
. Systems

o

GC26-4037 -0
File No. S370-21

Assembler H Version 2
Application Programming:
Language Reference
Program Number 5668-962

Release 1.0

-~- ------ - ---- ~--- ~ ----- - - _ ... -------_-...-- .. -

First Edition (January 1983)

This edition applies to Version 2, Release 1.0 of Assembler H,
Program Product 5668-962 and to any subsequent releases until
otherwise indicated in new editions or technical newsletters.

Thi s manual merges assembler i nformat i"on conta i ned in
OS/VS-DOS/VSE-VM/370 Assembler language, GC33-4010, and OS
Assembler'H language, GC26-3771.

Changes are periodically made to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM Svstem/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below;
requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

@ Copyright International Business Machines Corporation 1982

PREFACE

NEW FEATURES

o

This is a reference manual for the Assembler H Version 2,
Release 1, Modification 0, Program Product 5668-962 (hereafter
referred to as the Assembler H program or, simply, assembler).
It will enable you to answer specific questions about language
functions and specifications. In many cases, it also provides
information about the purpose of the instruction you refer to,
as well as examples of its use.

This manual merges assembler information contained in
OS/VS-DOS/VSE-VM/370 Assembler Language, GC33-4010, and OS
Assembler H Language, GC26-3771, with the following major
differences:

• Only information relevant to Assembler H has been included
in this manual. DOS/VSE, OS/MFT, and OS/MVT information has
been removed because it is valid only for assemblers other
than Assembler H.

• Hew features provided by Assembler H Version 2, Release 1.0,
have been integrated (see the Summary of Amendments for
details).

• Programs may be assembled with Assembler H Version 2,
Release 1.0, under MVS/Extended Architecture (MVS/XA).

• Information available in manuals listed below under "Related
Publications" is not included in this publication;
references are made to the appropriate manuals.

Hew features provided by the Assembler H Version 2 Program
Product are:

• A program using System/370 Extended Architecture (S/370-XA)
machine instructions may be assembled with Assembler H under
MVS/Extended Architecture (MVS/XA), OS/VS2 MVS Release 3.8,
OS/V5I Release 7, MVS/SP VI, VM/XA Migration Aid, or
VM/System Product (YM/SP). Programs using the Extended
Architecture instruction set can be assembled on any system
supported by the above operating systems; however, programs
containing Extended Architecture instructions can only be
executed on an Extended Architecture mode processor under
MVS/XA or with MVS/XA operating as a guest operating system
under VM/XA Migration Aid. .

• An AMODE attribute allows specification of the entry point
of the addressing mode (24-bit, 31-bit, or any [not
sensitive to addressing model addresses) to be associated
with a control section.

• An RMODE attribute allows specification of the residence
mode (in the 24-bit addressable range or anywhere) to be
associated with a control section.

• Hew channel command word instructions: CCWI (format 1)
allows 31-bit data addresses; CCWO (format 0) allows 24-bit
data addresses.

• Hew machine instructions for the IBM 308x models operating
in System/370 Extended Architecture mode; in addition, the
System/370 set of machine instructions has been expanded. A
changed installation option allows users to specify whether
the System/370, Extended Architecture, or Universal (all
inclusive) instruction set will be used for assemblies.

Preface iii

•

•

Three new instruction types are included for the Extended
Architecture object code: E, RRE, and SSE.

An underscore character is allowed in ordinary symbols.

• Operation is now supported in the CMS (Conversational
Monitor System) environment of VM/SP and VM/XA Migration
Aid.

WHOM THIS MANUAL IS FOR

MAJOR TOPICS

This manual is for application programmers coding in the
Assembler H language. It 1S not intended to be used for
tutorial purposes; it is for reference only. If you are
interested in learning more about assemblers, most libraries
have tutorial books on the subject.

This manual is divided into three parts.

"Part 1. Assembler language" contains the following major
topics:

"Chapter 1. Introduction to Assembler language" describes what
the assembler does, tells about the language and program, gives
the relationship of the assembler to the operating system, and
supplies some coding aids.

"Chapter 2. General Information" describes the coding rules for
and the structure of the assembler language. It also discusses
terms and expressions.

"Chapter 3. Addressing, Program Sectioning, and linking" talks
about how to handle addressing, control and dummy sections, and
symbolic linking.

"Chapter 4. Machine Instruction Statements" describes the
machine instruction types and their formats.

"Chapter S. Assembler Instruction Statements" describes the
assembler instructions.

"Part 2. Macro language" contains the following major topics:

"Chapter 6. Introduction to Macro language" briefly describes
the macro instruction statement, definition, library, and so on.

"Chapter 7. How to Prepare Macro Definitions" tells about the
components of a macro definition.

"Chapter 8. How to Write Macro Instructions" tells about the
format of QPerands, sublists, and levels of macro instructions.

"Chapter 9. How to Write Conditional Assembly Instructions"
describes the SET and sequence symbols, and attributes of
assembly instructions.

"Part 3. Appendixes" contains the following appendixes:

"Appendix A. Machine Instruction Format" shows the basic machine
formats in relation to the format of the assembler operand field
and applibable instructions.

"Appendix B. Assembler Instructions and Statements" lists the
related operation, name, and operand entries.

"Appendix C. Summary of Constants" lists the constant types and
gives related information concerning each.

"Appendix D. Macro language Summary" summarizes some of the
information contained in Part II.

iv Assembler H Version 2 Application Programming: language Reference

~
'\'-.......7

)

c

HOW TO USE THIS MANUAL

Because this is a reference manual, you should use the index or
the table of contents to find the subject in which you are
interested.

Complete specifications are given for each instruction or
feature of the assembler language, except for the machine
instructions, which are documented in IBM System/370 Principles
of Operation, GA22-7000, and IBM 4300 Processors Principles of
Operation, GA22-7070.

ASSEMBLER H PUBLICATIONS

RELATED PUBLICATIONS

Other publications in the Assembler H library are:

Assembler H Version 2: General Information, GC26-4035, contains
a brief description of Assembler H and compares Version 2,
Release 1, features with those of Version 1, Release 5, and also
compares Assembler H features with those of the VS Assembler.

Assembler H Version 2: Installation, SC26~4030, which contains
information necessary for installation of the assembler program.

Assembler H Version 2 Application Programming: Guide, SC26-4036,
tells how to use Assembler H, provides an explanation of each of
the diagnostic and abnormal termination messages issued by
Assembler H, and suggests how you should respond in each case.

Assembler H Version 2: Logic, LY26-3908, describes the design
logic and functional characteristics of Assembler H.

Assembler Coding Form, GX28-6509, is a form for coding the
program in the proper columns.

The following publications provide definitive information about
machine instructions:

IBM System/370 Principles of Operation, GA22-7000

IBM 4300 Processors Principles of Operation, GA22-7070

For quick reference, see:

IBM System/370 Reference Summary, GX20-1850

Preface v

CONTENTS

D

o

Part 1. Assembler Language

Chapter 1. Introduction to Assembler Language
Language Compatibility
Assembler Language

Machine Instructions
Assembler Instructions
Macro Instructions

Assembler Program
Basic Functions ..•. . .••
Processing Sequence•...•

Relationship of Assembler to Operating System
Coding Aids•..•

Symbolic Representation of Program Elements
Variety in Data Representation
Controlling Address Assignment ...••.
Relocatability••••
Sectioning a Program•.
Linkage between Source Modules
Program listings•.••••....•

Chapter 2. Coding and Structure •
Assembler Language Coding Conventions

Field Boundaries •......
Statement Field
Continuation Indicator Field
Identification-Sequence Field

Continuation Lines
Comments statement Format
Instruction Statement Format

Fixed Format
Free Format•••
Formatting Specifications

Character Set
Assembler language Structure
Terms and Expressions ..•.

Term s ...•......
Symbols
Self-Defining Terms
location Counter Reference ..
Symbol length Attribute Reference
Other Attribute References •...
Terms in Parentheses

Literals
Literals, Constants, and Self-Defining
General Rules for Literal Usage
literal Pool .•.....

Expressions••.
Rules for Coding Expressions
Evaluation of Expressions ..
Absolute and Relocatable Expressions

. . .
Terms

Chapter 3. Addressing, Program Sectioning, and Linking
Addressi ng•...•..• ••••.

Addressing within Source Modules: Establishing
Addressability ...•...•.

How to Establish Addressability
Base Register Instructions .••.

USING--Use Base Address Register
DROP--Drop Base Register

Relative Addressing .•.......••..•.•
Program Sectioning and Linking

Source Module
Beginning of a Source Module ..••....
End of a Source Module . • • . . • • •

Control Sections ...•..••....••.•••
Executable Control Sections .•.. . •.•
Reference Control Sections ..••

1

2
2
2
2
3
3
3
3
4
5
5
6
6
6
6
6
6
7

a
8
9
9
9
9

10
10
11
11
11
11
13
15
21
21
21
25
27
29
31
31
32
32
34
35
36
36
37
38

40
40

40
40
40
41
44
45
45
46
46
46
46
47
47

Contents vii

location Counter Setting ...••
Use of Multiple Location Counters
LOCTR--Multiple Location Counters

First Control Section .•.•.•
Unnamed Control Section .••.•
literal Pools In Control Sections
External Symbol Dictionary Entries •••
Establishing Residence and Addressing Mode

AMODE--Addressing Mode
RMODE--Residence Mode ..•••

Defining a Control Section .••.
START--Start Assembly ..•••
CSECT--Identify Control Section
DSECT--Identify Dummy Section
COM-Define Blank Common Control Section

External Dummy Sections ..•....•
DXD-Define External Dummy Section .•
CXD--Cumulative length External Dummy Section ••••

Symbolic Linkages .•.....•.•...••.
ENTRY--· Identify Entry-Point Symbol •••..•••
EXTRN--Identify External Symbol •
WXTRN--Identify Weak External Symbol

Chapter 4. Machine Instruction statements
General Instructions
Decimal Instructions
Floating-Point Instructions
Control Instructions .•••
Input/Output Operations••.
Branching with Extended Mnemonic Codes
Statement Formats
Symbolic Operation Codes
Operand Entries .•..

Registers • . •.
Register Usage by Machine Instructions
Register Usage by System .••.

Addresses •
Relocatability of Addresses
Machine or Object Code Format
Implicit Address
Explicit Address•.

lengths •.•.. .••.•...•..
Immediate Data

Examples of Coded Machine Instructions
RR Format
RRE Format
RS Format
RX Format
S Format
SI Format
SS Format
SSE Format

Chapter S. Assembler Instruction statements •••••
Symbol Definition Instruction ..•••

EQU--Equate Symbol• . • . • •
Redefining Symbolic Operation Codes .•..•

OPSYN--Equate Operation Code ..•••.
Data Definition Instructions••

DC-Define Constant •.••
Types of Constants • . • • .
Format of DC Instruction .••• • ••••
Rules for DC Operand •. . . • •
Information about Constants ..
Padding and Truncation of Values
Subfield 1: Duplication Factor
Subfield 2: Type
Subfield 3: Modifiers
Subfield 4: Nominal Value

DS--Define Storage ..•.•. • ••••
How to Use the DS Instruction .••.••.•.

CCW or CCWO-Define Channel Command Word (Format 0)
CCWI-Define Channel Command Word (Format 1)

Program Control Instructions .••.•..•.•

viii Assembler H Version 2 Application Programming: Language Reference

47
48
48
49
51
51
52
52
54
54
55
56
56
58
60
62
63
63
64
66
66
67

68
68
68
69
69
69
69
70
70
72
73
74
74
74
75
75
75
76
77
77
78
78
78
79
80
81
81
82
83

8S
86
86
88
88
90
90
90
91
91
92
93
95
96
96

100
123
124
126
127
128

c

o

o

o

ICTL--Input Format Control •••.
ISEQ--Input Sequence Checking
PUNCH--Punch a Card
REPRO--Reproduce Following Card
PUSH Instruction •.•.•
POP Instruction .•...
ORG--Set Location Counter ••••
LTORG--Begin Literal Pool .••••

Literal Pool .••..• . ••.••
Addressing Considerations .•••..••••
Duplicate Literals ..

CNOP--Conditional No Operation •
COPY--Copy Predefined Source Coding
END--End Assembly•

Listing Control Instructions
TITLE--Identify Assembly Output
EJECT--Start New Page
SPACE--Space Listing
PRINT--Print Optional Data

Part 2. Macro Language

Chapter 6. Introduction to Macro Language
Using Macros•. • ••••....•.•
Macro Definition ••••

Model Statements . • • •
Processing Statements ..•....•.
Comments Statements•.•.••.

Macro Instruction Statement .•.
Source and Library Macro Definitions

Macro library .•...• . .••..••••.•
System Macro Instruct ions ..••

Conditional Assembly Language

Chapter 7. How to Prepare Macro Definitions
Where to Define a Macro in a Source Module
Open Code••
Format of a Macro Definition ..••.

MACRO--Macro Definition Header ...•..
MEND--Macro Definition Trailer .•.....•
Macro Instruction Prototype ..•.

Name Field
Operation Field ••.•. • •..•.•..
Operand Field ••....•....•....•.

Alternative Ways of Coding the Prototype Statement
Body of a Macro Definition ..•••
Model Statements ..•... ..••.

Variable Symbbls as Points of Substitution
Listing of Generated Fields
Rules for Concatenation
Rules for Model Statement Fields

Symbolic Parameters•
Positional Parameters .•.• •
Keyword Parameters • • .
Combining Positional and Keyword Parameters
Subscripted Symbolic Parameters

Processing Statements••
Conditional Assembly Instructions
Inner Macro Instructions
COPY Instruction •.••.•
MNOTE Instruction ..••. . •.•.
MEXIT Instruction •
AREAD--Assign Character String Value

Comments Statements •••.•
Ordinary Comments Statements
Internal Macro Comments Statements

System Variable Symbols .. 0 •••

&SYSDATE--Macro Instruction Date
&SYSECT--Current Control Section
&SYSLIST--Macro Instruction Operand
&SYSNDX--Macro Instruction Index .
&SYSPARM--Source Module Communication
&SYSTIME--Macro Instruction Time
&SYSlOC--Location Counter Name

128
129
130
131
132
132
133
135
135
136
136
137
138
139
140
140
142
142
143

145

146
146
146
147
148
148
148
149
149
149
149

151
151
151
152
152
152
152
153
153
153
154
154
155
155
156
156
157
160
161
162
163
163
165
165
166
166
166
167
169
171
171
171
171
172
172
173
176
177
179
179

Contents ix

Chapter 8. How to write Macro Instructions
Where Macro Instructions Can Appear •••.•.•..

Macro Instruction Format ..••. .
Alternative Ways of Coding a Macro Instruction
Name Entry • • . • . • . .
Operation Entry ..•..•.•
Operand Entry • • . • . • . .

Positional Operands •••..•..
Keyword Operands•. . . • .
Combining Positional and Keyword Operands

Sublists in Operands•
Multilevel Sublists•.•...•.
Passing SUblists to Inner Macro Instructions

Values in Operands•..•
Omitted Operands•.•
Special Characters

N@sting in Macro Definitions
Inner and Outer Macro Instructions
levels of Nesting •....

Recursion•.
General Rules and Restrictions ..
Passing Values through Nesting levels
System Variable Symbols in Nested Macros

Chapter 9. How to Write Conditional Assembly Instructions
Elements and Functions ..•..•...

SET Symbols•...
Subscripted SET Symbols
Scope of SET Symbols
SET Symbol Specifications ..•.••
Subscripted SET Symbols Specifications
Created SET Symbols ..••

Data Attributes ...•
Combination with Symbols
Type Attribute (T')
length Attribute (l')
Scaling Attribute (S')
Integer Attribute (I')
Count Attribute (K')
Number Attribute (N')
Defined Attribute (D')

Sequence Symbols •
Attribute Definition and lookahead

Declaring SET Symbols•... •••.
lClA, lClB, lClC--Define local Set Symbols .••..•
GBlA, GBlB, and GBlC Instructions ..•••

Assigning Values to SET Symbols .•••
SETA--Set Arithmetic ...•.•.••••

SUbscripted SETA Symbols
Arithmetic (SETA) Expressions
Using SETA symbols

SETB--Set Binary ...••
Subscripted SETB Symbols •••••
logical (SETB) Expressions •••••••••••.•

SETC--Set Character . • . • • • .
Character (SETC) Expressions ..••

Extended SET Statements
Substring Notation •...•••..•.••
Branching ..•...•.

AIF--Conditional Branch
Extended AIF Instruction

AGO--Unconditional Branch
Computed AGO Instruction ..••••

ACTR--Conditional Assembly loop Counter
ANOP--Assembly No Operation

Open Code •.•.•.......••..•••.•..
MHElP--Macro Trace Facility

Macro Call Trace--Operand=l
Macro Branch Trace--Operand=2
Macro AIF Dump--Operand=4
Macro Exit Dump--Operand=8
Macro Entry Dump--Operand=16
Global Suppression--Operand=32
MHElP Suppression--Operand=128

x Assembler H Version 2 Application Programming: language Reference

180
180
180
180
181
181
182
182
183
185
185
187
188
188
188
189
191
191
191
191
191
193
193

195
195
195
196
196
196
198
198
199
201
203
204
205
205
206
207
207
208
209
210
210
211
213
213
213
214
218
219
220
220
223
224
229
230
232
232
234
235
236
236
237
238
239
239
239
239
240
240
240
240

c

o

D

o

MHELP Control on &SYSHDX
Combining Options

Part 3. APpendixes

Appendix A. Machine Instruction Format

Appendix B. Assembler Instructions and statements

Appendix c. Summary of Constants

APpendix D.

Index

Macro Language Summary

240
240

2~1

2~2

2~6

250

251

259

Contents xi

FIGURES

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

11.

12.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.

46.
47.

48.
49.
50.

51.
52.

53.
54.
55.

56.
57.
58.
59.

Standard Assembler Coding Form
Examples Using Character Set
Assembler Language Structure
Machine Instructions•.
Ordinary Assembler Instruction Statements
Conditional Assembly Instructions
Macro Instructions
Summary of Terms•.. .. .
Transition from Assembler Language Statement to Object
Co de•....•.•....
Assignment of Length Attribute Values to Symbols in
Name Fields • •. .
Differences between Literals~ Constants, and
Self-Defining Terms •..•...•...
Differences between Literals, Constants, and
Self-Defining Terms .••..••.. • ..
Definitions of Absolute and Relocatable Expressions
Use of Multiple Location Counters
Defining CSECTs, DSECTs, and Symbols
How the Location Counter Works
Extended Mnemonic Codes
Object Code Format
Length Attribute Value of Symbols Naming Constants
Alignment of Constants
Type Codes for Constants
Binary Constants ...•
Character Constants .•.•
Hexadecimal Constants
Fixed-Point Constants
Decimal Constants ...•
A and Y Address Constants
S Address Constants
V Address Constants
Q Address Constants •...
Floating-Point Constants
Floating-Point External Formats
Channel Command Word, Format 0
Channel Command Word, Format 1
Building a Translate Table
CHOP Alignment
Parts of a Macro Definition
Format of a Macro Definition
Rules for Concatenation
Positional Parameters .•••.....
Keyword Parameters.
Combining Positional and Keyword Parameters ..•
Rules for MHOTE Character Strings
MEXIT Operation•.•... .
Relationship between Keyword Operands and Keyword
Parameters and Their Assigned Values
Sublists in Operands
Relationship between Subscripted Parameters and
Sublist Entries
Values in Nested Macro Calls
Passing Values through Hesting Levels
Features of SET Symbols and Other Types of Variable
Symbols•
Attributes and Related Symbols .
Relationship of Integer to Length and Scaling
Attri butes•......•••.....
Using Arithmetic (SETA) Expressions ..•
Defining Arithmetic (SETA) Expressions •
Variable Symbols Allowed as Terms in Arithmetic
Expression •....•.•. ...
Defining Logical Expressions ...•..
Subscripted SETC Symbols•..
Using Character Expressions
Substring Notations in Conditional Assembly

xii Assembler H Version 2 Application Programming: Language Reference

8
14
16
17
18
19
20
21

24

30

33

34
37
48
53
57
71
76
93
94
96

102
104
106
108
110
113
115
116
118
120
121
126
127
134
138
147
152
158
162
164
165
168
170

184
186

187
192
194

197
201

206
214
215

216
221
225
226

o

Instructions · · · · · · 230

0
60. Summary of Substring Notation 232
61. Restrictions on Coding Expressions 239
62. Machine Instruction Format · · · · 243
63. Assembler Instructions · · · · · · · · . . 246
64. Assembler Statements 249
65. Summary of Constants · · · · 250
66. Macro language Elements · · · · · · · · · · 252
67. Conditional AssemblY Expressions · · · · · 253
68. Attributes · · · · 255
69. Variable Symbols . . . · · · · · · · · · · · 257

D

o
Figures xiii

o

o

o

PART 1. ASSEMBLER LANGUAGE

Chapter 1 describes what the assembler does, tells about the
language and program, gives the relationship of the assembler to
the operating system, and supplies some coding aids.

Chapter 2 describes the coding rules for and the structure of
the assembler language .. It also discusses terms and
expressions. .

Chapter 3 talks about how to handle addressing, control and
dummy sections, and symbolic linking.

Chapter 4 describes the machine instruction types and their
formats.

Chapter 5 describes the assembler instructions.

In addition, three appendixes relate to this part of the
publication. See Part 3.

Appendix A shows the basic machine formats in relation to the
format of the assembler operand field and applicable
instructions.

Appendix B lists the related operation, name, and operand
entries.

Appendix C lists the constant types and gives related
information concerning each.

Part 1. Assembler language 1

CHAPTER 1. INTRODUCTION TO ASSEMBLER-LANGUAGE

A computer can understand and interpret only machine language.
Machine language is in binary form and, thus, very difficult to
write. The assembler language is a symbolic programming
language that you can use to code instructions instead of coding
in machine language.

Because the assembler language allows you to use meaningful
symbols made up of alphabetic and numeric characters instead of
just the binary digits 0 and 1 used in machine language, you can
make your coding easier to read, understand, and change. The
assembler must translate the symbolic assembler language into
machine language before the computer can execute your program,
as explained in the following paragraph.

Your program, written in the assembler language, becomes the
source module that is input to the assembler. It can be punched
into a deck of cards, or entered through a terminal. The
assembler processes your source module and produces an object
module in machine language (called object code>. The object
module can be used as input to be processed by another
processing program, called the linkage editor. The linkage
editor produces a load module that can be loaded later into the
main storage of the computer. Once your program is loaded, it
can then be executed. Your source module and the object code
produced are printed, along with other information, on a program
listing.

LANGUAGE COMPATIBILITY

ASSEMBLER LANGUAGE

The language used by Assembler H Version 2, Release 1.0, has
functional extensions to the language supported by VS Assembler
and OS Assembler H Version 1, Release 5.0. Programs written for
VS Assembler and OS Assembler H Version 1, Release 5.0, that
were successfully assembled with no warning or diagnostic
messages, will be assembled correctly by Assembler H Version 2,
Release 1.0.

The assembler language is the symbolic programming language that
lies closest to ~he machine language in form and content. You
will, therefore, find the assembler language useful when

• you need to control your program closely, down to the byte
and even the bit level, or

• you must write subroutines for functions that are not
provided by other symbolic programming languages, such as
COBOL, FORTRAN, or PL/I.

The assembler language is made up of statements that represent
instructions or comments. The instruction statements are the
working part of the language and are divided into the following
three groups:

1. Machine instructions

2. Assembler instructions

3. Macro instructions

Machine Instructions

A machine instruction is the symbolic representation of a
machine language instruction of the IBM System/370 architecture

2 Assembler H Version 2 Application Programming: Language Reference

o

D

o

instruction set, or of the IBM System/370 extended architecture
instruction set. It is called a machine instruction because the
assembler translates it into the machine language code the
computer can execute. Machine instructions are described in
"Chapter 4. Machine Instruction statements."

Assembler Instructions

Macro Instructions

ASSEMBLER PROGRAM

Basic Functions

An assembler instruction is a request to the assembler program
to perform certain operations during the assembly of a source
module; for example, defining data constants, defining the end
of the source ~odule, and reserving storage areas. Except for
the instructions that define constants, the assembler does not
translate assembler instructions into object'code. The
assembler instructions are described in "Chapter 3. Addressing,
Program Sectioning, and Linking," "Chapter 5. Assembler
Instruction Statements," and"Chapter 9. How to Write Conditional
Assembly Instructions."

A macro instruction is a request to the assembler program to
process a predefined sequence of code called a macro definition.
From this definition, the assembler generates machine and
assembler instructions, which it then processes as if they were
part of the original input in the source module.

IBM supplies macro definitions for input/output, data
management, and supervisor operations that you can call for
processing by coding the required macro instruction. (These
IBM-supplied macro instructions are described in the appropriate
Macro Instructions manual.)

You can also prepare your own macro definitions, and call them,
by coding the corresponding macro instructions. Rather than
code this entire sequence each time it is needed, you can create
a macro instruction to represent the sequence and then, each
time the sequence is needed, simply code the macro instruction
statement. During assembly, the sequence of instructions
represented by the macro instruction is inserted into the object
program.

A complete description of the macro facility, including the
macro definition, the macro instruction, and the conditional
assembly language, is given in "Part 2. Macro Language."

The assembler program, also referred to as the assembler,
processes the machine, assembler, and macro instructions you
have coded (source statements) in the assembler language, and
produces an object module in machine language.

Processing involves the translation of source statements into
machine language, assignment of storage locations to
instructions and other elements of the program, and performance
of auxiliary assembler functions you have designated. The
output of the assembler program is the object program, a machine
language translation of the source program. The assembler
furnishes a printed listing of the source statements and object
program statements and additional information, such as error
indications, that are useful in analyzing the program. The
object program is in the format required by the linkage editor.

Chapter 1. Introduction to Assembler Language 3

P~Dcessfng sequence

The assembler processes the machine and assembler language
instructions at different times during its processing sequence.
You should be aware of the assembler's processing sequence in
order to code your program correctly.

The assembler processes most instructions on two occasions:
First at preassembly time and, later, at assembly time.
However, it does some processing-for example, macro
processing-only at preassembly time.

The assembler also produces information for other processors.
The linkage editor uses such information at 11nk-edit time to
combine object modules into load modules. The loader loads your
program (combined load modules) into virtual storage a~ program
fetch time. Finally, at execution time, the computer executes
the object code produced by the assembler at assembly time.

1. The assembler processes all machine instructions, and
translates them into object code at assembly time.

2. Assembler instructions are divided into two main types:

• Ordinary assembler instructions

• Conditional assembly instructions and the macro
processing instructions (MACRO, MEND, MEXIT, MNOTE, and
AREAD)

The following discusses these two main types of assembler
instructions.

a. The assembler processes ordinary assembler instructions
at assembly time.

• The assembler evaluates absolute and relocatable
expressions at assembly time; they are sometimes
called assembly-time expressions.

• Some instructions produce output for processing
after assembly time (DC, OS, CCW, CCWO, CCWl, ENTRY,
EXTRN, WXTRN, PUNCH, and REPRO).

b. The assembler processes conditional assembly
instructions and macro processing instructions at
preassembly time.

• The assembler evaluates the conditional assembly
expressions--arithmetic, logical, and character--at
preassembly time.

• The assembler processes the machine and assembler
instructions generated from preassembly processing
at assembly time.

3. The assembler processes macro instructions at preassembly
time.

Nate: The assembler processes the machine and ordinary
assembler instructions generated from a macro definition
called by a macro instruction at assembly time.

The assembler prints in a program listing all th~ information it
produces at the various processing times discussed above.

4 Assembler H Version 2 Application Programming: language Reference

c

c:

o

o

RELATIONSHIP OF ASSEMBLER TO OPERATING SYSTEM

CODING AIDS

Assembler H operates under MVS/Extended Architecture eXA),
OS/VS2 MVS 3.8, OS/VS1 Release 7, MVS/System Product (SP) V1,
VM/XA Migration Aid, and VM/SP. These operating systems provide
the assembler with services for:

• Assembling a source module

• Running the assembled object module as a program

In writing a source module, you must include instructions that
request the desired service functions from the operating system.

OS/VS provides the following services:

1. For assembling the source module:

a. A control program

b. libraries to contain source code and macro definitions

c. Utilities

2. For preparing for the execution of the assembler program as
represented by the object module:

a. A control program

b. storage allocation

c. Input and output facilities

d. linkage editor

e. A loader

CMS provides the following services:

1. For assembling the source module:

a. An interactive control program

b. Files to contain source code and macro definitions

c. Utilities

2. For preparing for the execution of the assembler program as
represented by the object modules:

a. An interactive control program

b. storage allocation

c. Input and output facilities

d. CMS loader

It can be very difficult to write an assembler language program
using only machine instructions. The assembler provides
additional functions that make this task easier. They are
summarized below.

Chapter 1. Introduction to Assembler language 5

symbolic Representation of Program Elements

Symbols greatly reduce programming effort and errors. You can
define symbols to represent storage addresses, displacements,
constants, registers, and almost any element that makes up the
assembler language. These elements include operands, operand
subfields, terms, and expressions. Symbols are easier to
remember and code than numbers; moreover, they are listed in a
symbol cross-reference table, which is printed in the program
listings. Thus, you can easily find a symbol when searching for
an error in your code.

Variety in Data Representation

You can use decimal, binary, hexadecimal, or character
representation of machine language binary values in writing
source statements. You select the representation best suited to
the purpose. The assembler converts your representations into
the binary values required by the machine language.

Controlling Address Assignment

Relocatability

sectioning a Program

If you code the appropriate assembler instruction, the assembler
will compute the displacement from a base address of any
symbolic addresses you specify in a machine instruction. It
will insert this displacement, along with the base register
assigned by the assembler instruction, into the object code of
the machine instruction.

At execution time, the object code of address references must be
in the base-displacement form. The computer obtains the
required address by adding the displacement to the base address
contained in the base register.

The assembler produces an object module that can be relocated
from an originally assigned storage area to any other suitable
virtual storage area without affecting program execution. This
is made easier because most addresses are assembled in their
base-displacement form.

You can divide a source module into one or more control
sections. After assembly, you can include or delete individual
control sections from the resulting object module before you
load it for execution. Control sections can be loaded
separately into storage areas that are not contiguous. This
means that a sectioned program may be loaded and executed even
though a continuous block of storage large enough to accommodate
the entire program may not be available.

Linkage between Source Modules

You can create symbolic linkages between separately assembled
source modules. This allows you to refer symbolically from one
source module to data defined in another source module. You can
also use symbolic addresses to branch between modules.

A discussion of sectioning and linking is contained in "Program
Sectioning and Linking" on page 45.

6 Assembler H Version 2 Application Programming: Language Reference

o

o

o

o

Program Listings

The assembler produces a listing of your source module,
including any generated statements, and the object code
assembled from the source module. You can partly control the
form and content of the listing.

The assembler also prints messages ~bout actual errors and
warnings about potential errors in your source module.

Chapter 1. Introduction to Assembler language 7

CHAPTER 2. CODING AND STRUCTURE

This chapter presents information about assembler language
coding conventions and assembler language structure.

ASSEMBLER LANGUAGE CODING CONVENTIONS

PROGRAM

- • IO~ 14 M

I II I It
i! Ii·

i I I I I i I
i I I I I J i I i ! i I

i ! ! I i I I i I .1 I i
:

; ,

The following describes the coding conventions that you must
follow in writing assembler language programs. Assembler
language statements at one time were commonly written on a
coding form before they were punched onto cards; now they are
usually entered through terminals. In this case, the columns on
the form in Figure 1 correspond to positions on a source
statement entered through a terminal.

One line of coding on the form is entered to represent one card.
The vertical columns on the form correspond to card columns.
Space is provided on the form for program identification and
instructions to keypunch operators.

•' . .. 10

i! I I· r I
III i I I

Ii!! ! II I I !
! I !! !!

I I 1 I
I I' I I ! ! ! ! ! ! I I \ ! t

I i ! i ! ! i ! i I I 1 !
j : . . ,

. , ; . , .

I "AGE OF

I

• - 10 • 71 71

. I
I I. I
i ! I I ' I I J

I I

i I ! . !! i ! I(! i I ! I I

UIII"
-"U.I.A.

-...... 10

I I !
! !

:w-; -
: . , !"""

.. 1 I !
! I ! I \ i i

.

~ir:.:~.!,'.~i !~":.~;I":+ ii++~,!+,!.+:: .. '~!~~!,:~ll!~;"~:':~!~!~:~· ;H'~!~!~:~;~:~: ~:~ il~~i~i+:++~~~~J~~~:,.~I'!'~'I.~:HI~:~·r+: i±±±~: ~'. ~~~!~++,:,.+i, .. +: ... ~. ' : .. .

I iii! :!i\ 11 '1 iii ,'11 -t-t++ tHt

,

. ; ' . . ! • :! ' .

. ' ; i :
, I , !

, .
: .

i I I i I! ! ! ! ! I I ! . !! iii! . ! : ! i ! I , ! i I . : i !

I I I I I ! ! I! !: i! iii! ; i

1 i ! I
I i I j ! i

! I' ! ii' Ii i I I l! i !
. , . : , ! ; , ' . :

: . ! I
: : i , ' .' .

• I. 14" :III • • :. 40 .. au • 10 • 1 71 ..

Figure 1. Stand~rd Assembler Coding Form

o

c'

In the alternative, you can enter source statements through a
terminal, using the column format to correspond to positions on Ot
your screen or terminal printer._ .

8 Assembler H Version 2 Application Programming: Language Reference

o

o

0···1'
~

FIELD BOUNDARIES

statement Field

Assembler language statements usually occupy one SO-column line
on the standard form (for statements occupying more than 80
columns, see "Continuation lines" on page 10. Hote that any
printable character punched into any column of a card, or
otherwise entered as a position in a source statement, is
reproduced in the listing printed by the assembler. All
characters are placed in the line by the assembler. Whether
they are printed or not depends on the printer. Each line of
the coding form is divided into three main fields:

• statement field

• Continuation indicator field

• Identification-sequence field

The instructions and comments statements must be written in the
statement field. The statement field starts in the "begin"
column and ends in the "end" column. The continuation indicator
field always lies in the column after the "end" column. The
identification-sequence field usually lies in the field after
the continuation indicator field. Any continuation lines needed
must start in the "continue" column and end in the "end" column.
The assembler assumes the following standard values for these
columns:

• The "begin" column is column 1.

• The "end" column is column 71.

• The "continue" column is column 16.

These standard values can be changed by using the Input Format
Control (ICTL) assembler instruction. The lCTL instruction, by
changing the standard begin, end, and continue columns can
create a field before the begin column; this field can then
contain the identification-sequence field. However, all
references to the "begin," "end," and "continue" columns in this
manual refer to the standard values described above.

continuation Indicator Field

The continuation indicator field occupies the column after the
end column. Therefore, the standard position for this field is
column 72. A nonblank character in this column indicates that
the current statement is continued on the next line. This
column must be blank if a statement is completed on the same
line; otherwise, the assembler will treat the statement that
follows on the next line as a continuation line of the current
statement.

Identification-Sequence Field

The identification-sequence field can contain identification
characters or sequence numbers or both. If the ISEQ instruction
has been specified to check this field, the assembler will
verify whether or not the source statements are in the correct
sequence.

The columns checked by the lSEQ. function are not restricted to
columns 73 through SO, or by the boundaries determined by any
lCTL instruction. The columns specified in the lSEQ instruction
can be anywhere on the input statements; they can also coincide
with columns that are occupied by the instruction field.

Chapter 2. Coding and Structure 9

CONTINUATION LINES

To continue a statement on another line, the following rules
apply:

1. Enter a nonblank character in the continuation indicator
field (column 72). This nonblank character must not be part
of the statement coding. When more than one continuation
line is needed, a nonblank character must be entered in
column 72 of each line that is to be continued.

2. Continue the statement on the next line, starting in the
continue c'olumn (column 16). Columns to the left of the
continue column must be blank. Comments may be continued
after column 16.

Note that, if an operand is continued after column 16, it is
taken to be a comment. Also, if the continuation indicator
field is filled in on one line and you try to start a totally
new statement after column 16 on the next line, this statement
will be taken as a comment belonging to the previous statement.

Unless it is one of the statement types listed below, nine
continuation lines are allowed for a single assembler language
statement.

ALTERNATIVE STATEMENT FORMAT: The alternative statement format,
which allows as many continuation lines as are needed, can be
used for the following instructions:

• Prototype statement of a macro definition

• Macro instruction statement

• AGO conditional assembly statement

• AIF conditional assembly statement

• GBLA, GBLB, and GBLC conditional assembly statements

• LCLA, LCLB, and LCLC conditional assembly statements

• SETA, SETB, and SETC conditional assembly statements

Examples of the alternative statement format for each of these
instructions are given with the description of the individual
ifls1=ruption.

COMMENTS STATEMENT FORM~T

Comments statements are not assembled as part of the object
module, but are only printed in the assembly listing. As many
comments statements as needed can be written, subject to the
following rules:

• Comments statemQnts require an asterisk in the begin column.

Note: Internal macro definition comments statements require
a period in the begin column, followed by an asterisk.

• Any characters of the IBM System/370 character set,
including blanks and special characters, can be used (see
"Character Set" on page 13).

•

•

Comments statements must lie in the statement field and not
run over into the continuation indicator field; otherwise,
the statement following the comments statement will be
considered as a continuation line of that comments
statement.

Comments statements must not appear between an instruction
statement and its continuation lines.

10 Assembler H Version 2 Application Programming: Language Reference

c

~'j 0 '''··

o

o

o

INSTRUCTION STATEMENT FORMAT

Fixed Format

Free Format

Instruction statements must consist of one to four entries in
the statement field. They are:

1. A name entry

2. An operation entry

3. An operand entry

4. A remarks entry

These entries must be separated by one or more blanks, and must
be written in the order stated.

The standard coding form (Figure 1 on page 8) is divided into
fields that provide fixed positions for the first three entries,
as follows:

• An 8-character name field starting in column 1

• A 5-character operation field starting in column 10

• An operand field that begins in column 16.

Note: With this fixed format, one blank separates each field.

It is not necessary to code the name, operation, and operand
entries according to the fixed fields on the standard coding
form. Instead, these entries can be written in any position,
subject to the formatting specifications below.

Formatting specifications

Whether using fixed or free format, the following general rules
apply to the coding of an instruction statement:

1. The entries must be written in the following order: name,
operation, operand, and remarks.

2. The entries must be contained in the begin column (1)
through the end column (71) of the first line and, if
needed, in the continue column (16) through the end column
(71) of any continuation lines.

3. The entries must be separated from each other by one or more
blanks.

4. If used, a name entry must start in the begin column.

5. The name and operation entries, each followed by at least
one blank, must be contained in the first line of an
instruction statement.

6. The operation entry must begin at least one column to the
right of the begin column.

A description of the name, operation, operand, and remarks
entries follows:

NAME ENTRY: The name entry is a symbol created by you to
identify an instruction statement. A name entry is usually
optional. It must be a valid symbol at assembly time (after
substitution for variable symbols, if specified); for an
exception, see "TITLE--Identify Assembly Output" on page 140.

Chapter 2. Coding and structure 11

The symbol must consist of 63 characters or less, and be entered
with the first character appearing in the begin column. The
first character must be alphabetic. If the begin column is
blank, the assembler program assumes no name has been entered.
No blanks may appear in the symbol.

OPERATION ENTRY: The operation entry is the symbolic operation
code specifying the machine, assembler, or macro instruction
operation desired. The following apply to the operation entry:

• An operation entry is mandatory.

• For machine and assembler instructions, it must be a valid
symbol at assembly time (after substitution for variable
symbols, if specified). The standard symbolic operation
codes are five characters or less (see the appropriate
principles of operation manual; or, for assembler
operations, see Appendix B, "Assembler Instructions and
Statements").

The standard set of codes can be changed by OPSYN
instructions (see "OPSYN-Equate Operation Code" on page
88),

• For macro instructions, it can be any valid symbol that is
not identical to any machine or assembler op-code.

OPERAND ENTRIES: Operand entries contain one or more operands
that identify and describe data to be acted upon by the
instruction, by indicating such information as storage
locations, ma$ks, storage area lengths, or types of data. The
following rules apply to operands:

• One or more operands are usually required, depending on the
instruction.

• Operands must be separated by commas. No blanks are allowed
between the operands and the commas that separate them.

• Operands must not contain embedded blanks, because a blank
normally i ndi cates the end of the operand entry. How.ever,
blanks are allowed if they are included in character strings
enclosed in single quotation marks, or in logical
expressions.

REMARKS ENTRIES: Remarks are used to describe the current
instruction.

• Remarks are optional.

• They can contain any of the 256 valid characters (or punch
combinations) of the appropriate character set, including
blanks and special characters.

• They can follow any operand entry.

12 Assembler H Version 2 Application Programming: language Reference

n V

o

o

CHARACTER SET

o

o

• In statements in which an optional operand entry is omitted
but a remarks entry is desired, the absence of the operand
entry must be indicated by a comma preceded and followed by
one or more blanks, as illustrated below:

t=-ame I Operation
END

I Operand
REMARKS

STATEMENT EXAMPLE: The following example illustrates the use of
name, operation, operand, and remarks entries. A compare
instruction has been named by the symbol COMP; the operation
entry (CR) is the mnemonic operation code for a
register-to-register compare operation; and the two operands
(5,6) designate the two general registers whose contents are to
be compared. The remarks entry reminds readers that "new sum"
is being compared to "old" with this instruction.

Name operation Operand

COMP CR 5,6 NEW SUM TO OLD

Terms, expressions, and character strings used to build source
statements are written with the following characters:

Alphabetic Characters A through Z, and $, " a
Digits 0 through 9

spEcial Characters

Underscore Character

+ - , = . * () , / & blahk

Examples showing the use of the above characters are given in
Figure 2 on page 14

The term "alphameric characters" includes both alphabetic
characters and digits, but not special characters or the
underscore. Normally, you would use strings of alphameric
characters to represent data (see "Terms" on page 21), and
special characters as:

• Arithmetic operators in expressions

• Data or field delimiters

• Indicators to the assembler for specific handling

These characters are represented by the card-punch combinations
and internal bit configurations listed in the IBM System/370
Reference Summary. In addition, any of the 256 punch
combinations may be designated anywhere that characters can
appear between paired single quotation marks, in comments, and
in macro instruction operands.

Chapter 2. Coding and Structure 13

Characters

Alphameric

Digits

Underscore
character

Special

Characters

+

/

+ or -

Blanks

Comma

Apostrophes

Parentheses

Ampersand

Period

Asterisk

Equal sign

Usage

In symbols

As decimal

self-defining

terms

In ordinary symbols

As Operators

Addition

Subtraction

Multiplication

Division

(Unary)

As Delimiters

Between fields

Between operands

Enclosing

character strings

Enclosing subfields
or subexpressions

As indicators

for

Variable symbol

Sequence symbol

Comments statement
in Macro definition

Concatenation

Bit-length

specification

Decimal point

Location counter

reference

Comments statement

Literal reference

Keyword

Example

LABEL NINE#01

01 9

SAVE TOTAL

NINE+FIVE

NINE-5

9*FIVE

TEN/3

+NINE -FIVE

LABEL AR 3,4

OPND1,OPND2

C'STRING'

MOVE MVC TO(80) ,FROM
(A+B*(C-D) }

&VAR

.SEQ

·*THIS IS A COMMENT

&VAR.A

DC CL.7'AB'

DC F'1.7E4'

':' THI~ IS A COMMENT

L 6,=F'2'

&KEY=D

Figure 2. Examples Using Character Set

Constituting

Terms

Terms

Terms

Expressions

Terms

Statement

Operand field

String

Statement
Expression

Term

(label)

Statement

Term

Operand

Operand

Expression

Statement

Statement

Keyword

Parameter

14 Assembler H Version 2 Application Programming: language Reference

G

o

o

o

ASSEMBLER LANGUAGE STRUCTURE

This section describes the structure of the assembler language,
that is, the various statements that are allowed in the
language, and the elements that make up those statements.

A source statement is composed of:

• A name entry (usually optional) that is a symbol

• An operation entry (required) that is a symbolic operation
code representing a machine, assembler, or macro instruction

• An operand entry (usually required) that is composed of one
or more operands

• A remarks entry (optional)

Notes:

1. The figures in this section show the overall structure of
the statements that represent the assembler language
in~tructions, and are not specifications for these
instructions. The individual instructions, their purposes,
and their specifications are described in other sections of
this manual. Model statements, used to generate assembler
language statements, are described in "Chapter 7. How to
Prepare Macro Definitions."

2. The remarks entry is not processed by the assembler, but
only copied into the listings of the program. Therefore, it
is not shown except in the overview of the assembler
language structure in Figure 3 on page 16.

The machine instruction statements are described in Figure 4 on
page 17 , discussed in "Chapter 4. Machine Instruction
Statements," and summarized in the appropriate principles of
operation manual.

Assembler instruction statements are described in Figure 5 on
page 18 , discussed in "Chapter 3. Addressing, Program
Sectioning, and Linking" and "Chapter 5. Assembler Instruction
Statements," and are summarized in Appendix B, "Assembler
Instructions and Statements."

Conditional assembly instruction statements and the macro
processing statements (MACRO, MEND, MEXIT, MNOTE, and AREAD) are
described in Figu~e 6 on page 19. The conditional assembly
instructions are discussed in "Chapter 9. How to Write
Conditional Assembly Instructions," and macro processing
instructions, in "Chapter 7. How to Prepare Macro Definitions."
Both types are summarized in Appendix B, "Assembler Instructions
and Statements."

Chapter 2. Coding and Structure 15

EITHER

I
MACHINE
Instructions

I

I

NAME

I

INSTRUCTION
STATEMENTS

I
I Which are of three

main types

I
I

or ASSEMBLER
Instructions

I
I I Which are composed of

one to four entries

I
I

OPERATION

J

I

or

Source Module
made up of
Source Statements

Source Statements are J

MACRO
Instructions

OPERAND

OR

Which ,for machine instruc-I
tions is composed of I

EXPRESSIONS

Which are composed of I

I I

TERMS or
Combination
of terms

I I
I

IWhich are composed of characters I

I
IBM SYSTEM/370
CHARACTER SET

Figure 3. Assembler Language Structure

COMMENTS
STATEMENTS

REMARKS

I Which are composed of I

CHARACTER
STRINGS

16 Assembler H Version 2 Application Programming: language Reference

O ... il y

o
NAME OPERATION OPERAND

Entry Entry Entry

I I I
I can be I I must be I can be

I I I
A A symbolic One or more

Symbol Operation operands

(or blank) Code composed of

I
I I I I

Exp(Exp,Exp) A
Expression or Exp (Exp) or or or Literal

Exp (,Exp) =H'9'

I
Iwhich can bel

I
I I

Arithmetic
Exp = Expression

Term or combination o of terms

I
Which can be
any of the
following

I
I I I I

A Location
Symbol

A
Symbol Counter

Length
Self~Defining Attribute

Reference Reference Term
e.g. HERE e.g. -lC e.g. L'HERE

I
Which can be
any of the
following

I
I I I I

Decimal Hexadecimal Binary Character

e.g. 9 e.g. X '09' e.g. B ' 1 001' e.g. C 'JAN'

Figure 4. Machine Instructions

o
Chapter 2. Coding and structure 17

NAME
Entry

I
I can be

I

A
Symbol

(or blank)

I
Duplication

factor

OPERATION
Entry

I
I must be I

I

A symbolic
Operation
Code

I
For Data Definition
(DC and DS
Instructions)

I

I
Operands can be
composed of one
to four subfields

I
I

Type Modifiers
Constant
(Nominal

Value)

.. g.L~ One or more
constants of
the format
below

'Decimal
number'

e.g. F '2'

or
(Expression)

e.g. A(ADDR)

1 Discussed more fully where individual instructions are described

or

OPERAND
Entry

I
I can be I

I

One or more
operands

I

I
Expression

e.g.'~+4

I
'Character
string'

e.g. C' A is B'

1

or

For all other
ordinary Assembler
Instructions

Operands can be
composed of

Character
String

e.g.
'TO BE
PUNCHED'

Figure 5. Ordinary Assembler Instruction Statements

I
Symbolic
Option

e.g.

NOGEN

18 Assembler H Version 2 Application Programming: Language Reference

0

G

o

o
NAME OPERATION OPERAND

Entry Entry Entry

I I I
can be L must be I I can be I

I I I I I
Sequence

Variable A symbolic Zero or more
Symbol

or Symbol Operation operands
.SEQ

& VAR Code composed of
(or blank)

I
I I I I I

Variable
Expression Exp,'msg'

(exp)seq sym Sequence or or or or MNOTE or
Symbol Symbol

(Expression) 3,'ERROR' (&A EQ1).SEQ

I
Which can be any

combination of
variable symbols

and other characters

o that constitute an

I Exp=Expression

I I I
Arithmetic Logical Character
Expression

or
Expression

or
Expression

&A + 1 &81 OR &82 'JAN&C'

Figure 6. Conditional Assembly Instructions

0.'1.'
"

Chapter 2. Coding and structure 19

Prototype
Statement

Macro
Instruction
Statement

Ordinary
Symbol
(or blank)

or

Macro instruction statements are described in Figure 7 and
discussed in "Part 2. Macro Language."

Symbolic
Parameter

NAME
Entry

Sequence
Symbol

or

Symbolic
Operation
Code

OPERATION
Entry

Variable
Symbol

Character
String
(excluding
blanks)

Zero or more

Symbolic
Parameters

OPERAND
Entry

Zero or more
Operands
which can be

Operands with
one value

or
Sublists with
one or more
entries

or

Each entry
can have a
value

'Character
String'

(including
blanks)

Figure 7. Macro Instructions

2~ Assembler H Version 2 Application Programming: Language Reference

o

G

o

o

o

o

TERMS AND EXPRESSIONS

TERMS

symbols

A term is the smallest element of the assembler language that
represents a distinct and separate value. It can, therefore, be
used alone or in combination with other terms to form
expressions. Terms are classified as absolute or relocatable"
depending on the effect of program relocation upon them.
Program relocation is the loading of the object program into
storage locations other than those originally assigned by the
assembler. Terms have absolute or relocatable values that are
assigned by the assembler or that are inherent in the terms
themselves.

A term is absolute if its value does not change upon program
relocation, and is relocatable if its value changes upon
relocation. Figure 8 summarizes the various types of terms.
The following text discusses each term and the rules for its
use.

Terms Term Can Be Value Is

Absolute Relocatable Assigned by Inherent in
Assembler Term

Symbols X X X

Location
Counter X X
Reference

Symbol
Length X X
Attribute

Other Data X X
Attributes

Self-Defining X X
Terms

Figure 8. Summary of Terms

You can use a symbol to represent storage locations or arbitrary
values. If you write a symbol in the name field of an
instruction, you can then specify this symbol in the operands of
other instructions and thus refer to the former instruction
symbolically. This symbol represents a relocatable 'address.

You can also assign an absolute value to a symbol by coding it
in the name field of an EQU instruction with an operand whose

Chapter 2. Coding and Structure 21

value is absolute. This allows you to use this symbol in
instruction operands to re.present registers, displacements in
explicit addresses, immediate data, lengths, and implicit
addresses with absolute values. For details of these program
elements, see "Operand Entries" on page 72.

The advantages of symbolic over numeric representation are:

1. Symbols are easier to remember and use than numeric values,
thus reducing programming errors and increasing programming
efficiency.

2. You cah use meaningful symbols to describe the program
elements they represent; for example, INPUT can name a field
that is to contain input data, or INDEX can name a register
to be used for indexing.

3. You can change the value of one symbol (through an EQU
instruction) more easily than you can change several numeric
values in many instructions.

4. Symbols are entered into a cross-reference table that the
assembler prints in the program listing. This table helps
you to find a symbol in a program listing, because it lists
(a) the number of the statement in which the symbol is
defined, that is, used as the name entry, and (b) the
numbers of all the statements in which the symbol is used in
the operands.

SYMBOL TABLE: The assembler maintains an internal table called a
symbol table. When the assembler processes your source
statements for the first time, it assigns an absolute or
relocatable value to every symbol that appears in the name field
of an instruction. The assembler enters this value, which
normally reflects the setting of the location counter, into the
symbol table; it also enters the attributes associated with the
data represented by the symbol. The values of the symbol and
its attributes are available later when the assembler finds this
symbol or attribute reference used as a term in an operand or
expression. ~ee "Symbol length Attribute Reference" and
"Self-Defining Terms" in this chapter for more details. The
three types of symbols recognized by the assembler are:

• Ordinary symbols

• Variable symbols

• Sequence symbols

Ordinary symbols can be used in the name and operand fields of
machine and assembler instruction statements. They must be
coded to conform to these rules:

1. The symbol must not consist of more than 63 alphameric
characters. The first character must be an alphabetic
character (A through Z, $, I, or ~). The other characters
may be alphabetic characters, digits, or a combination of
the two.

2. No special characters may be included in an ordinary symbol.

3. No blanks are allowed in an ordinary symbol.

4. An underscore character is allowed, with the restrictions
listed below.

22 Assembler H Version 2 Application Programming: Language Reference

o

c

o

o

o

An underscore character must not appear in an external symbol,
or in the name field of an OPSYH instruction. The following
lists the symbol fields in which the underscore character must
not appear:

• In the name field of a CSECT instruction

• In the name field of a DXD instruction

• In the name field of a COM instruction

• In the name field of an OPSYN instruction

• In the operand field of an EXTRH instruction

• In the operand field of a WXTRN instruction

• In the operand field of an ENTRY instruction

• As the nominal value in a V-type or Q-type address constant

In the following sections, the term symbol refers to the
ordinary symbol.

The following are valid symbols:

ORDSYMI435A
K4
B49467lITTlENAIl

HERE
10123
~33

$OPEN
X
SAVE_TOTAL

Variable symbols must begin with an & followed by an alphabetic
character and, optionally, up to 61 alphameric characters.
Variable symbols can only be used in macro processing and
conditional assembly instructions. They allow different values
to be assigned to one symbol. A complete discussion of variable
symbols appears in "Chapter 7. How to Prepare Macro
Definitions."

The following are valid symbols:

&VARYIHGSYMABC
&F346944

&~ME
&A

Sequence symbols consist of a period (.) followed by an
alphabetic character, and up to 61 additional alphameric
characters. Sequence symbols can be used only in macro
processing and conditional assembly instructions. They are used
to indicate the position of statements within the source program
or macro definition. Through their use, you can vary the
sequence in which statements are processed by the assembler
program. (See the compl~te discussion in "Chapter 9. How to
Write Conditional Assembly Instructions.")

The following are valid symbols:

.BlABEl04

.BRAHCHTOMEFIRST
.1359
.A

SYMBOL DEFINITION: An ordinary symbol is considered defined when
it appears as:

• The name entry in a machine or assembler instruction of the
assembler language

• One of the operands of an EXTRH or WXTRN instruction

Note: Ordinary symbols that appear in instructions generated
from model statements at preassembly time are also considered
defined.

Chapter 2. Coding and Structure 23

In Figure 9, the assembler assigns a value to the ordinary
symbol in the name fields as follows:

1. According to the address of the leftmost byte of the storage
field that contains one of the following:

a. (See (1) in Figure 9.) Any machine or assembler
instruction (except the EQU or OPSYN instruction)

b. (See (2) in Figure 9.) A storage area defined by the DS
instruction

c. (See (3) in Figure 9.) Any constant defined by the DC
instruction

d. A channel command word defined by the CCW, CCWO, or CCW1
instruction

The address value thus assigned is relocatable, because the
object code assembled from these items is relocatablei the
relocatability of addresses is describad "Addresses" on page
74.

Assembler Language
Statements

Address Value
of Symbol

Object Code
in Hexadecimal

LOAD

AREA

F200

FULL
TWOO

R3

Relocatable

Address of
AREA

L 3,AREA8 LOAD~ .. lsaI31 olxxxx\

DS F • AREA--I

I F200f, DC F'200' •
EQU AREA}. FUL~/
EQU F200 TWOO

• Absolute
EQU 3

L
A

R3,FULL
R3,TWOO

R3=3

Ixx X X xxxxi

~loO o 0 oocal
~

Address
of FULL

15 a I 3 I 0 i xxxx I
ISA 13 I 0 I xxxx ,

Address of
TWOO

Figure 9. Transition from Assembler Language Statement to Object
Code

24 Assembler H Version 2 Application Programming: Language Reference

o

o

self-Defining Terms

o

2. According to the value of the first or only expression
specified in the operand of an EQU instruction. This
expression can have a relocatable (see (4) in Figure 9) or
absolute (see (5) in Figure 9) value, which is then assigned
to the ordinary symbol.

The value of an ordinary symbol must lie in the range -2 31

through +2 31 _1.

RESTRICTIONS ON SYMBOLS: A symbol must be defined only once in a
source module with one or more control sections, with the
following exception: The symbol in the name field of a LOCTR
instruction can be the same as the name of a previous START,
CSECT, DSECT, COM, or LOCTR instruction. It identifies the
resumption of the location counter specified by the name field.

Note: The ordinary symbol that appears in the name field of an
OPSYH or a TITLE instruction does not constitute a definition of
that symbol. It can, therefore, be used in the name field of
any other statement in a source module.

PREVIOUSLY DEFINED SYMBOLS: If ordinary symbols appear in
operand expressions of ORG and CHOP instructions, in modifier
expressions of DC, DS, and DXD statements, in the first operand
of EQU statement, or in Q-type constants, they do not need to be
previously defined.

Allowing forward reference in the above statement types creates
two new kinds of errors that you should guard against.

• Circular definition of symbols, such as:

•

X EQU Y
Y EQU X

Circular location-counter dependency, as in this example:

A DS (B-A)C
B LR 1,2

Statement A cannot be resolved because the value of the
duplication factor is dependent on the location of B, which is,
in turn, dependent upon the length of A.

Literals may contain symbolic expressions in modifiers, but any
ordinary symbols used must have been previously defined.

A self-defining term allows you to specify a value explicitly.
With self-defining terms, you can specify decimal, binary,
hexadecimal, or character data. These terms have absolute
values and can be used as absolute terms in expressions to
represent bit configurations, absolute addresses, displacements,
length or other modifiers, or duplication factors.

USING SELF-DEFINING TERMS: Self-defining terms represent machine
language binary values and are absolute terms; their values do
not change upon program relocation. Some examples of
self-defining terms and the binary values they represent are
given below:

Chapter 2. Coding and Structure 25

Self-Defining Decimal Binary
Term Value Value

15 15 1111

241 241 11110001

B'1111' 15 1111

B'11110001' 241 11110001

B'100000001' 257 100000001

X'F' 15 1111

X'F1' 241 11110001

X'101' 257 100000001

e'l' 241 11110001

C'A' 193 11000001

C'AB' 49,602 1100000111000010

The assembler carries the values represented by self-defining
terms to 4 bytes or 32 bits; the high-order bit is the sign bit.
(A '1' in the sign bit indicates a negative value; a '0'
indicates a positive value.)

The use of a self-defining term is distinct from the use of data
constants or literals. When a self-defining term is used in a
machine instruction statement, its value is assembled into the
instruction. When a data constant is referred to or a literal
is specified in the operand of an instruction, its address is
assembled into the instruction. Self-defining terms are always
right-justified; truncation or padding with zeros, if necessary,
occurs on the left.

Decimal Self-Defining Term: A decimal self-defining term is
simply an unsigned decimal number written as a sequence of
decimal digits. High-order zeros may be used (for example,
007). Limitations on the value of the term depend on its use.
For example, a decimal term that designates a general register
should have a value between 0 and 15; one that represents an
address should not exceed the size of storage. In any case, a
decimal term may not consist of more than 10 digits, or exceed 2
147 483 647 (2 31 _1). A decimal self-defining term is assembled
as its binary equivalent. Some examples of decimal
self-defining terms are: 8, 147, 4092, and 00021.

Hexadecimal Self-Defining Term: A hexadecimal self-defining term
consists of 1 to 8 hexadecimal digits enclosed in single
quotation marks and preceded by the letter X; for example,
X'C49'.

Each hexadecimal digit is assembled as its 4-bit binary
equi~alent. Thus, a hexadecimal term used to represent an 8-bit
mask would consist of 2 hexadecimal digits. The maximum value
of a hexadecimal term is X'FFFFFFFF'; this allows a range of
values from -2 147 483 648 through 2 147 483 647.

The hexadecimal digits and their bit patterns are as follows:

o - 0000
1 - 0001
2 - 0010
3 - 0011

4 - 0100
5 - 0101
6 - 0110
7 - 0111

8 - 1000
9 - 1001
A - 1010
B - 1011

C - 1100
D - 1101
E - 1110
F - 1111

26 Assembler H Version 2 Application Programming: Language Reference

o

o

o

o

.
Note: When used as an absolute term in an expression, a
hexadecimal self-defining term has a negative value if the
high-order bit is 1.

Binary Self-Defining Term: A binary self-defining term is
written as an unsigned sequence of 1s and Os enclosed in single
quotation marks and preceded by the letter B; for example,
B'10001101'. This term would appear in storage as shown,
occupying 1 byte. A binary term may have up to 32 bits
represented. This allows a range of values from -2 147 483 648
through 2 147 483 647.

Note: When used as an absolute term in an expression, a binary
self-defining term has a negative value if the high-order bit is
1.

Binary representation is used primarily in designating bit
patterns of masks or in logical operations.

The following illustrates a binary term used as a mask in a Test
Under Mask (TM) instruction. The contents of GAMMA are to be
tested, bit by bit, against the pattern of bits represented by
the binary term.

Name operation Operand

ALPHA TM GAMMA,B'10101101'

Character Self-Defining Term: A character self-defining term
consists of 1 to 4 characters enclosed in single quotation
marks, and must be preceded by the letter C. All letters,
decimal digits, and special characters may be used in a
character term. In addition, any of the remainder of the 256
punch combinations may be designated in a character
self-defining term. Examples of character self-defining terms
are:

C'/'
C'ABC'

C' , (blank)
C'13'

Because of the use of single quotation marks in the assembler
language and ampersands in the macro language as syntactic
characters, the following rule must be observed when using these
characters in a character term.

For each single ~uotation mark or ampersand desired in a
character self-defining term, two single quotation marks or
ampersands must be written. For example, the character value
A'I would be written as 'A"I', while a single quotation mark
followed by a blank and another single quotation mark would be
written as '" "'.

Each character in the character sequence is assembled as its
8-bit code equivalent. The two single quotation marks or
ampersands that must be used to represent a single quotation
mark or ampersand within the character sequence are assembled as
a single quotation mark or ampersand.

Location Counter Reference

The assembler runs a location counter to assign storage
addresses to your program statements. It is the assembler's
equivalent of the instruction counter in the computer. You can
refer to the current value of the location counter at any place
in a source module by specifyingJan asterisk as a term in an
operand.

Chapter 2. Coding and structure 27

As the instructions and constants of a source module are being
assembled, the location counter has a value that indicates a
location in storage. The assembler increments the location
counter according to the following:

1. After an instruction or constant has been assembled, the
location counter indicates the next available location.

2. Before assembling the current instruction or constant, the
assembler checks the boundary alignment required for it and
adjusts the location counter, if necessary, to indicate the
proper boundary.

3. While the instruction or constant is being assembled, the
location counter value does not change. It indicates the
location of the current data after boundary alignment and is
the value assigned to the symbol, if present, in the name
field of the statement.

4. After assembling the instruction or constant, the assembler
increments the location counter by the length of the
assembled data to indicate the next available location.

These rules are illustrated below:

Location
in Hexadecimal

000004
000007
000008
OOOOOC
000010

DONE
BEFORE
DURING
AFTER
NEXT

Source
Statements

DC CL3'ABC'
EQU *
DC F'200'
EQU *
DS D

You can specify multiple location counters for each control
section in a source module; for more details about the location
counter setting in control sections, see "Location Counter
Setting" on page 47.

The assembler carries an internal location counter value as a
4-byte (32-bit) value, but it only uses the low-order 3 bytes,
which are printed in the program listings. However, if you
specify addresses greater than 2 24 _1, you cause overflow into
the high-order byte, and the assembler issues the error message,
'LOCATION COUNTER OVERFLOW'.

You can control the setting of the location counter in a
particular control section by using the START or ORG
instruction, described in "Chapter 3. Addressing, Program
Sectioning, and Linking"and"Chapter 5. Assembler Instruction
Statements," respectively. The counter affected by either of
these assembler instructions is the counter for the control
section in which they appear.

You can refer to the current value of the location counter at
any place in a program by using an asterisk as a term in an
operand. The asterisk can be specified as a relocatable term
according to the following rules:

1. The asterisk can be specified only in the operands of:

a. Machine instructions

b. DC and DS instructions

c. EQU, ORG, and USING instructions

2. It can also be specified in literal constants. See
"literals" on page 32. For example:

THERE L 3,=A(*)

The value of the location counter reference (*) is the current
valua of tha location counter of the control section in which

28 Assembler H Version 2 Application Programming: Language Reference

o

o

o

o

o

the asterisk C*) is specified as a term. The asterisk has the
same value as the address of the first byte of the instruction
in which it appears. For example:

HERE B *+8

where the address value of * is the address of HERE.

For the value of the asterisk in address constants with
duplication factors, see "Address Constants--A and Y" on page
112.

symbol Length Att~ibute Refe~ence

The length attribute of a symbol may be used as a ter~.
Reference to the attribute is made by coding L' followed by the
symbol, as in:

L'BETA

The length attribute of BETA will be substituted for the term.
When you specify a symbol length attribute reference, you obtain
the length of the instruction or data referred to by a symbol.
You can use this reference as a term in instruction operands to:

1. Specify unknown storage area lengths.

2. Cause the assembler to compute length specifications for
you.

3. Build expressions to be evaluated by the assembler.

The symbol length attribute reference must be specified
according to the following rules:

1. The format must be L' immediately followed by a valid symbol
or the location counter reference C*).

2. The symbol must be defined in the same source module in
which the symbol length attribute reference is specified.

3. The symbol length attribute reference can be used in the
operand of any instruction that requires an absolute term.
However, it cannot be used in the form L'* in any
instruction or expression that requires a previously defined
symbol.

The value of the length attribute is normally the length in
bytes of the storage area required by an instruction, constant,
or field represented by a symbol. The assembler stores the
value of the length attribute in the symbol table along with the
address value assigned to the symbol.

When the assembler encounters a symbol length attribute
reference, it substitutes the value of the attribute from the
symbol table entry for the symbol specified.

The assembler assigns the length attribute values to symbols in
the name field of instructions as follows:

• For machine instructions (see (1) in Figure 10 on page 30),
it assigns either 2, 4, or 6, depending on the format of the
instruction.

• For the DC and DS instructions (see (2) in Figure 10), it
assigns either the implicit or explicitly specified length.
The length attribute is not affected by a duplication
factor.

• For the EQU instruction, it assigns the length attribute
value of the leftmost or only term (see (3) in Figure 10) of
the first expression in the first operand, unless a specific
length attribute is supplied in a second operand.

Chapter 2. Coding and Structure 29

Hote the length attribute values of the following terms in an
EQU instruction:

• Self-defining terms (see (4) in Figure 10)

• Location counter reference (see (5) in Figure 10)

• L'* (see (6) in Figure 10)

The length attri bute of the locati on counter reference (L' *_. -see
(7) in FigurQ 10) is equal to the length attribute of the
instruction in which the L'* appears.

Figure 10 illustrates these rules.

Source Module

MACHA
MACHB
MACHC

TO
FROM
ADCON
CHAR
DUPL

RELOC1
RELOC2
ABSOL1
ABSOL2

SDT1
SDT2
SDT3

ASTERISK

LOCTREF

MVC
L
LR

DS
OS
DC
DC
DC

EQU
EQU
EQU
EQU

EQU
EQU
EQU

EQU

EQU

TO,FROM
3,ADCON
3,4

CL80
CL240
A(OTHER)
C'YUKON'
3F"200'

Value of Symbol
Length Attribute
(at assembly time)

L'MACHA
L'MACHB
L'MACHC

LITO
L'FROM
L'ADCON
L'CHAR
L'DUPL

L'RELOC1
L'RELOC2
L'ABSOL1
L'ABSOL2

L ' SDT1
L'SDT2
L'SDT3

80
80

240
240

L'ASTERISK 81

L ' LOCTREF 01

LENGTH1 DC A (L '*) j L 1* {4
L'LENGTH1 4

LENGTH2 MVe TO(L'* l ,FROM L" • 6
LENGTH3 MVC TO (L' TO-20) ,FRO L' TO 80

Figure 10. Assignment of Length Attribute Values to Symbols in
Hame Fields

The following example illustrates use of the L'symbol in moving
a character-constant into either the high-order or low-order end
of a storage field. For ease in following the example, the
length attributes of Al and B2 are mentioned. However, keep in

30 Assembler H Version 2 Application Programming: Language Reference

o

o

o

0,
. f

mind that the L'symbol term makes coding such as this possible
in situations where lengths are unknown.

Name Operation operand

Al DS CL8
B2 DC CL2'AB'
HIORD MVC Al(L'B2),B2
LOORD MVC Al+L'Al-L'B2(L'B2),B2

Al names a storage field 8 bytes in length and is assigned a
length attribute of 8. B2 names a character constant 2 bytes in
length and is assigned a length attribute of 2. The statement
named HIORD moves the contents of B2 into the leftmost 2 bytes
of A1. The term L'B2 in parentheses provides the length
specification required by the instruction.

The statement named LOORD moves the contents of B2 into the
rightmost 2 bytes of A1. The combination of terms Al+L'Al-L'B2
results in the addition of the length of Al to the beginning
address of A1, and the subtraction of the length of B2 from this
value. The result is the address of the seventh byte in field
A1. The constant represented by B2 is moved into Al starting at
this address. L'B2 in parentheses provides length specification
as in HIORD.

Note: The length attribute of the location counter reference
(L'*) is equal to the length attribute of the instruction in
which the L'* appears.

other Attribute References

Terms in Parentheses

There are other attributes that describe the characteristics and
structure of the data you define in a program; for example, the
kind of constant you specify or the number of characters you
need to represent a value. These other attributes are the type
(T'), length (L'), scaling (S'), integer (1'), count (K'),
number (N'), and defined (D') attributes.

Note: You can refer to these attributes only in conditional
assembly instructions and expressions; for full details, see
"Data Attributes" on page 199.

Terms in parentheses are reduced to a single value; thus, the
terms in parentheses, in effect, become a single term.

Arithmetically combined terms, enclosed in parentheses, may be
used in combination with terms outside the parentheses, as
follows:

14+BETA-(GAMMA-LAMBDA)

When the assembler program encounters terms in parentheses in
combination with other terms, it first reduces the combination
of terms inside the parentheses to a single value which may be
absolute or relocatable, depending on the combination of terms.
This value is then used in reducing the rest of the combination
to another single value.

Terms in parentheses may be included within a set of terms in
parentheses:

A+B-(C+D-(E+F)+IO)

The innermost set of terms in parentheses is evaluated first.
Six levels of parentheses are allowed; a level of parentheses is
a left parenthesis and its corresponding right parenthesis.
Parentheses which occur as part of an operand format do not

Chapter 2. Coding and Structure 31

LITERALS

count in this limit. An arithmetic combination of terms is
evaluated as described in the next section.

You can use literals as operands in order to introduce data into
your program. However, you cannot use a literal as a term in an
expression. The literal represents data rather than a reference
to data. This is convenient, because

• The data you enter as numbers for computation, addresses, or
messages to be printed is visible in the instruction in
which the literal appears.

• You avoid defining constants elsewhere in your source module
and then using their symbolic names in machine instruction
operands.

The assembler assembles the data specified in a literal into a
"literal pool" (described below). It then assembles the address
of this literal data in the pool into the object code of the
instruction that contains the literal specification. Thus, the
assembler saves you a programming step by storing your literal
data for you. The assembler also organizes literal pools
efficiently, so that the literal data is aligned on the proper
boundary alignment and occupies the minimum amount of space.

Literals, constants, and Self-Defining Terms

literals, constants, and self-defining terms differ in three
important ways:

1. Where you can specify them in machine instructions, that is,
whether they represent data or an address of data

2. Whether they have relocatable or absolute values

3. What is assembled into the object code of the machine
instruction in which they appear

Figure 11 on page 33 illustrates the first two points.

• A literal represents data (see (1) in Figure 11).

• A constant is represented by its relocatable address (see
(2) in Figure 11). Note that a symbol with an absolute
value does not represent the address of a constant, but
represents immediate data (see (3) in Figure 11) or an
absolute address (see (4) in Figure 11).

• A self-defining term represents data and has an absolute
value (see (5) in Figure 11).

32 Assembler H Version 2 Application Programming: language Reference

o

o

o

o

Compare:

A literal with a relocatable address

L
L • 3,=F'33' 3,F. } sam e 'effect

F33 DC F' 3'3'

A Literal with a self-defining term
and a symbol with an absolute value

~~~ ~~~i:4~~meeffect 
• FLAG 

ZERO 
DS X 
EQU X' 00' 

A symbol having an absolute address value 

with a self-defining term • 

LA : '~;I,.~RE }same effect 

:A '."~ • . 
LOCORE EQU 1000 

Figure 11. Differences between Literals, Constants, and 
Self-Defining Terms 

Figure 12 on page 34 illustrates the third point. 

• The address of the literal, rather than the literal data 
itself, is assembled into the object code (see (1) in 
Figure 12). 

• The address of a constant is assembled into the'object code 
(see (2) in Figure 12). Note that when a symbol with an 
absolute value (see (3) in Figure 12) represents immediate 
data, it is the absolute value that is assembled into the 
object code. 

• The absolute value of a self-defining term is assembled into 
the object code (see (4) in Figure 12). 

Chapter 2. Coding and Structure 33 



/ 

Sou rce Statements 
Object Code 
in Hexadecimal 

Loc 
inHex 

LITERAL L 

RELCON L 

ABSCON TM 

SELFDT TM 

displacement 

base '\ 

3,=f' IS8130)c emn 
........................................................................................... ..,. ................ ~~'.{ .. 

Figure 12. Differences between literals, Constants, and 
Self-Defining Terms 

General Rules for Literal Usage 

A literal is not a term and can be specified only as a complete 
operand ina machine instruction. In instructions with the RX 
format, they must not be specified in operands in which an index 
register is also specified. 

Because literals provide "read-only" data, they must not be 
used: 

• In operands that represent the receiving field of an 
instruction that modifies storage 

• In any shift or I/O instruction 

34 Assembler H Version 2 Application Programming: language Reference 

C··· I ..... ~ 



o 

o 

Literal Pool 

o 

The assembler requires a description of the type of literal 
being specified as well as the literal itself. This descriptive 
information assists the assembler in assembling the literal 
correctly. The descriptive portion of the literal must indicate 
the format of the constant. It can also specify the length of 
the constant. 

A literal must be coded as indicated here: 

=10XL5'F3' 

where the subfields are: 

Duplication factor 10 
Type X 
Modifiers L5 
Nominal value 'F3' 

The method of describing and specifying a constant as a literal 
is nearly identical to the method of specifying it in the 
operand of a DC assembler instruction. The major difference is 
that the literal must start with an equal sign (=), which 
indicates to the assembler that a literal follows. (Refer to 
the discussion of the DC assembler instruction operand format in 
"Chapter 5. Assembler Instruction statements" for the means of 
specifying a literal.) 

The instruction below shows one use of a literal. 

Name Operation operand 

GAMMA L 10,=F'274' 

The statement GAMMA is a load instruction using a literal as the 
second operand. When assembled, the second operand of the 
instruction will be the address at which the value F'274' is 
stored. 

In general, literals can be used wherever a storage address is 
permitted as an operand. They cannot, however, be used in any 
assembler instruction that requires the use of a previously 
defined symbol. Literals are considered relocatable because the 
address of the literal, rather than the literal itself, will be 
assembled in the statement that employs a literal. The 
assembler generates the literals, collects them, and places them 
in a specific area of storage, as explained under "Literal 
Pool." A literal is not to be confused with the immediate data 
in an SI instruction. Immediate data is assembled into the 
instruction. 

The literals processed by the assembler are collected and placed 
in a special area called the literal pool. The location of the 
literal, rather than the literal itself, is assembled in the 
statement employing a literal. The positioning of the literal 
pool can be controlled by you, if desired. Unless otherwise 
specified, the literal pool is placed at the end of the first 
control section. 

You can also specify that multiple literal pools be created. 
However, the sequence in which literals are ordered within the 
pool is controlled by the assembler. Further information on 
positioning the literal pool(s) is in "LTORG--Begin Literal 
Pool" on page 135. 

Chapter 2. Coding and Structure 35 



EXPRESSIONS 

This section discusses the expressions used in coding operand 
entries for source statements. You can use an expressions to 
specify: 

• An address 

• An explicit length 

• A modifier 

• A duplication factor 

• A complete operand 

Expressions have absolute and relocatable values. Whether an 
expression is absolute or relocatable depends on the value of 
the terms it contains. You can use an absolute or relocatable 
expression in a machine instruction or any assembler instruction 
other than a conditional assembly instruction. The assembler 
evaluates relocatable and absolute expressions at assembly time. 

Note: There are three types of expression that you can use only 
in conditional assembly instructions: arithmetic, logical, and 
character expressions. They are evaluated at preassembly time. 
Figure 13 on page 37 defines both absolute and relocatable 
expressions. 

An expression is composed of a single term or an arithmetic 
combination of terms. The assembler reduces multi term 
expressions to single values. Thus, you do not have to compute 
these values yourself. The following are examples of valid 
expressions: 

* AREA1+X'2D' 
*+32 
N-25 
FIELD+332 
FIELD 
(EXIT-ENTRY+1)+GO 
=F'1234' 
ALPHA-BETA/(10+AREA*L'FIELD)-100 

BETA*10 
B'101' 
C'ABC', 
29 
L'FIELD 
LAMBDA+GAMMA 
TEN/TWO 

Rules for coding Expressions 

The rules for coding an absolute or relocatable expression are: 

1. Both unary (operating on one value) and binary (operating on 
two values) operators are allowed in expressions. 

2. An expression can have one or more unary operators preceding 
any term in the expression or at the beginning of the 
expression. 

3. An expression must not begin with a binary operator, nor can 
it contain two binary operators in succession. 

4. An expression must not contain two terms in succession. 

5. No blanks are allowed between an operator and a term, nor 
between two successive operators. 

6. An expression can contain up to 19 unary and binary 
operators, and up to 6 levels of parentheses. Note that 
parentheses that are part of an operand specification do not 
count toward this limit. 

7. A single relocatable term is not allowed in a multiply or 
divide operation. Note that paired relocatable terms have 
absolute values and can be multiplied and divided if they 
are enclosed in parentheses. 

36 Assembler H Version 2 Application Programming: Language Reference 

o 



o 

o 

o 

Pairing of 
Relocatable 
Values 

Relocatable 
Expression 

8. A literal is not a valid term and is therefore not allowed 
in an expression. 

Absolute 
Expression 

Ordinary 
Symbol
Absolute or 
Value 

Abs. Exp 

Self- Symbol 
Defining or length 
Term Attribute 

location 
Counter 
Reference 

* Abs. Exp Abs.Exp 

(Abs.Exp) 

Operators Allowed 

Unary: + Positive 
Negative 

Binary: + Addition 
- Subtraction 

* Multiplication 
/ Division 

Abs. Exp = Absolute Expression 

ReI. Exp = Relocatable Expression 

Figure 13. Definitions of Absolute and Relocatable Expressions 

Evaluation of Expressions 

A single-term expression--for example, 29, BETA, *, 
l'SYMBOl--takes on the value of the term involved. 

The assembler reduces a multi term expression--for example, 
BETA+I0, ENTRY-EXIT, 25*10+A/B--to a single value, as follows: 

1. It evaluates each term. 

2. It performs arithmetic operations from left to right. 
However, 

Chapter 2. Coding and structure 37 



a. It performs unary operations before binary operations. 

b. It performs binary operations of multiplication and 
division before the binary operations of addition and 
subtraction. 

3. In division, it gives an integer result; any fractional 
portion is dropped. Division by zero gives O. 

4. In parenthesized expressions, the assembler evaluates the 
innermost expressions first and then considers them as terms 
in the next outer level of expressions. It continues this 
process until the outermost expression is evaluated. 

5. A term or expression's intermediate value and computed 
result must lie in the range of -2 31 through +2 31 _1. 

Note: It is assumed that the assembler evaluates paired 
relocatable terms at each level of expression nesting. 

Absolute and Relocatable Expressions 

An expression is called absolute if its value is unaffected by 
program relocation. An expression is called relocatable if its 
value depends upon program relocation. The two types of 
expressions, absolute and relocatable, take on these 
characteristics from the term or terms composing them. A 
description of the factors that determine whether an expression 
is absolute or relocatable follows. 

ABSOLUTE EXPRESSION: The assembler reduces an absolute 
expression to a single absolute value if the expression: 

1. Is composed of a symbol with an absolute value, a 
self-defining term, or a symbol length attribute reference, 
or any arithmetic combination of absolute terms. 

2. Contains relocatable terms alone or in combination with 
absolute terms, and if all these relocatable terms are 
paired. 

PAIRED RELOCATABLE TERMS: An expression can be ~bsolute even 
though it contains relocatable terms, provided that all the 
relocatable terms are paired. The pairing of relocatable terms 
cancels the effect of relocation. 

The assembler reduces paired terms to single absolute terms in 
the intermediate stages of evaluation. The assembler considers 
relocatable terms as paired under the following conditions: 

• The paired terms must be defined in the same control section 
of a source module (that is, have the same relocatability 
attribute). 

• The paired terms must have opposite signs after all unary 
operators are resolved. In an expression, the paired terms 
do not have to be contiguous (that is, other terms can come 
between the paired terms). 

• The value represented by the paired terms is absolute. 

38 Assembler H Version 2 Application Programming: Language Reference 

o 



o 

o 

0·" ~ 

The following examples illustrate absolute expressions. A is an 
absolute term; X and Yare relocatable terms with the same 
relocatability. 

A-Y+X 
A 
A*A 
X-Y+A 
*_yl 

1 A reference to the location counter must be paired with 
another relocatable term from the same control section; that 
is, with the same relocatability. 

RELOCATABLE EXPRESSION: A relocatable expression is one whose 
value changes by n if the program in which it appears ;s 
relocated n bytes away from its originally assigned area of 
storage. 

A relocatable expression can be a single relocatable term. The 
assembler reduces a relocatable expression to a single 
relocatable value if the expression: 

1. Is composed of a single relocatable term, or 

2. Contains relocatable terms, alone or in combination with 
absolute terms, and 

a. All the relocatable terms but one are paired. Hote that 
the unpaired term gives the expression a relocatable 
value; the paired relocatable terms and other absolute 
terms constitute increments or decrements to the value 
of the unpaired term. 

b. The relocatability attribute of the whole expression is 
that of the unpaired term. 

c. The sign preceding the unpaired relocatable term must be 
positive, after all unary operators have been resolved. 

The following examples illustrate relocatable expressions. A is 
an absolute term, Wand X are relocatable terms with the same 
relocatability attribute, and Y is a relocatable term with a 
different relocatability attribute. 

Y-32*A W-X+* 
w-x+Y 
* (reference tb 

location counter) 

=F'1234' (literal) 
A*A+W-W+Y 
W-X+W 
Y 

COMPLEX RELOCATABLE EXPRESSIONS: Complex relocatable 
expressions, unlike relocatable expressions, can contain: 

• Two or more unpaired relocatable terms, or 

• An unpaired relocatable term preceded by a negative sign. 

Complex relocatable expressions can be used only in A-type and 
V-type address constants (for more detail, see "A-Type and 
V-Type Address Constants" in "Chapter 5. Assembler Instruction 
Statements"). 

Chapter 2. Coding and Structure 31 



CHAPTER 3. ADDRESSING, PROGRAM SECTIONING, AND LINKING 

ADDRESSING 

This part of the chapter describes the techniques and 
instructions that allow you to use symbolic addresses when 
referring to data. You can address data that is defined within 
the same source module, or data that is defined in another 
source module. Symbolic addresses are more meaningful and 
easier to use than the corresponding object code addresses 
required for machine instructions. Also, the assembler can 
convert the symbolic addresses you specify into their object 
code form. 

ADDRESSING WITHIN SOURCE MODULES: ESTABLISHING ADDRESSABILITY 

By establishing the addressability of a control section, you can 
refer to the symbolic addresses defined in it in the operands of 
machine instructions. This is much easier than coding the 
addresses in the base-displacement form required by the 
System/370. The symbolic addresses you code in the instruction 
operands are called implicit addresses, and the addresses in the 
base-displacement form are called explicit addresses. 

The assembler will convert these implicit addresses for you into 
the explicit addresses required for the assembled object code of 
the machine instruction. However, you must supply the assembler 
with: 

1. A base address from which it can compute displacements to 
the addresses within a control section 

2. A base register to hold this base address 

How to Establish Addressability 

To establish the addressability of a coding section, you must, 
when coding: 

• Specify a base address from which the assembler can compute 
displacements. 

• Assign a base register to contain this base address. 

• Write the instruction that loads the base register with the 
base address. 

During assembly, the implicit addresses you code are converted 
into their explicit base-displacement form; then, they are 
assembled into the object code of the machine instructions in 
which they have been coded. 

During execution, the base address is loaded into the base 
register, and should remain there throughout the execution of 
your program. 

BASE REGISTER INSTRUCTIONS 

The USING and DROP assembler instructions enable you to use 
expressions representing implicit addresses as operands of 
machine instruction statements, leaving the assignment of base 
registers and the calculation of displacements to the assembler. 

In order to use symbols in the operand field of machine 
instruction statements, you must (1) indicate to the assembler, 

40 Assembler H Version 2 Application Programming: language Reference 

o 



o 

o 

o 

by means of a USING statement, that one or more general 
registers are available for use as base registers, (2) specify, 
by means of the USING statement, what valuo each base register 
contains, and (3) load each base register ~~ith the value you 
have specified for it. 

Having the assembler determine base registers and displacements 
relieves you of the need to separate each address into a 
displacement value and a base address value. This feature of 
the assembler will eliminate a likely source of programming 
errors, thus reducing the time required to check out programs. 
You use the USING and DROP instructions described in this 
chapter to take advantage of this feature. The principal 
discussion of this feature follows the description of both 
instructions. 

USING--Use Base Address Register 

The USING instruction allows you to specify a base address and 
assign one or more base registers. If you also load the base 
registe~ with the base address, you have established 
addressability in a control section. 

To use the USING instruction correctly, you should know: 

1. Which locations in a control section are made addressable by 
the USING instruction 

2. Where in a source module you can use these established 
addresses as implicit addresses in instruction operands 

The format of the USING instruction statement is: 

Name Operation Operand 

A sequence USING BASE,BASEREGI 
symbol or blank [,BASEREG2] ... 

The operand, BASE, specifies a base address, which can be a 
relocatable or an absolute expression. The value of the 
expression must lie between -2 24 and 224-1. 

The remaining operands specify from 1 to 16 base registers. The 
operands must be absolute expressions whose values lie in the 
range 0 through 15. 

The assembler assumes that the first base register (BASEREGl) 
contains the base address BASE at execution time. If present, 
the subsequent operands, BASEREG2, BASEREG3, ... , represent 
registers that the assembler assumes will contain the address 
values, BASE+4096, BASE+8192, ... , respectively. 

For example: 

USING BASE,9,10,11 

has the logical equivalent of: 

USING 
USING 
USING 

BASE,9 
BASE+4096,10 
BASE+8192,11 

In another example, the following statement 

Name operation Operand 

USING 

Chapter 3. Addressing, Program Sectioning, and Linking 41 



tells the assembler it may assume that the current value of the 
location counter will be in general register 12 at object time, 
and that the current value of the location counter, incremented 
by 4096, will be in general register 13 at object time. 

If you change the value in a base register currently being used, 
and wish the assembler to compute displacement from this value, 
you must tell the assembler the new value by means of another 
USING statement. In the following sequence, the assembler first 
assumes that the value of ALPHA is in register 9. The second 
statement then causes the assembler to assume that ALPHA+1000 is 
the value in register 9. 

Name operation operand 

USING ALPHA,9 

. 
USING ALPHA+IOOO,9 

If you must refer to the first 4096 bytes of storage, general 
register 0 can be used as a base register, subject to the 
following conditions: 

• The value of operand BASE must be either absolute or 
relocatable zero or simply relocatable. 

• Register 0 must be specified as BASEREGI. 

The assembler assumes that register 0 contains zero. Therefore, 
regardless of the value of operand BASE, it calculates 
displacements as if operand BASE were absolute or relocatable 
zero. The assembler also assumes that subsequent registers 
specified in the same USING statement contain 4096, 8192, etc. 

Note: If register 0 is used as a base register, the program is 
not relocatable, despite the fact that operand BASE may be 
relocatable. The program can be made relocatable by: 

• Replacing register 0 in the USING statement 

• Loading the new register with a relocatable value 

• Reassembling the program 

RANGE OF A USING INSTRUCTION: The range of a USING instruction 
(called the USING range) is the 4096 bytes beginning at the base 
address specified in the USING instruction. Addresses that lie 
within the USING range can be converted from their implicit to 
their explicit formi those outside the USING range cannot be 
converted. 

The USING range does not depend upon the position of the USING 
instruction in the source module; rather, it depends upon the 
location of the base address specified in the USING instruction. 

Note: The USING range is the range of addresses in a control 
section that is associated with the base register specified in 
the USING instruction. If the USING instruction assigns more 
than one base register, the composite USING range is the sum of 
the USING ranges that would apply if the base registers were 
specified in separate USING instructions. 

DOMAIN OF A USING INSTRUCTION: The domain of a USING instruction 
(called the USING domain) begins where the USING instruction 
appears in a source module and continues to the end of the 
source module. (Exceptions are discussed later, under "Notes 
about the USING Domain.") The assembler converts implicit 
address references into their explicit form: 

• If the address reference appears in the domain of a USING 
instruction, and 

42 Assembler H Version 2 Application Programming: Language Reference 

o 



o 

o 

o 

• If the addresses referred to lie within the range of the 
same USING instruction. 

The assembler does not convert address references that are 
outside the USING domain. The USING domain depends on the 
position of the USING instruction in the source module after 
conditional assembly, if any, has been performed. 

HOW TO USE THE USING INSTRUCTIO~4: You should specify your USING 
instruction so that: 

• All the addresses in each control section lie within a USING 
range. 

• All the references for these addresses lie within the 
corresponding USING domain. 

You should, therefore, place all USING instructions at the 
beginning of the source module and specify a base address in 
each USING instruction that lies at the beginning of each 
control section. 

Fo~ Executable Control sections: To establish the addressability 
of an executable control section defined by a START or CSECT 
instruction, you specify a base address and assign a base 
register in the USING instruction. At execution time, the base 
register is loaded with the correct base address. 

If a control section is longer than 4096 bytes, you must assign 
more than one base register. This allows you to establish the 
addressability of the entire control section with one USING 
instruction. 

For Reference Control sections: A dummy section is a reference 
control section defined by the DSECT instru~tions. To establish 
the addressability of a dummy section, you should specify the 
address of the first byte of the dummy section as the base 
address so that all its addresses lie within the pertinent USING 
range. The address you load into the base register must be the 
address of the storage area being formatted by the dummy 
section. 

Note: The assembler assumes that you are referring to the 
symbolic addresses of the dummy section, and it computes 
displacements accordingly. However, at execution time, the 
assembled addresses refer to the location of real data in the 
storage area. 

NOTES ABOUT THE USING DOMAIN: The domain of a USING instruction 
continues until the end of a source module, except when: 

• A subsequent DROP instruction specifies the same base 
register or registers assigned by the preceding USING 
instruction. 

• A subsequent USING instruction specifies the same register 
or registers assigned by the preceding USING instruction. 

NOTES ABOUT THE USING RANGE: Two USING ranges coincide when the 
same base address is specified in two different USING 
instructions, even though the base registers used are different. 
When two USING ranges coincide, the assembler uses the 
higher-numbered register for assembling the addresses within the 
common USING range. In effect, the first USING domain is 
terminated after the second USING instruction. 

Two USING ranges overlap when the base address of one USING 
instruction lies within the range of another USING instruction. 
When two ranges overlap, the assembler computes displacements 
from the base address that gives the smallest displacement; it 
uses the corresponding base register when it assembles the 
addresses within the range overlap. This applies only to 
implicit addresses that appear after the second USING 
instruction. 

Chapter 3. Addressing, Program Sectioning, and Linking 43 



BASE REGISTERS FOR ABSOLUTE ADDRESSES: Absolute addresses used 
in a source module must also be made addressable. Absolute 
addresses require a base register other than the base register 
assigned to relocatable addresses (as described above). 

However, the assembler does not need a USING instruction to 
convert absolute implicit addresses in the range 0 through 4095 
to their explicit form. The assembler uses register 0 as a base 
register. Displacements are computed from the base address 0, 
because the assembler assumes that a base or index of 0 implies 
that a zero quantity is to be used in forming the address, 
regardless of the contents of register O. The USING domain for 
this automatic base register assignment is the whole of a source 
module. 

For absolute implicit addresses greater than 4095, a USING 
instruction must be specified according to the following: 

• With a base address representing an absolute expression 

• With a base register than has not been assigned by a USING 
instruction in which a relocatable base address is specified 

This base register must be loaded with the base address 
specified. 

DROP--Drop Base Register 

You can use the DROP instruction to indicate to the assembler 
that one or more registers are no longer available as base 
registers. This allows you: 

• To free base registers for other programming purposes 

• To ensure that the assembler uses the base register you wish 
in a particular coding situation; for example, when two 
USING ranges overlap or coincide 

The format of the DROP instruction statement is: 

Name Operation operand 

A sequence DROP BASEREGl[,BASEREG21 ••• 
symbol or or blank 
blank 

Up to 16 operands can be specified. They must be absolute 
expressions whose values represent the general registers 0 
through 15. The expressions in the operand indicate general 
registers previously named in a USING statement that are now 
unavailable for base addressing. A DROP instruction with a 
blank operand field causes all currently active base registers 
assigned by USING instructions to be dropped. 

After a DROP instruction, the assembler will not use the 
registers specified in a DROP instruction as base registers. A 
register made unavailable as a base register by a DROP 
instruction can be reassigned as a base register by a subsequent 
USING instruction. 

The following statement, for example, prevents the assembler 
from using registers 7 and 11: 

Name Operation Operand 

DR.OP 7,11 

44 Assembler H Version 2 Application Programming: Language Reference 

o 



o 

o 

o 

RELATIVE ADDRESSING 

A DROP instruction is not needed: 

• If the base address is being changed by a new USING 
instruction, and the same base register is assigned; 
however, the new base address must be loaded into the base 
register. 

• At the end of a source module. 

Relative addressing is the technique of addressing instructions 
and data areas by designating their location in relation to the 
location counter or to some symbolic location. This type of 
addressing is always in bytes--never in bits, words, or 
instructions. Thus, the expression *+4 specifies an address 
that is 4 bytes greater than the current value of the location 
counter. In the sequence of instructions in the following 
example, the location of the CR machine instruction can be 
expressed in two ways, ALPHA+2, or BETA-4, because all the 
mnemonics in the example are for 2-byte instructions in the RR 
format. 

Name operation Operand 

ALPHA LR 3,4 
CR 4,6 
BCR 1,14 

BETA AR 2,3 

PROGRAM SECTIONING AND LINKING 

This part of the chapter explains how you can subdivide a large 
program into smaller parts that are easier to understand and 
maintain. It also explains how you can divide these smaller 
parts into convenient sections; for example, one section to 
contain your executable instructions, and another section to 
contain your data constants and areas. 

You should consider two different subdivisions when writing an 
assembler language program: 

1. The source module 

2. The control section 

You can divide a program into two or more source modules. Each 
source module is assembled into a separate object module. The 
object modules can then be combined into load modules to form an 
executable program. 

You can also divide a source module into two or more control 
sections. Each control section is assembled as part of an 
object module. By writing the proper link-edit control 
statements, you can select a complete object module or any 
individual control section of the object module to be 
link-edited and later loaded as an executable program. 

Size of Program Parts: If a source module becomes so large that 
its logic is not easily understood, divide it into smaller 
modules. 

Unless you have special programming reasons, you should write 
each control section so that the resulting object code is not 
larger than 4096 bytes. This is the largest number of bytes 
that can be covered by one base register. 

Chapter 3. Addressing, Program Sectioning, and Linking 45 



SOURCE MODULE 

Communication Between Program Parts: You must be able to 
communicate between the parts of your program; that is, be able 
to refer to data in a different part or be able to branch to 
another part. 

To communicate between two or more source modules, you must 
symbolically link them together. 

To communicate between two or more control sections within a 
source module, you must establish the addrassability of each 
control properly from one section to another regardless of the 
relative section. 

A source module is composed of source statements in the 
assembler language. You can include these statements in the 
source module in two ways: 

1. You write them on a coding form and then enter them as input 
through a terminal or, using punched cards, through a card 
reader. 

2. You specify one or more COPY instructions among the source 
statements being entered. When the assembler encounters a 
COpy instruction, it replaces the COPY instruction with a 
predetermined set of source statements from a library. 
These statements then become a part of the source module. 
See "COPY-Copy Predefined Source Coding" on page 138 for 
more deted Is. 

Beginning of a Source Module 

The first statement of a source module can be any assembler 
language statement, except MEXIT and MEND, described in this 
manual. You can initiate the first control section of a source 
module by using the START instruction. However, you can write 
some source statements before the beginning of the first control 
statement. See "First Control Section" on page 49 for more 
details. 

End of a Source Module 

CONTROL SECTIONS 

The END instruction usually marks the end of a source module. 
However, you can code several END instructions. The assembler 
stops assembling when it processes the first END instruction. 
If no END instruction is found, the assembler will generate one. 
See "END-End Assembly" on page 139 for more details. 

Note: Conditional assembly processing can determine which of 
several substituted END instructions is to be processed. 

A control section is the smallest subdivision of a program that 
can be relocated as a unit. The assembled control ~ections 
contain the object code for machine instructions, data 
constants, and areas. 

Consider the concept of a control section at different 
processing times. 

At coding time: You create a control section when you write the 
instructions it contains. In addition, you establish the 
addressability of each control section within the source module, 
and provide any symbolic linkages between control sections that 
lie in different source modules. You also write the linkage 
editor control statements to combine the desired control 
sections into a load module, and to provide an entry point 
address for the beginning of program execution. 

46 Assembler H Version 2 Application Programming: Language Reference 

o 



o 

o 

o 

At assembly time: The assembler translates the source statements 
in the control section into object code. Each source module is 
assembled into one object module. The entire object module and 
each of the control sections it contains are relocatable. 

At link-editing time: According to linkage editor control 
statements, the linkage editor combines the object code of one 
or more control sections into one load module. It also 
calculates the linkage addresses necessary for communication 
between two or more control sections from different object 
modules. In addition, it calculates the space needed to 
accommodate external dummy sections. 

At program fetch time: The control program loads the load module 
into virtual storage. All the relocatable addresses are 
converted to fixed locations in storage. 

At <execution time: The control program passes control to the 
load module now in virtual storage, and your program is 
executed. 

Note: You can specify the relocatable address of the starting 
point for program execution in a link-edit control statement or 
in the operand field of an END statement. 

Executable Control sections 

An executable control section is one you initiate by using the 
START or CSECT instruction, and is assembled into object code. 
At execution time, an executable control sect;on contains the 
binary data assembled from your coded instructions and 
constants, and is, therefore, executable. 

An executable control section can also be initiated as "private 
code," without using the START or CSECT instruction. 

Reference Control Sections 

A reference control section is one you initiate by using the 
DSECT, COM, or DXD instruction, and is not assembled into object 
code. You can use a reference control section either to reserve 
storage areas or to describe data to which you can refer from 
executable control sections. These reference control sections 
are considered to be empty at assembly time, and the actual 
binary data to which they refer is not entered until execution 
time. 

LOCATION COUNTER SETTING 

The assembler maintains a separate location counter for each 
control section. The location counter setting for each control 
section starts at O. The location values assigned to the 
instructions and other data in a control section are, therefore, 
relative to the location counter setting at the beginning of 
that control section. 

However, for executable control sections, the location values 
that appear in the listings do not restart at 0 for each 
subsequent executable control section. They carryon from the 
end of the previous control section. Your executable control 
sections are usually loaded into storage in the order in which 
you write them. You can, therefore, match the source statements 
and object code produced from them with the contents of a dump 
of your program. 

For reference control sections, the location values that appear 
in the listings always start from O. 

You can continue a control section that has been discontinued by 
another control section, and, thereby, intersperse code 
sequences from different control sections. Note that the 

Chapter 3. Addressing, Program Sectioning, and Linking 47 



location values that appear in the listings for a control 
section, divided into segments, follow from the end of one 
segment to the beginning of the subsequent segment. 

The location values listed for the next control section defined, 
begin after the last location value assigned to the preceding 
control section. 

Use of Multiple Location counters 

Assembler H allows you to use multiple location counters for 
each individual control section. You use the LOCTR instruction 
(whose format and speclfications are described below> to assign 
different location counters to different parts of a control 
section. The assembler will then rearrange and assemble the 
coding together, according to the different location counters 
you have specified: All coding using the first location counter 
will be assembled together, then the coding using the second 
location counter will be assembled together, etc. 

A practical use of multiple location counters is illustrated in 
Figure 14. There, executable instructions and data areas have 
been interspersed throughout the coding in their logical 
sequence, each group of instructions preceded by a LOCTR 
instruction identifying the location counter under which it is 
to be assembled. The assembler will rearrange the control 
section so that the executable instructions are grouped together 
and the data areas together. 

SOURCE MODULE OBJECT MODU LE 
(shown in source code format) 

LR 12,15 controlled 
INST CSECT USING INST,12 by INST 

LR 12,15 location 
USING INST,12 TM CODE,X'03' counter 

BM NEWCARD control 
DATA LOCTR section 
INPUTAREA DS OCL80 

INST 
CODE DS CLI - - - - - -

INPUTAREA DS OCL80 controlled 
INST LOCTR CODE DS CLI by DATA 

TM CODE,X'03' location 
BM NEWCARD VALl DC F'56' counter 

VAL2 DC F'84' 
DATA LOCTR 
VALl DC F'56' 
VAL2 DC F'84' 

control 

CSECT 
section 

NEXT NEXT 

Figure 14. Use of Multiple Location Counters 

LOCTR--Multiple Location counters 

The lOCTR instruction allows you to specify multiple location 
counters within a control section. The assembler assigns 
consecutive addresses to the segments of code using one location 

48 Assembler H Version 2 Application Programming: Language Reference 

o 

(\ 
'~J 

o 



o 

o 

0\ 
" 

counter before it assigns addresses to segments of coding using 
the next location counter. 

The format for the LOCTR instruction is: 

Name Operation Operand 

A variable or LOCTR Blank 
ordinary symbol 

By using the LOCTR instruction~ you can code your control 
section in a logical order. For example, you can code work 
areas and data constants within the section of code, using them 
without having to branch around them. 

(1) A CSECT 
LR 12,15 
USING A,12 

(2) B lOCTR 

C LOCTR 

(3) B LOCTR 

(4) A lOCTR 
. 

(1) DUM OSECT 
(5) C lOCTR 

END 

(1) The first location counter of a control section is 
defined by the name of the START, CSECT, OSECT, or COM 
instruction defining the section. 

(2) The LOCTR instruction defines a location counter or (3) 
resumes a previously defined location counter. 
A location counter remains in use until it is interrupted by 
a lOCTR, CSECT, OSECT, or COM instruction. 

(4) A LOCTR instruction with the same name as a control 
section resumes the first location counter of that section. 

(5) A lOCTR instruction with the same name as a lOCTR 
instruction in a previous control section causes that control 
section to be resumed using the location counter specified. 

A control section cannot have the same name as a previous lOCTR 
instruction. A lOCTR instruction placed before the first 
control section definition will initiate an unnamed control 
section before the lOCTR instruction is processed. 

The length attribute of a LOCTR name is 1. 

lOCTR instructions do not force alignment; code running under a 
location counter other than the first location counter of a 
control section will be assembled starting at the next available 
byte after the previous segment. 

FIRST CONTROL SECTION 

The specifications below apply to the first executable control 
section, and not to a reference control section. 

Chapter 3. Addressing, Program Sectioning, and Linking 49 



Instructions that establish the first control section: Any 
instruction that affects the location counter, or uses its 
current value, establishes the beginning of the first executable 
control section. The instructions that establish the first 
control secti~n include any machine instruction and the 
following assembler instructions: 

CCW, CCWO, and CCWl 
CHOP 
(COPY) 
CSECT 
CXD 
DC 
DROP 
DS 
END 
EQU 
lTORG 
ORG 
START 
USING 

Notes: 

1. These instructions are always considered a part of the 
control section in which they appear. 

2. The statements copied into a source module by a COpy 
instruction determine whether it will initiate the first 
control section. 

3. The DSECT, COM, and DXD instructions initiate reference 
control sections and do not establish the first executable 
control section. 

What must come before the first control section: The following 
instructions or macro definitions, if specified, belong to a 
source module, but must appear before the first control section: 

• The ICTl instruction, which, if specified, must be the first 
statement in a source module 

• The OPSYN instruction 

• Any source macro definitions 

• The COpy instruction, if the code to be copied contains only 
OPSYN instructions or complete macro definitions 

What can optionally come before the first control section: The 
instructions or groups of instructions that can optionally be 
specified before the first control section are listed below: 

• The following assembler instructions: 

COpy 
DXD 
EJECT 
ENTRY 
EXTRN 
ISEQ 
PRINT 
PUNCH 
REPRO 
SPACE 
TITLE 
WXTRN 

• Comments statements 

• Common control sections 

• Dummy control sections 

50 Assembler H Version 2 Application Programming: language Reference 

o 

i-\ 
\ : 
,~y 



o 

o 

o 

• External ~ummy control sections 

• Any conditional assembly instruction 

• Macro instructions 

Notes: 

1. The above instructions or groups of instructions belong to a 
source module, but are not considered as part of an 
executable control section. 

2. Any instructions copied by a COpy instruction, or generated 
by the processing of a macro instruction before the first 
control section, must belong exclusively to one of the 
groups of instructions shown above. 

3. The EJECT, ISEQ, OPSYN, PRINT, SPACE, or TITLE instructions 
and comments statements must follow the ICTL instruction, if 
specified. 

4. All the instructions or groups of instructions listed above 
can also appear as part of a control section. 

UNNAMED CONTROL SECTION 

The unnamed control section is an executable control section 
that can be initiated in one of the following two ways: 

• By coding a START or CSECT instruction without a name entry 

• By coding any instruction, other than the START or CSECT 
instruction, that initiates the first executable control 
section 

The unnamed control section is sometimes referred to as private 
code. 

All control sections ought to be provided with names so that 
they can be referred to symbolically: 

• Within a source module 

• In EXTRN and WXTRN instructions and linkage editor control 
statements for linkage between source modules 

Notes: 

1. Unnamed common control sections or dummy control sections 
can be defined if the name entry is omitted from a COM or 
DSECT instruction. 

2. If you include an AMODE or RMODE instruction in this 
assembly and leave the name field blank, you must provide an 
unnamed control section. 

LITERAL POOLS IN CONTROL SECTIONS 

Literals, collected into pools by the assembler, are assembled 
as part of the executable control section to which the pools 
belong. If a LTORG instruction is specified at the end of each 
control section, the literals specified for that section will be 
assembled into the pool starting at the LTORG instruction. If 
no LTORG instruction is specified, a literal pool containing all 
the literals used in the entire source module is assembled at 
the end of the first control'section. This literal pool appears 
in the listings after the END instruction. 

Note: If any control section is divided into segments, a LTORG 
instruction should be specified at the end of each segment to 
create a separate literal pool for that segment. 

Chapter 3. Addressing, Program Sectioning, and Linking 51 



EXTERNAL SYMBOL DICTIONARY ENTRIES 

The assembler keeps a record of each control section and prints 
the following information about it in an external symbol 
dictionary (ESD): 

1. Symbolic name, if one is specified 

2. Type code 

3. Individual identification 

4. Startihg address 

Figure 15 on page 53 lists the assembler instructions that 
define control sections and dummy control sections (see 1 in 
figure), or identify entry and external symbols (see 2 in 
figure), and tells their associated type codes. There is no 
limit to the number of individual control sections and external 
symbols that can be defined in a source module. 

ESTABLISHING RESIDENCE AND ADDRESSING MODE 

You may specify the addressing mode (AMODE) and/or the residence 
mode (RMODE) to be associated with control sections in the 
object deck. These modes may be specified for the following 
types of control sections: 

• Control section (ESD type code 00) 

• Unnamed control section (ESD type code 04) 

• Common control section (ESD type code 05) 

The assembler will set the AMODE and/or RMODE indicators in the 
ESD record for each applicable control section in an assembly, 
for passage to the linkage editor and loader. The linkage 
editor and loader will ensure that control is given to programs 
with the right addressing mode, and that programs are loaded 
into the correct part of virtual storage. 

Note: The specification of AMODE and RMODE through CMS to the 
assembler is supported in all levels of VM. However, the 
resultant object deck produced by the assembler will not be 
supported through the eMS loader, but may be supported by a 
virtual machine under VM/XA Migration Aid that has a loader 
compatible with that object code (for example, MVS/XA loader). 

52 Assembler H Version 2 Application Programming! language Reference 

«-~i 
,~y 



o Name Instruction Type code en-
Entry tered into external 

symbol dictionary 

optional START SD } if nam." 
entry IS 

CSECT SD present 

START PC } if name 
entry is 

CSECT PC omitted 
Any instruction that 
initiates the unnamed PC 
control section 

optional • COM CM 

optional DSECT none 

mandatory DXD XD 

o (external DSECT) XD 

I ENTRY LD • EXTRN ER 

DC(V-type ad- ER dress constant) 

WXTRN WX 

Figure 15. Defining CSECTs, DSECTs, and Symbols 

o 
Chapter 3. Addressing, Program Sectioning, and Linking 53 



AMODE--Addressing Mode 

The AMODE instruction allows you to specify the addressing mode 
to be associated with control sections in the object deck. The 
format of the statement is as follows: 

Name Operation operand 

Any symbol AMODE 241311ANY 
or blank 

The name field associates the addressing mode with a control 
section. If there is a symbol in the name field, it must also 
appear in the name field of a START, CSECT, or COM instruction 
in this assembly. If the name field is blank, there must be an 
unnamed control section in this assembly. If the name field 
contains a sequence symbol (see "Symbols" on page 21for 
details), it is treated as a blank name field. 

The operand indicates which addressing mode is to be associated 
with the control section identified by the name field. The 
operand must be specified as one of the three values shown. The 
values cannot be replaced by expressions. The values specify 
the following: 

24 specifies that a 24-bit addressing mode is to be associated 
with a control section. 

31 specifies that a 31-bit addressing mode is to be associated 
with a control section. 

ANY specifies that the control section is not sensitive to 
addressing mode. 

o 

Any field of this instruction may be generated by a macro, or by I~ 
subst i tut ion in open code. \"~_JI 

Notes: 

1. AMODE can be specified anywhere in the assembly. It does 
not initiate an unnamed control section. 

2. An assembly can have multiple AMODE instructions; however, 
two AMODE instructions cannot have the same name field. 

3. Specification of AMODE 24 and RMODE ANY for the same name 
field is invalid. All other combinations are valid. 

4. AMODE or RMODE cannot be specified for an unnamed common 
control section. 

5. The defaults when AMODE and RMODE are not both specified for 
a name field are as follows: 

specified Defaulted 

Neither AMODE 24, RMODE 24 
AMODE 24 RMODE 24 
AMODE 31 RMODE 2.4 
AMODE ANY RMODE 24 
RMODE 24 AMODE 24 
RMODE ANY AMODE 31 

RMODE--Residence Mode 

The RMODE instruction allows you to specify the residence mode 
to be associated with control sections in the object deck. The 
format of the statement is as follows: 

54 Assembler H Version 2 Application Programming: language Reference 

o 



o 

0 

o 

Name operation operand 

Any symbol RMODE 241 AtlY 
or blank 

The. name field associates the residence mode with a control 
section. If there is a symbol in the name field, it must also 
appear in the name field of a START, CSECT, or COM instruction 
in this assembly. If the name field is blank, there must be an 
unnamed control section in this assembly. If the name field 
contains a sequence symbol (see "Symbols" on page 21for 
details), it is treated as a blank name field. 

The operand indicates which residence mode is to be associated 
with the control section identified by the name field. The 
operand must be specified as one of the two values shown. The 
values cannot be replaced by expressions. The values specify 
the following: 

24 specifies that a residence mode of 24 is to be associated 
with the control section; that is, the control section must 
be resident below 16 megabytes. 

ANY specifies that a residence mode of either 24 or 31 is to be 
associated with the control section; that is, the control 
section can be resident above or below 16 megabytes. 

Any field of this instruction may be generated by a macro, or by 
substitution in open code. 

Notes: 

1. 

2. 

3. 

4. 

5. 

RMODE can be specified anywhere in the assembly. It does 
not initiate an unnamed control section.' 

An assembly can have multiple RMODE instructions; however, 
two RMODE instructions cannot have the same name field. 

Specification of AMODE 24 and RMODE ANY for the same name 
field is invalid. All other combinations are valid. 

AMODE or RMODE cannot be specified for an unnamed common 
control section. 

The defaults when AMODE and RMODE are not both specified for 
a name field are as follows: 

specified Defaulted 

Neither AMODE 24, RMODE 24 
AMODE 24 RMODE 24 
AMODE 31 RMODE 24 
AMODE ANY RMODE 24 
RMODE 24 AMODE 24 
RMODE ANY AMODE 31 

DEFINING A CONTROL SECTION 

You must use the instructions described below to indicate to the 
assembler: 

• Where a control section begins 

• Which type of control section is being defined 

Chapter 3. Addressing, Program Sectioning, and Linking 55 



START--start Assembly 

The START instruction can be used only to initiate the first or 
only control section of a source module. You should use the 
START instruction for this purpose, because it allows you: 

• To determine exactly where the first control section is to 
begin; you thereby avoid the accidental initiation of the 
first control section by some other instruction 

• To give a symbolic name to the first control section, which 
can then be distinguished from the other control sections 
listed in the external symbol dictionary 

• To specify the initial setting of the location counter for 
the first or only control section 

The START instruction must be the first instruction of the first 
executable control section of a source module. It must not be 
preceded by any instruction that affects the location counter, 
and thereby causes the first control section to be initiated. 

The format of the START instruction statement is: 

Nama operation operand 

Any symbol START A self-defining term, 
or blank an absolute expression, 

or blank 

Note: If the operand of a START instruction is an absolute 
expression, any symbols referenced in it must have been 
previously defined. 

The symbol in the name field, if specified, identifies the first 
control section. It must be used in the name field of any CSECT 
instruction that indicates the continuation of the first control 
section. This symbol represents the address of the first byte 
of the control section, and has a length attribute value of 1. 

The assembler uses the value of the self-defining term or 
absolute expression in the operand field, if specified, to set 
the location counter to an initial value for the source module. 

All control sections are aligned on a doubleword boundary. 
Therefore, if the value specified in the operand is not 
divisible by 8, the assembler sets the initial value of the 
location counter to the next higher doubleword boundary. If the 
operand entry is omitted, the assembler sets the initial value 
to O. 

The source statements that follow the START instruction are 
assembled into the first control section. If a CSECT 
instruction indicates the continuation of the first control 
section, the source statements that follow this CSECT 
instruction are also assembled into the first control section. 

Any instruction that defines a new or continued control section 
marks the end of the preceding control section. The END 
instruction marks the end of the control section in effect. 

CSECT--Identify Control section 

The CSECT instruction allows you to initiate an executable 
control section or indicate the continuation of an executable 
control section. 

The CSECT instruction can be used anywhere in a source module 
after any source macro definitions that are specified. If it is 
used to initiate the first executable control section, it must 
not be preceded by any instruction that affects the location 

56 Assembler H Version 2 Application Programming: language Reference 

o 

o 



o 

0 ALPHA 

BETA 

NEWSECT 

ALPHA 

Figure 16. 

o 

START 

BALR 

USING 

LOCTR 

CSECT 

CSECT 

counter and thereby cause the first control section to be 
initiated. 

The format of the statement is as follows: 

Name Operation Operand 

Any symbol CSECT Not required 
or blank 

The symbol in the name field, if specified, identifies the 
control section. If several CSECT instructions within a source 
module have the same symbol in the name field, the first 
occurrence initiates the control section, and the rest indicate 
the continuation of the control section. If the first control 
section is initiated by a START instruction, the symbol in the 
name field must be used to indicate any continuation of the 
first control section. 

Note: A CSECT instruction with a blank name field either 
initiates or indicates the continuation of the unnamed control 
section. 

The symbol in the name field represents the address of the first 
byte of the control section, and has a length attribute value of 
1. 

The beginning of a control section is aligned on a doubleword 
boundary. However, when an interrupted control section is 
resumed using the CSECT instruction, the location counter last 
specified in that control section will be resumed. Consider the 
coding ;n Figure 16. 

ALPHA 

12,0 

} 
BETA 

} 
} ]his part is assembled using 

the BETA location counter 

NEWSECT 

How the Location Counter Works 

The source statements following a CSECT instruction that either 
initiate or indicate the continuation of a control section are 
assembled into the object code of the control section identified 
by that CSECT instruction. 

Note: The end of a control section or portion of a control 
section is marked by Ca) any instruction that defines a new or 
continued control section, or Cb) the END instruction. 

Chapter 3. Addressing, Program Sectioning, and Linking 57 



DSECT--Identify Dummy section 

You can use the OSEeT instruction to initiate a dummy control 
section or to indicate its continuation. 

A dummy control section is a reference control section that 
allows you to describe the layout of data in a storage area 
without actually reserving any virtual storage. 

You may wish to describe the format of an area whose storage 
location will not be determined until the program is executed. 
You can do so by describing the format of the area in a dummy 
sectionp and using symbols defined in the dummy section as the 
operands of machine instructions. 

How to use a dummy cont~ol section: A dummy control section 
(dummy section) allows you to write a sequence of assembler 
language statements to describe the layout of unformatted data 
located elsewhere in your source module. The assembler produces 
no object code for statements in a dummy control section, and it 
reserves no storage for it. Rather, the dummy section provides 
a symbolic format that is empty of data. However, the assembler 
assigns location values to the symbols you define in a dummy 
section, relative to its beginning. 

Therefore, to use a dummy section, you must: 

• Reserve a storage area for the unformatted data 

• Ensure that this data is loaded into the area at execution 
time 

• Ensure that the locations of the symbols in the dummy 
section actually correspond to the locations of the data 
being described 

• Establish the addressability of the dummy section in 
combination with the storage area . 

You can then refer to the unformatted data symbolically by using 
the symbols defined in the dummy section. 

The DSEeT instruction identifies the beginning or continuation 
of a dummy control section. One or more dummy sections can be 
defined in a source module. 

The DSEeT instruction can be used anywhere in a source module 
after the IeTl instruction, or after any source macro 
definitions that may be specified. The format of the DSEeT 
instruction statement is: 

Name ope~ation Ope~and 

Any symbol OSEeT Not required 
or blank 

The symbol in the name field, if specified, identifies the dummy 
section. If several DSEeT instructions within a source module 
have the same symbol in the name field, the first occurrence 
initiates the dummy section, and the rest indicate the 
continuation of the dummy section. 

Note: A OSEeT instruction with a blank name field either 
initiates or indicates the continuation of the unnamed dummy 
section. 

The symbol in the name field represents the first location in 
the dummy section, and has a length attribute value of 1. 

The location counter for a dummy section is always set to an 
initial value of O. However, when an interrupted dummy control 

58 Assembler H Version 2 Application Programming: language Reference 



o 

o 

0 ', 
I 

section is resumed using the OSECT instruction, the location 
counter last specified in that control section will be resumed. 

The source statements that follow a OSECT instruction belong to 
the dummy section identified by that OSECT instruction. 

Notes: 

1. The assembler language statements that appear in a dummy 
section are not assembled into object code. 

2. When establishing the addressability of a dummy section, the 
symbol in the name field of the OSECT instruction, or any 
symbol defined in the dummy section can be specified in a 
USING instruction. 

3. A symbol defined in a dummy section can be specified in an 
address constant only if the symbol is paired with another 
symbol from the same dummy section, and if the symbols have 
the opposite sign. 

To effect references to the storage area defined by a dummy 
section, do the following: 

• Provide a USING statement specifying both a general register 
that the assembler can assign to the machine instructions as 
a base register and a value from the dummy section that the 
assembler may assume the register contains. 

• Ensure that the same register is loaded with the actual 
address of the storage area. 

The values assigned to symbols defined in a dummy section are 
relative to the initial statement of the section. Thus, all 
machine instructions that refer to names defined in the dummy 
section will, at execution time, refer to storage locations 
relative to the address loaded into the register. 

An example is shown in the following coding. Assume that two 
independent assemblies (assembly 1 and assembly 2) have been 
loaded and are to be executed as a single overall program. 
Assembly 1 is an input routine that places a record in a 
specified area of storage, places the address of the input area 
containing the record in general register 3, and branches to 
assembly 2. Assembly 2 processes the record. The coding shown 
in the example is from assembly 2. 

The input area is described in assembly 2 by the OSECT control 
section named INAREA. Portions of the. input area that you want 
to work with are named in the DSEeT control section as shown. 
The assembler instruction USING INAREA,3 designates general 
register 3 as the base register to be used in addressing the 
DSECT control section, and that general register 3 is assumed to 
contain the address of INAREA. 

Assembly 1, during execution, loads the actual beginning address 
of the input area in general register 3. Because the symbols 
used in the OSECT section are defined relative to the initial 
statement in the section, the address values they represent 
will, at the time of program execution, be the actual storage 
locations of the input area. 

Chapter 3. Addressing, Program Sectioning, and linking 59 



Name Operation Operand 

ASMBLY2 CSECT 
BEGIN BALR 2,0 

USING *,2 
· 
USING INAREA,3 
CLI INCOOE,C'A' 
BE ATYPE 

· · ATYPE MVC WORKA,INPUTA 
MVC WORKB,INPUTB 

· · WORKA OS CL20 
WORKB OS CLl8 

· · INAREA OSEeT 
INCOOE OS CLI 
INPUTA OS CL20 
INPUTB OS eLl8 

ENO 

COM--Define Blank Common Control section 

You can use the COM instruction to initiate a common control 
section, or to indicate its continuation. One or more common 
sections can be defined in a source module. A common control 
section is a reference control section that allows you to 
reserve a storage area that can be used by two or more source 
modules. 

How to use a common control section: A common control section 
(common section) allows you to describe a common storage area in 
one or more source modules. 

When the separately assembled object modules are linked as one 
program, the required storage space is reserved for the common 
control section. Thus, two or more modules share the common 
area. 

Only the storage area is provided; the assembler does not 
assemble the source statements that make up a common control 
section into object code. You must provide the data for the 
common area at execution time. 

The assembler assigns locations to the symbols you define in a 
common section relative to the beginning of that common section. 
This allows you to refer symbolically to the data that will be 
loaded at execution time. Note that you must establish the 
addressability of a common control section in every source 
module in which it is specified. If you code identical common 
sections in two or more source modules, you can communicate data 
symbolically between these modules through this common section. 

Note: You can also code a common control section in a source 
module written in the FORTRAN language. This allows you to 
communicate between assembler language modules and FORTRAN 
modules. 

The COM instruction identifies the beginning or continuation of 
a common control section. 

The COM instruction can be used anywhere in a source module 
after the leTL instruction, or after any source macro 
definitions that may be specified. 

60 Assembler H Version 2 Application Programming: Language Reference 

o 



o 

o 

o 

The format of the COM instruction statement is: 

Name Operation Operand 

Any symbol COM Not required 
or blank 

The symbol in the name field, if specified, identifies the 
common control section. If several COM instructions within a 
source module have the same symbol in the name field, the first 
occurrence initiates the common section and the rest indicate 
the continuation of the common section. 

Note: A COM instruction with a blank name field either 
initiates or indicates the continuation of the unnamed common 
section. 

The symbol in the name field represents the address of the first 
byte in the common section, and has a length attribute value of 
1. 

The location counter for a common section is always set to an 
initial value of O. However, when an interrupted common control 
section is resumed using the COM instruction, the location 
counter last specified in that control section will be resumed. 

If a common section with the same name (or unnamed) is specified 
in two or more source modules, the amount of storage reserved 
for this common section is equal to that required by the longest 
common section specified. 

The source statements that follow a COM instruction belong to 
the common section identified by that COM i~struction. 

Notes: 

1. The assembler language statements that appear in a common 
control section are not assembled into object code. 

2. When establishing the addressability of a common section, 
the symbol in the name field of the COM instruction, or any 
symbol defined in the common section, can be specified in a 
USING instruction. 

In the following example, addressability to the common area of 
storage is established relative to the named statement XYZ. 

Name Operation Operand 

L 1,=A(XYZ) 
USING XYZ,l 
MVC POQ(16),=4C'ABCO' 

· · COM 
XYZ OS 16F 
PDQ OS 16C 

· 

No instructions or constants appearing in a common control 
section are assembled. Data can only be placed in a common 
control section through execution of the program. A blank 
common control section may include any assembler language 
instructions. 

If the assignment of common storage is done in the same manner 
by each independent assembly, reference to a location in common 

Chapter 3. Addressing, Program Sectioning, and linking 61 



by any assembly results in the same location being referenced. 
When the blank common control section is assembled, the initial 
value of the location counter is set to zero. 

EXTERNAL DUMMY SECTIONS 

An external dummy section is a reference control section that 
allows you to describe storage areas for one or more source 
modules, to be used as: 

• Work areas for each source module, or 

• Communication areas between two or more source modules 

When the assembled object modules are linked and loaded, you can 
dynamically allocate the storage required for all your external 
dummy sections at one time from one source module (for example, 
by using the GETMAIN macro instruction). This is not only 
convenient, but you save space and prevent fragmentation of 
virtual storage. 

To generate and use the external dummy sections, you need to 
specify a combination of the following: 

• DXD or DSECT instruction 

• Q-type address constant 

• CXD instruction 

Generating an external dummy section: An external dummy section 
is generated when you specify an DXD instruction or a DSECT 
instruction in combination with a Q-type address constant that 
contains the name of the DSECT instruction. 

You use the Q-type address constant to reserve storage for the 
offset to the external dummy section whose name is specified in 
the operand. This offset is the distance in bytes from the 
beginning of the area allocate.d for all the external dummy 
sections to the beginning of the external dummy section 
specified. You can use this offset value to address the 
external dummy section. 

using external dummy sections: To use an external dummy section, 
you must do the following: 

1. Identify and define the external dummy section. The 
assembler will compute the length and alignment required. 

2. Provide a Q-type constant for each external dummy section 
defined. 

3. Use the CXD instruction to reserve a fullword area into 
which the linkage editor or loader will insert the total 
length of all the external dummy sections that are specified 
in the source modules of your program. The linkage editor 
computes this length from the lengths of the individual 
ext~rnal dummy sections supplied by the assembler. 

4. Allocate a storage area using the computed total length. 

5. Load the address of the allocated area into a register. 
Note that register 11 must contain this address throughout 
the whole program. 

6. Add to the address in register 11 the offset into the 
allocated area of the desired external dummy section. The 
linkage editor inserts this offset into the fullword area 
reserved by the appropriate Q-type address constant. 

7. Establish the addressibility of the external dummy section 
in combination with the portion of the allocated area 
reserved for the external dummy section. 

62 Assembler H Version 2 Application Programming: language Reference 

o 



o 

o 

o 

You can now refer symbolically to the locations in 
dummy section. Note that the source statements in 
dummy section are not assembled into object code. 
execution time, you must insert the data described 
reserved for the external dummy sections. 

DXD--Define External Dummy section 

the external 
an external 
Thus, at 
into the area 

The DXD instruction allows you to identify and define an 
external dummy section. The DXD instruction can be used 
anywhere in a source module, after the IeTl instruction, or 
after any source macro definitions that may be specified. 

Notes: 

1. An external dummy section identified by a DXD instruction 
will not generate an entry in the external symbol dictionary 
(ESD) unless it is referenced by a Q-type address constant. 

2. The DSECT instruction also defines an external dummy 
section, but only if the symbol in the name field appears in 
a Q-type address constant in the same source module. 
Otherwise, a DSECT instruction defines a dummy section. 

The format of the DXD instruction is: 

Name Operation Operand 

A symbol DXD Duplication factor, 
type, modifiers, 
nominal value 

The symbol in the name field must appear in the operand of a 
Q-type constant. This symbol represents the address of the 
first byte of the external dummy section defined, and has a 
length attribute value of 1. 

The subfields in the operand field (duplication factor, type, 
modifier, and nominal value) are specified in the same way as in 
a DS instruction. The assembler computes the amount of storage 
and the alignment required for an external dummy section from 
the area specified in the operand field. 

The linkage editor or loader uses the information provided by 
the assembl~r to compute the total length of storage required 
for all external dummy sections specified in a program. 

Note: If two or more external dummy sections for different 
source modules have the same name, the linkage editor uses the 
most restrictive alignment, and the largest section to compute 
the total length. 

cXo--cumulative Length External Dummy Section 

The CXD instruction allows you to reserve a fullword area in 
storage. The linkage editor or loader will insert into this 
area the total length of all external dummy sections specified 
in the source modules that are assembled and linked into one 
program. 

The format for the CXD instruction is: 

Name Operation operand 

Any symbol or CXD Not required 
blank 

Chapter 3. Addressing, Program Sectioning, and linking 63 



SYMBOLIC LINKAGES 

The symbol in the name field, if specified, represents the 
address of a fullword ar~a aligned on a fullword boundary_ This 
symbol has a length attribute value of 4. The linkage editor or 
loader inserts into this area the total length of storage 
required for all the external dummy sections specified in a 
program. 

The following example shows how external dummy sections may be 
used. 

ROUTINE A 

Name Operation Operand 

ALPHA DXD 2DL8 
BETA DXD 4FL4 
OMEGA CXD 

· · DC QCALPHA) 
DC Q(BETA) 

· · 
ROUTINE B 

Name Operation Operand 

GAMMA DXD 5D 
DELTA DXD 10F 

· · DC Q(GAMMA) 
DC QCDELTA) 

· · 
ROUTINE C 

Name Operation operand 

EPSILON DXD 4H 

· · DC Q(EPSllON) 
-· 

Each of the three routines is requesting an amount of work area. 
Routine A wants 2 doublewords and 4 fullwords; Routine B wants 5 
doublewords and 10 fullwords; Routine C wants 4 halfwords. At 
the time these routines are brought into storage, the sum of the 
individual lengths will be placed in the location of the CXD 
instruction labeled OMEGA. Routine A can then allocate the 
amount of storage that is specified in the CXD location. 

Symbols may be defined in one module and referred to in another, 
thus effecting symbolic linkages between independently assembled 
program sections. The linkages can be effected only if the 
assembler is able to provide information about the linkage 
symbols to the linkage editor, which resolves these linkage 
references at load time. 

64 Assembler H Version 2 Application Programming: language Reference 

o 

c 



o 

o 

o 

Establishing symbolic linkage: You must establish symbolic 
linkage between source modules so that you can refer or branch 
to symbolic locations defined in the control sections of 
external source modules. To establish symbolic linkage with an 
external source module, you must do the following: 

• In the current source module, you must identify the symbols 
that are not defined in that source module, if you wish to 
use them in instruction operands. These symbols are called 
external symbols, because they are defined in another 
(external) source module. You identify external symbols in 
the EXTRN or WXTRN instruction, or the V-type address 
constant. 

• In the external source modules, you must identify the 
symbols that are defined in those source modules, and to 
which you refer from the current source module. These 
symbols are called entry symbols, because they provide 
points of entry .to a control section in a source module. 
You identify entry symbols with the ENTRY instruction. 

• You must provide the A-type or V-type address constants 
needed by the assembler to reserve storage for the addresses 
represented by the external symbols. 

The assembler places information about entry and external 
symbols in the external symbol dictionary. The linkage editor 
uses this information to resolve the linkage addresses 
identified by the entry and external symbols. 

Referring to external data: You should use the EXTRN instruction 
to identify the external symbol that represents data in an 
external source module, if you wish to refer to this data 
symbolically. 

For example, you can identify the address of a data area as an 
external symbol and load the address constant specifying this 
symbol into a base register. Then, you use this base register 
when establishing the addressability of a dummy section that 
formats this external data. You can now refer symbolically to 
the data that the external area contains. 

You must also identify, in the source module that contains the 
data area, the address of the data as an entry symbol. 

Branching to an external address: You should use the V-type 
address constant to identify the external symbol that represents 
the address in an external source module to which you wish to 
branch. 

For example, you can load into a register the V-type address 
constant that identifies the external symbol. Using this 
register, you can then branch to the external address 
represented by the symbol. 

If the symbol is the name entry of a START or CSECT instruction 
in the other source module, and thus names an executable control 
section, it is automatically identified as an entry symbol. If 
the symbol represents an address in the middle of a control 
section, you must identify it as an entry symbol for the 
external source module. 

You can also use a combination of an EXTRN instruction to 
identify, and an A-type address constant to contain, the 
external branch address. However, the V-type address constant 
is more convenient because: 

• You do not have to use an EXTRH instruction. 

• The symbol identified is not considered as defined in the 
source module, and can be used as the name entry for any 
other statement in the same source module. 

Chapter 3. Addressing, Program Sectioning, and Linking 65 



ENTRY--Identify Entry-point Symbol 

The ENTRY instruction allows you to identify symbols defined in 
one source module so that they can be referred to in another 
source module. These symbols are entry symbols. 

The format for the ENTRY instruction is: 

Name operation Operand 

A sequence ENTRY One or more relocatable 
symbol or blank symbols, separated by 

commas 

The following applies to the entry symbols identified in the 
operand field: 

• They must be valid symbols. 

• They must be defined in an executable control section. 

• They must not be defined in a dummy control section, a 
common control section, or an external control section. 

• The length attribute value of entry symbols is the same as 
the length attribute value of the symbol at its point of 
definition. 

A symbol used as the name entry of a START or CSECT instruction 
is also automaticallY considered an entry symbol, and does not 
have to be identified by an ENTRY instruction. 

The assembler lists each entry symbol of a source module in an 
external symbol dictionary, along with entries for external 
symbols, common control sections, and external control sections. 

There is no restriction on the number of control sections, 
external symbols, and external dummy sections allowed by the 
assembler. The maximum number depends on the amount of main 
storage available during link editing. 

EXTRN--Identify External Symbol 

The EXTRH instruction allows you to identify symbols referred to 
in a source module but defined in another source module. These 
symbols are external symbols. 

The format of the EXTRN statement is: 

Name Operation Operand 

A sequence EXTRH One or more relocatable 
symbol or blank symbols, separated by 

commas 

EXTERNAL SYMBOLS: The following applies to the external symbols 
identified in the operand field: 

• They must be valid symbols. 

• They must not be used as the name entry of a source 
statement in the source module in which they are identified. 

• They have a length attribute value of 1. 

• They must be used alone and cannot be paired when used in an 
expression. 

66 Assembler H Version 2 Application Programming: Language Reference 

o 



o 

o 

o 

The assembler lists each external symbol identified in a source 
module in the external symbol dictionary, along with entries for 
entry symbols, common control sections, and external control 
sections. 

There is no restriction on the number of control sections, 
external symbols, and external dummy sections allowed by the 
assembler. The maximum number depends on the amount of main 
storage available during link editing. 

WXTRN--Identify Weak External symbol 

The WXTRN statement allows you to identify symbols referred to 
in a source module but defined in another source module. The 
WXTRN instruction differs from the EXTRN instruction as follows: 

• The EXTRN instruction causes the linkage editor to make an 
automatic search of libraries to find the module that 
contains the external symbols that you identify in its 
operand field. If the module is found, linkage addresses 
are resolved; the module is then linked to your module, 
which contains the EXTRN instruction. 

• The WXTRN instruction suppresses this automatic search of 
libraries. The linkage editor will only resolve the linkage 
addresses if the external symbols that you identify in the 
WXTRN operand field are defined: 

In a module that is linked and loaded along with the 
object module assembled from your source module, or 

In a module brought in from a library because of the 
presence of an EXTRN instruction in another module 
linked and loaded with yours. 

The format of the WXTRN instruction is: 

Name operation Operand 

A sequence WXTRN one or more relocatable 
symbol or blank symbols separated by 

commas 

The external symbols identified by a WXTRN instruction have the 
same properties as the external symbols identified by the EXTRN 
instruction. However, the type code assigned to these external 
symbols differs. 

Note: If a symbol, specified in a V-type address constant, is 
also identified by a WXTRN instruction, it is assigned the same 
type code as the symbol in the WXTRN instruction. 

If an external symbol is identified by both an EXTRN and WXTRN 
instruction in the same source module, the first declaration 
takes precedence, and subsequent declarations are flagged with 
warning messages. 

Chapter 3. Addressing, Program Sectioning, and Linking 67 



CHAPTER 4. MACHINE INSTRUCTION STATEMENTS 

GENERAL INSTRUCTIONS 

DECIMAL INSTRUCTIONS 

This chapter introduces the main functions of the machine 
instructions and provides general rules for coding them in their 
symbolic assembler language format. For the complete 
specifications of machine instructions, their object code 
format, their coding specifications, and their use of registers 
and virtual storage areas, see the appropriate principles of 
operation manual for your processor. 

At assembly time, the assembler converts the symbolic assembler 
language representation of the machine instructions to the 
corresponding object code. It is this object code that the 
computer processes at execution time. Thus, the functions 
described in this section can be called execution time 
functions. 

Also at assembly time, the assembler creates the object code of 
the data constants and reserves storage for the areas you 
specify in your DC and DS assembler instructions (see "Data 
Definition Instructions" on page 90). At execution time, the 
machine instructions can refer to these constants and areas, but 
the constants themselves are not executed. 

As defined in the appropriate principles of operation manual, 
there are five categories of machine instructions: 

• General instructions 

• Decimal instructions 

• 
• 

Floating-Point instructions 

Control instructions 

• Input/Output operations 

Each is discussed in the following sections. 

You use general instructions to manipulate data that resides in 
general registers or in storage, or that is introduced from the 
instruction stream. These instructions include fixed-point, 
logical, and branching instructions; in addition, they include 
unprivileged status-switching instructions. Some general 
instructions operate on data that resides in the PSW or the TOD 
clock. 

The general instructions treat data as being of four types: 
signed binary integers, unsigned binary integers, unstructured 
logical data, and decimal data. Data is treated as decimal by 
the conversion, packing, and unpacking instructions. 

For further information, see "General Instructions" in the 
appropriate principles of operation manual. 

You use the decimal instructions when you wish to perform 
arithmetic and editing operations on data that has the binary 
equivalent of decimal representation, either in packed or zoned 
form. These instructions treat all numbers as integers. For 
example, 3.14, 31.4, and 314 are all processed as 314. You must 
keep track of the decimal point yourself. 

Additional operations on decimal data are provided by several of 
the instructions in "General Instructions" in the appropriate 

68 Assembler H Version 2 Application Programming: Language Reference 

o 



o 

o 

o 

principles of operation manual. Decimal operands always reside 
in storage, and all decimal instructions use the SS format. 

For further info~ation, see "Decimal Inst,-uctions" in the 
appropriate principles of operation manual. 

FLOATING-POINT INSTRUCTIONS 

CONTROL INSTRUCTIONS 

You use floating-point instructions when you wish to perform 
arithmetic operations on binary data that represents both 
integers and fractions. Thus, you do not have to keep track of 
the decimal point in your computations. Floating-point 
instructions also allow you to perform arithmetic operations on 
both very large numbers and very small numbers, with greater 
precision than with fixed-point instructions. 

For further information, see "Floating-Point Instructions" in 
the appropriate principles of operation manual. 

Control instructions include all privileged and semiprivileged 
machine instructions, except the input/output instructions (see 
below). 

Privileged instructions may be executed only when the processor 
is in the supervisor state. An attempt to execute an installed 
privileged instruction in' the problem state generates a 
privileged-operation exception. 

Semi·privileged instructions are those instructions that can be 
executed in the problem state when certain authority 
requirements are met. An attempt to execute an installed 
semiprivileged instruction in the problem state when the 
authority requirements are not met generates a 
privileged-operation exception or some other 
program-interruption condition depending on the particular 
requirement that is violated. 

For further details, see "Control Instructions" in the 
appropriate principles of operation manual. 

INPUT/OUTPUT OPERATIONS 

You can use the input/output instructions (instead of the 
IBM-suppled system macro instructions) when you wish to control 
your input and output operations more closely. 

The input or output instructions allow you to identify the 
channel or the device on which the input or output operation is 
to be performed. However, these are privileged instructions, 
and you can use them only when the processor is in the 
supervisor state but not when it is in the problem state. 

For more information, see "Input/Output Operations" in the 
appropriate principles of operation manual. 

BRANCHING WITH EXTENDED MNEMONIC CODES 

The branching instructions described below allow you to specify 
a mnemonic code for the condition on which a branch is to occur. 
Thus, you avoid having to specify the mask value required by the 
BC and BCR branching instructions. The assembler translates the 
mnemonic code that represents the condition into the mask value, 
which is then assembled in the object code of the machine 
instruction. 

Chapter 4. Machine Instruction Statements 69 



STATEMENT FORMATS 

The extended mnemonic codes are given in Figure 17 on page 71. 
They can be used as operation codes for branching instructions, 
replacing the BC and BCR machine instruction codes (see (1) in 
Figure 17). Note that the first operand (see (2) in Figure 17) 
of the BC and BCR instructions must not be present in the 
operand field (see (3) in Figure 17) of the extended mnemonic 
branching instructions. 

Note: The addresses represented are explicit addresses (see (4) 
in Figure 17); however, implicit addresses can also be used in 
this type of instruction. 

Machine instructions are assembled into object code according to 
one of the formats given below: 

Basic Format Length Attribute 

E 2 
RR 2 
RRE 4 
RS 4 
RX 4 
S 4 
SI 4 
5S 6 
SSE 6 

When you code machine instructions, you use symbolic formats 
that correspond to the actual machine language formats. Within 
each basic format, you can also code variations of the symbolic 
representation, divided into groups according to the basic 
formats illustrated below. 

The assembler converts only the operation code-and the operand 
entries of the assembler language statement into object code. 
The assembler assigns to the symbol you code as a name entry the 
v~lue of the address of the leftmost byte of the assembled 
instruction. When you use this same symbol in the operand of an 
assembler language statement, the assembler uses this address 
value in converting the symbolic operand into its object code 
form. The length attribute assigned to the symbol depends on 
the basic machine language format of the instruction in which 
the symbol appears as a name entry. 

A remarks entry is not converted into object code. 

An example of a typical assembler language statement follows: 

LABEL L 4,256(5,10) LOAD INTO REG4 

where 

LABEL is the name entry. 
L is the operation code (converted to 58). 

-4 is the register operand (copied). 
256(5,10) are the storage operand entries (converted to 5AIOO). 
LOAD INTO REG4 (remarks) is not converted into object code. 

The object code of the assembled instruction, in hexadecimal, 
is: 

5845AI00 (4 bytes in RX format) 

SYMBOLIC OPERATION CODES 

You must specify an operation code for each machine instruction 
statement. The symbolic operation code indicates the type of 
operation to be performed; for example, A indicates the addition 
operation. See Appendix D, "Macro Language Summary" for a 
complete list of symbolic operation codes; see the appropriate 

70 Assembler H Version 2 Application Programming: Language Reference 

o 

o 



0 Extended Code Meaning Format (Symbolic) Machine 
Instruction Equivalent 

• • • • \02 (X; ,B2) } B Unconditional Branch RX BC IS,D2(X2,B2) 
BR R2 RR BCR IS,R2 
NOP D2(X2,B2) } No Operation RX BC O,D2(X2,B2) 
NOPR R2 RR BCR O,R2 

Used After Compare Instructions 

BH D2(X2,B2) Branch on High RX BC 2,D2(X2,B2) 
BHR R2 RR BCR 2,R2 
BL D2(X2,B2) Branch on Low RX BC 4,D2(X2,B2) 
BLR R2 RR BCR 4,R2 
BE D2(X2,B2) Branch on Equal RX BC 8,D2(X2,B2) 
BER R2 RR BCR 8,R2 
BNH D2(X2,B2) Branch on Not High RX BC 13,D2(X2,B2) 
BNHR R2 RR BCR 13,R2 
BNL D2(X2,B2) Branch on Not Low RX BC II,D2(X2,B2) 
BNLR R2 RR BCR II,R2 
BNE D2(X2,B2) } Branch on Not Equal RX BC 7,D2(X2,B2) 
BNER R2 RR BCR 7,R2 

Used After Arithmetic Instructions 

BO D2(X2,B2) } Branch on Overflow RX BC I,D2(X2,B2) 
BOR R2 RR BCR I,R2 
BP D2(X2,B2) } Branch on Plus RX BC 2,D2(X2,B2) 
BPR R2 RR BCR 2,R2 

0 
BM D2(X2,B2) } Branch on ,Minus RX BC 4,D2(X2,B2) 
BMR R2 RR BCR 4,R2 
BNP D2(X2,B2) 

f 
Branch on Not Plus RX BC 13,D2(X2,B2) 

BNPR R2 RR BCR 13,R2 
BNM D2(X2,B2) } Branch on Not Minus RX BC II,D2(X2,B2) 
BNMR R2 RR BCR II,R2 
BNZ D2(X2,B2) } Branch on Not Zero RX BC 7,D2(X2,B2) 
BNZR R2 RR BCR 7,R2 
BZ D2(X2,B2) } Branch on Zero RX BC 8,D2(X2,B2) 
BZR R2 RR BCR 8,R2 
BNO D2(X2,B2) } Branch on No Overflow RX BC 14,D2(X2,B2) 
BNOR R2 RR BCR 14,R2 

Used After Test Under Mask Instructions 

BO D2(X2,B2) } Branch if Ones RX BC I,D2(X2,B2) 
BOR R2 RR BCR I,R2 
BM D2(X2,B2) } Branch if Mixed RX BC 4,D2(X2,B2) 
BMR R2 RR BCR 4,R2 
BZ D2(X2,B2) } Branch if Zeros RX BC 8,D2(X2,B2) 
BZR R2 RR BCR 8,R2 
BNO D2 (X2 ,B2) } Branch if Not Ones RX BC 14,D2(X2,B2) 
BNOR R2 RR BCR 14,R2 
BNM D2 (X2,B2) } Branch if Not Mixed RX BC 11,D2(X2,B2) 
BNMR R2 RR BCR Il,R2 
BNZ D2(X2,B2) } Branch if Not Zeros RX BC 7,D2(X2,B2) 
BNZR R2 RR BCR 7,R2 

D2=displacement,X2=index register,B2=base register,R2=register containing 
branch address 

Figure 17. Extended Mnemonic Codes 

0 
Chapter 4. Machine Instruction Statements 71 



OPERAND ENTRIES 

principles of operation for the formats of the corresponding 
machine instructions. 

The general format of the machine instruction operation code is: 

VERB [MODIFIER] [DATA TYPE] [MACHINE FORMAT] 

The verb must always be present. It usually consists of one or 
tw~ characters and specifies the operation to be performed. The 
verb is underscored in the following examples: 

A 3,AREA 
or 
MVC TO, FROM 

where 

A indicates an add operation, and 
~~ indicates a move operation. 

The other items in the operation code are not always present. 
They include the following (underscores are used to indicate 
modifiers, data types, and machine formats in the examples 
below): 

• Modifier, which further defines the. operation 

Ai 3,AREA where lindicates a logical operation 

• Type qualifier, which indicates the type of data used by the 
instruction in its operation 

CVIl 3,BIHAREA where B indicates binary data 

MV~ TO, FROM where C indicates character data 

Ag 2,FlT5HRT where E indicates normalized short 
floating-point data 

AJ1 2,FlTlOHG where D indicates normalized long 
floating-point data 

• Format qualifier, R or I, which indicates that an RR or SI 
machine instruction format is assembled 

AD& 2,4 where R indicates an RR instruction 

MVI FIElD,X'Al' where I indicates an 51 instruction 

You must specify one or more operands in each machine 
instruction statement to provide the data or the location of the 
data upon which the machine operation is to be performed. The 
operand entries consist of one or more fields or subfields, 
depending on the format of the instruction being coded. They 
can specify a register, an address, a length, and immediate 
data. 

You can code an operand entry either with symbols or with 
self-defining terms. You can omit length fields or subfields, 
which the assembler will compute for you from the other operand 
entries. 

72 Assembler H Version 2 Application Programming: language Reference 

o 

(-'" 

~=f' 



o 

REGISTERS 

o 

o 

The rules for coding operand entries are: 

1. A comma must separate operands. 

2. Parentheses must enclose subfields. 

3. A comma must separate subfields enclosed in parentheses. 

If a subfield is omitted because it is implicit in a symbolic 
address, the parentheses that would have enclosed the subfield 
must be omitted. 

If two subfields are enclosed in parentheses and separated by 
commas, the following"applies: 

• If both subfields are omitted because they are implicit in a 
symbolic entry, the separating comma and the parentheses 
that would have been needed must also be omitted. 

• If the first subfield is omitted, the comma that separates 
it from the second subfield must be written, as well as the 
enclosing parentheses. 

• If the second subfield is omitted, the comma that separates 
it from the first subfield must be omittedi however, the 
enclosing parentheses must be written. 

Note: Blanks must not appear within the operand field, except 
as part of a character self-defining term, or in the 
specification of a character literal. 

You can specify a register in an operand for Use as an 
arithmetic accumulator, a base register, an index register, and 
as a general depository for data to which you wish to refer 
repeatedly. 

You must be careful when specifying a register whose contents 
have been affected by the execution of another machine 
instruction, the control program, or an IBM-supplied system 
macro instruction. 

For some machine instructions, you are limited in which 
registers you can specify in an operand. 

The expressions used to specify registers must have absolute 
values; in general, registers 0 through 15 can be specified for 
machine instructions. However, the following restrictions on 
register usage apply: 

1. The floating-point registers (0, 2, 4, or 6) must be 
specified for floating-point instructions. 

2. The even-numbered registers (0, 2, 4, 6, 8, 10, 12, 14) must 
be specified for the following groups of instructions: 

a. The double-shift instructions 

b. The fullword multiply and divide instructions 

c. The move long and compare logical long instructions 

3. The floating-point registers 0 and 4 must be specified for 
the instructions that use extended floating-point data: AXR, 
SXR, LRDR, MXR, MXDR, MXD, and DXR. 

Note: The assembler checks the registers specified in the 
instruction statements of the above groups. If the specified 
register does not comply with the stated restrictions, the 
assembler issues a diagnostic message and does not assemble the 
instruction. 

Chapter 4. Machine Instruction Statements 73 



Register Usage by Machine Instructions 

Registers that are not explicitly coded in the symbolic 
assembler language representation of machine instructions, but 
are, nevertheless, used by the assembled machine instructions, 
are divided into two categories: 

1. The base registers that are implicit in the symbolic 
addresses specified. These implicit addresses are described 
in detail in "Addresses." The registers can be identified 
by examining the object code of the assembled machine 
instruction or the USING instructionCs) that assigns base 
registers for the source module. 

2. The registers that are used by machine instructions in their 
operations, but do not appear even in the assembled object 
code. They are as follows: 

a. For the double shift and fullword multiply and divide 
instructions, the odd-numbered register, whose number is 
one greater than the even-numbered register specified as 
the first operand~ 

b. For the Move Long and Compare Logical Long instructions, 
the odd-numbered registers, whose number is one greater 
than the even-numbered registers specified in the two 
operands. 

c. For the Branch on Index High CBXH) and the Branch on 
Index Low or Equal (BXLE) instructions, if the register 
specified for the second operand is an even-numbered 
register, the next higher odd-numbered register is used 
to contain the value to be used for comparison. 

d. For the Translate and Test (TRT) instruction, registers 
1 and 2 are also used. 

e. For the Load Multiple (LM) and Store Multiple CSTM) 
instructions, the registers that lie between the 
registers specified in the first two operands. 

Register Usage by system 

ADDRESSES 

The control program of the IBM System/370 uses registers 0, 1, 
13, 14, and 15. 

You can code a symbol in the name field of a machine instruction 
statement to represent the address of that instruction. You can 
then refer to the symbol in the operands of other machine 
instruction statements. The object code for the IBM System/370 
requires that all addresses be assembled in a numeric 
base-displacement format. This format allows you to specify 
addresses that are relocatable or absolute. 

You must not confuse the concepts of relocatability with the 
actual addresses that are coded as relocatable, nor with the 
format of the addresses that are assembled. 

DEFINING SYMBOLIC ADDRESSES: You define symbols to represent 
either relocatable or absolute addresses. You can define 
relocatable addresses in two ways: 

1. By using a symbol as the label in the name field of an 
assembler language statement 

2. By equating a symbol to a relocatable expression 

You can define absolute addresses (or values) by equating a 
symbol to an absolute expression. 

74 Assembler H Version 2 Application Programming: Language Reference 

o 

C
-~ 

J 



o 

o 

o 

REFERRING TO ADDRESSES: You can refer to relocatable and 
absolute addresses in the operands of machine instruction 
statements. (Such address references are also called addresses 
in this manual.) The two ways of coding addresses are: 

1. Implicitly; that is, in a form that the assembler must first 
convert into an explicit base-displacement form before it 
can be assembled into object code 

2. Explicitly; that is, in a form that can be directly 
assembled into object code 

Relocatability of Addresses 

Addresses in the base-displacement form are relocatable, 
because: 

• Each relocatable address is assembled as a displacement from 
a base address and a base register. 

• The base register contains the base address. 

• If the object module assembled from your source module is 
relocated, only the contents of the base register need 
reflect this relocation. This means that the location in 
virtual storage of your base has changed, and that your base 
register must contain this new base address. 

• Your addresses have been assembled as relative to the base 
address; therefore, the sum of the displacement and the 
contents of the base register will point to the correct 
address after relocation. 

Note: Absolute addresses are also assembled in the 
base-displacement form, but always indicate a fixed location in 
virtual storage. This means that the contents of the bass 
register must always be a fixed absolute address value 
regardless of relocation. 

Machine or Object Code Format 

Implicit Address 

All addresses assembled into the object code of the IBM 
System/370 machine instructions have the format given in 
Figure 18 on page 76 . 

The addresses represented have a value that is the sum of a 
displacement (see (1) in Figure 18) and the contents of a base 
register (see (2) in Figure 18). 

Note: In RX instructions, the address represented has a value 
that is the sum of a displacement, the contents of a base 
register, and the contents of an index register (see (3) in 
Figure 18). 

An implicit address is specified by coding one expression. The 
expression can be relocatable or absolute. The assembler 
converts all implicit addresses into their base-displacement 
form before it assembles them into object code. The assembler 
converts implicit addresses into explicit addresses only if a 
USING instruction has been specified. The USING instruction 
assigns both a base address, from which the assembler computes 
displacements, and a base register, to contain the base address. 
The base register must be loaded with the correct base address 
at execution time. For details on how the USING instruction is 
used when establishing addressability, thus allowing implicit 
references, see "Addressing within Source Modules: Establishing 
Addressability" in "Chapter 6. Introduction to Macro Language." 

Chapter 4. Machine Instruction Statements 75 



Format 

RS 

S1 

SS 

RX 

S 

SSE 

Coded or Symbolic 
Representation of 
Explicit Addresses 

D2(B2) 

D1 (B1) 

D1 (,B1) ,D2 (B2) 

D2(X2,B2) 

D1 (B1) 

D1 (B1) ,D2 (B2) 

8 bits 
Operation 
Code 

Object Code 
Representation 
of Addresses 

4 bits 4 bits 4 bits 
Base 
Reg
ister 

12 bits 
Displacement 

_________ t ___ !':~ 
C!~ ~~_~E.:. ~~ _:. ~~..I B2 I D2 I 
~~ ~~~~:.-.-.- T~· ~ ~ J B 1 I D 1 I 

Index 
Register 

B2 D2 

- ---- - - - - - - - - - -+---i--------l 
B1 D1 OP CODE ------ - -- - - --~-~----~ 

4 bits I 12 bits 
Base I Displacement 
Reg-

ister 

--------------r-~~------~~-~------~ OPCQDE B1 D1 B2 D2 
-------------~-~-----~~_+--~~__4 

R 1 and R3 represent registers 
12 represents an immediate value 
L represents a length value 

Figure 18. Object Code Format 

Explicit Address 

An explicit address is specified by coding two absolute 
expressions as follows: 

• The first is an absolute expression for the displacement, 
whose value must lie in the range 0 through 4095 (4095 is 
the maximum value that can be represented by the 12 binary 
bits available for the displacement in the object code). 

• The second (enclosed in parentheses) is an absolute 
expression for the base register, whose value must lie in 
the range 0 through 15. 

76 Assembler H Version 2 Application Programming: Language Reference 

o 



o 

LENGTHS 

o 

IMMEDIATE DATA 

o 

If the base register contains a value that changes when the 
program is relocated, the assembled address is relocatable. If 
the base register contains a fixed absolute value that is 
unaffected by program relocation, the assembled address is 
absolute. 

Notes: 

1. An explicit base register designation must not accompany an 
implicit address. 

2. However, in RX instructions, an index register can be coded 
with an implicit address as well as with an explicit 
address. 

3. When two addresses are required, one address can b~ coded as 
an explicit address, and the other as an implicit address. 

You can specify the length field in an 55-type instruction. 
This allows you to indicate explicitly the number of bytes of 
data at a virtual storage location that is to be used by the 
instruction. However, YOU can omit the length specification, 
because the assembler computes the number of bytes of data to be 
used from the exprQssion that represents the address of the 
data. 

IMPLICIT LENGTH: When a length subfield is omitted from an 
55-type machine instruction, an implicit length is assembled 
into the object code of the instruction. The implicit length is 
either of the following: 

• 

• 

For an implicit address, it is the length attribute of the 
first or only term in the expression representing the 
implicit address. 

For an explicit address, it is the length attribute of the 
first or only term in the expression that represents the 
displacement. 

EXPLICIT LENGTH: When a length subfield is specified in an 
55-type machine instruction, the explicit length thus defined 
always overrides the implicit length. 

Notes: 

1. An implicit or explicit length is the effective length. The 
length value assembled is always one less than the effective 
length~ If an assembled length value of 0 is desired, an 
explicit length of 0 or 1 can be specified. 

2. In the 55 instructions requiring one length value, the 
allowable range for explicit lengths is 0 through 256. In 
the 55 instructions requiring two length values, the 
allowable range for explicit lengths is 0 through 16. 

In addition to addresses, registers, and lengths, some machine 
instruction operands require immediate data. 5uch data is 
assembled directly into the object code of the machine 
instructions. You use immediate data to specify the bit 
patterns for masks or other absolute values you need. 

You should be careful to specify immediate data only where it is 
required. Do not confuse it with address references to 
constants and areas, or with any literals you specify as the 
operands of machine instructions. 

Immediate data must be specified as absolute ex~ressions whose 
range of values depends on the machine instruction for which the 

Chapter 4. Machine Instruction Statements 77 



data is required. The immediate data is assembled into its 
4-bit or 8-bit binary representation. 

EXAMPLES OF CODED MACHINE INSTRUCTIONS 

RR Format 

RRE Format 

The examples that follow are grouped according to machine 
instruction format. They illustrate the various ways in which 
you can code the operands of machine instructions. Both 
symbolic and numeric representation of fields and subfields are 
shown in the examples. You must, therefore, assume that all 
symbols used are defined elsewhere in the same source module. 

The object code assembled from at least one coded statement per 
group is also included. A complete summary of machine 
instruction formats with the coded assembler language variants 
can be found in Appendix A, "Machine Instruction Format" and the 
appropriate principles of operation manual. 

You use the instructions with the RR format mainly to move data 
between registers. The operand fields must thus designate 
registers, with the following exceptions: 

• In BCR branching instructions, when a 4-bit branching mask 
replaces the first register specification (see 8 in GAMMA! 
instruction below) 

• In SVC instructions, where an immediate value (between 0 and 
255) replaces both registers (see 200 in DELTA! instruction 
below) 

Note: Symbols used in RR instructions (see INDEX,REG2 in ALPHA2 
instruction below) are assumed to be equated to absolute values 
between 0 and 15. 

Examples of RR format instructions: 

t~ame Operation Operand 

ALPHA! LR 1,2 
ALPHA2 LR INDEX,REG2 
GAMMA1 BCR 8,12 
DELTA1 SVC 200 
DELTA2 SVC TEN 

When assembled, the object code of the ALPHA1 instruction, in 
hexadecimal, is: 

1812 

where 

18 is the operation code. 
1 is register R1. 
2 is register R2. 

You use the instructions with the RRE format mainly for control 
operations. The operand field must designate one or two 
registers, depending on the specific instruction. If the 
instruction has only one register operand, then register 2 is 
assembled as a zero in the object code. 

78 Assembler H Version 2 Application Programming: Language Reference 



o 

RS Format 

o 

o 

Examples of RRE format instructions: 

Name Operation Operand 

ALPHA1 IPM REGS 
ALPHA2 IPTE 6,7 
BETA DXR 0,4 

Note: Symbols used in RRE instructions (such as REGS) are 
assumed to be equated to absolute values between 0 and 15. 

When assembled, the object code of the BETA instruction, in 
hexadecimal, is: 

B22D0004 

where 

B22D is the operation code. 
00 is zero. 
o is register R1. 
4 is register R2. 

You use the instructions with the RS format mainly to move data 
between one or more registers and virtual storage, or to compare 
data in one or more registers. 

In the Insert Characters under Mask (ICM) and the Store 
Characters under Mask (STCM) instructions, a 4-bit mask (see 
X'E' and MASK in the DELTA instructions belo~), with a value 
between 0 and 15, replaces the second register specifications. 

Notes: 

1. Symbols used to represent registers (see REG4, REG6, and 
BASE in the ALPHA2 instruction below) are assumed to be 
equated to absolute values between 0 and 15. 

2. Symbols used to represent implicit addresses (see AREA and 
IMPLICIT in the BETA1 and DELTA2 instructions below) can be 
either relocatable or absolute. 

3. Symbols used to represent displacements (see DISPL in the 
BETA2 instruction below) in explicit addresses are assumed 
to be equated to absolute values between 0 and 4095. 

Examples of RS format instructions: 

Name Operation operand 

ALPHA! lM 4,6,20(12) 
ALPHA2 lM REG4,REG6,20(BASE) 
BETA1 STM 4,6,AREA 
BETA2 STM 4,6,DISPL(BASE) 
GAMMA1 Sll 2,15 
GAMMA2 Sll 2,0(15) 
DELTA! ICM 3,X'E',1024(10) 
DELTA2 ICM REG3,MASK,IMPlICIT 

When assembled, the object code for the ALPHA1 instruction, in 
hexa dec i ma 1, is: 

9846C014 

Chapter 4. Machine Instruction Statements 79 



RX Format 

where 

9S is the operation code. 
4 is register Rl. 
6 is register R3. 
C is the base register. 
014 is the displacement from the base register. 

When assembled, the object code for the DELTAI instruction, in 
hexadec i mal, is: 

BF3EA400 

where 

BF is the operation code. 
3 is register Rl. 
E is mask M3. 
A is the base register. 
400 is the displacement from the base register. 

You use the instructions with the RX format mainly to move data 
between a register and virtual storage. By adjusting the 
contents of the index register in the RX instructions, you can 
change the location in virtual storage being addressed. The 
operand fields must, therefore, designate registers, including 
index registers and virtual storage addresses, with the 
following exception: 

In BC branching instructions, a 4-bit branching mask (see 7 
and TEN in the LAMBDA instructions below) with a value 
between 0 and 15, replaces the first register specification 

Notes: 

1. Symbols used to represent registers (see REG1, INDEX, and 
BASE in the ALPHA2 instruction below) are assumed to be 
equated to absolute values between 0 and 15. 

2. Symbols used to represent implicit addresses (see IMPLICIT 
in the GAMMA instructions below) can be either relocatable 
or absolute. 

3. Symbols used to represent displacements (see DISPL in the 
BETA2 and LAMBDA1 instructions below) in explicit addresses 
are assumed to be equated to absolute values between 0 and 
4095. 

Examples of RX format instructions: 

Name Operation Operand 

ALPHA1 L 1,200(4,10) 
ALPHA2 L REG1,200(INDEX,BASE) 
BETA1 L 2,200(,10) 
BETA2 L REG2,DISPL(,BASE) 
GAMMA1 L 3,IMPLICIT 
GAMMA2 L 3,IMPLICIT(INDEX) 
DELTAl L 4,=F'33' 
LAMBDA1 BC 7,DISPL(,BASE) 
LAMBDA2 BC TEN, ADDRESS 

When assembled, the object code for the ALPHAl instruction, in 
hexadecimal, is: 

5'S14AOCS 

sn Assembler K Version 2 Application Programming: Language Reference 



o 

S Format 

o 

SI Format 

o 

where 

58 i5 the operation code. 
1 is register Rl. 
4 is the index register. 
A is the base register. 
OC8 is the displacement from the base register. 

When assembled, the object code for the GAMMAI instruction, in 
hexadecimal, is: 

5824xyyy 

where 

58 is the operation code. 
2 i5 register Rl. 
4 is the index register. 
x is the base register. 
yyy is the displacement from the base register (IMPLICIT). 

You use the instructions with the 5 format to perform I/O and 
other system operations and not to move data in virtual storage. 

Examples of S format instructions: 

Name operation operand 

GAMMAI SIO 40(9) 
GAMMA2 510 0(9) 
GAMMA3 SIO 40(0) 
GAMMA4 510 ZETA 

The GAMMAl, GAMMA2, and GAMMA3 instructions specify explicit 
addresses. The GAMMA4 instruction specifies an implicit 
address. The GAMMA2 instruction specifies a displacement of 
zero. The GAMMA3 instruction does not specify a base register. 

When assembled, the object code of the GAMMAI instruction, in 
hexadecimal, is: 

9C009028 

where 

9COO is the operation code. 
9 is is the base register. 
028 is the displacement from the base register. 

You use the instructions with the 51 format mainly to move 
immediate data into virtual storage. The operand fields must, 
therefore, designate immediate data and virtual storage 
addresses, with the following exception: An immediate field is 
not needed (see the GAMMA instructions below) in the statements 
whose operation codes are LPSW, SSM, TS, TCH, and TIO. 

Notes: 

1. Symbols used to represent immediate data (see HEX40 and TEN 
in the ALPHA2 and BETAI instructions below) are assumed to 
be equated to absolute values between 0 and 255. 

2. Symbols used to represent implicit addresses (see IMPLICIT, 
KEY, and NEWSTATE in the BETA and GAMMA2 instructions below) 
can be either relocatable or absolute. 

Chapter 4. Machine Instruction statements 81 



55 Format 

3. Symbols used to represent displacements (see DISPl40 in the 
AlPHA2 instruction below) in explicit addresses are assumed 
to be equated to absolute values between 0 and 4095. 

Examples of 51 format instructions: 

Name Operation operand 

ALPHAI ClI 40(9),X'40' 
ALPHA2 CLI DISPL40(NINE),HEX40 
BETAl CLI IMPLICIT,TEN 
BETA2 ClI KEY,C'E' 
GAMMAI LPSW 0(9) 
GAMMA2 LPSW NEWSTATE 

When assembled, the object code for the ALPHAI instruction, ;n 
hexade.cimal, is: 

95409028 

where 

95 is the operation code. 
40 is the immediate data. 
9 is the base register. 
028 is the displacement from the base register. 

You use the instructions with the SS format mainly to move data 
between two virtual storage locations. The operand fields and 
subfields must, therefore, designate virtual storage addresses 
and the explicit data lengths you wish to include. However, 
note that, in the Shift and Round Decimal (SRPj instruction, a 
4-bit immediate data field (see 3 in SRP instruction below), 
with a value between 0 and 9, is specified as a third operand. 

Notes: 

1. Symbols used to represent base registers (see BASE8 and 
BASE7 in the ALPHA2 instruction below) in explicit addresses 
are assumed to be equated to absolute values between 0 and 
15. 

2. Symbols used to represent explicit lengths (see NINE and SIX 
in the ALPHA2 instruction below) are assumed to be equated 
to absolute values between 0 and 256 for SS instructions 
with one length specification, and between 0 and 16 for SS 
instructions with two length specifications. 

3. Symbols used to represent implicit addresses (see FIELD!, 
FIELD2, and FIELDl,X'8' in the ALPHA3 and SRP instructions 
below) can be either relocatable or absolute. 

4. Symbols used to represent displacements (see DISP40 and 
DISP30 in the ALPHAS instruction below) in explicit 
addresses are assumed to be equated to absolute values 
between 0 and 4095. 

82 Assembler H Version 2 Application Programming: language Reference 



o 

o 

SSE Format 

o 

Examples of SS format instructions: 

Name operation Operand 

ALPHAI AP 40 ( 9,·8) , 30 (6, 7 ) 
ALPHA2 AP 40CNINE,BASES),30(SIX,BASE7) 
ALPHA3 AP FIELD1,FIELD2 
ALPHA4 AP AREA(9),AREA2(6) 
ALPHAS AP DISP40(,S),DISP30(,7) 
BETA1 MVC 0(SO,S),OC7) 
BETA2 MVC DISPOC,S),DISPOC7) 
BETA3 MVC TO, FROM 

SRP FIELD1,X'S' ,3 

When assembled, the object code for the ALPHA1 instruction, in 
hexadecimal, is: 

FA858028701E 

where 

FA is the operation code. 
8 is length L1. 
5 ;s length L2. 
8 is base register B1. 
028 is the displacement from base register Bl. 
7 is base register B2. 
OlE ;s the displacement from base register B2. 

When assembled, the object code for the BETAI instruction, in 
hexadecimal, is: 

D24F80007000 

where 

02 ;s the operation code. 
4F ;s length L. 
8 is base register B1. 
000 is the displacement from base register B1. 
7 is base register B2. 
000 is the displacement from base register B2. 

You use the instructions with the SSE format mainly for control 
operations. The operand fields designate virtual storage 
addresses, encoded as base and displacement. 

Examples of SSE format instructions: 

Name Operation Operand 

ALPHA! LASP 40(BASE8),30CBASE7) 
ALPHA2 lASP 40(8),30C7) 
BETAI TPROT lOC1,lOC2 
BETA2 TPROT DISP40(8),DISP30C8) 

Notes: 

1. Symbols used to represent base registers in explicit 
addresses (such as BASES and BASE7 in the ALPHA1 
instruction) are assumed to be equated to absolute values 
between 0 and 15. 

Chapter 4. Machine Instruction Statements 83 



2. Symbols used to represent implicit addresses (such as 
lOCl,lOC2 in the BETAl instruction) can either be 
relocatable or absolute. 

3. Symbols used to represent displacements in explicit 
addresses (such as DISP40 and DISP30 in the BETA2 
instruction) are assumed to be equated to absolute values 
betwQen 0 and 4095. 

When assembled, the object code of the AlPHA2 instruction, in 
hexadecimal, is: 

E500802870lE 

where 

E500 is the operation code. 
8 is base register B1. 
028 is the displacement from base register Bl. 
7 is base register B2. 
OlE is the displacement from base register B2. 

84 Assembler H Version 2 Application Programming: language Reference 

C) 



o 

o 

o 

C~IAPTER S. ASSEMBLER INSTRUCTIO'N STATEMENTS 

This chapter describes the assembly time functions that you can 
use. 

The following is a list of assembler instructions: 

Symbol Definition Instruction 

EQU Equate symbol 

operation Code Definition Instruction 

OPSYN Equate operation code 

Data Definition Instructions 

DC Define constant 
DS Define storage 
CCW Define channel command word ( Format 0: 24-bit data 

address) 
CCWO Define channel command word ( Format 0: 24-bit data 

address) 
CCWl Define channel command word (Format 1 : 31-bit data 

address) 

Program sectioning and Linking Instructions (discussed in 
Chapter 3) 

lOCTR 

START 
AMODE 
RMODE 
CSECT 
CXD 
DSECT 
DXD 
EHTRY 
EXTRH 
WXTRN 
COM 

Specify multiple location counters within a control 
section 
Start assembly 
Specify the addressing mode of a control section 
Specify the residence mode of a control section 
Identify control section 
Cumulative length of external dummy section 
Identify dummy section 
Define external dummy section 
Identify entry-point symbol 
Identify external symbol 
Identify weak external symbol 
Identify blank common control section 

Base Register Instructions (discussed in Chapter 3) 

USING 
DROP 

Use base address register 
Drop base address register 

Program Control Instructions 

ICTl 
ISEQ 
PUNCH 
REPRO 
PUSH 
POP 
ORG 
LTORG 
CHOP 
COpy 
END 

Input format control 
Input sequence checking 
Punch a card 
Reproduce following card 
Push-down queue for current PRINT or USING 
Restore status of current PRINT or USING 
Set location counter 
Begin literal pool 
Conditional no operation 
Copy predefined source coding 
End assembly 

Listing Control Instructions 

TITLE 
EJECT 
SPACE 
PRINT 

Identify assembly output 
Start new page 
Space listing 
Print optional data 

Chapter 5. Assembler Instruction Statements 85 



SYMBOL DEFINITION INSTRUCTION 

EQU--EQUATE SYMBOL 

The EQU instruction allows you to assign absolute or relocatable 
values to symbols. You can use it for the following purposes: 

1. To assign single absolute values to symbols. 

2. To assign the values of previously defined symbols or 
expressions to new symbols, thus allowing you to use 
different mnemonics for different purposes. 

3. To compute expressions whose values are unknown at coding 
time or difficult to calculate. The value of the 
expressions is then assigned to a symbol. 

The EQU instruction can be used anywhere in a source module 
after the IeTl instruction, or after any source macro 
defin1tions that may be specified. Note, however, that the EQU 
instruction can initiate an unnamed control section (private 
code) if it is specified before the first control section 
(initiated by a START or CSECT instruction). The format of the 
EQU instruction statement is as follows: 

Name Operation Operand 

A variable EQU Four options: 
symbol or {expression1! 
ordinary expression1,expression2! 
symbol expression1,expression2, 

expression3! 
expression1"expression3} 

Note: The two commas in the last option above indicate the 
absence of expression 2. 

EXpression 1 represents a value. It must always be specified 
and it may assume any value allowed for an assembly expression: 
Absolute (including negative), relocatable, or complexly 
relocatable. The assembler carries this value as a signed 
4-byte (32-bit) number; all four bytes are printed in the 
program listings opposite the symbol. 

Any symbols used in the first operand (expression 1) need not be 
previously defined. If the expression in the first operand is 
complexly relocatable, the whole expression, rather than its 
value, is assigned to the symbol. During the evaluation of any 
expression that includes a complexly relocatable symbol, that 
symbol is replaced by its own defining expression. 

Consider the following example, in which Al and A2 are defined 
in one control section, and B1 and B2 in another: 

Name Operation Operand 

X EQU A1+B1 
Y EQU X-A2-B2 

The first EQU statement assigns a complexly relocatable 
expression (A1+Bl) to X. During the evaluation of the 
expression in the second EQU statement, X is replaced by its 
defining relocatable expression (A1+B1), and the assembler 
evaluates the resulting expression (A1+BI-A2-B2) and assigns an 
absolute value to y, because the relocatable terms in the 
expression are paired. 

86 Assembler H Version 2 Application Programming: language Reference 

o 



o 

o 

o 

Expression 2 represents a length attribute. It is optional, 
but, if specified, it must have an absolute value in the range 
of 0 through 65,535. Expression 3 represents a type attribute. 
It is optional, but, if specified, must be a self-defining term 
with a value in the range of 0 through 255. 

Any symbols appearing in expressions 2 and/or 3 must have been 
previously defined. 

EXPRESSION 1 (VALUE): The assembler assigns the relocatable or 
absolute value of expression 1 to the symbol in the name field 
at assembly time. If expression 2 is omitted, the assembler 
also assigns a length attribute value to the symbol in the name 
field according to the length attribute value of the leftmost 
(or only) term of expression 1. The length attribute value is 
described in "Chapter 2. Coding and Structure." It is defined 
as follows: 

1. If the leftmost term is a location counter reference (*), a 
self-defining term, or a symbol length attribute value 
reference, the length attribute is 1. Note that this also 
applies if the leftmost term is a symbol that is equated to 
any of these values. 

2. If the leftmost term is a symbol that is used in the name 
field of a DC or DS instruction, the length attribute value 
is equal to the implicit or explicit length of the first (or 
~ constant specified in the DC or DS operand field. 

3. If the leftmost term is a symbol that is used in the name 
field of a machine instruction, the length attribute value 
is equal to the length of the assembled instruction. 

4. Symbols that name assembler instructions, except the DC and 
DS instructions, have a length attribute value of 1. 
However, the name of a CCW, CCWO, or CCW1 instruction has a 
length attribute value of 8. 

5. The length attribute value assigned in cases 2 to 4 above 
only applies to the assembly-time value of the attribute. 
Its value at preassembly time, during conditional assembly 
processing, is always 1. 

6. Further, if expression 3 is omitted, the assembler assigns a 
type attribute value of U to the symbol in the name field. 

EXPRESSION 2 (LENGTH-ATTRIBUTE VALUE): If expression 2 is 
specified, the assembler assigns its value as a length attribute 
value to the symbol in the name field. This value overrides the 
normal length attribute value implicitly assigned from 
expression 1. If expression 2 is a self-defining term, the 
assembler also assigns the length attribute value to the symbol 
at preassembly time (during conditional assembly processing). 

Note: This expression must have been previously defined. 

EXPRESSION 3 (TYPE-ATTRIBUTE VALUE): If expression 3 is 
specified, it must be a self-defining term. The assembler 
assigns its EBCDIC value as a type attribute value to the symbol 
in the name field. This value overrides the normal type 
attribute value implicitly assigned from expression 1. 

Using Preassembly Values: You can use the preassembly values 
assigned by the assembler in conditional assembly processing. 

If only expression 1 is specified, the assembler assigns a 
preassembly value of 1 to the 'length attribute, and a 
preassembly value of U to the type attribute of the symbol. 
These values can be used in conditional assembly (although 
references to the length attribute of the symbol will be 
flagged). The absolute or relocatable value of the symbol, 
however, is not assigned until assembly, and thus may not be 
used at preassembly. 

Chapter 5. Assembler Instruction Statements 87 



If you include expressions 2 and 3 and wish to use the explicit 
attribute values in preassembly processing, then 

1. The symbol in the name field must be an ordinary symbol. 

2. Expression 2 and expression 3 must be single self-defining 
terms. 

SYMBOL Itl THE NAME FIELD: The assembler assigns an absolute or 
relocatable value, a length attribute value, and a type 
attribute value to the symbol in the name field. 

The absolute or relocatable value of the symbol is assigned at 
assembly time, and is, therefore, not available for conditional 
assembly processing at preassembly time. 

The type and length attribute values of the symbol are available 
for conditional assembly processing under the following 
conditions: 

• The symbol in the name field must be an ordinary symbol. 

• Expression 2 and expression 3 must be single self-defining 
terms. 

REDEFINING SYMBOLIC OPERATION CODES 

OPSYN--EQUATE OPERATION CODE 

The OPSYH instruction allows you to define your own set of 
symbols to represent operation codes for: 

• Machine and extended mnemonic branch instructions 

• Assembler instructions, including conditional assembly 
instructions 

You can also prevent the assembler from recognizing a symbol 
that represents a current operation code. 

The OPSYH instruction has two formats: 

Name Operation Operand 

Any symbol or OPSYH An operation code 
operation code 

or 

Name Operation operand 

An operation OPSYN Blank 
code 

The OPSYH instruction can be coded anywhere in the program to 
redefine an operation code. 

The operation code specified in the name field or the operand 
field must represent either: 

1. The operation code of one of the assembler or machine 
instructions as described in "Chapter 3. Addressing, Program 
Sectioning, and Linking" on page 40, "Chapter 4. Machine 
Instruction statements," 

88 Assembler H Version 2 Application Programming: Language Reference 



o 

o 

o 

"Chapter 5. Assembler Instruction Statements," or"Chapter 9. 
How to Write Conditional Assembly Instructions" on page 195, 
respectively, or 

2. The operation code defined by a previous OPSYH instruction. 

The OPSYH instruction assigns the properties of the operation 
code specified in the operand field to the symbol in the name 
field. A blank in the operand field causes the operation code 
in the name field to lose its properties as an operation code. 

Examples: 

1. The symbol in the name field can represent a valid operation 
code. It loses its current properties as if it had been 
defined in an OPSYN instruction with a blank operand freld. 
In the following example, land lR will both possess the 
properties of the lR machine instruction operation code: 

l OPSYN lR 

2. When the same symbol appears in the name field of two OPSYH 
instructions, the latest definition takes precedence. In 
the example below, STORE now represents the STH machine 
operation: 

STORE OPSYN ST 
STORE OPSYN STH 

REDEFINING CONDITIONAL ASSEMBLY INSTRUCTIONS: A redefinition of 
a conditional assembly operation code will have an effect only 
on macro definitions appearing after the OPSYH instruction. 
Thus, the new definition is not valid during the processing of 
subsequent macro instructions calling a macro that was defined 
prior to the OPSYN statement. 

Any OPSYN statement redefining the operation code of an 
instruction generated from a macro instruction will, however, be 
valid, even if the definition of the macro was made prior to the 
OPSYN statement. The following example illustrates this 
difference between conditional assembly instructions and model 
statements within macro instructions. 

Name 

AIF 
MVC 

Operation operand Remark 

MACRO 
MAC 
AIF 
MVC 
MEND 
. 
OPSYN 
OPSYN . 
MAC 
[AIF 

MVC 

AIF 
MVC 

AGO 
MVI 

macro header 
macro prototype 

macro trailer 

assign AGO properties to AIF 
assign MVI properties to MVC 

macro call 
evaluated as AIF instruction; 
generated AIFs not printed] 
evaluated as MVI instruction 

open code start.d at this point 
evaluated as AGO instruction 
evaluated as MVI instruction 

AIF and MVC instructions are used in a macro definition. OPSYH 
instructions are used to assign the properties of AGO to AIF and 
to assign the properties of MVI to MVe, after the macro 
definition has been edited. In subsequent calls to that macro, 
AIF is still defined as an AIF operation, while MVC is treated 
as an MVI operation. In open code following the OPSYH 
instructions, the operations of both instructions are derived 
from their new definitions. If the macro is redefi~ed, either 
by means of a loop to a point before the macro definition or by 
a subsequent macro definition defining the same macro, the new 

Chapter 5. Assembler Instruction Statements 89 



definitions of AIF and MVC (that is, AGO and MV!) will be fixed 
for future expansions. 

DATA DEFINITION INSTRUCTIONS 

DC--DEFINE CONSTANT 

Types of Constants 

The. data definition instruction statements are: Define Constant 
(DC), Define Storage (OS), and three types of Channel Command 
Words (CCW, CCWO, and CCW1). 

These statements are used to define constants, reserve storage, 
and specify the contents of channel command words, respectively. 
You can also provide a label for these instructions and then 
refer to the data symbolically in the operands of machine and 
assembler instructions. This data is generated and storage is 
reserved at assembly time, and used by the machine instructions 
at execution time. 

You specify the DC instruction to define the data constants you 
need for program execution. The DC instruction causes the 
assembler to generate the binary representation of the data 
constant you specify into a particular location in the assembled 
source module; this is done at assembly time. 

The DC instruction can generate the following types of 
constants: 

Binary constants - to define bit patterns. 

For example: FLAG 

Character constants 

For example: CHAR 

Hexadecimal constants 

DC 8'0001000' 

to define character strings or messages. 

DC C'string of characters' 

to define large bit patterns. 

For example: PATTERN DC X'FFOOFFOO' 

Fixed-point constants - for use by the fixed-point and other 
instructions of the universal set. 

For example: 
FCON 

L 3,FCON 
DC F'lOO' 

Decimal constants - for use by the decimal instructions. 

For example: 
PCON 
AREA 

AP AREA,PCON 
DC P'100' 
DS P 

Floating-point constants - for use by the floating-point 
instructions. 

For example: lE 2,ECOH 
ECOH DC E'100.50' 

Address constants - to define addresses mainly for the use of 
the fixed-point and other' instructions in the universal 
instruction set. 

For example: l 5,ADCOH 
ADCON DC ACSOMWHERE) 

90 Assembler H Version 2 Application Programming: Language Reference 

o 

o 



o 

o 

o 

Format of DC Instruction 

Rules for DC Operand 

The format of the DC instruction statement is as follows: 

Name Operation Operand 

Any symbol DC One or more operands 
or blank separated by commas 

The symbol in the name field represents the address of the first 
byte of the assembled constant. If several operands are 
specified, the first constant defined is addressable by the 
symbol in the name field. The other constants can be reached by 
relative addressing. 

Each operand in a DC instruction consists of four subfields: the 
first three describe the constant; the fourth provides the 
nominal value(s) for the constant(s) to be generated. The 
subfields of each DC operand are written in the following 
sequence: 

1 
Duplication 
Factor 

For example: 

10XL2'FA' 

2 
Type 

3 
Modifiers 

The four subfields are: 

4 
Nominal 
Value(s) 

1. Duplication factor, such as "10" 

2. Type, such as "X" 

3. Modifiers, such as "L2" 

4. Nominal value(s), such as "FA" 

If all subfields are specified, the order given above is 
required. The first and third subfields can be omitted, but the 
second and fourth must be specified in that order. 

1. The type subfield and the nominal value must always be 
specified. 

2. The duplication factor and modifier subfields are optional. 

3. When multiple operands are specified, they can be of 
different types. 

4. When multiple nominal values are specified in the fourth 
subfield, they must be separated by commas and be of the 
same type. Multiple nominal values are not allowed for 
character constants. 

5. The descriptive subfields apply to all the nominal values. 

Note: Separate constants are generated for each separate 
operand and nominal value specified. 

6. No blanks are allowed: 

a. Between subfields. 

b. Between multiple operands. 

c. Within any subfields, unless they occur as part of the 
nominal value of a character constant, or as part of a 

Chapter 5. Assembler Instruction Statements 91 



character self-defining term in a modifier expression, 
or in the duplication factor subfield. 

Information about Constants 

SYMBOLIC ADDRESSES OF CONSTANTS: Constants defined by the DC 
instruction are assembled into an object module at the location 
at which the instruction is specified. However, the type of 
const~nt being defined will determine whether the constant is to 
be aligned on a particular storage boundary or not (see 
"Alignment of Constants" below). The value of the symbol that 
names the DC instruction is the address of the leftmost byte 
(after alignment) of the first or only constant. 

LENGTH ATTRIBUTE VALUE OF SYMBOLS NAMING CONSTANTS; The length 
attribute value assigned to the symbols in the name field of the 
constants is equal to: 

• The implicit length (see (1) in Figure 19 on page 93) of the 
constant when no explicit length is specified in the operand 
of the constant, or 

• The e.xplic;tly specified length (see (2) in Figure 19) of 
the constant. 

Note: If more than one operand is present, the length attribute 
value of the symbol is the length in bytes of the first constant 
specified, according to its implicitly or explicitly specified 
length. 

ALIGNMENT OF CONSTANTS: The assembler aligns constants on 
different boundaries according to the following: 

• On boundaries implicit to the type of constant (see (1) in 
Figure 20 on page 94 ) when no length specification is 
supplied. 

• On byte boundaries (see (2) in Figure 20) when an explicit 
length specification is made. 

Bytes that are skipped to align a constant at the proper 
boundary are not considered part of the constant. They are 
filled with zeros. 

Notes: 

1. The automatic alignment of constants and areas does not 
occur if the NOALIGN assembler option has been specified 
when the assembler was invoked. 

2. Alignment can be forced to any boundary by a preceding DS 
(or DC) instruction with a zero duplication factor. This 
occurs when either the ALIGN or NOALIGN option is set. 

92 Assembler H Version 2 Application Programming: Language ~eference 

r--\ 
1~.J 

o 



0 

0 

0, 
~I 

Type of Implicit 
Examples 

Value of Lenath 
constant Length 1 Attribute 2 • B as needed DC B'10010000' 1 

C as needed DC C'WOW' 3 
DC CL8'WOW' 8 

X as needed DC X'FFEEOO' 3 
DC XL2'FFEE' 2 

H 2 DC H' 32' 2 
F 4 DC FL3'32' 3 

p as needed DC P'123' 2 
DC PL4'123' 4 

Z as needed DC Z'123' 3 
DC ZL10'123' 10 

E 4 
D 8 
L 16 

y 2 DC Y(HERE) 2 
A 4 DC AL1(THERE) 1 

s 2 
V 4 
Q 4 

1 Depends on type 

2 Depends on whether or not an ,explicit length is specified in constant 

Figure 19. Length Attribute Value of Symbols Naming Constants 

Padding and Truncation of Values 

The nominal values specified for constants are assembled into 
storage. The amount of space available for the nominal value of 
a constant is determined: 

• By the explicit length specified in the second operand 
subfield, or 

• If no explicit length is specified, by the implicit length 
according to the type of constant defined (see Appendix 
C, "Summary of Constants" on page 250). 

Chapter 5. Assembler Instruction Statements 93 



Type of Implicit Examples Boundary 
Constant Boundary Alignment 

Alignment1 

B byte 

C byte 

X byte 

H halfword 
DC H' 25' halfword 
DC HL3' 25' byte 

F fullword DC F'225' fullword 

DC FL7'225' byte 

P byte DC P'2934' byte 

Z byte DC Z'1235' byte 

DC ZL2'1235' byte 

E fullword DC E'1.25' fullword 

DC EL5'1.2S' byte 

D doubleword DC 8D'95' doubleword 

DC 8DL7'95' byte 

L doubleword DC L'2.57E65' doubleword 

Y halfword DC Y(HERE) halfword 

A fullword DC AL3(THERE) byte 

S halfword 

V fullword 

Q fu II word 

\' Depends on type It 
Figure 20. Alignment of Constants 

PADDING: If more space ;s available than is needed to 
accommodate the binary representation of the nominal value, the 
extra space is padded: 

• With binary zeros on the left for the binary (B), 
hexadecimal (X), fixed-point (H,F), packed decimal (P), and 
all address (A,Y,S,V,Q) constants 

94 Assembler H Version 2 Application Programming: Language Reference 

tf''\ 
V 

C 



o 

o 

o 

• 

• 

With EBCDIC zeros on the left (X'FO') for the zoned decimal 
(Z) constants 

With EBCDIC blanks on the right (X'40') for the character 
eC) constants 

Notes: 

1. Floating-point constants (E,D,L) are also padded on the 
right with zeros. 

2. Padding is on left for all constants except the character 
constant. 

3. Padding is on the right for character constant. 

TRUNCATION: If less space is available than is needed to 
accommodate the nominal value, the nominal value is truncated 
and part of the constant is lost. Truncation of the nominal 
value is: 

• On the left for the binary (8), hexadecimal (X), decimal (P 
and Z), and address (A and Y) constants 

• On the right for the character (C) constant 

However, the fixed-point constants eH and F) will not be 
truncated but flagged if significant bits would be lost through 
truncation. 

Notes: 

1. Floating-point constants (E,D,l) are not truncated; they are 
rounded. 

2. The above rules for padding and truncation also apply when 
the bit-length specification is used (see "Subfield 3: 
Modifiers" below). 

subfield 1: Duplication Factor 

The duplication factor may be omitted. If specified, it causes 
the nominal value or multiple nominal values specified in a 
constant to be generated the number of times indicated by the 
factor. It is applied after the nominal value or values are 
assembled into the constant. Symbols used in subfield 1 need 
not be previously defined. This does not apply to literals. 

The factor can be specified by an unsigned decimal self-defining 
term or by an absolute expression enclosed in parentheses. 

The expression should have a positive value or be equal to zero. 

Notes: 

1. The value of a location counter reference in a duplication 
factor is the value before any alignment to boundaries is 
done, according to the type of constant specified. 

2. A duplication factor of zero is permitted with the following 
results: 

a. No value is assembled. 

b. Alignment is forced according to the type of constant 
specified, if no length attribute is present (see 
"Alignment of Constants" above). 

c. The length attribute of the symbol naming the constant 
is established according to the implicitly or explicitly 
specified length. 

Chapter 5. Assembler Instruction Statements 95 



3. If duplication is specified for an address constant 
containing a location counter reference, the value of the 
location counter reference is incremented by the length of 
the constant before each duplication is performed (for 
examples, see "Address Constants--A and Y" on page 112. 

Subfield 2: Type 

The type subfield must be specified. From the type 
specification, the assembler determines how it is to interpret 
the constant and translate it into the appropriate machine 
format. The type is specified by a single-letter code as shown 
in Figure 21. 

Further information about these constants is provided in the 
discussion of the constants themselves under "Subfield 4: 
Nominal Value" on page 100. 

Code Types of Constant Machine Format 

C 
X 
B 
F 
H 
E 
D 
l 
P 
Z 
A 
Y 
S 
V 

Q 

Character 
Hexadecimal 
Binary 
Fixed-point 
Fixed-point 
Floating-point 
Floating-point 
Floating-point 
Decimal 
Decimal 
Address 
Address 
Address 
Address 

Address 

8-bit code for each character 
4-bit code for each hexadecimal digit 
Binary format 
Signed, fixed-point binary format; normally a fullword 
Signed, fixed-point binary format; normally a halfword 
Short floating-point format; normally a fullword 
Long floating-point format; normally a doubleword 
Extended floating-point format; normally two doublewords 
Packed decimal format 
Zoned decimal format 
Value of address; normally a fullword 
Value of address; normally a halfword 
Base register and displacement value; a halfword 
Space reserved for external symbol addresses; each 
address normally a fullword 
Space reserved for external dummy section offset 

Figure 21. Type Codes for Constants 

The type specification indicates to the assembler: 

1. How the nominal value(s) specified in subfield 4 is to be 
assembled; that is, which binary representation or machine 
format the object code of the constant must have. 

2. At what boundary the assembler aligns the constant, if no 
length specification is present. 

3. How much storage the constant is to occupy, according to the 
implicit length of the constant, if no explicit length 
specification is present (for details, see "Padding and 
Truncation of Values" on page 93). 

Subfield 3: Modifiers 

Modifiers describe the length in bytes desired for a constant 
(in contrast to an implied length), and the scaling and exponent 
for the constant. 

The three modifiers are: 

1. The length modifier (l), which explicitly defines the length 
in bytes desired for a constant. For example: 

LENGTH DC XL10'FF' 

96 Assembler H Version 2 Application Programming: Language Reference 

0,' 
:', _ .'1> 

o 



o 

o 

o 

2. The scale modifer (S), which is only used with the 
fixed-point or floating-point constants (for details, see 
below under "Scale Modifier"). For example: 

SCALE DC FS8'35.92' 

3. The exponent modifier (E), that is only used with 
fixed-point or floating-point constants, and which indicates 
the power of 10 by which the constant is to be multiplied 
before conversion to its internal binary format. For 
example: 

EXPON DC EE3'3.414' 

If multiple modifiers are used, they must appear in this 
sequence: length, scale, exponent. For example: 

ALL3 DC DL7S3E50'2.7182' 

Symbols used in subfield 3 need not be previously defined. This 
does not apply to literals. 

LENGTH MODIFIER: The length modifier indicates the number of 
bytes of storage into which the constant is to be assembled. It 
is written as Ln, where n ;s either a decimal self-defining term 
or an absolute expression enclosed by parentheses. It must have 
a positive value, and any symbols it contains must be previously 
defined. 

When the length modifier is specified: 

• 

• 

Its value determines the number of bytes of storage 
allocated to a constant. It, therefore, determines whether 
the nominal value of a constant must be padded or truncated 
to fit into the space allocated (see "Padding and Truncation 
of Values" on page 93). 

No boundary alignment, according to constant type, is 
provided (see "Alignment of Constants" above), 

• Its value must not exceed the maximum length allowed for the 
various types of constant defined. 

Note: For character constants, when no length is specified, the 
whole constant is assembled into its implicit length. 

Bit-Length Specification: The length modifier can be specified 
to indicate the number of bits into which a constant is to be 
assembled. The bit-length specification is written as Ln, where 
n is either a decimal self-defining term, or an absolute 
expression enclosed in parentheses. It must have a positive 
value. Symbols that it contains need not be previously defined. 

The value of n must lie between 1 and the number of bits (a 
multiple of 8) that are required to make up the maximum number 
of bytes allowed in the type of constant being defined. The 
bit-length specification cannot be used with the S-, V-, and 
Q-type constants. 

When only one operand and one nominal value are specified in a 
DC instruction, the following rules apply: 

1. The bit-length specification allocates a field into which a 
constant is to be assembled. The field starts at a byte 
boundary and can run over one or more byte boundaries, if 
the bit length specified is greater than 8. 

If the field does not end at a byte boundary and if the bit 
length specified is not a multiple of 8, the remainder of 
the last byte is filled with zeros. 

2. The nominal value of the constant is assembled into the 
field: 

Chapter 5. Assembler Instruction Statements 97 



a. Starting at the high order end for the C-, E-, D-, and 
l-type constants 

b. Starting at the low-order end for the remaining types of 
constants that allow bit-length specification 

3. The nominal value is padded or truncated to fit the field 
(see "Padding and Truncation of Values" on page 93). 

Padding of character constants is done with hexadecimal 
blanks, X'40'; other constant types are padded with zeros. 

Note: The length attribute value of the symbol naming a DC 
instruction with a specified bit length is equal to the minimum 
number of integral bytes needed to contain the bit length 
specified for the constant. l'TRUNCF is equal to 2. Thus, a 
reference to TRUNCF would address the entire two bytes that are 
assembled. 

When more than one operand is specified in a DC instruction, or 
more than one nominal value in a DC operand, the above rules 
about bit-length specifications also apply, except: 

1. The first field allocated starts at a byte boundary, but the 
succeeding fields start at the next available bit. 

2. After all the constants have been assembled into their 
respective fields, the bits remaining to make up the last 
byte are filled with zeros. 

Note: If duplication is specified, filling with zeros 
occurs once at the end of all the fields occupied by the 
duplicated constants. 

3. The length attribute value of the symbol naming the DC 
instruction is equal to the number of integral bytes that 
would be needed to contain the bit length specified for the 
first constant to be assembled. 

storage Requirement for Constants: The total amount of storage 
required to assemble a DC instruction is the sum of: 

1. The requirements for the individual DC operands specified in 
the instruction. The requirement of a DC operand is the 
product of: 

a. The length (implicit ~r explicit) 

b. The number of nominal values 

c. The duplication factor, if specified 

2. The number of bytes skipped for the boundary alignment 
between different operands. 

SCALE MODIFIER: The scale modifier specifies the amount of 
internal scaling that is desired: 

• Binary digits for fixed-point constants (H, F) 

• Hexadecimal digits for floating-point constants (E, D, l) 

The scale modifier can be used only with the above types of 
cOhstant. 

The allowable range for each type of constant is as follows: 

Fixed-point constants Hand F 
Floating-point constants E and D 
Floating-point constant l 

-187 through +346 
o through 14 
o through 28 

The scale modifier is written as Sn, where n is either a decimal 
self-defining term, or an absolute expression enclosed in 
parentheses. 

98 Assembler H Version 2 Application Programming: language Reference 

o 



o 

0, 
" 

o 

Both types of specification can be preceded by a sign; if no 
sign is present, a plus sign 1S assumed. 

Scale Modifier for Fixed-point constants: The scale modifier for 
fixed-point constants specifies the power of two by which the 
fixed-point constant must be multiplied after its nominal value 
has been converted to its binary representation, but before it 
is assembled in its final "scaled" form. Scaling causes the 
binary point to move from its assumed fixed position at the 
right of the rightmost bit position. 

Notes: 

1. When the scale modifier has a positive value, it indicates 
the number of binary positions to be occupied by the 
fractional portion of the binary number. 

2. When the scale modifier has a negative value, it indicates 
the number of binary positions to be deleted from the 
integer portion of the binary number. 

3. When positions are lost because of scaling (or lack of 
scaling), rounding occurs in the leftmost bit of the lost 
portion. The rounding is reflected in the rightmost 
position saved. 

Scale Modifier for Floating-Point constants: The scale modifier 
for floating-point constants must have a positive value. It 
specifies the number of hexadecimal positions that the 
fractional portion of the binary representation of a 
floating-point constant is to be shifted to the right. The 
hexadecimal point is assumed to be fixed at the left of the 
leftmost position in the fractional field. When scaling is 
specified, it causes an unnormalized hexadecimal fraction to be 
assembled (unnormalized is when the leftmost positions of the 
fraction contain hexadecimal zeros). The magnitude of the 
constant is retained, because the exponent in the characteristic 
portion of the constant is adjusted upward accordingly. When 
hexadecimal positions are lost, rounding occurs in the leftmost 
hexadecimal position of the lost portion. The rounding is 
reflected in the rightmost position saved. 

EXPONENT MODIFIER: The exponent modifier specifies the power of 
10 by which the nominal value of a constant is to be multiplied 
before it is converted to its internal binary representation. 
It can only be used with the fixed-point (H and F) and 
floating-point (E, D, and L) constants. The exponent modifier 
is written as En, where n can be either a decimal self-defining 
term, or an absolute expression enclosed in parentheses. 

The decimal self-defining term or the expression can be preceded 
by a sign: If no sign is present, a plus sign is assumed. The 
range for the exponent modifier is -85 through +75. 

Notes: 

1. The exponent modifier is not to be confused with the 
exponent that can be specified in the nominal value subfield 
of fixed-point and floating-point constants. 

The exponent modifier affects each no~inal value specified 
in the operand, whereas the exponent written as part of the 
nominal value subfield only affects the nominal value it 
follows. If both types ofexp.onent specification are 
present in a DC operand, their values are algebraically 
added together before the nominal value is converted to 
binary form. However, this sum must lie within the 
permissible range of -85 through +75. 

2. The value of the constant, after any exponents have been 
applied, must be contained in the implicitly or explicitly 
specified length of the constant to be assembled. 

Chapter 5. Assembler Instruction statements 99 



subfield 4: Nominal Value 

The nominal value subfield must always be specified. It defines 
the value of the constant (or constants) described and affected 
by the subfields that precede it. It is this value that is 
assembled into the internal binary representation of the 
constant. The formats for specifying constants are described as 
follows: 

constant Single Multiple 
Type Nominal Value Nominal Value 

C 'value' not allowed 

B 
X 
H 
F 
P 'value' 'value,value, .•. value' 
Z 
E 
D 
l 

A 
Y 
5 (value) (value,value, •.• value) 
Q 
V 

As the above list shows, a data constant value (any type except 
A, Y, 5, Q, and V) is enclosed by apostrophes. An address 
constant value (type A, Y, 5, Q, or V) is enclosed by 
parentheses. To specify two or more values in the subfield, the 
values must be separated by commas, and the entire sequence of 
values must be enclosed by the appropriate delimiters; that is, 
apostrophes or parentheses. Multiple values are not permitted 
for character constants. 

How nominal values are specified and interpreted by the 
assembler is explained in each of the following subsections, 
starting with "Binary Constant--B" below. 

LITERAL CONSTANTS: literal constants allow you to define and 
refer to data directly in machine instruction operands. You do 
not need to define a constant separately in another part of your 
source module. The difference between a literal, a data 
constant, and a self-defining term is described in "literals" on 
page 32. 

A literal constant is specified in the same way as the operand 
of a DC instruction. The general rules for the operand 
subfields of a DC instruction also apply to the subfield of a 
literal constant. Moreover, the rules that apply to the 
individual types of constants apply to literal constants as 
well. 

However, literal constants differ from DC operands in the 
following ways: 

• literals must be preceded by an equal sign. 

• Multiple operands are not allowed. 

• The duplication factor must not be zero. 

100 Assembler H Version 2 Application Programming: language Reference 

o 



o 

o 

o 

The following text describes each of the constant types and 
provides examples. The constant types are: 

Binary 
Character 
Hexadecimal 
Fixed-Point 
Decimal 
Packed Decimal 
Zoned Decimal 
Address 
Floating-Point 

BINARY COt~STANT-B: The bi nary constant allows you to speci fy 
the precise bit pattern you want assembled into storage. Each 
binary.constant is assembled into the integral number of bytes 
(see (1) in Figure 22 on page 102) required to contain the bits 
specified. 

The following example shows the coding used to designate a 
binary constant. BCOH would have a length attribute of 1. 

Name Operation Operand 

BCON DC B'11011101' 
BTRUNC DC Bll'100100011' 
BPAD DC Bll'lOl' 

BTRUHC would assemble with the leftmost bit truncated, as 
follows: 

00100011 

BPAD would assemble with five zeros as padding, as follows: 

00000101 

Chapter 5. Assembler Instruction statements 101 



Binary Constants 

Subfield 3. Constant Type 

Binary (B) 

1. Duplication Factor Yes 
allowed 

2. Modifiers As needed 

I mpl icit Length: (Length B DC B'IOIOllll ' LIB = 

~:e Modifier not present) 
C DC B'IOl ' L'C = 

Alignment: 
(Length Modifier not present) Byte 

Range for Length: 1 through 256 (byte length) 

.1 through .2048 (bit length) 

Range for Scale: Not allowed 

Range for Exponent: Not allowed 

4. Nominal Value Binary digits 
(0 or 1) 

Represented by: 

Enclosed by: Apostrophes 

Exponent allowed: No 

Number of Values per Multiple 
Operand: 

With zeros 
Padding: at left 

Truncation of 
Assembled Value: At left 

Figure 22. Binary Constants 

102 Assembler H Version 2 Application Programming: Language Reference 



o 

o 

o 

CHARACTER CONSTANT--C: The character constant allows you to 
specify character strings, such as error messages, identifiers, 
or other text, that the assembler will convert into their binary 
(EBCDIC) representation. 

Any of the valid 256 punch combinations can be designated in a 
character constant. Each character specified in the nominal 
value subfield is assembled into one byte (see (1) in Figure 23 
on page 104). 

Multiple nominal values are not allowed, because if a comma is 
specified in the nominal value subfield, the assembler considers 
the comma a valid character (see (2) in Figure 23) and, 
therefore, assembles it into its binary (EBCDIC) representation. 
For example 

DC C'A,B' 

is assembled as A,B with object code C16BC2. 

Special consideration must be given to representing apostrophes 
and ampersands as characters. Each single apostrophe or 
ampersand desired as a character in the constant must be 
represented by a pair of apostrophes or ampersands. They are 
assembled as single apostrophes and ampersands (see (3) in 
Figure 23). 

In the following example, the length attribute of FIELD is 12: 

Name operation Operand 

FIELD DC C'TOTAL IS 110' 

However, in this next example, the length attribute is 15, and 
three blanks appear in storage to the right of the zero: 

Name Operation Operand 

FIELD DC CL15'TOTAL IS 110' 

In the next example, the length attribute of FIELD is 12, 
although 13 characters appear in the operand. The two 
ampersands count as only one byte. 

Name Operation Operand 

FIELD DC C'TOTAL IS &&10' 

Note that, in the next example, a length of 4 has been 
specified, but there are five characters in the constant. 

Name Operation Operand 

FIELD DC 3CL4'ABCDE' 

The generated constant would be: 

ABCDABCDABCD 

On the other hand, if the length had been specified as 6 instead 
of 4, the generated constant would have been: 

ABCDE ABCDE ABCDE 

Chapter 5. Assembler Instruction Statements 103 



Character Constants 

Subfield 3. Constant Tyee 

Character (C) 

1. Duplication Factor Yes 
allowed 

2. Modifiers As needed 

Implicit Length: (Length 
C DC C'LENGTH' L'C = 6 

Modifier not present) • Alignment: Byte 
(Length Modifier not 

present) 

1 through 256 (byte length) 
Range for length: .1 through .2048 (bit length) 

Range for Scale: Not allowed 

Range for Exponent: Not allowed 

4. Nominal Value DC CiA' 'B' 
Object Code (hex). 

Represented by: Characters (All 256 
A'B" I c l l7Dlc21 

8-bit combinations) Assembled A&B ., 
IClisolc21 

DC C'A&&B' 

Enclosed by: Apostrophes 

Exponent allowed: No 

Number of values per One DC C'A,B' I CIJ6BI c21 Operand: Assembled A,B • With blanks at right 
Padding: (X'40') 

Truncation of 
Assembled value: At right 

Figure 23. Character Constants 

104 Assembler H Version 2 Application Programming: Language Reference 



o 

o 

o 

Hote that the. same constant could be specified as a literal. 

Name operation operand 

MVC AREA(12),=3CL4'ABCDE' 

HEXADECIMAL COHSTANT--X: You can use hexadecimal constants to 
generate large bit patterns more conveniently than with binary 
constants. Also, the hexadecimal values you specify in a source 
module allow you to compare them directly with the hexadecimal 
values generated for the object code and address locations 
printed in the program listing. 

Each hexadecimal digit (see (1) in Figure 24 on page 106) 
specified in the nominal value subfield is assembled into four 
bits (their binary patterns can be found in "Self-Defining 
Terms" on page 25). See (2) in Figure 24. The implicit length 
in bytes of a hexadecimal constant is then half the number of 
hexadecimal digits specified (assuming that a hexadecimal zero 
is added to an odd number of digits). See (3) in Figure 24. 

An 8-digit hexadecimal constant provides a convenient way to set 
the bit pattern of a full binary word. The constant in the 
following example would set the first and third bytes of a word 
to Is: 

Name Operation Operand 

OS OF 
TEST DC X'FFOOFFOO' 

The OS instruction sets the location counter to a fullword 
boundary. (See "OS-Define storage" on page 123.) 

The next example uses a hexadecimal constant as a literal and 
inserts Is into bits 24 through 31 of register 5. 

I ~_N_a_m_e ____________ ~I __ ~_:_e_r_a_t_i_o_n ______ ~_:_p_.~ __ :_a_.:_: __ , _____________ ~ 
In the following example, the digit A is dropped, because 5 
hexadecimal digits are specified for a length of 2 bytes: 

Name operation Operand 

ALPHACOH DC 3XL2'A6F4E' 

The resulting constant is 6F4E, which occupies the specified 2 
bytes. It is duplicated three times, as requested by the 
duplication factor. If it had merely been specified as 
3X'A6F4E', the resulting constant would have a hexadecimal zero 
in the leftmost position. 

OA6F4EOA6F4EOA6F4E 

Chapter 5. Assembler Instruction Statements 105 



Hexadecimal Constants 
() 

Subfield 3. Constant Type 

Hexadecimal (X) 

1.Duplication Factor 
Yes allowed 

2.Modifiers As needed 

Implicit Length: (Length X DC X'FFOOA2' L'X =: 

~::e Modifier not present) Y DC X'FOOA2' L'Y = 

Alignment: 
(Length Modifier not present) Byte 

Range for Length: 
1 through 256 (byte length) 

.1 through .2048 (bit length) 

Range for Scale: Not allowed 

Range for Exponent: Not allowed 

~ 4. Nominal Value Hexadecimal digits (0 . (hex) 

through 9 and A through 000111111 Represented by: DC X'lF' 
F) 

DC X'91F' 10000 1001 000111111 

( 
.. ~ 

j/ 

<i 4-1 byte __ 
}\ 

"': 

Enclosed by: Apostrophes 

Exponent allowed: No 

Number of Values 
per Operand: Multiple 

Padding: With zeros at left 

Truncation of 
Assembled value: At left 

Figure 24. Hexadecimal Constants 

106 Assembler H Version 2 Application Programming: Language Reference 



o 

o 

o 

FIXED-POINT CONSTANT--F AND H: Fixed-point constants allow you 
to introduce data that is in a form suitable for the operations 
of the fixed-point machine instructions of the universal 
instruction set. The constants you define can also be 
automatically aligned to the proper fullword or halfword 
boundary for the instructions that refer to addresses on these 
boundaries (unless the HOALIGH option has been specified; see 
"Information about Constantsft on page 92). You can perform 
algebraic functions using this type of constant because they can 
have positive or negative values. 

A fixed-point constant is written as a decimal number, which can 
be followed by a decimal exponent if desired. The format of the 
constant is as follows: 

1. The nominal value can be a signed (see (1) in Figure 25 on 
page 108)--plus is assumed if the number is 
unsigned--integer, fraction, or mixed number (see (2) 
Figure 25) followed by an exponent (see (3) in Figure 25): 
positive or negative. 

2. The exponent must lie within the permissible range (see (4) 
in Figure 25). If an exponent modifier is also specified, 
the algebraic sum (see (5) in Figure 25) of the exponent and 
the exponent modifier must lie within the permissible range. 

Some examples of the range of values that can be assembled into 
fixed-point constants are given below: 

Range of Values that 
Length can be Assembled 

8 -2 63 through 2 63 -1 
4 -2 31 through 2 31 _1 
2 -2 15 through 2 15 _1 
1 -2 7 through 27-1 

The range of values depends on the implicitly or explicitly 
specified length (if scaling is disregarded). If the value 
specified for a particular constant does not lie within the 
allowable range for a given length, the constant is not 
assembled, but flagged as an error. 

A fixed-point constant is assembled as follows: 

1. The specified number, multiplied by any exponents, is 
converted to a binary number. 

2. Scaling is performed, if specified. If a scale modifier is 
not provided, the fractional portion of the number is lost. 

3. The binary value is rounded, if necessary. The resulting 
number will not differ from the exact number specified by 
more than one in the least significant bit position at the 
right. 

4. A negative number is carried in twos complement form. 

5. Duplication is applied after the constant has been 
assembled. 

A field of three fullwords is generated from the statement 
below. The location attribute of CONWRD is the address of the 
leftmost byte of the first word, and the length attribute is 4, 
the implied length for a fullword fixed-point constant. The 
expression CONWRD+4 could be used to address the second constant 
(second word) in the field. 

Name Operation Operand 

CONWRD DC 3F'658474' 

Chapter 5. Assembler Instruction statements 107 



Fixed~Point Constants o 
Subfield 3. Constant T~ee 

Fullword( F) Halfword (H) 

1. Duplication Factor 
Allowed Yes Yes 

2. Modifiers 

Implicit Length: (Length 4 bytes 2 bytes 

Modifier not present) 

Alignment: Full word Half word 

(Length Modifer not present) 

Range for Length~ 
1 through 8 (byte length) 1 through 8 (byte length) 
.1 through .64 (bit length) .1 through .64 (bit length) 

Range for Scale: - 187 through + 346 - 187 through + 346 

Range for Exponent: - 85 through + 75 • - 85 through + 75 DC HE+90'2E-88' 
value = 2xlO2 

4. Nominal Value Decimal digits (0 through 9) Decimal digits (0 through 9) 

Represented by: 0 DC F'-200' DC H'+200' 

DC FS4'2.25' • DC HS4' .25' 

Enclosed by: Apostrophes Apostrophes 

Exponent allowed: Yes Yes 

DC F'2E6' • DC H '2E-6' 

Number of Values Multiple Multiple 
per Operand: 

Padding: With zeros at left With zeros at left 

Truncation of Not allowed Not allowed 

Assembled value: (error message issued) 
I 

Figure 25. Fixed-Point Constants 

108 Assembler H Version 2 Application Programming: language Reference 



o 

o 

0'·: ~ 

The next statement causes the generation of a 2-byte field 
containing a negative constant. Notice that scaling has been 
specified in order to reserve 6 bits for the fractional portion 
of the constant. 

Name operat;on Operand 

HALFCON DC HS6'-25.46' 

The next constant (3.50) is multiplied by 10 to the power -2 
before being converted to its binary format. The scale modifier 
reserves 12 bits for the fractional portion. 

Name Operat;on Operand 

FUllCON DC HS12'3.50E-2' 

The same constant could be specified as a literal: 

Name operation Operand 

AH 7,=HS12'3.50E-2' 

The final example specifies three constants. Notice that the 
scale modifier requests 4 bits for the fractional portion of 
each constant. The 4 bits are provided whether or not the 
fraction exists. 

Name operation Operand 

THREECON DC FS4'lO,25.3,100' 

DECIMAL COHSTANTS--P AND Z: The decimal constants allow you to 
introduce data in a form suitable for the operations of the 
decimal feature machine instructions. The packed decimal 
constants (P-type) are used for processing by the decimal 
instructions. The zoned decimal constants (Z-type) are in the 
form (EBCDIC representation) you can use as a print image, 
except for the digits in the rightmost byte. 

The nominal value can be a signed (plus is assumed if the number 
is unsigned) decimal number. A decimal point may be written 
anywhere in the number, or it may be omitted. The placement of 
a decimal point in the definition does not affect the assembly 
of the constant in any way, because the decimal point is not 
assembled into the constant. 

The specified digits are assumed to constitute an integer (see 
(1) in Figure 26 on page 110). You may determine proper decimal 
point alignment either by defining data so that the point is 
aligned or by selecting machine instructions that will operate 
on the data properly (that is, shift it for purposes of 
alignment). 

Decimal constants are assembled as follows: 

Packed Decimal Constants: Each digit is converted into its 4-bit 
binary equivalent (see (2) in Figure 26). The sign indicator 
(see (3) in Figure 26) is assembled into the rightmost four bits 
of the constant. 

Zoned Dec;mal Constants: Each digit is converted into its 8-bit 
EBCDIC representation (see (4) in Figure 26). The sign 
indicator (see (5) in Figure 26) replaces the first four bits of 
the low-order byte of the constant. 

Chapter 5. Assembler Instruction Statements 109 



Decim'al Constants 

Subfield 

1. Duplication Factor 
Allowed 

2. Modifiers 

Implicit Length: (Length 
Modifier not present) 

Alignment: 

3. Constant Type 

Packed (P) 

Yes 

As needed 
P DC P'+S93 1 

LiP = 2 

(Length Modifer not present Byte 

Range for Length: 

Range for Scale: 

Range for Exponent: 

4. Nominal Value 

Represented by: 

Enclosed by: 

Exponent allowed: 

Number of Values 
per Operand: 

Padding: 

Truncation of 
Assembled value: 

1 through 16 (byte length) 
.1 through .128 (bit length) 

Not allowed 

Not allowed 

Decimal digits (0 through 9) 

• 

DC P'+555' 

Is(s'['bc8 
Apostrophes 

No 

Multiple 

With Binary zeros 
at left 

At left 

Figure 26. Decimal Constants 

Zoned (Z) 

Yes 

As needed 
Z DC Z'-S9.3 1 

L' Z = 3 

Byte 

1. through 16 (byte length) 

.1 through .128 (bit length) 

Not allowed 

Not allowed 

Decimal digits (0 through 9) 

DC Z'-55S' 

~h , IFlslFlslDlsl 

Apostrophes • 
No 

Multiple 

With EBCDIC zeros 
(X'FO') 
at left 

At left 

DC P I 5.S' 

Itrl~f~ • 
DC P' 55' 

110 Assembler H Version 2 Application Programming! Language Reference 

0" , .c 



o 

o 

o 

The range of values that can be assembled into a decimal 
constant is shown below: 

Type of "Decimal 
Constant 

Packed 
Zoned 

Range of Values that 
can be Specified 

10 31 -1 through -10 31 

10 16-1 through -10 16 

For both packed and zoned decimals, a plus sign is translated 
into the hexadecimal digit C, a minus slgn into the digit D. 
The packed decimal constants (P-type) are used for processing by 
the decimal instructions. 

If an even number of packed decimal digits is specified, one 
digit will be left unpaired because the rightmost digit is 
paired with the sign. Therefore, in the leftmost byte, the 
leftmost four bits will be set to zeros and the rightmost four 
bits will contain the odd (first) digit. 

Examples of decimal constant definitions follow. 

Name Operation Operand 

DC P'+1.25' 
DC Z'-543' 
DC Z'79.68' 
DC Pl3'79.68' 

The following statement specifies both packed and zoned decimal 
constants. The length modifier applies to each constant in the 
first operand (that is, to each packed decimal constant). Note 
that a literal could not specify both operands. 

Name Operation Operand 

DECIMALS DC Pl8'+25.8,-3874, 
+2.3',Z'+80,-3.72' 

The last example illustrates the use of a packed decimal 
literal. 

Name Operation Operand 

UNPK QUTAREA,=Pl2'+25' 

ADDRESS CONSTANTS: An address constant is a storage address that 
is translated into a constant. Address constants can be used 
for initializing base registers to facilitate the addressing of 
storage. Furthermore, they provide a means of communicating 
between control sections of a multis~ction program. However, 
storage addressing and control section communication are also 
dependent on the use of the USING assembler instruction and the 
loading of registers. Coding examples illustrating these 
considerations are provided in "How to Use the USING 
Instruction" in "USING-Use Base Address Register" on page 41. 

An address constant, unlike other types of constants, is 
enclosed in parentheses. If two or more address constants are 
specified in an operand, they are separated by commas, and the 
entire sequence is enclosed by pa~entheses. There are five 
types of address constants: A, Y, S, Q, and V. A relocatable 
address constant may not be specified with bit lengths. 

Complex Relocatable Expressions: A complex relocatable 
expression can only be used to specify an A- or Y-type address 
constant. These expressions contain two or more unpaired 

Chapter 5. Assembler Instruction Statements 111 



relocatable terms and/or negative relocatable terms in addition 
to any absolute or paired relocatable terms that may be present. 
A complex relocatable expression might consist of external 
symbols and designate an address in an independent assembly that 
is to be linked and loaded with the assembly containing the 
address constant. 

Add~ess constants--A and Y: The following sections describe how 
the different types of address constants are assembled from 
expressions that usually represent storage addresses, and how 
the constants are used for addressing within and between source 
module.s. 

In the A-type and V-type address constant, you can specify any 
of the three types of assembly-time expressions whose values the 
assembler then computes and assembles into object code. You use 
this expression computation as follows: 

• Relocatable expressions for addressing 

• Absolute expressions for addressing and value computation 

• Complex relocatable expressions to relate addresses in 
different source modules 

Notes: 

1. No bit-length specification (see (1) in Figure 27 on page 
113) is allowed when a relocatable or complex relocatable 
expression (se.e (2) in Figure 27) is specified. The only 
explicit lengths that can be specified with these addresses 
are: 

a. 3 or 4 bytes for A-type constants 

b. 2 bytes for V-type constants 

2. The value of the location counter reference (*) when 
specified in an address constant varies from constant to 
constant, if any of the following, or a combination of the 
following, are specified: 

a. Multiple operands 

b. Multiple nominal values (see (3) in Figure 27) 

c. A duplication factor (see (4) in Figure 27) 

The location counter is incremented with the length of the 
previously assembled constant. 

3. When the location counter reference occurs in a literal 
address constant, the value of the location counter is the 
address of the first byte of the instruction. 

CAUTION: Specification of V-type address constants with 
relocatable expressions should be avoided in programs that are 
to be executed on machines having more than 32,767 bytes of 
storage capacity. In any case, V-type relocatable address 
constants should not be used in programs to be executed under 
IBM System/370 control. 

The A-type and V-type address constants are processed as 
follows: If the nominal value is an absolute expression, it is 
computed to its 32-bit value and then truncated on the left to 
fit the implicit or explicit length of the constant. If the 
nominal value is a relocatable or complex relocatable 
expression, it is not completely evaluated until linkage edit 
time when the object modules are transformed into load modules. 
The 24-bit (or smaller) relocated address values are then placed 
in the fields set aside for them at assembly time by the A-type 
and V-type constants. 

112 Assembler H Version 2 Application Programming: language Reference 

o 



Address Constants (A and Y) 

Subfield 3. Constant Type 

A- Type Y - Type • 1. Duplication Factor Yes Yes A DC5AL1(*-A} 
allowed Object Code in Hex ... 0001020304 

2. Modifiers 

I mpl icit Length: (Length 4 bytes 2 bytes 
Modifer not present) 

Alignment: 
(Length Modifier not present) Full word Half word 

1 through 4 (byte length) • 
Range for Length: 

1 through 2 (byte length) 

.1 through .32 (bit length) , .1 through .16 (bit length) 

Range for Scale: Not allowed Not allowed 

Range for Exponent: Not allowed Not allowed 

4. Nominal Value Absolute, relocatable, or}~ Absolute, relocatable, or • Represented by: complex relocatable complex relocatable A DC Y(:f,:-A,*+ } 
expressions expressions I DC A (ABSOL+10) DC Y (RELOC+32) values 

Enclosed by: Parentheses Parentheses 

Exponent allowed: No No 

Number of Values 
per Operand: Multiple Multiple 

With zeros at left With zeros at left 
Padding: 

Truncation of At left At left 

Assembled value: 

Figure 27. A and Y Address Constants 

0':·· 
:t 

Chapter 5. Assembler Instruction Statements 113 



In the following examples, the field generated from the 
statement named ACON contains four constants, each of which 
occupies four bytes. Note that there is a location counter 
reference in one. The value of the location counter will be the 
address of the first byte allocated to the fourth constant. The 
second statement shows the same set of constants specified as 
literals (that is, address constant literals). 

Name Operation Operand 

ACON DC A(108,LOP,END-STRT, 
*+4096) 

LM 4,7,=A(108,LOP,END-STRT, 
*+4096) 

Note: When the location counter reference occurs in a literal, 
as in the LM instruction above, the value of the location 
counter is the address of the first byte of the instruction. 

Address Constant--S: You can use the S-typeaddress constant to 
assemble an explicit address; that is, an address in 
base-displacement form. You can specify the explicit address 
yourself or allow the assembler to compute it from an implicit 
address, using the current base register and address in its 
computation. 

The nominal values can be specified in two ways: 

1. As one absolute or relocatable expression (see (1) in 
Figure 28 on page 115) representing an implicit address 

2. As two absolute expressions (see (2) in Figure 28) the first 
of which represents the displacement (see (3) in Figure 28), 
and the second, the base register (see (4) in Figure 28). 

The address value represented by the expression in 1 in 
Figure 28, will be converted by the assembler into the proper 
base register and displacement value. An S-type constant is 
assembled as a halfword and aligned on a halfword boundary. The 
leftmost four bits of the assembled constant represent the base 
register designation; the remaining 12 bits, the displacement 
value. 

If length specification is used, only 2 bytes may be specified. 
S-type address constants may not be specified as literals. 

Address Constant--V: The V-type constant allows you to reserve 
storage for the address of a location in a control section that 
lies in another source module. You should use the V-type 
address constant only to branch to the external address 
specified. This use is contrasted with another method; that is, 
of specifying an external symbol, identified by an EXTRN 
instruction, in an A-type address constant. 

Because you specify a symbol in a V-type address constant, the 
assembler assumes that it is an external symbol. A value of 
zero is assembled into the space reserved for the V-type 
constant; the correct relocated value of the address is inserted 
into this space by the linkage editor before your object program 
is loaded. 

The symbol specified (see (1) in Figure 29 on page 116) in the 
nominal value subfield does not constitute a definition of the 
symbol for the source module in which the V-type address 
constant appears. 

The symbol specified in a V-type constant must not represent 
external data in an overlay program. 

114 Assembler H Version 2 Application Programming: Language Reference 

;,r--,,\ 

~-_/ 



o 

o 

o 

Address Constants (S) 

Subfield 3. Constant Type 

S - Type 

1. Duplication Factor 
Allowed Yes 

2. Modifiers 

Implicit Length: 
(Length Modifier not 

present) 

Alignment: 
(Length Modifier not 

present) 

Range for length: 
(in bytes) 

Range for Scale: 

Range for Exponent: 

4. Nominal Value 

Represented by: 

Enclosed by: 

Exponent allowed: 

Number of Values 
per operand : 

Padding: 

Truncation of 
Assembled value:' 

2 bytes 

Half word 

2 only (no bit length) 

Not allowed 

Not allowed 

Absolute or }. 
relocatable expression 

Two absolute 
expressions 

Parentheses 

No 

Multiple 

Not appl icable 

Not applicable 

}8 
DC 
DC 

DC 

8 (RELOC) 

S(lO/8~ 
8(512(12») 

Figure 28. S Address Constants 

Chapter 5. Assembler Instru~tion statements 115 



Address Constants (V) o 
Subfield 3. Constant Type 

V - Type 

1. Duelication Factor 
allowed Yes 

2. Modifiers 

Implicit I.ength: (Length 4 bytes 
Modifier not present) 

AI ignment: (Length 
Full word Modifier not present) 

Range for Length: 4 or 3 only 
( in bytes) (no bit length) 

Range for Scale: Not allowed 

Range for Exponent: Not allowed 

4. Nominal Value v (MODA) A single relocatable DC 
Represented by: symbol • DC v (EXTADR) 

Enclosed by: Parentheses 

Exponent allowed: No 

Number of values 
per Operand: Multiple 

Padding: With zeros at left 

T ru ncation of 
Not applicable 

assembled value: 

Figure 29. V Address Constants 

116 Assembler H Version 2 Application Programming: language Reference 



o 

o 

o 

In the following example, 12 bytes will be reserved, because 
there are three symbols. The value of each assembled constant 
will be zero until the program is loaded. It must be emphasized 
that a V-type address constant of length less than 4 can and 
will be processed by the assembler, but cannot be handled by the 
linkage editor. 

Name operation Operand 

VCONST DC V(SORT,MERGE,CALC) 

Address constant--Q: You use this constant to reserve storage 
for the offset into a storage area of an external dummy section. 
The offset is entered into this space by the linkage editor. 
When the offset is added to the address of an overall block of 
storage set aside for external dummy sections, it allows you to 
address the desired section. 

For a description of the use of the Q-type address constant in 
combination with an external dummy section, see "External Dummy 
Sections" on page 62. See also Figure 30 on page 118 for 
details. 

In the following example, to access VALUE, the value of A is 
added to the base address of the block of storage allocated for 
external dummy sections. Q-type address constants may not be 
specified in literals. 

Operand 

Q(VALUE) 

Note: The DXD or DSECT· names referenced in the Q-type address 
constant need not be previously defined. 

Chapter 5. Assembler Instruction Statements 117 



o 
Address Constants (Q) 

Subfield 3. Constant T~l!e 

Q-Type 

1. Duplication Factor Yes 
allowed 

2. Modifiers 4 bytes 

I mplicit Length: (Length 
Modifier not present) 

Alignment: (Length Fullword 
Modifier not present) 

Range for Length: 1-4 bytes 
(in bytes) (no bit length) 

Range for Scale: Not allowed 

Range for Exponent: Not allowed (~) 

4. Nominal Value 

A single relocatable DC Q(DUMMYEXTl 
Represented by 

symbol DC Q(DXDEXT) 

Enclosed by: Parentheses 

Exponent allowed: No 

Number of Values per 
Multiple 

Operand: 

Padding: With zeros at left 

Truncation of 
At left 

Assembled Value 

Figure 30. Q Address Constants 

O~,'" 1t 

118 Assembler H Version 2 Application Programming: Language Reference 



o 

o 

o 

FLOATING-POINT CONSTANTS--E, D, AND L: Floating-point constants 
allow you to introduce data that is in the form suitable for the 
operations of the floating-point feature instructions. These 
constants have the following advantages over fixed-point 
constants. 

• You do not have to consider the fractional portion of a 
value you specify, nor worry about the position of the 
decimal point when algebraic operations are to be performed. 

• You can specify both much larger and much smaller values. 

• You retain greater processing precision; that is, your 
values are carried in more significant figures. 

The nominal value can be a signed (see (1) in Figure 31 on page 
120)--· plus is assumed if the number is unsigned--integer, 
fraction, or mixed number (see (2) in Figure 31 ) followed by an 
exponent (positive or negative). The exponent (see (3) in 
Figure 31) must lie within the permissible range. If an 
exponent modifier is also specified, the algebraic sum of the 
exponent and the exponent modifier must lie within the 
permissible range. 

The format of the constant is shown in Figure 32. 

The value of the constant is represented by two parts: 

1. An exponent portion (see (1) in Figure 32 on page 121), 
followed by 

2. A fractional portion (see (2) in Figure 32). 

A sign bit (see (3) in Figure 32) indicates whether a positive 
or negative number has been specified. The number specified 
must first be converted into a hexadecimal fraction before it 
can be assembled into the proper internal format. The quantity 
expressed is the product of the fraction (see (4) in Figure 32) 
and the number 16 raised to a power (see (5) in Figure 32). 
Figure 32 shows the external format of the three types of 
floating-point constants. 

The range of values that can be assembled into floating-point 
constants is given below: 

Type 
of Con- Range of Magnitude (M) of Values 
stant (Positive and Negative) 

E 
o 
l 

E,D,l 

16- 65 S M S (1-16- 6 ) X 16 63 

16-65 S M S (1-16- 14 ) X 16 63 

16-65 S M S (1-16- 28 ) X 16 63 

Approximately: 
5.4 x 10- 79 S M S 7.2 X 10 75 

If the value specified for a particular constant does not lie 
within these ranges, the constant is not assembled, but is 
flagged as an error. 

Chapter 5. Assembler Instruction Statements 119 



Floating Point Constants 

Subfield 3. Constant Type 

SHORT (E) LONG (D) EXTENDED (L) 

1. Duplication Factor Yes Yes Yes 
Allowed 

2. Modifiers 

Implicit Length: 4 Bytes 8 Bytes 16 Bytes 
(Length Modifier Not 

Precent) 

Alignment: 
(Length Modifier Not Full Word Double Word Double Word 

Present) 

Range for Length: 1 through 8 (byte length) 1 through 8 (byte length) 1 through 16 (byte length) 

.1 through .64 (bit length) .1 through .64 (bit length) .1 through .128 (bit length) 

Range for Scale: o through 14 o through 14 o through 28 

Range for Exponent: - 85 through + 75 - 85 through + 75 - 85 through + 7.5 

4. Nominal Value Decimal Digits Decimal Digits Decimal Digits. 
(0 through ~ ( 0 through 9) ( 0 through 9) 

Represented by: ,... 
DC D 12525 ' DC L 1 52S ' DC E'+525 ' 

DC E I 5.25 ' • DC D 1 +.001 1
• DC L I 3.414' --Enclosed by: Apostrophes Apostrophes Apostrophes 

Exponent Allowed: Yes • Yes 

D I -2.5E10 1
• 

Yes 
L' 3. 712E-3. DC E l lE+60 ' DC DC 

Number of Values per Multiple Multiple Multiple 
Operand: 

Padding: With hexadecimal zeros at With hexadecimal zeros at With hexadecimal zeros at 
right right right 

Truncation of Assembled Not applicable Not Applicable Not applicable 
Value: (Values are rounded) lValues are Rounded) (Values are Rounded) 

Figure 31. Floating-Point Constants 

120 Assembler H Version 2 Application Programming: language Reference 

(-~\ 

,~./ 



o 

o 

o 

Type Called Format 

D 

L 

Short 
Floating· 
Point 
r-..Jumber 

Long 
Floating-
Point 
Number 

Extended 
Floating-
Point 
Number 

Bits 0 , 78 

7·b,! 5€.- . 
... Characteristic F rae: :-
W~I~--------~$(L __________ ~ 

Bits a 1 78 

7-bit 
+ Characteristic 

w4%M1 
Bits a 1 78 

7-bit 

Bits a 1 

USED FOR 
SECOND HALF 
OF LCON 

High-orO€r ~a," :' 
112-bit F'aet':-

Low-order half of 
112-bit Fraction 

where a,b,c .... are hexadecimal digits, and E is 

an exponent that has a positive or negative value 

indicated by the characteristic 

63 

Figure 32. Floating-Point External Formats 

Binary Representation: The assembler assembles a floating-point 
constant into its binary representation as follows: The 
specified number, multiplied by any exponents, is converted to 
the required two-part format. The value is translated into: 

• A fractional portion represented by hexadecimal digits and 
the sign indicator. The fraction is then entered into the 
leftmost part of the fraction field of the constant (after 
rounding). 

Chapter 5. Assembler Instruction statements 121 



• An exponent portion represented by the excess 64 binary 
notation, which is then entered into the characteristic 
field of the constant. 

The excess 64 binary notation is when the value of the 
characteristic between +127 and +64 represents the exponents of 
16 between +63 and 0 (by subtracting 64), and the value of the 
characteristic between +63 and 0 represents the exponents of 16 
between -1 and -64. 

Notes: 

1. The l-type floating-point constant resembles two contiguous 
D-type constants. The sign of the second doubleword is 
assumed to be the same as the sign of the first. 

The characteristic for the second doubleword is equal to the 
characteristic for the first minus 14 (the number of 
hexadecimal digits in the fractional portion of the first 
doubleword). 

2. If scaling has been specified, hexadecimal zeros are added 
to the left of the normalized fraction (causing it to become 
unnormalized), and the exponent in the characteristic field 
is adjusted accordingly. (For further details on scaling, 
see "Subfield 3: Modifiers" on page 96.) 

3. Rounding of the fraction is performed according to the 
implied or explicit length of the constant. The resulting 
number will not differ from the exact value specified by 
more than one in the last place. 

4. Negative fractions are carried in true representation, not 
in the twos complement form. 

5. Duplication is applied after the constant has been 
assembled. 

6. An implied length of 4 bytes is assumed for a short (E) 
constant and 8 bytes for a long (D) constant. An implied 
length of 16 bytes is assumed for an extended (l) constant. 
The constant is aligned at the proper word (E) or doubleword 
(0 and l) boundary if a length is not specified. However, 
any length up to and including 8 bytes (E and D) or 16 bytes 
(l) can be specified by a length modifier. In this case, no 
boundary alignment occurs. 

Any of the following statements could be used to specify 46.415 
as a positive, fullword, floating-point constant; the last is a 
machine instruction statement with a literal operand. Note that 
each of the last two constants contains an exponent modifier. 

Name operation Operand 

DC E'46.415' 
DC E'46415E-3' 
DC E'+464.15E-1' 
DC E'+.46415E+2' 
DC EE2'.46415' 
AE 6,=EE2'.46415' 

The following would each be generated as doubleword 
floating-point constants. 

Name Operation Operand 

FLOAT DC DE+4'+46,-3.729,+473' 

122 Assembler H Version 2 Application Programming: Language Reference 

o 

o 

o 



DS--DEFINE STORAGE 

o 

o 

o 

The DS instruction allows you to: 

• Reserve areas of storage. 

• Provide labels for these areas. 

• Use these areas by referring to the symbols defined as 
labels. 

The DS instruction causes no data to be assembled. Unlike the 
DC instruction, you do not have to specify the nominal value 
(fourth subfield) of a OS instruction operand. Therefore, the 
OS instruction is the best way of symbolically defining storage 
for work areas, input/output buffers, etc. 

The format of the OS instruction is: 

Name Operation Operand 

Any symbol OS One or more operands, 
or blank separated by commas, 

written in the format 
described in the 
following text 

The format of the DS operand is identical to that of the OC 
operand; exactly the same subfields are used and are written in 
exactly the same sequence as they are in the OC operand. 
Although the formats are identical, there are two differences in 
the specification of subfields. They are: 

1. The nominal value subfield is optional in a OS operand, but 
it is mandatory 1n a OC operand. If a nominal value is 
specified in a OS operand, it must be valid. 

2. The maximum length that can be specified for the character 
(C) and hexadecimal (X) type areas is 65,535 bytes rather 
than 256 bytes for the same DC operands. 

The label used in the name entry of a DS instruction, as with 
the label for a DC instruction: 

• Has an address value of the leftmost byte of the area 
reserved, ,after any boundary alignment is performed 

• Has a length attribute value, dependlng on the implicit or 
explicit length of the type of area reserved 

If the DS instruction is specified with more than one operand or 
more than one nominal value in the operand, the label addresses 
the area reserved for the field that corresponds to the first 
nominal value of the first operand. The length attribute value 
is equal to the length explicitly specified or implicit in the 
first operand. 

Note: Unlike the DC instruction, bytes skipped for alignment 
are not set to zero. Also, nothing is assembled into the 
storage area reserved by a OS instruction. Ho assumption should 
be made as to the contents of the reserved area. 

The size of a storage area that can be· reserved by a DS 
instruction is limited only by the size of virtual storage or by 
the maximum value of the location counter, which is smaller. 

Chapter 5. Assembler Instruction Statements 123 



How to Use the DS Instruction 

TO RESERVE STORAGE: If you want to take advantage of automatic 
boundary alignment Cif the ALIGN option is specified) and 
implicit length calculation, you should not supply a length 
modifier in your operand specifications. You should specify a 
type subfield that corresponds to the type of area you need for 
your instructions. 

Note: Duplication has no effect on implicit length. 

Using a length modifier can give you the advantage of explicitly 
specifying the length attribute value assigned to the label 
naming the'area reserved. However, your areas will not be 
aligned automatically according to their type. If you omit the 
nominal value in the operand, you should use a length modifier 
for the binary (B), character (C), hexadecimal (X), and decimal 
(P and Z) type areas; otherwise, their labels will be given a 
length attribute value of 1. 

When you need to reserve large areas, you can use a duplication 
factor. However, in this case, you can only refer to the first 
area by label. You can also use the character (C) and 
hexadecimal (X) field types to specify large areas using the 
length modifier. 

Although the nominal value is optional for a DS instruction, you 
can put it to good use by letting the assembler compute the 
length for areas of the B, C, X, and decimal (P or Z) type 
areas. You achieve this by specifying the general format of the 
nominal value that will be placed in the area at execution time. 

TO FORCE ALIGNMENT: You can use the DS instruction to force 
alignment to a boundary that otherwise would not be provided. 
You can force the location counter to a doubleword, fullword, or 
halfword boundary by using the appropriate field type (for 
example, D, F, or H) with a duplication factor of zero. No 
space is reserved for such an instruction, yet the data that 
follows is aligned on the desired boundary. For example, the 
following statements would set the location counter to the next 
doubleword boundary and reserve storage space for a 128-byte 
field (whose leftmost byte would be on a doubleword boundary). 

Name Operation Operand 

DS OD 
AREA DS CL128 

Note: Alignment is forced when either the ALIGN or the NOALIGN 
assembler option is set. 

TO NA~E FIELDS OF AN AREA: Using a duplication factor of zero in 
a DS instruction also allows you to provide a label for an area 
of storage without actually reserving the area. You can use DS 
or DC instructions to reserve storage for, and assign labels to, 
fields within the area. These fields can then be addressed 
symbolically. (Another way of accomplishing this is described 
in "DSECT--Identify Dummy Section" on page 58.) The whole area 
is addressable by its label. In addition, the symbolic label 
will have the length attribute value of the whole area. Within 
the area, each field is oddressable by its label. 

124 Assembler H Version 2 Application Programming: Language Reference 

/~-.~~\ 

~. ,;J 



o 

o 

o 

For example, assume that SO-character records are to be read 
into an area for processing and that each record has the 
following format: 

positions 5-10 Payroll Number 

Pos;i tions 11-30 Employee Hame 

positions 31-36 Date 

positions 47-54 Gross Wages 

positions 55-62 Withholding Tax 

The following example illustrates how DS instructions might be 
used to assign a name to the record area, then define the'fields 
of the area and allocate storage for them. Hote that the first 
statement names the entire area by defining the symbol RDAREA; 
this statement gives RDAREA a length attribute of SO bytes, but 
does not reserve any storage. Similarly, the fifth statement 
names a 6-byte area by defining the symbol DATE; the three 
subsequent statements actuallY define the fields of DATE and 
allocate storage for them. The second, ninth, and last 
statements are used for spacing purposes and, therefore, are not 
named. 

Name operation Operand 

RDAREA DS OClSO 
DS CL4 

PAYNO DS Cl6 
NAME DS Cl20 
DATE DS OCl6 
DAY DS CL2 
MONTH DS Cl2 
YEAR DS CL2 

DS CL10 
GROSS DS CL8 
FEDTAX DS Cl8 

DS CL18 

Additional examples of DS statements are shown below: 

Name Operation Operand 

ONE DS CLSO (One SO-byte field, 
length attribute of SO) 

TWO DS 80C (SO 1-byte fields, 
length attribute of 1) 

THREE DS 6F (6 fullwords, length 
attribute of 4) 

FOUR DS D (1 doubleword, length 
attribute of 8) 

FIVE DS 4H (4 halfwords, 
length attribute of 2) 

To define four lO-byte fields and one 100-byte field, the 
respective DS statements might be as follows: 

Name operation Operand 

FIELD DS 4CllO 
AREA DS CLIOO 

Although FIELD might have been specified as one 40-byte field, 
the preceding definition has the advantage of providing FIELD 
with a length attribute of 10. This would be pert;nent when 
using FIELD as an SS machine instruction operand. 

Chapter 5. Assembler Instruction Statements 125 



CCW OR CCWO--DEFINE CHANNEL COMMAND WORD (FORMAT 0) 

You can use the CCW or CCWO instruction to define and generat~ 
an 8-byte channel command word aligned at a doubleword boundary 
for input/output operations. The CCW and CCWO instructions have 
identical functions; however, the CCWO instruction is not 
included in the 5/370 instruction set. A CCW or CCWO will cause 
any bytes skipped to be zeroed. A CCW or CCWO instruction will 
result in a Format 0 channel command word which allows 24-bit 
data addresses. The internal machine format of a channel 
command word is shown in Figure 33. 

Byte Bits Usage 

0 0-7 Command code 
1-3 8-31 Address of data to operate upon 
4 32-37 Flags 

38-39 Must be specified as zeros 
5 40-47 Set to zeros by assembler 
6-7 48-63 Byte count or length of data 

Figure 33. Channel Command Word, Format 0 

The format of the CCW or CCWO instruction statement is: 

Name Operation ope."and 

Any symbol CCW or CCWO Command code, data 
or blank address, flags, data 

count 

All four operands must appear. They are written, from left to 
right, as follows: 

1. An absolute expression that specifies the command code. 
This expression's value is right-justified in byte o. 

2. A relocatable or absolute expression specifying the address 
of the data to operate upon. This value is treated as a 
3-byte, A-type address constant. The value of this 
expression is right-justified in bytes 1 through 3. 

3. An absolute expression that specifies the flags for bits 32 
through 37, and zeros for bits 38 and 39. The value of this 
expression is right-justified in byte 4. (Byte 5 is set to 
zero by the assembler.) 

4. An absolute expression that specifies the byte count or 
length of data. The value of this expression is 
right-justified in bytes 6 and 7. 

The generated channel command word is aligned on a doubleword 
boundary. Any bytes skipped are set to zero. 

The symbol in the name field, if present, is ass.igned the value 
of the address of the leftmost byte of the channel command word 
generated. The length attribute value of the symbol is 8. 

The following are examples of CCW and CCWO statements: 

Name operation Operand 

WRITEI CCW l,DATADR,X'48',X'50' 
WRITE2 CCWO 1,DATADR,X'48',X'50' 

126 Assembler H Version 2 Application Programming: language Reference 

C-.\ 
.. ~ 



O· ., 

o 

o 

The object code generated (in hexadecimal) for either of the 
above examples is: 

01 xxxxxx 48 00 0050 

where xxx xxx contains the address of DATADR, and DATADR must 
reside below 16 megabytes. 

Notes: 

1. If you use the EXCP access method, you must use CCW or CCWO, 
because EXCP does not support 31-bit data addresses in 
channel command words. 

2. You should use RMODE 24 with CCW or CCWO to ensure that 
valid data addresses are generated in the channel command 
words at execution time. 

CCW1--DEFINE CHANNEL COMMAND I~ORD (FORHAT 1) 

You can use the CCWI instruction to specify the object code 
format to be used for an 8-byte channel command word aligned at 
a doubleword boundary for input/output operations. The object 
code for a Format 1 channel command word allows a 31-bit data 
address, whereas the object code generated by a CCW or CCWO 
instruction allows only a 24-bit data address. A CCWl will 
cause any bytes skipped to be zeroed. The internal machine 
format of a channel command word is shown in Figure 34 . 

Byte Bits Usage 

0 0-7 Command code 
1 8-15 Flags 
2-3 16-31 Count 
4 32 Must be zero 
4-7 33-63 Data address 

Figure 34. Channel Command Word, Format 1 

The format of the CCWI instruction statement is: 

Name operation Operand 

Any symbol CCWl Command code, data 
or blank address, flags, data 

count 

All four operands must appear. They are written, from left to 
right, as follows: 

1. An absolute expression that specifies the command code. 
This expression's value is right-justified in byte O. 

2. An expression specifying the data address. This value is 
treated as a 4-bytet A-type address constant. The value of 
this expression is in bytes 4 through 7, the first bit of 
which is set to O. 

3. An absolute expression that specifies the flags for bits 8 
through 15. The value of this expression is right-justified 
in byte 1. 

4. An absolute expression that specifies the count. The value 
of this expression is right-justified in bytes 2 and 3. 

Note: The expression for the data address should be such that 
the address is within the range 0 to 2 31 _1, inclusive, after 

Chapter 5. Assembler Instruction Statements 127 



possible relocation. This will be the case if the expression 
refers to a location within one of the control sections which 
will be link-edited together. An expression such as 
*-1000000000 will yield an acceptable value only when the 
command control word is placed in storage location 1000000000 or 
higher. 

The generated channel command word is aligned on a doubleword 
boundary. Any bytes skipped are set to zero. 

The symbol in the name field, if present, is assigned the value 
of the address of the leftmost byte of the channel command word 
generated. The length attribute value of the symbol is 8. 

The following is an example of a CCW1 statement: 

Name Operation operand 

A CCW1 X'OC',BUF1,X'00',l'BUF1 

The object code (in hexadecimal) generated in the above example 
is: 

ac 00 yy xxxxxxxx 

where yy is length of SUF1, and xxxxxxxx is BUF1 address. 

Note: BUFI can reside anywhere in virtual storage. 

PROGRAM CONTROL INSTRUCTIONS 

You use the program control instructions to: 

• Specify the end of an assembly . 

• Set the location counter to a value or word boundary . 

• Insert previously written coding in the program. 

• Specify the placement of literals in storage. 

• Check the sequence of input cards. 

• Indicate statement format. 

• Punch a card. 

Except for the CHOP and COPY instructions, none of these 
assembler instructions generate instructions or constants in the 
object program. 

ICTL-INPUT FORMAT CONTROL 

The ICTl instruction allows you to change the begin, end, and 
continue columns that establish the coding format of the 
assembler language source statements. 

For example, with the ICTl instruction, you can increase the 
number of columns to be used for the identification or sequence 
checking of your source statements. By changing the begin 
column, you can even create a field before the begin column to 
contain identification or sequence numbers. 

You can use the IeTl instruction only once, at the very 
beginning of a source program. If you do not use it, the 
assembler recognizes the standard values for the begin, end, and 
continue columns. 

The format of the ICTl instruction statement is as follows: 

128 Assembler H Version 2 Application Programming: language Reference 

o 



o 

o 

0',"·: 
~ 

Name Operation Operand 

Blank ICTl 1-3 decimal self-
defining terms of the 
form b or b,e or b,e,c 

The operand entry must be one to three decimal self-defining 
terms. There are only three possible ways of specifying the 
operand entry: 

1. The operand b specifies the begin column of the source 
statement. It must always be specified, and must be within 
the range of 1 through 40, inclusive. 

2. The operand e specifies the end column of the source 
statement. The end column, when specified, must be within 
the range of 41 through 80; inclusive; when not specified, 
it is assumed to be 71. 

3. The operand c specifies the continue column of the source 
statement. The continue column, when specified, must be 
within the range of 2 through 40. If the continue column is 
not specified, or if column 80 is specified as the end 
column, the assembler assumes that continuation lines are 
not allowed. 

If no ICTl statement is used in the source program, the 
assembler assumes that 1, 71, and 16 are the begin, end, and 
continue columns, respectively. 

The values specified for the three operands depend on each 
other. Two rules governing the interaction of b, e, and care: 

1. The position of the end column must not be less than the 
position of the begin column +5, but must be greater than 
the position of the continue column. 

2. The position of the continue column must be greater than 
that of the begin column. 

The next example designates the begin column as 25. Since the 
end column is net specified, it is assumed to be column 71. Ho 
continuation cards are recognized because the continue column is 
not specified. 

I Name 'I Operation Operand 

ICTl 25 

Note: The ICTl instruction does not affect the format of 
statements brought in by a COpy instruction or generated from a 
library macro definition. The assembler processes these 
statements according to the standard begin, end, and continue 
columns described in "Field Boundaries" on page 9. 

ISEQ--INPUT SEQUENCE CHECKING 

You can use the ISEQ instruction to cause the assembler to check 
if the statements in a source module are in sequential order. 
In the ISEQ instruction, you specify the columns between which 
the assembler is to check for sequence numbers. 

The assembler begins sequence checking with the first statement 
line following the ISEQ instruction. The assembler also checks 
continuation lines. 

Sequence numbers on adjacent statements or lines are compared 
according to the 8-bit internal EBCDIC collating sequence. When 
the sequence number on one line is not greater than the sequence 

Chapter 5. Assembler Instruction Statements 129 



PUNCH--PUNCH A CARD 

number on the preceding line, a sequence error is flagged, and a 
warning message is issued, but the assembly is not terminated. 

Note: If the sequence field in the preceding line is blank, the 
assembler uses the last preceding line with a nonblank sequence 
field to make its comparison. 

The format of the ISEQ instruction statement is: 

Name Operation Operand 

Blank ISEQ Two decimal self-
defining terms of the 
form l,r or blank 

The first option in the operand entry must be two decimal 
self-defining terms. Th;s format of the ISEQ instruction 
initiates sequence checking, beginning at the statement or line 
following the ISEQ instruction. Checking begins at the column 
represented by 1 and ends at the column represented by r. The 
second option of the ISEQ format terminates the sequence 
checking operation. 

The rules for interaction are: 

1. 1 specifies the leftmost column of the field to be checked, 
and r specifies the rightmost column of the field to be 
checked. r must be greater than or equal to 1. 

2. I and r can be anywhere on the cards in the input. Thus, 
they can also be between the begin and end columns. 

Note: The assembler checks only those statements that are 
specified in the coding of a source module. This includes any 
COpy instruction statement or macro instruction. 

However, the assembler does not check: 

1. Statements inserted by a COPY instruction, 

2. statements generated from model statements inside macro 
definitions or from model statements in open code (statement 
generation is discussed in detail in "Chapter 7. How to 
Prepare Macro Definitions" on page 151) 

3. Statements in library macro definitions 

The PUNCH instruction allows you to punch source or other 
statements into a single card. With this feature you can: 

• Code PUNCH statements in a source module to produce control 
statements for the linkage editor. The linkage editor uses 
these control statements to process the object module. 

• Code PUNCH statements in macro definitions to produce, for 
instance, source statements in other computer languages or 
for other processing phases. 

The card that is punched has a physical position immediately 
after the PUNCH instruction and before any other TXT cards of 
the object decks that are to follow. 

The PUNCH instruction causes the data in its operand to be 
punched into a card. One PUNCH instruction produces one punched 
card, but as many PUNCH instructions as necessary can be used. 

The PUNCH instruction statement can appear anywhere in a source 
module except before and between source macro definitions. If a 
PUNCH instruction occurs before the first control section, the 

130 Assembler H Version 2 Application Programming: language Reference 

o 



o 

o 

resultant card punched will precede all other cards in the 
object deck. 

The cards punched as a result of a PUNCH instruction are not a 
logical part of the object deck, even though they can be 
physically interspersed in the object deck. 

The format of the PUNCH instruction statement is: 

Name operation operand 

A sequence PUNCH A character string of up 
symbol or blank to 80 characters, 

enclosed in apostrophes 

All 256 punch combinations of the IBM System/370 character set 
are allowed in the character string of the operand field. 
Variable symbols are also allowed. 

The position of each character specified in the PUNCH statement 
corresponds to a column in the card to be punched. However, the 
following rules apply to ampersands and apostrophes: 

1. A single ampersand initiates an attempt to identify a 
variable symbol and to substitute its current value. 

2. Double ampersands or apostrophes are punched as single 
ampersands or apostrophes. 

3. A single apostrophe followed by one or more blanks simply 
terminates the string of characters punched. If a nonblank 
character follows a single apostrophe, an error message is 
issued and nothing is punched. 

Only the characters punched, including blanks, count toward the 
maximum of 80 allowed. 

Notes: 

1. No sequence number or identification is punched into the 
card produced. 

2. If the NODECK option is specified when the assembler is 
invoked, no cards are punched, neither for the PUNCH or 
REPRO instructions, nor for the object deck of the assembly. 

REPRo-RE·PRODUCE FOLLOWING CARD 

The REPRO instruction causes the data specified in the statement 
that follows to be punched into a card. Unlike the PUNCH 
instruction, the REPRO instruction does not allow values to be 
substituted into variable symbols before the card is punched. 
One REPRO instruction produces one punched card. 

The REPRO instruction can appear anywhere in a source module 
except before and between source macro definitions. The punched 
cards are not part of the object deck, even though they can be 
physically interspersed in the object deck. 

The format of the REPRO instruction statement is: 

Name operation Operand 

A sequence REPRO Not required 
symbol or blank 

The line to be reproduced can contain any of the 256 punch 
characters, including blanks, ampersands, and a~ostrophes. No 
substitution is performed for variable symbols. 

Chapter 5. Assembler Instruction Statements 131 



PUSH INSTRUCTION 

POP INSTRUCTION 

Notes: 

1. Sequence numbers and i dent i fi cat ion ar,! not punched in the 0 
card. ,=y 

2. If the NO DECK option is specified in the job control 
language for the assembler program, no cards are punched: 
neither for the PUNCH or REPRO instructions, nor for the 
object deck of the assembly. 

The PUSH instruction allows you to save the current PRINT or 
USING status in "push-down" storage on a last-in, first-out 
basis. You can restore this PRINT and USING status later, also 
on a last-in, first-out basis, by using a corresponding POP 
instruction. 

The format of the PUSH instruction statement is: 

Name operation Operand 

A sequence PUSH Option 1 : PRINT 
symbol or Option 2 : USING 
blank Option 3: PRINT,USING 

Option 4 : USING, PRINT 

One of the four options for the operand entry must be specified. 
The. PUSH instruction does not change the status of the current 
PRINT or USING instructions; the status is only saved. 

Note: When the PUSH instruction is used in combination with the 
POP instruction, a maximum of four nests of PUSH PRINT - POP 
PRINT or PUSH USING - POP USING are allowed. 

The POP instruction allows you to restore the PRINT or USING 
status saved by the most recent PUSH instruction. 

The format of the POP instruction is: 

Name operation Operand 

A sequence POP Option 1 : PRINT 
symbol or Option 2: USING 
blank Option 3: PRINT,USING 

Option 4: USING, PRINT 

One of the four options for the operand entry must be specified. 
The POP instruction causes the status of the current PRINT or 
USING instruction to be overridden by the PRINT or USING status 
saved by the last PUSH instruction. 

Note: When the POP instruction is used in combination with the 
PUSH instruction, a maximum of four nests of PUSH PRINT - POP 
PRINT or PUSH USING - POP USING are allowed. 

132 Assembler H Version 2 Application Programming: language Reference 



o 

o 

o 

ORG--SET LOCATION COUNTER 

You use the ORG instruction to alter the setting of the location 
counter and thus ~ontrol the structure of the current control 
section. This allows you to redefine portions of a control 
section. 

Using the Figure 35, on page 134 as an example, if you wish to 
build a translate table (for example, to convert EBCDIC 
character code into some other internal code): 

• You define the table (see (1) in Figure 35) as being filled 
with zeros. 

• You use the ORG instruction to alter the location counter so 
that its counter value indicates a desired location (see (2) 
in Figure 35) within the table. 

• You redefine the data (see (3) in Figure 35) to be assembled 
into that location. 

• After repeating the first three steps (see (4) in Figure 35) 
until your translate table is complete, you use an ORG 
instruction with a blank operand field to alter the location 
counter. The counter value then indicates the next available 
location (see (5) in Figure 35) in the current control 
section (after the end of the translate table). 

Both the assembled object code for the whole table filled with 
zeros, and the object code for the portions of the table you 
redefined, are printed in the program listings. However, the 
data defined later is loaded over the previously defined zeros 
and becomes part of your object program, instead of the zeros. 

In other words, the ORG instruction can cause the location to 
point to any part of a control section, even the middle of an 
instruction, into which you can assemble desired data. It can 
also cause the location counter to point to the next available 
location so that your program can continue to be assembled in a 
sequential fashion. 

The format of the ORG instruction statement is: 

Name operation Operand 

A sequence ORG A relocatable 
symbol or blank expression or blank 

In general, symbols used in the operand field need not have been 
previously defined. However, the relocatable component of the 
expression (that is, the unpaired relocatable term) must have 
been previously defined in the same control section in which the 
ORG statement appears, or be equated to a previously defined 
value. 

The location counter is set to the value of the expression in 
the operand. If the operand is omitted, the location counter is 
set to the next available location for the current control 
section. 

An ORG statement cannot be used to specify a location below the 
beginning of the control section in which it appears. For 
example, the following is invalid if it appears less than 500 
bytes from the beginning of the current control section. 

~N_a_m_.e ______________ ,~_o_p_e_r_a_t_l_·0_n ________ +-_o_p_e_r_a~n_d _________________ ~ 
ORG *-500 ~ 

Chapter 5. Assembler Instruction statements 133 



Source Module 

FIRST START 0 Object Code 

0 TABLE 
TABLE DC XL256'00' (in Hex) 

ORG TABLE+O +0 
DC ClOt. FO 
DC C'l' Fl 

ORG TABLE+13 +13 

DC C'D' C4 
DC ClEf C5 

• ORG TABLE+C'D' +196 
DC ALl(13) OD 
DC ALl(14) OE 

ORG TABLE+C'O' +240 
DC ALl(O} 00 
DC ALl(l) 01 

+255 
ORG 

GOON DS OH 

TR INPUT, TABLE 

INPUT DS CL20 

END 

Figure 35. Building a Translate Table 

This is because the expression specified is then negative, and 
will set the location counter to a value larger than the 
assembler can process. The location counter will "wrap around" 
(the location counter ;s discussed in detail in "location 
Counter Reference" on page 27). 

Note: With the ORG statement, you can give two instructions the 
same location counter values. In such a case, the second 
instruction will not always eliminate the effects of the first 
instruction. Consider the following example: 

134 Assembler H Version 2 Application Programming: language Reference 

0 " 

0 
~--~ 



o 

o 

o 

ADDR 

B 

DC A(LOC) 
ORG *-4 
DC C'BETA' 

In this example, the value of B (BETA) will be destroyed by the 
relocation of ADDR during linkage editing. 

RESTRICTION ON ORG WHEN THE LOCTR INSTRUCTION IS USED: If you 
specify multiple location counters with the LOCTR instruction, 
the ORG instruction can alter only the location counter in use 
when the instruction appears. Thus, you cannot control the 
structure of the whole control section using ORG, but only the 
part that is controlled by the current location counter. 

LTORG--BEGIN LITERAL POOL 

Literal Pool 

You use the LTORG instruction so that the assembler can collect 
and assemble literals into a literal pool. A literal pool 
contains the literals you specify in a source module either: 

• After the preceding LTORG instruction, or 

• After the beginning of the source module. 

The assembler ignores the borders between control sections when 
it collects literals into pools. Therefore, you must be careful 
to include the literal pools in the control sections to which 
they belong (for details, see "Addressing Considerations" on 
page 136). 

The creation of a literal pool gives the following advantages: 

• Automatic organization of the literal data into sections 
that are properly aligned and arranged so that no space is 
wasted. 

• Assembling of duplicate data into the same area. 

• Because all literals are cross-referenced, you can find the 
literal constant in the pool into which it has been 
assembled. 

The format of the LTORG instruction statement is: 

Name Operation Operand 

Any symbol or LTORG Not used 
blank 

If an ordinary symbol is specified in the name field, it 
represents the first byte of the literal pool; this symbol is 
aligned on a doubleword boundary and has a length attribute 
value of 1. If bytes are skipped after the end of a literal 
pool to achieve alignment for the next instruction, constant, or 
area, the bytes are not filled with zeros. 

A literal pool is created immediately after a LTORG instruction 
or, if no LTORG instruction is specified, at the end of the 
first control section. 

Each literal pool has four segments into which the literals are 
stored (a) in the order that the literals are specified, and (b) 
according to their assembled lengths, which, for each literal, 
is the total explicit or implied length), as described below. 

• The first segment contains all literal constants whose 
assembled lengths are a multiple of 8. 

Chapter 5. Assembler Instruction Statements 135 



• 

• 

The second segment contains those whose assembled lengths 
are a multiple of 4, but not of 8. 

The third segment contains those whose assembled lengths are 
even, but not a multiple of 4. 

• The fourth segment contains all the remaining literal 
constants whose assembled lengths are odd. 

Since each literal pool is aligned on a doubleword boundary, 
this guarantees that all literals in the first segment are 
doubleword aligned; in the second segment, fullword aligned; 
and, in the third, halfword aligned. No space is wasted except, 
possibly, at the origin of the pool. 

Literals from the following statement are in the pool, in the 
segments indicated by the parenthesized numbers: 

FIRST START 0 

MVC 
AD 
IC 

TO,=3F'9' 
2,=D'7' 
2,=XL1'8' 
,:;::CL3'JAN' 
,=2F'1,2' 
,=H'33' 
,=ACADDR) 
,=XL8'05' 

(2) 
(1) 
(4) 
(4) 
(1) 
(3) 
(2) 
(1) 

Addressing Considerations 

Duplicate Literals 

If you specify literals in source modules with multiple control 
sections, you shoul~: 

• Write a LTORG instruction at the end of each control 
section, so that all the literals specified- in the section 
are assembled into the one literal pool for that section. 
If a control section is divided and interspersed among other 
control sections, you should write a LTORG instruction at 
the end of each segment of the interspersed control section. 

• When establishing the addressability of each control 
section, make sure (a) that the entire literal pool for that 
section is also addressable, by including it within a USING 
range, and (b) that the literal specifications are within 
the corresponding USING domain. The USING range and domain 
are described in "USING--Use Base Address Register" on page 
41. 

Note: All the literals specified after the last LTORG 
instruction, or, if no LTORG instruction is specified, all the 
literals in a source module are assembled into a literal pool at 
the end of the first control section. You must then make this 
literal pool addressable, along with the addresses in the first 
control section. This literal pool is printed in the program 
listing after the END instruction. 

If you specify duplicate literals within the part of the source 
module that is controlled by a LTORG instruction, only one 
literal constant is assembled into the pertinent literal pool. 
This also applies to literals assembled into the literal pool at 
the end of the first or only control section of a source module 
that contains no LTORG instructions. 

Literals are duplicates only if their specifications are 
identical, not if the object code assembled happens to be 
identical. 

When two literals specifying identical A-type (or y-type) 
address constants contain a reference to the value of the 

136 Assembler H Version 2 Application Programming: Language Reference 

o 

;--\ 

~./ 



o 

o 

o 

location counter (*), both literals are assembled into the 
literal pool. This is because the value of the location counter 
is different in the two literals. 

The following examples illustrate how the assembler stores pairs 
of literals, if the placement of each pair is controlled by the 
same LTORG statement. 

X'FO' 
Both are stored 

C'O' 

Xl3'0' 
Both are stored 

HL3'0' 

AOE+4) 
Both are stored 

A OE+4) 

X'FFFF' 
Identical; the first is stored 

X'FFFF' 

CNOP--CONDITIONAL NO OPERATION 

You can use the CHOP instruction to align any instruction or 
other data on a specific halfword boundary. The CHOP 
instruction ensures an unbroken flow of executable instructions 
by generating no-operation instructions to fill the bytes 
skipped to perform the alignment that you specified. 

For example, when you code the linkage to a subroutine, you may 
wish to pass parameters to the subroutine in fields immediately 
following the branch and link instructions. These 
parameters--for example, channel command words--can require 
alignment on a specific boundary. 

The subroutine can then address the parameters you pass through 
the register with the return address. This is illustrated 
below: 

Name operation Operand 

CNOP 6,8 
LINK BALR 2,10 

CCW 1,DATADR,X'48',X'SO' 

Assume that the location counter is currently aligned at a 
doubleword boundary. Then the CNOP instruction in the following 
sequence causes three branch-on-conditions (no-operations) to be 
generated, thus aligning the BALR instruction at the last 
halfword in a doubleword as follows: 

Name operation Operand 

BCR 0,0 
BCR 0,0 
BCR 0,0 
BAlR 2,10 

LINK CCW 1,DATADR,X'48',X'SO' 

After the BAlR instruction is generated, the location counter is 
at a doubleword boundary, thereby ensuring that-the CCW 
instruction immediately follows the branch and link instruction. 

Chapter S. Assembler Instruction Statements 137 



Byte 

0,4 
0,8 

The CHOP instruction forces the alignment of the location 
counter to a halfword, fullword, or doubleword boundary. It 
does not affect the location counter if the counter is already 
properly aligned. If the specified alignment requires the 
location counter to be incremented, one to three no-operation 
instructions (BCR 0,0 occupying two bytes each) are generated to 
fill the skipped bytQs. Any single byte skipped to achieve 
alignment to the first no-operation instruction is filled with 
zeros. 

The format of the CHOP instruction statement is: 

Name Operation Operand 

Any symbol CHOP Two absolute 
or blank expressions of 

the form b,w 

The operands must be absolute expressions~ and the symbols in 
them need not be previously defined. The first operand, b, 
specifies at which even-numbered byte in a fullword or 
doubleword the location counter is set. The second operand, w, 
specifies whether the byte is in a fullword (w=4) or a 
doubleword (w=8). 

Valid pairs of band ware indicated below: 

b,w Specifies 

0,4 
2,4 
0,8 
2,8 
4 1 8 
6,8 

Beginning of a word 
Middle of a word 
Beginning of a doubleword 
Second halfword of a doubleword 
Middle (third halfword) of a doubleword 
Fourth halfword of a doubleword 

Figure 36 shows the position in a doubleword that each of these 
pairs specifies. Hote that both 0,4 and 2,4 specify two 
locations in a doubleword. 

Doubleword 

Fullword Fullword 

Halfword Halfword Halfword Halfword 

I Byte Byte I Byte Byte I Byte Byte I Byte 

2,4 0,4 2,4 
2,8 4,8 6,8 

Figure 36. CHOP Alignment 

COPY-COpy PREDEFINED SOURCE CODING 

You use the COpy instruction to obtain source language coding 
from a library and include it in the programs currently being 
assembled. You thereby avoid writing the same, often-used 
sequence of code over and over. The format of the COpy 
instruction statement is as follows: 

Name operation Operand 

Blank COpy One ordinary symbol 

138 Assembler H Version 2 Application Programming: language Reference 



o 

END--END ASSEMBLY 

o 

o 

The operand is a symbol that identifies a partitioned data set 
member to be copied from either the system macro library or a 
user library concatenated to it. 

The source coding that is copied into a source module: 

• Is inserted immediately after the COPY instruction 

• Is inserted and processed according to the standard 
instruction statement coding format, even if an ICTL 
instruction has been specified 

• Must not contain either an ICTL or ISEQ instruction 

• Can contain other COpy statements 1 

• Can contain macro definitions 

If a source macro definition is copied into the beginning of a 
source module, both the MACRO and MEND statements that delimit 
the definition must be contained in the same level of copied 
code. 

Notes: 

1. The COPY instruction can also be used to copy statements 
into source macro definitions. 

2. The rules that govern the occurrence of assembler language 
statements in a source module also govern the statements 
copied into the source module. 

You use the END instruction to terminate the assembly of a 
program. You can also supply an address in the operand field to 
which control may be transferred after the program is loaded. 
The END instruction must always be the last statement in the 
source program. 

The format of the END instruction statement is: 

Name Operation Operand 

A sequence END A relocatable 
symbol or expression or blank 
blank 

The operand specifies the point to which control may be 
transferred when loading is complete. This point is usually the 
address of the first executable instruction in the program, as 
shown in the following sequence. 

1 There are no restrictions on the number of levels of nested 
copy instructions. However, the COPY nesting must not be 
recursive. Thus, if the statement 'COpy A' is coded, and A 
contains a statement 'COPY B', B must not contain a 
statement 'COPY A'. 

Chapter 5. Assembler Instruction statements 139 



Name Operation Operand 

NAME CSECT 
AREA DS 50F 
BEGIN BAlR 2,0 

USING *,2 
· · · END BEGIN 

If specified, the operand entry can be generated by substitution 
into variable symbols. However, after substitution, that is, at 
assembly time: 

• It must be a relocatable expression representing an address 
in the source module delimited by the END instruction, or 

• If it contains an external symbol, the external symbol must 
be the only term in the expression, or the remaining terms 
in the expression must reduce to zero. 

• It must not be a literal. 

LISTING CONTROL INSTRUCTIONS 

The instructions described in this section request the assembler 
to produce listings and identify output cards in the object deck 
according to your special needs. They allow you to determine 
printing and page formatting options other than the ones the 
assembler program assumes by default. Among other things, you 
can introduce your own page headings, control line spacing, and 
suppress unwanted detail. 

TITLE--IDENTIFY ASSEMBLY OUTPUT 

The TITLE instruction allows you to: 

• Provide headings for each page of the assembly listing of 
your source modules. 

• Identify the assembly output cards of your object modules. 
You can specify up to 8 identification characters that the 
assembler will punch into all the output cards, beginning at 
column 73. The assembler punches sequence numbers into the 
columns that are left, up to column 80. 

The format of the TITLE instruction statement is: 

Name operation operand 

A string of TITLE A character string up to 
alphameric 100 characters, enclosed 
characters, in apostrophes 
a variable 
symbol, a com-
bination of 
above, a 
sequence symbol, 
or a blank 

The first three options for the name field have a special 
significance only for the first TITLE instruction in which they 
are specified. For subsequent TITLE instructions, the first 
three options do not apply. 

For the first TITLE instruction of a source module that has a 
nonblank name entry that is not a sequence 5ymbol, up to 8 

140 Assembler H Versi on 2 Appl i cat ion Program.mi ng: language Reference 

C:"I " 

() 



o 

o 

o 

alphameric characters can be specified in any combination in the 
name field. 

These characters are punched as identification, beginning at 
column 73, into all the output cards from the assembly, except 
those produced by the PUNCH and REPRO instructions. The 
assembler substitutes the current value into a variable symbol 
and uses the generated result as identification characters. 

If a valid ordinary symbol is specified, its appearance in the 
name field does not constitute a definition of that symbol for 
the source module. It can, therefore, be used in the name field 
of any other statement in the same source module. 

The character string in the operand field is printed as a 
heading at the top of each page of the assembly listing. The 
heading is printed beginning on the page in the listing 
following the page on which the TITLE instruction is specified. 
A new heading is printed when a subsequent TITLE instruction 
appears in the source module. 

For example, if the following statement is the first TITLE 
statement to appear in a program: 

Name Operation Operand 

PGM1 TITLE 'FIRST HEADING' 

then PGM1 is punched into all of the output cards (c6lumns 73 
through 76) and this heading appears at the top of each 
subsequent page: PGM1 FIRST HEADING. 

If the following statement occurs later in the program: 

Name Operation Operand 

TITLE 'A NEW HEADING' 

then PGMlis still punched into the output cards, but each 
following page begins with the heading: PGMI A NEW HEADING. 

Each TITLE statement causes the listing to be advanced to a new 
page (before the heading is printed), except when PRINT NOGEN is 
in use. 

Any printable character specified will appear in the heading, 
including blanks. Variable symbols are allowed. However, the 
following rules apply to ampersands and apostrophes: 

• A single ampersand initiates an attempt to identify a 
variable symbol and to substitute its current value. 

• Double ampersands or apostrophes specified, print as single 
ampersands or apostrophes in the heading. 

• A single apostrophe followed by one or more blanks simply 
terminates the heading prematurely. If a nonblank character 
follows a single apostrophe, the assembler issues an error 
message and prints no heading. 

Only the characters printed in the heading count toward the 
maximum of 100 characters allowed. 

Note: The TITLE statement its~lf is not printed in an assembly 
listing. 

Chapter 5. Assembler Instruction Statements 141 



EJECT--$TART NEW PAGE 

SPACE--$PACE LISTING 

The EJECT instruction allows you to stop the printing of the 
assembler listing on the current page, and continue the printing 
on the next page. 

The format of the EJECT instruction statement is: 

Name Operation operand 

A sequence EJECT Hot required 
symbol or blank 

The EJECT instruction causes the next line of the assembly 
listing to be printed at the top of a new page. If the line 
before the EJECT statement appears at the bottom of a page, the 
EJECT statement has no effect. An EJECT instruction immediately 
following another EJECT instruction causes a blank page in the 
listing. 

Note: The EJECT instruction statement itself is not printed in 
the listing. 

You can use the SPACE instruction to insert one or more blank 
lines in the listing of a source module. This allows you to 
separate sections of code on the listing page. 

The format of the SPACE instruction statement is: 

Name Operation Operand 

A sequence SPACE A decimal self-defining 
symbol or blank term or blank 

The operand entry specifies the number of lines to be left 
blank. A blank operand entry causes one blank line to be 
inserted. A blank operand causes one blank line to be inserted. 
If the operand specified has a value greater than the number of 
lines remaining on the listing page, the instruction will have 
the same effect as an EJECT statement. 

Note: The SPACE instruction itself is not printed in the 
listing. 

142 Assembler H Version 2 Application Programming: Language Reference 

o 



o 

o 

o 

PRINT--PRINT OPTIONAL DATA 

The PRINT instruction allows you to control the amount of detail 
you wish printed in the listing of your programs. The three 
options that you can set are given in the table below: 

Hierarchy Description options 

1 A listing is printed. ON 

No listing is printed. OFF 

2 All statements generated by GEN 
the processing of a macro 
instruction are printed. 

Statements generated by the 
processing of a macro 
instruction are not NOGEN 
printed. 1 

3 Constants are printed in DATA 
full in the listing. 

Only the leftmost 8 bytes 
of constants are printed in NODATA 
the listing 

Note: 
1 The MNOTE instruction always causes a message to be printed. 

The options are listed in hierarchic order; if OFF is specified, 
GEH and DATA will not apply. If NOGEN ;s specified, DATA will 
not apply to constants that are generated. The standard options 
inherent in the assembler program are, ON, GEN, and NODATA. 

The format of the PRINT instruction statement is: 

t~ame operation Operand 

A sequence PRINT [ONIOFF] 
symbol or blank [,GENINOGEN] 

[,NODATAIDATAl 

Note: Any sequence of specification is allowed. 

At least one of the operands must be specified, and at most one 
of the options from each group. The PRINT instruction can be 
specified any number of times in a source module, but only those 
print options actually specified in the instruction change the 
current print status. 

PRINT options can be generated by macro processing, at 
preassembly time. However, at assembly time, all options are in 
force until the assembler encounters a new and opposite option 
in a PRINT instruction. 

The PUSH and POP instructions, described in "PUSH Instruction" 
on page 132 and "POP Instruction" on page 132, also influence 
the PRINT options by saving and restoring the PRINT status. 

Note: The option specified in a PRINT instruction takes effect 
after the PRINT instruction. If PRINT OFF is specified, the 
PRINT instruction itself is printed, but not the statements that 
follow it. If the NOlIST assembler option is specified when the 
assembler is invoked, the entire listing for t~e assembly is 
suppressed. 

Chapter 5. Assembler Instruction Statements 143 



o 



o 

o 

o 

PART 2. MACRO LANGUAGE 

Chapter 6 describes the macro instruction statement, definition, 
library, and so on. 

Chapters 7 and 8 describe the basic rules for preparing macro 
definitions and for writing macro instructions. 

Chapter 9 describes the rules for writing conditional assembly 
instructions. 

In addition, Appendix D contains a reference summary of the 
entire macro language. 

Examples of the features of the language appear throughout this 
part of the manual. These examples illustrate the use of 
particular features. However, they are not intended to show the 
full versatility of these features. 

Part 2. Macro Language 145 



CHAPTER 6. INTRODUCTION TO MACRO LANGUAGE 

USING MACROS 

MACRO DEFINITION 

This chapter introduces the basic macro concept: what you can 
use the macro facility for, how you can prepare your own macro 
definitions, and how you call these macro definitions for 
processing by the assembler. 

Macro language is an extension of assembler language. It 
provides a convenient way to generate a desired sequence of 
assembler language statements many times in one or more 
programs. A macro definition is written only once; thereafter, 
a single statement, a macro instruction statement, is written 
each time you want to generate the desired sequence of 
statements. This simplifies the coding of programs, reduces the 
chance of programming errors, and ensures that standard 
sequences of statements are used to accomplish desired 
functions. 

In addition, conditional assembly allows you to code statements 
that mayor may not be assembled, depending upon conditions 
evaluated at assembly time. These conditions are usually tests 
of values which may be defined, set, changed, and tested during 
assembly. Conditional assembly can be used without using macro 
instruction statements. 

The main use of macros is to insert assembler language 
statements into a source program. 

You call a named sequence of statements (the macro definition) 
by using a macro instruction, or macro call. The assembler 
replaces the macro call by the statements from the macro 
definition and inserts them into the source module at the point 
of call. The process of inserting the text of the macro 
definition is called macro ge.neration or macro expansion. The 
assembler expands a macro at preassembly time. 

The expanded stream of code then becomes the input for 
processing at assembly time; that is, the time at which the 
assembler translates the machine instructions into object code. 

A macro definition is a named sequence of statements you can 
call with a macro instruction. When it is called, the assembler 
processes and usually generates assembler language statements 
from the definition into the source module. The statements 
generated can be: 

• Copied directly from the definition 

• Modified by parameter values before generation 

• Manipulated by internal macro processing to change the 
sequence in which they are generated 

You can define your own macro definitions in which any 
combination of these three processes can occur. Some macro 
definitions, like some of those used for system generation, do 
not generate assembler language statements, but perform only 
internal processing. 

A macro definition provides the assembler with (1) the name of 
the macro, (2) the parameters used in the macro, and (3) the 
sequence of statements the assembler generates when the macro 
instruction appears in the source program. 

146 Assembler H Version 2 Application Programming: Language Reference 

0,,', .. ' I, " 



o 

o 

Model statements 

o 

Every macro definition consists of a macro definition header 
statement (MACRO); a macro instruction prototype statement; one 
or more assembler language statements; and a macro definitio~ 
trailer statement (MEND), as shown in Figure 37. 

MACRO 

Prototype MACID &PARAMl,&PARAM2 
_.._""-.... ----""'..,----JI 

• • • Body of Macro 

--------.... MEND 

• Macro Instruction MACID OPERANDl,OPERAND2 

Figure 37. Parts of a Macro Definition 

• The macro definition header and trailer statements (MACRO 
and MEND) indicate to the assembler the beginning and end of 
a macro definition (see (1) in Figure 37). 

• The macro instruction prototype statement is used to name 
the macro (see (2) in Figure 37), and to declare its 
parameters (see (3) in Figure 37). In the operand field of 
the macro instruction, you can assign values (see (4) in 
Figure 37) to the parameters declared for the called macro 
definition. 

• The body of a macro definition (see (5) in Figure 37) 
contains the statements that will be generated when you call 
the macro. These statements are called model statements; 
they are usually interspersed with conditional assembly 
statements or other processing statements. 

You can also write assembler language statements as model 
statements. When it expands the macro, the assembler copies 
them exactly as they are written. You can also use variable 
symbols as points of substitution in a model statement. The 
assembler will enter values in place of these points of 
substitution each time the macro is called. 

The three types of variable symbols in the assembler language 
are: 

• Symbolic parameters, declared in the prototype statement 

• 
• 

System variable symbols 

SET symbolsl which are part of the conditional assembly 
language 

Chapter 6. Introduction to Macro Language 147 



The assembler processes the generated statements, with or 
without value substitution, at assembly time. 

Processing statements 

comments statements 

Processing statements perform functions at preassembly time when 
macros are expanded, but they are not themselves generated for 
further processing at assembly time. The processing statements 
are! 

• Conditional assembly instructions 

• Inner macro calls 

• MNOTE instructions 

• MEXIT instructions 

• AREAD instructions 

The MNOTE instruction allows you to generate an error message 
with an error condition code attached, or to generate comments 
in which you can display the results of preassembly computation. 

The MEXIT instruction tells the assembler to stop processing a 
macro definition. The MEXIT instruction, therefore, provides an 
exit from the middle of a macro definition. 

The MEND instruction not only delimits the contents of a macro 
definition, but also provides an exit from the definition. 

Th~ AREAD instruction allows you to assign to a SETC symbol the 
character string value of a statement that is placed immediately 
after a macro instruction. 

One type of comments statement describes preassembly operations 
and is not generated. The other type describes assembly-time 
operations and is, therefore, generated. 

MACRO INSTRUCTION STATEMENT 

A macro instruction statement (hereafter called a macro 
instruction) is'a source program statement that you code to tell 
the assembler to process a particular macro definition. The 
assembler generates a sequence of assembler language statements 
for each occurrence of the same macro instruction. The 
generated statements are then processed as any other assembler 
language statement. 

The macro instruction provides the assembler with: 

• The name of the macro definition to be processed. 

• The information or values to be passed to the macro 
definition. The assembler uses the information either in 
processing the macro definition or for substituting values 
into a model statement in the definition. 

The output from a macro definition, called by a macro 
instruction, can be: 

• A sequence of statements generated from the model statements 
of the macro for further processing at assembly time. 

• Values assigned to global SET symbols. These values can be 
used in other macro definitions and in open code. 

You can call a macro definition by specifying a macro 
instruction anywhere in a source module. You can also call a 

148 Assembler H Version 2 Application Programming: Language Reference 



o 

o 

0···'·' ~ 

macro definition from within another macro definition. This 
type of call is an inner macro call; it is said to be nested in 
the macro definition. 

SOURCE AND LIBRARY MACRO DEFINITIONS 

MACRO LIBRARY 

You can include a macro definition in a source module. This 
type of definition is called a soyrce macro definition. 

You can also insert a macro definition into a system or user 
library (located, for example, on disk) by using the appropriate 
utility program. This type of definition is called a library 
macro definjtion. The IBM-supplied macro definitions are 
examples of library macro definitions. 

You can call a source macro definition only from the source 
module in which it is included.· You can call a library macro 
definition from any source module. 

Source and library macros are expanded in the same way, but 
syntax errors are handled differently. In source macros, error 
messages are attached to the statements in error. In library 
macros, however, error messages cannot be associated with the 
statement in error, because these macros are located and edited 
after the entire source module has been read. Therefore, the 
error messages are associated with the END statement. 

Because of the difficulty of finding syntax errors in library 
macros, a macro definition should be run and "debugged" as a 
source macro before it is placed in a macro library. 

The same macro definition may be made available to more than one 
source program by placing the macro definition in the macro 
library. The macro library is a collection of macro definitions 
that can be used by all the assembler language programs in an 
installation. Once a macro definition has been placed in the 
macro library, it may be used by writing its corresponding macro 
instruction in a source program. Macro definitions must be in 
the system macro library under the same name as the prototype. 
The prncedure for placing macro definitions in the macro library 
is described in the appropriate utilities manual. 

SYSTEM MACRO INSTRUCTIONS 

The macro instructions that correspond to macro definitions 
prepared by IBM are called system macro instructions. System 
macro instructions are described in the appropriate supervisor 
services and macro instructions and data management macro 
instructions manuals. 

CONDITIONAL ASSEMBLY LANGUAGE 

The conditional assembly language is a programming language with 
most of the features that characterize a programming language. 
For example, it provides: 

• Variables 

• Data attributes 

• Expression computation 

• Assignment instructions 

• Labels for branching 

Chapter 6. Introduction to Macro Language 149 



• Branching instructions 

• Substring operators that select characters from a string 

You can use the conditional assembly language in a macro 
definition to receive input from a calling macro instruction. 
You can produce output from the conditional assembly language by 
using the MNOTE instruction. 

You can use the functions of the conditional assembly language 
to select statements for generation, to determine their order of 
generation, and to perform computations that affect the content 
of the generated statements. 

The conditional assembly language is described in "Chapter 9. 
How to Write Conditional Assembly Instructions." 

150 Assembler H Version 2 Application Programming: language Reference 

o 

G 

o 



o 

o 

o 

CHAPTER 7. HOW TO PREPARE MACRO DEFINITIONS 

Defining a macro means preparing the statements that constitute 
a macro definition. To define a macro you must: 

• Give it a name. 

• Declare any parameters to be used. 

• Write the statements it contains. 

• Establish its boundaries with a MACRO and a MEND 
instruction. 

Except for conditional assembly instructions, this chapter 
describes all the statements that can be used to prepare macro 
definitions. Conditional assembly instructions are described in 
"Chapter 9. How to Write Conditional Assembly Instructions" on 
page 195. 

WHERE TO DEFINE A MACRO IN A SOURCE MODULE 

OPEN CODE 

Macro definitions can appear anywhere in a source module. They 
remain in effect for the rest of your source module, or until 
another macro definition defining a macro with the same 
operation code is encountered. Thus, you can redefine a macro 
at any point in your program. The new definition will be used 
for all subsequent calls to the macro in the program. 

This type of macro definition is called a source macro 
definition. A macro definition can also reside in a system 
library; this type of macro is called a library macro 
definition. Either type can be called from the source module by 
the appropriate macro instruction. 

Macro definitions can also appear inside other macro 
definitions. There is no limit to the levels of macro 
definitions permitted. 

The assembler does not process inner macro definitions until it 
finds the definition during the processing of a macro 
instruction calling the outer macro. 

Consider the following example: 

Name Operation Operand Remarks 

MACRO macro header for outer macro 
OUTER &A,&C= macro prototype 
AIF ('&C' EQ " ) . A 
MACRO macro header for inner macro 
INNER macro prototype 

. 
MEND macro trailer for inner macro 

.A ANOP 

MEND macro trailer for outer macro 

The assembler does not process the macro definition for INNER 
until OUTER is called with a value for &C other than a null 
string. 

Open code is that part of a source module that lies outside of 
any source macro definition. At coding time, it is important to 

Chapter 7. How to Prepare Macro Definitions 151 



distinguish between source statement~ that lie in open code, and 
those that lie inside macro definitid,ns. 

FORMAT OF A MACRO DEFINITION 

The general format of a macro definition is shown in Figure 38. 
The four parts are described in detail below: 

Iv1...ACRO (Header Statement) 

ANYNAME (Prototype Statement) 

Body of Macro 

MEND (Trailer Statement) 

Figure 38. Format of a Macro Definition 

MACRO--MACRO DEFINITION HEADER 

You use the macro definition header statement to indicate the 
beginning of a macro definition. It must be the first statement 
in every macro definition. The format of this statement is: 

Name operation Operand 

Blank MACRO Blank 

MEND-MACRO DEFINITION TRAILER 

You use the macro definition trailer statement to indicate the 
end of a macro definition. It also provides an exit when it is 
processed during macro expansion. It can appear only once 
within a macro definition and must be the last statement in 
every macro definition. The format of this statement is: 

Name Operation operand 

A sequence MEND Blank 
symbol or blank 

MACRO INSTRUCTION PROTOTYPE 

You use the macro instruction prototype statement (hereafter 
called the prototype statement) to specify the mnemonic 
operation code and the format of all macro instructions that you 
use to call the macro definition. 

152 Assembler H Version 2 Application Programming: Language Reference 

o 

(\_~" 
Y 

o 



o 

NAME FIELD 

o OPERATION FIELD 

OPERAND FIELD 

o 

The prototype statement must be the second noncomment statement 
in every macro definition. OnlY internal comments statements 
are allowed between the macro header and the macro prototype. 
Internal comments statements are listed only with the macro 
definition. 

The format of this statement is: 

Name operation Operand 

A name field A symbol Zero or more symbolic 
parameter (mandatory) parameters separated 
or blank by commas 

The symbolic parameters are used in the macro definition to 
represent the operands of the corresponding macro instruction. 
A description of symbolic parameters appears under "Symbolic 
Parameters" on page 1'0. 

You can write a name field parameter~ similar to the symbolic 
parameter, as the name entry of a macro prototype statement. 
You can then assign a value to this parameter from the name 
entry in the calling macro instruction. 

If used, the name entry must be a variable symbol. If this 
parameter also appears in the body of a macro, it will be given 
the value assigned to the parameter in the name field of the 
corresponding macro instruction. Note that the value assigned 
to the name field parameter has special restrictions that are 
listed in "Formatting Specifications" on page 11. 

The symbol in the operation field of the prototype statement 
establishes the name by which a macro definition must be called. 
This name becomes the operation code required in any macro 
instruction that calls the macro. 

Any operation code can be specified in the prototype operation 
field. If the entry is the same as an assembler or a machine 
operation code, the new definition overrides the previous use of 
the symbol. The same is true if the specified operation code 
has been defined earlier in the program as a macro, or is the 
operation code of a library macro. 

The operand field in a prototype statement allows you to specify 
positional or keyword parameters. These parameters represent 
the values you can pass from the calling macro instruction to 
the statements within the body of a macro definition. 

The operand field of the macro prototype statement must contain 
o to 240 symbolic parameters separated by commas. They can be 
positional parameters or keyword parameters, or both. 

If no parameters are specified in the operand field and if the 
absence of the operand entry is indicated by a comma preceded 
and followed by one or more blanks, remarks are allowed. 

Chapter 7. How to Prepare Macro Definitions 153 



The following is an example of a prototype statement: 

Name Operation Operand 

&NAME MOVE &TO,&FROM 

Alternative Ways of Coding the Prototype statement 

The prototype statement can be specified in one of the following 
three ways: 

• The normal way, with all the symbolic parameters preceding 
any remarks 

• An alternative way, allowing remarks for each parameter 

• A combination of the first two ways 

The following examples illustrate (1) the normal statement 
format, (2) the alternative statement format, and (3) a 
combination of both statement formats. 

Name Operation operand Remarks 

NAMEl OPI &OPERANDl,&OPERAND2,&OPERAN X 
D3 THIS IS THE NORMAL X 
STATEMENT FORMAT 

'NAME2 OP2 &OPERANDl, THIS IS THE Al X 
&OPERAND2 TERNA X 

TE STATEMENT FORMAT 

NAME3 OP3 &OPERANDl, THIS IS A COMB X 
&OPERAND2,&OPERAND3,&OPERAN X 
D4,&OPERANDS INATION OF X 
BOTH STATEMENT FORMATS 

Notes: 

1. Any number of continuation lines are allowed. However, each 
continuation line must be indicated by a nonblank character 
in the column after the end column on the preceding card. 

2. For each continuation line, the operand field entries 
(symbolic parameters) must begin in the continue column; 
otherwise, the whole line and any lines that follow will be 
considered to contain remarks. 

3. The standard value for the continue column is 16, and, for 
the column after the end column, is 72. 

4. A comma is required after each parameter except the last. 

5. One or more blanks is required between the operand and the 
remarks. 

BODY OF A MACRO DEFINITION 

The body of a macro definition contains the sequence of 
statements that constitutes the working part of a macro. You 
can specify: 

1. Model statements to be generated 

2. Processing statements that, for example, can alter the 
content and sequence of the statements generated or issue 
error messages 

154 Assembler H Version 2 Application Programming: language Reference 

C i 
~.~ .. ~ 



o 

o 

MODEL STATEMENTS 

3. Comments statements, some of which are generated and others 
which are not 

4. Conditional assembly instructions to compute results to be 

generated 

The statements in the body of a macro definition must appear 
between the macro prototype statement and the MEND statement of 
the definition. Numbers 1 through 3 in the list above are the 
three main types of statements allowed in the body of a macro. 
The body of a macro definition can be empty, that is, contain no 
statements. 

Note: You can include macro definitions in the body of a macro 
definition. This is explained under "Using a Macro Definition" 
in this chapter. 

Model statements are statements from which assembler language 
statements are generated at preassembly time. They allow you to 
determine the form of the statements to be generated. By 
specifying variable symbols as points of substitution in a model 
statement, you can vary the contents of the statements generated 
from that model statement. You can also use model statements 
into which you substitute values in open code. 

A model statement consists of one or more fields, separated by 
one or more blanks, in columns 1 to 71. The fields are called 
the name, operation, operand, and remarks fields. 

Each field or subfield can consist of: 

• An ordinary character string composed of alphameric and 
special characters 

• A variable symbol as a point of substitution 

• Any combination of ordinary character strings and variable 
symbols to form a concatenated string. 

The statements generated at preassembly time from model 
statements must be valid machine or assembler instructions, but 
must not be conditional assembly instructions. They must obey 
the coding rules described in "Rules for Model Statement Fields" 
on page 1570r they will be flagged as errors at assembly time. 

Examples: 

LABEL L 3,AREA 
LABEL L 3,20(4,5) 
&LABEL L 3,&AREA 
FIELD&A L 3,AREA&C 

VARIABLE SYMBOLS AS POINTS OF SUBSTITUTION 

Values can be substituted for variable symbols that appear in 
the name, operation, and operand fields of model statements; 
thus, variable symbols represent points of substitution. The 
three main types of variable symbol are: 

• Symbolic parameters (positional or keyword) 

• System variable symbols (&SYSLIST, &SYSNDX, &SYSECT, 
&SYSPARM, &SYSDATE, &SYSLOC, and &SYSTIME) 

• SET symbols (global or local SETA, SETB, or SETC symbols) 

Chapter 7. How to Prepare Macro Definitions 155 



Examples of subscripted variable symbols: 

&PARAM(3) 
&SYSLIST(1,3) 
&SYSLIST(2) 
&SETA(lO) 
&SETC(lS) 

Note: Symbolic parameters, SET symbols, and the system variable 
symbol, &SYSLIST, can all be subscripted. The remaining system 
variable symbols (&SYSNDX, &SYSECT, &SYSPARM, &SYSDATE, &SYSLOC, 
and &SYSTIME) cannot be subscripted. 

LISTING OF GENERATED FIELDS 

The different fields in a macro-generated statement or a 
statement generated in open code appear in the listing in the 
same column as they are coded in the model statement, with the 
following exceptions: 

• If the substituted value in the name or operation field is 
too large for the space available, the next field will be 
moved to the right with one blank separating the fields. 

• If the substituted value in the operand field causes the 
remarks field to be displaced, the remarks field is written 
on the next line, starting in the column where it is coded 
in the model statement. 

• If the value substituted in the operation field of a 
macro-generated statement contains leading blanks, the 
blanks are ignored. 

• 

• 

If the value substituted in the operation field of a model 
statement in open code contains leading blanks, the blanks 
will be used to move the field to the right. 

If the value substituted in the operand field contains 
leading blanks, the blanks will be used to move the field to 
the right. 

• If the value substituted contains trailing blanks, the 
blanks are ignored. 

RULES FOR CONCATENATION 

If a symbolic parameter in a model statement is immediately 
preceded or followed by other characters or another symbolic 
parameter, the characters that correspond to the symbolic 
parameter are combined in the generated statement with the other 
characters or the characters that correspond to the other 
symbolic parameter. This process is called concatenation. 

When variable symbols are concatenated to ordinary character 
strings, the following rules apply to the use of the 
concatenation character (a period). The concatenation character 
is mandatory when: 

(1) An alphameric character is to follow a variable symbol. 

(2) A left parenthesis that does not enclose a subscript is 
to follow a variable symbol. 

(3-4) A period (.) is to be generated. Two periods must be 
specified in the concatenated string following a variable 
symbol. 

The concatenation character is not required when: 

(5) An ordinary character string precedes a Nariable symbol. 

156 Assembler H Version 2 Application Programming: language Reference 

o 

(.--~ 
-~ 

o 



-

o 

o 

(6) A special character, except a left parenthesis or a 
period, is to follow a variable symbol. 

\01 I(lllt:: ~Un"'CI\.IIt::J1C1\'IU" "'"C1I·CI~"-=' Inu~ .. "y ... "" ........ __ .... __ ......... _ •• _ 

variable symbol and its subscript; otherwise, the 
characters will be considered a concatenated string and 
not a subscripted variable symbol. 

Figure 39 on page 158, in which the circled numbers correspond 
to the numbers in the above list, gives the rules for 
concatenating variable symbols to ordinary character strings. 

RULES FOR HODEL STATEMENT FIELDS 

The fields that can be specified in model statements are the 
same fields that can be specified in an ordinary assembler 
language statement. They are the name, operation, operand, and 
remarks fields. It is also possible to specify a 
continuation-indicator field, an identification-sequence field, 
and a field before the begin column, if the appropriate ICll 
instruction has been specified. Character strings in the last 
three fields (in the standard format only, columns 72 through 
80) are generated exactly as they appear in the model statement, 
and no values are sUbstituted for variable symbols. 

Model statements must have an entry in the operation field, and, 
in most cases, an entry in the operand field in order to 
generate valid assembler language instructions. 

NAME FIELD: The entries allowed in the name field of a model 
statement, before generation, are given below. 

Blank 
Ordinary symbol 
Sequence symbol 
Variable symbol 
Any combination of variable symbols and other character 
strings concatenated together 

The generated result must either be a blank or a valid ordinary 
symbol. 

Variable symbols must not be used to generate comments statement 
indicators (* or .*). 

Note: Restrictions on the name entry are further specified 
where each individual assembler language instruction is 
described in this manual. 

Chapter 7. How to Prepare Macro Definitions 157 



Concatenated 
String 

&FIELD.A8 
&FIELDA 

• 

Values to be 
Substituted 

Variable Value 
symbol 

&FIELD 
&FIELDA 

AREA 
SUM 

Generated 
Result 

AREAA 
SUM 

& DISP. (&BASE) &DISP 
&BASE 

100 
10 

100(10) 

DC 

DC 

DC 

I Concatenation character is not generatedJ 

D' & INT .. &FRACT' &INT 99 
'--' 88 • &FRACT 

DC 

D ' & INT&FRACT ' DC D'9988' • 
D' &INT. &FRACT' , DC D'9988' 

optional 

1 Concatenation character is not generated I 

• FIELD&A 
&A+&B*3-D -

&A 
&A 
&B 

A 
A 
B 

FIELDA 
A+B*3-D 

&A&B AB • 
&SYM(\&SUBSCR)} &SUBSCR 10 { 

&SYM(10) ENTRY ENTRY • 
Figure 39. Rules for Concatenation 

158 Assembler H Version 2 Application Programming: language Reference 

o 



o 

0·· 
.~ 

Any machine instruction 

A macro instruction 

The following assembler instructions: 

AMODE 
CCW 
CCWO 
CCWl 
CNOP 
COM 
COPY 
CSECT 
CXD 
DC 
DROP 
DS 

DSECT 
DXD 
EJECT 
END 
ENTRY 
EQU 
EXTRN 
ISEQ 
lTORG 
OPSYN 
ORG 
POP 

PRINT 
PUNCH 
PUSH 
RMODE 
REPRO 
SPACE 
START 
TITLE 
USING 
WXTRN 
MEXITI 
MNOTEI 

1 The MNOTE and MEXIT statements are not model 
statements; they are described in "Chapter 7. How to 
Prepare Macro Definitions." 

A variable symbol 

A combination of variable strings concatenated together 

Operation code ICTl is not allowed inside a macro definition. 
The MACRO and MEND operation codes are not allowed in model 
statements; they are used only for delimiting macro definitions. 

If the REPRO operation code is specified in a model statement, 
no substitution is performed for the variable symbols in the 
statement line following the REPRO statement. Variable symbols 
can be used alone or as part of a concatenated string to 
generate operation codes for: 

• Any machine instruction, or 

• Any assembler instruction listed above, except COPY, ISEQ, 
REPRO, and MEXIT. 

The generated operation code must not be an operation code for 
the following (or their OPSYN equivalents): 

• A macro instruction 

• A conditional assembly instruction 

• The following assembler instructions: COPY, ICTl, ISEQ, 
MACRO, MEND, MEXIT, and REPRO 

OPERAND FIELD: The entries allowed in the operand field of a 
model statement, before generation, are given below: 

Blank (if valid) 
An ordinary symbol 
A character string, combining alphameric and special 
characters (but not variable symbols) 

A variable symbol 
A combination of variable symbols and other character 
strings concatenated together 

The allowable results of generation are a blank (if valid) and a 
character string that represents a valid assembler or machine 
instruction operand field. 

Chapter 7. How to Prepare Macro Definitions 159 



SYMBOLIC PARAMETERS 

Note: Variable symbols must not be used in the operand field of 
a COpy, ICTl, or ISEQ instruction. 

REMARKS FIELD: The remarks field of a model statement can 
contain any combination of characters. No substitution is 
performed for variable symbols appearing in the remarks field. 
Only generated statements will be printed in the listing. 

Note: One or more blanks must be used in a model statement to 
separate the name, operation, operand, and remarks fields from 
each other. Blanks cannot be generated between fields in order 
to create a complete assembler language statement. The 
exception to this rule is that a combined operand-remarks field 
can be generated with one or more blanks to separate the two 
fields. 

Symbolic parameters allow you to pass values into the body of a 
macro definition from the calling macro instruction. You 
declare these parameters in the macro prototype statement. They 
can serve as points of substitution in the body of the macro 
definition and are replaced by the values assigned to them by 
the calling macro instruction. 

By using symbolic parameters with meaningful names, you can 
indicate the purpose for which the parameters (or substituted 
values) are used. 

Symbolic parameters must be valid variable symbols. A symbolic 
parameter consists of an ampersand followed by an alphabetic 
character and from 0 to 61 alphameric characters. 

The following are valid symbolic parameters: 

&READER 
&A23456 
&X4F2 

&lOOP2 
&N 
&$4 

The following are invalid symbolic parameters: 

CARDA REA 
&256B 
&BCD~34 

&IN AREA 

(first character is not an ampersand) 
(first character after ampersand is not a letter) 
(contains a special character other than initial 
ampersand) 
(contains a special character [the blank] other than 
initia~ ampersand) 

Symbolic parameters have a local scope; that is, the value they 
are assigned only applies to the macro definition in which they 
have been declared. 

The value of the parameter remains constant throughout the 
processing of the containing macro d~finition for every calion 
that definition. 

Note: Symbolic parameters must not be multiply defined or 
identical to any other variable symbols within the given local 
scope. This applies to the system variable symbols described in 
"System Variable Symbols" in this chapter, and to local and 
global SET symbols described in "SET Symbols" on page 195. 

The two kinds of symbolic parameters are: 

• Positional parameters 

• Keyword parameters 

Each positional or keyword parameter used in the body of a macro 
definition must be declared in the prototype statement. 

160 Assembler H Version 2 Application Programming: language Reference 

o 

o 



n 

o 

o 

The follo~Jing is an example of a macro definition with symbolic 
parameters. 

Header 
Prototype 
Model 
Model 
Model 
Model 
Trailer 

&NAME 
&NAME 

MACRO 
MOVE 
ST 
L 
ST 
L 
MEND 

&TO,&FROM 
2,SAVE 
2,&FROM 
2,&TO 
2,SAVE 

In the following macro instruction that calls the above macro, 
the characters HERE, FIELDA, and FIELDB of the MOVE macro 
instruction correspond to the symbolic parameters &NAME, &TO, 
and &FROM, respectively, of the MOVE prototype statement. 

Name operation operand 

HERE MOVE FIELDA,FIELDB 

If the preceding macro instruction were used in a source 
program, the following assembler language statements would be 
generated: 

Name Operaticn Operand 

HERE ST 2,SAVE 
l 2,FIElDB 
ST 2,FIElDA 
L 2,SAVE 

POSITIONAL PARAMETERS 

You should use a positional parameter in a macro definition if 
you want to change the value of the parameter each time you call 
the macro definition. This is because it is easier to supply 
the value for a positional parameter than for a keyword 
parameter. You only have to write the value you want the 
parameter to have in the proper position in the operand of the 
calling macro instruction. 

For keyword parameters (described below), you must write the 
entire keyword and the equal sign that precedes the value to be 
passed. However, if you need a large number of parameters, you 
should use keyword parameters. The keywords make it easier to 
keep track of the individual values you must specify at each 
call by reminding you which parameters are being given values. 

The general specifications for symbolic parameters, described in 
"Symbols" on page 21, also apply to positional parameters. Note 
that the specification for each positional parameter declared in 
the prototype statement definition must be a valid variable 
symbol. Values are assigned to the positional parameters by the 
corresponding positional operands specified in the macro 
instruction that calls the definition. 

The general specifications for symbolic parameters also apply to 
positional parameters. Note that the specification for each 
positional parameter declared in the prototype statement 
definition must be a valid variable symbol. Values are assigned 
(see (1) in Figure 40 on page 162) to the positional parameters 
by the corresponding positional operands (see (2) in Figure 40) 
specified in the macro calls the definition. 

Chapter 7. How to Prepare Macro Definitions 161 



Macro 
Definition 

Macro 
Instruction 

Source Module 

MACRO 

POSPAR &Pl,&P2,&P3 

I----MEN_D -0-0-0------+ 
START 

POSPAR ONE, TWO, THREE • 
END 

Figure 40. Positional Parameters 

KEYWORD PARAMETERS 

You should use a keyword parameter in a macro definition for a 
value that changes infrequently. By specifying a standard 
default value to be assigned to the keyword parameter, you can 
omit the corresponding keyword operand in the calling macro 
instruction. 

Keyword parameters are also convenient because: 

• You can specify the corresponding keyword operands in any 
order in the calling macro instruction. 

• The keyword, repeated in the operand, reminds you which 
parameter is being given a value and for which purpose the 
parameter is being used. 

162 Assembler H Version 2 Application Programming: Language Reference 

(-"-\, 
• __ 1 

"~ 



n 

o 

0 "-' 
" 

The general specifications for symbolic parameters, described in 
"Symbols" on page 21, also apply to keyword parameters. Each 
keyword parameter must be in the format shown below: 

where 

&KEYWORD is the variable symbol. 
= is an equals sign. 
DEFAULT is the standard value. 

To give the above keyword parameter a value, you would code 

KEYWORD=VALUE 

for the keyword operand when you call the macro. 

Note: A null character string can be specified as the standard 
value of a keyword parameter, and will be generated if the 
corresponding keyword operand is omitted. 

The general specifications for symbolic parameters also apply to 
keyword parameters. Each keyword parameter must be in the 
format shown in Figure 41 on page 164. 

The actual parameter must be a valid variable symbol (see (1) in 
Figure 41). 

A value is assigned to a keyword parameter by the corresponding 
keyword operand (see (2) in Figure 41) through the name of the 
keyword as follows: 

• 

• 

If the corresponding keyword operand is omitted (see (3) in 
Figure 41), the standard value (see (4) in Figure 41) 
specified in the prototype statement becomes the value of 
the parameter for that call. 

If the corresponding keyword operand is specified (see (5) 
in Figure 41), the value after the equal sign overrides the 
standard value in the prototype and becomes the value of the 
parameter (see (6) in Figure 41) for that call. 

COMBINING POSITIONAL AND KEYWORD PARAMETERS 

By using positional and keyword parameters in a prototype 
statement, you combine the benefits of both. You can use 
positional parameters in a macro definition for passing values 
that change frequently, and keyword parameters for passing 
values that do not change often. 

Positional and keyword parameters can be mixed freely in the 
macro prototype statement (see (1) in Figure 42 on page 165). 
The same applies to the positional and keyword operands of the 
macro instruction (see (2) in Figure 42). Note, however, that 
the order in which the positional parameters appear (see (3) in 
Figure 42) determines the order in which the positional operands 
must appear. Interspersed keyword parameters or operands (see 
(4) in Figure 42) do not affect this order. 

SUBSCRIPTED SYMBOLIC PARAMETERS 

Subscripted symbolic parameters must be coded in the format: 

&PARAM(subscript) 

where &PARAM is a variable symbol and the subscript is an 
arithmetic expression. The subscript can be any arithmetic 
expression allowed in the operand field of a SETA instruction 
(arithmetic expressions are discussed in "SETA-Set Arithmetic" 
on page 213. The arithmetic expression can contain subscripted 

Chapter 7. How to Prepare Macro Definitions 163 



/ Variable Symbol 

/8 / Equal Sign Format: 

r-----''----, L-,( Sta,ndard Value 

&IKEYWORDI= DEFAULT 

I KEYWORD I = VALUE • Example: 
Source Module 

MACRO 

Keyword Parameter 
Specification 

Keyword Operand 
Specification 

Prototype KEYS &KEYWORD=ABC,&KEY2=(A,B,C) 

MEND 

START o 

Figure 41. Keyword Parameters 

Standard value of 
KEYWORD 

Standard value of 
KEY2 

variable symbols. Subscripts can be nested up to five levels of 
nesting. 

The value of the subscript must be greater than or equal to one. 
The subscript indicates the position of the entry in the sublist 
that is specified as the value of the subscripted parameter 
(sublists as values in macro instruction operands are fully 
described in "Sublists in Operands" on page 185). 

164 Assembler H Version 2 Application Programming: Language Reference 

,.,\ 
V 

(J 



n 

o 

o 

Source Module 

&Pl ,'&KEyi=A, &P2, &P3, &P4, &KEY2'=, &PS 

MEND 

START 

MIX !<EYl=B,ONE,TWO,THREE,KEY2=33,FOUR,FIVE • 
END 

Figure 42. Combining Positional and Keyword Parameters 

PROCESSING STATEMENTS 

CONDITIONAL ASSEMBLY INSTRUCTIONS 

Conditional assembly instructions allow you to determine at 
preassembly time the content of the generated statements and the 
sequence in which they are generated. The instructions and 
their functions are listed below: 

Conditional Assembly Function Performed 

GBLA, GBLB, GBLC Declaration of initial values of 
LCLA, LCLB, LCLC variable symbols (global and local 

SET symbol s) 

SETA, SETB, SETC Assignment of values to variable 
symbols (SET symbols) 

AIF Conditional branch (based on logical 
test) 

AGO Unconditional branch 

ANOP Branch to next sequential instruction 
(no operation) 

ACTR Setting loop counter 

Conditional assembly instructions can be used both inside macro 
definitions and in open code. They are described in "Chapter 9. 
How to Write Conditional Assembly Instructions." 

Chapter 7. How to Prepare Macro Definitions 165 



INNER "ACRO INSTRUCTIONS 

COpy INSTRUCTION 

"NOTE INSTRUCTION 

Macro instructions can be nested inside macro definitions, 
allowing you to call other macros from within your own 
definition. 

The COPY instruction, inside macro definitions, allows you to 
copy into the macro definition any sequence of statements 
allowed in the body of a macro definition. These statements 
become part of the body of the macro before macro processing 
takes place. You can also use the COPY instruction to copy 
complete macro definitions into a source module. 

The specifications for the COpy instruction, which can also be 
used in open code, are described in "COPY--Copy Predefined 
Source Coding" on page 138. 

You can use the MNOTE instruction to generate your own error 
messages or display intermediate values of variable symbols 
computed at preassembly time. 

The MNOTE instruction can be used inside macro definitions or in 
open code, and its operation code can be created by 
substitution. The MNOTE instruction causes the generation of a 
message that is given a statement number in the printed listing. 

The format of this instruction is: 

Name Operation operand 

A sequence MNOTE Four options: 
symbol or blank n,'message' or 

, 'message' or 
*,'message' or 
, 'message' 

The first two options are error messages; the last two are 
comments. The n stands for a severity code. The rules for 
specifying the contents of the severity code subfield are: 

1. The severity code can be specified as any arithmetic 
expression allowed in the operand field of a SETA 
instruction. The expression must have a value in the range 
o through 255. 

Example: 

MNOTE 2,'ERROR IN SYNTAX' 

where the generated result is: 

2,ERROR IN SYNTAX 

2. If the severity code is omitted, but the comma separating it 
from the message is present, the assembler assigns a default 
value of 1 as the severity code. 

Example: 

MNOTE ,'ERROR, SEV l' 

where the generated result is: 

,ERROR, SEV 1 

166 Assembler H Version 2 Application Programming: Language Reference 

o 



n 

o 

HEXIT INSTRUCTION 

o 

3. An asterisk in the severity code subfield causes the message 
and the asterisk to be generated as a comments statement. 

MNOTE *,'NO ERROR' 

where the generated result is: 

*,NO ERROR 

4. If the entire severity code subfield is omitted, including 
the comma s~parating it from the message, the assembler 
generates the message as a comments statement. 

Example: 

MNOTE 'NO ERROR' 

where the generated result is: 

NO ERROR 

Notes: 

1. An MNOTE instruction causes a message to be printed, if the 
current PRINT option is ON, even if the PRINT NOGEN option 
is specified. 

2. The statement number of the message generated fr~m an MNOTE 
instruction with a severity code is listed among any other 
error messages for the current source module. However, the 
message is printed only if the severity code specified is 
greater than or equal to the severity code 'nnn' in the 
assembler option, FLAGCnnn), specified when the assembler is 
invoked. 

3. The statement number of the comments generated from an MNOTE 
instruction without a severity code is not listed among 
other error messages. 

Any combination of up to 256 characters enclosed in single 
quotation marks can be specified in the message subfield. The 
rules that apply to this character string are as follows and are 
illustrated in Figure 43 on page 168. 

• Variable symbols are allowed (see (1) in Figure 43). 

Note: Variable symbols can have a value that includes even 
the enclosing single quotation marks. 

• Two ampersands (see (2) in Figure 43) and two single 
quotation marks (see (3) in Figure 43) are needed to 
generate an ampersand or a single quotation mark. If 
variable symbols have ampersands or single quotation marks 
as values, the values must be coded as two ampersands or two 
single quotation marks (see (4) in Figure 43). 

Note: Any remarks for the MNOTE instruction statement must be 
separated by one or more blanks from the single quotation mark 
that ends the message. 

The MEXIT instruction allows you to provide an exit for the 
assembler from any point in the body of a macro definii:ion. The 
MEND instruction provides an exit only from the end of a macro 
definition (see "MEND-Macro Definition Trailer" on page 152 for 
details>. 

Chapter 7. How to Prepare Macro Definitions 167 



Severity Code 

MNOTE Operand 
Value of 
Variable Symbol 

Generated 
Result 

3,'THIS IS A MESSAGE' 3,THIS IS A MESSAGE 

3 , '!:~~-&&A IS &A' 

/ • 3 , '11 '& AREA' 

3, 'DOUBLE &AMPS' 

3/DOUBLE L&APOS&AREA' 

3, 'MESSl1.GE STOP' 

3 'MESSAGE 

Invalid remarks, 
must be separated 
from operand by 
one or more blanks 

, , 
&PARAM=ERROR 3,ERROR 

&A=10 3,VALUE OF &A IS 10 

&AREA=FIELDI 3,L'FIELDI 

&AMPS, 
&APOS=' , 
&AREA=FIELDI 

3,DOUBLE & 

3,DOUBLE L'FIELDI 

3,MESSAGE STOP RMRKS 

Figure 43. Rules for MNOTE Character Strings 

168 Assembler H Version 2 Application Programming: language Reference 



n 

o 

o 

The MEXIT instruction statement can be used only inside macro 
definitions. The format of this instruction is: 

A sequence MEXIT Not required 
symbol or blank 

The MEXIT instruction causes the assembler to exit from a macro 
definition to the next sequential instruction (see (1) in 
Figure 44 on page 170) after the macro instruction that calls 
the definition. (This also applies to nested macro 
instructions, which are described in "Nesting in Macro 
Definitions" on page 191.) 

AREAD--ASSIGN CHARACTER STRING VALUE 

You use the AREAD instruction to assign t~ a SETC symbol the 
character string value of a statement that is placed immediately 
after a macro instruction. AREAD functions in much the same way 
as symbolic parameters, but instead of supplying your input to 
macro processing as part of the macro instruction, you add the 
values in the form of whole SO-character input records that 
follow immediately after the macro instruction. Any number of 
successive statements can be read into the macro for processing. 

The format of the AREAD instruction is: 

Name Operation operand 

Any SETC symbol AREAD NOSTMTINOPRINT 

The SETC symbol in the name field may be subscripted. When the 
assembler encounters the AREAD statement during the processing 
of a macro instruction, it reads the source statement following 
the macro instruction and assigns an SO-character string to the 
SETC symbol in the name field. In the case of nested macros, it 
reads the statement following the outermost macro instruction. 

Note: The AREAD instruction can only be used inside macro 
definitions. 

If no operand is specified, the statement to be read by AREAD is 
printed in the listing and assigned a statement number. If 
NOSTMT is specified in the operand, the statement is printed, 
but not given any statement number. If NOPRINT is specified, 
the statement does not appear in the listing, and no statement 
number is assigned to it. 

Repeated AREAD instruction statements read successive 
statements. 

The records read by the AREAD instruction can be in code brought 
in with the COPY instruction, if the macro instruction appears 
in such code. If no more records exist in the code brought in 
by the COPY instruction, subsequent statements are read from the 
ordinary input stream. 

Chapter 7. How to Prepare Macro Definitions 169 



MACRO 

EXITS 

A 
B 
C 

MEXIT 

D 
E 
F 

MEND 

START 0 

EXITS 

Figure 44. MEXIT Operation 

For example: 

MACRO 
MACI 
· &VAL AREAD 

&VALI AREAD 
· MEND 
CSECT 
· MACI 

THIS IS THE STATEMENT TO BE PROCESSED FIRST 
THIS IS THE SECOND STATEMENT FOR THE SECOND AREAD 

· END 

170 Assembler H Version 2 Application Programming: Language Reference 

~ 
V 



n 

o 

o 

COMMENTS STATEMENTS 

Ordinary comments statements allow you to make descriptive 
remarks about the generated output from a macro definition. 
Ordinary comments statements can be used in macro definitions 
and in open code. 

A comments statement consists of an asterisk in the begin column 
followed by any character string. The comments statement is 
used by the assembler to generate an assembler language comments 
statement, just as other model statements are u~ed by the 
assembler to generate assembler statements. No variable symbol 
substitution is performed. 

INTERNAL MACRO COMMENTS STATEMENTS 

You can also write internal macro comments in the body of a 
macro definition to describe the operations performed at 
preassembly time when the macro is processed. 

Internal macro comments statements can be used only inside macro 
definitions. They may appear anywhere in a macro definition. 
An example of their correct use is given below: 

Begin column (standard value): 

Column 1 must contain a period (.). 
Column 2 must contain an asterisk (*). 
Column 3 may contain the start of any character string. 

Note: 
Internal macro comments will not be generated. 

No values are substituted for any variable symbols that are 
specified in internal macro comments statements. 

SYSTEM VARIABLE SYMBOLS 

System variable symbols are variable symbols whose values are 
set by the assembler according to specific rules. You can use 
these symbols as points of substitution in model statements and 
conditional assembly instructions. 

System variable symbols (&SYSDATE, &SYSPARM, and &SYSTIME) can 
be used as points of substitution both inside macro definitions 
and in open code. &SYSlOC gives you the name of the location 
counter in effect when the macro instruction appears. The 
remaining system variable symbols (&SYSECT, &SYSLOC, &SYSLIST, 
and &SYSNDX) can be used only inside macro definitions. All 
system variable symbols are subject to the same rules of 
concatenation and substitution as other variable symbols. 

System variable symbols must not be used as symbolic parameters 
in the macro prototype statement. Also, they must not be 
declared as SET symbols. 

The assembler assigns read-only values to system variable 
symbols; they cannot be changed by using the SETA, SETB, or SETC 
instruction. 

SCOPE OF SYSTEM VARIA~LE SYMBOLS: The system variable symbols 
(&SYSDATE, &SYSPARM, and &SYSTIME) have a global scope. This 
means that they are assigned a read-only value for an entire 
source module, a value that is the same throughout open code and 
inside any macro definitions called. 

The system variable symbols (&SYSECT, &SYSLOC, &SYSLIST, and 
&SYSNDX) have a local scope. They are assigned a read-only 

Chapter 7. How to Prepare Macro Definitions 171 



· value each time a macro is called, and have that value only 
within the expansion of the called macro. 

&SYSDATE--Hacro Instruction Date 

You can use &SYSDATE to obtain the date on which your source 
module is assembled. 

&SYSDATE is assigned a read-only value of the following format: 

mm/dd/yy (8-character string) 

where: 

mm gives the month. 
dd gives the day. 
yy gives the year. 

Example: 

11/25/82 

Note: 
This date corresponds to the date printed in the page 
heading of listings and remains constant for each assembly. 

Note: The value of the type attribute of &SYSDATE (T'&SYSDATE) 
is always U, and the value of the count attribute (K'&SYSDATE) 
is always 8. 

&SYSECT--current Control section 

You can use &SYSECT in a macro definition to generate the name 
of the current control section. The current control section is 
the control section in which the macro instruction that calls 
the definition appears. 

The local system variable symbol &SYSECT is assigned a read-only 
value each time a macrQ definition is called. 

The value assigned is the symbol that represents the name of the 
current control section from which the macro definition is 
called. Note that it is the control section in effect when the 
macro is called. A control section that has been initiated or 
continued by substitution does not affect the value of &SYSECT 
for the expansion of the current macro. However, it does affect 
&SYSECT for a subsequent macro call. Nested macros cause the 
assembler to assign a value to &SYSECT that depends on the 
control section in force inside the outer macro when the inner 
macro is called. 

Notes: 

1. The control section whose name is assigned to &SYSECT can be 
defined by a START, CSECT, DSECT, or COM instruction. 

2. The value of the type attribute of &SYSECT (T'&SYSECT) is 
always U, and the value of the count attribute (K'&SYSECT) 
is equal to the number of characters assigned as a value to 
&SYSECT. 

3. Throughout the use of a macro definition, the value of 
&SYSECT may be considered a constant, independent of any 
CSECT or DSECT statements or inner macro instructions in 
that definition. 

172 Assembler H Version 2 Application Programming: language Reference 



n 

0 

o 

The next example illustrates these rules. In it, statement 8 is 
the last CSECT, DSECT, or START statement processed before 
st~tem~~! .. ~_!~ ~rocessed. T~erefore,_~~!~~CT is.a:ssign~d_the 

6. 

Statement 3 is the last CSECT, DSECT, or START statement 
processed before statement 4 is processed. Therefore, &SYSECT 
is assigned the value CSOUT1 for macro instruction INNER in 
statement 4. CSOUT1 is substituted for &SYSECT when it appears 
in statement 2. 

statement 1 is used to generate a CSECT statement for statement 
4. This is the last CSECT, DSECT, or START statement that 
appears before statement 5. Therefore, &SYSECT is assigned the 
value INA for macro instruction INNER in statement 5. INA is 
substituted for &SYSECT when it appears in statement 2. 

1 
2 

3 

4 
5 
6 

7 

8 

9 
10 

Name 

&INCSECT 

CSOUTl 

MAINPROG 

MAINPROG 

CSOUT1 

INA 

INB 

operation operand 

MACRO 
INNER &INCSECT 
CSECT 
DC A(&SYSECT) 
MEND 

MACRO 
OUTERl 
CSECT 
DS 100C 
INNER INA 
INNER INS 
DC A(&SYSECT) 
MEND 

MACRO 
OUTER2 
DC A(&SYSECT) 
MEND 

CSECT 
DS 200C 
OUTER1 
OUTER2 

CSECT 
OS 200C 
CSECT 
DS 100C 
CSECT 
DC A(CSOUT1) 
CSECT 
DC A(INA) 
DC A(MAINPROG) 
DC ACINS) 

Statement 1 is used to generate a CSECT statement for statement 
5. This is the last CSECT, DSECT, or START statement that 
appears before statement 10. Therefore, &SYSECT is assigned the 
value INS for macro instruction OUTER2 in statement 10. INB is 
substituted for &SYSECT when it appears in statement 7. 

&SYSLIST--Hacro Instruction Operand 

You can use &SYSLIST instead of a positional parameter inside a 
macro definition; for example, as a point of substitution. By 
varying the subscripts attached to &SYSLIST, you can refer to 
any sublist entry in a macro call, or any positional operands in 
a macro call. You can also r~fer to positional operands for 

Chapter 7. How to Prepare Macro Definitions 173 



which no corresponding position~l parameter is specified in the 
macro prototype statement. 

The local system variable symbol &SYSlIST is assigned a 
read-only value each time a macro definition is called. 
&SYSlIST refers to the complete list of positional operands 
specified in a macro instruction. &SYSlIST does not refer to 
keyword operands. However, &SYSlIST cannot be specified as 
&SYSlIST alone. One of the two following forms must be used as 
a point of substitution: 

1. &SYSlISTCn) may be used to refer to the nth positional 
operand 

2. If the nth operand is a sublist, then &SYSlIST(n,m) may be 
used to refer to the mth operand in the sublist. 

The subscripts nand m can be any arithmetic expression allowed 
in the operand of a SETA instruction. The subscript n must be 
greater than or equal to O. The subscript m must be greater 
than or equal to 1. 

When referring to multilevel (nested) sublists in operands of 
macro instructions, reference to elements of inner sublists can 
be made using the appropriate number of subscripts for &SYSlIST. 

The examples below show the values assigned to &SYSlIST 
according to the value of its subscripts nand m. 

174 Assembler H Version 2 Application Pr'ogramming: language Reference 



n 

0 

o 

Macro instruction: 

Point of substitution Value 
in Macro Definition Substituted 

&SYSLIST(2) TWO 
&SYSLIST(3,2) 4 

(1) &SYSLIST(4) Null 

(2) &SYSLIST(9) Null 

(3) &SYSLIST(3,3) Null 

(4) &SYSLIST(3,5) Null 

(5) &SYSLISTC2,1) TWO 
&SYSLIST(2,2) Null 

(6) &SYSLISTCO) NAME 
&SYSLIST(3) (3,4,,6) 

Notes: 

(1) 
(2) 

(3) 

(4) 

(5) 

(6) 

If the position indicated by n refers to an omitted 
operand, or refers past the end of the list of 
positional operands specified, the null character 
string is substituted for &SYSLISTCn). 
If the position (in a sublist) indicated by the 
second subscript, m, refers to an omitted entry, 
or refers past the end of the list of entries 
specified in the sublist referred to by the first 
subscript, n, the null character string is sub
stituted for &SYSLISTCn,m). 
Further, if the nth positional operand is not a 
sublist, &SYSLISTCn,l) refers to the operand but 
&SYSLIST(n,m), where m is greater than 1, will 
cause the null character string to be substituted. 
If the value of subscript n is 0, then &SYSLISTCn) 
is assigned the value specified in the name field 
of the macro instruction, except when it is a 
sequence symbol. 

I 

Attribute references can be made to the previously described 
forms of &SYSLIST. The attributes will be the attributes 
inherent in the positional operands or sublist entries to which 
you refer. However, the number attribute of &SYSLIST 
(N'&SYSLIST) is different from the number attribute described in 
"Data Attributes." One of two forms (N'&SYSLIST or 
N'&SYSLIST(n» can be used for the number attribute: 

• To indicate the number of positional operands specified in a 
call, you use the form N'tSYSLIST. 

• To indicate the number of sublist entries that have been 
specified in a positional operand, you use the form 
N'&SYSLISTCn). 

Notes: 

1. For N'&SYSLIST, positional operands are counted if 
specifically omitted by specifying the comma that would 
normally have followed the operand. 

Chapter 7. How to Prepare Macro Definitions 175 



2. For N'&SYSLISTCn), sublist entries are counted if 
specifically omitted by specifying the comma that would 
normally have followed the entry. 

3. If the operand indicated by n is not a sublist, 
N'&SYSlISTCn) is 1. If it is omitted, N'&SYSlIST(n) is O. 

Examples: 

Macro Instruction 

MACLST 
MACLST 
MACLST 
MACLST 
MAClST 
MACLST 
MACLST 

MACSUB 
MACSUB 
MACSUB 
MACSUB 
MACSUB 
MACSUB 
MACSUB 

1,2,3,4 
A,B"D,E 
,A,B,C,D 
(A,B,C),(D,E,F) 

KEY1=A,KEY2=B 
A,B,KEYl=C 

A,(1,2,3,4,5),B 
A,C1,,3,,5),B 
A,(,2,3,4,S),B 
A,B,C 
A,. ,. C 
A,KEY=(A,B,C) 

&SYSNDX--Macro Instruction Index 

N'&SYSLIST 

4 
5 
5 
2 
o 
o 
2 

N'&SYSLIST(21 

5 
5 
5 
1 
o 
o 
o 

You can attach &SYSNDX to the end of a symbol inside a macro 
definition to generate a unique suffix for that symbol each time 
you call the definition. Although the same symbol is generated 
by two or more calls to the same definition, the suffix provided 
by &SYSNDX produces two or more unique symbols. Thus you avoid 
an error being flagged for multiply defined symbols. 

The local system variable symbol &SYSNDX is assigned a read-only 
value each time a macro definition is called from a source 
module. 

The value assigned to &SYSNDX is a 4-digit number, starting at 
0001 for the first macro called by a program. It is incremented 
by one for each subsequent macro call (including nested macro 
ca 11 s) . 

Notes: 

1. &SYSNDX does not generate a valid symbol, and it must: 

• Follow the symbol to which it is concatenated 

• Be concatenated to a symbol containing 4 characters or 
less 

2. The value of the type attribute of &SYSNDX CT'&SYSNDX) is 
always N, and the value of the count attribute (K'&SYSNDX) 
is always 4. 

The following example illustrates the use of &SYSHDX. It is 
assumed that the first macro instruction processed, OUTER1, is 
the 106th macro instruction processed by the assembler. 

176 Assembler H Version 2 Application Programming: Language Reference 



n 

o 

o 

1 

2 
3 

4 

5 
6 

7 
8 

Name 

A&SYSNDX 

&NAME 

&NDXNUM 
&NAME 

B&SYSNDX 

ALPHA 
BETA 

ALPHA 

A0107 

B0106 
BETA 

AI09 

B0108 

operation 

---------
GBlC 
SR 
CR 
BE 
B 
MEND 

MACRO 
OUTER1 
GBlC 
SETC 
SR 
AR 
INNER1 
S 
MEND 

OUTER1 
OUTER1 

SR 
AR 
SR 
CR 
BE 
B 
S 
SR 
AR 
SR 
CR 
BE 
B 
S 

Operand 

&NDXNUM 
2,5 
2,5 
B&NDXNUM 
A&SYSNDX 

&NDXNUM 
'&SYSNDX' 
2,4 
2,6 

2,=F'1000' 

2,4 
2,6 
2,5 
2,5 
B0106 
A0107 
2,=F'1000' 
2,4 
2,6 
2,5 
2,5 
B0108 
A0109 
2,=F'1000' 

Statement 7 1S the 106th macro instruction processed. 
Therefore, &SYSNDX is assigned the number 0106 for that macro 
instruction. The number 0106 is substituted for &SYSNDX when it 
is used in statements 4 and 6. Statement 4 1S used to assign 
the character value 0106 to the SETC symbol &NDXNUM. Statement 
6 is used to create the unique name B0106. 

Statement 5 is the 107th macro instruction processed. 
Therefore, &SYSNDX is assigned the number 0107 for that macro 
instruction. The number 0107 is substituted for &SYSNDX when it 
is used in statements 1 and 3. The number 0106 is substituted 
for the global SETC symbol &NDXNUM in statement 2. 

statement 8 is the lOath macro instruction processed. 
Therefore, each occurrence of &SYSNDX is replaced by the number 
0108. For example, statement 6 is used to create the unique 
name B0108. 

When statement 5 is used to process the lOath macro instruction, 
statement 5 becomes the 109th macro instruction processed. 
Therefore, each occurrence of &SYSNDX is replaced by the number 
0109. For example, statement 1 is used to create the unique 
name A0109. 

&SYSPARM--Source Module Communication 

You can use &SYSPARM to communicate with an assembler source 
module through job control language (JCl). Through &SYSPARM, 
you pass a character string into the source module to be 
assembled from a JCl statement, or from a program that 
dynamically invokes the assembler. Thus, you can set a 
character value from outside a source module and then examine it 

Chapter 7. How to Prepare Macro Definitions 177 



as part of the·source module at preassembly time, during 
conditional assembly processing. 

The global system variable symbol &SYSPARM is assigned a 
read-only value in a JCL statement or in a field set up by a 
program that dynamically invokes the assembler. It is treated 
as a global SETC symbol in a source module except that its value 
cannot be changed. 

Notes: 

1. The largest value that &SYSPARM can hold when you code your 
own procedure is 91 characters, which can be specified by an 
invoking program. However, if the PARM field of the EXEC 
statement is used to specify its value, the PARM field 
restrictions reduce its maximum possible length. 

Note: Under CMS, the option line of the ASSEMBLE command 
cannot exceed 100 characters, thus limiting the number of 
characters you can specify for &SYSPARM. 

2. No values are substituted for variable symbols in the 
specified value; however, double ampersands must be used to 
represent single ampersands in the value. 

Note: Since CMS does not strip ampersands from the variable 
symbol, you need not specify double ampersands for CMS. 

3. Two single quotation marks are needed to represent a single 
quotation mark because the entire PARM field specification 
is enclosed in single quotation marks. 

Note: Since CMS does not strip single quotation marks from 
the variable symbol, you need not specify two single 
quotation marks for CMS. 

4. If SYSPARM is not specified in a JCL statement outside the 
source module, &SYSPARM is assigned a default value of the 
null character string. 

5. The value of the type attribute of &SYSPARM (T'&SYSPARM) is 
always U, while the value of the count attribute 
(K'&SYSPARM) is the number of characters specified for 
SYSPARM in a JCL statement, or in a field set up by a 
program that dynamically invokes the assembler. Two single 
quotation marks and two ampersands count as one character. 

6. CMS parses~he command line, breaking the input into 
8-character tokens; therefore, the SYSPARM option field 
under CMS is limited to an 8-character field. If you want 
to enter larger fields, or if you want to enter parentheses 
or embedded blanks, you must enter the special symbol "1" 
(the question mark symbol) in the option field. When CMS 
encounters this symbol in the command line, it will prompt 
you with the message ENTER SYSPARM:, after which you can 
enter any characters you want up to the option line limit of 
100 characters. The following code is an example of how to 
use the 1 symbol in the SYSPARM field: 

assemble test (object deck sysparm(1) 
ENTER SYSPARM: 
&&am,'bo).fy 

R; 

7. If &SYSPARM is not specifi"ed when you invoke the assembler, 
the system parameter is assigned the value that was 
specified when the assembler was generated (added to your 
system) . 

178 Assembler H Version 2 Application Programming: Language Reference 



o 

o 

o 

&SYSTIME--Macro Instruction Time 

You can use &SYSTIME to obtain the time at which your source 
module is assembled. 

The global system variable symbol &SYSTIME is assigned a 
read-only value in the following format: 

hh.mm (5-character string) 

where: 

hh gives the hours. 
mm gives the minutes. 

Example: 22.15 

Note: 
22.15 corresponds to the time printed in the page 
heading of listings, and remains constant for each assembly. 

Notes: 

1. The value of the type attribute of &SYSTIME (T'&SYSTIME) is 
always U, and the value of the count attribute (K'&SYSTIME) 
is always 5. 

2. For systems without the internal time feature, &SYSTIME is a 
5-character string of blanks. 

&SYSLOo-Loca.tion Counter Name 

You can use &SYSLOC in a macro definition to generate the name 
of the location counter currently in effect. If you have not 
coded a LOCTR instruction between the macro instruction and the 
preceding START, CSECT, DSECT, or COM instruction, the value of 
&SYSLOC is the same as the value of &SYSECT. 

The assembler assigns to the system variable symbol &SYSLOC a 
local read-only value each time a macro definition containing it 
is called. The value assigned is the symbol representing the 
name of the location counter in use at the point where the macro 
is called. 

&SYSLOC can only be used in macro definitions. 

Notes: 

1. The value of the type attribute of &SYSLOC (T'&SYSLOC) is 
always U, and the value of the count attribute (K'&SYSLOC) 
is equal to the number of characters assigned as a value to 
&SYSLOC. 

2. Throughout the use of a macro definition, the value of 
&SYSLOC may be considered a constant. 

Chapter 7. How to Prepare Macro Definitions 179 



CHAPTER 8. HOW TO WRITE MACRO INSTRUCTIONS 

This chapter describes macro instructions: where they can be 
used and how they are specified, including details on the name, 
operation, and operand entries, and what will be generated as a 
result of that macro call. 

The macro instruction provides the assembler with: 

• The name of the macro definition to be processed 

• The information or values to be passed to the ma~ro 
definition 

This information is the input to a macro definition. The 
assembler uses the information either in processing the macro 
definition, or for substituting values into a model statement in 
the definition. 

The output from a macro definition, called by a macro 
instruction, can be: 

• A sequence of statements generated from the model statements 
of the macro for further processing at assembly time 

• Values assigned to global SET symbols 

These values can be used in other macro definitions and in open 
code (see "SET Symbols" on page 195). 

WHERE MACRO INSTRUCTIONS CAN APPEAR 

A macro instruction can be written anywhere in your program, if 
the assembler finds its definition either in a macro library or 
in the source module before it finds the macro instruction. 
However, the statements generated from the called macro 
definition must be valid assembler language instructions and 
allowed where the calling macro instruction appears. A macro 
instruction can be nested inside a macro definition (see 
"Nesting in Macro Definitions" on page 191). 

MACRO INSTRUCTION FORMAT 

The format of a macro instruction is: 

Name Operation Operand 

Any symbol Symbolic o through 240 operands 
or blank operation code separated by commas 

If no operands are specified in the operand field and if the 
absence of the operand entry is indicated by a comma preceded 
and followed by one or more blanks, remarks are allowed. 

The entries in the name, operation, and operand fields 
correspond to entries in the prototype statement of the called 
macro definitiQn (see "ENTRY-Identify Entry-Point Symbol" on 
page 66). 

ALTERNATIVE WAYS OF CODING A MACRO INSTRUCTION 

A macro instruction can be specified in one of the three 
following ways: 

• The normal way, with the operands preceding any remarks 

180 Assembler H Version 2 Application Programming: language Reference 



o 

NAME ENTRY 

o 

OPERATION ENTRY 

o 

• The alternate way, allowing remarks for each operand 

• A combination of the first two ways 

Notes: 

1. Any number of continuation lines are. allowed. However, each 
continuation line must be indicated by a nonblank character 
in the column after the end column of the previous statement 
line (see "Continuation lines" on page 10). 

2. Operands on continuation lines must begin in the continue 
column (column 16), or the assembler assumes that any lines 
that follow contain remarks. 

If any entries are made in the columns before the continue 
column in continuation lines, the assembler issues an error 
message and the whole statement is not processed. 

3. One or more blanks must separate the operand from the 
remarks. 

4. A comma after an operand indicates more operands will 
follow. 

5. The last operand requires no comma following it, but using a 
comma will not cause an error. 

You can use the name entry of a macro instruction: 

• To generate an assembly-time label for a machine or 
assembler instruction, or 

• To provide a conditional assembly label (see "Sequence 
Symbols" on page 208) so that you can branch to the macro 
instruction at preassembly time if you want the called macro 
definition expanded. 

The name entry of a macro instruction can be: 

• An ordinary symbol, such as HERE 

• A variable symbol, such as &A 

• A character string in which a variable symbol is 
concatenated to other characters, such as HERE.&A 

• A blank 

• A sequence symbol, which is never generated, such as .SEQ 

The symbolic operation code you specify identifies the macro 
definition you wish the assembler to process. 

The operation entry for a macro instruction must be a valid 
symbol that is identical to the symbolic operation code 
specified in the prototype statement of the macro definition 
called. 

Note: If a source macro definition with the same operation code 
as a library macro definition is called, the assembler processes 
the source macro definition. 

Chapter 8. How to Write Macro Instructions 181 



OPERAND ENTRY 

positional Operands 

You can code a variable symbol in the operation field of a macro 
instruction if the value of the variable symbol specifies the 
operation code of a library or source macro that has been 
previously defined. Thus, if MAC! has been defined as a macro, 
you can use the following statements to call it: 

&CALl SETC 'MAC!' 
&CAlL 

You can use the operand entry of a macro instruction to pass 
values into the called macro definition. These values can be 
passed through: 

• The symbolic parameters you have specified in the macro 
prototype, or 

• The system variable symbol &SYSLIST if it is specified in 
the body of the macro definition (see "&SYSlIST--Macro 
Instruction Operand" on page 173). 

The two types of operands allowed ;n a macro instruction are the 
positional and keyword operands. You can specify a sublist with 
multiple values in both types of operands. Special rules for 
the various values you can specify in operands are also given 
below. 

You can use a positional operand to pass a value into a macro 
definition through the corresponding positional parameter 
declared for the definition. You should declare a positional 
parameter in a macro definition when you wish to change the 
value passed at every call to that macro definition. 

You can also use a positional operand to pass a value to the 
system variable symbol &SYSLIST. If &SYSLIST, with the 
appropriate subscripts, is specified in a macro definition, you 
do not need to declare positional parameters in the prototype 
statement of the macro definition. You can thus use &SYSLIST to 
refer to any positional operand. This allows you to vary the 
number of operands you specify each time you call the same macro 
definition. 

The positional operands of a macro instruction must be specified 
in the same order as the positional parameters declared in the 
called macro definition. 

Each positional operand constitutes a character string. It is 
this character string that is the value passed through a 
positional parameter into a macro definition. 

Notes: 

!. An omitted operand has null character value. 

2. Each positional operand can be up to 255 characters long. 

The following are examples of macro instructions with positional 
operands: 

MACCAll 
MACCAlL 
MACCAll 
MACCAll 

VAlUE,9,8 
&A,'QUOTED STRING' 
EXPR+2"SYMBOl 
(A,B,C,D,E),(1,2,3,4) 

182 Assembler H Version 2 Application Programming: language Reference 

o 



o 

Keyword operands 

o 

o 

The following shows what happens when the number of positional 
operands in the macro instruction is equal to or differs from 
the number of positional parameters declared in the prototype 
statement of the called macro definition: 

equal Valid, if operands are correctly specified. 

greater than Meaningless, unless &SYSLIST ;s specified in 
definition to refer to excess operands. 

less than Omitted operands give null character values to 
corresponding parameters (or &SYSLIST 
specification). 

You can use a keyword operand to pass a value through a keyword 
parameter into a macro definition. The values you specify in 
keyword operands override the default values assigned to the 
keyword parameters. The default value should be a value you use 
frequently. Thus, you avoid having to write this value every 
time you code the calling macro instruction. 

When you need to change the default value, you must use the 
corresponding keyword operand in the macro instruction. The 
keyword can indicate the purpose for which the passed value is 
used. 

Any keyword operand specified in a macro instruction must 
correspond to a keyword parameter in the macro definition 
called. However, keyword operands do not have to be specified 
in any particular order. 

A keyword operand must be coded in the format shown below: 

KEYWORD=VALUE 

where 

KEYWORD has up to 62 characters without ampersand. 
= is an equal sign. 
VALUE can be up to 255 characters. 

The corresponding keyword parameter in the called macro 
definition is specified as: 

&KEYWORD=DEFAULT 

If a keyword operand is specified, its value overrides the 
default value specified for the corresponding keyword parameter. 

The following examples of macro instructions have keyword 
operands: 

MACKEY 
MACKEY 
MACKEY 

KEYWORD=(A,B,C,D,E) 
KEY1=1,KEY2=2,KEY3=3 
KEY3=2000,KEY1=O,KEYWORD=HALLO 

To summarize the relationship of keyword operands to keyword 
parameters: 

• The keyword of the operand corresponds (see (1) in Figure 45 
on page 184) to a keyword parameter. The value in the 
operand overrides the default value of the parameter. 

• If the keyword operand is not specified (see (2) in 
Figure 45), the default value of the parameter is used. 

• If the keyword of the operand does not correspond (see (3) 
in Figure~5) to any keyword parameter, the assembler issues 
an error message, but the macro is generated using the 
default values of the other parameters. 

Chapter 8. How to Write Macro Instructions 183 



• Null character 
string is default 
value 

Source Module 

MACRO 

MACCORR &KEY1=DEFAULT,&KEY2~,&KEY3=123 
· 

SHOW DC C'&KEY1&KEY2&KEY3' 

· · 
MEND 

OPEN START 0 

• MACCORR KEYl 

MACCORR 

~SHOW D~ C'DEFAULT123 

MACCORR KEY4=SYMBOL,KEY2=O **ERROR** 

END 

SHOW DC C'DEFAULT0123, 

Null default 
value of KEY 2 

Figure 45. Relationship between Keyword Operands and Keyword 
Parameters and Their Assigned Values 

184 Assembler H Version 2 Application Programming: language Reference 



o 

o 

o 

Note: The default value specified for a keyword parameter can 
be the null character string (see (4) in Figure 45). The null 
character string is a character string with a length of zero; it 
is not a blank, because a blank occupies one character position. 

Combining Positional and Keyword Operands 

SUBLISTS IN OPERANDS 

You can use positional and keyword operands in the same macro 
instruction: Use a positional operand for a value that you 
change often, and a keyword operand for a value that you change 
infrequently. 

Positional and keyword operands can be combined in the macro 
instruction operand field. However, the positional operands 
must be in the same order as the corresponding positional 
parameter in the macro prototype statement. 

Note: The system variable symbol &SYSLIST(n) refers only to the 
positional operands in a macro instruction. 

You can use a sublist in a positional or keyword operand to 
specify several values. A sublist is one or more entries 
separated by commas and enclosed in parentheses. Each entry is 
a value to which you can refer in a macro definition by coding: 

• The corresponding symbolic parameter with an appropriate 
subscript, or 

• The system variable symbol &SYSLIST with appropriate 
subscripts, the first of which refers to the positional 
operand, and the second to the sublist entry in the operand. 

&SYSLIST can refer only to sublists in positional operands. 

Figure 46 on page 186 illustrates that the value specified in a 
positional or keyword operand can be a sublist. 

A symbolic parameter can refer to the entire sublist (see (1) in 
Figure 46), or to an individual entry of the sublist. To refer 
to an individual entry, the symbolic parameter (see (2) in 
Figure 46) must have a subscript whose value indicates the 
position (see (3) in Figure 46) of the entry in the sublist. 
The subscript must have a value greater than or equal to 1. 

A sublist, including the enclosing parentheses, must not contain 
more than 25S characters. It consists of one or more entries 
separated by commas and enclosed in parentheses; for example, 
(A,B,C,D,E). () is a valid sublist with the null character 
string as the only entry. 

The following list shows the relationship between subscripted 
parameters and sublist entries if: 

1. A sublist entry is omitted: &PAR(3) (1,2,,4) 

2. The subscript refers past the end of the sublist: &PAR(S) 
(1,2,3,4) 

3. The value of the operand is not a sublist: 

• &PAR A 

• &PAR(l) A 

• &PAR(2) A 

4. The parameter is not subscripted: &PAR () 

Chapter 8. How to Write Macro Instructions 185 



Source Module 

MACRO 

SUBLISTS 

&KEY(l) DC 

&Pl(l) DC 

DC 

MEND 

OPEN START 0 

value in 
keyword 
operand 

SUBLISTS (H20,H,200) ,(A,B,C) 

FO DC F' 0' 

H2O DC H'200' 

DC A(A,B,C) 

END 

Figure 46. Sublists in Operands 

Figure 47 on page 187 shows the relationship between subscripted 
parameters and sublist entries if: 

• A sublist entry is omitted (see (1) in Figure 47). 

• The subscript refers past the end of the sublist (see (2) in 
Figure 47). 

• The value of the operand is not a sublist (see (3) in 
Figure 47). 

• The parameter is not subscripted (see (4) in Figure 47). 

Note: The system variable symbol, &SYSlIST(n,m), can also refer 
to sublist entries, but only if the sublist is specified in a 
positional operand. 

186 Assembler H Version 2 Application Programming: language Reference 

I~. 
\,=Jl 

/-~ 

'-.~ 



o 

o 

Multilevel SUblists 

o 

Parameter Sublist specif~ed Value generated 
in corresponding (or used in 
operand (or as computation) 
default value of 
keyword parameter) 

&PAR(3) 0(1,2,,4) Null character string 

&PAR (5) 8(1,2,3,4) Null character string 

&PAR If A 
A 

&PAR(l) at: A 

&PAR(2) Null character string 

&PAR 8- (A) ~ (A") 

&PAR(l) (A) A 

&PAR(2) • (A) Null character string • r Considered as I 
&PAR ( ) Sublists ( ) 

&PAR(l) ( ) Null character string 

&PAR(3) ( ) .J Null character string 

&PAR(2) (A" ,C,D) Nothing 

This blank indicates I >ERROR-
end of operand field Unmatched left 

&PAR(l) ( *) 
parentheses 

Nothing 

Positional Operands 

&POSPAR(3) A, (1,2,3,4) 3 

&SYSLIST(2,3) A, (1,2,3,4) 3 

Figure 47. Relationship between Subscripted Parameters and 
Sublist Entries 

You can specify multilevel sublists (sublists within sublists) 
in macro operands. The depth of this nesting is limited only by 
the constraint that the total operand length must not exceed 255 
characters. Inner elements of the sublists are referenced using 
additional subscripts on symbolic parameters or on &SYSlIST. 

N'&SYSlIST ~~ith an n-element subscript array gives the number of 
operands in the indicated n-th level sublist. The number 
attribute (N') and a parameter name with an n-element subscript 
array gives the number of operands in the indicated (n+l)th 
level sublist. 

Chapter 8. How to Write Macro Instructions 187 



For example, if &P is the first positional parameter and the 
value assigned in a macro instruction is (A,CB,CC»,D) then: 

&P =&SYSLIST(l) =(A,CB,(C»,D) 
&P(l) =&SYSLIST(l,l) = A 
lP(2) =&SYSLISTCl,2) = CB,CC» 
lP(2,1) =&SYSLIST(1,2,1) = B 
&P(2,2) =&SYSLIST(1,2,2) = (C) 
&P(2,2,1) =&SYSLISTCl,2,2,1) = C 
lPC2,2,2) =&SYSLISTC1,2,2,2) =null 
lP(3) =&SYSLIST(I,3) = D 

N'lP(2,2) =NW&SYSLISTC1,2,2) =1 
N'&P(2) =N'&SYSLIST(l,2) =2 
N'lP(3) =N'&SYSLISTCl,3) =1 
N'lP =N'&SYSLIST(I) =3 

passing Sublists to Inner Macro Instructions 

VALUES IN OPERANDS 

Omitted Operands 

You can pass a suboperand of an outer macro instruction sublist 
as a sublist to an inner macro instruction. 

You can use a macro instruction operand to pass a value into the 
called macro definition. The two types of value you can pass 
are: 

• 

• 

Explicit values or the actual character strings you specify 
in the operand 

Implicit values, or the attributes inherent in the data 
represented by the explicit values 

The explicit value specified in a macro instruction operand is a 
character string that can contain one or more variable symbols. 

The character string must not be greater than 255 characters 
after substitution of values for any variable symbols. This 
includes a character string that constitutes a sublist. 

The character string values, including sublist entries, in the 
operands are assigned to the corresponding parameters declared 
in the prototype statement of the called macro definition. A 
sublist entry is assigned to the corresponding subscripted 
parameter. 

When a keyword operand is omitted, the default value specified 
for the corresponding keyword parameter is the value assigned to 
the parameter. When a positional operand or sublist entry is 
omitted, the null character string is assigned to the parameter. 

Notes: 

1. Blanks appearing between commas do not signify an omitted 
positional operand or an omitted sublist entry; they 
indicate the end of the operand field. 

2. Commas indicate omission of positional operands; no comma is 
needed to indicate omission of the last positional operand. 

The following example shows a macro instruction preceded by its 
corresponding prototype statement. The macro instruction 
operands that correspond to the third and sixth operands of the 
prototype statement are omitted in this example. 

188 Assembler H Version 2 Appli~ation Programming: Language Reference 



o 
special Characters 

0, 
" 

o 

Name Operation operand 

EXAMPLE &A,&B,&C,&D,&E,&F 
EXAMPLE 17,*+4"AREA,FIELD(6) 

Any of the 256 characters of the System/370 character set can 
appear in the value of a macro instruction operand (or sublist 
entry). However, the following characters require special 
consideration: 

AMPERSANDS: A single ampersand indicates the presence of a 
variable symbol. The assembler substitutes the value of the 
variable symbol into the character string specified in a macro 
instruction operand. The resultant string is then the value 
passed into the macro definition. If the variable symbol is 
undefined, an error message is issued. 

Double ampersands must be specified if they are to be passed to 
the macro definition. 

Examples: 

&VAR 
&A+&B+3+&C*10 
'&MESSAGE' 
&&REGISTER 

SINGLE QUOTATION HARKS: A single quotation mark is used: 

• To indicate the beginning and end of a quoted string, and 

• In a length attribute notation that is not within a quoted 
string. 

Examples: 

'QUOTED STRING' 
L'SYMBOl 

QUOTED STRINGS: A quoted string is any sequence of characters 
that begins and ends with a single quotation mark (compare with 
conditional assembly character expressions described in 
"Character (SETC) Expressions"). 

Two single quotation marks must be specified inside each quoted 
string. This includes substituted single quotation marks. 

Macro instruction operands can have values that include one or 
more quoted strings. Each quoted string can be separated from 
the following quoted string by one or more characters, and each 
must contain an even number of single quotation marks. 

Examples: 
, , 
'L"SYMBOl' 
'QUOTE1'AND'QUOTE2' 

LENGTH ATTRIBUTE NOTATION: In macro instruction operand values, 
the length attribute notation with ordinary symbols can be used 
outside of quoted strings, if the length attribute notation is 
preceded by any special character except the ampersand. 

Example: 

l'SYMBOL,lO+l'AREA*L'FIElD 

Chapter 8. How to Write Macro Instructions 189 



PARENTHESES: In macro instruction operand values, there must be 
an equal number of left and right parentheses. They must be 
paired, that is, to each left parenthesis belongs a following 
right parenthesis at the same level of nesting. An unpaired 
(single) left or right parenthesis can appear only in a quoted 
string. 

Examples: 

(PAIRED PARENTHESES) 
( ) 
(ACB)C)DCE) 
CIN'('STRING) 

BLANKS: One or more blanks outside a quoted string indicates the 
end of the entire operand field of a macro instruction. Thus 
blanks should only be used inside quoted strings. 

Example: 

'BLANKS ALLOWED' 

COMMAS: A comma outside a quoted string indicates the end of an 
operand value or sublist entry. Commas that do not delimit 
values can appear inside quoted strings or paired parentheses 
that do not enclose sublists. 

Examples: 

A,B,C,D 
Cl,2)3'5,6' 

EQUAL· SIGNS: An equal sign can appear in the value of a macro 
instruction operand or sublist entry: 

• As the first character, 

• Inside quoted strings, 

• Between paired parentheses, 

• In a keyword operand, or 

• In a positional operand, provided the parameter does not 
resemble a keyword operand. 

The assembler issues a warning message for a positional operand 
containing an equml sign, if the operand resembles a keyword 
operand. Thus, if we assume that the following is the prototype 
of a macro definition: 

MACI &F 

the following macro instruction would generate a warning 
message: 

MAC! K=L (K is a valid keyword) 

while the following macro instruction would not: 

MAC! 2+2=4 (2+2 is not a valid keyword) 

EXamples: 

=H'201' 
A'='B 
C(A=B) 
2X=B 
KEY=A=B 

PERIODS: A period C.) can be used in the value of an operand or 
sublist entry. It will be passed as a period. However, if it 
is used immediately after a variable symbol, it becomes a 

!90 Assembler H Version 2 Application Programming: Language Reference 



o 

o 

o 

concatenation character. Then, two periods are required if one 
is to be passed as a character. 

Examples: 

3.4 
&A.1 
&A •. 1 

NESTING IN MACRO DEFINITIONS 

A nested macro instruction is a macro instruction you specify as 
one of the statements in the body of a macro definition. This 
allows you to call for the expansion of a macro definition from 
within another macro definition. 

INNER AND OUTER MACRO INSTRUCTIONS 

LEVELS OF NESTING 

Recursion 

Any macro instruction you write in the open code of a source 
module is an outer macro instruction or call. Any macro 
instruction that appears within a macro definition is an inner 
macro instruction or call. 

The code generated by a macro definition called by an inner 
macro call is nested inside the code generated by the macro 
definition that contains the inner macro call. In the macro 
definition called by an inner macro call, you can include a 
macro call to another macro definition. Thus, you can nest 
macro calls at different levels. 

The zero level includes outer macro calls, calls that appear in 
open code; the first level of nesting includes inner macro calls 
that appear inside macro definitions called from the zero level; 
the second level of nesting includes inner macro calls inside 
macro definitions that are called from the first level, etc. 

You can also call a macro definition recursively; that is, you 
can write macro instructions inside macro definitions that are 
calls to the containing definition. This allows you to define 
macros to process recursive functions. 

GENERAL RULES AND RESTRICTIONS 

Macro instruction statements can be written inside macro 
definitions. Values are substituted in the same way as they are 
for the model statements of the containing macro definition. 
The assembler processes the called macro definition, passing to 
it the operand values (after substitution) from the inner macro 
instruction. In addition to the operand values described in 
"Values in Operands" on page 188, nested macro calls can specify 
values that include (see Figure 48 on page 192): 

• Any of the symbolic parameters (see (1) in Figure 48) 
specified in the prototype statement of the containing macro 
definition 

• Any SET symbols (see (2) in Figure 48) declared in the 
containing macro definition 

• Any of the system variable symbols such as &SYSDATE, 
&SYSTIME, etc. (see (3) in Figure 48).· 

Chapter 8. How to Write Macro Instructions 191 



Macro Definitions 

parameters 

MACRO 

Prototype OUTER 

LCLC 

&C SET 

INNER ~-
Inner call &Pl;&KEYI,&C • 

MEND 

MACRO 

Prototype 

Inner call IN 

MEND 

Figure 48. Values in Nested Macro Calls 

The number of nesting levels permitted depends on the complexity 
and size of the macros at the different levels; that is, the 
number of operands specified, the number of local and global SET 
symbols declared, and the number of sequence symbols used. 

Exits taken from the different levels of nesting when a MEXIT or 
MEND instruction is encountered are as follows: 

1. From the expansion of a macro definition called by an inner 
macro call, an exit ;s taken to the next sequential 
instruction that appears after the inner macro call in the 
containing macro definition. 

2. From the expansion of a macro definition called by an outer 
macro, an exit is taken to the next sequential instruction 
that appears after the outer macro call in the open code of 
a source module. 

192 Assembler H Version 2 Application Programming: Language Reference 

o 



o 

o 

o 

PASSING VALUES THROUGH NESTING LEVELS 

The value contained in an outer macro instruction operand can be 
passed through one or more levels of nesting (see Figure 49 on . 
page 194). However, the value specified (see (1) in Figure 49) 
in the inner macro instruction operand must be identical to the 
corresponding symbolic parameter (see (2) in Figure 49) declared 
in the prototype of the containing macro definition. 

Thus, a sublist can be passed (see (3) in Figure 49) and 
referred to (see (4) in Figure 49) as a sublist in the macro 
definition called by the inner macro call. Also, any symbol 
(see (5) in Figure 49) that is passed will carry its inherent 
attribute values through the nesting levels. 

If inner macro calls at each level are specified with symbolic 
parameters as operand values, values can be passed from open 
code through several levels of macro nesting. 

Note: If a symbolic parameter is only a part of the value 
specified in an inner macro instruction operand, only the 
character string value given to the parameter by an outer call 
is passed through the nesting level. Inner sublist entries and 
attributes of symbols are not available for reference in the 
inner macro. 

SYSTEM VARIABLE SYMBOLS IN NESTED MACROS 

The global read-only system variable symbols (&SYSPARM, 
&SYSDATE, and &SYSTIME) are not affected by the nesting of 
macros. The remaining system variable symbols are given local 
read-only values that depend on the position of a macro 
instruction in code and the operand value specified in the macro 
instruction. 

If &SYSlIST is specified in a macro definition called by an 
inner macro .instruction, &SYSLIST refers to the positional 
operands of the inner macro instruction. 

The assembler increments &SYSNDX by one each time it encounters 
a macro call. It retains the incremented value throughout the 
expansion of the macro definition called, that is, within the 
local scope of the nesting level. 

The assembler gives &SYSECT the character string value of the 
name of the control section in force at the point at which a 
macro call is made. For a macro definition called by an inner 
macro call, the assembler will assign to &SYSECT the name of the 
control section generated in the macro definition that contains 
the inner macro call. The control section must be generated 
before the inner macro call is processed. 

If no control section is generated within a macro definition, 
the value assigned to &SYSECT does not change. It is the same 
for the next level of macro definition called by an inner macro 
instruction. 

The assembler gives &SYSLOC the character string value of the 
name of the location counter in use at the point at which a 
macro call is made. For a macro definition called by an inner 
macro call, the assembler will assign to &SYSLOC the name of the 
location counter in effect in the macro definition that contains 
the inner macro call. 

&SYSECT and &SYSLOC have local scope; their read-only values 
remain constant throughout the expansion of the called macro 
definition. 

Chapter 8. How to Write Macro Instructions 193 



Prototype 

Call 

Prototype 

Call 

Source Module 

MACRO 

OUTER 

MEND 

MACRO 

INNER 

L 
A 
ST 

MVC 

MEND 

END 

&Q,&R,&S 

3,&Q(!l} 
3,&Q(2} • 
3,&Q(3} 

&R,&S 

L 3,AREA 
A 3,F200 
ST 3,SUM 

MVC TO,FROM 

Figure 49. Passing Values through Nesting Levels 

194 Assembler H Version 2 Application Programming: Language Reference 

I~\ 

~JJ 



0:·· ,I 

o 

0·;, 
J 

CHAPTER 9. HOW TO WRITE CONDITIONAL ASSEMBLY INSTRUCTIONS 

This chapter describes the conditional assembly language. With 
the conditional assembly language, you can perform general 
arithmetic and logical computations, as well as many of the 
other functions you can perform with any other programming 
language. In addition, by writing conditional assembly 
instructions in combination with other assembler language 
statements, you can: 

• Select sequences of these source statements, called model 
statements, from which machine and assembler instructions 
are generated 

• Vary the contents of these model statements dUring 
generation 

The assembler processes the instructions and expressions of the 
conditional assembly language at preassembly time. Then, at 
assembly time, it processes the generated instructions. 
Conditional assembly instructions, however, are not processed 
after preassembly time. 

The conditional assembly language is more versatile when used to 
interact with symbolic parameters and the system variable 
symbols inside a macro definition. However, you can also use 
the conditional assembly language in open code; that is, code in 
an assembler language source program. 

ELEMENTS AND FUNCTIONS 

SET SYMBOLS 

The elements of the conditional assembly language are: 

• SET symbols that represent data 

• Attributes that represent different characteristics of data 

• Sequence symbols that act as labels for branching to 
statements at preassembly time 

The functions of the conditional assembly language are: 

• Declaring SET symbols as variables for use by the 
conditional assembly language in its computations 

• Assigning values to the declared SET symbols 

• Evaluating conditional assembly expressions used as values 
for SUbstitution, as subscripts for variable symbols, or as 
condition tests for branch instructions 

• Selecting characters from strings for substitution in, and 
concatenation to, other strings; or for inspection in 
condition tests 

• Branching and exiting from conditional assembly loops 

SET symbols are variable symbols that provide you with 
arithmetic, binary, or character data, and whose values you can 
vary at preassembly time. 

You can use SET symbols as: 

• Terms in conditional assembly expressions 

• Counters, switches, and character strings 

Chapter 9. How to Write Conditional Assembly Instructions 195 



• Subscripts for variable symbols 

• Values for substitution 

Thus~ SET symbols allow you to control your conditional assembly 
logic~ and to generate many different statements from the same 
model statement. 

Subscripted SET Symbols 

Scope of SET symbols 

You can use a SET symbol to represent an array of many values. 
You can then refer to anyone of the values of this array by 
subscripting the SET symbol. 

The scope of a SET symbol is that part of a program for which 
the SET symbol has been declared. Local SET symbols need not be 
declared by explicit declarations. The assembler considers any 
undeclared variable symbol found in the name field of a SETx 
instruction as a local SET symbol. 

If you declare a SET symbol to have a local scope~ you can use 
it only in the statements that are part of: 

• The same macro definition, or 

• Open code 

If you declare a SET symbol to have a global scope, you can use 
it in the statements that are part of: 

• The same macro definition, 

• 
• 

A different macro definition, and 

Open code 

You must, however~ declare the SET symbol as global for each 
part of the program (a macro definition or open code> in which 
you use it. 

You can change the value assigned to a SET symbol without 
affecting the scope of this symbol. 

SCOPE OF OTHER VARIABLE SYMBOLS: A symbolic parameter has a 
local scope. You can use it only in the statements that are 
part of the macro definition for which the parameter is 
declared. You declare a symbolic parameter in the prototype 
statement of a macro definition. 

The system variable symbols &SYSLIST~ &SYSECT, &SYSLOC~ and 
&SYSNDX have a local scope; you can use them only inside macro 
definitions. However, the system variable symbols &SYSPARM, 
&SYSDATE, and &SYSTIME have a global scope; you can use them in 
both open code and inside any macro definition. 

SET symbol specifications 

seT symbols can be used in model statements, from which 
assembler language statements are generated~ and in conditional 
assembly instructions. 

196 Assembler H Version 2 Application Programming: Language Reference 

o 



o 

o 

o 

The three types of SET symbols are: SETA, SETB, and SETC. A SET 
symbol must be a valid variable symbol. The format of a SET 
symbol is: 

• The first column must contain an ampersand Cl). 
• The second column must contain an alphabetic character. 
• The remaining columns must contain 0 to 61 alphameric 

characters. 

Examples of SET symbols are: 

IARITHMETICVALUE439 
&BOOLEAN 
IC 

Local SET symbols need not be declared by explicit declarations. 
The assembler considers any undeclared variable symbol found in 
the name field of a SETx instruction as a local SET symbol. The 
instruction that declares a SET symbol determines its scope and 
type. 

The features of SET symbols and other types of variable symbols 
are compared in Figure 50. 

Feature 

Can be used: 
In open code 

In macro 
definitions 

Scope: 
Local or 

Global 

Values can 
be changed 
within scope 
of symbol 

Types of Variable Symbol 

SETA, SETS, 
or SETC 
Symbols 

YES 

YES 

YES 

YES 

• YES 

Symbolic 
Parameters 

NO 

YES 

YES 

NO 

• NO: 
read only 

value 

System 
Variable 
Symbols 

only: &SYSPARM 

All 

• NO: 
read only 
value 

Figure 50. Features of SET Symbols and Other Types of Variable 
Symbols 

Chapter 9. How to Write Conditional Assembly Instructions 197 



The value assigned to a SET symbol can be changed (see (1) in 
Figure 50) by using the SETA, SETB, or SETC instruction within 
the declared scope of the SET symbol. However, a symbolic 
parameter and the system variable symbols are assigned values 
that remain fixed (see (2) in Figure 50) throughout their scope. 
Wherever a SET symbol appears in a statement, the assembler 
replaces the symbol with the last value assigned to the symbol. 

Note: SET symbols can be used in the name and operand fields of 
macro instructions. However, the value thus passed through a 
symbolic parameter into a macro definition is considered as a 
~haracter string and is generated as such. 

Subscripted SET symbols Specifications 

created SET symbols 

A subscripted SET symbol must be specified as shown below: 

Format: lSETSYM(subscript) 

where: 

• ISETSYM is a variable symbol. 
• 'subscript' is an arithmetic expression, whose value must 

not be 0 or negative. 

For example: LCLA lARRAY(20) 

The subscript can be any arithmetic expression allowed in the 
operand field of a SETA instruction (see "Arithmetic (SETA) 
Expressions" below). 

A subscripted SET symbol can be used anywhere an unscripted SET 
symbol is allowed. However, subscripted SET symbols must be 
declared as subscripted by a previous local or global 
declaration instruction. 

The subscript refers to one of the many positions in an array of 
values identified by the SET symbol. 

The dimension (the maximum value of the subscript) of a 
subscripted SET symbol is not determined by the explicit or 
implicit declaration of the symbol. The dimension specified can 
be exceeded in subsequent SETx instructions. 

Note: The subscript can be a subscripted SET symbol. Five 
levels of subscript nesting are allowed. 

Assembler H can create SET symbols during conditional assembly 
processing from other variable symbols and character strings. A 
SET symbol thus created has the form lee), where "en represents 
one or more of the following: . 

• Variable symbols, optionally subscripted 

• Strings of alphameric characters 

• Other created SET symbols 

After SUbstitution and concatenation, "en must consist of a 
string of up to 62 alphameric characters, the first of which is 
alphabetic. The assembler will consider the preceding ampersand 
and this string as the name of a SET variable. 

198 Assembler H Version 2 Application Programming: Language Reference 



0,; ", 

o 
DATA ATTRIBUTES 

o 

You can use created SET symbols wherever ordinary SET symbols 
are permitted, including declarations. You can also nest them 
in other created SET symbols. 

Consider the following example: 

Name Operation operand 

lABC(l) SETC 'MKT','27','$S' 

Let lee) equal I(IABC(&I)QUA&I). 

&1 IABe(II) created SET Symbol Comment 

1 MKT lMKTQUAl Valid 
2 27 127QUA2 Invalid: first character 

after 'I' not alphabetic 
3 $S I$SQUA3 Valid 
4 &QUA4 Valid 

The created SET symbol can be thought of as a form of indirect 
addressing. With nested created SET symbols, you can get this 
kind of indirect addressing to any level. 

In another sense, created SET symbols offer an associative 
storage facility. For example, a symbol table of numeric 
attributes can be referred to by an expression of the form 
1(ISYM)(II) to yield the "Ith" attribute ~f the symbol name in 
&SYM. 

Created SET symbols also enable you to get some of the effect of 
multiple-dimensioned arrays by creating a separate name for each 
element of the array. For example, a 3-dimensional array of the 
form lX(&I,&J,IK) could be addressed as &(X&I.$IJ.$&K). Thus,' 
&X(2,3,4) would be represented by IX2$3$4. The $s guarantee 
that &X(2,33,SS) and lX(23,35,5) are unique: 

&X(2,33,55) becomes &X2$33$55 
lX(23,35,5) becomes IX23$3S$5 

The data, such as instructions, constants, and areas, which you 
define in a source module, can be described in terms of: 

• Type, which distinguishes one form of data from another; for 
example, fixed-point constants from floating-point 
constants, or machine instructions from macro instructions 

• length, which gives the number of bytes occupied by the 
object code of the data 

• Scaling, which indicates the number of positions occupied by 
the fractional portion of fixed-point and decimal constants 
in their object code form 

• Integer, which indicates the number of positions occupied by 
the integer portion of fixed-point and decimal constants in 
their object code form 

• Count, which gives the number of characters that would be 
required to represent the data, such as a macro instruction 
operand, as a'character string 

• Humber, which gives the number of sublist entries in a macro 
instruction operand 

• Defined, which determines whether a symbol has-been defined 
prior to the point where the attribute reference is coded 

Chapter 9. How to Write Conditional Assembly Instructions 199 



These characteristics are called the attributes of the data. 
The assembler assigns attribute values to the ordinary symbols 
and variable symbols that represent the data. . 

Specifying attributes in conditional assembly instructions 
allows you to control conditional assembly logic, which, in 
turn, can control the sequence and contents of the statements 
generated from model statements. The specific purpose for which 
you use an attribute depends on the kind of attribute being 
considered. The attributes and their main uses are shown below: 

Attribute 

Type 

Length 

Scaling 

Integer 

Count 

Humber 1 

Defined 

Note 

Purpose 

Gives a letter that 
identifies type of 
data represented 

Gives number of 
bytes that data 
occupies in storage 

Refers to the 
position of the 
decimal point in 
decimal, 
fixed-point, and 
floating-point 
constants 

Is a function of the 
length and scaling 
attributes of 
decimal, 
fixed-point, and 
floating-point 
constants 

Gives the number of 
characters required 
to represent data 

Gives the number of 
sublist entries in a 
macro instruction 
operand sublist 

Indicates whether 
the symbol 
referenced has been 
defined prior to the 
attribute reference 

Main Uses 

- In tests to 
distinguish between 
different data types 
- For value 
substitution 
- In macros to 
discover missing 
operands 

- For substitution 
into length fields 
- For computation of 
storage requirements 

- For testing and 
regulating the 
position of decimal 
points 
- For substitution 
into a scale 
modifier 

- To keep track of 
significant digits 
Cintegers) 

- For scanning and 
decomposing of 
character strings 
- As indexes in 
substring notation 

- For scanning 
sublists 
- As counter to test 
for end of sublist 

- To avoid 
assembling a 
statement again if 
the symbol 
referenced has been 
previously defined 

1 The number attribute of &SYSLISTCm) and &SYSLISTCm,n) is 
described in "&SYSLIST--Macro Instruction Operand" on page 
173. 

200 Assembler H Version 2 Application Programming: Language Reference 



o 

o 

The format for an attribute reference is: 

Attribute 
Notation 

For example: 

T'SYMBOL 
L'&VAR 
K'&PARAM 

Ordinary or 
Variable Symbol 

The attribute notation indicates the attribute whose value is 
desired. The ordinary or variable symbol represents the data 
that possesses the attribute. The assembler substitutes the 
value of the attribute for the attribute reference. 

An attribute reference to the type, scaling, integer, count, and 
number attributes can be used only in a conditional assembly 
instruction. The length attribute reference can be used both in 
a conditional assembly instruction and in a machine or assembler 
instruction. 

Combination with Symbols 

SYMBOLS 
SPECIFIED 

IN THE OPEN CODE 

Ordinary Symbols 

SET Symbols 

System Variable Symbols: 

&SYSPARM 

&SYSDATE 

&SYSTIME 

IN MACRO DEFINITIONS 
Ordinary Symbols 

SET Symbols 

Symbolic Parameters 

System Variable Symbols: 
&SYSLIST 

&SYSECT, &SYSLOC, 

&SYSNDX, &SYSPARM, 

&SYSDATE,&SYSTIME 

Figure 51 shows the seven kinds of attributes, identifying the 
types of symbols they can be combined with. 

ATTRIBUTES SPECIFIED 

Type Length Scaling Integer Count Number Defined 

T' L' S' I' K' N' 0' 

YES YES YES YES NO NO YES 

YES SETC only SETC only SETC only YES YES SETC only 

subscripted 

YES NO NO NO YES NO NO 

YES YES YES YES NO NO YES 

YES SETC only SETC only SETC only YES YES SETC only 

subscripted 

YES YES YES YES YES YES YES 

YES YES YES YES YES YES YES 

YES NO NO NO YES NO NO 

Figure 51. Attributes and Related Symbpls 

Chapter 9. How to Write Conditional Assembly Instructions 201 



The value of an attribute for an ordinary symbol specified in an 
attribute reference comes from the data represented by the 
symbol, as shown below: ~ 

Attribute Ordinary 
Notation Symbol 

I 
Statement-------------------Operand T' 
Label of EXTRH l' 

or WXTRH S' 
instruction I' 

The symbol must appear in the name field of an assembler or 
machine instruction, or in the operand field of an EXTRH or 
WXTRN instruction. The instruction in which the symbol is 
specified: 

• Must appear in open code 

• Must not contain any variable symbols 

Note: You can refer to instructions generated by conditional 
assembly substitution or macro expansion with attributes. 
However, no such reference can be made until the instruction is 
generated. 

The value of an attribute for a variable symbol specified in an 
attribute reference comes from the value substituted for the 
variable symbol as follows: 

1. For SET symbols and the system variable symbols: &SYSECT, 
&SYSlOC, &SYSHDX~ &SYSPARM, &SYSDATE, and &SYSTIME~ the 
attribute values come from the current data value of these 
symbols. 

IV 

/'~'~ 

2. For symbolic parameters and the system variable symbol, \ ;_ 
&SYSLIST, the values of the count and number attributes coma '-Y 
from the operands of macro instructions. 

The values of the type, length~ scaling, and integer 
attributes, however, come from the values represented by the 
macro instruction operands, as follows: 

a. If the operand is a sublist, the entire sublist and each 
entry of the sublist can possess attributes; all the 
individual entries and the whole sublist have the same 
attributes as those of the first suboperand in the 
sublist (except for "count," which can be different, and 
"number," which is relevant only for the whole sublist). 

b. If the first character or characters of the operand (or 
subli~t entry) constitute an ordinary symbol, and this 
symbol is followed by either an arithmetic operator (+, 
-, *, or /), a left parenthesis, a comma, or a blank, 
then the value of the attributes for the operand are the 
same as for the ordinary symbol. 

c. If the operand (or sublist entry) is a character string 
other than a sublist or the character string described 
in b above, the type attribute is undefined (U) and the 
length, scaling, and integer attributes are invalid. 

Because attribute references are allowed only in conditional 
assembly instructions, their values are available only at 
preassembly time, except for the length attribute which can be 
referred to outside conditional assembly instructions, and is, 
therefore, also available at assembly time. 

Note: The system variable symbol, &SYSlIST, can be used in an 
attribute reference to refer to a macro instruction operand, 
and, in turn, to an ordinary symbol. Thus, any of the attribute 
values for macro instruction operands and ordinary symbols 

202 Assembler H Version 2 Application Programming: language Reference 



o Type Attribute (T') 

o 

0··'· ~ 

listed below can also be substituted for an attribute reference 
containing &SYSlIST. 

The type attribute has a value of a single alphabetic character 
that indi~ates the type of data represented by: 

• An ordinary symbol 

• A macro instruction operand 

• A SET symbol. 

The type attribute reference can be used only in the operand 
field of the SETC instruction or as one of the values used for 
comparison in the operand field of a SETB or AIF instruction. 

Notes: 

1. Ordinary symbols used in the name field of an EQU 
instruction have the type attribute value "U." However, the 
third operand of an EQU instruction can be used explicitly 
to assign a type attribute value to the symbol in the name 
field. 

2. The type attribute of a sublist is set to the same value as 
the type attribute of the first element of the sublist. 

The following letters are used for the type attribute of data 
represented by ordinary symbols and outer macro instruction 
operands that are symbols that name DC or DS statements. 

A A-type address constant, implied length, aligned (also CXD 
instruction label) 

B Binary constant 
C Character constant 
D long floating-point constant, implicit length, aligned 
E Short floating-point constant, implicit length, aligned 
F Fullword fixed-point constant, implicit length, aligned 
G Fixed-point constant, explicit length 
H Halfword fixed-point constant, implicit length, aligned 
K Floating-point constant, explicit length 
l Extended floating-point constant, implicit length, aligned 
P Packed decimal constant 
Q Q-type address constant, implicit length, aligned 
R A-, S-, Q-, V-,"or v-type address constant, explicit length 
S S-type address constant, implicit length, aligned 
V v-type address constant, implicit length, aligned 
X Hexadecimal constant 
Y V-type address constant, implicit length, aligned 
Z Zoned decimal constant 

The following letters are used for the type attribute of data 
represented by ordinary symbols (and outer macro instruction 
operands that are symbols) that name statements other than DC or 
DS statements, or that appear in the operand field of an EXTRH 
or WXTRH statement. 

I Machine instruction 
J Identified as a control section name 
M Macro instruction 
T Identified as an external symbol by EXTRH instruction 
W CCW, CCWO, or CCWl instruction 
$ Identified as an external symbol by WXTRH instruction 

The following letters are used for the type attribute of data 
represented by inner and outer macro instruction operands only. 

H Self-defining term or the value of a SETA or SETB variable 
o Omitted operand (has a value of a null character string) 

Chapter 9. How to Write Conditional Assembly Instructions 203 



The following letter is used for symbols or macro instruction 
ope~ands that cannot be assigned any of the above letters. 

U Undefined 

The type attribute value U is assigned to the following: 

• Ordinary symbols used as labels: 

For the lTORG instruction 

For the EQU instruction without a third operand 

For DC and DS statements that contain variable symbols; 
for example, Ul DC IX'l' 

That are defined more than once, even though only one 
label will be generated due to conditional assembly 
statements 

• SETC variable symbol 

• System variable symbols: &SYSPARM, &SYSDATE, and &SYSTIME 

• Macro instruction operands that specify literals 

• Inner macro instruction operands that are ordinary symbols 

Note: Because Assembler H allows attribute references to 
statements generated through substitution, certain cases in 
which a type attribute of U (undefined) or M (macro) is given 
under the OS/VS Assembler, may give a valid type attribute under 
Assembler H. If the value of the SETC symbol is equal to the 
name of an instruction that can be referred to by the type 
attribute, Assembler H allows you to use the type attribute with 
a SETC symbol. 

Length Attribute (L'l 

The length attribute has a numeric value equal to the number of 
bytes occupied by the data that is represented by the symbol 
specified in the attribute reference. 

If the length attribute value is desired for preassembly 
processing, the symbol specified in the attribute reference must 
ultimately represent the name entry of a statement in open code. 
In such a statement, the length modifier (for DC and DS 
instructions) or the length field (for a machine instruction), 
if specified, must be a self-defining term. The length modifier 
or length field must not be coded as a multi term expression, 
because the assembler does not evaluate this expression until 
assembly time. 

Assembler H allows you to use the length attribute with a SETC 
symbol, if the value of the SETC symbol is equal to the name of 
an instruction that can be referenced by the length attribute. 

The length attribute can also be specified outside conditional 
assembly instructions. Then, the length attribute value is not 
available for conditional assembly processing, but is used as a 
value at assembly time. 

At preassembly time, an ordinary symbol used in the name field 
of an EQU instruction has a length attribute value of 1. At 
assembly time, the symbol has the same length attribute value as 
the first symbol of the expression in the first operand of the 
EQU instruction. However, the second operand of an EQU 
instruction can be used to assign a length attribute value to 
the symbol in the name field. 

204 Assembler H Version 2 Application Programming: language Reference 



o 

o 

o 

Notes: 

1. The length attribute reference, when used in conditional 
assembly processing, can be specified only in arithmetic 
expressions. 

2. A length attribute reference to a symbol with the type 
attribute value of M, H, 0, T, U, or $ will be flagged. The 
length attribute for the symbol will be given the default 
value of 1. 

Scaling Attribute (5') 

The scaling attribute can be used only when referring to 
fixed-point, floating-point, or decimal constants. It has a 
numeric value that is assigned as shown below: 

constant Type Value of Scaling 
Types Attributes Attribute Assigned 
Allowed Allowed 

Fixed-Point H, F, and G Equal to the value of the 
scale modifier (-187 
through +346) 

Floating D, E, l, and.K Equal to the value of the 
Point scale modifier 

(0 through 14 - D, E) 
(0 through 28 - l) 

Decimal P and Z Equal to the number of 
decimal digits specified 
to the right of the 
decimal point 
(0 through 31 - P) 
(0 through 16 - Z) 

Notes: 

1. The scaling attribute reference can be used only in 
arithmetic expressions. 

2. When no scaling attribute value can be determined, the 
reference is flagged and the scaling attribute is given the 
value of 1. 

3. If the value of the SETC symbol is equal to the name of an 
instruction that can be referenced by the scaling attribute, 
Assembler H allows you to use the scaling attribute with a 
SETC symbol. 

Integer Attribute (I') 

The integer attribute has a numeric value that ;s a function of 
(depends on) the length and scaling attribute values of the data 
being referred to by the attribute reference. The formulas 
relating the integer attribute to the length and scaling 
attributes are given in Figure 52 on page 206. 

Chapter 9. How to Write Conditional Assembly Instructions 205 



Constant Formula Examples Values 
Type Relating the Of the 
Allowed I nteger to the 

0 
Integer 

(attribute Length and Attribut 
value) Scaling 

e 

Attributes 

HALFCON DC HS6'-2S.93' } 9 
Fixed-point 8 >:~ 2 -:6-1 
(H,F, and G) I'=8~~L'-S'-1 ONECON DC FS8'lOO.3E-2'] 23 

8*4-8 .... 1 

Floating-point when L' S 8 SHORT DC ES2'46.41S' 1 4 
(D,E,L, and K) I' =2~r(L 1-1) -S' 2~:~(4-1J-2 , 

1 LONG DC DSS'-3.729' 9 
2>::(8-1)-5 

Only for L-Type when L' > 8 
DC LSI0'S.312' } I 1=2 ':«L' -1) -S 1-2 EXTEND 18 

2::~(16-1} -10 -2 

Decimal equal to the 
number of decimal 
digits to the left of 
the assumed decimal 
point after the 
number is assembled 

Packed (P) I' =2~:CL' -S' -1 PACK DC P'+3.S13' 2 
2*3-3-1 -~ L~ 

LO 31S13Cl 

Zoned (Z) I'=L'-S' ZONE DC Z1 3.S13 1 1 
4-3 

Figure 52. Relationship of Integer to Length and Scaling Attributes 

count Attribute (K') 

Notes: 

1. The integer attribute reference can be used only in 
arithmetic expressions. 

2. If the value of the SETC symbol is equal to the name of an 
instruction that can be referenced by the integer attribute, 
Assembler H allows you to use the integer attribute with a 
SETC symbol. 

The count attribute applies only to macro instruction operands, 
to SET symbols, and to the system variable symbols. It has a 
numeric value equal to the number of characters: 

• That constitute the macro instruction operand, or 

206 Assembler H Version 2 Application Programming: Language Reference 



o 

o 

0" , , 

• That would be required to represent as a character string 
the current value of the SET symbol or the system variable 
symbol. 

Notes: 

1. The count attribute reference can be used only in arithmetic 
expressions. 

2. The count attribute of an omitted macro instruction operand 
has a default value of O. 

Numbe~ Att~ibute (N') 

The number attribute applies only to the operands of macro 
instructions. It has a numeric value equal to the number of 
sublist entrios in the operand. 

When applied to a subscripted SET symbol, the number attribute 
is equal to the highest element to which a value has been 
assigned in a SETx instruction. For example, if the only 
references to IA have been 

lClA 
lACS) SETA 

AIF 

IA(100) 
20",70 
(IA(20) GT SO).M 

(see description of 
extended SET statements) 

then N'IA is equal to S, because IA(S) is assigned the value 70. 

Notes: 

1. The number attribute reference can be used only in 
arithmetic expressions. 

2. N'ISYSlIST refers to the number of positional operands in a 
macro instruction, and N'&SYSlISTCm) refers to the number of 
sublist entries in the m-th operand. 

Defined Att~ibute (D') 

The defined attribute indicates whether or not the symbol 
referenced has been defined prior to the attribute reference. A 
symbol is considered as defined if it has been encountered in 
the operand field of an EXTRN or WXTRN statement, or in the name 
field of any other statement. The value of the defined 
attribute is 1, if the symbol has been defined, or 0, if the 
symbol has not been defined. 

The defined attribute can reference all symbols that can be 
referenced by the scaling (5') attribute. 

The following is an example of how you can use the defined 
attribute: 

AIF (D'A).AROUND 
A LA 1,4 
.AROUND ANOP 

In this example, the statement at A would be assembled, since 
the branch around it would not be taken. However, if bya 
branch the same statement were processed again, the statement at 
A would not be assembled: 

.UP 
A 
.AROUND 

AIF 
LA 
ANOP 

(D'A).AROUND 
1,4 

AGO .UP 

You can save assembly time using the defined attribute. Each 
time the assembler finds a reference (attribute or branch) to an 
undefined symbol, it initiates a forward scan until it finds 

Chapter 9. How to Write Conditional Assembly Instructions 207 



SEQUENCE SYMBOLS 

th,at symbol or reaches the END statement. You can use the 
defined attribute in your program to prevent the assembler from 
making this time-consuming forward scan. 

You can use a sequence symbol in the name field of a statement 
to branch to that statement at preassembly time, thus altering 
the sequence in which the assembler processes your conditional 
assembly and macro instructions. You can thus select the model 
statements from which the assembler generates assembler language 
statements for processing at assembly time. 

Sequence symbols must be specified as follows: 

• The first column must contain a period (.). 
• The second column must contain an alphabetic character. 
• The remaining columns must contain 0 to 61 alphameric 

characters. 

For example: .BRANCHINGlABEl1 
.A 

Sequence symbols can be specified in the name field of assembler 
language statements and model statements; however, the following 
lists assembler instructions in which sequence symbols must not 
be used as name entries: 

COpy 
EQU 
GBlA 
GBlB 
GBlC 
ICTl 
ISEQ 
lClA 
lClB 
lClC 
MACRO 
OPSYH 

In addition, sequence symbols cannot be used as name ~ntries in 
macro prototype instructions, or in any instruction that already 
contains an ordinary or a variable symbol. 

Sequence symbols can be specified in the operand field of an AIF 
or AGO instruction to branch to a statement with the same 
sequence symbol as a label. 

A sequence symbol has a local scope. Thus, if a sequence symbol 
is used in an AIF or an AGO instruction, the sequence symbol 
must be defined as a label in the same part of the program in 
which the AIF or AGO instruction appears; that is, in the same 
macro definition or in open code. 

If a sequence symbol appears in the name field of a macro 
instruction, and the corresponding prototype statement contains 
a symbolic parameter in the name field, the sequence symbol does 
not replace the symbolic parameter wherever it is used in the 
macro definition. 

208 Assembler H Version 2 Application Programming: language Reference 

( 
•. ~ 

~' 



o 

o 

o 

The following Qxample illustrates this rule. 

1 
2 

3 

4 

Name 

INAME 
INAME 

.SYM 

Operation 

MACRO 
MOVE 
ST 
l 
ST 
l 
MEND 

MOVE 

ST 
l 
ST 
L 

Operand 

ITO,IFROM 
2,SAVEAREA 
2,IF'ROM 
2,&TO 
2,SAVEAREA 

FIElDA,FIElDB 

2,SAVEAREA 
2,FIELDB 
2,FIELDA 
2,SAVEAREA 

The symbolic parameter &NAME is used in the name field of the 
prototype statement (statement 1) and the first model statement 
(statement 2). In the macro instruction (statement 3), a 
sequence symbol C.SYM) corresponds to the symbolic parameter 
&NAME. &NAME is not replaced by .SYM and, therefore, the 
generated statement (statement 4) does not contain an entry in 
the name field. 

ATTRIBUTE DEFINITION AND LOOKAHEAD 

Symbol attributes are established in either definition mode or 
lookahead mode. lookahead mode is entered when Assembler H 
encounters an attribute reference to ~ symbol that is not yet 
defined. 

DEFINITION MODE: Definition occurs whenever a previously 
undefined symbol is encountered in the name field of a 
statement, or in the operand field of an EXTRN or WXTRN 
statement during open code processing. Symbols within a macro 
definition are defined when the macro is generated. 

Lookahead Mode: lookahead is a sequential, 
statement-by-statement, forward scan over the source text. It 
is initiated when reference is made to an attribute (other than 
D') of a symbol not yet encountered, either by macro or 
open-code attribute reference, or by a forward AGO or AIF branch 
in open code. 

If reference is made in a macro, forward scan begins with the 
first source statement following the outermost macro 
instruction. Programmer macros are bypassed. The text is not 
assembled. lookahead attributes are tentatively established for 
all intervening undefined symbols. Tentative attributes are 
replaced and fixed when the symbol is subsequently encountered 
in definition mode. No macro expansion or open-code 
substitution is performed; no conditional or unconditional CAlF 
or AGO) branches are taken. COpy instructions are executed 
during lookahead, and the copied statements are scanned. . 

lookahead ends when the desired symbol or sequence symbol is 
found, or when the END card or end of file is reached. All 
statements passed over by lookahead are saved on an internal 
file, and processed when the lookahead ends. 

For purposes of attri bute defi ni.ti on, a symbol is consi dered 
undefined if it depends in any way upon a symbol not yet 
defined. For example, if the symbol is defined by a forward EQU 
that is not yet resolved, or if a DC, DS, or DXD modifier 
expression contains symbols not yet defined, that symbol is 
assigned a type attribute of U. 

Chapter 9. How to Write Conditional Assembly Instructions 209 



Note: Because no variable symbol substitution is performed by a 
lookaheadt you should be careful when using a macro or open code 
substitution to generate END statements that separate source 
modules assembled in one job step (option BATCH). If a symbol 
is undefined within a module, lookahead will read in records 
past the point where the END statement is to be generated. All 
statements between the generated statement and the point at 
which lookahead stops (either because it finds a matching 
symbol, or because it finds an END statement) are ignored by the 
assembler. The next module will start at the point where 
lookahead stops. 

lOOKAHEAD RES~RICTIONS: Assembler statements are analyzed only 
to the extent necessary to establish attributes of symbols in 
their name fields. 

Variable symbols are not replaced. Modifier expressions are 
evaluated only if all symbols involved were defined prior to 
lookahead. Possible multiple or inconsistent definition of the 
same symbol is not diagnosed during lookahead because 
conditional assembly may eliminate one (or both) of the 
definitions. 

Lookahead does not check undefined operation codes against 
library (system) macro names. If the name field contains an 
ordinary symbol and the operation code cannot be matched with 
one in the current operation code table, then the ordinary 
symbol is assigned the type attribute of M. If the operation 
code contains special characters or is a variable symbol, a type 
attribute of U is assumed. This may be wrong if the undefined 
operation code is later defined by OPSYN. OPSYN statements are 
not processed; thus, labels are treated in accordance with the 
operation code definitions in effect at the time of entry to 
lookahead. 

DECLARING SET SYMBOLS 

You must declare a global SET symbol before you can use it. The 
assembler assigns an initial value to a global SET symbol at its 
point of declaration. 

Local SET symbols need not be declared explicitly with LCLA, 
LCLB, or LCLC statements. The assembler considers any 
undeclared variable symbol found in the name field of a SETA, 
SETB, or SETC statement to be a local SET symbol. It is given 
the initial value specified in the operand field. If the symbol 
in the name field is subscripted, it is declared as a 
subscripted SET symbol. 

LClA, LClB, LClC--DEFINE lOCAL SET SYMBOLS 

You use the lelA, LCLB, and lClC instructions to declare the 
local SETA, SETB, and SETC symbols you need. The SETA, SETB, 
and SETC symbols are assigned the initial values of 0, 0, and 
null character string, respectively. 

The format of these instructions is: 

Name operation Operand 

Blank LCLA, One or more variable 
LClB, or symbols separated 
lClC by commas 

These instructions can be used anywhere in the body of a macro 
definition or in the open code portion of a source module. 

A local SET symbol should not begin with &SYS because these 
characters are reserved for system variable symbols. 

210 Assembler H Version 2 Application Programming: language Reference 



o 

o 

o 

Any variable symbols declared in the operand field have a local 
scope. They can be used as SET symbols anywhere after the 
pertinent lClA, lelB. or lCle instructions, but only within the 
declared local scope. Multiple lClx statements can declare the 
same variable symbol if only one declaration for a given symbol 
is encountered during the expansion of a macro. 

The following rules apply to a local SET variable symbol: 

1. Within a macro definition, it must not be the same as any 
symbolic parameter declared in the prototype statement. 

2. It must not be the same as any global variable symbol 
declared within the'same local scope. 

3. The same variable symbol must not be declared or used as two 
different types of SET symbols; for example, as a SETA and a 
SETB symbol, within the same local scope. 

SUBSCRIPTED lOCAL SET SYMBOLS: A local subscripted SET symbol is 
declared by the lelA, lClB, or lelC instruction. This 
declaration must be specified as follows: 

Format: 

lClA , 
lClB > &SETSYMCdimension) 

or lClC J 

where 

&SETSYM is a variable symbol. 
dimension must be an unsigned, decimal, self-defining term, 

but not O. 

For example: 

lClB &B(10) 

There is no limit to SET symbol dimensioning. The limit 
specified in the explicit (lClx) or implicit (SETx) declaration 
can also be exceeded by subsequent SETx statements. The 
dimension indicates the number of SET variables associated with 
the subscripted SET symbol. The assembler assigns an initial 
value to every variable in the array thus declared. 

Note: A subscripted local SET symbol can be used only if the 
declaration has a subscript, which represents a dimension; a 
nonsubscripted local SET symbol can be used only if the 
declaration had no subscript. 

ALTERNATIVE FORMAT FOR lClX STATEMENTS: Assembler H permits an 
alternative statement format for lClx instructions; for example: 

statement 
Field 

lClA &lOCAlSYMBOLFORDCGEH, 
&COUHTERFORIHNERlOOP, 
&COUHTERFOROUTERlOOP, 
&COUHTERFORTRAIlIHGlOOP 

GILA, GBlI, AND GBlC INSTRUCTIONS 

continuation 
Indicator 

X 
X 
X 

You use the GBlA, GBlB, and GBlC instructions to declare the 
global SETA, SETB, and SETC symbols you need. The SETA, SETB, 
and SETC symbols are assigned the initial values df 0, 0, and 
null character string, respectively. 

Chapter 9. How to Write Conditional Assembly Instructions 211 



The format of the GBLA, GBLI, and GBLe instruction statements is 
as follows: 

Name Operation Operand 

Blank GBLA, One or more variable 
GBLB, or symbols separated 
GBLC by commas 

These instructions can be used anywhere in the body of a macro 
definition or in the open code portion of a source module. 

Any variable symbols declared in the operand field have a global 
scope. They can be used as SET symbols anywhere after the 
pertinent GBLA, GBLB, or GBLC instructions. However, they can 
be used only within those parts of a program in which they have 
been declared as global SET symbols; that is, in any macro 
definition and in open ~ode. 

The assembler assigns an initial value to the SET symbol only 
when it processes the first GBLA, GBLB, or' GBLC instruction in 
which the symbol appears. Subsequent GBLA, GBLB, or GBLC 
instructions do not reassign an initial value to the SET symbol. 

Multiple GLBx statements can declare the same variable symbol if 
only one declaration for a given symbol is encountered during 
the expansion of a macro. 

The following rules apply to the global SET variable symbol: 

1. Within a macro definition, it must not be the same as any 
symbolic parameter declared in the prototype statement. 

2. It must not be the same as any local variable symbol 
declared within the same local scope. 

3. The same variable symbol must not be declared or used as two 
different types of global SET symbol; for example, as a SETA 
or SETB symbol. 

Note: A global SET symbol should not begin with the four 
characters &SYS, which are reserved for system variable symbols. 

SUBSCRIPTED GLOBAL SET SYMBOLS: A global subscripted SET symbol 
is declared by the GBLA, GBLB, or GBLC instruction. 

This declaration must be specified as follows: 

Format: 

GBLA 
GBLB 

or GBLe 

where 

, 
> &SETSYM(dimension) 
.J 

&SETSYM is a variable symbol. 
dimension must be an unsigned, decimal, self-defining term, 

but not o. 
For example: 

GBLA &GA 

There is no limit on the maximum subscript allowed. Also, the 
limit specified in the global declaration (GBlx) can be 
exceeded. The dimension indicates the number of SET variables 
associated with the subscripted SET symbol. The assembler 
assigns an initial value to every variable in the array thus 
declared. 

212 Assembler H Version 2 Application Programming: Language Reference 



o 

o 

o 

Notes: 

1. Global arrays are assigned initial values only by the first 
global declaration processed, in which a global subscripted 
SET symbol appears. 

2. A subscripted global SET symbol can be used only if the 
declaration has a subscript, which represents a dimension; a 
nonsubscripted global SET symbol can be used only if the 
declaration had no subscript. 

3. Wherever a particular global SET symbol is declared with a 
dimension as a subscript, the dimension must be the same in 
each declaration. 

ALTERNATIVE FORMAT FOR GBLX STATEMENTS: Assembler H permits the 
alternate statement format for GBLx instructions, as shown in 
tha following example: 

statement 
Field 

GBLA &GLOBAlSYMBOLFORDCGEN, 
&lOOPCONTRlA, 
&VAlUEPASSEDTOMACDUFF, 
&VALUERETURNEDFROMMACDUFF 

continuation 
Indicator 

X 
X 
X 

ASSIGNING VALUES TO SET SYMBOLS 

SETA--SET ARITHMETIC 

The SETA instruction allows you to assign an arithmatic valua to 
a SETA symbol. You can specify a single value or an arithmetic 
expression from which the assembler will compute the value to 
assign. 

You can change the values assigned to an arithmetic or SETA 
symbol. This allows you to use SETA symbols as counters, 
indexes, or for other repeated computations that require varying 
values. 

The format of this instruction is: 

Name operation Operand 

A variable SETA An arithmetic expression 
symbol 

A global variable symbol in the name field must hava bean 
previously declared as a SETA symbol in a GBlA instruction. 
Local SETA symbols need not be declared in a LCLA instruction. 
The assembler considers any undeclared variabla symbol found in 
the name field of a SETA instruction as a local SET symbol. 

The variable symbol is assigned a type attribute value of N. 

Tha expression in the operand field is evaluated as a signed 
32-bit arithmetic value that is assigned to the SETA symbol in 
the name field. The minimum and maximum allowable values of the 
expression are -2 31 and +2 31 _1, respectively. 

subscripted SETA Symbols 

The SETA symbol in the name field can be subscripted, but only 
if the same SETA symbol has been previously declared in a GBLA 
or LClA instruction with an allowable dimension. 

Chapter 9. How to Write Conditional Assembly Instructions 213 



The assembler assigns the value of the expression in the operand 
field to the position in the declared array given by the value 
of the subscript. The subscript expression must not be 0, or r~ 
have a negative value, or exceed the dimension actually V 
specified in the declaration. 

Arithmetic (SETAl Expressions 

Arithmetic expressions can be used as shown in Figure 53. 

Can be Used In 

SETA instruction 

AI F instruction 
or 
SETB instruction 

Subscripted SET 
symbols 

Substring notation 
(See L6) 

Sublist notation 

&SYSLIST 

Used As 

operand 

comparand 
in arithmetic 
relation 

subscript 

subscript 

subscript 

subscript 

Example 

&A1 SETA &A1+2 

AlP (&A*10 GT 30).A 

&SETSYM(&A+10-&C) 

'&STRING' (&A*2,&A-1) 

su bl i st (A, B , C , 0 ) 

when &A=l 

&PARAM(&A+1)=B 

&SYSLIST(&M+1,&N-2) 

&SYSLIST(N'&SYSLIST) 

----+--~--o--
SETC instruction character &C SETC '5-1 O*&A' 

string in if &A=1 0 .... ~ 
operand then &C=5-1 0~~1 ~ 

Figure 53. Using Arithmetic (SETA) Expressions 

Note: When an arithmetic expression is used in the operand 
field of a SETe instruction (see (1) in Figure 53), the 
assembler assigns the character value representing the 
arithmetic expression to the SETe symbol, after substituting 
values (see (2) in Figure 53) into any variable symbols. It 
does not evaluate the arithmetic expression. 

Figure 54 on page 215 defines an arithmetic expression. 

214 Assembler H Version 2 Application Programming: Language Reference 

C'I 
.y! 



o 

o 

Arithmetic 
Expression 

Arith. Exp 

Scaling 
Integer 
Count 

or 
Number 

Arith. Exp 

·Operators Allowed 

Unary: + positive 
- negative 

Binary: + addition 
- subtraction 
* multiplication 
/ division 

Arith. Exp = Arithmetic Expression 

Figure 54. Defining Arithmetic (SETA) Expressions 

The variable symbols that are allowed as terms in an arithmetic 
expression are given in Figure 55 on page 216. 

RULES FOR CODING ARITHMETIC EXPRESSIONS: The following is a 
summary of coding rules for arithmetic expressions: 

1. Both unary (operating on one value) and binary (operating on 
two values) operators are allowed in arithmetic .expressions. 

2. An arithmetic expression can have one or more unary 
operators preceding any term in the expression or at the 
beginning of the expression. The unary operators are + 
(positive) and - (negative). 

3. The binary operators that can be used to combine the terms 
of an expression are + (addition), - (subtraction), * 
(multiplication), and I (division). 

4. An arithmetic expression must not begin with a binary 
operator, and it must not contain two binary operators in 
succession. 

5. An arithmetic expression must not contain two terms in 
succession. 

6. An arithmetic expression must not contain blanks between an 
operator and a term, nor between two successive operators. 

Chapter 9. How to Write Conditional Assembly Instructions 215 



7. An arithmetic expression can contain up to 24 unary and 
binary operators, and up to 255 levels of parentheses. 

Note: The parentheses required for sublist notation, substring 
notation, and subscript notation count toward this limit. 

Variable Restrictions Example Value 
Symbol 

SETA none - -
SETB none - -
SETC } value must be an &C 123 

unsigned decimal 

&SYSPARM self-defining term &SYSPARM 2000 
in the range 0 
through 
2,147,483,647 

Symbolic value must be a &PARAM X'Al' 
Parameters self-defining term 

&SUBLIST(3) C'Z' 

&SYSLIST(n) correspond i ng &SYSLIST(3) 24 
operand or sublist 

&SYSLIST(n,m) entry must be &SYSLIST(3,2) B'lOl' 
a self-defining 
term 

&SYSNDX none - -

Figure 55. Variable Symbols Allowed as Terms in Arithmetic 
Expression 

EVALUATION OF ARITHMETIC EXPRESSIONS: The assembler evaluates 
arithmetic expressions at preassembly time as follows: 

1. It evaluates each arithmetic term. 

2. It performs arithmetic operations from left to right. 
However, 

a. It performs unary operations before binary operations, 
and 

b. It performs the binary operations of multiplication and 
division before the binary operations of addition and 
subtraction. 

3. In division, it gives an integer result; any fractional 
portion is dropped. Division by zero gives a 0 result. 

216 Assembler H Version 2 Application Programming: Language Reference 

o 



o 

o 

o 

4. In parenthesized arithmetic expressions, the assembler 
evaluates the innermost expressions first, and then 
considers them as arithmetic terms in the next outer level 
of expressions. It continues this process until the 
outermost expression is evaluated. 

5. The computed result, including intermediate values, must lie 
in the range -2 31 through +2 31 _1. 

SETC VARIABLES IN ARITHMETIC EXPRESSIONS: Assembler H permits a 
SETC variable to be used as a term in an arithmetic expression 
if the character ,string value of the variable is a self-defining 
term. The value represented by the string is assigned to the 
arithmetic term. A ntill string is treated as zero. (The OS/VS 
Assembler allows SETC variables as arithmetic terms only if the 
value of the variable is a decimal self-defining term, not 
longer than 10 characters.) 

Examples 

Name Operation Operand 

lClC IC(5) 
IC(l) SETC 'B"101'" 
&C(2) SETC 'C"A'" 
&C(3) SETC '23' 
&A SETA &C(1)+&C(2)-&C(3)1 
&AA SETA &C(3)2 

lAllowed only by Assembler H 
2Allowed by the OS/VS Assembler and Assembler H 

In evaluating the arithmetic expression in the fifth statement, 
the first term (&C(l» is assigned the binary value 101 (5). To 
that is added the value represented by the EBCDIC' character A 
(hexadecimal C1, which corresponds to decimal 193). Then the 
value represented by the third term (&C(3» is subtracted, and 
the value of &A becomes 5+193-23=175. 

This feature allows you to associate numeric values with EBCDIC 
or hexadecimal characters to be used in such applications as 
indexing, code conversion, translation, and sorting. 

Assume that &X is a character string with the value ABC. 

Name Operation Operand 

&1 SETC ' C' , , . '&X' ( 1 , 1) . ' , , , 
&VAL SETA &TRANS(&I) 

The first statement sets &1 to C'A'. The second statement 
extracts the 193rd element of &TRANS (C'A' = X'C1' = 193). 

The following code will convert a hexadecimal value in &H into a 
decimal value in &VAl: 

Name Operation Operand 

&X SETC 'X"&H'" 
&VAl SETA &X 

An arithmetic expression must not contain two terms in 
succession; however, any term may be preceded by any number of 
unary operators. +&A*-&B is a value operand for a SETA 
instruction. The expression &FIELD+- is invalid because it has 
no final term. 

Chapter 9. How to Write Conditional Assembly Instructions 217 



Using SETA symbols 

The ari thmeti c value assi gned to a SETA symbol is substi tuted 0,"'.' ..... . 
for the SETA symbol when it is used in an arithmetic expression. ~ 
If the SETA symbol 1s not used in an arithmetic expression, the 
arithmetic value is converted to an unsigned integer, with 
leading zeros removed. If the v~lue is 0, it is converted to a 
single o. 
The following example illustrates this rule: 

1 
2 
3 
4 

5 
6 

Name 

INAME 

&A 
IB 
IC 
ID 
INAME 

HERE 

HERE 

operation 

MACRO 
MOVE 
LCLA 
SETA 
SETA 
SETA 
SETA 
ST 
L 
ST 
L 
MEND 

MOVE 

ST 
l 
ST 
L 

Operand 

ITO,&FROM 
&A,IB,IC,ID 
10 
12 
IA-IB 
IA+IC 
2,SAVEAREA 
2,IFROMle 
2,&TOID 
2,SAVEAREA 

FIElDA,FIElDB 

2,SAVEAREA 
2,FIELDB2 
2,FIELOA8 
2,SAVEAREA 

Statements 1 and 2 assign the arithmetic values +10 and +12, 
respectively, to the SETA symbols &A and lB. Therefore, 
statement 3 assigns the SETA symboliC the arithmetic value -2. 
When &C is' used in statement 5, the arithmetic value -2 is 
converted to the unsigned integer 2. When Ie is used in 
statement 4, however, the arithmetic value -2is used. 
Therefore, to is assigned the arithmetic value +8. When &0 is 
used in statement 6, the arithmetic value +8 is converted to the 
unsigned integer 8. 

The following example shows how the value assigned to a SETA 
symbol may be changed in a macro definiti~n. 

1 

2 
3 
4 

Name 

&NAME 

&A 
INAME 

IA 

HERE 

HERE 

operation 

MACRO 
MOVE 
LCLA 
SETA 
ST 
L 
SETA 
ST 
L 
MEND 

MOVE 

ST 
L 
ST 
L 

Operand 

&TO,IFROM 
&A 
5 
2,SAVEAREA 
2,IFROM&A 
8 
2,ITO&A 
2,SAVEAREA 

FIELOA,FIELDB 

2,SAVEAREA 
2,FIElOBS 
2,FIELDA8 
2,SAVEAREA 

218 Assembler H Version 2 Application Programming: Language Reference 



o 

o 

SETB--SET BINARY 

O··,r., 

~ 

Statement 1 assigns the arithmetic value +5 to SETA symbol &A. 
In statement 2, &A is converted to the unsigned integer 5. 
Statement 3 assigns the arithmetic value +8 to &A. In statement 
4, therefore, &A is converted to the unsigned integer 8, instead 
of 5. 

A SETA symbol may be used with a symbolic parameter to refer to 
an operand in an operand sublist. If a SETA symbol is used for 
this purpose, it must have been assigned a positive value. 

Any expression that may be used in the operand field of a SETA 
instruction may be used to refer to an operand in an operand 
sublist. Sublists are described in "Sublists in Operands" on 
page 185. 

The following macro definition may be used to add the last 
operand in an operand sublist to the first operand in an operand 
sublist and store the result at the first operand. A sample 
macro instruction and generated statements follow the macro 
definition. 

1 

2 

3 

4 

Name 

&LAST 

ope~ation 

MACRO 
ADDX 
LCLA 
SETA 
L 
A 
ST 
MEND 

ADDX 

L 
A 
ST 

Ope~and 

&NUMBER,&REG 
&LAST 
N'&NUMBER 
&REG,&NUMBER(1) 
&REG,&NUMBER(&LAST) 
&REG,&NUMBER(l) 

(A,B,C,D,E),3 

3,A 
3,E 
3,A 

&NUMBER is the first symbolic parameter in th operand field of 
the prototype statement (statement 1). The corresponding 
characters (A,B,C,D,E) of the macro instruction (statement 4) 
are a sublist. Statement 2 assigns to &LAST the arithmetic 
value +5, which is equal to the number of operands in the 
sublist. Therefore, in statement 3, &NUMBER(&LAST) is replaced 
by the fifth operand of the sublist. 

You use the SETB instruction to assign a binary bit value to a 
SETB symbol. You can assign the bit values, 0 or 1, to a SETB 
symbol directly and use it as a switch. 

If you specify a logical (boolean) expression in the operand 
field, the assembler evaluates this expression to determine 
whether it is true or false, and then assigns the value 1 or 0, 
respectively, to the SETB symbol. You can use this computed 
value in condition tests or for substitution. 

The format of this instruction is: 

Name ope~at;on Ope~and 

A variable SETB One of three options 
symbol described below 

A global variable symbol in the name field must have been 
previously declared as a SETB symbol in a GBLB instruction. 
Local SETB symbols need not be declared in a LCLB instruction. 
The assembler considers any undeclared variable symbol found in 

Chapter 9. How to Write Conditional Assembly Instructions 219 



the name field of a SETB instruction as a local SET symbol. The 
variable symbol is assigned a type attribute value of N. 

The three options that can be specified in the operand field 
are: 

• A binary value (0 or 1) 

• A binary value enclosed in parentheses 

Note: An arithmetic value enclosed in parentheses is 
allowed. This value can be represented by an unsigned, 
decimal, self-defining term; a SETA symbol; or an attribute 
reference other than the type attribute reference. If the 
value is 0, the assembler assigns a value of 0 to the symbol 
in the name field. If the value is not 0, the assembler 
assigns a value of 1. 

• A logical expression enclosed in parentheses 

A logical expression is evaluated to determine if it is true or 
false; the SETB symbol in the name field is then assigned the 
binary value 1 or 0, corresponding to true or false, 
respectively. The assembler assigns the explicitly specified 
binary value (0 or 1) or the computed logical value (0 or 1) to 
the SETB symbol in the name field. 

Subscripted SETB symbols 

The SETB symbol in the name field can be subscripted, but only 
if the same SETB symbol has been previously declared in a GBLB 
or LeLB instruction with an allowable_dimension. 

The assembler assigns the binary value explicitly specified, or 
implicit in the logical expression present in the operand field, 
to the position in the declared array given by the value of the 
subscript. The subscript expression must not be 0, or have a 
negative value, or exceed the dimension actu~lly specified in 
the declaration. 

Logical (SETBl Expressions 

You can use a logical expression to assign a binary value to a 
SETB symbol. You can also use a logical expression to represent 
the condition test in an AIF instruction. This use allows you 
to code a logical expression whose value (0 or 1) will vary 
according to the values substituted into the expression and 
thereby determine whether or not a branch is to be taken. 

Figure 56 on page 221 defines a logical expression. 

Note: An arithmetic relation is two arithmetic expressions 
separated by a relational operator. A character relation is two 
character strings (for example, a character expression and a 
type attribute reference) separated by a relational operator. 
The relational operators are: 

EQ equal 

HE not equal 

lE less than or equal 

lT less than 

GE greater than or equal 

GT greater than 

220 Assembler H Version 2 Application Programming: language Reference 



o 

o 

o 

Arithmetic 
value 

Arithmetic 
Expression 

Logical 

Outermost Expression 
must be enclosed in 
parentheses in SETB 
and AIF instructions 

Character 
Expression 

Figure 56. Defining Logical Expressions 

Logical Operators Allowed 

addition 
multiplication 
negation 

Optional parentheses 
around terms and 
expressions at this level 

Items optionally 

parentheses 

Relational Operators Allowed 

equal 

not equal 

less than or equal 

less than 

greater than or equal 

greater than 

Must be in the 
range 0 through 
255 characters 

Must stand alone 
and not be enclosed 
in apostrophes 

Chapter 9. How to Write Conditional Assembly Instructions 221 



RULES FOR CODING LOGICAL EXPRESSIONS: The following is a summary 
of coding rules for logical expressions:~ 

1. A logical expression must not contain two logical terms in 
succession. 

2. A logical expression can begin with the logical operator 
NOr. 

3. A logical expression can contain two logical operators in 
succession; however, the only combinations allowed are: OR 
NOT or AND NOT. The two operators must be separated from 
each other by one or more blanks. 

4. Any logical term, relation, or inner logical expression can 
be optionally enclosed in parentheses. 

5. The relational and logical operators must be immediately 
preceded and followed by at least one blank or other special 
character. 

6. A logical expression can contain up to 18 logical operators. 
Note that the relational and other operators used by the 
arithmetic and character expressions in relations do not 
count toward this total. There is no limit on the number of 
parentheses. 

EVALUATION OF LOGICAL EXPRESSIONS: The assembler evaluates 
logical expressions as follows: 

1. It evaluates each logical term, which is given a binary 
value of 0 or 1. 

2. If the logical term is an arithmetic or character relation, 
the assembler evaluates: 

3. 

a. The arithmetic or character expressions specified as 
values for comparison in these relations, and then 

b. The arithmetic or character relation, and finally 

c. The logical term, which is the result of the relation. 
If the relation is true, tha logical term it represents 
is given a value of 1; if the relation is false, the 
term is given a value of O. 

Note: The two comparands in a character relation arL 
compared, character by character, according to binary 
(EBCDIC) representation of the character. If two comparands 
in a character relation have character values of unequal 
length, the assembler always takes the shorter character 
value to be less than the longer one. 

The assembler performs logical operations from left to 
right. However, 

a. It performs logical NOTs before logical ANDs and ORs, 
and 

b. It performs logical ANDs before logical ORs. 

4. In parenthesized logical expressions, the assembler 
evaluates the innermost expressions first, and then 
considers them as logical terms in the next outer level of 
expressions. It continues this process until the outermost 
expression is evaluated. 

USING SETB SYMBOLS: The logical value assigned to a SETB symbol 
is used for the SETB symbol appearing in the operand field of an 
AIF instruction or another SETB instruction. 

If a SETB symbol is used in the operand field of a SETA 
instruction, or in arithmetic relations in the operand fields of 

222 Assembler H Version 2 Application Programming: Language Reference 



o 

o 

SETc--5ET CHARACTER 

o 

AIF and SETB instructions, the binary values 1 (true) and 0 
(false) are converted to the arithmetic values +1 and +0, 
respectively. 

If a SETB symbol is used in the operand field of a SETC 
instruction, in character relations in the operand fields of AIF 
and SETB instructions, or in any other statement, the binary 
values 1 (true) and 0 (false), are converted to the character 
values 1 and 0, respectively. 

The following example illustrates these rules. It is assumed 
that L'&TO EQ 4 is true, and 5'&TO EQ 0 is false. 

1 
2 
3 
4 

Name 

&NAME 

181 
&B2 
lA1 
IC1 

HERE 

HERE 

operation 

MACRO 
MOVE 
LCLA 
LCLB 
LCLC 
SETB 
SETB 
SETA 
SETC 
ST 
l 
ST 
L 
MEND 

MOVE 

ST 
l 
ST 
L 

Operand 

&TO,&FROM 
&A1 
&81,&82 
lCl 
(L'ITO EQ 4) 
(S'ITO EQ 0) 
lB1 
'&B2' 
2,SAVEAREA 
2,&FROM&A1 
2,ITOlC1 
2,SAVEAREA 

FIElDA,FIElDB 

2,SAVEAREA 
2,FIElDB1 
2,FIElDAO 
2,SAVEAREA 

Because the operand field of statement 1 is true, &B1 is 
assigned the binary value 1. Therefore, the arithmetic value +1 
is substituted for &B1 in statement 3. Because the operand 
field of statement 2 is false, &B2 is assigned the binary value 
O. Therefore, the character value 0 is substituted for &B2 in 
statement 4. 

The SETC instruction allows you to assign a character value to a 
SETC symbol. You can assign whole character strings, or 
concatenate several smaller strings together. The assembler 
will assign the composite string to your SETC symbol. You can 
also assign parts of a character string to a SETC symbol by 
using the substring notation. 

You can change the character value assigned to a SETC symbol. 
This allows you to use the same SETC symbol with different 
values for character comparisons in several places, or for 
substituting different values into the same model statement. 

The format of this instruction is: 

Name operation operand 

A variable SETC One of four options 
symbol described below 

A global variable symbol in the name field must have been 
previously declared as a SETC symbol in a GBlC instruction. 
local SETC symbols need not be declared in a lClC instruction. 
The assembler considers any undeclared variable symbol found in 

Chapter 9. How to Write Conditional Assembly Instructions 223 



the name field of a SETC instruction as a local SET symbol. The 
variable symbol is assigned a type attribute value of U. 

The four options that can be specified in the operand field are: 

• A type attribute reference 

• A character expression 

• A substring notation 

• A concatenation of substring notations, or character 
expressions, or both 

The assembler assigns the character string value represented in 
tha operand field to the SETC symbol in the name field.' The 
string length must be in the range 0 (null character string) 
through 255 characters. 

Note: When a SETA or SETB symbol is specified in a character 
expression, the unsigned decimal value of the symbol (with 
leading zeros removed) is the character value given to the 
symbol. 

A duplication factor can precede any of the first three options, 
or any of the parts (character expression or substring notation) 
that make up the fourth option of the SETC instruction operand. 
The duplication factor can be any arithmetic expression allowed 
in the operand of a SETA instruction. For example: 

ICl SETC (3)'ABC' 

assigns the value 'ABCABCABC' to IC1. 

Note: The assembler evaluates the character string represented 
(in particular, the substring) before applying the duplication C-~-
factor. The resulting character string is then assigned to the .0 

SETC symbol in the name field. For example: 

&C2 SETC 'ABC'.(3)'ABCDEF'(4,3) 

assigns the value 'ABCDEFDEFDEF' 'to IC2. 

SUBSCRIPTED SETC SYMBOLS: The SETC symbol (see (1) in Figure 57 
on page 225) in the name field can be subscripted, but only if 
the same SETC symbol has been previously declared (see (2) in 
Figure 57) in a GBlC or an lClC instruction with an allowable 
dimension. 

The assembler assigns the character value represented in the 
operand field to the position in the declared array (see (3) in 
Figure 57) given by the value of the subscript. The subscript 
expression must not be 0, or have a negative value, or exceed 
the dimension (see (4) in Figure 57) actually specified in the 
declarat;on. 

Character (SETC) Expressions 

The ma;n purpose of a character expression is to assign a 
character value to a SETC symbol. You can then use the SETC 
symbol to substitute the character string into a model 
statement. 

You can also us~ a character ~xpression as a value for 
comparison in condition tests and logical expressions. In 
addition, a character expression provides the string from which 
characters can be selected by the substring notation. 

Substitution of one or more character values into a character 
expression allows you to use the character expression wherever 
you need to vary values for substitution or to~control loops. 

224 Assembler H Version 2 Application Programming: language Reference 

o 



o 

o 

o 

LCLC 
LCLC 

&Cl,&C2 
&SUBSCRC(20). 

• 
Must be in the 
range 1 through 
32767 

&SUBSC~C(lO> SETC 'ABCDE' 

Array: 

Must be an arithmetic &SUBSCRC 
expression allowed in 
the operand of a SET A t instruction 

1 2 10 

&SUBSCRC(25} SETC 'ABCDEF' 
I • 

&Cl SETC , &SUBSCRC (10) I 

Figure 57. Subscripted SETC Symbols 

~ I 
t 

20 

:::*ERROR** No 
Value Assigned 

Valoe assigned 

&Cl=ABCDE 

Character (SETC) expressions can be used only in conditional 
assembly instructions as shown in Figure 58 on page 226. 

A character expression consists of any combination of characters 
enclosed in single quotation marks. Variable symbols are 
allowed. The assembler substitutes the representation of their 
values as character strings into the character expression before 
evaluating the expression. Up to 255 characters are allowed in 
a character expression. 

Note: Attribute references are not allowed in character 
expressions. 

EVALUATION OF CHARACTER EXPRESSIONS: The value of a character 
expression is the character string within the enclosing single 
quotation marks, after the assembler performs any substitution 
for variable symbols. 

Character strings, including variable symbols, can be 
concatenated to each other within a character expression. The 
resultant string is the value of the expression used in 
conditional assembly operations; for example, the value assigned 
to a SETe symbol. 

Notes: 

1. Two single quotation marks must be used to generate a single 
quotation mark as part of the value of a character 
expression. 

The following statement assigns the character value L'SYMBOL 
to the SETC symbol &LENGTH. 

Chapter 9. How to Write Conditional Assembly Instructions 225 



Can be Used in Used As Example 

SETC instruction operand &C SETC 'STRINGO' 

AIF instruction character AIF ( '&C' EQ 'STRINGl') .B 
or string in 
SETB instruction character 

relation 

Substring notation first part 
of notation 

, (2,S}=ELECT 

Figure 58. Using Character Expressions 

Name operation operand 

&lENGTH SETC 'l"SYMBOl' 

2. A double ampersand will generate a double ampersand as part 
of the value of a character expression. To generate a 
single ampersand in a character expression, use the 
substring notation; for example, ('&&'(1,1». 

The following statement assigns the character value HAlF&& 
to the SETC symbol &AND. 

Name Operation Operand 

&AND SETC 'HAlF&&' 

3. To generate a period, two periods must be,.specified after a 
variable symbol, or the variable symbol must have a period 
as part of its value. 

For example, if &AlPHA has been assigned the character value 
AB~4, the following statement can be used to assign the 
character value AB~4.RST to the variable symbol &GAMMA. 

Name operation Operand 

&GAMMA SETC '&AlPHA .. RST' 

CONCATENATION OF CHARACTER STRING VALUES: Character expressions 
can be concatenated to each other or to substring notations in 
any order. This concatenated string can then be used in the 
operand field of a SETC instruction, or as a value for 
comparison in a logical expression. 

The resultant value is a character string composed of the 
concatenated parts. 

226 Assembler H Version 2 Application Programming: language Reference 

~\ 
V 

c 



o 

o 

o 

Note: The concatenation character (a period) is needed to 
separate the single quotation mark that ends one character 
expression from the single quotation mark that begins the next. 

For example, either of the following statements may be used to 
assign the character value ABCDEF to the SETC symbol &BETA. 

Name operation operand 

&BETA SETC 'ABCDEF' 
&BETA SETe ' ABe' . 'DEF' 

USING SETe SYMBOLS: The character value assigned to a SETe 
symbol is substituted for the SETC symbol when it is used in the 
name, operation, or operand field of a statement. 

For example, consider the following macro definition, macro 
instruction, and generated statements. 

1 

2 
3 

Name 

&NAME 

&PREFIX 
&NAME 

HERE 

HERE 

operation 

MACRO 
MOVE 
LCLC 
SETC 
ST 
L 
ST 
L 
MEND 

MOVE 

ST 
L 
ST 
L 

Operand 

&TO,&FROM 
&PREFIX 
'FIELD' 
2,SAVEAREA 
2,&PREFIX&FROM 
2,&PREFIX&TO 
2,SAVEAREA 

A,B 

2,SAVEAREA 
2,FIELDB 
2,FIELDA 
2,SAVEAREA 

statement 1 assigns the character value FIELD to the SETC symbol 
&PREFIX. In statements 2 and 3, &PREFIX is replaced by FIELD. 

The following example shows how the value assigned to a SETC 
symbol may be changed in a macro definition. 

1 

2 
3 
4 

Name 

&NAME 

&PREFIX 
&NAME 

&PREFIX 

HERE 

HERE 

operation 

MACRO 
MOVE 
LCLC 
SETC 
ST 
L 
SETC 
ST 
L 
MEND 

MOVE 

ST 
L 
ST 
l 

Operand 

&TO,&FROM 
&PREFIX 
'FIELD' 
2,SAVEAREA 
2,&PREFIX&FROM 
' AR EA ' 
2,&PREFIX&TO 
2,SAVEAREA 

A,B 

2,SAVEAREA 
2,FIELDB 
2,AREAA 
2,SAVEAREA 

statement 1 assigns the character value FIELD to the SETC symbol 
&PREFIX. Therefore, &PREFIX is replaced by FIELD in statement 
2. Statement 3 assigns the character value AREA to &PREFIX. 

Chapter 9. How to Write Conditional Assembly Instructions 227 



Therefore. &PREFI~ is replaced by AREA. instead of FIELD. in 
statement 4. 

The following example illustrates the use of a substring 
notation as the operand field of a SErC instruction. 

1 

2 

Name 

&NAME 

&PREFIX 
&NAME 

HERE 

HERE 

Operation 

MACRO 
MOVE 
LCLC 
SETC 
5T 
L 
ST 
L 
MEND 

MOVE 

ST 
L 
ST 
L 

Operand 

&TO,&FROM 
&PREFIX 
'&TO'(1.5) 
2,SAVEAREA 
2,&PREFIX&FROM 
2,&TO 
2,5AVEAREA 

FIELDA.B 

2,SAVEAREA 
2,FIELDB 
2,FIELDA 
2.SAVEAREA 

statement 1 assigns the substring character value FIELD (the 
first five characters corresponding to symbolic parameter &TO) 
to the SETC symbol &PREFIX. Therefore, FIELD replaces &PREFIX 
in statement 2. 

Note: It is not possible, by specifying a string of values 
separated by commas as the operand of a SETC instruction and 
then using the SETe symbol as an operand in the macro call. to 
pass a string of values as parameters in a macro instruction. 
If you attempt to do this, the operand of the SETC instruction 
will be passed to the macro instruction as one parameter, not as 
a list of parameters. If the SETC operand is a sublist. it will 
also be passed to the macro instruction as one parameter. 

Concatenating Substring Notations and Character Expressions: 
Substring notations can be concatenated with character 
expressions in the operand field of a SETC instruction. If a 
substring notation follows a character expression, the two can 
be concatenated by placing a period between the terminating 
single quotation mark of the character expression and the 
opening single quotation mark of the substring notation. 

For example. if &ALPHA has been assigned the character value 
AB%4. and &BETA has been assigned the character value ABCDEF. 
the following statement assigns &GAMMA the character value 
ABY.4BCD. 

Name Operation Operand 

&GAMMA SETe '&ALPHA'.'&BETA'(2.3) 

If a substring notation precedes a character expression or 
another substring notation, the two can be concatenated by 
writing the opening single quotation mark of the second item 
immediately after the closing parenthesis of the substring 
notation. 

Optionally, you can place a period between the closing 
parenthesis of a substring notation and the opening single 
quotation mark of the next item in the operand field. 

If &ALPHA has been assigned the character value AB~4, and &ABC 
has been assigned the character value 5RS. either of the 
following statements can be used to assign &WORD the character 
value AB%45RS. 

228 Assembler H Version 2 Application Programming: Language Reference 



o 

o 

o 

Name operation Operand 

,&WORD SETC '&ALPHA'(1,4)'&ABC' 
&WORD SETC '&ALPHA'(1,4)'&ABC'(1,3) 

If a SETC symbol is used in the operand field of a SETA 
instruction, the character value assigned to the SETC symbol 
must be 1 to 8 decimal digits. 

If a SETA symbol is used in the operand field of a SETC 
statement, the arithmetic value is converted to an unsigned 
integer with leading zeros removed. If the value is 0, it is 
converted to a single O. 

EXTENDED SET STATEMENTS 

In addition to assigning single values to SET symbols, you can 
assign values to multiple elements in an array of a subscripted 
SET symbol with one single SETx instruction. Such an 
instruction is called an extended SET statement. 

The format of an extended SETx statement is: 

Name operation Operand 

A subscripted {SETAl operand! 
variable SETBI ,operand2 
symbol SETC} ,operand3 ... 

,operandn 

The name field specifies the name of the SET symbol and the 
position in the array to which the first value in the operand 
field is to be assigned. The successive operand values are then 
assigned to the successive positions in the array. If an 
operand is omitted, the corresponding element of the array is 
unchanged. Consider the following example: 

Name operation Operand 

LCLA &LIST(50) 
\&LIST(!!) SETA 5,10,,20,25,30 
\ 

The first instruction declares &LIST as a subscripted local SETA 
symbol. The second instruction assigns values to certain 
elements of the array &LIST. Thus, the instruction does the 
same as the following sequence: 

Name operation Operand 

&LISTC!!) SETA 5 
&LIST(!2) SETA !O 
&LIST(!4) SETA 20 
&LIST(15) SETA 25 
&LIST(16) SETA 30 

ALTERNATIVE STATEMENT FORMAT: You can use the alternative 
statement format for extended SETx statements. The above coding 
could then be written as follows: 

Name 

&LIST(11) 

Operation Operand 

SETA 5, 
10" 
20,25,30 

continuation 
Remarks Indicator 

THIS IS X 
AN ARRAY X 
SPECIFICATION 

Chapter 9. How to Write Conditional Assembly Instructions 229 



SUBSTRING NOTATION 

Can be Used as 
Used in 

SETC operand 

instruction 
part of 

operand 
operand 

SETB or Character 
AIF value in 
instruction comparand 
operand of character 
(logical relation 
expression) 

The substring notation allows you to refer to one or more 
characters within a character string. You can, therefore, 
either select characters from the string and use them for 
substitution or testing, or scan through a complete string, 
inspecting each character. By· concatenating substrings with 
other substrings or character strings, you can rearrange and 
build your own strings. 

The substring notation can be used only in conditional assembly 
instructions, as shown in Figure 59. 

The substring notation must be specified as follows: 

'CHARACTER STRIHG'(el,e2) 

where the character string is a character expression from which 
the substring is to be extracted. The first subscript indicates 
the first character that is to be extracted from the character 
string. The second subscript indicates the number of characters 
to be extracted from the character string, starting with the 
character indicated by the first subscript. Thus, the second 
subscript specifies the length of the resulting substring. 

Example Value Assigned 
to SETC symbol 

&C1 SETC 'ABC' (1,3) ABC 

&C2 SETC '&C1' (1,2). 'DEF' ABDEF 

AIF ( , & STRING' (1,4) EQ ' AREA' ) • SEQ 

&B SETB ( , &STRING' (1,4) • ' 9 ' EQ 'FULL9' ) 

Figure 59. Substring Notations in Conditional Assembly Instructions 

Some examples are: 

Examples 

'ABCDE'(1,5) 
'ABCDE'C2,3) 

Value of Variable 
Symbol 

'&C'(3,3) ABCDE 
'&PARAM'(3,3) «A+3)*10) 

Character Value 
of Substring 

ABCDE 
BCD 
CDE 
A+3 

The character string must be a valid character expression with a 
length, N, in the range 1 through 255 characters. The length of 
the resulting substring must be within the range 0 through 255. 

The subscripts, el and e2, must be arithmetic expressions. The 
substring notation is replaced by a value that depends on the 
three elements: N, el, and e2, as summarized in Figure 60 on 
page 232. 

230 Assembler H Version 2 Application Programming: language Reference 



o 

o 

o 

The numbers in the following list relate to the numbers in 
Figure 60: 

(1) In the usual case, the assembler generates a correct 
substring of the specified length. 

(2) When el has a value of 0 or a negative value, the assembler 
issues an error message. 

(3) When the value of e1 exceeds N, the assembler issues a 
warning message, and a null string is generated. 

(4) When e2 has a value of 0, the assembler generates the null 
character string. Note that, if e2 is negative, the 
assembler issues an error message. 

(5) When e2 indexes past the end of the character expression 
(that is, el+e2 is greater than N+l), the assembler issues 
a warning message and generates a substring that includes 
only the characters up to the end of the character 
expression specified. 

. Chapter 9. How to Write Conditional Assembly Instructions 231 



BRANCHING 

Examples: Assume O<NS255 

• O<el:S N. O<e2:SN. and 
e1+e2SN+1 

• ABCDEF' (2 , 5 ) 

8 e1SO 

• ABCDEF' (0 ,::ID /"' ... 

N=6 

**ERROR** 

IValue of e2 disregarded I , 
ee1>N \ 

• ABCDEF' (7 ,I:) N=e: *WARNING* 

.~i~CDEF' <_,0) 
~<--------------~ I Value of e 1 disregarded I 

e O<e1SN, O<e2~N, but 
e1+e2>N+ 1 

Character Value 
of Substring 

~CDEF 

null 

null 

null 

"ABCDEF' (3,5) N=6 *WARNING* CDEF 

• ABCDEF' (3, 4 ) CDEF 

Figure 60. Summary of Substring Notation 

AIF--CONDITIONAL BRANCH 

You use the AIF instruction to branch according to the results 
of a condition test. You can thus alter the sequence in which 
source program statements or macro definition statements are 
processed by the assembler. 

232 Assembler H Version 2 Application Programming: language Reference 

~\ 
U 

c 



o 

o 

o 

The AIF instruction also provides loop control for conditional 
assembly processing, which allows you to control the sequence of 
statements to be generated. 

It also allows you to check for error conditions and thereby to 
branch to the appropriate MNOTE instruction to issue an error 
message. 

The format of this instruction is: 

Name operation operand 

A sequence AIF A logical expression 
symbol or blank enclosed in parentheses, 

immediately followed by a 
sequence symbol 

The logical expression in the operand field is evaluated at 
preassembly time to determine if it is true or false. If the 
expression is true (logical vaiue=l), the statement named by the 
sequence symbol in the operand field is the next statement 
processed by the assembler. If the expression is false (logical 
value=O), the next sequential statement is processed by the 
assembler. 

In the following example, a branch is taken to the label .OUT if 
&C = YES: 

AIF ('&C' EQ 'YES').OUT 
.ERROR ANOP 

. 
. OUT ANOP 

The sequence symbol in the operand field is a conditional 
assembly label that represents an address at preassembly time. 
It is the address of the statement to which a branch is taken if 
the logical expression preceding the sequence symbol is true. 

The statement identified by the sequence symbol referred to in 
the AIF instruction can appear before or after the AIF 
instruction. However, the statement must appear within the 
local scope of the sequence symbol. Thus, the statement 
identified by the sequence symbol must appear: 

• In open code, if the corresponding AIF instruction does, or 

• In the same macro definition in which the corresponding AIF 
instruction appears. 

No branch can be taken from open code into a macro definition or 
between macro definitions, regardless of nested calls to other 
macro definitions. 

The following macro definition may be used to generate the 
statements needed to move a fullword fixed-point number from one 
storage area to another. The statements will be generated only 
if the type attribute of both storage areas is the letter F. 

Chapter 9. How to Write Conditional Assembly Instructions 233 



! 
2 
3 

4 

Name 

&N 

&N 

. END 

operation 

MACRO 
MOVE 
AIF 
AIF 
ST 
L 
ST 
L 
MEND 

Opera.nd 

&T,&F 
(T'&T NE T'&F).END 
(T'&T NE 'F').END 
2,SAVEAREA 
2,&F 
2,&T 
2,SAVEAREA 

The logical expression in the operand field of statement! has 
the value true if the type attributes of the two macro 
instruction operands are not equal. If the type attributes are 
equal, the expression has the logical value false. 

Therefore, if the type attributes are not equal, statement 4 
(the statement named by the sequence symbol .END) is the next 
statement processed by the assembler. If the type attributes 
are equal, statement 2 (the next sequential statement) is 
processed. 

The logical expression in the operand field of statement 2 has 
the value true if the type attribute of the first macro 
instruction operand is not the letter F. If the type attribute 
is the letter F, the expression has the logical value false. 

Therefore, if the type attribute is not the letter F, statement 
4 (the statement named by the sequence symbol .END) is the next 
statement processed by the assembler. If the type attribute is 
the letter F, statement 3 (the next sequential statement) is 
processed. 

Extended AIF Instruction 

The extended AIF instruction allows you to combine several 
successive AIF statements into one statement. The extended AIF 
instruction has the following format: 

Name Operation Operand 

A sequence AIF (logical expression).S!, 
symbol or (logical expression).S2, 
blank ... , 

(logical expression).Sn 

The extended AIF instruction is exactly equivalent to n 
successive AIF statements. The branch is taken to the first 
sequence symbol (scanning left to right) whose corresponding 
logical expression is true. If none of the logical expressions 
;s true, no branch ;s taken. 

Consider the following example: 

Name Operation Operand 

AIF ('&L'(&C,!) EQ '$').DOLR, X 
(f&l'(&C,!) EQ , I ').POUND, X 
('&L'(&C,1) EQ 'O'I').AT, X 
('&l'(IC,l) EQ '=').EQUAl, X 
('&L'(&C,!) EQ 'C'}.LEFTPAR, X 
C'IL'CIC,!) EQ '+').PLUS, X 
C'&L'C&C,l) EQ '-').MINUS 

234 Assembler H Version 2 Application Programming: Language Reference 

~, 
V 

o 

o 



o 

o 

o 

. 
This statement looks for the occurrence of a $, " a, =, (, +, 
and -, in that order; and causes control to branch to .DOLR, 
.POUND, .AT, .EQUAL, .LEFTPAR, .PLUS, and .MINUS, respectively, 
if the string being examined contains any of these characters. 

ALTERNATIVE STATEMENT FORMAT: The alternative statement format 
is allowed for extended AIF instructions. The format is 
illustrated in the above example. 

AGD--UNCONDITIONAL BRANCH 

The AGO instruction allows you to branch unconditionally. You 
can thus alter the sequence in which your assembler language 
statements are processed. This provides you with final exits 
from conditional assembly loops. 

The format of this instruction is: 

Name ope .... ation Operand 

A sequence AGO A sequence symbol 
symbol or blank 

The statement named by the sequence symbol in the operand field 
is the next statement processed by the assembler. 

The statement identified by a sequence symbol referred to in the 
AGO instruction can appear before or after the AGO instruction. 
However, the statement must appear within the local scope of the 
sequenee symbol. Thus, the statement identified by the sequence 
symbol must appear 

• 
• 

In open code, if the corresponding AGO instruction does, or 

In the same macro definition in which the corresponding AGO 
instruction appears. . 

The following example illustrates the use of the AGO 
instruction. 

1 
2 
3 

4 

Name 

&NAME 

.FIRST 
&NAME 

. END 

Operation 

MACRO 
MOVE 
AIF 
AGO 
AIF 
ST 
L 
ST 
L 
MEND 

Operand 

&T,&F 
(T'&T EQ 'F').FIRST 
.END 
(T'&T NE T'&F).END 
2,SAVEAREA 
2,&F 
2,&T 
2,SAVEAREA 

Statement 1 is used to determine if the type attribute of the 
first macro instruction operand is the letter F. If the type 
attribute is the letter F, statement 3 is the next statement 
processed by the assembler. If the type attribute is not the 
letter F, statement 2 is the next statement processed by the 
assembler. 

statement 2 is used to indicate to the assembler that the next 
statement to be processed is statement 4 (the statement named by 
sequence symbol .END). 

Chapter 9. How to Write Conditional Assembly Instructions 235 



Computed AGO Instruction 

The computed AGO instruction allows you to make branches 
according to the value of an arithmetic expression specified in 
the operand. The format of the computed AGO instruction is: 

Name Operation Operand 

A sequence AGO (arithmetic expression) 
symbol or blank .51 •. 52 •... , .Sn 

If the arithmetic expression evaluates to k, where k lies 
between 1 and n (inclu~ive). then the branch is taken to the 
"k-th" sequence symbol in the list. If k is outside that range, 
no branch is taken. 

In the following example, control passes to the statement at 
.THIRD if &1=3. Control passes through to the statement 
following the AGO if &1 is less than 1 or greater than 4. 

Name oper'ation Operand 

AGO (&I).FIRST,.SECOND, 
.THIRD,.FOURTH 

X 

ALTERNATIVE STATEMENT FORMAT: The alternative statement format 
is allowed for computed AGO instructions. The above example 
could be coded as follows: 

Name Operation operand 

AGO (&I).FIRST, X 
.SECOND, X 
.THIRD, X 
.FOURTH 

ACTR--CONDITIONAL ASSEMBLY LOOP COUNTER 

The ACTR instruction allows you to set a conditional assembly 
loop counter either within a macro definition or in open code. 
The ACTR instruction can appear anywhere in open code or within 
a macro definition. 

Each time the assembler processes an AIF or AGO branching 
instruction in a macro definition or in open code, the loop 
counter for that part of the program is decremented by one. 
When the number of conditional assembly branches taken reaches 
the value assigned by the ACTR instruction to the loop counter, 
the assembler exits from the macro definition or stops 
processing statements in open code. 

By using the ACTR instruction, you avoid excessive looping 
during conditional assembly processing at preassembly time. 

The format of this instruction is as follows: 

Name operation Operand 

A sequence ACTR Any valid arithmetic 
symbol or blank (SETA) expression 

A conditional assembly loop counter is set (or reset) to the 
value of the arithmetic expression in the operand field. The 
loop counter has a local scope; its value is decremented only by 
AGO and AIF instructions, and reassigned only by ACTR 

236 Assembler H Version 2 Application Programming: Language Reference 

o 



o 

o 

o 

instructions that appear within the same scope. Thus, the 
nesting of macros has no effect on the setting of individual 
loop counters. 

The assembler sets its own internal loop counter both for open 
code and for each macro definition, if neither contains an ACTR 
instruction. The assembler assigns a standard value of 4096 to 
each of these internal loop counters. 

LOOP COUNTER OPERATIONS: Within the local scope of a particular 
loop counter (including the internal counters run by the 
assembler), the following occurs: 

1. Each time an AGO or AIF branch is executed, the assembler 
checks the loop counter for zero or a negative value. 

2. If the count is not zero or negative, it is decremented by 
one. 

3. If the count is zero, before decrementing, the assembler 
will take one of two actions: 

a. If it is processing instructions in open code, the 
assembler will process the remainder of the instructions 
in the source module as comments. Errors discovered in 
these instructions during previous passes are flagged. 

b. If it is processing instructions inside a macro 
definition, the assembler terminates the expansion of 
that macro definition and processes the next sequential 
instruction after the calling macro instruction. If the 
macro definition is called by an inner macro 
instruction, the assembler processes the next sequential 
instruction after this inner call; that is, it continues 
processing at the next outer level of nested macros. 

Note: The assembler halves the ACTR counter value when it 
enc~unters serious syntax errors in conditional assembly 
instructions. 

ANOP--ASSEHBLY NO OPERATION 

You can specify a sequence symbol in the name field of an ANOP 
instruction, and use the symbol as a label for branching 
purposes. 

The ANOP instruction performs no operation itself, but you can 
use it to branch to instructions that already have symbols in 
their name fields. For example, if you wanted to branch to a 
SETA, SETB, or SETC assignment instruction, which requires a 
variable symbol in the name field, you could insert a labeled 
ANOP instruction immediately before the assignment instruction. 
By branching to the ANOP instruction with an AIF or AGO 
instruction, you would, in effect, be branching to the 
assignment instruction. 

The format of this instruction is: 

Name Operation Operand 

A sequence ANOP Blank 
symbol or blank 

No operation is performed by an ANOP instruction. Instead, if a 
branch is taken to the ANOP instruction, the assembler processes 
the next sequential instruction. 

The following example illustrates the use of the ANOP 
instruction. 

Chapter 9. How to Write Conditional Assembly Instructions 237 



OPEN CODE 

1 
2 
3 
4 

Name 

&NAME 

&TYPE 
.FTYPE 
&NAME 

Operation 

MACRO 
MOVE 
LCLC 
AIF 
SETC 
ANOP 
ST&TYPE 
L&TYPE 
ST&TYPE 
L&TYPE 
MEND 

Operand 

&T .. &F 
&TYPE 
(T'&T EQ 'F'). FTYPE 
'E' 

2 .. SAVEAREA 
2 .. &F 
2 .. &T 
2 .. SAVEAREA 

Statement 1 is used to determine if the type attribute of the 
first macro instruction operand is the letter F. If the type 
attribute is not the letter F .. statement 2 is the next statement 
processed by the assembler. If the type attribute is the letter 
F .. statement 4 should be processed next. However, since there 
is a variable symbol (&NAME) in the name field of statement 4, 
the required sequence symbol (.FTYPE) cannot be placed in the 
name field. Therefore .. an ANOP instruction (statement 3) must 
be placed before statement 4. 

Then .. if the type attribute of the first operand is the letter 
F, the next statement processed by the assembler is the 
statement named by sequence symbol .FTYPE. The value of &TYPE 
retains its initial null character value because the SETC 
instruction is not processed. Since .FTYPE names an ANOP 
instruction, the next statement processed by the assembler is 
statement 4, the statement following the ANOP instruction. 

Conditional assembly instructions in open code allow you: 

• To select, at preassembly time, statements or groups of 
statements from the open code portion of a source module 
according to a predetermined set of conditions. The 
assembler further processes the selected statements at 
assembly time. 

• To pass local variable information from open code through 
parameters into macro definitions. 

• To control the computation in and generation of macro 
definitions using global SET symbols. 

• To substitute values into the model statements in the open 
code of a source module and control the sequence of their 
generation. 

All the conditional assembly elements and instructions can be 
specified in open code. 

The specific~tions for the conditional assembly language 
described in this chapter also apply in open code. However, the 
following restrictions apply: 

1. To attributes in open code: For ordinary symbols, only 
references to the type, length, scaling, and integer 
attributes are allowed. 

Note: References to the number attribute have no meaning in 
open code, because &SYSLIST is not allowed in open code and 
symbolic parameters have no meaning in open code. 

2. To conditional assembly expressions in open code (see 
Figure 61 on page 239). 

238 Assembler H Version 2 Application Programming: Language Reference 



o 

o 

o 

Expression 

Arithmetic 
(SETA) 

Character 
(SETC) 

Logical 
(SETB) 

Must not contain 

• &SYSLIST 

• Symbolic parameters 

• Any attribute references to symbolic parameters, 
or &SYSLIST, &SYSECT, &SYSNDX 

• &SYSLIST,&SYSECT,&SYSNDX 

• Attribute references to &SYSLIST, &SYSECT, 
& SYSNDX, or to symbolic parameters 

• Symbolic parameters 

• Arithmetic expressions with the items listed above 

• Character expressions with the items listed above 

Figure 61. Restrictions on Coding Expressions 

MHELP--MACRO TRACE FACILITY 

The MHElP instruction controls a set of trace and dump 
facilities. Options are selected by an absolute expression in 
the MHELP operand field. MHELP statements can occur anywhere in 
open code or in macro definitions. MHElP options remain in 
effect until superseded by another MHElP statement. The format 
of this instruction is: 

Name Operation operand 

A sequence MHELP Absolute expression, 
symbol or blank binary or decimal 

options (see below) 

Macro Call Trace--operand=l 

This option provides a one-line trace listing for each macro 
call, giving the name of the called macro, its nested depth, and 
its &SYSNDX value. The trace is provided only upon entry into 
the macro. No trace is provided if error conditions prevent 
entry into the macro. 

Macro Branch Trace--Operand=2 

This option provides a one-line trace-listing for each AGO and 
AIF conditional assembly branch within a macro. It gives the 
model statement numbers of the "branched from" and the "branched 
to" statements, and the name of the macro in which the branch 
occurs. This trace option is suppressed for library macros. 

Macro AIF Dump--Operand=4 

This option dumps undimensioned SET symbol values from the macro 
dictionary immediately before each AIF statement that is 
encountered. 

Chapter 9. How to Write Conditional Assembly Instructions 239 



Macro Exit DumP--Operand=8 

This option dumps undimensioned SET symbols from the macro 
dictionary whenever an MEND or MEXIT statement is encountered. 

Macro Entry Dump--Operand=16 

This option dumps parameter values from the macro dictionary 
immediately aft~r a macro call is processed. 

Global Suppression--Operand=32 

This option suppresses global SET symbols in two preceding 
options, MHElP 4 and MHElP 8. 

MHELP Suppression--Operand=128 

This option suppresses all currently active MHElP options. 

MHELP Control on &SYSNDX 

Combining options 

The MHELP operand field is actually mapped into a fullword. 
Previously defined MHElP codes correspond to the fourth byte of 
this fullword. 

&SYSNDX control is turned on by any bit in the third byte 
(operand values 256 through 65535, inclusive>. Then, when 
&SYSNDX (total number of macro calls> exceeds the value of the 
fullword which contains the MHELP operand value, control is 
forced to stay at the open code level by, in effect, making 
every statement in a macro behave like a MEXIT. Open code macro 
calls are honored, but with an immediate exit back to open code. 

Some examples are: 

MHElP 256 
MHELP 1 
MHElP 256+1 
MHElP 65536 
MHElP 65792 

limit &SYSNDX to 256. 
Trace macro calls. 
Trace calls and limit &SYSNDX to 257. 
No effect. No bits in bytes 3,4. 
limit &SYSNDX to 65792. 

When the value of &SYSNDX reaches its limit, the message 'ACTR 
EXCEEDED-&SYSNDX'is issued. 

As shown in the example above, multiple options can be obtained 
by combining the option codes in one MHELP operand. For 
example, call and branch traces can be invoked by MHElP B'11', 
MHElP 2+1, or MHElP 3. Substitution by means of variable 
symbols may also be used. 

240 Assembler H Version 2 Application Programming: language Reference 

() 



o 

o 

o 

PART 3. APPENDIXES 

Appendix A shows the basic machine formats in relation to the 
format. of the assembler operand field and applicable 
instructions. 

Appendix B lists the related operation~ name, and operand 
entries. 

Appendix C lists the constant types and gives related 
information concerning each. 

Appendix D summarizes the macro language described in Part 2 of 
this publication. 

Part 3. Appendixes 241 



APPENDIX A. MACHINE INSTRUCTION FORHAT 

Figure 62 on page 243 is a summary of machine instruction 
formats. 

242 Assembler H Version 2 Application Programming: Language Reference 

~, 

V 



o BASIC MACHINE FORMAT ASSEMBLER OPERAND 
FIELD FORMAT 

16 -.-
E Operation 

Code 

8 4 4 R 1 , R2 
Operation 

Code R1 R2 

8 4 4 M1,R2 
Operation 

Code M1 R2 

RR 

8 4 4 R1 
Operation 

Code R1 

8 8 I 
Operation (See Notes 1,6,8, 

Code I and 9) 

o 16 8 4 4 R1 , R2 
Operation 

Code R1 R2 

RRE 

16 8 4 4 R1 
Operation (See Notes 1 and 8) 

Code R1 

8 4 4 4 12 R 1 , R3 , D 2 (B 2 ) 
Operation R1,R3,S2 

Code R1 R3 B2 D2 

8 4 4 4 12 R1,D2(B2) 
RS Operation R1,S2 

Code R1 B2 D2 

8 4 4 4 12 R1,M3,D2(B2) 
Operation R1,M3,S2 

Code R1 M3 B2 D2 (See Notes 1-3,7, 
8, and 9) 

Figure 62 (Part 1 of 2). Machine Instruction Format 

0','·' 
,f! 

Appendix A. Machine Instruction Format 243 



BASIC MACHINE FORMAT ASSEMBLER OPERAND 
FIELD FORMAT 

r\ 
l.:~ J 
"L/ 

8 4 4 4 12 R1 ,D2 (X2 ,B2) 
Operation R1,D2(,B2) 

Code R1 X2 B2 D2 R1,S2(X2) 

RX R1,S2 

8 4 4 4 12 M1,D2(X2,B2) 
Operation M1,D2(,B2) 

Code M1 X2 B2 D2 M1 , S2 (X2) 
M1,S2 

(See Notes 1 ,2,3,4, 
7 and 9) 

16 4 12 D2 (B2) 

S Two-byte S1 
Operation (See Notes 2,3, 

Code B2 D2 7 and 8) 

16 4 12 
Operation 

Code 

8 8 4 12 D1(B1),I2 
Operation S1,I2 

Code 12 B1 D1 

SI 

8 8 4 12 D1 (B 1) 
Operation S1 

Code B1 D1 (See Notes 2,3,6, 
7 and 8) 

8 4 4 4 12 4 12 D1 (L1 ,B1) ,D2 (L2 ,B2) 
Operation S1 (L1) ,S2(L2) 

Code L1 L2 B1 D1 B2 D2 

8 8 4 12 4 12 D1 (L,B1) ,D2 (B2) 
SS Operation S1 (L) ,S2 

Code L B1 D1 B2 D2 

D 1 (L 1 , B 1) , D2 (B2) , 13 8 4 4 4 12 4 12 
Operation S1 (L1) ,S2,I3 

Code L1 13 B1 D1 B2 D2 S1,S2,I3 

8 4 4 4 12 4 12 D1 (R1 ,B1) ,D2 (B2) ,R3 
Operation (See Notes 1,2,3, 

Code R1 R3 B1 D1 B2 D2 5,6 and 7) 

16 4 12 4 12 D1 (B1) ,D2 (B2) 
SSE Operation (See Notes 2 and 3) 

Code B1 D1 B2 D2 

Figure 62 (Part 2 of 2). Machine Instruction Format 

244 Assembler H Version 2 Application Programming: Language Reference 



0 

o 

o 

Notes to Figure 62: 

1. 

2. 

3. 

4. 

5. 

R1, R2, and R3 are absolute expressions that specify general 
or floating-point registers. The general register numbers 
are 0 through lSi floating-point register numbers are 0, 2, 
4, and 6. 

D1 and D2 are absolute expressions that specify 
displacements. A value of 0 through 4095 may be specified. 

B1 and B2 are absolute expressions that specify base 
registers. Register numbers are 0 through 15. 

X2 is an absolute expression that specifies an index 
register. Register numbers are 0 through 15. 

L, L1, and L2 are absolute expressions that specify field 
lengths. An L expression can specify a value of 1 through 
256. l1 and l2 expressions can specify a value of 1 through 
16. In all cases, the assembled value will be one less than 
the specified value. 

6. I, 12, and 13 are absolute expressions that provide 
immediate data. The value of 1 and 12 may be 0 through 255. 
The value of 13 may be 0 through 9. 

7. 51 and 52 are absolute or relocatable expressions that 
specify an address. 

8. RR, RRE, R5, 5, and 51 instruction fields that are blank 
under Basic Machine Format are not examined during 
instruction execution. The fields are not written in the 
symbolic operand, but are assembled as binary zeros. 

9. M1 and M3 specify a 4-bit mask. 

Appendix A. Machine Instruction Format 245 



APPENDIX B. ASSEMBLER INSTRUCTIONS AND STATEMENTS 

Figure 63 summarizes assembler instructions, and Figure 64 on 
page 249 summarizes assembler statements. 

ope .... ation 
Ent .... y 

Name Ent .... y Ope .... and Ent .... y 

ACTR A sequence symbol or not present An arithmetic SETA expression 

AGO A sequence symbol or not present A sequence symbol 

AIF A sequence symbol or not present A logical expression enclosed in 
parentheses, immediately 
followed by a sequence symbol 

AMODE A sequence symbol or blank 24, 31, or ANY 

ANOP A sequence symbol or not present Wi 11 be taken as a remark 

AREAD Any SETC symbol One ordinary symbol 

CCW Any symbol or not present Four operands, separated by 
commas 

CCWO Any symbol or not present Four operands, separated by 
commas 

CCWl Any symbol or not present Four operands, separated by 
commas 

CHOP Any symbol or not present Two absolute expressions, 
separated by a comma 

COM A sequence symbol or not present Wi 11 be taken as a remark 

COpy Must not be present A symbol 

CSECT Any symbol or not present Wi 11 be taken as a remark 

DC Any symbol or not present One or more operands, separated 
by commas 

DROP A sequence symbol or not present One to 16 absolute expressions, 
separated by commas 

DS Any symbol or not present One or more operands, separated 
by commas 

DSECT A variable symbol or an ordinary Will be taken as a remark 
symbol 

EJECT A sequence symbol or not present Will be taken as a remark 

END A sequence symbol or not present A relocatable expression or not 
present 

ENTRY A sequence symbol or not present One or more relocatable symbols, 
separated by commas 

EQU A variable symbol or an ordinary An absolute or relocatable 
symbol expression 

Figure 63 (Part 1 of 3). Assembler Instructions 

246 Assembler H Version 2 Application Programming: Language Reference 



o Operation Name Entry Operand Entry 
Entry 

EXTRN A sequence symbol or not present One or more relocatable symbols, 
separated by commas 

GBLA Must not be present One or more variable symbols 
that are to be used as SET 
symbols, separated by commas l 

GBLB Must not be present One or more variable symbols 
that are to be used as SET 
symbols, separated by commas l 

GBLe Must not be present One or more variable symbols 
that are to be used as SET 
symbols, separated by commas l 

IeTL Must not be present One to three decimal values, 
separated by commas 

ISEQ Must not be present Two decimal values, separated by 
a comma 

LeLA Must not be present One or more variable symbols 
that are to be used as SET 
symbols, separated by commas l 

LeLB Must not be present One or more variable symbols 
that are to be used as SET 
symbols, separated by commas l 

LeLe Must not be present One or more variable symbols 
separated by commas l 

LOCTR A variable or ordinary symbol Blank 

LTORG Any symbol or not present Wi 11 be taken as a remark 

MACR02 Must not be present Will be taken as a remark 

MEND2 A sequence symbol or not present Will be taken as a remark 

MEXIT2 A sequence symbol or not present Will be taken as a remark 

MNOTE2 A sequence symbol, a variable A severity code, followed by a 
symbol, or not present comma, followed by any 

combination of characters 
enclosed in single quotation 
marks 

ORG A sequence symbol or not present A relocatable expression or not 
present 

PRINT A sequence symbol or not present One to three operands 

PUNCH A sequence symbol or not present One to 80 characters enclosed in 
single quotation marks 

REPRO A sequence symbol or not present 'Wi 11 be taken as a remark 

RMODE Any symbol or blank 24 or ANY 

SETA A SETA symbol An arithmetic expression 

SETB A SETB symbol -A 0 or a 1, or logical 
expression enclosed in 
parentheses 

o Figure 63 (Part 2 of 3). Assembler Instructions 

Appendix B. Assembler Instructions and Statements 247 



operation 
Entry 

Name Entry Operand Entry 

SETC A SETC symbol A type attribute, a character 
expression~ a substring 
notation, or a concatenation of 
character expressions and 
substring notations 

SPACE A sequence symbol or not present A decimal self-defining term or 
not present 

START Any symbol or not present A self-defining term or not 
present 

TITLE3 A special symbol (0 to 4 One to 100 characters, enclosed 
characters), a sequence symbol, in single quotation marks 
a variable symbol, or not 
present 

USING A sequence symbol or not present An absolute or relocatable 
expression followed by 1 to 16 
absolute expressions, separated 
by commas 

WXTRN A sequence symbol or not present One or more relocatable symbols, 
separated by commas 

Figure 63 (Part 3 of 3). Assembler Instructions 

Notes to Figure 63: 

2 

3 

SET symbols may be defined as subscripted SET symbols. 

May only be used as part of a macro definition. 

See "Chapter 5. Assembler Instruction Statements" on page 85 
for a description of the name entry. 

248 Assembler H Version 2 Application Programming: Language Reference 



o Instruction 
Entry 

Model 
Statements1 2 

Prototype 
Statement 3 

Macro 
Instruction 
Statement 3 

Assembler 
Language 
Statement1 2 

Name Entry 

An ordinary symbol, variable 
symbol, sequence variable 
symbol, a combination of 
variable symbols and other 
characters that is equivalent 
to a symbol, or not present 

A symbolic parameter or not 
present 

An ordinary symbol, a variable 
symbol, a sequence symbol, a 
combination of variable 
symbols and other characters 
that is equivalent to a 
symbol,4 or not present 

An ordinary symbol, a variable 
symbol, a sequence symbol, a 
combination of variable 
symbols and other characters 
that is equivalent to a 
symbol, or not present 

Operand Entry 

Any combination of characters 
(including variable symbols) 

Zero or more operands that are 
symbolic parameters (separated 
by commas) followed by zero or 
more operands (separatgd by 
commas) of the form symbolic 
parameter, equal sign, 
optional standard value 

Zero or more positional 
operands (separated by commas) 
followed by zero or more 
keyword operands (separated by 
commas) of the form keyword, 
equal sign, values 

Any combination of characters 
(including variable symbols) 

(:) Figure 64. Assembler statements 

o 

Notes to Figure 64: 
1 

2 

3 

4 

S 

Variable symbols may be used to generate assembler language 
mnemonic operation codes (listed in "Chapter 5. Assembler 
Instruction Statements" on page 85), except ACTR, COpy, EHD, 
ICTL, CSECT, OSECT, ISEQ, PRIHT, REPRO, and START. Variable 
symbols may not be used in the name and operand entries of: 
COpy, END, ICTL, or ISEQ. 

Ho substitution is performed for variables in the line 
following a REPRO statement. 

May only be used as part of a macro definition. 

When the name field of a macro instruction contains a 
sequence symbol, the sequence symbol is not passed as a name 
field parameter. It only has meaning as a possible branch 
target for conditional assembly. 

Variable symbols appearing in a macro instruction are 
replaced by their values before the macro instruction is 
processed. 

Appendix B. Assembler Instructions and Statements 249 



APPENDIX C. SUMMARY OF CONSTANTS 

Figura 65 is a summary of assembler constants. 

r-----~T·--------T~---~---T--------T--------------T---------T-------~-T--------T---------, 
I I I I' ,NUMBER , I I I 
I I I I LENGTH , I OF CON- I I I TRUN- , 
I I IMPLICIT, 'MODI- , I STANTS I RANGE I RANGE I CATION/ I 
I I LENGTH I ALIGN- I FIER 'SPECIFIED I PER ,FOR EX- I FOR I PADDING I 
I TYPE I (BYTBS) II MENT I RANGE I BY , OPERAND I PONENTS I SCALE 1 SIDE I 
.------+---------+--------+--------+--------------+---------+---------+--------+---------i 
I C I as I byte 1.1 to ,characters lone I I I right I 
, I needed I I 256 (1), 'I I I I 
.------+-----~---+--------+--------+--------------+---------+~------~-+--------+---------i 
I X I as I byte 1·1 to ,hexadecimal I multi- I I I left I 
I I needed I , 256 (1), digits I pIe I I I I 
.------+---------+--------+--------+------~-------+---------+---------+--------+---------i 
I B I as I byte 1.1 to I binary I muIti- I , ,left I 
I I needed I 1 256 'digi ts I pIe I , , I 
.------+---------+--------+--------+--------.---... ~--+---------+---------+--------+----...,.---~i 
I F I 4 I word 1.1 to I'decimal I multi- I -85 to I -187 tol left (3) I 
1 I , I 8 I digits I pIe I +75 1 +346 I I 
.------+---------+--------+--------+--------------+---------+---------+--------+---------i 
I H 1 2 I half... 1.1 to I decimal 1 multi- I -85 to 1 -187 I left (3) I 
I 1 1 word 1 8 I digits 1 pIe 1 +75 1 +346 I I 
.------+---------+--------+--------+--------------+---------+--------·+--------+---------i 
lEI 4 1 word 1.1 to 1 decimal I multi- I -85 to I' I right (3) I 
I 1 1 I 8 I digits I pIe I +75 I 0-14 I I 
.------+---------+--------+--------+--------------+---------+---------+--------+-~-------i 
I D 1 8 I double-I .1 to I decimal I multi:- I -85 to I I right (3) I 
I 1 1 word 1 8 I digits 1 pIe 1 +75 1 0-14 I I 
~------+---------+--------+--------+--------------+---------t---------+--------t---------i 
1 L I 16 , double-I .1 to I decimal I multi- I -85 to I 0-28 I right (3) I 
I I I word I 16 I di9i ts I pIe I +75 I I I 
~------+--------+--------+_------_4_-------------_f.--------_f.---------f--------t--------; 
1 P I as ,byte, .1 to 1 decimal 1 multr- 1 I I left I 
1 I needed 1 I 16 I digits 1 pIe 1 I 1 1 
,.------+---------+--------+--------+--------------+---------+---------+--------+---------i 
I z 1 as 1 byte 1.1 to I decimal 1 multi- 1 I I left 1 
1 I needed 1 I 16 1 digits 1 pIe 1 1 I 1 
.------+---~-----+--------+--------+--------------+:---------+---------+--------+---------i 
I A 14 1 word 1.1 to I any 1 multi- 1 1 1 left I 
I 1 1 1 4 (2) 1 expression 1 pIe 1 I 1 I 

F--J4-----r~d--rW--_rf~1:-r;r!U--r-----r-ri;ft;j 
f,-· ... ---... + ... -.. ------+--------+-~---.---+-Q.l"-DI~:---... -.+------:...-_+---------+----... ---+-----............ 
I v 1 4 1 word 1 3,. 1 relocatable 1 multi- 1 I 1 left I 
1 1 1 1 1 symbol I pIe 1 1 1 I 
~------+---------+--------+--------+--:...-----------+---------+---------+--------+---------i I S I 2 1 half- 1 2 only lone absolute I multi- I I 1 I 
1 1 1 word 1 1 or relocatab-I pIe I I 1 I 
I I I 1 1 Ie expression I I 1 I 1 
1 1 1 I 1 or two absol-I 1 1 I 1 
1 I I I I ute express- 1 I I 1 I 
1 1 1 1 1 ions: 1 I I 1 1 
I I I I 1 'expo (exp) 1 I 1 1 I 
.------+---------+--------+--------+--------------+---------+---------+--------+---------i I Y I 2 1 half- 1.1 to 1 any 1 multi- I 1 I left 1 
1 1 I word 1 2 (2) 1 expression 1 pIe 1 1 1 1 
.------~---------~--------~--------~--------------~---------~---------~--------~---------~ I (1) In a DS assembler instr.uction C and X type constants can have length specification 1 
I to 65535. I 
I (2) Bit length specification permitted with absolute expressions only. Relocatable A- 1 
1 type constants, 3 ,or 4 bytes only; relocatable Y-type constants, 2 bytes only. I 
I (3) Errors will be flagged if significant bits are truncated or if the value specified t 
I cannot be contained in the implicit length of the constant. t L ________________________________________________________________ ~---J 

Figura 65. Summary of Constants 

250 Assembler H Version 2 'Application Programming: language Referenca 



o 

o 

o 

APPENDIX D. MACRO LANGUAGE SUMMARY 

This appendix summarizes the macro language described in Part 2 
of this publication. Figure 66 on page 252 indicates which 
macro language elements may be used in the name and operand 
entries of each statement. Figure 67 on page 253 is a summary 
of the expressions that may be used in macro instruction 
statements. Figure 68 on page 255 is a summary of the 
attributes that may be used in each expression. Figure 69 on 
page 257 is a summary of the variable symbols that may be used 
in each expression. 

Appendix D. Macro Language Summary 251 



N -n Variable Symbol. 
UlJ 
N 10 Global SET Symbols Local SET Symbols System Variable Symbols 

Attributes. 

C ., 
>- ID I Symbolic I I I I &SYSNDX I &SYSECT I &SYSLIST I &SYSPARM I &SYSDATEI &SYSTIME I I I I Integer I I Numbe. 

Sequence 

UI Slolemenl Porameler SETA SETB SETC SETA SETB SHC Type length Scaling Count Symbol 

UI go. f---

ID go. MACRO 

:I f---

C" 
Pralotype Name 

t- :3 
Slal.."enl Operand 

ID OJ GaLA Operand ., n ., GBLB Operand 
::c 0 

GBlC Operand 

< r-
ID OJ lClA Operand ., :J 
UI CO lCLI Operand 

c: lClC 0 OJ Operand 

:J CO Model Name Name Nome Nome Nome Name Name Name Name Name 

Name I \ 
I I Name 

CD Slalemenl Operalion Operalion Operation Operation Operation Operation Operation Operation Operation Operation Operation 
N Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand 

m 
>- t- SETA Name Name 

Operand
9 I I I I Operand I Operand "0 ID Operan~ Operand Operond3 Operand9 Operand Operond3 Operond9 Operand Operancf I Operand I Operand IOperand 

"0 3 
Operond

6 I I t- ID SETB Nome Name I Operand4 I Operand5 I Operand5 I Operand5 I Operond5 I OperandS :J OperancP Operan~ Operand Operand6 Operand6 Operand OperoncP OperancP IOperand4 Operand6 

" t+-
OJ lit SHC Name Name 

t+- Opel'Dnd Operand7 OperandS Operand Operand 7 OperandS Operand Operand Operand Operand Operand Operand Operand Operand 

0 AIF 
Operand

6 OperandS Operand5 Operand5 
Nome 

:J 
Operand6 Operand6 Operand Operand6 Operand6 Operand Operand6 Operond6 Operand4 Operand6 Operond4 Operand5 OperandS Operand 

AGO Nome 
"'tI Operand ., 
0 ACTR Operan~ Operand Operand3 Operand~ Operand Operand3 Ope ran.? Operand Operan~ Operand

2 Operand Operand Operand Operand Operand 

10 ., ANOP I NQm~ 

OJ 
AREAD 3 Name Name 

:I MEXIT Nome 

j 
MNOTE Operand Operand Operand Operand Operand Operand 

10 
Operand Operand Operand Operand Operand Operand Operand Name 

MEND Nome 

r- Outer Name Name Name Nome Nome Name Nome Name 

OJ Macro Operand Operand Operand Operand Operand Operand Operand Operand Operand 

:J 
Ul Inner Name Name Nome Name Name Nome Name Name Nome Name Nome \Name 

s::: Macro Operand Operand Operand Operand Operand Operand Operand Operand Operond Operand Operand Operand Operand 

OJ 
10 Assembler Name Nome Name Nome Name Nome I Name 

ID Language Operalion Operation Operation Operotion Operation Operation 
Stat£-ment Operand Operand Operand Operand Operand Operand 

~ 1. Variable symbols in macro-instructions ore replaced by their values before processing. 
ID 2. Only if value i. self-defining lerm. 
-ft 3. Converted to arithmetic +1 or +0. 
ID 4. Only in character relations. , 5. Only in arithmetic relations. 

ID 6. Only in arithmetic or character relations. 

::r 7. Converted to unsigned number. 

n 8. Converted to character 1 or O. 

ID 9. Only if one to.ten decimal digits 

() 



o 

o 

o 

Exp .... ession 

Can contain 

A .... ithmetic 
Exp .... essions 

Self-defining terms 

length, scaling, integer, 
count, and number 
attributes 

SETA and SETB symbols 1 

SETC symbols whose values 
are a decimal 
self-defining term 1 

&SYSPARM if its value is 
a decimal self-defining 
term 

Symbolic parameters if 
the corresponding operand 
is a decimal 
self-defining term 

&SYSlIST (n) if the 
corresponding operand is 
a decimal self-defining 
term 

&SYSlIST (n,m) if the 
corresponding operand is 
a decimal self- defining 
term 

&SYSNDX 

Operations are +, - (unary and binary), 
*, and /; parentheses 
permitted 

Range of -2 31 to +2 31 _1 
values 

May be used in SETA operands 

Arithmetic relations 

Subscripted SET symbols 

&SYSlIST subscript(s) 

Substring notation 

Sublist notation 

Figure 67. Conditional Assembly Expressions 

Characte .... 
Exp .... essions 

Any combination of 
characters enclosed in 
apostrophes 

Any variable symbol 
enclosed in apostrophes 

A concatenation of 
variable symbols and 
other characters enclosed 
in apostrophes 

A type attribute 
reference 

Concatenation, with a 
period (.) 

o through 255 characters 

SETC operands 

Character relations 2 

Logical 
Exp .... essions 

A 0 or a 1 

SETB symbols 

Arithmetic 
relations 1 

Character 
relations 2 

Arithmetic 
value 

AND, OR, and 
NOT 
parentheses 
permitted 

o (false) or 
1 (true) 

SETB operands 

AIF operands 

Appendix D. Macro Language Summary 253 



Notes to Figure " on page 253: 
1 

2 

Values must be from 0 through 2 147 483 647. 

A character relation consists of two character expressions 
related by the operator GT, LT, EQ, HE, GE, or LE. Type 
attribute notation and substring notation may also be used 
in character relations. The maximum size of the character 
expressions that can be compared is 255 characters. If the 
two character expressions are of unequal size, the smaller 
one will always compare less than the larger. 

254 Assembler H Version 2 Application Programming: Language Reference 



o 

o 

o 

Att .... ibute 

Type 

length 

Scaling 

Integer 

Count 

Number 

Nota
tion 

T' 

l' 

S' 

I' 

K' 

N' 

Can be used with: 

Ordinary Symbols 
defined in open 
code; symbolic 
parameters inside 
macro definitions; 
&SYSlIST (m), 
&SYSlIST (m,n), SET 
symbols; &SYSTIME, 
&SYSPARM, &SYSDATE, 
&SYSECT, &SYSNDX, 
&SYSlOC 

Ordinary Symbols 
defined in open 
code; symbolic 
parameters inside 
macro definitions; 
&SYSlIST (m), and 
&SYSlIST (m,n) 
inside macro 
definitions 

Ordinary Symbols 
defined in open 
code; symbolic 
parameters inside 
macr~ definitions; 
&SYSlIST (m), and 
&SYSlIST (m,n) 
inside macro 
definitions 

Ordinary Symbols 
defined in open 
code; symbolic 
parameters inside 
macro definitions; 
&SYSlIST (m), and 
&SYSlIST (m,n) 
inside macro 
definitions 

Symbolic 
parameters, 
&SYSlIST (m) and 
&SYSLIST (m,n) 
inside macro 
definitions 
SET symbols; all 
system variable 
symbols 

Symbolic 
parameters, 
&SYSlIST and 
&SYSlIST (m) inside 
macro definitions 

Figure 68 (Part 1 of 2). Attributes 

Can be used onl~ if 
type att .... ibute 1S: 

(May always be 
used) 

Any letter except 
M,N,O,T and U 

H,F,G,D,E,l,K,P, 
and Z 

H,F,G,D,E,l,K,P, 
and Z 

Any letter 

Any letter 

Can be used in 

1. SETC operand 
fields 

2. Character 
relations 

Arithmetic 
expressions 

Arithmetic 
expressions 

Arithmetic 
expressions 

Arithmetic 
expressions 

Arithmetic 
expressions 

Appendix D. Macro language Summary 255 



Attribute Nota- Can be used with: Can be used on1V if Can be used 
tion type attribute 15: 

Defined D' Ordinary Symbols H,F,G,D,E,l,K,P, Arithmetic 
defined in open and Z expressions 
code; symbolic 
parameters inside 
macro definitions; 
&SYSLIST (m), and 
&SYSLIST (m,n) 
inside macro 
definitions 

Figure 68 (Part 2 of 2). Attributes 

Note: There are definite restrictions on the use of these 
attributes. Refer to "Chapter 9. How to Write Conditional 
Assembly Instructions" on page 195. 

256 Assembler H Version 2 Application Programming: language Reference 

in 

I/~ 

11,,- __ 7' 



o 

o 

o 

variable 
symbol 

Symbolic 1 

parameter 

SETA 

SETB 

SETC 

&SYSHDX 1 

&SYSECTI 

&SYSLISTI 

&SYSlIST 
(n) 1 

&SYSLIST 
(n,m) 1 

Declared by: 

Prototype 
statement 

LCLA or GBLA 
instruction 

LCLB or GBLB 
instruction 

LCLC or GBLC 
instruction 

The assembler 

The assembler 

The assembler 

The assembler 

Initialized, 
or set to: 

Corresponding 
macro instruc
tion operand 

o 

o 

String of length 
o (null) 

Macro 
instruction 
index 

Control section 
in which macro 
instruction 
appears 

Hot applicable 

Corresponding 
macro instruc
tion operand 

Figure 69 (Part 1 of 2). Variable Symbols 

Value changed 
by: 

Constant 
throughout 
definition 

SETA 
instruction 

SETB 
instruction 

SETC 
instruction 

Constant 
throughout 
definition; 
unique for 
each macro 
instruction 

Constant 
throughout 
definition; 
set by CSECT, 
DSECT, START, 
and COM 

Hot 
applicable 

Constant 
throughout 
definition 

Hay be used in: 

Arithmetic 
expressions if 
operand is 
decimal self
defining term 

Character 
expressions 

Arithmetic 
expressions 

Character 
expressions 

Arithmetic 
expressions 

Character 
expressions 

Logical 
expressions 

Arithmetic 
expressions if 
value is decimal 
se1f-
defining term 

Character 
expressions 

Arithmetic 
expressions 

Character 
expressions 

Character 
expressions 

H'&SYSLIST in 
arithmetic 
expressions 

Arithmetic 
expressions if 
operand is 
decimal self
defining term 

Character 
expressions 

Appendix D. Macro Language Summary 257 



Variable Declared by: Initialized, Value changed May be used in: 
Symbol 01' set to: by: 

&SYSPARM PARM field User defined or Constant Arithmetic 
null throughout expression if 

assembly value is decimal 
self-
defining term 

Character 
expression 

&SYSTIME The assembler System time Constant Character 
throughout expression 
assembly 

&SYSDATE The assembler System date Cons·tant Character 
throughout expression 
assembly 

&SYSLOC 1 The assembler Location counter Constant Character 
in effect where throughout expression 
macro definition; 
ilistruction set by CSECT, 
appears DSECT, START, 

COM, and 
lOCTR 

Figure 69 (Part 2 of 2). Variable Symbols 

Note to Figure 69 on page 257: 
1 Can be used only in macro definitions. 

258 Assembler H Version 2 Application Programming: Language Reference 

(~ \0; 



o 

o 

o 

special Characters 

&SYSDATE system variable symbol 
&SYSECT system variable symbol 
&SYSlIST system variable symbol 
&SYSlOC system variable symbol 
&SYSNDX system variable symbol 
&SYSPARM system variable symbol 
&SYSTIME system variable symbol 

A-type constant 111 

171 
172 

173 
179 
176 

177 
179 

absolute addresses, base registers 
for 44 

ACTR instruction 236 
address constants 

A-type 111 
complex relocatable 111 
Q-type 117 
S-type 114 
V-type 114 
V-type 111 

addressability 
by means of the DROP instruction 
by means of the USING instruction 
establishing 40 
relative 45 
using base register instructions 

addresses, relocatable or absolute 
addressing mode (AMODE) 52 
AGO instruction 235 
AIF instruction 232 
AMODE 

indicators in ESD 52 
instruction to specify addressing 

mode 54 
ANOP instruction 237 
AREAD instruction 169 
arithmetic (SETA) expressions 

evaluation of 216 
rules for coding 215 
SETC variables in 217 
using 213 

assembler instruction statements 
base register instructions 40 

See also base register 
instructions 

data definition instructions 90 
See also data definition 

instructions 
listing control instructions 140 

See also listing control 
instructions 

operation code definition 
instruction 88 

OPSYN instruction 88 
program control instructions 128 

See also program control 
instructions 

program sectioning and linking 
instructions 45 

44 
41 

40 
74 

See also program sectioning and 
linking instructions 

symbol definition instruction 86 
assembler language 

assembler instruction statements 2 
coding aids overview 6 
coding conventions of 8 
coding form for 8 
compatibility of 2 
conditional assembly 

instructions 195 
introduction to 2 
machine instruction statements 2, 68 
macro instruction statements 2 
statem~nts, summary of 249 
structure of 15 
summary of instructions 246 

assembler program 
basic functions 3 
processing sequence 4 
relationship to operating system 5 

attributes 
count (K') 206 
defined (D') 207 
definition and lookahead 209 
integer (I') 205 
length (l') 204 
number (N') 207 
scaling (S') 205 
summary of 251, 256 
type (T') 203 

attributes in combination with 
symbols 201 

attributes, data 199 

base register instructions 
DROP instruction 44 
USING instruction 41 

base registers for absolute 
addresses 44 

binary constants 101 
binary self-defining term 27 
branching 232 
branching with extended mnemonic 
codes 70 

CCW instruction 126 
CCWO instruction 126 
CCW1 instruction 127 
character (SETC) expressions, using 223 
character constants 103 
character relations in logical 
expressions 222 

character self-defining term 27 
character set 13 
character string values, concatanation 

of 226 
characters, special 189 

Index 259 



CHOp· instruction 137 
coding aids overview 6 
coding conventions, assembler language 

character set 13 
comments statement 10 
continuation lines 10 
field boundaries 

continuation indicator field 9 
identification-seque~ce field 9 
statement field 9 

fixed format instruction 
statements 11 

formatting specifications 11 
free format instruction 

statements 11 
standard coding form 8 

COM instruction 60 
combining keyword and positional 

parameters 163, 185 
comments statement format 10 
comments statements 

function of 148 
internal macro 171 
ordinary 171 

compatibility, language 2 
computed AGO instruction 236 
concatenation of character string 

values 226 
concatenation of characters in model 

statements 156 
conditional assembly instructions 

ACTR instruction 236 
AGO instruction 235 
AIF instruction 232 
ANOP instruction 237 
computed AGO instruction 236 
extended AIF instruction 234 
function of 165 
GBLA instruction 211 
GBLB instruction 211 
GBLC instruction 211 
how to write 195 
LCLA instruction 210 
LCLB instruction 210 
LCLC instruction 210 
MHELP instruction 239 
SETA instruction 213 
SETB instruction 219 
SETC instruction 223 
substring notations in 230 

conditional assembly language 
overview 149 
summary of expressions 254 

constants 
address 111 
alignment of 92 
binary 101 
character 103 
decimal 109 
duplication factor 95 
fixed-point 107 
floating-point 119 
hexadecimal 105 
information about 92 
length attribute value of symbols 

naming 92 
modifiers of 96 
nominal values of 100 
padding of values 93 
subfield 1 95 
subfield 2 96 
subfield 3 96 
subfield 4 100 
summary of 250 

symbolic addresses of 92 
trunction of values 93 
types of 90, 96 

continuation indicator field 9 
continuation lines 10 
control instructions 69 
control sections 

concept of 46 
defining a 55 
defining blank common 60 
executable 47 
first 49 
identifying a 56 
reference 47 
unnamed 51 

COpy instruction 138, 166 
CSECT instruction 56 
CXD instruction 63 

D-type floating-point constant 119 
0' defined attribute 207 
data attributes 199 
data definition instructions 

CCW instruction 126 
CCWO instruction 126 
CCWI instruction 127 
DC instruction 90 
DS instruction 123 

data, immediate, in machine 
instructions 77 

DC instruction 90 
decimal constants 

p and z 109 
packed 109 
zoned 109 

decimal instructions 68 
decimal self-defining term 25 
DROP instruction 44 
DS instruction 123 
DSECT instruction 58 
dummy section, identifying a 58 
dummy sections, external 62 

See also external dummy sections 
duplication factor in constants 95 
DXD instruction 63 

E-type floating-point constant 119 
EJECT instruction 142 
elements and functions 

data attributes 199 
sequence symbols 208 
SET symbols 195 

END instruction 139 
ENTRY instruction 66 
EQU instruction 86 
ESD entries 52 
expressions 

absolute 38 
arithmetic 213 
character 223 
complex relocatable 39 
conditional assembly, summary of 254 
discussion of 36 
evaluation of 37, 222 

260 Assembler H Version 2 Application Programming: Language Reference 

.~\ 
\'=J) 

c 



o 

o 

o 

evaluation of character 225 
logical 219 
paired relocatable terms 38 
relocatable 38 
rules for coding 36~ 222 

extended AIF instruction 234 
extended mnemonic codes, branching 
with 70 

extended SET statement 229 
external dummy sections 

CXD instruction to define an 63 
discussion of 62 
DXD instruction to define an 63 

external symbol dictionary entries 52 
EXTRN instruction 66 

field boundaries 
continuation indicator field 9 
identification-sequence field 9 
statement field 9 

first control section 49 
fixed format for instruction 
statements 11 

fixed-point constants 107 
floating-point constants 

D-type 119 
E-type 119 
l-type 119 

floating-point instructions 69 
formatting specifications 

name entry 11 
operand entries 12 
operation entry 12 
remarks entries 12 

free format for instruction 
statements 11 

GBlA instruction 211 
GBlB instruction 211 
GBlC instruction 211 
general instructions 68 
generated fields t listing of 156 

header, macro definition 152 
hexadecimal constants 105 
hexadecimal self~defining term 26 

I' integer attribute 205 
ICTl instruction 128 
identification-sequence field 9 
immediate data in machine 
instructi.ons 77 
nner and outer macro instructions 191 
nner macro instructions 166 

inner macro instructions, passing 
sublists to 188 

input/output operations 69 
instruction statement format 11 
internal macro comments statements 171 
15EQ instruction 129 

K' count attribute 206 
keyword parameters 162, 183 

l-type floating-point constant 119 
l' length attribute 204 
LCLA instruction 210 
LCLB instruction 210 
lClC instruction 210 
length attribute 29 
length fields in machine 
instructions 77 

library macro definitions 149 
linkages 

by means of the ENTRY instruction 66 
by means of the EXTRN instruction 66 
by means of the WXTRN instruction 67 
symbolic 64 

linking 45 
listing control instructions 

EJECT instruction 142 
PRINT instruction 143 
SPACE instruction 142 
TITLE instruction 140 

listing of generated fields 156 
literal pool 35~ 135 
literals 

differences between constantst 
self-defining terms~ and 32 

duplicate 136 
explanation of 32 
general rules for usage 34 

location counter reference 27 
location counter setting 47 
lOCTR instruction 48 
logical (SETB) expressions 219 
lookahead mode 209 
LTORG instruction 135 

machine instruction formats 
RR format 78 
RRE format 78 
R5 format 79 
RX format 80 
S format 81 
51 format 81 
5S format 82 
5SE format 83 

machine instruction statements 70 
addresses 74 
control 69 
decimal 68 
examples of 78 

Index 261 



floating-point 69 
format 242 
general 68 
immediate data 77 
input/output 69 
length field in 77 
operand entries 72 
registers, use of 73 
symbolic operations codes in 70 

ma'cro defi ni ti ons 
body of a 154 
combining positional and keyword 
parameters 163 

comments statements 171 
COPY instruction 166 
format of 152 
header 152 
how to prepare 151 
inner macro instructions 166 
internal macro comments 
statements 171 

keyword parameters 162 
MEXIT instruction 167 
MNOTE instruction 166 
nesting in 191 
positional parameters 161 
sUbscripted symbolic parameters 163 
symbolic parameters 160 
trailer 152 
where to define in a source 

module 151 
where to define in open code 151 

macro instruction 
alternative ways of coding 180 
description of 180 
format of 180 
general rules and restrictions 191 
inner and outer 191 
multilevel sublists 187 
name entry 181 
operand entry 182 
operation entry 181 
passing sublists to inner 188 
passing values through nesting 
levels 193 

prototype 152 
(see also prototype, macro 
definition) 

sublists in operands 185 
summary of 249 
values in operands 188 

macro language 
comments statements 148 
conditional assembly language 149 
defining 146 . 
library macro definition 149 
macro instruction statement 148 
model stateme~ts 147 
processing statements 148 
source macro definition 149 
summary of 251 
using 146 

macro library 149 
MEXIT instruction 167 
MHELP instruction 

combining options 240 
format 239 
global suppressi'on-operand=32 239 
macro AIF dump--operand=4 239 
macro branch trace--operand=2 239 
macro call trace-operand=1 239 
macro entry dump--operand=16 239 
macro exit dump--operand=8 239 

MHElP control on &SYSNDX 239 
MHElP suppression--operand=128 239 

mnemonic codes, extended, branching 
Iwith 70 

MNOTE instruction 166 
model .statements 

explanation of 155 
function of 147 
rules for concatenation of characters 

in 156 
rules for specifying fields in 157 
summary of 249 
variable symbols as points of 
substitution in 155 

modifiers of constants 
exponent 99 
length 97 
scale 98 

multilevel sublists 187 

N' number attribute 207 
name entry 11 
nested macros, system variable symbols 

in 193 
nesting 

levels of 191 
recursion 191 

nesting in macro definitions 191 
nesting levels, passing values 

through 193 
nominal values of constants (literal) 

address 111 
binary 101 
character 103 
decimal 109 
fixed-point 107 
floating-point 119 
hexadecimal 105 

omitted operands 188 
open code 151, 238 
operand entries 

coding rules for 12 
combining positional and keyword 185 
in machine instructions 72 
keyword 183 
multilevel sublists in 187 
omitted 188 
positional 182 
special characters in 189 
sublists in 185 

operands 
omitted 188 
sublists in 185 
values in 188 

operating system, relationship to 
assembler program 5 

operation codes, symbolic 70 
operation entry 12 
OPSYN instruction 88 
ordinary comments statements 171 
ordinary symbols 22 
ORG instruction 133 

262 Assembler H Version 2 Applicati~n Programming: language Reference 

o 



o 

o 

o 

parameters 
combining positional and keyword 163 
keyword 162 
positional 161 
sUbscripted symbolic 163 
symbolic 160 

pare~theses, terms in 31 
pool, literal 

See literal pool 
POP instruction 132 
positional parameters 161, 182 
PRINT instruction 143 
processing statements 

conditional assembly 
instructions 165 

COpy instruction 166 
function of 148 
inner macro instructions 166 
MEXIT instruction 167 
MNOTE instruction 166 

program control instructions 
AREAD instruction 169 
CNOP instruction 137 
COPY instruction 138 
END instruction 139 
ICTL instruction 128 
ISEQ instruction 129 
LTORG instruction 135 
ORG instruction 133 
POP instruction 132 
PUNCH instruction 130 
PUSH in~truction 132 
REPRO instruction 131 

program sectioning 45 
See also sectioning, program 

program sectioning and linking 
instructions 

AMODE instruction 54 
COM instruction 60 
CSECT instruction 56 
CXD instruction 63 
DSECT instruction 
DXD instruction 63 
ENTRY instruction 66 
EXTRN instruction 66 
lOCTR instruction 48 
RMODE instruction 54 
START instruction 55 
WXTRN instruction 67 

prototype, macro instruction 
alternative ways of coding 154 
format of 153 
function of 152 
name field 153 
operand field 153 
operation field 153 
surnmary of 249 

PUNCH instruction 130 
PUSH instruction 132 

Q-type constant 117 

registers, use of, by machine 
instructions 73 

relative addressing 45 
remarks entries 12 
REPRO instruction 131 
residence mode (RMODE) 52 
RMODE 

indicators in E5D 52 
instruction to specify residence 
mode 54 

RR format 78 
RRE format 78 
R5 format 79 
RX format 80 

5 format 81 
S-type constant 114 
5' scaling attribute 205 
sectioning, program 

accumulating the cumulative length of 
external dummy sections with the CSD 
instruction 63 

control sections 46 
defining an external dummy section 
with a DXD instruction 63 

ESD entries 52 
first control section 49 
identifying a blank common control 
section with a COM instruction 60 

identifying a control section with a 
CSECT instruction 56 

identifying a dummy section with a 
DSECT instruction 58 

identifying external symbols with the 
EXTRN instruction 66 

identifying the entry-point symbol 
with the ENTRY instruction 66 

identifying weak external symbols 
with the WXTRN instruction 67 

location counter setting 47 
source module 46 
specifying multiple location counters 
within a control section with a 
lOCTR instruction 48 

specifying the addressing mode of a 
control section with an AMODE 
instruction 54 

specifying the residence mode of a 
control section with an RMODE 
instruction 54 

starting assembly with a START 
instruction 55 

unnamed control section 51 
self-defining terms 

binary 27 
character 27 
decimal 25 
hexadecimal 26 
using 25 

sequence symbols 23, 208 
SET symbols 

assigning values to 213 
created 198 
declaring 210 
define global 211 

Index 263 



define local 210 
description of 195 
extended 229 
scope of 196 
SETA (set arithmetic) 213 
SETB (set binary) 219 
SETC (set character> 223 
specifications 196 
specifications for sUbscripted 198 
subscripted 196 

SETA 
arithmetic expression 213 
instruction format 213 
symbols, subscripted 213 
symbols, using 218 

SETB 
character relations in logical 
expressions 222 

instruction format 219 
logical expression 219 
symbols, subscripted 219 

, symbols, using 222 
SETC 

character expression 223 
character expressions 224 
instruction format 223 
symbols, subscripted 223 

SI format 81 
source macro definitions 149 
SPACE instruction 142 
special characters 189 
SS format 82 
SSE format 83 
START instruction 55 
statement field 9 
structure, assembler language 

symbols 21 
terms 21 

subfield 1 of constant 95 
subfield 2 of constant 96 
subfield 3 of constant 96 
subfield 4 of constant 100 
sublists in operands 185 
sublists, multilevel 187 
sublists, passing, to inner macro 
instructions 188 

subscripted symbolic parameters 163 
substring notation 230 
symbol definition instruction 

EQU instruction 86 
symbol table 22 
symbolic operation codes 70 
symbolic parameters 160 
symbols 

attributes in combination with 201 
defining 23 
explanation of 21 
extended SET 229 
length attribute 29 
ordinary 22 
previously defined 25 

,restrictions on 25 
sequence 23, 208 
system variable 171 
variable 23 
variable, as points of substitution 

in model statements 155 
system macro instructions 149 
system variable symbols 

&SYSDATE 171 
&SYSECT 172 
&SYSlIST 173 
&SYSlOC 179 

&SYSNDX 176 
&SYSPARM 177 
&SYSTIME 179 
in nested macros 193 
summary of 258 

T' type attribute 203 
terms 21 

See also self-defining terms 
terms in parentheses 31 
TITLE instruction 140 
trailer, macro definition 152 
types of constants 96 

underscore character 23 
unnamed control section 51 
USING instruction 

base registers for absolute 
addresses 44 

discussion of 41 
domain of a 42 
how to use the 43 

for executable control 
sections 43 

for reference control sections 43 
notes about the domain of a 43 
notes about the range of a 43 
range of a 42 

V-type constant 114 
values in operands 188 
variable symbols 23 
variable symbols as points of 
substitution 155 

variable symbols, system 
&SYSDATE 171 
&SYSECT 172 
&SYSlIST 173 
&SYSLOC 179 
&SYSNDX 176 
&SYSPARM 177 
&SYSTIME 179 
summary of 258 

WXTRN instruction 67 

V-type constant 111 

264 Assembler H Version 2 Application Programming: language Reference 

~ ,,--> 

o 



o 

o 

o 



GC26-4037-0 

--- ------ ---------- - ------------,,-(!) 

~ 
CII 
C'D 

3 
C" 
(i) .., 

." 
(i) 

z 
? 
en 
eN 
-...J 
o 
~ ..... 



o 

Q) 

o z 

o 

GC26-4037-0 
Assembler H Version 2 Application Programming: 
Language Reference 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of 
IBM systems. You may use this form to communicate your comments about this publication, its organization, or 
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way 
it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any 
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to 
the IBM branch office serving your locality. 

List TNLs here: 

If you have applied any technical newsletters (TNLs) to this book, please list them here: 

Last TNL ----------------------
Previous TNL ___________ _ 

Previous TNL _________ _ 

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments or you 
may mail directly to the address in the Edition Notice on the back of the title page.) Thank 
you for your cooperation. 



GC26-4037 -0 

Reader's Comment Form 

Fold and tape Please do not staple Fold and tape 

......................................................................................................................... : 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

I BM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

IIIII NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

....................................................................................................................... 
Fold and tape Please do not staple Fold and tape 

---.... - ------ --- --- ~---- -.. _ ..... -- - _ .... -----_ .. -
-~-.-® 

r 
Q) 

::::l 
to 
c: 
Q) 
to 
(1) 

~\ 
V 



o 

...: E c: ... 
Q) 0 
E ..... 
Q.en 
':; :c 
0'''' 
Q)-co 
C)Q) 
c: en 

'';:; 0 ....... 
o Q) 
en e. 

:= co co ... 
E-o 

11 E 
~ E 
E :::l o C) ... ... 
:::l Q) 
co.J:: 

~~ 
~Q) 

E .~ 
~'iii 
..0 c: o Q) 
.... en e.Q) 
Q) .... 
en :::l 
:::l en 

~ ~ 

Q) 

o z 

o 

e. 

GC26-4037-0 
Assembler H Version 2 Application Programming: 
Language Reference 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for systems analystst programmerst and operators of 
IBM systems. You may use this form to communicate your comments about this publication, its organization, or 
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way 
it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any 
requests for copies ofpublications, or for assistance in using your IBM system, to your IBM representative or to 
the IBM branch office serving your locality . 

List TNLs here: 

If you have applied any technical newsletters (TNLs) to this book, please list them here: 

ustTNL ________________ __ 

Previous TNL ________ _ 

Previous TNL ________ _ 

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments or you 
may mail directly to the address in the Edition Notice on the back of the title page.) Thank 
you for your cooperation. 



GC26-4037 -0 

Reader's Comment Form 

Fold and tape Please do not staple Fold and tape 

.............................................................................................. III •••••••••••••••••••••••• : 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

I BM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

IIIIII NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

•••••••••••••••••••••••••• III •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Fold and tape Please do not staple Fold and tape 

------------- ~--- - ---- - - --------- -
-~- ... -® 

:::c 
< 
~ 
en o· 
:::J 

N 

» 
"0 
'£ o· 
C\) 
.-+ o· 
:::J 

"C 
-c o 
~ 
C\) 

3 
3 
:::J 

c.c 

r 
C\) 

:::J 
c.c c:: 
C\) 

c.c 
(l) 



o 

Q) 

o z 

o 

GC26-403 7-0 
Assembler H Version 2 Application Programming: 
Language Reference 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of 
IBM systems. You may use this form to communicate your comments about this publication, its organization, or 
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way 
it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. 
Note: Copies of IBM publications are nat stacked at the location to which this form is addressed. Please direct any 
requests for copies afpublications, ar for assistance in using yaur IBM system, to yaur IBM representative ar ta 
the IBM branch office serving your locality. 

List TNLs here: 

If you have applied any technical newsletters (TNLs) to this book, please list them here: 

Last TNL _________ _ 

Previous TNL _________ _ 

Previous TNL _________ _ 

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments or you 
may mail directly to the address in the Edition Notice on the back 'of the title page.) Thank 
you for your cooperation. 



GC26-4037·0 ' 

Reader's Comment Form 

Fold and tape Please do not staple 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WI LL BE PAID BY ADDRESSEE 

I BM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

II " I 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

....................................................................................................................... 
Fold and tape Please do not staple Fold and tape 

------------------- - - --...---------y-
® 

r 
III 
::::l 
co 
c: 
III 
co 
(\) 



o 

~ 
o 

Z 

0 '·" 
,)..'i'r 

GC26-403 7-0 
Assembler H Version 2 Application Programming: 
Language Reference 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of 
IBM systems. You may use this form to communicate your comments about this publication, its organization, or 
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way 
it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any 
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to 
the IBM branch office serving your locality. 

List TNLs here: 

If you have applied any technical newsletters (TNLs) to this book, please list them here: 

Last TNL _________ _ 

Previous TNL _________ _ 

Previous TNL _________ _ 

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments or you 
may mail directly to the address in the Edition Notice on the back of the title page.) Thank 
you for your cooperation. 



GC26-4037 -0 

Reader's Comment Form 

Fold and tape Please do not staple Fold and tape 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , .................................................................. : 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

I BM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

IIII NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

. , 

...................................................................................................................... 
Fold and tape Please do not staple Fold and tape 

---------- ---- ~ _ ....... -- - - _ .... --------_.-
® 

r' 
'~~J 

» 
VI 
VI 
(1) 

3 
C" 

~ 
:c 
< 
(1) 
"'1 
VI o· 
::l 

I\,) 

» 
"0 
"'2. 
n' 
Q.) 

!:t . 
0 
::l 

""0 
"'1 
0 
~ 
Q.) 

3 
3 
::l 

CQ 

r 
Q.) 

::l 
CQ 
C 
Q.) 

CQ 
(1) 

:0 
(1) 
-+-

C (1) 

iii 
::l 
(') 
(1) 

" CD 
z 
!=> 
U) 
tv 
-...J 
0 
~ 

""0 
"'1 

:::J 
M- ' 
(1) 

c.. 
:::J 

C 
en » 
G) 
() 
I\,) 
en 
~ 
0 
tv 
-...J 

6 


