returns to $$BOPENI which 
continues opening the file. 

$$BOPEN2: Open Monitor, Phase 2 

Objective: To read label information from 
the label area for ISAM files, and to fetch 
the required open phase for the file being 
opened. 

Entry: From $$BOPLBL, $$BOPEN4, or from a 
message writer phase ($$BOMS61). 

Exits: 

• To the required open phase determined 
$$BOPENI. 

• To $$BOMSGI if an error is detected. 

• To phase IIPOPEN if an ISAM DTF is 
linked with a VSAM file. 

by 

• To phase $$BOCI5C i f CD LOAD for IIPOPEN 
was not successful. 

Method: This phase of the Open Monitor 
reads the label Information (stored by Job 
Control on the label area) into the area 
obtained by $$BOPLBL through a GETVIS 
macro. 

For ISAM files, $$BOPEN2 of the Open 
Monitor reads a single DLBL/EXTENT record. 
This record can contain more than one 
EXTENT card image. The DLBL label type 
indicator is checked. If it contains 'V', 
the file is a VSAM file. In this case the 
open-active indicator is reset and phase 
IIPOPEN is loaded using the CDLOAD 
function. IIPOPEN is part of the ISAM 
interface program, lIP. The user return 
address is stored from the user save area 
into the DTF. The file list pointer is 
stored into register 0 of the user's save 
area, control is given to IIPOPEN, and the 
B-transient area is released. If the DLBL 
label type indicator contains 'C' or 'F', 
indicating an ISAM file, the file type is 
checked against the DTF type. Then the 
DASD address limits of each extent are 
checked. Any extent errors cancel the job. 
When checking of the extent address limits 
is complete, $$BOPEN2 fetches the 
appropriate open phase determined by 
$$BOPENI. 

$$BOPLBL: Open Monitor Label Space 
Processor 

Objective: To determine the size of the 
read-in area required to process the 
DLBL/EXTENT information and to issue a 
GETVIS for the required space 

Entry: From $$BOPENI. 

Exit: 

• To $$BOPEN4 for ISAM. 

• To $$BOMSGI if an error occurs. 

Method: $$BOPLBL, at open time, builds a 
parameter list and calls Symbolic Label 
Access to determine the amount of 
DLBL/EXTENT information to be processed. 
If the space obtained by a previous OPEN or 
CLOSE in this job step is not sufficient to 
meet the label processing requirements, a 
FREEVIS macro is issued to release this 
space and a 6ETVIS macro is issued to 
obtain the required space. Pointers and 
channel programs are then updated and an 
exit is taken to the next phase. 

$$BOPENR: Relocate DTF Address Constants 

Objective: To relocate all DTF address 
constants from the assembled address into 
executable main storage addresses. 

Entry: From the OPENR macro to the label 
START. 

Exits: 

• To $$BOPNR3. 

Common and Special Purpose Logical Ioes Routines 41 



Licensed Program - Property of IBM 

• To the Open Monitor, $$BOPEN, when the 
last DTF table is processed. 

Method: The $$BOPENR routine first 
determines if modification (relocation) of 
the DTF address constants is necessary by 
subtracting the assembled DTF table address 
from the relocated DTF table address. The 
relocation factor in register RELOCREG is 
the result of this operation. If the 
relocation factor is 0, no relocation is 
necessary. 

If relocation is required and if the DTF 
has not already been relocated, the 
relocation indicator in the DTF is turned 
on. The CCW address in the CCB and the 
logic module address in the common portion 
of the DTF are then modified. If the 
required relocation was accomplished by a 
previous opening of the file, the entire 
relocation routine is bypassed for the 
f i Ie. 

Following the modification of addresses 
in the common portion of the DTF, the 
individual DTF type is determined and the 
address of the corresponding address 
modification table is obtained. When the 
remaining addresses in the DTF have been 
modified, a branch is made to the ending 
routine. 

The ending routine determines the next 
operation. If there are more DTFs to be 
processed, a branch is made to the 
beginning of the relocation routine to 
repeat the procedure for the next DTF. If 
the last DTF has been relocated, the Open 
Monitor, $$BOPEN, is fetched. 

$$BOPENC: Check Duplicate Device 
Assignments for Logical Units 

Objective: To determine if a physical 
device is assigned to more than one of the 
logical units specified in the operand of 
the OPENC macro. 

Entry: From an OPENC macro expansion to the 
label OPENCNAM. 

Exits: To the problem program if no error 
is detected, or to CANCEL if a physical 
device is assigned to more than one logical 
unit. 

Method: The $$BOPENC phase begins by 
building a table, called the OPENC table, 
containing the 2-byte LUB entry for each 
logical unit specified in the OPENC macro 
operand. Because the first byte of a LUB 
entry contains a pointer to a specific PUB 
(physical device), the byte can be compared 
to the corresponding byte of any other LUB 
to determine if a duplicate assignment 
exists. (Refer to VSE/Advanced Functions 
Diagnosis Reference: Superv1sor for 
additional informat10n pertaining to LUB 
and PUB entries.) 

The comparison is carried out in the 
following manner. Byte 0 of the first LUB 
entry in the OPENC table is compared to the 
corresponding byte in the second, third, 

fourth, etc., until the end of the table is 
reached. Then, byte 0 of the second LUB 
entry in the OPENC table is compared to the 
corresponding byte in the third, fourth, 
fifth, etc., until the end of the table is 
reached. The procedure is repeated until 
all of the LUB entries are similarly 
checked. If an equal comparison is made at 
any point in the procedure, checking is 
discontinued, error message 48851 is 
printed. and the job is canceled. 

$$BENDQB: Enqueue and Dequeue for VSE/VSAM 
Routines 

Objective: To enable the VSE/VSAM routines 
to enqueue and dequeue their OPEN and CLOSE 
routines in the B-transient area of the 
supervisor, although these routines are not 
themselves B-transient routines. 

Entry: From a VSE/VSAM routine that issues 
the ENQB macro. 

Exit: To the calling routine that issued 
the ENQB macro. 

Method: When a VSE/VSAM routine issues the 
ENQB macro. $$BENDQB is fetched (via SVC 2) 
from the core image library and put into 
the B-transient area. Control is 
transferred to $$BENDQB. which temporarily 
returns control (via SVC 8) to the routine 
that issued the ENQB macro. (The 
B-transient area is not released.) When 
the DEQB macro is issued, control is 
returned (via SVC 9) to the B-transient 
routine $$BENDQB, which has been previously 
loaded into the transient area by the ENQB 
macro. $$BENDQB now executes an SVC 11 to 
release the B-transient area and to return 
to the highest-priority program ready to 
run. (Note: The ENQB and DEQB macros 
destroy the original contents of registers 
o and 1. 

$$BOPNR2: Relocate DTF Address Constants, 
Phase 2 

Objective:,To relocate the address 
constants 1n DTFCP, DTFPT, DTFDI, DTFDR. 
and DTFDU tables. 

Entry: From $$BOPNR3. 

Exit: To $$BOPEN. 

Method: This phase is an extension of 
$$BOPENR and performs the same function in 
the same manner. 

$$BOPNR3: Relocate DTF Address Constants. 
Phase 3 

Objective: To relocate the address 
constants of DTFs connected with unit 
record files. 

Entry: From $$BOPENR. 

Exits: 

• To $$BOPNR2 if other than unit record 
files still have to be relocated. 

42 IBM VSE/Adv. Functions Diag. Ref. LIDCS Volume 1 



Licensed Program - Property of IBM 

• To the Open Monitor, $$BOPEN, if no more 
files have to be relocated. 

MODLOOP (Address Modification) Subroutine 

The MODLOOP subroutine performs the actual 
address modification using an address 
modification table. The following example 
of the relocation of a unlabeled work file 
DTFMT table (see Figure 6) illustrates the 
operation of the MOD LOOP subroutine and the 
use of the address modification table. 

Modification of the address constants 
starts with those in the common portion of 
the DTF table. At this time the following 
registers are loaded: 

• BASEREG - with the address of byte 0 of 
the DTF table (this register is used as 
a pointer within the DTF table). 

• MODREG - with the address of byte 0 of 
the address modification table at the 
lClbel COMMON. 

CCWREG - with the address of byte 0 of 
the DTF table. 

The Clddress modification table at the IClbel 
COMMON contClins three hexadecimal bytes, 
X'020808'. The first byte is a count of 
the number of address constants (AOCONs) to 
be modified; two in this CClse. This count 
controls the number of times the 
modification loop is used. The succeeding 
bytes contain displClcement values to updClte 
the register, BASEREG. 

The first time through the Clddress 
modification loop, the second byte of the 
modification table (X'08') is added to the 
starting Clddress of the DTF (BASEREG) to 
obtain the location of the CCW address in 
the CCB to which the relocation factor 
(RELOCREG) is Cldded. The count of address 
constClnts to be modified is then reduced by 
1, Clnd the modification loop is entered a 
second time. Upon reentering the 
modification loop, the BASE REG contains the 
starting address of the DTF+8 to which is 
Cldded the third byte of the modification 
tClble (X'OB'). As a result, BASEREG then 
points to byte 16 in the OTF table, that 
is, to the logic module address. The 
relocation factor is added to this Clddress 
Clnd the count of address constants to be 
modified is agClin reduced by 1. Since the 
count now goes to 0, Cln exit is made from 
the modification loop. 

After determining that the DTF type is a 
DTFMT work file, the MODlOOP subroutine is 
again used. This time the register MODREG 
is IOClded with the address of byte 0 of the 
address modification table Clt the label 
MAGWORK which contains four hexadecimal 
bytes, X'030C040C'. This means that three 
address constants (the address of the EOF 
routine, the data address in the CCW, and 
the address of the error routine) are to be 
modified. The register BASEREG contains 
the starting address of the DTF+16 (carried 
over from the modification of addresses in 
the common portion of the DTF). To this is 
added the second byte of the MAGWORK 
address modification table (X'OC'). As a 

IByte 
0-15 
(O-F) 
16(10) 

IBitslFunction 

I I CCB. 

I IX'OB' indicates DTF 
I relocated by OPENR. 

17-19 I IAddress of logic module. 
(11-13)1 
20(14) DTF type (X'10') 
21(15) I 0 /1 No rewind. 

1 1 Unload rewind. 
2 11 = Work file. 
3 11 = ReCld backward. 

I 4 11 = Write. I 5 1 POINTW. 
I 6 1 Force.checking of read 

or write. 
I 7 11 Forward space before 

I I I next operation. 

1
22-23 I INot used. 
<16-17)1 I 
24-25 I IRecord length. 
(18-19)1 

126-27 I IMaximum BLKSIZE. 
1(IA-IB)1 
128(lC) IRead op code. 

1
29-31 EOF address. 
(10-lF) I 
32-39 CCW. 

1
(20-27) 
40-43 Block count, initialized 
(2B-2B) 00000000 for read forward, 

44(2C) 

I 
145-47 I 
I (2D-2F) I 

00400000 for reCld backward. 
o I = Error routine. 
1 1 = Ignore. 
2 1 = Read next record switch 
3 1 = Record fixed unblocked. 
4-71Not used. I 

IAddress of error routine. I 
-------------------------------------1 Numbers in parentheses are displacementsl 
in hexadecimal notation. I 

Figure 6. DTFMT Unlabeled Workfile Format 

result, BASEREG contains the location of 
the EOF routine address (that is, 16 + 12), 
or byte 28. 

Note: Register BASEREG points to the start 
of a 4-byte field, the last three bytes of 
which contain the address of interest. 

The relocation factor (RElOCREG) is then 
added to the address constant. This 
procedure is repeated for the remaining two 
address constants in the DTF tClble. 

$$BOPENS: RPS SVA Initialization Routine 

Objective: To load the RPS local directory 
list and phase loading routine into the 
SVA, if this routine was called by $$BOPEN 
during the first DASO open. 

Entry: From IPl and SSBOPEN. 

Exits: To IPl and $$BOPEN. 

Method: When called by IPL, the SVA 
initialization routine returns immediatly. 

Common and Special Purpose logical IOCS Routines 43 



Licensed Program - Property of IBM 

If this routine was called by $$BOPEN 
during the first open of a DASD file, space 
is obtained from the SVA, and the local 
directory list and the phase loading 
routine are loaded into the GETVIS area of 
the SVA. A SYSCOM indicator (displacement 
X'FC') is set when all operations are 
completed successfullY, or when either the 
GETVIS or load operations fail. 

$$BOPENS exits back to IPL with an SVC 
11 or to $$BDPEN with an SVC 2. 

$$VOPENT: RPS Phase Loading Routine 

Objective: To locate in or load into the 
SVA the RPS phases for all access methods, 
when called by an open transient. To 
remove RPS phases and release SVA space for 
a terminating job, when called by $IJBEOT. 

Entry: From open transients when RPS 
support is provided for a DTF. From 
$IJBEOT when a job terminates. 

Exit: To the calling transient. 

Method: When called by an open transient, 
the RPS phase loading routine issues a load 
to search the RPS local directory list for 
the required phase. If the phase is not in 
the SVA, a GETVIS is issued to acquire 
space and the phase is loaded. Exit is 
taken to the calling transient with the 
load address of the phase or an 
unsuccessful condition code set. 

When called by $IJBEOT, the routine 
searches the RPS local directory list for 
phases that were loaded into the GETVIS 
area of the SVA for a terminating job. If 
this is the last job requiring the phase, 
the SVA space is released and the directory 
entry is set to inactive. On return to 
$IJBEOT no condition codes are set. 

$$BCLOSE: Close Monitor, Phase 1 

Objective: To determine the DTF file type 
and to fetch the proper close phase. 

Entry: From a problem program CLOSE macro 
expansion, or from a successful CLOSE if 
more than one file is specified by the same 
CLOSE macro instruction. In addition, 
$$BPCLOS enters $$BCLOSE at EOJ to close 
any unclosed 3800 printer extended 
buffering DTFs. 

Exits: 

To the appropriate close phase. 

• To the message writer if an error is 
detected. 

To the problem program if no files 
remain to be closed. 

To phase 2 of the Close Monitor, 
$$BCLOS2. 

• To $$BPCLOS when $$BCLOSE was originally 
invoked by $$BPCLOS. 

Method: The first phase of the Close 
Monitor begins the initialization of a 
table, located at the end of the logical 
transient area, for the close operation. 
This table is called the ~ table even 
though it is used by both initialization 
(open) and termination (close) phases. 
Files requiring label processing, except 
for sequential DASD, also enter information 
into the GETVIS label area. 

Next. the $$BCLOSE phase validates the 
address of the first 44 bytes of the DTF 
table for all file types except VSE/VSAM 
files; for VSE/VSAM files, phase $$BCVSAM 
is called. For magnetic tape (DTFDI, and 
DTFCP), unit record (DTFCD, DTFPT, DTFCN, 
and DTFPR), optical reader (DTFOR), and 
magnetic ink character recognition (DTFMR) 
files, $$BCLOSE fetches the second phase of 
the Close Monitor, $$BCLOS2. 

For all sequential DASD files $$BCLOSE 
fetches the SVA link phase $$BOSFBL to link 
to the $IJJGTOP SVA phase to complete the 
close processing. For ISAM and DAM DTFs 
$$BCLLBL is called which in turn calls 
$$BCLOS4 for ISAM DTFs and $$BCLRPS for DAM 
DTFs. 

For all DTFMT and DTFPH-MT files 
$$BCLOSE fetches the SVA link phase 
$$BOTSVA to link to the $IJJTTOP SVA phase 
to complete the close processing. 

For diskette files, $$BCLOSE reads label 
information into the transient label area 
at the beginning of the open table, saves 
address of this area in the open table for 
use by the next close phase, and fetches 
the diskette close phase $$BODI04. 

$$BCLOS2: Close Monitor, Phase 2 

Objective: To initiate the proper close 
procedure for unit record, optical reader, 
MICR, and Optical Reader/Sorter files. 

Entry: From phase 1 of the Close Monitor, 
$$BCLOSE. 

Exits: 

• To phase 1 of the Close Monitor, 
$$BCLOSE, to handle next DTF if any. 

• To $$BCLOSP for punch and paper tape 
files. 

• To $$BCTCOI for BTAM-ES 
telecommunication files. 

• To $$BCCPTI for magnetic tape (DTFCP, 
DTFDI) files. 

• To $$BCMROI for magnetic ink character 
recognition (MICR) type files. 

• To the message writer phase, $$BOMSGl, 
if an invalid file type is detected. 

• To IJDPR3 for printer files opened in 
extended buffering mode. 

• To IJDPRT for PRTl or 3800 printer files 
opened with DTFPR/CP/DI. 

44 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

Method: The function performed by the 
second phase of the Close Monitor depends 
upon the file type: 

• For files opened to a 3800 printer. 
$$BCLOS2 enters module IJDPR3 (residing 
in the SVA) at offset 32 to perform 
close processing related to the 3800 
printer. The address of IJDPR3 is 
obtained from the Anchor Table Extension 
(ATX). The address of the ATX is 
obtained by issuing a CDLOAD for phase 
IJDANCHX. IJDPR3 is called only if the 
OPN3800 bit in COMRG is on. indicating 
that one or more files were opened in 
3800 printer extended buffering mode. 

For optical reader and unit records 
files. except paper tape and DTFCD punch 
files. the only function performed by 
phase $$BCLOS2 is to turn off the open 
indicator in the DTF table for the file 
being closed. 

• For DTFCD punch files. after turning off 
the open indicator. $$BCLOS2 fetches 
phase $$BCLOSP if error recovery is 
possible. 

For DTFCP and DTFDI magnetic tape files. 
$$BCLOS2 fetches phase $$BCCPTI after 
first checking to determine whether or 
not tape error statistics by volume are 
being collected. For DTFCP and DTFDI 
punch files. phase $$BCLOSP is fetched. 

• For BTAM-ES telecommunication files. 
$$BCLOS2 fetches phase $$BCTCOI. 

For 3505 or 3525 with OMR or RCE 
specified. $$BCLOS2 resets the device to 
the normal mode. 

$$BCLOS4: Close Monitor. Phase 4 

Objective: To determine the DTF file type 
and to fetch the proper close phase for 
rSAM files. 

Entry: From $$BCLOSE. 

Exits: 

• To the appropriate close phase. 

• To the message writer if an error is 
detected. 

To the problem program if no files 
remain to be closed. 

• To phase IIPCLOSE if an ISAM DTF is 
linked with a VSE/VSAM file. 

• To phase $$BOCISC if CD LOAD for IIPCLOSE 
was not successful. 

Method: This phase of the Close Monitor 
begins the initialization of a table. 
located at the end of the logical transient 
area. for the close operation. This table 
is called the open l?ble even though it is 
used by both initla Ization (open) and 
termination (close) phases. Files 
requiring label processing. except for 

sequential DASD. also enter information 
into the GETVIS label area. 

For ISAM DTFs. byte 16 bit 0 of the DTF 
table is checked. This bit is set to one 
by phase ISCOPEN if the ISAM DTF is linked 
with a VSE/VSAM file. In that case the 
close-active indicator is reset and phase 
IIPCLOSE is loaded using the CD LOAD 
function. IIPCLOSE is a part of the ISAM 
Interface program. lIP. The user return 
address is stored from the user save area 
into the DTF. the file list pointer is 
stored into register 0 of the user save 
area. control is given to ISCCLOSE. and the 
B-transient area is released. 

For all ISAM DTFs not linked to a 
VSE/VSAM file. $$BCLOS4 reads label 
information from the label information area 
into the open table for use by the next 
phase. and fetches the ISAM close phase 
$$BCISOA. 

$$BCLLBL: Close Monitor Label Space 
Processor 

Objective: To determine the size of the 
read-in area required to process the 
DLBL/EXTENT information and to issue a 
GETVIS for the required space. 

Entry: From $$BCLOSE. 

Exit: 

• To $$BCLOS4 for an ISAM file. 

• To $$BOMSGI if an error occurs. 

Method: $$BCLLBL. at close time. builds a 
parameter list and calls Symbolic Label 
Access to determine the amount of 
DLBL/EXTENT information to be processed. If 
the space obtained by a previous OPEN or 
CLOSE in this job step is not sufficient to 
meet the label processing requirements. a 
FREEVIS macro is issued to release this 
space and a GETVIS macro is issued to 
obtain the required space. Pointers and 
channel programs are then updated and an 
exit is taken to the next phase. 

$$BCLRPS: DASD RPS Common Close 

Objective: To reestablish the original DTF 
that was modified for ISAM/RPS or for DAM 
DASDs. 

Entry: 

• From $$BCLLBL for DAM or ISAM DTFs. 

Exits: 

• To $$BCLOSE for direct access or IOCS 
type DTFs. 

• To $$BODACL for direct access type DTFs 
with user trailer labels. 

• To $$BOISOA for indexed sequential 
access type DTFs. 

Common and Special Purpose Logical IOCS Routines 45 



Licensed Program - Property of IBM 

Method: This routine is called when the DTF 
for the device being closed was modified to 
support RPS. 

All access methods use this routine. 
Therefore, it is necessary to first 
determine the DTF type, since the 
displacements are different in each case. 
Refer to Figure 7 and Figure 8 on page 47. 

The addresses of the original logic module 
and channel program are restored in the 
DTF. The bits indicating an RPS DTF and 
that it has been extended into the virtual 
area are turned off. The user save area 
that was obtained for the DTF extension is 
freed, and the use count for the RPS logic 
module is decremented. 

$$BOSDCl: SD Close Input and Output 

Objective: To restore the DTF to its 
original state in the event the file was 
not opened. 

Entry: From $$BCLOSE. 

Exits: 

To the CLOSE Monitor, $$BCLOSE. 

Method:;This routine is only entered if the 
file was not opened successfully. It 
restores the DTF to its original state and 
returns to $$BCLOSE to process another DTF. 

$$BOSDC2: Close: Fr.e Track Function 

Objective: To free any tracks held by the 
file being closed. 

Entry: From ISAM CLOSE. 

Exits: 

• To the close monitor, $$BCLOSE. 

• To $$BCISOA for ISAM files. 

To the problem program. 

Method: This routine searches the track 
hold table to determine whether a track is 
being held by the file being closed. If 
so, an SVC 36 is issued to free the track. 
If another file remains to be closed, 
control returns to the close monitor, 
$$BCLOSE. If ISAM files are being 
processed, control returns to $$BCISOA. 
otherwise, control returns to the problem 
program. 

$$BOSDEV: SD Close 

Objective: When FEOVD has been specified, 
$$BOSDEV closes the current volume and 
opens a new volume. 

Entry: 

From the FEOVD macro. 

DTF 

Type 
Code 

Byte 

I DTFDA no I DTFDA 
I trailer with 
Ilabels and trailer 

I I DTFPH labels 

22,23 I 22 

I 32(20) I 32(20) 

Dev Typel 1 I 1 
Bit I I 

IDTF T~pe 7 I 7 
Bit 

IExit to $$BCLOSE I $$BODACL 

I 

DTFIS 
(a 11) 

24,25 
26,27 

64(41) 

4,7 J 

5 

$$BCISOA 

I 
! 
! 
I 
I 

I 
I 

I 
I 
I 

INumbers in parentheses are 
lin hexadecimal notation. 

displacementsl 

1 If this bit is set on, the device 
supports RPS. 

2 If this bit is on, the DTF extends 
into the partition virtual area. 

J Bit 4 on indicates prime data. Bit 7 
on indicates index. 

Figure 7. 

Exits: 

Use of Different DTF Types by 
$$BCLRPS 

• To $$BOPEN. 

• To the problem program. 

, 

Method: An interface to the OPEN/CLOSE SVA 
phase is established allowing the FEOVD 
request to be processed. 

$$BODQUE: Remove Extents from Extent Block 

Objective: To delete all entries for a 
particular logical unit from the extent 
block. 

Entry: From the ISAM DASD open phase. 

Exit: To the problem program if no files 
remain to be opened, or to $$BOPEN, unless 
the name of the phase to be returned to is 
supplied by the calling phase. 

Method: After storing the contents of 
registers 3 through 8 and, if it is 
specified, the ndme of the phase to which 
control is to be returned, phase $$BODQUE 
builds the EXTENT macro parameter list. 
All extent block entries for the logical 
unit of the current DTF are erased by 
issuing an EXTENT macro for this logical 
unit. 

Phase $$BODQUE then fetches the calling 
phase or $$BOPEN, if the name of the 
calling phase was not supplied and there is 
another file to be opened. If the name of 
the calling phase was not supplied and 
there are no other files to be opened, 
phase $$BODQUE returns control to the 
problem program via an SVC 11. 

46 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

10 (0) 
1 
1 
1 

Ch~nnel Program 
(Variable Length) 

1-------------------------------------
I Work Space 

I 

'
I 1172 (AC) (Except ISAM) 

ISector values 
ICup to 4) 

1-1-7-6--C-B-O-)--------~1-1-8-0--(-B-4-)--------------
IAddress of IAddress of original 
origin~l ch~nnel logic module 
program I 
184 (B8) 

72 Byte Register Save Area 

256 (100) 

Figure 8. 

Additional Work Space 
256 bytes for DAM 
128 bytes for ISAM 

ISAM RPS or DAM DASD Device 
Independent Extension Work Area 

$$BRELSE: Device Release 

Objective: To perform the actual device 
release of the units in the table released 
by the RELEASE macro. 

Entry: From the RELEASE macro. 

Exit: 

To the problem program via SVC 11. 

Method: To perform the actual device 
release, the transient sets the unit to the 
permanent assignment, if one exists. 
Otherwise, the device is unassigned. If 
the device is at permanent assignment 
level, the transient takes no action on the 
unit. 

The PUBOWNER bits of all requested units, 
for which no other assignments exist, are 
reset. 

COMMONLY USED LOGICAL TRANSIENTS 

The logical transients included in this 
section of the manu~l are those that 
pert~in to sequential, indexed-sequential, 
~nd direct access DASD files. 

$$BOFLPT: DASD File-Protect 

Objective: To place the upper and lower 
extent limits into the Extent Block to 
provide file protection for DASD files. 

Entry:; 

• From phase $$BOIS07 for ISAM files. 

Exits: 

• To the open monitor, $$BOPEN, if more 
files are to be opened and a specific 
phase name is not supplied. 

• To the problem progr~m if a specific 
phase name is not supplied and no more 
files remain to be opened. 

• To the transient phase specified by the 
calling phase. 

Method: The $$BOFLPT phase provides file 
protection for DASD files by storing extent 
limit information in the extent block. 
Further information pertaining to the 
extent block and LUBs is found in 
VSE/Ady~nced Functions Diagnosis Reference: 
Supervlsor. 

The $$BOFLPT phase begins by determining: 

• The number of extents to be processed. 

• The addresses of the DLBL-EXTENT card 
image. 

• The file type. 

• The device type. 

When these factors are known, the phase 
determines the maximum number of extents 
per logical unit and the required GETVIS 
space if the workarea is too small to hold 
all extents. It loads the extents per 
logical unit into the workare~ ~nd sorts 
them according to disk addresses. 
Contiguous extents are combined. The 
EXTENT macro is used to add extent entries 
into the extent block. After all logical 
units are processed, a FREEVIS is issued 
for the workarea, if necessary. 

From information passed by the calling 
phase, $$BOFLPT determines the next action 
required and issues either an SVC 2 to 
fetch the proper transient phase, or an SVC 
11 to return to the problem program. 

$$BDDSPV: VTDC Display, Phase I 

Objective: To determine the logical unit 
(SYSLDG or SYSLST) on which the operator 
wants the VTOC displayed, and to print an 
error message if SYSLST is the unit 
selected but not assigned to a printer. 

Entry: From phases $$BODMS2, $$800108, 
$$BDDSMD, or $$BOMSG2 when the operator's 
response is DSPLYV. 

Exit: 

• To the second phase of VTDC display, 
$$BODSPW. (If a diskette is being 
displayed, exit is to phase $$BODSPO.) 

• To job control via an SVC 11 if the 
operator's response to message 4V95A is 

Common and Special Purpose Logical IDCS Routines 47 



Licensed Program - Property of IBM 

END or CANCEL and the open was for job 
control. 

• To phase $$BCNCL via an SVC 6 to cancel 
the job if the operator's response to 
message 4V96A is END or CANCEL and the 
open was not for job control. 

Method: The first phase of VTOC display 
i5sues a message on SYSLOG to determine 
whether the operator wants the VTOC 
displayed on SYSLOG or on SYSLST. If the 
operator's reply is SYSLST, a check is made 
to ensure that SYSLST is a printer. If 
SYSLST is not a printer, error message 
4V96A is issued. If the VTOC is to be 
displayed on SYSLST, preparation is made to 
start the display on a new page. Phase 
SSBODSPV then fetches phase 2 of VTOe 
display, $$BODSPW (or, if a diskette is 
being displayed, $$BODSPV fetches 
$$BODSPO) . 

S$BODSPt~: VTOC Display, Phase 2 

Objective: To display, on either SYSLST or 
SYSLOG, the VTOC for the volume currently 
being opened. 

Entry: From the first phase of VTOC 
display, $SBODSPV. 

Exit: To $$BOMSGI or $$BODSMW. 

Method: The volume label on the current 
volume being opened is read to retrieve the 
pointer (CCHHR address) to the VTOC and the 
volume serial number. A header line is 
printed to indicate the date and identify 
the volume by the volume serial number. 
Next. the first label in the VTOC (format-4 
label) is read to determine the limits of 
the VTOe, and the eew chair. is initialized 
to read the file labels (format-I) 
contained in the VTOC. 

The file label for each file on the 
volume is displayed by printing the 
contents of the label. The first line 
printed for each format-l label contains 
the first 59 bytes of the label and 
includes: 

filename 
format identifier 
file serial number 
volume sequence number 
creation date 
expiration date. 

Succeeding lines printed for a format-l 
label contain extent information. Each 
line contains a maximum of three extents. 
(If more than three extents are specified 
for the file, the additional extents are 
contained in a format-3 label.) When all 
extents for a file have been printed. phase 
$$BODSPW initializes to process the next 
format-l label in the same manner. 

When all format-l labels in the VTOC 
have been processed, the message 'VTOC 
DISPLAY COMPLETED' is printed and control 
is passed to $$SOVDMP. Figure 9 is a 
sample of the VTOC display printed by this 
phase. 

DSl'lYV OlSPI.AY 

PAYROll nASIUl INPUT rill 

zwo OOO.coooo-OO9,",OI.l:L'J ---"h_ .. 

SYSTEM YORK fiLE NunBOl 1. 
01.0), OOCLDllDD-OO(LDDJ.3 

]]30 INDO£O S£IIlItlllJUl. Of'[N Sfl.! LA8tLE:1.! 
OI.OlJ (]o(][mmO-OO:1FOOJ.:J 

YJO( I)ISf'lAV (QttPl.[.ltD 

~ 
ll.ll.Ul.l. 

UJ,UJ. 

c. ... _a.£_~, ..... o .... 

\ ~H 
IlOOl ''1001.3-1..301.6.):.,.. 

om])' "qoo:L]-('100r'1 

Figure 9. VTOC Display of Disk Pack 
(DSPLYV Response) 

$$BODSPO: Diskette VTOC Display 

Objective: To display, on either SYSLST or 
SYSLOG, the VTOe for the diskette currently 
being opened. 

Entry: From the first phase of VTOC 
display, $$BODSPV. 

Exit: To $$800108, $$BODMSG, or $$BODSMO. 

Method: The volume label on the volume 
currently being opened is read to retrieve 
the volume serial number. A header line is 
printed to indicate the date and identify 
the volume by the volume serial number. 
Next, the ecw chain is initialized to read 
the file labels (HDRl) contained in the 
VTOC. 

The file label for each file on the 
volume is displayed by printing the 
contents of the label. The printed line 
includes! 

• file name 
• beginning extent 
• end extent 
• volume sequence number 
• creation date 
• expiration date 

When extents for a file have been printed, 
phase $$BODSPO initializes to process the 
next label in the same manner. 

When all HDRI labels in the VTOe have 
been processed, control is returned to the 
calling transient. Figure 10 on page 49 is 
a sample of the VTae display printed by 
this phase. 

$$BOVDMO: Diskette VTOC Dump 

Objective: To provide a list of all the 
labels in the VTOe for the diskette being 
opened. 

Entry: From phase 2 of the Diskette Open 
Message Writer, $$BODMS2, or $$SODI08, when 
the operator's response is CANCELV, or from 
the problem program. 

48 IBM VSE/Adv. Functions Diag. Ref. LIOeS Volume I 



licensed Program - Property of IBM 

Be;i"ning ElI.lent Volume SeQuence No e.Oiration Date 

T TOOj"'n. I ~'Mr"'T 03/JO/73 
VOLUME SERIAL NO. IS HWSQO'3 

f • • + 
INPUT 05001 08026 01 721201 7'+1231 

INPUT 09001 10026 01 721201 llt120T 

OMPVTOC 11001 11026 730319 7'+1231 

TST JCL 12001 13026 nOl21 741231 

VTOC DISPLAY COMPLETED 

--------------------- -----------------------
Figure 10. VTOC Display of Diskette 

(DSPlYV Response) 

Exits: To phase $$BCNCL via sve 6 to cancel 
the job if $$BOVDMO is entered from the 
message writer phase $$BODMS2, or to the 
problem program, or to $$BOWDMO to continue 
CANCEl V. 

Method: Phase $$BOVDMO reads the VOll label 
to retrieve the volume serial number for 
the volume being opened. A header line is 
then printed on SYSlST to indicate the date 
and identify the volume with the volume 
serial number. If SYSlST is not assigned 
to a printer, the VTOC Dump is ignored. 

$$BOWDMO: Diskette List VTOC 

Objective: To provide a listing of all the 
labels in the VTOe for the diskette. 

Entry: From phase 1 of the VTOe dump, 
$$BOVDMO. 

Exits: Control returns to job control or to 
the user's program. 
Figure lIon page 50 is a sample of the 
VTOC Dump printed by this phase. 

Method: All the VTOC labels for unsecured 
files (except blank labels) and the file 
being accessed (whether secured or 
unsecured) are listed. Any other secured 
files are not listed. When all labels have 
been printed, an EOJ message is printed and 
control returns to the user or to job 
control. 

Note: NB, NS, NP, NE, or NV indicate that a 
label field is blank. B,S, P, E, or V 
indicate that the label field was found to 
be not blank. 

$$BODMSG: Diskette Open Error Message 
Writer Phase I 

Objective: To initialize the message output 
area, SYSlOG eCB and CCWs, and to fetch 
phase 2 of the message writer, $$BODMS2. 

Entry: 

• From the diskette VTOC display phase, 
$$BODSPO. 

• From a diskette open or close phase. 

• From the DTFCP open phase, $$BODUCP. 

Exit: To phase 2 of the open error message 
writer, $$BODMS2. 

Method: The calling phase supplies the 
following information to the message 
writer: 

• Register Q contains the last four 
characters in the name of the phase 
requesting the message. On cancel 
messages, register 0 need not be 
initialized. $$BO is assumed for the 
first four characters of the phase name. 

• Register ~ contains the address of the 
DTF table for the current file. 

• Register ~ contains the message code (in 
binary) for the message to be printed. 
This code is converted to the last two 
digits of the message number (XX in the 
example 4nXXI). 

• Transient region ~ 1185 contains the 
numeric decimal varue-assigned to the 
various open/close phases for message 
numbering (X in the example 4XnnI). 

• Transient region ~ 1000 contains the 
start of the CCB. 

The message writer overlays the first 888 
bytes of the transient region. Therefore, 
any information that the calling phase 
needs to save is located beyond this point. 

This phase first saves the last four 
characters in the name of the phase 
requesting the message. It initializes the 
SYSlOG message output area with the 
organization type numeric code, DTF file 
name, and symbolic unit and constant. It 
builds the SYSLOG ecws for writing the 
message and reading the response, and 
determines if the required message is in 
this phase of the message writer. If it is 
not in this phase, the routine determines 
which overlay phase contains the message 
(either $$BOMSG3, $$BOMSG4, $$BOMSG5, 
$$BOMSG6, or $$BOMSG7) and fetches $$BODMS2 
to load the required overlay phase. 

$$BODMS2: Diskette Open Error Message 
Wr iter, Phase 2 

Objectives: To issue an error message to 
the operator, read the operator's reply (if 
an IBM 1052 Printer-Keyboard is assigned to 
SYSlOG) or exit to the phase that requested 
the message (after ensuring the validity of 
the operator's response). Also, to cancel 
the job either by operator request or, if 
the message type indicates this, by 
end-of-job. 

Common and Special Purpose Logical IOCS Routines 49 



Licensed Program - Property of IBM 

:fffTTT TiTTTT 
INPUTl 12805001 08026 NB .S NP Nl 01 721231 1~lj31 NV 09001 

00009 HOR I lABEL 
~~ 

INPU T 2 1281100110026 NB NS NP NE 01721201 71j1231 NV 11001 

00010 HDRI LABEL 

OM?VTOC IH '1001 lIon N8 NS N? NE 1'30319 741231 1/ 11007 

00011 HORl LABEL 

TSTJCI. 080 1200: 1 ~07b r'B r"s NP Nt 730321 741231 V 12020 

0001 Z HDRI LABt:L 

00013 HDR! LABEL 

HORI lABEL 

00015 HDRI LABEL 

00016 HDR! LABEL 

HOR 1 LABEL 

00018 HDRl LABEL 

00019 HOR! LABEL 

00020 HDRl LASEL 

00021 HOR ~ LABEL. 

HDRl lA8EL 

00023 HOR 1 LABEL 

00024 HOR 1 L"'BEL 

()()()Z5 HDRl LABEL 

0002& HDR 1 LABEL 

VTOC L1 STING COfo'PLETED 

Figure 11. VTOC Dump of Diskette (CANCELV 
Response) 

Entry: From phase 1 of the Diskette Open 
Error Message Writer, $$BODMSG. 

Ex it: 

• To the VTOC dump phase, $$BOVDMO. 

To phase 1 of the VTOe display routine. 
$$BODSPV. 

To the diskette open/close organization 
phase requesting the message (if a 
cancel was not encountered). 

Method: $$BODMSG supplied the following 
information to this phase: 

• Register 1 contains the name (last four 
characte~s) of the message overlay phase 
to fetch if the required message appears 
in some other phase than $$BOMSGI. 

• Register 3 contains the address of the 
message to be written on SYSLOG. 

This phase determines the message type. It 
can be either a file overlap pack, wrong 
pack, or other. 

For wrong-pack type, the message is 
initialized with the pack number and the 
wrong-pack switch is turned on. This 
switch is interrogated later in the routine 
to test if the operator has mounted the 
correct pack. 

Next, the routine determines if the 
message to be written on SYSLOG is in main 
storage. If the message is not in main 
storage, the message overlay phase 
containing the required message is loaded 
into main storage. The message overlay 
phases consist of $$BOMSG3, $$BOMSG4, 
$$BOMSG5, $$BOMSG6, and $$BOMSG7. These 
phases contain messages only. The message 
is then moved to the SYSLOG output area and 
an SVC 0 is issued to type the message and 
read the reply. 

If the message indicates the job is not 
to be canceled, the routine determines if 
the user wants a VTOC display. If a VTOC 
display is wanted, the routine issues an 
SVC 2 to fetch $$BODSPV, the VTOC disp!ay 
phase. If the user does not want a VTOC 
display, the routine tests for aD-type 
message. 

If the message is a D-type, the message 
return indicator is set, the address of the 
next phase name is retrieved, and an SVC 2 
is issued to fetch the return phase. If 
the message is not a D-type, the routine 
tests the wrong-pack switch as previous!y 
mentioned. 

The message writer issues an illegal 
response message for the following 
conditions: 

1 • Operator rep!y of IGNORE for aD-type 
message. 

2. Equal file ID message. 

3. No EXTENT to be bypassed. 

4. Next pack not mounted. 

If the job is to be canceled, a test 
determines if the job contro! open switch 
(in communications region) is on. If so, 
an SVC 11 is issued to return to job 
control. If the switch is not on, the 
routine checks to determine if a request 
has been made for a VTOC dump. If yes, an 
SVC 2 is issued to call the VTOe dump 
transient. $$BOVDMO. If a VTOe dump has 
not been requested, an SVC 6 is issued and 
the job is canceled. 

50 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

Figure 13 on page 54 shows the message 
code (passed via register 3) together with 
the last two digits and action indicator of 
the associated number. For reference 
purposes. the text of the message is also 
included. 

$$BODSMO: Diskette Data Security Message 
Writer 

Objective: To issue message 4n990 and read 
the reply from the operator. 

Entry: From $$BODSPO. $$BODI01, $$BOOI05, 
and return from $$BODSPV. 

Exits: The exit depends on the operator's 
reply to message 4n99D. 

If reply is YES. control returns to the 
problem program. 

If the reply is EOB. NO. CANCEL. or 
CANCELV. the problem program is 
canceled. If a VTOC dump is requested, 
$$BOVDMO is fetched. If $$BODSMO was 
fetched by job control. an exit is made 
to job control. 

If the reply is DSPLYV. $$BODSPV is 
fetched. 

Method: After gathering preliminary data 
about the calling routine. $$BODSMO issues 
message 4n99D. 'DATA SECURED FILE/VOLUME 
ACCESSED'. If the operator types YES on 
SYSLOG, the file is made available. 

$$BOVDMP: VTOC Dump 

Objective: To provide a list of all the 
labels in the VTOC, for the volume being 
opened. 

Entry: From phase 2 of the Disk Open 
Message Writer. $$BOMSG2. when the 
operator's response is CANCELV. or from the 
problem program. . 

Exits: To phase $$BCNCL via an SVC 6 to 
cancel the job if $$BOVOMP is entered from 
the message writer phase $$BOMSG2, or to 
the problem program, or to $$BOWDMP to 
continue CANCELV. 

Method: Phase $$BOVOMP reads the VOL1 label 
to retrieve the volume serial number and 
the CCHHR address of the VTOC for the 
volume being opened. A header line is then 
printed on SYSLST to indicate the date and 
identity of the volume with the volume 
serial number. If SYSLST is not assigned 
to a printer, the VTOC Dump is ignored. 

$$BOWDMP: List VTOC 

Objective: To provide a listing of all the 
labels in the VTOC. 

Entry; From phase 1 of the VTOC dump. 
$$BOVDMP. 

Exits: If no record if found. exit is to 
the disk message writer. $$BOMSG1. 
Otherwise. control returns to job control 
or to the user's program. 

Method: All the VTOC labels for unsecured 
files (except blank labels) and for the 
file being accessed (whether secured or 
unsecured) are listed. Any other secured 
files are ~ listed. A maximum of five 
extents are printed on a line. When all 
labels have been printed, an EOJ message is 
printed. and control returns to the user or 
to job control. 

Figure 12 on page 52 is a sample of the 
VTOC Dump printed by this phase. 

Common and Special Purpose Logical IOCS Routines 51 



Licensed Program - Property of IBM 

CANCELV DISPLAY 

VOLUME: SERIAL NO. IS loU]']']' 

000000000'('; rORMAT " LiBn 

O.t;D.t;O.t;O( 0'0.(0,(0,( D'C'([].t;O.t; 0.(0.(0'0,( [J.(D.(O.t;O' 0.(0.(0'0.( O.t;O"O.t;O" O'O.:;O"'O( 0.(0.(0'0,( 0"01;0.(0.( 0",0.(0,(0" F'OOOOOO MODD1Er O[]C&ODD~ D03AatlO]' DOODDDes DDlo.(lo(7[ Qi:'2J>2l)O]. 021.b:l.blo]. COCOOCDD 00000000 DOCDODDD DOCOODDD 00000000 oooooopo CODooceD DOO1DODO DODoODDD 00001.300 00000000 DocoeDeD DeODODDD 00000000 DODDODDD DOOOOOOO 

0000000005 FORMAT 5 LABEL 

05050505 COCOODDD 00000000 coaooceD 00000000 DODOODDD 00000000 DOCOODDD DODOODDD DOOODOcO DDDDDtlJD FS[][]OOOO 
00000000 CODOOCDD OODDDOOD CODOOCOD 00000000 00000000 00000000 00000000 DOCOODDD DODoODDD aoaoonDD COCOODDD 
COCDODDD 00000000 00000000 COCOODDD 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

0000000006 FORMAT 1. LABE:L 

PAYROLL MASTER INPUT FILE SERIAL NO. l.l.lol1.l. VOL NO. OOOl .t;ClOO]'3-I.3DlLD O]..t;O.t;O 

.t;0.t;0.t;0.t;0 .t;C.t;O.t;OOO 00000000 oooeoooo 000060.(1J .t;O.t;O.t;OOO 00000000 .t;O.t;O 
21.00 OOB.t;OOOO-00BOOO1.3 0000 00000000-00000000 DODO 00000000-00000000 

SYS. (ODE IS DOS/]?O VER .t; 

PO I NTER IS 0000000000 

DOOOOOc007 fORMAT 1. LABEL 

SYSTEM 1II0R" FILE NunBER 1. SERIAL NO. J.l.J.l.lJ, VOL NO. Occl .t;QOO1.3-6301.bD 010700 

00000000 ODDODO£O DODOOOOc OOOcDOOO 00000000 00000000 00000000 DODD 
01.01. 00(60000-00(6001.3 0000 ·00000000-00000000 0000 00000000-00000000 

OcOOOO[]D[]~ FORMAT 1. L"S[L 

SYS. (ODE IS DOS VERSION 5 

PO I NT[R IS 0000000000 

3330 INDEXED SEQ.UE:NT'''L OPE:N STI> L"BE:LEI> SERIAL NO. l.U1.U VOL NO. DOOl £9001.3-.t;900F9 0l.07[]0 

OOOOOODD OOOOOD.t;c OOOOOOOD OODDOODO 00000000 00000000 00000000 DODO 
01.00 000EOOOD-D03FOal3 0000 00000000-00000000 0000 00000000-00000000 

VTO( LIST I NG COMPL(l(l) 

SVS. (ODE IS .... RAFTOl .... 

PO I NTER IS DcOOOOOOOO 

Figure 12. VTDC Dump of Disk Pack (CANCELV Response) 

$$BOMSGI Disk Open Error Message Writer, 
Phase 1 

Objective: To initialize the message output 
area, SYSLOG CCB and CCWs, and to fetch 
phase 2 of the message writer, $$BOMSG2 for 
informational messages. For messages 
requiring operator action/response, 
$$BOMSVA is fetched, which in turn 
transfers control to the SVA. 

Entry: 

• 

• 

From a DASD open or close phase. 

From the DTFCP open phases, $$BOCPOl, 
$$BOCP02. $$BOCPll. or $$BOCP12. 

From IJDPRT OPEN routine . 

Exit: To phase 2 of the open error message 
writer. $$BOMSG2. or to $$BOMSVA (see 
VSE/Advanced Functions Diagnosis Reference: 
LIOCS Volume ~ 

Method: The calling phase supplies the 
following information to the message 
writer: 

• Register Q c~ntains the last four 
characters 1n the name of the phase 
requesting the message. On cancel 
messages, register 0 need not be 
initialized. $$BO is assumed for the 
first four characters of the phase name. 

• Register 2 contains the address of the 
DTF table for the current file. 

• Register ~ contains the message code (in 
binary) for the message to be printed. 
This code is converted to the last two 
digits of the message number (xx in the 
example 4nxxI). 

• Transient region ± 1185 contains the 
numer1C decimal value assigned to the 
various open/close phases for message 
numbering. (x in the example 4xnnI.) 

• Transient ~~ ± 1000 contains the 
start of the CCB. 

The message writer overlays the first 888 
bytes of the transient region. Any 
information that the calling phase needs to 
save is located beyond that point. 

This phase first saves the last four 
characters in the name of the phase 
requesting the message. It then checks the 
message type. For action type messages. 
$$BOMSVA is fetched in order to transfer 
control to the SVA. For information type 
messages, it initializes the SYSLOG message 
output area with the organization type 
numeric code, DTF filename and symbolic 
unit and constant. It builds the SYSLOG 
CCWs for writing the message and determines 
if the required message is in this phase of 
the message writer. If it is not in this 

52 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

phase. the routine determines in which 
overlay phase the message is located 
(either $$BOMSG3. $$BOMSG4, $$BOMSG6. 
$$BOMSG7, or $$BOMSG8) and fetches $$BOMSG2 
to load the required overlay phase. 

$$BOMSG2: Disk Open Error Message Writer. 
Phase 2 

Objectives: To issue informational error 
message to the operator. and to cancel the 
job if the message indicates end of job. 

Entry: From phase 1 of the disk open error 
message writer. $$BOMSGI. 

Ex it: 

To the DASD open/close organization 
phase requesting the message. 

Method: $$BOMSG1 supplied the following 
information to this phase: 

• Register ~ contains the name (last four 
characters) of the message overlay phase 
to be fetched if the required message 
appears in some phase other than 
$$BOMSGI. 

• Register 3 contains the address of the 
message to be written on SYSLOG. 

This routine determines if the message 
to be written on SYSLOG is in storage. If 
the message is not in storage. the message 
overlay phase containing the required 

message is loaded into storage. The 
message overlay phases consist of $$BOMSG3. 
$$BOMSG4. $$BOMSG5, $$BOMSG6. $$BOMSG7, 
$$BOMSG8. and $$BOMSG9. These phases 
contain messages only. The message is then 
moved to the SYSLOG output area. and an SVC 
o is issued to type the message. 

Then, a test determines if the job 
control open switch (in communications 
region) is on. If 50, an SVC 11 is issued 
to return to job control. If the switch is 
not on, an SVC 6 is issued and the job is 
canceled. 

Figure 13 on page 54 shows the 
message code (passed via register 3) 
together with the last two digits and 
action indicator of the associated message 
number. For reference purposes. the text 
of the message is also included. 

$$BODSMW Data Security Message Writer 

Objective: To issue message 4n99D and read 
the reply from the operator. 

Entry: From $$BODSPW. $$BOIS06. $$BORTVI. 
and return from $$BODSPV. 

Exit: To $$BOMSVA (see VSE/Advanced 
Functions Diagnosis Reference: LIOCS Volume 
..u..... 
Method: After gathering preliminary data 
about the calling routine. $$BOMSVA is 
fetched to transfer control to the SVA. 

Common and Special Purpose Logical IOeS Routines 53 



Licensed Program - Property of IBM 

IMessagelMessagel 
ICode INumber IMessage 

10 144A IOVERLAP ON UNEXPRD FILE I 
1 

2 

3 

4 

5 

6 
I 
17 
I 
115 
I 
116 
I 
117 
I 
118 
I 
119 
I 
120 
I 
121 
I 
122 
1 
123 
I 
124 
I 
125 
I 
126 
1 
127 
I 
128 
I 
129 
I 
131 
I 
132 
I 
133 
I 
134 
I 
135 
I 
136 
I 

Figure 

I 
IWRONG PACK, MOUNT nnnnnni 155A 

I I 
140A IEXTENT OVERLAPS ANOTHER 
I 
141A IEXTENT OVERLAP ON VTOC 

142A INO MATCHING EXTENT 

133A EQUAL FILE ID IN VTOC 
I I 
166A 11 TRACK USER LBL EXTENT 

159A 
I 
l INVALID EXTENT 

I l 
184D INEED FILE PROTECT RNG 
1 I 
131D IVOLUME SEQUENCE ERROR 
1 I 
138D IUSER HDR LBL IS NOT STD 
I 1 
139D IUSER TRL LBL IS NOT STD 
I I I 
108D INO UTLO FILE MARK FOUND I 
I 

IEXTENTS NOT ON SAME UNIT 147A 
I 1 
186D TAPE UNIT NOT READY 
I 
1001 NO RECORD FOUND 
I 
lOll NO RECORD FOUND 
I 

1021 NO RECORD FOUND 

1031 NO RECORD FOUND 
I 

1041 NO RECORD FOUND 

1051 NO RECORD FOUND 
1 
1061 NO RECORD FOUND 
I 
1071 NO RECORD FOUND 
I 
1091 NO RECORD FOUND 
I 
1001 NO LABEL SPACE IN HOC 
I 
101I NO FORMAT 1 LABEL FOUND 
I 
1021 NO FORMAT 2 LABEL FOUND 

1031 NO FORMAT 3 LABEL FOUND 

1041 NO FORMAT 4 LBL IN VTOC 
I 

A- and D-type messages are not 
issued by $$BOMSG1 or $$BOMSG 2, but 
by $IJJGMSG from the SVA. 

13 (Part 1 of 3). Message Code for 
Disk Open Error 
Message Writer 

IMessagelMessagel 
ICode INumber IMessage 

137 
1
061 INO STANDARD VOL1 LABEL 

I I 
138 41I IEXTENT OVERLAP ON VTOC 

I 
39 461 IDISCONT INDEX EXTENTS 

I 
40 511 ISYSUNITS NOT IN SEQUENCEI 

I I 
41 521 IDISCONT TYPE 1 EXTENTS I 

I 
42 541 DSKXTN ENTRY TABLE FULL I 

I 43 621 INO PRIME DATA EXTENT 
I I 

44 451 lTOO MANY EXTENTS I 
I I 

45 491 IDATA TRACK LIMIT INVALIDI 

I INVALID EXTENT 
I 

46 591 I 
I I 

147 601 INO EXTENTS, ALL BYPASSED I 
I I 

48 61I IINVALID DLBL FUNCTION I 
I 

ILOAD FILE NOT CLOSED 
I 

149 631 I 
I I I 

1
50 1801 IINVALID FILE TYPE I 

I 
51 1811 INO LABEL INFORMATION I 

I I I 
52 1831 IINVALID LOGICAL UNIT I 

I I 
53 1901 ISVA EXTENT AREA EXHAUSTDI 

54 1871 Isys FILE EXTENT EXCEEDED I 
I I I 

55 1351 IDELETED WORKFILE LABEL 1 
I I 1 

56 1341 ICURRENT FILE LBL DELETEDI 

157 
I 
1401 EXTENT OVERLAPS ANOTHER I 
I I 1 

158 1361 INO MORE AVAIL/MATCH XTNTI 
I I I 

I I 

Figure 13 (Part 2 of 3l. Message Code for 
Disk Open Error 
Message Writer 

54 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 

J 



Licensed Program - Property of IBM 

IMessagelMesSage I 
ICode INumber Message II 
I------~------+----------------------
159 48I SYSIN/SYSOUT UNSUPPORTED I 

160 1701 lIST XTNT CD NOT INDX vOll 
I I I I 
161 1711 IEXTENT INFO NEEDED I 
162 1721 IMOD AND DTF INCOMPATIBLE I 

163 1581 INO EXTENT FOR OUTPUT I 
I I I FILE / 
164 /881 IEOF ON SYSTEM FILE 

168 1981 10VlAP UNEXPRD SECRD FILE 
I I I 
169 169I IFILE IS OPEN FOR ADD 
170 1971 10VLAP EXPIRED SECRD FILE 
171 1851 IINVALID FORMAT RECORD 
I I I 
174 1301 IINVALID HDR1 LABEL 
I I I 
175 1331 IEQUAl FILE ID VTOC 

176 1371 ICHAINING TO SYSTEM UNIT 

177 1 311 IVOLUME SEQUENCE ERROR 

180 1821 IISAM NULL FILE 
/82 1741 IBLKSIZE OPEN FAILURE 
I I / 
183 /751 IBLKSZ NOT MULT OF RECSZ 

185 1781 INO LOGIC MODULE ••• 
/ / I 
186 1791 IGETVIS FAILED 
187 1051 UNRECOVERABLE I/O ERROR 
, I 

Figure 13 (Part 3 of 3). Message Code for 
Disk Open Error 
Message Writer 

Common and Special Purpose logical IOCS Routines 55 



licensed Program - Property of IBM 

CHARTS 

Chart 01. Open Monitor 

I 
I 
I 
I 
I 
I 

L> 

Note: 

I $$BOPEN 

Entry to 
Open Monitor 

I 
V 

I1.Called by OPEN macro for 
I Disk? 

I No Yes 

I I 
I V 
12.RPS initialization 
I necessary? 
I No Yes I 

I I 
V 

13.Initialize part of 
I transient open table. 
14.Calculate and save PUB2 

address for tape devices. 

! 

I 
V 

$$BOPENI 

I.More files to open? 
Yes No. 

I 
V 

2.Determine file type. 
3.Set up to fetch proper 

open routine. 
4. DTF device type? 

I Unit Record 

I 
I Tape 

I 
I Telecommunications 
I 
I 

IDASDI 

VSE/VSAM 

I 

I v 
Chart 02 

> $$BOPENS 

1. 
2. 

Get space i 
load the RP 
routine. 

I 
I 

> SVC 11 

n SVA 
S open 

Return to user 

Call $$BOUROI or 
> $$BOCPOl/$$BOCPII or 

HBOOROI or 
$$B35400 Chart 07/08 

Call proper Tape 
> open; Chart 03 

>Icall HBOTCOll 

>ICall $$BOVSAMI 

Telecommunications and VSAM are not documented in VSE/AF lIOCS Manuals. 

56 IBM VSE/Adv. Functions Diag. Ref. lIOCS Volume 1 



Licensed Program - Property of IBM 

Chart 02. Open Monitor 

From Open 
IMonitor Chart 01 

1 
V 

$$BOPLBL, $$BOSFBL, and 
1 $$BOPEN4 1--------------------------I$$BOPLBL (if 15AM) 

I.Getvis area for labels. 

$$BOPEN4 (if ISAM) 
2.Read and check 

DLBL/EXTENT information. 

$$BOPEN2 13.lf ISAM--------------------+->I I 1------------------------
Process extent limits 14 . For Sequential DASD or I I 

Direct access DA5D . I I I ~--------~--------~ 
1 ICall $$BOI50ll 
V Chart 04 I 

$$BOSFBL 

11.Locate OPEN/CLOSE SVA 
phase ($IJJGTOP). 

12.Exit the LTA (5VC 11) I and transfer control to 
. $IJJGTOP. 

Charts 57 



Licensed Program - Property of IBM 

Chart 03. Open Magnetic Tape 

Open Tape 
from Chart 01 

I 
V 

DTF file type? 
For DTFMT. DTFPH-MT----~--~----------------~ 

F., DTFCP. D~FDI I 
V V 

$$BOPEN2 

Read and check DLBL/EXTENT 
information 

I $$BOESTV 

I 
V 

Retrieve and process TeS 
information from PUBZ 
table. 

Z. Write TES record on SVSREC 
3. Entry from JOBCTLJ or 

JOBCTLD. 
Ves 

V 

Ca 11 JOBCTLD 
or UBJCOPT 

No 

V 

SVC 2 
UBOPEN 

UBOTSVA 

1. Locate OPEN/CLOSE SVA 
phase (UJJTTOP) 

Z. Exit the LTA (SVC11) and 
transfer control to 
$IJJTTOP 

$IJJTTOP 

I 
V 

1. Process OPEN request 
Z. Exit the SVA and transf. 

control to $$BOTLTA 

UBon TA 

I 
V 

Return to open monitor to 
handle next DTF or to 
return to problem program 

I 
V 

SVC 2 
UBOPEN 

58 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

Chart 04. Open ISAM 

( Open IS 
from Chart 02 

~ 
SS801501 

1. Get address of DLAB and 
EXTENTs. 

2. Compute no. of tracks of 
the independent overflow 
extent. 

! 
SS80lS02 

If load create file: 
• Check for dup. lOin 

VTOC. 
• Check incomming extents 

against all Existing files in 
VTOC for overlap. 

If input file: 
• Read format-' label for 

fjle. 
• Cheek incomming extents 

against Format·' extents. 

l 
SS80l$05 

1. Save extent limits. 

2. Build D5KXTNT table. 

l 
SSBOIS06 

1. Check labels for input 
files. 

2. Create labels for output 
files. 

l 
SS80lS07 

1. Get format·2 label and 
update OTF table. 

2. Put EXTENT card infor-
mation and constants in 
OTF table. 

3. File protect 7 

YES 
SS80FLPT 

NO I 1. Put extent information in 
extent block to tile protect 

4. ADDf~ OASO files. 
NO 2. More files to open 1 

YES 

l <;?e NO / SVC" return to 
\ problem program 

YES 

SSBOIS08 l 1. Buiid CCW chain in 
10AREAL. ( SVC 2 ) $$BOPEN 

2. Update prime data 
in·storage add section of 

I-DTF. 

Charts 59 



Licensed Program - Property of IBM 

Chart 05. Close Monitor 

0-> 

Noiei 

1 Call $$BCLRPS 
I 

$$BOSFBL 

I.Locate $IJJGTOP 
phase in SVA 

2.Call UJJGTOP 
to !:omplete the 
CLOSE processing 

~ 
o 

Call UBCLOS2 
Chart 05A 

-> 

ICLOSE entryl 

! 
UBCLOSE 

I 1- More files to close? 
Yes No 

I 
V 

I 2. Set UP to fetch proper 
close routine 

3. VSE/VSAM f i Ie? 
No YES 

I I 
V 

4. OPEN ignored and no I 
DASD or DTFMT 

Yes No 
I I 
V I 

5. DTF file type? I 
DTFDA 

I 
I 
I 

DTFPH-DA DTFMT I 
I 

DTFSD or I DTFPH-MT I 
CP/DI DASDI I 

DTFPH-SD I I DISKETTE 

t I 
6.If file protect I 

I 
Otherl 

set dequeue reql 
7.Read label 

information 
DTFIS 

1 
V 

8.Read label 
infOrjation 

V 

Call\ $$BCLOS4 
Chart 05B 

I 

I 
I 
I 

I 
I 
I 

---> SVC 11 Return to 
problem program 

->Isvc 2 
!$$BCVSAM 

$$BOTSVA 

I.Locate IJJTTOP 
in SVA 

2.Call $IJJTTOP to 
complete CLOSE 
processing 

I 
V 

$$BOTL TA 

Free workareas 

I 
V 

o 
-->1 $$BOOI04 1 

II.write last block 
2.Process user 

I labels or Feed 
diskette 

3.Set file status 
to closed 

I 
V 

o 
~LLBL is called to GETVIS the label buffer and to read the label 
information for DASD files. 

60 IBM VSE/Adv. Functions Diag. Ref. Lloes Volume I 



L 

licensed Program - Property of IBM 

Chart OSA. Close Monitor Part 2 

$$BClOS2 

$$BClOS2 from 
Chart 05 I 

I 
V 

I.Device 3800 and ext. buff. DTF's 
open 

I I Yes ~----------~ 

I 1------------------------------4-------->ICall IJDPR3 
NoV . 

2.0TYFCP/DI/PR and device PRTI 
I or 3800 I No 

~ 
Yes-------------+------>ICall IJDPRT 

13.0TF file type? 

I I MICR 
> 

I IUnit record I IPaper tape 1 

,I 

4.Reset fiYe open indicator 
in OTF 

5.2520 or 2540 punch file? 
Ny Yes----------~ ~ 

No Yes------, 

$$BCMROI 

I.Reset open and traffic 
bit in DTF. 

2.Turn off ext. line indo 
in POTABB table ! 

I 
V 

IChart OS. entry AI 

$$BCLOSP 

" 

6.pa~er tape file 7>1 

I ~---~ ,'---------------, I.Repunch correctable 
L error in last card. 

I 
' 
__ T_P __________ ~ >I~I 2.Check last record if 

ouput file with two 10 
areas. 

I IDTFCP/DI 

7.D~vice type tape? I Ny Yes 

'I ! 
~-~----->IChart 05. entry AI 

I' 8.System file? > 1 SVC 2 1 
I$$BCTCOII IIO.2~20 or 2540 Yes, 

I punch file? 
I Vis No--------> 

V 

o 
V 

Ichart 051 
I entry AI 
I I 

No 
I 

~--+-----> 

I I 

Not6: 
$$ CTCOI is not documented in VSE/Advanced Functions lIOCS 

Charts 61 



Chart OSB. Close Monitor Part 3 

$$BClOS4 from 
I Chart 05 
I 

I 
V 

licensed Program - Property of IBM 

I $$BClOS4 

Il.ISAM DTF linked with VSE/VSAM 
I file? 
I Yes No---------------------+----> $SBCISOA 
I I 
( V 

12.CDlOAD successful? 
Yes 

I I 
I I 

Isvc 11 returnl 
I to IIPOPEN I 
, I 

No 

I 

1. Read. format. and 
rewrite-format-l-and 
format-2 labels. 

2.More files to close? 
Yes No 
I I 

I I 
V V 

,----------, 
SVC 11 return to 

problem program 

62 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



lic~nsed Program - Property of IBM 

Chart 06. EOF/EOV Routine 

FEOV for 
DTFPH 

$$BCEOVl 

Oetermi ne file 
and format of 
the file from 
its OTF 

I 
V 

$$BOTSVA 

see Chart 03 

EOV for 
OTFCP/DI 

I 
V 

$$BCMT07 

1. Close current SVSPCH or 
SVSlST output file by 
writing tapemark 

2. Rewind and unload initial 
tape reel 

3. Switch to alternate drive 
if specified 

UBJCOPT 

I 
V 

Open alternate tape assigned 
to SVSLST or SVSPCH by 
reading label/tapemark 

I 
V 

SVC 11 return to 
problem program 

Charts 63 



Licensed Program - Property of IBM 

Chart 07. Open Diskette. Input 

~i'kette Open Input 
from Chart 02 

$$B35401 

1. Get next OLBL extent. 

2. System file open 7 

«v No .. Unit exception? 
Yes Ves 

3. Get extent information for 
No 

DTF from OIB. 

4. More files to open? Bypass required 7 
No No 

Ves ~e. 
$$800101 

1. Process V0l-l label. 

2. Secured volume? 
Call $$BOOMSG 

Ves ( to print menage Call 

'" 
$$BOOSMO 

No 

$$BOOI05 C SVC 11 return to 
problem program 1. Process HORI labol. 

2. Another file to 
open? 

No 

Vo. 

( SVC2 '\ 
$SBOPEN .J 

64 IBM VSE/Adv. Functions Dlag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

Chart 08. Open Diskette. Output 

Diskette 
Open Output 

from Chart 02 

$$835400 r-- SS800101 

,. Control sequence operation. 

2. System file, and open 7 

~ File open, but no more extents' 

lve. 
No 

3. Use 018 to complete DTF. 

4. More files to open? Ves 

No 

Ves 

( SVC 11 return to 
problem program 

( Call ) 
SS8DPEN ------

$$800108 

1. Operator communi
cation. 

2. Continue response? 

Yes 

NO 

3. Cencel requested 7 

~ ____ Y~e~.< )~N~o~ __ ~ 

(
Cell SS80VDMO 
to dump VTOC ( Cell $SBODSPV ) 

to display VTOC 

Secured volume? 
No 

Ves 

SSBOOI02 

1. Cause duplicate 
data set? 

Ves 

No 

2. Determine extent 
limits. 

3. Delete duplicate and 
overlapped labels. 

$$BOOI03 

,. Space in VTOC 7 

No 

Ves 

2. At least' track 
available? 

No 

Ves 

3. Create and write 
new HOR' label. 

4. More files to open? 

No 

Yes 

5. Closa required 7 

Call 
SSBOOSMO 

Cell SSBOOMSG 
to print message 

Call SSBODMSG "\ 
to print message ) 

SVC l' return to 
problem program 

r-______ ~~ __ N __ O~ ;~V~e~s~--r_--------_, 

( Cell ) 
SSBOPEN ---- ( Cell 

...... ....:..$S;.;8;.;0:.;0:.;1.;;0_4_-" 

Charts 6S 



Licensed Program - Property of IBM 

APPENDIX Al MASTER ~ MESSAGE ~ 

The messages in this list are arranyed in sequence by message number. 
The message numbers of all logical DeS messages start with the digit 4. 
The second digit of the message number indicates the type of file or 
routine issuing the message. The indicators are: 

o Punch file 
1 = Magnetic tape file 
2 = ISAM 
3 Sequential DASD. diskette - open input 
4 Sequential DASD. diskette - open output 
5 Sequential DASD. diskette - close 
6 = DAM - input 
7 = DAM - output 
8 ~ Common open/close routines 
9 = Sequential DASD - work file 
V VTOC display routines 

The alphabetic character after the message number is the action 
indicator. These indicators are: 

Action 
Indicator 

A - Action 

D - Decision 

Meani nq 

The operator must perform a specific manual action 
before the program can continue. For example. mount. 
tape or ready an I/O device. 

The operator must make a choice of alternative courses 
of action. 

I - Information The message does not require immediate operator action. 
For example: this type of message can indicate 
successful completion of a problem program. 

The number(s) in the volume column refers to the documentation of the 
message issuing routine(s) in the following VSE/Advanced Functions 
Diagnosis Reference manuals: 

1. ~ Volume ~ General Information ADA Imperatiye Macros. 

2. ~ Volume 2..t llJ1a.. 

3 • ~ Vo 1 u m e..ll .DA.I1.&ll..d ll.A.I1t.. 

4 • ~ Va 1 u me II ~.f.2J:..DA.Sll 

For further detailed information on these .essages. see YSEtAdyanced 
Functions Messages. 

66 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



licensed Program - Property of IBM 

IMessagel 

I 
Number Module 

I 
I 
I 

I 
I 

4110A 

41111 

4112A 

41130 
41131 

4114A 

4115A 

4116A 

41170 

41180 
41181 

4119A 

41201 

41221 

41230 
41231 

$$BOCPT3 
IJJTOPN 

$$BOCPT4 
IIJJTOPN 

!$$BOCPT3 
1$$BOCPT4 
IIJJTOPN 

$$BOCPT4 
IJJTOPN 

$$BOCPT4 
IIJJTOPN 

!$$BCCPT4 
IIJJTOPN 

!$$BOCPT4 
IIJJTOPN 

IJJTOPN 

! IJJTOPN 
! 

$$BOCPT3 
IJJTOPN 

IJJTOPN 
!IJJTSRV 

IJJTEOF 

!IJJTOPN 
I 

Volume 

2 
2 

2 
2 

2 
2 
2 

2 
2 I 

2 
2 

2 
2 

2 
2 

2 

2 

2 
2 

2 
2 I 

2 

2 
! 

Message 

NO VOLl lBl FOUND TlBl=xxxxxx filename SYSxxx=cuu 

NO VOLl lBl FOUND filename SYSxxx=cuu 

VOL SERIAL NO. ERROR TlBl=xxxxxx filename SYSxxx=cuu 

NO HDRI lBl FOUND filename SYSxxx=cuu 

FILE SEQ NO. ERROR filename SYSxxx=cuu 

FILE SER. NO. ERROR TlBl=xxxxxx filename SYSxxx=cuu 

VOLUME SEQ. NO. ERROR filename SYSxxx=cuu 

NO TM FOUND ON REAOBK filename SYSxxx=cuu 

FILE 10 ERROR. REAOBK filename SYSxxx=cuu 

FILE UNEXPIRED filename SYSxxx=cuu 

TAPE POSITIONED WRONG filename SYSxxx=cuu 

EOV ENCOUNTERED SYSxxx=cuu 

WRONG POSITN, REAOBK filename SYSxxx=cuu I 1-4-1-2-4-I--~II-J--J-T-S-R-V--~---2--~I-T-O-O--M-A--N-Y--U-H-l-'-S---f-i-I-e-n'-a-m-e--S-Y--S-x-x-x-=-c-u-u-------------------------

141250 I IJJTOPN 2 VOLl lBl FOUND filename SYSxxx=cuu 
141251 
141261 IJJTSRV 2 EOV ENCOUNTERED filename SYSxxx=cuu 
I 

I 141281 IJJTOPN 2 ACCESS TO FILE NOT AllOWED filename SYSxxx=cuu 

1 
!IJJTSRV 2 

!4130A IJJTEOF 2 EOF OR EOV INQUIRY filename SYSxxx=cuu 

14131D IJJTEOF 2 BLOCK COUNT ERROR filename SYSxxx=cuu DTF=xxxxxx 
I 2 lBl=xxxxxx 
I 
14132D $$BOCPT4 2 ERROR IN FILE 10 filename SYSxxx=cuu 
! 11JJTOPN 2 
/ 
/41330 $$BOCPT4 2 ERROR IN IWR lBl filename SYSxxx=cuu 
1 IJJTOPN I 2 
I 

Figure 14 (Part 1 of 8). Master Error Message list 

Appendix A: Master Error Message list 67 

1 
1 



Licensed Program - Property of IBM 

!Mess<lQel 1 
ChartlVolume INumber IModule 1 Message 

1 
14140A IJJTSRV 2 NO ALTERN DRIVE ASSGN filename SYSxxx=cuu 1 

1 
141511 IJJTOPN 2 HDRI LBL INFORMATION filename SYSxxx=cuu 
1 2 
I 
14170A $$BJCOPT 2 FILE PROTECTED TAPE filename SYSxxx=cuu 
I 
14171A $$BJCOPI 2 UNEXPIRED FILE SYSxxx=cuu 
I 
14172A IJJTOPN 2 INVALID LABEL SET SYSxxx=cuu 

1 
141831 $$BJCOPT 2 INVALID LOGICAL UNIT filename SYSxxx=cuu I 
1 IIJJTOPN 2 1 I I 

1$$BOCPT2 14184D 2 NEED FILE PROTECT RNG filename SYSxxx=cuu I 1$$BOCPT3 2 
IIJJTSRV 1 2 

I 
I 

41851 $$BOMRCE 2 INVALID FORMAT RECORD 

I $$BOMRCE 2 

41901 IJJTOPN 2 LOG. UNIT NOT ASSIGNED TO A TAPE filename SYSxxx=cuu 1 
I 

41911 IJJTLOG 2 ERROR WHILE PROCESSING FILE filename SYSxxx=cuu RC=nn 1 
IIJJTOPN 2 

I IIJJTSRV I 2 
IIJJTTOP 2 

141921 IJJTSRV 2 VOLUME ACCESS DENIED filename SYSxxx=cuu I 
41931 IJJTSRV 2 FILE ACCESS DENIED filename SYSxxx=cuu I 
40001 CDMOD 2 RETRY I 

1$$BClOSP 1 2 

I 1$$BClOSP I I 2 
I$$BERRTN I 2 

4nOOl IJJGSDVH 3-93 4 NO LABEL SPACE IN VTOC I 
I 

44001 $$BODI03 2 I 

4nOl1 IJJGSDVH 3-93 4 NO FORMAT 1 LABEL or NO RECORD FOUND I 
42011 $$BOIS02 1 3 I I$$BOISOA 3 

43011 $$BOSI05 2 I 
1 

42021 $$BCISOA 3 NO RECORD FOUND 1 

4nD31 IJJGDAII 3-66 4 NO FORMAT 3 LABEL FOUND I IIJJGDAI2 1 3-67 
IIJJGSDI3 I 3-42 
IIJJGSDI4 3-43 
IIJJGSDW3 3-48 

4nD4I IJJGSDVH 3-93 4 NO FORMAT 4 LBL IN VTOC 

42041 $$BOIS02 3 NO FORMAT 4 LBl IN VTOC or NO RECORD FOUND 
I 

Figure 14 <Part 2 of 8). Master Error Message list 

68 IBM VSE/Adv. Functions Diag. Ref. LIOeS Volume I 



Licensed Program - Property of IBM 

IMessagel 
I Number I Module 

14n051 1$$BOPEN2 
I I$$BOPLBL 
I I$$BCLLBL 
I I$$BOSDWI 
I I$$BCCPTI 
I IIJJGDARL 
I IIJJTSRV 

I 
IChart 

I 
I 
1 3-97 

I I 
IVolumelMessage 

1 IUNRECOVERABLE I/O ERROR 

I I 
I I 

�------~--------~----4------r---------------------------------------------------14n061 1JJGSDGC NO STANDARD VOL 1 LABEL or NO RECORD FOUND 
I------~Ir--------r----~------I 
1142061 $$BOIS02 3 II 

1$$BC1SOA 3 

143061 I$$BOOIOI 2 I 
I 

I 
I 
I 

I 
I 
I 
I 
I 

45061 

48061 

4n071 

43071 

44071 

4n08D/I 

4608D 

4329D 

4n31D 

43321 

4n330 

44330 

4n34I 

4n361 

43371 

44371 

4n38D 

4639D 

$$BODI04 

$$BOPEN4 

IJJGSDRL 

$$B35400 

$$B35401 

$$BOKULI 
1$$BIKULl 
I$$BOULII 

3-96 

3-11 
3-5 I 
3-5.11 

I$$BOULOI 13-11.1 

$$BODACL 

$$B35401 

IJJGSDI2 3-41 

$$BODI05 

IJJGOA03 3-62 
IIJJGSD04 3-30 

!$$BODI02 I 
IIJJGSD06 ! 3-32 
IIJJGSOW3 I 3-48 

!IJJGSDW3 ! 3-48 

1$$B35401 I 
1$$BOOI06 I 

1$$B35400 1 
1$$BOOI07 I 

1 $$BI KULl 1 3-5 
1$$BOULIl 13-5.1 

I$$BODACL 1 

4n40D IJJGSD04 
IIJJGDA03 

2 

1 

4 

2 

2 

4 

3 

2 

4 

2 

4 

2 

4 

4 

2 

2 

4 

3 

I 
I 
I 
I 

!NO RECORD FOUND 
I 
I 
I 
I 

INO UTLO FILE MARK FOUND or NO RECORD FOUND 

I 
I 

EXTENTS NOT EXHAUSTED 

VOLUME SEQUENCE ERROR 

I 
IEQUAL FILE IN VTOC 

CURRENT FILE LBL DELETED 

NO MORE AVAIL/MATCH EXTENT 

CHAINING TO SYSTEM UNIT 

I 
1 

IUSER HDR LBL IS NOT STD 
I 

IUSER TRL LBL IS NOT STD 

EXTENT OVERLAY ON ANOTHER 
I 

Figure 14 (Part 3 of 8). Master Error Message List 

Appendix A: Master Error Message List 69 

I 



Licensed Program - Property of IBM 

iMessagel I I I 
INumber IModule IChart VolumelMessage 

142401 1$$801S02 1 I I 3 IEXTENT OVERLAPS ANOTHER 

14n41D 11JJGDA03 I 3-621 4 IEXTENT OVERLAP ON VTOC 
I 11JJGSD04 I 3-301 1 
142411 1$$BOIS02 I 
I-------r--------;-----+------+------------------------------------------------------
14n42D IJJGSDI4 NO MATCHING EXTENT 
1-4-2-4-3-r--+I-$-$-B-O-R-T-V-l-+,I-----+---3---+I-I-N-V--E-X-T-E-N-T--H-r-/-L-O--L-r-M-I-T-S---------------------------------

1-4-n-4-4-D--+I-I-J-J-G-D-A-0-3-+-----+---4---+1-0-V-E-R-L-A-P--O-N--U-N-E-X-P-I-R-E-D--F-r-L-E-------------------------------

1 ______ -rII_J_J_G_S_D_0_4~1----~------+I------------------------------------------__________ __ 
14n451 IIJJGDACX II 4 I TOO MANY EXTENTS 
II IIJJGSDSF I II 

IIJJGSDXT 
I------+---------~--~------I 
142451 $$BOIS06 3 I 

144451 $$80DI08 2 1 

142461 1$$BOIS07 3 IDISCONT INDEX EXTENTS 

14n47A 11JJGSDWl 4 IEXTENTS NOT ON SAME UNIT 

14n48I i1JJGSDSF 4 ISYSIN/SYSOUT UNSUPPORTED 
I I code is still in the modules. 
143481 $$835400 occure anymore. 

but situation cann't 

I------~--------r_--~------r_---------------------------------------------------142491 $$BOI505 

14n50D IIJJG5DXT 
I 
I 
I 
I 
I 
I 
I 
I 

------
4450D 

4n51I 

42521 

4n541 

1$$BODI08 

IJJGDACX 

$$BOIS05 

IJJGDART 

4 

2 

3-58 4 

3 

3-68 4 
1-4-2-5-4-I--~I-$-$-B-0-I-S-0-5--rl-----+---3---
I 
I 
I 
I 
I 
I 
I 

I 
I 

4n55A 

4355A 

4855A 

4856A 

1$$BORTV2 

!IJJGDAVC 
IIJJGSDLP 

$$80DI01 

$$BOPEN4 

$$BOPEN4 

I I 

I 3-591 4 
3-981 

2 

1 

1 

DATA TRACK LIMIT INVALID 

INO MORE AVAILABLE EXTENTS 

1 

SYSUNITS NOT IN SEQUENCE 

DISCONT TYPE 1 EXTENTS 

DSKXTN ENTRY TABLE FU L L 

WRONG PACK. MOUNT nnnnnn 

I 
~lRONG MODULE SIZE 

14n581 I1JJGDAOl 3-601 4 INa 
I 

EXTENT FOR OUTPUT FILE 
I I1JJGSDRL 3-951 I 
1-4-3-5-8-1--+1-$-$-8-3-5-4-0-0-+-----+1---2---1 L--__________________________________________________________________________________________ ~ 

Figure 14 (Part 4 of 8). Master Error Message List 

70 IBM VSE/Adv. Functions Diag. Ref. LIOeS Volume 1 



J 

Licensed Program - Property of IBM 

IMessagel 
IChart vOlumelMeSSage I Number IModule 

I 

I 
14n590 !IJJGS002 3-29 4 INVALID EXTENT 

11JJGSOI4 3-43 I 
1 11JJGDACX 3- 58 1 

I 
IIJJGSD05 3-31 

1 I IJJGSDLP 3-98 

14n59I IJJGSDRL 3-95 4 1 

143591 ! $$BODI05 2 I I 1$$BOOI06 

44591 $$BOOI03 2 1 I 

I I 
48591 $$BOPEN2 1 1 

EXTENTS. ALL BYPASSED 
I 

4n60I IJJGS001 3-28 4 NO 1 
IIJJGSOIl 3-39 1 

I 
11JJGSOSF 3-23 I 
11JJGSOWl 

I 
3-46 I 

IIJJGDA01 3- 60 1 I 
11JJGDA02 3-61 I 
IIJJGDA04 3-63 I 

I 
1 43601 $$B35401 2 

14n61I 
1 

IJJGSORL 3-95 4 INVALID DLBL FUNCTION I 

1 
IJJGDARL 3-57 

1 

14261I $$BOIS01 3 I 
1 $$BORTV1 I 

14361I 
I 

$$B35400 2 I 

148611 
1 

$$BOPEN2 1 

I 
1 
142621 $$B01S05 3 NO PRIME DATA EXTENT 

I $$BORTV1 I 
1 

1 142631 $$BOIS07 3 LOAD FILE NOT CLOSED 
1 

1$$BOOI05 
I 

143641 2 INVALID HDR1 LABEL I 

I 1$$BOOI06 I 144651 $$BOOI02 2 EQUAL FILE LABEL IN VTOC 
1 1 
14n66O IJJGS014 3-43 4 1 TRACK USER LBL EXTENT 1 

IJJGS005 3-31 I IJJGOA02 3-61 

142661 
I 

$$BOIS05 3 
1 I 

14n67I IJJGS004 3-30 4 CVH PROCESSING FAILURE 

I IIJJGSOVH 3-93 
I IJJGVOOO 3-77 
I IIJJGV010 3-85 
I IJJGOA03 3-62 

I 
14n680 IJJGSOI4 3-43 4 USER LBLS EXHAUST FIRST EXTENT 1 
I IJJGSD05 3-31 

1 
I 
14n680 IJJGOA02 3-61 4 
I 
142691 $$BOIS07 3 FILE IS OPEN FOR ADD 

42701 $$BORTV2 3 1ST XTNT CD NOT INDX VOL 

Figure 14 (Part 5 of 8). Master Error Message List 

Appendix A: Master Error Message List 71 



Licensed Program - Property G~ IBM 

IMessagel 
lNumber IModule IChart VolumelMeSSage 

42711 $$BOIS01 3 

42721 $$B01S08 3 

4n74I IJJGSDBS 3-37 4 
l1JJGSDW1 I 3-46' 
lIJJGDAMX I 3-52 

4n75I IIJJGSDBS I 3-37 4 
I1JJGSDI2 1 3-41 

4n76D !IJJGSDLP! 3-98 4 
l1JJGDAVC 1 3-591 

4n77D 

4n79I 

4n801 

IJJGSDXT 

!$$BOFLPT ! 
I$$BOPLBL I 

3-34 4 

1 

ISSBCLLBL I I 
I_S_SB_o_P_EN_2-+t' ____ ,1 ----
1$$BCEOV1 2 
1$$BCCPTl 1 

SSBOTSVA I 
IJDPRT 
IJJTSRV 

$SBOSVL T ! 3-4 
$SBOSFBL I 3-3 1 
IJJGMFBA 3-18' 
IJJGSDVH 1 3-931 
1JJGSDUL 13-1001 
IJJGDARL 1 3-571 
IJJGDAI2 1 3-67 
IJJGVDOO 1 3-77 
IJJGVD10 1 3-85 
1JJGSDFP 13-102 
IJJGMMBF 3-21 
IJJGDAMX 3-52 

SSBOSFBL 3-3 

4 

4 

48801 SSBOPEN1 1 
1$$BCLOS2 
1--------4-----+------
ISSBCEOV1 2 

EXTENT INFO NEEDED 

MOD AND DTF INCOMPATIBLE 

BLKSIZE OPEN FAILURE 

BLKSIZE NOT MULT OF RECSIZE 

VOL SER NOT XXXXXX 

EXTENT ENTRY ERROR - RETRY 

GETVIS FAILED 

INVALID FILE TYPE 

I------~--------~--~------~---------------------------------------------------14n811 1JJGSDRL 3-95 4 NO LABEL INFORMATION 
1 I1JJGSDMO 3-22 I 
1 IIJJGSDSF 3-23 I 
1 IIJJGDARL 3-57 

111-48-8-1-1--~C-L-OS-E----r---~--1---111 
ISSBCLLBL 
ISSBOPEN2 
ISSBOPLBL 

1 1--------4-----+------
I IS$BCCPT1 2 

'

I I$SBCEOVI I 1$$B35400 
IIJJTOPN 

1-4-2-8-2-I--+I-s-S-B-o-r-s-O-7-+-----+---3----'-r-S-A-M--N-U-L-L--F-I-L-E------------------------------------------
I 

Figure 14 (Part 6 of 8). Master Error Message List 

72 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

Messagel 
ChartlvolumelMessage Number IModule 

4n831 !IJJGSDGC 3-97! 4 INVALID LOGICAL UNIT 
IIJJGSDNV 3-991 
IIJJGSDRL 3-951 
IIJJGDACX 1 3- 58 1 

43831 1$$B35401 1 2 

44831 $$B35400 2 

48831 /$$BOPEN4 1 I 1 
I$$BOCPOI 2 I 1$$BOCP02 
1 $$BOCPll 
1$$BOCP12 I I$$BOUROI 

48840 !$$BOPENI 1 NEED FILE PROTECT RNG filename SYSxxx=cuu 
1 
1$$BOCP02 2 
$$BOCPll 1 

1$$BOCPI2 1 

48851 $$BOPENC 1 SYSxxx AND SYSyyy ARE ASSIGNED TO THE SAME PHYSICAL UNIT 

4n86D !$$BOPENI 1 TAPE UNIT NOT READY 
IIJJTSRV 2 

4887I $$BERRTN 2 SYS FILE EXTENT EXCEEDED 

48881 $$BERRTN 2 EOF ON SYSTEM FILE 

4n891 IJJGSDSF 3-23 4 WORKFILE NOT SUPPORTED FOR SYSFIl 

4n90I IJJGSDVH 3-93 4 SVA EXTENT AREA EXHAUSTED 
IIJJGVDOO 3-771 
IIJJGVDI0 I 3-851 
IIJJGSDFP 3-102 1 

1 
48901 $$BOFlPT 1 1 

4n93I IJJGSDRL 3-96 4 UNRECOVERABLE I/O ERROR 

4n941 IJJGSDCI 3-94 4 CISIZE INCORRECT 
IIJJGMIOI 3-24 

4n95I /IJJGSDRL 3-96 4 (PHASENAME) NOT IN SVA 
I$$BOSFBL 3-3 I I IIJJGMLLM 3-19 
IIJJGDAMX 3-52 1 
1---------+-----+------
I$$BOTSVA 2 
IIJJTSRV 1 

4n96I IIJJGSDSF 3-23 4 IMPROPER DTFSD SYSFIL OPEN 

4n97I /IJJGDA03 3-62 4 OVLAP EXPIRED SECRD FILE 
IIJJGSD04 3-301 1 

4n98I !IJJGSD04 3-30 4 !OVLAP UNEXPRD SECRD FILE 
IIJJGDA03 3-62 1 

4n99D IIJJGSDI2 3-41 4 IDATA SECURED FILE ACCESSED 
IIJJGDAIl 3-661 1 

Figure 14 (Part 7 of 8). Master Error Message List 

Appendix A: Master Error Message List 73 



IMessagel 
I Number I Module 
I 
I 

I 
I 

I 

4HOII 

4H02I 

4H03I 

IJDPRT 

IJDPRT 

IJDPRT 

Licensed Program - Property of IBM 

I I I IChart VolumelMessage 

2 INVALID ASA CONTROL CHAR nn filename SVSxxx 

2 PRTOV USED BUT NO PRINTOV SPECIFIED filename SVSxxx 

2 CNTRL USED BUT NO CONTROL SPECIFIED filename SVSxxx 

I 
I 
4H04I IJDPRT 2 PHASE IJDPRT INTERNAL ERROR RC=nn filename SVSxxx 

I 
I 

I 
I 

I 
I 
I 

I 
I 

I 
I 
I 
I 

I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

4H05I 

4H061 

4MRII 

4MR21 

4POII 

4P02D 

4V031 

4V04I 

4V06I 

4V09I 

4V67I 

4V95A 

4V96A 

P200I 

IJDPRT 2 

IJDPRT 2 

MRMOD 2 

MRMOD 2 

$SBERPTP 2 

SSBERPTP 2 

SSBODSPW 1 

$SBODSPW 1 
I$SBOVDMP I 

!$$BOVDMO 1 
I$SBOVDMP 1 

ISSBODSPW ! 1 
ISSBOWDMP I I 

!IJJGVDOO ! 3-83! 4 
IIJJGVDIO 1 3-901 

!S$BODSPV 
3-851 

1 
IIJJGVDIO 4 

ISSBODSPV 1 
IIJJGVDI0 1 3-85 4 

ISSBOPR3 I 2 

INVALID RECORD LENGTH filename SVSxxx 

DTF INCORRECT RC=OI filename SVSxxx 

EXTERNAL INTERRUPT I/O ERROR filename SVSxxx 

SCU NOT OPERATIONAL filename SVSxxx 

DATA CHECK SYSxxx=cuu 

DATA CHECK SVSxxx=cuu 

NO RECORD FOUND filename SVSxxx 

NO RECORD FOUND filename SVSxxx. or 
NO FORMAT 4 LBL IN VTOC filename SVSxxx 

NO STANDARD VOLUME LABEL filename SVSxxx 

NO RECORD FOUND filename SVSxxx 

CVH PROCESSING FAILURE 

SYSLOG OR SYSLST 

SVSLST NOT A PRINTER 

3800 PRINTER EXTENDED BUFFERING MODE NOT USED 
REASON CODE = nn 

Figure 14 (Part 8 of 8). Master Error Message List 

Note: A- and D- type messages are not issued by the B-transient message 
writer. The respective message writers call $$BOMSVA which in 
turn transfers control to the SVA message writers in order to 
issue the message from the SVA. 

74 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 

I 
I 
I 
I 

1 
1 

I 
I 

I 
1 
1 
I 



licensed Program - Property of IBM 

APPENDIX ~ ASCII CONVERSION TABLES 

ASCII to E8COIC Co".,pond.nc. (0/0 to 3/15) 

ASCII 

I Bit Cui 
Charaeter Col Row 

Pottern 

I Row 

I 
I (in H.,<) 

NUL 0 I 0 OOQ~_--t 0000 0 I 0 
SOH 0 I 0000 0001 0 I 
STX 0 2 0000 I 0010 0 2 
ETX 0 3 0000 I 0011 0 3 
EOT 0 4 0000 0100 3 7 
ENQ 0 5 0000 0101 2 0 
ACK 0 6 0000 0110 2 E 
BEL 0 7 0000 0111 2 F 
BS 0 8 0000 1000 1 6 
HT 0 9 0000 1001 0 5 
IF 0 10 0000 1010 2 5 
VT 0 II 0000 1011 0 B 
FF 0 12 0000 1100 0 C 
CR 0 13 0000 1101 0 0 
SO 0 14 0000 1110 0 E 
SI 0 15 0000 1111 0 F 
OLE 1 0 0001 0000 1 0 
DCl 1 I 0001 0001 I 1 
DC2 1 2 0001 0010 I 2 
OC3 I 3 0001 0011 I 3 
DC4 I 4 0001 0100 3 C 
NAK 1 5 0001 0101 3 0 
SYN I 6 0001 0110 3 2 
ETB 1 7 0001 0111 2 6 
CAN I 8 0001 1000 I 8 
EM I 9 0001 1001 1 9 
SUB 1 10 0001 1010 3 F 
ESC 1 11 0001 I 1011 2 7 
FS 1 12 0001 1100 1 C 
GS 1 13 0001 I 1101 1 0 
RS 1 14 0001 1110 1 E 
US 1 15 0001 1111 1 F 
SP 2 0 0010 0000 4 0 
I 2 1 0010 0001 4 F 
" 2 2 0010 0010 7 F 
I 2 3 0010 0011 7 B 
S 2 4 0010 0100 5 B 
% 2 5 0010 0101 6 C 
& 2 6 0010 0110 5 0 

2 7 0010 0111 7 D 
2 B 0010 1000 4 D 
2 ? 0010 1001 5 0 . 2 10 0010 1010 5 C 

+ 2 II 0010 1011 4 I E 
2 12 0010 1100 6 B 

- 2 13 0010 
I 

1101 6 0 
2 4 0010 1110 4 B 

/ 2 15 0010 1111 6 1 
0 3 0 0011 0000 F 0 
1 3 I 0011 0001 F I 
2 3 2 0011 0010 F 2 
3 3 3 0011 0011 F 3 
4 3 4 0011 0100 F 4 
5 3 5 0011 0101 F 5 
6 3 6 0011 0110 F 6 
7 3 7 0011 0111 F 7 
8 3 8 0011 1000 F 8 
9 3 9 0011 1001 F 9 
, 3 10 0011 1010 7 A 

3 11 0011 1011 5 E 
< 3 12 0011 1100 4 C . 3 13 0011 1101 7 E 
> 3 14 0011 1110 6 E 
? 3 15 0011 1111 6 F 

(BCOIC 

Bit 
Pottern Comment, 

0000 
I 0000 

0000 0001 
0000 0010 
0000 0011 
0011 0111 
0010 1101 
0010 1110 
0010 1111 
0001 0110 
0000 0101 
0010 010 
0000 1011 
0000 1100 
0000 1101 
0000 1110 
0000 1111 
0001 0000 
0001 0001 
0001 0010 
0001 0011 
0011 I 1100 
0011 1101 
0011 0010 
0010 0110 
0001 1000 
0001 1001 
0011 1111 
0010 0111 
0001 1100 
0001 1101 
0001 1110 
0001 1111 
0100 0000 
0100 1111 logical OR 
0111 1111 
0111 1011 
0101 1011 
0110 1100 
0101 0000 
0111 1101 
0100 1101 
0101 1101 
0101 1100 
0100 1110 
0110 1011 
0110 I 0000 Hyphen Minus 
0100 1011 
0110 0001 
1111 0000 
1111 0001 
1111 0010 
1111 0011 
1111 0100 
1111 0101 
1111 0110 
1111 0111 
1111 1000 
1111 1001 
0111 I 1010 
0101 1110 
0100 1100 
0111 1110 
0110 1110 
0110 1111 

Figure 15 (Part 1 of 2). ASCII to EBCDIC Conversion 

Appendix B: ASCII Conversion Tables 75 



Licensed Program - Property of IBM 

ASCII 10 EBCDIC Corre'pondence (4/0 10 7/15) 

ASCII EBCDIC 

I Bit Col I Row Bit 
Character Col I Row Pattern Pattern Comments 

I (in Hex) 

ln, 4~_L ~JOO I 0000 ~C DIll--+-- 1100 
L-A 4 1 0100 0001 ~ 1--+- 1100 0001 

6 4 2 0100 0010 -~---r-- 0010 
C 4 3 0100 0011 C 3 1100 0011 
D 4 4 0100 0100 C 4 1100 0100 
E 4 5 0100 I 0101 C 5 1100 0101 
F 4 I 6 0100 0110 C 6 1100 0110 
G 4 7 0100 0111 C 7 1100 0111 
H 4 8 0100 r-+~ C 8 1100 1000 
I 4 9 0100 C 9 1100 1001 
J 4 10 0100 1010 D 1 1101 0001 
K 4 11 0100 1011 D 2 1101 0010 
L 4 12 0100 1100 D 3 1101 0011 
M 4 13 0100 1101 D 4 1101 0100 
N 4 14 0100 1110 D 5 1101 0101 
0 4 15 0100 I 1111 D 6 1101 0110 
p 5 0 0101 0000 D 7 1101 0111 
Q 5 I 0101 0001 D 8 1101 1000 
R 5 2 0101 0010 D 9 1101 1001 
S 5 3 0101 0011 E 2 1110 0010 
T 5 4 0101 0100 E 3 1110 0011 
U 5 5 0101 0101 E 4 1110 0100 
V 5 6 0101 0110 E 5 1110 0101 
W 5 7 0101 0111 E 6 1110 0110 
X 5 8 0101 1000 E 7 1110 0111 
Y 5 9 0101 1001 E 8 1110 1000 
Z 5 10 0101 1010 E 9 1110 1001 
[ 5 11 0101 1011 4 A 0100 1010 

" 5 12 0101 1100 E 0 1110 0000 Reverse Slant 
] 5 13 0101 1101 5 A 0101 1010 
~ 5 14 0101 1110 5 F 0101 1111 La ieal N T 

5 15 0101 I 1111 6 D 0110 1101 Underscore , 6- 0 0110 0000 7 9 0111 1001 Grave Accent 
a 6 1 0110 I 0001 8 1 1000 0001 
b 6 2 0110 0010 8 2 1000 0010 
c 6 3 0110 0011 8 3 1000 0011 
d 6 4 0110 0100 8 4 1000 0100 . 6 5 0110 0101 8 5 1000 0101 
f 6 I 6 

~::~~~ 8 I 6 1000 I 0110 
9 6 7 8 7 1000 0111 
h 6 8 0110 1000 8 8 1000 1000 
i 6 9 0110 1001 8 9 1000 1001 

i 6 10 0110 1010 ~ I 1001 0001 
k 6 11 0110 I 1011 9 2 1001 0010 
I 6 12 0110 1100 9 3 1001 0011 
m 6 13 0110 1101 9 4 1001 0100 
n 6 14 0110 1110 9 5 1001 0101 
a 6 15 0110 1111 9 6 1001 0110 
D 7 0 0111 0000 9 7 1001 0111 
Q 7 I 0111 0001 9 8 1001 1000 , 7 2 0111 I 0010 9 9 1001 1001 
s 7 3 0111 0011 A 2 1010 0010 
1 7 4 0111 0100 A 3 1010 0011 
v 7 5 0111 J 0101 A I 4 1010 0100 
v 7 6 0111 0110 A 5 1010 0101 
w 7 7 0111 0111 A 6 1010 0110 
x 7 8 0111 1000 A .!. 7 1010 0111 

~ 7 9 0111 1001 A-r 8 1010 1000 
7 10 0111 1010 A 9 1010 1001 
7 11 0111 1011 C 0 1100 0000 

I 7 12 0111 1100 6 A 0110 1010 V~rticol li~ 
7 13 0111 1101 D 0 1101 0000 

~ 7 14 0111 1110 A 1 1010 0001 Tild. 
DEL 7 15 0111 1111 0 J 7 0000 I 0111 

Figure 15 (Part 2 of 2). ASCII to EBCDIC Conversion , 

76 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Progr~m - Property of IBM 

fiCO Ie to ASCII Corrl"IpondE'nc(' tX'OO' to X'S]') 

EBCDIC ASCII 

Col I Row 
8il 

I 8it 
Character Col I Row Commer'lk 

POlh~ln I Poltl:ln 
(in Hl"lt) 

NUL 0 : 0 0000 
I 

0000 0 I 0 0000 I 0000 
~OH 0 I 0000 0001 0 I 0000-· r- 0001 
STX 0 2 0000 0010 0 2 0000 0010 
ETX 0 3 0000 DOli 0 3 0000 0011 
HT 0 5 0000 0101 0 9 0000 ·1001 

DEL 0 7 0000 Olll 7 15 0111 1111 
V 0 B 0000 lOll 0 II 0000 1011 
FF 0 C 0000 1100 0 12 0000 1100 
CR 0 D 0000 1101 0 13 0000 1101 

SO a E 0000 1110 a 14 0000 1110 
SI 0 f 0000 1111 0 15 0000 1111 
DLE 1 0 0001 0000 1 0 0001 0000 
DCl I I 0001 0001 I I 0001 0001 

DC2 I 2 0001 0010 I 2 0001 0010 
DCl 1 3 0001 0011 I 3 0001 0011 
BS I 6 0001 0110 0 8 0000 1000 
CAN I 8 0001 1000 I 8 0001 ·1000 
EM I 9 0001 1001 I 9 0001 1001 
FS 1 C 0001 1100 I 12 0001 1100 
GS 1 D 0001 1101 I 13 0001 1101 
RS I E 0001 1110 I 14 0001 1110 
US I f 0001 1111 I 15 0001 1111 
Lf 2 5 0010 0101 0 10 0000 1010 
ETB 2 6 0010 OlIO I 7 0001 0111 
ESC 2 7 0010 0111 1 II 0001 lOll 
ENQ 2 D 0010 1101 a 5 0000 0101 
ACK 2 E 0010 1110 0 6 0000 OliO 
BEL 2 F 0010 1111 0 7 0000 0111 
SYN 3 2 0011 0010 I 6 0001 OliO 
EOT 3 7 0011 0111 0 4 0000 0100 
DC. 3 C 0011 1100 1 4 0001 0100 
NAK 3 D 0011 1101 1 5 0001 0101 
SUB 3 f 0011 1111 I 10 0001 1010 
SP • a 0100 0000 2 a 0010 0000 

4 A 0100 1010 5 11 0101 lOll 

• B 0100 lOll 2 1.4 0010 1110 
< 4 C 0100 1100 3 12 0011 1100 
( 4 I D 0100 1101 2 I 8 0010 I 1000 . 4 E 0100 • Ilia 2 11 0010 lOll 
I 4 f 0100 1111 2 I 0010 0001 Logical OR 

& 5 0 0101 0000 2 I 6 0010 OliO 
5 A 0101 1010 5 13 0101 1101 

S 5 B 0101 lOll 2 4 0010 0100 
5 C 0101 1100 2 10 0010 1010 

L 5 D 0101 1 1101 2 9 0010 1001 
5 E 0101 1110 3 11 0011 1011 

~ 5 f 0101 1111 . 5 14 0101 1110 logical NOT 
- 6 0 0110 0000 2 13 0010 1101 HypNon Minus 

I 6 1 OliO 0001 2 IS 0010 1111 

: 6 A OliO 1010 7 12 0111 1100 Vertical line 
6 B 0110 lOll 2 12 0010 1100 

'" 6 C OliO 1100 2 5 0010 0101 

- 6 D OlIO 1101 5 15 f--- 010'-_ 1111 UnderscOf"e 

> 6 I E 0110 1110 3 14 0011 1110 
? 6 f 0110 1111 3 15 0011 1111 

7 9 Dill 1001 6 0 0110 0000 Gt-owe Accent 
, 7 A 0111 1010 3 10 0011 1 1010 
'/I' 7 B 0111 1011 2 3 0010 0011 

l~ 7 C 0111 1100 4 0 0100 0000 
7 D 0111 1101 2 7 0010 0111 - 7 [ 0111 1110 3 13 0011 1101 . 7 1 0111 1111 2 2 0010 0010 

a 8 I 1000 0001 6 1 OliO 0001 
b 8 2 1000 0010 6 2 0110 0010 

Figure 16 (Part 1 of 2). EBCDIC to ASCII Conversion 

Appendix B: ASCII Conversion Tables 77 



Licensed Program - Property of IBM 

EBCDIC fa ASCII Corr('~pondt'nU' (X'S3' 10 X'F9') 

[BCDIC AICII 

Col I Row Bit : 8il 
Character Col Row Comment) Patte,., 

I Pottern 
(in He~) 

c 8 I 3 1000 0011 6 3 0110 ~ 0011 
d 8 • 1000 0100 6 • 0110 0100 
e 8 5 1000 0101 6 5 0110 0101 
f 8 6 1000 0110 6 6 0110 0110 

9 8 7 1000 0111 6 7 0110 0111 
h 8 8 000 1000 6 8 0110 1000 
; 8 9 1000 1001 6 9 0110 1001 

i 9 I 1001 0001 6 I 10 0110 1010 
k 6 . 0110 0 
I 9 3 1001 0011 6 12 0110 1100 
m 9 • 1001 0100 6 I J 0110 1101 
n 9 5 1001 0101 6 I' 0110 1110 
0 9 6 1001 0110 6 15 0110 1111 
p 9 7 1001 0111 7 0 0111 0000 
q 9 8 1001 1000 7 I 0111 0001 
, 9 9 1001 1001 7 2 0111 0010 - A I 1010 0001 7 I. 0111 1110 "Ide 
s A 2 1010 0010 7 ~ 3 0111 I 0011 
I A J 1010 0011 7 • 0111 0100 
u A • 1010 0100 7 5 0111 0101 
v A 5 1010 0101 7 6 0111 0110 
w A 6 1010 0110 7 7 0111 0111 
K A 7 1010 0111 7 8 0111 1000 

Y A 8 1010 1000 7 9 0111 1001 
z A 9 1010 100 7 I 0 Ie 10 
( C 0 1100 0000 7 II 0111 1011 
A C I 1100 0001 • I 0100 0001 
B C 2 1100 0010 • 2 0100 0010 
C C 3 1100 0011 • 3 0100 0011 
0 C • 1100 0100 4 4 0100 0100 
E C 5 1100 0101 • 5 0100 0101 
f C 6 1100 0110 • 6 0100 0110 
G C 7 1100 0111 4 7 0100 0111 
H C 8 1100 1000 4 8 0100 1000 
I C 9 1100 1001 4 9 0100 1001 

0 0 1101 0000 7 13 0111 I 1101 
J 0 I 1101 0001 • 10 0100 1010 

K D 2 1101 0010 • II 0100 10 II 
L D J 1101 0011 • 12 0100 1100 
M D • 1101 0100 • 13 0100 I 1101 
N D 5 1101 0101 • I' 0100 1110 

0 0 6 1101 0110 • 15 0100 1111 
P D 7 1101 0111 5 0 0101 0000 
Q 0 8 1101 1000 5 I 0101 0001 
R 0 9 1101 1001 5 2 0101 0010 

"- [ O· 1110 0000 5 12 0101 1100 Reve". Slanl 
I [ 2 1110 0010 5 3 0101 0011 
T [ J 1110 I 0011 5 • 0101 0100 

U [ • 1110 0100 5 5 0101 0101 
V E 5 1110 0101 5 6 0101 0110 
VI E 6 1110 0110 5 7 0101 0111 
x E 7 1110 0111 5 8 0101 1000 -. 
Y E 8 1110 1000 5 9 0101 1001 
Z E 9 1110 1001 5 10 0101 1010 
0 f 0 1111 0000 3 a 0011 0000 
I f I 1111 0001 3 I 0011 0001 
2 f 2 1111 0010 J 2 0011 0010 
J f 3 1111 0011 J 3 0011 0011 
4 f • 1111 0100 3 • 0011 0100 

5 f 5 1111 0101 3· 5 0011 0101 
6 F 6 1111 0110 3 6 0011 I 0110 
7 F 7 1111 0111 3 7 0011 0111 

8 f 8 1111 1000 3 8 00 II 1000 
9 f 9 1111 1001 J 9 0011 1001 

Figure 16 (Part 2 of 2). EBCDIC to ASCII Conversion 

78 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

APPENDIX ~ DASD AND TAPE LABELS 

This part contains information formarely provided in Chapters 2 and 3 of 
SC24-S212 (VSE/Advanced Functions Tape Labels) and SC24-5213 
(VSE/Advanced Functions DASD Labels). 

LABEL PROCESSING FOR 5M AND DAM .E..l!.ll ON ~ OR DISKETTE 

This section summarizes DASD label processing performed for sequential 
(consecutive) and direct access files. Processing performed for 
standard format-l and format-3 labels. and for user-standard labels is 
described under the headings "Input File" and "Output File." This 
section also describes diskette label processing. Processing performed 
for standard HDRI labels is described under the headings "Diskette 
Files: Input File" and "Diskette Files: Output File." 

SAM AND DAM INPUT FILE 

VOLl label 

The standard volume label (VOLI) must be on cylinder O. track O. record 
3 for CKD devices. and in block I for FBA devices. If it is not. the 
job is canceled. 

The VOll label, written by the IBM-supplied program for initializing 
disks, contains a permanent Volume Serial Number. 

Whenever a logical file is to be processed. IOCS reads and checks the 
VOLI label against the Volume Serial Number that you supply in an EXTENT 
statement. For a multiextent. or multivolume multiextent file. IOCS 
performs this check for each EXTENT. If an error is detected. a message 
is issued to the operator. The operator may mount the correct volume 
and continue processing or he may terminate the job. 

If you use EXTENT and omit the Volume Serial Number. IOCS checks the 
Volume Serial Number against the serial number. of the previous EXTENT. 
If there was no previous EXTENT. IOCS assumes that the correct volume is 
mounted and does not check the VOLI label. 

For a multivolume SAM file. onlY one extent is processed at a time. and 
thus, only one volume need be mounted at a time. 

For a multivolume DAM file, all extents (and therefore all volumes) are 
opened before any data records are processed. Thus, all volumes 
containing the file must be on-line ready at tha same timp. 

IOCS determines the location of the VTOC from the Data File Directory 
field of the VOLI label. 

If any additional volume labels (VOL2-VOL8) follow the VOLl label. IOCS 
ignores them. 

Format-l Label 

You must supply one DLBL or DLAB statement for the logical file to be 
processed, and one EXTENT statement for each separate area (extent) that 
the file occupies on the volume. The EXTENT statement may be omitted 
for a SAM file if the file is on a single volume and the DTF DEVADDR 
entry is included. 

If you use EXTENT for a sin9le volume file and omit the Symbolic Unit 
field, IOCS uses the SymbolIC Unit of the preceding EXTENT. If there is 
no preceding EXTENT, the Symbolic Unit specified in the DTF is used. If 
you also omit Symbolic Unit in the DTF. yoU get an error message. If 
you use EXTENT for a myltivolume ~~. you must supply. for each 
volume, at least the fIrst EXTENT statement containing the Symbolic 
Unit. In a multivolume DAM illg you must supply a sequential set of 
Symbolic Unit numbers in EXTENT for the volumes required. 

Appendix C: DASD and TAPE Labels 79 



Licensed Program - Property of IBM 

laCS locates the format-l label of the file to be processed by first 
reading the address of the VTae in the VOLl label and then searching the 
VTae for the format-1 label that contains the File Identification that 
you specify in OLBL The File Identification (field K1) was written in 
the key area of the label record when the file was created. Thus, you 
must specify the same identification now as you did when the file was 
written as an output file. 

If you use DLBL and omit the File Identification, laCS searches for the 
label in the VTae by using the OTF name that you specify in the OLBL 
Filename field. 

For label fields 01-021, IOeS OPEN routines check the appropriate fields 
against the corresponding information supplied by you in OLBL or in a 
OTF specification. Some fields provide information that is required 
during the processing of data, and other fields are not required by VSE 
and are ignored. See "Section Label Fields" (Figure 20 on page 105 and 
Figure 21 on page 107) for the details about each field of the label. 

Label fields 022-025 define the area (extent) of the volume where the 
data records are located (if user-standard labels have not been written 
for the file). The extent is one continuous area, and these fields 
contain the lower limit (starting address) and ~pper limit (ending 
address) of the area. They also contain a code for the type of records 
written in the area, and they provide the order in which this extent 
should be processed in a multiextent file. 

If a file is scattered over separate areas (extents) of the volume, a 
separate definition is required for each extent. Fields 026-029 define a 
second extent in the same way as fields 022-025 define the first. Fields 
D30-D33 define a third extent. 

If user-standard labels have been written for the file, IOeS previously 
established an area for them (the first track of the first extent 
specified for data records) and defined that area in the first Extent 
field (D22-025). In this case, the second Extent field (026-029) 
defines the first area that contains data records. 

In a SAM ~ laCS checks the starting and ending addresses you supply 
in EXTENT statements (for the data records) against the lower and upper 
limits in the corresponding Extent field of the label. If your 
specifications equal or fall within these limits, lacs makes the area 
you specify (in EXTENT) available for processing. If not, a message is 
issued to the operator. If you omit EXTENT, lacs does no checking and 
makes available the area defined by the label. 

If you have a multiextent SAM file, laCS checks your second EXTENT 
statement information against the second Extent field (or third with 
user-standard labels).IOeS performs this check after all the data 
records in the first extent have been processed, and then makes the 
second area available for processing. 

If you have a mUltiextent DAM file, laCS makes all the areas you specify 
in EXTENT statements available at the same time, when the file is first 
opened. 

If more than three Extent fields are used, IOeS reads the Pointer field 
(D34) and searches for the format-3 label that defines the additional 
extents. 

For a DAM ~ you can determine the exact areas of the volume that 
were specified when the file was created by including the OTFDA entry 
SXTNTXIT=Name and supplying an extent-processing routine. lacs branches 
to your routine after each EXTENT statement is processed. IOeS stores, 
in register 1. the address of the 14-byte field that contains the 
information from the Extent field of the label that corresponds to the 
EXTENT statement just processed. From this field you can obtain. for 
example. the lower and upper limit of each extent, and save them to 
check the address of data records. At the end of your routine. return 
control to IOCS by issuing a LBRET macro instruction. 

If you include the OTF lABADDR entry to indicate that user-standard 
labels are to be processed, laCS branches to your label routine after 
processing the standard labels. At the end of your routine. return 
control to IOCS by issuing a lBRET macro instruction. 

You can control the processing of any remaining label fields by the 
operand in the LBRET instruction. A LBRET 3 instruction permits lacs to 
update (rewrite) the label read and pass you the next label; a LBRET 2 

80 IBM VSE/Adv. Functions Diag. Ref. lIacs Volume 1 



licensed Program - Property of IBM 

instruction permits the processing of another label; a lBRET 1 
instruction terminates the processing of user labels. 

Format-3 label 

If more than three extent fields were required when the file was 
created, lacs set up and created a format-3 label for the additional 
extents. 

On input. lacs searches for the format-3 label when it reads another 
EXTENT after the third extent of the format-l label has been processed. 
IOCS reads the address of the format-3 label from the Pointer field 
(D34) of the format-1 label. 

For a SAM ~ lacs searches for a second format-3 label if it reads 
another EXTENT after the 13th extent of the first format-3 label has 
been processed. lacs reads the address of the second format-3 label 
from the Pointer field (D38) -of the first format-3 label. 

A DAM file permits the use of only one format-3 label. 

lacs processes the extent fields of the format-3 label in the same 
manner as those in the format-1 label. 

User-standard label 

When user-standard labels (UHl/UTl) are to be checked and logical laCS 
macros are used for the file, DTF lABADDR=Name must be specified. If it 
is not specified. IOCS bypasses all user-standard labels. 

When physical lacs macros are used for a file and DTFPH is specified, 
lABADDR=Name must be included if user-standard header labels (UHl) are 
to be checked. IOCS does not provide for user checking of user-standard 
trailer labels (UTl) with the DTFPH. 

For a SAM ~ lacs provides for checking user-standard 'header labels 
after ~checks the standard Vall and format-1 labels. In a multivolume 
file, laCS provides for checking user-standard header labels on each 
volume when that volume is ready to be processed. 

For a DAM ~ IOCS reads the user-standard header label after it 
checks the standard Vall and format-1 labels of a single-volume file and 
makes the label available to you. In a multivolume file. lacs processes 
all labels when the file is initially opened. 

At that time. IOCS checks the standard VOll and format-1 labels on the 
first volume, and then reads the user-standard header labels on the 
first volume. and makes the label available to you. 

Next. laCS checks the standard labels on the second volume and reads 
the user-standard header labels on that volume. label processing 
progresses in this manner through all on-line volumes. before any data 
records are processed. 

laCS provides for user checking of user-standard trailer labels on an 
end-of-volume or end-of-file condition. IOCS indicates the status of 
the file through the low-order byte in register O. The indication is 0, 
V. or F; meaning open. end-of-volume, or end-of-file. respectively. 

The input file (such as a card reader) that contains the user's 
information for checking user-standard labels must be opened before the 
file with the UHl labels. This is done by specifying the 
label-information file ahead of the labeled file in the same OPEN 
instruction, or by issuing a prior, separate OPEN instruction. 

laCS identifies the user-standard labels by UHl or UTl in the first 
three bytes of the label. 

lacs reads each user-standard label. one at a time. from the partition 
GETVIS area. laCS supplies the address of the area into which the 
labels are read in register 1. 

After a label is read in, IOCS branches to your label-checking routine. 
The same routine (specified by DTF LABADDR=Name) is used for checking 
both user-standard header (UHl) and user-standard trailer (UTL) labels. 
You can identify the type of label by the UHl or UTL in the first three 
positions of the label itself. 

Appendix C: DASD and TAPE Labels 81 



licensed Program - Property of IBM 

After you check a label. return to laCS by issuing a lBRET macro 
instruction. You control the checking of any remaining user-standard 
labels by the operand in the lBRET instruction. A lBRET 3 instruction 
permits laCS to update (rewrite) the label read and pass you the next 
label. A lBRET 2 instruction permits the checking of another label. A 
lBRET 1 instruction or an end-of-file record terminates label checking. 

If the user. or an end-of-file record. does not terminate the label 
checking. lacs reads in the next user-standard header label. 

SAM AND DAM OUTPUT FILE 

Vall label 

The standard volume label (Vall) must be on cylinder O. track O. record 
3. or in block 1 for FBA devices. If it is not. the job is canceled. 

The (Vall) label contains a permanent Volume Serial Number. 
laCS neither rewrites nor alters the Vall label in any way. 

Whenever a logical file is to be processed. laCS reads and checks the 
Vall label against the Volume Serial Number that you supply in an EXTENT 
statement. For a multiextent. or multivolume multi extent file. laCS 
performs this check for each EXTENT. If an error is detected. a message 
is issued to the operator. The operator may mount the correct volume 
and continue processing. or terminate the job. 

If you use EXTENT and omit the Volume Serial Number. laCS checks against 
the number of the previous EXTENT. If there was no previous EXTENT. 
lacs assumes that the correct volume is mounted and does not check the 
Vall label. 

For a multivolume SAM ~ only one extent is written at a time. and 
thus only one volume need be mounted at a time. 

For a multivolume DAM file. all extents (and therefore all volumes) are 
opened before any data records are written. Thus. all volumes that will 
contain the file must be on-line and ready at the same time. 

laCS determines the location of the VTOC from the Data File Directory 
field of the Vall label. 

If any additional volume labels (VOll-VOl8) follow the Vall label. laCS 
ignores them. 

Format-l label 

You must supply one OlBl statement for the logical file. and one EXTENT 
statement for each separate area (extent) that the file will occupy on 
the volume(s). 

An EXTENT statement defines the area (extent) of the disk pack where the 
data records are to be written. For a CKD device. an EXTENT statement 
provides the starting address (relative track) and the number of tracks. 
which indirectly gives the ending address of the extent. For an FBA 
device. an EXTENT statement specifies the address of the physical block 
with which the extent begins and the number of physical blocks within 
the extent. 

An EXTENT statement also contains a code for the type of records that 
are to be written. and provides the order in which this extent should be 
processed in a multiextent file. 

If you use EXTENT for a single volume file and omit the Symbolic Unit 
field, lacs uses the Symbolic Unit of ~preceding EXTENT. If there is 
no preceding EXTENT. the Symbolic Unit specified in the OTF is used. If 
you also omit Symbolic Unit in the OTF. you get an error message. If 
you use EXTENT for a multivolume ~ ~ you must supply, for each 
volume, at least the first EXTENT statement containing the Symbolic 
Unit. In a multivolume QAH ~ you must supply a sequential set of 
Symbolic Unit numbers in EXT~or the volumes required. Also, in a 
multivolume OAM ~ a separate physical device must be assigned to each 
symbolic unit. 

82 IBM VSE/Adv. Functions Oiag. Ref. lIOCS Volume 1 



licensed Program - Property of IBM 

If a file is to be scattered over separate areas (extents) of the disk 
pack, a separate EXTENT statement is required for each extent. In that 
case, the same Symbolic Unit number must be used. 

IDeS first validates the EXTENT statement specifications: 

1. The extents must not overlap each other. 

2. If user-standard labels are to be written (specified by OTF 
lABADDR), the first extent must be at least two tracks. 

3. The valid extent types for a SAM ~ are: 

1 - data records 

8 - data records with split cylinder, in EXTENT (not valid for FBA) 

128 - data records with split cylinder, in XTENT (not valid for FBA) 

4. The valid extent type for a OAM file is 1 (data records). 

5. For a OAM ~ the maximum number of EXTENT statements is 15 if 
user-standard labels are specified, or 16 if they are not. 

IDeS OPEN routines locate the VTOC by reading its address in the VOll 
label. 

IOCS checks the limits of an EXTENT against the limits of each extent 
field of each label already written in the VTOC. If the new extent 
overlaps any previously written extent, IOCS checks the expiration date 
of the old file to ensure that the data records are no longer active. 

If the expiration date has passed, IOCS deletes the old label(s) by 
setting the File Identification Field of the format-1 label to binary 
zeros, which, in effect, removes the expired file from the volume and 
makes a record in the VTOC available. A format-3 label associated with 
the expired file is deleted at OPEN time along with the format-1 label. 

If the expiration date has not passed, a message is issued to the 
operator. The operator can delete the unexpired file and continue 
processing, bypass this EXTENT, or terminate the job. 

IDeS reads the format-4 label (first record in VTOC) to determine the 
limits of the VTOe. 

IDes searches the Key Identification Field (Kl) for zeros, which 
indicate an available location. IOCS checks this location to verify 
that it is contained within the VTOC limits, and then writes the 
format-1 label. The process is repeated if a format-3 label is 
required. 

For label fields K1 and 01-021 of the format-1 label, IOCS writes the 
information supplied by you in OlBl or in a OTF entry, or generated by 
the system. See "Section label Fields" (Figure 20 on page 105 and 
Figure 21 on page 107) for the details about each field of the label. 

If you use OlBL and omit some specifications, IOCS writes predetermined 
default values (see Figure 21 on page 107). 

label fields 022-025 define the area (extent) of the volume where the 
data records will be written. IOCS writes these fields from the first 
EXTENT statement (if user-standard labels are not specified for the 
fi Ie). 

If a file is to be scattered over separate areas (extents) of the 
volume, a separate definition will be required for each extent. Fields 
D26-029 are used to define a second extent, and fields 030-033 to define 
a third. These fields are written from additional EXTENT statements you 
supply. 

If user-standard labels are written for the file (specified by OTF 
lABAODR), IDeS establishes an area for them (the first track of the 
first extent you specify for the data records) and defines that area in 
the first extent field (022-025). In this case, IOCS writes your first 
EXTENT statement information for data records in the second extent field 
of the label. 

Appendix C: OASO and TAPE labels 83 



Licensed Program - Property of IBM 

After writing the label(s), IOCS makes the area(s) of the volume 
available for writing the data records. In a SAM multiextent ~ IOCS 
makes only the first specified extent available. 
After that extent is filled. IOCS makes the next specified extent 

available. In a DAM multiextent ~ IOCS makes all the extents 
available at the same time. 

If you include more than three EXTENT statements (without user-standard 
labels. or two with user-standard labels). IOCS writes a format-3 label. 
and writes the address of that label in the Pointer field (D34) of the 
format-l label. 

If you include the DTF LABADDR entry to indicate that user-standard 
labels are to be written. IOCS branches to your label routine prior to 
writing each standard label. 

Format-3 Label 

If more than three Extent fields are required for the file. IOCS sets up 
a format-3 label for the additional extents. 

On output. IOCS writes the format-3 label when it reads another EXTENT 
statement after the three Extent fields of the format-l label have been 
filled. IOCS writes the address of the format-3 label in the POINTER 
field (D34) of the format-l label. 

For a SAM file. IOCS writes a second format-3 label if it reads another 
EXTENT statement after the 13 Extent fields of the first format-3 label 
have been filled. IOCS writes the address of the second format-3 label 
in the Pointer field (D38) of the first format-3 label. 

A DAM file permits the use of only one format-3 label. 

IOCS processes the Extent fields of the format-3 label in the same 
manner as those in the format-l label. 

User-Standard Label 

When user-standard labels are to be written for a file. DTFSD. DTFDA. or 
DTFPH LABADDR=Name must be specified. 

Whenever LABADDR=Name is specified. at least one UHL label and one UTL 
label will be written. 

For a SAM file. IOCS writes user-standard header labels after it writes 
the standard file labels. In a multivolume file. IOCS writes 
user-standard header labels in each volume. 

For a DAM file, IOCS writes user-standard header labels after it writes 
the standard file labels of a single-volume file. In a multivolume 
file. IDes writes all labels when the file is initially opened. At that 
time. IOCS writes the standard file labels on the first volume. and then 
writes the user-standard header labels on the first volume. Next. IOCS 
writes the standard file labels in the second volume and writes 
user-standard header labels on that volume. Label processing progresses 
in this manner through all on-line volumes. before any data records are 
processed. 

IOCS writes user-standard trailer labels on an end-of-volume or 
end-of-file condition. IOCS indicates the status of the file through 
the low-order byte in register O. The indication is 0, V. or F; meaning 
open. end-of-volume. or end-of file. respectively. 

The input file (such as a card reader) that contains the user's 
information for writing user-standard labels must be opened before the 
file on which the UHL labels are to be written. To do this. the input 
file must be specified before the file to be labeled in the same OPEN 
instruction, or a prior separate OPEN instruction must be issued. 

The user must build each user-standard label. To provide for this. IDeS 
branches to the user's label routine. The same routine (specified by 
LABADDR=Namel is used for building both user-standard header labels 
(UHLl and user-standard trailer labels (UTL). IOCS supplies a code in 
the low-order byte of register 0 to indicate which type of label should 
be built: 

84 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

UHL - Code a (letter 0) 

UTL - Code F for end-of-file condition 

Code V for end-of-volume condition 

You must establish an 80-byte area to build your labels, and you must 
load the address of that area in register O. 

When building the label, you must include UHL or UTL in the first 3 
bytes of the 80-byte data area followed by a digit 1-8 in the fourth 
byte. You may include whatever information you need in the remaining 76 
bytes. 

After building a label, you return to laCS by issuing a LBRET 
instruction. IOCS then writes the label on the volume. 

You control the building and writing of successive user-standard labels 
by the operand in the LBRET instruction. If another label is to be 
written, specify operand 2 and laCS again branches to your label 
routine. When you have built you last user label, issue the LBRET macro 
with the operand 1. laCS writes the last label. 

A maximum of eight user-standard header and eight user-stand?rd trailer 
labels may be written. After eight labels, laCS terminates the label 
writing, regardless of the LBRET macro instruction. 

Each user-label set (header or header and trailer) is terminated by an 
end-of-file record, which is a data record with a data length of O. 

DISKETTE FILES: INPUT FILE 

VaLl Label 

The VaLl label is on track 0, record 7. 

Whenever a logical file is to be processed, laCS reads and checks the 
VaLl label against the Volume Serial Number that you supply in an EXTENT 
statement. For a multivolume file, laCS performs this check for each 
EXTENT. If an error is detected, a message is issued to the operator. 
The operator may mount the correct volume and continue processing, or he 
may terminate the job. 

If you omit the Volume Serial Number, laCS assumes that the correct 
volume is mounted and does not check the VaLl label. 

For a multivolume file, only one extent is processed at a time. 
automatically feeds between volumes of a multivolume file. 

laCS 

The VTOe on a diskette is always on track 0, records 8-26. 

HDRI Label 

You must supply one DLBL statement for the logical file to be processed, 
and one EXTENT statement for each volume on which the file is contained. 
One exception exists to this: the EXTENT statement may be omitted if the 
file is on a single volume and the DTF DEVADDR entry is included. 

If you omit the Symbolic Unit field on the EXTENT statement of a single 
volume file, or on all EXTENT statements of a multi-volume file, laCS 
uses the Symbolic Unit specified in the DTF. If yoU also omit Symbolic 
Unit in the DTF, you get an error message. All symbolic unit fields 
provided on the EXTENT statements must be identical. 

laCS locates the HDRI label of the file to be processed by searching the 
VTOe for the HDRI label that contains the File Identification that you 
specify in the DLBL. The File Identification (field D4) was written in 
the label when the file was created. Thus, you must specify the same 
identification now as you did when the file was written as an output. 
See "Section Label Fields" (Figure 32 on page 136 and Figure 33 on 
page 136) for the details about each field of the label. 

If you omit the File Identification, IOCS searches for the label in the 
VTOe, using the DTF name that you specify in the DLBL Filename field. 

Appendix C: DASD and TAPE Labels 85 



Licensed Program - Property of IBM 

Label fields D8, DlQ, and 023 define the area (extent) of the diskette 
where data records are located. These fields contain the lower limit 
(starting address), the upper limit (ending address), and the 
end-of-data address (address of the last record in the file +1). Files 
with multiple extents on a single volume are not supported on diskettes. 
IOCS ignores any starting and ending addresses you supply on the EXTENT 
statement. 

For multivolume diskette input files using OTFDU, the EXTENT statements 
and the multivolume indicator are used in conjunction by the OPEN 
transients to determine when end of file has occurred. If three extents 
were provided by you, the multivolume indicator combinations shown in 
Figure 17 could occur. 

Multivolume.indicator Action taken by OPEN transients 

b, anything Process first volume and issue warning message. 

L, anything No volumes are processed, permanent-error messa~ 
issued. 

C, b Process first volume; the b indicates that no 
further volume checking is to be done. 

C, x Process first volume, and issue permanent-error 
message because the f i Ie was not found. 

C, L, anything Process through the "L" and issue warning message. 

C,C,C Process through the number of extents. No message 
is issued. 

C,C,L Process through the "L." No message is issued. 

Figure 17. Multivolume Indicator Combinations (3 Extents) 

In summary, for DTFDU the number of diskettes can be less than the 
number of extents provided. 

For all other supported DTF's, processing continues until the number of 
extents is exhausted. Regardless of the DTF type for system files, 
processing continues until all extents are exhausted. 

DISKETTE FILES: OUTPUT FILE 

VOLl Label 

The VOLI label is on track 0, record 7. 

rocs will update the accessibility indicator (field 04) to an 
"S"whenever a secured file is created on the volume. 

Whenever a logical file is to be processed, IOCS reads and checks the 
VOLI label against the Volume Serial Number that you supply in an EXTENT 
statement. For a multivolume file, IOCS performs this check for each 
EXTENT. If an error is detected, a message is issued to the operator. 
The operator may mount the correct volume and continue processing, or he 
may terminate the job. 

If you omit the Volume Serial Number, IOCS assumes that the correct 
volume is mounted, and does not check the VOLI label. 

For a multivolume file, only one extent is written at a time. IOCS 
automatlcally feeds from the one volume of a multivolume file to the 
next. 

The VTOC on a diskette is always on track 0, records 8-26. 

86 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



licensed Program - Property of IBM 

HDRl label 

You must supply one DlBl statement for the logical file, and one EXTENT 
statement for each volume on which the file is to be written. 

If you omit the Symbolic Unit field on the EXTENT statement of a single 
volume file, or on all EXTENT statements of a multi-volume file, IOCS 
uses the Symbolic Unit specified in the OTF. If you also omit Symbolic 
Unit in the OTF, you get an error message. All symbolic unit fields 
provided on the EXTENT statements must be identical. 

The extent limits for the file are determined by IOCS from available 
space on the diskette, and any extent limits provided by you on the 
EXTENT statement are ignored. 

The name of the output file to be created is the same as the File 
Identification you specify in the OlBl statement. If you omit the File 
Identification, the name will be the same as the OTF name that you 
specify in the DlBl Filename field. 

If the name of the output file to be created is equal to that of an 
unexpired or write-protected (field D14) file already present on the 
volume, you will get an error message and the job will be canceled. You 
will not be allowed to request that the duplicate file (unexpired or 
write-protected) be deleted. 

If the duplicate file is expired and not write-protected, or if a 
duplicate file is not being created, loes will allocate space for the 
file starting at the track following the end of the last unexpired or 
write-protected file on the volume, and ending at the end of the volume 
(track 73, record 26). If expired and non-write-protected files are 
overlapped by this allocation, their labels are deleted from the VTae by 
writing delete records in their location in the VTOC. 

If there is not at least one track of space available on the volume, you 
will get an error message and the job will be terminated. 

IOCS created the HDRI label based on the information supplied by you in 
the DlBl or in a DTF entry, or information generated by the system. See 
"Section label Fields" (Figure 32 on page 136 and Figure 33 on 
page 136) for the details about each field of the label. 

If you omit some specifications IOCS defaults to predetermined values. 
See "Section label Fields" (Figure 33 on page 137). 

After writing the label, IDeS makes the area of the diskettes available 
for writing the data records. 

At CLOSE time IDes reads and rewrites the HDRI label in order to update 
certain fields. They are: 

End-of-Data (D23) This field will be set up as the address of the 
record following the last record in the file. 

End-of-Extent (010) This field will be updated to be the address of 
the last record in the data set. 

Multivolume Indicator (DI6) This field will be set up to indicate 
if this is a multivolume file; a blank indicates a single volume 
file; a C indicates all but the last volume of a multivolume file; 
and an l indicates the last volume of a multivolume file. 

LABEL PROCESSING FOR ISAM FILES 

This section summarizes OASD label processing performed for indexed 
sequential files. Processing performed for format-1 and format-2 labels 
is described under load(Createa Extend) Function, Add Function and 
Retrieve Function. The ADD an RETRVE (retrieve) tunctions can be 
combined into one operation by specifying the OTFIS entry IOROUT=ADDRTR. 
ISAM is not supported for FBA devices, the 3330-11, or the 3350 except 
when operated in 3330-1 compatibility mode. 

Appendix C: DASO and TAPE labels 87 



Licensed Program - Property of IBM 

ISAM FILES, LOAD (CREATE, EXTENT) 

FUNCTION 

VOLI Label 

The standard volume label (VOL1) must be on cylinder 0, track 0, record 
3 (except for 3350 operated in 3330-1 compatibility mode). If it is 
not, the job is canceled. 

The VOLl label contains a permanent Volume Serial Number. 

IOCS neither rewrites nor alters the VOLI label in any way. 

Whenever a logical file is to be processed, IOCS reads and checks the 
VOLI label against the Volume Serial Number that yOU supply in an EXTENT 
or XTENT statement. For a single volume (requiring a minimum of two 
extents), or for a multivolume file, laCS performs this check for each 
EXTENT. If an error is detected, a message is issued to the operator. 
The operator may mount the correct volume and continue processing, or 
terminate the job. 

If you use EXTENT and omit the Volume Serial Number, laCS checks against 
the number of the preVl0US EXTENT. If there was no previous EXTENT, 
laCS assumes that the correct volume is mounted and does not check the 
VOLI label. 

For a multivolume file, all extents (and therefore all volumes) are 
opened before any data records are written. Thus, all volumes that will 
contain the file must be on-line and ready at the same time. Each 
different symbolic unit must be assigned to a separate physical device. 

IOCS determines the location of the VTOC from the Data File Directory 
field of the VOLI label. 

If any additional volume labels (VOL2-YDLS) follow the VaLl label, laCS 
ignores them. 

Format-l Label 

You must supply one DLBL statement for the logical file, and one EXTENT 
statement for each separate area (extent) that the file will occupy on 
the volume. 

EXTENT statements define the areas (extents) of the volume where the 
data records (prime data area), cylinder and master indexes, and 
independent overflow records are to be written. 

An EXTENT statement provides the starting address (called relative 
track) and the number of tracks which indirectly give the ending 
address. An EXTENT statement so contains a code for the type of records 
to be written, and indicates the sequence in which this statement should 
be inserted into the input stream. The EXTENT statements you supply for 
a LOAD function must also be supplied for any subsequent ADD or RETRVE 
(retrieve) functions. (See Add Function and Retrieve Function, in this 
chapter, for details on additIOnal requirements for these functions.) 

The prime data area (data records) and the cylinder index area are 
required, and you must supply an EXTENT statement for each. If you want 
a master index and/or an independent overflow area, you must also supply 
an EXTENT statement for each desired area. 

The prime data area for a logical file must be one continuous area on 
anyone volume. It cannot be scattered over separate areas of a single 
volume. The prime data area can, however, extend to one or more 
volumes, in which case a separate EXTENT statement is required for each 
volume. 

The prime data area on any pack must start on track 0 of any cylinder, 
with the exception of track 0 of cylinder 0, which is reserved for 
labels and system use. Therefore, the prime data area must start on 
some cylinder other than cYlinder 0 and is never written on cylinder 0, 
track 0 of any pack. 

For a multivolume file, the prime data area of the ~ pack may start 
on any cylinder (except 0) and must extend through ~ast track on the 

88 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



licensed Program - Property of IBM 

pack. On all packs after the first, the prime data area must start on 
cylinder 1, track 0 so that laCS considers the prime data area as one 
continuous area. On all succeeding packs (except the last) the prime 
data area must extend through the last track on the pack. On the last 
pack, it may end at the end of any cYlinder. Thus, in a mul~ipack file, 
all packs, except the first and the last, are completely allotted to the 
prime data area from cylinder 1, track 0 through the last track on the 
last cylinder. 

For a multivolume 
prime data area. 
it may follow the 
be on cylinder O. 

file, the VTOC for the first volume must precede the 
On the last volume, the VTOC may be on cylinder 0 or 
prime data area. On all other volumes, the VTOC must 

Because the prime data area must be considered as one continuous area in 
a multivolume file, the master/cylinder index and independent overflow 
area must be located before the prime data area on the first volume or 
after the prime data area on the last volume. 

During the load operation ISAM builds a separate track index for each 
cylinder used by the file. Track indexes are considered a part of the 
prime data area and, as such, do not require separate EXTENT statements. 
Each track index starts on the first track (0) of the cylinder that it 
is indexing. 
It can occupy a full track, more than one track, or part of a track and 

share that partially used track with prime data records (shared track). 

Also within the prime data area certain tracks may be reserved, if 
desired, for overflow records that will occur when records are added to 
the file in later operations. These tracks, called a cylinder overflow 
area, must be reserved during the load operation by specifying the DTFIS 
entry CVlOFl. Because this is par~ the prime data area, no separate 
EXTENT statements are required. 

The master index and the cylinder index are separate indexes and require 
two separate EXTENT statements. However, when they are written on the 
volume, lacs combines them into one index area and writes the address of 
that combined area in the format-l label •. Therefore, for these indexes, 
you must specify (in the EXTENT statements) two areas that are adjacent 
to each other. 

~ builds the master (if used) and cylinder indexes during the load 
operation. These indexes must be separate from the prime data area and 
wholly contained on one volume. They can be on the same volume with the 
prime data or on a separate volume. They even can be on a different 
type of device from the prime data area. 

You must specify the location of the cylinder index by an EXTENT 
statement. It must immediately follow the master index on a volume, and 
it may be located on one or more successive cYlinders. You must also 
specify an Extent Type of 4 and an Extent Sequence Number of I in the 
EXTENT statement. If you use EXTENT and omit the Extent Type, laCS 
assumes the code for a data area. This index contains one entry for 
each cylinder occupied by the data file. 

If you plan to use a master index for a file, you must specify this 
option with the DTFIS entry MSTIND and you must specify its location by 
EXTENT. It must immediately precede the cylinder index on a volume, and 
it may be located on one or more successive cylinders. You must also 
specify an Extent Type of 4 and an Extent Sequence Number of 0 in the 
EXTENT statement. If you use EXTENT and omit the Extent Type, laCS 
writes in the code for a data area. This index contains an entry for 
each track of the cylinder index. 

ISAM OPEN first validates the EXTENT statement specifications: 

1. All prime data extents must be continuous. 

2. The master and cylinder index extents must be continuous and on the 
same unit. 

3. No extents must overlap. 

4. The valid extent types are: 

1 Prime Data 
2 - Independent Overflow 
4 Master Index 

Appendix C: DASD and TAPE labels 89 



Licensed Program - Property c~ IBM 

4 - Cylinder Index 

5. The Extent Sequence Number must be in a specified order: 

o 
1 
2 through n 
n+1 

o 
1 
2 
3 through n 

Master Index 
Cylinder Index 
Prime Data 
Independent Overflow 

OR 

Master Index 
Cylinder Index 
Independent Overflow 
Prime Data 

If a master index is not used, Extent Sequence Number begins with 1. 

IOCS OPEN routines locate the VTOC by reading its address in the VOL1 
label. 

IOCS checks the limits of an EXTENT statement against the limits of each 
Extent field of each label already written in the VTOC. If the new 
extents overlap any previously written extents, IOCS checks the 
expiration date of the old (being overlapped) file to ensure that the 
data records are no longer active. 

If the expiration date has passed, IOCS deletes the old label(s), which 
in effect removes the expired file from the volume. 

If the expiration date has not passed, a message is issued to the 
operator. The operator can terminate the job or delete the unexpired 
file and continue processing. 

IOCS reads the format-4 label (first record in VTOC) to determine where 
to write the format-1 and format-2 labels and then writes the labels. 
In a multivolume file, IOCS writes the format-2 label only in the volume 
that contains the cylinder index. 

For a multivolume file, all extents (and therefore all volumes) are 
opened before any data records are written. Thus, all volumes that will 
contain the file must be on-line and ready at the same time. For each 
volume, roes checks the extents specified in the extent statements for 
that volume (for example, checks that the data extents are continuous). 
IOCS also checks the standard VOL1 label and then goes to the VTOC to 
check the file label(s). Then, the next volume is opened. After all 
the volumes have been opened, the file is ready for processing. 

If you use EXTENT and omit the Symbolic Unit field, IOCS uses the 
Symbolic Unit of the preceding EXTENT. The first EXTENT must contain the 
Symbolic Unit. If you use EXTENT for a multivolume file, you must 
supply, for each volume, at least one EXTENT statement containing the 
Symbolic Unit. All extents on one physical unit must have the same 
symbolic unit number. 

For label fields K1 and 01-D21 of the format-1 label, IOCS writes the 
information supplied by you in DLBL or a DTFIS entry, or generated by 
the system. See "Section: Label Fields" (Figure 20 on page 105 and 
Figure 21 on page 107) for the details about each field of the label. 

Specify in the OLBl 
create a file and a 
If you use DLBL and 
writes the code for 
DLBL for a non-load 

statement a File Type if ISC when using LOAD to 
File Type of ~ when using LOAD to extend the file. 
omit this fiero-COli of the format-1 label), IOCS 
a SAM file in this field. If an ISC is specified in 
function, the system cancels the job. 

The LOAD function is specified by the DTFIS entry IOROUT. The functions 
of originally loading a file of presorted records and of extendin9 the 
file by adding new presorted records are the same. Both are consIdered 
a LOAD operation. 

If you use DLBL and omit some specifications, IOCS writes predetermined 
default values. See "Section: Label Fields" (Figure 21 on page 107) 

90 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

Label fields 022-025, 026-029, and 030-033 of the format-1 label define 
three areas (extents) of the volume. IOCS writes these fields from the 
EXTENT statements you supply. 

The Extent Type 1 (prime data), 2 (independent overflow area), and 4 
(master or cylinder index) in the EXTENT is converted to a hex 01. 02. 
and 04 respectively by IOCS in fields 022. 026. and 030 of the format-l 
label. 
If you use EXTENT and omit the type. IOCS writes hex 01. the 

designation for a prime data area. 

Extent data is written in the format-l label in the same order that 
EXTENT statements are supplied. This order is specified by the Extent 
Sequence Number, fields 023. 027. and 031. First Extent (022-025) is 
for master index (if specified) and cylinder index. Additional Extent 
(026-029) is for the prime data area. and Additional Extent (030-033) is 
for the independent overflow area (if specified). Prime data araa and 
independent overflow area may be reversed. 

During the load operation, ISAM uses the Extent Sequence Number and the 
Symbolic Unit (SYSnnn, specified in EXTENT) to determine on what volume 
the extent area is located. The EXTENT statements must be entered in 
ascending order by Extent Sequence Number, with none missing. 

During a LOAO Extend function. IOCS checks the Extent Upper Limit 
(fields 025 and 029 in the format-l label) against the upper limit 
specified by EXTENT. If the specified limit of either the cylinder 
index or the prime data area is beyond the upper limit in the label. 
laCS changes the label and makes the new area available for records. If 
the prime data area is extended onto a new volume, IOCS writes the lower 
and upper limits of the next extent specified by EXTENT. Under any 
other condition. the job is canceled if the limits do not agree. 

After writing the label(s). IOCS makes the areas of the volume available 
for writing the data records. index(es). and independent overflow 
records. In a multivolume file. IOCS makes all the volumes available at 
the same time. 

IOCS always writes a format-2 label and writes the address of that label 
in the Pointer Field (034) of the format-l label. 

Format-2 Label 

A format-2 label is required and maintained by ISAM. This label is used 
to carry updated information from one use (function) of the file to the 
next and to retain many fields of the OTFIS table. 

No separate EXTENT statements are required for the format-2 label. ISAM 
OPEN/CLOSE routines write the label by using the information that you 
supply in DTF specifications or that is calculated during the processing 
of data records. Generally. job control statement information is not 
used. The OPEN routine. however, uses EXTENT specifications in four 
fields during LOAO Create function. 

Some of the fields in the format-2 label are written when the file is 
opened, whereas other fields are written when the file is closed. 

laCS always writes a format-2 label in the VTOC after it has written the 
format-1 label. It writes the address of the format-2 label in the 
Pointer Field (034) of the format-l label. 

The RECSIZE written in the format-2 label is used for any following AOO 
or RETRVE functions. 

If a file occupies two or more volumes, IOCS writes the format-2 label 
only on the volume containing the cylinder index. This volume mayor 
may not contain data records. The format-2 label is not repeated on the 
additional volumes (as the format-l label is). 

If a load file is not closed, such as during an abnormal end of job, the 
format-2 label associated with that file is not completely updated with 
the information that is in the OTF. Caution: Further processing of this 
file may give unpredictable results. 

The statistics provided in several fields of the format-2 label can be 
used to determine whether you should reorganize the file: 

Appendix C: OASO and TAPE Labels 91 



licensed Program - Property of IBM 

012 - Tag Deletion Count: The number of records you identify (tag) 
for deletion (not processed by IOCS). 

013 - Non-First Overflow Reference Count: The number of times a 
READ instruction causes a search of the overflow area(s) for a 
record that is the second or higher in an overflow chain. 

016 - Prime Record Count: The number of logical records written in 
the organized file in the prime data area(s). IOCS accumulates this 
count during a lOAD operation. 

027 - Number of Independent Overflow Tracks: The number of tracks 
still available in the independent overflow area. 

028 - Overflow Record Count: The number of records written in all 
the overflow areas for the file (cylinder overflow areas and/or 
independent overflow area). 

029 - Cylinder Overflow Area Count: The number of cylinder overflow 
areas that have been filled. 

See "Section: label Fields" (Figure 24 on page 120) for the details 
about each field of the format-2 label. 

ISAM FILES, ADD FUNCTION 

VOll label 

The standard volume label (VOl1) must be on cylinder 0, track 0, record 
3. If it is not, the job is canceled. 

The VOll label contains a permanent Volume Serial Number. 

IOCS neither rewrites nor alters the VOll label in any way. 

Whenever a logical file is to be processed, IOCS reads and checks the 
Vall label against the Volume Serial Number that you supply in an EXTENT 
statement. 

For a single volume (requiring a minimum of two extents), or for a 
multivolume file, IOCS performs this check for each EXTENT. If an error 
is detected, a message is issued to the operator. The operator may 
mount the correct volume and continue processing, or terminate the job. 

If you use EXTENT and omit the Volume Serial Number, laCS checks against 
the number of the previous EXTENT. If there was no previous EXTENT, 
IOCS assumes that the correct volume is mounted and does not check the 
VOll label. 

For a multivolume file, all extents (and therefore all volumes) are 
opened before any data records are written. Thus, all volumes that will 
contain the file must be on-line and ready at the same time. 

laCS determines the location of the VTOC from the Data File Directory 
field of the VOll label. 

If any additional volume labels (VOl2-VOl8) follow the VOll label, laCS 
ignores them. 

Format-l label 

You must supply one OLBl statement for the logical file, and one EXTENT 
statement for each separate area (extent) that the file occupies on the 
volume. 

EXTENT statements define the areas (extents) of the volume where the 
data records (prime data area), cylinder and master indexes. and 
independent overflow records are written. An EXTENT statement provides 
the starting address (called relative track) and the number of tracks 
which indirectly give the ending address. An EXTENT statement also 
contains a code for the type of records to be written, and indicates the 
sequence in which this statement should be inserted into the input 
stream. 

For an ADD function, you must supply the same EXTENT statements that yoU 
supplie~or the LOAD function. You must supply an EXTENT for the prime 

92 IBM VSE/Adv. Functions Diag. Ref. lIOCS Volume 1 



Licensed Program - Property of IBM 

data area (data records) and the cylinder index. If you specified a 
master index, you must supply an EXTENT for this area. If you specified 
an independent overflow area during the load operation, you must supply 
an EXTENT for this area. If an independent overflow area has not been 
established, you can specify one during the add function by supplying an 
EXTENT statement for this area. 

The prime data area for a logical file is one continuous area on anyone 
volume. It is not scattered over separate areas of a single volume. 
If, however, the prime data area extends to one or more other volumes. 
you must supply a separate EXTENT statement for each volume. 

The prime data area on any volume starts on track 0 of any cylinder with 
the exception of track 0 of cylinder 0, which is reserved for labels and 
system use. Therefore, the prime data area starts on some cylinder 
other than cylinder 0 and is never written on cylinder 0, track 0 of any 
volume. 

For a multivolume file, the prime data area of the first volume starts 
on any cylinder (except 0) and extends through the ast track on the 
volume. On all volumes after the first. the prime data starts on 
cylinder 1, track 0 so that IOeS considers the prime data area as one 
continuous area. On all succeeding volumes (except the last), the prime 
data area extends through the last track on the volume. On the last 
volume, it ends at the end of any cYlinder. Thus. in a multivolume file 
all volumes, except the first and last. are completely allotted to the 
prime data area from cylinder 1, track 0 through the last track in the 
last cylinder. 

For a mUltivolume file the VTOe for the first volume precedes the prime 
data area. On the last volume, the VTOe is on cylinder 0 or it follows 
the prime data area. On all other volumes, the VTOe is on cylinder O. 

Because the prime data area is considered as one continuous area in a 
multivolume file. the master/cylinder index and independent overflow 
areas are located before the prime data on the first volume or after the 
prime data area on the last volume. 

During the load operation, ISAM has built a separate track index for 
each cylinder used by the file. Track indexes are consider~part of 
the prime data area and, as such, do not require separate EXTENT 
statements. Each track index is located on the first track (0) of the 
cylinder that it is indexing. It can occupy a full track. more than one 
track. or part of a track and share that track with prime data records 
(shared track). 

Also, within the prime data area, certain tracks may have been reserved 
for overflow records that occur when records are added to the file. 
These tracks, called a cylinder overflow area, are reserved during the 
load operation and used during an add operation. If yoU use cYlinder 
overflow areas. you must specify the DTFIS entry eYLOFL during both the 
load and add functions. Because the cylinder overflow areas are a part 
of the prime data area, no separate EXTENT statements are required. 

The master index and the cylinder index are separate indexes and require 
two separate EXTENT statements. However. when they were written on the 
volume. IOeS combined them into one index area and wrote the address of 
that combined area in the format-l label. Therefore. for these indexes. 
you must specify (in the EXTENT statements) two adjacent areas. 

ISAM has built the master (if used) and cylinder indexes during the load 
operation. These indexes are separate from the prime data area and 
wholly contained on one volume. They can be on the same volume with the 
prime data or on a separate volume. They can also be on a different 
type of device than the prime data area. 

You must specify the location of the cyljnder index by EXTENT. It 
immediately follows the master index on a volume. and it may be located 
on one or more successive cylinders. You must also specify an Extent 
Type of 4 and an Extent Sequence Number of 1 in the EXTENT statement. If 
you use EXTENT and omit the Extent Type, I is assumed. 

If you specified a master index during the load operation. you must 
again specify this option ~he add function with the DTFIS entry 
MSTIND. You must specify its location by EXTENT. The master index 
immediately precedes the cylinder index on a volume, and it may be 
located on one or more successive cYlinders. You must also specify an 
Extent Type of 4 and an Extent Sequence Number of 0 in the EXTENT 

Appendix C: DASD and TAPE Labels 93 



licensed Program - Property of IBM 

statement. If YOU use EXTENT and omit the Extent Type. this field is 
not checked. 

An independent overflow area may be specified for storing overflow 
records that occur when records are added to the file. If you plan to 
use an independent overflow area. you must supply an EXTENT to specify 
its location on the volume. The independent overflow area may be on the 
same volume with the prime data area. or on a separate volume, but it 
must be wholly contained on one volume. It must be on the same type of 
device as that containing the prime data area. You can specify this 
area during a load or add operation. but it is used during the add 
operation. 

If you specify both an independent overflow area and cylinder overflow 
area (by DTFIS entry CYlOFl). ISAM places overflow records first in the 
cylinder overflow area within the prime data area. When any cylinder 
overflow area becomes filled. ISAM writes the additional overflow 
records from that cylinder in the independent overflow area. 

ISAM OPEN first validates the EXTENT statement specifications: 

1. The master and cylinder index extents must be continuous and on the 
same unit. 

2. No extents must overlap. 

3. The valid extent types are: 

1 - Prime Data 
2 - Independent Overflow 
4 - Master Index 
4 - Cylinder Index 

4. The Extent Sequence Number must be in a specified order: 

o 
1 
2 through n 
n+1 

o 
1 
2 
3 through n 

Master Index 
Cylinder Index 
Prime Data 
Independent Overflow 

OR 

Master Index 
Cylinder Index 
Independent Overflow 
Prime Data 

laCS checks the limits of an EXTENT against the limits of each Extent 
field of each label already written in the VToe. If the new extents 
overlap any previously written extents, laCS checks the expiration data 
of the old (being overlapped) file to ensure that the data records are 
no longer active. 

If the expiration data has passed. IOCS deletes the old label(s), which 
in effect, removes the expired file from the volume. 

If an expiration date has not passed, a message is given to the 
operator. The operator can terminate the job or delete the unexpired 
file and continue processing. 

If you use EXTENT and omit the Symbolic Unit field, laCS uses the 
Symbolic Unit of the preceding EXTENT. The first EXTENT must contain 
the Symbolic Unit. If you use EXTENT for a multivolume ~ you must 
supply, for each volume, at least one EXTENT statement containing the 
Symbolic Unit. 

For a multivolume file, all extents (and therefore all volumes) are 
opened before any data records are added. Thus, all volumes that 
contain the file must be on-line and ready at the same time. 

IDeS locates the format-l label of the file to be processed by first 
reading the address of the VTOC in the Vall label and then searching the 
VToe for the format-l label that contains the File Identification you 
specify in DlBl. If an independent overflow area is specified dUring 
the add function on an existing volume, IOCS updates the format-l label. 

94 IBM VSE/Adv. Functions Diag. Ref. lIOCS Volume 1 



Licensed Program - Property of IBM 

If the independent overflow area is specified on a new volume, IOeS 
writes a format-1 label for that volume. 

The File Identification (field K1) was written in the Key area of the 
label record when the file was created. Thus. you must specify the same 
identification now as you did when the file was written during the load 
operation. 

If you use DLBL and omit the File Identification. Ioes searches for the 
label in the VTOe by using the DTF name that you specify in the DLBL 
Filename field. 

For label fields. 01-021. IOeS OPEN routines check the appropriate 
fields against the corresponding information supplied by you in OLBL or 
in a OTF specification. Some fields provide information that is required 
during the processing of data. and other fields are ignored. See 
"Section: Label Fields" (Figure 20 on page 105 and Figure 21 on 
page 107) for the details about each field of the label. 

You must specify in the DLBL statement a File Type of ISE for the ADD 
function. If you use DLBL and omit this field (011 of the format-1 
label). IOeS assumes the code for an SAM file in this field. 

The ADD function is used to insert new records into an organized file 
and is specified by the OTFIS entry IOROUT. 

If you use DLBl and omit some specifications. IOeS assumes predetermined 
default values (see Figure 21 on page 107) 

Label fields D22-025. 026-D29. and 030-D33 of the format-l label define 
three areas (extents) of the volume. IOeS wrote these fields during the 
load operation from the EXTENT statements you supplied. 

The Extent Type I (prime data). 2 (independent overflow area). and 4 
(master or cylinder index) in the EXTENT is converted to a hex 01. 02, 
and 04. respectively by IOeS in fields D22. D26. and 030 of the format-l 
label. If you use EXTENT and omit the type, this field is not checked. 

The extent information was written in the format-l label in the same 
order that the EXTENT statements were supplied during the load 
operation. The EXTENT statements must be supplied in this same order 
for the retrieve function. This order is specified by the Extent 
Sequence Number, fields 023. D27, and D31. The First Extent (D22-025) 
is for the master index (if specified) and cylinder index. Additional 
Extent (D26-029) is for the prime data area. and Additional Extent 
(030-D33) is for the independent overflow area if specified. The prime 
data area and independent overflow area may be reversed. 

During an ADD operation, ISAM uses the Extent Sequence Number in 
conjunction with the Symbolic Unit (SYSnnn. specified in EXTENT) to 
determine on what volume the extent area is located. The EXTENT 
statements must be entered in ascending order by Extent Sequence Number, 
with none missing. 

During an ADD function. IOeS checks the Extent Upper Limit (fields D25 
and D29 in the format-1 label) against the upper limit specified by 
EXTENT. If the specified limit of the independent overflow area is 
beyond the upper limit in the label. IOeS changes the label and makes 
the new area available for records. If an independent overflow area is 
established at this time. IOCS writes the lower and upper limit of the 
new extent specified by EXTENT. Under any other condition. the job is 
canceled if the limits do not agree. 

After checking the label(s). IOeS makes the areas of the volume 
available for processing. In a multivolume file, IOeS makes all volumes 
available at the same time. 

IOCS locates the format-2 label by reading the address of that label in 
the Pointer Field (D34) of the format-l label. 

Format-2 label 

A format-2 label is required and maintained by ISAM. This label is used 
to carry updated information from one use (function) of the file to the 
next and to retain many fields of the OTFIS table. 

Appendix C: OASD and TAPE Labels 95 



Licensed Program - Property of IBM 

No separate EXTENT statements are required for the format-2 label. ISAH 
OPEN/CLOSE routines wrote the label during the load operation by using 
the information that you supplied in the DTF specification or that was 
calculated during the processing of data records. 

Some of the fields in the format-2 label are written when the file is 
opened, whereas other fields are written when the file is closed. 

IOCS always writes a format-2 label in the VTOC after it has written the 
format-1 label. It writes the address of the format-2 label in the 
Pointer Field (034) of the format-l label. 

If a file occupies two or more volumes, IOCS writes the format-2 labeJ 
only on the volume containing the cylinder index. This volume mayor 
may not contain data records. The format-2 label is not repeated on the 
additional volumes (as the format-l label is). 

The RECSIZE written in the format-2 label by the LOAD is used by the 
LOAD during the ADO operation, not the RECSIZE in the ADD DTFIS. 

Several fields of the format-2 label can be used to determine the status 
of overflow areas: 

09 - Highest "R" on Overflow Tracks: The number of the last record 
on each track of the cylinder and/or independent overflow area. 

025 - Last Independent Overflow Record Address: The address of the 
last record written in the independent overflow area. 

027 - Number of Independent Overflow Tracks: The number of tracks 
still available in the independent overflow area. 

D28 - Overflow Record Count: A count of the records written in the 
cylinder overflow areas and/or independent overflow. 

029 - Cylinder Overflow Area Count: A count of the cylinder 
overflow areas that have been filled. The statistics provided in 
several fields of the format-2 label can be used to determine 
whether you should reorganize the file: 

012 - Tag Deletion Count: The number of records ~ identify (tag) 
for deletion (not processed by IOCS). 

013 - Non-First Overflow Reference Count: The number of times a 
READ instruction causes a search of the overflow area(s) for a 
record that is the second or higher in an overflow chain. 

016 - Prime Record Count: The number of logical records written in 
the organized file in the prime data area(s). IOCS accumulates this 
count during a LOAD operation. 

027 - Number of Independent Overflow Tracks: The number of tracks 
still available in the independent overflow area. 

028 - Overflow Record Count: The number of records written in all 
the overflow areas for the file (cylinder overflow areas and/or 
independent overflow area). 

029 - Cylinder Overflow Area Count: The number of cylinder overfloN 
areas that have been filled. 

See "Section: Label Fields" (Figure 24 on page 120) for the details 
about each field of the format-2 label. 

ISAM FILES, RETRIEVE FUNCTION 

VOLl Label 

The standard volume label (VOLl) must be on cylinder 0, track 0, record 
3. If it is not, the job is canceled. 

The VOL1 label contains a permanent Volume Serial Number. 

Whenever a logical file is to be processed, IOCS reads and checks the 
VOLl label against the Volume Serial Number you supply in an EXTENT 
statement. For a single volume (requiring a minimum of two extents), or 

96 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



licensed Program - Property of IBM 

for a multivolume file, laCS performs this check for each EXTENT. If an 
error is detected, a message is issued to the operator. The operator 
may mount the correct volume and continue processing, or terminate the 
job. 

If you use EXTENT and omit the Volume Serial Number, Ioes checks against 
the number of the previous EXTENT. If there was no previous EXTENT, 
laCS assumes that the correct volume is mounted and does not check the 
VaLl label. 

For a multivolume file, all extents (and therefore all volumes) are 
opened before any data records are read or updated. Thus, all volumes 
containing the file must be on-line and ready at the same time. 

laCS determines the location of the VTae from the Data File Directory 
field of the VaLl label. 

If any additional volume labels (VOL2-VOlS) follow the VaLl label, laCS 
ignores them. 

Format-l Label 

You must supply one DlBl statement for the logical file, and one EXTENT 
statement for each separate area (extent) that the file occupies on the 
volume(s). 

EXTENT statements define the areas (extents) of the volume where the 
data records (prime data area), cylinder and master indexes, and 
independent overflow records are written. An EXTENT statement provides 
the starting address (called relative track) and the number of tracks 
which indirectly give the ending address. An EXTENT statement also 
contains a code for the type of records to be written, and indicates the 
sequence in which this statement should be inserted into the input 
stream. 

For a retrieve (RETRVE) function you must supply the same EXTENT 
statements that you supplied for the LOAD or ADD function. You must 
supply an EXTENT for the prime data area (data records) and the cylinder 
index. If you specified a master index during the load operation, you 
must supply an EXTENT for this area. If you specified an independent 
overflow area during the load or add operation, you must supply an 
EXTENT for this area. 

The prime data area for a logical file is one continuous area on anyone 
volume. It is not scattered over separate areas on a single volume. If 
the prime data area, however, extends to one or more other volumes, you 
supply a separate EXTENT statement for each volume. 

The prime data area on any volume starts on track 0 of any cylinder, 
with the exception of track 0 of cylinder 0, which is reserved for 
labels and system use. Therefore, the prime data area starts on some 
cylinder other than cYlinder 0 and is never written on cylinder 0, track 
o of any volume. 

For a multivolume file, the prime data area of the first volume starts 
on any cylinder (except 0) and extends through the last track on the 
volume. On all volumes after the first, the prime data starts on 
cylinder 1, track 0 so that laCS considers the prime data area as one 
continuous area. On all succeeding volumes (except the last) the prime 
data area extends through the last track on the volume. On the last 
volume, it ends at the end of any cylinder. Thus, in a multivolume file 
all volumes, except the first and last, are completely allotted to the 
prime data area from cylinder 1, track 0 through the last track in the 
last cylinder. 

For a multivolume file, the VTOe for the first volume precedes the prime 
data area. On the last volume, the VTOe is on cylinder 0 or it follows 
the prime data area. On all other volumes, the VTOe is on cylinder o. 
Because the prime data area is considered as one continuous area in a 
multivolume file, the master/cylinder index and independent overflow 
areas are located before the prime data on the first volume or after the 
prime data area on the last volume. 

During the load operation, ISAM has built a separate track index for 
each cylinder used by the file. Track indexes are conSIdered a part of 
the prime data area and, as such, do not require separate EXTENT 

Appendix e: DASD and TAPE Labels 97 



statements. Each track index 
cylinder that it is indexing. 
track, or part of a track and 
(shared track). 

licensed Program - Property of IBM 

starts on the first track (0) of the 
It can occupy a full track, more than one 

share that track with prime data records 

Also, within the prime data area, certain tracks may have been reserved 
for overflow records that occur when records are added to the file. 
These tracks, called a cylinder overflow area, are reserved during the 
load operation by specifying the DTFIS entry eYlOFl. and are used during 
an add operation. 

Because this is part of the prime data area. no separate EXTENT 
statements were required during the load operation. For the retrieve 
function, the DTFIS entry is not required. 

The master index and the cylinder index are separate indexes and require 
two separate EXTENT statements. However. when they were written on the 
volume, IOCS combined them into one index area and wrote the address of 
that combined area in the format-l label. Therefore. for these indexes. 
you must specify (in the EXTENT statements) two adjacent areas. 

ISAM has built the master (if used) and cylinder indexes during the load 
operation. These indexes are separate from the prime data area and 
wholly contained on one volume. They can be on the same volume with the 
prime data or on a separate volume. They can also be on a different 
type of device than the prime data area. 

You must specify the location of the cylinder ~ by EXTENT. It 
immediately follows the master index on a volume. and it may be located 
on one or more successive cylinders. You must also specify an Extent 
Type of 4 and an Extent Sequence Number of 1 in the EXTENT statement. 
If you use EXTENT and omit the Extent Type. this field is not checked. 

If you specified a master index during the load operation, you must 
again specify this option for the retrieve function with the DTFIS entry 
MSTIND. You must specify its location by EXTENT. The master index 
immediately precedes the cylinder index on a volume. and it may be 
located on one or more successive cylinders. You must also specify an 
Extent Type of 4 and an Extent Sequence Number of 0 in the EXTENT 
statement. If you use EXTENT and omit the Extent Type, this field is not 
checked. 

An independent overflow area may have been specified for storing 
overflow records that occurred when records were added to the file. If 
you specified an independent overflow area during the load or add 
function, you must again supply an EXTENT statement to specify its 
location during the retrieve function. The independent overflow area 
may be on the same volume with the prime data area. or on a separate 
volume, but it must be whollY contained on one volume. It must be on 
the same type of device as that containing the prime data area. 

If you specified both an independent overflow area and cylinder overflow 
areas (by DTFIS entry eYlOFl during the load operation), ISAM placed 
overflow records first in the cylinder overflow area within the prime 
data area. When any cylinder overflow area became filled. ISAM wrote the 
additional overflow records from that cylinder in the independent 
overflow area. 

If you use EXTENT and omit the Symbolic Unit field. IOeS uses the 
Symbolic Unit of the preceding EXTENT. The first EXTENT must contain 
the Symbolic Unit. If you use EXTENT for a multivolume file, you must 
supply, for each volume, at least one EXTENT statement containing the 
Symbolic Unit. 

For a multivolume file. all extents (and therefore all volumes) are 
opened before any data records are retrieved. Thus. all volumes that 
contain the file must be on-line and ready at the same time. 

IOCS locates the format-l label of the file to be processed by first 
reading the address of the VTOC in the VOll label and then searching the 
VTOe for the format-l label that contains the File Identification that 
you specify in DlBl. The File Identification (field Kl) was written in 
the key area of the label record when the file was created. Thus, you 
must specify the same identification now as you did when the file was 
written. 

If you use DLBL and omit the File Identification, IOeS searches for the 
label in the VTOC by using the DTF name that you specify in the DLBL 
Filename field. 

98 IBM VSE/Adv. Functions Diag. Ref. LIOeS Volume 1 



Licensed Program - Property of IBM 

IDeS does not check label fields 01-021 against the corresponding 
information supplied by you in DLBL or in a DTF specification as it did 
during the load or add operation. 

You must specify in the OLBL statement a File Type of ISE for the 
retrieve (RETRVE) function. If you use DLBL and omit this field (011 of 
format-l label), IDeS assumes the code for an SAM file in this field. 

Use the DTFIS entry 18ROUT to specify the retrieve (RETRVE) function, 
which retrieves records from a file for either random or sequential 
processing and/or updating. You must also specify the OTFIS entry 
TYPEFLE for a retrieve function to designate whether the type of 
processing to be performed is random, sequential, or both. 

If you use OLBL and omit some specification, IOCS assumes predetermined 
default values (see Figure 21 on page 107). 

Label fields 022-025, 026-029, and D30-033 of the format-1 label define 
three areas (extents) of the volume. IOCS wrote these fields from the 
EXTENT statements you supplied during the load operation. 

The Extent Type 1 (prime data), 2 (independent overflow area), and 4 
(master or cylinder index) in the EXTENT is converted to a hex 01, 02, 
and 04, respectively, by IDeS in fields D22, 026, and 030 of the 
format-l label. If you use EXTENT and omit the type, this field is not 
checked. 

The extent information was written in the format-l label in the same 
order that the EXTENT statements were supplied during the load 
operation. The EXTENT statements must be supplied in this same order for 
the retrieve operation. This order is specified by the Extent Sequence 
Number, fields 023, D27, and D31. The First Extent (022-025) is for the 
master index (if specified) and cylinder index. Additional Extent 
(026-029) is for the prime data area, and Additional Extent (D30-033) is 
for the independent overflow area (if specified). The prime data area 
and independent overflow area may be reversed. 

Ouring a retrieve operation, ISAM uses the Extent Sequence Number in 
conjunction with the Symbolic Unit (SYSnnn, specified in EXTENT) to 
determine on what volume the extent area is located. The EXTENT 
statements must be entered in ascending order by Extent Sequence Number, 
with none missing. 

IDes makes available (for processing) the areas you specify in EXTENT 
(the data records, index(es), and independent overflow records) without 
checking against the limits in the label (Extent Sequence Number and 
Symbolic Unit are checked). In a multivolume file, IDeS makes all the 
volumes available at the same time. 

IDes locates the format-2 label by reading the address of that label in 
the Pointer Field (034) of the format-l label. 

Format-2 Label 

A format-2 label is required and maintained by ISAM. This label is used 
to carry updated information from one use (function) of the file to the 
next and to retain many fields of the OTFIS table. 

No separate EXTENT statements are required for the format-2 label. ISAM 
OPEN/CLOSE routines wrote the label during the load operation by using 
the information you supplied in OTF specifications or that were 
calculated during the processing of data records. 

Some of the fields in the format-2 label are written when the file is 
opened, whereas other fields are written when the file is closed. 

IDeS always writes a format-2 label in the VTOC after it has written the 
format-l label. It writes the address of the format-2 label in the 
Pointer Field (D34) of the format-l label. 

If a file occupies tw~ or more volumes, IOCS writes the format-2 label 
only on the volume containing the cylinder index. This vclume mayor 
may not contain data records. The format-2 label is not repeated on the 
additional volumes (as the format-l label is). 

The RECSIZE written in the format-2 label by the LOAO is used during the 
retrieve operation, ~ the RECSIZE in the RETRVE DTFIS. 

Appendix C: DASD and TAPE Labels 99 



Licensed Program - Property of IBM 

The statistics provided in several fields of the format-2 label can be 
used to determine whether you should reorganize the file: 

D12 - Tag Deletion Count: The number of records ~ identify tag 
for deletion (not processed by IOCS). 

D13 - Non-First Overflow Reference Count: The number of times a 
READ instruction causes a search of the overflow area(s) for a 
record that is the second or higher in an overflow chain. 

016 - Prime Record Count: The number of logical records written in 
the organized file in the prime data area(s). IOCS accumulates this 
count during a LOAD operation. 

D27 - Number of Independent Overflow Tracks: The number of tracks 
still available in the independent overflow area. 

D28 - Overflow Record Count: The number of records written in all 
the overflow areas for the file cylinder overflow areas and/or 
independent overflow area. 

029 - Cylinder Overflow Area Count: 
areas that have been filled. 

The number of cylinder overflow 

See "Section: Label Fields" (Figure 24 on page 120) for the details 
about each field of the format-2 label. 

LABEL FIELDS FOR SAM AND DAM ~ ON DASDAND DISKETTE DEVICES 

This section describes all the DASD and diskette labels supported by 
VSE: 

Volume Label 1 (VOL1» - DASD and Diskette 

Format-l label 

Format-2 label 

Format-3 label 

Format-4 label 

HDRl label - Diskette 

User-Standard Header Label (UHL1-UHL8) 

User-Standard Trailer Label (UTL1-UTL8). 

Each label is illustrated, and each field of each label is described in 
detail. The individual fields in the illustrations are numbered to 
relate to the corresponding descriptions. The label fields located in 
the key area of a DASD record are numbered K1-Kn. The fields of a 
diskette record, or in the data area of the DASD record are numbered 
D1-Dn. 

The descriptions of the label fields include the: 

• Displacement in hex notation. 

Field Number - Kn or On 

length of the field in bytes (hex notation). 

Content of each field, together with the name of the field. 

An additional table shows for each field: 

Source QL Information for checking or writing this field. 

• Purpose of the field. 

Processing performed on input/output. 

100 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

• OLBL/EXTENT Default for the format-1 and format-3 labels only. 

Throughout this section, the requirements and specifications relating to 
the 3330 apply also to the 3333 and the 3350 in 3330-1 compatibility 
mode. The requirements and specifications given for the 3340 apply 
also to the 3344. 

LABEL FIELDS FOR DASO 

Volume Label on Disk (VOLI) 

The volume label has a 4-byte key area and an BO-byte data area. Both 
the key area and the first four bytes of the data area always contain 
the characters "VOLI" for the first volume label. Additional volume 
labels are ignored by VSE. 

The displacement is in hex notation, counting from the beginning of the 
label.(after the key fields). The fields are identified by the numbers 
KI,K2 (key fields) and D1 to 013 (data fields). 

Figure 18 shows the format of volume labels on disk. 

Oispl. Field Length Content 

o 

3 

o 
3 
4 

A 
B 

10 
15 
19 
10 
21 
25 
33 

Figure 18. 

Kl 

K2 

01 
02 
03 

3 

I 

3 
1 
6 

04 1 
05 5 

06 5 
07 4 
08 4 
09 4 
010 4 
011 E 
012 ID 

Identifier: VOL. IOCS checks whether a 
VOLUME Label is present on 
the Volume. 

Volume Label No. VSE supports only VOL1. 

Identifier: VOL. Checked by IOCS 
Volume Label No. only VOLI supported 
Volume serial number provides a unique 

identification for the volume. 
It is generally assigned when the volume is 
first received in the installation. 
The source of information is the EXTENT 
statement. 
IOCS checks the Serial No. given in the 
EXTENT statement against this field. 
If no Serial No. Operand is specified in 
the EXTENT Statement IOCS assumes the 
correct volume mounted. 

Security byte used by OLTEP 
VTOC address. Contains the address of the 

Format-4 label. 
This address is written at initialisation 
time. 

Blank 
CI-size for FBA. blanks for CKO 
Number of blocks per CI for FBA, blanks for CKD 
Number of labels per CI for FBA. blanks for CKD 
Blank 
Owner code for LVTOC listing 
Blank 

Oisk Volume Label (VOLI Label) 

Appendix C: OASO and TAPE Labels 101 



Field 

K1,D1 

K2,D2 

D3 

D4 

D5 

D6 

licensed Program - Property of IBM 

Sourc~ of Information System 

Purpose: 
Identifies the standard volume label. This field is written in the first 
three positions of both the key and data areas of the volume label record. 

Processing: 
On both input and out,IOCS checks this field to verify that a standard 
volume label is present on the volume.The volume label should be written 
previously, before a logical file of data records is written on the volume. 

Source of Information : System 

Purpose: 
Indicates the sequence of this label within the volume label (VOL) group. 
DOS/VSE supports Volume label only, but provision is made for additional 
standard volume labels if required in other systems. This field is written 
in the fourth position of both the key and data areas of the volume label 
record. 

Processing: 
This field is processed in conjunction with the label identifier to 
completely identify the volume label. 

Source of Information : EXTENT 

Purpose: 
Provides a unique identification for a volume. The number is generally 
assigned when the volume is first received in th stallation. This number is 
also used as the File Serial Number in the format-l label of each logical 
file written on the volume. This provides a unique identification of the 
volume/file relationship. If a multivolumelogical file is written, the 
Volume Serial Number of the first volume becomes the File Serial Number in 
the format-l label on all volumes. 

Processing: 
On both input and out,IOCS checks this field against the number supplied by 
the user in the Volume Serial Number field of EXTENT. If EXTENT is used and 
no operand is specified, IOCS assumes the correct volume is mounted and does 
not check this field. 

Source of Information 

Purpose: 
Provides a code to indicate that additional identification is required 
before a volume can be considered the correct one for processing. DOS/VSE 
does not use this field, but provision is made for additional sec in other 
system. For example,OS/VS allows an operator response of a predetermined 
'password' to futher authorize a volume for processing. 

Processing: 
On both input and out,IOCS ignores this field. 

Source of Information 

Purpose: 
Provides the starting address of the Volume Table of Contents (VTOC). This 
address is written along with the Volume Serial Number when the volume is 
initialized. 

Processing: 
On both input and out,IOCS refers to this field to find out where standard 
labels are located on this volume. 

Source of Information 

Purpose: 
Reserved for future use. Should contain blanks. 

Figure 19 (Part 1 of 2). Standard Volume Labell Fields (DASD) 

102 IBM VSE/Adv. Functions Diag. Ref. lIOCS Volume 1 



Licensed Program - Property of IBM 

Field 

07 Source of Information : -
Purpose: 
Identifies the fixed-length control interval size by which the VTOC for FBA 
devices is subdivided. 

D8 Source of Information : -
Purpose: 
Indicates the numbe ... of physical blocks per cont ... ol interval. 

D9 Sou ... ce of Info ... mation : -
Pu ... pose: 
Indicates the number of fixed-length slots in each cont ... ol interval which 
may contain labels. 

010 Sou ... ce of Info ... mation : -
Pu ... pose: 
Reserved fo ... futhe ... use. Should contain blanks. 

011 Sou ... ce of Info ... mation : -
Pu ... pose: 
Identifies the owne ... 0 ... assignee to whom this volume belongs. such as a 
custome .... installation. department. or system. This can be of value fo ... 
cont ... olling the allocation of volumes in a la ... ge installation. This field 
is p ... inted on SVSLST when the LISTVTOC p ... og ... am is executed. 

P ... ocessing: 
On both input and out. IDeS ignores this field. 

012 Sou ... ce of Information : -
Pu ... pose: 
Rese ... ved for future use. Should contain blanks. 

Figure 19 (Part 2 of 2). Standard Volume Labell Fields (OASO) 

Appendix C: DASO and TAPE Labels 103 



licensed Program - Property of IBM 

IBM-Standard File labels on Disk 

Types: Traditionally, four types of IBM-standard file labels are 
counted: 

• Format-I, the normal disk file label for the first 3 extents 

• Format-3, a file continuation label for the next 13 extents 

• Format-2, used with ISAM only. 

Format-4, the VTOC file label, written at initialization of the 
device 

Size: An IBM-standard file label is 140 bytes long and consists of a 
44-byte key area and a 96-byte data area. 

The VTOC: All IBM-standard file labels on a volume are in the VTOC, a 
directory of all files on the volume. The VTOC itself is a file also and 
has its own file label, the VTOC label. The VTOC is located where you 
specify it when you initialize your volume. The address of the VTOC 
label (format-4) is saved in the volume label. 

Several Volumes: For several volumes of one file, the file label is 
repeated in the VTOC of each volume. The file label on each volume 
describes the portion of the file on that volume and its extents. 

Figure 20 on page 105 to Figure 24 on page 120 show IBM-standard label 
formats for disk files, that is, the first IBM-standard file label, the 
continuation label, the ISAM label and the VTOC label. 

104 IBM VSE/Adv. Functions Diag. Ref. lIOCS Volume 1 



Licensed Program - Property of IBM 

FORMAT-l LABEL LAVOUT AND CONTENT 

Oi52l. Field Length Content 

o 

2C 

20 

33 

35 

38 

3B 

3C 
3D 
3E 

4B 
4E 
50 
52 

Kl 

01 

02 

03 

04 

05 

06 

07 
08 
09 

010 
010A 
010B 
Dll 

2C 

1 

6 

2 

3 

3 

1 

1 
1 
D 

3 
2 
2 
2 

File-IO: 1-35 bytes if generation number (Gnnn) 
and version number (Vnn) are specified. 
else 1 to 44. 
Source of Information: 

OLBL or laCS 
VSAM catalog routines. 
AMS DEFINE command. 

Processing: 
The File-ID may be specified in the 
DLBL-File-ID field. if this specification 
is omited, laCS uses the DTF-name specified 
in the OLBL-filename-field (stored in the 
key area of the label record) to search 
(on input) in the VTOC key areas 
for the file entry. 
Under VSAM a data space name 
(VSAM catalog routine) or the name of an 
index or data is the contents (AMS DEFINE 
Stmt. or generated by VSAM). 

Format 10: 1. Written (on output) and checked 
by laCS to distinguish this label from the 
other types (Format 2-5). 

Volume serial no.: numeric identification for 
the first volume of the file. 
Written by IOCSon output. 

Volume sequence number within the file to 
identify the volume in an multivolume file. 
Written (on output) and checked by laCS. 

Creation date: yyddd. By laCS from SVSCOM (on 
output). checked against label record (DLBL) 
on input. The actual year may be calculated 
by adding yy to 1900. 

Expiration date indicates when the data record 
is considered inactive. (Same format as 
creation date.) 
Source: DLBL. laCS. AMS or System (creation 

date + 7 by default). 
Number of extents of the multi extent file on 

this volume. 
Used by OS/VS 
Reserved 
System code: indicates the Programming System 

which has written the file. 
IBMOOSVS is the code written by laCS if OLBL 
is used. 

Date of last access: yyddd; not used by VSE 
Reserved 
Number of blocks per CI for FBA. blanks for CKD 
File type: hex 0008 for VSAM 

hex 2000 for DAM 
hex 4000 for SAM (default, field in 

DLBL omited) 
hex 8000 for ISAM 

Checked against type of DTFon input. 
Written from DLBL by laCS on output. 

Figure 20 (Part 1 of 2). IBM-Standard Disk File Label (Format-I) 

Appendix C: DASD and TAPE Labels 105 



Licensed Program - Property of IBM 

Oispl. Field Length Content 

54 
55 

56 
58 
SA 
5B 
50 

5E 

SF 
62 
67 

69 

6A 

012 
013 

014 
015 
016 
017 
018 

019 

019A 
020 
021 

022 

023 

1 
1 

2 
2 
1 
2 
1 

1 

3 
5 
2 

1 

Record Format: Used by OS/VS. IOCS writes 0 
Flags for optional areas used for ISAM file: 

Bit 2: Master index 
Bit 3: Independent overflow area 
Bit 4: Cylinder overflow area 

From OTF and EXTENT 
Byte length of ISAM blocks, from OTF 
Record length of ISAM files. From OTF 
Key length of ISAM blocks. From OTF 
Key field location in ISAM block. From OTF 
Flags: Bit 0: Last volume (SAM only) 

Bit 3: File security. From OLBL 
Original space request was: 

Bit 1: in blocks 
4: for continuous extent 
5: for maximum continuous extent 
6: not under specified minimum 

Used by OS/VS. laCS writes blanks 
Used by OS/VS. laCS writes zeros 
Start of next record to end-of-data distance 

(negative displacement) 
Type of extent: Categorie of records 

(from EXTENT) 
(default) 01: (prime) data area or data space extent 

02: independent overflow area extent 

1 

04: master/cylinder index area extent 
40: extent for user-standard labels 
80: split cylinder extent (SAM) 

Sequence number of extent in the file. 
From EXTENT or laCS 

6B 024 4 Extent lower limit (cchh for CKO, bbbb for FBA) 
6F 025 4 Extent upper limit (cchh for CKO, bbbb for FBA) 

The fields 022 - 025 are now repeated twice as 026 - 033 to 
describe the next two extents still allowed on this label. 
The Format-1 label can reflect 3 extents of a multiextent-file, 
additional extents are documented in an corresponding Format-3 
label. 

87 034 5 Address of next label for the file 
on this volume. Written and used by laCS 

Figure 20 (Part 2 of 2). IBM-Standard ~isk File Label (Format-I) 

106 IBM VSE/Adv. Functiors Oiag. Ref. LIOCS Volume 1 



licensed Program - Property of IBM 

Field 

Kl 

01 

D2 

DlBl/EXTENT Default 

Source of Information: 

DTF Filename 

DlBl/Ioes 
IOCS (VSAM Catalog Routines)/ 
Access Method Services DEFINE 
command 

Purpose: 
File-ID permits you to identify your logical file by an application-oriented 
unique name. A file-ID can be composed by linking together key words in a 
form compatible with the OS/VS file structure (for example, 
DOS.SYSSLB.FILE.VOLUME.3). 

Generation number identifies the various editions of a file, such as a 
grandfather-fat her-son relationship. Thus, it can be used to ensure that 
the desired edition of the file is selected for processing, if several 
editions are maintained. The editions should be numbered in sequence. 

Version number provides a more detailed identification of the editions of a 
file. For example, generation could specify a month (1-12), and version 
could specify a particular week (1-5) of the month. File-ID. generation, 
and/or version occupy the key area of the label record. laCS uses this to 
identify the label of a file specified for processing. 

Processing: 
You can specify the file to be processed in the corresponding field of DLBL. 
If you use DLBL and omit this field. IDeS uses the DTF name specified in the 
DLBL Filename field. On input, IOCS searches the VTOC key areas for this 
identification specified (in File Identification or Filename) in the key 
area of the label record. 

Under VSAM, this field will normally contain a data space name generated by 
VSAM catalog routines. However, if this data space contains the data or the 
index of a Unique file, this field contains the name of the data or index 
specified in the DEFINE statement or generated by VSAM (if a name was not 
specified). 

DLBL/EXTENT Default 

Source of Information 

Purpose: 

1 Output only 

DLBL for Input 
DLBL/IOCS for Output 

Distinguishes this type of label (format-I) from other types (formats 2, 3, 
4. and 5) 

Processing: 
IOCS checks. or writes. the type of label specified by DlBl. If you use 
DLBL. IOCS ignores this field on input; on output, IOCS writes 1. 

DLBl/EXTENT Default 

Source of Information 

Purpose: 

Volume Serial Number of first 
volume of the file. Output only. 

DLBL for Input 
DLBL/IOCS for Output 

Provides a numeric (or code) identification for this logical file. It 
contains the Volume Serial Number from the VOL label, and this uniquely 
identifies the volume/file relationship. In a multivolume file. the 
format-l label on each volume contains the Volume Serial Number of the first 
volume. 

Processing: 
IOCS checks. or writes, the file serial number specified by DlBL. If you 
use DLBL, laCS ignores this field on input; on output, IOCS writes the 
Volume Serial Number of the first or only volume. 

Figure 21 (Part 1 of 11). Format-1 Label Fields 

Appendix C: DASD and TAPE Labels 107 



Field 

03 

04 

Licensed Program - Property of IBM 

OLBL/EXTENT Default 

Source of Information 

Purpose: 

01 

OLBL/IOCS 

Identifies the order of the volumes of data records in a multivolume logical 
file. 

Processing: 
In a multivolume file you need to specify in OLBL the number of the first 
volume only. When you use DLBL, IOCS supplies 01 for the first volume. 
IOCS increases the number by 1 for each additional volume. IOCS checks, or 
writes, the number specified or updated. In DLBL specify a 4-digit EBCDIC 
number, which is converted to a 2-byte binary number in the label. 

DlBl/EXTENT Default 

Source of Information 

Purpose: 

Today's date 
Output only 

OLBL for Input 
System for Output 

Provides the date that the file was originally created. 
a later time to determine how old the records are. Or, 
conjunction with, or in place of, generation number) to 
desired edition of the file is selected for processing. 

Processing: 

This can be used at 
it can be used (in 
ensure that the 

On input, IOCS checks this date against that supplied by OLBL. Specify 
YYOOO (year and day of the year), which is converted to a 3-byte 
discontinuous binary number (ydd) in the label. If you use OLBL. the 
creation date in the label is not checked. 

On output, IOCS writes the system date that is available in the 
communication region of the Supervisor. You do not supply a creation date 
for an output file, in either DlBl. 

Figure 21 (Part 2 of 11). Format-l Label Fields 

108 IBM VSE/Adv. Functions Oiag. Ref. LIOCS Volume 1 



L 

Licensed Program - Property of IBM 

Field 

D5 

06 

DLBL/EXTENT Default 

Source of Information 

Purpose: 

Creation Date Plus 7 
Output only 

OLBL for Input 
OLBL/IOeS/ System 

for Output (Action P/W) 
DLBL/Access Method Services 
(YSAM) for Output (Action W) 

Indicates the date that the data records may be considered inactive. At that 
time, the label of the old file may be deleted from the VTOe, which, in 
effect, deletes the entire file and makes the extent(s) available for new 
data. Processing: 
On input, IDeS checks this date against that supplied by DLBL. If you use 
DLBL, this field is not checked. 

On output, IDeS first determines if the extent(s) specified for the new 
output file overlaps an existing file. If so, IDes then checks the 
expiration date of the existing file by comparing this field in the old file 
label to the system date in the communications region of the Supervisor. If 
the old file has expired, IDeS writes the label(s) for the new file in the 
VToe. This label includes the new expiration date supplied by DLBL or DLBL. 
The extent(s) is then available for the data records of the new output file. 
If the old file has not expired, a message is given to the operator, who 
determines whether to overwrite the old data. The expiration date of a VSAM 
data space is for information only. A data space can only be deleted, 
whether it has expired or not, by an Access Method Services DELETE 
statement. 

In OLBL, specify yyddd (year and day of the year). 

In the DLBL Expiration Date field, you may specify either the date the file 
will expire, or a retention period for the file. For expiration date, 
specify yy/ddd (year/day of the year). The day may have 1-3 digits. For a 
retention period, specify d-dddd (1-4 digits, 0-9999). If you omit this 
field in DLBL, IOCS adds a 7-day retention period to the system date in the 
communication region of the Supervisor and writes the resulting date. In 
each case, the expiration date (after calculation, if necessary) written in 
the label is a 3-byte discontinuous binary number. 

OLBL/EXTEHT Default 

Source of Information IDes for Output 

Purpose: 
Provides a control of the number of separate areas (extents) established for 
this file, as represented by the Extent fields written in the format-l label 
(3 fields) and the format-3 label (13 fields). In a multivolume file, the 
count is accumulated separately for each volume. 

Processing: 
On input, IOCS ignores this field. On output, IOCS writes the accumulated 
count in this field, or gives a message to the operator and cancels the job 
if the count exceeds the allowable number. The maximum allowable count is: 
3 - for an ISAM file. (Because the master and cylinder indexes are combined 
into one area, a maximum of 3 areas are set up from 4 EXTENT statements.) 
15 - for a DAM file with user-standard labels. (Because IOCS sets up one 
extra Extent field for the user-standard label track, 16 areas are set up 
from a maximum of 15 EXTENT statements.) 16 - for a DAM file without 
user-standard labels, and for a YSAM data space. 

SAM files may have any number of extents. 

Figure 21 (Part 3 of 11). Format-l Label Fields 

Appendix C: DASO and TAPE Labels 109 



Licensed Program - Property of IBM 

Field 

07 DLBl/EXTENT Default : Blank. Output only 

Source of Information : IOCS for Output 

Purpose: 
Used by OS/VS for partitioned data sets. VSE does not use this field. 

Processing: 
On output, IOCS writes a blank. 

08 DLBL/EXTENT Default : Blank. Output only 

Source of Information : IDeS for Output 

Purpose: 
Reserved for future use. laCS writes a blank. 

09 DLBL/EXTENT Default : 005/360 Version 3. Output only 

Source of Information : DLBl/IOCS for Output 

Purpose: 
Indicates the Programming System under which this file is written. This can 
be of value when an installation uses more than one programming system. 

Processing: 
On input, IOCS ignores this field. On output, laCS writes the information 
supplied in OLBL. If you use OLBL, IOCS writes: IBMOOSVS. 

D10 DLBl/EXTENT Default : -
Source of Information : -
Purpose: 
Indicates the date of last access of this data set. 

010A DLBL/EXTENT Default : Blanks. Output only 

Source of Information : IDeS for Output 

Purpose: 
Reserved for future use. IOCS writes blanks. 

DlOB OLBL/EXTENT Default : OLBl/DTF 

Source of Information : -
Purpose: 
Indicdtes the number of physical blocks per control interval for the FBA 
device f i 1 e. 

011 OLBL/EXTENT Default : X'4000' 

Source of Information : DTF for Input 
DLBL/DLBL for Output 

Purpose: 
Verifies the type of organization used for this f i 1 e . 

Processing: 
On input, IOCS checks this field against the type of DTF (DTFSD, DTFDA, or 
DTFIS) that you specify. For an output file, IOCS converts the code 
specified in DLBL Type of F i Ie, and writes this field: If you omit this 
field in DLBL, IOCS writes X'4000' in the label field. 

Figure 21 (Part 4 of 11). Format-1 Label Fields 

110 IBM VSE/Adv. Functions Diag. Ref. LIOeS Volume 1 



licensed Program - Property of IBM 

Field 

D12 

D13 

014 

015 

D16 

D17 

DlBl/EXTENT Default 

Source of Information laCS for Output 

Purpose: 
Used by OS/VS to define the type of records: fixed length. blocked. 
truncated. etc; DOS/VSE does not use this field. 

Processing: 
On output. laCS writes a binary zero. 

Source of Information DTF/ EXTENT for Output 

Purpose: 
Indicates which optional areas are built for an ISAM file. This field is 
provided for use by VSE. 

Processing: 
IDeS checks. or writes. the appropriate code from the DTF specifications and 
extent information that you supply. 

Source of Information DTF/OlBl for Output 

Purpose: 
Tells the length of the blocks of logical records (and therefore. the length 
of a physical record). 

Processing: 
On input. laCS refers to this field to determine the length of the blocks of 
records previously written in the file. On output. IOCS writes the block 
length from the DTF specification that you supply. 

Source of Information OTF for Output 

Purpose: 
Tells the length of each logical record. 

Processing: 
On input. IOCS refers to this field to determine the length of the logical 
records previously written in this file. On output. laCS writes the record 
length from the DTF specification that yoU supply. 

Source of Information DTF for Output 

Purpose: 
Tells the length of the key area for each record (unblocked records> or 
block of records. 

Processing: 
On input. IOCS refers to this field to determine the length of the key area 
used in this file. On output. IDeS writes the key length from the DTF 
specification that you supply. 

Source of Information DTF for Output 

Purpose: 
Tells the location of the key field within the logical records. when blocked 
records are written in the file. 

Processing: 
On input. IOCS refers to this field to determine where the key field is 
located within each record. 

On output. IOCS writes the location of the high-order position of the key 
field from the DTF specification that you supply. 

Figure 21 (Part 5 of 11). Format-l label Fields 

Appendix C: DASD and TAPE Labels 111 



Field 

D18 

D19 

D19A 

D20 

Licensed Program - Property of IBM 

Source of Information IOCS / DLBL for Output 

Purpose: 
Indicates that this is the last volume of a multivolume file that has been 
closed. 

Processing: 
On input, IOCS ignores this field. When an output file is closed, IOCS 
writes 1 in this field of the label on the last (or only) volume of the 
file. For all other volumes, IOCS writes '0 in this field on an 
end-of-volume condition. 

Purpose: 
Invokes data set security to prevent problem programs from accidentally 
accessing a data secured file. 

Processing: 
On input, this field is checked for the data security indicator. If it is 
ON, a message is issued to the operator stating that a data secured file is 
being accessed. On output, if DSF is specified in the DLBL statement, bit 3 
is set to 1. Bit 3 is set ON for all VSAM format 1 labels. 

DLBL/EXTENT Default 

Source of Information 

Purpose: 
Indicates the type of request that was issued for the initial allocation. 

Bit 
0,1 01 = Original request was in blocks 

2,3 (Reserved, binary zeros.) 

4 1 = Original request was for a 
contiguous extent. 

S 1 = Original request was for the 
maximum contiguous extent. 

6 1 = Original request was for the 
five or less largest extents 
that are larger than or equal 
to a specified minimum. 

7 (Reserved, binary zeros.) 

DLBL/EXTENT Default 

Source of Information IOCS for Output 

Purpose: 
Used by OS/VS to indicate the amount of storage requested at the end of each 
extent. VSE does not use this field. 

Processing: 
On output, IOCS writes blanks. 

DLBL/EXTENT Default 

Source of Information laCS for Output 

Purpose: 
Used by OS/VS to point to the last record of a sequential or 
partition-organization file. VSE does not use this field. 

Processing: 
On output, IOCS writes binary zeros. 

Figure 21 (Part 6 of 11). Format-l Label Fields 

112 IBM VSE/Adv. Functions Diag. Ref. LIOeS Volume 1 



Licensed Program - Property of IBM 

Field 

D2l 

D22 
026 
030 

D23 
027 
030 

DLBL/EXTENT Default 

Source of Information: 

Purpose: 
Indicates the starting position of the next sequential record relative to 
the End-of-Date Pointer if it is used, and contains a binary value to be 
used as a negative displacement. 

DLBL/EXTENT Default 

Source of Information 

Purpose: 

X'Dl' Output only 

EXTENT for Input 
EXTENT/ IOCS for Output 

Defines the category of records (data, overflow, index, or user-standard 
labels) for which this area is reserved. The area is specified by the 
Extent Lower Limit and Extent Upper Limit fields. 

Processing: 
IOCS checks, or writes, this label field with the extent type specified by 
EXTENT: 

If you use EXTENT and omit the type, this field is not checked on input; on 
output, IOCS writes X'Ol'. 

If you include user-standard labels, IOCS establishes an area for them. You 
do not include EXTENT for this area. IOCS uses the First Extent field 
(D22-D25) to define this extent, codes it Extent Type X'40' (blank), and 
numbers it Extent Sequence O. If less than 3 extents are required for a 
file, IOCS writes X'OO' in the Extent Type field of the unused Additional 
Extent fields (D26 and D30). 

DLBL/EXTENT Default 

Source of Information 

Purpose: 

023-0 
D27-1 
D31-2 
SD/DA files 
Output only 

EXTENT for Input 
EXTENT/ IOCS for Output 

Determines the proper order of the extent areas in a multiextent file. For 
a SAM, or OAM file, separate extents may be located on the same or different 
volumes. For an ISAM file, multivolumes may be used for the data records 
(prime data area), but on anyone volume, the data records must be contained 
within one extent. ISAM indexes and the ISAM independent overflow area are 
separate extents, on the same volume as the prime data area or on a 
different volume than the prime data area. 

Processing: 
For a SAM or DAM file, or VSAM data space, IOCS checks, or writes, this 
label field with the sequence number supplied by EXTENT. You may specify 
any sequence numbers you choose, but the numbers must be in ascending order. 
If you include user-standard labels, IOCS establishes an extent area and 
assigns it sequence number 0 (see Extent Type, field D22). 

If you use EXTENT for a SAM or DAM file, or for the creation of a VSAM data 
space, and omit the extent sequence number, this field is not checked on 
input. On output IOCS writes Extent Squence 0 in the First Extent Field, 
and adds 1 for each subsequent Extent field used. Extent sequence 0 
represents the first EXTENT card or, if they are used, it represents the 
area for user-standard labels. In the latter case, the first EXTENT card 
becomes Extent Sequence 1. 

For an ISAM file, IOCS processes this field the same way it processes the 
Lower and Upper Limit fields, D24 and 025. You must include EXTENT for each 
area and specify Extent Sequence Number. Extent information must be 
supplied in a specified order. 

Figure 21 (Part 7 of 11). Format-1 Label Fields 

Appendix C: DASD and TAPE Labels 113 



Field 

D24 
028 
D32 

licensed Program - Property of IBM 

OlBl/EXTENT Default 

Source of Information EXTENT 

Purpose: 
Oefines the beginning of a disk area allocated to this file. 

Processing: 
For a SAM input file, IOeS checks this field and the Upper limit field 
(025/029/033) against the starting and ending addresses supplied by EXTENT. 
IOeS makes the area specified by EXTENT available for processing if it is 
equal to, or falls within, the limits defined by these label fields. If 
not. a message is issued to the operator. If you omit EXTENT* for a SAM 
input file, IOeS does no checking and makes available the area defined by 
the label. 

For a DAM input file, IOeS makes the area defined by EXTENT available. It 
does not check this field against the EXTENT specifications. 

For a SAM. or DAM output file, IDeS writes, in this field the starting 
address (lower limit) supplied by EXTENT. 

Figure 21 (Part 8 of 11). Format-I Label Fields 

114 IBM VSE/Adv. Functions Olag. Ref. lIOeS Volume 1 



Licensed Program - Property of IBM 

Field 

D24 For an ISAM file, processing of this field varies with the type of operation 
D28 performed: 
D32 

• LOAD Create: IOCS writes the starting address (lower limit) supplied by 
EXTENT. 

• LOAD Extent: IOCS checks this field against the lower limit 
EXTENT. If the limits are not the same, the job is canceled. 
data area is extended onto a new volume, IOCS writes the lower 
new extent specified by EXTENT. 

supplied by 
If the prime 
limit of the 

• RETRVE: This field determines the lower limit of the extent. If you use 
EXTENT, you need specify only Operation, Symbolic Unit, and Volume Serial 
Number. 

• ADD or ADDRTR: IOCS checks this field against the lower limit supplied by 
EXTENT. If the limits are not the same, the job is canceled. 

If an independent overflow area is established at this time, IOCS writes the 
lower limit of the new extent specified by EXTENT. 

If you include EXTENT for both a master index area and a cylinder index area 
in an ISAM file, IOCS combines the two areas into one extent and uses the 
lower limit of the master index for this field. 

For the creation of a VSAM data space, IOCS writes the starting address 
(lower limit) supplied by the EXTENT statement. 

In EXTENT, specify a Relative Track number (n-nnnnn). This is the 
sequential number of the track relative to cylinder 0, track 0: 

For 2311 , Relative Track = 10 x cylinder number + track number. 

For 2314 or 2319, Relative Track = 20 x cylinder number + track number. 

For 3330, Relative Track = 19 x cylinder number + track number 

For 3340. Relative Track = 12 x cylinder number + track number. 

For 3350, Relative Track = 30 x cylinder number + track number. 

In EXTENT, for 2311/2314/2319 specify: oOOCeCOHH where 

ece = Cylinder number (000-199) 

HH = Head (or track) number (00-09) for 2311; (00-19) for 2314 or 2319. 

IOCS converts the specification to CCHH for the label field. 

Because cYlinder 0, track 0 on each volume must be reserved for labels and 
system use, never specify a lower limit of all zeros. 

Figure 21 (Part 9 of 11). Format-l Label Fields 

Appendix C: DASD and TAPE Labels 115 



Field 

D25 
D29 
D33 

Licensed Program - Property of IBM 

DLBL/EXTENT Default 

Source of Information EXTENT 

Purpose: 
Defines the end of a disk area allocated to this file. 

Processing: 
For a SAM input file, IOCS checks this field and the Lower Limit field (D24/ 
D28/ 032) against the addresses supplied by EXTENT. IOCS makes the area 
specified by EXTENT available for processing if it is equal to, or falls 
within, the limits defined by these label fields. If not, a message is 
issued to the operator. If you omit EXTENT for a SAM input file, IOCS does 
no checking and makes available the area defined by the label. 

For a SAM or DAM output file, IOCS writes, in this field. the ending address 
(upper limit) supplied by EXTENT. 

For an ISAM file, processing of this field varies with the type of operation 
performed: 

• LOAD Create: IOCS writes the ending address (upper limit) supplied by 
EXTENT. 

• LOAD Extent: IOCS checks this field against the upper limit specified by 
EXTENT. If the specified limit of either the cylinder index or the prime 
data area is beyond the upper limit in the label. IOCS changes the label and 
makes the new area available for records. If the prime data area is 
extended onto a new volume IOCS writes the upper limit of the new extent 
specified by EXTENT. Under any other condition. the job is canceled if the 
limits do not agree. 

• RETRVE: This field determines the upper limit of the extent. If you use 
EXTENT, you need specify only Operation. Symbolic Unit, and Volume Serial 
Number. 

• ADD or ADDRTR; IOCS checks this field against the upper limit specified by 
EXTENT. If the specified limit of the independent overflow area is beyond 
the upper limit in the label, IOCS changes the label and makes the new area 
available for records. If an independent overflow area is established at 
this time. IOCS writes the upper limit of the new extent specified by 
EXTENT. Under any other condition, the job is canceled if the limits do not 
agree. 

If you include EXTENT for both a master index area and a cYlinder index area 
in an ISAM file, IOCS combines the two areas into one extent and uses the 
upper limit of the cylinder index for this field. For the creation of a 
VSAM data space, IOCS writes the ending address (upper limit) supplied by 
the EXTENT statement. 

In EXTENT, specify a Relative Track number (n-nnnnn) for the starting 
address, as described for label Fields D24/D28/D32 and the Number of Tracks 
(n-nnnnn). From these, IOCS computes the upper limit. 

In EXTENT, for disk specify: OOOCCCOHH where: cce = Cylinder number HH = 
Head (or track) number 

IOCS converts the specifications to CCHH for the label field. 

Figure 21 (Part 10 of 11). Format-l Label Fields 

116 IBM VSE/Adv. Functions Diag. Ref. LIDCS Volume 1 



Licensed Program - Property of IBM 

Field 

D34 DLBL/EXTENT Default : -
Source of Information : IOCS for Output 

Purpose: 
Provides the address of the next label for this file on this pack, if 
required. For an ISAM file, it points to a format-2 label. For a SAM/DAM 
file, or VSAM data space, it points to a format-3 label i f more than three 
extents are used on this volume. 

Processing: 
On input, IOCS refers to this field to find the address of the next label, 
if any. On output, whenever a format-2 or format-3 label is required for a 
f i Ie, IOCS finds a VTOC location for the label and writes its <:Iddress in 
this Pointer field. IOCS always writes a format-2 label for an ISAM file. 
For a SAM/DAM file or VSAM data space, IOCS establishes a format-3 label if 
another EXTENT card is re<:ld after the format-1 label if filled. If 
SAM/DAM file or VSAM data space does not require a format-3 
writes binary zeros in this field. 

Figure 21 (Part 11 of 11). Format-l Label Fields 

FORMAT-3 LABEL LAYOUT AND CONTENT 

Displ. Field Length Content 

o Kl 4 Key code for continuation label(03030303) 
Written by IOCS 

4 K2 1 Type of extent, from EXTENT: 
01 = data extent (default) 
80 = split cylinder extent 

5 K3 1 Extent sequence number (3 or more) 
6 K4 4 Extent lower limit (cchh for CKD, bbbb for FBA) 
A KS 4 Extent upper limit (cchh for CKD, bbbb for FBA) 

The fields K2 to K5 are repeated three times as K6 - K17, to 
describe the extents 2, 3, and 4 of the key area. 

2C Dl 1 Continuation label code: EBCDIC 3, from IOCS 
The fields K2 to K5 are now repeated nine more times as D2 - D37, 
to describe the nine extents of the data area. 

87 D38 5 Address of next contin.label (cchhr or Obbbb) 
or zeros. From SAM IOCS only 

Figure 22. IBM-Standard Disk File Continuation Label (Format-3) 

Appendix C: DASD and TAPE Labels 117 

label, 
a 

IOCS 



Field 

Kl 

K2. 
K14. 
02. 
034 

K 3, 
K15, 
03, 
D35 

K4. 
K 16. 
D4. 
036 

Licensed Program - Property of IBM 

DLBL/EXTENT Default 

Source of Information: IDes 

REMARKS: 

Provides a code to distinguish this key from the keys (File Identification) 
of format-l labels. 

DLBL/EXTENT Default 

Source of Information: 

REMARKS: 

X'DI' Output only 

EXTENT for Input 
EXTENT/IOCS for Output 

Like the extents in the format-l label. the first byte (Extent Type) of each 
Extent field defines the category of records for which this area is 
reserved. 

IOCS checks against. or writes. the extent type specified by EXTENT: Type 
EXTENT Specifications Label Field Data area 1 X'Dl' Data area with split 
cylinder (SAM) 8 in EXTENT 128 in XTENT X'80' 

If you use EXTENT and omit the type. this field is not checked on input; on 
output. IDes writes 01. 

IDeS writes 00 in the Extent Type fields of any unused Extents (2-13). 

Extent Types 02. 04. and 40. which may be written in a format-l label. do 
not occur in a format-3 label. Types 02 and 04 apply only to ISAM files. 
which support three extents and the format-l label only. Type 40 indicates 
user-standard labels, which precede the first data area extent for the file 
and therefore appear in the format-l label. 

DLBL/EXTENT Default 

Source of Information: 

REMARKS: 

3. 4, ... 15 Output only 

EXTENT for Input 
EXTENT/IDeS for Output 

The second byte (Extent Sequence Number) of each Extent field in this label 
serves the same purpose as in the format-l label. It determines the proper 
order of the extent areas in a multiextent file. 

IOCS checks against. or writes, the sequence number specified by EXTENT. If 
you use EXTENT and omit the extent sequence number, this field is not 
checked on input. On output, IOCS writes 0 for the first extent for the 
file (in the format-l label), and adds 1 for each succeeding EXTENT. Thus, 
the first extent sequence number in the format-3 label is 3. 

DLBL/EXTENT Default 

Source of Information: 

REMARKS: 

EXTENT* for Input 
EXTENT for Output 

Bytes 3-6 (Lower Limit) of each Extent field define the beginning of a 
volume area allocated to this file. Your EXTENT specification and the 
processing of this field are the same as that described for the lower limit 
of a SAM/DAM extent in the format-l label. 

Figure 23 (Part 1 of 2). Format-3 Label Fields 

118 IBM VSE/Adv. Functions Diag. Ref. LIOeS Volume 1 



Licensed Program - Property of IBM 

Field 

K5. 
K17. 
05. 
037 

01 

038 

OLBL/EXTENT Default 

Source of Information: 

REMARKS: 

EXTENT* for Input 
EXTENT for Output 

Bytes 7-10 (Upper Limit) of each Extent field define the end of a volume 
area allocated to this file. Your EXTENT specification and the processing 
of this field are the same as that described for the upper limit of a 
SAM/DAM extent in the format-l label. 

DLBL/EXTENT Default 3 Output only 

Source of Information: IDes 

REMARKS: 

Distinguishes this type of label (format 3) from other types (formats 1. 2. 
4. and 5). IDeS writes a format-3 label on any volume of the file that 
requires more than three extents. as indicated by a series of EXTENT 
statements and user-standard labels. if used (see format 1. Extent Type 
Field 022). 

Source of Information: Ioes for Output 

REMARKS: 

Provides the address of another format-3 label. if required for a SAM file. 
DAM files support a maximum of 16 extents. which are defined by a format-l 
label and one format-3 label. 

On input. IOeS refers to this field to find the address of the next label. 
if any. On output for a SAM file. if another EXTENT card is read after a 
format-3 label is filled. IOeS establishes an additional format-3 label. 
IDeS finds a VTOe location and writes its address in this Pointer field. If 
another format-3 label is not required. IDeS writes binary zeros in this 
field. 

Figure 23 (Part 2 of 2). Format-3 Label Fields 

Appendix C: OASO and TAPE Labels 119 



Licensed Program - Property of IBM 

FORMAT-2 LABEL LAYOUT AND CONTENT 

Field 

Kl 
(00) 

K2 
( 01) 

K3 
(08) 

K4 
(00) 

Name 

No. of Bytes: 

Content 

Open/Close 

Functions 

Source of Information 

REMARKS: 

: 

: 

: 

: 

: 

: 

Key Identification 

1 

X'02' 

X/-

LOAD Create 

IoCS 

Provides a code to distinguish this key from the keys (File Identification) 
of format-l labels 

Name : Address of 2nd Level Master Index 

No. of Bytes: : 7 

Content : Binary Zeros - Applies to oS/VS only. 

Open/Close : X/-

Functions : LOAD Create 

Source of Information : IoCS 

REMARKS: Used by OS/VS to provide the address (MBBCCHH) of the first track 
of the second level of the master index. 

Name : Last 2nd Level Master Index Entry 

No. of Bytes: : 5 

Content : Binary Zeros - Applies to OS/VS only. 

Open/Close : X/-

Functions : LOAD Create 

Source of Information : IoCS 

REMARKS: Used in OS/VS to provide the address (CCHHR) of the last entrY in 
the second level of the master index. 

Name : Address of 3rd Level Master Ind. 

No. of Bytes: : 7 

Content : Binary Zeros - Applies to OS/VS only. 

Open/Close : X/-

Functions : LOAD Create 

Source of Information : IoCS 

REMARKS: Used by OS/VS to provide the address (MBBCCHH) of the first track 
of the third level of the master index. 

Figure 24 (Part 1 of 12). Format-2 Label Fields 

120 IBM VSE/Adv. Functions Diag. Ref. LIDCS Volume 1 



Licensed Program - Property of IBM 

Field 

K5 
(14) 

K6 
( 19) 

K7 
(24) 

Dl 
(2C) 

Name 

No. of Bytes: 

Content 

Open/Close 

Functions 

Source of Information 

Last 3rd Level Master Index Entry Address 

5 

Binary Zeros - Applies to OS/VS only. 

X/-

LOAD Create 

IOCS 

REMARKS: Used by OS/VS to provide the address (CCHHR) of the last entry in 
the third level of the master index. 

Name 

No. of Bytes: 

Content 

Open/Close 

Functions 

Source of Information 

REMARKS 

Name 

No. of Bytes: 

Content 

Open/Close 

Functions 

Source of Information 

REMARKS: 

(Reserved) 

11 

Binary Zeros 

X/-

LOAD Create 

IOCS 

Reserved for future use. 

Last Prime Track Address 

8 

DASD Address (CCHHR) 

-/-

Indicates the address of the last prime track on the last prime cYlinder. 

Name : Format Identifier 

No. of Bytes: : 1 

Content : 2 = Format 2 Numeric EBCDIC 

Open/Close : X/-

Functions : LOAD Create 

Source of Information : IOCS 

REMARKS: 
Distinguishes this type of label (formats 2) from other types (formats 1, 3 
4, and 5). 

Figure 24 (Part 2 of 12). Format-2 Label Fields 

Appendix C: DASD and TAPE Labels 121 



Field 

D2 
(2D) 

D3 
(2E) 

D4 
(2F) 

05 
(32) 

05 
(32) 

Name 

No. of Bytes: 

Content 

Open/Close 

Functions 

Source of Information 

REMARKS: 

Licensed Program - Property of IBM 

Number of Index Levels 

1 

1 = Cylinder Index 
2 = Cylinder Index and Master Index 
Binary 

x/-
LOAD Create 

DTFIS 

A cylinder index is always required. Also, you may specify a master index 
(OTFIS MSTIND), if desired. 

Name : High Level Index Development Indicator 

No. of Bytes: : 1 

Content : X'02' 

Open/Close : x/-
Functions : LOAD Create 

Source of Information : IOCS 

REMARKS: Used by OS/VS to indicate that a master index is used and to tell 
the number of tracks reserved for it. 

Name : First Data Record in Cylinders 

No. of Bytes: : 3 

Content : DASD address (HHR) 

Open/Close : X/-

Functions : LOAD Create 

Source of Information : DTFIS + Calculation 

REMARKS: 
Provides the address of the first data record in each cylinder. This record 
follows the track index, which is written at the beginning of each cylinder. 
IOCS uses the record key length, specified by DTFIS KEYLEN, in the 
calculation of the length of the track index. 

Name : Last Data Track in Cylinders 

No. of Bytes: : 2 

Content : DASD Address (HH) 

Open/Close : X/-
Functions : LOAD Create 

Source of Information : DTFIS + Calculation 

REMARKS: 
Indicates the last track that can be used, in each cylinder, for the 
organized file of data records. If this is other than 09 (19), a cylinder 
overflow area follows the organized file. IOCS determines this track from 
the size of the cylinder overflow area that you specify in DTFIS CYLOFL. 

Figure 24 (Part 3 of 12). Format-2 Label Fields 

122 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 

J 



<. 

Licensed Program - Property of IBM 

Field 

D6 
(34) 

D7 
(35) 

D8 
(36) 

D9 
(37) 

Name 

No. of Bytes: 

Content 

Open/Close 

Functions 

Source of Information 

Number of tracks for Cylinder Overflow 

1 

Binary Zeros - Applies to OS/VS only 

X/-

LOAD Create 

IOCS 

REMARKS: Used by OS/VS. Contains the number of tracks allocated to each 
cylinder overflow area. 

Name 

No. of Bytes: 

Content 

Open/Close 

Functions 

Source of Information 

REMARKS: 

Highest 'R' on High Level Index Tracks 

1 

Record Number 

X/-

LOAD Create 

DTFIS + Calculation 

Provides the number of the last record on each track of the master and/or 
cylinder indexes. IOCS uses the record key length, specified by DTFIS 
KEYLEN, to determine how many index entries can be written on each track. 

Name : Highest ' R ' on Prime Data Tracks 

No. of Bytes: : 1 

Content : Record Number 

Open/Close : x/-
Functions : LOAD Create 

Source of Information : DTFIS + Calculation 

REMARKS: 
Provides the number of the last data record, or block of records, on each 
full track of the organized file in the prime data area. IOCS uses the 
DTFIS specifications for record length, key length, and blocked records to 
calculate how many physical records can be written on each track. The 
number of the last data record in the first track of the file differs from 
the others if data records and track index entries share the same track (see 
Field 010), 

Name : Highest 'R' on Overflow Tracks 

No. of Bytes: : 1 

Content : Record Number 

Open/Close : X/-

Functions : LOAD Create 

Source of Information : DTFIS + Calculation 

REMARKS: 
Provides the number of the last record on each track of the cylinder and/or 
independent overflow area. IOCS uses the DTFIS specifications for record 
length and key length in the calculation of the number of records that can 
be written on an overflow track. 

Figure 24 (Part 4 of 12). Format-2 Label Fields 

Appendix C: DASD and TAPE Labels 123 



Field 

DID 
(38) 

DllA 
(39 ) 

DllB 
(3A) 

Name 

No. of Bytes: 

Content 

Open/Close 

Functions 

Source of Information 

REMARKS: 

Licensed Program - Property of IBM 

'R' of Last Data Record on Shared Tracks 

1 

Record Number 

X/-

LOAD Create 

DTFIS + Calculation 

If data records and track index entries are written on the same track 
(shared track). this field provides the number of the last data record on 
this track. IOCS uses the DTF specifications for record length. key length. 
and blocked records to determine how many physical data records can be 
written after the track index on the shared track. 

Name : 'R' of Last Date record on Unshared Track 

No. of Bytes: : 1 

Content : Record Number 

Open/Close : X/-

Functions : LOAD Create 

Source of Information : DTFIS + Calculation 

REMARKS: 
Indicates the record number of the last data record on an unshared track of 
the track index. 

Name : Highest 'R' on Independent Overflow Track 

No. of Bytes: : I 

Content : Record Number 

Open/Close : X/-

Functions : -
Source of Information : -
REMARKS: 
Indicates the highest possible record number for independent overflow tracks 
with format F records. 

Figure 24 (Part 5 of 12). Format-2 Label Fields 

124 IBM VSE/Adv. Functions Diag. Ref. LIOeS Volume I 



Licensed Program - Property of IBM 

Field 

D12 
(3B) 

D13 
( 30) 

D14 
(40) 

Name 

No. of Bytes: 

Content 

Open/Close 

Functions 

Source of Information 

REMARKS: 

Tag Deletion Count 

2 

Number of records. Binary 

-/X 

RETRVE 

Count you accumulate in filenameT 

Provides a count of the number of records yoU identify (tag) for deletion. 
As you tag a record during a retrieve operation, you should add 1 to the 
counter addressed as filenameT. In subsequent retrieve operations, the 
count is read from the label back into filenameT, and additional tagged 
records can be added. The delete option is not supported by VSE. You must 
provide coding to test for records tagged for deletion. VSE passes this 
field between the format-2 label and the OTF. You can use this statistic 
(along with those in Fields 013, 016, 027, 028, and 029) to determine 
whether the file should be reorganized. 

Name : Non-First Overflow Reference Count 

No. of Bytes: : 3 

Content : Number of random references. Binary 

Open/Close : -/X 

Functions : RETRVE 

Source of Information : IOCS: Count in filenameR 

REMARKS: 
Provides a count of the number of times a REAO instruction causes a search 
of the overflow area(s) for a record that is the second or higher in an 
overflow chain. IOCS accumulates this count in filenameR during a retrieve 
operation. In subsequent retrieve operations, IOCS reads the count from the 
label back into filenameR, and adds to it as required. You can use this 
statistic (along with those in Fields 012, D16, D27, 028, and D29) to 
determine whether a file should be reorganized. 

Name : Number of Bytes for Highest Level Index 

No. of Bytes: : 2 

Content : Size of master index. Binary 

Open/Close : X/-

Functions : LOAD Create 

Source of Information : DTFIS + Calculation 

REMARKS: 
Provides the size of the master index and thus indicates how many bytes of 
main storage are required for this index. IOCS calculates the size from the 
EXTENT limits and DTFIS KEYLEN specification. 

Figure 24 (Part 6 of 12). Format-2 Label Fields 

Appendix C: DASD and TAPE Labels 125 



Field 

015 
(42) 

016 
(43) 

Name 

No. of Bytes: 

Content 

Open/Close 

Functions 

Source of Informatton 

REMARKS: 

Licensed Program - Property of IBM 

Number of Tracks for Highest Level Index 

1 

Tracks of master index. Binary 

x/-
LOAD Create 

EXTENT 

Provides the number of tracks required for the master index. IOCS obtains 
this from the EXTENT limits for Extent Sequence o. 
Name : Prime Record Count 

No. of Bytes: : 4 

Content : Number of logical records. Binary 

Open/Close : X/-

Functions : LOAD/ ADD 

Source of Information : IOCS: Count in filenameP+4 or filenameP 

REMARKS: 
Provides a count of the logical records written in the organized file in the 
prime data area(s). In a multi-volume file. this count is a total of the 
logical records on all volumes. During a LOAD operation. IOCS accumUlates 
this count in the filename P+4. For an ADD operation. IOCS reads this count 
into filenameP and updates it to include the added records. You can make 
note of the count and use it during a retrieve operation to verify that all 
records are read. You can also use this statistic (along with those in 
Fields 012. 013. D27. D28. and D29) to determine whether a file should be 
reorganized. 

Figure 24 (Part 7 of 12). Format-2 Label Fields 

126 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 

.j 



Licensed Program - Property of IBM 

Field 

Dl7 
( 47> 

Dl8 
(48) 

1)17 
(4F) 

D19 
(4F) 

Name 

No. of Bytes: 

Content 

Open/Close 

FunctIons 

Source of Information 

REMARKS: 

Status 

1 

Codes for filled area: 
Bit No. 
ON Meaning 
2 File has been successfully closed 
6 Last track full 
7 Last block full 
Otherwise each bit is OFF (0) 

-/X 

LOAD/ ADD 

IOCS 

If bit 2 is OFF, the file is being used for an ADD or ADDRTR. If an OPEN is 
then issued to the file for ADD or ADDRTR when HOLD=YES, the problem program 
is canceled because another program is already using the file for ADD or 
ADDRTR. If an ADD or ADDRTR program terminates without issuing a CLOSE to 
the file, bit 2 remains OFF. Bit 2 should be set ON by issuing a CLOSE to 
that file in in any job in which ADD or ADDRTR is specified and HOLD does 
not equal YES. Bits 6 and 7 indicate that the organized file completely 
fills the prime data area. Bit 6 is ON when the last track that can be used 
for data records is filled and the end-of-file record is written on the last 
track of the area. When blocked records are specified, the last block may 
or may not be filled. If it is not, bit 7 is OFF and more logical records 
may be added to the last block. When the last block becomes full, bit 7 is 
turned ON. Thus, when both bits 6 and 7 are ON, any additional records for 
the file are written in an overflow area. 

Name : Address of Cylinder Index 

No. of Bytes: : 7 

Content : DASD address (MBBCCHH) 

Open/Close : x/-
Functions : LOAD Create 

Source of Information : EXTENT 

REMARKS: 
Provides the address of the first track of the cylinder index. IOCS obtains 
this address from the starting address you supply in the cylinder index 
(Extent Sequence 1) EXTENT statement. 

Name : Address of Lowest Level Master Index 

No. of Bytes: : 7 

Content : DASD address of index (MBBCCHH) 

Open/Close : X/-

Functions : LOAD Create 

Source of Information : EXTENT 

REMARKS: 
Provides the address of the first track of the master index. laCS obtains 
this address from the starting address you supply in the master index 
(Extent Sequence 0) EXTENT statement. In VSE, this field, and Field D20, 
are identical whenever a master index is specified. The two fields are 
provided for use by OS/VS, which provides for three levels of master 
indexes. If a master index is not specified, this field contains binary 
zeros. 

Figure 24 (Part 8 of 12). Format-2 Label Fields 

Appendix C: DASD and TAPE Labels 127 



Field 

D20 
(56) 

D2l 
(5D) 

D22 
(65) 

Name 

No. of Bytes: 

Content 

Open/Close 

Functions 

Source of Information 

REMARKS: 

Licensed Program - Property of IBM 

Address of Highest Level Index 

7 

DASD address of master or 
cylinder index (MBBCCHH) 
M = Extent sequence number 

x/-
LOAD Create 

EXTENT 

Provides the address of the first track of the master index, if specified 
(same as Field D19). If a master index is not used, this field contains the 
address of the cylinder index (same as Field D18). This field, and Field 
D19, are provided for use by OS/VS, which provides for three levels of 
master indexes. 

Name : Last Prime Data Record Address 

No. of Bytes: : 8 

Content : DASD address (MBBCCHHR) 
M = Extent sequence number 

Open/Close : -/X 

Functions : LOAD/ ADD 

Source of Information : IOCS 

REMARKS: 
Provides the address of the last record (or block of records) written in the 
organized file in the prime data area. This address is first written during 
a LOAD operation and then updated, if necessary, during a LOAD Extend or ADD 
operation. 

Name : Last Track Index Entry Address 

No. of Bytes: : 5 

Content : DASD Address (CCHHR) 

Open/Close : -/X 

Functions : LOAD 

Source of Information : IOCS 

REMARKS: 
Provides the address of the last normal entry in the last track index 
currently written for the file. This address is first written during a LOAD 
Create operation, and then updated during a LOAD Extend Operation. 

Figure 24 (Part 9 of 12). Format-2 Label Fields 

128 IBM VSE/Adv. Functions Diag. Ref. LIOeS Volume 1 



Licensed Program - Property of IBM 

Field 

D23 
(6A) 

D24 
(6F) 

025 
(74) 

D26 
(7C) 

Name 

No. of Bytes: 

Content 

Open/Close 

Functions 

Source of Information 

REMARKS: 

: 

: 

: 

: 

: 

: 

Last Cylinder Entry Address 

5 

DASD Address (CCHHR) 

-/X 

LOAD 

IOCS 

Provides the address of the last entry written in the cylinder index. This 
address is written during a LOAD Create operation, and then updated during a 
LOAD Extend operation. 

Name : Last Master Index Entry 

No. of Bytes: : 5 

Content : DASD Address (CCHHR) 

Open/Close : -/X 

Functions : LOAD 

Source of Information : IOCS 

REMARKS: 
Provides the address of the last entry written in the master index, if used. 
If a master index has not been specified, this field contains binary zeros. 
This address is first written during a LOAD Create operation, and then 
updated. if necessary. during a LOAD Extend operation. 

Name : Last Independent Overflow Record Address 

No. of Bytes: : 8 

Content : DASD Address (MBBCCHHR) 
M = Extent sequence number 

Open/Close : -/X 

Functions : LOAD Create/ ADD 

Source of Information : IOCS 

REMARKS: 
Provides the address of the last record written in the independent overflow 
area. This address is first written during a LOAD Create operation. when an 
end-of-file record is entered as the first record of the independent 
overflow area. The address is updated if records are transferred to the 
independent overflow area during an ADD operation. 

Name : Bytes Remaining on Overflow Track 

No. of Bytes: : 2 

Content : Binary Zeros. Applies to OS/VS only. 

Open/Close : X/-

Functions : LOAD Create 

Source of Information : IOCS 

REMARKS: Used by OS/VS to indicate the number of bytes that are still 
available in the last track in use at this time in the independent overflow 
area. 

Figure 24 (Part 10 of 12). Format-2 Label Fields 

Appendix C: DASO and TAPE Labels 129 

I 



Field 

027 
C7E) 

028 
(80) 

029 
(82) 

Name 

No. of Bytes: 

Content 

Open/Close 

Functions 

Source of Information 

REMARKS: 

Licensed Program - Property of IBM 

: Number of Independent Overflow Tracks 

: 2 

: Number of unused tracks. Binary. 

: -/X 

: AOO 

: IOCS: Count in fi lenamel. 

Provides the number of tracks that are still available in the independent 
overflow area. laCS maintains this count in filenameI during an ADD 
operation. In subsequent ADO operations, IOCS reads the count from the 
label back into filenameI, and updates it as required. You can use this 
statistic (along with those in Fields 012, 013, 016, 026 and 029) to 
determine whether a file should be reorganized. 

Name : Overflow Record Count 

No. of Bytes: : 2 

Content : Number of records. Binary 

Open/Close : -/X 

Functions : AOD 

Source of Information : IOCS: Count in filenameO. 

REMARKS: 
Provides a count of the records written in all the overflow areas for the 
file (cylinder overflow areas and/or independent overflow area). laCS 
accumulates this count in filenameO during an ADD operation. In subsequent 
ADD operations. IOCS reads the count from the label back into filenameO and 
adds to it for additional overflow records. You can use this statistic 
(along with those in Fields 012. 013, 016. 027. and 029) to determine 
whether a file should be reorganized. 

Name : Cylinder Overflow Area Count 

No. of Bytes: : 2 

Content : Number of overflow areas. Binary 

Open/Close : -/X 

Functions : ADD 

Source of Information : IOCS: Count in filenameA. 

REMARKS: 
Provides a count of the cylinder overflow areas that have been filled. IOCS 
accumulates this count in filenameA during an AOO operation. In subsequent 
ADD operations, IOCS reads the count from the label back into filenameA, and 
adds to it as required. You can use this statistic (along with those in 
Fields 012, 013, 016. 027, and 028) to determine whether a file should be 
reorganized. 

Figure 24 (Part 11 of 12). Format-2 Label Fields 

130 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

Field 

D30 Name : Dummy Track Index Entry 
(84) 

No. of Bytes: : 3 

Content : DASD Address (HHR) 

Open/Close : X/- , 

Functions : LOAD Create 

Source of Information : -
REMARKS: Contains the address (HHR) of the dummy track index entry. 

D31 Name : Pointer 
( 87) 

No. of Bytes: : 5 

Content : Binary Zeros. Applies to OS/VS only. 

Open/Close : X/-

Functions : LOAD Create 

Source of Information : IOCS 

REMARKS: Used by OS/VS to provide the address (CCHHR) of a format-3 label 
i f more than three extents are used on this volume. VSE does not support 
more than three extents for an ISAM file. 

Figure 24 (Part 12 of 12). Format-2 Label Fields 

Appendix C: DASD and TAPE Labels 131 



Licensed Program - Property of IBM 

FORMAT-4 LABEL LAYOUT AND CONTENT 

Every field in this label. except the VSAM indicators (D9A). is 
written by DSF at initialization time • 

~ 

o 
2C 
2D 
32 

34 

38 

3A 

3B 
3C 
3E 
3E 
40 
42 
44 
45 
46 
47 

48 
4A 
4B 
4C 
4C 
54 
55 

57 
60 

64 
69 
6A 
6B 
6F 
73 

~n I 
L 
K 

.E.ll.lJI. Length Content 

K1 
01 
02 
03 

04 

D5 

06 

D7 
D8 
09 

D9A 

D10A/B 
DI0C 

0100 
011 
012 
013 
014 
015 

2C 
1 
5 
2 

4 

2 

1 

1 
2 
E 
2 
2 
2 
1 
1 
1 
1 

2 
1 
1 

B 
8 
1 
2 

9 
4 

5 
1 
1 
4 
4 

19 

Key code for VTOC label: 44 times 04 
VTOC label identifier: EBCDIC 4. 
Used by OS/VS 
Number of available file label spaces 
in VTOC at initialization (tracks x cylinder 
minus 2) 
Address of next alternate track (cchh). 
for FBA: zeros. From DSF 
Number of alternate tracks left. For FBA zeros 
From DSF 
Flags: Bit 0: 

Bit 3: 
Bit 5: 

Extent count. 
Reserved 

always on 
Volume reserved for emulators 
VTOC being updated by VSAM 
Always 1. VTOC is 1 extent 

eKD device constants: (FBA: zeros) 
Number of cylinders 
Tracks per cylinder 
Track length 
Overhead bytes 
Overhead bytes 
Overhead bytes 
Flag byte 

for 1* 
for L* 
for K* 

Bit 4: I or L value* has two bytes for 3350 
Bit 7: A tolerance is added to each record 

except the last on a track 
Tolerance** per device type 
Number of labels on VTOe track per device 
Reserved 

VSAM indicators. from VSAM catalog routines 
Time when last data space was added 
Ownership byte: Bit 0: Owned by VSAM catalog 
Number of first track of CKD catalog recovery 
area. for FBA zeros 
Used by OS/VS 
Number of first block of FBA catalog recovery 
area. for CKD zeros 
Reserved 
Extent type: 01 for VTOC extent 
Extent sequence number: 00 (VTOe has I extent) 
Start address of VTOC (label). 
End address of VTOC. Used by IOCS 
Zeros 

= for a record with key area = for a last record with key area on a track 
for a key area 

**)The tolerance is added to the length of a record if bit 7 in 
the flag byte is on. 

Figure 25. VTDe label (Format-4) 

132 IBM VSE/Adv. Funct ions Di ag. Ref. LIOeS Volume 1 



licensed Program - Property of IBM 

User-Standard File Labels on Disk 

Figure 26 shows user-standard disk file labels (header and trailer). 

Oispl. Field Llllng:tb ~!Hlh[l:t 

o Kl 3 UHl or UTL 
3 K2 1 label sequence number: 1 to 8 for header labels 

0 to 7 for trailer label 
4 01 3 Same as field Kl 
7 02 1 label sequence number: 1 to 8 for all 
8 03 4C User's label information 

Figure 26. User-Standard Disk File Labels (Header and Trailer) 

Field 

Kl.Dl Source of Information: : IOCS 

REMARKS: 
This field identifies the label as a user-standard header (UHL) or trailer 
( UTU label. It is written in the first three positions of both the key and 
data areas of the label record. On input you can refer to this field to 
determine whether a header or trailer label is to be processed. On output. 
IOCS provides the information (UHl/UTU for this field. 

K2 Source of Information: : IOCS 

REMARKS: 
Indicates the sequence of this label within this header label set (UHl) or 
trailer label set (UTU. This field is written in the fourth position of 
the key area of the label record. User-standard header labels are numbered 
UHLl-UHlB. User-standard trailer labels are numbered UTLO-UTL 7. This field 
is processed with the Label Identifier to completely identify the 
user-standard label. 

02 Source of Information: : IOCS 

REMARKS: 
Indicates the sequence of this label within this header label set (UHU or 
trailer label set (UTL ). This field is written in the fourth position of 
the data area of the label record. User-standard header and trailer labels 
are numbered UHLl-UHl8 and UTLl-UTLB. This field is processed with the 
label Identifier to completely identify the user-standard label. 

03 Source of Information: : User 

REMARKS: 
Provides a means for you to label your SAM/DAM file with any information 
need in addition to that supplied by the standard labels. 

Figure 27. User-Standard Label Fields 

User-standard labels may be included for SAM or DAM files. VSAM and ISAM 
do not support them. 

User-standard labels are header labels located and processed before the 
data of the file. and trailer labels located before and processed after 
the data of the file. 

These labels have a 4-byte key area and an 80-byte data area. Both 
key area and the first four bytes of the data area contain UHln or 
the remaining 76 bytes of the data area contain user-chosen data. 
maximum of eight header and eight trailer labels may be written to 
describe a file. 

the 
UTLn; 
A 

There is always one header and one trailer label more written than 
specified. This extra label has only a 4 byte key area and no data area. 

Appendix C: DASD and TAPE Labels 133 

yoU 



licensed Program - Property of IBM 

An example of a file for which five header labels and four trailer 
labels were specified is shown in Figure 28 on page 134. 

Labgljl .K.fi Area Data .AL.ll 
1 UHLl UHLl + 76 bytes of label data fields 
2 UHLZ UHL2 " 3 UHL3 UHL3 " 
4 UHL4 UHl4 " 5 UHL5 UHL5 " 6 UHL6 
7 UTLO UTLI + 76 bytes of label data fields 
8 UTLl UTL2 " 9 UTL2 UTL3 " 10 UTL3 UTL4 " 11 UTL4 

Here follow the data. 

Figure 28. User-Standard Disk File labels (5 UHLs and 4 UTLs 
Specified) 

If only header labels are specified, one UTLO label without data is 
written by the system. An example is shown in Figure 29 where only ~ 
header labels were specified. 

Labe 1# 

1 
2 
3 
4 

.K.fi Area ti bytes) 

UHLl 
UHL2 
UHL3 
UHL4 
UTLO 

1lll.£ A.rJu! ilJ!. byte s ) 

UHLI + 76 bytes of label data fields 
UHL2 " 
UHL3 " 

5 
Here follow the data. 

Figure 29. User-Standard Disk File Labels (3 UHLs Specified) 

You can include definitions or descriptions of your file in addition to 
those provided by the standard labels. For example, you may want to 
identify end-of-volume as opposed to end-of-file conditions, or you may 
have subcategories that you want to define for your files, or you may 
want to maintain an audit trail in these labels without the system 
security standards. 

LABEL FIELDS FOR DISKETTE 

Volume Labels on Diskette 

Figure 30 shows the format of a diskette volume label. 

Oispl. ~ Length Content 

o 
3 
4 
A 
B 

25 
33 
4F 

01 3 
02 1 
D3 6 
D4 1 

05,06 lA 
07 E 
D8 Ie 
D9 1 

label IO: VOL 
Ignored by VSE 
Volume serial number from EXTENT 
Accessibility indicator: S or Blank. From OTF 
Reserved 
Name or code of volume owner 
Reserved 
Label standard level: W 

Figure 30. Oiskette Volume Label 

134 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



-' 

Licensed Program - Property of IBM 

Field 

01 Source of Information: : System 

Purpose: 
Identifies the standard volume label. This field is written in the first 
three positions of the volume label record. 

Processing: 
On both input and output, laCS checks this field to verify that a standard 
volume label is present on the volume. 

D2 Source of Information: : System 

Purpose: 
Indicates the sequence of this label within a volume label set; must contain 
a ' 1 ' • 

Processing: 
This field is processed in conjunction with the label identifier, to 
completely identify the volume label. 

D3 Source of Information: : EXTENT 

Purpose: 
Provides a unique identification for a diskette (volume); generally assigned 
when the diskette is first received in the installation. 

Processing: 
On both input and output, laCS checks this field against the number supplied 
by the user in the Volume Serial Number field of EXTENT. If no operand is 
specified, IOCS assumes the correct volume is mounted and does not check 
this field. 

I D4 Source of Information: : -
Purpose: 
Provides a code which indicates that additional qualification is needed 
before a volume can be processed. 

Processing: 
If the volume is secure, an operator message is written any time a file is 
to be read or written on this volume. The operator must then make the 
appropriate response. For more information see 'VSE/Advanced Functions 
Messages. , 

05 Source of Information: : -
Purpose: 
Reserved for future use; should contain blanks. 

06 Source of Information: : -
Purpose: 
Reserved for future use; should contain blanks. 

07 Purpose: 
This field specifies the owner of the volume. 

Processing: 
On both input and output, IOCS ignores this field. 

08 Source of Information: : -
Purpose: 
Reserved for future use; should contain blanks. 

Figure 31 (Part 1 of 2). Diskette Standard Volume Label Fields 

Appendix C: OASO and TAPE Labels 135 



Licensed Program - Property of IBM 

Field 

09 Source of Information: : System 

Purpose: 
Identifies the version of label standard to which the labels and data 
formats on this volume conform; must contain 'W' • 
Processing: 
IDeS checks this field on both input and output; if not a 'W' , job is 
terminated with a message. 

Figure 31 (Part 2 of 2), Diskette Standard Volume Label Fields 

A diskette volume has one volume label of 80 bytes. It is located on 
track 0, sector 7 and begins by VOL. 

IBM-standard File Labels on Diskette 

~igure 32 shows the format of the diskette file label. 

Dis~l. Field L~ng!h Con!gn! 

0 Dl 3 Label 10: HDR 
3 D2 1 Label sequence number: 1 
4 D3 1 Blank 
5 04 8 File-IO from DLBL or system 
0 05 9 Blanks 

16 06 5 Record length. From IOCS 
1B D7 1 Blank 
Ie 08 5 start address of extent: Track and sector. 

From IOCS 
21 09 1 Blank 
22 DI0 5 End address of extent: Track and sector. 

From IOCS 
27 Dl1 1 Blank 
28 012 1 Bypass byte: B or blank: 9 = job ends on input 
29 013 1 Security byte: 5 or blank 
2A 014 1 Write protection byte: P or blank 
29 015 1 Interchange level: blank= sector length 128. 

unblocked, unspanned, 
sequential 

non-blank= job ends on input 
2C 016 1 Volume byte: blank= file complete on this 

volume 
C= file continued on next 

volume 
L= file ends on this volume 

20 017 2 Volume sequence number 
2F 018 6 Creation date: YYMMO 
35 D19 D Blanks 
42 D20 6 Expiration date: Default= 7 days after output 
48 D21 1 Verify byte: V or blank 
49 022 1 Blank 
4A D23 5 End of data address 
4F D24 1 Blank 

Figure 32. Diskette File Label 

136 IBM VSE/Adv. Functions Oiag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

Field 

01 Source of Information: : System 

Purpose: 
Identifies the Header label; must contain 'HDR' . 

Processing: 
Ioes checks this field on input, writes it on output. 

D2 Source of Information: : System 

Purpose: 
Indicates the sequence of this label within a header label set; must contain 
a ' 1 • • 

Processing: 
IOCS checks this field on input, writes it on output. 

03 Source of Information: : -
Purpose: 
Reserved for future use; should contain blanks. 

04 Source of Information: : DLBL/IOCS 

Purpose: 
File ID permits you to identify your logical file. 

Processing: 
You can specify the file to be processed in the corresponding field of the 
OLBL. If you omit this field, IDeS uses the DTF name specified in the OLBL 
Filename field. On input, IOCS searches the VTOC for this identification. 
On output, IOCS writes the identification specified ( in File Identification 
or Filename) in the label record. If this name is the same as an unexpired 
or write-protected file on the diskette, the job is terminated. 

05 Source of Information: : -
Purpose: 
Reserved for future use; should contain blanks. 

06 Source of Information: : IOCS 

Purpose: 
Contains length of the data records recorded in this file. 

Processing: 
For an input OTFPH file, IOCS uses this field to set up the length field in 
the Read eew. On output, the IOeS sets up this field. 

07 Source of Information: : -
Purpose: 
Reserved for future use; should contain blanks. 

D8 Source of Information: : IOCS 

Purpose: I 
Defines the beginning of the diskette area allocated to this file. 

Processing: 
For an input file, IOCS makes available the area defined by the label. For 
an output file, IOCS writes, in this field, the starting address (lower 
limit> of the file. This address wi 11 be the address of the first record of 
the first track following the last unexpired or write-protected file on the 
diskette. IOCS ignores any values specified on the EXTENT card for both 
input and output files. 

Figure 33 (Part 1 of ~). Diskette HDR 1 Label Fields 

Appendix C: DASO and TAPE Labels 137 



Licensed Program - Property of IBM 

Field 

09 Source of Information: : -
Purpose: 
Reserved for future use; should contain blanks. 

010 Source of Information: : laCS 

Purpose: 
Defines the end of the diskette area allocated to this file. 

Processing: 
For an input file, laCS makes available the area defined by the label. For 
an output file at OPEN time, laCS writes, in this field, the address of the 
last record on the diskette (73026) • At CLOSE time, laCS updates thh f hld 
to be the address of the last record in the file. laCS ignores any values 
specified on the EXTENT card for both input and output files. 

011 Source of Information: : -
Purpose: 
Reserved for future use; should contain blanks. 

012 Source of Information: : laCS 

Purpose: 
Indicates whether or not a file is to be interchanged. 

Processing: 
IOCS terminates the job on input if this field is non-blank. Fo ... an output 
f i 1 e. IOCS creates this field as a blank. 

013 Source of Information: : IDeS 

Purpose: 
Indicates whether or not additional qualifications must be supplied in order 
to access this f i 1 e. 

Processing: 
For an input file, if this byte is an ' S ' , an operator message is written. 
The operator must reply 'YES' to access the file. 

For an output f i 1 e, if the user specifies ( in the OTF) the file to be 
created as a secure f i 1 e, IDeS wi 11 create this field as an 'S' • 

014 Source of Information: : IDeS 

Purpose: 
Indicates whether or not a file may be overwritten. 

Processing: 
For input files, IOCS ignores this field. For output files, if the user 
indicates in the DTF that the file is to be write-protected, IDeS puts a P 
in this field. If a file is created write-protected, it cannot be 
overwritten. 

Figure 33 (Part 2 of 4). Diskette HDR 1 Label Fields 

138 IBM VSE/Adv. Functions Diag. Ref. LIOeS Volume 1 



Lfcen •• d Program - Property of IBM 

Field 

015 

D16 

D17 

D18 

D19 

Source of Information: laCS 

Purpose: 
Identifies the following file attributes: 

• Physical Record Length = 128 bytes 

• Record length - Fixed = 128 bytes 

• Record Attributes - unblocked/ unspanned 

• File Organization - Sequential 

Processing: 
On both input and output. IOeS assumes the above attributes if this field is 
a blank. laCS will create this field as a blank on output. If this field 
is not blank on an input file. the job will be terminated. 

Source of Information: laCS 

Purpose: 
Indicates whether a file is complete on this volume. continued to another 
volume. or completed on this volume: ($u8$Z)$u - file complete on this 
volume e - file continued to another volume L - file completed on this 
volume. 

Processing: 
On input. IDeS checks this field to ensure that this indicator is correct. 
The only correct values are: ($u8$Z)$u, for a single volume file; C for all 
but the last volume of a multivolume file; and L for the last volume of a 
multivolume file. On output. laCS will set this indicator to the proper 
value based on the type of file being created. 

Source of Information: IOCS 

Purpose: 
Indicates the order of a volume in a multivolume file. relative to the first 
volume of that file. 

Processing: 
On input, if the DTFDU VOlSEQ parameter is specified. laCS will check that 
the volume sequence numbers of a multivolume file are in consecutive, 
sequential. ascending order. starting with 1. On output IOeS will 
automatically create consecutive. sequential. ascending sequence numbers for 
a multivolume file (starting with 1). 

Source of Information: IDeS/System 

Purpose: 
Indicates the date the file was created; the format is YYMMDD. 

Processing: 
On input. IOeS ignores this field. On output. IDeS creates this field equal 
to the current system date. 

Source of Information: 

Purpose: 
Reserved for future use; should contain blanks. 

Figure 33 (Part 3 of 4). Diskette HDR 1 Label Fields 

Appendix C: DASD and TAPE Labels 139 



Licensed Program - Property of IBM 

Field 

D20 Source of Information: : IOCS/ EXTENT 

Purpose: 
Indicates the date this file may be purged; the format is VVMMDD. 

Processing: 
On input, IDeS ignores this field. On output laCS creates this field 
to the expiration date specified on the EXTENT card. If a retention 
is specified, the expiration date is calculated from that. If no date 
specified, IDeS creates this date equal to seven days from the current 
system date. When creating an output f i Ie. IOCS deletes expired and 
non-write-protected files which begin after the last unexpired or 
write-protected file on the volume. 

D2l Source of Information: : laCS 

Purpose: 
Indicates whether or not data has been subjected to a verification 
procedure. 

Processing: 
IDeS ignores this field on both input and output. 

D22 Source of Information: : -
Purpose: 
Reserved for future use; should contain blanks. 

D23 Source of Information: : laCS 

Purpose: 
Contains the address of the next higher consecutivelY numbered unused 

record; the format is CCHHR. 

On input, laCS supplies this field as the actual end-of-data address. 
output, laCS creates this field as the actual end-of-data address. 

D24 Source of Information: : -
Purpose: 
Reserved for future use; should contain blank.s. 

Figure 33 (Part 4 of 4). Diskette HDR 1 Label Fields 

The IBM-standard file label on diskette is 80 bytes long. The key area 
of 4 bytes always contains the characters HDRI. The 76 byte data area 
contains the start and end address of the file or of the extent of a 
file on this volume. As only one extent of each file is on a diskette, 
no continuation labels are needed. 

All IBM-standard file labels for all files on a diskette volume are 
stored in the VTOe on track 0, sectors 8-26. 

Only IBM-standard file labels are supported on diskettes. 

LABEL PROCESSING FOR TAPE FILES 

STANDARD LABELS, INPUT FILE 

VOll Label 

The standard volume label (VOll) must be the first record on the reel 
when standard labels (FllABL=STD) are specified. 

The VaLl label can be written by the IBM-supplied utility program, 
Initialize Tape. It is generally written once. when the reel of tape is 
first received in an installation. At that time, a permanent volume 
serial numb~~ is assigned to the reel and written on it as part of the 
volume label. This provides a permanent identification of the reel. as 
long as it is used for files with standard labels. Following the VOll 

140 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume I 

equal 
period 

is 

On 



licensed Program - Property of IBM 

label. Initialize Tape writes a dummy HDRI label and a tapemark. Either 
IBM or American National Standards Institute. Inc. labels may be 
specified in the Initialize Tape program. 

Whenever the tape reel is positioned at the load point for processing 
the first or only volume of an input data file (or multifile). IOCS 
reads and checks the VOll label against the File Serial Number supplied 
by the user in TlBL. If an error is detected. a message is given to the 
operator. The operator may mount the correct volume. continue 
processing with the mounted volume (if your system does not have data 
protection). or terminate the job. 

If TLBl is used and the File Serial Number is not specified. IOCS 
assumes that the correct volume is mounted and does not check the VOLI 
label. 

In a multivolume file. the VOLI label of succeeding volumes after the 
first one processed is not checked (see "Input File. Multivolume File"). 

If any additional volume labels (VOl2--VOL8) follow a VOLI label. IOCS 
bypasses them. Similarly. IOCS bypasses additional user volume labels 
(UVlI--UVl9) on an ASCII tape file. 

HDRI Label 

IOCS identifies the appropriate file to be processed by reading the HDRI 
label and comparing the File Serial Number. the Volume Sequence Number. 
and the File Sequence Number in the label. to those numbers supplied by 
TlBl. If the specified header label cannot be found. a message is 
issued to the operator. The operator must mount the correct volume. or 
terminate the job. 

IOCS checks fields 3 and 7--10 (described in Figure 38 on page 162) 
against information supplied in TLBl. Fields 11--14 are ignored. unless 
READ=BACK has been specified. 

If the TlBl minimum specification (File Name only) is given. IOCS 
assumes that the correct file is positioned for processing and does not 
check the HDRI label. 

In a multivolume file. the HDRI label on each volume after the first one 
processed is checked against the TLBl information that has been updated 
by IOCS where necessary (see "Input File. Multivolume File"). 

If any additional HDR labels (HDR2--HDR8 for EBCDIC files or HDR2--HDR9 
for ASCII files) follow an HDRI label. IOCS bypasses them. 

If any user-standard labels (UHLI--UHl8 for EBCDIC files or UHla for 
ASCII files) follow the HDR label(s) and if DTFMT or DTFPH lABADDR=Name 
has been specified. IOCS branches to the user's label routine. If not. 
IOCS positions the tape at the first date record. 

EOFI/EOVI label 

IOCS reads an EOFI or EOVI trailer label after the tapemark that follows 
the last data record of a file or volume. 

EOFI indicates to IOCS that an end-of-file condition exists. EOVI 
indicates to IOCS that an end-of-volume condition exists (see "Input 
File. Multivolume File"). 

For either label. IOCS checks the Block Count field only. 

If any additional trailer labels (for EBCDIC files EOF2--EOF8 or 
EOV2--EOV8; for ASCII files EOF2--EOF9 or EOV2--EOV9) follow an EOFI or 
EOVI label. IOCS bypasses them. 

If any user-standard trailer labels (UTLI--UTl8 for EBCDIC files or UTla 
for ASCII files) follow the EOF or EOV label(s) and if DTFMT or DTFPH 
lABADDR=Name has been specified. IOCS branches to the user's label 
routine. If not, IOCS reads the tapemark that follows the last EOF 
label (see "Input File, Tapemarks"). 

If processing of an input file is terminated by a CLOSE or FEOV 
instruction before the end of the input data on the volume is reached. 

Appendix C: DASD and TAPE labels 141 



Licensed Program - Property of IBM 

the EOF1 or EOVI label is not read and checked. 
as specified by DTF REWIND. 

User-Standard Labels (UHL/UTL) 

IOCS rewinds the tape 

When user-standard labels (UHL/UTL) are to be checked and logical IOCS 
macros are used for the file. DTF LABADDR=Name must be specified. If it 
is not specified. IOCS bypasses all user-standard labels. 

When physical IOCS macros are used for a file and DTFPH is specified, 
LABADDR=Name must be included if user-standard 'header labels (UHL) are 
to be checked. IOCS does not provide for user checking of user-standard 
trailer labels (UTL). 

The input file (such as a card reader) that contains the user's 
information for checking user-standard labels must be opened ahead of 
the file with the UHL labels. This is done by specifying the 
label-information file ahead of the labeled file in the same OPEN 
instruction, or by issuing a separate OPEN instruction ahead. 

IOCS identifies the user-standard labels by UHL or UTL in the first 
three bytes of the label. 

IOCS reads each user-standard label, one at a time, into a label area 
used by IOCS for standard labels. IOCS supplies the address of this 
area in Register 1. 

After a label is read in, IOCS branches to the user's label-checking 
routine. The same routine (specified by DTF LABADDR=Name) is used for 
checking both user-standard header (UHL) and user-standard trailer (UTL) 
labels. The user can identify the type of label by the UHL or UTL in 
the first three positions of the label itself. 

After the user checks a label. he returns to IOCS by issuing a LBRET 
macro instruction. He controls the checking of any remaining 
user-standard labels by the operand in the LBRET instruction. A LBRET 2 
instruction permits the checking of another label. A LBRET 1 
instruction or a tapemark terminates label checking. 

If the user, or a tapemark, does not terminate the label checking, IOCS 
reads in the next user-standard header label. 

Multivolume File 

When the volumes of a multivolume file are to be processed in sequence, 
starting with the first volume, no special instructions need be made by 
the user for the transition from one volume to the next. logical IOCS 
recognizes the end-of-volume condition,and uses the existing CLOSE and 
OPEN routines to process, first the trailer labels, and then the header 
labels on the following volume. 

When an EOVI label is read or an FEOV macro is executed, IOCS checks 
trailer labels as described in the sections "Input File, EOF1/EOV1 
Label" and "Input File, User-Standard Labels (UHL/UTL)." IOCS then 
prepares for checking the HDR1labei on the next volume. IOCS increases 
by 1 the Volume Sequence Number in storage (read in from TLBL), and 
alsoupdates the active drive number if an ASSGN statement or command 
specified an alternative drive (ALT) for the file. 

After all trailer labels have been checked, IOCS switchesto the 
alternate tape drive, if one has been specified by ASSGN. If an 
alternate tape drive has not been specified, a message is given to the 
operator and the system enters the wait state. The operator must mount 
the new volume and restart processing. 

IOCS verifies that a VOll label is present on each volume, but does not 
check the Volume Serial Number on any volume after the first one 
processed. 

The HDR1 label of each volume, after the first one processed, is checked 
against the TLBL information that has been updated by IOCS where 
necessary (for example: Volume Sequence Number). 

IOCS provides for user checking of user-standard header labels on the 
new volume. 

142 IBM VSE/Adv. Functions Diag. Ref. lIOCS Volume 1 



Licensed Program - Property of IBM 

If physical laCS macros are used for a file, an OPEN instruction must be 
issued for the new volume. This causes laCS to check the HDRl label and 
provide for user checking of user-standard labels, if any. 

If the user wants to start the processing of a multivolume file with 
some volume other than the first, he should supply TLBL information as 
follows: 

Field 4: 

Field 5: 

Field 6: 

fiAg Serial Number should contain the volume serial number of 
the first volume of the ~ (not the volume being processed). 

Volume Sequence Number should contain the sequence number of 
the volume that will be processed first in this run. 

File Sequence Number should contain the sequence number of the 
file to be processed, if this is a multifile multivolume set. 

All other fields should contain the same information as when starting 
with the first volume of the set. 

This will properly check the HDRl label. laCS checking of the VOLl label 
will detect the discrepancy in the volume serial numbers and issue a 
message to the operator. The operator can bypass this condition and 
continue processing. 

If a multivolume file is reopened after a CLOSE, IOCS expects that the 
volume available to OPEN is the same volume, on the same drive, as that 
in process when CLOSE was executed. If it is not, a message is issued to 
the operator. Also, the first record read on the reopen must be a file 
label. 

When physical IOeS macros are used and DTFPH is specified for standard 
label processing, FEOV may not be issued for an input file. 

Multifile Volume 

TLBL must be submitted for each file to be processed. 

IOCS locates the first or only file that is to be opened by verifying 
the Volume Serial Number in the VOll label and then searching the tape 
for the HDRI label that contains the File Sequence Number specified in 
TLBL. 

If two or more files are to be opened, all files may be opened without 
rewinding the tape provided they are specified in ascending sequence. 
For any file after the first one opened, IOCS merely searches the tape 
for the file with the specified file sequence number. IOCS does not 
check the VOLI label again. 

If the files to be opened are not specified in ascending sequence, the 
tape must be rewound before each file is opened. 

If the tape is positioned beyond a specified file when OPEN for that 
file is executed, a message is issued to the operator. The operator may 
remount or reposition the tape, or terminate the job. 

If the TLBL minimum specification (~ Name only) is given for the 
file, either on input or when the fIle was originally written as an 
output file, the user must position the tape to read the desired file. 
For this, he can use the Job Control MTC FSF statement or command, and 
skip three tapemarks for each file to be bypassed. 

Read Backward 

For a read backward file (specified by DTF READ=BACK), the trailer label 
(EOF1) is read and checked by OPEN, and the header label (HDRl) is read 
and checked by CLOSE. 

The trailer label should contain both the header (except HDR) and 
trailer (Block Count) information. If the file labels were originally 
written by IOCS with FILABL=STD specified, the trailer label will be 
complete. 

IOCS checks only the File Identifier field (field 3), in the trailer 
label, against information supplied by the user in TLBL. If File-ID is 
not specified, no checking is performed. 

Appendix C: DASD and TAPE Labels 143 



Licensed Program - Property of IBM 

The tape should be positioned so that the first record read, when OPEN 
is executed, is the tapemark immediately following the trailer labels. 
If the tape is not positioned this way, a message is issued to the 
operator and processing can be continued. The message will occur if the 
user begins reading backward in the middle of a file. 

Reading backward is confined to one volume, and an end-of-file condition 
exists when IOCS reads a tapemark. 

IOCS provides for user-checking of user-standard trailer and header 
labels. 

If physical IOCS macros are used by the problem program to read records 
backward, IOCS does not check labels. The DTFPH definition must be 
omitted and the user must provide his own checking, if any. 

Tapemarks 

The tapemark that follows the set of standard volume and header labels 
for a file indicates, to IOCS, that the last header label has been 
checked. The tape is positioned for user reading of the first data 
record. If files on other volumes are to be opened, IOCS opens the next 
file specified. The header labels for that file are checked (or 
written). 

The tapemark that follows the data records indicates, to IOCS, that the 
end of the input for the file or the volume has been reached. IOCS 
determines the EOF/EOV condition from the trailer label that follows the 
tapemark. 

The tapemark that follows all trailer labels for a file or volume 
indicates to IOCS, that the last trailer label (EOF, EOV, or UTL) has 
been checked. If an EOF label has been read, IOCS branches to the 
user's end-of-file routine (specified by DTF EOFADDR=Name). If an EOY, 
label has been read, IOCS provides for the processing of the next volume 
(including label checking). 

STANDARD LABELS, OUTPUT FILE 

YOll label 

A standard volume label (YOLI) should have been previously written as 
the first record on the volume, whenever standard file labels 
(FILABL=STD) are to be written. 

The VOLI label can be written by the IBM-supplied utility program, 
initialize Tape, when the reel of tape is first received in the 
Installation. At that time, a permanent volume serial number is 
assigned and written on the reel as part of the volume label. This 
provides a permanent identification of the reel as long as it is used 
for files with standard labels. Following the VOL label, Initialize 
Tape writes a dummy HDRI label and a tapemark. Either EBCDIC or ASCII 
files can be initialized by this utility program. 

For a 9-track dual density output tape, a comparison is made between the 
user specified density and the VOLI density of the mounted tape. If a 
discrepancy is found, and if the tape is at load point, the volume 
label(s) are rewritten according to the user-specified density. 

The volume on which an output file is written should be determined ahead 
of time if the user plans to include the File Serial Number field. This 
permits the volume serial number, already recorded in the VOLI label, to 
be specified in the File Serial Number field. 

Whenever the tape reel is positioned at the load point for writing the 
first or only volume of an output data file, IOCS reads and checks the 
VOLI label against information supplied by the user. If an error is 
detected, a message is given to the operator. The operator may mount the 
correct volume, continue processing with the mounted volume, or 
terminate the job. 

If TLBL is used and the File Serial Number is not specified, IOCS 
assumes that the correct volume is mounted and does not check the YOll 
label. 

144 IBM VSE/Adv. Functions Diag. Ref. lIOCS Yolume 1 



L 
Licensed Program - Property of IBM 

If the output tape is positioned at the load point and laCS reads a 
record that is not a VOLI label. a message is given to the operator. He 
can cancel the job, mount a different tape reel. or key in a six-digit 
Vplume Serial Number. In the latter case, IOCSwrites theVOLl label at 
the beginning of the tape and processing continues. 

Because laCS expects to read a record to check for a VaLl label. the 
tape used for output must contain some type of record (a label. data 
record, or tapemark). If it does not, the entire reel of tape is passed 
through the tape unit. 

In a multivolume file, the VOLI label of succeeding volumes after the 
first one written is not checked (see "Output File. Multivolume File"). 

If any additional volume labels (VOL2--VOL8) follow a VOLI label, IOCS 
bypasses them. Similarly, IOCS bypasses any user volume labels 
(UVLI--UVL9) on ASCII tape files. 

HDRI/HDR2 Labels 

If an output file is to be written on a tape reel that already contains 
standard file labels, laCS first reads the old HDRI label. It checks the 
expiration date to ensure that the data on the tape is no longer active. 

If the expiration date has passed. IOCS backspaces the tape and writes 
the new HDRI label immediately after the VOL label(s) and over the old 
HDR! label. 

If the expiration date has not passed, a message is given to the 
operator. The operator can ignore the expiration date and continue 
processing. mount a new volume. or terminate the job. 

If an output file is to be written on a tape that does not contain 
standard file labels, IOCS assumes that the expiration date has passed. 
IOCS writes the new HDRI label immediatelY after the VOL label(s). 

If an output file is to be written on a multifile volume(s) with 
standard labels, only the expiration date of the first file to be 
overwritten is checked. IOCS assumes that all succeeding files have the 
same expiration date. 

The HDRI label is written from the information supplied by the user in 
TLBL. or generated by IOCS (see "Section: Label Fields for Tape"). 

If TLBL specifications are omitted, IOCS writes predetermined default 
values • 

In a multivolume file. the HDR! label on each volume after the first one 
processed is written with the TLBL information that has been updated by 
IOCS where necessary (see "Output File. Multivolume File"). 

In a multifile volume. the HDRI label for each file after the first is 
written with information obtained partly from the preceding standard 
trailer label and partly from TLBL (see "Output File. Multifile 
Volume"). 

For EBCDIC IOCS does not write additional header labels (HDR2--HDR8) If 
the user wants to write any of these labels he can specify a label 
routine (OTF LABAOOR=Name) and use physical IOCS macros (EXCP and WAIT). 

For ASCII IOCS writes an additional header label (HOR2) which contains 
the record format, block length. record length and buffer offset. 

If DTFMT or DTFPH LABADOR=Name is specified to indicate that 
user-standard header labels (UHL!--UHL8 for EBCDIC; UHLa for ASCII) are 
to be written after the HDRlabels(s). IOCS branches to the user's label 
routine. If not. IOCS writes a tapemark and positions the tape for 
writing the first data record. 

EOFI/EOVI and EOF2/EOV2 Labels 

When IOCS CLOSE is executed, after all records for a file have been 
processed. it writes the last block of data records (if any), a 
tapemark. and an EOFI trailer label. 

Appendix C: OASO and TAPE Labels 145 



licensed Program - ~roperty of IBM 

If IOCS detects the reflective marker at the end of the tape before the 
end of the output file is reached (see "Output File, Multivolume File"), 
or if an FEOV macro is executed, IOCS writes a tapemark and an EOVI 
trailer label. 

The EOFI or EOVI trailer label is written with HDRI information in all 
fields except Block Count. Block Count is written with count accumulated 
during processing of the data file. 

For EBCDIC IOCS does not write additional EOF or EOV labels (EOF2--EOF8 
or EOV2--EOV8) If the user wants to write any of these labels he can 
specify a label routine (DTF lABADDR=Name) and use physical IOCS macros 
(EXCP and WAIT). 

For ASCII IOCS writes an additional trailer label (EOV2/EOF2) which 
contains the same information as the HDR2 label. 

If DTFMT or DTFPH lABADDR=Name is specified to indicate that 
user-standard trailer labels (UTll--UTl8 for EBCDIC; UTla for ASCII) are 
to be written after the EOF/EOV trailer label(s), IOCS branches to the 
user's label routine. If not, IOCS writes one or two tapemarks as 
determined by an end-of-volume or end-of-file condition (see "Output 
File, Tapemarks"). logical IOCS then rewinds the tape as specified by 
DTF REWIND. 

User-standard labels (UHL/UTl) 

When user-standard labels are to be written for an EBCDIC or ASCII file, 
DTFMT or DTFPH lABADDR=Name must be specified. 

Whenever lABADDR=Name is specified, at least one UHL label and one UTl 
label must be written. 

The input file (such as a card reader) that contains the user's 
information for writing user-standard labels must be opened ahead of the 
file on which the UHL labels are to be written. To do this, the input 
file must be specified ahead of the file to be labeled in the same OPEN 
instruction, or a separate OPEN instruction must be issued ahead. 

The user must build each user-standard label. To provide for this, IOCS 
branches to the user's label routine. The same routine (specified by 
lABADDR=Name) is used for building both user-standard header labels 
(UHL) and user-standard trailer labels (UTl). IOCS supplies a code in 
the low-order byte of Register 0 to indicate which type of label should 
be built: 

UHl Code 0 (letter 0) 
UTL Code F for end-of-file condition 

Code V for end-of-volume condition 

The user must establish an 80-byte area within his problem program area 
of main storage for building his labels. He must load the address of 
the area he uses into Register 0 before returning control to IOCS. 

When building the label for an EBCDIC file, the user must include UHL or 
UTl in the first 3 bytes and a digit 1--8 in the fourth byte. He may 
include Whatever information he needs in the remaining 76 bytes. 

Note: When user header and trailer labels are created for 7-track 
tapes, only unpacked data is valid in the 76-byte data portion of the 
label. 

To comply with the standards for ASCII files, a user standard header and 
trailer label must contain UHL and UTl, respectively, in the first three 
bytes. Also, the fourth byte must be an ASCII character in the range 2/0 
through 5/14, excluding 2/7 (quote). The remaining 76 bytes may be used 
as desired. 

After building a label, the user returns to IOCS by issuing a lBRET 
instruction. IOCS moves the label to the standard label I/O area, if 
necessary, and then writes the label on the tape. 

The user controls the building and writing of succeeding user-standard 
labels by the operand in the lBRET instruction. If another label is to 
be written, operand 2 is specified and IOCS again branches to the user's 
label routine. When the user has built his last user label, he issues 
the lBRET macro with the operand 1. IOCS writes the last label. 

146 IBM VSE/Adv. Functions Diag. Ref. lIOCS Volume 1 



Licensed Program - Property of IBM 

For EBCDIC files a maximum of 8 user-standard header and 8 user-standard 
trailer labels may be written. After 8 labels, IOCS terminates the label 
writing, regardless of the LBRET macro instruction. For ASCII files, 
theoretically there is no limit to the number of user standard labels 
(UHLa and UTLa). There is a physical limit since the physical tape may 
be reached before all user labels are written. 

After the last user-standard header label (UHL), IOCS writes one 
tapemark. After the last user-standard trailer label (UTl), IOCS writes 
one or two tapemarks, as determined by an end-of-volume or end-of-file 
condition (see "Output File, Tapemarks"). 

Multivolume File 

When a multivolume file is to be written, no special instructions need 
be made by the user for the transition from one volume to the next. 
Logical IOCS recognizes an end-of-volume condition and uses the existing 
CLOSE and OPEN routines to write, first the trailer label(s), and then 
the header label(s) on the following volume. 

After IOCS detects the reflective marker at the end of tape, it 
determines the EOF/EOV condition by the next I/O instruction for this 
file in the problem program. If the instruction is CLOSE, an end-of-file 
(EOF) condition exists and IOCS writes a tapemark and an EOFI label, 
followed by an EOF2 label (for ASCII only). If, however, the next 
instruction is a PUT, an end-of-volume (EOV) condition exists and IOCS 
writes a tapemark and an EOVI label, followed by an EOV2 label (for 
ASCII) only. For an ASCII file, two tapemarks are written following the 
EOV2 label. 

When an EOV condition exists or an FEOV (forced end-of-volume) macro is 
executed, IOCS permits the writing of user-standard trailer labels, if 
any, and then prepares for writing the HDRI label on the next volume. 
10CS increases by 1 the Volume Sequence Number in storage (read in from 
TLBl), and updates the active drive number if an ASSGN statement or 
command specified an alternate drive (AlT) for the file. 

After all trailer labels have been written, 10CS writes one tapemark and 
switches to the alternate tape drive, if one has been specified by 
ASSGN. If an alternate tape drive has not been specified, a message is 
given to the operator and the system enters the wait state. The operator 
must mount the new volume and restart processing. 

IOCS verifies that a VOll label is present on each volume, but does not 
check the Volume Serial Number on any volume after the first. 

The HDRI label of each volume after the first is written with the TlBl 
information that has been updated by IOCS where necessary (for example: 
Volume Sequence Number). 

On each volume, the File Serial Number field of the HDRI label is 
written with the Volume Serial Number of the first volume of the set. 
Thus on each volume after the first, the File Serial Number in the HDRI 
label differs from the Volume Serial Number in the VOLI label. 

IOCS provides for user writing of user-standard header labels on the new 
volume. 

If physical 10CS macros are used for the file, an OPEN instruction must 
be issued for a new volume. This causes IOCS to write the standard 
header label and provide for user writing of user-standard labels, if 
any. 

Multifile Volume 

TLBL must be submitted for each file to be written. 

When two or more files are to be written in the same operation, the DTF 
entry REWIND=NORWD should be specified for each file. With this 
specification, the tape is located at the correct position for the OPEN 
routines to write the standard file header label for each additional 
file (after the first) on the reel. 

To properly position the tape at the load point for the first file, the 
programmer can include a CNTRl REW macro instruction ahead of the OPEN 
instruction, or the operator can position the tape at the load point. 

Appendix C: DASD and TAPE labels 147 



Licensed Program - Property of IBM 

When the tape is at the load point for the first file, IOCS OPEN ensures 
that the correct volume has been mounted by checking the Volume Serial 
Number in the VOLI label against the information supplied by TLBL. If 
the File Serial Number is not specified, IOCS assumes that the correct 
volume is mounted. 

IOCS OPEN then checks the expiration date in the old HDRI label (if 
any). 

IOCS writes the HDRI label for the first output file from the 
specifications supplied by the user in the TLBL or supplied by IOCS as 
default values. 

For the HDRI label of each file after the first, the OPEN routines 
obtain the file serial number (field 4), the volume sequence number 
(field 5), and the file sequence number (field 6) from the preceding 
EOFI label. OPEN increases the file sequence number by 1 for the new 
file. The remaining fields of the header label are written with the 
information supplied by the user in TLBL or as default values. 

If the tape is rewound or repositioned after a file is closed, it is the 
user's responsibility to properly position the tape for writing any 
additional file(s) at a later time. The tape must be positioned so that 
the file header label is written immediately after one tapemark 
following the last file currently on the tape. Thus, it must replace the 
second of the two tapemarks that normally follow the last file on the 
tape. 

The tape can be advanced from the load point to the correct position by 
skipping three tapemarks for each file presently on the tape. A Job 
Control MTC FSF command or statement is used for this skipping and the 
DTF entry REWIND=NORWD must be included for the file. In this case, the 
VOLI label is not checked. and the expiration date of the file to be 
overwritten (if any) is checked. 

When the tape has been positioned and the file is opened, the OPEN 
routines obtain the information for writing the HDRI label from the 
preceding standard trailer label and from TLBL. This is the same as 
described previously for multiple files that are written without 
rewinding the tape. 

User-standard header and trailer labels may follow the standard header 
and trailer label for each file of a multifile volume. 

Tapemarks 

After all the header labels for a file are written, IOCS writes one 
tapemark. The tapemark follows the HDR label(s) if DTFMT or DTFPH 
LABADDR=Name is not specified for a file. If LABADDR is specified, IOCS 
writes the tapemark when the problem program issues a LBRET 1 
instruction. which indicates that all the desired user-standard labels 
have been written. or when the maximum of eight UHL labels has been 
written. he tape is positioned for writing the first data record. If 
files on other volumes are to be opened. IOCS opens the next file 
specified and writes (or checks) the header label(s) for that file. 

When the problem program issues either a CLOSE or FEOV macro 
instruction, or when IOCS detects the reflective marker at the end of 
the tape. IOCS writes a tapemark following the last block of data 
records. 

IOCS writes two tapemarks after an EOFl label, or after a set of EOF and 
UTL labels if LABADDR=Name is specified. 

IOCS writes one tapemark after an EOVI label. or after a set of EOV and 
UTL labels if LABADDR=Name is specified. For ASCII files IOCS writes two 
tapemarks. 

In a multifile volume, one tapemark follows the end-of-file label(s) of 
each file except the last. Two tapemarks follow the end-of-file !abeICs) 
of the last file. If a file is added later to a multifile volume. the 
second tapemark is replaced by the HDRl label of the additional file. 

148 IBM VSE/Adv. Functions Diag. Ref. LIOeS Volume 1 



Licensed Program - Property of IBM 

NONSTANDARD LABELS 

The following discussion is concerned with nonstandard labels (DTFMT 
FILABL=NSTD). When nonstandard labels are specified, IOCS OPEN/CLOSE 
routines provide for user processing of nonstandard header labels at the 
beginning of the file, and nonstandard trailer labels at the end of the 
file. The functions performed by IOCS vary depending on input file vs 
output file and header label vs trailer label. 

A user routine is required to supply the information for 
checking/creating nonstandard labels. This routine, the functions 
performed by IOCS OPEN/CLOSE routines, and the specific processing 
performed for each type of label (within each type of file) are 
summarized in this section. 

Note: Nonstandard labels cannot be used on ASCII tape files. 

IOCS Routines 

IOCS OPEN and CLOSE routines provide for user processing of nonstandard 
labels. IOCS branches to the user's label routine if DTF LABADDR=Name is 
specified. 

The OPEN/CLOSE routines are transient routines of the Supervisor. As 
such. they are stored on the system pack CSYSRES) and called into the 
transient area of main storage whenever an OPEN or CLOSE macro 
instruction is executed. 

User Routine 

The information for creating/checking nonstandard header and trailer 
labels is generally supplied by the user in a separate input file, such 
as a card reader. The information is stored by the user's problem 
program in a location that meets the requirements of his job. 

Nonstandard labels must be read and checked, or built and written, by a 
routine supplied by the user. The symbolic address of the user's label 
routine must be specified in the DTF entry LABADDR=Name. 

In his label routine, the user must issue physical IOCS macros 
instructions CEXCP and WAIT) to read or write the labels. He must set up 
a Command Control Block, by issuing a CCB macro instruction, and 
establish a CCW CChannel Command Word). 

The user must define his own label read-in or read-out area. 

In his label routine, the user performs whatever label reading and 
checking or building and writing he requires for his job. 

At the end of his routine, the user returns to IOCS by issuing a LBRET 2 
instruction. 

NONSTANDARD LABELS. INPUT FILE 

Header Label 

If the input file was previously written using VSE (with FILABL=NSTD 
specified). the first record on the reel is the user's first nonstandard 
label. There is no volume label at the beginning of the reel. 

Nonstandard header labels may, or may not. be followed by a tapemark. 
This choice. combined with the user's requirement to check the labels, 
or not, results in four possible conditions that can be encountered when 
an input file is opened: 

LabelCs) followed by a tapemark are to be checked. 
LabelCs) llQ1 followed by a tapemark are to be checked. 
LabelCs) followed by a tapemark are not to be checked. 

• LabelCs) not followed by a tapemark are nQi to be checked. 

For the first two conditi9nSt DTF FILABL=NSTD and LABADDR=Name must be 
specified in the file deflni ion. IOCS branches to the user's label 
routine when OPEN is executed. 

Appendix C: DASD and TAPE Labels 149 



Licensed Program - Property of IBM 

For the third condition, DTF FILABL=NSTD must be specified. DTF LABADDR 
is omitted and IOCS skips all labels, passes the tapemark. and positions 
the tape at the first data record to be read. 

For the fourth condition, DTF FIlABL=NSTD and LABADDR=Name must be 
specified. IOCS branches to the user's label routine when OPEN is 
executed, and the user must read all labels even though checking is not 
desired. This positions the tape at the first data record. This is 
necessary because IOCS cannot distingUish labels from data records and 
because there is no tapemark to indicate the end of the labels. If this 
were not done. IOCS would search the tape for a tapemark, and thus pass 
the whole file until it reached the tapemark that follows the last data 
record. 

When DTF lABADDR=Name is specified for checking labels, IOCS branches to 
the user's label routine only once. The problem program must perform all 
required reading and checking of header labels before returning to IOCS. 
The user can determine that the last label has been read by checking 
some identifying information he has provided in the last label, or by 
the tapemark, if any, that foillows the label(s). 

After all header labels have been processed and the user has returned 
control to IOCS OPEN (by use of the LBRET 2 macro instruction), lacs 
reads and checks the next record. If it is a tapemark, laCS assumes that 
the following record is the first data record. If it is not a tapemark. 
IOCS backspaces the tape one record and assumes that this record is the 
first data record. Thus. the user should read ~ labels. before 
returning to laCS so that the tape is properly positioned at the first 
data record. 

If a file is reopened after a CLOSE. it is the user's responsibility to 
identify the first record read as a file label or a data record. 

End-of-File/End-of-Volume Label 

When DTF lABADDR=Name is specified for checking labels, lacs branches to 
the user's label routine when it reads the tapemark that follows the 
last data record. 

IOCS branches to the user's routine only once. The problem program must 
read and check all trailer labels before returning to laCS. 

From his trailer label, the user must determine if an end-of-file or an 
end-of-volume condition exists and indicate this to laCS. For this he 
must load either EF (end-of-file) or EV (end-of-volume) in the two 
low-order bytes of Register O. 

After all trailer labels have been processed. the user returns control 
to laCS by issuing a LBRET 2 macro instruction. 

If an EF condition was indicated. lacs branches to the user's 
end-of-file address (specified by DTF EOFADDR) when the problem program 
returns to laCS at the end of the label routine. The user can perform 
whatever processing is required for the end of his data records. and he 
generally closes the logical file. 

If processing of an input file is terminated by a CLOSE, or an FEOV 
(forced end-of-volume) instruction. before the tapemark at end of the 
input data is reached. lacs does not branch to the user's label checking 
routine. 

Multivolume File 

When the problem program reads an end-of-volume label and specifies an 
EV condition to IOCS, or issues a forced end-of-volume instruction 
(FEOV), laCS prepares for processing records from the next volume. laCS 
updates the active drive number if an ASSGN statement or command 
specifies an alternate drive (ALT) for the file. 

IOCS switches to the alternate drive. if one has been specified. If not. 
a message is given to the operator. and the system enters the wait 
state. The operator must mount the new volume and restart processing. 

IOCS provides for user checking of header labels on the next volume. if 
lABADDR=Name is specified for the file. 

150 IBM VSE/Adv. Functions Diag. Ref. LIOeS Volume 1 



Licensed Program - Property of IBM 

When an alternate drive is assigned to a file, the number of the drive 
currently in use must be supplied to the Command Control Block (CCB) 
used by the EXCP macro for label reading. IOCS provides the hexadecimal 
value of this drive in the two low-order bytes of Register 1. The user's 
label routine should move this value to bytes 6 and 7 of the CCB. 

If physical IOCS macros are used for a file, an OPEN instruction must be 
issued for a new volume. This causes IOCS to provide for user checking 
of nonstandard labels. 

If a multivolume file is reopened after a CLOSE, IOCS expects that the 
volume available to OPEN is the same volume, on the same drive, as that 
in process when CLOSE was executed. If it is not, a message is issued to 
the operator. 

Multifile Volume 

If multiple files on the same volume are to be read in sequence, the DTF 
entry REWIND=NORWD should be specified for each file. With this 
specification, the tape is located at the correct position for the user 
to read his first header label or data record when each file (after the 
first on the reel) is opened. 

To properly position the tape for the first file on the reel, the 
programmer can include a CNTRL REW macro instruction ahead of the OPEN 
instruction, or the operator can position the tape at the lqad point. 

When the first file to be opened is not the first file on the reel, the 
tape can be advanced from the load point to the correct position by use 
of the Job Control MTC FSF statement or command. Either two or three 
tapemarks are skipped for each file to be passed. If TPMARK=NO was 
specified when the files were written, two tapemarks are skipped. If 
not, three tapemarks are skipped. The DTF entry REWIND=NORWD must be 
included for the file to be opened. 

When any file is opened, IOCS branches to the user's label routine, if 
specified. The user can read and check header labels. 

Read Backward 

The tape should be positioned so that the first record read, when OPEN 
is executed, is the tapemark immediately following the trailer labels. 

When the file is opened, IOCS provides for user checking of the trailer 
labelCs) in the same manner that header labels are checked on a forward 
read (see "Input File, Header Label"). 

IOCS assumes that the ~ of the input file has been reached when it 
reads a tapemark at the beginning of the tape (between the header label 
and the first data record). 

IOCS CLOSE branches to the user's label routine (specified by DTF 
LABADDR=Name) where he can read and check the 'header labelCs). 

If the tape does not contain a tapemark between the header labelCs) and 
the first data record (TPMARK=NO was specified when the tape was 
written), the user must determine whether a record is a file label or a 
data record. 

Tapemarks 

IOCS does not expect a tapemark at the beginning of the volume. When 
OPEN is executed, IOCS branches immediately to the user's label routine 
(if LABADDR=Name is specified) 50 that the problem program can read and 
check the first record. 

A tapemark may, or may not, follow the nonstandard labels depending on 
whether TPMARK=NO was specified when the file was written. 

If nonstandard labels are not to be checked, laCS can properly position 
the tape for reading the fTrSt data record, only if a tapemark exists 
between the labels and the data records. If a tapemark is not present, 
the user must read the labels in order to advance the tape to the proper 
position for reading the first data record. Thus, in this case, DTF 
LABADDR=Name must be specified even though labels are not to be checked. 

Appendix C: DASD and TAPE Labels 151 



Licensed Program - Property of IBM 

The tapemark that follows all data records indicates to IOCS that the 
end of input from the file or volume has been reached. 

NONSTANDARD LABELS. OUTPUT FILE 

Header Label 

Nonstandard header labels are written starting at the location where the 
tape is positioned. Thus if the tape has been rewound to the load point. 
the first nonstandard label is written over any label(s) that is already 
on the tape. such as a volume label. 

IOCS does not check for the presence of a volume label or the expiration 
of a previously written standard or nonstandard file label. 

Whenever DTF LABAOOR=Name is specified. at least one header label must 
be written. 

The input file (such as a card reader) that contains the user's 
information for writing nonstandard labels must be opened ahead of the 
file on which the header labels are to be written. To do this the input 
file must be specified ahead of the file to be labeled in the same OPEN 
instruction. or a separate OPEN instruction must be issued ahead. 

The same routine (specified by OTF LABAOOR=Name) is used for building 
and writing both nonstandard header and nonstandard trailer labels. When 
IOCS branches to this routine at OPEN time. it supplies the letter 0 in 
the low-order byte of Register 0 to indicate that a header label should 
be written. 

IOCS branches to the user's label routine only once for header labels. 
Therefore. the problem program must build and write all the required 
header labels before returning to IOCS. 

After all header labels have been written. the user returns control to 
IOCS OPEN by use of the LBRET 2 macro instruction. 

IOCS writes a tapemark after the last header label. unless the user has 
specified OTF TPMARK=NO. 

End-of-File/End-of-Volume Label 

When IOCS CLOSE is executed after all records for a file have been 
processed. it writes the last block of data records (if any) and a 
tapemark. and then branches to the user's label routine. 

If IOCS detects the reflective marker. at the end of the tape. before 
the end of the output file is reached (see "Output File. Multivolume 
File"). or if an FEOV macro is executed. IOCS writes a tapemark and 
branches to the user's label routine. 

IOCS indicates (to the user) which type of trailer label should be 
written. by supplying a code in the low order byte of Register 0: 

Code F -- end-of-file label 
Code V -- end-of-volume label 

The user should code his trailer label to indicate whether it is an 
end-of-file label or an end-of-volume label. This will be required by 
the user's label routine when the file is used later as input. 

IOCS branches to the user's label routine only once on an end-of-file or 
end-af-volume condition. The problem program must build and write all 
the required trailer labels before returning to IOCS. 

After all the trailer labels are written. the user returns control to 
IOCS by use of the LBRET 2 macro instruction. 

IOCS writes one or two tapemarks as determined by an end-of-volume or 
end-of-file condition (see "Output File. Tapemarks"). 

152 IBM VSE/Adv. Functions Oiag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

Multivolume File 

If IOCS detects the reflective marker at the end of the tape, it 
determines the end-of-file or end-of-volume condition by the next I/O 
instruction for this file in the problem program. If the instruction is 
a CLOSE, an end-of-file condition exists; however, if the next 
instruction is a PUT, an end-of-volume condition exists. 

If the problem progam issues an FEOV (forced end-of-volume) macro 
instruction, an end-of-volume condition exists. 

On any end-of-volume condition, IOCS writes a tapemark and branches to 
the user's label routine (if LABADDR=Name is specified), so that 
nonstandard trailer label(s) can be written. 

After all trailer labels are written and the user has returned to IOCS 
by a LBRET 2 instruction, IOCS writes one tapemark and prepares for the 
next volume. IOCS updates the active drive number if an ASSGN statement 
or command specifies an alternate drive (ALT) for the file. 

IOCS switches to the alternate drive. if one has been specified. If not. 
a message is given to the operator and the system enters the wait state. 
The operator must mount the new volume and restart processsing. 

IOCS positions the new volume at the load point and branches again to 
the user's label routine. so that he can write the header label(s) on 
the new volume. 

When an alternate drive is assigned to a file, the number of the drive 
currently in use must be supplied to the Command Control Block (CCB) 
used by the EXCP macro for label reading. IOCS provides the hexadecimal 
value of this drive in the two low-order bytes of Register 1. The user's 
label routine should move this value to bytes 6 and 7 of the CCB. 

If physical IOCS macros are used for a file. an OPEN instruction must be 
issued for a new volume. This causes IOCS to provide for user writing of 
header labels. 

Multifile Volume 

Multiple files can be written on the same volume in the same operation 
without repositioning the tape, by specifying DTF REWIND=NORWD for each 
file. With this specification the tape is properly located for the user 
to write his nonstandard label for each additional file (after the 
first) on the reel. 

To properly position the tape at the load point for the first file on 
the reel, the programmer can include a CNTRL REW macro instruction ahead 
of the OPEN instruction, or the operator can position the tape at the 
load point. 

When any file is opened, IOCS branches to the user's label routine where 
he can write his nonstandard header label(s). 

If the tape is rewound or repositioned after a file is closed, the user 
must properly position the tape to write any additional filets) at a 
later time. The tape can be advanced from the load point to the correct 
position by skipping either two or three tapemarks for each file 
presently on the reel. If TPMARK=NO was specified for those files 
already written, two tapemarks are skipped. If not, three tapemarks are 
skipped. A Job Control MTC FSF statement or command is used for the 
skipping, and the DTF entry REWIND=NORWD must be included for the file. 

Tapemarks 

On an OPEN condition, when the tape is at the load point. IOCS 
immediately provides for user-writing of nonstandard header labels. IOCS 
does not write a tapemark ahead of the first header label. 

IOCS writes a tapemark after the last nonstandard header label. unless 
DTF TPMARK=NO is specified. 

On a CLOSE or end-of-volume condition, IOCS writes one tapemark after 
the last data record of the file or volume. 

Appendix C: DASD and TAPE Labels 153 



Licensed Program - Property of IBM 

After the last trailer label is written for a file. IOCS writes two 
tapemarks. 

After the last trailer label is written for an end-of-volume condition. 
IOCS writes one tapemark. 

In a multifile volume, one tapemark follows the end-of-file label(s) of 
each file except the last. Two tapemarks follow the end-of-file label(s) 
of the last file. 

PROCESSING OF UNLABELED TAPE FILES 

The following discussion is concerned with unlabeled files (DTFMT 
FILABL=NO). Whenever the DTF entry FILABL=NO is specified, or the FILABL 
entry is omitted, IOCS assumes that a file does not contain labels. 
regardless of what is actually written on the tape. The functions 
performed by IOCS ahead of. and after, a file of data records consists 
merely of writing tapemarks and positioning the tape reel for reading or 
writing records. These functions are summarized in this section by type 
of file. 

UNLABELED FILES, INPUT FILE 

First Record 

If the input file was previously written using VSE (with DTF FILABL=NO 
specified, or FILABl omitted), the first record for the file is either a 
tapemark or data record. Tapemarks are not written at the beginning of 
an unlabeled ASCII tape. 

If a tapemark is present, IOCS assumes that the next record is the first 
data record of the logical file. 

If IOCS does not detect a tapemark when it reads the first record from 
the tape, it backspaces the tape and assumes that the first record is a 
data record. 

If the input file was previously written with labels, IOCS treats the 
label as a data record. 

An unlabeled file may be opened anywhere in the midst of the file. 
Regardless of whether the file is opened at the first data record or 
somewhere in the middle of the file, no message is given to the operator 
(as it is with standard labels). 

Last Record 

IOCS assumes that the end of the input file has been reached when it 
reads the tapemark that follows the last data record. IOCS immediately 
branches to the user's end-of-file routine, specified by DTF 
EOFADDR=Name. 

In his end-of-file routine, the user must determine if an end-of-file 
condition actually exists or if this is an end-ot-volume condition. 

On an end-of-file, the user performs whatever processing is required for 
the end of his data records, and he generally closes the logical file. 

Multivolume File 

If the user determines that an end-of-volume condition exists (instead 
of an end-of-file), he must indicate this to IOCS by issuing an FEOV 
macro instruction in his end-of-file routine. 

Whenever an FEOV macro is executed, IOCS prepares for the next volume by 
updating the active drive number if an ASSGN statement or command 
specifies an alternate drive (ALT) for the file. 

IOCS switches to the alternate tape drive if one has been specified. If 
not, a message is given to the operator and the system enters the wait 
state. The operator must mount the new volume and restart processing. 
IOCS then positions the new volume at the first data record. 

154 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

If a multivolume file is reopened after a CLOSE, IOCS expects that the 
volume is on the same drive as that in use when CLOSE was executed. If 
it is not, a message is issued to the operator. 

Multifile Volume 

If multiple files on the same volume are to be read in sequence, the DTF 
entry REWIND=NORWD should be specified for each file. With this 
specification the tape is located at the correct position for the user 
to read his first record when each file (after the first on the reel) is 
opened. 

To properly position the tape for the first file on the reel, the 
programmer can include a CNTRL REW macro instruction ahead of the OPEN 
instruction, or the operator can position the tape at the load point. 

When the first file to be opened is not the first file on the reel, the 
tape can be advanced from the load point to the correct position by use 
of the Job Control MTC FSF command or statement. One tapemark is 
skipped for each file to be passed. If the reel contains a tapemark 
before the first file (TPMARK=NO was not specified when the file was 
written), that tapemark must also be skipped. The DTF entry 
REWIND=NORWD must be included for the file to be opened. 

Read Backward 

An unlabeled tape file can be read backward if it has not been written 
in the data conversion mode (7-track). 

Because of special error-recovery procedures, unlabeled ASCII tapes 
(without any leading tapemark) may be read backward. 

Tapemarks 

IOCS expects the first record for a file to be either a tapemark or a 
data record. In either case, IOCS positions the tape so that the user 
can read the first data record. IOCS treats a label (if present) as a 
data record. 

The tapemark that follows all data records indicates to IOCS that the 
end of input from a file or volume has been reached. 

UNLABELED FILES, OUTPUT FILE 

First Record 

IOCS writes a tapemark as the first record, unless the user specified 
DTF TPMARK=NO. 

The tapemark, or the first data record, is written starting at the 
location where the tape is positioned. Thus if the tape has been rewound 
to the load point, the tapemark or data is written over any labelCs) 
that is already on the tape, such as a volume label. 

If the tape is at load point, IOCS checks for the presence of a volume 
label. 

Last Record 

When IOCS CLOSE is executed after all records for a file have been 
processed, IOCS writes the last block of data records (if any) and two 
tapemarks. 

If IOCS detects the reflective marker at the end of the tape before the 
end of the output file is reached (see "Output File, Multivolume File"), 
or if an FEOV macro i~ executed, IOeS writes one tapemark. 

Multivolume File 

If IOCS detects the reflective marker before a CLOSE is executed, it 
determines the end-of-file or end-of-volume condition by the next I/O 

Appendix C: DASD and TAPE Labels 155 



Licensed Program - Property of IBM 

instruction for this file in the problem program. If the instruction is 
a CLOSE, an end-of-file condition exists. If, however, the next 
instruction is a PUT, an end-of-volume condition exists. 

If the problem program issues an FEOV (forced end-of-volume) macro 
instruction, an end-of-volume condition exists. 

On any end-of-volume condition, IOCS writes one tapemark and prepares 
for the next volume. laCS updates the active drive number if an ASSGN 
statement or command specifies an alternate drive (ALT) for the file. 

laCS switches to the alternate drive, if one has been specified. If not, 
a message is given to the operator and the system enters the wait state. 
The operator must mount the new volume and restart processing. 

laCS positions the new tape at the load point and writes a tapemark, 
unless DTF TPMARK=NO has been specified. 

Multifile Volume 

Multiple files can be written on the same volume in the same operation 
without repositioning the tape, by specifying DTF REWIND=NORWD for each 
file. With this specification, the tape is properly located for the user 
to write the first record for each file (after the first) on the reel. 

To properly position the tape at the load point for the first file on 
the reel, the programmer can include a CNTRL REW macro instruction ahead 
of the OPEN instruction, or the operator can position the tape at the 
load point. 

If the tape is rewound or repositioned after a file is closed, the user 
must properly position the tape to write any additional file(s) at a 
later time. The tape can be advanced from the load point to the correct 
position by skipping one tapemark for each file presently on the reel. 
If the reel contains a tapemark before the first file (TPMARK=NO was not 
specified for those files already written), that tapemark must also be 
skipped. A Job Control MTC FSF statement or command is used for this 
skipping, and the DTF entry REWIND=NORWD must be included for the file. 

Tapemarks 

laCS writes a tapemark ahead of the first data record, unless DTF 
specifies TPMARK=NO. 

laCS writes two tapemarks after the last data record whenever the CLOSE 
macro is executed; if REWIND=NORWD is specified, the tape is then 
positioned between those two tapemarks. 

lacs writes one tapemark after the last data record for a volume when an 
FEOV (forced end-of-volume) macro is executed. 

AMERICAN NATIONAL STANDARD LABELS 

VSE processes tape files written in the American National Standard Code 
for Information Interchange (ASCII), in addition to processing tape 
files written in EBCDIC. ASCII is based on the specifications of the 
American National Standards Institute, Inc. and standard labels for 
ASCII files are referred to as American National Standard standard 
labels. ASCII files may be unlabeled or labeled with American National 
Standard standard or user-standard labels. Nonstandard labels are not 
permitted on ASCII files. 

This section briefly summarizes the differences in specifications and 
processing of ASCII and EBCDIC standard labeled files. The American 
National Standard standard volume label and standard file 1 label are 
shown in Figure 36 on page 160 and Figure 40 on page 167, respectively. 
The fields are described in Figure 37 on page 160 and Figure 41 on 
page 167 respectively. 

The differences between the American National Standard standard volume 
label and the IBM standard volume label fields are as follows: 

156 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

Field EBCDIC Name ASCII Name Bytes 
No. EBCDIC ASCII 

4 Volume Security Accessibility 11 11 

5 Data File Directory (Reserved) 12-21 12-31 

6 (Reserved) (Reserved) 22-31 32-37 

7 (Reserved) Owner ID 32-41 38-51 

8 Owner ID (Reserved) 42-51 52-79 

9 (Reserved) Label Standard level 52-80 80 

Some fields in the American National Standard standard file 1 label have 
names different from the corresponding fields in the IBM standard file 
label. These differences are as follows: 

Field 
No. 

EBCDIC Name ASCII Name 

4 File Serial No. Set Identifier 

5 Volume Sequence No. File Section Number 

11 File Security Accessibility 

Bytes 

The optional standard volume labels VOL2--VOL8 are supported for EBCDIC 
files only. ASCII has the optional user volume labels (UVLI--UVL9) 
instead. VSE ignores these labels on input and does not create them on 
output. 

EBCDIC files may have up to seven additional HDR, EOF, and EOV labels 
(HDR2-HDR8, EOF2-EOF8. EOV2-EOV8). whereas ASCII may have up to eight of 
each of these labels (HDR2-HDR9, EOF2-EOF9, EOV2-EOV9). By VSE, these 
additional labels are bypassed on input and not created on output. 
except the HDR2. EOF2, EOV2 labels which were created for ASCII output 
files. The user-standard header and trailer labels for each mode are: 

EBCDIC 
ASCII 

UHLI-UHL8 and UTLI-UTL8. 
UHLa and UTLa. where 'a' represents an ASCII character in 
the range 2/0 through 5/14. excluding 2/7 (quote). 

The default for the version number in the American National Standard 
standard file label is 00; the IBM standard file label version number 
defaults to 01. 

EOV labels on an EBCDIC tape file are followed by one tapemark; on an 
ASCII tape file these labels are followed by two tapemarks. 

When an ASCII file is processed. IOCS translates the labels from ASCII 
into EBCDIC (on input) and from EBCDIC into ASCII (on output). Two 
translate tables are provided in the SVA for this purpose. The address 
of the ASCII-to-EBCDIC table is in the extension of each communication 
region in bytes 44-47. The address of the EBCDIC-to-ASCII table is 256 
bytes higher than the address of the first table. The address of the 
communication region extension is found in bytes 136 - 139 of the 
communication region. 

Tapes to be used for ASCII files may be initialized with American 
National Standard standard labels by the IBM-supplied program. 
Initialize Tape. 

Appendix C: DASD and TAPE Labels 157 



Licensed Program - Property of IBM 
LABEl FIELDS FOR TAPE 

Each label is illustrated, and each field of each label is described in 
detail. The individual fields in the illustrations are numbered 01-0 to 
relate to the corresponding descriptions. 

The descriptions of the label fields include the: 

Displacement in hex notation. 

• Field Number - Kn or On 

• Length of the field in bytes (hex notation). 

• Content of each field, together with the name of the field. 

An additional table shows for each field: 

• Source Qf Information for checking or writing this field. 

• Purpose of the field. 

• Processing performed on input/output. 

• TlBL Default The TLBl statement has only one required field, the 
'name field'. All other fields are optional, and need be entered 
only if desired by the user. If anyone of these fields is left 
blank for OUTPUT files, IOCS writes a certain default value in the 
corresponding output label field. If anyone of these optional 
fields is left blank for INPUT files, no default value is assumed 
and no checking of the corresponding label field is performed. 

Volume labels on Tape 

Figure 34 and Figure 36 on page 160 show volume labels for EBCDIC and 
ASCII tapes. 

o i sp 1. Field Length Content 

0 01 3 Label I D: VOL 
3 02 1 Ignored by VSE 
4 D3 6 Volume serial number 
A D4 1 Ignored by VSE 
B D5-D7 1E Reserved 

29 08 A Volume owner name or code 
33 D9 10 Reserved 

Figure 34. Tape Volume Label for EBCDIC Code 

158 IBM VSE/Adv. Functions Oiag. Ref. LIOeS Volume I 



licensed Program - Property of IBM 

Field 

01 

D2 

D3 

04 

Source of Information System 

Purpose: 
Identifies the standard volume label. 

Processing: 
On both input and output, IOCS checks this field to verify that a standard 
volume label is present on the tape when DTF FILABL = STD, or DTFPH. is 
specified for the first or only file on a tape reel (at the load point). The 
volume label should be written previously, before a logical file of data 
records is written on the tape. 

Source of Information System 

Purpose: 
Indicates the sequence of this label within the volume label (VOL) group. VSE 
supports Volume Labell only, but provision is made for additional standard 
volume labels if required in other systems. 

Processing: 
This field is processed in conjunction with the label identifier (field 1) to 
completely identify the volume label. 

Source of Information TLBL/System 

Purpose: 
Provides a unique identification for a reel (volume). The number is generally 
assigned when the reel is first received in the installation, and retained as 
long as the reel is used for files with standard labels. This number should 
also be used as the File Serial Number in the file HOR1 label of each logical 
file written on the volume. This provides a unique identification of the 
volume/file relationship. If a multivolume logical file is written. the 
Volume Serial Number of the first volume becomes the Volume Serial Number in 
the file HOR1 label on all volumes. 

Processing: 
On both input and output, IOCS checks this field against the number supplied 
by the user in the File Serial Number field of TLBL, for a singlevolume file. 
If TLBL is used and no operand is specified, IDeS assumes the correct volume 
is mounted and does not check this field. For a multivolume file, IOCS checks 
the Volume Serial Number of the first volume only. On succeeding volumes, the 
Volume Serial Number and the File Serial Number differ (as described in 
Purpose). On output if the tape does not contain a volume label, the operator 
may key in a 6-digit Volume Serial Number and IOeS then writes the volume 
label. In the TLBL control card, the Volume Serial Number may be between 
quotes, or without quotes. If between quotes, the Volume Serial Number is 
assumed alphabetic and the field in the label is assumed to contain trailing 
blanks. If without quotes, the Volume Serial Number is assumed numeric and the 
field in the label is assumed to contain leading zeros. 

Source of Information 

Purpose: 
Provides a code to indicate that additional identification is required before 
a volume can be considered the correct one for processing. VSE does not use 
this field, but provision is made for additional security in other systems. 
For example, OS/VS allows operator response of a predetermined 'password' to 
further authorize a volume for processing. 

Processing: 
On both input and output, IOCS ignores this field, 

Note: OLTEP and OLTSEP will access this byte to determine if the volume is 
security protected. If the byte contains other than HEX'FO', '40', or '00' on 
an EBCDIC VOLI label (Tape or OASD), OLT(s), OLTSEP(s) will not allow this 
volume to be accesssed by ONLINE TESTS. If VOLI label on Tape is an American 
National Standard Label, DOS/OLTSEP will not allow this volume to be accessed 
if the security byte is other than X'20', '30', or '00', 

Figure 35 (Part 1 of 2), Tape Standard Volume Labell Fields 

Appendix C: DASD and TAPE Labels 159 



Licensed Program - Property of IBM 

Field 

05 Source of Information : -
Purpose: 
Used for Oirect Access volumes only. Should contain blanks on tape volumes. 

06 Source of Information : -
Purpose: 
Reserved for future use. Should contain blanks. 

07 Source of Information : -
Purpose: 
Reserved for future use as required for American National Standard Institute, 
Inc. Should contain blanks. 

08 Source of Information : -
Purpose: 
Reserved for the identification of the owner or assignee to whom this volume 
belongs, such as a customer, installation, department, or system. This can be 
a value for controlling the allocation of tape reels in a large installation. 

Processing: 
On both input and output, IOCS ignores this field. 

D9 Source of Information : -
Purpose: 
Reserved for future use. Should contain blanks. 

Figure 35 (Part 2 of 2). Tape Standard Volume Labell Fields 

Oispl. Field Length Content 

0 01 3 Label ID: VOL 
3 02 1 Ignored by VSE 
4 03 6 Volume serial number 
A 04 1 Accessibility 
B 05,D6 IA Reserved 

25 D7 E Name or code of volume owner 
33 08 Ie Reserved 
4F 09 1 Standard byte: 1= file has ANSI standards 

blank= file does not have ANSI 
standard 

Figure 36. Tape Volume Label for ASCII Code 

160 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume I 



licensed Program - Property of IBM 

Field 

01 

02 

03 

04 

05 

06 

Source of Information System 

Purpose: 
Identifies the standard volume label. 

Processing: 
On both input and output, lacs checks this field to verify that a standard 
volume label is present on the tape when DTF FIlABl = STD. or DTFPH, is 
specified for the first or only file on a tape reel cat the load point). The 
volume label should be written before a logical file of data records is 
written on the tape. 

Source of Information System 

Purpose: 
Must be 1. Any other Val labels will be ignored. 

Processing: 
This field is processed in conjunction with label identifier (field 1) to 
identify the volume label completely. 

Source of Information TlBL 

Purpose: 
Provides a unique identification for a tape reel (volume). The number is 
generally assigned when the reel is first received in the installation, and 
retained as long as the reel is used for files with standard labels. This 
number should also be used as the File Serial Number in the file HDR1 label of 
each logical file written on the volume. This provides a unique 
identification of the volume/file relationship. If a multivolume logical file 
is written. the Volume Serial Number of the first becomes the File Serial 
Number of the file HDRI label on all volumes. 

Processing: 
On both input and output. lacs checks this field against the number supplied 
by the user in the File Serial Number field of TLBL, for a single-volume file. 
If TLBL is used and no operand is specified, laCS assumes the correct volume 
is mounted and does not check this field. For a multivolume file. lacs checks 
the Volume Serial Number of the first volume only. On succeeding volumes. the 
Volume Serial Number and the File Serial Number differ (as described in 
Purpose). On output if the tape does not contain a volume label. the operator 
may key in a 6-digit Volume Serial Number and lacs then writes the volume 
label. 

Source of Information 

Purpose: 
Provides a code to indicate that additional identification is required before 
a volume can be considered the correct one for processing. 

Processing: 
On input, if this field is not x'40' laCS calls phase $IJJTSEC for further 
checking (see Macro User's Guide). On output, lacs writes space a space. 

Source of Information 

Purpose: 
Reserved for future use as required for American National Standards Institute. 
Inc. Should contain spaces. 

Source of Information 

Purpose: 
Reserved for future use as required for American National Standards Institute. 
Inc. Should contain spaces. 

Figure 37 (Part 1 of 2). Tape Standard Volume Labell (ASCII Mode) 
Fields 

Appendix C: DASD and TAPE Labels 161 



Licensed Program - Property of IBM 

Field 

D7 Source of Information : -
Purpose: 
Provides for the identification of the owner or assignee to whom this volume 
belongs. such as a customer. installation. department, or system. This can be 
a value for controlling the allocation of tape reels in a large installation. 

Processing: 
On both input and output. IOCS ignores this field. 

D8 Source of Information : -
Purpose: 
Reserved for future use as required for American National Standards Institut~. 
Inc. Should contain spaces. 

D9 Source of Information : -
Purpose: 

1. This file observes the American National Standard Institute. 
standards. 
(Decimal 1) 

2. This file does not necessarily observe the American National 
Institute. Inc. standards but it follows an agreed format. 
(Space) 

Figure 37 (Part 2 of 2). Tape Standard Volume Labell (ASCII Mode) 
Fields 

The volume label for tapes is 80 bytes long and begins by VOL1 for the 
first volume label. Additional volume labels are ignored by VSE. 

IBM-Standard File Labels on Tape 

Figure 38 and Figure 40 on page 167 show IBM-standard file labels for 
tapes. 

Displ. £lglQ length Content 

o 
3 
4 

15 

IB 
IF 
23 
27 
29 

2F 
35 
36 
3C 
49 

Fi'gure 38. 

D1 
D2 
03 
04 

05 
06 
07 
08 
09 

010 
011 
012 
013 
014 

3 
1 

11 
6 

4 
4 
4 
2 
6 

6 
1 
6 
D 
7 

Label ID: HDR. EOF. or EOV 
label sequence number: 1 
File-ID from TLBL 
Volume serial number of the volume where 
the file begins 
Volume sequence number within the file 
File sequence number on the volume 
Version number of the file 
Sub-version number 
Creation date: cyyddd 
c indicates the century. blank=19. 0=20. 1=21 
Expiration date: cyyddd 
Ignored by VSE 
Number of blocks; used in trailer labels only 
System code: IBMDOSVS 
Reserved 

IBM-Standard Tape File Label for EBCDIC Code 

162 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 

Inc. 

Standards 



licensed Program - Property of IBM 

Field 

D1 

D2 

D3 

D4 

TLBL Default (Output) 

Source of Information System 

Purpose: 
Identifies the type of standard file label. HDR signifies a standard header 
label at the beginning of a logical data file. and EOF signifies a standard 
trailer label at the end of a logical data file. EOV is a standard trailer 
label that signifies the end of records on one reel of tape, with additional 
records on one reel of tape, with additional records for the same logical file 
on another reel (volume). 

Processing: 
On input, IOCS OPEN/CLOSE routines search for HDR to locate the beginning of a 
file. and check EOF/EOv to determine the end-of file vs end-of-volume 
condition. On output. IOCS OPEN/CLOSE writes the appropiate identification. 
The user never specifies this identification. 

TLBL Default (Output) 

Source of Information 

Purpose: 

System 

Indicates the sequence of this label within a label group (HDR, EOF, EOV). VSE 
supports File label I only, but provision is made for additional standard file 
labels in other systems. For example, OS/VS uses both HDRl, EOFl, EOVI and 
HDR2, EOF2, EOV2 standard file labels. 

Processing: 
This field is processed in conjunction with the label identifier (field 1) to 
completely identify the type of standard label. 

TLBL Default (Output) 

Source of Information 

Purpose: 

DTF Filename 

TLBL 

Permits the user to identify his logical file by an application-oriented 
unique name. 

Processing: 
laCS OPEN/CLOSE check against, or write. the name specified by the user, but 
do not use this field to select the proper file for processing. If TlBL is 
used and no operand is specified for an output file, IOCS writes the DTF 
filename. 

TLBL Default (Output) 

Source of Information 

Purpose: 

Volume Serial Number of 1st file 

TlBL 

Provides a numeric (or code) identification for the logical file. In a 
multivolume file, this field contains the same number in the header label on 
each volume. This field should contain the Volume Serial Number from the VOL 
label of the first or only volume of the file. If it does, this uniquely 
identifies the volume/file relationship. If it does not, an error message is 
issued to the operator when the volume label is checked (see Figure 35 on 
page 158, field 3). 

Processing: 
On input. IOCS OPEN/CLOSE uses this field in conjunction with label fields 5 
and 6 to identify the file specified for processing. T~e file is specified, 
by the user by these same three fields in TLBL. 
On output, IOCS OPEN/CLOSE write the file serial number specified by the user. 
If TlBL is used and no operand is specified for an output file, IDeS writes 
the volume serial number of the first (or only) reel of the file. 

Figure 39 (Part 1 of 4). Tape Standard File Labell Fields 

Appendix C: DASD and TAPE Labels 163 



Field 

D5 

D6 

07 

D8 

TLBL Default (Output) 

Source of Information 

Purpose: 

Licensed Program - Property of IBH 

0001 

TLBL/System 

Identifies the order of the columns of data records in a multivolume logical 
file or in a multivolume multifile set. In a logical file the Volume Sequence 
Number should be 0001. 

Processing: 
In a multivolume file or ina multivolume multifile set, the user need specify 
(in TLBL) only the number of the first volume to be processed. laCS increases 
this number by 1 for each succeeding volume after the first. On input, laCS 
uses this label field, in conjunction with fields 4 and 6, to identify the 
file and volume specified (by TLBL). On output, IOCS writes the volume 
sequence number as specified by the user or updated by IOCS. If TLBL is used 
and no operand is specified for an output file, laCS writes 0001. 

TLBL Default (Output) 

Source of Information 

Purpose: 

0001 

TlBL/System 

Identifies the order of the logical files on a multifile volume or in a 
multifile multivolume set. In a single-file volume, the File Sequence Number 
should be 0001. 

Processing: 
On input, IOCS OPEN uses this field in conjunction with label fields 4 and 5 
to identify the file specified for processing. The file is specified, by the 
user, by these same three fields in TLBL. On output, when a multifile 
volume(s) is to be written starting at the load point, the user need specify 
the File Sequence Number of the first file only. If TLBL is used and no 
operand is specified for the output file, IOCS writes 0001. IOCS increases 
the number by 1 for each succeeding file. IOCS OPEN/CLOSE writes the 
appropiate number, as specified or updated. 

TLBL Default (Output) 

Source of Information 

Purpose: 

blanks 

TLBL 

Identifies the various editions of a file, such as a grandfather-fat her-son 
relationship. Thus it can be used to ensure that the desired edition of the 
file is selected for processing, if several editions are maintained in the 
library for history reference. The editions should be numbered in sequence. 

Processing: 
laCS checks against, or writes, the number supplied by the user. If TLBLis 
used and no operand is specified for an output file, lacs writes blanks. 

TLBL Default (Output) 

Source of Information 

Purpose: 

blanks 

TLBL 

Provides a more detailed identification of the editions of a file. For 
example, field 7 could specify a month (1-12), and this field could specify 
the activity for a particular week (1-5) of the month. 

Processing: 
IOCS checks against, or writes, the number supplied by the user. If TLBL is 
used and no operand is specified for an output file, laCS writes blanks. 

Figure 39 (Part 2 of 4). Tape Standard File label 1 Fields 

164 IBM VSE/Adv. Functions Diag. Ref. LIOeS Volume 1 



L 

Licensed Program - Property of IBM 

Field 

09 

010 

011 

TLBL Default (Output) 

Source of Information 

Purpose: 

TLBl for Input 
System for Output 

Provides the date that the file was originally created. This can be used at a 
later time to determine how old the records are. Or, it can be used (in 
conjunction with or in place of generation number) to ensure that the desired 
edition of the file is selected for processing. 

Processing: 
On input, IOCS OPEN checks this date against the data supplied by the user. 
If TLBL is used, the data is supplied in -the Date field. If it is omitted, 
the creation date in the label is not checked. The format of the date to be 
entered in TlBl is yy/ddd (year/day of the year). The day may have 1-3 
characters. On output, IOCS writes the date that is available in the 
communication region of the Supervisor. The user does not supply a creation 
date for an output file. 

TLBL Default (Output) Creation Date 

Source of Information TlBl or SYSTEM for OUTPUT 

Purpose: 
Indicates the date that the records may be considered inactive. At that time 
the old file may be deleted by overwriting it with a current edition of the 
same logical data. or another file. 

Processing: 
If TLBl is used. this field is not checked on input. On output, IOCS OPEN 
compares this field in the old header label to today's date in the 
communication region to determine if the old label has expired. If so, IOCS 
overwrites the old label and data records. If not, a message is given to the 
operator, who then determines whether to to overwrite the old data. In a 
multifile volume(s) processed sequentially, IOCS checks the expiration date in 
the old header of only the first file processed. All succeeding files are 
considered to have expired on the same date. IOCS OPEN/CLOSE writes the 
expiration date supplied by the user for the new output file. If TlBl is 
used, the Date field can specify either the date that the file will expire. or 
a retention period for the file. If the expiration date is specified, the 
format is yy/ddd (year/day of the year). You may enter 1-3 characters for 
ddd. The retention period is specified as 0-9999. If this field is omitted. 
a O-day retention period is assumed, and IOCS writes the date avaible in the 
communication region. 

TLBl Default (Output) 

Source of Information System for Output 

Purpose: 
Provides a code to indicate that additional identification is required before 
a file can be considered the correct one for processing. VSE does not use 
this field. but provision is made for additional protection in other systems. 
For example. OS allows operator response of a predetermined 'password' to 
futher authorize a file for processing. 

Processing: 
On input IOCS ignores this field. On output IOCS OPEN/CLOSE writes the code 
supplied by the user. If none is specified. IOCS writes a character zero. 

Figure 39 (Part 3 of 4). Tape Standard File label 1 Fields 

Appendix c: DASD and TAPE Labels 165 



Field 

012 

013 

D14 

Licensed Program - Property of IBM 

TLBL Default (Output) 

Source of Information System for Output 

Purpose: 
Provides the number of physical records (blocks) written in a file when it was 
created. This can be used (as a 'hash' total) to verify that all records have 
been read, when the file is processed later as an input file. The number of 
records is the total of all physical records between the header and trailer 
labels of a logical file, excluding tapemarks and checkpoint records. This 
field is used in trailer labels only. In header labels it contains character 
zeros. 

Processing: 
For a read forward input file, IOCS OPEN sets a counter at zero. During 
processing, IOCS routines accumulate a count of the blocks read from the tape. 
At the end of the file or volume, IOCS checks the accumulated count against 
that in the block count field of the trailer label. If an input file is read 
backwards. IOCS stores the block count read from the trailer label on OPEN. 
and decrements the count during processing. At the end of the file (header 
label), loes CLOSE checks the decremented count against the zero in the block 
count field of the header label. A read backwards file must be contained 
within one volume. If the accumulated block count does not agree with the 
count in the trailer label (or header label on read backwards), a message is 
given to the operato~ who may ignore the error or terminate the job. On 
output. IDeS OPEN writes character zeros in this field of the header label. 
During processing, IOCS routines accumulate the block count and write it in 
the trailer label at the end of the file or volume. In a multivolume file 
each EOV/EOF trailer label contains the number of blocks written on that 
volume only. 

TLBL Default (Output) 

Source of Information 

Purpose: 

System for Output 

Provides a code to indicate the IBM Programming System under which this file 
is written. This can be of value when an installation uses more than one 
programming system. 

Processing: 
On input IOCS ignores this field. On output IOCS OPEN/CLOSE writes the code 
supplied by the user. If none is supplied by the user. IOCS writes 
IBMDOSVSbbbbb in this field. 

TLBL Default (Output) 

Source of Information 

Purpose: 
This field is reserved for future use as required for American National 
Standards Institute, Inc. 

Processing: 
On input IOCS ignores this field. On output. IOCS writes blanks. 

Figure 39 (Part 4 of 4). Tape Standard File Labell Fields 

166 IBM VSE/Adv. Functions Dlag. Ref. LIOeS Volume 1 



~icen~ep Program - Property of IBM 

OisEI. 

0 
3 
4 

15 
IB 
IF 
23 
27 
~9 

2F 
35 
36 
3C 
49 

Field 

D1 
02 
03 
04 
05 
D6 
D7 
08 
D9 

010 
011 
D12 
013 
014 

Length 

3 
1 

11 
6 
4 
4 
4 
2 
6 

6 
1 
6 
D 
7 

Content 

Label 10: HDR, EOF, or EOV 
Label sequence number: 1 
File-ID from TLBL 
Volume serial number of first volume of the fil 
Volume sequence number within the file 
File sequence number within volume(s) 
Version number of the file 
Sub-version number 
Creation date: cyyddd 
c indicates the century, X'40'=19, X'FO'=20, 
X'Fl'=21 
Expiration date: cyyddd 
Accessibility byte 
Number of blocks written; only in trailer label 
System code: IBMZLB followed by two blanks 
Reserved 

Figure 40. IBM-Standard Tape File Label for ASCII Code 

Field 

01 

03 

TLBL Default (Output) 

Source of Information 

Purpose: 

System 

Identifies the type of standard file label. HDR signifies a standard header 
label at the beginning of the logical data file, and EOF signifies a standard 
trailer label at the end of a logical data file. EOVis a standard trailer 
label that signifies the end of a record on one reel of tape, with additional 
records for the same logical file on another tape reel (volume). 

Processing: 
On input, IOCS OPEN/CLOSE routines search for HOR to locate the beginning of a 
file, and check EOF/EOV to determine the end-of-file versus end-of-volume 
condition. On output. IOCS OPEN/CLOSE writes the appropiate identification. 
The user never specifies this identification. 

TLBL Default (Output) 

Source of Information 

Purpose: 

System 

Indicates the sequence of this label within a label group (HDR, EOF, EOV). 
VSE supports File Labell and 2 for ASCII, and ignores subsequent numbers. 

Processing: 
This field is processed in conjunction with the label identifier (field 1) to 
identify the type of standard label completely. 

TLBL Default (Output) 

Source of Information 

Purpose: 

DTF Filename 

HBL 

Permits the user to identify his logical file by a unique, 
application-oriented name. 

Processing: 
IOCS OPEN/CLOSE check against, or write, the name specified by the user, but 
do not use this field to select the proper file for processing. If TLBL is 
used and no operand is specified for an output file, IOCS writes the DTF 
filename. 

Figure 41 (Part 1 of 5). Tape Standard File Labell (ASCII Mode) 
Fields 

Appendix C: DASD and TAPE Labels 167 



D4 

D5 

D6 

TLBL Default (Output) 

Source of Information 

Purpose: 

Licensed Program - Property of IBM 

Volume Serial Number of 1st file 

TLBL 

Provides a numeric (or code) identification for the logical file. In a 
multivolume file. this field contains the same number in the header label on 
each volume. This field should contain the Volume Serial Number from the 
first file (or only file). If it does. this uniquely identifies the 
volume/file relationship. If it does not. an error message is issued to the 
operator when the volume label is checked (see Figure 37 on page 160. field 
3). 

Processing: 
On input. laCS OPEN uses this field in conjunction with fields 5 and 6 to 
identify the file specified for processing. The file is specified. by the 
user. by these three fields in TLBL. On output. lacs OPEN/CLOSE writes the 
set identifier specified by the user. If TLBL is used and no operand is 
specified for an output file. laCS writes the volume serial number of the 
first (or only) reel of the file. 

TLBL Default (Output) 

Source of Information 

Purpose: 

0001 

TLBL/System 

Identifies the order of the volume of data records in a multivolume logical 
file or in a multivolume multifile set. In a singlevolume file. the File 
Section Number shoul~ be 0001. 

Processing: 
In a multivolume file or in a multivolume multifile set. the user need specify 
(in TLBL) only the number of the first volume to be processed. IOCS increases 
this number by 1 for each succeeding volume after the first. On input. laCS 
uses this label field. in conjunction with fields 4 and 6. to identify the 
file and volume specified (by TLBL). On output, IDes writes the volume 
sequence number as specified by the user or updated by IOCS. If TLBl is used 
and no operand is specified for an output file. IOCS writes 0001. 

TLBL Default (Output) 

Source of Information 

Purpose: 

0001 

TLBL/System 

Identifies the order of the logical files on a multifile volume or in a 
multifile multivolume set. In a singlefile volume. the File Sequence Number 
should be 0001. 

Processing: 
On input. IOCS OPEN uses this field in conjunction with label fields 4 and 5 
to identify the file specified for processing. The file is specified, by the 
user. by these same three fields in TLBL. On output when a multifile 
volume(s) is to be written starting at the load point, the user must specify 
the File Sequence Number of the first file. If TLBl is used and no operand is 
specified for the output file, IOCS writes 0001. IOCS increases the number by 
1 for each succeeding file. lacs OPEN/CLOSE writes the appropiate number, as 
specified or updated. 

Figure 41 (Part 2 of 5). Tape Standard File Labell (ASCII Mode) 
Fields 

168 IBM VSE/Adv. Functions Diag. Ref. LIOeS Volume 1 



licensed Program - Property of IBM 

Field 

D7 

D8 

D9 

TlBl Default (Output) 

Source of Information 

Purpose: 

blanks 

TlBl 

Identifies the various editions of a file, such as a grandfather-father-son 
relationship. Thus it can be used to ensure that the desired edition of the 
file is selected for processing, if several editions are maintained in the 
library for history reference. This edition should be numbered in sequence. 

Processing: 
IOCS checks against, or writes, the number supplied by the user. If TlBl is 
used and no operand is specified for an output file, IOCS writes blanks. 

TlBl Default (Output) blanks 

Source of Information TlBl 

Purpose: 
Provides a more detailed identification of the editions of a file. For 
example, field 7 could specify the month (1-12), and this field could specify 
the activity for a particular week (1-5) of the month. 

Processing: 
IOCS chechs against. or writes, the number supplied by the user. If TlBl is 
used and no operand is specified for an output file, IOCS writes blanks. 

TlBl Default (Output) 

Source of Information 

Purpose: 

TlBl for Input 
System for Output 

Provides the date that the file was originally created. This can be used at a 
later time to determine how old the records are. Or, it can be used (in 
conjunction with or in place of generation number) to ensure that the desired 
edition of the file is selected for processing. 

Processing: 
On input, IOCS OPEN checks this date against the date supplied by the user. 
If TlBl is used. the date is supplied in the Date field. If it is omitted, 
the creation date in the label is not checked. The format of the date to be 
entered in TlBl is yy/ddd (year/ day of the year). The day may have 1-3 
characters. On output, IOCS writes the date that is available in the 
communication region of the Supervisor. The user does not supply a creation 
date for an output file. 

Figure 41 (Part 3 of 5). Tape Standard File label 1 (ASCII Mode) 
Fields 

Appendix C: DASD and TAPE labels 169 



Field 

010 

011 

012 

licensed Program - P~operty of IBM 

TLBL Default (Output) Creation Date 

Source of Information SYSTEM or TlBl for Output 

Purpose: 
Indicates the date that the records may be considered inactive. At that time 
the old file may be deleted by overwriting it with a current edition of the 
same logical data, or another file. 

Processing: 
If TlBL is used, this field is not checked on input. On output, IOCS OPEN 
compares this field in the old header label to today's date in the 
communication region to determine whether the old has expired. If so, IOCS 
overwrites the old label and data records with the new label and data records. 
If not. a message is given to the operator, who then determines whether to 
overwrite the old data. In a multifile volume(s) processed sequentially, IOCS 
checks the expiration date in the old header of only the first file processed. 
All succeeding files are considered to have expired on the same date. IOCS 
OPEN/CLOSE writes the expiration date supplied by the user for the new output 
file. If TLBl is used, the Date field can specify either the date that the 
file will expire, or a retention period for the file. If the expiration date 
is specified, the format is yy/ddd (year/day of the year). The day may have 
1-3 characters. If a retention period is specified, 0-9999 days (1-4 
characters) may be entered. If this field is omitted, a O-day retention 
period is assumed, and IOCS writes the date available in the communication 
region of the Supervisor. 

TLBl Default (Output) 

Source of Information 

Purpose: 
Provides a code to indicate that additional identification is required before 
a file can be considered the correct one for processing. 

Processing: 
On input. if this field is not X'40' IOCS calls phase $IJJTSEC for further 
checking (see Macro User's Guide). On output IOCS writes a space. 

TlBL Default (Output) 

Source of Information System 

Purpose: 
Provides the number of physical records (blocks) written in a file when it was 
created. This can be used (as a 'hash' total) to verify that all records have 
been processed, when the file is processed later as an input file. The number 
of records is the total of all physical records between the header and trailer 
labels of a logical file, excluding tapemarks. This field is used in trailer 
labels only. In header labels it contains character zeros. 

Processing: 
For a read forward input file, IOCS OPEN sets a counter to zero. During 
processing, IOCS routines accumulate a counter of the blocks read from the 
tape. At the end of the file or volume, IOCS checks the accumulated count 
against that in the block count field of the trailer label. If an input file 
is read backwards, IOCS stores the block count read from the trailer label on 
OPEN, and decrements the count during processing. At the end of the file 
(header label), IOCS CLOSE checks the decremented count against the zero in 
the block count field of the header label. A Read backwards file must be 
contained within one volume. If the accumulated block count does not agree 
with the count in the trailer label (or header label on read backwards), a 
message is given to the operator who may ignore the error or terminate the 
job. On output, IOCS OPEN writes character zeros in this field of the header 
label. During processing, IOCS routines accumulate the block count and write 
it in the trailer label at the end of the file or volume. In a multivolume 
file each EOV/EOF trailer label contains the number of blocks written on that 
volume only. 

Figure 41 (Part 4 of 5). Tape Standard File label 1 (ASCII Mode) 
Fields 

170 IBM VSE/Adv. Functions Diag. Ref. lIOCS Volume 1 



Licensed Program - Property of IBM 

Field 

D13 TLBL Default (Output) : -
Source of Information : System for Output 

Purpose: 
Provides a code to indicate the IBM Programming System under which this file 
is written. This can be of value when an installation uses more than one 
programming system. 

Processing: 
On input IOCS ignores this field. On output IOCS OPEN/CLOSE writes the 
supplied by the user. If none is supplied by the user. IOCS writes 
IBMDOSVSbbbbb in this field. 

D14 TLBL Default (Output) : -
Source of Information : -
Purpose: 
This field is reserved for future use as required for American National 
Standards Institute, Inc. 

Processing: 
On input IOCS ignores this field. On output, IOCS writes 

Figure 41 (Part 5 of 5). Tape Standard File Labell (ASCII Mode) 
Fields 

spaces. 

IBM-standard file labels are 80 bytes long. Each file has a header and 
a trailer label which have the same format, for reading the tape forward 
or backward. The first four characters of each label identify the 
particular label: 

header label HDRl, HDR2 trailer label -- EOFl,EOF2 at the end of 
a file 

EOVl,EOV2 at the end of 
a volume but not of 
the file HDR2, EOF2 and EOV2 for ASCII only. 

Additional labels (HDR3 to 8) are ignored by VSE. 

User-Standard File Labels on Tape 

Figure 42 shows user-standard file label format for tapes. 

Displ. Field length Content 

o 
3 
4 

Dl 
D2 
D3 

3 
1 

4C 

Label ID: UHl or UTL 
label sequence number: 1 to 8 
User's label information 

Figure 42. User-Standard Tape File label 

Appendix C: DASD and TAPE Labels 171 

code 



Licensed Program - Property of IBM 

Field 

01 Source of Information : System 

Purpose: 
Identifies the standard volume label. 

Processing: 
On both input and output, laCS checks this field to verify that a standard 
volume label is present on the tape when OTF FILABL = NSTO or OTFPH, is 
specified for the first or only file on a tape reel (at the load point). The 
volume label should be written previously, before a logical file of data 
records is written on the tape. 

D2 Source of Information : System 

Purpose: 
Indicates the sequence of this label within the user header (UHL ) or the user 
tra i ler label ( UTU group. 

Processing: 
This field is processed in conjunction with the label identifier (field 1) to 
completely identify the user header label or the user trailer label. 

D3 Source of Information : User 

Purpose: 
Provides a means for you to label your SAM/DAM f i 1 e with any information you 
need in addition to that supplied by the standard labels. 

Figure 43. Tape User-Standard Label Fields 

User-standard labels are header labels located and processed before the 
data of the file, and trailer labels located and processed after the 
file. Header and trailer labels are identified by: 

User header labels UHLn User trailer labels UTLn 

n may be 1 to 8. 

User-standard file labels are 80 bytes long. The first four bytes 
contain UHLn or UTLn and the remaining 76 bytes contain user data. 

You can include definitions or descriptions of the file in addition to 
that in the IBM-standard labels. For example, you may have a unique 
numbering system for file identification or you may have subcategories 
that you want to define for the files, or you may want to maintain an 
audit trail in these labels. 

Non-Standard File Labels on Tape 

Non-standard labels are only supported on EBCDIC code tape labels. They 
may have any length, do not have a specified identification in the first 
four characters, and do not have a fixed format. They may contain 
whatever information the user desires, and in any arrangement. They are 
completely the responsibility of the user. He should, however, use some 
of the features found in standard labels. For example: header labels 
must be distinguished from trailer labels, end-of-file trailer labels 
must be distinguished from end-of-volume trailer labels, and some name 
or number must identify the file to which the label belongs. 

When files with non-standard labels or unlabeled files are written on a 
volume, the volume label is destroyed. Therefore, these files can only 
be written on volumes that are not expected to be used again for files 
with standard labels. 

172 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

LABEL RECORDS .ill THE LABEl AREA 

When the system reads the DLBL or TLBL and EXTENT statements, it first 
stores the label information in the label area. The format of the label 
records in this area is not quite the same as the actual labels on the 
device. It is shown in VSE/Advanced Functions Diagnosis Reference: 
Initial Program Load and Job Control. 

Appendix C: DASD and TAPE Labels 173 



licensed Program - Property of IBM 

APPENDIX ~ MASTER INDEX FOR VSE/ADVANCED FUNCTIONS LIOCS 

This Master Index contains references to the VSE/Advanced Functions 
Logical IOCS manuals. The number(s) after each entry is the key to the 
manual(s) in which the information is found. The keys correspond to the 
following manuals. 

1. VSE/Advanced Functions lIOCS Volume ~ General Information and 
Imperative Macros, LY33-9116. 

2. VSE/Advanced Functions LIOCS Volume ~ ~ , lV33-9117. 

3. VSE/Advanced Functions lIOCS Volume ~ DAM ~ ISAM , LY33-9118. 

4. VSE/Advanced Functions LIOCS Volume ~ SAM FOR DASD , lY33-9119. 

ACB (access method control block) 1 
access methods 1, 2, 3 

direct 1, 3 
indexed sequential 1, 3 
sequential 1, 2, 4 
telecommunications 1 
virtual 1 

ADD function (ISAM) 3 
add to the overflow area 3 
adding records to a file 3 
address modification subroutine 1 
ADDRTR function (ISAM) 3 

channel program builder 3 
end-of-file add 3 
ESETL macro 3 
GET macro 3 
overflow area add 3 
prime data area add 3 
PUT macro 3 
READ KEV macro 3 
SETL macro phase 1, $$BSETL 3 
SETl macro phase 2, $$BSETll 3 
SETL macro phase 3, $$BSETl2 3 
WAITF macro 3 
WRITE KEY macro 3 
WRITE NEWKEY macro 3 

algorithm to calcualte upper/lower limits 
for FBA devices 4 

alteration factors 3 
alternate switching 2 

EOV, tape 2 
system units, tape 2 

ANSI 
control codes 2 
tape file label 1 
tape volume label 1 

ASCII 
conversion tables 1 
standard volume label 1 

associated files 2 
asynchronous processing 3 

relative addressing extensions 3 

B-transients (see logical transients) 1, 2 
3,4 

basic telecommunications access method 1 
block size, logical 4 
BSI (buffer status indicator) 2 

buffer 
(MICR) 2 
status indicator 2 
truncation, 3800 printer 2 

buffering, double 3 
byte, sync 2 

capacity record (RO) 3 
card device files 2 
CCWs (basic), channel program builder 3 

CDMOD 2 
CWTRl macro 2 
GET macro 2 
PUT macro 2 

chain reading of VTOC labels 4 
channel program builder 3 

ISMOD ADD 3 
ISMOD ADDRTR 3 
ISMOD, RANDOM RETRVE 3 
ISMOD, SEQNTL RETRVE 3 
strings 3 

CHECK macro 1, 2 
MRMOD 2 

CIDF 4 
CKD 

DASD file, contents of 4 
logical units 4 

CLOSE macro 1 
close 

monitor 

close 

functions 1 
general chart 1 
phases 1 
subroutines 1 

routines 1, 2, 3, 4 
alternate switching for EOV 2 
alternate switching for system units 

2 
direct access DASD 3 
diskette 2 
DTFCP/DTFDI tape files 2 
DUMODFO 2 
EOF/EOV input forward 2 
EOV output forward 2 
files 1 
IJDPR3 2 
IJDPRT 2 
ISAM 3 
magnetic tape 2 
MICR 2 
optical reader files 2 
paper tape files 2 
printer files for 3800 2 

174 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

punch files 2 
sequential DASD 4 
unit record files 2 
VTOC 4 

CLOSER macro 1 
CNTRL macro 1, 2, 3, 4 

COMOD Z 
DAMOD 3 
DAMOOV 3 
DRMOD 2 
Magnetic tape 2 
ORMOD Z 
printer files for 3800 2 
PRMOD 2 
sequential DASD 4 

COBOL, input file closing 2 
COCR 3 
codes, DTF type 1 
combined files (DTFCD) 2 
command control block (CCB) 1 
common LIOCS routines 1 
common VTOC handler (CVH) 4 
commonly used logical transients 1 
compiler files 1,2 

characteristics 2 
CPMOD macro 2 
DTFCP Z 
initialization and termination 2 
logic module (CPMOD) 2 
open monitor 1 

console files (DTFCN) 1, 2 
close Z 
DTFCN macro Z 
GET macro Z 
open monitor 1 
PUT macro 2 

control interval (CI) 4 
control 1, 2 

block, access method (ACB) 1 
information 4 

conventions for relative addresses 3 
conversion of relative addresses 3 
converting relative block addresses 4 
count-key-data (CKD) addressing 4 
COV 4 
CPMOD macro 2 

GET 
IOPTR=YES 2 
one I/O area 2 
TRC=YES 2 
two I/O areas 2 

parameters 2 
PUT 

IOPTR=YES 2 
one I/O area 2 
two I/O areas 2 

CPNOTE (DTFCP) 4 
CPOINT (DTFCP) 4 
CPOINTS (DTFCP) 4 
creation of tape volume labels 1 
cross reference list 

label 4 
phase name - CSECT 4 

cross-reference label list 1, 2, 3 
CVTOC 4 
cylinder 3 

index 3 
overflow area 3 
overflow control record 3 

DAM (direct access method) 3 
DAMOD 3 
DAMODV 3 
DASD file processing, sequential 4 
DASD 1, 2, 3 

device independent functional support 4 
DTF dense type update open phase label 

procedures for (LBRET macro) 1 
file protect 1,3 
files 1 

close routine 1 
open routine 1 

input files 1 
label information 3 
label information 1 
labels 1 
RDS common close data organization, VSAM 

1 
data areas Z, 4 

Magnetic tape 2 
PRTl/3800 printer support 2 
sequential DASD 4 

data security 1,3 
indicator 3 
message writer 1 

declarative macros 1 
define the file (DTFxx) 1 
interrelationship of instructions 
module generation (xxMOD) 1 

delete label 
open output sequential DASD 2 
sequential DASD open output 4 

dequeue extent block entries 1 
dequeue for VSAM routines ($$BENDQB) 1 
descriptor byte, DAM channel program 
builder 3 

device independent DTF extension 1 
device 

independent files 2 
initialization and termination 2 
RPS interface 2 
system files (01) 2 

release transient $$BRElSE 1 
DFR macro 2 
DIMOO 2 
direct access method (DAM) 1, 3 
DISEN macro 1, 2 
disk 

error message writer 1 
phase 1 1 
phase 2 1 

volume 10 support 1 
diskette 

error message writer 1 
file labels 1 
files 

close routine 1 
module save areas 2 
open routine 1 
record format 2 
storage areas 2 

display VTOC 1 
DlBL/EXTENT 

image 4 
processing 4 

OlINT macro 2 
OLIST 4 
document information record 2 
ORMOO 2 
DSKXTNT table 3 
DSPLY macro 1, 2 
DTCP 2 
OTF (IJJGDTF) 4 
DTF extension (IJJGDTFX) 4 
DTF tables 1, 2, 3, 4 

DTFBG 1 
DTFCD 2 
DTFCN Z 
OTFCP 2 
OTFOA 3 
DTF D I 2 
DTFDR 2 
DTFDU 2 
DTFEN 1 
DTFIS 3 

Appendix 0: Master Index for VSE/Advanced Functions LIOCS 175 



DTF 

DTFMR 2 
DTFMT 2 
DTFDR 2 
DTFPH 2, 3, 4 

DAM 3 
diskette 2 
magnetic tClpe 2 
sequential disk 

DTFPR 2 
DTFPT 2 
DTFSD 4 
DTFSR 1 

address constants 
extensions 3 
types 1 

DTFCD 
DTFCN 
DTFep 
DTFDA 
DTFDA 
DTFDI 
DTFDR 
DTFDU 

used by $$BClRPS 
2 
2 
2, 4 

DTF Extension 4 
mClcro 3 

2 
2 

DTFIS mClcro 3 
DTFMR 2 
DTFMT 2 
DTFDR 2 
DTFPH 2, 3 

diskette 2 
DAM 3 
mClgnetic tape 2 
sequential disk 4 

DTFPR 2 
DTFPT 2 
DTFSD 2 
dump VTDC 

DASD 1 
diskette 1 

4 

1 

1 

duplicClte device Clssignment 1 

licensed Program - Property of IBM 

recovery, punch 2 
ESETl mClcro 1, 3 

ADDRTR 3 
RETRVE, SEQNTl 3 

explanation of flowchart symbols 1, 2, 3 
extended buffering for the 3800 2 
extending 

a file with ISAM 3 
informCltion to user, DAM 3 

extents, console open output sequential 4 
EXTRN symbol linkClge 1 

factor, reconversion 3 
FBA 4 
FEOV macro 1, 2 
FEOVD 

macro 1, 2 
processing 4 

field 
informCltion record 2 
sequence link 3 

file protection 4 
file 1, 2, 3 

additions 3 
definition mClcros 1 
initiCllizCltion and termination 1 
labels 1, 2 

DASD 1 
diskette 1 
tape 1 

files, associated 2 
fixed block architecture, definition of 4 
flowchart 

labels 1, 3 
symbols 1, 2, 3 

forced-end-of-volume 1, 2, 4 
format-l label 

extents in 4 
format 3 IClbel, extent overflow 4 
FREE macro 1, 2, 3 

dynClmics device re1eClse (RELEASE mClcro) 1 DAMOD 3 

ENDFL mClcro 1, 3 
enqueue for VSAM routines ($$BENDQB) 1 
entry/sequenced dCltCl orgClnizCltion 1 

LOAD 3 
EOF Cldd 3 
EOF/EOV 

monitor 2 
routines, generClI chClrt 1 

EOV 
Clnd logicCll sPClcing routine 2 
limits for prime dClta Clrea 3 

ERET mClcro 1 
ERREXT 2, 3 

DUMODFI 2 
DUMODFO 2 
option 3 
PClrameter list 3 

ERR OPT 2 
DU~lODF I 2 
DUMODFO 2 

error conditions, DTFCP 4 
error/stCltus indicCltor 3 
error 1,2,3 

exit routine 2 
messClge list, master 1 
messClge writer 

dClta security 1 
disk open phase 1 1 
disk open phase 2 1 
diskette open phClse 1 1 
diskette open phase 2 1 

messages 2 
option extension 3 
options extension 2 

DAMDDV 3 
ISMOD, RANDOM RETRVE 3 

generation macros, module 2 
for diskette 2 

GET logic for the 1017 paper tape reader 2 
GETVCE output pClrameter list (IJJGGCP) 4 

handling DASD lClbels 1 
handling tape labels 1 

I/O area requirements 3 
I/O areas 

add (blocked records) 3 
add (unblocked records) 3 
load 3 
retrieve (blocked records) 3 
retrieve (unblocked records) 3 

ID, reference by (DAM) 3 
IDLOC 3 
ignore open sequential DASD 2 
IIPCLOSE 1 
IIPOPEN 1 
imperative 

macro expansions 1 
macros 1 

independent overflow area 3 
index level pointer 3 
indexed sequentiCll Clccess method 1, 3 
indexes 3 

cylinder 3 
master 3 

176 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



licensed Program - Property of IBM 

track 3 
indicator, error/status 3 
information record 2 

document 2 
field 2 
line 2 

initialization 
and termination 1, 2, 3 

CP and DI files 2 
DAM 3 
magnetic tape files 2 
MICR files 2 
optical reader files 2 
procedures 3 
sequential DASD files 4 
unit record files 2 

IOCS 1 
ISAM (indexed sequential access method) 1, 3 

close 3 
file extension 3 
ISAM DTF device type update open phase 3 
macro instructions 3 

add records to a file 3 
load or extend a OASO file 3 
random retrieval 3 
sequential retrieval 3 

rotational positional sensing 3 
ISMOD macro 3 

job control 1, 2 

key 
referenced by DAM 3 
sequenced data organization 1 

label processing parameter and I/O area 
table (IJJGlPTB) 4 

label 
cross-reference list 4 
information, DASD 3, 4 
list, flowchart 1, 2, 3 
processing 

user 4 
VTOC 4 

labels 2 
DASD 1 

IBM standard volume 1 
nonstandard 1 
processing 1 
standard tape, file labels 1 
standard volume 1 

magnetic tape 1 
additional 1 
input file 1 
nonstandard 1 
output file 1 
processing 1 
standard file 1 

lBRET macro 1, 4 
length field, sequence 3 
line information record 2 
link field, sequence 3 
linkage, EXTRN 1 
LIOCS interrelationship, example of 1 
list VTOC 1 
LITE macro 1, 2 

MRMOD 2 
load FBA open 4 
LOAD function 3 

ENDFl macro, phase 1 3 
ENDFL macro, phase 2 3 
SETFL macro 3 
WRITE NEWKEY macro 3 

loading or extending a file 3 
logic module/SSR work area (IJGXZWA) 4 

logic modules, 
logic modules, 
logic modules 

channel program building 
versions of in SVA 4 

COMOD 2 
CPMOD 2 
DAMOD 3 
DAMODV 3 
DIMOD 2 
DTFCN 2 
ISMOD 3 
MRMOD 2 
ORMOD 2 
PRMOD 2 

2, 3, 4 

PRTl pr inters 2 
PTMOD 2 
SAM DASD 4 
Tape 2 

logic Processing 
magnetic tape 2 
sequential DASD 4 

logical 
10CS 1 

common routines 1 
general information 1 
special purpose routines 

spacing and EOV routines 2 
transients 1, 2, 3, 4 

$$BCCPTI 2 
$$BCEOVI 2 
$$BCISOA 3 
$$BCLOSE 1 
$$BCLOSP 2 
$$BCLOS2 1 
$$BCLOS4 1 
$$BCLRPS 1 
$$BCMROI 2 
$$BENDFF 3 
$$BENOFL 3 
$$BENOQB 1 
$$BERPTP 2 
$$BERRTN 2 
$$BIKULl 4 
$$BINDEX 3 
$$BJCOPT 2 
$$BJCOPI 2 
$$BMMR20 2 
$$BMSGWR 2 
$$BMSGWI 2 
$$BOCPMl 2 
$$BOCPM2 2 
$$BOCPRP 2 
$$BOCPTl 2 
$$BOCPT2 2 
$$BOCPT3 2 
$$BOCPT4 2 
$$BOCPOI 2 
$$BOCP02 2 
$$BOCP03 2 
$$BOCPll 2 
$$BOCPI2 2 
$$BODACl 3 
$$BOOARP 3 
$$BOOARS 3 
$$BODAUI 3 
$$BODIOI 2 
$$BODI02 2 
$$BOOI03 2 
$$BODI04 2 
$$BOOI05 2 
$$BOOI06 2 
$$BOOI07 2 
$$80DI08 2 
$$BODMSG 1 
$$BODMS2 1 
$$BOOQUE 1 
$$BODSMO 1 
$$BOOSMW 1 
$$BODSPO 1 

1 

Appendix D: Master Index for VSE/Advanced Functions llOCS 177 

4 



$$BODSPV 1 
$$BODSPW 1 
$$BODUCP 2 
$$BOE5TV 1 
$$BOFLPT 1 
$$BOISRP 3 
$$BOIS01 3 
$$BOI502 3 
$$BOIS04 3 
$$BOI505 3 
$$BOIS06 3 
$$BOIS07 3 
$$BOIS08 3 
$$BOI509 3 
$$BOIS10 3 
$$BOIS11 3 
$$BOKULl 4 
$$BOMRCE 2 
$$BOMR01 2 
$$BOM5G1 1 
$$BOMSG2 1 
$$BOMSVA 2 
$$BOMSV2 2 
$$BONVOL 2 
$$BOOR01 2 
$$BOPEN 1 
$$BOPENC 1 
$$BOPENR 1 
$$BOPENS 1 
$$BOPENI 1 
$$BOPEN2 1 
$$BOPEN4 1 
$$BOPIGN 1 
$$BOPLBL 1 
$$BOPNR2 1 
$$BOPNR3 1 
$$BOPR3 1 
$$BORTV1 3 
$$BORTV2 3 
$$BOSDC1 1 
$$BOSDC2 1 
$$BOSDEV 1 
$$BOSFBL 4 
$$BOSVLT 4 
$$BOTSVA 2 
$$BOTl TA 2 
$$BOTUSR 2 
$$BOULII 4 
$$BOULOI 4 
$$BOUROI 2 
$$BOVDMO 1 
$$BOVDMP 1 
$$BOWDMO 1 
$$BOWDMP 1 
$$BRELSE 1 
$$BSEFTl 3 
$$BSETFF .) 
$$BSETFG 3 
$$BSETFH 3 
$$BSETFI 3 
$$BSETl 3 
$$BSETLl 3 
$$B5ETl2 3 
$$B35401 2 
$$B35400 2 
$$VOPENT 1 

unit block (LUB) 1 

macro 
CDMOD 2 
CHECK 1,2 

MRMOD 2 
CHKPT 1 
CLOSE 1 
CLOSER 1 
C NT R L 1, 2, 3 

CDMOD 2 

Licensed Program - Property of IBM 

DAMOD 3 
DAMODV 3 
DRMOD 2 
IJDPR3 2 
IJDPRT 2 
ORMOD 2 
PRMOD 2 

CPMOD 2 
DAMOD 3 
DAMODV 3 
DFR 2 
DIMOD 2 
DlSEN 1,2 
DLINT 2 
DRMOD 2 
DSPLY 1, 2 
DTFCD 2 
DTFCN 2 
DTFCP 2 
DTFDA 3 
DTFDI 2 
DTFDR 2 
DTFDU 2 
DTFIS 3 
DTFMR 2 
DTFMT 2 
DTFOR 2 
DTFPH, DAM 3 
DTFPH, diskette ~ 
DTFPH, magnetic .ape 2 
DTFPH, sequential disk 2 
DTFPR 2 
DTFPT 2 
DTFSD 2 
ENDFL 1 
ENDFL LOAD 3 
ERET 1 
ESETl 1 

ADDRTR 3 
SEQNTl RETRVE 3 

expansions, imperative 1 
FEOV 1,2 
FEOVD 1, 2, 4 
FREE 1,2,3 

DAMOD 3 
DAMODV 3 
RANDOM RETRVE 3 

GET 1, 2, 3 
ADDRTR 3 
CDMOD 2 
CPMOD 2 
DIMOD 2 
DTFCN 2 
MRMOD 2 
ORMOD 2 
PTMOD 2 
SEQNTl RETRVE .) 

input/output 
DAMOD 3 
DAMODV 3 

instructions (ISAM) .) 
add records to a file 3 
load or extend a DASD file .) 
random retrieval 3 
sequential retrieval 3 

ISMOD 3 
LBRET 1 
LITE 1, 2 
MRMOD 2 
NOTE 1 
OPEN 1 
OPENC 1 
OPENR 1 
ORMOD 2 
POINTR 1 
POINTS 1 
POINTW 1 
PRMOD 2 

178 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

PRTOV 1.2 
for 3800 2 

PTMOD 2 
PUT 1. 2. 3 

ADDRTR 3 
CDMOD 2 
CP~10D 2 
DIMOD 2 
DTFCN 2 
IJDPR3 2 
PRMOD 2 
PTMOD 2 
SEQNTL RETRVE 3 

PUTR 1.2 
RDLNE 1.2 
READ 1. 2. 3 

DRMOD 2 
10 DAMOD 3 
KEY ADDRTR 3 
KEY DAMOD 3 
KEY RANDOM RETRVE 3 
MRMOD 2 
ORMOD 2 
SPNUNB records 3 
VARUNB records 3 

relationship 1 
RELEASE 1 
RELSE 1. 2 
RESCN 1.2 
SEOV 1 
SETDEV 1. 2 
SETF L 1 

LOAD 3 
SETL 1.3 

ADDRTR 3 
SEQNTL RETRVE 3 

TRUNC 1,2 
WAITF 1, 2. 3 

DAMOD 3 
DAMODV 3 
DRMOD 2 
ISMOD ADD 3 
ISMOD ADDRTR 3 
ISMOD RANDOM RETRVE 3 
MRMOD 2 
ORMOD 2 

WRITE 1. 2. 3 
AFTER DAMOD 3 
AFTER SPNUNB records 3 
AFTER VARUNB records 3 
ID DAMOD 3 
KEY DAMOD 3 
KEY ISMOD ADDRTR 3 
KEY ISMOD RANDOM RETRVE 3 
NEWKEY ISMOD ADD 3 
NEWKEY ISMOD ADDRTR 3 
NEWKEY ISMOD LOAD 3 
RZERO DAMOD 3 
RZERO SPNUNB records 3 
RZERO VARUNB records 3 
SPNUNB records 3 
VARUNB records 3 

macros 1 
declarative 1 
imperative 1 
module generation 1 

magnetic ink character recognition (MICR) 
files 1. 2 

Magnetic Tape Files 1. 2 
close monitor functions 1 
Data areas 2 
DTFMT macro 2 
DTFPH macro 2 

Tape Labels 2 
Label Processing 1. 2 
Logic Processing 2 
message writers 1, 2 
open. general chart 1 

Open/Close 2 
master 

error message list 1 
index. ISAM 3 

message writer interface table (IJJGIFT) 4 
message-module relationship 4 
message 

code for disk open error 1 
cross-reference list 1, 2. 3. 4 
writer 1 
writers 1, 2 

data security 1 
disk open phase 1 1 
disk open phase 2 1 
diskette data security 1 
diskette open phase 1 1 
diskette open phase 2 1 
DTFCP/DTFDI 2 
magnetic tape 2 
MICR 2 

messages 1 
$$BOMSGI 1 
$$BOMSG2 1 
master error list 1 

method of processing 1 
MFCM 1.2 
MFCU 1 
MICR 1 

buffer 2 
close 2 
DTFMR macro 2 
error messages 2 
files 2 
initialization and termination 2 
logic module (MRMOD) 2 
message writer 2 
MRMOD macro 2 
open 2 
pocket light indicators 2 

MOD LOOP 1 
address modification subroutine 1 
subroutines for open 1 

modular 
generation macros (xxMOD) 1, 2 
tabular system 1 

modules 1. 2. 3 
direct access method 3 
fixed-length records 2 
reenterable 1, 3 
undefined records 2 
variable-length records 2 

MRMOD 2 
multiple track search 3 

nonstandard tape labels 1 
normal add to prime data area 3 
NOTE macro 1. 2 

OMR/RCE format open routines 2 
open VTOC (OVTOC) macro 4 
OPEN/CLOSE and problem program save area 

(IJJGSVEA) 4 
OPEN/CLOSE general modules/routines 

B-transients 1 
monitor. functions of 1 

OPEN/CLOSE logic 2. 3 
DAM 3 
ISAM 3 

OPEN 1. 2. 3. 4 
console files 2 
DAM 1. 3 

general chart 1 
user labels 3 

device independent files 2 
device independent files. RPS interface 2 
diskette files 2 

Appendix 0: Master Index for VSE/Advanced Functions LIOCS 179 



Licensed Program - Property of IBM 

DTFCP/DTFDI 2 
input tape 2 
labeled input file 2 
output tape 2 

ignore ($$BOPIGN) 1 
IJDPR3 2 
IJDPRT 2 
input sequential DASD 4 
ISAM 1.3 

general chart 1 
logic DAM. general chart 3 
logic ISAM. general chart 3 
macro 1 
magnetic tape files 1. 2 

general chart 1 
monitor 1 

$$BDPEN1 phase 1 
$$BOPEN2 phase 2 
card device files 1 
compiler files 1 
console files 1 
DAM files 1 
general chart 1 
ISAM files 1 
magnetic tape files 1 
MICR files 1 
optical reader files 1 
phases 1 
routines 1 
telecommunications files 1 
unit record files 1 

OMR/RCE routines 2 
optical reader files 2 
printer files 2 
printer files for 3800 2 

extended buffering 2 
punch files 2 
reader fi les 2 
routines 1 
sequential DASD 4 
unit record files 2 
work fi les 2. 4 

OPENC macro duplicate device assignment 1 
OPENR macro DTF address constants 1 
optical reader (OR and DR) files 1. 2 

close monitor 1 
DRMOD macro 2 
DTFDR macro 2 
DTFOR macro 2 
open routine 1 
ORMOD macro 2 

organization. VSAM data 1 
ORMOD 2 
overflow area 3 

cylinder 3 
ISMOD ADD 3 
upper limits 3 

OVTOC, format of 4 

paper tape 1. 2 
files, close monitor 1 
punch error recovery 2 

parameter list, ERREXT 3 
PDTABB, MICR 2 
PFR (punch/feed/read) files 2 
phase-name - CSECT cross-reference list 4 
physical IOCS 2 

magnetic tape (DTFPH) 2 
sequential ~asd (DTFPH) 2 

PIOCS/LIOCS interrelationship 1 
POINTR macro 1 
POINTS macro 1 
POINTW macro 1 
prime data area EOV limits 3 
printer files 1. 2 

close monitor 1 

open monitor 1 
printer 2 
PRMOD 2 
process VTOC (PVTOC) macro 4 
protect DASD files 1 
PRTOV macro 1. 2 

IJDPR3 2 
IJDPRT 2 

PTMOD 2 
punch/feed/read (PFR) files 2 
PUT logic for the 1018 paper tape punch 2 
PUT macro 1. 2. 3 

CPMOD 
DIMOD 
DTFCN 2 
DUMODFI 2 
DUMODFO 2 
IJDPRT 2 
IJDPR3 2 
ISMOD ADDRTR 3 
ISMOD SEQNTL RETRVE 3 
PRMOD 2 
PRMOD with STL 2 
PTMOD no shift 1018 2 
PTMOD shift 1018 2 

PUTR macro 1. 2 
PVTDC. format of 4 

RCE open routines 2 
RDF/CIDf reference overlay (IJGXZRDF) 4 
RDLNE macro 1. 2 
RDONLY 3 
read cylinder index into storage 3 
read format 3 label (IJJGVDIO) 4 
READ macro 1. 2. 3 

DRMOD 2 
ID DAMOD 3 
KEY DAMOD 3 
KEY ISMOD ADDRTR 3 
KEY ISMOD RANDOM RETRVE 3 
MRMOD 2 
ORMOD 2 

reader file open 2 
reading VTOC labels 4 
reconversion factor 3 
record definition field (RDF) 4 
record 1.2,3 

document information 2 
field information 2 
format 2 
1D returned (IDLOC) 3 
line information 2 
relationship of form~t 2 
spanned 3 
types 3 
zero (RO) 3 

reenterable modules 1. 3 
reference 3 

by ID (DAM) 3 
by KEY (DM!) 3 
methods and addressing systems 3 

relative 
address conversion 3 
addressing conventions 3 

RELEASE macro 1 
relocate DTF address constants 1 
RELSE macro 1, 2 
RELSE 2 

translate subroutine 
fixed-length records 2 
undefined records 2 
variable-length records 2 

TRUNC 2 
work area subroutine 2 
WRITE work files 2 

rename VTOe label 4 
requirements 

180 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



licensed Program - Property of IBM 

for I/O areas 3 
storage 1 

RESCN macro 1. 2 
RETRVE functions random (ISAH) 3 

channel program builder 3 
FREE macro 3 
READ KEY macro 3 
WAITF macro 3 
WRITE KEY macro 3 

RETRVE functions sequential (ISAM) 3 
channel program builder 3 
ESETl macro 3 
GET macro 3 
PUT macro 3 
SETl macro ($$BSETL) 3 
SETl macro ($$BSETll) 3 

RETRVE open (ISAM) 3 
phase 1 3 
phase 2 3 

returned record ID (IDlOC) 3 
rotational positional sensing (RPS) 4 
RPS 

DTF extension work area 1 
indicators 4 
phase loading 1 
SVA initialization 1 

SAM (sequential access method) 1. 2. 4 
scratch VTOC label 4 
search multiple tracks 3 
seek overlap subroutines 3 
selective tape lister (STL) 2 
SEOF 4 
SEOV macro 1 
sequence link field 3 

entries 3 
index level pointer format 3 

sequential access DASD files 4 
sequential access method (SAM) 1. 2 
sequential processing 1 
SETDEV macro 1. 2 
SETFl macro 

lOAD 1. 3 
SETl macro 

ISMOD ADDRTR 1. 3 
ISMOD SEQNTL RETRVE 1. 3 

shared virtual area (SVA) 4 
software end-of-file (SEOF) 4 
spanned records 4 

control field 3 
READ macro 3 
WRITE AFTER macro 3 
WRITE macro 3 
WRITE RZERO macro 3 

special purpose routines for lIOCS 1 
split cylinder extents 4 
standard 

label processing 1 
tape file labels 1 

STL control fields 2 
storage requirements 1 
supervisor SYSFIl routine. function of 4 
support. TES 1 
SVA to lTA bridge 2. 4 
switching. alternate 2 
symbols. flowchart 1.2.3 
sync byte 2 
SYSFIl 

logic modules 4 
logical units 4 

system files. device independent 2 
system files 

SYSIPT 4 
SYSlST 4 
SYSPCH 4 
SYSRDR 4 

table 
DSKXTNT 3 
PDTABB for MICR 2 

tabular modular system 1 
linkage 1 

tape error statistics (TES) 1 
tape labels procedure (lBRET macro) 

tape volume labels. creation of 1 
tape 2 
tapemarks 1 
telecommunications access methods 1 
termination procedures 3. 4 
termination 1, 3 

TES 

f i leI 
of DAM 3 
procedures 3. 4 

processor 1 
support 1 

track 
hold function 1 
index 3 
search. multiple 3 

trademarks. placement of 2 
trailer labels or tape. user 1 
translation. paper tape files 2 
TRC (table reference character) 2 

CPMOD 2 
DTFCP 
DTFDI 2 
DTFPR 2 
PRMOD - PUT macro 2 

truncation 2 
IJDPR3 2 
3800 buffer 2 

type code. DTF 1 
types of records 3 

UNIT RECORD FILES 1. 2 
CLOSE MONITOR 1 
CLOSE ROUTINE 1 
OPEN MONITOR 1 
OPEN ROUTINE 1 

unlabeled MT file option 2 
unlabeled tape files 1 
upper/lower limits for FBA devices. 
algorithm to calculate 4 

user label parameter list (IJJGUlTB) 4 
user label processor 

for input files 4 
for output files 4 

user labels I. 2 
magnetic tape 1 

VARUNB records 3 
READ macro 3 
WRITE after macro 3 
WRITE macro 3 
WRITE RZERO macro 3 

version 3 DTF (IJGVER3) 4 
virtual storage access method (VSAM) 1 
virtual transients (logical transient 
extension running in virtual) 1 

$$VOPENT 1 
volume descriptor list (IJJHDLST) 4 
volume label I. 2 
volume labels DASD/diskette 1 
VSAM (virtual storage access method) 1 

data organization 1 
VSE/BTAM 1 
VTOe 

closing of 4 
display phase 1 1 
display phase 2 1 

Appendix D: Master Index for VSE/Advanced Functions lIOeS 181 



display phase 3 (diskette) 1 
dump 1 
dump (diskette) 1 
list 1 
list (diskette) 1 
label processing 4 
opening of 4 
reading labels of 4 
rename label in 4 
scratch label 4 
writing labels to 4 

WAITF macro 1, 2, 3 
DAMOD 3 
DAMDDV 3 
DRMOD 2 
ISMDD 3 
ISMOD 3 
ISMOD 3 
ISMOD 3 
MRMOD 2 
ORMOD 2 

WRITE AFTER macro 3 

Licensed Program - Property of IBM 

DAMOD 3 
SPNUNB records 3 
VARUNB records 3 

WRITE ID macro 3 
DAMOD 3 

WRITE KEY macro 3 
DAMOD 3 
ISMOD ADDRTR 3 
ISMOD RANDOM RETRVE 3 

WRITE macro 1. 2. 3 
SPNUNB records 3 
VARUNB records 3 

WRITE NEWKEY macro 
ISMOD 3 
ISMOD 3 
ISMOD 3 
ISMOD 3 

write requests. types of 4 
WRITE RZERO macro 3 

DAMOD 3 
SPNUNB records 3 
VARUNB records 3 

writing VTDe labels 4 

182 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



licensed Program - Property of IBM 

ACB (access control block) 5 
Acces Method Services (AMS) 105 
access methods 

direct 2 
indexed sequential 2 
sequential 2 
telecommunications 3 
virtual 2 

additional file labels on 
tape 34 

address modification 
subroutine 43 

AMS (Access Method Services) 105 
ASCII conversion tables 75 
audit trail 134. 172 

B-transients 
See logical transients 

backspace (BSl) 15 
basic telecommunications access 

method 3 
BSl (backspace) 15 
BTAM-ES 3 

CCB (command control block) 7 
check duplicate device 

assignements 
for logical units 42 

CHECK macro 12 
CLOSE macro 13 
close monitor 

DASD files 34. 44 
diskette files 34. 44 
general chart 60 
general chart. part 2 61 
general chart. part 3 62 
ISAM files 44 
label space processing 45 
magnetic ink character 
recognition 

(MICR) files 34. 44 
magnetic tape files 34. 44 
optical reader files 44 
phase 1 ($$BClOSE) 44 
phase 2 ($$BClOS2) 44 
phase 4 ($$BClOS4) 45 
telecommunications files 45 
unit record files 34. 44 
VSAM files 44 

close routines 
files 33 

close sequential DASD 
FEOVD 46 
free track function 46 
input and output 46 

CLOSER macro 14 
CNTRl macro 14 
codes. DTF type 6 

command control block} (CCB) 7 
common lIOCS routines 39 
commonly used logical 
transients 47 

compiler file. open monitor 40 
console file. open monitor 40 
control block. access method 

(ACB) 5 
creation of tape volume 

labels 34 

DAM (direct access method) 2 
DAM device independent extension 

work area 47 
DASD 

file protect 47 
label procedure (for lBRET 
macro) 20 

label processing 36 
input files 37 
output files 37 

DASD files 
close routine 34 
open routine 33 

DASD RPS common close 45 
data organisation, VSAM 2 
declarative macros 1. 4 

define the file (D1Fxx) 4 
module generation (xxMOD) 4 

dequeue extent block entries 46 
device independent DTF extension 

work area 47 
device release transient 

($$BRElSE) 47 
direct access method (DAM) 2 
DISEN macro 16 
diskette files 

close routine 34 
label processing 37 

input files 37 
output files 38 

open routine 33 
diskette open 

input. general chart 64 
output. general chart 65 

DSF (Device Support 
Facility) 132 

DSPlV macro 16 
DTF (Define the File) 105 
DTF macros 

DTFBG 5 
DTFCD 4 
DTFCN 4 
DTFCP 4 
DTFDA 4 
DTFDI 4 
DTFDR 4 
DTFDU 4 
DTFEN 5 
DTFIS 4 
DTFMR 4 
DTFMT 4 
DTFOR 4 
DTFPH 4 
DTFPR 5 
DTFPT 5 
DTFSD 5 

Index i83 



DTFSR 5 
DTF types 6 
DTF types used by $$BCLRPS 46 
duplicate device assignement 42 
dynamic device release (RELEASE 

macro) 28 

ENDFL macro 17 
enqueu/dequeue for VSAM 

routines 42 
entry-sequenced data 
organization 2 

EOF/EOV routine. general 
chart 63 

ERET macro 17 
error message list. master 66 
error statistics by tape 

volume 39 
ESETL macro 17 
EXTRN symbol linkage 7 

FEOV macro 18 
FEOVD macro 18 
f i Ie 

definition macros 4 
initialization and 
termination 33 

labeling 34 
forced end of volume 46 
format-I, -2, -3, -4 labels 104 
FREE macro 18 

GET macro 19 

IIPCLOSE 45 
IIPOPEN 33,41 
imperative macro expansions 12 
imperative macros 1, 8 
indexed sequential access method 

(ISAM) 2 
initialization and 
termination 33 

IOCS 1 
ISAM (indexed sequential access 
method) 2 

ISAM open, general chart 59 

key-sequenced data 
organisation 2 

Licensed Program - Property of IBM 

labels, DASD 
input file 37 
output file 37 
processing 36 

labels, diskette 
input file 37 
output file 38 
processing 37 

labels, magnetic tape 
additional 34 
input file 35 
nonstandard 36 
output file 35 
processing 35 
standard file 34 
user, header and trailer 
label 35 

LBRET 
DASD and tape labels 

procedure 20 
macro 19 

LIOCS/PIOCS interrelationship, 
example of 3 

LITE macro 21 
logical IOCS 

function of 1 
processing methods 2 

logical transients 
$$BCLLBL 45 
$$BCLOSE 44 
$$BCLOS2 44 
$$BCLOS4 45 
$$BCLRPS 45 
$$BENDQB 42 
$$BODMSG 49 
$$BODMS2 49 
$$BODQUE 46 
$$BODSMO 51 
$$BODSMW 53 
$$BODSPO 48 
$$BODSPV 47 
$$BODSPW 48 
$$BOESTV 39 
$$BOFLPT 47 
$$BOMSGI .52 
$$BOMSG2 53 
$$BOPEN 39 
$$BOPENC 42 
$$BOPENR 41 
$$BOPENS 43 
$$BOPENI 40 
$$BOPEN2 41 
$$BOPENl. 40 
$$BOPIGN 41 
$$BOPLBL 41 
$$BOPNR2 42 
$$BOPNR3 42 
$$BOSDCl 46 
$$BOSDC2 46 
$$BOSDEV 46 
$$BOVDMO 48 
$$BOVDMP 51 
$$BOWDMO 49 
$$BOWDMP 51 
$$BRELSE 47 
$$VOPENT 44 

LUBs 47 

184 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



Licensed Program - Property of IBM 

macro 
CHECK 12 
CLOSE 13 
CLOSER 14 
CNTRL 14 
DISEN 16 
DSPLY 16 
ENDFL 17 
ERET 17 
ESETL 17 
FEOV 18 
FEOVD 18 
FREE 18 
GET 19 
LBRET 19 
LITE 21 
NOTE 21 
OPEN 22 
OPENC 22 
OPENR 23 
POINTR 24 
POINTS 24 
POINTW 24 
PRTOV 25 
PUT 25 
PUTR 26 
RDLNE 27 
READ 27 
RELEASE 28 
RELSE 29 
RESCN 29 
SEOV 30 
SETDEV 30 
SETF L 30 
SETL 31 
TRUNC 31 
WAITF 31 
WRITE 32 

macro expansions, imperative 12 
macro relationship 7 
macros 

declarative 4 
imperative 8-11 
module generation 6 

magnetic ink character 
recognition 

(MICR) files close routine 34 
magnetic tape files 

close routine 34 
open routine 33 

magnetic tape open, general 
chart 58 

master index, LIOCS manuals 174 
message code for disk open error 

message writer 54 
message writers 

data security, disk 
(SSBODSPW) 53 

data security, diskette 
(SSBODSMO) 51 

disk open phase 1 
(SSBOMSG1) 52 

disk open phase 2 
($$BOMSG2) 53 

diskette open phase I 
(SSBODMSG) 49 

diskette open phase 2 
(SSBODMS2) 49 

master error list 66 
method of processing 2 
MICR 34 

MICR files 
open routines 33 

MOD macros 6 
MODLOOP, address modification 
subroutine 43 

modular tabular system 3 
module generation macros 

(xxMOD) 4, 6 
modules reenterable 7 
Multi-Extent-file 105 
Multiextent-fi1e 106 
Multivolume File 105 

NOTE macro 21 

open diskette 
input, general chart 64 
output, general chart 65 

open ignore ($SBOPIGN) 41 
open ISAM, general chart 59 
OPEN macro 22 
open magnetic tape, general 
chart 58 

open monitor 
SSBOPEN 39 
$SBOPEN1 phase 1 40 
$$BOPEN2 phase 2 41 
compiler files 40 
console files 40 
DASD files 33, 40 
diskette files 33, 40 
general chart 56 
ISAM files 41 
label space processor 41 
magnetic tape files 33, 40 
MICR files 33, 40 
optical reader files 33, 40 
telecommunications files 40 
unit record files 33, 40 

open routines 33 
open sequential DASD 

dequeue extent block 
entries 46 

OPENC macro 22 
OPENR macro 23 
optical reader files 

close monitor 44, 45 
open routine 33 

organization, VSAM data 2 

PIOCS/LIOCS interrelationship, 
example of 3 

POHITR macro 24 
POINTS macro 24 
POINTW macro 24 
processing methods 2 
PRTOV macro 25 
PUT macro 25 
PUTR macro 26 

Index 185 



RDLNE macro 27 
READ macro 27 
reenter able modules 7 
relative-record data 
organization 2 

RELEASE macro 28 
relocate DTF address 
constants 41 

phase 2 42 
phase 3 4' 

RELSE macro ,~") 
RESCN macro 29 
RPS DTF extension work area 47 
RPS phase loading 44 
RPS SVA initialization 43 

SAM (sequential access method) 2 
SEOV macro 3D 
sequential access method (SAM) 2 
sequential processing 2 
SETDEV macro 30 
SETFL macro 3D 
SETL macro 31 
special purpose routines for 

LIOCS 39 
standard tape file labels 34 
storage requirements 3 

tabular modular system 3 
linkage 7 

tape 
label procedure (for LBRET 
macro) 20 

tape error statistics 
See TES 

Licensed Program - Property of IBM 

tape volume labels, creation 
of 34 

tapemarks 35 
telecommunications access 

methods 3 
TES (tape error statistics) 39 
track hold function 7 
TRUNC macro 31 
type code, DTF 6 

unit record files 
close monitor 45 
close routines 34 
open routines 33 

unlabeled tape files 36 
user labels, header and trailer 

on tape 35 

virtual storage access method 
(VSAM) 2 

data organisation 2 
VSAM (virtual storage access 

method) 2 
VTOC 

display phase 1 47 
display phase 2 48 
display phase 3 (diskette) 48 
dump (diskette) 48 
dump disk ($$BOVDMP) 51 
list (diskette) 49 
list disk ($$Br~uMP) 51 

VTOC, defir.;tion _14 

WAITF macro 31 
WRITE macro 32 

186 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1 



.E - ... c: 0 
(1)-

E .!!! 

~ .... e--E 
:::1-
::r(\l 
(I) (I) 

O)m 
c: 0 
t"Q; 
00. 
~;g 
.iij -0 
E (I) 

-oE 
(I) E 
- :::I (\10) 
E ... 
0(1) 

t ~-E 
~~ 

~ (I) 

m.~ 
E .-= 
(I) m _c: 
.0(1) 
o m 
... (I) 
0. ... 
(I) :::I 
m m 
:::1 m 
(\I (I) 
o ... 

0. 
c: (I) 

~ .... r.l~ 
III (I) 
~1Il 
0.(\1 
(\I (I) 

U5c:: 
CD o z 

VSEjAdvanced Functions Diagnosis Reference LIOCS Volume 1 
General Information and Imperative Macros 
Order No. LY33-9116-0 

READER'S 
COMMENT 
FORM 

This form may be used to communicate your views about this publication. They will be sent to 
the author's department for whatever review and action, if any, is deemed appropriate. 
Comments may be written in your own language; use of English is not required. 

IBM may use or distribute any of the information you supply in any way it believes 
appropriate without incurring any obligation whatever. You may, of course, continue to use the 
information you supply. 

Note: Copies of IBM publications are not stocked at the location to which this form is 
addressed. Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality. 
Possible topics for comments are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If you wish a reply, give your name and mailing address: 

What is your occupation? 

Number of latest Newsletter associated with this publication: 

Thank you for your cooperation. No postage stamp is. necessary if mailed in the U.S.A. 
(Elsewhere. an IBM office or representative will be happy to forward your comments or you may 
mail directly to the address in the Edition Notice on the back of the title page). 



LY33-9116-0 

Reader's Comment Form 

Fold And Tape 

Fold And Tapa 

--.. -. .-
-~-. ~ - ---.~ - ~ ------~ ------ --.-~-===-'= ~ =® 

Please Do Not Staple 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Department 6R1 
180 Kost Road 
Mechanicsburg, PA 17055 

Pleaae Do Not Staple 

Fold And Tape 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

Fold And Tape 

~< 

~~J"'o -- , Z» 
00. 
· < en III 
W O 

""""~ oal 
--0. 
~"T\ 
OC 
o~ 
I 0 w_ 
0-' 
~O 

~ 
"U1Il 
~·O 
~ _. 
ro~...) ~5' ," 
~ III 
cUi' 
i:n::n 
• aI »-
• aI .... 
,aI 
-<~ 
W O 
wal 
Ib, 
~6 
m() 
6en 

i...) 
aI 



LY33-9116-0

r lilll il1il lililll lllilillilffi ffi illll ffi lillllllllillil

-

ir-

Fr- qFi
bi
&==Zd


