VS APL for CMS:
- Terminal User’s Guide

SH20-9067-2

VS APL for CMS:
Program Product Terminal User’s Guide

Program Number 5748-AP1

|
i
iy

|
I
ll

I
I
(i

Third Edition (December 1978)

This edition replaces the previous edition (numbered SH20-9067-1) and its technical
newsletter (numbered SN20-9207) and makes them obsolete.

This edition applies to Release 3 of VS APL, program number 5748-AP1, and to any
subsequent releases unless otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under ““Summary of Amendments’’ following
the list of figures. Specific changes made are indicated by a vertical bar to the left of the
change. These bars will be deleted at any subsequent republication of the page affected.
Editorial changes that have no technical significance are not noted.

Changes are continually made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370
Bibliography, GC20-0001, for the editions that are applicable and current.

Publications are not stocked at the address given below; requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality. ‘

Comments may be addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California U.S.A. 95150. IBM may use or distribute any of the
information you supply in any way it believes appropriate without incurring any obligation
whatever. You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1976, 1978

PREFACE

This book describes the use of VS APL when it is under control of the
Conversational Monitor System (CMS) component of the Virtual Machine
Facility /370 (VM/370). It contains detailed information on the terminals
that can be used with the product and the procedures that must be followed in
contacting CMS and VS APL. This book also describes the commands
presented by VM /370 and VS APL relevant to the needs of the VS APL
user, and the auxiliary processors and workspaces distributed with the
product. It is assumed that you are already familiar with the APL language,
but that you have no prior experience with CMS.

The information in this publication is organized into seven sections:

« “Introduction,” which introduces VM/370 and CMS and illustrates their
relationship to the VS APL Program Product.

o “Terminal Procedures,” which lists and describes the terminals that you
may use in your work, details what conventions you must follow in making
entries and correcting entries at these terminals, and discusses how the
form of output at your terminal may be controlled.

« “The Work Session,” which describes how to start and end a work session
with CMS and VS APL.

o “Workspaces and Libraries,” which covers the structure and attributes of
the VS APL workspace and details the libraries supported by CMS.

o “System Commands,” which illustrates the form and use of VS APL
system commands. System commands are used to monitor and control the
contents of APL workspaces and libraries, as well as to communicate
messages to other users.

« “Auxiliary Processing,” which describes the use of the auxiliary processors
distributed with VS APL.

« “Sample Terminal Session,” which shows a hypothetical terminal session
with VS APL under CMS. This session shows many of the features
presented in the first six sections of the publication. The session is designed
so that you can sit at your terminal and work along as each entry and
response is described.

Seven appendixes are also provided:

« “Appendix A,” which lists and summarizes the predefined public library
workspaces distributed with VS APL.

« “Appendix B,” which introduces the VS APL Conversion Program and
describes the VS APL conversion report.

« “Appendix C,” which describes some special language considerations for
VS APL.

« “Appendix D,” which summarizes the operating procedures for all the
terminals supported by CMS and discusses a number of APL
considerations for these terminals.

» “Appendix E,” which lists and explains the error messages that you may
receive in interacting with CMS and VS APL, and suggests possible
corrective action that you might take.

Preface 3

Required Publications

“Appendix F: VS APL Batch Processing,” which describes how you can
submit your work to VS APL as a batch job using the CMS Batch Facility.

“Appendix G: Character Translation,” which shows the character
translations between VS APL characters and EBCDIC characters done
using the 192 conversion option.

This publication assumes that you are familiar with the APL language as
described in the publication APL Language, GC26-3847.

Related Publications

In addition to APL Language, you might find the following publications
helpful:

IBM Virtual Machine Facility/370: Terminal User’s Guide, GC20-1810,
which describes the operating procedures for the terminals supported by
VS APL under CMS.

IBM Virtual Machine Facility/370: System Messages, GC20-1808,
which describes the error messages reported by the control segment of
VM/370 and CMS.

VS APL for CMS: Writing Auxiliary Processors, SH20-9068, which
describes how to write auxiliary processors to operate with VS APL. This
book is directed primarily to system programmers.

VS APL Installation Reference Material, SH20-9065, describes how to
install VS APL and use the APL Conversion Utility Program; it should be
consulted for a description of conversion procedures. This book is directed
primarily to system programmers.

IBM Virtual Machine Facility/370: System Programmer’s Guide,
GC20-1807. This publication is intended for system programmers. It
describes how to debug VM/370 and how to modify, extend, or implement
CP or CMS functions. This publication should be referenced as necessary
to interpret and respond to VS APL executor messages.

OS/VS Virtual Storage Access Method (VSAM) Programmer’s Guide,
GC26-3838, which contains information about using VSAM. It contains
specific information on VSAM return codes generated in attempting to
access VSAM files through the CMS VSAM Auxiliary Processor.

IBM Virtual Machine Facility/370: CMS User’s Guide, GC20-1819,
which describes how to use the facilities of CMS to create, compile, debug
and execute programs such as VS APL under CMS. This publication is a
tutorial on the use of CMS commands, and EXEC, EDIT, and DEBUG
subcommands.

IBM Virtual Machine Facility/370: CMS Command and Macro
Reference, GC20-1818, which contains reference information on CMS
commands, subcommands, and macros.

IBM Virtual Machine Facility/370: CP Command Reference for General
Users, GC20-1820, which contains all reference information on CP
privilege ciass G and any commands.

4 VS APL for CMS: Terminal User’s Guide

Syntax Notation

o IBM Virtual Machine Facility/370: Operating Systems in a Virtual
Machine, GC20-1821. The first section of this publication describes how
to use CP commands.

e An Introduction to the IBM 3270 Data Analysis-APL Feature,
GA27-2788, which contains information pertinent to the use and
understanding of the IBM 3270 Data Analysis-APL feature.

o Either OS/VSI Data Management Macro Instructions, GC26-3872, or
OS/VS2 MVS Data Management Macro Instructions, GC26-3873,
which gives status information following an input/output operation.

Throughout this book an attempt is made to define as clearly as possible the
statements and commands that you may enter at your terminal. Where an
entry may take several forms, all the forms are indicated. When an entry is
shown, a distinction is made between information that you must enter exactly
as shown and information that you may supply, as appropriate. Furthermore,
a distinction is made between APL entries and VM/370 entries. If an item is
representative and must be replaced with an appropriate value, the item will
appear in lowercase italics. If an APL entry is to be made exactly as shown,
the entry will appear in APL font (an uppercase italicized font). For instance,
in the following VS APL system command:

YCLEAR size

)CLEAR is entered at the terminal as shown, while size is only
representative and is replaced by a suitable size when the actual entry is
made. If a VM/370 entry is to be made exactly as shown, the entry will
appear in lowercase Courier font. For instance, in the following VM/370
command, logon is entered exactly as shown, while userid must be replaced:

logon userid

Preface 5

CONTENTS

Preface.......cccooiiiiiiiiniiiiiiic s 3
Required PUblICAtIONScc..liriiireieciee e ceeessressie st eesee e e saee s seaesssaesnees 4
Related PubliCationscciuveeieiniiiiieeiiiteen ettt e et e e e e e e 4
SYNLAX NOLALIOMeeiieeiiiiieeiiieiecree e eerreeerestreeressreeessenraeessbreaessssnsaesssnssneens 5
FHGUEESoeviiiiieiiitcce et ee e et e e s serer e e s e e s s e srebenteseesessssnnsnsnsnneness 11
Summary of AMENAIENESc.coeeeeviirereerirrieniierierereeeeeeessesersvsnnresessessessssnns 13
INEFOUCHIONoooiiiiiiiiiiiieeete et e s ee e s e e e e e 17
Terminal Procedures..............ccoooviiiiiiiiiiriiiiiiiiieeceneeeeescrrerereeeeeeaesessesnnnnee 19
TEIMMUNALSeeveeeieeieeieesteerieet it rte et e st e sbe s et esseesabesssaesseesasessseesasesnsnanseens 19
Character Sets............... e eeeeerereteenieaeeeeaetteeeaa bt eeeesanae e e e tre et e tneeee s ntaeeensanes 20
Terminal ENtry.....c.coccooviiiiiiiiiiiiiiiitciteccrccrre et 21
Correcting ENLIIescvvveiiiiiiieieeccenreeesereeeessreeeessseteeesssneeeesesasaeeenen 22
Tabs ON INPUL ...ocouiiieiieieieeccieeeeeiiiee e eeiee e e see e s et e e s e eeee s e manreeseeaneeees 23
Terminal Output and DiSPlayccocuireiiiiiiiiiiiieieite e eieeeens 24
Tabs 0N OQULPULvvviieiiiieieecie e cceree e rirree s esiare e e seve e e sesesre e esssseaaeesessnanesss 24
Terminal Print COntrolscceeevvvrieeervieeeniiuiiesieiiieeeensereeessssneeeseseeesees 24
Printing Width..........ccooiiiiiiiiniieeercce e 25
Terminal Control Characters.........c.cceevveeereveeecirreenreceeneerssreessnesseeeas 25
Interrupting Output...........c.oeeeent e e s 26
Transmission Failurescccocveveiiereiierneerenineeeieeereeeeenre et esereesssaeesssaeenns 26
The Work SeSSIONcccccooiiiiiiiiiiiiiiee ettt e ceeree e e ennee s 27
Starting the WOrk SeSSION........ccocveeieiiniiiiiiriiieeenrireereereesseteceeeeeeeeeeeeenns 27
Step 1: CONNECHION.cccvvvirrieieieeereeiiieriaraerornssssssssssnssessaeseseerasranes 27
Connecting the IBM 2741coooiciiiiiiiiiiincieeeiecence e 217
Connecting the IBM 3767cccooeviiniiiiiiriiniiiiiiinecceecnene, 28

Step 2: Contacting VM /370 (Logging On)cceeveeververenrereneneeneenees 29
Step 3: Contacting CMScociiiiiiiiiicieeec e 31
Step 4: Contacting VS APLooiiiiiiiiiiiititicniereiccis 32

| 25 .1 111 0) (<SR PPPTTTP TP 33
Ending the WOrk SeSSION........cccvceeeieieiiiiiieieerctesesiee e seeeeeeeseeseieeseveessneee 33
Ending Contact with VS APL and CMS.........cocociirvemnrinicniiinnneennee, 33
Ending Contact with VS APL Onlyc..ccovvvieviireniieniiiiiinienieecnieens 34
Breaking the Computer CONNECtionccevverrierecreeenneennieiniieiierenreeenies 35
Forced ENdings.........cocovvvieniiininiiieerecnnieesiieeeee et snesaeeninesneesrnenane 36
Workspaces and LIDrariescccoooeeiieiiriiieneninneeinneeseecseteeecnescssnenesesnnns 37
The WOTKSDACEeniereiiiieeeee e cceeeeeeeee e e e ecererrre e e e e e s e sssaasseeeesessnanaseeessesanan 37
Workspace AttribULeSs........ccoviieiveiiiiiiie et 37
Workspace Identificationcccevvvvveereinivreeresiieeneceees e sireee s 38
PaSSWOTAS......veeiiiiieiieieiicrt e rteestr et s s ree e s satr e e nae e ressat e st e snnesannens 38
WOTKSPACE SZE....coieieiiiiiiiiiiiciteinccte et err e 39
Workspace Organization...........occeeeveiieeeeiiiireerecniieescnneesssiensreneneenns 39

The LIDTATYcceiiiiiiiiiiiiriieieeieecessereesesireseesarntessesasnesssssseeesesosuessssarasssssnnns 41
Private Librariesc.occcevvveeiiiiircieiieeeccre e see st see e snt st eans 41
Project LIDIaries.......cccccvivieiiiiiiieieiineeeeniieieeeessneeseessssereessrseesesssnecsssnssessnns 41
PUDBLC LIDIariescooocverriveiiiereeeercieneeeeereee e ceee s snessbe s cre e snees 42
Workspaces and Libraries in the CMS Environmentcccoceceevnnierennneens 42
CMS Files and Virtual DisKS.......ccccceeriiierniereneenieeeiecnsieenneeessesenees 42
VS APL Virtual Disk and File AsSignments.........c.cccoeccvveerniiineinneeinninene 42

Contents 7

System Commandscocieiiiiiiiiiniiiiiittei et eeeesreee e sereeesees 43

Using System Commandsc.cocvvvvierrieciornniereniieesneressseseeieseernseeesssrsesesnes 43
System Command TYPES ..cccccverrvierriierinteeecerenireneenieeeneessresessnsesesssesessessans 43
Library Control Commandsceevveevereruenierneereessiecnesnesereessnessessssens 43
Saving the Active Workspace: The)SAVE Command..............cccue...... 44
Dropping a Workspace from a Library: The)DROP Command.......... 45
Workspace Control Commandsccocuvveereerviireveerseeiensieieireensieseseessene 46
Retrieving a Workspace from a Library: The)LOAD Command........ 46
Copying Objects into the Active Workspace: The)COPY and
JPCOPY COMMANASccoevrvrrriiiinrieieiireen e ccreeeeessrareeesssrenesessssnnees 47
Grouping Items Together: The)GROUP Commandccccveeennnnn 50
Clearing the Active Workspace: The)CLEAR Command 50
Erasing Objects in the Active Workspace: The)ERASE
COMMANToeieiieiiieiiiieetie e ettt ertesseeesaesreeessteeeseeessseassrsnesenns 51
Identifying the Active Workspace: The YWSID Command................... 52
Controlling the Symbol Table: The)SYMBOLS
CoOMMANG ...oviiiiieiiieieiteecre ettt e b e e sressreaeenns 52
Controlling the Execution Control Area: The)STACK Command..... 53
Inquiry Commands.........cceceeieeevienrerreenieeseereerresresisessreesreesseessaesseesaaens 54
Listing the Identification of the Active Workspace: The YWSID
CommMANdooovvuiiieriiiiriientteerr et s et e st e e sbaeenne 54
Monitoring the Symbol Table: The)SYMBOLS Command 55
Monitoring the Execution Control Area: The)STACK Command 55
Listing the Workspace Size: The)WSSIZE Command 56
Listing the Workspaces in a Library: The)LIB Command.................. 56
Listing Workspace, Library, and Shared Variable Quotas: The
JOUOTA Command........cceeeveeeeeieieiieeerereeeeinierereeeeeeensisissseeeeeeessssenes 57
Listing the Defined Functions in the Active Workspace: The)FNS
ComMAaNdcoovviiiiiiiiiiieieieer et re e s sraee e e e atn e e s e baaaees 58
Listing the Variables in the Active Workspace: The)VARS
COMMANG ..eoivviiieniiiiieeeierecte e st seesteeesetsssreeesreaesseeeesassseasanns 58
Listing the Groups in the Active Workspace: The JGRPS
COmMMANoovrvriiieiiriiiieieiie e e e esr e sse e s et esste s steeessaeeesrreesnsns 59
Listing the Members of a Group: The JGRP Command...................... 59
Displaying the State Indicator: The)SI and)SINL Commands............ 60
Communication CommandS.........cccvveeeririieiiiieenieseeeecseesssneeeceressenesenens 61
Sending Messages: The YMSG and JOPR Commands............cccceuereneen. 62
Blocking Messages: The YMSG OFF Commandc.cccovveervinvnernennns 63
Restoring Message Acceptance: The)MSG ON Command................. 64
Sign-Off CommMAandS.......c.cociverieriirieeireiirieieeiieeeecreereeerrneeeesinreeeessssseeessranes 64
Auxiliary Processiig........c.ccccoviiiiiiiiiiiieieietie ettt eernte e ssree e e s seee e e s snne 65
Communicating with an Auxiliary Processor.........cocevcveevieinieniinenieenneesivennnes 65
Initializing @ Variableccoccviieieiiiieieieesiecececcceer e e e e e 66
Offering a Variable for Sharing..........c.ccouveveinvivnrvenenveniieneesieeseesneeenens 66
Checking for a Return Codeccccvvviiireciiniiieiieseeeecieeecree e e seee e 67
Sending or Retrieving Information through the Shared Variable.............. 67
Ending the Procedurecuiviiieiniieeniieeeieieiteeset ettt 68
The CP/CMS Command PrOCESSOTcevvecvecreiereinieerreeereeseeseereesessensensons 68
The Stack INPUL ProCESSOTccveeeiiiieiieeeeee e e cecrrrreeee e e sesesesssnrserreseees 69
The CMS DiSK I/ O PrOCESSOLc..ccviereereirierereeieereerenseneereesseseesseseersereesessensens 71
Using the Control Variablecceciviviieieciiiciieeiienrieeeciee e eesne s 71
Using the Record Variablecocvveeveeiiiiiinieiciciececcneceieeeseees e senenan 72
The FILEDEF I/0 PrOCESSOTcc.eevicieeverterierreriereiseesessessesessessessensessessensens 75
The CMS VSAM ProCeSSOT......ccicvuieieieeirieeniteeitescnessseseesseesesssesessesessessnnees 77

8 VS APL for CMS: Terminal User’'s Guide

Communicating with the CMS VSAM Processorcocovcvevveveeerieeevecennnns 77

Offering a Variable for Sharing with the CMS VSAM Processor 78
Opening a VSAM File ..cooooiiiiiiiiiiiiceeee ettt 79
Requesting VSAM File Operationscc.ccceeecveeeeennieeenniieeeennineeeenn. 79
Closing @ VSAM File....ccuviiiiiiiiiiiiieniieennirieeeer e rreree e e 82
EXAMPIES ...coieeeiieiee ettt e et e e e e st e e e s e et raaaraaeeeaeas 82
EXaMPIE T .o 82

| 2521 111 o) (30 OO O PO UPPURU S URORPPPRRt 83
Auxiliary Processor Return Codes..........cccovvvierieiniireiiiiiniiiiieceeeeenenne 84
VS APL Functions for Auxiliary Processingcococveevvrvreeeereesicnvneeeeeeeenns 85
Sample Terminal SeSSIONccoocevriiiiiiiriitieriiiiirere e e ee e e e e 87
Appendix A: Distributed Workspaces............c.cccccceirviiiiiiiiiiin 91
Appendix B: Workspace Conversionc.cooovivvniiiiiiiiiiiiiiiiiciinieeeeeeneenennnne. 93
The VS APL Conversion Programcccocveeeeiiiiiinriiininieneee s eseeieeeeeeenen 93
Pre-Conversion Considerations.............ccccvvvvvieerinneiiieniiien e 93
Types Of CONVEISIONS.....ccceiiniiirreriieeerieeeeeeree et siee e 93
Conversion of Character Variablescccccoeeviieiiiiiiiiiiniciniceieenn. 93

The Conversion REPOTTc.oooiiiiiiiiiiiiiiciiieeteee e seere e e s 94
Workspace Parameters Reportedoccveieveiirrieennieniiecnniereene e 95
Variables Reported.........coooviviiiiiiiiiiiiieee e e 95
Functions Reported..........ccoiiiiiiiiiiiieecce e 95
Conversion Errors Reportedoooociiierieiiiiiiiiiiiieeeeniee s ereeeeessieeeeeenns 97
Unreported TLEMISuvveieiiiiiiiieiiieieeee ettt e 98
Appendix C: Language Considerations...........c....c.cccoeviivvieiinniiiiniciiinncneeee 99
Duplicate Names in a Defined Function.......cc.ccooveiveviiiieininicnicneicceeiienen. 99
" Line Deletion in a Function Definition............ccco.coeevueverrreveerereereensresseneenenns 99
Maximum Sizes for VS APL ODbBjJECtS ..occoeviieiieieiieee e e cnaninees 99
Appendix D: CMS Terminals.........c..coooeviiiiiiiiiiiinieeeeeeeere e 101
CPT-TWX Terminal Considerations for APL.........ccccoovveeeiviiiiiiiinineeeennne 102
IBM 3270 Display System Terminal Considerations for APL..................... 102
The IBM 3270 Data Analysis-APL Featurecooevveeieniivereeennnnninne 102
Using the IBM 3270 without the Data Analysis-APL Feature 104
Screen FOrmat ...oc.uviiieeiieeeiiectiee ettt e e 104
Entering INPutoocciiiiiiiiiiiiiiiiitnciec e 105
SPECIAL K@YS wvveeiiiiiiieieiiiee ettt e csteresesrare e s s nae e e ssanteesensbnraesesnssnenas 105
Output CharacteriStiCs. ...ueeeeeriiiriiereiieeererireriireeeeeeeereseerennrereeeeeeeesesesnanans 106
Using the Backspace Terminal Control Character........cceocvveeivvecnennne. 106
Function Editing.........coooioiiiiiiiiiiiicieiee e e e 107
Appendix E: Error Messages............cccceviviviiiiiiiiiiciiioitecineeceneeeevee e 109
Error Messages Issued by VS APL ...t 109
EITOr REPOTLS ..oviiiieiiieiiiiieciee e ertree s ee e e e e setta e e s s eenseeeessnnnae s s saneneasssnns 109
Trouble REePOTLS ... e e e reeae e e e e e e eas 110
EXeCUtOr MESSAZES .. uuvvveeiieiiiiiiiiieieeeesieeeciireee et et e e e e serererceeeee e e e 114
Auxiliary Processor MeSSAES......ccovivtiiariireiienaiirieeiiieeeenseeeeseneereeeesnnveees 128
RS 1ol 28 (o) o USSR 128
Appendix F: VS APL Batch Processingcccococceeiniiiiiiiniciiciiecnne 129
CMS Batch Facility INput........cccoeevriiiiiiieiiiiiecieecriccreecrree e 129
CMS Batch Facility Outputcc.ccoeevvieiiiienieeeeieinieeenieenseeesireeessieeeeneeeens 130
VS APL ReStIICHOMNS. ...oeiiiiiiiiiiecietceeciette sttt e e eeme e 130

Contents 9

10 VS APL for CMS: Terminal User’s Guide

FIGURES

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.

Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.

Figure 30.
Figure 31.

h e A Gl e

Standard Printing Elements for VM /370 Terminals................... 19
The IBM 2741 and 3767 APL Keyboards...........c.cccveeveeneennenn. 20
The APL Character Set...........ccceeveerreereerrennuinreeniresresneenininennes 21
A Typical Dialogue with VS APLccccoovvvriinrinicrecnienne, 22
Connecting the IBM 274 1.........ccovvieerierieieeiecerieeeerrieee e 28
IBM 3767 SWitch SEttings.........cecevuieevuieeeieeeieeeieeecrieeereeeeivneens 29
Connecting the IBM 3767 (Switched Line)..........cccceccvvveennnenn. 29
Using the JOFF Commandccccceeeviireieneniennsieeenseeessieennns 34
VS APL Workspace Attributesccccoceeeveeeeveeeiiciiveeeeeinenne, 38
Organization of @ WOIKSpace..........ccccceevveireiereveenniienenninierneeennns 40
Using the)SAVE Command..........c.ccceeevreievniriennneeeeneeeevieenne 44
Using the)LOAD Command.............cccevvverveniirnienieeneenneennen, 47
Using the)COPY and)PCOPY Commandscceeuerruvernnnns 49
Using the JCLEAR Command...........ccceecveevurneeeenieeeeiiniecirenenns 51
Using the)WSID Commandccccceevveircveneeniienieeeieesieeninenns 55
Sending MESSAZES......c.ceviueereririerriernierereeseeessieereeesssesissenesnsees 63
APL/EBCDIC Conversion via 370 Conversion Option 70
Stack Input Processor Applicationcc.cccevveeeriveennneenniienennen. 71
FILEDEF 1/0 Processor Application.............c.ccovvevvveniveivninnss 77
VSAM File Operation Service Requestsccocevveeeiiininiinnnins 80
A Function That Updates a Key-Sequenced Record 83
Processor Return Codes: CP/CMS, Stack Input, CMS

Disk 1/0, and FILEDEF I/O........ccccccevevumennenennanen. diieribebensaie 84
Processor Return Codes: CMS VSAMccoocevivivviviinnnnenninen. 85
Functions in APFNScccoiiiiiinciinetenetinees st csienisiee s 86
Inventory Record Application..........cccccecueieveenveenseeeniieencrienininn. 87
VS APL Distributed WOrkSpaces............ccoevvvveverereesrereesiesinennns 92
Sample Conversion REPOTtcccceeveeereieiecienrieenieeeessinseniiiiennnes 94
CMS Terminal SUMMATYccoccerrveenirrveerreenieesreesessrsessaessseens 101
APL and Text Keyboards for the IBM 3270 Data Analysis-APL
Featurecooociiiiiiiiiieie ettt ettt st 103
IBM 3270 Screen FOrmat...........occcceeeeeeeereiecneeennneeseeienneeeesineens 104
APL/EBCDIC Conversion via 192 Conversion Option 131

Figures 11

SUMMARY OF AMENDMENTS

Release 3 and Release 2.1, SH20-9067-2
CONTINUE Workspace not Dropped

Programming Change

Service Changes

TNL SN20-9207

Effective with Release 2.1 of VS APL, the CONT I NUE workspace is not
automatically dropped. There are no technical changes to VS APL under
CMS resulting from Release 3 of VS APL.

Miscellaneous technical corrections and editorial changes have been made
throughout the book.

SAVE command creates temporary file

Programming change

Reconnecting to VS APL
Service Change

Storage Returned to CMS
Service Change

New Messages
Service Change

Describes the temporary file created when saving a workspace with the SAVE
command.

Describes procedure for reconnecting to VS APL after breaking the computer
connection.

Describes how to determine the amount of storage returned to CMS when
you contact VS APL.

Trouble report — NOT SAVED, NAME IN USE

Executor message — APL010I VIRTUAL MACHINE AND APL SHARED
SYSTEM OVERLAP. APL ABORTED. (Replaces current message
APLO010I LOCATIONS xxxxxx THROUGH yyyyyy REPLACED BY
SHARED APL SYSTEM.)

Executor message — APL1591 FILE ‘x APLTMPWS’ ALREADY EXISTS.
WS NOT SAVED.

Summary of Amendments 13

Canceling Output from CP and CMS Commands
Service Change

Describes how to cancel output from CP and CMS commands when using the
CP/CMS Command Processor.

Character Translation Table
Service Change
A new table shows the character translation done with the 192 conversion

option.

Workspace Conversion

Service Change
Provides information about character conversion for users converting to VS
APL from other APL programs.

Release 2, SH20-9067-1

CMS VSAM Processor

New Programming Feature

VS APL under CMS now includes the CMS VSAM Processor which is used
to perform file operations on entry-sequenced or key-sequenced VSAM files.
A description of the processor has been added to the section “Auxiliary
Processing” and new terminology associated with the processor has been
added to the Glossary.

New VS APL Distributed Workspaces

New Programming Feature
Five new workspaces are distributed with VS APL under CMS: HOWEDITS,
SEDIT, MEDIT, SBIC, and PRINT. A brief description of each workspace
has been added to “Appendix A: Distributed Workspaces.”

Indexed Specification

Specification'Change

The previous VS APL restrictions on indexed specification have been relaxed.
As a result, the VS APL Conversion Program no longer reports such
specifications. The Conversion Report message that was previously produced
has been removed from the list of messages in Appendix B.

14 VS APL for CMS: Terminal User’s Guide

Miscellaneous Changes
Auxiliary Processing
Service Changes

In addition to describing the new CMS VSAM Auxiliary Processor, several
changes and additions have been made to the section ““Auxiliary Processing”
as follows:

+ The description of the CP/CMS Auxiliary Processor has been generalized.
The processor will accept any CMS command, however certain commands
may terminate the auxiliary processor or VS APL.

« Corrections have been made to the table of data conversion for the 370
conversion option and to the description of conversion options for the
CMS Disk 1/0 and FILEDEF 1/0 Auxiliary Processors.

« The table of auxiliary processor return codes has been updated.

Language Considerations
Service Changes

The APL Language manual (order number GC26-3847) contains information
that previously appeared in “Appendix C: Language Considerations.” The
following discussions have therefore been removed from the appendix:
“Outgoing Offer Query;” “System Variables 07T, OUL, OHT and OTC;”
“Interrupting Input;”’ and “Indexing on the Left of an Assignment.”

Display Terminal Considerations for APL

Service Changes
Various corrections and additions have been made to the discussion ‘“IBM
3270 Display System Terminal Considerations for APL” in “Appendix D:
CMS Terminals.” In specific, the appendix now indicates that the 3270 Data
Analysis-APL feature may be ordered with the standard APL keyboard or
with an optional text keyboard.

Error Messages

Service Changes
A list of error reports relating to auxiliary processing has been added to the
description of VS APL error reports in ‘“Appendix E: Error Messages.” Also,
executor messages APL0031 and APL0OO4I have been added to the list of VS
APL executor messages.

VS APL Batch Processing

Service Change

A new appendix has been added that describes how to execute VS APL batch
jobs via the CMS Batch Facility.

Summary of Amendments 15

INTRODUCTION

This book describes how you can use VS APL when it is operating under
control of the Conversational Monitor System (CMS). CMS is a time-sharing
system that operates under the Virtual Machine Facility/370 (VM/370).

Together, the system presented by the combination of VS APL and CMS
allows you to interact with a computer conversationally through the powerful
APL language. This book assumes that you already know the APL language
as described in the publication APL Language.

In executing VS APL under control of CMS you are presented with the
following features:

o A variety of different terminals that you can work from, including the IBM
2741 and 3767 terminals plus the IBM 3270 Information Display System
Terminals.

o A set of instructions called VS APL system commands that allow you to
monitor and control your work as well as send messages to other users.

« A number of programs called auxiliary processors, that allow you to
perform file and other operations through shared variables.

« A collection of pre-defined or distributed workspaces that are helpful in
learning APL, converting from other IBM APL systems, or using auxiliary
Processors.

Additionally, operating under control of CMS puts you in the virtual
environment presented by VM/370. In this environment you operate as
though you are in complete control of a simulated or virtual computer. You
can work this way because VM/370 offers the central processing unit,
storage and input/output devices of the real computer to each user of the
system on a shared-time basis. Your terminal becomes the operator’s console
for the virtual computer, so that you are able to perform operations, like
loading an operating system, that are normally beyond your control.

This book will specifically show you how to use the terminals, VS APL
system commands, auxiliary processors and distributed workspaces supported
by VS APL under CMS. It will also describe the aspects of the virtual
environment that are pertinent to your work.

Introduction 17

TERMINAL PROCEDURES

Terminals

This section describes the terminals you can use with VS APL under CMS,
some general conventions about making and correcting your terminal entries,
and how output information is displayed at these devices.

The terminals that you may use in working with VS APL under CMS are:
« IBM 2741 Communication Terminal

« IBM 3767 Communication Terminal

« IBM 3270 Interactive Display System Terminals (IBM 3275/3277)

« IBM 1050 Communication System Terminals (IBM 1052
Printer-Keyboard)

« CPT-TWX Model 33 and Model 35

All of these terminals have a typewriter-like keyboard for entering
information and either a typewriter-like printer or display screen for recording
your entries and displaying responses by the system. Most of them can be
ordered with a number of different keyboards, and some can be used with
different printing elements. As an APL user, you’ll probably be working at an
APL keyboard and, where printing elements are changeable, using a standard
courier printing element to communicate with VM/370 and a standard APL
printing element to communicate with VS APL. The elements required are
listed in Figure 1.

Standard Printing Element
Terminal Keyboard YM/370 VS APL
2741 Correspondence 1167043 1167987
2741 PTTC/EBCD 1167963 1167988
2741 PTTC/BCD 1167938 1167988
1050 PTTC/EBCD 1167963 1167988
1050 PTTC/BCD 1167938 1167988

Figure 1. Standard Printing Elements for VM/370 Terminals

The IBM 3767 terminal uses a non-replaceable printing device whose set of
printable characters is controlled by the switch marked EBCDIC (or
Correspondence)/APL on the control panel. To communicate with VM /370
you should depress the EBCDIC part of the switch. To communicate with VS
APL you should depress the APL part of the switch.

The operating procedures described in this book, unless otherwise indicated,
assume that you are using an IBM 2741 terminal or an IBM 3767 terminal,
with an APL keyboard. Existing IBM 2741 and IBM 3767 terminal
keyboards can be modified by attaching APL Characters (order number
GX20-1783) to the keys. The APL keyboards for these terminals are
illustrated in Figure 2.

“Appendix D: CMS Terminals” summarizes the operating procedures for all
the terminals that can be used with VS APL under CMS and describes
restrictions and other items to be considered when using APL at these
terminals.

Terminal Procedures 19

IBM 2741 APL Keyboard

< = > > Zz v A - v BACK
1 Y 5 6 7 8 9 0 + x || SPACE
? ~
TAB : w € o 4 ¥ 1 o) * -
Q W K R T Y U I 0 P «
RETURN
'
Lock o r L - v A ° a ()
A S D F G H J K L []
> n U L T | 3 \
SHIFT SHIFT
X c |4 B N M s /
IBM 3767 APL Keyboard
' LEFT RIGHT
VERT MAR MAR
FORM FORM FORM TAB TmB GIN GIN
LOAD READY SET SET CLEAR SET SET
b - < < = > > Z A - T
FoRN | inoex 1 5 3 N 5 6 7 g ; 0 N N - £o8 || ReseT
VERT || svs ? w € p ~ + ¥ 1 o * > PRINT | |BUFFR
TAB REQ — Q W E R T y U 7 0 Pl « BUFFR| [RTN
G) [! o v A ° ! 0 () <,| PRINT || BLEFR
AlLSILDILFEI G LH KiLro L] S | ALY
e[| [0 I I R | I A R ey
cook | | PRINT EOM

Figure 2. The IBM 2741 and 3767 APL Keyboards

Character Sets

The characters that you have available to create your entries depend on (1)
the terminal you’re working from, and (2) the part of the system you’re
communicating with.

When you communicate with VM /370, it assumes the non-APL character set
associated with your terminal keyboard. These are the characters that can be
printed using the standard VM/370 printing elements listed in Figure 1 or for
the IBM 3767, the characters that can be printed when the EBCDIC (or
Correspondence)/APL switch is set to EBCDIC or Correspondence.

When you establish contact with VS APL, the APL character set illustrated in
Figure 3 is assumed. These are the characters that can be printed using the
standard APL printing elements listed in Figure 1 or for the IBM 3767, the
characters that can be printed when the EBCDIC (or Correspondence)/ APL
switch is set to APL.

20 VS APL for CMS: Terminal User’s Guide

Terminal Entry

ABCDETFGHTIJKLMNOPQQRSTUVWIXYIZ
ABCDEFGHIJKLMNQOQRPQRSIUVHWXYZ
012345678379

dieresis a alpha ¥ nor ~ v
- overbar [upstile ~ nand ~ A
< less L downstile ¥ del stile v |
< not greater _ underbar 4 delta stile A |
= equal v del ¢ circle stile o |
> not less A delta § circle slope o \
> greater o null e circle bar o -
not equal ' quote e log o x
v or 0 quad I I-beam LT
A and (open paren % del tilde v ~
- Dbar) close paren ¢ base null L o
+ divide [open bracket ¥ top null T o
+ plus] close bracket 1\ slope bar \ -
x times < open shoe # slash bar / -
? query > close shoe a cap null n o
w omega n cap M quote gquad 'O
e epsilon U cup ! gquote dot '
p rho 1 Dbase @ domino 0 =
~ tilde T top
+ up (arrow) | stile
+ down (arrow) ; semicolon
1 iota : colon
o circle , comma
* star . dot
+ right (arrow) \ slope
+« left (arrow) / slash

space

Figure 3. The APL Character Set

Some of the characters shown in Figure 3, such as [1 are compound characters
that are formed by entering a character, pressing the backspace key, and
overstriking the first character.

Your dialogue with the system consists of entries made from the terminal and
responses generated by the system. In general, an entry consists of a VM/370
command, a VS APL system command, an APL statement, or data.

You can never type more than one VS APL system command, APL
statement, or data entry per line, and should not enter more than one
VM/370 command per line.

All lines are completed by a carrier return. On the IBM 2741, the carrier
return is the RETURN key, while on the IBM 3767, the carrier return is the
key marked <,

Once you complete a line, the terminal does not accept further information
until the system has analyzed and executed the line. If it detects an error in
your entry, it prints a message indicating the trouble. Otherwise, the system
performs the operation and displays a response when called for. After acting
on your request the system usually prompts you for your next line of input. It
may indent six character positions or print input request characters such as

Terminal Procedures 21

[:. The terminal then permits you to begin your next entry at that point.
This method of entry and response continues until you sign off.

Figure 4 illustrates a typical dialogue between you and VS APL. The first line
represents your entry while the second line represents the VS APL’s response.
The arrow indicates the starting point of the next entry.

)CLEAR
CLEAR WS

2x17 19
34 38

+

Figure 4. A Typical Dialogue with VS APL

If a character is entered that is unrecognizable to VS APL, for instance @, an
ENTRY FERROR report is returned. The line you typed is then printed up to
the unrecognizable character; the terminal then awaits further input. Any
further characters that you enter are then substituted for the remainder of the
entry.

Correcting Entries

There will be times when you’ll have made a mistake before entering a carrier
return and will want to make a correction.

If the error occurs in a VM/370 command, you have the option of (1) erasing
the entire line by entering the character ¢; or (2) erasing the characters you
just typed by entering an (@ for each character to be erased. For example,

ipx a¢ ipl cms
igapl cms
ipl dmaacms

all have the same effect, as if ipl cms had been typed without any errors.

If the error occurs in an entry to VS APL, you can erase all or part of the
entry. To do so, backspace to the point of error and signal attention. On the
IBM 2741 and IBM 3767, you press the ATTN key. The system responds by
printing the inverted caret character (V) under the character in error,
advancing to the next line and awaiting further entry. This has the effect of
erasing everything on the line from the point of the inverted caret to the end
of the line, so that all characters from the point of error to the end must be
retyped.

Suppose, for example, you typed the following statement at the IBM 2741
terminal:

ADD?2<«76 24+10.,5 1:.1

and you realized that you wanted to enter the number 7 instead of the
character :. To make this correction, you simply backspace to the position of
the character : and press the attention key. The system prints the inverted
caret and advances to the next line. Now you enter 7 . 1.

In practice, the exchange would look like this:

ADD2+76 24+10.5 1:.1
v

7.1

22 VS APL for CMS: Terminal User’s Guide

Tabs on Input

In communicating with VS APL, you may find it convenient to use the
terminal’s tab facility to save yourself the trouble of entering spaces. A tab
stop is set by spacing or backspacing the carrier to the desired print position,
then depressing the SET key on the IBM 2741, or holding the CODE key
while pressing the numeral 7 key on the IBM 3767. Old tab stops should be
cleared first.

When you set tab controls at the terminal, you must also communicate these
settings to VS APL. You do this by assigning the settings (counting the left
margin as position zero) to the APL system variable J#T. A maximum of 26
settings can be assigned. The tab settings you indicate through JHT are in
effect until changed or until you sign off VS APL. When you next establish
contact with VS APL, no tab settings are assumed and OHT contains an
empty vector. The value of AT may be changed by (1) respecifying it; (2)
entering or completing a function where (AT is localized (when execution of
the function is complete, OH T reassumes the value it had before the function
was executed); or (3) issuinga) LOAD or)CLEAR command when OHT is
invalid (OH T will be assigned an empty vector).

For instance, if you physically set tab controls at positions 5, 10, 15, 20, 25,
30, 35 and 40 (counting the left margin as position zero) you must
correspondingly set JH T as follows:

OHT«5 10 15 20 25 30 35 40

Then, each time you press the tab key, the carrier will skip to the next tab
setting, and VS APL will receive one or more space characters, exactly as if
you had positioned the carrier by repeatedly pressing the space bar. On the
IBM 2741, the tab key is marked TAB. On the IBM 3767, the tab key is
marked —|.

Care should be taken that the value of (AT actually reflects the physical tab
settings, as misleading or unreadable output may otherwise be produced.

If no tab settings have been communicated to VS APL or if the carrier is
beyond the largest tab setting, then pressing the tab key during keyboard
entry will result in an entry error. This kind of entry cannot be corrected using
the procedures described in “Correcting Entries.” Instead, the line must be
re-entered correctly.

Terminal Procedures 23

Terminal Output and Display

Tabs on Output

Terminal Print Controls

One convenience of VS APL under CMS is that you can always follow the
dialogue between it and yourself. The dialogue that is printed at the terminal
consists of your printed entries and VS APL’s responses. For instance, a
typical dialogue between you and VS APL might include the following:

A SEQUENCING
NUMS<7 23 11 5 28
NUMS[ANUBS]

VALUE ERROR
NUMS[ANUBS]

A
NUMSLANUMS]
5 7 11 23 28

Messages and other printed responses sent to you by VS APL begin at the
left-hand margin. This provides a handy way of distinguishing between your
entries and VS APL’s responses.

There may be occasions when VS APL attempts to print a character that is
not representable at your terminal with the currently selected character set.
When this happens, you’ll see an error character. On the IBM 2741 terminal
or IBM 3767, a blot (the character Z overstruck with the character N) will be
printed instead of the unprintable character.

The examples illustrated in this book always indicate your entries and the
system’s responses as they would be printed at the terminal.

Terminal tab settings for VS APL output are established in the same way as
they are for input. That is:

o Physical tab positions are set with the tab set (or SET) key:!

o The physical tab positions must be communicated to VS APL through the
system variable (OHT). Note that the value of JHT may be changed as
described in the discussion “Tabs on Input.”

If tab settings have been communicated to VS APL, then it will use these tabs
to reduce the time it takes to display information. The appearance of the
printed output is not affected by the tab settings, only the time it takes VS
APL to print it. For instance, the character string:

A B C

is displayed the same whether the tabs are set for the positions of A, B, and C
or not set but the printing time can be reduced if tabs are set for the positions
of A, B, and C.

The value of HT and the physical tab settings must always correspond.
Otherwise, misleading output may be produced.

Two system variables in VS APL have particular pertinence in controlling the
format of output: these are JPW (printing width) and 07 C (terminal control
characters).

24 VS APL for CMS: Terminal User’s Guide

Printing Width

Terminal Control Characters

The system variable (JP¥ represents the maximum length of an output
line—your printing width. The value assumed when you log on is 120 (or 79

for an IBM 3270 terminal). You can change this value by assigning a different
value to JPW. The value you assign can be any number between 30 and 255

(althou%h a value greater than the physical capacity of the terminal is not
advisable).

For example, the following assignment would limit printing to 40 characters
per line:

OPwW<u40
so that an expression producing 40 output characters would print on one line:

Uop'Aa:
AA

However, a printing width of 30 would force printing on two lines, the first
line containing the first 30 characters while the remaining 10 characters would
be printed, beginning in position 7, on the second line:

OPW<«30

4op'a?
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAA

The value you set for the printing width remains in effect throughout your
communication with VS APL. When you next sign on, the printing width
reassumes its default value. The value of 0P¥ may be changed by (1)
respecifying it; (2) entering or completing a function where JPW is localized
(when execution of the function is complete, OPW¥ reassumes the value it had
before the function was executed); or (3) issuinga)LOAD or)CLEAR
command when OPW is invalid (OPW will be restored to its last valid value).

The printing of output may also be controlled by the terminal control
characters found in the system variable 7 C. The characters found in 07C
are set by the system and cannot be overridden by you. There are three
terminal controls in (7 C as follows:

« OTCL[117: backspace character
« OTCL 27]: new line character

o OTCI[31: line feed character

Terminal Procedures 25

Interrupting Output

Transmission Failures

When one of these elements is encountered by the system in the printing of
output, the indicated terminal action is taken, so that the entry:

'A',07CC21,'BC',07CC31,07CC1],"'DEF?

is a request to:

Symbol Meaning

r4! Print A

grcr2] Advance to the next line and reset to position 1

'BC! Print BC

0rcrsl Advance to the next line but stay in same relative position
grcri] Backspace one position

'DEF Print DEF

In practice, the exchange would look like this:

"A',07CC21,'BC',07CC3],07CC11, " 'DEF?
A
BC
DEF

You can interrupt the action that VS APL takes on your entries, and the
possible printed responses it returns, by entering an interrupt signal at your
terminal. On both the IBM 2741 and 3767 terminals, the interruption of
output is controlled by the ATTN key. Pressing the ATTN key once, a weak
interrupt, has the effect of terminating output immediately and interrupting
execution at the end of the current line. Pressing the ATTN key twice, a
strong interrupt, terminates output and terminates execution when the
current primitive function is completed.

This ability to interrupt VS APL prevents you from being “locked out” while
a long-running function is executing and particularly when a great deal of
terminal printing is preventing you from efficiently doing your work.

If you press the ATTN key twice in quick succession you will be placed in
contact with the control program segment of VM/370. To re-establish
contact with VS APL, enter one of the following VM/370 commands, as
appropriate: BEGIN, ATTN, or REQ. The BEGIN command directs VS APL
to resume execution at the point it was last stopped. The ATTN or REQ
command generates a weak interrupt signal in the current VS APL line.

Occasionally, the entry you make at your terminal or the output that the
system returns may be garbled by certain failures in the transmission of data.
If the failure occurs in your entry, the message READ ERROR will be
printed and you’ll have to repeat the previous entry. If the failure occurs while
the system is transmitting output, there may be one or more unexpected
characters in the output line. The presence of these unexpected characters
should be obvious in most contexts. Additionally, on the IBM 3767 the
SYSTEM CHECK panel light should go on. However, on the IBM 2741,
there is no absolutely certain way of detecting a transmission failure in output.

26 VS APL for CMS: Terminal User’s Guide

THE WORK SESSION

No matter what kind of work you’re going to do at the terminal, there are
some initial steps that you’ll have to take to get things started. Similarly, there
will be a number of things that you’ll have to do to get things finished. In
programming terms, these initial and final steps are said to start and end the
work session. In this section you’ll learn what these procedures are and how
they may be affected by the equipment you’re using.

Starting the Work Session

Step 1: Connection

Connecting the IBM 2741

There are four steps involved in beginning a work session with VS APL. The
first step is to establish a communications link between your terminal and the
computer. Once a link has been established, the next step is to make contact
with VM/370. The last two steps, which can be automatic, are to establish
contact with CMS and VS APL.

The procedures described in this section are by no means all-inclusive. They
only represent the most general ways of beginning a work session with VS
APL. Certain requirements unique to your operations may alter the steps
outlined in this section. To determine the additional actions you may have to
take, see your system administrator.

The way you make a connection between your terminal and the computer
depends on the type of terminal equipment you’re using. If your connection to
the computer is through telephone lines, you will need to dial a telephone
number. Some terminals are directly wired to the computer, in which case
you’ll have to set some switches, but you won’t have to dial up.

The connection procedure for the IBM 2741 Communication Terminal and
the IBM 3767 Communication Terminal will be covered here. For connection
procedures related to other VM/370 terminals, see the VM/370 Terminal
User’s Guide.

An IBM 2741 can be permanently connected to a computer system through
non-switched (leased) line, or temporarily connected through a switched
(dial) line.

If you’re working through a switched line, you have the additional option of
using a telephone data set or a regular telephone with an acoustic coupler.

Figure 5 shows the procedure for connecting an IBM 2741. Steps 1 and 2 are
the only steps that need to be carried out if you’re using a non-switched line.
Otherwise, steps 1 through 5 must be completed. Steps 3 and 5 additionally
depend on whether you’re using a telephone data set or an acoustic coupler to
maintain the telephone connection; these steps do not apply to all acoustic
coupler configurations, so check with your system administrator.

The Work Session 27

Connecting the IBM 3767

Switched and Non-Switched Lines
1. Find the COM/LCL switch on the left side of your terminal and switch it to COM.

2. For switched lines (excluding acoustic couplers) and non-switched lines, turn on the
ON/OFF switch located at the right of the keyboard. (If the switch is on, turn it off,
then on again.) For non-switched lines only, the message VM /370 ONLINE is
displayed and the keyboard unlocks; at this point the terminal is connected to the
computer and you are ready to establish contact with VM/370.

Switched Lines Only
3. Telephone Data Set: Press the TALK button.

Acoustic Coupler: Make sure that the acoustic coupler is connected to the power supply,
turned off, and connected to the terminal.

4. Remove the handset from the cradle and dial VM/370’s telephone number. This
number should be supplied to you by your system administrator.

5. Telephone Data Set: Wait for a high-pitched tone. When you hear it, push the DATA
button and place the handset in the cradle. The DATA light will go on. Your keyboard
will unlock; this means that the terminal is connected with the computer and you're
ready to establish contact with VM/370. If the data light goes off at any time during the
terminal session, start again from step 3.

Acoustic Coupler: Wait for a high-pitched tone. When you hear it, place the handset face
down in the coupler box, make sure the cord is in the slot, close the lid of the acoustic
coupler and latch it. Turn on the acoustic coupler within 20 seconds. Turn on the
ON/OFF switch located at the right of the keyboard. The keyboard will unlock,
meaning the computer is ready to receive input data. If the keyboard does not unlock,
start again from step 3.

Figure 5. Connecting the IBM 2741

Before a connection can be made between the IBM 3767 terminal and the
computer system, certain switches on the terminal control panel must be set.
Figure 6 lists the recommended switch settings for interaction with the
system. On certain models of the IBM 3767, a security lock is provided. For
these models, the key should be turned to ON before the POWER switch is
turned on.

Like the IBM 2741, the IBM 3767 can be permanently connected to the
computer through a non-switched (leased) line, or temporarily connected
through a switched (dial) line.

If your terminal is operated through a non-switched line, once the switch
settings in Figure 6 have been made, the connection to the computer is
complete. The message VM/370 ONLINE is displayed and the PROCEED
light on your terminal console will go on. At this point you are ready to
establish contact with VM/370. If the light is not on, check to see that the
security lock, if any, is in the ON position and the switches have been
properly set.

To complete the connection procedure for a switched line, follow the
instructions in Figure 7.

28 VS APL for CMS: Terminal User’s Guide

Switch Setting

COMM/LOCAL COMM
AUTO/OFF AUTO
EDIT/OFF OFF

AUTO VIEW/OFF AUTO VIEW
DATA/TALK! DATA

DIAL DISC/OFF2 OFF
SDLC/SS SS.

EBCDIC(or Correspondence)/APL EBCDIC or Correspondence as appropriate to your
terminal keyboard. This switch is set to APL when
communication with VS APL is to begin.

CALC/OFF OFF
TEST/OFF OFF
POWER/OFF POWER

1 This switch appears on terminals supplied to World Trade countries except Germany.

2 This switch appears on terminals supplied to Germany only.

Figure 6. IBM 3767 Switch Settings

Connection Procedure

1. Press the TALK button, remove the handset from the cradle and dial VM/370’s
telephone number. This number should be supplied to you by your system
administrator.

2. Wait for a high-pitched tone. When you hear it, switch from TALK to DATA and
replace the handset. (This procedure depends on the type of telephone set you're using;
check with your system administrator if necessary.)

3. The DATA SET READY light should go on followed by the PROCEED light. You are
now ready to establish contact with VM/370. If the DATA SET READY light goes off
at any time during the terminal session, try again from step 1.

Figure 7. Connecting the IBM 3767 (Switched Line)

Step 2: Contacting VM /370 (Logging On)

Once a connection has been made between your terminal and the computer,
the next step is to contact the VM/370 system. This step is termed logging on.
During the logon procedure it is important that you use the proper VM/370
printing element or for the IBM 3767, have the switch marked EBCDIC (or
Correspondence)/APL set in the non-APL position.

To begin the logon procedure press the attention key. Unless you’re
connected to the computer via a leased line, the system responds by
displaying one of the following messages:

vm/370 online
vin/370 online XXXXXX XXXXXX
XXXXXX XXXXxx vm/370 online

This lets you know that the system is ready to accept your logon command.
(The xxxxxx XxXXxxx portion of the message, if it appears, consists of
meaningless characters and should be ignored.)

The Work Session 29

Now you’re ready to enter the logon command. Press the attention key and
type:
logon userid m

where:

userid
is the identification assigned by your system administrator.

m
is an optional request to hide your entry password.

The entry logon can be abbreviated 1, lo, log, and so on.

If you make an error, VM/370 will not accept your logon. Instead, it will
display the reason the logon request was unsuccessful. You must then repeat
the logon command correcting the indicated problem, if possible.

If you typed the logon command correctly, the system will respond by
requesting your entry password:

ENTER PASSWORD
ENERKEEN

Once the blots are printed, you can enter your password over them, which
keeps other users from learning what your entry password is. Like your
identification number, your entry password is issued by your system
administrator.

On some terminals, the function of the blots is handled by a print suppress
feature. Under this arrangement, no blots are produced, and the password you
enter is not displayed.

If the password you enter is not acceptable, VM/370 may repeat its prompt
or ask you to re-enter the logon command.

Once your password is accepted, you are logged on to VM/370. At this point
you are in contact with the control program segment of VM/370. You may
now, if you wish, enter any of the commands acceptable to the control
program segment. For a description of these commands, refer to the
VM/370: CP Command Reference for General Users. You may now also
see a logon message indicating the time and date of logon. For instance:

LOGON AT 17:37:55 PDT SATURDAY 07/17/76

What you do next depends on how procedures have been established at your
place of work. If certain requirements have been fulfilled by the personnel
who have installed your system, a successful logon to VM/370 may
automatically entail a connection to CMS and VS APL. If so, all you need to
do is press the carrier return key. You will see the message:

vs apl

30 VS APL for CMS: Terminal User’s Guide

Step 3: Contacting CMS

At this point, you should change your printing element to a standard APL
element or set the switch on the 3767 to APL. The “vs apl” message means
that you have established contact with VS APL and that CMS has given you
an area of virtual storage to make your APL entries. This area of storage is
your active workspace. The active workspace you receive is either:

o Clear—a workspace where no information has been entered. You get a
clear active workspace if you did not continue an active workspace from a
previous session with VS APL.

« Continued—a workspace in which information has already been entered.
You will receive a continued active workspace if you have a workspace
named CONTINUE in your library when you log on.

You’ll know that you have been given a clear workspace if VS APL displays
the following message:

clear ws

If you recefve a clear workspace, you’ll be free to begin your entries. If you
receive a continued workspace, the following message will be displayed:

saved time date
where:

time date
is the time and date the continued workspace was saved.

You can then make your entries into the continued workspace.

If a connection to CMS is not automatically generated by your logon, you’ll
have to establish a connection yourself. In VM/370 terms, you “load CMS
into your virtual computer or machine.” You do this by issuing the following
command:

ipl cms

This command tells VM/370 that you will be doing your work in the CMS
environment and makes your disk space available for use. The system
administrator should have allocated some disk space for your permanent use
when he gave you your identification and entry password. He should have
also defined for you a sufficiently large virtual computer for executing VS
APL.

In response to the IPL command, VM/370 displays a message such as:
CMS VERSION x.x PLC yy date

to indicate that the IPL command executed successfully and that CMS is
loaded. (The x’s and y’s indicate a particular version of CMS.)

Once CMS is loaded you may enter any of the VM /370 commands
acceptable to CMS. If this is the first time you are using VS APL under CMS,
you may need to issue CMS commands to set up your disk space for VS APL
work, that is format your virtual disk. For a description of how to format
your virtual disk as well as a description of CMS commands, refer to the
VM/370: Users Guide or the VM/370: CMS Command and Macro
Reference.

The Work Session 31

Step 4: Contacting VS APL

If you’re going to be doing your work with VS APL, it may be that execution
(either explicitly by you or implicitly as a result of the logon command) of the
IPL CMS command will automatically establish contact with VS APL and will
prepare your virtual machine for APL entries. If so, to complete contact with
VS APL press the carrier return key. If contact with VS APL is not
automatically established, enter the following command:

apl sharesize processors
where:

sharesize
is an optional shared memory size, in bytes, that may be specified if you
are going to use auxiliary processors. If a shared memory size is omitted
and at least one auxiliary processor is specified in the command, a size of
4096 bytes is assumed. This is also the minimum size that can be used by
the system, so that any specified size less than 4096 is taken as a request
for 4096 bytes. If a size is specified, it may be immediately followed by the
letter K or the letter M. A specification of K indicates that the shared
memory size is to be multiplied by 1024. A specification of M indicates
that the shared memory size is to be multiplied by 1,048,576. The value of
sharesize also determines the amount of storage that is returned to CMS.
After loading any auxiliary processors, VS APL obtains all remaining user
storage in the virtual machine. It suballocates shared memory (the size is
the value of sharesize), a 512-byte work area for each auxiliary processor
(rounded to a 4K boundary), and a 4K area for communication between
VS APL and CMS. After suballocation, the following amount, in bytes, is
returned to CMS:

32768[16384 +2x SHARESIZE
The remaining user storage is allocated for the active workspace.

processors
are the names of auxiliary processors. Each name may be followed by a
parenthesized list which is used to pass parameters to the auxiliary
] processor. If distributed auxiliary processors are built into the APL system
at your installation, do not specify their names when invoking APL.

The following command, for example, requests contact with VS APL, asks for
a shared memory size of 10,240 bytes, indicates an auxiliary processor named
APFILE, and provides a parameter list for APFILE.

apl 10k apfile(parma parmb parmc)

If the APL command is executed successfully, the system will return the
message:

vs apl

and follow it with the message CLEAR WS or SAVED as appropriate. At this
point, change the printing element to a standard APL printing element or set
the switch on the IBM 3767 to APL. You can now begin your session with
VS APL.

32 VS APL for CMS: Terminal User’s Guide

Example

Now that you have read through the description of logging on, let’s look at an
example. Let’s assume that you are using a IBM 2741 terminal and that you
have the proper courier printing element mounted. In addition, let’s assume
that the following has been supplied to you by your system administrator:

userid=123456
password=APLUSER

Here’s what your logon procedure would look like. Your entries are in
lowercase characters, and the system’s responses are in uppercase characters:

logon 123456 m

ENTER PASSWORD

EEERNERERE

apluser

LOGON AT 14:04:33 PDT SATURDAY 12/11/76
ipl cms

CMS VERSION 2.0 PLC 13 12/11/75

apl

At this point, the system will return the message ‘‘vs apl” followed by
CLEAR WS. Mount the APL typing element. Now you’re ready to begin
your session with VS APL.

Ending the Work Session

When your work with VS APL is finished, you have various options as to
what you do next. You can simply end the session, thereby breaking all
connection with VS APL, CMS and VM/370; you can end the session but
maintain contact with CMS; or you can do either of these things and have
your workspace stored at the same time. The way you tell the system is
through one of four APL system commands:

JOFF

YOFF HOLD
JCONTINUE
YJCONTINUE HOLD

Ending Contact with VS APL and CMS

The APL system commands)OFF and)CONTINUE end your contact with
VS APL, CMS and VM/370.

The difference between these two commands is how they handle your active
workspace. Once) OFF is executed, the information in your active

[workspace is lost. Once) CONTINUE is executed, a copy of your active
workspace is saved, making its contents available for your next VS APL
session. (The workspace is given the name CONTI NUE and replaces any
present workspace in your library named CONTINUE.)

The Work Session 33

In response to the) OFF command or the) CONTINUE command, the
system displays the following message:

CONNECT=t1 VIRTCPU=t2 TOTCPU=13
LOGOFF AT t4 zone day date

where:

t1
is the actual clock time spent in the current terminal session in
hours:minutes:seconds.

12
is the virtual CPU time used in the current terminal session in
minutes:seconds.hundredths of seconds.

t3
is the total CPU time used in the current terminal session in
minutes:seconds.hundredths of seconds.

t4
is the time of logoff in hours:minutes:seconds

zone
is the time zone, for instance PDT for Pacific Daylight Time.

day
is the day the message is sent.

date
is the date the message is sent in months/days/years.

When the) CONTINUE command is executed, the system precedes the
sign-off message with a message showing the time and date the active
workspace was saved.

Figure 8 illustrates a dialogue that ends your session with VS APL, CMS, and
VM/370:

JOFF
CONNECT=00:07:36 VIRTCPU=000:00.65 TOTCPU=000:02.05
LOGOFF AT 11:17:16 PDT FRIDAY 06/18/76

Figure 8. Using the)JOFF Command

In this example the workspace is not saved. If) CONTINUE were specified,
a date and time message for the save operation would precede the sign-off
messages.

Ending Contact with VS APL Only

The APL system commands)OFF HOLD and)CONTINUE HOLD end
your contact with VS APL but maintain your contact with CMS.

When you specify)OFF HOLD the contents of your workspace are lost.
When you specify)CONTINUE HOLD, a copy of your workspace is saved
making its contents available for your next session with VS APL. (The
workspace is given the name CONT I NUFE and replaces any present
workspace in your library named CONTINUE')

34 VS APL for CMS: Terminal User’s Guide

When the)CONTINUE HOLD command is executed, the system prints a
message showing the time and date the active workspace was saved, followed
by the characters p [(these are the characters R; assuming a Courier printing
element). When the)OFF HOLD command is executed, only the p [
characters are printed. Once these messages are displayed, change your typing
element or on the IBM 3767, set the switch marked EBCDIC (or
Correspondence)/APL to EBCDIC or Correspondence. You are now in
contact with CMS.

Breaking the Computer Connection

The step that actually completes your interaction with the computer is a
physical one. It may simply be turning the terminal off and, if you’re using a
telephone, hanging up.

Normally, to finish your work at the terminal, you should enter the APL
system command)OFF or)CONTINUE as appropriate. The system will
take the indicated action, including the printing of accounting information.
You can then hang the phone up and turn the terminal off.

If you turn the terminal off before entering these commands, the system
disconnects you from VM/370. You have 15 minutes to log on. If you log on
within 15 minutes, you can re-establish contact with VS APL and recreate the
status of your virtual computer by entering the following:

TERMINAL APL ON LINESIZE 255
SET EMSG OFF

SET IMSG OFF

BEGIN

In addition, if message blocking was in effect, you must also enter the
following before entering BEGIN:

SET MSG OFF
SET WNG OFF

(Message blocking is described in “Communication Commands” in the
section “‘System Commands.”)

If the terminal is a typewriter terminal (that is, is not a 3270 display terminal)
you must also enter the following before entering BEGIN.

TERMINAL ATTN OFF

If you break the computer connection and move to another terminal type
during your VS APL session, you must ensure that VS APL changes its
terminal handling by doing the following: enter the commands shown above,
then save your workspace, end your VS APL session, and restart VS APL.

If you do not logon within 15 minutes, the status of your virtual computer
plus the contents of your active workspace are lost.

The Work Session 35

Forced Endings

Sometimes, certain malfunctions in the computer, such as temporary losses of
power, or failures in the telephone circuits may endanger the integrity of your
workspace. To safeguard against this possibility, the system will break the
connection. This is called a forced ending. The system handles a forced
ending as if you turned the terminal off before entering an) OFF or
)CONTINUE command. :

36 VS APL for CMS: Terminal User’s Guide

WORKSPACES AND LIBRARIES

The Workspace

Workspace Attributes

This section describes the content and attributes of VS APL workspaces and
details the libraries supported by CMS. Workspaces are areas of virtual
storage that contain your work. Libraries are areas where copies of
workspaces are stored.

A workspace is an area of virtual storage that contains all the data, functions,
variables, and groups that you define in your VS APL entries. In addition, a
workspace contains certain system variables and system functions that
monitor or control the nature of your work.

When you establish contact with VS APL, you are automatically given a
workspace to use. This is called your active workspace. All interaction that
you have with VS APL from this point until you end your work is made
through the active workspace.

It is possible to request that a duplicate of a workspace be saved in a library.
When that is done, a copy of the entire active workspace is saved, including
all the data, functions, status and control information within it. When you
subsequently ask to retrieve a saved workspace, you receive a duplicate of
what was saved. This restores everything to the way it was at the moment the
workspace was last used.

Each workspace that you use is qualified by certain workspace attributes.
These attributes can be changed without affecting the variables and defined
functions you have in your workspace, but they may affect the results of APL
statements that are being executed.

Unless you’re continuing some previous work, the workspace initially
presented to you when you establish contact with VS APL is a clear
workspace. This is a workspace in which no data has been entered, no names
defined, and in which the workspace attributes indicate standard initial values.
As you make entries, the values of some of these attributes change. This may
happen implicitly as functions are being executed or as more of your
workspace is being filled up. The values of the attributes may also change
explicitly through certain system variables or system functions.

Figure 9 lists the attributes of a VS APL workspace, indicating the possible
range of values that they can assume and the standard initial values they have
in a clear workspace.

Seven of the attributes (index origin, latent expression, line counter, printing
precision, state indicator, comparison tolerance, and random link) are fully
described in the publication APL Language. The remaining attributes involve
workspace identification, size, and organization, topics that are covered in the
following discussions.

Workspaces and Libraries 37

Attribute

Name
Password
Size

Symbol Table Size

Execution Control Area

Available Work Area

State Indicator
Index Origin
Latent Expression
Line Counter

Printing Precision

Comparison Tolerance

Random Link

Possible Values

’

See “Workspace Identification’
in this section

See “Workspace Identification”
in this section

See ‘““Workspace Size” in this
section

See ‘““Workspace Organization”
in this section

See “Workspace Organization”
in this section

See ‘“Workspace Organization’
in this section

See “Workspace Organization”
in this section

Oorl

Any character vector
Integer Vector

1 through 16
0 through 2* 32

integer 1 through (2*31)-1

Value in a Clear WS
CLEAR WS
None

Depends on virtual
machine size

256

512

Depends on virtual

machine size
Empty

Empty
Empty

10
1E713

7*5

1The value of JR L is changed implicitly by the ? primitive functions.
Figure 9. VS APL Workspace Attributes

Can Be Changed By

JWSID
)SAVE

JLOAD
J)CLEAR

)SYMBOLS

number

)STACK number

Changed via user
action

Changed via user
action

0I O<«number

0L X<«character
vector

Changed via user
action

0P P<«number
0C T<number
0R L <number!

Value Returned By
JWSID

YJWSSIZE
)SYMBOLS
)STACK
OwA

)SI
)SINL

0ro
0LXx

0orLc

OppP
ocr
ORL

Workspace Identification

Passwords

Each workspace in VS APL is identified by a library number and a name.
Library numbers are discussed in ““The Library” later in this section.

A workspace name can be any combination of letters and numbers beginning
with a letter. It cannot contain blanks, underscored letters, or special

characters and should not be more than eight characters long. (Longer names
are truncated on the right.)

In addition to an identification, a workspace may have a read or write
password associated with it. A read or write password is associated with a
workspace if it resides on a virtual disk that is password-protected. This is
only true for workspaces stored in a project library. Read and write passwords
are assigned to virtual disks when your system is installed, and once assigned
cannot be changed by you. (For further infomation on virtual disks, see
“Workspaces and Libraries in the CMS Environment™ later in this section.)

If a workspace is stored in a project library that is protected by a read
password, any system command that requests reading from the project library
(the commands)LOAD,)COPY, YPCOPY and)L IB) must include the
proper read password. If a workspace is to be saved on or dropped from a
virtual disk that is protected with a write password, the system commands
)SAVE or) DROP must include the proper write password; for a save
operation, if the workspace already is associated with the proper write
password, no password is required in the) SAVE command.

38 VS APL for CMS: Terminal User’s Guide

Workspace Size

Workspace Organization

For example, the following command drops a workspace from a project
library that is protected with the write password SECRET:

JDROP 98226 TEST:SECRET

If you fail to specify the correct password when required, you will be
prompted for one by the system.

To determine which workspaces, if any, require a password when referenced,
ask your system administrator.

Unless you change it, the size of your active workspace corresponds to the
size of your virtual computer minus whatever is taken up by VS APL.

If you want to increase the size of your active workspace above this size, you
must increase the size of your virtual computer. To do this, you must issue the
VM/370 DEFINE command as described in the VM /370: CP Command
Reference for General Users. The maximum workspace size that you can
receive is 12 million bytes.

You can, however, directly control the size of your active workspace within
the limits created by the virtual machine size through the system commands:

YJCLEAR size
and
YLOAD wsid size

The command) CLEAR size activates a clear workspace whose size is the
value of size. The command)LOAD wsid size activates a workspace whose
identification is represented by wsid and whose size is the value of size. The
system will add some area to your size specification for its own needs so the
size allocated is somewhat greater than you specify. The minimum size that
you may specify is 17,500.

You can determine the size provided by the system for your active workspace
by issuing the system command:

JWSSIZE

You can also issue the command) QUOTA to determine the default size of
your active workspace. Under CMS this is also the maximum size that you
can specify.

A workspace is divided into a number of separate areas in which different
types of information are contained. Aside from controlling the overall size of
your active workspace, you also can control the size allotted to specific areas
of the workspace. This is particularly useful when a lack of space in one or
another workspace area halts the progress of your work.

Figure 10 illustrates how the active workspace is divided by the system and
the means you have available to monitor and control the size of these areas.
Three areas are shown: the symbol table with its accompanying command
)SYMBOLS, the execution control area with its accompanying command
)STACK and the dynamic storage area with its accompanying system
variable OWA.

Workspaces and Libraries 39

Symbol Table
) SYMBOLS
Execution Control Area
) STACK
Dynamic Storage Area
F [JwaA

Figure 10. Organization of a Workspace

The symbol table is used by VS APL to keep track of names occurring in the
workspace. In a clear workspace, the number of entries permitted in the table
is 256. '

If you want to change the number of symbols accommodated in the symbol
table, you may issue the command:

YSYMBOLS number

where number is the number of symbols you want accommodated in the
table. You can issue the) SYMBOLS number command only while your
active workspace is clear.

At any time during your session with VS APL, you can determine both the
maximum number of entries that can be included in the symbol table and the
current number of names in use, through the system command:

)SYMBOLS

The execution control area is used to contain information that is generated
during function execution. In particular, the execution control area contains
the state indicator which indicates the progress of function execution. (In a
clear workspace the state indicator is empty.) '

A clear workspace contains an execution control area that can accommodate
512 entries. You can modify the number of entries permitted in the execution
control area through the system command:

)STACK number
where number is the number of entries to be permitted.

If the) STACK command is issued without a number, the currently allowable
number of entries in the execution control area is displayed.

40 VS APL for CMS: Terminal User’s Guide

The Library

Private Libraries

Project Libraries

The remaining area, sometimes called the dynamic storage area, is the area in
which data, function definitions, and group definitions are kept. Unlike the
symbol table and the execution control area, the size of the dynamic storage
area cannot be explicitly controlled. However the size of the dynamic storage
area can be indirectly increased or decreased by respectively decreasing or
increasing the size of the symbol table and execution control areas. Similarly,
the size of the dynamic storage area will increase or decrease as the total size
of the workspace is increased or decreased. As work progresses, you may find
it useful to determine how much dynamic storage area is still unused. At any
time during your work, you may determine the amount of dynamic storage
remaining available by displaying the system variable OWA.

Inactive workspaces that you or other users of VS APL have saved are stored
in libraries which are identified by number. Libraries are classified as private,
project, or public depending on their accessibility to users of the system.

Everyone who uses VS APL under CMS owns a private library, may have
access to a project library and has access to all public libraries.

As a user of VS APL under CMS, you own a private library which is available
only to you. You can store copies of your active workspace there, retrieve
copies of stored workspaces from it, display its contents, or drop workspaces
from it when you no longer need them.

Any reference you have to a workspace in your private library is made using
its workspace name. No library number need be supplied. You can, however,
optionally specify the number 1001. For instance, either of the following
commands could be used to retrieve a copy of a workspace named GAME S
stored in your private library:

JLOAD GAMES
J)LOAD 1001 GAMES

A project library is intended for users who want to share workspaces. If you
have full access to a project library, you can perform any of the operations
that you can perform on your private library.

Any reference you have to a workspace in a project library is made using the
library number of the project library and the workspace name. Additionally,
the system administrator may have assigned separate read or write passwords
to the virtual disk on which the project library resides. If so, any reference
you have to a workspace in the project library must indicate the proper read
or write passwords. (For further information, see ‘“Passwords” earlier in this
section.) For instance, the following command is used to copy the object
ITEM from the workspace ACCOUNTS in project library 200; ACCOUNTS
is protected with the password PSW:

)COPY 200 ACCOUNTS:PSW ITEM"

Workspaces and Libraries 41

Public Libraries

A public library is available to all users of VS APL under CMS. You may list
the contents of a public library or retrieve copies of workspaces stored there.
If you are not allowed to save or drop workspaces in a public library, you can
request your system administrator to perform these operations for you.

Any reference you have to a workspace in a public library is made using the
library number of the public library and the workspace name.

Workspaces and Libraries in the CMS Environment

Although your interaction with VS APL operates in terms of workspaces and
libraries, CMS organizes these collections of information as files. To CMS,
each workspace is a CMS file, so that a library is simply a collection of files.

For the most part, this internal representation will not be apparent to you.
However, if you want to make use of the facilities of VM/370 to tailor your
virtual computer, you should understand the CMS file concept. For further
details, refer to the VM /370: CMS User’s Guide.

CMS Files and Virtual Disks

In CMS, a file is a logically related group of records that is defined via CMS
commands. Each CMS file resides on a virtual disk, that is a logical
subdivision of a real disk. When you logon, VM/370 logically attaches one or
more virtual disks to your virtual computer. Each disk is identified by a letter
and an address. The A-disk, specifically, contains your private library and
most of your file operations cause the system to read from or write to this
disk.

Each CMS file on a virtual disk is identified by a filename, a filetype, and a
filemode. The filename, which is limited to eight characters, simply names the
file. The filetype indicates how the file functions in the CMS system. For
instance a filetype can typically be a MODULE file containing object
programs or a LISTING file containing program listings. The filemode
indicates which disk the file is on.

VS APL Virtual Disk and File Assignments

CMS organizes VS APL workspaces in private, project and public libraries as
follows:

 Private Libraries—Each workspace in your private library is a file on your
A-disk. Each of these workspaces has a filename that is the same as its
workspace name, a filetype of VSAPLWS, and a filemode of A.

» Project Libraries—Each workspace in a project library is a file on the
G-disk having address 197. Each project library workspace has a filename
that is the same as its workspace name, a filetype composed of the letter W
and a seven-digit library number (for instance W0000101 for library 101),
and a file mode of G.

« Public Libraries—FEach workspace in a public library resides on a Y-disk
l (unless the library is defined on another disk by your installation). The
filename and filetype of a public library workspace is the same as a project
library workspace. The filemode of a public library workspace is Y.

42 VS APL for CMS: Terminal User’s Guide

SYSTEM COMMANDS

This section describes the system commands available when you use VS APL
under control of CMS. Through system commands you can:

« Monitor and control the content and attributes of the active workspace.
« Monitor and control the contents of libraries.
« Communicate messages to other terminals.

« Sign off VS APL, CMS, and VM/370.

Using System Commands

To use system commands you simply enter them at your terminal just as you
enter APL statements. System commands cannot be used in APL expressions
and cannot be executed as part of or input to a function definition. Otherwise,
a system command can be entered any time you are in contact with VS APL,
in which case it is executed immediately. System command names must be
entered as shown below, without truncation or extension.

System Command Types

System commands can be grouped into five types based on the kinds of
operations they perform:

¢ Library Control Commands, which are used to control the contents of
libraries.

« Workspace Control Commands, which are used to control the contents and
attributes of the active workspace.

« Inquiry Commands, which are used to return information about libraries
and the active workspace.

o Communication Commands, which are used to communicate information
to other terminals.

« Sign-Off Commands, which are used to sign off the system.

Library Control Commands

Library control commands are used to control the contents of libraries. There
are two system commands that belong in this category:) SAVE, which saves
a copy of the active workspace in a library, and) DROP, which drops a
workspace from a library.

System Commands 43

Saving the Active Workspace: The)SAVE Command

You can save a copy of your active workspace by issuing the following
command:

VSAVE wsid: password
where:

wsid
is a workspace identification to be assigned to the active workspace before
saving. If omitted, the workspace identification currently associated with
the active workspace is retained. If the workspace does not have a name,
wsid must be specified.

.
.

is an optional separator, required only when a password is indicated.

password
is required only if the workspace is to be saved in a project library; the
password is the write password, if any, associated with the virtual disk on
which the library resides. If the library is not a project library, any
password specification is ignored. The system will prompt for the correct
password if it is not specified when required.

When the) SAVE command is issued, a copy of the active workspace is
stored in the library indicated by the current workspace identification. If wsid
is specified, the current workspace identification is changed to the one
indicated. ‘

When you save a copy of your active workspace, all the attributes of the
active workspace are retained by the stored copy. In particular, the library
number and workspace name are stored with the copy, and the present size of
the active workspace becomes the size of the copy. Most important, all the
objects in the active workspace (functions, variables, and so on) retain their
values in the stored copy (any shared variables are saved with their most
recent values).

Saving a copy of your active workspace does not destroy the original. While a
copy now exists in a library, the original is still available until you activate
another workspace or sign-off.

After a successful save operation, the system responds with a message
showing the time and date when the save operation was performed.

Figure 11 illustrates two instances of saving. In the first case, a copy of an
active workspace named TABLES is saved with no change in its workspace
identification. Notice that the response returned by the system includes the
name of the saved workspace. In the second case, a copy of the active
workspace is saved with a new workspace identification, a write password is
required for the save operation.

)SAVE :
11:15:27 07/06/76 TABLES

)SAVE 123456 NEWNAME:ABC
14:22:01 11/12/77

Figure 11. Using the)SAVE Command

Saving is not permitted when the workspace identification given in the
command matches an identification of an existing saved workspace but does

44 VS APL for CMS: Terminal User’s Guide

not match the identification of the active workspace. In other words, if you
attempt to save a workspace named TEST with the command

)SAVE 75 NEWNAME, and NEWNAME already exists in library 7 5, the
save operation will not be executed. This restriction prevents you from
inadvertently overwriting one workspace with another. If you want to
overwrite the workspace, you have to first change the identification with the
)WSID command before you attempt to save it.

Because the) CONTINUE command saves a workspace named
CONTINUE in your library, you should avoid using CONTINUE explicitly
as a workspace name in a) SAVE command. Using) SAVE CONTINUE
might result in overlaying a previous CONT I NUE workspace that has been
saved as the result of a forced ending.

You may not save a workspace in a public library directly. If you want a
workspace saved in a public library, see your system administrator.

When a) SAVE command is issued for a workspace that already exists in the
library, a copy of the active workspace is saved as a temporary file having the
same filename, and a filetype of APLTMPWS. The old workspace filename is
erased and the temporary file is renamed to the old workspace name. This
procedure reduces the possibility that a workspace will be lost due to a system
failure during a) SAVE.

Note: Enough library space must be available for both the old and temporary
workspace files. If your library has insufficient space, you may)DEOP the
old workspace and then re-issue the)SAVE—at somewhat greater risk.

The)LOAD,)LIB,)COPY, and)PCOPY commands ignore the existence
of a temporary file.

Dropping a Workspace from a Library: The)DROP Command
You can drop a workspace from a library by issuing the command:
JDROP wsid: password
where:

wsid
is the workspace identification of the workspace to be dropped.

is an optional separator, required only when a password is indicated.

password
is required only if the workspace to be dropped resides in a project library;
the password is the write password, if any, associated with the virtual disk
on which the library resides. If the library is not a project library, the
password is ignored. The system will prompt you for the correct password
if it is not specified when required. A temporary workspace file with the
same workspace identification will also be dropped. See the)SAVE
command for a description of the temporary workspace file.

The system responds with a message indicating the time and date the
workspace was dropped. For example, to drop a workspace named
FINANCE from your private library, you specify:

)DROP FINANCE
14:22:27 07/10/77

System Commands 45

If you want to drop the workspace ACCOUNT from project library 995053
associated with write password VS202, specify:

)DROP 995053 ACCOUNT:VS5202
14:07:13 07/08/77

You may not drop a workspace from a public library directly. To have a
workspace dropped from a public library, see your system administrator.

Workspace Control Commands

Workspace control commands are used to change the contents and attributes
of the active workspace. The workspace control commands are:

+)LOAD which retrieves a copy of a saved workspace and brings
it into the active workspace.

«)COPY which copies global objects from a stored workspace into the
active workspace; the active workspace is not protected.

e)PCOPY which copies global objects from a stored workspace into the
active workspace; the active workspace is protected.

+)GROUP which gathers global objects in the active workspace into a
group or disperses a group.

«)CLEAR which activates a clear workspace.
+)ERASE which erases global objects from the active workspace.

«)WSID which changes the workspace identification of the active
workspace.

«)SYMBOLS which changes the number of entries allowed in the symbol
table area of the active workspace.

«)STACK which changes the number of entries allowed in the execution
control area of the active workspace.
Retrieving a Workspace from a Library: The)LOAD Command

To retrieve a saved workspace from a library, you specify the following
system command:

YJLOAD wsid: password size
where:

wsid
is the workspace identification of the workspace to be retrieved.

is an optional separator, required only when a password is indicated.

password
is required only when the workspace to be retrieved resides in a project
library; the password is the read password, if any, associated with the
virtual disk on which the library resides. If the library is not a project
library, the password is ignored. The system will prompt for the correct
password if it is not specified when required.

size
is an optional size specification, required when you want to change the size
of your active workspace.

46 VS APL for CMS: Terminal User’s Guide

When you retrieve a saved workspace, a complete copy of the saved
workspace is brought into your active workspace. All the workspace attributes
have the values they had when the saved workspace was last active. In
addition, all the objects in the retrieved workspace (functions, variables, and
so on) retain their previous values. Any shared variables in the previously
active workspace are retracted.

In retrieving a workspace, you do not destroy the library copy. In effect, two
copies now exist, one in your library and one in your active workspace.
Unless you specifically overwrite the library copy, or the workspace is
dropped from the library, the library copy always remains intact.

If the) LOAD command is successful, the system returns a message indicating
the time and date the workspace was last saved. The system may also follow
this with the message WSSIZFE IS size if the retrieved workspace changes
the size of your active workspace and you did not explicitly define a size in
the) L OAD command. The new workspace size is indicated by size.

Figure 12 illustrates how you can use the) LOAD command to retrieve a
copy of a stored workspace. The first example in Figure 12 shows how you
can retrieve a workspace named F I NANCE from your own library. In the
second example, a password-protected workspace named GAMES is retrieved
from project library 5 7. The final example indicates how GAME S can be
retrieved and an explicit size set for the active workspace.

JLOAD FINANCE
SAVED 11:15:27 07/06/77

J)LOAD 57 GAMES:FUN
SAVED 11:10:20 12/12/77
WSSIZE IS 152412

YLOAD 57 GAMES:FUN 150000
SAVED 18:16:55 0u4/08/77

Figure 12. Using the)LOAD Command

If you specify a size in the) LOAD command that is larger than the maximum
workspace size authorized to you, the command is rejected. If you don’t
specify a size, but the workspace you specify is larger than the maximum
workspace size authorized to you, the system attempts to pare the workspace
down to the allowable limit. If all the data in the workspace cannot fit into
this smaller area, the) LOAD command is rejected. If you don’t specify a size
and the workspace size is less than the maximum workspace size authorized
to you, it is expanded to the maximum size. If you specify a size that is
insufficient to contain the workspace to be loaded, the) LOAD command is
rejected.

Copying Objects into the Active Workspace: The)COPY and)PCOPY

Commands

The system commands)COPY and)PCOPY are used to copy one or more
objects from a stored workspace into your active workspace.

)COPY and)PCOPY differ in the way they handle a copied object when
another object of the same name appears in the active workspace. The
)COPY command replaces an existing object, while the) PCOPY command
does not make the replacement.

System Commands 47

The)COPY and) PCOPY commands are specified as follows:

YCOPY wsid: password objects

YPCOPY wsid: password objects .
where:

wsid
is the workspace identification of the workspace to be copied from.

is an optional separator, required only when a password is specified.

password
is required only when the workspace to be copied from resides in a project
library; the password is the read password, if any, associated with the
virtual disk on which the library resides. If the library is not a project
library, the password is ignored. The system will prompt for the correct
password if it is not specified when required.

objects
are the names of objects to be copied. Each name must be separated by at
least one space. If no objects are listed, all global objects in the stored
workspace are assumed.

Figure 13 shows how you can use the)COPY and) PCOPY commands to

copy various objects from STORFED, a workspace stored in your library, into

ACTIVE, your active workspace. The upper portion of Figure 13 shows the

contents of STORED and ACTIVE before copying. The names within

braces are members of the group named GROUP. If you want to copy the

objects in STORED named A and GROU P without protecting objects in
ACTIVFE from replacement, the command you issue is: ‘

)JCOPY STORED A GROUP
The system responds with the date and time STORE D was last saved.

If you want to copy 4 and GROUP into ACTIVFE but you also want to
protect objects in ACT I VE from replacement, the command you issue is:

JPCOPY STORED A GROUP

The middle portion of Figure 13 illustrates the contents of ACT I VE after
execution of the) COPY command. Notice that the definition of GROUP in
STORED has replaced the definition of GROUP in ACTIVE. Notice, too,
that the values of 4 and Z are now the values of A and Z in STORED and
that the groupname C is copied into ACTI VE. When a member of a copied
group is a groupname, only its definition is brought into the active workspace,
not its members.

The lower portion of Figure 13 illustrates the contents of ACT I VE after
execution of the) PCOPY command. Notice that the definition of GROUP
and the objects A and Z are protected from replacement. The objects B and
C are copiedin ACTIVE.

To copy all the objects from a stored workspace into the active workspace,
you don’t specify any object names. For example, the following command
copies without protection all the objects from the workspace OTHER in
library 606 5:

JCOPY 6065 OTHER

48 VS APL for CMS: Terminal User’s Guide

STORED and ACTIVE Before Copying:

STORED ACTIVE
NAMES VALUES NAMES VALUES
A 5 A 10
GROUP(B 20.2 GROUP(X 15
C groupname Y 25
Z 37.7 Z 35
ACTIVE After Issuing the Command)COPY STORED A GROUP:
ACTIVE
NAMES VALUES
A 5
X 15
Y 25

GROUP(Z 37.7
B 20.2
C groupname

ACTIVE After Issuing the Command)PCOPY STORED A GROUP:

ACTIVE
NAMES VALUES
A 10
GROUP(X 15

Y 25

Z 35
B 20.2
C groupname

Figure 13. Using the)COPY and)PCOPY Commands

The following command copies all the objects in OTHER while protecting
objects in the active workspace from replacement:

YPCOPY 6065 OTHER

When you copy objects from a stored workspace you should be aware of the
following:

« Shared variables that are replaced by copied objects are retracted.

« If there is not enough room in your workspace, some of the objects may
not be copied.

« If copying creates more symbols than can be accommodated in the symbol
table, some of the objects may not be copied.

« Any attempt to copy an object with the same name as a halted function (a
function that has not completed execution) will cause the message SI
DAMAGE to be printed.

System Commands 49

Grouping Items Together: The JGROUP Command

You may find it convenient at times to group the names of related items
together in your workspace. You can form a group (or redefine or extend one
you have already created) through the following system command:

YJGROUP groupname names
where:

groupname
is the name to be associated with a newly-created group or the name of an
existing group to be modified.

names
is an optional list of names to be associated with groupname. If specified,
each name listed must be separated from a preceding name by at least one
space.

The) GROUP command can be used in three ways:

« If you want to create a new group, you specify) GROUP groupname
names. The names in names are grouped together under the name
groupname. If a group named groupname already exists, the new group
definition replaces any previous group definition.

« If you want to add one or more names to an existing group, you specify
)GROUP groupname groupname names. The names in names are added
to the definition of groupname.

« If you want to disperse a group, that is disassociate a groupname from a list
of names, you specify) GROUP groupname.

Suppose, for example, you have three weather forecasting functions
PRECIP, BAROM, and TEMP. At your option, you can group these names
under a groupname WEATHER as follows:

JGROUP WEATHER PRECIP BAROM TEMP

If you want to add the names MEAN and AV G to the existing definition of
WEATHER, you specify:

JGROUP WEATHER WEATHER MEAN AVG
When you want to disperse the group WEATHER, you simply specify:
JGROUP WEATHER

The names you choose as a groupname cannot already be in use as a global
variable or as a defined function name. If the name is already in use in this
way, any attempt to specify the name as a groupname, is rejected.

Clearing the Active Workspace: The)CLEAR Command

The) CLEAR command is used to discard all the objects contained in your
active workspace. The command is specified as follows:

YJCLEAR size
where:
size
is an optional size specification that is used to control the size of the
cleared active workspace.

50 VS APL for CMS: Terminal User’s Guide

When you specify) CLEAR, all the objects in the active workspace are
erased, any shared variables are retracted, and all the attributes of the active
workspace are set to the standard values shown in Figure 9 in the section
“Workspaces and Libraries.”” In particular, the size of the active workspace is
set to a default value.

When you specify)CLEAR size, your active workspace is cleared and its
size is changed to a value indicated by size. The system adds a certain amount
of space to your size specification for its own needs. If the size you specify is
larger than the maximum allowable size, the command is rejected. (You can
determine this maximum by issuing the)QU0TA command.)

In response to the command) CLEAR, the system returns the message
CLEAR WS. This is followed with the message WSSIZE IS size, if
clearing the active workspace changes its size. The value size is the current
size of the active workspace. If the) CLEAR command is specified with a
size operand, the system returns the message CLEAR WS, only.

Figure 14 illustrates how the active workspace can be cleared. In the first
example shown, no workspace size is explicitly specified. In the second
example shown, the workspace size is explicitly specified.

JCLEAR
CLEAR WS
WSSIZE IS 73000

JCLEAR 100000
CLEAR WS

Figure 14. Using the)JCLEAR Command

Erasing Objects in the Active Workspace: The)ERASE Command

You can erase any global variable, globally defined function, or group in your
active workspace with the command:

JERASE objects
where:

objects .
are the names of one or more objects (global variables, defined functions,
or groups) to be erased; each indicated object is separated from another by
at least one space.

Suppose, for example, your active workspace contained a global variable 4, a
function MATH, and a group named GRP1, these objects would be erased by
the specification:

YERASE A MATH GRP1

When a group is erased all the objects named in the group are erased with it.
If one of the objects in a group is, in turn, the name of a group, its definition
is erased but not its members. To erase a group without erasing its members,
use the) GROUP command.

When you use the) FERASE command, be aware of the following:

« If you erase an object that has been offered for sharing, the share offer for
the object is retracted.

System Commands 51

« If you erase a suspended function (a function that has not completed
execution) the execution of the suspended function or any function
awaiting the suspended function’s completion cannot be resumed.

Identifying the Active Workspace: The)WSID Command
You can assign an identification to your active workspace as follows:
YWST D wsid : password
where:

wsid
is the workspace identification to be assigned to the active workspace.

is an optional separator, required only when a password is specified.

password
is an optional password to be associated with the active workspace. If the
workspace is to be later saved in a project library, this password must
match the write password, if any, associated with the virtual disk on which
the library resides. ‘

When you specify the) W.SID command, any current identification that your
active workspace has, is replaced by the new identification. The system
acknowledges the identification change by displaying the message:

WAS wsid

where wsid is CLEAR WS if the workspace had no identification, or is the
previous identification that the workspace had.

If password is specified, the new password overrides any password associated
with the active workspace. Otherwise, any current password is erased.

In the following example, a new identification and password are associated
with the active workspace.

JWSID REPORTS:UPDATE
WAS 123456 REPORTS

Controlling the Symbol Table: The)SYMBOLS Command

All the names that occur in your active workspace are maintained in an area
of the workspace called the symbol table. In a clear workspace the maximum
number of entries permitted in the table is 256. This includes entries for
function and variable names, labels, names used in function definition, group
names, and names appearing in a group list.

If you want to change the number of symbols permitted in the symbol table,
“you can do so only while your active workspace is clear. In that case, you can
use the following system command:

YSYMBOLS number
where:

number
is the number of entries you want accommodated in the symbol table. The
system may increase this number slightly for its own convenience. The
number you specify must be between 10 and 8165, and the stack number
plus twice the symbols number must not exceed 16384.

52 VS APL for CMS: Terminal User’s Guide

In response to the) SYMBOLS number command, the system returns the
message:

WAS number
where number is the former number of entries permitted.

For instance, in a clear workspace you can change the number of symbols
permitted as follows:

)SYMBOLS 512
WAS 256

If your workspace is not clear, any attempt to assign a new size for the
symbol table is rejected.

The maximum value acceptable in the) SYMBOLS command also depends
on the amount of unused area in your workspace. The larger you permit the
symbol table to be, the smaller you permit the dynamic storage area to be. If
you indicate a value in) SYMBOLS so large that it doesn’t leave enough
room for a usable dynamic storage area, the command will be rejected.

Controlling the Execution Control Area: The)STACK Command

The execution control area is an area in your workspace that contains
information that is generated during function execution and editing, and
contains the state indicator, which tracks the progress of executing functions.

In a clear workspace, the number of entries that can be reserved for
temporary names and the state indicator is 512. However, you have the
option of directly specifying how many entries you want accommodated in the
execution control area as follows:

VSTACK number
where:

number
is the number of entries you want accommodated in the execution control
area. The system may increase this number slightly for its own
convenience. The number must be between 2 and 16312, and the stack
number plus twice the symbols number must not exceed 16384.

In response to) STACK number, VS APL returns:
WAS number
where number is the previous number of entries permitted.

For instance, you can enlarge the execution control area of a workspace to
650 entries from 500 entries by specifying:

)STACK 650
WAS 500

The maximum value acceptable in the) STACK command also depends on
the amount of unused area in your workspace. The larger you permit the
execution control area to be, the smaller you permit the dynamic storage area
to be. If you indicate a value in) STACK so large that it doesn’t leave
enough room for a usable dynamic storage area, the command will be
rejected.

System Commands 53

Similarly, if you specify a value for the execution control area too small to
contain the names generated by executing functions, the command will be
rejected.

Inquiry Commands

Inquiry commands are used to display the current state of the active
workspace, display the contents of libraries, and to indicate the availability of
space in libraries and in the active workspace. Inquiry commands are also
used to indicate the workspace, library, and shared variable quotas. The
inquiry commands are:

e)WSID, which displays the identification of the active workspace.

»)SYMBOLS, which displays the number of entries currently in the symbol
table and the maximum number of entries permitted.

+)STACK, which displays the number of entries currently permitted in the
execution control area.

e)WSSIZE, which displays the size of the active workspace.
e)L IB, which lists the names of the workspaces in a designated library.

»)QUOTA, which lists the values in the user profile established for
maximum and default workspace sizes, total library space, number of
shared variables and shared variable size. This command also displays the
remaining library space available for use.

«)FNS, which lists the names of the global defined functions in the active
workspace. :

o)VARS, which lists the names of the global variables in the active
workspace.

)GRPS, which lists the names of the groups in the active workspace.

) GRP, which lists the members of a designated group.

) S I, which displays the contents of the state indicator.

) SINL, which displays the contents of the state indicator with local
names.

Listing the Identification of the Active Workspace: The)WSID Command

At any time during yoﬁr session with VS APL, you may request a display of
the active workspace identification, by issuing the system command:

JWSID

In return, VS APL displays the workspace identification currently associated
with the active workspace, or the message:

IS CLEAR WS
if your active workspace has no identification.

Figure 15 indicates how a workspace identification is listed. In the first
example, a workspace is given an identification of (1484 SECRET, which
is then displayed via the) ¥.SID command. In the second example, a
workspace is saved with a new identification. When the workspace
identification is that of a private workspace, no library number is displayed.

54 VS APL for CMS: Terminal User’s Guide

Assign an identification:

YWSID 1484 SECRET
WAS CLEAR WS

What is the identification?

YWSID
IS 1484 SECRET

)SAVE UPDATE:WRITEPW
13:17:33 08/1u4/77

YWSID
IS UPDATFE

Figure 15. Using the)WSID Command

Monitoring the Symbol Table: The)SYMBOLS Command

If at some time during your work, you’re not sure of the status of the symbol
table, you can specify the following:

)SYMBOLS
In reply, VS APL displays the message:
IS max; number IN USE

where max is the current number of entries permitted in the symbol table,
and number is the number of entries that have been made so far. In a clear
workspace max is 256 and number is 0.

For instance:

JCLEAR

CLEAR WS
)SYMBOLS

IS 2563 0 IN USE
A<+57
)SYMBOLS

IS 2563 1 IN USE
JCLEAR

CLEAR WS
)SYMBOLS 350

WAS 256
JGROUP ALPHA A B C D E
)SYMBOLS

IS 3503 6 IN USE

Monitoring the Execution Control Area: The)STACK Command
If you issue the command:
)STACK

with no number following it, VS APL will display the number of entries
currently permitted in the execution control area. The value is specified as
follows:

IS number

where number is the number of entries currently permitted.

System Commands 55

In a clear workspace the value returned is 512:

JCLEAR
CLEAR WS

)STACK
IS 512

Listing the Workspace Size: The)WSSIZE Command

If you want, you can determine the size of your active workspace by issuing
the command:

JWSSIZE
For example:

JWSSIZE
176988

In a clear workspace, if not otherwise specified, the value returned by
YWSSIZE is dependent on the size of your virtual computer.

Listing the Workspaces in a Library: The)LIB Command

The)L IB command is used to generate an alphabetized list of workspaces in
a given library. The format of the command is:

YLIB libnum letters: password
where:

libnum
is an optional library number, required only if the library is not your
private library.

letters

is an optional series of letters, required when the list of workspace names is
to alphabetically follow the indicated letters.

is an optional separator, required only when a password is indicated.

password
is for project libraries only and is the read password, if any, associated with
the virtual disk on which the library resides. If the library is not a project
library, the password is ignored. The system will prompt for the correct
password if it is not specified when required.

Suppose, for instance, the following workspaces were in your library:

INDEX

FINANCE
FACTORS
ACCOUNT

If you specify)L I B, the list generated would be:

ACCOUNT
FACTORS
FINANCE
INDEX

56 VS APL for CMS: Terminal User’s Guide

If however, you specify:
JLIB FT

the list would include only those workspaces whose names begin with T or
follow alphabetically:

)LIB FI
FINANCE
INDEX

If the library to be displayed is a project library and the library resides on a
virutal disk that is protected by a read password, the password must be
specified in the) L 7B command. For instance, the following command
requests a display of project library 4065 residing on a password-protected
virtual disk; the disk has a read password of X14C:

JLIB 4065:X14(C

Listing Workspace, Library, and Shared Variable Quotas: The)QUOTA

Command

The)QUOTA command is used to list information about library, workspace,
and shared variable availability. The command is specified as follows:

)QUOTA
In response, the following message is displayed:

LIB libquota FREE remaining
WS default MAX max
SV number SIZE size

where:

libquota
is the total amount of space that you may use in your private library in
bytes.

remaining
is the remaining library space (in bytes) that you may use in libraries.

default
is the default size of the active workspace in bytes.

max
is the maximum workspace size you can request in bytes. Under CMS, this
is always the same as the default, which varies with the virtual machine
size, shared variable quota, shared memory size, and auxiliary processor
size.

number
is the maximum number of variables that can be shared. Under CMS, this
number is 8 + (8 x number of auxiliary processors currently active), or O if
no auxiliary processors are active.

size
is the size of the user’s shared memory. Under CMS, the maximum shared
variable size is about 500 bytes less than the value shown.

System Commands 57

A typical request for current library, workspace, and shared variable
availability, might look like this:

)QUOTA
LIB 500000 FREE 378000
WS 176988 MAX 176988
SV 48 SIZFE 4096

Listing the Defined Functions in the Active Workspace: The)FNS Command

You can list the names of the globally defined functions appearing in your
workspace by issuing the system command:

YENS letters
where:

letters
is a series of letters, required only when the list of function names is to
alphabetically follow the indicated letters.

In response, VS APL displays all the functions in the active workspace in
alphabetical order.

For example, if four functions, MATH, GEOG, HIST, and LANG were
defined in your workspace, the command:

JFNS
would return:
GEOG HIST LANG MATH

If you follow) FNS with one or more letters, VS APL displays only those
functions whose names follow those letters in alphabetical order:

JFNS L
LANG MATH

JFNS GI
HIST LANG MATH

JENS P
(nothing is displayed)

Listing the Variables in the Active Workspace: The)VARS Command

At any time during your terminal session, you can determine the global
variables that appear in your workspace, as follows:

YVARS letters
where:

letters
is a series of letters, required only when the list of variable names is to
alphabetically follow the indicated letters.

VS APL responds, by listing in alphabetical order, all the global variables in
the active workspace; no local variables are listed.

58 VS APL for CMS: Terminal User’s Guide

Suppose, for example, your workspace contained the global variables, AMT,
VALUE, COST, and RATE, then the command:

JVARS
would return:
AMT COST RATE VALUE

If YVARS is followed by one or more letters, VS APL displays only the
functions whose names follow those letters in alphabetical order:

JVARS V
VALUE

JVARS RAT
RATE VALUE

JVARS RAV
VALUE

Listing the Groups in the Active Workspace: The)GRPS Command

The system command) GRPS lists the names of all the groups defined in
your workspace in alphabetical order. The command is specified as follows:

YGRPS letters
where:

letters
is a series of letters, required only when the list of groupnames is to
alphabetically follow the indicated letters.

For example, in a workspace containing the groups FINFNS, ACCTFNS,
and TEMPVARS, a request to list the groups could be stated as follows:

)GRPS
ACCTFNS FINFNS TEMPVARS

Like)FNS and)VARS, the)GRPS command can be optionally followed
by one or more letters which control the group names that are printed. VS
APL displays only those group names that alphabetically follow the letters
listed in the) GRPS command:

)GRPS TEMP
TEMPVARS

JGRPS F
FINFNS TEMPVARS

Listing the Members of a Group: The)GRP Command

Suppose you have a group in your workspace, but are not sure of its members.
The way you can receive this information is by issuing the system command:

)GRP groupname
where:

groupname
is the name of the group you are interested in.

System Commands 59

In response, the system displays the members of the group you specify. There
is no response if the group does not exist in your active workspace:

JGRP FINANCE
GROSS NET

The group named FINANCE is defined with members GR0OSS and NET.

JGRP MASTER
(nothing displayed)

The indicated group named MASTER does not exist in the workspace.

Displaying the State Indicator: The)SI and)SINL Commands

One of the items maintained in your active workspace is a state indicator
which contains information on the progress of defined function execution. A
display of the state indicator lists the names of halted functions in order,
starting with the most recently halted first. The list may also include the
symbols [J or ¢ if operations pertaining to these symbols are pending. For
each function listed, the state indicator shows the line on which work was
halted.

With this information available, you can either:

« Resume your work by entering + n, where »n is a line number in the most
recently halted function.

o Terminate all currently halted functions by entering + for each suspended
function in the state indicator list. A suspended function is one that has not
completed execution because of some error of its own or because you
explicitly halted the function while it was executing.

A request to display the state indicator may be specified in two ways:

)SI
)SINL

If)SINL is specified, VS APL displays the state indicator with any names
local to each function.

If no functions are currently halted,) ST or) SINL returns nothing.
For example, a typical use of the).SI command is shown below:

)SI
FN3[4] ~
FN2[5]
FN1[21]

In this example, the function FN 1 called the function F' N2 which called the
function FN 3. The * after FN 3 indicates that it is suspended. The functions
FN2 and FN1 are pendent, that is, they are awaiting the completion of N3
before completing their execution. The bracketed numbers following each
function name indicate the statement to be executed in the function.

If the) STNL command were issued in the same situation, the results might
appear as follows:

‘)SINL
FN3[u4] * A
FN2[5] LABEL
FN1[2]

60 VS APL for CMS: Terminal User’s Guide

In this example, the name A4 is local to suspended function #N 3, the name
LABEL is local to the pendent function #N 2, and the pendent function FN1
has no names local to it.

If the name of a function appears in the state indicator list, you should not
attempt to erase it using the) ERASFE command or attempt to replace it
using a) COPY command. If you erase or copy a halted function, you make it
impossible to resume its execution. A function that cannot be resumed is a
damaged function.

A damaged function is displayed in the state indicator with a bracketed line
number of ~ 1:

)ST
FN3[4] =
FN2[5]
FN1[2]
JERASE FN3
SI DAMAGE
)ST
FN3[1] =
FN2[5]
FN1[2]

Sometimes editing a function in the state indicator list will also damage the
function. If the function is suspended, damage will result if:

« The function header is modified.
« The order of its labels is changed.
« Labels are added or deleted.

If the function is pendent, damage to the function will result if any line is
modified, moved, deleted, or inserted.

Communication Commands

Communication commands are used to send messages to other users of the
system and to the VM/370 operator. The communication commands are:

e)MSG, which sends a message to another user.
«)OPR, which sends a message to the VM/370 operator.
e«)MSG OFF, which suspends the reception of messages.

«)MSG ON, which restores the reception of messages.

System Commands 61

Sending Messages: The)MSG and JOPR Commands

During your session at the terminal you may want to communicate with other
users of the system or with the VM /370 operator.

You can send a message to another user by specifying the following
command:

YMSG userid message
where:

userid
is the VM user identification of the user you are directing the message to.

message
is a line of text to be transmitted. As many characters may be entered as
will fit on the remainder of the line.

You can send a message to the VM /370 operator by specifying the following
command:

YOPR message
where:

message
is a line of text to be transmitted. As many characters may be entered as
will fit on the remainder of the input line.

As soon as you enter the)¥SG or) OPR commands, your terminal will
prevent you from making further entries, so that it can print any response that
is sent to you.

The next thing you should see at your terminal is the system response:

SENT

This means that the system has posted your message for eventual delivery to
its intended recipient. It does not necessarily mean that transmission has
begun.

Once your terminal prevents you from making entries, it remains so until you
enter a weak interrupt signal (by pressing the ATTN key once).

A message can be received by you any time your terminal is set to display
output. In fact, you can receive a message during the execution of a function
or between the displayed rows of an array.

When a message is displayed, it is preceded by the time the message was sent
and the account number of the sender.

Figure 16 illustrates a typical exchange between two users of VS APL under
CMS. The first user (1234 56) initiates communication by sending a
message to user 71357 2. In response to his)5S G command, the sender’s
keyboard locks and the system displays SENT. Meanwhile, user 71357 2
receives the message preceded by a time indicator and sends a reply. In
response to his reply, his keyboard locks and SENT is displayed. User
713572 now unlocks his keyboard by entering a weak interrupt signal.

After user 123456 receives the reply, he too unlocks his keyboard and
continues his work.

62 VS APL for CMS: Terminal User’s Guide

User 123456
)JMSG 713572 YOUR PRINTING PRECISION?
SENT
15:53:25
MSG FROM 713572: I'M USING A PP OF 10
®
User 713572
15:53:07
MSG FROM 123456: YOUR PRINTING PRECISION?
JMSG 123456 I'M USING A PP OF 10
SENT
®

Figure 16. Sending Messages

If for some reason, your message cannot be posted, the SENT message will
not be displayed. You can then discard the message by entering a weak
interrupt signal. You will then receive the report:

MESSAGE LOST
You can now try to resend your message if you want.

When you send a message to another user or to the VM/370 operator, he
must be signed on to the system. If not, you will receive the report:

USER NOT LOGGED ON

You should try again later, or, if you have made a mistake in specifying the
user’s identification, you should try again now, with a corrected user
identification.

If a user has blocked messages, or is in a VM/370 disconnected state, and you
attempt to send a message to him, you will receive the report:

USER NOT RECEIVING

and your message will not be transmitted.

Blocking Messages: The)MSG OFF Command

If you do not want to be disturbed by incoming messages, you can tell the
system to block them from reaching your terminal. You can do this by issuing
the command:

)MSG OFF

Once you issue this command, no user may direct a message to your terminal.
If a user attempts to send a message your way, the report:

USER NOT RECEIVING
will be printed at his terminal and the message will not be transmitted.

If you need to communicate briefly with another user or with the VM /370
operator, you may issue the)M¥SG or) OPR commands. These commands
will temporarily restore message acceptance at your terminal. While your
terminal is locked in response to either command, you can receive messages
from other users or the VM/370 operator. However, once you enter a weak
interrupt signal, message blocking will be restored.

System Commands 63

It is important to note that message blocking remains in effect for your entire
terminal session and not simply for your session with VS APL. If you sign off
of VS APL and maintain contact with CMS, message blocking will continue
for your terminal.

Restoring Message Acceptance: The)MSG ON Command

Sign-Off Commands

If you want to restore message acceptance permanently after message
blocking, you can issue the command:

JMSG ON
No direct reply is made by the system.

Sign-off commands are used to end a session with VS APL, CMS, and
VM/370 or to end the VS APL session only and remain under control of
CMS. There are four commands in this category. Two of the commands save
a copy of the active workspace as the session is ended while the remaining
two discard the active workspace as the session is ended. The sign-off
commands are:

o)OFF, which ends the session with VS APL, CMS and VM/370; the
active workspace is lost.

« JOFF HOLD, which ends the session with VS APL only; the active
workspace is lost.

«)CONTINUE, which ends the session with VS APL, CMS and VM/370;
the active workspace is saved.

JCONTINUE HOLD, which ends the session with VS APL only; the
active workspace is saved.

For a detailed description of each of the sign-off commands, refer to “Ending
the Work Session” in the section ‘“The Work Session.”

64 VS APL for CMS: Terminal User’s Guide

AUXILIARY PROCESSING

An auxiliary processor is a program that enables you to perform special
host-dependent operations through shared variables. For instance, an
auxiliary processor gives you the opportunity of creating and referencing files
outside of your workspace. This chapter assumes that you are familiar with
shared variables, as discussed in the APL Language manual.

Five auxiliary processors are available with the VS APL Program Product as

follows:

Name Description

APL100 CP/CMS Command Processor. This processor is used to enter CP or
CMS commands.

APL101 Stack Input Processor. This processor is used to store data to be used at
the next input request.

APL110 CMS Disk I/0 Processor. This processor is used to read from or write
to disk files under control of the CMS file system.

APLI111 FILEDEF 1/0 Processor. This processor is used to read from or write
to VM/370 devices supported by the Queued Sequential Access Method
(QSAM).

APL123 CMS VSAM Processor. This processor is used to perform file

operations on entry-sequenced or key-sequenced VSAM files.

To use an auxiliary processor (if your installation has not built it into the APL
system), its name must first be specified in the APL command that initially
establishes contact with VS APL. For a description of the APL command, see
“Step 4: Contacting VS APL” in the section ‘“The Work Session.”

In addition to the auxiliary processors available with VS APL, you can write
additional auxiliary processors to handle other operations. For a description
of how you can create your own auxiliary processors, refer to V'S APL for
CMS: Writing Auxiliary Processors.

Communicating With an Auxiliary Processor

The following discussions describe general information for all the VS APL
auxiliary processors except the CMS VSAM Processor. If you are using the
CSM VSAM Processor, refer to the discussion “The CMS VSAM Processor”
later in this section for general as well as detailed information.

There are generally five steps in communicating with one of the auxiliary
processors distributed with VS APL.:

1. Initialize a variable with information needed by the auxiliary processor.
2. Offer the initialized variable for sharing with the auxiliary processor.

3. Check the variable for a return code.

4. Send and/or retrieve information via the shared variable.

5. End the procedure by retracting the variable.

VS APL includes a public library workspace A PF NS which contains, among
other items, functions that perform the steps indicated for communication
with an auxiliary processor. For further information on APFNS, see “VS
APL Functions for Auxiliary Processing” later in this section.

Auxiliary Processing 65

Initializing a Variable

Before an auxiliary processor can begin operating, there are certain items of
information it must have. For instance, the type of data conversion you need
performed or the identification of a file you want to access. You communicate
this kind of information through the following initializing assignment:

x<'argument (options) "'
where:

X
is the variable to be shared with the auxiliary processor.

argument
indicates the source or destination of subsequent operations, for instance a
filename to indicate the destination of an output operation.

(

indicates options are to follow; it should be indicated only when options
are specified.

options
indicate various processing options, for instance data conversion or
stacking order. If an option is specified more than once, the rightmost
specification applies.

)

is an optional delimiter that may be omitted if desired.

For example, the following assignment indicates a destination of CMS and
that data is to be translated into an internal APL format:

STACK<«'CMS (APL'

Certain input/output operations require two variables to be initialized. The
first variable is generally used to transmit data and is called a record variable.
The second variable is used to control or monitor data transmission and is
called a control variable.

Offering a Variable for Sharing
An offer to share a variable with an auxiliary processor is made as follows:
num 0OSVO ‘'var'
where:

num
is the number of the auxiliary processor. This number is 100 for the
CP/CMS Command Processor, 101 for the Stack Input Processor, 110 for
the CMS Disk I/0O Processor and 111 for the FILEDEF 1/0 Processor.

gsvo
is a system function used to issue shared variable offers.

"var '
is the (surrogate) name, in quotes, of the variable or variables to be shared.
When more than one variable is to be shared, each (surrogate) name can
be specified as a row in a character array. You can share up to 14 variables
with each auxiliary processor.

66 VS APL for CMS: Terminal User’s Guide

When a variable is offered for sharing, the system responds with a status
indication of the sharing operation. This status indicator is called the degree
of coupling and consists of the numbers:

« 0 if the share offer has not been made
« 1 if the share offer has been made

« 2 if the share offer has been matched by the auxiliary processor, that is
sharing is complete

If more than one variable is offered, the degree of coupling is a vector with
one element for each variable offered.

As an example of a shared variable offer, the following expression offers two
variables X and CTL to auxiliary processor 110:

110 0OSVO 2 3p'X CTL'
2 2

The response 2 2 indicates that sharing for both variables has been
completed.

Checking for a Return Code

Once a variable has been offered and matched, the auxiliary processor
inspects the argument and options specified in the variable. In response, the
auxiliary processor assigns the following return code to the variable:

« 0 or a vector whose first element is 0—the initialization values are
acceptable

« 1—the initialization values are not acceptable

If the return code is 1, correct the error by assigning a valid initial value to the
variable.

Sending or Retrieving Information through the Shared Variable

Once a shared variable has been referenced for a return code, any subsequent
reference of the variable retrieves information from the auxiliary processor.
Any setting of the variable sends data, commands, or control information to
the auxiliary processor.

For example, once a variable COMMAND has been shared with the CP/CMS
Command Processor, it can be used to issue the CP command QUERY by
specifying:

COMMAND+'QUERY USERS'

Once a record variable, RE C has been shared with the FILEDEF I/0
Processor and checked for a return code, the next reference to RE C reads a
data record from the file:

REC

(a record is returned)

Auxiliary Processing 67

Ending the Procedure

To end communication with an auxiliary processor, the shared variables are
retracted. This is done through the following system function:

OSVR ‘'var'
where:

‘var '
is the name in quotes of the shared variable to be retracted. Once a
variable is retracted, it may be reinitialized and reoffered.

The system responds with the degree of coupling that the variable had prior to
retraction.

The CP/CMS Command Processor

The CP/CMS Command Processor, auxiliary processor 100, is used to
dynamically establish contact with the control program segment of VM/370
or CMS so that you can enter CP or CMS commands.

Once CP is contacted, any command acceptable to the control program
segment of VM/370 can be issued. Once CMS is contacted, any CMS
command can be entered. Note, however, that entry of any CMS command
that requires program storage may cause an abrupt termination of the
auxiliary processor or VS APL. CMS commands that require program storage
include LOAD, LOADMOD, and START.

Output from CP commands may be canceled by signaling attention. \

Output from CMS commands may be canceled by signaling attention once,
and then entering HT. (If using a 3270, press the PA1 key twice, and then
enter HT.) Entering HT cancels CMS and APL output from the current APL
function until the next input from the terminal.

Initialization Values: The initialization arguments for communication with the
CP/CMS Auxiliary Processor are:

o CP—contact the control program segment
o« CMS—contact CMS

If no initial value is specified, or if the initial value is null, a default of CMS is
assumed.

Return Codes: If the initial value is not CP, CMS, or null, a code of 1 is
returned in the shared variable, otherwise 0 is returned.

Once the initial value is accepted, any subsequent reference of the variable
will produce a return code set by the auxiliary processor, CP, or CMS. For
further information on these codes, refer to ‘“Auxiliary Processor Return
Codes” later in this section.

68 VS APL for CMS: Terminal User’s Guide

Example: The following function COPIES uses the CP/CMS Command
Processor to request multiple copies of any printed output:

V COPIES N;MODE

[11] MODE«'CP'

[2] 100 0OSVO 'MODE'

[31] MODE«'SPOOL PRT COPY ', % N
v

In this example, the first statement indicates CP mode; the second statement
offers a variable for sharing with auxiliary processor 100. The third statement
requests the specified number of copies.

The Stack Input Processor

The stack input processor, auxiliary processor 101, is used to create a stack of
data to be used when the system is next ready to accept input.

You build the stack by assigning to a shared variable each line of data as a
character vector or scalar. Options specified when the shared variable is
initialized indicate how you want the data stacked and what type of
conversion you want applied to the stacked data.

If a strong interrupt signal is issued or a character error is detected as the
stacked data is being used, the entire contents of the stack is deleted and the
terminal opens for input.

It is important to note that the stack input processor will not stack CMS
immediate commands like HT (halt terminal output) or RT (resume typing).
These commands are executed when you enter them.

Initialization Values: The initialization values for communication with the
Stack Input Processor are:

CMS (order conversion)
where:

cMS
indicates that data is to be placed on a stack maintained by CMS. If
omitted, CMS is assumed.

(
indicates options are to follow; it should be specified only when options are
specified.

order
indicates whether the processor places the data at the beginning of the
stack (BEG or LIFO) or at the end (END or FIFO0). The default is
FIFO.

conversion
indicates the conversion to be applied to the stacked data. The conversion
options are:

o 370—limited graphic character translation from APL to EBCDIC.
Conversion is performed as indicated in Figure 17. Characters that
cannot be translated directly are transmitted as blanks.

Auxiliary Processing 69

APL EBCDIC

>
&

e
®

o
R

-0 (equivalent to })

+0 (equivalent to {)

4 e 0 > W

}only when translating from APL to EBCDIC

The following characters are common to APL and EBCDIC and are translated directly:

I A through Z, O through 9, blank < => +-.:;,?!1)(/\ | _* ', the backspace
character, the new line character, and the line feed character

Figure 17. APL/EBCDIC Conversion via 370 Conversion Option

o 192—full character translation from APL to EBCDIC. Character
mapping is provided for all 256 possible character representations in the
EBCDIC character set as indicated in Figure 31 in Appendix G.

o APL—full graphic character translation from APL to EBCDIC using an
internal code established by CMS. The characters put into the input
stack are those that VS APL would expect if the characters were
entered from the user’s terminal. In other words, on a typewriter
terminal compound characters are expanded to their constituent parts
(A becomes A, backspace, __), and on a display terminal compound
characters are translated to single EBCDIC codes.

The default is 370.
If no initial value is specified, or the initial value is null, the defaults are used.

Return Codes: If the initial value is invalid, a code of 1 is returned in the
shared variable, otherwise a 0 is returned. Once the initial value is accepted,
any subsequent reference of the variable will produce a return code set by the
auxiliary processor or CMS. For further information on these codes, refer to
“Auxiliary Processor Return Codes” later in this section.

Example: Figure 18 illustrates a function CHECKPOINT that uses the Stack
Input Processor to save a copy of the active workspace and then returns.

In execution, CHECKPOINT builds a two line stack. The first line to be
executed is the) SAVE command, which saves a copy of the active
workspace. The second line to be executed is a branch to LA BE' L, which
resumes execution. Notice that the HT and RT commands are not stacked,
instead they are used to prevent typing while the stack is being used.

70 VS APL for CMS: Terminal User’s Guide

V CHECKPOINT;S
a USE CMS STACK,LAST IN,FIRST 0OUT
S<'CMS (APL BEG'
A SHARE S AND IGNORE RESULT
S«101 0Osvo 'S!
n HALT TERMINAL OUTPUT
S« 'HT'
A RESUME EXECUTION
S« '>LABEL"
a SAVE THE ACTIVE WS
] S<«'")SAVE TEMP'
1l a SET STOP VECTOR
] SACHECKPOINT<LABEL
] a RESUME TYPING WHEN RESTARTED
]
v

(o L W e Ve W W W W W W W N W |
RPRPRPRPRPRPOO~NOOFWONRE
FWONROLILILILILIL LI L

LABEL :S<«'RT"

Figure 18. Stack Input Processor Application

The CMS Disk 1/0 Processor

Using the Control Variable

The CMS Disk 1/0 Processor, auxiliary processor 110, is used to read or
write sequentially or randomly to disk files under control of the CMS file
system.

If you want to process a file sequentially, access just one record at a time and
not examine return codes, only a record variable is required. Once the initial
value has been accepted, you can use the record variable to transmit data to
and from the file. The first reference of the record variable reads the first
record from the file; each successive reference reads the next sequential
record from the file. Each time you set the record variable, a record is
appended to the end of the file.

If you want to process a file randomly, access multiple records with one
operation, or examine return codes, you must share two variables, a record
variable and a control variable. The record variable must be offered first.

The control variable is used to monitor and control each input/output
operation. Once the initial return code is checked, each reference of the
control variable returns a four-element vector that contains the return code of
the previous input/output operation, the position of the next record to be
read, the position of the next record to be written, and the blocking factor
(the number of records to be accessed with the next operation). The auxiliary
processor initially sets the read pointer to 1; the write pointer to n+1, where
n is the number of records in the file; and the blocking factor to 1.

You have the option of respecifying the control variable before each input or
output operation. If you specify a scalar or a one-element vector, the read
pointer may be reset. If you specify a two-element vector, the read and write
pointers may be reset. If you specify a three-element vector, both pointers
and the blocking factor may be reset. If you specify a four-element vector, the
last three elements are used to reset both pointers and the blocking factor. A
subscripted assignment to the control variable can thus be used to change one
or more of the values of the control vector. If you specify a O or a negative
number as any element, the corresponding value in the control variable
remains as is. If you specify an unacceptable value (that is, a non-integer, a

Auxiliary Processing 71

vector with more than four elements, or an array), the entire control variable
remains as is.

The read pointer can be set to any positive integer. If it exceeds the number
of records in the file, an end-of-file condition occurs on the next input
operation.

If the write pointer is set to the number of an existing record, that record is
replaced by the next output operation. If the file contains variable-length
records and you replace an existing record with one of a different length, the
remainder of the file is damaged. If the conversion option is VAR, you must
ensure that the record has not changed length. The record length can change
if the variable being written has changed data type (for example, from logical
to real) during execution of VS APL.

If the write pointer is set to one more than the number of existing records, the
next output operation appends a record to the end of the file. If the write
pointer is set beyond n+1 and the file contains fixed-length records, the next
output operation appends one or more empty records followed by the
specified record to the end of the file. If the write pointer is set beyond n+1
and the file contains variable-length records, an error (return code 7) occurs
on the next output operation.

The blocking factor is always one for a file with variable-length records or
when you use conversion option VAR or APL,; if you specify a different
value, it is ignored. If you specify a blocking factor too large for the auxiliary
processor’s buffer it is ignored. Note that the acceptance of a large blocking
factor by the auxiliary processor does not ensure that a sufficient amount of
shared storage will be available when the record variable is actually
transmitted. You can decrease the time it takes to access a file with
fixed-length records by requesting more than one record per operation. For
records shorter than 800 bytes, the optimum blocking factor is the number of
records contained in one 800-byte block.

Using the Record Variable

The record variable is used to transmit records between your workspace and
the file. Once the initial return code is checked, each time you reference the
record variable, one or more records are read from the file. If the conversion
option is VAR, one record is transmitted; its shape is as described in the
record. If the conversion option is other than VAR and the blocking factor is
one, one record is transmitted as a vector. If the blocking factor is greater
than one, that number of records are transmitted as a matrix; each row is one
record. If the blocking factor is n and there are less than n records remaining,
the remaining records are transmitted as a matrix with from 1 to n—1 rows.

When you reference the record variable and end-of-file is reached or a read
error occurs, a null vector or matrix is transmitted. If you have shared a
control variable, you can differentiate these cases by inspecting the return
code in the control variable.

Each time you set the record variable, one or more records are written to the
file. If the conversion option is VAR, one record is written; the data may be
any shape. If the conversion option is other than VAR and the data is a scalar
or vector, one record is written. If the blocking factor is greater than one and
the data is a matrix, each row is written as one record; the number of rows
cannot exceed the blocking factor.

72 VS APL for CMS: Terminal User’s Guide

Initialization Values: The initialization values for communication with the
CMS Disk I/0 Processor are:

fileid(CTL FIX access conversion)

where:

fileid

(

specifies the filename, filetype and filemode of the CMS disk file to be
accessed. The default filemode is A1. An asterisk (*) can be used as the
filemode only for a file to be read. The default filetype is VMAPLCF where
c is the first character of the indicated conversion option except for a
conversion option of BYTE in which case cis Y.

indicates options are to follow; it should be specified only when options are
specified.

CTL

is specified only if this variable is a control variable. If omitted, the variable
is established as a record variable. When CTL is specified any additional
initialization options are ignored. The control variable must be shared after
the record variable is shared, it is associated with the most recently offered
record variable for which an identical fileid was specified.

FIX

if a file is to be created, this option indicates that the file will contain fixed
length records; the record length is the length of the first record written to
the file; all records subsequently written to the file must be this length. If
omitted, the file is created with variable length records. If the file already
exists, the existing record format is used.

access

indicates the type of access to be associated with the file. The access
options are:

« U—the file can be read or written.

« R—the file can only be read; any specification of the record variable
except for its initial value is ignored. If you select this option, do not set
the access control vector to control your specifications. If you do, and
then specify the variable, the system is deadlocked.

o W—the file can only be written; any reference of the record variable is
ignored. If you select this option, do not set the access control vector to
control your references. If you do, and then reference the variable, the
system is deadlocked.

The default is U.

conversion

indicates the conversion to be applied to the processed data. The
conversion options are:

¢ 370—Ilimited graphic character translation from APL to EBCDIC.
Conversion is performed as indicated in Figure 17. On output, the data
part of the variable, which must be character, is written one byte per
element; characters that cannot be translated are sent as blanks. On
input, the record is transmitted as a character variable, one element per
byte, characters that cannot be translated are accepted as the APL
character (o).

Auxiliary Processing 73

« 192—full character translation from APL to EBCDIC. Character
mapping is provided for all 256 possible character representations in the
EBCDIC character set as indicated in Figure 31 in Appendix G. On
output, the data part of the variable, which must be character, is written
one byte per element. On input, the record is transmitted as a character
variable, one element per byte.

« APL—full graphic character translation from APL to EBCDIC using an
internal code established by CMS. Compound characters are expanded
to their constituent parts. For example, 4 is converted to A, backspace,
__onoutput and __, backspace, A is converted to 4 on input. On
output, the data part of the variable, which must be.Eharacter, is written.
On input, the record is transmitted as a character variable.

« VAR—on output, the entire variable including its size, shape and type
information is written with no conversion. On input, the entire record is
transmitted.

o BIT—on output, the data part of the variable, which may be any data
type, is written, one bit per element of data; each element of data must
have a value of 0 or 1. On input, the record is transmitted as a logical
variable, one element per bit.

« BYTE—on output, the data part of the variable, which must be
character, is written with no conversion, one byte per element of data.
On input, the record is transmitted as a character variable, one element
per byte. The data conversion functions in the public library workspace
APFNS can be used to convert this information. (See “VS APL
Functions for Auxiliary Processing” later in this section.)

The default is VAR except if a filetype of VMAPLCF is specified. In this
case, the default is the conversion option whose first letter matches c
except if ¢ is Y, in which case the conversion option is BYTE.

is an optional delimiter that may be omitted if desired.

Return Codes: If the initial value of the record variable is invalid, a code of 1
is returned in the record variable, otherwise the record variable contains a
four-element vector whose first element is O.

If the initial value of the control variable is invalid, a code of 1 is returned in
the control variable, otherwise the control Variable contains a 0.

After each read or write operation, the control variable, if any, contains a
four-element vector, the first element of which indicates the return code of
the previous operation. For further information on these codes, refer to
“Auxiliary Processor Return Codes” later in this section.

Example: The following example illustrates how a CMS file containing
fixed-length 80-byte records can be read or written randomly.

Initialize the record and control variables:

REC<'OLDFILE(370 FIX'
CTL+«'OLDFILE VMAPL3F(CTL'

Offer the variables:
110 0OSVO 2 3p'RECCTL!

74 VS APL for CMS: Terminal User’s Guide

Check for return codes:

REC
01 4 1

CTL
0

Check the current status:

CTL
01 4 1

Write the fourth record:
REC«804'TABLES'
Check the current status:

CTL
01 51

Read two records starting at the third record:

CTL<«3 0 2
REC
(third and fourth records are read)

The FILEDEF 1/0 Processor

The FILEDEF I/0 Processor, auxiliary processor 111, is used to sequentially
read from or write to any VM/370 device supported by the Queued
Sequential Access Method (QSAM). The file representing the device and its
characteristics must first be specified through the CMS command, FILEDEF.
The FILEDEF command is described in the VM/370: CMS Command and
Macro Reference.

All record processing using the FILEDEF I/O Processor is done through a
record variable. Once sharing is completed and you check for a return code,

_the first reference of the record variable reads the first record from the file;
each successive reference reads the next record from the file. The first setting
of the record variable writes the first record; each successive setting writes the
next record to the file.

You may optionally share a control variable. If you share one, the control
variable can be used to check return codes for each read or write operation. If
you set a value for the control variable, it is ignored.

Initialization Values: The initialization values for communication with the
FILEDEF 1/0 Processor are:

ddname (CTL conversion)
where:

ddname
is the ddname of the device to be accessed. It must be the ddname defined
by a FILEDEF command already issued to CMS.

CTL
is specified only if this variable is a control variable. If omitted, the variable
is established as a record variable. If CTL is specified, any specified
conversion option is ignored. The control variable must be shared after the

Auxiliary Processing 75

record variable is shared; it is associated with the most recently offered
record variable for which an identical ddname was specified.

conve

rsion

indicates the conversion to be applied to the processed data. The
conversion options are:

370—Ilimited graphic character conversion from APL to EBCDIC.
Conversion is performed as indicated in Figure 17. On output, the data
part of a character vector or scalar is written one byte per element,
characters that cannot be translated are sent as blanks. On input, the
record is transmitted as a character vector, one element per byte,
characters that cannot be translated are accepted as the APL character
(°).

192—full character translation from APL to EBCDIC. Character
mapping is provided for all 256 possible character representations in the
EBCDIC character set as indicated in Figure 31 in Appendix G. On
output, the data part of a character vector or scalar is written one byte
per element. On input, the record is transmitted as a character vector,
one element per byte.

APL—full graphic character translation from APL to EBCDIC using an
internal code established by CMS. Compound characters are expanded
to their constituent parts. For example, 4 is converted to A, backspace,
__onoutput and __, backspace, A is converted to 4 on input. On
output, the data part of a character vector or scalar is written. On input,
the record is transmitted as a character vector.

VAR—on output, the entire variable including its size, shape and type
information is written with no conversion. On input, the entire record is
transmitted.

BIT—on output, the data part of a vector or scalar is written one bit per
element; each element of data must have a value of 1 or 0. On input, the
record is transmitted as logical vector, one element per bit.

BYTE—on output, the data part of a character vector or scalar is
written with no conversion, one byte per element. On input, the record
is transmitted as a character vector, one element per byte. The data
conversion functions in the public library workspace APFN S can be
used to convert this information. (For a description of APFNS, see “VS
APL Functions for Auxiliary Processing” later in this section.)

The default is VAR.

)

is an optional delimiter that may be omitted if desired.

Return Codes: If the initial value of the record variable is invalid, a code of 1
is returned in the record variable, otherwise, the record variable contains a
scalar O.

If the initial value of the control variable is invalid, a code of 1 is returned in
the control variable, otherwise the control variable contains 0.

After each read or write operation, the control variable, if any, contains the
return code of the previous operation. For further information on these codes,

refer

76 VS APL for CMS: Terminal User’s Guide

to “Auxiliary Processor Return Codes” later in this section.

Example: Figure 19 illustrates function CTOP that uses the FILEDEF I/O
Processor to read a series of cards from the card reader and print each record
on the printer.

The CMS VSAM Processor

The CMS VSAM Processor, auxiliary processor 123, is used to perform file
operations on entry-sequenced or key-sequenced VSAM files. The VSAM
files must be preallocated, and defined to CMS via a DLBL command before
they can be accessed. The DLBL command is described in VM /370: CMS
Command and Macro Reference.

The auxiliary processor does not convert any data transferred to or from a
VSAM file. Each VSAM record brought into the workspace appears as a
character vector. Data to be transferred from the workspace to the VSAM file
must be in the form of a character vector. The data conversion functions in
the public library workspace APFN S can be used to simplify conversion of
various System/370 data types.

Communicating with the CMS VSAM Processor

Communication with the CMS VSAM Processor is made through a shared
variable called the control variable. In certain operations, a second shared
variable called the data variable is also required.

In general, there are four steps in the communications process:

1. A control variable is offered for sharing with the auxiliary processor. If
data is to be transferred, a data variable is also offered.

2. The VSAM file is opened for processing.

V CTOP;CMS;SVPRINT ; SVREAD;CARD
(11 =~ PREPARE TO ISSUE FILEDEF COMMANDS
[2] 100 0OSvo 'CMS!
(31 CMS<'FILEDEF CTOPOUT PRINTER (RECFM VA BLKSIZE 137"
(41 CMS<'FILEDEF CTOPIN READER (RECFM F BLKSIZE 80'
(5] o INITIALIZE A RECORD VARIABLE FOR PRINTER
(6] SVPRINT<'CTOPOUT (370"
(7] o INITIALZE A RECORD VARIABLE FOR CARD READER
(81 SVREAD<«'CTOPIN (370"
[9] =~ OFFER RECORD VARIABLES
[10]1 111 0OSVO 2 7 p'SVPRINTSVREAD '
(111 an CHECK FOR INITIALIZATION ACCEPTANCE
(121 ~»(SVPRINTVSVREAD)/O
[13] a CHECK FOR END OF FILE
(141 LOOP:>(0=pCARD«SVREAD)/O
[15] a PRINT CARD
[16] SVPRINT<«' ' ,CARD
171 ->LOOP
v

Figure 19. FILEDEF 1/0 Processor Application

Aucxiliary Processing 77

3. A request for a file operation is assigned to the control variable; any data
to be processed is transmitted through the data variable. This step is
repeated if additional data is to be transferred.

4. The VSAM file is closed.

Fimctions are included in the public library workspace APFN S to perform
these steps. For further information on APFNS, see “VS APL Functions for
Auxiliary Processing” later in this section.

Offering a Variable for Sharing with the CMS VSAM Processor

An offer to share a variable with the CMS VSAM Processor is made as
follows:

123 0OSVO ‘'var'
where:

123
is the number of the CMS VSAM Processor.

"var '
is the (surrogate) name, in quotes, of the variable(s) to be shared. When
more than one variable is shared, each (surrogate) name can be specified
as a row in a character matrix.

The control variable (surrogate) name must begin with the letters CTL,; its
total length is limited to eleven characters. The (surrogate) name of the data
variable must begin with the letters DAT; it too is limited to eleven
characters.

If data is to be transferred in a VSAM file operation, a control and data
variable pair must be shared. Ignoring their first three characters, the
(surrogate) names of the control and data variable pair must be identical. You
can simultaneously open and access multiple VSAM files by sharing multiple
control variables or multiple pairs of control and data variables with the
auxiliary processor. Up to a maximum of 14 control variables or 7 pairs of
control and data variables can be shared. The suffixes of the control and data
variable (surrogate) names must be unique for each file which is open
simultaneously.

The response to a shared variable offer is a degree of coupling:
o 0 if the offer has not been made
« 1 if the offer has been made

« 2 if the offer has been matched by the auxiliary processor, that is sharing is
complete

If more than one variable is offered, the degree of coupling is a vector with
one element for each variable offered.

The auxiliary processor also sets an access control vector for the control
variable to 1 1 1 1. This means that two successive specifications of the
control variable by you require an intervening reference by the auxiliary
processor and that two successive references by you require an intervening
specification by the auxiliary processor. If this sequence is not adhered to, you
may be interlocked, that is, your terminal may be locked due to an access
control violation. To break the interlock, enter a strong interrupt signal.

78 VS APL for CMS: Terminal User’s Guide

Opening a VSAM File

The access control vector for the data variable is set to 0 0 0 O by the
auxiliary processor. This setting allows more freedom in specifying and using
the data variable.

A VSAM file is opened by assigning one of the following character vectors to
the control variable:

'OR fileid ' Open the file for reading
'OW fileid ' Open the file for writing new records or for reading

'0U fileid ! Open the file for updating (read and update existing
records), writing new records, reading, or erasing

The item fileid represents the file identification of the VSAM file as follows:
filename : password
where:

filename
is the ddname specified for the VSAM data set via a DLBL command
during the session. :

is an optional separator, that is specified only if a password is supplied.

password
is an optional VSAM password associated with the VSAM file. If you try
to open a password-protected file but forget to supply the password or
supply an incorrect password, the auxiliary processor will reply with an
error message. (Passwords are ignored if specified for VSAM files residing
on CMS disks.)

Requesting VSAM File Operations

Once a VSAM file has been opened, you can request various file operations
to be performed on it. These requests, called service requests, are made by
assigning an appropriate character scalar or vector to the control variable. If
data is to be transferred, it is transmitted through the data variable. When the
data is transferred, it may be in one of several System/370 data types such as
EBCDIC or binary. To convert data to and from these data types, one of the
functions in the public library workspace A PF'N.S may be used.

Figure 20 lists the operations that can be performed on a VSAM file, the
service request associated with the file operation, and the VSAM file type on
which the operation may be performed.

The item key in Figure 20 represents the full key of a VSAM key-sequenced
record. The key and the colon that precedes it are specified only when an
operation is to be performed on a key-sequenced VSAM file. Any blanks
between the colon and the ending quote are part of the key.

When a service request is issued, it results in a two element return code in the
control variable. If both elements of the return code are zero, the requested
operation was successful, otherwise the operation was not successful.
Although it is not a requirement, it is good practice to examine the return
code in the control variable after issuing each service request. For further
information on return codes, refer to ‘“Auxiliary Processing Return Codes”
later in this section.

Auxiliary Processing 79

Operation

Sequential Read

Sequential Read
for Update

Direct Read

Direct Read
for Update

Write a Record

Erase a Record

Position Record

Service Request

IR'
'RU'

'"Rikey'
'"'RU :key!

"W

'Eikey!
'POl:keyl!

VSAM File Type

Entry-sequenced
Key-sequenced

Entry-sequenced
Key-sequenced

Key-sequenced

Key-sequenced

Entry-sequenced
Key-sequenced

Key-sequenced

Key-sequenced

Pointer for
Sequential Read

Figure 20. VSAM File Operation Service Requests

The following discussions elaborate on the CMS VSAM service requests and
cover items to be aware of when you request VSAM file operations through
the CMS VSAM auxiliary processor. In these discussions, the item cvar is
used to represent the control variable name and the item key, as before,
represents the full key of a VSAM key-sequenced record. The actual control
variable name and record key should be supplied when you issue your service
requests.

Read: There are two types of read operations that can be performed through
the CMS VSAM Processor: sequential and direct.

A sequential read operation directs the processor to return records in an
ordered sequence. Sequential read operations are designed for
entry-sequenced or key-sequenced files. Records in an entry-sequenced file
are returned in the order they are encountered in the file. Key-sequenced
records are returned in ascending order based on the value of a key embedded
in each record.

When you read sequentially from a key-sequenced file, you have the option of
explicitly indicating the first record (based on key) to be read in sequence.
This is further described under ‘“Position Record Pointer” later in this section.

In a direct read operation, there is no ordered sequence. Instead, each record
is read from the file based on a record key supplied in the read request. Direct
read operations can be performed only on key-sequenced VSAM files.

To read sequentially from a VSAM file, issue the following service request:
cvar<'R!
To read directly from a VSAM file, issue the following service request:
cvar< 'R :key'

For either sequential or direct reading, the file can be open for reading,
writing, or updating.

After a sequential or direct read operation is successfully completed, the
transferred data is contained in the data variable.

Write: The write operation is designed for entry-sequenced or key-sequenced
files. Records are written to an entry-sequenced file in the order they are
specified. Key-sequenced records are written such that they can later be

80 VS APL for CMS: Terminal User’s Guide

retrieved by key value; the key must be appropriately embedded in each
record. (For a description of VSAM record keys, refer to the VSAM
Programmer’s Guide.)

To write to a VSAM file, issue the following request:
cvar<'W'

The file must first be opened for writing or updating and the data variable
must be specified before a write request is issued.

When writing to a VSAM file, be aware of the following:

« When you write to an empty key-sequenced file (one that contained no
records when you opened it) the records must be written in ascending key
sequence. If the file is re-opened (and not empty) the records do not have
to be written in ascending key sequence.

« Any attempt to write over an existing record in a VSAM file will cause an
error. This can however be done as part of an update operation.

Update: Updating a record in a VSAM file is a two step process. Once the
file is opened for updating, you must:

1. Read for update the record to modified.
2. Write a new record over the existing record.

A VSAM file can be read for updating either sequentially or directly. A
sequential read for update can be requested for an entry-sequenced or
key-sequenced VSAM file. A direct read for update can be requested for a
key-sequenced VSAM file only.

To sequentially read a VSAM file for update, the following service request is
issued:

cvar<'RU"

To directly read a VSAM file for update, the following service request is
issued:

cvar< 'RU :key'

When either read operation is completed, the transferred data is in the data
variable.

To write the updated record, assign the record you want written to the data
variable and issue the following service request:

cvar< ' W'
The data to be written must be specified before the write request is issued.
When you update a VSAM file, be aware of the following:

« If the file to be updated is a key-sequenced file, the key of the new record
must have the same value as that of the record to be written over.

« If you update an entry-sequenced file, you can’t change the length of the
record.

Erase: You may erase a record in a VSAM file only if the file is a
key-sequenced file and you have previously opened the file for erasing. In
that event, the service request you issue is the following:

cvar< " E s key!

Auxiliary Processing 81

Closing a VSAM File

Examples

Example 1

Position Record Pointer: VSAM maintains an internal record pointer that
points to the next record to be processed in a sequential read operation. You
may explicitly position the internal pointer for sequential read operations on
key-sequenced files. To position the record pointer, issue the following service
request:

cvar< "' PO : key!

The key is optional. If it is omitted in the service request, the record pointer is
positioned at the beginning of the file.

Once a VSAM file operation is completed, the file should be closed. A VSAM
file is closed by assigning the character ' C'' to the control variable or by
retracting the control variable.

The following examples illustrate how to use the CMS VSAM Processor. The
examples assume that a DLBL command has been issued for the VSAM file
to be accessed.

The following example illustrates how you can sequentially read records from
a VSAM file. The file is entry-sequenced and has an identification of
VFILF:A1:

Offer a control and data variable for sharing:

123 OSVO 2 up'CTLXDATX'
2 2

Open VFILE for reading:
CTLX<'OR VFILE:A1"
Check for a return code:

CTLX
00

Issue a sequential read request:

CTLX+'R"
CTLX
00
Assign the record to an unshared variable; the data is in the data variable:
VALUE<«DATX
Read the next record and assign to an unshared variable:
CTLX<'R"
CTLX
0 0
VALUE<VALUE ,DATX

82 VS APL for CMS: Terminal User’s Guide

Close the file:

CTLX<+'(C!
CTLX
00

At this point you may separate and convert the contents of VALUE to an
APL format using an appropriate function in the A PFN S workspace.

Example 2

Figure 21 illustrates a function, KEYUPDT, that updates a record in a
key-sequenced file. The file identification is in the variable FILE I D; the
record to be updated has an EBCDIC key whose value is in the variable
NUM; while the new record is in the variable RECORD.

V NUM KEYUPDT FILEID;CTLX;DATX
(1] ~a OFFER A CONTROL AND DATA VARIABLE AND CHECK COUPLING
[21] +(2#123 0OSVO 2 4 p 'CTLXDATX')/ERR
[31 =a OPEN FILE FOR UPDATE AND CHECK RETURN CODE
Cu] CTLX« '0U ' ,FILEID
[5] +~(02CTLX)/ERR
[6]1 ~n READ KEYED RECORD FOR UPDATE AND CHECK RETURN CODE
(71 ~=a FUNCTION ECO IN WS APFNS USED TO CONVERT KEY TO EBCDIC
(8] CTLX« 'RU:' , ECO NUM
[91] +(0#CTLX)/ERR
[10]) » WRITE NEW RECORD AND CHECK RETURN CODE
(111 DATX<«RECORD
[12] CTLX«'W'
(131 ~+(0=CTLX)/CLOSE
[(14] ERR: 'KEYUPDT ERROR'
[(15] a CLOSE THE FILE
[16] CLOSE:CTLX+'C"
v

Figure 21. A Function That Updates a Key-Sequenced Record

Auxiliary Processing 83

Auxiliary Processor Return Codes

Figure 22 lists and describes the codes that may be returned by the CP/CMS
Command Processor, the Stack Input Processor, the CMS Disk I/0
Processor, and the FILEDEF I/0 Processor. With the CP/CMS Command
Processor and the Stack Input Processor, you reference the shared variable to
obtain the return code. The input/output auxiliary processors return codes in
the control variable. ‘

In addition to the codes listed in Figure 22, other codes can be returned by
the CP/CMS Command Processor and the FILEDEF 1/0 Processor. With
the CP/CMS Command Processor, the return code is generally the one from
the command that you previously assigned to the shared variable; these codes
are described in VM /370: CMS Command and Macro Reference. If an 1/0
error occurs when using the FILEDEF 1/0 Processor, a code with a decimal
value is returned. When this code is converted to its four-byte hexadecimal
representation, the first two bytes are the sense bytes and the last two are the
status bytes. Sense and status bytes are described in the ‘“Status Information
Following an Input/Output Operation” section of OS/VSI Data
Management Macro Instructions or OS/VS2 MVS Data Management
Macro Instructions. '

Code Description

-3 Unknown CMS command.

-2 CMS command cannot be executed.

0 No error exists

1 Attempt to read a nonexistent file or unknown CP command.

3 Permanent read error.

| 4 First character of filemode is invalid.

5 Attempt to read more records than the maximum allowed by CMS.1

6 Attempt to write too many records in a CMS file.1

7 Attempt to write past the end of a variable-length file.

8 Attempt to read a record with incorrect record length.

10 Attempt to create a file when you already have the maximum allowed by
CMS.1

12 End-of-file read or attempt to write on a read-only disk.

13 Attempt to write on a full disk.

14 Attempt to write on an unformatted disk.

15 Attempt to write a record with incorrect length into a file with fixed format.

17 Attempt to write a record that is too large into a variable length file.1

19 Attempt to write in a file already containing as many data blocks as CMS will
allow.

440 Data set cannot be opened for output.

441 Data set cannot be opened for input.

443 Insufficient free storage for input/output buffers. Note that the amount of
free storage allocated is based on the specified shared memory size.2

444 The value assigned to the shared variable is invalid. It is the wrong shape,
size, or data type.

445 Attempt to read a record larger than shared memory.2

1 See IBM VM/370: CMS User’s Guide for these limits.

2 If this code is returned, restart VS APL with more shared memory and try again. If the
resultant workspace size is too small restart CMS with more virtual storage.

Figure 22. Processor Return Codes: CP/CMS, Stack Input, CMS Disk I/0, and FILEDEF
1/0

84 VS APL for CMS: Terminal User’s Guide

Figure 23 lists and describes the codes that may be returned by the CMS
VSAM Processor. This processor returns a two-element code in the control
variable.

In addition to the codes listed in Figure 23, you may encounter other codes in
response to CMS VSAM Processor service requests. These codes are
generated by VSAM and have a first element of 4, 8, 12 or 16. For a
description of these codes, refer to the VSAM Programmer’s Guide.

Code Description

00 Operation is successful.

112 Syntax error in request.

113 VSAM file already open.

115 Inappropriate open request issued for this operation.

116 Operation is not valid for this type of file.

117 Key length error.

118 VSAM MODCB error.!

119 VSAM SHOWCEB error.!

120 A character vector is required.

121 Exceeded maximum record length for the file.

122 VSAM file is not open.

127 VSAM TESTCB error.1

132 Insufficient free storage for input/output buffers. Note that the amount of
free storage allocated is based on the specified shared memory size.2

133 Data variable has not been specified or offered.

134 Incorrect password.

142 Data variable has not been referenced.

145 VSAM GENCB error.!

146 Shared memory full.2

147 Unrecognized VSAM file type.

1 This error is caused by the auxiliary processor and should be reported to your local IBM

representative.

2 If this code is returned, restart VS APL with more shared memory and try again. If the
resultant workspace size is too small, restart CMS with more virtual storage.

Figure 23. Processor Return Codes: CMS VSAM

VS APL Functions for Auxiliary Processing

VS APL includes a public library workspace named A PF'NS which can be
used to simplify auxiliary processing. APFNS contains various types of
functions. Some functions directly communicate with an auxiliary processor.
Others can be used to prepare for auxiliary processing. Other functions still,
can be used to help in converting data once an auxiliary processing operation
has been executed.

Figure 24 lists the functions in A PF'N.S summarizing the operations they
perform. For detailed information on any one of these functions, display the
variable HOWfn in APFNS, where fn is the name of the function. For
example, display HOWCMS A for information on the function CMSA. For the
functions ECI,ECO,FI,F0,I1,I0,LI,LO,PDI,and

PDO, display the variable HOWDATACYV. For the VSAM file functions,
display HOWVSAM.

Auxiliary Processing 85

Function
Name

CMSA
CPA
DISCA

ECI
ECO
FI
FO
FAO

I
10
LI
LO

PARSEA
PDI

PDO
PRTACON
QTA

SLA

USE

VERASE
VGET
VGETHOLD

VPOSITION
VREAD
VREADHOLD

VSET

Description
Allows you to issue certain CMS commands.
Allows you to issue CP commands.

Disconnects the phone line but continues execution until the job is
done.

Converts EBCDIC characters to APL characters.
Converts APL characters to EBCDIC characters.

_Converts System/370 floating-point numbers to APL format.

Converts APL numbers to floating-point format.

Issues a CMS FILEDEF command and shares two variables with
auxiliary processor 111.

Converts System/370 binary values to APL format.
Converts APL numbers to System/370 binary format.
Converts System/370 logical data to APL format.

Converts APL numbers with values of 0 or 1 to System/370 logical
format.

Breaks up a character vector into tokens. Used by FAO.
Converts System/370 packed-decimal numbers to APL format.
Converts APL numbers to System/370 packed-decimal format.
Prints a disconnected console file.

Asks for the time.

Locks the terminal so it can receive messages while using no CPU time.

Selects a VSAM file for subsequent file operations. This function must
be executed before the first VSAM file function in APFNS is executed.
The selected file becomes the target file for these functions until a new

file is selected.
Erase a record from a key-sequenced VSAM file.
Reads directly from a key-sequenced VSAM file.

Reads directly for update from a key-sequenced VSAM file. Used in
conjunction with VSET to update a VSAM file.

Positions the internal record pointer in a key-sequenced or
entry-sequenced VSAM file for subsequent record access.

Reads sequentially from a key-sequenced or entry-sequenced VSAM
file.

Reads sequentially from a key-sequenced or entry-sequenced VSAM
file. Used in conjunction with VSET to update a VSAM file.

Writes a record to a key-sequenced or entry-sequenced VSAM file.

Figure 24. Functions in APFNS

86 VS APL for CMS: Terminal User’s Guide

SAMPLE TERMINAL SESSION

This section contains a hypothetical terminal session in which a random CMS
file of inventory records named I NVREC is queried for information pertinent
to a given part number. Once the information is displayed, the transaction is
recorded sequentially on a CMS file named TRANSACT.

Figure 25 illustrates the format of the records in INVREC and TRANSACT
and shows the information that is printed in response to a query.

The primary intent of this sample session is to demonstrate the use of VS
APL system commands and to illustrate how file input/output operations can
be performed through auxiliary processing.

Significant points in the session are identified by circled numbers in the
left-hand margin; each number has a corresponding explanation at the end of
the printed session.

INVREC

>

Inventory File (CMS Direct)

—
—
NS

Part Current Acﬁvity
Number Inventory Counter

1 7 21 26 31 36

Transaction File (CMS Sequential)

TRANSACT

>

Part
Number

Current
Inventory

Time & Date \:

1516

T

450

450

i

Part No.

ENTER PART NUMBER OR 0 TO END
O:

25

}

Current
Inventory

e

Displayed Query and Response

Figure 25. Inventory Record Application

Sample Terminal Session 87

d'x38z irvyr; vm/370 online

logon 123456 m
@ EEuEEREE
LOGON AT 14:46:50 PDT TUESDAY 03/23/76
ipl cms
CMS VERSION 2.0 PLC 13 8/21/75
o apl apl110

vs apl

clear ws

e)LIB
PAYROLL
PRODCTL
YEAREND

[4] YLOAD PRODCTL
SAVED 10:01:57 6/14/75
WSSIZE IS 103516

[5) YFNS
GETINVENTORY INQUIRE NOTEACTIVITY
)VARS
PARTNUMBERS
© VINQUIRELOIV
(1) V INQUIRE:;INDEX;T;RECORD;TRANSACT;RECRD

(11 o INITIALIZE AND OFFER A RECORD VARIABLE FOR TRANSACT
[2] TRANSACT< 'TRANSACT(370"

(31 T<110 [OSVO 'TRANSACT®

[41 o INITIALIZE AND OFFER RECORD+CONTROL VARS FOR INVREC
[51] RECRD<« 'INVREC FILE(370'

(61 INDEX« '"INVREC FILE(CTL'

[71 T<«110 0OSVO 2 5p'RECRDINDEX!

[8] T«INDEX ,RECRD,TRANSACT

[9]1 a INQUIRE FOR CURRENT INVENTORY

[10] INQLOOP: 'ENTER PART NUMBER OR 0 TO END'
[11] -+>(0=INDEX<«0)/0

[12] INDEX<~PARTNUMBERS1INDEX

(131 +(INDEX[21>pPARTNUMBERS)/INQLOOP

(14] SAVEPTR<«INDEX[2]

[15] RECORD<RECRD

{161 a PRINT PART NUMBER AND INVENTORY

[17] » PART NUMBER IS IN 1-7

(18] 0O«T<«(74RECORD)," ' GETINVENTORY

[19]1 NOTEACTIVITY

[20] INDEX«O0,SAVEPTR

[21] RECRD<«RECORD

(221 a RECORD TRANSACTION-ADD TIMESTAMP

ed

©0

® (231 7TRANSACT<T,' ' ,30TS
[24] ->INQLOOP
v
VGETINVENTORY[O1V

V I«GETINVENTORY
(1] ~n INVENTORY IS IN 21-26
[2] I«RECORD[20+16]

v

88 VS APL for CMS: Terminal User’s Guide

0600

VNOTEACTIVITY
V NOTEACTIVITY
(1] a ACTIVITY COUNT IS IN 31-36
(2] RECORD[30+16]1«6 0%1+¢RECORD[30+16]

v

INQUIRE
FENTER PART NUMBER OR O TO END
O:

125

125 3040
ENTER PART NUMBER OR 0 TO END
0:

705

705 127
ENTER PART NUMBFER OR 0 TO END
0:

0

YCONTINUE
14:52:52 08/12/75

CONNECT=00:06:02 VIRTCPU=000:00.47 TOTCPU=000:01.33
LOGOFF AT 14:52:54 PDT TUESDAY 3/23/76

1. At this point, a password is entered over the blots.

2. The CMS Disk I/0O Processor (APL110) is loaded into the virtual
machine.

3. The user displays the contents of his library.

4. A copy of the PRODCTL workspace is brought into the active
workspace. This action changes the size of the active workspace to
103,516 bytes.

5. The global functions and the global variables in the active workspace are
displayed.

6. INQUIRE asks the user to enter a part number. Based on the number
entered, INQUIRE reads a record in the inventory file INVREEC. It then
prints the part number and the current inventory found in the record.
With each display, I NQU I RE updates an activity counter in the
INVREC record and writes a transaction record to TRANSACT.If a
part number of 0 is entered, execution of INQUIRE ends.

7. The initial part of INQUIRE prepares for input/output processing. Since
TRANSACT is a sequential file, only a record variable is used. Since
INVREC(C is a random file, a record variable and a control variable are
used.

8. PARTNUMBERS is a numeric vector containing part numbers sequenced
to match the part numbers in INVREC.

9. If the part number is valid, INQU I RF reads the record in INVREC.
Before the read operation is performed, the read pointer is saved. It will
be used later to update the write pointer.

10. INQUIRE prints the part number found in the record and uses the
function GETINVENTORY to print the current inventory.

11. The function NOTEACTIVITY updates the activity counter found in
the record. The updated record is then written to INVREC.

Sample Terminal Session 89

12. INQUIRE writes a record to TRANSACT. The written record contains
the part number, current inventory, date and time of the write operation.

13. The user begins the transaction.
14. The user ends execution of 7NQUIRE by entering 0.

15. A copy of the active workspace will be automatically activated as soon as
contact is next made with VS APL.

16. The system responds with a summary of the connection and CPU time
used during the session. The session is now over.

90 VS APL for CMS: Terminal User’s Guide

APPENDIX A: DISTRIBUTED WORKSPACES

Certain predefined workspaces are distributed with VS APL. These
workspaces are very helpful if you’re trying to learn APL, converting from
some other IBM APL system, or intending to use auxiliary processors.

Figure 26 lists and summarizes the workspaces distributed with VS APL.
Generally, distributed workspaces are found in public libraries 1 and 2, but it
is up to your installation personnel to determine which public libraries will
actually be used.

Like other public library workspaces, the workspaces in Figure 26 can be
retrieved at will. For instance, the distributed workspace NEW.S can be
activated by entering:

)LOAD 1 NEWS
SAVED 11:15:27 01/15/76

Similarly, if you are only interested in a particular function in one of the
distributed workspaces, you can copy it into your active workspace:

)COPY 1 NEWS SCHEDULE
SAVED 11:15:27 01/15/76

All of the workspaces distributed with VS APL are self-documenting.
Specifically, each workspace contains a group named DESCGP, which can be
used like a computer-stored textbook to describe the contents and use of the
workspace. DESCGP includes the following variables:

Variable Name Contents

ABSTRACT Gives the purpose of the workspace in one or two sentences.

DESCRIBFE Gives the purpose of the workspace in detail. It also lists and details
the names, syntax, and argument requirements of functions in the
workspace.

HOW Describes how the workspace is used. It also details the use of

functions in the workspace.

Because distributed workspaces are self-documenting, no further discussion of
their contents and use are provided here. You should reference ABSTRACT,
DESCRIBE and HOW as appropriate for the information you need.

Appendix A: Distributed Workspaces 91

Workspace Name

Library 1 workspaces:

NEWS

CONVERT

WSFNS

APLCOURSE

TYPEDRILL
EXAMPLES
PLOT

FORMAT

HOWEDITS
SEDIT

MEDIT

SBIC

Library 2 workspaces:

APFNS

PRINT

Description

Contains functions for the storage and display of bulletins to
VS APL users.

Assists in workspace conversion from previous IBM APL
systems to VS APL. It analyzes the content of each unlocked
function and converts statements where possible. It also
provides a report identifying statements that were converted
and statements which may require manual correction.

Assists in workspace conversion to VS APL by providing
comparable defined functions for the APL system variables
0r0,0PP,0PW,0CT, and ORL, and for the APL
system function 0D L.

Tutors the APL user and tests his understanding of the
elements of the APL language through a set of questions to
which he responds.

Tests the typing speed and accuracy of the terminal user.
Illustrates APL coding techniques employing useful functions.

Prints graphs, histograms, and formatted numeric arrays and
matrices.

Contains functions designed to aid in the formatting of
numeric output. It allows the inclusion of commas as
separators, provides for extension by leading and trailing
zeros, permits arbitrary symbols to indicate negative
numbers, and allows text (within limits) to be associated with
each row of numeric output.

Describes the SED I T and MED I T workspaces.

Contains functions that are useful for editing line-type data
such as program listings. Data is stored in a single string
containing no blanks.

Functionally equivalent to SE DI T except that data is
stored in a matrix.

Contains functions for recording orders, maintaining an
inventory, and preparing invoices. It is a skeletal system
designed to illustrate the use of APL in commercial data
processing.

Contains functions that can be used with the VS APL
auxiliary processors under CMS. For further details, refer to
the section ‘‘ Auxiliary Processing.”

Contains functions that can be used to transmit APL
functions and data to an offline printer using the APL print
chain. The functions in this workspace are organized so that
the APL user can easily modify them to meet individual
needs.

Figure 26. VS APL Distributed Workspaces

92 VS APL for CMS: Terminal User’s Guide

APPENDIX B: WORKSPACE CONVERSION

This appendix introduces the VS APL Conversion Program and describes the
report generated by the program.

The VS APL Conversion Program

The VS APL Conversion Program converts APL\360, APLSV and
APL/CMS workspaces to VS APL workspaces. The conversion program is
designed to be executed by the personnel responsible for installing your
system. Once the program has been run, you’ll be given a conversion report
which lists those items in each workspace which must be evaluated or
modified to ensure proper execution of the workspace under VS APL.

Pre-Conversion Considerations

Types of Conversions

Conversion of Character Variables

When a workspace is submitted for conversion, the conversion program uses
the library number and workspace name of the input workspace to form a
workspace identification for the converted workspace. Not all library numbers
and workspace names are acceptable to VS APL. Specifically, the following
are unacceptable:

o A library number greater than seven digits

« A workspace name containing the symbol delta (A) or underscored
characters

These unacceptable items should be modified before the conversion program
is run.

APLSV workspaces should be dumped using LEVEL 1; dumping is the
installation’s responsibility.

There are two types of conversion that the VS APL Conversion Program
performs: format and content.

In format conversion, all global objects (variables, functions, groups) and
their names are converted into VS APL internal format.

In content conversion, all global objects are converted into VS APL internal
format and all function statements are examined for items which require
conversion in order to execute properly under VS APL. Such items are
converted to their VS APL equivalent, if possible, and noted on the
conversion report. Items with no VS APL equivalent are just reported.

Character variables in APLSV workspaces are fully mapped, one-to-one,
from 256 possible characters in APLSV to 256 possible characters in VS
APL, provided the workspaces were dumped using LEVEL 1; dumping is
your installation’s responsibility. Similarly, character variables in APL/CMS
workspaces are fully mapped into VS APL characters.

Character variables in APL/360 workspaces and in APLSV workspaces
dumped using LEVEL 0 are mapped as follows:

Appendix B: Workspace Conversion 93

The Conversion Report

« Terminal graphics described in the APL \360 User’s Manual are mapped
into corresponding VS APL characters.

« Terminal control characters, backspace, line feed, and carriage return are
mapped into their equivalents in VS APL.

« All other characters are replaced by the blot character.

Conversion assumes that characters are used for their Jogical meaning as
opposed to their physical meaning. The logical meaning of a character in a
workspace is the terminal graphic or control character represented by its bit
pattern in the workspace. The physical meaning is the absolute value of its bit
pattern. Thus, those users who were using characters for their physical
meaning will have to reconvert those characters to their original values. The
function CCO in the distributed workspace APF NS can be used to reconvert
APL/CMS characters. For APLSV characters, the distributed workspace
CONVERT contains functions to reconvert the characters. Mappings from
APL/CMS are documented in the APFNS workspace, and mappings from
APLSYV are documented in the CONVERT workspace.

The conversion report lists exceptional conditions found during format or
content conversion. When format conversion is done, the report produced
contains any exceptions found in workspace parameters or variables and any
conversion errors. When content conversion is performed, the report
additionally contains any exceptional functions. Figure 27 illustrates a sample
conversion report.

LIBRARY 897574 CONVERSION SUMMARY REPORT
WORKSPACE: VIP ‘

WS PARAMETER:
PRINT PRECISION 5
RANDOM LINK 1097971256
COMPARISON TOLERANCE 1.136729599338082E-13

FUNCTION: DELAY
REPLACED

FUNCTION: BET
* TRANSPOSE 1

FUNCTION: KEYWORD
* RESIDUE
*x DYADIC IBEAM 1 2 3

FUNCTION: HAD
(LOCKED)

FUNCTION: TIME

* MIXED OUTPUT 1
* ENCODE 1
* MONADIC IBEAM 1

FUNCTION: IBE
IBEAM SIMULATOR FUNCTION ADDED TO WORKSPACE

** WARNING. WILL NOT EXECUTE UNDER VS APL

* CAUTION. MAY NOT EXECUTE AS INTENDED UNDER VS APL

Figure 27. Sample Conversion Report

94 VS APL for CMS: Terminal User’s Guide

Workspace Parameters Reported

Variables Reported

Functions Reported

For each workspace to be converted, the name and value of the following
workspace parameters are reported if the value in the input workspace is
other than the VS APL default:

« Comparison tolerance
o Index origin

« Printing precision

o Random link

« Symbol table size

If a variable is invalid, its name and one of the following exceptions are
reported. Invalid variables are deleted.

** REJECTED, INVALID DIMENSIONS(S)

The element of a dimension is negative or exceeds the VS APL maximum, or
the element count exceeds the VS APL maximum.

** REJECTED, INVALID RANK

The rank is less than zero or exceeds the VS APL maximum.

Functions are examined and exceptional conditions are reported only when
content conversion is done. For each function, the function name and a list of
exceptions are reported. The format of each item in the list is:

flag exception line-number(s)

The line numbers are those in the function in which the exception occurs. The
flag indicates the level of severity:

Flag Meaning Description

blank Information The item has been converted to its VS APL equivalent and
will execute properly under VS APL.

* Caution The item may not execute as intended under VS APL.

*k Warning The item will not execute under VS APL.

The exceptions are as follows. The information is parentheses indicates the
source APL systems for which the exception should be evaluated and
corrected where needed. The information in parentheses does not appear in
the conversion report.

** DYADIC IBEAM (APL\ 360, APL/CMS, APLSV)

There is no VS APL equivalent for dyadic Ibeams. They are left unchanged.
Execution results in a syntax error.

** LINE TOO LONG (APL\ 360, APL/CMS, APLSV)

If conversion causes a line to be expanded to more than 4093 bytes, the line
is deleted and replaced with:

“THIS FUNCTION LINE WAS TOO LONG AND WAS DELETED BY
CONVERSION” item

Appendix B: Workspace Conversion 95

The term item will cause a syntax error in the converted statement.
** SYSTEM VARIABLE (APL/CMS, APLSV)

There is no VS APL equivalent for system variables 077 and OUL. They are
left unchanged. Execution results in a syntax error.

** UNCONVERTIBLE (APL\360, APL/CMS, APLSV)

A function which localizes 0T T or OUL, or a function whose header contains
a syntax error cannot be converted. Such functions are deleted.

* AMBIGUOUS IBEAM (APL\360, APL/CMS, APLSV)

An ambiguous Ibeam is assumed to be monadic converted as described in
“Monadic Ibeam” below.

* ELIDED SEMICOLS (APL\360, APLSV)

When mixed output is converted, contiguous semicolons are discarded (see
“Mixed Output” below).

* ENCODE (APL\360)

The definition of encode for a left argument having one or more negative
elements is different from the definition used in APL/360. Execution might
have a result different from the one expected.

* INCOMPLETE LIST (APL\360, APL/CMS, APLSV)

The function contains more exceptions than the conversion program can
record. Additional exceptions exist, but are not reported.

* MIXED OUTPUT (APL\360, APL/CMS, APLSV)

Mixed output is converted to an equivalent expression that uses format
primitive function. Execution in rare cases may cause a rank or length error.

* QUAD AV (APL/CMS, APLSV)

The correspondence of particular symbols to elements of AV is
implementation dependent. Reference to JA V might have a different result
from the one expected.

* RESIDUE (APL\360)

The definition of residue for a left argument having one or more negative
elements is different from the definition used in APL\360. Dyadic and
ambiguous residue are reported. Execution might have a different result from
the one expected.

* TRANSPOSE (APL\360)

The definition of monadic transpose for an argument of rank greater than two
is different from the definition used in APL\360. Monadic and ambiguous
transpose are reported. Execution might result in a different result than
expected.

CARRIER RETURN (APL\360, APL/CMS, APLSV)

A character array that contains carrier returns is converted to an equivalent
expression that uses the second element of the system variable O7C.

IBEAM SIMULATOR FUNCTION ADDED TO WORKSPACE
(APL\360, APL/CMS, APLSV)

96 VS APL for CMS: Terminal User’s Guide

See ‘“Monadic Ibeam” below.
* MONADIC IBEAM (APL\360, APL/CMS, APLSV)

A monadic or ambiguous Ibeam is replaced with a call to a monadic function;
the argument of the function is that of the Ibeam. The function simulates all
monadic Ibeams except 123 and 128, which have no equivalents in VS APL.
Execution of the function with such arguments results in an error. The
simulator function that is added to the workspace has a unique name; the
name is IBE unless that name already exists in the workspace, in which case it
is IBE. The function is locked so it will behave as a primitive function. The
canonical representation of IBE is in the CONVERT distributed workspace
and is named CRIBE.

REPLACED (APL\360, APLSV)

A WSFENS function (DELAY, DIGITS, ORIGIN, SETFUZZ, SETLINK,
WIDTH) is replaced if the function is locked and its definition is exactly the
same as that in APL\ 360 distributed library 1. The new function is unlocked;
it performs the equivalent of the replaced function using the appropriate
system variable.

(LOCKED)

The function is locked. Content conversion has been done, but exceptions are
not reported. The flag indicates the highest severity level.

Conversion Errors Reported

The following error messages are displayed in the VS APL Conversion Report
and should be reported to the personnel responsible for installing your
system:

WORKSPACE FULL

SYSTEM ERROR WHILE CONVERTING WORKSPACE/DIRECTORY
number name WORKSPACE/DIRECTORY UNCONVERTED AND
PRESUMED DAMAGED

ERROR UNRECOVERABLE. CONVERSION ABORTED

*** WORKSPACE REJECTED, NOT CONVERTED, DUE TO I/0O
ERROR

*** HDR LABEL I/0 ERROR. CONVERSION CANCELLED
*** TRLR LABEL 1/O ERROR. CONVERSION CANCELLED

WRITE ERROR nn WHILE SAVING libnum name. CONVERSION
CANCELLED.

NOT A CMS DUMP TAPE. CONVERSION CANCELLED.
filename filetype filemode NOT AN APL/CMS (PRPQ) WORKSPACE.

INADEQUATE SPACE TO RUN CONVERSION. CONVERSION
CANCELLED.

filename filetype WORKSPACE TOO LARGE FOR VIRTUAL MACHINE
SIZE. RERUN WITH LARGER MACHINE. WSSIZE IS xxxx NEED
ABOUT yyyy BYTES TO CONVERT.

filename filetype WORKSPACE DAMAGED OR NOT VER2. NOT
CONVERTED.

Appendix B: Workspace Conversion 97

In addition, the conversion program can abend with user code 32 if more than
10 damaged workspaces are found.

Unreported Items

The following items may cause a converted workspace to execute differently
under VS APL than it did under the source APL system. They are not
reported by the conversion program.

Imbedded respecification may cause a result different than expected. In VS
APL, the following statements yield a result of 15:

A<«5
(4<«3)x4

For APL/CMS and APLSV workspaces, system variables are given the
corresponding workspace parameter value. The value of a system variable
with an implicit error is not retained.

For APL/CMS workspaces, an underscore character _ in the name of an
object is converted to a delta underscore (A) character. If the underscore
character appears in a character array, the character is transmitted as is. The
value of (L X is not retained; it is given the default value of null.

Language differences that are apparent only by execution-time evaluation of
the arguments are not flagged by the conversion program.

All APL/CMS workspaces have a filetype of VMAPLWS or Pxxxxxx after
conversion. Such filetypes must be changed to VSAPLWS or Wxxxxxxx
before use with VS APL. See your system administrator.

98 VS APL for CMS: Terminal User’s Guide

APPENDIX C: LANGUAGE CONSIDERATIONS

This appendix covers some special language considerations for VS APL.

Duplicate Names in a Defined Function

In VS APL, the name of a defined function, local names indicated in the
function header, and labels contained within the body of the function are
established in the following order:

1. Function name.
2. Other names in the function header taken from left to right.
3. Labels in the function body taken from top to bottom.

If duplicate names appear, then all but the first occurrence of each name
taken in the above sequence are ignored.

Line Deletion in a Function Definition

During function definition, any entered statement N can be deleted by typing
[AN 1], where N is a single statement number. After deleting the statement,
the system awaits entry of statement N.

For example, the following illustrates the deletion of statement 1 in the
definition of FUNC:

VFUNC
[1] ALPHA<«2 3p16
[2] BETA+D
[3] [A1]
[1]

Maximum Sizes for VS APL Objects

An array can have no more than 2,097,117 elements. A function can have no
more than 2048 lines (including the header), and its internal encoding must
occupy no more than 65,536 bytes.

Appendix C: Language Considerations 99

APPENDIX D: CMS TERMINALS

This appendix summarizes the sign-on/sign-off procedures and various
operating characteristics for all the terminals supported by CMS and discusses
a number of items to be considered when using APL at CPT-TWX or IBM
3270 terminals. Terminal operating characteristics are summarized in

Figure 28. For further information concerning each of the terminals
supported by CMS, refer to the VM/370: Terminal User’s Guide.

TERMINALS

. CPT-TWX
Action Mod 33/35
3767 2741 3270 1050
Set switches for Keylock=ON COM/LCL=COM | Pull out OFF/ MAIN-LINE=ON Press ORIG
computér COMM/LOCAL=COMM ON/OFF=0ON PUSH knob SYSTEM=ATTEND button
- connection AUTO/OFF=AUTO MASTER=0ON Model 35:
EDIT/OFF=0OFF PRINTER 1=SEND/ Press K button
AUTO VIEW/OFF=as desired REC On high-pitched
DOUBLE/SINGLE SPACE=as desired PRINTER -2=HOME tone, press
DATA/TALK=DATA KEYBOARD=SEND CTRL. WRU
DIAL DISC/OFF=0FF PUNCH=NORMAL
SDLC/SS=SS ‘SYSTEM=PROGRAM
EBCDIC (or Cori’)/APL= EOB=AUTO
EBCDIC (or Corr.) SYSTEM=UP
CALC/OFF=0OFF All others=OFF
| TEST/OFF=0FF
POWER/OFF=POWER
Terminal ready DATA SET READY, PROCEED Keyboard unlocks | SYSTEM POWER. PROCEED | Key mode: paper
to accept logon lights on AVAILABLE lights on advance

Cursor appears optional ?
printed
Logon logon userid m ‘logon userid m logon userid m logon userid m logon userid m
Enter a line) (return) RETURN ENTER RETURN RETURN
ALTN CODING +
EOT

Terminal ready

ON LINE and PROCEED

Unlocks keybourd

" Cursor appears

Untocks keyboard

Paper advance

to accept input lights on VM READ PROCEED light on Line number
Stops noise
Period-
Correct character & (backspace). BKSP, CPosition cursor. BACKSPACL, Press BREAK
in current APL ATTN, ATTN, type correct ATTENTION, and retype
line retype. retype, character retype. ‘entire line,
j(return) RETURN RETURN RETURN
Send signal to ATTN ATTN PAl ATTENTION BREAK
{__system —
Interrupt O=wU=T O BKSP PA2! O BACKSPACE O CTRL H
input U BKSP ENTER U BACKSPACE UCTRLH
T T T
{ Cancel output 'ATTN ATTN ‘PA2? ATTENTION BREAK
Sign off JOLE A JOKF: JOL T JOL I JOET:
JCONTINUE JCONTINUE JCONTINUL JCONTINUE JCONTINUE
Turn off terminal POWER=OFF ON/OFF=0FF Push OFF/PUSH | MAIN-LINE=OFF CLR
Keylock=OFF knob
Default printing -
width (OPW) 120 120 79 120 120
''VM/370 (Release 3) only
2 While in MORE state

Figure 28. CMS Terminal Summary

Appendix D: CMS Terminals 101

CPT-TWX Terminal Considerations for APL

CPT-TWX models 33 and 35 have a fixed and limited character set and
cannot be used in editing APL functions. Existing workspaces can be loaded
and names which do not contain underscored alphabetic characters or delta
(A) can be entered and functions executed. There is no right arrow character
on these terminals, so that suspended functions cannot be resumed, and the
state indicator cannot be cleared. Similarly, there is no backspace character
on these terminals. However, the combination of the CTRL and H Kkeys is
transmitted as a backspace.

IBM 3270 Display System Terminal Considerations for

APL

The IBM 3270 terminals that can be used with VS APL are the IBM 3277 or
the IBM 3275. The following discussions highlight some of the items to be
considered when using VS APL at these terminals. For further details on the
use of IBM 3270 terminals under VM /370, refer to the VM /370 Terminal
User’s Guide.

The IBM 3270 Data Analysis-APL Feature

The IBM 3270 Data Analysis-APL feature makes it possible to enter and
display the full EBCDIC and APL character set at an IBM 3277 terminal.
The feature is available on the IBM 3277 and may be used if VS APL is
operating under VM/370 Release 3; it is not available on an IBM 3275
terminal.

Figure 29 illustrates the keyboards that can be ordered with the Data
Analysis-APL feature. The APL keyboard is standard, while the text
keyboard is optional. If the feature is installed with the APL keyboard, all the
operations normal to APL work are available. The text keyboard does not
include all the APL characters and therefore cannot be used for all kinds of
APL operations. (For the remainder of this discussion, unless otherwise
indicated, an APL keyboard is assumed.)

When power is initially turned on, the keyboard acts as a regular 3270
keyboard. Pressing the APL ON/OFF key once, turns on the APL character
set. All the APL graphic characters can be produced by pressing the
appropriate key. Compound characters are produced by holding down the
APL ALT key and pressing the key that has the appropriate compound
character on its front. Underscored alphabetic characters are produced by
holding the APL ALT key and pressing the alphabetic key. The APL
ON/OFF key does not affect character display. A 3270 terminal equipped
with the APL feature (either keyboard) can display all EBCDIC, APL, and
text characters regardless of whether the APL. ON/OFF key is on or off.

You must execute the CP command TERMINAL APL ON before you
communicate APL characters to VS APL. Normally, the command
TERMINAL TEXT ON, which is associated with the use of the text
keyboard under VM /370, is incorrect for VS APL applications.

For further information on the APL feature, refer to the publication 4n
introduction to the IBM 3270 Data Analysis-APL Feature. For further
information on the TERMINAL APL ON command, refer to the publication
VM/370: CP Command Reference.

102 VS APL for CMS: Terminal User’s Guide

APL KEYBOARD

ceear| |1 a -l# <|[$ <% =|j¢e =|[e >|[* Z£|[C v]D AF AP oor [e
1 2 3 4 5 6 7 8 9 0 |- OFF
I v v A [) .© ® v Iy !
crnse| I \ ? w € o ~ + ¥ 1 o * APL INS DEL
weor | =l g | w || E || 2|l o |l vl vl z|lo]lr ALT || MooE

ERASE LOCK o r L - v A ’ ' . i) - t ‘
o BV | DS | D G | N | 0 | A | O | O | 8 | A 1 I B AR L
[[
TEST c) n U 1 T i< s> 7\ l
a SHIFT SHIFT -— —
kel I R /20 G O | A0 D | DR | DU | N | R | VA — |
a X 7
4 9
RESET ENTER
Cj TYPAMATIC WHEN APL OFF
E TYPAMATIC WHEN APL ON

TEXT KEYBOARD

-/
r‘| 11|@ 2f{# 3|[s 4l|% s|| s|l& 7||* sl{(9||) o0 A P LY
CLEAR — on upP

1 2 3 4 5 6 7 8 9 4] - == #I| orf Al

1 2 3 [[¢ ¥ 7 () g S
lERASE' 1 = ‘ 'lel
INPUT Q W E R T Y U I 0 P i e MODE

3 || 7 3 A v < || = r LA || ®

M " ‘ E
L°°KLS_D__F__9__H“_~J_K_L_;;1“J
= + — Al V [] ALV = > * &5
; >
cope SHIFT 7 X e v B N M i /' \ SHIFT
L L ® ® n < < > ‘
'RESET‘ P 4 ENTER

TYPAMATIC KEY-
STANDARD SHIFT

Y

FUNCTION KEY-
STANDARD SHIFT

FUNTION KEY- Ej TYPAMATIC KEY-

ALTERNATE SHIFT ALTERNATE SHIFT
Figure 29. APL and Text Keyboards for the IBM 3270 Data Analysis-APL Feature

mn

Appendix D: CMS Terminals 103

Using the IBM 3270 without the Data Analysis-APL Feature

Screen Format

If the IBM 3270 is operated without an APL feature, the same restrictions in
general discussed for the CPT-TWX terminals apply. Existing workspaces can
be loaded and names which do not contain underscored alphabetic characters
or delta can be entered and functions executed. There is no right arrow
character on these terminals, so that suspended functions cannot be resumed,
and the state indicator cannot be cleared.

In addition, if you do not have the APL feature installed, you will not be able
to use APL characters to communicate with VS APL. APL characters
directed to the screen by an executing function will be garbled and the screen
format could be destroyed if certain characters are generated. (In the event
that the screen format is destroyed, press the CLEAR key to reformat the
screen.)

Figure 30 illustrates the format of the IBM 3270 display screen for interaction
with VS APL. This screen format is established by VM/370 after a successful
logon. The screen is separated into three areas:

« Qutput area, which displays your completed entries and VS APL’s
responses. The last character position in this area is reserved by the system
and cannot be used to display output.

« Input area, which displays your input before it is entered to VS APL.
Although the second input line can display as many as 59 characters,
VM/370 will accept only 56 characters.

OUTPUT AREA

(22 LINES)
attribute
B \F
INPUT AREA
(2 LINES)

STATUS AREA

Figure 30. IBM 3270 Screen Format

~« Status area, which displays the current status of the terminal. During

interaction with VS APL terminal states are:
— VM READ - VS APL is awaiting input.

— CP READ - Input will be treated as a CP command. (This state is
entered be pressing the PA1 key once.) Return to APL by entering the
CP command BEGIN.

104 VS APL for CMS: Terminal User’s Guide

Entering Input

Special Keys

— MORE... - The output area is full and more lines must be displayed on
the screen. Press the CLEAR key to clear the output area for more
output or wait 60 seconds for automatic clearing.

— HOLDING - Same as MORE... but no automatic clearing is effected.
Holding state is entered from MORE state or vice versa by pressing the
ENTER key.

— RUNNING - VS APL is executing; do not enter input until VM READ
is displayed.

For further information on terminal states, refer to the VM /370: Terminal
User’s Guide.

When VS APL asks for input it displays a prompt (such as six blanks) in the
input area of the screen. It then positions the cursor in the same relative
position that an IBM 2741 printing element would appear when the keyboard
unlocks. You can then enter one or more APL characters. Each character
entered appears in the input area. To correct a character, move the cursor
back to the incorrect character using any of the four cursor control keys at the
lower righthand position of the keyboard. Then type the correct character or
use the INS MODE or DEL keys to otherwise alter the line. The INS MODE
key allows insertion of one or more characters at the position of the cursor.
The DEL key deletes the character at the position of the cursor without
leaving a blank space. When the input line is complete, press the ENTER key
to send the input line to VS APL. VM then displays the entered line in the
output area of the screen.

In addition to the ENTER, INS MODE, and DEL keys, other keys have
important uses:

Key Use

CLEAR Blanks screen to allow display of additional output
when MORE... or HOLDING appears in the status
area. The CLEAR key can also be used to clear the
screen before entering additional input. Be aware,
though, that this also erases any current prompt and
moves the cursor to the first location in the input area.

ERASE INPUT Blanks or erases the input area of the screen, erasing
any prompt, and moves the cursor to the first location
in the input area.

ERASE EOF Replaces all characters from the cursor location to the
end of the input area with nulls. (Nulls are displayed as
blanks but are not transmitted as characters.)

RESET Resets the terminal if INPUT INHIBITED is indicated
and terminates insertion mode (initiated by the INS
MODE key).

Appendix D: CMS Terminals 105

Output Characteristics

Key Use

PA1 Used to signal attention. Pressing the PA1 key twice
(or the ENTER key once) transmits a weak interrupt
signal. Pressing the PA1 key four times (or the ENTER
key twice) transmits a strong interrupt signal. If the
PA1 key is pressed during input, it is ignored.

PA2 Used to interrupt the display of output. If the terminal
is in VM READ state, pressing PA2 signals the
character O backspace U backspace T and clears the
output area. The ENTER key must be pressed to
transmit the character. If the terminal is in MORE or
HOLDING state and locally attached, pressing PA2
clears the output area and cancels output. If the
terminal is in MORE state and remotely attached,
pressing PA2 clears the screen but then proceeds to
display the next screen of output. To clear the screen
press the CLEAR key. Note that VS APL must be
running under VM /370 Release 3 to effect this action
of the PA2 key. In addition, the CP command
TERMINAL APL ON must have first been invoked.

The maximum number of characters that can be displayed on a single line of
the display screen is 80. An output line greater than 80 characters is folded,
that is, characters beginning with the eighty-first appear on the following line
at the first character position on the line.

Normal output lines, in addition, are subject to the value of the printing width
(OPW) which has a default value of 79. Normal output lines longer than the
current value of OPW are folded.

Bare output is not affected by the value of JPW, but is limited by the
80-character screen width.

If bare output ([} output) is followed by bare input (M input) that includes
positioning the cursor back into that bare output, then input characters that
overlay identical output characters shown on the screen are replaced by
blanks.

Using the Backspace Terminal Control Character

The backspace terminal control character (O7C[1 1) is effected on the IBM
3270 only in bare output situations ([output followed by [1 input) and only
when it is the final output character. Trailing backspaces like these can be
used to reposition the cursor in the input area for subsequent input. In all
other situations, 7 C [1] produces a blot character (") on output. For
example, the expression 'S ' ,07C[11,'/" is displayed on a 3270 as:

s"/

106 VS APL for CMS: Terminal User’s Guide

Function Editing

Function editing, or for that matter function definition, is not available at a
3270 terminal that does not have the APL feature installed.

If the APL feature is installed, you can define and edit functions in the
standard way. However, the separation of the screen input and output areas
may impede the proper alignment of APL editing characters.

If you have the APL feature installed at your terminal, the easiest way to edit
function lines is to enter:

[line number [0]

This will cause the function line with the specified number to be displayed in
the input area of the screen. You can then:

« Delete characters using the DEL key

« Insert characters using the INS MODE key. (Be sure to press RESET
when you are finished.)

« Replace characters by positioning the cursor and entering replacement
characters.

It is important that the printing width be greater than or equa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>