
"

/

Program Product

SC26-3770-1

OS .Assembler H
Messages
Program Number 5734·AS1

. (

"

Second Edition (June, 1972)

This is a major revision of, and makes obsolete SC26-3770-0
together with Technical Newsletters SN33-8093 and SN33-8123.

This edition applies to version 4 of the Operating System
Assembler H Program Product 5734-AS1, and to all subsequent
versions until otherwise indicated in new editions or
Technical Newsletters. Changes to the text and to illustra
tions, are indibated by a vertical line to the left of the
change.

Changes are continually made to the information herein;
before using this publication in connection with the operation
of IBM systems, consult the latest SRL Newsletter, Order No.
GN20-0360 for the editions that are applicable and current.

This publication was prepared for production using art IBM
computer to update the text and to control the page and line
format. Page impressions for photo-offset printing were
obtained from an IBM 1403 Printer using a special print
chain.

Requests for copies of IBM publications should be made to
your IBM representativ~ or to the IBM branch office servin~
your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Nordic Laboratory, Publications Development,
Box 962, S-181 09, Lidingo 9, Sweden. Comments become the
property of IBM.

©Copyright International Business Machines Corporation 1970, 1971, 1972

ii'

Preface
..

This manual describes the Assembler H error diagncstic messages and
abnormal termination messages. Assembler H is a high performance
assembler language processor for the Operating Systerr..

This manual has ~hree sections:

• Introduction
• Assembly Error Diagnostic Messages
• Assembly ~bnormal Termination Messages

The Introduction describes the format, contents, and Flacement of
messages -- both in macro definitions and in the source program. The
other two sections describe the messages themselves. All messages
appear in the assembler listing. One message, IEV999, also appears on
the system console device.

This book is intended for all Assembler H programrrers. To use it, you
should be familiar with the Assembler H language and operating
procedures described in the following books:

OS/VS and DOS/VS Assembler Language, Order Number GC33-4010, or

I OS As.sembler Language, Order Number GC2,8-6514.

The Assembler Language manual contains the basic assembler and macro
assembler specifications, except those unique to Asserrbler H.

OS Assembler H Language, Order Number GC26-3771.

The Assembler H Language ma~ual describes the language features
that are available with Assembler H. It is supplemental to the
Assembler Language manuals listed above.

OS Assembler H Prograrr~er's Guide, Order Number SC26-3759.

The Assembler H programmer's Guide contains detailed infcrmation about
using Assembler H. It includes assembler options, cataloged job control
language procedures, assembler listing and output descriFtions, and
information on programming techniques and consideraticns.

OS Assembler H System Information, Order Number SC26-3768.

The system Information manual contains the performance estimates and
storage estimates for Assembler H. It also describes how to add the
assembler to the Operating System {systerr generatio~ •

iii

..

Contents

INTRODUCTION: • • . • • • • • . • • . • • • • • • . • . . • . • • . . • • . • • • . • . • • . • •• 1
Assembly Error Diagnostic Messages................................... 1

Message Not Known... 2
Abnormal Assembly Termination Messages 3
Message Descriptions... 3

Message Number and Text... 3
Explanation of Message •.•.•••....•...•••.•....•....••.••..•.•....•• 3
Assembler Action.. 4
Programmer Response... 4
Sever i ty Code......... . • • • • • • . • • . • • • • • . . • • • • • • . .• 4

ASSEMBLY ERROR DIAGNOSTIC MESSAGES ~ .. ~.~ ..•••....•...•.••.•.....• 5

ASSEMBLY ABNORMAL TERMINATION MESSAGES 54

v

Introduction

Assembly Error Diagnostic Messages

Assembler H prints most error messages in the listing immediately
following the statements in error. It also prints the total number of
flagged statements and their line numbers in the Diagnostic Cross
Reference section at the end of the listing.

The messages do not follow the statement in error when:

• Errors are detected during editing of macro definitions read from
a library. A message for such an error appears after the first
call in the source program to that macro definition. You can,
however, bring the macro definition into the source program with a
COpy statement. The editing error messages will then be
attached to the statements in error.

• Errors are detected by the lookahead function of the assembler.
(Lookahead scans, for attribute references, statements after the

one being assembled.) Messages for these errors appear after the
statements in which they occur. The messages may also appear at
the point where lookahead was called.

• Errors are detected on conditional assembly statements during
macro generation or MHELP testing. Such a message follows the
most recently generated statement or MHELP output statement.

A typical error diagnostic message is:

IEV057 ***ERROR*** UNDEFINED OPERATION CODE -- xxxxx

The term ***ERROR*** is part of the message if the severity code is 8 or
greater. The term **WARNING** is part of the message if the severity
code is 0 or 4.

A copy of a segment of the statement in error, represented above by
xxxxx, is appended to the end of many messages. Normally this segment,
which can be up to 16 bytes long, begins at the bad character or term.
For some errors, however, the segment may begin after the bad character
or term. The segment may include part of the remarks field.

If a diagnostic message follows a statement generated by a macro
definition, the following items may be appended to the error message:

• The number of the model statement in which the error occurred, or
the first five characters of the macro name.

• The SET symbol, parameter number, or value string associated with
the error.

Introduction 1

Note: References to macro parameters are by number (such as PARAMO 0 8)
instead of name. The first seven numbers are always assigned for the
standard system parameters as follows:

PARAMO 00 = &SYSNCX
PARAMO 0 1 = &SYSECT
PARAMO 02 = &SYSLOC
PARAMO 03 = &SYSTIME
PARAMO 04 = &SYSDATE
PARAMO 05 = &SYSPARM
PARAMO 06 = Name Field Parameter

Then the keyword parameters are numbered in the order defined in the
macro definition, followed by positional parameters. When there are no
keyword parameters in the macro definition, PARAM007 refers to the first
positional parameter.

If a diagnostic message follows a conditional assembly statement in the
source program, the following items will be appended to the error
message:

• The word "OPENCn

• The SET symbol or value string associated with the error

Several messages may be issued for a single statement or even for a
single error within a statement. This happens because each statement is
usually evaluated on more than one level (for example, term level,
expression level, and operand level) or by more than one ~hase of the
assembler. Each level or phase can diagnose errors; therefore, most or
all of ,the errors in the statement are flagged. Occasionally, duplicate
error messages may occur. This is a normal result of the error
detection process.

MESSAGE NOT KNOWN

The following message may appear in a listin~:

IEVnnn ***ERROR*** MESSAGE NOT KNOWN xxxxxxxxxx

The statement preceding this message contains an error but the assembler
routine which detected the error issued the number (IEVnn) of a
nonexistent error message to the assembler's message generation routine.
The segment of the statement in error may be appended to the message.
If you can correct the error, this statement will assemble correctly.
However, there is a bug in the error detection process of the assembler.
Save the output and the source deck from this assembly and report the
problem to your IBM customer engineer.

2

Abnormal Assembly Termination Messages

Whenever an assembly cannot be completed, Assembler H provides a message
and, in some cases, a specially formatted dump for diagnostic
information. This may indicate an assembler malfunction or it may
indicate a programmer error. The statement causing the error is
identified and, if possible, the assembly listing up to the point of the
error is printed. The messages in this book will give enough
information to correct the error and reassemble your program or to
determine that the error is an assembler malfunction. OS Assembler II
Logic, Order Number LY26-3760, gives a complete explanation of the
abnormal termination dump.

Message Descriptions

Each message entry in this book has five sections:

• Message Number and Text

• Explanation of Message

• Assembler Action

• programmer Response

• Severity Code

MESSAGE NUMBER AND TEXT

Only the message number and the major fixed portion of the message text
(For example, UNDEFINED OPERATION CODE in the sample rressage above) are
included in the message description. Any abbreviations in actual
message text are spelled out in full in the book. Unused message
numbers account for the gaps in the message number sequence. No
messages are defined for numbers, such as IEVOOS, not included in this
section.

EXPLANATION OF MESSAGE

There may be more than one explanation for some messages because they
are generated by different sections of the assembler. Several of the
assembler termination messages have identical explanations. In these
cases, each message precedes the explanation.

Introduction 3

ASSEMBLER ACTION

This section tells how the assembler handles statements with errors. A
machine instruction is assembled as all zeros. An assembler instruction
is usually ignored; it is printed but has no effect on the assembly.
Many assembler instructions, however, are partially processed or
processed with a default value.

For some instructions, the operands preceding the operand in error or
every operand except the operand in 'error are processed. For example,
if one of several operands on a DROP statement is a symbol which has not
been equated to a register number, only that operand is ignored. All
the correctly specified registers are correctly processed.

For some assembler statements, especially macro prototype and
conditional assembly statements, the operand or term in error is given a
default value. Thus the statement will assemble completely, but will
probably cause incorrect results if the program is executed.

PROGRAMMER RESPONSE

Many errors have specific or probable causes. In such a case, the
programmer response section gives specific steps for fixing the error.
Most messages, however, have too many possible causes (from keypunch
error to wrong use of the statement) to list. The programmer response
for these error messages does not give specific directions. The cause
of most such errors can be determined from the message text and the
explanation.

SEVERITY CODE

The severity code indicates the seriousness of the error. The severity
codes and their meanings are shown below:

Severity
Code Explanation

0 No errors detected

4 Minor errors detected; successful program execution is
probable

8 Errors detected; unsuccessful program execution is possible

12 Serious errors detected; unsuccessful program execution is
probable

16 Critical errors detected; normal execution is impossible

20 I/O error from which the system could not recover occurred
during assembly, or data sets are missing; assembly terminated

This code is the return code issued by the assembler when it returns
control to the Operating System. The IBM-supplied cataloged procedures
include a COND parameter on the linkage edit and execution steps. The
COND parameter prevents execution of these steps if the return code
from the assembler is 8 or greater. Thus errors with ***ERROR*** in the
message prevent the assembled program from linkage editing or executing.
Errors with **WARNING** in the message do not.

4

Assembly Error Diagnostic Messages

IEV001 OPERATION-CODE NOT ALLOWED TO BE GENERATED

Explanation: An attempt was made to produce a restricted operation
code by variable symbol substitution. Restricted operation codes
are:

ACTR
AIF
COpy
MACRO
GBLA
LCLA

AGO
AIFB
REPRO
MEND
GBLE
LCLB

AGOB
ANOP
ICTL
MEXIT
GBLC
LCLC

AREAD
SETA
SETB
SETC

Assembler Action: The statement is ignored.

programmer Response: If you want a variable operation code, use
AIF to branch to the correct unrestricted statement.

Severity Code: 8

IEV002 GENERATED STATEMENT TOO LONG. STATEMENT TRUNCATED

Explanation: The statement generated by a macro definition is more
than 864 characters long.

Assembler Action: The statement is truncated; the leading 864
characters are retained.

programmer Response: Shorten the statement.

Severity Code: 12

IEV003 UNDECLARED VARIABLE SYMBOL. DEFAULT=O, NULL, OR TYPE=U

Explanation: A variable symbol in the operand field of the
statement has not been declared (defined) in the name field of a
SET statement, in the operand field of a LCL or GBL statement, or
in a macro prototype statement.

Assembler Action: The variable symbol is given a default value as
follows:

SETA = 0
SETE = 0
SETC = null (empty) string

The type attribute (T') of the varaible is·given a default value of
U (undefined).

Programmer Response: Declare the variable before you use it as an
operand.

Severity Code: 8

Assembly Error Diagnostic Messages 5

IEV004 DUPLICATE SET SYMBOL DECLARATION. FIRST IS RETAINED

Explanation: A SET symbol has been declared (defined) more than
once. A SET symbol is declared when it is used in the name field
of a SET statement, in the operand field of a LCL or GBL statement,
or in a macro prototype statement.

Assembler Action: The value of the first declaration of the SET
symbol is used.

Programmer Response: Eliminate the incorrect declarations.

Severity Code: 8

IEV001 PREVIOUSLY DEFINEC SEQUENCE SYMBOL

Explanation: The sequence symbol in the name field has been used
in the name field of a previous statement.

Assembler Action: The first definition of the sequence symbol is
used; this definition is ignored.

Programmer Response: Remove or change one of the sequence symbols.

Severity Code: 12

IEV008 PREVIOUSLY DEFINED SYMBOLIC PARAMETER

6

Explanation: The same variable symbol has been used to define two
di£ferent symbolic parameters.

Assembler Action: When the parameter name (the variable symbol) is
used inside the macro definition, it will refer to the first
definition of the parameter in the prototype. Hcwever, if the
second parameter defined by the variable symbol is a positional
parameter, the count of positional operands will still be increased
by one. The second parameter can thsn be referred to only through
use of &SYSLIST.

Programmer Response: Change one of the parameter names to another
variable symbol.

Severity Code: 12

IEV009 SYSTEM VARIABLE SYMBOL ILLEGALLY RE-DEFINED

Explanation: A system variable symbol has been used in the name
field of a macro prototype statement. The system variable symbols
are:

&SYSECT
&SYSLIST
&SYSNDX
&SYSTIME

&SYSDATE
&SYSLOC
&SYSPARM

Assembler Action: The name parameter is ignored. The name on a
corresponding macro instruction will not be generated.

Programmer Action: Change the parameter to one which is not a
system variable symbol.

Severity Code: 12

IEVO 11 INCONSISTENT GLOBAL DECLARATIONS. FIRST IS RE'IAINED

Explanation: A global SET variable symbol has been defined in more
than one macro definition or in a macro definition and in the
source program, and the two definitions are inconsistent in type or
dimension.

Assembler Action: The first definition encountered is retained.

Programmer Response: ASsign a new SET symbol or make the
definitions compatible.

Severity Code: 8

IEV012 UNCEFINED SEQUENCE SYMBOL. MACRO ABORTED

Explanation: A sequence symbol in the operand field is not
defined; that is, it is not used 1n the name field of a model
statement.

Assembler Action: Exit from the macro definition.

programmer Response: Define the sequence symbol.

Severity Code: 12

Assembly Error Diagnostic Messages 7

IEV013 ACTR COUNTER EXCEEDED

Explanation: The conditional assembly loop counter (set by an ACTR
statement) has been decremented to zero. The AC~R counter is
decremented by one each time an AIF or AGO branch is executed
successfully. The counter is halved for most errors encountered by
the macro editor phase of the assembler.

Assembler Action: A macro expansion is terminated. If the ACTR
statement is in the source program, the assembly is terminated.

Programmer Response: Check for an AIF/AGO loop or another type of
error. ~ou can use the MHELP facility, described in the OS
Assembler ~ programmer's Guide, to trace macro definition ~ogic.)
If there is· no error, increase the initial count on the ACTR
instruction.

Severity Code: 12

IEV017 UNDEFINED KEYWORD PARAMETER. DEFAULT TO POSITIONAL INCLUDING
KEYWORD

Explanation: A keyword parameter in a macro call is not defined in
the corresponding macro prototype statement.

Note: This message may be generated by a valid positional parameter
that contains an equals sign.

Assembler Action: The keyword ~ncluding the equals sign and
value) is used as a positional parameter.

Programmer Response: Define the keyword in the prototype statement.

Severity Code: 4

IEV018 DUPLICATE KEYWORD IN MACRO CALL. LAST VALUE IS USED

Explanation: A keyword operand occurs more than once in a macro
call.

Assembler Action: The latest value assigned to the keyword is used.

programmer Response: Eliminate one of the keyword o~erands.

Severity Code: 12

IEV020 ILLEGAL GBL OR LCL STATEMENT

8

Explanation: A global (GEL) or local (LCL) declaration statement
does not have an operand.

Assembler Action: The statement is ignored.

Programmer Response: Remove the statement or add an operand.

Severity Code: 8

IEVO 21 ILLEGAL SET STATEMENT

Explanation: The operand of a SETB statement is not 0, 1, or a
SETB expression enclosed in parentheses.

Assembler Action: The statement is ignored.

programmer Response: Correct the operand or delete the statement.

Severity Code: 8

IEV023 SYMBOLIC PARAMETER TOO LONG

Explanation: A symbolic parameter in this staterrent is too long.
It must not exceed 63 characters including the initial ampersand.

Assembler Action: The symbolic parameter and any operands following
it in this statement are ignored.

Programmer Response: Make sure all symbolic parameters consist of
an ampersand followed by 1 - 62 alphameric characters, the first of
which is alphabetic.

Severity Code: 8.

IEVO 2 4 INVALID VARIABLE SYMBOL

Explanation: One of these errors has occurred:

• A symbolic parameter or a SET symbol is not an ampersand followed
by 1 to 62 alphameric characters, the first being alphabetic.

• A created SET symbol definition is not a valid SET symbol
expression enclosed in parentheses.

Assembler Action: The statement is ignored •

programmer Response: . ," Supply a val~d symbol or expression.

Severity Code: 8

IEV025 INVALID MACRO PROTOTYPE OPERAND

Explanation: The format of the operand field of a macro prototype
statement is invalid. For example, two parameters are not
separated by a comma, or a parameter contains an invalid character.

Assembler Action: The operand field of the prototype is ignored.

program~er Response: Supply a valid operand field.

Severity Code: 12

Assembly Error Diagncstic Messages 9

IEV026 MACRO CALL OPERAND TOO LONG. 255 LEADING CHARACTERS DELETED

Explanation: An opezand of a macro instruction is more than 255
characters long.

Assembl~r Action: The leading 255 characters are deleted.

Programmer Response: Limit the operand to 255 characters, or break
it down into two or more operands.

Severity Code: 12

IEV027 EXCESSIVE NUMBER OF OPERANDS

Explanation: One of the following errors has occurred:

• More than 240 positional and/or keyword operands have been
explicitly defined in a macro prototype statement.

• There are more than 255 operands in a DC, OS, or DXD statement.

Assembler Action: The excess parameters are ignored.

Programmer Response: For a DC, DS, or DXD statement, use more than
one statement. For a macro prototype statment, delete the extra
operands and use &SYSLIST to access the positional operands, or
redesign the macro definition.

Severity Code: 12

IEV028 INVALID DISPLACEMENT

10

Explanation: One of the following errors has occurred:

• The displacement field of an explicit address is not an absolute
value within the range 0 through 4095.

• The displacement field of an S-type address constant is not an
absolute value within the range 0 through 4095.

Assembler Action: The statement or constant is assembled as zero.

Programmer Response: Correct the displacement or supply an
appropriate USING statement containing an absolute first operand
prior to this statement.

Severity Code: 8

IEV029 INCORRECT REGISTER OR MASK SPECIFICATION

Explanation: The value specifying a register or a mask is not an
absolute value within the range 0 through 15; an cdd register is
used where an even register is required; or a register is used
where none can be specified.

Assembler Action: For machine instructions and S-tYfe address
constants, the statement or constant is assembled as zero. For
USING and DROP statements, the invalid register operand is ignored.

Programmer Response: Specify a valid register.

Severity Code: 8

IEV030 INVALID LITERAL USAGE

Explanation: A literal is used in an assembler instruction,
another literal, or a field of a machine instruction where it is
not permitted.

Assembler Action: An assembler instruction containing a literal is
generally ignored and another message, relative to the operation
code of the instruction, appears. A machine instruction is
assembled to zero.

prograITmer Response: If applicable, replace the +iteral with the
name of a DC statement.

Severity Code: 8

IEV031 INVALID IMME[IATE FIELD

Explanation: The value of an immediate operand of a machine
instruction requires more than one byte of storage (exceeds 255) or
the value of the immediate operand exceeds 9 on an SRP instruction.

Assembler Action: The instruction is 'assembled as zero.

programmer Response: Use a valid immediate operand, or specify the
immediate information in a DC statement or a literal and change the
statement to a non-immediate type.

severity Code: 8

IEV032 RELOCATAELE VALUE FOUND WHERE ABSOLUTE VALUE REQUIRED

Explanation: A relocatable or complex relocatable expression is
used where an absolute expression is required.

Assembler Action: A machine instruction is asserrbled as zero. In
a DC, CS, or ~XD statement, the operand in error and the following
operands are ignored.

Programmer Response: Supply an absolute expression or term.

Severity Code: 8

Assembly Error Diagnostic Messages 11

IEV033 ALIGNMENT ERROR

Explanation: An address referenced by this statement might not be
aligned to the proper boundary for this instruction; for example
the data referenced by a load instruction (L) may be on a halfword
boundary, or the address might depend upon an index register.

Assembler Action: The instruction is assembled as written.

programmer Response: Correct the operand if it is in error. If
you are using a System/360 or 370 model which does not require
alignment or you wish to suppress alignment checking for some other
reason, you can specify PARM='NOALIGN' in the EXEC card. If a
particular statement is correct, you can suppress this message by
writing the statement with an absolute displacement and an explicit
base register, as in this example:
L 1 ,SYM-BASE (,2)

Severity Code: 4

IEV034 ACDRESSAEILITY ERROR

Explanation: The address referenced by this statement does not
fall within the range of a USING statement, or a base register is
specified along with a relocatable displacement.

Assembler Action: The instruction is assembled as zero.

Programmer Response: Insert appropriate USING statement prior to
this statement. Otherwise, check this statement for a misspelled
symbol, an unintended term or symbol in an address expression, or a
relocatable symbol used as a displacement.

Severity Code: 8

. IEV035 INVALID DELIMITER

12

Explanation: (1) A required delimiter in a DC, ns, or DXD
statement is missing or appears where none should be; the error may
be any of these:

• A quote with an address constant.

• A left parenthesis with a non-address constant.

• A constant field not started with a quote, left parenthesis,
blank, or comma.

• An empty constant field in a DC.

• A missing comma or right parenthesis following an address
constant.

• A missing subfield right parenthesis in an S-type address
constant.

.A missing right parenthesis in a constant modifier expression.

(2) A parameter in a macro prototype statement was not followed by a
valid delimiter -- comma, equals sign, or blank.

Assembler Action: The operand or parameter in error and the
following operands or parameters are ignored.

Programmer Response: Supply a valid delimiter.

Severity Code: 12

IEV036 REENTRANT CHECK FAILED

Explanation: A machine instruction which might store data into a
control section or common area when executed has been detected.
This message is generated only when reentrant checking is requested
by PARM='RENT' on the EXEC job control card.

Assembler Action: The statement is assembled as written.

Programmer Response: If you want reentrant code, correct the
instruction. Otherwise, you can suppress reentrant checking by
using PARM='NORENT' on the EXEC job control card.

Severity Code: 4

IEV031 ILLEGAL SELF-DEFINING VALUE

Explanation: A decimal, binary (B), hexadecimal (~, or character
(~ self-defining term contains invalid characters or is in illegal

format.

Assembler Action: In the source program, the operand in error and
the following operands are ignored. In a macro definition, the
entire statement is ignored.

Programmer Response: Supply a valid self-defining term.

Severity Code: 8

IEV038 OPERAND VALUE FALLS OUTSIDE OF CURRENT SECTION/LOCTR

Explanation: An ORG statement specifies a location outside of the
control section or the LOCTR in which the ORG is used. Note that
ORG cannot force a change to another section or LOCTR.

Assembler Action: The statement is ignored.

Programmer Response: Change the ORG statement. if it is wrong.
Otherwise, insert a CSECT, DSECT, COM, or LOCTR statement to set
the location counter to the proper section before the ORG statement
is executed.

Severity Code: 12

IEV039 LOCATION COUNTER ERROR

24
Explanation: The location counter has exceeded 2 -1, the largest
address which can be contained in three bytes. ~his occurrence is
called location counter wraparound.

Assembly Error Diagncstic Messages 13

Assembler Action: The location counter is four bytes long '(only
three bytes a~pear in the listing and the object dec~. ~he
overflow is carried into the high-order byte and the assembly
continues. However, the resulting code will probably not execute
correctly.

Programmer Response: The probable cause is a high ORG statement
value or a high START statement value. Correct the value or split
up the control section.

Severity Code: 12

IEV040 MISSING OPERAND

Explanation: This statement requires an operand and none is
present.

Assembler Action: A machine instruction is assembled as zero. An
assembler instruction is ignored.

Programmer Response: Supply the missing operand.

Severity Code: 12

IEV041 TERM EXPECTED. TEXT IS UNCLASSIFIABLE

Explanation: One of these errors has occurred:

• A term was expected, but the character encountered is not one
that starts a term (letter, number, =, +, -, *).

• A letter and a quote did not introduce a valid term; the letter
is not L, C, X, or B.

Assembler Action: Another message will accompany an assembler
statement. A machine instruction will be assembled as zero.

Programmer Response: Check for missing punctuation, a wrong letter
on a self-defining term, a bad attribute request, a leading comma,
or a dangling comma. Note that the length attribute is the only
one accepted here. If a scale, type, or integer attribute is
needed, use a SETA statement and substitute the variable symbol
where the attribute is needed.

Severity Code: 8

IEV042 LENGTH ATTRIBUTE OF UNDEFINED SYMBOL. DEFAUL~=1

14

Explanation: This statement has a length attribute reference to an
undefined symbol.

Assembler Action: The L' attribute defaults to 1.

programmer Response: Define the symbol that was referenced.

Severity Code: 8

IEV043 PREVIOUSLY DEFINED SYMBOL

Explanation: The symbol in a name field or in the o~erand field of
an EXTRN or WXTRN statement was defined ~sed as a name or an
EXTRN/WXTRN o~erand) in a previous statement.

Assembler Action: The name or EXTRN/WXTRN operand of this
statement is ignored. The following operands of an EXTRN or WXTRN
will be processed. The first occurrence of the symbol will define
it.

programmer Response: Correct a possible spelling error or change
the symbol.

Severity Code: 8

IEV044 UNDEFINED SYMEOL

Explanation: A symbol in the operand field has not been defined,
that is, used in the name field of another statement or the operand
field of an EXTRN or WXTRN.

Assembler Action: A machine instruction or an address constant is
assembled as zero. In a DC, DS, DXD statement or in a
duplication-factor or length-modifier expression, the operand in
error and the following operands are ignored. Any other
instruction is ignored entirely.

programmer Response: Define the symbol or remove the references to
it.

Severity Code: 8

IEV045 REGISTER NOT PREVIOUSLY USED

Explanation: A register specified in a DROP statement has not been
previously s~ecified in a USING statement.

Assembler Action: Registers not currently active are ignored.

prograrrmer Response: Remove the unreferenced registers from the
DROP statement. You can drop all active base registers at once by
specifying DROP with a blank operand.

severity Code: 4

IEV046 FLAG BYTE OPERAND IS NOT A MULTIPLE OF 8

Explanation: Bits 37-39 of a Channel Command Word specified by a
CCW statement are not all zero.

Assembler Action: The CCW is assembled as zero.

programmer Response: Set bits 37-39 to zero to su~press message
during next assembly.

Severity Code: 8

Assembly Error Diagncstic Messages 15

IEV047 SEVERITY CODE TOO LARGE

Explanation: The severity code (first operand) of an MNOTE
statement is not * or an unsigned decimal number from 0 to 255.

Assembler Action: The statement is printed in standard format
instead of MNOTE format. The MNOTE is given the severity code of
this message.

Proqrammer Response: Choose a severity code of * or a number less
than 255, or check for a generated severity code.

Severity Code: 8

IEV048 ENTRY ERROR

16

Explanation: One of the following errors was detected in the
operand of an ENTRY statement:

• Duplicate symbol (previous ENTRY) •

• Symbol defined in a DSECT or COM section.

• Symbol defined by a DXD statement.

• Undefined symbol.

• Symbol defined by an absolute or complex relocatable EQU
statement.

Assembler Action: The External Symbol Dictionary output is
suppressed for the symbol.

Programmer Response: Define the ENTRY operand ccrrectly.

Severity Code: 8

IEV049 ILLEGAL RANGE ON ISEQ

Explanation: If this message is accompanied by another, this one
is advisory. If it appears by itself, it indicates one of the
following errors:

• An operand value is less than 1 or greater than 80 or the second
operand (rightmost column to be checked) is less than the first
operand (leftmost column to be checked) •

• More or fewer than two operands are present, or an operand is
null ~mpty).

• An operand expression contains an undefined symbol.

• An operand expression is not absolute.

• The statement is too complex. For example, it may have forward
references or cause an arithmetic overflow during evaluation.

• The statement is circularly defined.

Assembler Action: Sequence checking is stopped.

proqrawmer Response: Supply valid ISEQ operands. Also, be sure
that the cards following this statement are in order; they have not
been sequence checked.

Severity Code: 4

IEVOSO ILLEGAL NAME FIELD. NAME DISCARDED

Explanation: One of these errors has occurred:

• The name field of a macro prototype statement contains an invalid
symbolic parameter (variable symbol) •

• The name field of a COpy statement in a macro definition
contains an entry other than blank or a valid sequence symbol.

Assembler Action: The invalid name field is ignored.

prograrrmer Response: Correct the invalid name field.

Severity Code: 8

IEVOS1 ILLEGAL STATEMENT OUTSIDE A MACRO DEFINITION

Explanation: A MEND, MEXIT, or AREAD statement appears outside a
macro definition.

Assembler Action: The statement is ignored.

programmer Response: Remove the statement or, if a macro
definition is intended, insert a MACRO statement.

Severity Code: 8

Assembly Error Diagnostic Messages 11

IEV052 CARe OUT OF SEQUENCE

Explanation: Input sequence checking, under control of the ISEQ
assembler instruction, has determined that this statement is out of
sequence. The sequence number of the statement is appended to the
message.

Assembler Action: The statement is assembled normally. However,
the sequence number of the next statement will be checked relative
to this statement.

Programmer Response: Put the statements in proper sequence. If
you want a break in sequence, put in a new ISEQ statement and
sequence number. ISEQ always resets the sequence number; the card
following the ISEQ is not sequence checked.

Severity Code: 12

IEV053 BLANK SEQUENCE FIELD

Explanation: Input sequence checking, controlled by the ISEQ
assembler statement, has detected a statement with a blank sequence
field. The sequence number of the last numbered statement is
appended to the message.

Assembler Action: The statement is assembled normally. The
sequence number of the next statement will be checked relative to
the last statement having a non-blank sequence field.

programmer Response: put the proper sequence number in the
statement or discontinue sequence checking over the blank
statements by means of an ISEQ statement with a blank operand.

Severity Code: 4

IEV054 ILLEGAL CONTINUATION CARD

18

Explanation: A statement has more than 10 cards or end-of-input
has been 'encountered when a continuation card was expected.

Assembler Action: The cards already read are processed as is. If
the statement had more than 10 cards, the next card is treated as
the beginning of a new statement.

programmer Response: In the first case break the statement into
two or more statements. In the second case, ensure that a
continued statement does not span the end of a library member.
Check for lost cards or an extraneous continuation punch.

Severity Code: 8

IEV055 RECURSIVE COpy

Explanation: A nested COpy statement (COpy within another COpy)
attempted to copy a library member already being copied by a higher
level COpy within the same nest.

Assembler Action: This COpy statement is ignored.

programmer Response: Correct the operand of this COpy if it is
wrong or rearrange the nest so that the same library member is not
copied by COpy statements at two different levels.

Severity Code: 12

IEV057 UNDEFINED OPERATION COCE

Explanation: One of the following errors has occurred:

• The operation code of this statement is not a valid machine or
assembler instruction or macro name.

• In an OPSYN statement, this operand symbol is undefined or
illegal or, if no operand is present, the name field symbol is
undefined.

Assembler Action: The statement is ignored. Note that OPSYN does
not search the macro library for an undefined operand.

Programmer Response: Correct the statement. In the case of an
undefined macro instruction, the wrong data set may have been
specified for the macro library. In the case of OPSYN, a previous
OPSYN or macro definition may have failed to define the operation
code.

Severity Code: 8

IEV059 ILLEGAL ICTL

EXElanation: An ICTL statement has one of the fcllowing errors:

• The operation code was created by variable syrrbol substitution.

• It is not the first statement in the assembly.

• The value of one or more operands is incorrect.

• An operand is missing.

• An invalid character is detected in the operand field.

Assembler Action: The ICTL statement is ignored. Assembly
continues with standard ICTL values.

programmer Response: Correct or remove the ICTL. The begin column
must be 1-40; the end column must be 41-80 and at least five
greater than the begin column; and the continue column must be 2-40.

Severity Code: 16

Assembly Error Diagnostic Messages 19

IEV060 COpy CODE NOT FOUND

Explanation: (1) If this message is on a COpy statement and no
text is printed with it, one of the following occurred:

• The library member was not found.

• The lookahead phase previously processed the COpy statement and
did not find the library member, the copy was recursive, or the
operand contains a variable symbol.

(2) If ·this message is not on a COpy statement, but has a library
member name printed with it, the lookahead phase of the assembler
could not find the library member because the name is undefined
or contains a variable symbol.

Assembler Action: The COpy statement is ignored; the library
member is not copied.

Programmer Response: Check that the correct macro library was
assigned or check for a possible misspelled library member name.
If the library member may be read by the lookahead phase of the
assembler, do not make the library member name a variable symbol.

Severity Code: 12

IEV061 SYMEOL NOT NAME OF BSECT OR DXD

Explanation: The operand of a Q-type address constant is not a
symbol or the name of a DSECT or DXD statement.

Assembler Action: The constant is assembled as zero.

programmer Response: Supply a valid operand.

Severity Code: 8

IEV062 ILLEGAL OPERAND FORMAT

20

Explanation: One of the following errors has occurred:

• DROP. or US ING -- more than 16 registers were specified in the
operand field.

• PUSH or POP
statement.

an operand does not specify a PRINT or USING

• PRINT an operand specifies ~n invalid print option.

• MNOTE the syntax of the severity code (first operand) is
invalid.

Assembler Action: The first 16 registers in a DROP or USING
statement are processed. The operand in error and the following
operands of a PUSH, POP, or PRINT statement are ignored.

prograremer Response: ~upply a valid operand field.

Severity Code: 8

IEV063 NO ENCING APOSTROPHE

Explanation: The quote terminating an operand is missing, or the
standard value of a keyword parameter of a macro prototype statement
is missing.

Assembler Action: The operand or standard value in error is
ignored. if the error is in a macro definition model statement,
the entire statement is ignored.

Programmer Response: Supply the missing quote.

Sev~rity Code: 8

IEV064 FLOATING POINT CHARACTERISTIC OUT OF RANGE

Explanation: A converted floating-point constant is too large or
too small for the CPU. The allowable range is 7.2x1075 to
S.3x10_77.

Assembler Action: The constant is assembled as zero.

Programmer Response: Check the characteristic (exponen~, exponent
modifier, scale modifier, and mantissa (fraction) for validity.
Remember that a floating-point constant is rounded, not truncated,
after conversion.

Severity Code: 12

IEV065 UNKNOWN TYPE

Explanation: An unknown constant type has been used in a DC or DS
statement or in a literal.

Assembler Action: The operand in· error and the following operands
are ignored.

Proqrammer Response: Supply a valid constant. Look for an
incorrect type code or incorrect syntax in the duplication factor.

Severity Code: 8

IEV066 RELOCATABLE Y-TYPE CONSTANT

Explanation: This statement contains a relocatable Y-type address
constant. A Y-constant is only two bytes long, so addressing
errors will occur if this program is loaded at a main storage
address greater than 32K (32,768).

Assembler Action: The statement is assembled as written.

proqrarrmer Response: If this program will not be loaded at a main
storage address greater than 32K, you can leave the Y-constant.

Severity Code: 4

Assembly Error Diagnostic Messages 21

IEV067 ILLEGAL DUPLICATION FACTOR

Explanation: One of the following errors has occurred:

• A literal has a zero duplication factor.

• The duplication factor of a constant is greater than 2 24 _1.

• A duplication factor expression of a constant is invalid.

Assembler Action: The operand in error and the following operands
of a DC, DS, or DXD statement are ignored. The statement
containing the literal is assembled as zero.

Programmer Response: Supply a valid duplication factor. If you
want a zero duplication factor, write the literal as a DC statement.

Severity Code: 12

IEV068 LENGTH ERROR

Explanation: One of the following errors has occurred:

• The length modifier of a constant is wrong.

• The C, X, E, Z, or P-type constant is too long.

• An operand is longer than 224_1 bytes.

• A relocatable address constant has an illegal length.

• The length field in a machine instruction is invalid or out of
the permissible range.

Assembler Action: The operand in error and the following operands
of the DC, DS, or DXD statement are ignored, except that an address
constant with an illegal length is truncated. A machine
instruction is assembled as zero.

Programmer Response: SUpply a valid length.

Severity Code: 12

IEV070 SCALE MODIFIER ERROR

22

Explanation: A scale modifier in a constant is used illegally, is
out of range, or is relocatable, or there is an error in a scale
modifier expression.

Assembler Action: If the scale modifier is out cf range, it
defaults to zero. Otherwise, the operand in errcr and the
following operands are ignored.

programmer Response: SUpply a valid scale modifier.

Severity Oode: 8

IEV071 EXPONENT MODIFIER ERROR

Explanation: The constant contains multiple internal exponents,
the exponent modifier is out of range or relocatable, or the sum of
the exponent modifier and the internal exponent is out of range.

Assembler Action: If the constant contains multiple internal
exponents, the operand in error and the following operands are
ignored. Otherwise, the exponent mOdifier defaults to zero.

Programmer Response: Change the exponent modifier or the internal
exponent.

Severity Code: 8

IEV072 DATA ITEM TOO LARGE

Explanation: A y-type address constant is larger than 2 15,_1 or
smaller than -2 15 , or the value of a decimal constant is greater
than the number of bits (integer attribute) allocated to it.

Assembler Action: The constant is truncated. The high-order bits
are lost.

Programmer ResP9nse: Supply a smaller scale modifier or a longer
constant.

sev~rity Code: 8

IEV073 PRECISION LOST

Explanation: The scale modifier of a floating-point number was
large enough to shift the entire fraction out of the converted
constant.

Assembler Action: The constant is assembled with an exponent but
with a zero mantissa (fraction).

programmer Response: Change the scale modifier or use a longer
constant. For example, use a D-type constant instead of an E-type
constant.

Severity Code: 8
<

IEV074 ILLEGAL SYNTAX IN EXPRESSION

Explanation: An expression has two terms or two operators in
succession, or invalid or missing characters or delimiters.

Assembler Action: In a DC, OS, or DXD statement the operand in
error and the following operands are ignored. In a macro
definition, the entire statement is ignored. A rrachine instruction
is assembled as zero.

Programmer Response: Check the expression for keypunch errors, or
for missing or invalid terms or characters.

Severity Code: 8

Assembly Error Diagnostic Messages 23

IEV075 ARITHMETIC OVERFLOW

Explanation: The intermediate or final value of an expression is
not wi thin the range _2 31 through 2:31 -1.

Assembler Action: A machine instruction is assembled as zero. An
assembler instruction is ignored.

Programmer Response: Change the expression.

Severity Code: 8

IEV076 STATEMENT COMPLEXITY EXCEEDED

Explanation: The complexity of this statement caused the
assembler's expression evaluation work area to overflow.

Assembler Action: A machine instruction is assembled as zero. An
assembler instruction is ignored.

Programmer Response: Reduce the number of terms, levels of
expressions, or references to complex relocatable EQU names.

Severity Code: 8

IEV077 CIRCULAR DEFINITION

Expalanation: The value of a symbol in an expression is dependent
on itself, either directly or indirectly, via one or more EQU
statements. For example,

A EQU B
B EQU C
C EQU A

A is circularly defined.

Assembler Action: The value of the EQU statement defaults to the
current value of the location counter. All other EQU statements
involved in the circularity are defaulted in terms of this one.

Programmer Response: SUpply a correct definition.

Severity Code: 8

IEV079 ILLEGAL PUSH-POP

24

Explanation: More POP assembler instructions than PUSH
instructions have been encountered.

Assembler Action: This POP instruction is ignored.

programmer Response: Eliminate a POP statement or add another PUSH
statement.

Severity ,Code: 8

IEV080 STATEMENT IS UNRESOLVABLE

Explanation: A statement cannot be resolved because it contains a
complex relocatable expression or because the location counter has
been circularly defined.

Assembler Action: The statement is ignored.

programmer Response: Untangle the forward references or check the
complex relocatable EQU statements.

Severity Code: 8

IEV081 CREATED SET SYMBOL EXCEEDS 63 CHARACTERS

Explanation: A SET symbol created by variable symbol substitution
is longer than 63 characters (including the ampersand as the first
character).

Assembler Action: If the symbol is in the operand field of a SET,
AIF, or AGO statement, its value is set to zero or null, and the
type attribute is set to undefined (U). If the symbol is in the
operand field of a GEL or LCL statement or the name field of a SET
statement, the macro is aborted.

programmer Response: Shorten the symbol.

Severity Code: 8

IEV082 CREATED SET SYMBOL IS NULL

Explanation: A SET symbol created by variable symbol substitution
is null (empty string) •

Assembler Action: If the symbol is in the operand field of a SET,
AIF, or AGO statement, its value is set to zero or null, and the
type attribute is set to undefined (U). If the symbol is in the
operand field of a GEL or LCL statement or the name field of a SET
statement, the macro is aborted.

Programmer Response: Supply a valid symbol.

Severity Code: 8

IEV083 CREATED SET SYMBOL IS NOT A VALID SYMBOL

Explanation: A SET symbol created by variable symbol substitution
or concatenation does not consist of an ampersand followed by up to
62 alphameric characters, the first of which is alphabetic.

Assembler Action: If the symbol is in the operand field of a SET,
AIF, or AGO statement, its value is set to zero or null, and the
type attribute is set to undefined (U). If the symbol is in the
operand field of a GEL or LCL statement or the name field of a SET
statement, the macro is aborted.

Programmer Response: Supply a valid symbol.

Severity Code: 8

Assembly Error Diagnostic Messages 25

IEV084 GENERATED NAME FIELD EXCEEDS 63 CHARACTERS. DISCARDED

ExElanation: The name field on a generated statement is longer
than 63 characters.

Assembler Action: The name field is not generated. The rest of
the statement is assembled normally.

prograrr-mer Response: Shorten the generated name to 63 characters
or fewer.

Severity Code: 12

IEV085 GENERATED OPERAND FIELD IS NULL

Explanation: The operand field of a generated statement is null
(empty) •

Assembler Action: The statement is assembled as though no operand
were specified.

Programmer Response: Provide a non-empty operand field. If you
want the statement assembled with no operand, substitute a comma
rather than leave the operand blank.

Severity Code: 0

IEV086 MISSING MEND GENERATED

Explanation: A macro definition, appearing in the source program
or being read from a library by a macro call or a COpy statement,
ends before a MENr statement is encountered to terminate it.

Assembler Action: A MEND statement is generated. The portion of
the macro definition read in will be processed.

Programmer Response: Insert the MEND statement if it was left out.
Otherwise, check if all the macro definition is on the library.

Severity Code: 12

IEV087 GENERATEr OPERATION CODE IS NULL

26

Explanation: The operation code of a generated statement is null
(blank) •

Assembler Action: The generated statement is printed but not
assembled.

Programmer Response: provide a valid operation cede.

Severity Code: 12

IEV088 UNBALANCED PARENTHESES IN MACRO CALL OPERAND

Explanation: Excess left or right parentheses occur in an operand
warameter) of a macro call statement.

Assembler Action: The parameter corresponding to the operand in
error is given a null (empty) value.

Programmer Response: Balance the parentheses.

Severity Code: 8

IEV089 ARITHMETIC EXPRESSION CONTAINS ILLEGAL DELIMI~ER OR ENDS
PREMATURELY

Explanation: An arithmetic expression contains an invalid
character or an arithmetic subscript ends without sufficient right
parentheses.

Assembler Action: The statement is ignored.

~ogrammer Response: Supply a valid expression.

Severity Code: 8

IEV090 EXCESS RIGHT PARENTHESIS IN MACRO CALL OPERANL

Explanation: A right parenthesis without a corresponding left
parenthesis was detected in an operand of a macro instruction.

Assembler Action: The excess right parenthesis is ignored. The
mac~o expansion may be incorrect.

Programmer Response: Insert the proper parenthe,sis.

Severity Code: 8

IEV091 SETC OR CHARACTER RELATIONAL OPERAND OVER 255 CHARACTERS.
TRUNCATED TO 255 CHARACTERS

Explanation: The value of the operand of a SErC statement or the
character relational operand of an AIF statement is longer than 255
characters.

Assembler Action: The first 255 characters are used.
j

Prograrr~er Response: Shorten the SETC expression value or the
operand value. i

Severity Code: 8

Assembly Error Diagnostic Messages 27

IEV092 SUBSTRING EXPRESSION 1 POINTS PAST STRING END ~EFAULT=NULL

Explanation: The first arithmetic expression of a SETC substring
points beyond the end of the expression character string.

Assembler Action: The substring is given a null value.

programmer Response: Supply a valid expression.

Severity Code: 0

IEV093 SUBSTRING EXPRESSION 1 LESS THAN 1. DEFAUL'I=NULL

Explanation: The first arithmetic' expression of a SE'IC substring
is less than one; that is, it points before the expression character
string.

Assembler Action: The substring expression defaults to nUll.

programmer Response: Supply a valid expression.

Severity Code: 8

IEV094 SUBSTRING GOES PAST STRING END. DEFAULT=REMAINDER

Explanation: The second expression of a substring notation
specifies a length which extends beyond the end cf the string.

Assembler Action: The result of the substring operation is a
string that ends with the last character in the character string.

programmer Response: Make sure the arithmetic ex~ression used to
specify the length does not specify characters beyond the end of
the string. Either change the first or the second expression in
the substring notation.

Severity Code: O. ,

IEV095 SUBSTRING EXPRESSION 2 LESS THAN O. DEFAULT = NULL

28

Explanation: The second arithmetic expression of a SETC substring
is less than or equal to zero.

Assembler Action: No characters (a null string) from the substring
character expression are used.

programmer Response: Supply a valid expression.

Severity Code: 4

IEV096 UNSUESCRIPTEI: SYSLIST. DEFAULT=SYSLIST (1)

Explanation: The system variable symbol, &SYSLIS~, is not
subscripted. &SYSLIST(n) refers to the nth positional parameter in
a macro instruction. Note that N'&SYSLIST does net have to be
subscripted.

Assembler Action: The subscript defaults to one so that the first
positional parameter will be referred to.

Programmer Response: Supply an appropriate subscript.

Severity Code: 8

IEV097 INVALID ATTRIEUTE REFERENCE TO SETA OR SETB SYMBOL. DEFAULT=U
OR 0

Explanation: A type (T'), length (L'), scaling (S'), integer (I'),
or defined (D') attribute refers to a SETA or SETE symbol.

Assembler Action: The attributes are set to default values: T'=U,
L'=O, S'=O, 1'=0, and D'=O.

Progfammer Response: Change or remove the attribute reference.

Severity Code: 8

IEV098 ATTRIEUTE REFERENCE TO INVALID SYMBOL. DEFAUL~=U OR 0

Explanation: An attribute attempted to reference an invalid
symbol. ~ valid symbol is 1 to 63 alphameric characters, the first
of which is alphabetic.)

Assembler Action: For a type (T') attribute, default to U. For
ali other attributes, default to O.

Programmer Response: Supply a valid symbol.

Severity Code: 8

IEV099 WRONG TYPE OF CONSTANT FOR S' OR I' ATTRIBUTE REFERENCE.
DEFAUL'I=O

Explanation: An integer (I') or scaling (S') attribute references
a symbol whose type is other than floating-point (E,D,L), decimal
(P,Z) , or fixed-point (H,F).

Assembler Action: The integer or scaling attribute defaults to
zero.

Proqrammer Response: Remove the integer or scaling attribute
reference or change the constant type.

Severity Code: 4

Assembly Error Diagnestic Messages 29

IEV100 SUBSCRIPT LESS THAN 1. DEFAULT TO SUBSCRIPT = 1.

Explanation: The subscript of a subscripted SET symbol in the name
field cf a SET statement, the operand field of a GBL or LCL
statement, or an &SYSLIST statement is less than 1.

Assembler Action: The subscript defaults to 1.

Programmer Response: Supply the correct subscript.

Severity Code: 8

IEV101 SUBSCRIPT LESS THAN 1. DEFAULT TO VALUE=O OR NULL

Explanation: The subscript of a SET symbol in the operand field is
less than 1.

Assembler Action: The subscript is set to 1.

programmer Response: Supply a valid subscript.

Severity Code: 8

IEV102 ARrrHMETIC TERM IS NOT SELF~DEFINING TERM. DEFAULT=O

Explanation: A SErC term or expression used as an arithmetic term
is no~ a self-defining term.

Assembler Action: The value of the SETC term or expression is set
to zero.

Programmer Response: Make the SETC a self-defining term, such as
C'A', X'1EC', B'1101', or 27. Note that the C, X, or B and the
quotes must be part of the SETC value.

Severity Code: 8

lEV 1 03 MUL'IIPLICATION OVERFLOW. DEFAULT PRODU.cr=1

30

Explanation: A multiplication overflow occurred in a macro
definition statement.

Assembler Action: The value of the expression up to the point of
overflow is set to one; evaluation is resumed.

Programmer Response: Change the expression so that overflow does
not occur; break it into two or more operations, or regroup the
terms by parentheses.

Severity Code: 8

IEV105 ARITHMETIC EXPRESSION TOO COMPLEX

Explanation: An arithmetic expression in a macro definition
statement caused an overflow because it is too complex; that is, it
has too many terms and/or levels.

Assembler Action: The assembly is terminated.

programmer Response: Simplify the expression or break it into two
or more expressions.

Severity Code: 20

IEV106 WRONG TARGET SYMBOL TYPE. VALUE LEFT UNCHANGED

Explanation: The SET symbol in the name field does not match its
declared type (does not match the operation code): SETA, SETB, or
SETC.

Assembler Action: The statement is ignored.

programmer Response: Make the declaration agree with the SET
statement type. If you want to store across types, store first
into a SET symbol of matching type.

Severity Code: 8

IEV107 INCONSISTENT CIMENSION ON TARGET SYMBOL. SUBSCRIPT IGNORED OR 1
USED

Explanation: The SET symbol in the name field is dimensioned
(subscripted), but was not declared in a GBL or LCL statement as
dimensioned, or vice versa.

Assembler Action: The subscript is ignored or a subscript of 1 is
used, in accordance with the declaration.

Programmer Response: Make the declaration and the usage compatible.
Note that you can declare a local SET symbol as dimensioned by
using it, subscripted, in the name field of a SE~ statement.

Severity Code: 8

IEV108 INCONSISTENT CIMENSION ON SET SYMBOL REFERENCE. DEFAUL~ = 0,
NULL, OR TYPE = U

Explanation: A SET symbol in the operand field is dimensioned
(subscripted) , but was not declared in a GBL or LCL statement as

dimensioned, or vice versa.

Assembler Action: A value of zero or null is used for the
subscript. If the type attribute of the SET symbol is being
requested, it is set to U.

prograrr.mer Response: Make the declaration and the usage compatible.
Note that you can declare a SET symbol as dimensioned by using it,
subscripted, in the name field of a SET statement.

Severity Code: 8

Assembly Error Diagncstic Messages 31

IEV109 MULTIPLE OPERANDS FOR UNDIMENSIONED SET SYMBOL. GETS LAST
OPERANC

Explanation: Multiple operands were assigned to an undimensioned
~nsubscripted) SET symbol.

Assembler Action: The SET symbol is given the value of the last
operand.

Programmer Response: Declare the SET symbol as dimensioned or
assign only one operand to it.

Severity Code: 8

IEV110 LIBRARY MACRO 1ST STATEMENT NOT --MACRO--OR COMMENT

Explanation: A statement other than a comment statement preceded a
MACRO statement in a macro definition read from a library.

Assembler Action: The macro definition is net read from the
library. A corresponding macro call cannot be ~rocessed.

Proqrammer Response: Ensure that the library macro definition
begins with a MACRO statement preceded {optionall~ by comment
st?tements only.

Severity Code: 12

IEV111 INVALID AIF OR SETB OPERAND FIELD

Explanation: The operand of an AIF or SETB statement either does
not begin with a left parenthesis or is missing altogether.

Assembler Action: The statement is ignored.

Programmer Response: Supply a valid operand.

Severity Code: 12

IEV112 INVALID SEQUENCE SYMBOL

32

Explanation: One of the following errors has occurred:

• A sequence symbol doesn't begin with a period followed by one to
62 alphameric characters, the first being alphabetic.

• A sequence symbol in the name field was created by substitution.

Assembler Action: The sequence symbol in the name field is
ignored. A sequence symbol in the operand field of an AIF or AGO
statement causes the entire statement to be ignored.

programmer Response: Supply a valid sequence symbol.

Severity Code: 12

IEV113 CON~INUE COLUMN BLANK

Explanation: A SET symbol declaration in a GBL cr LCL statement
began with an ampersand in the end column (normally column 71) of
the' previous card, but the continue column (normally column 16) of
this card is blank.

Assembler Action: This card and any following cards of the
statement are ignored. Any SET symbols appearing entirely on the
previous card(s) are processed normally.

Programmer Response: Begin this card in the continuation column.

Severity Code: 12

IEV114 INVALID COpy OPERANC

Explanation: The operand of a COpy statement is not a symbol of
one to eight alphameric characters, the first being alphabetic.

Assembler Action: The COpy statement is ignored.

Prograrrmer Response: Supply a valid operand.

Severity Code: 12

IEV115 COpy OPERANC TOO LONG

Explanation: The symbol in the operand field of a COpy statement
is more than eight characters long.

Assembler Action: The COpy statement is ignored.

programmer Response: Supply a valid operand.

Severity Code: 12

IEV116 ILLEGAL SET SYMBOL

Explanation: A SET symbol in the operand field cf a GBL or LCL
statement or in the name field of a SET staterr.ent dces not ccnsist
of an ampersand followed by one to 62 alphameric characters, the
first being alphabetic.

Assembler Action: The invalid SET symbol and all following SET
symbols in a GBL or LCL statement are ignored. The entire SET
statement is ignored.

prograrr.mer Response: Supply a SET symbol.

Severity Code: 8

Assembly Error Diagnostic Messages 33

IEV111 ILLEGAL SUBSCRIPT

Explanation: The subscript following a SET symbcl contained
unbalanced parentheses or an invalid arithmetic expression.

Assembler Action: This statement is ignored.

Proqrammer Response: Supply an equal number of left and right
parentheses or a valid arithmetic expression.

Severity Code: 8

IEVl18 SOURCE MACRO ENDED BY --MEND-- IN COpy CODE

Explanation: A library member, being copied by a COpy statement
within a macro definition, contained a MEND statement. This
termi~ated the definition.

Assembler Action: The MEND statement is ignored. No more COpy
code is read. The statements brought in before the end of the COpy
oode are processed. The macro definition is resumed with the
statement following the COpy statement.

Prograrr-mer Response: Make sure that each library member to be used
as COpy code contains balanced MACRO and MEND statements.

Severity Code: 12

IEVl19 TOO FEW MEND STATEMENTS IN COpy CODE

Explanation: A macro definition is started in a library member
brought in by a COpy statement and the COpy code ends before a MEND
statement is encountered.

Assembler Action: A MEND statement is generated to terminate the
macro definition. The statements brought in before the end of the
COpy code are processed.

prograrr~er Response: Check to see if part of the macro definition
was lost. Also, ensure that each macro definition to be used as
COpy code contains balanced MACRO and MEND staterrents.

Severity Code: 12

IEV120 EOD WHERE CONTINUE CARD EXPECTED

34

Explanation: An end-of-data occurred when a continuation card was
expected.

Assembler Action: The portion of the statement read in is
assembled. The assembly is terminated if the end-of-data is on
SYSIN. If a library member is being copied, the 'assembly continues
with the statement after the COpy statement.

programmer Response: Check to determine whether any statements were
omitted from the source program or from the COpy code.

Severity Code: 12

IEV121 INSUFFICIENT CORE FOR EDITOR WORK AREA

Explanation: The macro editor module of the assembler cannot get
enough main storage for its work areas.

Assembler Action: The assembly is terminated.

programmer Response: Split the assembly into two or more parts or
give the macro editor more working storage. This can be done by
increasing the region size for the assembler, decreasing blocking
factor or blocksize on the assembler data sets, cr a combination of
both.

Severity Code: 12

IEV122 ILLEGAL OPERATION CODE FORMAT

Explanation: ~he operation code is not followed by a blank or is
missing altogether, or the first card of a continued source
statement is missing.

Assempler Action: The statement is ignored.

Proqrammer Response: Ensure that the statement has a valid
operation code and that all cards of the statement are present.

Severity Code: 12

IEV123 VARIAELE SYMEOL '1'00 LONG

Explanation: A SET symbol, syniliolic parameter, or sequence symbol
contains more than 62 characters following the ampersand or period.

Assembler Action: This statement is ignored.

programmer Response: Shorten the variable symbol cr sequence symbol.

Severity Code: 12

IEV124 ILLEGAL USE OF PARAMETER

Explanation: A symbolic parameter was used in the operand field of
a GEL or LCL statement or in the name field of a SET statement. In
other words, a variable symbol has been used both as a symbolic
parameter and as a SET symbol.

Assembler Action: The statement is ignored.

Froqrammer Response: Change the variable symbol to one which is not
a symbolic parameter.

Severity Code: 12

Assembly Error Diagncstic Messages 35

IEV125 ILLEGAL MACRO NAME - MACRO UNCALLABLE

Explanation: The operation code of a macro prototype statement is
not a valid symbol; that is, one to 63 alphameric characters, the
first alphabetic.

Assembler Action: The macro definition is edited. However, since
the macro name is invalid, the macro cannot be called.

Programmer Response: Supply a valid macro name.

Severity Code: 12

IEV126 LIBRARY MACRO NAME INCORRECT

Explanation: The operation code of the prototype statement of a
library macro definition is not the same as the operation code of
the macro instruction (call). Library macro definitions are
located by their member names. However, the assembler compares the
macro instruction with the macro prototype.

Assembler Action: The macro definition is edited using the
operation code of the prototype statement as the macro name. Thus,
the definition cannot be called by this macro instruction.

Programmer Response: Ensure that the member narr.eof the macro
definition is the same as operation code of the prototype statement.
This will usually require listing the macro definition from the
library.

sev~rity Code: 12

IEV127 ILLEGAL USE OF AMPERSAND

36

Explanation: One of the following errors has occurred:

• An ampersand was found where all substitution should have
already been performed.

• The standard value of a keyword parameter in a macro prototype
statement contained a single ampersand or a string of ampersands
whose length was odd.

• An unpaired ampersand occurred in a character (q constant.

Assembler Action: In a macro prototype statement, all information
following the error is ignored. In other statements, the action
depends on which field the error occurred in. If the error
occurred in the name field, the statement is processed without a
name. If the error occurred in the operation code field, the
statement is ignored. If the error occurred in the operand field,
another message is issued to specify the default. However, if the
error occurred in a C-type constant, the operand in error and the
following operands are ignored.

Proqrammer Response: Ensure that ampersands used in keyword
standard values or in C-type constants occur in pairs. Also, avoid
substituting an ampersand into a statement unless there is a double
ampersand.

Severity Code: 12

IEV128 EXCESS RIGHT PARENTHESIS

Explanation: An unpaired right parenthesis has been found.

Assembler Action: A machine instruction is asseITbled as zero. An
assembler instruction is ignored and an additional message relative
to the statement type appears. However, if the error is in the
standard value of a keyword on a macro prototype statement, only
the operands in error and the following operands are ignored.

programmer Response: Make sure that all parentheses are paired.

Severity Code: 12

IEV129 INSUFFICIENT RIGHT PARENTHESES

Explanation: An unpaired left parenthesis has been found. Note
that parentheses must balance at each comma in a multiple operand
statement.

Assembler Action: A machine instruction is assembled as zero. An
assembler instruction is ignored and an additional message relative
to the statement type will appear. However, if the error is in the
standard value of a keyword on a macro prototype statement, only
the operands in error and the following operands are ignored.

programmer Response: Make sure that all parentheses are paired.

Severity Code: 12

IEV130 ILLEGAL ATTRIBUTE REFERENCE

Explanation: One of the following errors has occurred:

• The symbol following a D, I, L, S, or T attribute reference is
not a valid variable symbol or ordinary symbol.

• The symbol following a K or N attribute reference is not a valid
variable symbol.

• The quote is missing from a T attribute reference.

Assembler Action: The statement is ignored.

prograrr~er Response: Supply a valid attribute reference.

Severity Code: 12

Assembly Error Diagnostic Messages 37

IEV131 PARENTHESIS NESTING DEPTH EXCEEDS 255

Explanation: There are more than 255 levels of parentheses in a
SETA expression.

Assembler Action: The statement is ignored.

programmer Response: Rewrite the SETA statement using several
statements to regroup the sub-expressions in the expression.

Severity Code: 12

IEV132 INVALID SETE EXPRESSION

Explanation: A SETB expression in the operand field of a SE~B
statement or an AIF statement does not consist of valid character
relational expressions, arithmetic relational ex~ressions, and
single SETB symbols, connected by logical operators.

Assembler Action: The statement is ignored.

prograrrmer ~esponse: Supply a valid SETB expression.

Severity'Code: 12

IEV133 ILLEGAL SUESTRING REFERENCE

Explanation: A substring expression following a SETC expression
does not consist of two valid SETA expressions separated by a comma
and enclosed in parentheses.

Assembler Action: The statement is ignored.

programmer Response: Supply a valid substring expression.

Severity Code: 12

IEV134 INVALID RELATIONAL OPERATOR

38

Explanation: Characters other than EQ, NE, LT, GT, LE, or GE are
used in'a SETB expression where a relational operator is expected.

Assembler Action: The statement is ignored.

programmer Response: Supply a valid relational operator.

Severity Code: 12

IEV135 INVALID LOGICAL OPERATOR

Explanation: Characters other than AND, OR, or NOT are used in a
SETB expression where a logical operator is expected.

Assembler Action: The statement is ignored.

programmer Response: Supply a valid logical operator.

Severity Code: 12

IEV136 ILLEGAL LOGICALjRELATIONAL OPERATOR

Explanation: Characters other than a valid logical or relational
operator are used in a SETB expression where a lcgical or
relational operator is expected.

Assembler Action: The statement is ignored.

Programmer Response: Supply a valid logical or relational operator.

Severity Code: 12

IEV137 ILLEGAL SETC EXPRESSION

Explanation: The operand of a SETC statement or the character
value used in a character relation is erroneous. It must be a
valid type attribute (T') reference or a valid character expression
enclosed in quotes.

Assembler Action: The statement is ignored.

programmer Response: supply a valid expression.

Severity Code: 12

IEV139 EOD DURING REPRO PROCESSING

Explanation: A REPRO statement was immediately followed by an
end-of-data so that no valid card could be punched. The REPRO is
either the last card of source input or the last card of a COpy
member.

Assembler Action: The REPRO statement is ignored.

Programmer Response: Remove the REPRO or ensure that it is
followed by a card to be punched.

Severity Code: 12

Assembly Error Diagncstic Messages 39

IEV140 END CARD MISSING

Explanation: End-of-file on the source input data set occurred
before an ENt statement was read. One of the following has
occurred:

• The END statement was omitted or misspelled.

• The END operation code was changed or deleted by OPSYN or by
definition of a macro named END. The lookahead phase of the
assembler marks what it thinks is the END statement. If an
OPSYN statement or a macro definition redefines the END
statement, premature end-of-input may occur because the
assembler will not pass the original END statement.

Assembler Action: An END statement is generated. It is assigned a
statement number but not printed. If any literals are waiting,
they will be processed as usual following the ENe statement.

Programmer Action: Check for lost cards. Su~ply a valid END
statement; or, if you use OPSYN to define another syrrhol as END,
place it prior to possible entry into the lookahead phase.

Severity Code: 4

IEV141 EAD CHARACTER IN OPERATION CODE

Explanation: The operation code contains a non-alphameric
character, that is, a character other than A-Z, 0-9, $, I, or @.
Embedded blanks are not allowed.

Assembler Action: The statement is ignored.

programmer Response: Supply a valid operation cede. If the
operation code is formed by variable symbol substitution, check the
statements leading to substitution.

Severity Code: 8

IEV142 OPERATION CODE NOT COMPLETE ON FIRST CARD

40

Explanation: The entire name and operation code, including a
trailing blank, is not contained on the first card (before the
continue column -- usually column 72) of a continued statement.

Assembler Action: The statement is ignored.

prograffmer Response: Shorten the name and/or the operation code or
simplify the statement by using a seperate SErC statement to create
the name or operation code by substitution.

Severity Code: 8
<

IEV143 BAD CHARACTER IN NAME FIELD

EXElanation: The name field contains a non-alphameric character,
that is, a character other than A-Z, 0-9, $, i, or @.

Assembler Action: If possible, the statement is processed without
a name. Otherwise, it is ignored.

Programmer Response: Put a valid symbol in the name field.

Severity Code: 8

IEV144 BEGIN-TO-CONTINUE COLUMNS NOT BLANK

Explanation: On a continuation card, one or more columns between
the<begin column ~sually column 1) and the continue column
(usually column 16) are not blank.

Assembler Action: The extraneous characters are ignored.

Programmer Response: Check whether the operand started in the
wrong column or whether the preceding card contained an erroneous
continue punch.

Severity Code: 8

IEV145 OPERATOR, RIGHT PARENTHESIS, OR END-OF-EXPRESSION EXPECTED

Explanat~: One of the following has occurred:

• A letter, number, equals sign, quote, or undefined character
occurred following a term where a right parenthesis, an
operator, a comma, or a blank ending the expression was expected.

• In an assembler instruction, a left parenthesis followed a term.

Assembler Action: A machine instruction is assembled as zero. An
assembler instruction is ignored and another message, relative to
the operation code, is issued.

Proqrammer Response: Check for an omitted or mispunched operator.
Subscripting is not allowed on this statement.

Severity Code: 8

IEV146 SELF-DEFINING TERM TOO LONG OR VALUE TOO LARGE

EXElanation: A self-defining term is longer than four bytes, (8
hexadecimal digits, 32 bits, or 4 characters), or the value of a
decimal self-defining term is greater than 2 31_1.

Assembler Action: A machine instruction is assembled as zero. An
assembler instruction is ignored. However, another message,
relative to the operation code, is issued.

Programmer Response: Reduce the size or value of the self-defining
term or specify it in a DC statement.

Severity COde: 8

Assembly Error Diagncstic Messages 41

IEV147 SYMEOL.TOO LONG, OR 1ST CHARACTER NOT A LE'I'IER

Explanation: A symbol does not begin with a letter or is longer
than 63 characters.

Assembler Action: If the symbol is in the name field, the
statement is processed as unnamed. If the symbol is in the operand
field, an assembler operation or a macro definition model statement
is ignored and a machine operation is assembled as zero.

Programmer Response: Supply a valid symbol.

Severity Code: 8

IEV148 SELF-DEFINING TERM LACKS ENDING QUOTE OR HAS EAC CHARACTER

Explanation: A hexadecimal or binary self-defining term contains
an invalid character or is missing the final quote.

Assembler Action: A machine operation is assembled as zero. An .
assembler operation is ignored and another message, relative to toe'
operation code, is issued.

Prograrrmer Response: Correct the invalid term.

Severity Code: 8

IEV149 LITERAL LENGTH EXCEEDS 256 CHARACTERS, INCLUDING EQUAL SIGN

Explanation: A literal is longer than 256 characters.

Assembler Action: The instruction is assembled as zero.

Prograrrmer Response: Shorten the literal or change it to a DC
statement.

Severity Code: 8

IEV150 SYMBOL HAS NON-ALPHAMERIC CHARACTER OR INVALIC DELIMITER

42

Explanation: The first character following a syrrbol is not a valid
delimiter, (plus sign, minus sign, asterisk, slash, left or right
parentheses, comma, or blank).

Assembler Action: A machine operation is assembled as zero. An
assembler operation is ignored, and another message, relative to
this operation code, is issued.

Proqrammer Response: Ensure that the symbol does not contain a
non-alphameric character or that it is followed by a valid
delimiter.

Severity Code: 8

IEV151 ·LITERAL EXPRESSION MODIFIERS MUST BE ABSOLUTE AND PREDEFINED

Explanation: The duplication factor or length mcdifier in a
literal is not (1) a self-defining term or (2) an expression using
self-defining terms or previously-defined symbols.

Assembler Action: The statement is assembled as zero.

Programmer Response: Supply a valid self-defining term or ensure
that symbols appear in the name field of a previcus statement.

Severity Code: 8

IEV152 EXTERNAL SYMBOL TOO LONG OR UNACCEPTABLE CHARACTER

Explanation: One of the following errors has occurred:

• An external symbol is longer than 8 characters. An external
symbol might be the name of a CSECT, START, DXD, or COM
statement, or the operand of an ENTRY, EX'IRN, cr WXTRN statement
or a Q-type or V-type address constant •

• The operand of an ENTRY, EXTRN, or WXTRN statement or a Q-type
or V-type address constant is an expression instead of a single
terro, or contains a bad character.

Assembler Action:
Symbol Dictionary.
is made to process
the operand field,
following operands
zero.

The symbol does not appear in the External
If the error is in the name field, an attempt

the statement as unnamed. If the error is in
the bad operand is ignored and, if possible, the
are processed. A bad constant is assembled as

programmer Response: SUpply a shorter name or replace the
expression with a term.

Severity Code: 12

IEV153 START STATEMENT ILLEGAL - CSECT ALREADY BEGUN

Explanation: A START statement occurred after the beginning of a
control section.

Assembler Action: The statement is processed as a CSECT statement;
any operand is ignored.

Programmer Response: Ensure that the START precedes all machine
instructions and any assembler instruction, such as EQU, that
initiates a control section. If you want EQU statements before the
START, place them in a dummy section (OSEC,!).

Severity Code: 12

Assembly Error Diagnostic Messages 43

IEV154 OPERAND MUST BE ABSOLUTE, PREDEFINED SYMBOLS. SE~ TO 0

Explanation: The operand on a START or MHELP statement is invalid.
If there is another message with this statement, this message is
advisory. If this message appears alone, it indicates one of the
following:

• There is a location counter reference (*) in a
START 'operand.

• An expression does not consist of absolute
terms and/or predefined symbols.

• The statement is too complex. For example,
it may have too many forward references or
cause arithmetic overflow during evaluation.

• The statement is circularly defined.

• A relocatable term is multiplied or divided.

Assembler Action: The operand of the statement is treated as zero.

programmer Response: Correct the error if it exists. Note that
paired relocatable symbols in different LOCTRs, even though in the
same CSECT or [SECT, are not valid where an absolute, predefined
value is required.

Severity~: 8

IEV155 PREVIOUS USE OF SYMBOL IS NOT THIS SECTION TYPE

Explanation: 'The name on a CSECT, DSECT, COM" or LOC~R statement
has been used previously, on a different type of statement. For
example, the name on a CSECT has been used before on a statement
other than CSECT, such as a machine instruction cr a LOCTR.

Assembler Action: This name is ignored and the statement is
processed as unnamed.

programmer Response: Correct the misspelled name or change the
name to one that does not conflict.

Severity Code: 12

IEV156 ONLY ORDINARY SYMBOLS, SEPARATED BY COMMAS, ALLOWED

44

Explanation: The operand field of an ENTRY, EXTRN, or WX'IRN
statement contains a symbol which does not consist of one to eight
alphameric characters, the first being alphabetic, or the operands
are not separated by a comma.

Assembler Action: The operand in error is ignored. If ether
operands follow, they will be processed normally.

Prograrrmer Response: Supply a correct symbol or insert the missing
comma. If you want an expression as an ENTRY statement operand
(such as SYMBOL+4), use an EQU statement to define an additional
symbol.

Severity Code: 12

IEV157 OPERAND MUST BE A SIMPLY-RELOCATABLE EXPRESSION

Explanation: If there is another message with this statement, this
message is advisory. If this message appears alone, the operand of
an ORG or END statement is not a simply relocatable expression, is
too complex, or is circularly defined. The error may also be that
the END operand symbol is not in a CSECT.

Assembler Action: An ORG statement is ignored. The operand of an
END statement is ignored.

programmer Response: If an error exists, sup~ly a correct
expression. Note that paired relocatable symbols in different
LOCTRs, even though in the same CSECT or DSEC~, nay cause circular
definition when used in an ORG statement.

Severity Code: 12

IEV158 OPERAND 1 EXPRESSION IS DEFECTIVE. SET TO *
Explanation: The first operand of an EQU statement is defective.
If another message appears with this statement, this message is
advisory. If this message appears alone, one of the following
errors has occurred:

• The statement is too complex. For example, it
has too many forward references or causes an
arithmetic overflow during evaluation.

• The statement is circularly defined.

• The statement contains a relocatable term which
is multiplied or divided.

Assembler Action: The symbol in the name field is equated to the
current value of the location counter (*), and operands 2 and 3 of
the statement, if present, are ignored.

Programmer Response: If an error exists, supply a correct
expression for operand 1 of the statemen~.

Severity Code: 8

IEV159 OPERANDS MUST BE ABSOLUTE, PROPER MULTIPLES OF 2 OR 4

Explanation: ~'he combination of operands of a CNOP statement is
not one of the following valid combinations:

0,4
0,8
4,8

2,4
2,8
6,8

Assembler Action: The statement is ignored. However, the location
counter is adjusted to a halfword boundary.

programmer Response: Supply a valid combination cf CNOP operands.

Severity Code: 12

Assembly Error Diagncstic Messages 45

IEV161 ONLY ONE TITLE CARD MAY HAVE A NAME FIELD

Explanation: More than one TITLE statement has a name field. The
named TITLE statement need not be the first one in the assembly,
but it must be the only one named.

Assembler Action: The name on this TITLE statement is ignored.
The name used for deck identification is taken from the first named
TITLE statement encountered.

Prograremer Response: Delete the unwanted name.

severity Code: 4

IEV162 PUNCH OPERANt: EXCEECS 80 COLUMNS. IGNORED

Explanation: A PUNCH statement attempted to punch more than 80
characters into a card.

Assembler Action: The statement is ignored. The card is not
punched. (

Prograrrmer Response: Shorten the operand to 80 characters or fewer
or use more than one PUNCH statement.

Severity Code: 12

IEV163 OPERAND NOT PROPERLY ENCLOSED IN QUOTES

Explanation: The operand of a PUNCH or TITLE statement does not
begin with a quote, or the operand of a PUNCH, MNOTE, or TITLE
statement does not end with a quote, or the ending quote is not
followed by a blank.

Assembler Action: The statement is igncred.

Frogrammer Response: Supply the missing quote. Be sure that a
quote to be punched as data is represented as twc quotes.

Severity Code: 8

IIEV164 OPERAND IS A NULL STRING - CARD NOT PUNCHED

46

Explanation: A PUNCH statement does not have any characters between
its two quotes, or a quote to be punched as data is not represented
by two quotes.

Assembler Action: The statement is ignored.

programmer Response: Correct the operand. If you want to "punch" a
blank card, the operand of the PUNCH statement shculd be a blank
enclosed in quotes.

Severity Code: 12

IEV165 UNEXPECTEC NAME FIELD

Explanation: The assembler operation has a name and the name field
should be blank.

Assembler Action: The name is equated to the current value of the
location counter (*). However, if no control section has been
started, the name is equated to zero.

Proqrammer Response: Remove the name. Check that the period was
not omitted from a sequence symbol.

Severity Code: 4

IEV166 SEQUENCE SYMBOL TOO LONG

Explanation: A sequence symbol contains more than 62 characters
following the period.

Assembler Action: If the sequence symbol is in the name field, the
statement is processed without a name. If it is in the operand
field of an AIF or AGO statement, the entire statement is ignored.

Prograrrmer Response: Shorten the sequence symbol.

Severity Code: 12

IEV167 REQUIRED NAME MISSING

Explanation: This statement requires a name and has none. ~he
name field may be blank because an error occurred during an attempt
to create the name by substitution or because a sequence symbol was
used as the name.

Assembler Action: The statement is ignored.

programmer Response: Supply a valid name or ensure that a valid
name is created by substitution. If a sequence symbol is needed,
put it on an ANOP statement ahead of this one and put a name on
this statement.

Severity Code: 8

Assembly Error Diagnostic Messages 47

IEV168 UNDEFINED SEQUENCE SYMBOL

Explanation: The sequence symbol in the operand field of an AIF or
AGO statement outside a macro definition is not defined; that is,
it does not appear in the name field of an a~pro~riate statement.

Assembler Action: This statement is ignored; assembly continues
with the next statement.

programmer Response: If the sequence symbol is misspelled or
omitted, correct it. Note that when the sequence symbol is not
previously defined, the assembler looks ahead for the definitions.
The lookahead stops when an END statement or an OPSYN equivalent is
encountered. Be sure that OPSYN statements and macro definitions
which redefine ENe precede possible entry into lcokahead.

Severity Code: 16

IEV170 INTERLUDE ERROR-LOGGING CAPACITY EXCEEDED

Explanation: The table which the interlude phase of the assembler
uses to keep track of the errors it detects is full. This does not
stop error detection by other phases of the assembler.

Assembler Action: If .there are additional errors, normally
detected by the interlude phase, in other statements either cefore
or after this one, ·they will not be flagged. Statement ~rocessing
depends on the type of error.

Prograrrmer Response: Correct the indicated errors and run the
assembly again to diagnose any further errors.

Severity Code: 12

IEV171 STANDARD VALUE TOO LONG

Explanation: The standard ~efault) value of a keyword parameter
on a macro prototype statement is longer than 255 characters.

Assembler Action: The parameter in error and the following
parameters are ignored.

pro9rarr~er Response: Shorten the standard value.

Severity Code: 12

IEV172 NEGATIVE CUPLICATION FACTOR. DEFAULT = 1

48

Explanation: The duplication factor of a SETC statement is
negative.

Assembler Action: The duplication factor is given a default value
of 1.

Programmer Response: Supply a positive duplication factor.

Severity Code: 8

IEV173 DELIMITER ERROR, EXPECT BLANK

Explanation: Another character, such as a comma or a quote, is
used where a blank (end of operand) is required.

Assembler Action: A machine instruction is assembled as zero. An
ORG statement is ignored. For an EQU or END statement, the invalid
delimiter is ignored and the operand is processed nermally. For a
CNOP statement, the location counter is aligned to a halfword
boundary.

prograrrmer Response: Replace the invalid delimiter with a blank.
Look fer an extra operand or a missing left ~arenthesis.

Severity Code: 12

IEV174 DELIMITER ERROR, EXPECT BLANK OR COMMA

Explanation: Another character, such as a quote or ampersand, is
used where a blank or a comma is required.

Assembler Action: A machine instruction is assembled as zero. For
a USING or CROP statement, the invalid delimiter is ignored and the
operand is processed normally.

Programmer Response: Replace the invalid delimiter with a blank or
a comma. Look for an extra operand or a missing left parenthesis.

Severity Code: 12

IEV175 DELIMITER ERROR, EXPECT COMMA

Explanation: Another character, such as a blank or a parenthesis,
is used where a comma is required.

Assembler Action: A machine instruction is asserrbled as zero. For
a CNOP statement, the location counter is aligned tc a halfword
boundary.

Frogrammer Response: Replace the invalid delimiter with a comma.
Be sure each ex~ression is syntactically correct and nc parentheses
are omitted.

Severity Code: 12

IEV176 DELIMITER ERROR, EXPECT CO~MA OR LEFT PARENTHESIS

Explana~~on: Another character, such as a blank or a right
parenthesis, is used in a machine instruction wh.ere a comma or a
left parenthesis is required.

Assembler Action: The machine instruction is assembled as zero • .
programmer Response: Replace the invalid delimiter with a comma or
a left parenthesis. Look for invalid syntax or invalid base or
length fields on the first operand.

Severity Code: 12

Assembly Error Diagnostic Messages 49

IEV177 DELIMITER ERROR, EXPECT BLANK OR LEFT PAREN'IHESIS

Explanation: Another character, such as a comma or a right
parenthesis, is used in a machine instruction when a blank or left
parenthesis is required.

Assembler Action: The machi~e instruction is assembled as zero.

Programmer Response: Replace the invalid delimiter with a blank or
a left parenthesis. Look for invalid punctuation or invalid
length, index, or base field.

Severity C~de: 12

IEV178 DELIMITER ERROR, EXPECT COMMA OR RIGHT PAREN~HESIS

Explanation: Another character, such as a blank or a left
parenthesis, is used in a machine instruction when a comma or a
right parenthesis is required.

Assembler Action: The machine instruction is assembled as zero.

Programmer Response:
a right parenthesis.

Severity Code: 12

Replace the invalid delimiter with a comma or
Look for a missing base field.

IEV179 DELIMITER ERROR, EXPECT RIGHT PARENTHESIS

Explanation: Another character, such as a blank or a comma, is
used in a machine instruction when a right parenthesis is required.

Assembler Action: The machine instruction is assembled as zero.

programmer Response: Replace the invalid delimiter with a right
parenthesis. Look for an index field used where it is not allowed.

Severity Code: 12

IEV180 OPERAND MUST EE AESOLUTE

50

Explanation: The operand of a SPACE statement or the first, third,
or fourth operand of a CCW statement is not an atsolute term.

Assembler Action: A SPACE statement is ignored. A CCW statement
is assembled as zero.

prograrrmer Response: Supply an absolute operand. Note that paired
relocatable terms may span LOCTRs but must be in the same control
section.

IEV181 CCW OPERAND VALUE IS OUTSIDE ALLOWABLE RANGE

Explanation: One or more operands of a CCW staterrent are not
within the following limits:

• 1st operand 0-255

• 2nd operand 0-16,775,215

• 3rd operand 0-255 and a multiple of 8

• 4th operand 0-65,535

Assembler Action: The CCW is asserr.bled as zero.

Prograrrmer Response: Supply valid operands.

Severity~: 12

IEV182 OPERAND 2 MUST BE ABSOLUTE, 1-65536. IGNORED

Explanation: If there is another message with this statement, this
message is advisory. If this message appears alone, the second
operand of an EQU statement contains one of the following errors:

• It is not a absolute term or expression whose
value is within the range of 1 to 65,536.

• It contains a symbol which is not previously
defined.

• It is circularly defined.

• It is too complex; for example, it causes an
arithmetic overflow during evaluation.

Assembler Action: Operand 2 is ignored and the length attribute of
the first operand is used. If the th~d operand is present~ it
will be processed normally.

Programmer Response: Correct the error if it exists. Note that
paired relocatable symbols in different LOCTRS, even though in the
same CSECT, are not valid where an absolute, predefined value is
required.

Severity Code: 8

Assembly Error Diagnostic Messages 51

IEV183 OPERAND 3 MUST BE ABSOLUTE, 0-255. IGNORED

Explanation: If there is another message with this statement, this
message is advisory. If this message appears alone, the third
operand of an EQU statement contains one of the fcllowing errors:

• It is not an absolute term or expression whos~ value
is within the range of 0 to 255.

• It contains a symbol which is not previously defined.

• It is circularly defined.

• It is too complex; for example, it causes an arithmetic
overflow during evaluation.

Assembler Action: The third operand is ignored and the type
attribute of the EQU statement is set to U.

Programmer Response: Correct the error if it exists. Note that
paired relocatable symbols in different LOCTRs, even though in the
same CSECT, are not valid where an absolute, predefined value is
required.

Severity Code: 8

IEV184 COpy CISASTER

Explanation: The assembler copied a library member (executed a
COpy statement) while looking ahead for attribute references.
However, when the complete text was analyzed, the COpy oferation
code had been changed by an OPSYN statement cr nswallowedn by an
AREAD statement, and the COpy should have not been executed.
~ookahead phase ignores OPSYN statements.) This message will

follow the first card of the COpy code.

Assembler Action: The library member will be assembled. If it
included an ICTL statement, the forroat of that IC7L will be used.

Programmer Response: Move COpy statements, or OPSYN statements
that modify the meaning of COpy, to a point in the assembly prior
to possible entry into lookahead mode.

Severity Code: 16

IEV185 OPERAND NO.2 IS ERRONEOUS

52

Explanation: The second operand is incorrect or two operands
appear where there should be only one.

Assembler Action: The second operand is ignored.

programmer Response: Remove or correct the second cferand.

Severity Code: 4

IEV253 TOO MANY ERRORS

Explanation: No more error messages can be issued fer this
statement because the assembler work area where the errors are
logged is full.

Assembler Action: If more errors are detected fer this statement,
the messages and/or annotated text are discarded.

programmer Response: Correct the indicated errors and rerun the
assembly. If there are more errors on this staterrent, they will be
detected in the next assembly.

severity Code: 16

IEV254 *** MNOTE ***
Explanation: The text of an MNOTE statement, which is appended to
this message, has been generated by your program or by a macro
definition or a library member copied~into ycur ~rogram. An MNOTE
statement enables a source program or macro definition to signal
the assembler to generate an error or informational message.

Assembler Action: None.

programmer Response: Investigate the reason for the MNOTE. Errors
flagged <by MNOTE will often cause unsuccessful execution of the
program.

Severity Code: An MNOTE is assigned a severity code of 0 to 255 by
the writer of the MNOTE statement.

Assembly Error Diagnostic Messages 53

Assembly Abnormal Termination Messages

IEV950 END OF STATEMENT FLAG WAS EXPECTED IN MACRO EtITED TEXT, BUT WAS
NOT FOUND - MACRO EDITOR IS SUSPECT

IEV951 THE MACRO GENERATOR HAS ENCOUNTERED UNTRANSLA~ABLE MACRO EDITED
TEX'I

IEV952 BAD SET SYMEOL NAME FIELD OR LCL/GBL OPERAND - CHECK 'IHE MACRO
EDI'IED TEXT

IEV953 BAD SUBSCRIPT ON SET SYMBOL - CHECK THE MACRO EDITED TEXT

IEV954 CHARACTER EXPRESSION FOLLOWED BY BAD SUBSCRIP'IS - CHECK 'IHE
MACRO EDITED TEXT

IEV955 A RIGHT PARENTHESIS WITH NO MATCHING LEFT PAREN'IHESIS WAS FOUND
IN AN EXPRESSION - CHECK THE MACRO EDITED 'IEX'I ,

IEV956 MULTIPLE SUBSCRIPTS OR BAD SET SYMBOL TERMINATOR - CHECK THE
MACRO EDITEt TEXT

IEV957 BAD TERMINATOR ON CREATED SET SYMBOL - CHECK THE MACRO EDI'IED
TEXT

IEV958 BAD TERMINATOR ON PARAMETER - CHECK THE MACRO EDITED 'IEXT

IEV959 UNEXPECTED END OF DATA ON H-ASSEMBLER WORK FILE (SYSUT1) -
INTERNAL CORE MANAGEMENT IS SUSPECT

IEV960 A BAD INTERNAL FILE NUMBER HAS BEEN PASSED TO 'IHE xxxxx INTERNAL
CORE MANAGEMENT ROUTINE

IEV961 AN INVALID CORE REQUEST HAS BEEN MADE, OR THE
FREE CORE CHAIN POINTERS HAVE BEEN DESTROYED

54

Explanation: The assembly is terminated because of one of the
errors described in IEV950-IEV961. This usually is caused by a bug
in the assembler itself. Under certain conditions, however, the
assembly can be rerun successfully.

Assembler Action: A special abnormal termination dump (Assembler H
Interrupt and Ciagnostic Cump) follows the message. Depending on
where the error occurred, the assembly listing up to the bad
statement may also be produced. The dump usually indicates which
statement caused termination. It also may include contents of the
assembler registers and work areas and ether status information for
use by IBM or your assembler maintenance programmers in determining
the cause of the termination.

Prograrrmer Response: Check the statement that caused termination.
Correct any errors in it or, especially if the statement is long or
complex, rewrite it. Reassemble the program; it nay assemble
correctly. However, even if it reassembles withcut error, there
may be a bug in the assembler. Save the abnormal termination dump,
the assembly listing (if one was produced), and the input deck and
give them to your IBM customer engineer. Also, if the program
assembles correctly, submit a copy of the listing and input deck of
the correct assembly. This information may be helpful in
diagnosing and fixing the assembler bug. OS Asserrbler li Logic,
Order Number LY26-3760, contains a complete description of the
purpose and format of the assembler's abnormal termination dump.

Sever~ty Code: 20

IEV970 STATEMENT COMPLEXITY EXCEEDED, BREAK THE STATEMENT INTO SEGMENTS
AND RERUN THE ASSEMBLY

Explanation: The statement is too complex to be evaluated by the
macro generator phase of the assembler. It overflowed the
evaluation work area of the assembler. Normally, there is no
assembler malfunctIon; the statement can be corrected and the
program reassembled successfully.

Assembler Action: A special abnormal termination dump (Assembler H
Interrupt and 1:iagnostic Dump)· follows the message. 'lhe sta tement
causing termination is SETA, SETB, SETC, AGO, or AIF. The dump
does not indicate which statement caused termination; however, it
may show the last statement generated in .the roacro. 'The dump may
also include contents of the assembler registers and work areas and
other status information for use by IBM or your assembler
maintenance programmers in determining the cause of the termination.
However, it will not be needed unless the error persists. ~his
information may be helpful in diagnosing and fixing an assembler
bug.

Programmer Response: Check the statement that caused termination.
Rewrite the statement or break into two or more statements.
Reassemble the program; it should assemble correctly. However, if
the error persists, there may be an assembler malfunction. Save
the abnormal termination dump, the assembly listing (if one was
produced), and the input deck and give them to ycur IBM customer
engineer. OS Assembler B Logic, Order Number LY26-3760, contains a
complete description of the purpose and format of the assembler'S
abnormal termination dump.

Severity Code: 20

Assembly Error Diagncstic Messages 55

IEV971 INSUFFICIENT CORE AVAILABLE FOR MACRO EDITOR WORK AREA

IEV972 NO AVAILABLE STORAGE REMAINS - ALLOCATE MORE CORE OR BREAR THE
INPUT INTO MULTIPLE ASSEMBLIES

Explanation: The assemtler work areas are full and none of the
contents can be spilled onto the auxiliary data set (SYSUT1). Note
that the load modules and fixed data areas of the assembler require
about 96K bytes of main storage. The rest of the assembler's
region is used for data set buffers, assembler internal files, and
work areas. Some of the internal files, like the symbol table,
must remain in main storage throughout the assembly.

=A=s=s~e=mb~l~e~r~A=c~t~i=o~n: A special abnormal termination dump (Assembler H
Interrupt and Diagnostic Dump) follows the message. Depending on
where the error occurred, the assembly listing u~ to the bad
statement may also be produced. The dump usually indicates the
statement being processed when the assembler ran out of main
storage. The other information in the dump, such as register and
work area contents, is not needed.

programmer Response: Increase the region size or split the
assembly into two or more assemblies. Check for loops in open code
that cause the symtol table to overflow. Corrplete information on
these and other possible remedies, such as decreasing the storage
used for data set buffers, is in the "Storage Estimates" chapter of
the OS Assembler] System Information manual.

Severity Code: 20

IEV980 SYSUTl IS REQUIRED TO BE ASSIGNED TO A DIRECT ACCESS DEVICE, BUT
WAS NOT

IEV981 THE DD STATEMENTS FOR SYSIN AND SYSUTl WERE MISSING OR INVALID

IEV982 THE DD STATEMENT FOR SYSIN WAS MISSING OR INVALIC

IEV983 THE CC STATEMENT FOR SYSUTl WAS MISSING OR INVALID

56

Explanation: The CD statements for the data sets indicated in
IEV980-IEV983 have not been included in the job centrol language
for the assembly job step or are invalid.

Assembler Action: The assembly is not done because the assembler
does not have the required data sets. This rressage appears alone,
without any other abnormal termination dump information.

programmer Response:Supply a valid DD statement and rerun the
assembly. OS Assembler] programmer's Guide, describes the
assembler data sets and the standard DD statements (in the
IBM-supplied cataloged procedures) for them. Be sure to check
whether your installation has changed the DDname (for example,
SYSUTl tq SYSWORK1) or one or more parameters in the cataloged
procedure statement.

Severity Code: 20

IEV998 THE ASSEMBLER COULD NOT RESUME READING A SYSLIE MEMBER BECAUSE
IT COULD NOT FIND THE MEMBER AGAIN

Explanation: The assembly is terminated because the assembler
cannot find a COpy member that it has already read. This usually
is caused by a bug in the assembler itself or by an Operating
System I/O error. Under certain conditions, however, the assembly
can be rerun successfully.

Assembler Action: A special abnormal termination dump ~ssembler H
Interrupt and Ciagnostic DumP) follows the message. ~he dump
usually indicates which statement caused termination. It also may
include contents of the assembler registers and work areas and
other status information for use by IBM or your assembler
maintenance programmers in determining the cause cf the termination.

programmer Response: Reassemble the program; it may assemble
correctly. If it does not reassemble without error, save the
abnormal termination dump, the assembly listing (if one was
produced) , and the input deck and give them to your IBM customer
engineer. OS Assembler ~ Logic, Order Number LY26-3760, contains a
complete description of the purpose and format of the assembler's
abnormal termination dump.

Severity Code: 20

IEV999 (I) ASSEMBLY TERMINATED - SYNAD EXIT TAKEN - PERMANENT I/O ERROR
ON xxxxx DATA SET

Explanation: The assembly was terminated because of a permanent
I/O error on the data set indicated in the message. This is
usually caused by a machine or Operating System error. The
assembly usually can be rerun successfully. This message will also
appear on the console output device.

Assembler Action: A special abnormal termination dump (Assembler H
Interrupt and Diagnostic Dump) follows the message. Depending on
where the error occurred, the assembly listing u~ to the bad
statement may also be produced. The durr.p usually indicates which
statement caused termination. It also may include contents of the
assembler registers and work areas and ether status information for
use by IBM or your assembler maintenance programmers in determining
the cause of the termination.

programmer Response: If the I/O error is on SYSIN or SYSLIB, you
may have concatenated the input or library data sets incorrectly.
Make sure that the DC statement for the data set with the largest
block size (BLKSIZE) is placed in the JCL before the DD statements
of the data sets concatenated to it. Also, make sure that all
input or library data sets have the same device class (all DASD or
all ta~e) •

Reassemble the program; it may assemble correctly. If it does not
reassemble without error, save the abnormal terrr.ination dump, the
assembly listing (if one was produced), and the input deck and give
them to your IBM customer engineer. Also, if the program assembles
correctly, submit a copy of the listing and input deck of the
correct assembly. The as Assembler li Logic, Order Number
LY26-3760, contains a complete description of the purpose and
format of the assembler's abnormal termination dump.

Severity Code: 20

Assembly Error Diagnostic Messages 57

SC26 -3770-1

International Business Machines Corporation
Data Processing Division '
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

n
c
-I
»
r
o
Z
C)

o
o
-I
-I
m
o
C
Z
m

OS Assembler H
Messages

Order No. SC26-3770-l

Your views about this publication may help improve its usefulness; this fonn
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such request, please contact your
IBM representative or the IBM Branch Office serving your locality.

Reply requested: Name:

READER'S
COMMENT
FORM

Yes 0
No 0

Job Title: ___________________ _
Address: ____________________ _

Zip _________ __

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)

SC26 -3770-1

Your comments, please ...

Your answers to the questions on the back of this form, together with your comments, will
help us to produce better publications for your use. Each reply will be carefully reviewed by
the persons responsible for writing and publishing this material. All comments and suggestions
become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

Fold Fold

o
C
-I
a
::0 ,..
a
r
o
»
r
a
z

•• G)

FOld

Business Reply Mail

No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department 813 L
1133 Westchester Avenue
White Plains, New York 10604

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

First Class
Permit 40
Armonk
New York

Fold

c
Z
m

CJ:l
()
N
O'i
I

OJ
'I
'I
o
I

()
C
-i
l>
r
o
Z
C>
o
o
=1
m
o
C
Z
m

OS Assembler H
Messages

Order No. SC26-3770-l

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more d{rect handling of such request, please contact your
IBM representative or the IBM Branch Office serving your locality.

Reply requested: Name:

READER'S
COMMENT
FORM

Yes 0
No 0

Job Title: ___________________ _

Address: ____________________ _
Zip ________ __

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)

SC26 -3770-1

Your comments, please ...

Your answers to the questions on the back of this form, together with your comments, will
help us to produce better publications for your use. Each reply will be carefully reviewed by
the persons responsible for writing and publishing this material. All comments and suggestions
become the property of IBM.

~ Please direct any requests for. copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

Fold FOld

o
C
-f
o
::D
"T1
o ,-
c
» ,-
o
z

•• G)

Business Reply Mail

No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department 813 L
1133 Westchester Avenue
White Plains, New York 10604

First Class
Permit 40
Armonk
New York

,
Z
m

...

Fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold

